7719e15813eeac151190ba5b896d43ec145c956b
[linux-block.git] / drivers / net / ethernet / intel / e1000e / netdev.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2018 Intel Corporation. */
3
4 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
5
6 #include <linux/module.h>
7 #include <linux/types.h>
8 #include <linux/init.h>
9 #include <linux/pci.h>
10 #include <linux/vmalloc.h>
11 #include <linux/pagemap.h>
12 #include <linux/delay.h>
13 #include <linux/netdevice.h>
14 #include <linux/interrupt.h>
15 #include <linux/tcp.h>
16 #include <linux/ipv6.h>
17 #include <linux/slab.h>
18 #include <net/checksum.h>
19 #include <net/ip6_checksum.h>
20 #include <linux/ethtool.h>
21 #include <linux/if_vlan.h>
22 #include <linux/cpu.h>
23 #include <linux/smp.h>
24 #include <linux/pm_qos.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/prefetch.h>
27 #include <linux/suspend.h>
28
29 #include "e1000.h"
30 #define CREATE_TRACE_POINTS
31 #include "e1000e_trace.h"
32
33 char e1000e_driver_name[] = "e1000e";
34
35 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
36 static int debug = -1;
37 module_param(debug, int, 0);
38 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
39
40 static const struct e1000_info *e1000_info_tbl[] = {
41         [board_82571]           = &e1000_82571_info,
42         [board_82572]           = &e1000_82572_info,
43         [board_82573]           = &e1000_82573_info,
44         [board_82574]           = &e1000_82574_info,
45         [board_82583]           = &e1000_82583_info,
46         [board_80003es2lan]     = &e1000_es2_info,
47         [board_ich8lan]         = &e1000_ich8_info,
48         [board_ich9lan]         = &e1000_ich9_info,
49         [board_ich10lan]        = &e1000_ich10_info,
50         [board_pchlan]          = &e1000_pch_info,
51         [board_pch2lan]         = &e1000_pch2_info,
52         [board_pch_lpt]         = &e1000_pch_lpt_info,
53         [board_pch_spt]         = &e1000_pch_spt_info,
54         [board_pch_cnp]         = &e1000_pch_cnp_info,
55         [board_pch_tgp]         = &e1000_pch_tgp_info,
56         [board_pch_adp]         = &e1000_pch_adp_info,
57         [board_pch_mtp]         = &e1000_pch_mtp_info,
58 };
59
60 struct e1000_reg_info {
61         u32 ofs;
62         char *name;
63 };
64
65 static const struct e1000_reg_info e1000_reg_info_tbl[] = {
66         /* General Registers */
67         {E1000_CTRL, "CTRL"},
68         {E1000_STATUS, "STATUS"},
69         {E1000_CTRL_EXT, "CTRL_EXT"},
70
71         /* Interrupt Registers */
72         {E1000_ICR, "ICR"},
73
74         /* Rx Registers */
75         {E1000_RCTL, "RCTL"},
76         {E1000_RDLEN(0), "RDLEN"},
77         {E1000_RDH(0), "RDH"},
78         {E1000_RDT(0), "RDT"},
79         {E1000_RDTR, "RDTR"},
80         {E1000_RXDCTL(0), "RXDCTL"},
81         {E1000_ERT, "ERT"},
82         {E1000_RDBAL(0), "RDBAL"},
83         {E1000_RDBAH(0), "RDBAH"},
84         {E1000_RDFH, "RDFH"},
85         {E1000_RDFT, "RDFT"},
86         {E1000_RDFHS, "RDFHS"},
87         {E1000_RDFTS, "RDFTS"},
88         {E1000_RDFPC, "RDFPC"},
89
90         /* Tx Registers */
91         {E1000_TCTL, "TCTL"},
92         {E1000_TDBAL(0), "TDBAL"},
93         {E1000_TDBAH(0), "TDBAH"},
94         {E1000_TDLEN(0), "TDLEN"},
95         {E1000_TDH(0), "TDH"},
96         {E1000_TDT(0), "TDT"},
97         {E1000_TIDV, "TIDV"},
98         {E1000_TXDCTL(0), "TXDCTL"},
99         {E1000_TADV, "TADV"},
100         {E1000_TARC(0), "TARC"},
101         {E1000_TDFH, "TDFH"},
102         {E1000_TDFT, "TDFT"},
103         {E1000_TDFHS, "TDFHS"},
104         {E1000_TDFTS, "TDFTS"},
105         {E1000_TDFPC, "TDFPC"},
106
107         /* List Terminator */
108         {0, NULL}
109 };
110
111 /**
112  * __ew32_prepare - prepare to write to MAC CSR register on certain parts
113  * @hw: pointer to the HW structure
114  *
115  * When updating the MAC CSR registers, the Manageability Engine (ME) could
116  * be accessing the registers at the same time.  Normally, this is handled in
117  * h/w by an arbiter but on some parts there is a bug that acknowledges Host
118  * accesses later than it should which could result in the register to have
119  * an incorrect value.  Workaround this by checking the FWSM register which
120  * has bit 24 set while ME is accessing MAC CSR registers, wait if it is set
121  * and try again a number of times.
122  **/
123 static void __ew32_prepare(struct e1000_hw *hw)
124 {
125         s32 i = E1000_ICH_FWSM_PCIM2PCI_COUNT;
126
127         while ((er32(FWSM) & E1000_ICH_FWSM_PCIM2PCI) && --i)
128                 udelay(50);
129 }
130
131 void __ew32(struct e1000_hw *hw, unsigned long reg, u32 val)
132 {
133         if (hw->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
134                 __ew32_prepare(hw);
135
136         writel(val, hw->hw_addr + reg);
137 }
138
139 /**
140  * e1000_regdump - register printout routine
141  * @hw: pointer to the HW structure
142  * @reginfo: pointer to the register info table
143  **/
144 static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
145 {
146         int n = 0;
147         char rname[16];
148         u32 regs[8];
149
150         switch (reginfo->ofs) {
151         case E1000_RXDCTL(0):
152                 for (n = 0; n < 2; n++)
153                         regs[n] = __er32(hw, E1000_RXDCTL(n));
154                 break;
155         case E1000_TXDCTL(0):
156                 for (n = 0; n < 2; n++)
157                         regs[n] = __er32(hw, E1000_TXDCTL(n));
158                 break;
159         case E1000_TARC(0):
160                 for (n = 0; n < 2; n++)
161                         regs[n] = __er32(hw, E1000_TARC(n));
162                 break;
163         default:
164                 pr_info("%-15s %08x\n",
165                         reginfo->name, __er32(hw, reginfo->ofs));
166                 return;
167         }
168
169         snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
170         pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]);
171 }
172
173 static void e1000e_dump_ps_pages(struct e1000_adapter *adapter,
174                                  struct e1000_buffer *bi)
175 {
176         int i;
177         struct e1000_ps_page *ps_page;
178
179         for (i = 0; i < adapter->rx_ps_pages; i++) {
180                 ps_page = &bi->ps_pages[i];
181
182                 if (ps_page->page) {
183                         pr_info("packet dump for ps_page %d:\n", i);
184                         print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
185                                        16, 1, page_address(ps_page->page),
186                                        PAGE_SIZE, true);
187                 }
188         }
189 }
190
191 /**
192  * e1000e_dump - Print registers, Tx-ring and Rx-ring
193  * @adapter: board private structure
194  **/
195 static void e1000e_dump(struct e1000_adapter *adapter)
196 {
197         struct net_device *netdev = adapter->netdev;
198         struct e1000_hw *hw = &adapter->hw;
199         struct e1000_reg_info *reginfo;
200         struct e1000_ring *tx_ring = adapter->tx_ring;
201         struct e1000_tx_desc *tx_desc;
202         struct my_u0 {
203                 __le64 a;
204                 __le64 b;
205         } *u0;
206         struct e1000_buffer *buffer_info;
207         struct e1000_ring *rx_ring = adapter->rx_ring;
208         union e1000_rx_desc_packet_split *rx_desc_ps;
209         union e1000_rx_desc_extended *rx_desc;
210         struct my_u1 {
211                 __le64 a;
212                 __le64 b;
213                 __le64 c;
214                 __le64 d;
215         } *u1;
216         u32 staterr;
217         int i = 0;
218
219         if (!netif_msg_hw(adapter))
220                 return;
221
222         /* Print netdevice Info */
223         if (netdev) {
224                 dev_info(&adapter->pdev->dev, "Net device Info\n");
225                 pr_info("Device Name     state            trans_start\n");
226                 pr_info("%-15s %016lX %016lX\n", netdev->name,
227                         netdev->state, dev_trans_start(netdev));
228         }
229
230         /* Print Registers */
231         dev_info(&adapter->pdev->dev, "Register Dump\n");
232         pr_info(" Register Name   Value\n");
233         for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
234              reginfo->name; reginfo++) {
235                 e1000_regdump(hw, reginfo);
236         }
237
238         /* Print Tx Ring Summary */
239         if (!netdev || !netif_running(netdev))
240                 return;
241
242         dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
243         pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
244         buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
245         pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n",
246                 0, tx_ring->next_to_use, tx_ring->next_to_clean,
247                 (unsigned long long)buffer_info->dma,
248                 buffer_info->length,
249                 buffer_info->next_to_watch,
250                 (unsigned long long)buffer_info->time_stamp);
251
252         /* Print Tx Ring */
253         if (!netif_msg_tx_done(adapter))
254                 goto rx_ring_summary;
255
256         dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
257
258         /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
259          *
260          * Legacy Transmit Descriptor
261          *   +--------------------------------------------------------------+
262          * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
263          *   +--------------------------------------------------------------+
264          * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
265          *   +--------------------------------------------------------------+
266          *   63       48 47        36 35    32 31     24 23    16 15        0
267          *
268          * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
269          *   63      48 47    40 39       32 31             16 15    8 7      0
270          *   +----------------------------------------------------------------+
271          * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
272          *   +----------------------------------------------------------------+
273          * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
274          *   +----------------------------------------------------------------+
275          *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
276          *
277          * Extended Data Descriptor (DTYP=0x1)
278          *   +----------------------------------------------------------------+
279          * 0 |                     Buffer Address [63:0]                      |
280          *   +----------------------------------------------------------------+
281          * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
282          *   +----------------------------------------------------------------+
283          *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
284          */
285         pr_info("Tl[desc]     [address 63:0  ] [SpeCssSCmCsLen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Legacy format\n");
286         pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Context format\n");
287         pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Data format\n");
288         for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
289                 const char *next_desc;
290                 tx_desc = E1000_TX_DESC(*tx_ring, i);
291                 buffer_info = &tx_ring->buffer_info[i];
292                 u0 = (struct my_u0 *)tx_desc;
293                 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
294                         next_desc = " NTC/U";
295                 else if (i == tx_ring->next_to_use)
296                         next_desc = " NTU";
297                 else if (i == tx_ring->next_to_clean)
298                         next_desc = " NTC";
299                 else
300                         next_desc = "";
301                 pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p%s\n",
302                         (!(le64_to_cpu(u0->b) & BIT(29)) ? 'l' :
303                          ((le64_to_cpu(u0->b) & BIT(20)) ? 'd' : 'c')),
304                         i,
305                         (unsigned long long)le64_to_cpu(u0->a),
306                         (unsigned long long)le64_to_cpu(u0->b),
307                         (unsigned long long)buffer_info->dma,
308                         buffer_info->length, buffer_info->next_to_watch,
309                         (unsigned long long)buffer_info->time_stamp,
310                         buffer_info->skb, next_desc);
311
312                 if (netif_msg_pktdata(adapter) && buffer_info->skb)
313                         print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
314                                        16, 1, buffer_info->skb->data,
315                                        buffer_info->skb->len, true);
316         }
317
318         /* Print Rx Ring Summary */
319 rx_ring_summary:
320         dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
321         pr_info("Queue [NTU] [NTC]\n");
322         pr_info(" %5d %5X %5X\n",
323                 0, rx_ring->next_to_use, rx_ring->next_to_clean);
324
325         /* Print Rx Ring */
326         if (!netif_msg_rx_status(adapter))
327                 return;
328
329         dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
330         switch (adapter->rx_ps_pages) {
331         case 1:
332         case 2:
333         case 3:
334                 /* [Extended] Packet Split Receive Descriptor Format
335                  *
336                  *    +-----------------------------------------------------+
337                  *  0 |                Buffer Address 0 [63:0]              |
338                  *    +-----------------------------------------------------+
339                  *  8 |                Buffer Address 1 [63:0]              |
340                  *    +-----------------------------------------------------+
341                  * 16 |                Buffer Address 2 [63:0]              |
342                  *    +-----------------------------------------------------+
343                  * 24 |                Buffer Address 3 [63:0]              |
344                  *    +-----------------------------------------------------+
345                  */
346                 pr_info("R  [desc]      [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma       ] [bi->skb] <-- Ext Pkt Split format\n");
347                 /* [Extended] Receive Descriptor (Write-Back) Format
348                  *
349                  *   63       48 47    32 31     13 12    8 7    4 3        0
350                  *   +------------------------------------------------------+
351                  * 0 | Packet   | IP     |  Rsvd   | MRQ   | Rsvd | MRQ RSS |
352                  *   | Checksum | Ident  |         | Queue |      |  Type   |
353                  *   +------------------------------------------------------+
354                  * 8 | VLAN Tag | Length | Extended Error | Extended Status |
355                  *   +------------------------------------------------------+
356                  *   63       48 47    32 31            20 19               0
357                  */
358                 pr_info("RWB[desc]      [ck ipid mrqhsh] [vl   l0 ee  es] [ l3  l2  l1 hs] [reserved      ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n");
359                 for (i = 0; i < rx_ring->count; i++) {
360                         const char *next_desc;
361                         buffer_info = &rx_ring->buffer_info[i];
362                         rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
363                         u1 = (struct my_u1 *)rx_desc_ps;
364                         staterr =
365                             le32_to_cpu(rx_desc_ps->wb.middle.status_error);
366
367                         if (i == rx_ring->next_to_use)
368                                 next_desc = " NTU";
369                         else if (i == rx_ring->next_to_clean)
370                                 next_desc = " NTC";
371                         else
372                                 next_desc = "";
373
374                         if (staterr & E1000_RXD_STAT_DD) {
375                                 /* Descriptor Done */
376                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX ---------------- %p%s\n",
377                                         "RWB", i,
378                                         (unsigned long long)le64_to_cpu(u1->a),
379                                         (unsigned long long)le64_to_cpu(u1->b),
380                                         (unsigned long long)le64_to_cpu(u1->c),
381                                         (unsigned long long)le64_to_cpu(u1->d),
382                                         buffer_info->skb, next_desc);
383                         } else {
384                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX %016llX %p%s\n",
385                                         "R  ", i,
386                                         (unsigned long long)le64_to_cpu(u1->a),
387                                         (unsigned long long)le64_to_cpu(u1->b),
388                                         (unsigned long long)le64_to_cpu(u1->c),
389                                         (unsigned long long)le64_to_cpu(u1->d),
390                                         (unsigned long long)buffer_info->dma,
391                                         buffer_info->skb, next_desc);
392
393                                 if (netif_msg_pktdata(adapter))
394                                         e1000e_dump_ps_pages(adapter,
395                                                              buffer_info);
396                         }
397                 }
398                 break;
399         default:
400         case 0:
401                 /* Extended Receive Descriptor (Read) Format
402                  *
403                  *   +-----------------------------------------------------+
404                  * 0 |                Buffer Address [63:0]                |
405                  *   +-----------------------------------------------------+
406                  * 8 |                      Reserved                       |
407                  *   +-----------------------------------------------------+
408                  */
409                 pr_info("R  [desc]      [buf addr 63:0 ] [reserved 63:0 ] [bi->dma       ] [bi->skb] <-- Ext (Read) format\n");
410                 /* Extended Receive Descriptor (Write-Back) Format
411                  *
412                  *   63       48 47    32 31    24 23            4 3        0
413                  *   +------------------------------------------------------+
414                  *   |     RSS Hash      |        |               |         |
415                  * 0 +-------------------+  Rsvd  |   Reserved    | MRQ RSS |
416                  *   | Packet   | IP     |        |               |  Type   |
417                  *   | Checksum | Ident  |        |               |         |
418                  *   +------------------------------------------------------+
419                  * 8 | VLAN Tag | Length | Extended Error | Extended Status |
420                  *   +------------------------------------------------------+
421                  *   63       48 47    32 31            20 19               0
422                  */
423                 pr_info("RWB[desc]      [cs ipid    mrq] [vt   ln xe  xs] [bi->skb] <-- Ext (Write-Back) format\n");
424
425                 for (i = 0; i < rx_ring->count; i++) {
426                         const char *next_desc;
427
428                         buffer_info = &rx_ring->buffer_info[i];
429                         rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
430                         u1 = (struct my_u1 *)rx_desc;
431                         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
432
433                         if (i == rx_ring->next_to_use)
434                                 next_desc = " NTU";
435                         else if (i == rx_ring->next_to_clean)
436                                 next_desc = " NTC";
437                         else
438                                 next_desc = "";
439
440                         if (staterr & E1000_RXD_STAT_DD) {
441                                 /* Descriptor Done */
442                                 pr_info("%s[0x%03X]     %016llX %016llX ---------------- %p%s\n",
443                                         "RWB", i,
444                                         (unsigned long long)le64_to_cpu(u1->a),
445                                         (unsigned long long)le64_to_cpu(u1->b),
446                                         buffer_info->skb, next_desc);
447                         } else {
448                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %p%s\n",
449                                         "R  ", i,
450                                         (unsigned long long)le64_to_cpu(u1->a),
451                                         (unsigned long long)le64_to_cpu(u1->b),
452                                         (unsigned long long)buffer_info->dma,
453                                         buffer_info->skb, next_desc);
454
455                                 if (netif_msg_pktdata(adapter) &&
456                                     buffer_info->skb)
457                                         print_hex_dump(KERN_INFO, "",
458                                                        DUMP_PREFIX_ADDRESS, 16,
459                                                        1,
460                                                        buffer_info->skb->data,
461                                                        adapter->rx_buffer_len,
462                                                        true);
463                         }
464                 }
465         }
466 }
467
468 /**
469  * e1000_desc_unused - calculate if we have unused descriptors
470  * @ring: pointer to ring struct to perform calculation on
471  **/
472 static int e1000_desc_unused(struct e1000_ring *ring)
473 {
474         if (ring->next_to_clean > ring->next_to_use)
475                 return ring->next_to_clean - ring->next_to_use - 1;
476
477         return ring->count + ring->next_to_clean - ring->next_to_use - 1;
478 }
479
480 /**
481  * e1000e_systim_to_hwtstamp - convert system time value to hw time stamp
482  * @adapter: board private structure
483  * @hwtstamps: time stamp structure to update
484  * @systim: unsigned 64bit system time value.
485  *
486  * Convert the system time value stored in the RX/TXSTMP registers into a
487  * hwtstamp which can be used by the upper level time stamping functions.
488  *
489  * The 'systim_lock' spinlock is used to protect the consistency of the
490  * system time value. This is needed because reading the 64 bit time
491  * value involves reading two 32 bit registers. The first read latches the
492  * value.
493  **/
494 static void e1000e_systim_to_hwtstamp(struct e1000_adapter *adapter,
495                                       struct skb_shared_hwtstamps *hwtstamps,
496                                       u64 systim)
497 {
498         u64 ns;
499         unsigned long flags;
500
501         spin_lock_irqsave(&adapter->systim_lock, flags);
502         ns = timecounter_cyc2time(&adapter->tc, systim);
503         spin_unlock_irqrestore(&adapter->systim_lock, flags);
504
505         memset(hwtstamps, 0, sizeof(*hwtstamps));
506         hwtstamps->hwtstamp = ns_to_ktime(ns);
507 }
508
509 /**
510  * e1000e_rx_hwtstamp - utility function which checks for Rx time stamp
511  * @adapter: board private structure
512  * @status: descriptor extended error and status field
513  * @skb: particular skb to include time stamp
514  *
515  * If the time stamp is valid, convert it into the timecounter ns value
516  * and store that result into the shhwtstamps structure which is passed
517  * up the network stack.
518  **/
519 static void e1000e_rx_hwtstamp(struct e1000_adapter *adapter, u32 status,
520                                struct sk_buff *skb)
521 {
522         struct e1000_hw *hw = &adapter->hw;
523         u64 rxstmp;
524
525         if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP) ||
526             !(status & E1000_RXDEXT_STATERR_TST) ||
527             !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
528                 return;
529
530         /* The Rx time stamp registers contain the time stamp.  No other
531          * received packet will be time stamped until the Rx time stamp
532          * registers are read.  Because only one packet can be time stamped
533          * at a time, the register values must belong to this packet and
534          * therefore none of the other additional attributes need to be
535          * compared.
536          */
537         rxstmp = (u64)er32(RXSTMPL);
538         rxstmp |= (u64)er32(RXSTMPH) << 32;
539         e1000e_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), rxstmp);
540
541         adapter->flags2 &= ~FLAG2_CHECK_RX_HWTSTAMP;
542 }
543
544 /**
545  * e1000_receive_skb - helper function to handle Rx indications
546  * @adapter: board private structure
547  * @netdev: pointer to netdev struct
548  * @staterr: descriptor extended error and status field as written by hardware
549  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
550  * @skb: pointer to sk_buff to be indicated to stack
551  **/
552 static void e1000_receive_skb(struct e1000_adapter *adapter,
553                               struct net_device *netdev, struct sk_buff *skb,
554                               u32 staterr, __le16 vlan)
555 {
556         u16 tag = le16_to_cpu(vlan);
557
558         e1000e_rx_hwtstamp(adapter, staterr, skb);
559
560         skb->protocol = eth_type_trans(skb, netdev);
561
562         if (staterr & E1000_RXD_STAT_VP)
563                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tag);
564
565         napi_gro_receive(&adapter->napi, skb);
566 }
567
568 /**
569  * e1000_rx_checksum - Receive Checksum Offload
570  * @adapter: board private structure
571  * @status_err: receive descriptor status and error fields
572  * @skb: socket buffer with received data
573  **/
574 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
575                               struct sk_buff *skb)
576 {
577         u16 status = (u16)status_err;
578         u8 errors = (u8)(status_err >> 24);
579
580         skb_checksum_none_assert(skb);
581
582         /* Rx checksum disabled */
583         if (!(adapter->netdev->features & NETIF_F_RXCSUM))
584                 return;
585
586         /* Ignore Checksum bit is set */
587         if (status & E1000_RXD_STAT_IXSM)
588                 return;
589
590         /* TCP/UDP checksum error bit or IP checksum error bit is set */
591         if (errors & (E1000_RXD_ERR_TCPE | E1000_RXD_ERR_IPE)) {
592                 /* let the stack verify checksum errors */
593                 adapter->hw_csum_err++;
594                 return;
595         }
596
597         /* TCP/UDP Checksum has not been calculated */
598         if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
599                 return;
600
601         /* It must be a TCP or UDP packet with a valid checksum */
602         skb->ip_summed = CHECKSUM_UNNECESSARY;
603         adapter->hw_csum_good++;
604 }
605
606 static void e1000e_update_rdt_wa(struct e1000_ring *rx_ring, unsigned int i)
607 {
608         struct e1000_adapter *adapter = rx_ring->adapter;
609         struct e1000_hw *hw = &adapter->hw;
610
611         __ew32_prepare(hw);
612         writel(i, rx_ring->tail);
613
614         if (unlikely(i != readl(rx_ring->tail))) {
615                 u32 rctl = er32(RCTL);
616
617                 ew32(RCTL, rctl & ~E1000_RCTL_EN);
618                 e_err("ME firmware caused invalid RDT - resetting\n");
619                 schedule_work(&adapter->reset_task);
620         }
621 }
622
623 static void e1000e_update_tdt_wa(struct e1000_ring *tx_ring, unsigned int i)
624 {
625         struct e1000_adapter *adapter = tx_ring->adapter;
626         struct e1000_hw *hw = &adapter->hw;
627
628         __ew32_prepare(hw);
629         writel(i, tx_ring->tail);
630
631         if (unlikely(i != readl(tx_ring->tail))) {
632                 u32 tctl = er32(TCTL);
633
634                 ew32(TCTL, tctl & ~E1000_TCTL_EN);
635                 e_err("ME firmware caused invalid TDT - resetting\n");
636                 schedule_work(&adapter->reset_task);
637         }
638 }
639
640 /**
641  * e1000_alloc_rx_buffers - Replace used receive buffers
642  * @rx_ring: Rx descriptor ring
643  * @cleaned_count: number to reallocate
644  * @gfp: flags for allocation
645  **/
646 static void e1000_alloc_rx_buffers(struct e1000_ring *rx_ring,
647                                    int cleaned_count, gfp_t gfp)
648 {
649         struct e1000_adapter *adapter = rx_ring->adapter;
650         struct net_device *netdev = adapter->netdev;
651         struct pci_dev *pdev = adapter->pdev;
652         union e1000_rx_desc_extended *rx_desc;
653         struct e1000_buffer *buffer_info;
654         struct sk_buff *skb;
655         unsigned int i;
656         unsigned int bufsz = adapter->rx_buffer_len;
657
658         i = rx_ring->next_to_use;
659         buffer_info = &rx_ring->buffer_info[i];
660
661         while (cleaned_count--) {
662                 skb = buffer_info->skb;
663                 if (skb) {
664                         skb_trim(skb, 0);
665                         goto map_skb;
666                 }
667
668                 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
669                 if (!skb) {
670                         /* Better luck next round */
671                         adapter->alloc_rx_buff_failed++;
672                         break;
673                 }
674
675                 buffer_info->skb = skb;
676 map_skb:
677                 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
678                                                   adapter->rx_buffer_len,
679                                                   DMA_FROM_DEVICE);
680                 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
681                         dev_err(&pdev->dev, "Rx DMA map failed\n");
682                         adapter->rx_dma_failed++;
683                         break;
684                 }
685
686                 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
687                 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
688
689                 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
690                         /* Force memory writes to complete before letting h/w
691                          * know there are new descriptors to fetch.  (Only
692                          * applicable for weak-ordered memory model archs,
693                          * such as IA-64).
694                          */
695                         wmb();
696                         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
697                                 e1000e_update_rdt_wa(rx_ring, i);
698                         else
699                                 writel(i, rx_ring->tail);
700                 }
701                 i++;
702                 if (i == rx_ring->count)
703                         i = 0;
704                 buffer_info = &rx_ring->buffer_info[i];
705         }
706
707         rx_ring->next_to_use = i;
708 }
709
710 /**
711  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
712  * @rx_ring: Rx descriptor ring
713  * @cleaned_count: number to reallocate
714  * @gfp: flags for allocation
715  **/
716 static void e1000_alloc_rx_buffers_ps(struct e1000_ring *rx_ring,
717                                       int cleaned_count, gfp_t gfp)
718 {
719         struct e1000_adapter *adapter = rx_ring->adapter;
720         struct net_device *netdev = adapter->netdev;
721         struct pci_dev *pdev = adapter->pdev;
722         union e1000_rx_desc_packet_split *rx_desc;
723         struct e1000_buffer *buffer_info;
724         struct e1000_ps_page *ps_page;
725         struct sk_buff *skb;
726         unsigned int i, j;
727
728         i = rx_ring->next_to_use;
729         buffer_info = &rx_ring->buffer_info[i];
730
731         while (cleaned_count--) {
732                 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
733
734                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
735                         ps_page = &buffer_info->ps_pages[j];
736                         if (j >= adapter->rx_ps_pages) {
737                                 /* all unused desc entries get hw null ptr */
738                                 rx_desc->read.buffer_addr[j + 1] =
739                                     ~cpu_to_le64(0);
740                                 continue;
741                         }
742                         if (!ps_page->page) {
743                                 ps_page->page = alloc_page(gfp);
744                                 if (!ps_page->page) {
745                                         adapter->alloc_rx_buff_failed++;
746                                         goto no_buffers;
747                                 }
748                                 ps_page->dma = dma_map_page(&pdev->dev,
749                                                             ps_page->page,
750                                                             0, PAGE_SIZE,
751                                                             DMA_FROM_DEVICE);
752                                 if (dma_mapping_error(&pdev->dev,
753                                                       ps_page->dma)) {
754                                         dev_err(&adapter->pdev->dev,
755                                                 "Rx DMA page map failed\n");
756                                         adapter->rx_dma_failed++;
757                                         goto no_buffers;
758                                 }
759                         }
760                         /* Refresh the desc even if buffer_addrs
761                          * didn't change because each write-back
762                          * erases this info.
763                          */
764                         rx_desc->read.buffer_addr[j + 1] =
765                             cpu_to_le64(ps_page->dma);
766                 }
767
768                 skb = __netdev_alloc_skb_ip_align(netdev, adapter->rx_ps_bsize0,
769                                                   gfp);
770
771                 if (!skb) {
772                         adapter->alloc_rx_buff_failed++;
773                         break;
774                 }
775
776                 buffer_info->skb = skb;
777                 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
778                                                   adapter->rx_ps_bsize0,
779                                                   DMA_FROM_DEVICE);
780                 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
781                         dev_err(&pdev->dev, "Rx DMA map failed\n");
782                         adapter->rx_dma_failed++;
783                         /* cleanup skb */
784                         dev_kfree_skb_any(skb);
785                         buffer_info->skb = NULL;
786                         break;
787                 }
788
789                 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
790
791                 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
792                         /* Force memory writes to complete before letting h/w
793                          * know there are new descriptors to fetch.  (Only
794                          * applicable for weak-ordered memory model archs,
795                          * such as IA-64).
796                          */
797                         wmb();
798                         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
799                                 e1000e_update_rdt_wa(rx_ring, i << 1);
800                         else
801                                 writel(i << 1, rx_ring->tail);
802                 }
803
804                 i++;
805                 if (i == rx_ring->count)
806                         i = 0;
807                 buffer_info = &rx_ring->buffer_info[i];
808         }
809
810 no_buffers:
811         rx_ring->next_to_use = i;
812 }
813
814 /**
815  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
816  * @rx_ring: Rx descriptor ring
817  * @cleaned_count: number of buffers to allocate this pass
818  * @gfp: flags for allocation
819  **/
820
821 static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring *rx_ring,
822                                          int cleaned_count, gfp_t gfp)
823 {
824         struct e1000_adapter *adapter = rx_ring->adapter;
825         struct net_device *netdev = adapter->netdev;
826         struct pci_dev *pdev = adapter->pdev;
827         union e1000_rx_desc_extended *rx_desc;
828         struct e1000_buffer *buffer_info;
829         struct sk_buff *skb;
830         unsigned int i;
831         unsigned int bufsz = 256 - 16;  /* for skb_reserve */
832
833         i = rx_ring->next_to_use;
834         buffer_info = &rx_ring->buffer_info[i];
835
836         while (cleaned_count--) {
837                 skb = buffer_info->skb;
838                 if (skb) {
839                         skb_trim(skb, 0);
840                         goto check_page;
841                 }
842
843                 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
844                 if (unlikely(!skb)) {
845                         /* Better luck next round */
846                         adapter->alloc_rx_buff_failed++;
847                         break;
848                 }
849
850                 buffer_info->skb = skb;
851 check_page:
852                 /* allocate a new page if necessary */
853                 if (!buffer_info->page) {
854                         buffer_info->page = alloc_page(gfp);
855                         if (unlikely(!buffer_info->page)) {
856                                 adapter->alloc_rx_buff_failed++;
857                                 break;
858                         }
859                 }
860
861                 if (!buffer_info->dma) {
862                         buffer_info->dma = dma_map_page(&pdev->dev,
863                                                         buffer_info->page, 0,
864                                                         PAGE_SIZE,
865                                                         DMA_FROM_DEVICE);
866                         if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
867                                 adapter->alloc_rx_buff_failed++;
868                                 break;
869                         }
870                 }
871
872                 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
873                 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
874
875                 if (unlikely(++i == rx_ring->count))
876                         i = 0;
877                 buffer_info = &rx_ring->buffer_info[i];
878         }
879
880         if (likely(rx_ring->next_to_use != i)) {
881                 rx_ring->next_to_use = i;
882                 if (unlikely(i-- == 0))
883                         i = (rx_ring->count - 1);
884
885                 /* Force memory writes to complete before letting h/w
886                  * know there are new descriptors to fetch.  (Only
887                  * applicable for weak-ordered memory model archs,
888                  * such as IA-64).
889                  */
890                 wmb();
891                 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
892                         e1000e_update_rdt_wa(rx_ring, i);
893                 else
894                         writel(i, rx_ring->tail);
895         }
896 }
897
898 static inline void e1000_rx_hash(struct net_device *netdev, __le32 rss,
899                                  struct sk_buff *skb)
900 {
901         if (netdev->features & NETIF_F_RXHASH)
902                 skb_set_hash(skb, le32_to_cpu(rss), PKT_HASH_TYPE_L3);
903 }
904
905 /**
906  * e1000_clean_rx_irq - Send received data up the network stack
907  * @rx_ring: Rx descriptor ring
908  * @work_done: output parameter for indicating completed work
909  * @work_to_do: how many packets we can clean
910  *
911  * the return value indicates whether actual cleaning was done, there
912  * is no guarantee that everything was cleaned
913  **/
914 static bool e1000_clean_rx_irq(struct e1000_ring *rx_ring, int *work_done,
915                                int work_to_do)
916 {
917         struct e1000_adapter *adapter = rx_ring->adapter;
918         struct net_device *netdev = adapter->netdev;
919         struct pci_dev *pdev = adapter->pdev;
920         struct e1000_hw *hw = &adapter->hw;
921         union e1000_rx_desc_extended *rx_desc, *next_rxd;
922         struct e1000_buffer *buffer_info, *next_buffer;
923         u32 length, staterr;
924         unsigned int i;
925         int cleaned_count = 0;
926         bool cleaned = false;
927         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
928
929         i = rx_ring->next_to_clean;
930         rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
931         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
932         buffer_info = &rx_ring->buffer_info[i];
933
934         while (staterr & E1000_RXD_STAT_DD) {
935                 struct sk_buff *skb;
936
937                 if (*work_done >= work_to_do)
938                         break;
939                 (*work_done)++;
940                 dma_rmb();      /* read descriptor and rx_buffer_info after status DD */
941
942                 skb = buffer_info->skb;
943                 buffer_info->skb = NULL;
944
945                 prefetch(skb->data - NET_IP_ALIGN);
946
947                 i++;
948                 if (i == rx_ring->count)
949                         i = 0;
950                 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
951                 prefetch(next_rxd);
952
953                 next_buffer = &rx_ring->buffer_info[i];
954
955                 cleaned = true;
956                 cleaned_count++;
957                 dma_unmap_single(&pdev->dev, buffer_info->dma,
958                                  adapter->rx_buffer_len, DMA_FROM_DEVICE);
959                 buffer_info->dma = 0;
960
961                 length = le16_to_cpu(rx_desc->wb.upper.length);
962
963                 /* !EOP means multiple descriptors were used to store a single
964                  * packet, if that's the case we need to toss it.  In fact, we
965                  * need to toss every packet with the EOP bit clear and the
966                  * next frame that _does_ have the EOP bit set, as it is by
967                  * definition only a frame fragment
968                  */
969                 if (unlikely(!(staterr & E1000_RXD_STAT_EOP)))
970                         adapter->flags2 |= FLAG2_IS_DISCARDING;
971
972                 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
973                         /* All receives must fit into a single buffer */
974                         e_dbg("Receive packet consumed multiple buffers\n");
975                         /* recycle */
976                         buffer_info->skb = skb;
977                         if (staterr & E1000_RXD_STAT_EOP)
978                                 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
979                         goto next_desc;
980                 }
981
982                 if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
983                              !(netdev->features & NETIF_F_RXALL))) {
984                         /* recycle */
985                         buffer_info->skb = skb;
986                         goto next_desc;
987                 }
988
989                 /* adjust length to remove Ethernet CRC */
990                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
991                         /* If configured to store CRC, don't subtract FCS,
992                          * but keep the FCS bytes out of the total_rx_bytes
993                          * counter
994                          */
995                         if (netdev->features & NETIF_F_RXFCS)
996                                 total_rx_bytes -= 4;
997                         else
998                                 length -= 4;
999                 }
1000
1001                 total_rx_bytes += length;
1002                 total_rx_packets++;
1003
1004                 /* code added for copybreak, this should improve
1005                  * performance for small packets with large amounts
1006                  * of reassembly being done in the stack
1007                  */
1008                 if (length < copybreak) {
1009                         struct sk_buff *new_skb =
1010                                 napi_alloc_skb(&adapter->napi, length);
1011                         if (new_skb) {
1012                                 skb_copy_to_linear_data_offset(new_skb,
1013                                                                -NET_IP_ALIGN,
1014                                                                (skb->data -
1015                                                                 NET_IP_ALIGN),
1016                                                                (length +
1017                                                                 NET_IP_ALIGN));
1018                                 /* save the skb in buffer_info as good */
1019                                 buffer_info->skb = skb;
1020                                 skb = new_skb;
1021                         }
1022                         /* else just continue with the old one */
1023                 }
1024                 /* end copybreak code */
1025                 skb_put(skb, length);
1026
1027                 /* Receive Checksum Offload */
1028                 e1000_rx_checksum(adapter, staterr, skb);
1029
1030                 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1031
1032                 e1000_receive_skb(adapter, netdev, skb, staterr,
1033                                   rx_desc->wb.upper.vlan);
1034
1035 next_desc:
1036                 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1037
1038                 /* return some buffers to hardware, one at a time is too slow */
1039                 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1040                         adapter->alloc_rx_buf(rx_ring, cleaned_count,
1041                                               GFP_ATOMIC);
1042                         cleaned_count = 0;
1043                 }
1044
1045                 /* use prefetched values */
1046                 rx_desc = next_rxd;
1047                 buffer_info = next_buffer;
1048
1049                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1050         }
1051         rx_ring->next_to_clean = i;
1052
1053         cleaned_count = e1000_desc_unused(rx_ring);
1054         if (cleaned_count)
1055                 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1056
1057         adapter->total_rx_bytes += total_rx_bytes;
1058         adapter->total_rx_packets += total_rx_packets;
1059         return cleaned;
1060 }
1061
1062 static void e1000_put_txbuf(struct e1000_ring *tx_ring,
1063                             struct e1000_buffer *buffer_info,
1064                             bool drop)
1065 {
1066         struct e1000_adapter *adapter = tx_ring->adapter;
1067
1068         if (buffer_info->dma) {
1069                 if (buffer_info->mapped_as_page)
1070                         dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1071                                        buffer_info->length, DMA_TO_DEVICE);
1072                 else
1073                         dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1074                                          buffer_info->length, DMA_TO_DEVICE);
1075                 buffer_info->dma = 0;
1076         }
1077         if (buffer_info->skb) {
1078                 if (drop)
1079                         dev_kfree_skb_any(buffer_info->skb);
1080                 else
1081                         dev_consume_skb_any(buffer_info->skb);
1082                 buffer_info->skb = NULL;
1083         }
1084         buffer_info->time_stamp = 0;
1085 }
1086
1087 static void e1000_print_hw_hang(struct work_struct *work)
1088 {
1089         struct e1000_adapter *adapter = container_of(work,
1090                                                      struct e1000_adapter,
1091                                                      print_hang_task);
1092         struct net_device *netdev = adapter->netdev;
1093         struct e1000_ring *tx_ring = adapter->tx_ring;
1094         unsigned int i = tx_ring->next_to_clean;
1095         unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
1096         struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
1097         struct e1000_hw *hw = &adapter->hw;
1098         u16 phy_status, phy_1000t_status, phy_ext_status;
1099         u16 pci_status;
1100
1101         if (test_bit(__E1000_DOWN, &adapter->state))
1102                 return;
1103
1104         if (!adapter->tx_hang_recheck && (adapter->flags2 & FLAG2_DMA_BURST)) {
1105                 /* May be block on write-back, flush and detect again
1106                  * flush pending descriptor writebacks to memory
1107                  */
1108                 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1109                 /* execute the writes immediately */
1110                 e1e_flush();
1111                 /* Due to rare timing issues, write to TIDV again to ensure
1112                  * the write is successful
1113                  */
1114                 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1115                 /* execute the writes immediately */
1116                 e1e_flush();
1117                 adapter->tx_hang_recheck = true;
1118                 return;
1119         }
1120         adapter->tx_hang_recheck = false;
1121
1122         if (er32(TDH(0)) == er32(TDT(0))) {
1123                 e_dbg("false hang detected, ignoring\n");
1124                 return;
1125         }
1126
1127         /* Real hang detected */
1128         netif_stop_queue(netdev);
1129
1130         e1e_rphy(hw, MII_BMSR, &phy_status);
1131         e1e_rphy(hw, MII_STAT1000, &phy_1000t_status);
1132         e1e_rphy(hw, MII_ESTATUS, &phy_ext_status);
1133
1134         pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
1135
1136         /* detected Hardware unit hang */
1137         e_err("Detected Hardware Unit Hang:\n"
1138               "  TDH                  <%x>\n"
1139               "  TDT                  <%x>\n"
1140               "  next_to_use          <%x>\n"
1141               "  next_to_clean        <%x>\n"
1142               "buffer_info[next_to_clean]:\n"
1143               "  time_stamp           <%lx>\n"
1144               "  next_to_watch        <%x>\n"
1145               "  jiffies              <%lx>\n"
1146               "  next_to_watch.status <%x>\n"
1147               "MAC Status             <%x>\n"
1148               "PHY Status             <%x>\n"
1149               "PHY 1000BASE-T Status  <%x>\n"
1150               "PHY Extended Status    <%x>\n"
1151               "PCI Status             <%x>\n",
1152               readl(tx_ring->head), readl(tx_ring->tail), tx_ring->next_to_use,
1153               tx_ring->next_to_clean, tx_ring->buffer_info[eop].time_stamp,
1154               eop, jiffies, eop_desc->upper.fields.status, er32(STATUS),
1155               phy_status, phy_1000t_status, phy_ext_status, pci_status);
1156
1157         e1000e_dump(adapter);
1158
1159         /* Suggest workaround for known h/w issue */
1160         if ((hw->mac.type == e1000_pchlan) && (er32(CTRL) & E1000_CTRL_TFCE))
1161                 e_err("Try turning off Tx pause (flow control) via ethtool\n");
1162 }
1163
1164 /**
1165  * e1000e_tx_hwtstamp_work - check for Tx time stamp
1166  * @work: pointer to work struct
1167  *
1168  * This work function polls the TSYNCTXCTL valid bit to determine when a
1169  * timestamp has been taken for the current stored skb.  The timestamp must
1170  * be for this skb because only one such packet is allowed in the queue.
1171  */
1172 static void e1000e_tx_hwtstamp_work(struct work_struct *work)
1173 {
1174         struct e1000_adapter *adapter = container_of(work, struct e1000_adapter,
1175                                                      tx_hwtstamp_work);
1176         struct e1000_hw *hw = &adapter->hw;
1177
1178         if (er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID) {
1179                 struct sk_buff *skb = adapter->tx_hwtstamp_skb;
1180                 struct skb_shared_hwtstamps shhwtstamps;
1181                 u64 txstmp;
1182
1183                 txstmp = er32(TXSTMPL);
1184                 txstmp |= (u64)er32(TXSTMPH) << 32;
1185
1186                 e1000e_systim_to_hwtstamp(adapter, &shhwtstamps, txstmp);
1187
1188                 /* Clear the global tx_hwtstamp_skb pointer and force writes
1189                  * prior to notifying the stack of a Tx timestamp.
1190                  */
1191                 adapter->tx_hwtstamp_skb = NULL;
1192                 wmb(); /* force write prior to skb_tstamp_tx */
1193
1194                 skb_tstamp_tx(skb, &shhwtstamps);
1195                 dev_consume_skb_any(skb);
1196         } else if (time_after(jiffies, adapter->tx_hwtstamp_start
1197                               + adapter->tx_timeout_factor * HZ)) {
1198                 dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
1199                 adapter->tx_hwtstamp_skb = NULL;
1200                 adapter->tx_hwtstamp_timeouts++;
1201                 e_warn("clearing Tx timestamp hang\n");
1202         } else {
1203                 /* reschedule to check later */
1204                 schedule_work(&adapter->tx_hwtstamp_work);
1205         }
1206 }
1207
1208 /**
1209  * e1000_clean_tx_irq - Reclaim resources after transmit completes
1210  * @tx_ring: Tx descriptor ring
1211  *
1212  * the return value indicates whether actual cleaning was done, there
1213  * is no guarantee that everything was cleaned
1214  **/
1215 static bool e1000_clean_tx_irq(struct e1000_ring *tx_ring)
1216 {
1217         struct e1000_adapter *adapter = tx_ring->adapter;
1218         struct net_device *netdev = adapter->netdev;
1219         struct e1000_hw *hw = &adapter->hw;
1220         struct e1000_tx_desc *tx_desc, *eop_desc;
1221         struct e1000_buffer *buffer_info;
1222         unsigned int i, eop;
1223         unsigned int count = 0;
1224         unsigned int total_tx_bytes = 0, total_tx_packets = 0;
1225         unsigned int bytes_compl = 0, pkts_compl = 0;
1226
1227         i = tx_ring->next_to_clean;
1228         eop = tx_ring->buffer_info[i].next_to_watch;
1229         eop_desc = E1000_TX_DESC(*tx_ring, eop);
1230
1231         while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
1232                (count < tx_ring->count)) {
1233                 bool cleaned = false;
1234
1235                 dma_rmb();              /* read buffer_info after eop_desc */
1236                 for (; !cleaned; count++) {
1237                         tx_desc = E1000_TX_DESC(*tx_ring, i);
1238                         buffer_info = &tx_ring->buffer_info[i];
1239                         cleaned = (i == eop);
1240
1241                         if (cleaned) {
1242                                 total_tx_packets += buffer_info->segs;
1243                                 total_tx_bytes += buffer_info->bytecount;
1244                                 if (buffer_info->skb) {
1245                                         bytes_compl += buffer_info->skb->len;
1246                                         pkts_compl++;
1247                                 }
1248                         }
1249
1250                         e1000_put_txbuf(tx_ring, buffer_info, false);
1251                         tx_desc->upper.data = 0;
1252
1253                         i++;
1254                         if (i == tx_ring->count)
1255                                 i = 0;
1256                 }
1257
1258                 if (i == tx_ring->next_to_use)
1259                         break;
1260                 eop = tx_ring->buffer_info[i].next_to_watch;
1261                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
1262         }
1263
1264         tx_ring->next_to_clean = i;
1265
1266         netdev_completed_queue(netdev, pkts_compl, bytes_compl);
1267
1268 #define TX_WAKE_THRESHOLD 32
1269         if (count && netif_carrier_ok(netdev) &&
1270             e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1271                 /* Make sure that anybody stopping the queue after this
1272                  * sees the new next_to_clean.
1273                  */
1274                 smp_mb();
1275
1276                 if (netif_queue_stopped(netdev) &&
1277                     !(test_bit(__E1000_DOWN, &adapter->state))) {
1278                         netif_wake_queue(netdev);
1279                         ++adapter->restart_queue;
1280                 }
1281         }
1282
1283         if (adapter->detect_tx_hung) {
1284                 /* Detect a transmit hang in hardware, this serializes the
1285                  * check with the clearing of time_stamp and movement of i
1286                  */
1287                 adapter->detect_tx_hung = false;
1288                 if (tx_ring->buffer_info[i].time_stamp &&
1289                     time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1290                                + (adapter->tx_timeout_factor * HZ)) &&
1291                     !(er32(STATUS) & E1000_STATUS_TXOFF))
1292                         schedule_work(&adapter->print_hang_task);
1293                 else
1294                         adapter->tx_hang_recheck = false;
1295         }
1296         adapter->total_tx_bytes += total_tx_bytes;
1297         adapter->total_tx_packets += total_tx_packets;
1298         return count < tx_ring->count;
1299 }
1300
1301 /**
1302  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1303  * @rx_ring: Rx descriptor ring
1304  * @work_done: output parameter for indicating completed work
1305  * @work_to_do: how many packets we can clean
1306  *
1307  * the return value indicates whether actual cleaning was done, there
1308  * is no guarantee that everything was cleaned
1309  **/
1310 static bool e1000_clean_rx_irq_ps(struct e1000_ring *rx_ring, int *work_done,
1311                                   int work_to_do)
1312 {
1313         struct e1000_adapter *adapter = rx_ring->adapter;
1314         struct e1000_hw *hw = &adapter->hw;
1315         union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
1316         struct net_device *netdev = adapter->netdev;
1317         struct pci_dev *pdev = adapter->pdev;
1318         struct e1000_buffer *buffer_info, *next_buffer;
1319         struct e1000_ps_page *ps_page;
1320         struct sk_buff *skb;
1321         unsigned int i, j;
1322         u32 length, staterr;
1323         int cleaned_count = 0;
1324         bool cleaned = false;
1325         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1326
1327         i = rx_ring->next_to_clean;
1328         rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
1329         staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1330         buffer_info = &rx_ring->buffer_info[i];
1331
1332         while (staterr & E1000_RXD_STAT_DD) {
1333                 if (*work_done >= work_to_do)
1334                         break;
1335                 (*work_done)++;
1336                 skb = buffer_info->skb;
1337                 dma_rmb();      /* read descriptor and rx_buffer_info after status DD */
1338
1339                 /* in the packet split case this is header only */
1340                 prefetch(skb->data - NET_IP_ALIGN);
1341
1342                 i++;
1343                 if (i == rx_ring->count)
1344                         i = 0;
1345                 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
1346                 prefetch(next_rxd);
1347
1348                 next_buffer = &rx_ring->buffer_info[i];
1349
1350                 cleaned = true;
1351                 cleaned_count++;
1352                 dma_unmap_single(&pdev->dev, buffer_info->dma,
1353                                  adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
1354                 buffer_info->dma = 0;
1355
1356                 /* see !EOP comment in other Rx routine */
1357                 if (!(staterr & E1000_RXD_STAT_EOP))
1358                         adapter->flags2 |= FLAG2_IS_DISCARDING;
1359
1360                 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1361                         e_dbg("Packet Split buffers didn't pick up the full packet\n");
1362                         dev_kfree_skb_irq(skb);
1363                         if (staterr & E1000_RXD_STAT_EOP)
1364                                 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1365                         goto next_desc;
1366                 }
1367
1368                 if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1369                              !(netdev->features & NETIF_F_RXALL))) {
1370                         dev_kfree_skb_irq(skb);
1371                         goto next_desc;
1372                 }
1373
1374                 length = le16_to_cpu(rx_desc->wb.middle.length0);
1375
1376                 if (!length) {
1377                         e_dbg("Last part of the packet spanning multiple descriptors\n");
1378                         dev_kfree_skb_irq(skb);
1379                         goto next_desc;
1380                 }
1381
1382                 /* Good Receive */
1383                 skb_put(skb, length);
1384
1385                 {
1386                         /* this looks ugly, but it seems compiler issues make
1387                          * it more efficient than reusing j
1388                          */
1389                         int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
1390
1391                         /* page alloc/put takes too long and effects small
1392                          * packet throughput, so unsplit small packets and
1393                          * save the alloc/put
1394                          */
1395                         if (l1 && (l1 <= copybreak) &&
1396                             ((length + l1) <= adapter->rx_ps_bsize0)) {
1397                                 ps_page = &buffer_info->ps_pages[0];
1398
1399                                 dma_sync_single_for_cpu(&pdev->dev,
1400                                                         ps_page->dma,
1401                                                         PAGE_SIZE,
1402                                                         DMA_FROM_DEVICE);
1403                                 memcpy(skb_tail_pointer(skb),
1404                                        page_address(ps_page->page), l1);
1405                                 dma_sync_single_for_device(&pdev->dev,
1406                                                            ps_page->dma,
1407                                                            PAGE_SIZE,
1408                                                            DMA_FROM_DEVICE);
1409
1410                                 /* remove the CRC */
1411                                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1412                                         if (!(netdev->features & NETIF_F_RXFCS))
1413                                                 l1 -= 4;
1414                                 }
1415
1416                                 skb_put(skb, l1);
1417                                 goto copydone;
1418                         }       /* if */
1419                 }
1420
1421                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1422                         length = le16_to_cpu(rx_desc->wb.upper.length[j]);
1423                         if (!length)
1424                                 break;
1425
1426                         ps_page = &buffer_info->ps_pages[j];
1427                         dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1428                                        DMA_FROM_DEVICE);
1429                         ps_page->dma = 0;
1430                         skb_fill_page_desc(skb, j, ps_page->page, 0, length);
1431                         ps_page->page = NULL;
1432                         skb->len += length;
1433                         skb->data_len += length;
1434                         skb->truesize += PAGE_SIZE;
1435                 }
1436
1437                 /* strip the ethernet crc, problem is we're using pages now so
1438                  * this whole operation can get a little cpu intensive
1439                  */
1440                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1441                         if (!(netdev->features & NETIF_F_RXFCS))
1442                                 pskb_trim(skb, skb->len - 4);
1443                 }
1444
1445 copydone:
1446                 total_rx_bytes += skb->len;
1447                 total_rx_packets++;
1448
1449                 e1000_rx_checksum(adapter, staterr, skb);
1450
1451                 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1452
1453                 if (rx_desc->wb.upper.header_status &
1454                     cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
1455                         adapter->rx_hdr_split++;
1456
1457                 e1000_receive_skb(adapter, netdev, skb, staterr,
1458                                   rx_desc->wb.middle.vlan);
1459
1460 next_desc:
1461                 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
1462                 buffer_info->skb = NULL;
1463
1464                 /* return some buffers to hardware, one at a time is too slow */
1465                 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1466                         adapter->alloc_rx_buf(rx_ring, cleaned_count,
1467                                               GFP_ATOMIC);
1468                         cleaned_count = 0;
1469                 }
1470
1471                 /* use prefetched values */
1472                 rx_desc = next_rxd;
1473                 buffer_info = next_buffer;
1474
1475                 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1476         }
1477         rx_ring->next_to_clean = i;
1478
1479         cleaned_count = e1000_desc_unused(rx_ring);
1480         if (cleaned_count)
1481                 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1482
1483         adapter->total_rx_bytes += total_rx_bytes;
1484         adapter->total_rx_packets += total_rx_packets;
1485         return cleaned;
1486 }
1487
1488 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
1489                                u16 length)
1490 {
1491         bi->page = NULL;
1492         skb->len += length;
1493         skb->data_len += length;
1494         skb->truesize += PAGE_SIZE;
1495 }
1496
1497 /**
1498  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1499  * @rx_ring: Rx descriptor ring
1500  * @work_done: output parameter for indicating completed work
1501  * @work_to_do: how many packets we can clean
1502  *
1503  * the return value indicates whether actual cleaning was done, there
1504  * is no guarantee that everything was cleaned
1505  **/
1506 static bool e1000_clean_jumbo_rx_irq(struct e1000_ring *rx_ring, int *work_done,
1507                                      int work_to_do)
1508 {
1509         struct e1000_adapter *adapter = rx_ring->adapter;
1510         struct net_device *netdev = adapter->netdev;
1511         struct pci_dev *pdev = adapter->pdev;
1512         union e1000_rx_desc_extended *rx_desc, *next_rxd;
1513         struct e1000_buffer *buffer_info, *next_buffer;
1514         u32 length, staterr;
1515         unsigned int i;
1516         int cleaned_count = 0;
1517         bool cleaned = false;
1518         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1519         struct skb_shared_info *shinfo;
1520
1521         i = rx_ring->next_to_clean;
1522         rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1523         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1524         buffer_info = &rx_ring->buffer_info[i];
1525
1526         while (staterr & E1000_RXD_STAT_DD) {
1527                 struct sk_buff *skb;
1528
1529                 if (*work_done >= work_to_do)
1530                         break;
1531                 (*work_done)++;
1532                 dma_rmb();      /* read descriptor and rx_buffer_info after status DD */
1533
1534                 skb = buffer_info->skb;
1535                 buffer_info->skb = NULL;
1536
1537                 ++i;
1538                 if (i == rx_ring->count)
1539                         i = 0;
1540                 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
1541                 prefetch(next_rxd);
1542
1543                 next_buffer = &rx_ring->buffer_info[i];
1544
1545                 cleaned = true;
1546                 cleaned_count++;
1547                 dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
1548                                DMA_FROM_DEVICE);
1549                 buffer_info->dma = 0;
1550
1551                 length = le16_to_cpu(rx_desc->wb.upper.length);
1552
1553                 /* errors is only valid for DD + EOP descriptors */
1554                 if (unlikely((staterr & E1000_RXD_STAT_EOP) &&
1555                              ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1556                               !(netdev->features & NETIF_F_RXALL)))) {
1557                         /* recycle both page and skb */
1558                         buffer_info->skb = skb;
1559                         /* an error means any chain goes out the window too */
1560                         if (rx_ring->rx_skb_top)
1561                                 dev_kfree_skb_irq(rx_ring->rx_skb_top);
1562                         rx_ring->rx_skb_top = NULL;
1563                         goto next_desc;
1564                 }
1565 #define rxtop (rx_ring->rx_skb_top)
1566                 if (!(staterr & E1000_RXD_STAT_EOP)) {
1567                         /* this descriptor is only the beginning (or middle) */
1568                         if (!rxtop) {
1569                                 /* this is the beginning of a chain */
1570                                 rxtop = skb;
1571                                 skb_fill_page_desc(rxtop, 0, buffer_info->page,
1572                                                    0, length);
1573                         } else {
1574                                 /* this is the middle of a chain */
1575                                 shinfo = skb_shinfo(rxtop);
1576                                 skb_fill_page_desc(rxtop, shinfo->nr_frags,
1577                                                    buffer_info->page, 0,
1578                                                    length);
1579                                 /* re-use the skb, only consumed the page */
1580                                 buffer_info->skb = skb;
1581                         }
1582                         e1000_consume_page(buffer_info, rxtop, length);
1583                         goto next_desc;
1584                 } else {
1585                         if (rxtop) {
1586                                 /* end of the chain */
1587                                 shinfo = skb_shinfo(rxtop);
1588                                 skb_fill_page_desc(rxtop, shinfo->nr_frags,
1589                                                    buffer_info->page, 0,
1590                                                    length);
1591                                 /* re-use the current skb, we only consumed the
1592                                  * page
1593                                  */
1594                                 buffer_info->skb = skb;
1595                                 skb = rxtop;
1596                                 rxtop = NULL;
1597                                 e1000_consume_page(buffer_info, skb, length);
1598                         } else {
1599                                 /* no chain, got EOP, this buf is the packet
1600                                  * copybreak to save the put_page/alloc_page
1601                                  */
1602                                 if (length <= copybreak &&
1603                                     skb_tailroom(skb) >= length) {
1604                                         memcpy(skb_tail_pointer(skb),
1605                                                page_address(buffer_info->page),
1606                                                length);
1607                                         /* re-use the page, so don't erase
1608                                          * buffer_info->page
1609                                          */
1610                                         skb_put(skb, length);
1611                                 } else {
1612                                         skb_fill_page_desc(skb, 0,
1613                                                            buffer_info->page, 0,
1614                                                            length);
1615                                         e1000_consume_page(buffer_info, skb,
1616                                                            length);
1617                                 }
1618                         }
1619                 }
1620
1621                 /* Receive Checksum Offload */
1622                 e1000_rx_checksum(adapter, staterr, skb);
1623
1624                 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1625
1626                 /* probably a little skewed due to removing CRC */
1627                 total_rx_bytes += skb->len;
1628                 total_rx_packets++;
1629
1630                 /* eth type trans needs skb->data to point to something */
1631                 if (!pskb_may_pull(skb, ETH_HLEN)) {
1632                         e_err("pskb_may_pull failed.\n");
1633                         dev_kfree_skb_irq(skb);
1634                         goto next_desc;
1635                 }
1636
1637                 e1000_receive_skb(adapter, netdev, skb, staterr,
1638                                   rx_desc->wb.upper.vlan);
1639
1640 next_desc:
1641                 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1642
1643                 /* return some buffers to hardware, one at a time is too slow */
1644                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1645                         adapter->alloc_rx_buf(rx_ring, cleaned_count,
1646                                               GFP_ATOMIC);
1647                         cleaned_count = 0;
1648                 }
1649
1650                 /* use prefetched values */
1651                 rx_desc = next_rxd;
1652                 buffer_info = next_buffer;
1653
1654                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1655         }
1656         rx_ring->next_to_clean = i;
1657
1658         cleaned_count = e1000_desc_unused(rx_ring);
1659         if (cleaned_count)
1660                 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1661
1662         adapter->total_rx_bytes += total_rx_bytes;
1663         adapter->total_rx_packets += total_rx_packets;
1664         return cleaned;
1665 }
1666
1667 /**
1668  * e1000_clean_rx_ring - Free Rx Buffers per Queue
1669  * @rx_ring: Rx descriptor ring
1670  **/
1671 static void e1000_clean_rx_ring(struct e1000_ring *rx_ring)
1672 {
1673         struct e1000_adapter *adapter = rx_ring->adapter;
1674         struct e1000_buffer *buffer_info;
1675         struct e1000_ps_page *ps_page;
1676         struct pci_dev *pdev = adapter->pdev;
1677         unsigned int i, j;
1678
1679         /* Free all the Rx ring sk_buffs */
1680         for (i = 0; i < rx_ring->count; i++) {
1681                 buffer_info = &rx_ring->buffer_info[i];
1682                 if (buffer_info->dma) {
1683                         if (adapter->clean_rx == e1000_clean_rx_irq)
1684                                 dma_unmap_single(&pdev->dev, buffer_info->dma,
1685                                                  adapter->rx_buffer_len,
1686                                                  DMA_FROM_DEVICE);
1687                         else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1688                                 dma_unmap_page(&pdev->dev, buffer_info->dma,
1689                                                PAGE_SIZE, DMA_FROM_DEVICE);
1690                         else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1691                                 dma_unmap_single(&pdev->dev, buffer_info->dma,
1692                                                  adapter->rx_ps_bsize0,
1693                                                  DMA_FROM_DEVICE);
1694                         buffer_info->dma = 0;
1695                 }
1696
1697                 if (buffer_info->page) {
1698                         put_page(buffer_info->page);
1699                         buffer_info->page = NULL;
1700                 }
1701
1702                 if (buffer_info->skb) {
1703                         dev_kfree_skb(buffer_info->skb);
1704                         buffer_info->skb = NULL;
1705                 }
1706
1707                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1708                         ps_page = &buffer_info->ps_pages[j];
1709                         if (!ps_page->page)
1710                                 break;
1711                         dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1712                                        DMA_FROM_DEVICE);
1713                         ps_page->dma = 0;
1714                         put_page(ps_page->page);
1715                         ps_page->page = NULL;
1716                 }
1717         }
1718
1719         /* there also may be some cached data from a chained receive */
1720         if (rx_ring->rx_skb_top) {
1721                 dev_kfree_skb(rx_ring->rx_skb_top);
1722                 rx_ring->rx_skb_top = NULL;
1723         }
1724
1725         /* Zero out the descriptor ring */
1726         memset(rx_ring->desc, 0, rx_ring->size);
1727
1728         rx_ring->next_to_clean = 0;
1729         rx_ring->next_to_use = 0;
1730         adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1731 }
1732
1733 static void e1000e_downshift_workaround(struct work_struct *work)
1734 {
1735         struct e1000_adapter *adapter = container_of(work,
1736                                                      struct e1000_adapter,
1737                                                      downshift_task);
1738
1739         if (test_bit(__E1000_DOWN, &adapter->state))
1740                 return;
1741
1742         e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1743 }
1744
1745 /**
1746  * e1000_intr_msi - Interrupt Handler
1747  * @irq: interrupt number
1748  * @data: pointer to a network interface device structure
1749  **/
1750 static irqreturn_t e1000_intr_msi(int __always_unused irq, void *data)
1751 {
1752         struct net_device *netdev = data;
1753         struct e1000_adapter *adapter = netdev_priv(netdev);
1754         struct e1000_hw *hw = &adapter->hw;
1755         u32 icr = er32(ICR);
1756
1757         /* read ICR disables interrupts using IAM */
1758         if (icr & E1000_ICR_LSC) {
1759                 hw->mac.get_link_status = true;
1760                 /* ICH8 workaround-- Call gig speed drop workaround on cable
1761                  * disconnect (LSC) before accessing any PHY registers
1762                  */
1763                 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1764                     (!(er32(STATUS) & E1000_STATUS_LU)))
1765                         schedule_work(&adapter->downshift_task);
1766
1767                 /* 80003ES2LAN workaround-- For packet buffer work-around on
1768                  * link down event; disable receives here in the ISR and reset
1769                  * adapter in watchdog
1770                  */
1771                 if (netif_carrier_ok(netdev) &&
1772                     adapter->flags & FLAG_RX_NEEDS_RESTART) {
1773                         /* disable receives */
1774                         u32 rctl = er32(RCTL);
1775
1776                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1777                         adapter->flags |= FLAG_RESTART_NOW;
1778                 }
1779                 /* guard against interrupt when we're going down */
1780                 if (!test_bit(__E1000_DOWN, &adapter->state))
1781                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1782         }
1783
1784         /* Reset on uncorrectable ECC error */
1785         if ((icr & E1000_ICR_ECCER) && (hw->mac.type >= e1000_pch_lpt)) {
1786                 u32 pbeccsts = er32(PBECCSTS);
1787
1788                 adapter->corr_errors +=
1789                     pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1790                 adapter->uncorr_errors +=
1791                     FIELD_GET(E1000_PBECCSTS_UNCORR_ERR_CNT_MASK, pbeccsts);
1792
1793                 /* Do the reset outside of interrupt context */
1794                 schedule_work(&adapter->reset_task);
1795
1796                 /* return immediately since reset is imminent */
1797                 return IRQ_HANDLED;
1798         }
1799
1800         if (napi_schedule_prep(&adapter->napi)) {
1801                 adapter->total_tx_bytes = 0;
1802                 adapter->total_tx_packets = 0;
1803                 adapter->total_rx_bytes = 0;
1804                 adapter->total_rx_packets = 0;
1805                 __napi_schedule(&adapter->napi);
1806         }
1807
1808         return IRQ_HANDLED;
1809 }
1810
1811 /**
1812  * e1000_intr - Interrupt Handler
1813  * @irq: interrupt number
1814  * @data: pointer to a network interface device structure
1815  **/
1816 static irqreturn_t e1000_intr(int __always_unused irq, void *data)
1817 {
1818         struct net_device *netdev = data;
1819         struct e1000_adapter *adapter = netdev_priv(netdev);
1820         struct e1000_hw *hw = &adapter->hw;
1821         u32 rctl, icr = er32(ICR);
1822
1823         if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1824                 return IRQ_NONE;        /* Not our interrupt */
1825
1826         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1827          * not set, then the adapter didn't send an interrupt
1828          */
1829         if (!(icr & E1000_ICR_INT_ASSERTED))
1830                 return IRQ_NONE;
1831
1832         /* Interrupt Auto-Mask...upon reading ICR,
1833          * interrupts are masked.  No need for the
1834          * IMC write
1835          */
1836
1837         if (icr & E1000_ICR_LSC) {
1838                 hw->mac.get_link_status = true;
1839                 /* ICH8 workaround-- Call gig speed drop workaround on cable
1840                  * disconnect (LSC) before accessing any PHY registers
1841                  */
1842                 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1843                     (!(er32(STATUS) & E1000_STATUS_LU)))
1844                         schedule_work(&adapter->downshift_task);
1845
1846                 /* 80003ES2LAN workaround--
1847                  * For packet buffer work-around on link down event;
1848                  * disable receives here in the ISR and
1849                  * reset adapter in watchdog
1850                  */
1851                 if (netif_carrier_ok(netdev) &&
1852                     (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1853                         /* disable receives */
1854                         rctl = er32(RCTL);
1855                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1856                         adapter->flags |= FLAG_RESTART_NOW;
1857                 }
1858                 /* guard against interrupt when we're going down */
1859                 if (!test_bit(__E1000_DOWN, &adapter->state))
1860                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1861         }
1862
1863         /* Reset on uncorrectable ECC error */
1864         if ((icr & E1000_ICR_ECCER) && (hw->mac.type >= e1000_pch_lpt)) {
1865                 u32 pbeccsts = er32(PBECCSTS);
1866
1867                 adapter->corr_errors +=
1868                     pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1869                 adapter->uncorr_errors +=
1870                     FIELD_GET(E1000_PBECCSTS_UNCORR_ERR_CNT_MASK, pbeccsts);
1871
1872                 /* Do the reset outside of interrupt context */
1873                 schedule_work(&adapter->reset_task);
1874
1875                 /* return immediately since reset is imminent */
1876                 return IRQ_HANDLED;
1877         }
1878
1879         if (napi_schedule_prep(&adapter->napi)) {
1880                 adapter->total_tx_bytes = 0;
1881                 adapter->total_tx_packets = 0;
1882                 adapter->total_rx_bytes = 0;
1883                 adapter->total_rx_packets = 0;
1884                 __napi_schedule(&adapter->napi);
1885         }
1886
1887         return IRQ_HANDLED;
1888 }
1889
1890 static irqreturn_t e1000_msix_other(int __always_unused irq, void *data)
1891 {
1892         struct net_device *netdev = data;
1893         struct e1000_adapter *adapter = netdev_priv(netdev);
1894         struct e1000_hw *hw = &adapter->hw;
1895         u32 icr = er32(ICR);
1896
1897         if (icr & adapter->eiac_mask)
1898                 ew32(ICS, (icr & adapter->eiac_mask));
1899
1900         if (icr & E1000_ICR_LSC) {
1901                 hw->mac.get_link_status = true;
1902                 /* guard against interrupt when we're going down */
1903                 if (!test_bit(__E1000_DOWN, &adapter->state))
1904                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1905         }
1906
1907         if (!test_bit(__E1000_DOWN, &adapter->state))
1908                 ew32(IMS, E1000_IMS_OTHER | IMS_OTHER_MASK);
1909
1910         return IRQ_HANDLED;
1911 }
1912
1913 static irqreturn_t e1000_intr_msix_tx(int __always_unused irq, void *data)
1914 {
1915         struct net_device *netdev = data;
1916         struct e1000_adapter *adapter = netdev_priv(netdev);
1917         struct e1000_hw *hw = &adapter->hw;
1918         struct e1000_ring *tx_ring = adapter->tx_ring;
1919
1920         adapter->total_tx_bytes = 0;
1921         adapter->total_tx_packets = 0;
1922
1923         if (!e1000_clean_tx_irq(tx_ring))
1924                 /* Ring was not completely cleaned, so fire another interrupt */
1925                 ew32(ICS, tx_ring->ims_val);
1926
1927         if (!test_bit(__E1000_DOWN, &adapter->state))
1928                 ew32(IMS, adapter->tx_ring->ims_val);
1929
1930         return IRQ_HANDLED;
1931 }
1932
1933 static irqreturn_t e1000_intr_msix_rx(int __always_unused irq, void *data)
1934 {
1935         struct net_device *netdev = data;
1936         struct e1000_adapter *adapter = netdev_priv(netdev);
1937         struct e1000_ring *rx_ring = adapter->rx_ring;
1938
1939         /* Write the ITR value calculated at the end of the
1940          * previous interrupt.
1941          */
1942         if (rx_ring->set_itr) {
1943                 u32 itr = rx_ring->itr_val ?
1944                           1000000000 / (rx_ring->itr_val * 256) : 0;
1945
1946                 writel(itr, rx_ring->itr_register);
1947                 rx_ring->set_itr = 0;
1948         }
1949
1950         if (napi_schedule_prep(&adapter->napi)) {
1951                 adapter->total_rx_bytes = 0;
1952                 adapter->total_rx_packets = 0;
1953                 __napi_schedule(&adapter->napi);
1954         }
1955         return IRQ_HANDLED;
1956 }
1957
1958 /**
1959  * e1000_configure_msix - Configure MSI-X hardware
1960  * @adapter: board private structure
1961  *
1962  * e1000_configure_msix sets up the hardware to properly
1963  * generate MSI-X interrupts.
1964  **/
1965 static void e1000_configure_msix(struct e1000_adapter *adapter)
1966 {
1967         struct e1000_hw *hw = &adapter->hw;
1968         struct e1000_ring *rx_ring = adapter->rx_ring;
1969         struct e1000_ring *tx_ring = adapter->tx_ring;
1970         int vector = 0;
1971         u32 ctrl_ext, ivar = 0;
1972
1973         adapter->eiac_mask = 0;
1974
1975         /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1976         if (hw->mac.type == e1000_82574) {
1977                 u32 rfctl = er32(RFCTL);
1978
1979                 rfctl |= E1000_RFCTL_ACK_DIS;
1980                 ew32(RFCTL, rfctl);
1981         }
1982
1983         /* Configure Rx vector */
1984         rx_ring->ims_val = E1000_IMS_RXQ0;
1985         adapter->eiac_mask |= rx_ring->ims_val;
1986         if (rx_ring->itr_val)
1987                 writel(1000000000 / (rx_ring->itr_val * 256),
1988                        rx_ring->itr_register);
1989         else
1990                 writel(1, rx_ring->itr_register);
1991         ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
1992
1993         /* Configure Tx vector */
1994         tx_ring->ims_val = E1000_IMS_TXQ0;
1995         vector++;
1996         if (tx_ring->itr_val)
1997                 writel(1000000000 / (tx_ring->itr_val * 256),
1998                        tx_ring->itr_register);
1999         else
2000                 writel(1, tx_ring->itr_register);
2001         adapter->eiac_mask |= tx_ring->ims_val;
2002         ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
2003
2004         /* set vector for Other Causes, e.g. link changes */
2005         vector++;
2006         ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
2007         if (rx_ring->itr_val)
2008                 writel(1000000000 / (rx_ring->itr_val * 256),
2009                        hw->hw_addr + E1000_EITR_82574(vector));
2010         else
2011                 writel(1, hw->hw_addr + E1000_EITR_82574(vector));
2012
2013         /* Cause Tx interrupts on every write back */
2014         ivar |= BIT(31);
2015
2016         ew32(IVAR, ivar);
2017
2018         /* enable MSI-X PBA support */
2019         ctrl_ext = er32(CTRL_EXT) & ~E1000_CTRL_EXT_IAME;
2020         ctrl_ext |= E1000_CTRL_EXT_PBA_CLR | E1000_CTRL_EXT_EIAME;
2021         ew32(CTRL_EXT, ctrl_ext);
2022         e1e_flush();
2023 }
2024
2025 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
2026 {
2027         if (adapter->msix_entries) {
2028                 pci_disable_msix(adapter->pdev);
2029                 kfree(adapter->msix_entries);
2030                 adapter->msix_entries = NULL;
2031         } else if (adapter->flags & FLAG_MSI_ENABLED) {
2032                 pci_disable_msi(adapter->pdev);
2033                 adapter->flags &= ~FLAG_MSI_ENABLED;
2034         }
2035 }
2036
2037 /**
2038  * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
2039  * @adapter: board private structure
2040  *
2041  * Attempt to configure interrupts using the best available
2042  * capabilities of the hardware and kernel.
2043  **/
2044 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
2045 {
2046         int err;
2047         int i;
2048
2049         switch (adapter->int_mode) {
2050         case E1000E_INT_MODE_MSIX:
2051                 if (adapter->flags & FLAG_HAS_MSIX) {
2052                         adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
2053                         adapter->msix_entries = kcalloc(adapter->num_vectors,
2054                                                         sizeof(struct
2055                                                                msix_entry),
2056                                                         GFP_KERNEL);
2057                         if (adapter->msix_entries) {
2058                                 struct e1000_adapter *a = adapter;
2059
2060                                 for (i = 0; i < adapter->num_vectors; i++)
2061                                         adapter->msix_entries[i].entry = i;
2062
2063                                 err = pci_enable_msix_range(a->pdev,
2064                                                             a->msix_entries,
2065                                                             a->num_vectors,
2066                                                             a->num_vectors);
2067                                 if (err > 0)
2068                                         return;
2069                         }
2070                         /* MSI-X failed, so fall through and try MSI */
2071                         e_err("Failed to initialize MSI-X interrupts.  Falling back to MSI interrupts.\n");
2072                         e1000e_reset_interrupt_capability(adapter);
2073                 }
2074                 adapter->int_mode = E1000E_INT_MODE_MSI;
2075                 fallthrough;
2076         case E1000E_INT_MODE_MSI:
2077                 if (!pci_enable_msi(adapter->pdev)) {
2078                         adapter->flags |= FLAG_MSI_ENABLED;
2079                 } else {
2080                         adapter->int_mode = E1000E_INT_MODE_LEGACY;
2081                         e_err("Failed to initialize MSI interrupts.  Falling back to legacy interrupts.\n");
2082                 }
2083                 fallthrough;
2084         case E1000E_INT_MODE_LEGACY:
2085                 /* Don't do anything; this is the system default */
2086                 break;
2087         }
2088
2089         /* store the number of vectors being used */
2090         adapter->num_vectors = 1;
2091 }
2092
2093 /**
2094  * e1000_request_msix - Initialize MSI-X interrupts
2095  * @adapter: board private structure
2096  *
2097  * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
2098  * kernel.
2099  **/
2100 static int e1000_request_msix(struct e1000_adapter *adapter)
2101 {
2102         struct net_device *netdev = adapter->netdev;
2103         int err = 0, vector = 0;
2104
2105         if (strlen(netdev->name) < (IFNAMSIZ - 5))
2106                 snprintf(adapter->rx_ring->name,
2107                          sizeof(adapter->rx_ring->name) - 1,
2108                          "%.14s-rx-0", netdev->name);
2109         else
2110                 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
2111         err = request_irq(adapter->msix_entries[vector].vector,
2112                           e1000_intr_msix_rx, 0, adapter->rx_ring->name,
2113                           netdev);
2114         if (err)
2115                 return err;
2116         adapter->rx_ring->itr_register = adapter->hw.hw_addr +
2117             E1000_EITR_82574(vector);
2118         adapter->rx_ring->itr_val = adapter->itr;
2119         vector++;
2120
2121         if (strlen(netdev->name) < (IFNAMSIZ - 5))
2122                 snprintf(adapter->tx_ring->name,
2123                          sizeof(adapter->tx_ring->name) - 1,
2124                          "%.14s-tx-0", netdev->name);
2125         else
2126                 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
2127         err = request_irq(adapter->msix_entries[vector].vector,
2128                           e1000_intr_msix_tx, 0, adapter->tx_ring->name,
2129                           netdev);
2130         if (err)
2131                 return err;
2132         adapter->tx_ring->itr_register = adapter->hw.hw_addr +
2133             E1000_EITR_82574(vector);
2134         adapter->tx_ring->itr_val = adapter->itr;
2135         vector++;
2136
2137         err = request_irq(adapter->msix_entries[vector].vector,
2138                           e1000_msix_other, 0, netdev->name, netdev);
2139         if (err)
2140                 return err;
2141
2142         e1000_configure_msix(adapter);
2143
2144         return 0;
2145 }
2146
2147 /**
2148  * e1000_request_irq - initialize interrupts
2149  * @adapter: board private structure
2150  *
2151  * Attempts to configure interrupts using the best available
2152  * capabilities of the hardware and kernel.
2153  **/
2154 static int e1000_request_irq(struct e1000_adapter *adapter)
2155 {
2156         struct net_device *netdev = adapter->netdev;
2157         int err;
2158
2159         if (adapter->msix_entries) {
2160                 err = e1000_request_msix(adapter);
2161                 if (!err)
2162                         return err;
2163                 /* fall back to MSI */
2164                 e1000e_reset_interrupt_capability(adapter);
2165                 adapter->int_mode = E1000E_INT_MODE_MSI;
2166                 e1000e_set_interrupt_capability(adapter);
2167         }
2168         if (adapter->flags & FLAG_MSI_ENABLED) {
2169                 err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
2170                                   netdev->name, netdev);
2171                 if (!err)
2172                         return err;
2173
2174                 /* fall back to legacy interrupt */
2175                 e1000e_reset_interrupt_capability(adapter);
2176                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
2177         }
2178
2179         err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
2180                           netdev->name, netdev);
2181         if (err)
2182                 e_err("Unable to allocate interrupt, Error: %d\n", err);
2183
2184         return err;
2185 }
2186
2187 static void e1000_free_irq(struct e1000_adapter *adapter)
2188 {
2189         struct net_device *netdev = adapter->netdev;
2190
2191         if (adapter->msix_entries) {
2192                 int vector = 0;
2193
2194                 free_irq(adapter->msix_entries[vector].vector, netdev);
2195                 vector++;
2196
2197                 free_irq(adapter->msix_entries[vector].vector, netdev);
2198                 vector++;
2199
2200                 /* Other Causes interrupt vector */
2201                 free_irq(adapter->msix_entries[vector].vector, netdev);
2202                 return;
2203         }
2204
2205         free_irq(adapter->pdev->irq, netdev);
2206 }
2207
2208 /**
2209  * e1000_irq_disable - Mask off interrupt generation on the NIC
2210  * @adapter: board private structure
2211  **/
2212 static void e1000_irq_disable(struct e1000_adapter *adapter)
2213 {
2214         struct e1000_hw *hw = &adapter->hw;
2215
2216         ew32(IMC, ~0);
2217         if (adapter->msix_entries)
2218                 ew32(EIAC_82574, 0);
2219         e1e_flush();
2220
2221         if (adapter->msix_entries) {
2222                 int i;
2223
2224                 for (i = 0; i < adapter->num_vectors; i++)
2225                         synchronize_irq(adapter->msix_entries[i].vector);
2226         } else {
2227                 synchronize_irq(adapter->pdev->irq);
2228         }
2229 }
2230
2231 /**
2232  * e1000_irq_enable - Enable default interrupt generation settings
2233  * @adapter: board private structure
2234  **/
2235 static void e1000_irq_enable(struct e1000_adapter *adapter)
2236 {
2237         struct e1000_hw *hw = &adapter->hw;
2238
2239         if (adapter->msix_entries) {
2240                 ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
2241                 ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER |
2242                      IMS_OTHER_MASK);
2243         } else if (hw->mac.type >= e1000_pch_lpt) {
2244                 ew32(IMS, IMS_ENABLE_MASK | E1000_IMS_ECCER);
2245         } else {
2246                 ew32(IMS, IMS_ENABLE_MASK);
2247         }
2248         e1e_flush();
2249 }
2250
2251 /**
2252  * e1000e_get_hw_control - get control of the h/w from f/w
2253  * @adapter: address of board private structure
2254  *
2255  * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2256  * For ASF and Pass Through versions of f/w this means that
2257  * the driver is loaded. For AMT version (only with 82573)
2258  * of the f/w this means that the network i/f is open.
2259  **/
2260 void e1000e_get_hw_control(struct e1000_adapter *adapter)
2261 {
2262         struct e1000_hw *hw = &adapter->hw;
2263         u32 ctrl_ext;
2264         u32 swsm;
2265
2266         /* Let firmware know the driver has taken over */
2267         if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2268                 swsm = er32(SWSM);
2269                 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
2270         } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2271                 ctrl_ext = er32(CTRL_EXT);
2272                 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2273         }
2274 }
2275
2276 /**
2277  * e1000e_release_hw_control - release control of the h/w to f/w
2278  * @adapter: address of board private structure
2279  *
2280  * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2281  * For ASF and Pass Through versions of f/w this means that the
2282  * driver is no longer loaded. For AMT version (only with 82573) i
2283  * of the f/w this means that the network i/f is closed.
2284  *
2285  **/
2286 void e1000e_release_hw_control(struct e1000_adapter *adapter)
2287 {
2288         struct e1000_hw *hw = &adapter->hw;
2289         u32 ctrl_ext;
2290         u32 swsm;
2291
2292         /* Let firmware taken over control of h/w */
2293         if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2294                 swsm = er32(SWSM);
2295                 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
2296         } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2297                 ctrl_ext = er32(CTRL_EXT);
2298                 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2299         }
2300 }
2301
2302 /**
2303  * e1000_alloc_ring_dma - allocate memory for a ring structure
2304  * @adapter: board private structure
2305  * @ring: ring struct for which to allocate dma
2306  **/
2307 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
2308                                 struct e1000_ring *ring)
2309 {
2310         struct pci_dev *pdev = adapter->pdev;
2311
2312         ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
2313                                         GFP_KERNEL);
2314         if (!ring->desc)
2315                 return -ENOMEM;
2316
2317         return 0;
2318 }
2319
2320 /**
2321  * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2322  * @tx_ring: Tx descriptor ring
2323  *
2324  * Return 0 on success, negative on failure
2325  **/
2326 int e1000e_setup_tx_resources(struct e1000_ring *tx_ring)
2327 {
2328         struct e1000_adapter *adapter = tx_ring->adapter;
2329         int err = -ENOMEM, size;
2330
2331         size = sizeof(struct e1000_buffer) * tx_ring->count;
2332         tx_ring->buffer_info = vzalloc(size);
2333         if (!tx_ring->buffer_info)
2334                 goto err;
2335
2336         /* round up to nearest 4K */
2337         tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
2338         tx_ring->size = ALIGN(tx_ring->size, 4096);
2339
2340         err = e1000_alloc_ring_dma(adapter, tx_ring);
2341         if (err)
2342                 goto err;
2343
2344         tx_ring->next_to_use = 0;
2345         tx_ring->next_to_clean = 0;
2346
2347         return 0;
2348 err:
2349         vfree(tx_ring->buffer_info);
2350         e_err("Unable to allocate memory for the transmit descriptor ring\n");
2351         return err;
2352 }
2353
2354 /**
2355  * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2356  * @rx_ring: Rx descriptor ring
2357  *
2358  * Returns 0 on success, negative on failure
2359  **/
2360 int e1000e_setup_rx_resources(struct e1000_ring *rx_ring)
2361 {
2362         struct e1000_adapter *adapter = rx_ring->adapter;
2363         struct e1000_buffer *buffer_info;
2364         int i, size, desc_len, err = -ENOMEM;
2365
2366         size = sizeof(struct e1000_buffer) * rx_ring->count;
2367         rx_ring->buffer_info = vzalloc(size);
2368         if (!rx_ring->buffer_info)
2369                 goto err;
2370
2371         for (i = 0; i < rx_ring->count; i++) {
2372                 buffer_info = &rx_ring->buffer_info[i];
2373                 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
2374                                                 sizeof(struct e1000_ps_page),
2375                                                 GFP_KERNEL);
2376                 if (!buffer_info->ps_pages)
2377                         goto err_pages;
2378         }
2379
2380         desc_len = sizeof(union e1000_rx_desc_packet_split);
2381
2382         /* Round up to nearest 4K */
2383         rx_ring->size = rx_ring->count * desc_len;
2384         rx_ring->size = ALIGN(rx_ring->size, 4096);
2385
2386         err = e1000_alloc_ring_dma(adapter, rx_ring);
2387         if (err)
2388                 goto err_pages;
2389
2390         rx_ring->next_to_clean = 0;
2391         rx_ring->next_to_use = 0;
2392         rx_ring->rx_skb_top = NULL;
2393
2394         return 0;
2395
2396 err_pages:
2397         for (i = 0; i < rx_ring->count; i++) {
2398                 buffer_info = &rx_ring->buffer_info[i];
2399                 kfree(buffer_info->ps_pages);
2400         }
2401 err:
2402         vfree(rx_ring->buffer_info);
2403         e_err("Unable to allocate memory for the receive descriptor ring\n");
2404         return err;
2405 }
2406
2407 /**
2408  * e1000_clean_tx_ring - Free Tx Buffers
2409  * @tx_ring: Tx descriptor ring
2410  **/
2411 static void e1000_clean_tx_ring(struct e1000_ring *tx_ring)
2412 {
2413         struct e1000_adapter *adapter = tx_ring->adapter;
2414         struct e1000_buffer *buffer_info;
2415         unsigned long size;
2416         unsigned int i;
2417
2418         for (i = 0; i < tx_ring->count; i++) {
2419                 buffer_info = &tx_ring->buffer_info[i];
2420                 e1000_put_txbuf(tx_ring, buffer_info, false);
2421         }
2422
2423         netdev_reset_queue(adapter->netdev);
2424         size = sizeof(struct e1000_buffer) * tx_ring->count;
2425         memset(tx_ring->buffer_info, 0, size);
2426
2427         memset(tx_ring->desc, 0, tx_ring->size);
2428
2429         tx_ring->next_to_use = 0;
2430         tx_ring->next_to_clean = 0;
2431 }
2432
2433 /**
2434  * e1000e_free_tx_resources - Free Tx Resources per Queue
2435  * @tx_ring: Tx descriptor ring
2436  *
2437  * Free all transmit software resources
2438  **/
2439 void e1000e_free_tx_resources(struct e1000_ring *tx_ring)
2440 {
2441         struct e1000_adapter *adapter = tx_ring->adapter;
2442         struct pci_dev *pdev = adapter->pdev;
2443
2444         e1000_clean_tx_ring(tx_ring);
2445
2446         vfree(tx_ring->buffer_info);
2447         tx_ring->buffer_info = NULL;
2448
2449         dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2450                           tx_ring->dma);
2451         tx_ring->desc = NULL;
2452 }
2453
2454 /**
2455  * e1000e_free_rx_resources - Free Rx Resources
2456  * @rx_ring: Rx descriptor ring
2457  *
2458  * Free all receive software resources
2459  **/
2460 void e1000e_free_rx_resources(struct e1000_ring *rx_ring)
2461 {
2462         struct e1000_adapter *adapter = rx_ring->adapter;
2463         struct pci_dev *pdev = adapter->pdev;
2464         int i;
2465
2466         e1000_clean_rx_ring(rx_ring);
2467
2468         for (i = 0; i < rx_ring->count; i++)
2469                 kfree(rx_ring->buffer_info[i].ps_pages);
2470
2471         vfree(rx_ring->buffer_info);
2472         rx_ring->buffer_info = NULL;
2473
2474         dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2475                           rx_ring->dma);
2476         rx_ring->desc = NULL;
2477 }
2478
2479 /**
2480  * e1000_update_itr - update the dynamic ITR value based on statistics
2481  * @itr_setting: current adapter->itr
2482  * @packets: the number of packets during this measurement interval
2483  * @bytes: the number of bytes during this measurement interval
2484  *
2485  *      Stores a new ITR value based on packets and byte
2486  *      counts during the last interrupt.  The advantage of per interrupt
2487  *      computation is faster updates and more accurate ITR for the current
2488  *      traffic pattern.  Constants in this function were computed
2489  *      based on theoretical maximum wire speed and thresholds were set based
2490  *      on testing data as well as attempting to minimize response time
2491  *      while increasing bulk throughput.  This functionality is controlled
2492  *      by the InterruptThrottleRate module parameter.
2493  **/
2494 static unsigned int e1000_update_itr(u16 itr_setting, int packets, int bytes)
2495 {
2496         unsigned int retval = itr_setting;
2497
2498         if (packets == 0)
2499                 return itr_setting;
2500
2501         switch (itr_setting) {
2502         case lowest_latency:
2503                 /* handle TSO and jumbo frames */
2504                 if (bytes / packets > 8000)
2505                         retval = bulk_latency;
2506                 else if ((packets < 5) && (bytes > 512))
2507                         retval = low_latency;
2508                 break;
2509         case low_latency:       /* 50 usec aka 20000 ints/s */
2510                 if (bytes > 10000) {
2511                         /* this if handles the TSO accounting */
2512                         if (bytes / packets > 8000)
2513                                 retval = bulk_latency;
2514                         else if ((packets < 10) || ((bytes / packets) > 1200))
2515                                 retval = bulk_latency;
2516                         else if ((packets > 35))
2517                                 retval = lowest_latency;
2518                 } else if (bytes / packets > 2000) {
2519                         retval = bulk_latency;
2520                 } else if (packets <= 2 && bytes < 512) {
2521                         retval = lowest_latency;
2522                 }
2523                 break;
2524         case bulk_latency:      /* 250 usec aka 4000 ints/s */
2525                 if (bytes > 25000) {
2526                         if (packets > 35)
2527                                 retval = low_latency;
2528                 } else if (bytes < 6000) {
2529                         retval = low_latency;
2530                 }
2531                 break;
2532         }
2533
2534         return retval;
2535 }
2536
2537 static void e1000_set_itr(struct e1000_adapter *adapter)
2538 {
2539         u16 current_itr;
2540         u32 new_itr = adapter->itr;
2541
2542         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2543         if (adapter->link_speed != SPEED_1000) {
2544                 new_itr = 4000;
2545                 goto set_itr_now;
2546         }
2547
2548         if (adapter->flags2 & FLAG2_DISABLE_AIM) {
2549                 new_itr = 0;
2550                 goto set_itr_now;
2551         }
2552
2553         adapter->tx_itr = e1000_update_itr(adapter->tx_itr,
2554                                            adapter->total_tx_packets,
2555                                            adapter->total_tx_bytes);
2556         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2557         if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2558                 adapter->tx_itr = low_latency;
2559
2560         adapter->rx_itr = e1000_update_itr(adapter->rx_itr,
2561                                            adapter->total_rx_packets,
2562                                            adapter->total_rx_bytes);
2563         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2564         if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2565                 adapter->rx_itr = low_latency;
2566
2567         current_itr = max(adapter->rx_itr, adapter->tx_itr);
2568
2569         /* counts and packets in update_itr are dependent on these numbers */
2570         switch (current_itr) {
2571         case lowest_latency:
2572                 new_itr = 70000;
2573                 break;
2574         case low_latency:
2575                 new_itr = 20000;        /* aka hwitr = ~200 */
2576                 break;
2577         case bulk_latency:
2578                 new_itr = 4000;
2579                 break;
2580         default:
2581                 break;
2582         }
2583
2584 set_itr_now:
2585         if (new_itr != adapter->itr) {
2586                 /* this attempts to bias the interrupt rate towards Bulk
2587                  * by adding intermediate steps when interrupt rate is
2588                  * increasing
2589                  */
2590                 new_itr = new_itr > adapter->itr ?
2591                     min(adapter->itr + (new_itr >> 2), new_itr) : new_itr;
2592                 adapter->itr = new_itr;
2593                 adapter->rx_ring->itr_val = new_itr;
2594                 if (adapter->msix_entries)
2595                         adapter->rx_ring->set_itr = 1;
2596                 else
2597                         e1000e_write_itr(adapter, new_itr);
2598         }
2599 }
2600
2601 /**
2602  * e1000e_write_itr - write the ITR value to the appropriate registers
2603  * @adapter: address of board private structure
2604  * @itr: new ITR value to program
2605  *
2606  * e1000e_write_itr determines if the adapter is in MSI-X mode
2607  * and, if so, writes the EITR registers with the ITR value.
2608  * Otherwise, it writes the ITR value into the ITR register.
2609  **/
2610 void e1000e_write_itr(struct e1000_adapter *adapter, u32 itr)
2611 {
2612         struct e1000_hw *hw = &adapter->hw;
2613         u32 new_itr = itr ? 1000000000 / (itr * 256) : 0;
2614
2615         if (adapter->msix_entries) {
2616                 int vector;
2617
2618                 for (vector = 0; vector < adapter->num_vectors; vector++)
2619                         writel(new_itr, hw->hw_addr + E1000_EITR_82574(vector));
2620         } else {
2621                 ew32(ITR, new_itr);
2622         }
2623 }
2624
2625 /**
2626  * e1000_alloc_queues - Allocate memory for all rings
2627  * @adapter: board private structure to initialize
2628  **/
2629 static int e1000_alloc_queues(struct e1000_adapter *adapter)
2630 {
2631         int size = sizeof(struct e1000_ring);
2632
2633         adapter->tx_ring = kzalloc(size, GFP_KERNEL);
2634         if (!adapter->tx_ring)
2635                 goto err;
2636         adapter->tx_ring->count = adapter->tx_ring_count;
2637         adapter->tx_ring->adapter = adapter;
2638
2639         adapter->rx_ring = kzalloc(size, GFP_KERNEL);
2640         if (!adapter->rx_ring)
2641                 goto err;
2642         adapter->rx_ring->count = adapter->rx_ring_count;
2643         adapter->rx_ring->adapter = adapter;
2644
2645         return 0;
2646 err:
2647         e_err("Unable to allocate memory for queues\n");
2648         kfree(adapter->rx_ring);
2649         kfree(adapter->tx_ring);
2650         return -ENOMEM;
2651 }
2652
2653 /**
2654  * e1000e_poll - NAPI Rx polling callback
2655  * @napi: struct associated with this polling callback
2656  * @budget: number of packets driver is allowed to process this poll
2657  **/
2658 static int e1000e_poll(struct napi_struct *napi, int budget)
2659 {
2660         struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
2661                                                      napi);
2662         struct e1000_hw *hw = &adapter->hw;
2663         struct net_device *poll_dev = adapter->netdev;
2664         int tx_cleaned = 1, work_done = 0;
2665
2666         adapter = netdev_priv(poll_dev);
2667
2668         if (!adapter->msix_entries ||
2669             (adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2670                 tx_cleaned = e1000_clean_tx_irq(adapter->tx_ring);
2671
2672         adapter->clean_rx(adapter->rx_ring, &work_done, budget);
2673
2674         if (!tx_cleaned || work_done == budget)
2675                 return budget;
2676
2677         /* Exit the polling mode, but don't re-enable interrupts if stack might
2678          * poll us due to busy-polling
2679          */
2680         if (likely(napi_complete_done(napi, work_done))) {
2681                 if (adapter->itr_setting & 3)
2682                         e1000_set_itr(adapter);
2683                 if (!test_bit(__E1000_DOWN, &adapter->state)) {
2684                         if (adapter->msix_entries)
2685                                 ew32(IMS, adapter->rx_ring->ims_val);
2686                         else
2687                                 e1000_irq_enable(adapter);
2688                 }
2689         }
2690
2691         return work_done;
2692 }
2693
2694 static int e1000_vlan_rx_add_vid(struct net_device *netdev,
2695                                  __always_unused __be16 proto, u16 vid)
2696 {
2697         struct e1000_adapter *adapter = netdev_priv(netdev);
2698         struct e1000_hw *hw = &adapter->hw;
2699         u32 vfta, index;
2700
2701         /* don't update vlan cookie if already programmed */
2702         if ((adapter->hw.mng_cookie.status &
2703              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2704             (vid == adapter->mng_vlan_id))
2705                 return 0;
2706
2707         /* add VID to filter table */
2708         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2709                 index = (vid >> 5) & 0x7F;
2710                 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2711                 vfta |= BIT((vid & 0x1F));
2712                 hw->mac.ops.write_vfta(hw, index, vfta);
2713         }
2714
2715         set_bit(vid, adapter->active_vlans);
2716
2717         return 0;
2718 }
2719
2720 static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
2721                                   __always_unused __be16 proto, u16 vid)
2722 {
2723         struct e1000_adapter *adapter = netdev_priv(netdev);
2724         struct e1000_hw *hw = &adapter->hw;
2725         u32 vfta, index;
2726
2727         if ((adapter->hw.mng_cookie.status &
2728              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2729             (vid == adapter->mng_vlan_id)) {
2730                 /* release control to f/w */
2731                 e1000e_release_hw_control(adapter);
2732                 return 0;
2733         }
2734
2735         /* remove VID from filter table */
2736         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2737                 index = (vid >> 5) & 0x7F;
2738                 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2739                 vfta &= ~BIT((vid & 0x1F));
2740                 hw->mac.ops.write_vfta(hw, index, vfta);
2741         }
2742
2743         clear_bit(vid, adapter->active_vlans);
2744
2745         return 0;
2746 }
2747
2748 /**
2749  * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
2750  * @adapter: board private structure to initialize
2751  **/
2752 static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
2753 {
2754         struct net_device *netdev = adapter->netdev;
2755         struct e1000_hw *hw = &adapter->hw;
2756         u32 rctl;
2757
2758         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2759                 /* disable VLAN receive filtering */
2760                 rctl = er32(RCTL);
2761                 rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
2762                 ew32(RCTL, rctl);
2763
2764                 if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
2765                         e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
2766                                                adapter->mng_vlan_id);
2767                         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2768                 }
2769         }
2770 }
2771
2772 /**
2773  * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
2774  * @adapter: board private structure to initialize
2775  **/
2776 static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
2777 {
2778         struct e1000_hw *hw = &adapter->hw;
2779         u32 rctl;
2780
2781         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2782                 /* enable VLAN receive filtering */
2783                 rctl = er32(RCTL);
2784                 rctl |= E1000_RCTL_VFE;
2785                 rctl &= ~E1000_RCTL_CFIEN;
2786                 ew32(RCTL, rctl);
2787         }
2788 }
2789
2790 /**
2791  * e1000e_vlan_strip_disable - helper to disable HW VLAN stripping
2792  * @adapter: board private structure to initialize
2793  **/
2794 static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
2795 {
2796         struct e1000_hw *hw = &adapter->hw;
2797         u32 ctrl;
2798
2799         /* disable VLAN tag insert/strip */
2800         ctrl = er32(CTRL);
2801         ctrl &= ~E1000_CTRL_VME;
2802         ew32(CTRL, ctrl);
2803 }
2804
2805 /**
2806  * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
2807  * @adapter: board private structure to initialize
2808  **/
2809 static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
2810 {
2811         struct e1000_hw *hw = &adapter->hw;
2812         u32 ctrl;
2813
2814         /* enable VLAN tag insert/strip */
2815         ctrl = er32(CTRL);
2816         ctrl |= E1000_CTRL_VME;
2817         ew32(CTRL, ctrl);
2818 }
2819
2820 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2821 {
2822         struct net_device *netdev = adapter->netdev;
2823         u16 vid = adapter->hw.mng_cookie.vlan_id;
2824         u16 old_vid = adapter->mng_vlan_id;
2825
2826         if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2827                 e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
2828                 adapter->mng_vlan_id = vid;
2829         }
2830
2831         if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
2832                 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), old_vid);
2833 }
2834
2835 static void e1000_restore_vlan(struct e1000_adapter *adapter)
2836 {
2837         u16 vid;
2838
2839         e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
2840
2841         for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2842             e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
2843 }
2844
2845 static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2846 {
2847         struct e1000_hw *hw = &adapter->hw;
2848         u32 manc, manc2h, mdef, i, j;
2849
2850         if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2851                 return;
2852
2853         manc = er32(MANC);
2854
2855         /* enable receiving management packets to the host. this will probably
2856          * generate destination unreachable messages from the host OS, but
2857          * the packets will be handled on SMBUS
2858          */
2859         manc |= E1000_MANC_EN_MNG2HOST;
2860         manc2h = er32(MANC2H);
2861
2862         switch (hw->mac.type) {
2863         default:
2864                 manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
2865                 break;
2866         case e1000_82574:
2867         case e1000_82583:
2868                 /* Check if IPMI pass-through decision filter already exists;
2869                  * if so, enable it.
2870                  */
2871                 for (i = 0, j = 0; i < 8; i++) {
2872                         mdef = er32(MDEF(i));
2873
2874                         /* Ignore filters with anything other than IPMI ports */
2875                         if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2876                                 continue;
2877
2878                         /* Enable this decision filter in MANC2H */
2879                         if (mdef)
2880                                 manc2h |= BIT(i);
2881
2882                         j |= mdef;
2883                 }
2884
2885                 if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2886                         break;
2887
2888                 /* Create new decision filter in an empty filter */
2889                 for (i = 0, j = 0; i < 8; i++)
2890                         if (er32(MDEF(i)) == 0) {
2891                                 ew32(MDEF(i), (E1000_MDEF_PORT_623 |
2892                                                E1000_MDEF_PORT_664));
2893                                 manc2h |= BIT(1);
2894                                 j++;
2895                                 break;
2896                         }
2897
2898                 if (!j)
2899                         e_warn("Unable to create IPMI pass-through filter\n");
2900                 break;
2901         }
2902
2903         ew32(MANC2H, manc2h);
2904         ew32(MANC, manc);
2905 }
2906
2907 /**
2908  * e1000_configure_tx - Configure Transmit Unit after Reset
2909  * @adapter: board private structure
2910  *
2911  * Configure the Tx unit of the MAC after a reset.
2912  **/
2913 static void e1000_configure_tx(struct e1000_adapter *adapter)
2914 {
2915         struct e1000_hw *hw = &adapter->hw;
2916         struct e1000_ring *tx_ring = adapter->tx_ring;
2917         u64 tdba;
2918         u32 tdlen, tctl, tarc;
2919
2920         /* Setup the HW Tx Head and Tail descriptor pointers */
2921         tdba = tx_ring->dma;
2922         tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2923         ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
2924         ew32(TDBAH(0), (tdba >> 32));
2925         ew32(TDLEN(0), tdlen);
2926         ew32(TDH(0), 0);
2927         ew32(TDT(0), 0);
2928         tx_ring->head = adapter->hw.hw_addr + E1000_TDH(0);
2929         tx_ring->tail = adapter->hw.hw_addr + E1000_TDT(0);
2930
2931         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
2932                 e1000e_update_tdt_wa(tx_ring, 0);
2933
2934         /* Set the Tx Interrupt Delay register */
2935         ew32(TIDV, adapter->tx_int_delay);
2936         /* Tx irq moderation */
2937         ew32(TADV, adapter->tx_abs_int_delay);
2938
2939         if (adapter->flags2 & FLAG2_DMA_BURST) {
2940                 u32 txdctl = er32(TXDCTL(0));
2941
2942                 txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
2943                             E1000_TXDCTL_WTHRESH);
2944                 /* set up some performance related parameters to encourage the
2945                  * hardware to use the bus more efficiently in bursts, depends
2946                  * on the tx_int_delay to be enabled,
2947                  * wthresh = 1 ==> burst write is disabled to avoid Tx stalls
2948                  * hthresh = 1 ==> prefetch when one or more available
2949                  * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2950                  * BEWARE: this seems to work but should be considered first if
2951                  * there are Tx hangs or other Tx related bugs
2952                  */
2953                 txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
2954                 ew32(TXDCTL(0), txdctl);
2955         }
2956         /* erratum work around: set txdctl the same for both queues */
2957         ew32(TXDCTL(1), er32(TXDCTL(0)));
2958
2959         /* Program the Transmit Control Register */
2960         tctl = er32(TCTL);
2961         tctl &= ~E1000_TCTL_CT;
2962         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2963                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2964
2965         if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2966                 tarc = er32(TARC(0));
2967                 /* set the speed mode bit, we'll clear it if we're not at
2968                  * gigabit link later
2969                  */
2970 #define SPEED_MODE_BIT BIT(21)
2971                 tarc |= SPEED_MODE_BIT;
2972                 ew32(TARC(0), tarc);
2973         }
2974
2975         /* errata: program both queues to unweighted RR */
2976         if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2977                 tarc = er32(TARC(0));
2978                 tarc |= 1;
2979                 ew32(TARC(0), tarc);
2980                 tarc = er32(TARC(1));
2981                 tarc |= 1;
2982                 ew32(TARC(1), tarc);
2983         }
2984
2985         /* Setup Transmit Descriptor Settings for eop descriptor */
2986         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
2987
2988         /* only set IDE if we are delaying interrupts using the timers */
2989         if (adapter->tx_int_delay)
2990                 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
2991
2992         /* enable Report Status bit */
2993         adapter->txd_cmd |= E1000_TXD_CMD_RS;
2994
2995         ew32(TCTL, tctl);
2996
2997         hw->mac.ops.config_collision_dist(hw);
2998
2999         /* SPT and KBL Si errata workaround to avoid data corruption */
3000         if (hw->mac.type == e1000_pch_spt) {
3001                 u32 reg_val;
3002
3003                 reg_val = er32(IOSFPC);
3004                 reg_val |= E1000_RCTL_RDMTS_HEX;
3005                 ew32(IOSFPC, reg_val);
3006
3007                 reg_val = er32(TARC(0));
3008                 /* SPT and KBL Si errata workaround to avoid Tx hang.
3009                  * Dropping the number of outstanding requests from
3010                  * 3 to 2 in order to avoid a buffer overrun.
3011                  */
3012                 reg_val &= ~E1000_TARC0_CB_MULTIQ_3_REQ;
3013                 reg_val |= E1000_TARC0_CB_MULTIQ_2_REQ;
3014                 ew32(TARC(0), reg_val);
3015         }
3016 }
3017
3018 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
3019                            (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
3020
3021 /**
3022  * e1000_setup_rctl - configure the receive control registers
3023  * @adapter: Board private structure
3024  **/
3025 static void e1000_setup_rctl(struct e1000_adapter *adapter)
3026 {
3027         struct e1000_hw *hw = &adapter->hw;
3028         u32 rctl, rfctl;
3029         u32 pages = 0;
3030
3031         /* Workaround Si errata on PCHx - configure jumbo frame flow.
3032          * If jumbo frames not set, program related MAC/PHY registers
3033          * to h/w defaults
3034          */
3035         if (hw->mac.type >= e1000_pch2lan) {
3036                 s32 ret_val;
3037
3038                 if (adapter->netdev->mtu > ETH_DATA_LEN)
3039                         ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
3040                 else
3041                         ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
3042
3043                 if (ret_val)
3044                         e_dbg("failed to enable|disable jumbo frame workaround mode\n");
3045         }
3046
3047         /* Program MC offset vector base */
3048         rctl = er32(RCTL);
3049         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3050         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
3051             E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
3052             (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3053
3054         /* Do not Store bad packets */
3055         rctl &= ~E1000_RCTL_SBP;
3056
3057         /* Enable Long Packet receive */
3058         if (adapter->netdev->mtu <= ETH_DATA_LEN)
3059                 rctl &= ~E1000_RCTL_LPE;
3060         else
3061                 rctl |= E1000_RCTL_LPE;
3062
3063         /* Some systems expect that the CRC is included in SMBUS traffic. The
3064          * hardware strips the CRC before sending to both SMBUS (BMC) and to
3065          * host memory when this is enabled
3066          */
3067         if (adapter->flags2 & FLAG2_CRC_STRIPPING)
3068                 rctl |= E1000_RCTL_SECRC;
3069
3070         /* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
3071         if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
3072                 u16 phy_data;
3073
3074                 e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
3075                 phy_data &= 0xfff8;
3076                 phy_data |= BIT(2);
3077                 e1e_wphy(hw, PHY_REG(770, 26), phy_data);
3078
3079                 e1e_rphy(hw, 22, &phy_data);
3080                 phy_data &= 0x0fff;
3081                 phy_data |= BIT(14);
3082                 e1e_wphy(hw, 0x10, 0x2823);
3083                 e1e_wphy(hw, 0x11, 0x0003);
3084                 e1e_wphy(hw, 22, phy_data);
3085         }
3086
3087         /* Setup buffer sizes */
3088         rctl &= ~E1000_RCTL_SZ_4096;
3089         rctl |= E1000_RCTL_BSEX;
3090         switch (adapter->rx_buffer_len) {
3091         case 2048:
3092         default:
3093                 rctl |= E1000_RCTL_SZ_2048;
3094                 rctl &= ~E1000_RCTL_BSEX;
3095                 break;
3096         case 4096:
3097                 rctl |= E1000_RCTL_SZ_4096;
3098                 break;
3099         case 8192:
3100                 rctl |= E1000_RCTL_SZ_8192;
3101                 break;
3102         case 16384:
3103                 rctl |= E1000_RCTL_SZ_16384;
3104                 break;
3105         }
3106
3107         /* Enable Extended Status in all Receive Descriptors */
3108         rfctl = er32(RFCTL);
3109         rfctl |= E1000_RFCTL_EXTEN;
3110         ew32(RFCTL, rfctl);
3111
3112         /* 82571 and greater support packet-split where the protocol
3113          * header is placed in skb->data and the packet data is
3114          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
3115          * In the case of a non-split, skb->data is linearly filled,
3116          * followed by the page buffers.  Therefore, skb->data is
3117          * sized to hold the largest protocol header.
3118          *
3119          * allocations using alloc_page take too long for regular MTU
3120          * so only enable packet split for jumbo frames
3121          *
3122          * Using pages when the page size is greater than 16k wastes
3123          * a lot of memory, since we allocate 3 pages at all times
3124          * per packet.
3125          */
3126         pages = PAGE_USE_COUNT(adapter->netdev->mtu);
3127         if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
3128                 adapter->rx_ps_pages = pages;
3129         else
3130                 adapter->rx_ps_pages = 0;
3131
3132         if (adapter->rx_ps_pages) {
3133                 u32 psrctl = 0;
3134
3135                 /* Enable Packet split descriptors */
3136                 rctl |= E1000_RCTL_DTYP_PS;
3137
3138                 psrctl |= adapter->rx_ps_bsize0 >> E1000_PSRCTL_BSIZE0_SHIFT;
3139
3140                 switch (adapter->rx_ps_pages) {
3141                 case 3:
3142                         psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE3_SHIFT;
3143                         fallthrough;
3144                 case 2:
3145                         psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE2_SHIFT;
3146                         fallthrough;
3147                 case 1:
3148                         psrctl |= PAGE_SIZE >> E1000_PSRCTL_BSIZE1_SHIFT;
3149                         break;
3150                 }
3151
3152                 ew32(PSRCTL, psrctl);
3153         }
3154
3155         /* This is useful for sniffing bad packets. */
3156         if (adapter->netdev->features & NETIF_F_RXALL) {
3157                 /* UPE and MPE will be handled by normal PROMISC logic
3158                  * in e1000e_set_rx_mode
3159                  */
3160                 rctl |= (E1000_RCTL_SBP |       /* Receive bad packets */
3161                          E1000_RCTL_BAM |       /* RX All Bcast Pkts */
3162                          E1000_RCTL_PMCF);      /* RX All MAC Ctrl Pkts */
3163
3164                 rctl &= ~(E1000_RCTL_VFE |      /* Disable VLAN filter */
3165                           E1000_RCTL_DPF |      /* Allow filtered pause */
3166                           E1000_RCTL_CFIEN);    /* Dis VLAN CFIEN Filter */
3167                 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3168                  * and that breaks VLANs.
3169                  */
3170         }
3171
3172         ew32(RCTL, rctl);
3173         /* just started the receive unit, no need to restart */
3174         adapter->flags &= ~FLAG_RESTART_NOW;
3175 }
3176
3177 /**
3178  * e1000_configure_rx - Configure Receive Unit after Reset
3179  * @adapter: board private structure
3180  *
3181  * Configure the Rx unit of the MAC after a reset.
3182  **/
3183 static void e1000_configure_rx(struct e1000_adapter *adapter)
3184 {
3185         struct e1000_hw *hw = &adapter->hw;
3186         struct e1000_ring *rx_ring = adapter->rx_ring;
3187         u64 rdba;
3188         u32 rdlen, rctl, rxcsum, ctrl_ext;
3189
3190         if (adapter->rx_ps_pages) {
3191                 /* this is a 32 byte descriptor */
3192                 rdlen = rx_ring->count *
3193                     sizeof(union e1000_rx_desc_packet_split);
3194                 adapter->clean_rx = e1000_clean_rx_irq_ps;
3195                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
3196         } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
3197                 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3198                 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
3199                 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
3200         } else {
3201                 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3202                 adapter->clean_rx = e1000_clean_rx_irq;
3203                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
3204         }
3205
3206         /* disable receives while setting up the descriptors */
3207         rctl = er32(RCTL);
3208         if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3209                 ew32(RCTL, rctl & ~E1000_RCTL_EN);
3210         e1e_flush();
3211         usleep_range(10000, 11000);
3212
3213         if (adapter->flags2 & FLAG2_DMA_BURST) {
3214                 /* set the writeback threshold (only takes effect if the RDTR
3215                  * is set). set GRAN=1 and write back up to 0x4 worth, and
3216                  * enable prefetching of 0x20 Rx descriptors
3217                  * granularity = 01
3218                  * wthresh = 04,
3219                  * hthresh = 04,
3220                  * pthresh = 0x20
3221                  */
3222                 ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
3223                 ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);
3224         }
3225
3226         /* set the Receive Delay Timer Register */
3227         ew32(RDTR, adapter->rx_int_delay);
3228
3229         /* irq moderation */
3230         ew32(RADV, adapter->rx_abs_int_delay);
3231         if ((adapter->itr_setting != 0) && (adapter->itr != 0))
3232                 e1000e_write_itr(adapter, adapter->itr);
3233
3234         ctrl_ext = er32(CTRL_EXT);
3235         /* Auto-Mask interrupts upon ICR access */
3236         ctrl_ext |= E1000_CTRL_EXT_IAME;
3237         ew32(IAM, 0xffffffff);
3238         ew32(CTRL_EXT, ctrl_ext);
3239         e1e_flush();
3240
3241         /* Setup the HW Rx Head and Tail Descriptor Pointers and
3242          * the Base and Length of the Rx Descriptor Ring
3243          */
3244         rdba = rx_ring->dma;
3245         ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
3246         ew32(RDBAH(0), (rdba >> 32));
3247         ew32(RDLEN(0), rdlen);
3248         ew32(RDH(0), 0);
3249         ew32(RDT(0), 0);
3250         rx_ring->head = adapter->hw.hw_addr + E1000_RDH(0);
3251         rx_ring->tail = adapter->hw.hw_addr + E1000_RDT(0);
3252
3253         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
3254                 e1000e_update_rdt_wa(rx_ring, 0);
3255
3256         /* Enable Receive Checksum Offload for TCP and UDP */
3257         rxcsum = er32(RXCSUM);
3258         if (adapter->netdev->features & NETIF_F_RXCSUM)
3259                 rxcsum |= E1000_RXCSUM_TUOFL;
3260         else
3261                 rxcsum &= ~E1000_RXCSUM_TUOFL;
3262         ew32(RXCSUM, rxcsum);
3263
3264         /* With jumbo frames, excessive C-state transition latencies result
3265          * in dropped transactions.
3266          */
3267         if (adapter->netdev->mtu > ETH_DATA_LEN) {
3268                 u32 lat =
3269                     ((er32(PBA) & E1000_PBA_RXA_MASK) * 1024 -
3270                      adapter->max_frame_size) * 8 / 1000;
3271
3272                 if (adapter->flags & FLAG_IS_ICH) {
3273                         u32 rxdctl = er32(RXDCTL(0));
3274
3275                         ew32(RXDCTL(0), rxdctl | 0x3 | BIT(8));
3276                 }
3277
3278                 dev_info(&adapter->pdev->dev,
3279                          "Some CPU C-states have been disabled in order to enable jumbo frames\n");
3280                 cpu_latency_qos_update_request(&adapter->pm_qos_req, lat);
3281         } else {
3282                 cpu_latency_qos_update_request(&adapter->pm_qos_req,
3283                                                PM_QOS_DEFAULT_VALUE);
3284         }
3285
3286         /* Enable Receives */
3287         ew32(RCTL, rctl);
3288 }
3289
3290 /**
3291  * e1000e_write_mc_addr_list - write multicast addresses to MTA
3292  * @netdev: network interface device structure
3293  *
3294  * Writes multicast address list to the MTA hash table.
3295  * Returns: -ENOMEM on failure
3296  *                0 on no addresses written
3297  *                X on writing X addresses to MTA
3298  */
3299 static int e1000e_write_mc_addr_list(struct net_device *netdev)
3300 {
3301         struct e1000_adapter *adapter = netdev_priv(netdev);
3302         struct e1000_hw *hw = &adapter->hw;
3303         struct netdev_hw_addr *ha;
3304         u8 *mta_list;
3305         int i;
3306
3307         if (netdev_mc_empty(netdev)) {
3308                 /* nothing to program, so clear mc list */
3309                 hw->mac.ops.update_mc_addr_list(hw, NULL, 0);
3310                 return 0;
3311         }
3312
3313         mta_list = kcalloc(netdev_mc_count(netdev), ETH_ALEN, GFP_ATOMIC);
3314         if (!mta_list)
3315                 return -ENOMEM;
3316
3317         /* update_mc_addr_list expects a packed array of only addresses. */
3318         i = 0;
3319         netdev_for_each_mc_addr(ha, netdev)
3320             memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3321
3322         hw->mac.ops.update_mc_addr_list(hw, mta_list, i);
3323         kfree(mta_list);
3324
3325         return netdev_mc_count(netdev);
3326 }
3327
3328 /**
3329  * e1000e_write_uc_addr_list - write unicast addresses to RAR table
3330  * @netdev: network interface device structure
3331  *
3332  * Writes unicast address list to the RAR table.
3333  * Returns: -ENOMEM on failure/insufficient address space
3334  *                0 on no addresses written
3335  *                X on writing X addresses to the RAR table
3336  **/
3337 static int e1000e_write_uc_addr_list(struct net_device *netdev)
3338 {
3339         struct e1000_adapter *adapter = netdev_priv(netdev);
3340         struct e1000_hw *hw = &adapter->hw;
3341         unsigned int rar_entries;
3342         int count = 0;
3343
3344         rar_entries = hw->mac.ops.rar_get_count(hw);
3345
3346         /* save a rar entry for our hardware address */
3347         rar_entries--;
3348
3349         /* save a rar entry for the LAA workaround */
3350         if (adapter->flags & FLAG_RESET_OVERWRITES_LAA)
3351                 rar_entries--;
3352
3353         /* return ENOMEM indicating insufficient memory for addresses */
3354         if (netdev_uc_count(netdev) > rar_entries)
3355                 return -ENOMEM;
3356
3357         if (!netdev_uc_empty(netdev) && rar_entries) {
3358                 struct netdev_hw_addr *ha;
3359
3360                 /* write the addresses in reverse order to avoid write
3361                  * combining
3362                  */
3363                 netdev_for_each_uc_addr(ha, netdev) {
3364                         int ret_val;
3365
3366                         if (!rar_entries)
3367                                 break;
3368                         ret_val = hw->mac.ops.rar_set(hw, ha->addr, rar_entries--);
3369                         if (ret_val < 0)
3370                                 return -ENOMEM;
3371                         count++;
3372                 }
3373         }
3374
3375         /* zero out the remaining RAR entries not used above */
3376         for (; rar_entries > 0; rar_entries--) {
3377                 ew32(RAH(rar_entries), 0);
3378                 ew32(RAL(rar_entries), 0);
3379         }
3380         e1e_flush();
3381
3382         return count;
3383 }
3384
3385 /**
3386  * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set
3387  * @netdev: network interface device structure
3388  *
3389  * The ndo_set_rx_mode entry point is called whenever the unicast or multicast
3390  * address list or the network interface flags are updated.  This routine is
3391  * responsible for configuring the hardware for proper unicast, multicast,
3392  * promiscuous mode, and all-multi behavior.
3393  **/
3394 static void e1000e_set_rx_mode(struct net_device *netdev)
3395 {
3396         struct e1000_adapter *adapter = netdev_priv(netdev);
3397         struct e1000_hw *hw = &adapter->hw;
3398         u32 rctl;
3399
3400         if (pm_runtime_suspended(netdev->dev.parent))
3401                 return;
3402
3403         /* Check for Promiscuous and All Multicast modes */
3404         rctl = er32(RCTL);
3405
3406         /* clear the affected bits */
3407         rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
3408
3409         if (netdev->flags & IFF_PROMISC) {
3410                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3411                 /* Do not hardware filter VLANs in promisc mode */
3412                 e1000e_vlan_filter_disable(adapter);
3413         } else {
3414                 int count;
3415
3416                 if (netdev->flags & IFF_ALLMULTI) {
3417                         rctl |= E1000_RCTL_MPE;
3418                 } else {
3419                         /* Write addresses to the MTA, if the attempt fails
3420                          * then we should just turn on promiscuous mode so
3421                          * that we can at least receive multicast traffic
3422                          */
3423                         count = e1000e_write_mc_addr_list(netdev);
3424                         if (count < 0)
3425                                 rctl |= E1000_RCTL_MPE;
3426                 }
3427                 e1000e_vlan_filter_enable(adapter);
3428                 /* Write addresses to available RAR registers, if there is not
3429                  * sufficient space to store all the addresses then enable
3430                  * unicast promiscuous mode
3431                  */
3432                 count = e1000e_write_uc_addr_list(netdev);
3433                 if (count < 0)
3434                         rctl |= E1000_RCTL_UPE;
3435         }
3436
3437         ew32(RCTL, rctl);
3438
3439         if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
3440                 e1000e_vlan_strip_enable(adapter);
3441         else
3442                 e1000e_vlan_strip_disable(adapter);
3443 }
3444
3445 static void e1000e_setup_rss_hash(struct e1000_adapter *adapter)
3446 {
3447         struct e1000_hw *hw = &adapter->hw;
3448         u32 mrqc, rxcsum;
3449         u32 rss_key[10];
3450         int i;
3451
3452         netdev_rss_key_fill(rss_key, sizeof(rss_key));
3453         for (i = 0; i < 10; i++)
3454                 ew32(RSSRK(i), rss_key[i]);
3455
3456         /* Direct all traffic to queue 0 */
3457         for (i = 0; i < 32; i++)
3458                 ew32(RETA(i), 0);
3459
3460         /* Disable raw packet checksumming so that RSS hash is placed in
3461          * descriptor on writeback.
3462          */
3463         rxcsum = er32(RXCSUM);
3464         rxcsum |= E1000_RXCSUM_PCSD;
3465
3466         ew32(RXCSUM, rxcsum);
3467
3468         mrqc = (E1000_MRQC_RSS_FIELD_IPV4 |
3469                 E1000_MRQC_RSS_FIELD_IPV4_TCP |
3470                 E1000_MRQC_RSS_FIELD_IPV6 |
3471                 E1000_MRQC_RSS_FIELD_IPV6_TCP |
3472                 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
3473
3474         ew32(MRQC, mrqc);
3475 }
3476
3477 /**
3478  * e1000e_get_base_timinca - get default SYSTIM time increment attributes
3479  * @adapter: board private structure
3480  * @timinca: pointer to returned time increment attributes
3481  *
3482  * Get attributes for incrementing the System Time Register SYSTIML/H at
3483  * the default base frequency, and set the cyclecounter shift value.
3484  **/
3485 s32 e1000e_get_base_timinca(struct e1000_adapter *adapter, u32 *timinca)
3486 {
3487         struct e1000_hw *hw = &adapter->hw;
3488         u32 incvalue, incperiod, shift;
3489
3490         /* Make sure clock is enabled on I217/I218/I219  before checking
3491          * the frequency
3492          */
3493         if ((hw->mac.type >= e1000_pch_lpt) &&
3494             !(er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) &&
3495             !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_ENABLED)) {
3496                 u32 fextnvm7 = er32(FEXTNVM7);
3497
3498                 if (!(fextnvm7 & BIT(0))) {
3499                         ew32(FEXTNVM7, fextnvm7 | BIT(0));
3500                         e1e_flush();
3501                 }
3502         }
3503
3504         switch (hw->mac.type) {
3505         case e1000_pch2lan:
3506                 /* Stable 96MHz frequency */
3507                 incperiod = INCPERIOD_96MHZ;
3508                 incvalue = INCVALUE_96MHZ;
3509                 shift = INCVALUE_SHIFT_96MHZ;
3510                 adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHZ;
3511                 break;
3512         case e1000_pch_lpt:
3513                 if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3514                         /* Stable 96MHz frequency */
3515                         incperiod = INCPERIOD_96MHZ;
3516                         incvalue = INCVALUE_96MHZ;
3517                         shift = INCVALUE_SHIFT_96MHZ;
3518                         adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHZ;
3519                 } else {
3520                         /* Stable 25MHz frequency */
3521                         incperiod = INCPERIOD_25MHZ;
3522                         incvalue = INCVALUE_25MHZ;
3523                         shift = INCVALUE_SHIFT_25MHZ;
3524                         adapter->cc.shift = shift;
3525                 }
3526                 break;
3527         case e1000_pch_spt:
3528                 /* Stable 24MHz frequency */
3529                 incperiod = INCPERIOD_24MHZ;
3530                 incvalue = INCVALUE_24MHZ;
3531                 shift = INCVALUE_SHIFT_24MHZ;
3532                 adapter->cc.shift = shift;
3533                 break;
3534         case e1000_pch_cnp:
3535         case e1000_pch_tgp:
3536         case e1000_pch_adp:
3537         case e1000_pch_nvp:
3538                 if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3539                         /* Stable 24MHz frequency */
3540                         incperiod = INCPERIOD_24MHZ;
3541                         incvalue = INCVALUE_24MHZ;
3542                         shift = INCVALUE_SHIFT_24MHZ;
3543                         adapter->cc.shift = shift;
3544                 } else {
3545                         /* Stable 38400KHz frequency */
3546                         incperiod = INCPERIOD_38400KHZ;
3547                         incvalue = INCVALUE_38400KHZ;
3548                         shift = INCVALUE_SHIFT_38400KHZ;
3549                         adapter->cc.shift = shift;
3550                 }
3551                 break;
3552         case e1000_pch_mtp:
3553         case e1000_pch_lnp:
3554         case e1000_pch_ptp:
3555                 /* System firmware can misreport this value, so set it to a
3556                  * stable 38400KHz frequency.
3557                  */
3558                 incperiod = INCPERIOD_38400KHZ;
3559                 incvalue = INCVALUE_38400KHZ;
3560                 shift = INCVALUE_SHIFT_38400KHZ;
3561                 adapter->cc.shift = shift;
3562                 break;
3563         case e1000_82574:
3564         case e1000_82583:
3565                 /* Stable 25MHz frequency */
3566                 incperiod = INCPERIOD_25MHZ;
3567                 incvalue = INCVALUE_25MHZ;
3568                 shift = INCVALUE_SHIFT_25MHZ;
3569                 adapter->cc.shift = shift;
3570                 break;
3571         default:
3572                 return -EINVAL;
3573         }
3574
3575         *timinca = ((incperiod << E1000_TIMINCA_INCPERIOD_SHIFT) |
3576                     ((incvalue << shift) & E1000_TIMINCA_INCVALUE_MASK));
3577
3578         return 0;
3579 }
3580
3581 /**
3582  * e1000e_config_hwtstamp - configure the hwtstamp registers and enable/disable
3583  * @adapter: board private structure
3584  * @config: timestamp configuration
3585  * @extack: netlink extended ACK for error report
3586  *
3587  * Outgoing time stamping can be enabled and disabled. Play nice and
3588  * disable it when requested, although it shouldn't cause any overhead
3589  * when no packet needs it. At most one packet in the queue may be
3590  * marked for time stamping, otherwise it would be impossible to tell
3591  * for sure to which packet the hardware time stamp belongs.
3592  *
3593  * Incoming time stamping has to be configured via the hardware filters.
3594  * Not all combinations are supported, in particular event type has to be
3595  * specified. Matching the kind of event packet is not supported, with the
3596  * exception of "all V2 events regardless of level 2 or 4".
3597  **/
3598 static int e1000e_config_hwtstamp(struct e1000_adapter *adapter,
3599                                   struct kernel_hwtstamp_config *config,
3600                                   struct netlink_ext_ack *extack)
3601 {
3602         struct e1000_hw *hw = &adapter->hw;
3603         u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
3604         u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
3605         u32 rxmtrl = 0;
3606         u16 rxudp = 0;
3607         bool is_l4 = false;
3608         bool is_l2 = false;
3609         u32 regval;
3610
3611         if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP)) {
3612                 NL_SET_ERR_MSG(extack, "No HW timestamp support");
3613                 return -EINVAL;
3614         }
3615
3616         switch (config->tx_type) {
3617         case HWTSTAMP_TX_OFF:
3618                 tsync_tx_ctl = 0;
3619                 break;
3620         case HWTSTAMP_TX_ON:
3621                 break;
3622         default:
3623                 NL_SET_ERR_MSG(extack, "Unsupported TX HW timestamp type");
3624                 return -ERANGE;
3625         }
3626
3627         switch (config->rx_filter) {
3628         case HWTSTAMP_FILTER_NONE:
3629                 tsync_rx_ctl = 0;
3630                 break;
3631         case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3632                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3633                 rxmtrl = E1000_RXMTRL_PTP_V1_SYNC_MESSAGE;
3634                 is_l4 = true;
3635                 break;
3636         case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3637                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3638                 rxmtrl = E1000_RXMTRL_PTP_V1_DELAY_REQ_MESSAGE;
3639                 is_l4 = true;
3640                 break;
3641         case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3642                 /* Also time stamps V2 L2 Path Delay Request/Response */
3643                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3644                 rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3645                 is_l2 = true;
3646                 break;
3647         case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3648                 /* Also time stamps V2 L2 Path Delay Request/Response. */
3649                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3650                 rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3651                 is_l2 = true;
3652                 break;
3653         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3654                 /* Hardware cannot filter just V2 L4 Sync messages */
3655                 fallthrough;
3656         case HWTSTAMP_FILTER_PTP_V2_SYNC:
3657                 /* Also time stamps V2 Path Delay Request/Response. */
3658                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3659                 rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3660                 is_l2 = true;
3661                 is_l4 = true;
3662                 break;
3663         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3664                 /* Hardware cannot filter just V2 L4 Delay Request messages */
3665                 fallthrough;
3666         case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3667                 /* Also time stamps V2 Path Delay Request/Response. */
3668                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3669                 rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3670                 is_l2 = true;
3671                 is_l4 = true;
3672                 break;
3673         case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3674         case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3675                 /* Hardware cannot filter just V2 L4 or L2 Event messages */
3676                 fallthrough;
3677         case HWTSTAMP_FILTER_PTP_V2_EVENT:
3678                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
3679                 config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
3680                 is_l2 = true;
3681                 is_l4 = true;
3682                 break;
3683         case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3684                 /* For V1, the hardware can only filter Sync messages or
3685                  * Delay Request messages but not both so fall-through to
3686                  * time stamp all packets.
3687                  */
3688                 fallthrough;
3689         case HWTSTAMP_FILTER_NTP_ALL:
3690         case HWTSTAMP_FILTER_ALL:
3691                 is_l2 = true;
3692                 is_l4 = true;
3693                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
3694                 config->rx_filter = HWTSTAMP_FILTER_ALL;
3695                 break;
3696         default:
3697                 NL_SET_ERR_MSG(extack, "Unsupported RX HW timestamp filter");
3698                 return -ERANGE;
3699         }
3700
3701         adapter->hwtstamp_config = *config;
3702
3703         /* enable/disable Tx h/w time stamping */
3704         regval = er32(TSYNCTXCTL);
3705         regval &= ~E1000_TSYNCTXCTL_ENABLED;
3706         regval |= tsync_tx_ctl;
3707         ew32(TSYNCTXCTL, regval);
3708         if ((er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) !=
3709             (regval & E1000_TSYNCTXCTL_ENABLED)) {
3710                 NL_SET_ERR_MSG(extack,
3711                                "Timesync Tx Control register not set as expected");
3712                 return -EAGAIN;
3713         }
3714
3715         /* enable/disable Rx h/w time stamping */
3716         regval = er32(TSYNCRXCTL);
3717         regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
3718         regval |= tsync_rx_ctl;
3719         ew32(TSYNCRXCTL, regval);
3720         if ((er32(TSYNCRXCTL) & (E1000_TSYNCRXCTL_ENABLED |
3721                                  E1000_TSYNCRXCTL_TYPE_MASK)) !=
3722             (regval & (E1000_TSYNCRXCTL_ENABLED |
3723                        E1000_TSYNCRXCTL_TYPE_MASK))) {
3724                 NL_SET_ERR_MSG(extack,
3725                                "Timesync Rx Control register not set as expected");
3726                 return -EAGAIN;
3727         }
3728
3729         /* L2: define ethertype filter for time stamped packets */
3730         if (is_l2)
3731                 rxmtrl |= ETH_P_1588;
3732
3733         /* define which PTP packets get time stamped */
3734         ew32(RXMTRL, rxmtrl);
3735
3736         /* Filter by destination port */
3737         if (is_l4) {
3738                 rxudp = PTP_EV_PORT;
3739                 cpu_to_be16s(&rxudp);
3740         }
3741         ew32(RXUDP, rxudp);
3742
3743         e1e_flush();
3744
3745         /* Clear TSYNCRXCTL_VALID & TSYNCTXCTL_VALID bit */
3746         er32(RXSTMPH);
3747         er32(TXSTMPH);
3748
3749         return 0;
3750 }
3751
3752 /**
3753  * e1000_configure - configure the hardware for Rx and Tx
3754  * @adapter: private board structure
3755  **/
3756 static void e1000_configure(struct e1000_adapter *adapter)
3757 {
3758         struct e1000_ring *rx_ring = adapter->rx_ring;
3759
3760         e1000e_set_rx_mode(adapter->netdev);
3761
3762         e1000_restore_vlan(adapter);
3763         e1000_init_manageability_pt(adapter);
3764
3765         e1000_configure_tx(adapter);
3766
3767         if (adapter->netdev->features & NETIF_F_RXHASH)
3768                 e1000e_setup_rss_hash(adapter);
3769         e1000_setup_rctl(adapter);
3770         e1000_configure_rx(adapter);
3771         adapter->alloc_rx_buf(rx_ring, e1000_desc_unused(rx_ring), GFP_KERNEL);
3772 }
3773
3774 /**
3775  * e1000e_power_up_phy - restore link in case the phy was powered down
3776  * @adapter: address of board private structure
3777  *
3778  * The phy may be powered down to save power and turn off link when the
3779  * driver is unloaded and wake on lan is not enabled (among others)
3780  * *** this routine MUST be followed by a call to e1000e_reset ***
3781  **/
3782 void e1000e_power_up_phy(struct e1000_adapter *adapter)
3783 {
3784         if (adapter->hw.phy.ops.power_up)
3785                 adapter->hw.phy.ops.power_up(&adapter->hw);
3786
3787         adapter->hw.mac.ops.setup_link(&adapter->hw);
3788 }
3789
3790 /**
3791  * e1000_power_down_phy - Power down the PHY
3792  * @adapter: board private structure
3793  *
3794  * Power down the PHY so no link is implied when interface is down.
3795  * The PHY cannot be powered down if management or WoL is active.
3796  */
3797 static void e1000_power_down_phy(struct e1000_adapter *adapter)
3798 {
3799         if (adapter->hw.phy.ops.power_down)
3800                 adapter->hw.phy.ops.power_down(&adapter->hw);
3801 }
3802
3803 /**
3804  * e1000_flush_tx_ring - remove all descriptors from the tx_ring
3805  * @adapter: board private structure
3806  *
3807  * We want to clear all pending descriptors from the TX ring.
3808  * zeroing happens when the HW reads the regs. We  assign the ring itself as
3809  * the data of the next descriptor. We don't care about the data we are about
3810  * to reset the HW.
3811  */
3812 static void e1000_flush_tx_ring(struct e1000_adapter *adapter)
3813 {
3814         struct e1000_hw *hw = &adapter->hw;
3815         struct e1000_ring *tx_ring = adapter->tx_ring;
3816         struct e1000_tx_desc *tx_desc = NULL;
3817         u32 tdt, tctl, txd_lower = E1000_TXD_CMD_IFCS;
3818         u16 size = 512;
3819
3820         tctl = er32(TCTL);
3821         ew32(TCTL, tctl | E1000_TCTL_EN);
3822         tdt = er32(TDT(0));
3823         BUG_ON(tdt != tx_ring->next_to_use);
3824         tx_desc =  E1000_TX_DESC(*tx_ring, tx_ring->next_to_use);
3825         tx_desc->buffer_addr = cpu_to_le64(tx_ring->dma);
3826
3827         tx_desc->lower.data = cpu_to_le32(txd_lower | size);
3828         tx_desc->upper.data = 0;
3829         /* flush descriptors to memory before notifying the HW */
3830         wmb();
3831         tx_ring->next_to_use++;
3832         if (tx_ring->next_to_use == tx_ring->count)
3833                 tx_ring->next_to_use = 0;
3834         ew32(TDT(0), tx_ring->next_to_use);
3835         usleep_range(200, 250);
3836 }
3837
3838 /**
3839  * e1000_flush_rx_ring - remove all descriptors from the rx_ring
3840  * @adapter: board private structure
3841  *
3842  * Mark all descriptors in the RX ring as consumed and disable the rx ring
3843  */
3844 static void e1000_flush_rx_ring(struct e1000_adapter *adapter)
3845 {
3846         u32 rctl, rxdctl;
3847         struct e1000_hw *hw = &adapter->hw;
3848
3849         rctl = er32(RCTL);
3850         ew32(RCTL, rctl & ~E1000_RCTL_EN);
3851         e1e_flush();
3852         usleep_range(100, 150);
3853
3854         rxdctl = er32(RXDCTL(0));
3855         /* zero the lower 14 bits (prefetch and host thresholds) */
3856         rxdctl &= 0xffffc000;
3857
3858         /* update thresholds: prefetch threshold to 31, host threshold to 1
3859          * and make sure the granularity is "descriptors" and not "cache lines"
3860          */
3861         rxdctl |= (0x1F | BIT(8) | E1000_RXDCTL_THRESH_UNIT_DESC);
3862
3863         ew32(RXDCTL(0), rxdctl);
3864         /* momentarily enable the RX ring for the changes to take effect */
3865         ew32(RCTL, rctl | E1000_RCTL_EN);
3866         e1e_flush();
3867         usleep_range(100, 150);
3868         ew32(RCTL, rctl & ~E1000_RCTL_EN);
3869 }
3870
3871 /**
3872  * e1000_flush_desc_rings - remove all descriptors from the descriptor rings
3873  * @adapter: board private structure
3874  *
3875  * In i219, the descriptor rings must be emptied before resetting the HW
3876  * or before changing the device state to D3 during runtime (runtime PM).
3877  *
3878  * Failure to do this will cause the HW to enter a unit hang state which can
3879  * only be released by PCI reset on the device
3880  *
3881  */
3882
3883 static void e1000_flush_desc_rings(struct e1000_adapter *adapter)
3884 {
3885         u16 hang_state;
3886         u32 fext_nvm11, tdlen;
3887         struct e1000_hw *hw = &adapter->hw;
3888
3889         /* First, disable MULR fix in FEXTNVM11 */
3890         fext_nvm11 = er32(FEXTNVM11);
3891         fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
3892         ew32(FEXTNVM11, fext_nvm11);
3893         /* do nothing if we're not in faulty state, or if the queue is empty */
3894         tdlen = er32(TDLEN(0));
3895         pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3896                              &hang_state);
3897         if (!(hang_state & FLUSH_DESC_REQUIRED) || !tdlen)
3898                 return;
3899         e1000_flush_tx_ring(adapter);
3900         /* recheck, maybe the fault is caused by the rx ring */
3901         pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3902                              &hang_state);
3903         if (hang_state & FLUSH_DESC_REQUIRED)
3904                 e1000_flush_rx_ring(adapter);
3905 }
3906
3907 /**
3908  * e1000e_systim_reset - reset the timesync registers after a hardware reset
3909  * @adapter: board private structure
3910  *
3911  * When the MAC is reset, all hardware bits for timesync will be reset to the
3912  * default values. This function will restore the settings last in place.
3913  * Since the clock SYSTIME registers are reset, we will simply restore the
3914  * cyclecounter to the kernel real clock time.
3915  **/
3916 static void e1000e_systim_reset(struct e1000_adapter *adapter)
3917 {
3918         struct ptp_clock_info *info = &adapter->ptp_clock_info;
3919         struct e1000_hw *hw = &adapter->hw;
3920         struct netlink_ext_ack extack = {};
3921         unsigned long flags;
3922         u32 timinca;
3923         s32 ret_val;
3924
3925         if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3926                 return;
3927
3928         if (info->adjfine) {
3929                 /* restore the previous ptp frequency delta */
3930                 ret_val = info->adjfine(info, adapter->ptp_delta);
3931         } else {
3932                 /* set the default base frequency if no adjustment possible */
3933                 ret_val = e1000e_get_base_timinca(adapter, &timinca);
3934                 if (!ret_val)
3935                         ew32(TIMINCA, timinca);
3936         }
3937
3938         if (ret_val) {
3939                 dev_warn(&adapter->pdev->dev,
3940                          "Failed to restore TIMINCA clock rate delta: %d\n",
3941                          ret_val);
3942                 return;
3943         }
3944
3945         /* reset the systim ns time counter */
3946         spin_lock_irqsave(&adapter->systim_lock, flags);
3947         timecounter_init(&adapter->tc, &adapter->cc,
3948                          ktime_to_ns(ktime_get_real()));
3949         spin_unlock_irqrestore(&adapter->systim_lock, flags);
3950
3951         /* restore the previous hwtstamp configuration settings */
3952         ret_val = e1000e_config_hwtstamp(adapter, &adapter->hwtstamp_config,
3953                                          &extack);
3954         if (ret_val) {
3955                 if (extack._msg)
3956                         e_err("%s\n", extack._msg);
3957         }
3958 }
3959
3960 /**
3961  * e1000e_reset - bring the hardware into a known good state
3962  * @adapter: board private structure
3963  *
3964  * This function boots the hardware and enables some settings that
3965  * require a configuration cycle of the hardware - those cannot be
3966  * set/changed during runtime. After reset the device needs to be
3967  * properly configured for Rx, Tx etc.
3968  */
3969 void e1000e_reset(struct e1000_adapter *adapter)
3970 {
3971         struct e1000_mac_info *mac = &adapter->hw.mac;
3972         struct e1000_fc_info *fc = &adapter->hw.fc;
3973         struct e1000_hw *hw = &adapter->hw;
3974         u32 tx_space, min_tx_space, min_rx_space;
3975         u32 pba = adapter->pba;
3976         u16 hwm;
3977
3978         /* reset Packet Buffer Allocation to default */
3979         ew32(PBA, pba);
3980
3981         if (adapter->max_frame_size > (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)) {
3982                 /* To maintain wire speed transmits, the Tx FIFO should be
3983                  * large enough to accommodate two full transmit packets,
3984                  * rounded up to the next 1KB and expressed in KB.  Likewise,
3985                  * the Rx FIFO should be large enough to accommodate at least
3986                  * one full receive packet and is similarly rounded up and
3987                  * expressed in KB.
3988                  */
3989                 pba = er32(PBA);
3990                 /* upper 16 bits has Tx packet buffer allocation size in KB */
3991                 tx_space = pba >> 16;
3992                 /* lower 16 bits has Rx packet buffer allocation size in KB */
3993                 pba &= 0xffff;
3994                 /* the Tx fifo also stores 16 bytes of information about the Tx
3995                  * but don't include ethernet FCS because hardware appends it
3996                  */
3997                 min_tx_space = (adapter->max_frame_size +
3998                                 sizeof(struct e1000_tx_desc) - ETH_FCS_LEN) * 2;
3999                 min_tx_space = ALIGN(min_tx_space, 1024);
4000                 min_tx_space >>= 10;
4001                 /* software strips receive CRC, so leave room for it */
4002                 min_rx_space = adapter->max_frame_size;
4003                 min_rx_space = ALIGN(min_rx_space, 1024);
4004                 min_rx_space >>= 10;
4005
4006                 /* If current Tx allocation is less than the min Tx FIFO size,
4007                  * and the min Tx FIFO size is less than the current Rx FIFO
4008                  * allocation, take space away from current Rx allocation
4009                  */
4010                 if ((tx_space < min_tx_space) &&
4011                     ((min_tx_space - tx_space) < pba)) {
4012                         pba -= min_tx_space - tx_space;
4013
4014                         /* if short on Rx space, Rx wins and must trump Tx
4015                          * adjustment
4016                          */
4017                         if (pba < min_rx_space)
4018                                 pba = min_rx_space;
4019                 }
4020
4021                 ew32(PBA, pba);
4022         }
4023
4024         /* flow control settings
4025          *
4026          * The high water mark must be low enough to fit one full frame
4027          * (or the size used for early receive) above it in the Rx FIFO.
4028          * Set it to the lower of:
4029          * - 90% of the Rx FIFO size, and
4030          * - the full Rx FIFO size minus one full frame
4031          */
4032         if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
4033                 fc->pause_time = 0xFFFF;
4034         else
4035                 fc->pause_time = E1000_FC_PAUSE_TIME;
4036         fc->send_xon = true;
4037         fc->current_mode = fc->requested_mode;
4038
4039         switch (hw->mac.type) {
4040         case e1000_ich9lan:
4041         case e1000_ich10lan:
4042                 if (adapter->netdev->mtu > ETH_DATA_LEN) {
4043                         pba = 14;
4044                         ew32(PBA, pba);
4045                         fc->high_water = 0x2800;
4046                         fc->low_water = fc->high_water - 8;
4047                         break;
4048                 }
4049                 fallthrough;
4050         default:
4051                 hwm = min(((pba << 10) * 9 / 10),
4052                           ((pba << 10) - adapter->max_frame_size));
4053
4054                 fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */
4055                 fc->low_water = fc->high_water - 8;
4056                 break;
4057         case e1000_pchlan:
4058                 /* Workaround PCH LOM adapter hangs with certain network
4059                  * loads.  If hangs persist, try disabling Tx flow control.
4060                  */
4061                 if (adapter->netdev->mtu > ETH_DATA_LEN) {
4062                         fc->high_water = 0x3500;
4063                         fc->low_water = 0x1500;
4064                 } else {
4065                         fc->high_water = 0x5000;
4066                         fc->low_water = 0x3000;
4067                 }
4068                 fc->refresh_time = 0x1000;
4069                 break;
4070         case e1000_pch2lan:
4071         case e1000_pch_lpt:
4072         case e1000_pch_spt:
4073         case e1000_pch_cnp:
4074         case e1000_pch_tgp:
4075         case e1000_pch_adp:
4076         case e1000_pch_mtp:
4077         case e1000_pch_lnp:
4078         case e1000_pch_ptp:
4079         case e1000_pch_nvp:
4080                 fc->refresh_time = 0xFFFF;
4081                 fc->pause_time = 0xFFFF;
4082
4083                 if (adapter->netdev->mtu <= ETH_DATA_LEN) {
4084                         fc->high_water = 0x05C20;
4085                         fc->low_water = 0x05048;
4086                         break;
4087                 }
4088
4089                 pba = 14;
4090                 ew32(PBA, pba);
4091                 fc->high_water = ((pba << 10) * 9 / 10) & E1000_FCRTH_RTH;
4092                 fc->low_water = ((pba << 10) * 8 / 10) & E1000_FCRTL_RTL;
4093                 break;
4094         }
4095
4096         /* Alignment of Tx data is on an arbitrary byte boundary with the
4097          * maximum size per Tx descriptor limited only to the transmit
4098          * allocation of the packet buffer minus 96 bytes with an upper
4099          * limit of 24KB due to receive synchronization limitations.
4100          */
4101         adapter->tx_fifo_limit = min_t(u32, ((er32(PBA) >> 16) << 10) - 96,
4102                                        24 << 10);
4103
4104         /* Disable Adaptive Interrupt Moderation if 2 full packets cannot
4105          * fit in receive buffer.
4106          */
4107         if (adapter->itr_setting & 0x3) {
4108                 if ((adapter->max_frame_size * 2) > (pba << 10)) {
4109                         if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
4110                                 dev_info(&adapter->pdev->dev,
4111                                          "Interrupt Throttle Rate off\n");
4112                                 adapter->flags2 |= FLAG2_DISABLE_AIM;
4113                                 e1000e_write_itr(adapter, 0);
4114                         }
4115                 } else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
4116                         dev_info(&adapter->pdev->dev,
4117                                  "Interrupt Throttle Rate on\n");
4118                         adapter->flags2 &= ~FLAG2_DISABLE_AIM;
4119                         adapter->itr = 20000;
4120                         e1000e_write_itr(adapter, adapter->itr);
4121                 }
4122         }
4123
4124         if (hw->mac.type >= e1000_pch_spt)
4125                 e1000_flush_desc_rings(adapter);
4126         /* Allow time for pending master requests to run */
4127         mac->ops.reset_hw(hw);
4128
4129         /* For parts with AMT enabled, let the firmware know
4130          * that the network interface is in control
4131          */
4132         if (adapter->flags & FLAG_HAS_AMT)
4133                 e1000e_get_hw_control(adapter);
4134
4135         ew32(WUC, 0);
4136
4137         if (mac->ops.init_hw(hw))
4138                 e_err("Hardware Error\n");
4139
4140         e1000_update_mng_vlan(adapter);
4141
4142         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
4143         ew32(VET, ETH_P_8021Q);
4144
4145         e1000e_reset_adaptive(hw);
4146
4147         /* restore systim and hwtstamp settings */
4148         e1000e_systim_reset(adapter);
4149
4150         /* Set EEE advertisement as appropriate */
4151         if (adapter->flags2 & FLAG2_HAS_EEE) {
4152                 s32 ret_val;
4153                 u16 adv_addr;
4154
4155                 switch (hw->phy.type) {
4156                 case e1000_phy_82579:
4157                         adv_addr = I82579_EEE_ADVERTISEMENT;
4158                         break;
4159                 case e1000_phy_i217:
4160                         adv_addr = I217_EEE_ADVERTISEMENT;
4161                         break;
4162                 default:
4163                         dev_err(&adapter->pdev->dev,
4164                                 "Invalid PHY type setting EEE advertisement\n");
4165                         return;
4166                 }
4167
4168                 ret_val = hw->phy.ops.acquire(hw);
4169                 if (ret_val) {
4170                         dev_err(&adapter->pdev->dev,
4171                                 "EEE advertisement - unable to acquire PHY\n");
4172                         return;
4173                 }
4174
4175                 e1000_write_emi_reg_locked(hw, adv_addr,
4176                                            hw->dev_spec.ich8lan.eee_disable ?
4177                                            0 : adapter->eee_advert);
4178
4179                 hw->phy.ops.release(hw);
4180         }
4181
4182         if (!netif_running(adapter->netdev) &&
4183             !test_bit(__E1000_TESTING, &adapter->state))
4184                 e1000_power_down_phy(adapter);
4185
4186         e1000_get_phy_info(hw);
4187
4188         if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
4189             !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
4190                 u16 phy_data = 0;
4191                 /* speed up time to link by disabling smart power down, ignore
4192                  * the return value of this function because there is nothing
4193                  * different we would do if it failed
4194                  */
4195                 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
4196                 phy_data &= ~IGP02E1000_PM_SPD;
4197                 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
4198         }
4199         if (hw->mac.type >= e1000_pch_spt && adapter->int_mode == 0) {
4200                 u32 reg;
4201
4202                 /* Fextnvm7 @ 0xe4[2] = 1 */
4203                 reg = er32(FEXTNVM7);
4204                 reg |= E1000_FEXTNVM7_SIDE_CLK_UNGATE;
4205                 ew32(FEXTNVM7, reg);
4206                 /* Fextnvm9 @ 0x5bb4[13:12] = 11 */
4207                 reg = er32(FEXTNVM9);
4208                 reg |= E1000_FEXTNVM9_IOSFSB_CLKGATE_DIS |
4209                        E1000_FEXTNVM9_IOSFSB_CLKREQ_DIS;
4210                 ew32(FEXTNVM9, reg);
4211         }
4212
4213 }
4214
4215 /**
4216  * e1000e_trigger_lsc - trigger an LSC interrupt
4217  * @adapter: board private structure
4218  *
4219  * Fire a link status change interrupt to start the watchdog.
4220  **/
4221 static void e1000e_trigger_lsc(struct e1000_adapter *adapter)
4222 {
4223         struct e1000_hw *hw = &adapter->hw;
4224
4225         if (adapter->msix_entries)
4226                 ew32(ICS, E1000_ICS_LSC | E1000_ICS_OTHER);
4227         else
4228                 ew32(ICS, E1000_ICS_LSC);
4229 }
4230
4231 void e1000e_up(struct e1000_adapter *adapter)
4232 {
4233         /* hardware has been reset, we need to reload some things */
4234         e1000_configure(adapter);
4235
4236         clear_bit(__E1000_DOWN, &adapter->state);
4237
4238         if (adapter->msix_entries)
4239                 e1000_configure_msix(adapter);
4240         e1000_irq_enable(adapter);
4241
4242         /* Tx queue started by watchdog timer when link is up */
4243
4244         e1000e_trigger_lsc(adapter);
4245 }
4246
4247 static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
4248 {
4249         struct e1000_hw *hw = &adapter->hw;
4250
4251         if (!(adapter->flags2 & FLAG2_DMA_BURST))
4252                 return;
4253
4254         /* flush pending descriptor writebacks to memory */
4255         ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4256         ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4257
4258         /* execute the writes immediately */
4259         e1e_flush();
4260
4261         /* due to rare timing issues, write to TIDV/RDTR again to ensure the
4262          * write is successful
4263          */
4264         ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4265         ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4266
4267         /* execute the writes immediately */
4268         e1e_flush();
4269 }
4270
4271 static void e1000e_update_stats(struct e1000_adapter *adapter);
4272
4273 /**
4274  * e1000e_down - quiesce the device and optionally reset the hardware
4275  * @adapter: board private structure
4276  * @reset: boolean flag to reset the hardware or not
4277  */
4278 void e1000e_down(struct e1000_adapter *adapter, bool reset)
4279 {
4280         struct net_device *netdev = adapter->netdev;
4281         struct e1000_hw *hw = &adapter->hw;
4282         u32 tctl, rctl;
4283
4284         /* signal that we're down so the interrupt handler does not
4285          * reschedule our watchdog timer
4286          */
4287         set_bit(__E1000_DOWN, &adapter->state);
4288
4289         netif_carrier_off(netdev);
4290
4291         /* disable receives in the hardware */
4292         rctl = er32(RCTL);
4293         if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
4294                 ew32(RCTL, rctl & ~E1000_RCTL_EN);
4295         /* flush and sleep below */
4296
4297         netif_stop_queue(netdev);
4298
4299         /* disable transmits in the hardware */
4300         tctl = er32(TCTL);
4301         tctl &= ~E1000_TCTL_EN;
4302         ew32(TCTL, tctl);
4303
4304         /* flush both disables and wait for them to finish */
4305         e1e_flush();
4306         usleep_range(10000, 11000);
4307
4308         e1000_irq_disable(adapter);
4309
4310         napi_synchronize(&adapter->napi);
4311
4312         timer_delete_sync(&adapter->watchdog_timer);
4313         timer_delete_sync(&adapter->phy_info_timer);
4314
4315         spin_lock(&adapter->stats64_lock);
4316         e1000e_update_stats(adapter);
4317         spin_unlock(&adapter->stats64_lock);
4318
4319         e1000e_flush_descriptors(adapter);
4320
4321         adapter->link_speed = 0;
4322         adapter->link_duplex = 0;
4323
4324         /* Disable Si errata workaround on PCHx for jumbo frame flow */
4325         if ((hw->mac.type >= e1000_pch2lan) &&
4326             (adapter->netdev->mtu > ETH_DATA_LEN) &&
4327             e1000_lv_jumbo_workaround_ich8lan(hw, false))
4328                 e_dbg("failed to disable jumbo frame workaround mode\n");
4329
4330         if (!pci_channel_offline(adapter->pdev)) {
4331                 if (reset)
4332                         e1000e_reset(adapter);
4333                 else if (hw->mac.type >= e1000_pch_spt)
4334                         e1000_flush_desc_rings(adapter);
4335         }
4336         e1000_clean_tx_ring(adapter->tx_ring);
4337         e1000_clean_rx_ring(adapter->rx_ring);
4338 }
4339
4340 void e1000e_reinit_locked(struct e1000_adapter *adapter)
4341 {
4342         might_sleep();
4343         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
4344                 usleep_range(1000, 1100);
4345         e1000e_down(adapter, true);
4346         e1000e_up(adapter);
4347         clear_bit(__E1000_RESETTING, &adapter->state);
4348 }
4349
4350 /**
4351  * e1000e_sanitize_systim - sanitize raw cycle counter reads
4352  * @hw: pointer to the HW structure
4353  * @systim: PHC time value read, sanitized and returned
4354  * @sts: structure to hold system time before and after reading SYSTIML,
4355  * may be NULL
4356  *
4357  * Errata for 82574/82583 possible bad bits read from SYSTIMH/L:
4358  * check to see that the time is incrementing at a reasonable
4359  * rate and is a multiple of incvalue.
4360  **/
4361 static u64 e1000e_sanitize_systim(struct e1000_hw *hw, u64 systim,
4362                                   struct ptp_system_timestamp *sts)
4363 {
4364         u64 time_delta, rem, temp;
4365         u64 systim_next;
4366         u32 incvalue;
4367         int i;
4368
4369         incvalue = er32(TIMINCA) & E1000_TIMINCA_INCVALUE_MASK;
4370         for (i = 0; i < E1000_MAX_82574_SYSTIM_REREADS; i++) {
4371                 /* latch SYSTIMH on read of SYSTIML */
4372                 ptp_read_system_prets(sts);
4373                 systim_next = (u64)er32(SYSTIML);
4374                 ptp_read_system_postts(sts);
4375                 systim_next |= (u64)er32(SYSTIMH) << 32;
4376
4377                 time_delta = systim_next - systim;
4378                 temp = time_delta;
4379                 /* VMWare users have seen incvalue of zero, don't div / 0 */
4380                 rem = incvalue ? do_div(temp, incvalue) : (time_delta != 0);
4381
4382                 systim = systim_next;
4383
4384                 if ((time_delta < E1000_82574_SYSTIM_EPSILON) && (rem == 0))
4385                         break;
4386         }
4387
4388         return systim;
4389 }
4390
4391 /**
4392  * e1000e_read_systim - read SYSTIM register
4393  * @adapter: board private structure
4394  * @sts: structure which will contain system time before and after reading
4395  * SYSTIML, may be NULL
4396  **/
4397 u64 e1000e_read_systim(struct e1000_adapter *adapter,
4398                        struct ptp_system_timestamp *sts)
4399 {
4400         struct e1000_hw *hw = &adapter->hw;
4401         u32 systimel, systimel_2, systimeh;
4402         u64 systim;
4403         /* SYSTIMH latching upon SYSTIML read does not work well.
4404          * This means that if SYSTIML overflows after we read it but before
4405          * we read SYSTIMH, the value of SYSTIMH has been incremented and we
4406          * will experience a huge non linear increment in the systime value
4407          * to fix that we test for overflow and if true, we re-read systime.
4408          */
4409         ptp_read_system_prets(sts);
4410         systimel = er32(SYSTIML);
4411         ptp_read_system_postts(sts);
4412         systimeh = er32(SYSTIMH);
4413         /* Is systimel is so large that overflow is possible? */
4414         if (systimel >= (u32)0xffffffff - E1000_TIMINCA_INCVALUE_MASK) {
4415                 ptp_read_system_prets(sts);
4416                 systimel_2 = er32(SYSTIML);
4417                 ptp_read_system_postts(sts);
4418                 if (systimel > systimel_2) {
4419                         /* There was an overflow, read again SYSTIMH, and use
4420                          * systimel_2
4421                          */
4422                         systimeh = er32(SYSTIMH);
4423                         systimel = systimel_2;
4424                 }
4425         }
4426         systim = (u64)systimel;
4427         systim |= (u64)systimeh << 32;
4428
4429         if (adapter->flags2 & FLAG2_CHECK_SYSTIM_OVERFLOW)
4430                 systim = e1000e_sanitize_systim(hw, systim, sts);
4431
4432         return systim;
4433 }
4434
4435 /**
4436  * e1000e_cyclecounter_read - read raw cycle counter (used by time counter)
4437  * @cc: cyclecounter structure
4438  **/
4439 static u64 e1000e_cyclecounter_read(const struct cyclecounter *cc)
4440 {
4441         struct e1000_adapter *adapter = container_of(cc, struct e1000_adapter,
4442                                                      cc);
4443
4444         return e1000e_read_systim(adapter, NULL);
4445 }
4446
4447 /**
4448  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4449  * @adapter: board private structure to initialize
4450  *
4451  * e1000_sw_init initializes the Adapter private data structure.
4452  * Fields are initialized based on PCI device information and
4453  * OS network device settings (MTU size).
4454  **/
4455 static int e1000_sw_init(struct e1000_adapter *adapter)
4456 {
4457         struct net_device *netdev = adapter->netdev;
4458
4459         adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
4460         adapter->rx_ps_bsize0 = 128;
4461         adapter->max_frame_size = netdev->mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
4462         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4463         adapter->tx_ring_count = E1000_DEFAULT_TXD;
4464         adapter->rx_ring_count = E1000_DEFAULT_RXD;
4465
4466         spin_lock_init(&adapter->stats64_lock);
4467
4468         e1000e_set_interrupt_capability(adapter);
4469
4470         if (e1000_alloc_queues(adapter))
4471                 return -ENOMEM;
4472
4473         /* Setup hardware time stamping cyclecounter */
4474         if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
4475                 adapter->cc.read = e1000e_cyclecounter_read;
4476                 adapter->cc.mask = CYCLECOUNTER_MASK(64);
4477                 adapter->cc.mult = 1;
4478                 /* cc.shift set in e1000e_get_base_tininca() */
4479
4480                 spin_lock_init(&adapter->systim_lock);
4481                 INIT_WORK(&adapter->tx_hwtstamp_work, e1000e_tx_hwtstamp_work);
4482         }
4483
4484         /* Explicitly disable IRQ since the NIC can be in any state. */
4485         e1000_irq_disable(adapter);
4486
4487         set_bit(__E1000_DOWN, &adapter->state);
4488         return 0;
4489 }
4490
4491 /**
4492  * e1000_intr_msi_test - Interrupt Handler
4493  * @irq: interrupt number
4494  * @data: pointer to a network interface device structure
4495  **/
4496 static irqreturn_t e1000_intr_msi_test(int __always_unused irq, void *data)
4497 {
4498         struct net_device *netdev = data;
4499         struct e1000_adapter *adapter = netdev_priv(netdev);
4500         struct e1000_hw *hw = &adapter->hw;
4501         u32 icr = er32(ICR);
4502
4503         e_dbg("icr is %08X\n", icr);
4504         if (icr & E1000_ICR_RXSEQ) {
4505                 adapter->flags &= ~FLAG_MSI_TEST_FAILED;
4506                 /* Force memory writes to complete before acknowledging the
4507                  * interrupt is handled.
4508                  */
4509                 wmb();
4510         }
4511
4512         return IRQ_HANDLED;
4513 }
4514
4515 /**
4516  * e1000_test_msi_interrupt - Returns 0 for successful test
4517  * @adapter: board private struct
4518  *
4519  * code flow taken from tg3.c
4520  **/
4521 static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
4522 {
4523         struct net_device *netdev = adapter->netdev;
4524         struct e1000_hw *hw = &adapter->hw;
4525         int err;
4526
4527         /* poll_enable hasn't been called yet, so don't need disable */
4528         /* clear any pending events */
4529         er32(ICR);
4530
4531         /* free the real vector and request a test handler */
4532         e1000_free_irq(adapter);
4533         e1000e_reset_interrupt_capability(adapter);
4534
4535         /* Assume that the test fails, if it succeeds then the test
4536          * MSI irq handler will unset this flag
4537          */
4538         adapter->flags |= FLAG_MSI_TEST_FAILED;
4539
4540         err = pci_enable_msi(adapter->pdev);
4541         if (err)
4542                 goto msi_test_failed;
4543
4544         err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
4545                           netdev->name, netdev);
4546         if (err) {
4547                 pci_disable_msi(adapter->pdev);
4548                 goto msi_test_failed;
4549         }
4550
4551         /* Force memory writes to complete before enabling and firing an
4552          * interrupt.
4553          */
4554         wmb();
4555
4556         e1000_irq_enable(adapter);
4557
4558         /* fire an unusual interrupt on the test handler */
4559         ew32(ICS, E1000_ICS_RXSEQ);
4560         e1e_flush();
4561         msleep(100);
4562
4563         e1000_irq_disable(adapter);
4564
4565         rmb();                  /* read flags after interrupt has been fired */
4566
4567         if (adapter->flags & FLAG_MSI_TEST_FAILED) {
4568                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
4569                 e_info("MSI interrupt test failed, using legacy interrupt.\n");
4570         } else {
4571                 e_dbg("MSI interrupt test succeeded!\n");
4572         }
4573
4574         free_irq(adapter->pdev->irq, netdev);
4575         pci_disable_msi(adapter->pdev);
4576
4577 msi_test_failed:
4578         e1000e_set_interrupt_capability(adapter);
4579         return e1000_request_irq(adapter);
4580 }
4581
4582 /**
4583  * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
4584  * @adapter: board private struct
4585  *
4586  * code flow taken from tg3.c, called with e1000 interrupts disabled.
4587  **/
4588 static int e1000_test_msi(struct e1000_adapter *adapter)
4589 {
4590         int err;
4591         u16 pci_cmd;
4592
4593         if (!(adapter->flags & FLAG_MSI_ENABLED))
4594                 return 0;
4595
4596         /* disable SERR in case the MSI write causes a master abort */
4597         pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4598         if (pci_cmd & PCI_COMMAND_SERR)
4599                 pci_write_config_word(adapter->pdev, PCI_COMMAND,
4600                                       pci_cmd & ~PCI_COMMAND_SERR);
4601
4602         err = e1000_test_msi_interrupt(adapter);
4603
4604         /* re-enable SERR */
4605         if (pci_cmd & PCI_COMMAND_SERR) {
4606                 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4607                 pci_cmd |= PCI_COMMAND_SERR;
4608                 pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
4609         }
4610
4611         return err;
4612 }
4613
4614 /**
4615  * e1000e_open - Called when a network interface is made active
4616  * @netdev: network interface device structure
4617  *
4618  * Returns 0 on success, negative value on failure
4619  *
4620  * The open entry point is called when a network interface is made
4621  * active by the system (IFF_UP).  At this point all resources needed
4622  * for transmit and receive operations are allocated, the interrupt
4623  * handler is registered with the OS, the watchdog timer is started,
4624  * and the stack is notified that the interface is ready.
4625  **/
4626 int e1000e_open(struct net_device *netdev)
4627 {
4628         struct e1000_adapter *adapter = netdev_priv(netdev);
4629         struct e1000_hw *hw = &adapter->hw;
4630         struct pci_dev *pdev = adapter->pdev;
4631         int err;
4632         int irq;
4633
4634         /* disallow open during test */
4635         if (test_bit(__E1000_TESTING, &adapter->state))
4636                 return -EBUSY;
4637
4638         pm_runtime_get_sync(&pdev->dev);
4639
4640         netif_carrier_off(netdev);
4641         netif_stop_queue(netdev);
4642
4643         /* allocate transmit descriptors */
4644         err = e1000e_setup_tx_resources(adapter->tx_ring);
4645         if (err)
4646                 goto err_setup_tx;
4647
4648         /* allocate receive descriptors */
4649         err = e1000e_setup_rx_resources(adapter->rx_ring);
4650         if (err)
4651                 goto err_setup_rx;
4652
4653         /* If AMT is enabled, let the firmware know that the network
4654          * interface is now open and reset the part to a known state.
4655          */
4656         if (adapter->flags & FLAG_HAS_AMT) {
4657                 e1000e_get_hw_control(adapter);
4658                 e1000e_reset(adapter);
4659         }
4660
4661         e1000e_power_up_phy(adapter);
4662
4663         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4664         if ((adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
4665                 e1000_update_mng_vlan(adapter);
4666
4667         /* DMA latency requirement to workaround jumbo issue */
4668         cpu_latency_qos_add_request(&adapter->pm_qos_req, PM_QOS_DEFAULT_VALUE);
4669
4670         /* before we allocate an interrupt, we must be ready to handle it.
4671          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4672          * as soon as we call pci_request_irq, so we have to setup our
4673          * clean_rx handler before we do so.
4674          */
4675         e1000_configure(adapter);
4676
4677         err = e1000_request_irq(adapter);
4678         if (err)
4679                 goto err_req_irq;
4680
4681         /* Work around PCIe errata with MSI interrupts causing some chipsets to
4682          * ignore e1000e MSI messages, which means we need to test our MSI
4683          * interrupt now
4684          */
4685         if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
4686                 err = e1000_test_msi(adapter);
4687                 if (err) {
4688                         e_err("Interrupt allocation failed\n");
4689                         goto err_req_irq;
4690                 }
4691         }
4692
4693         /* From here on the code is the same as e1000e_up() */
4694         clear_bit(__E1000_DOWN, &adapter->state);
4695
4696         if (adapter->int_mode == E1000E_INT_MODE_MSIX)
4697                 irq = adapter->msix_entries[0].vector;
4698         else
4699                 irq = adapter->pdev->irq;
4700
4701         netif_napi_set_irq(&adapter->napi, irq);
4702         napi_enable(&adapter->napi);
4703         netif_queue_set_napi(netdev, 0, NETDEV_QUEUE_TYPE_RX, &adapter->napi);
4704         netif_queue_set_napi(netdev, 0, NETDEV_QUEUE_TYPE_TX, &adapter->napi);
4705
4706         e1000_irq_enable(adapter);
4707
4708         adapter->tx_hang_recheck = false;
4709
4710         hw->mac.get_link_status = true;
4711         pm_runtime_put(&pdev->dev);
4712
4713         e1000e_trigger_lsc(adapter);
4714
4715         return 0;
4716
4717 err_req_irq:
4718         cpu_latency_qos_remove_request(&adapter->pm_qos_req);
4719         e1000e_release_hw_control(adapter);
4720         e1000_power_down_phy(adapter);
4721         e1000e_free_rx_resources(adapter->rx_ring);
4722 err_setup_rx:
4723         e1000e_free_tx_resources(adapter->tx_ring);
4724 err_setup_tx:
4725         e1000e_reset(adapter);
4726         pm_runtime_put_sync(&pdev->dev);
4727
4728         return err;
4729 }
4730
4731 /**
4732  * e1000e_close - Disables a network interface
4733  * @netdev: network interface device structure
4734  *
4735  * Returns 0, this is not allowed to fail
4736  *
4737  * The close entry point is called when an interface is de-activated
4738  * by the OS.  The hardware is still under the drivers control, but
4739  * needs to be disabled.  A global MAC reset is issued to stop the
4740  * hardware, and all transmit and receive resources are freed.
4741  **/
4742 int e1000e_close(struct net_device *netdev)
4743 {
4744         struct e1000_adapter *adapter = netdev_priv(netdev);
4745         struct pci_dev *pdev = adapter->pdev;
4746         int count = E1000_CHECK_RESET_COUNT;
4747
4748         while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
4749                 usleep_range(10000, 11000);
4750
4751         WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
4752
4753         pm_runtime_get_sync(&pdev->dev);
4754
4755         if (netif_device_present(netdev)) {
4756                 e1000e_down(adapter, true);
4757                 e1000_free_irq(adapter);
4758
4759                 /* Link status message must follow this format */
4760                 netdev_info(netdev, "NIC Link is Down\n");
4761         }
4762
4763         netif_queue_set_napi(netdev, 0, NETDEV_QUEUE_TYPE_RX, NULL);
4764         netif_queue_set_napi(netdev, 0, NETDEV_QUEUE_TYPE_TX, NULL);
4765         napi_disable(&adapter->napi);
4766
4767         e1000e_free_tx_resources(adapter->tx_ring);
4768         e1000e_free_rx_resources(adapter->rx_ring);
4769
4770         /* kill manageability vlan ID if supported, but not if a vlan with
4771          * the same ID is registered on the host OS (let 8021q kill it)
4772          */
4773         if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
4774                 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
4775                                        adapter->mng_vlan_id);
4776
4777         /* If AMT is enabled, let the firmware know that the network
4778          * interface is now closed
4779          */
4780         if ((adapter->flags & FLAG_HAS_AMT) &&
4781             !test_bit(__E1000_TESTING, &adapter->state))
4782                 e1000e_release_hw_control(adapter);
4783
4784         cpu_latency_qos_remove_request(&adapter->pm_qos_req);
4785
4786         pm_runtime_put_sync(&pdev->dev);
4787
4788         return 0;
4789 }
4790
4791 /**
4792  * e1000_set_mac - Change the Ethernet Address of the NIC
4793  * @netdev: network interface device structure
4794  * @p: pointer to an address structure
4795  *
4796  * Returns 0 on success, negative on failure
4797  **/
4798 static int e1000_set_mac(struct net_device *netdev, void *p)
4799 {
4800         struct e1000_adapter *adapter = netdev_priv(netdev);
4801         struct e1000_hw *hw = &adapter->hw;
4802         struct sockaddr *addr = p;
4803
4804         if (!is_valid_ether_addr(addr->sa_data))
4805                 return -EADDRNOTAVAIL;
4806
4807         eth_hw_addr_set(netdev, addr->sa_data);
4808         memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
4809
4810         hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
4811
4812         if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
4813                 /* activate the work around */
4814                 e1000e_set_laa_state_82571(&adapter->hw, 1);
4815
4816                 /* Hold a copy of the LAA in RAR[14] This is done so that
4817                  * between the time RAR[0] gets clobbered  and the time it
4818                  * gets fixed (in e1000_watchdog), the actual LAA is in one
4819                  * of the RARs and no incoming packets directed to this port
4820                  * are dropped. Eventually the LAA will be in RAR[0] and
4821                  * RAR[14]
4822                  */
4823                 hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr,
4824                                     adapter->hw.mac.rar_entry_count - 1);
4825         }
4826
4827         return 0;
4828 }
4829
4830 /**
4831  * e1000e_update_phy_task - work thread to update phy
4832  * @work: pointer to our work struct
4833  *
4834  * this worker thread exists because we must acquire a
4835  * semaphore to read the phy, which we could msleep while
4836  * waiting for it, and we can't msleep in a timer.
4837  **/
4838 static void e1000e_update_phy_task(struct work_struct *work)
4839 {
4840         struct e1000_adapter *adapter = container_of(work,
4841                                                      struct e1000_adapter,
4842                                                      update_phy_task);
4843         struct e1000_hw *hw = &adapter->hw;
4844
4845         if (test_bit(__E1000_DOWN, &adapter->state))
4846                 return;
4847
4848         e1000_get_phy_info(hw);
4849
4850         /* Enable EEE on 82579 after link up */
4851         if (hw->phy.type >= e1000_phy_82579)
4852                 e1000_set_eee_pchlan(hw);
4853 }
4854
4855 /**
4856  * e1000_update_phy_info - timre call-back to update PHY info
4857  * @t: pointer to timer_list containing private info adapter
4858  *
4859  * Need to wait a few seconds after link up to get diagnostic information from
4860  * the phy
4861  **/
4862 static void e1000_update_phy_info(struct timer_list *t)
4863 {
4864         struct e1000_adapter *adapter = timer_container_of(adapter, t,
4865                                                            phy_info_timer);
4866
4867         if (test_bit(__E1000_DOWN, &adapter->state))
4868                 return;
4869
4870         schedule_work(&adapter->update_phy_task);
4871 }
4872
4873 /**
4874  * e1000e_update_phy_stats - Update the PHY statistics counters
4875  * @adapter: board private structure
4876  *
4877  * Read/clear the upper 16-bit PHY registers and read/accumulate lower
4878  **/
4879 static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
4880 {
4881         struct e1000_hw *hw = &adapter->hw;
4882         s32 ret_val;
4883         u16 phy_data;
4884
4885         ret_val = hw->phy.ops.acquire(hw);
4886         if (ret_val)
4887                 return;
4888
4889         /* A page set is expensive so check if already on desired page.
4890          * If not, set to the page with the PHY status registers.
4891          */
4892         hw->phy.addr = 1;
4893         ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
4894                                            &phy_data);
4895         if (ret_val)
4896                 goto release;
4897         if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) {
4898                 ret_val = hw->phy.ops.set_page(hw,
4899                                                HV_STATS_PAGE << IGP_PAGE_SHIFT);
4900                 if (ret_val)
4901                         goto release;
4902         }
4903
4904         /* Single Collision Count */
4905         hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4906         ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4907         if (!ret_val)
4908                 adapter->stats.scc += phy_data;
4909
4910         /* Excessive Collision Count */
4911         hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4912         ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4913         if (!ret_val)
4914                 adapter->stats.ecol += phy_data;
4915
4916         /* Multiple Collision Count */
4917         hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4918         ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4919         if (!ret_val)
4920                 adapter->stats.mcc += phy_data;
4921
4922         /* Late Collision Count */
4923         hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4924         ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4925         if (!ret_val)
4926                 adapter->stats.latecol += phy_data;
4927
4928         /* Collision Count - also used for adaptive IFS */
4929         hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4930         ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4931         if (!ret_val)
4932                 hw->mac.collision_delta = phy_data;
4933
4934         /* Defer Count */
4935         hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4936         ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4937         if (!ret_val)
4938                 adapter->stats.dc += phy_data;
4939
4940         /* Transmit with no CRS */
4941         hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4942         ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4943         if (!ret_val)
4944                 adapter->stats.tncrs += phy_data;
4945
4946 release:
4947         hw->phy.ops.release(hw);
4948 }
4949
4950 /**
4951  * e1000e_update_stats - Update the board statistics counters
4952  * @adapter: board private structure
4953  **/
4954 static void e1000e_update_stats(struct e1000_adapter *adapter)
4955 {
4956         struct net_device *netdev = adapter->netdev;
4957         struct e1000_hw *hw = &adapter->hw;
4958         struct pci_dev *pdev = adapter->pdev;
4959
4960         /* Prevent stats update while adapter is being reset, or if the pci
4961          * connection is down.
4962          */
4963         if (adapter->link_speed == 0)
4964                 return;
4965         if (pci_channel_offline(pdev))
4966                 return;
4967
4968         adapter->stats.crcerrs += er32(CRCERRS);
4969         adapter->stats.gprc += er32(GPRC);
4970         adapter->stats.gorc += er32(GORCL);
4971         er32(GORCH);            /* Clear gorc */
4972         adapter->stats.bprc += er32(BPRC);
4973         adapter->stats.mprc += er32(MPRC);
4974         adapter->stats.roc += er32(ROC);
4975
4976         adapter->stats.mpc += er32(MPC);
4977
4978         /* Half-duplex statistics */
4979         if (adapter->link_duplex == HALF_DUPLEX) {
4980                 if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
4981                         e1000e_update_phy_stats(adapter);
4982                 } else {
4983                         adapter->stats.scc += er32(SCC);
4984                         adapter->stats.ecol += er32(ECOL);
4985                         adapter->stats.mcc += er32(MCC);
4986                         adapter->stats.latecol += er32(LATECOL);
4987                         adapter->stats.dc += er32(DC);
4988
4989                         hw->mac.collision_delta = er32(COLC);
4990
4991                         if ((hw->mac.type != e1000_82574) &&
4992                             (hw->mac.type != e1000_82583))
4993                                 adapter->stats.tncrs += er32(TNCRS);
4994                 }
4995                 adapter->stats.colc += hw->mac.collision_delta;
4996         }
4997
4998         adapter->stats.xonrxc += er32(XONRXC);
4999         adapter->stats.xontxc += er32(XONTXC);
5000         adapter->stats.xoffrxc += er32(XOFFRXC);
5001         adapter->stats.xofftxc += er32(XOFFTXC);
5002         adapter->stats.gptc += er32(GPTC);
5003         adapter->stats.gotc += er32(GOTCL);
5004         er32(GOTCH);            /* Clear gotc */
5005         adapter->stats.rnbc += er32(RNBC);
5006         adapter->stats.ruc += er32(RUC);
5007
5008         adapter->stats.mptc += er32(MPTC);
5009         adapter->stats.bptc += er32(BPTC);
5010
5011         /* used for adaptive IFS */
5012
5013         hw->mac.tx_packet_delta = er32(TPT);
5014         adapter->stats.tpt += hw->mac.tx_packet_delta;
5015
5016         adapter->stats.algnerrc += er32(ALGNERRC);
5017         adapter->stats.rxerrc += er32(RXERRC);
5018         adapter->stats.cexterr += er32(CEXTERR);
5019         adapter->stats.tsctc += er32(TSCTC);
5020         adapter->stats.tsctfc += er32(TSCTFC);
5021
5022         /* Fill out the OS statistics structure */
5023         netdev->stats.multicast = adapter->stats.mprc;
5024         netdev->stats.collisions = adapter->stats.colc;
5025
5026         /* Rx Errors */
5027
5028         /* RLEC on some newer hardware can be incorrect so build
5029          * our own version based on RUC and ROC
5030          */
5031         netdev->stats.rx_errors = adapter->stats.rxerrc +
5032             adapter->stats.crcerrs + adapter->stats.algnerrc +
5033             adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
5034         netdev->stats.rx_length_errors = adapter->stats.ruc +
5035             adapter->stats.roc;
5036         netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
5037         netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
5038         netdev->stats.rx_missed_errors = adapter->stats.mpc;
5039
5040         /* Tx Errors */
5041         netdev->stats.tx_errors = adapter->stats.ecol + adapter->stats.latecol;
5042         netdev->stats.tx_aborted_errors = adapter->stats.ecol;
5043         netdev->stats.tx_window_errors = adapter->stats.latecol;
5044         netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
5045
5046         /* Tx Dropped needs to be maintained elsewhere */
5047
5048         /* Management Stats */
5049         adapter->stats.mgptc += er32(MGTPTC);
5050         adapter->stats.mgprc += er32(MGTPRC);
5051         adapter->stats.mgpdc += er32(MGTPDC);
5052
5053         /* Correctable ECC Errors */
5054         if (hw->mac.type >= e1000_pch_lpt) {
5055                 u32 pbeccsts = er32(PBECCSTS);
5056
5057                 adapter->corr_errors +=
5058                     pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
5059                 adapter->uncorr_errors +=
5060                     FIELD_GET(E1000_PBECCSTS_UNCORR_ERR_CNT_MASK, pbeccsts);
5061         }
5062 }
5063
5064 /**
5065  * e1000_phy_read_status - Update the PHY register status snapshot
5066  * @adapter: board private structure
5067  **/
5068 static void e1000_phy_read_status(struct e1000_adapter *adapter)
5069 {
5070         struct e1000_hw *hw = &adapter->hw;
5071         struct e1000_phy_regs *phy = &adapter->phy_regs;
5072
5073         if (!pm_runtime_suspended((&adapter->pdev->dev)->parent) &&
5074             (er32(STATUS) & E1000_STATUS_LU) &&
5075             (adapter->hw.phy.media_type == e1000_media_type_copper)) {
5076                 int ret_val;
5077
5078                 ret_val = e1e_rphy(hw, MII_BMCR, &phy->bmcr);
5079                 ret_val |= e1e_rphy(hw, MII_BMSR, &phy->bmsr);
5080                 ret_val |= e1e_rphy(hw, MII_ADVERTISE, &phy->advertise);
5081                 ret_val |= e1e_rphy(hw, MII_LPA, &phy->lpa);
5082                 ret_val |= e1e_rphy(hw, MII_EXPANSION, &phy->expansion);
5083                 ret_val |= e1e_rphy(hw, MII_CTRL1000, &phy->ctrl1000);
5084                 ret_val |= e1e_rphy(hw, MII_STAT1000, &phy->stat1000);
5085                 ret_val |= e1e_rphy(hw, MII_ESTATUS, &phy->estatus);
5086                 if (ret_val)
5087                         e_warn("Error reading PHY register\n");
5088         } else {
5089                 /* Do not read PHY registers if link is not up
5090                  * Set values to typical power-on defaults
5091                  */
5092                 phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
5093                 phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
5094                              BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
5095                              BMSR_ERCAP);
5096                 phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
5097                                   ADVERTISE_ALL | ADVERTISE_CSMA);
5098                 phy->lpa = 0;
5099                 phy->expansion = EXPANSION_ENABLENPAGE;
5100                 phy->ctrl1000 = ADVERTISE_1000FULL;
5101                 phy->stat1000 = 0;
5102                 phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
5103         }
5104 }
5105
5106 static void e1000_print_link_info(struct e1000_adapter *adapter)
5107 {
5108         struct e1000_hw *hw = &adapter->hw;
5109         u32 ctrl = er32(CTRL);
5110
5111         /* Link status message must follow this format for user tools */
5112         netdev_info(adapter->netdev,
5113                     "NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5114                     adapter->link_speed,
5115                     adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half",
5116                     (ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" :
5117                     (ctrl & E1000_CTRL_RFCE) ? "Rx" :
5118                     (ctrl & E1000_CTRL_TFCE) ? "Tx" : "None");
5119 }
5120
5121 static bool e1000e_has_link(struct e1000_adapter *adapter)
5122 {
5123         struct e1000_hw *hw = &adapter->hw;
5124         bool link_active = false;
5125         s32 ret_val = 0;
5126
5127         /* get_link_status is set on LSC (link status) interrupt or
5128          * Rx sequence error interrupt.  get_link_status will stay
5129          * true until the check_for_link establishes link
5130          * for copper adapters ONLY
5131          */
5132         switch (hw->phy.media_type) {
5133         case e1000_media_type_copper:
5134                 if (hw->mac.get_link_status) {
5135                         ret_val = hw->mac.ops.check_for_link(hw);
5136                         link_active = !hw->mac.get_link_status;
5137                 } else {
5138                         link_active = true;
5139                 }
5140                 break;
5141         case e1000_media_type_fiber:
5142                 ret_val = hw->mac.ops.check_for_link(hw);
5143                 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
5144                 break;
5145         case e1000_media_type_internal_serdes:
5146                 ret_val = hw->mac.ops.check_for_link(hw);
5147                 link_active = hw->mac.serdes_has_link;
5148                 break;
5149         default:
5150         case e1000_media_type_unknown:
5151                 break;
5152         }
5153
5154         if ((ret_val == -E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
5155             (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
5156                 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
5157                 e_info("Gigabit has been disabled, downgrading speed\n");
5158         }
5159
5160         return link_active;
5161 }
5162
5163 static void e1000e_enable_receives(struct e1000_adapter *adapter)
5164 {
5165         /* make sure the receive unit is started */
5166         if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
5167             (adapter->flags & FLAG_RESTART_NOW)) {
5168                 struct e1000_hw *hw = &adapter->hw;
5169                 u32 rctl = er32(RCTL);
5170
5171                 ew32(RCTL, rctl | E1000_RCTL_EN);
5172                 adapter->flags &= ~FLAG_RESTART_NOW;
5173         }
5174 }
5175
5176 static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
5177 {
5178         struct e1000_hw *hw = &adapter->hw;
5179
5180         /* With 82574 controllers, PHY needs to be checked periodically
5181          * for hung state and reset, if two calls return true
5182          */
5183         if (e1000_check_phy_82574(hw))
5184                 adapter->phy_hang_count++;
5185         else
5186                 adapter->phy_hang_count = 0;
5187
5188         if (adapter->phy_hang_count > 1) {
5189                 adapter->phy_hang_count = 0;
5190                 e_dbg("PHY appears hung - resetting\n");
5191                 schedule_work(&adapter->reset_task);
5192         }
5193 }
5194
5195 /**
5196  * e1000_watchdog - Timer Call-back
5197  * @t: pointer to timer_list containing private info adapter
5198  **/
5199 static void e1000_watchdog(struct timer_list *t)
5200 {
5201         struct e1000_adapter *adapter = timer_container_of(adapter, t,
5202                                                            watchdog_timer);
5203
5204         /* Do the rest outside of interrupt context */
5205         schedule_work(&adapter->watchdog_task);
5206
5207         /* TODO: make this use queue_delayed_work() */
5208 }
5209
5210 static void e1000_watchdog_task(struct work_struct *work)
5211 {
5212         struct e1000_adapter *adapter = container_of(work,
5213                                                      struct e1000_adapter,
5214                                                      watchdog_task);
5215         struct net_device *netdev = adapter->netdev;
5216         struct e1000_mac_info *mac = &adapter->hw.mac;
5217         struct e1000_phy_info *phy = &adapter->hw.phy;
5218         struct e1000_ring *tx_ring = adapter->tx_ring;
5219         u32 dmoff_exit_timeout = 100, tries = 0;
5220         struct e1000_hw *hw = &adapter->hw;
5221         u32 link, tctl, pcim_state;
5222
5223         if (test_bit(__E1000_DOWN, &adapter->state))
5224                 return;
5225
5226         link = e1000e_has_link(adapter);
5227         if ((netif_carrier_ok(netdev)) && link) {
5228                 /* Cancel scheduled suspend requests. */
5229                 pm_runtime_resume(netdev->dev.parent);
5230
5231                 e1000e_enable_receives(adapter);
5232                 goto link_up;
5233         }
5234
5235         if ((e1000e_enable_tx_pkt_filtering(hw)) &&
5236             (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
5237                 e1000_update_mng_vlan(adapter);
5238
5239         if (link) {
5240                 if (!netif_carrier_ok(netdev)) {
5241                         bool txb2b = true;
5242
5243                         /* Cancel scheduled suspend requests. */
5244                         pm_runtime_resume(netdev->dev.parent);
5245
5246                         /* Checking if MAC is in DMoff state*/
5247                         if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
5248                                 pcim_state = er32(STATUS);
5249                                 while (pcim_state & E1000_STATUS_PCIM_STATE) {
5250                                         if (tries++ == dmoff_exit_timeout) {
5251                                                 e_dbg("Error in exiting dmoff\n");
5252                                                 break;
5253                                         }
5254                                         usleep_range(10000, 20000);
5255                                         pcim_state = er32(STATUS);
5256
5257                                         /* Checking if MAC exited DMoff state */
5258                                         if (!(pcim_state & E1000_STATUS_PCIM_STATE))
5259                                                 e1000_phy_hw_reset(&adapter->hw);
5260                                 }
5261                         }
5262
5263                         /* update snapshot of PHY registers on LSC */
5264                         e1000_phy_read_status(adapter);
5265                         mac->ops.get_link_up_info(&adapter->hw,
5266                                                   &adapter->link_speed,
5267                                                   &adapter->link_duplex);
5268                         e1000_print_link_info(adapter);
5269
5270                         /* check if SmartSpeed worked */
5271                         e1000e_check_downshift(hw);
5272                         if (phy->speed_downgraded)
5273                                 netdev_warn(netdev,
5274                                             "Link Speed was downgraded by SmartSpeed\n");
5275
5276                         /* On supported PHYs, check for duplex mismatch only
5277                          * if link has autonegotiated at 10/100 half
5278                          */
5279                         if ((hw->phy.type == e1000_phy_igp_3 ||
5280                              hw->phy.type == e1000_phy_bm) &&
5281                             hw->mac.autoneg &&
5282                             (adapter->link_speed == SPEED_10 ||
5283                              adapter->link_speed == SPEED_100) &&
5284                             (adapter->link_duplex == HALF_DUPLEX)) {
5285                                 u16 autoneg_exp;
5286
5287                                 e1e_rphy(hw, MII_EXPANSION, &autoneg_exp);
5288
5289                                 if (!(autoneg_exp & EXPANSION_NWAY))
5290                                         e_info("Autonegotiated half duplex but link partner cannot autoneg.  Try forcing full duplex if link gets many collisions.\n");
5291                         }
5292
5293                         /* adjust timeout factor according to speed/duplex */
5294                         adapter->tx_timeout_factor = 1;
5295                         switch (adapter->link_speed) {
5296                         case SPEED_10:
5297                                 txb2b = false;
5298                                 adapter->tx_timeout_factor = 16;
5299                                 break;
5300                         case SPEED_100:
5301                                 txb2b = false;
5302                                 adapter->tx_timeout_factor = 10;
5303                                 break;
5304                         }
5305
5306                         /* workaround: re-program speed mode bit after
5307                          * link-up event
5308                          */
5309                         if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
5310                             !txb2b) {
5311                                 u32 tarc0;
5312
5313                                 tarc0 = er32(TARC(0));
5314                                 tarc0 &= ~SPEED_MODE_BIT;
5315                                 ew32(TARC(0), tarc0);
5316                         }
5317
5318                         /* enable transmits in the hardware, need to do this
5319                          * after setting TARC(0)
5320                          */
5321                         tctl = er32(TCTL);
5322                         tctl |= E1000_TCTL_EN;
5323                         ew32(TCTL, tctl);
5324
5325                         /* Perform any post-link-up configuration before
5326                          * reporting link up.
5327                          */
5328                         if (phy->ops.cfg_on_link_up)
5329                                 phy->ops.cfg_on_link_up(hw);
5330
5331                         netif_wake_queue(netdev);
5332                         netif_carrier_on(netdev);
5333
5334                         if (!test_bit(__E1000_DOWN, &adapter->state))
5335                                 mod_timer(&adapter->phy_info_timer,
5336                                           round_jiffies(jiffies + 2 * HZ));
5337                 }
5338         } else {
5339                 if (netif_carrier_ok(netdev)) {
5340                         adapter->link_speed = 0;
5341                         adapter->link_duplex = 0;
5342                         /* Link status message must follow this format */
5343                         netdev_info(netdev, "NIC Link is Down\n");
5344                         netif_carrier_off(netdev);
5345                         netif_stop_queue(netdev);
5346                         if (!test_bit(__E1000_DOWN, &adapter->state))
5347                                 mod_timer(&adapter->phy_info_timer,
5348                                           round_jiffies(jiffies + 2 * HZ));
5349
5350                         /* 8000ES2LAN requires a Rx packet buffer work-around
5351                          * on link down event; reset the controller to flush
5352                          * the Rx packet buffer.
5353                          */
5354                         if (adapter->flags & FLAG_RX_NEEDS_RESTART)
5355                                 adapter->flags |= FLAG_RESTART_NOW;
5356                         else
5357                                 pm_schedule_suspend(netdev->dev.parent,
5358                                                     LINK_TIMEOUT);
5359                 }
5360         }
5361
5362 link_up:
5363         spin_lock(&adapter->stats64_lock);
5364         e1000e_update_stats(adapter);
5365
5366         mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
5367         adapter->tpt_old = adapter->stats.tpt;
5368         mac->collision_delta = adapter->stats.colc - adapter->colc_old;
5369         adapter->colc_old = adapter->stats.colc;
5370
5371         adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
5372         adapter->gorc_old = adapter->stats.gorc;
5373         adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
5374         adapter->gotc_old = adapter->stats.gotc;
5375         spin_unlock(&adapter->stats64_lock);
5376
5377         /* If the link is lost the controller stops DMA, but
5378          * if there is queued Tx work it cannot be done.  So
5379          * reset the controller to flush the Tx packet buffers.
5380          */
5381         if (!netif_carrier_ok(netdev) &&
5382             (e1000_desc_unused(tx_ring) + 1 < tx_ring->count))
5383                 adapter->flags |= FLAG_RESTART_NOW;
5384
5385         /* If reset is necessary, do it outside of interrupt context. */
5386         if (adapter->flags & FLAG_RESTART_NOW) {
5387                 schedule_work(&adapter->reset_task);
5388                 /* return immediately since reset is imminent */
5389                 return;
5390         }
5391
5392         e1000e_update_adaptive(&adapter->hw);
5393
5394         /* Simple mode for Interrupt Throttle Rate (ITR) */
5395         if (adapter->itr_setting == 4) {
5396                 /* Symmetric Tx/Rx gets a reduced ITR=2000;
5397                  * Total asymmetrical Tx or Rx gets ITR=8000;
5398                  * everyone else is between 2000-8000.
5399                  */
5400                 u32 goc = (adapter->gotc + adapter->gorc) / 10000;
5401                 u32 dif = (adapter->gotc > adapter->gorc ?
5402                            adapter->gotc - adapter->gorc :
5403                            adapter->gorc - adapter->gotc) / 10000;
5404                 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
5405
5406                 e1000e_write_itr(adapter, itr);
5407         }
5408
5409         /* Cause software interrupt to ensure Rx ring is cleaned */
5410         if (adapter->msix_entries)
5411                 ew32(ICS, adapter->rx_ring->ims_val);
5412         else
5413                 ew32(ICS, E1000_ICS_RXDMT0);
5414
5415         /* flush pending descriptors to memory before detecting Tx hang */
5416         e1000e_flush_descriptors(adapter);
5417
5418         /* Force detection of hung controller every watchdog period */
5419         adapter->detect_tx_hung = true;
5420
5421         /* With 82571 controllers, LAA may be overwritten due to controller
5422          * reset from the other port. Set the appropriate LAA in RAR[0]
5423          */
5424         if (e1000e_get_laa_state_82571(hw))
5425                 hw->mac.ops.rar_set(hw, adapter->hw.mac.addr, 0);
5426
5427         if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
5428                 e1000e_check_82574_phy_workaround(adapter);
5429
5430         /* Clear valid timestamp stuck in RXSTMPL/H due to a Rx error */
5431         if (adapter->hwtstamp_config.rx_filter != HWTSTAMP_FILTER_NONE) {
5432                 if ((adapter->flags2 & FLAG2_CHECK_RX_HWTSTAMP) &&
5433                     (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID)) {
5434                         er32(RXSTMPH);
5435                         adapter->rx_hwtstamp_cleared++;
5436                 } else {
5437                         adapter->flags2 |= FLAG2_CHECK_RX_HWTSTAMP;
5438                 }
5439         }
5440
5441         /* Reset the timer */
5442         if (!test_bit(__E1000_DOWN, &adapter->state))
5443                 mod_timer(&adapter->watchdog_timer,
5444                           round_jiffies(jiffies + 2 * HZ));
5445 }
5446
5447 #define E1000_TX_FLAGS_CSUM             0x00000001
5448 #define E1000_TX_FLAGS_VLAN             0x00000002
5449 #define E1000_TX_FLAGS_TSO              0x00000004
5450 #define E1000_TX_FLAGS_IPV4             0x00000008
5451 #define E1000_TX_FLAGS_NO_FCS           0x00000010
5452 #define E1000_TX_FLAGS_HWTSTAMP         0x00000020
5453 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
5454 #define E1000_TX_FLAGS_VLAN_SHIFT       16
5455
5456 static int e1000_tso(struct e1000_ring *tx_ring, struct sk_buff *skb,
5457                      __be16 protocol)
5458 {
5459         struct e1000_context_desc *context_desc;
5460         struct e1000_buffer *buffer_info;
5461         unsigned int i;
5462         u32 cmd_length = 0;
5463         u16 ipcse = 0, mss;
5464         u8 ipcss, ipcso, tucss, tucso, hdr_len;
5465         int err;
5466
5467         if (!skb_is_gso(skb))
5468                 return 0;
5469
5470         err = skb_cow_head(skb, 0);
5471         if (err < 0)
5472                 return err;
5473
5474         hdr_len = skb_tcp_all_headers(skb);
5475         mss = skb_shinfo(skb)->gso_size;
5476         if (protocol == htons(ETH_P_IP)) {
5477                 struct iphdr *iph = ip_hdr(skb);
5478                 iph->tot_len = 0;
5479                 iph->check = 0;
5480                 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
5481                                                          0, IPPROTO_TCP, 0);
5482                 cmd_length = E1000_TXD_CMD_IP;
5483                 ipcse = skb_transport_offset(skb) - 1;
5484         } else if (skb_is_gso_v6(skb)) {
5485                 tcp_v6_gso_csum_prep(skb);
5486                 ipcse = 0;
5487         }
5488         ipcss = skb_network_offset(skb);
5489         ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
5490         tucss = skb_transport_offset(skb);
5491         tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
5492
5493         cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
5494                        E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
5495
5496         i = tx_ring->next_to_use;
5497         context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5498         buffer_info = &tx_ring->buffer_info[i];
5499
5500         context_desc->lower_setup.ip_fields.ipcss = ipcss;
5501         context_desc->lower_setup.ip_fields.ipcso = ipcso;
5502         context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
5503         context_desc->upper_setup.tcp_fields.tucss = tucss;
5504         context_desc->upper_setup.tcp_fields.tucso = tucso;
5505         context_desc->upper_setup.tcp_fields.tucse = 0;
5506         context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
5507         context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
5508         context_desc->cmd_and_length = cpu_to_le32(cmd_length);
5509
5510         buffer_info->time_stamp = jiffies;
5511         buffer_info->next_to_watch = i;
5512
5513         i++;
5514         if (i == tx_ring->count)
5515                 i = 0;
5516         tx_ring->next_to_use = i;
5517
5518         return 1;
5519 }
5520
5521 static bool e1000_tx_csum(struct e1000_ring *tx_ring, struct sk_buff *skb,
5522                           __be16 protocol)
5523 {
5524         struct e1000_adapter *adapter = tx_ring->adapter;
5525         struct e1000_context_desc *context_desc;
5526         struct e1000_buffer *buffer_info;
5527         unsigned int i;
5528         u8 css;
5529         u32 cmd_len = E1000_TXD_CMD_DEXT;
5530
5531         if (skb->ip_summed != CHECKSUM_PARTIAL)
5532                 return false;
5533
5534         switch (protocol) {
5535         case cpu_to_be16(ETH_P_IP):
5536                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
5537                         cmd_len |= E1000_TXD_CMD_TCP;
5538                 break;
5539         case cpu_to_be16(ETH_P_IPV6):
5540                 /* XXX not handling all IPV6 headers */
5541                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
5542                         cmd_len |= E1000_TXD_CMD_TCP;
5543                 break;
5544         default:
5545                 if (unlikely(net_ratelimit()))
5546                         e_warn("checksum_partial proto=%x!\n",
5547                                be16_to_cpu(protocol));
5548                 break;
5549         }
5550
5551         css = skb_checksum_start_offset(skb);
5552
5553         i = tx_ring->next_to_use;
5554         buffer_info = &tx_ring->buffer_info[i];
5555         context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5556
5557         context_desc->lower_setup.ip_config = 0;
5558         context_desc->upper_setup.tcp_fields.tucss = css;
5559         context_desc->upper_setup.tcp_fields.tucso = css + skb->csum_offset;
5560         context_desc->upper_setup.tcp_fields.tucse = 0;
5561         context_desc->tcp_seg_setup.data = 0;
5562         context_desc->cmd_and_length = cpu_to_le32(cmd_len);
5563
5564         buffer_info->time_stamp = jiffies;
5565         buffer_info->next_to_watch = i;
5566
5567         i++;
5568         if (i == tx_ring->count)
5569                 i = 0;
5570         tx_ring->next_to_use = i;
5571
5572         return true;
5573 }
5574
5575 static int e1000_tx_map(struct e1000_ring *tx_ring, struct sk_buff *skb,
5576                         unsigned int first, unsigned int max_per_txd,
5577                         unsigned int nr_frags)
5578 {
5579         struct e1000_adapter *adapter = tx_ring->adapter;
5580         struct pci_dev *pdev = adapter->pdev;
5581         struct e1000_buffer *buffer_info;
5582         unsigned int len = skb_headlen(skb);
5583         unsigned int offset = 0, size, count = 0, i;
5584         unsigned int f, bytecount, segs;
5585
5586         i = tx_ring->next_to_use;
5587
5588         while (len) {
5589                 buffer_info = &tx_ring->buffer_info[i];
5590                 size = min(len, max_per_txd);
5591
5592                 buffer_info->length = size;
5593                 buffer_info->time_stamp = jiffies;
5594                 buffer_info->next_to_watch = i;
5595                 buffer_info->dma = dma_map_single(&pdev->dev,
5596                                                   skb->data + offset,
5597                                                   size, DMA_TO_DEVICE);
5598                 buffer_info->mapped_as_page = false;
5599                 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5600                         goto dma_error;
5601
5602                 len -= size;
5603                 offset += size;
5604                 count++;
5605
5606                 if (len) {
5607                         i++;
5608                         if (i == tx_ring->count)
5609                                 i = 0;
5610                 }
5611         }
5612
5613         for (f = 0; f < nr_frags; f++) {
5614                 const skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
5615
5616                 len = skb_frag_size(frag);
5617                 offset = 0;
5618
5619                 while (len) {
5620                         i++;
5621                         if (i == tx_ring->count)
5622                                 i = 0;
5623
5624                         buffer_info = &tx_ring->buffer_info[i];
5625                         size = min(len, max_per_txd);
5626
5627                         buffer_info->length = size;
5628                         buffer_info->time_stamp = jiffies;
5629                         buffer_info->next_to_watch = i;
5630                         buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
5631                                                             offset, size,
5632                                                             DMA_TO_DEVICE);
5633                         buffer_info->mapped_as_page = true;
5634                         if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5635                                 goto dma_error;
5636
5637                         len -= size;
5638                         offset += size;
5639                         count++;
5640                 }
5641         }
5642
5643         segs = skb_shinfo(skb)->gso_segs ? : 1;
5644         /* multiply data chunks by size of headers */
5645         bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
5646
5647         tx_ring->buffer_info[i].skb = skb;
5648         tx_ring->buffer_info[i].segs = segs;
5649         tx_ring->buffer_info[i].bytecount = bytecount;
5650         tx_ring->buffer_info[first].next_to_watch = i;
5651
5652         return count;
5653
5654 dma_error:
5655         dev_err(&pdev->dev, "Tx DMA map failed\n");
5656         buffer_info->dma = 0;
5657         if (count)
5658                 count--;
5659
5660         while (count--) {
5661                 if (i == 0)
5662                         i += tx_ring->count;
5663                 i--;
5664                 buffer_info = &tx_ring->buffer_info[i];
5665                 e1000_put_txbuf(tx_ring, buffer_info, true);
5666         }
5667
5668         return 0;
5669 }
5670
5671 static void e1000_tx_queue(struct e1000_ring *tx_ring, int tx_flags, int count)
5672 {
5673         struct e1000_adapter *adapter = tx_ring->adapter;
5674         struct e1000_tx_desc *tx_desc = NULL;
5675         struct e1000_buffer *buffer_info;
5676         u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
5677         unsigned int i;
5678
5679         if (tx_flags & E1000_TX_FLAGS_TSO) {
5680                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
5681                     E1000_TXD_CMD_TSE;
5682                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5683
5684                 if (tx_flags & E1000_TX_FLAGS_IPV4)
5685                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
5686         }
5687
5688         if (tx_flags & E1000_TX_FLAGS_CSUM) {
5689                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5690                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5691         }
5692
5693         if (tx_flags & E1000_TX_FLAGS_VLAN) {
5694                 txd_lower |= E1000_TXD_CMD_VLE;
5695                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
5696         }
5697
5698         if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5699                 txd_lower &= ~(E1000_TXD_CMD_IFCS);
5700
5701         if (unlikely(tx_flags & E1000_TX_FLAGS_HWTSTAMP)) {
5702                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5703                 txd_upper |= E1000_TXD_EXTCMD_TSTAMP;
5704         }
5705
5706         i = tx_ring->next_to_use;
5707
5708         do {
5709                 buffer_info = &tx_ring->buffer_info[i];
5710                 tx_desc = E1000_TX_DESC(*tx_ring, i);
5711                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
5712                 tx_desc->lower.data = cpu_to_le32(txd_lower |
5713                                                   buffer_info->length);
5714                 tx_desc->upper.data = cpu_to_le32(txd_upper);
5715
5716                 i++;
5717                 if (i == tx_ring->count)
5718                         i = 0;
5719         } while (--count > 0);
5720
5721         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
5722
5723         /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
5724         if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5725                 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
5726
5727         /* Force memory writes to complete before letting h/w
5728          * know there are new descriptors to fetch.  (Only
5729          * applicable for weak-ordered memory model archs,
5730          * such as IA-64).
5731          */
5732         wmb();
5733
5734         tx_ring->next_to_use = i;
5735 }
5736
5737 #define MINIMUM_DHCP_PACKET_SIZE 282
5738 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
5739                                     struct sk_buff *skb)
5740 {
5741         struct e1000_hw *hw = &adapter->hw;
5742         u16 length, offset;
5743
5744         if (skb_vlan_tag_present(skb) &&
5745             !((skb_vlan_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
5746               (adapter->hw.mng_cookie.status &
5747                E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
5748                 return 0;
5749
5750         if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
5751                 return 0;
5752
5753         if (((struct ethhdr *)skb->data)->h_proto != htons(ETH_P_IP))
5754                 return 0;
5755
5756         {
5757                 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data + 14);
5758                 struct udphdr *udp;
5759
5760                 if (ip->protocol != IPPROTO_UDP)
5761                         return 0;
5762
5763                 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
5764                 if (ntohs(udp->dest) != 67)
5765                         return 0;
5766
5767                 offset = (u8 *)udp + 8 - skb->data;
5768                 length = skb->len - offset;
5769                 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
5770         }
5771
5772         return 0;
5773 }
5774
5775 static int __e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5776 {
5777         struct e1000_adapter *adapter = tx_ring->adapter;
5778
5779         netif_stop_queue(adapter->netdev);
5780         /* Herbert's original patch had:
5781          *  smp_mb__after_netif_stop_queue();
5782          * but since that doesn't exist yet, just open code it.
5783          */
5784         smp_mb();
5785
5786         /* We need to check again in a case another CPU has just
5787          * made room available.
5788          */
5789         if (e1000_desc_unused(tx_ring) < size)
5790                 return -EBUSY;
5791
5792         /* A reprieve! */
5793         netif_start_queue(adapter->netdev);
5794         ++adapter->restart_queue;
5795         return 0;
5796 }
5797
5798 static int e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5799 {
5800         BUG_ON(size > tx_ring->count);
5801
5802         if (e1000_desc_unused(tx_ring) >= size)
5803                 return 0;
5804         return __e1000_maybe_stop_tx(tx_ring, size);
5805 }
5806
5807 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
5808                                     struct net_device *netdev)
5809 {
5810         struct e1000_adapter *adapter = netdev_priv(netdev);
5811         struct e1000_ring *tx_ring = adapter->tx_ring;
5812         unsigned int first;
5813         unsigned int tx_flags = 0;
5814         unsigned int len = skb_headlen(skb);
5815         unsigned int nr_frags;
5816         unsigned int mss;
5817         int count = 0;
5818         int tso;
5819         unsigned int f;
5820         __be16 protocol = vlan_get_protocol(skb);
5821
5822         if (test_bit(__E1000_DOWN, &adapter->state)) {
5823                 dev_kfree_skb_any(skb);
5824                 return NETDEV_TX_OK;
5825         }
5826
5827         if (skb->len <= 0) {
5828                 dev_kfree_skb_any(skb);
5829                 return NETDEV_TX_OK;
5830         }
5831
5832         /* The minimum packet size with TCTL.PSP set is 17 bytes so
5833          * pad skb in order to meet this minimum size requirement
5834          */
5835         if (skb_put_padto(skb, 17))
5836                 return NETDEV_TX_OK;
5837
5838         mss = skb_shinfo(skb)->gso_size;
5839         if (mss) {
5840                 u8 hdr_len;
5841
5842                 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
5843                  * points to just header, pull a few bytes of payload from
5844                  * frags into skb->data
5845                  */
5846                 hdr_len = skb_tcp_all_headers(skb);
5847                 /* we do this workaround for ES2LAN, but it is un-necessary,
5848                  * avoiding it could save a lot of cycles
5849                  */
5850                 if (skb->data_len && (hdr_len == len)) {
5851                         unsigned int pull_size;
5852
5853                         pull_size = min_t(unsigned int, 4, skb->data_len);
5854                         if (!__pskb_pull_tail(skb, pull_size)) {
5855                                 e_err("__pskb_pull_tail failed.\n");
5856                                 dev_kfree_skb_any(skb);
5857                                 return NETDEV_TX_OK;
5858                         }
5859                         len = skb_headlen(skb);
5860                 }
5861         }
5862
5863         /* reserve a descriptor for the offload context */
5864         if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
5865                 count++;
5866         count++;
5867
5868         count += DIV_ROUND_UP(len, adapter->tx_fifo_limit);
5869
5870         nr_frags = skb_shinfo(skb)->nr_frags;
5871         for (f = 0; f < nr_frags; f++)
5872                 count += DIV_ROUND_UP(skb_frag_size(&skb_shinfo(skb)->frags[f]),
5873                                       adapter->tx_fifo_limit);
5874
5875         if (adapter->hw.mac.tx_pkt_filtering)
5876                 e1000_transfer_dhcp_info(adapter, skb);
5877
5878         /* need: count + 2 desc gap to keep tail from touching
5879          * head, otherwise try next time
5880          */
5881         if (e1000_maybe_stop_tx(tx_ring, count + 2))
5882                 return NETDEV_TX_BUSY;
5883
5884         if (skb_vlan_tag_present(skb)) {
5885                 tx_flags |= E1000_TX_FLAGS_VLAN;
5886                 tx_flags |= (skb_vlan_tag_get(skb) <<
5887                              E1000_TX_FLAGS_VLAN_SHIFT);
5888         }
5889
5890         first = tx_ring->next_to_use;
5891
5892         tso = e1000_tso(tx_ring, skb, protocol);
5893         if (tso < 0) {
5894                 dev_kfree_skb_any(skb);
5895                 return NETDEV_TX_OK;
5896         }
5897
5898         if (tso)
5899                 tx_flags |= E1000_TX_FLAGS_TSO;
5900         else if (e1000_tx_csum(tx_ring, skb, protocol))
5901                 tx_flags |= E1000_TX_FLAGS_CSUM;
5902
5903         /* Old method was to assume IPv4 packet by default if TSO was enabled.
5904          * 82571 hardware supports TSO capabilities for IPv6 as well...
5905          * no longer assume, we must.
5906          */
5907         if (protocol == htons(ETH_P_IP))
5908                 tx_flags |= E1000_TX_FLAGS_IPV4;
5909
5910         if (unlikely(skb->no_fcs))
5911                 tx_flags |= E1000_TX_FLAGS_NO_FCS;
5912
5913         /* if count is 0 then mapping error has occurred */
5914         count = e1000_tx_map(tx_ring, skb, first, adapter->tx_fifo_limit,
5915                              nr_frags);
5916         if (count) {
5917                 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
5918                     (adapter->flags & FLAG_HAS_HW_TIMESTAMP)) {
5919                         if (!adapter->tx_hwtstamp_skb) {
5920                                 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5921                                 tx_flags |= E1000_TX_FLAGS_HWTSTAMP;
5922                                 adapter->tx_hwtstamp_skb = skb_get(skb);
5923                                 adapter->tx_hwtstamp_start = jiffies;
5924                                 schedule_work(&adapter->tx_hwtstamp_work);
5925                         } else {
5926                                 adapter->tx_hwtstamp_skipped++;
5927                         }
5928                 }
5929
5930                 skb_tx_timestamp(skb);
5931
5932                 netdev_sent_queue(netdev, skb->len);
5933                 e1000_tx_queue(tx_ring, tx_flags, count);
5934                 /* Make sure there is space in the ring for the next send. */
5935                 e1000_maybe_stop_tx(tx_ring,
5936                                     ((MAX_SKB_FRAGS + 1) *
5937                                      DIV_ROUND_UP(PAGE_SIZE,
5938                                                   adapter->tx_fifo_limit) + 4));
5939
5940                 if (!netdev_xmit_more() ||
5941                     netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
5942                         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
5943                                 e1000e_update_tdt_wa(tx_ring,
5944                                                      tx_ring->next_to_use);
5945                         else
5946                                 writel(tx_ring->next_to_use, tx_ring->tail);
5947                 }
5948         } else {
5949                 dev_kfree_skb_any(skb);
5950                 tx_ring->buffer_info[first].time_stamp = 0;
5951                 tx_ring->next_to_use = first;
5952         }
5953
5954         return NETDEV_TX_OK;
5955 }
5956
5957 /**
5958  * e1000_tx_timeout - Respond to a Tx Hang
5959  * @netdev: network interface device structure
5960  * @txqueue: index of the hung queue (unused)
5961  **/
5962 static void e1000_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
5963 {
5964         struct e1000_adapter *adapter = netdev_priv(netdev);
5965
5966         /* Do the reset outside of interrupt context */
5967         adapter->tx_timeout_count++;
5968         schedule_work(&adapter->reset_task);
5969 }
5970
5971 static void e1000_reset_task(struct work_struct *work)
5972 {
5973         struct e1000_adapter *adapter;
5974         adapter = container_of(work, struct e1000_adapter, reset_task);
5975
5976         rtnl_lock();
5977         /* don't run the task if already down */
5978         if (test_bit(__E1000_DOWN, &adapter->state)) {
5979                 rtnl_unlock();
5980                 return;
5981         }
5982
5983         if (!(adapter->flags & FLAG_RESTART_NOW)) {
5984                 e1000e_dump(adapter);
5985                 e_err("Reset adapter unexpectedly\n");
5986         }
5987         e1000e_reinit_locked(adapter);
5988         rtnl_unlock();
5989 }
5990
5991 /**
5992  * e1000e_get_stats64 - Get System Network Statistics
5993  * @netdev: network interface device structure
5994  * @stats: rtnl_link_stats64 pointer
5995  *
5996  * Returns the address of the device statistics structure.
5997  **/
5998 void e1000e_get_stats64(struct net_device *netdev,
5999                         struct rtnl_link_stats64 *stats)
6000 {
6001         struct e1000_adapter *adapter = netdev_priv(netdev);
6002
6003         spin_lock(&adapter->stats64_lock);
6004         e1000e_update_stats(adapter);
6005         /* Fill out the OS statistics structure */
6006         stats->rx_bytes = adapter->stats.gorc;
6007         stats->rx_packets = adapter->stats.gprc;
6008         stats->tx_bytes = adapter->stats.gotc;
6009         stats->tx_packets = adapter->stats.gptc;
6010         stats->multicast = adapter->stats.mprc;
6011         stats->collisions = adapter->stats.colc;
6012
6013         /* Rx Errors */
6014
6015         /* RLEC on some newer hardware can be incorrect so build
6016          * our own version based on RUC and ROC
6017          */
6018         stats->rx_errors = adapter->stats.rxerrc +
6019             adapter->stats.crcerrs + adapter->stats.algnerrc +
6020             adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
6021         stats->rx_length_errors = adapter->stats.ruc + adapter->stats.roc;
6022         stats->rx_crc_errors = adapter->stats.crcerrs;
6023         stats->rx_frame_errors = adapter->stats.algnerrc;
6024         stats->rx_missed_errors = adapter->stats.mpc;
6025
6026         /* Tx Errors */
6027         stats->tx_errors = adapter->stats.ecol + adapter->stats.latecol;
6028         stats->tx_aborted_errors = adapter->stats.ecol;
6029         stats->tx_window_errors = adapter->stats.latecol;
6030         stats->tx_carrier_errors = adapter->stats.tncrs;
6031
6032         /* Tx Dropped needs to be maintained elsewhere */
6033
6034         spin_unlock(&adapter->stats64_lock);
6035 }
6036
6037 /**
6038  * e1000_change_mtu - Change the Maximum Transfer Unit
6039  * @netdev: network interface device structure
6040  * @new_mtu: new value for maximum frame size
6041  *
6042  * Returns 0 on success, negative on failure
6043  **/
6044 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
6045 {
6046         struct e1000_adapter *adapter = netdev_priv(netdev);
6047         int max_frame = new_mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
6048
6049         /* Jumbo frame support */
6050         if ((new_mtu > ETH_DATA_LEN) &&
6051             !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
6052                 e_err("Jumbo Frames not supported.\n");
6053                 return -EINVAL;
6054         }
6055
6056         /* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
6057         if ((adapter->hw.mac.type >= e1000_pch2lan) &&
6058             !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
6059             (new_mtu > ETH_DATA_LEN)) {
6060                 e_err("Jumbo Frames not supported on this device when CRC stripping is disabled.\n");
6061                 return -EINVAL;
6062         }
6063
6064         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
6065                 usleep_range(1000, 1100);
6066         /* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
6067         adapter->max_frame_size = max_frame;
6068         netdev_dbg(netdev, "changing MTU from %d to %d\n",
6069                    netdev->mtu, new_mtu);
6070         WRITE_ONCE(netdev->mtu, new_mtu);
6071
6072         pm_runtime_get_sync(netdev->dev.parent);
6073
6074         if (netif_running(netdev))
6075                 e1000e_down(adapter, true);
6076
6077         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
6078          * means we reserve 2 more, this pushes us to allocate from the next
6079          * larger slab size.
6080          * i.e. RXBUFFER_2048 --> size-4096 slab
6081          * However with the new *_jumbo_rx* routines, jumbo receives will use
6082          * fragmented skbs
6083          */
6084
6085         if (max_frame <= 2048)
6086                 adapter->rx_buffer_len = 2048;
6087         else
6088                 adapter->rx_buffer_len = 4096;
6089
6090         /* adjust allocation if LPE protects us, and we aren't using SBP */
6091         if (max_frame <= (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN))
6092                 adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
6093
6094         if (netif_running(netdev))
6095                 e1000e_up(adapter);
6096         else
6097                 e1000e_reset(adapter);
6098
6099         pm_runtime_put_sync(netdev->dev.parent);
6100
6101         clear_bit(__E1000_RESETTING, &adapter->state);
6102
6103         return 0;
6104 }
6105
6106 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6107 {
6108         struct e1000_adapter *adapter = netdev_priv(netdev);
6109         struct mii_ioctl_data *data = if_mii(ifr);
6110
6111         if (adapter->hw.phy.media_type != e1000_media_type_copper)
6112                 return -EOPNOTSUPP;
6113
6114         switch (cmd) {
6115         case SIOCGMIIPHY:
6116                 data->phy_id = adapter->hw.phy.addr;
6117                 break;
6118         case SIOCGMIIREG:
6119                 e1000_phy_read_status(adapter);
6120
6121                 switch (data->reg_num & 0x1F) {
6122                 case MII_BMCR:
6123                         data->val_out = adapter->phy_regs.bmcr;
6124                         break;
6125                 case MII_BMSR:
6126                         data->val_out = adapter->phy_regs.bmsr;
6127                         break;
6128                 case MII_PHYSID1:
6129                         data->val_out = (adapter->hw.phy.id >> 16);
6130                         break;
6131                 case MII_PHYSID2:
6132                         data->val_out = (adapter->hw.phy.id & 0xFFFF);
6133                         break;
6134                 case MII_ADVERTISE:
6135                         data->val_out = adapter->phy_regs.advertise;
6136                         break;
6137                 case MII_LPA:
6138                         data->val_out = adapter->phy_regs.lpa;
6139                         break;
6140                 case MII_EXPANSION:
6141                         data->val_out = adapter->phy_regs.expansion;
6142                         break;
6143                 case MII_CTRL1000:
6144                         data->val_out = adapter->phy_regs.ctrl1000;
6145                         break;
6146                 case MII_STAT1000:
6147                         data->val_out = adapter->phy_regs.stat1000;
6148                         break;
6149                 case MII_ESTATUS:
6150                         data->val_out = adapter->phy_regs.estatus;
6151                         break;
6152                 default:
6153                         return -EIO;
6154                 }
6155                 break;
6156         case SIOCSMIIREG:
6157         default:
6158                 return -EOPNOTSUPP;
6159         }
6160         return 0;
6161 }
6162
6163 /**
6164  * e1000e_hwtstamp_set - control hardware time stamping
6165  * @netdev: network interface device structure
6166  * @config: timestamp configuration
6167  * @extack: netlink extended ACK report
6168  *
6169  * Outgoing time stamping can be enabled and disabled. Play nice and
6170  * disable it when requested, although it shouldn't cause any overhead
6171  * when no packet needs it. At most one packet in the queue may be
6172  * marked for time stamping, otherwise it would be impossible to tell
6173  * for sure to which packet the hardware time stamp belongs.
6174  *
6175  * Incoming time stamping has to be configured via the hardware filters.
6176  * Not all combinations are supported, in particular event type has to be
6177  * specified. Matching the kind of event packet is not supported, with the
6178  * exception of "all V2 events regardless of level 2 or 4".
6179  **/
6180 static int e1000e_hwtstamp_set(struct net_device *netdev,
6181                                struct kernel_hwtstamp_config *config,
6182                                struct netlink_ext_ack *extack)
6183 {
6184         struct e1000_adapter *adapter = netdev_priv(netdev);
6185         int ret_val;
6186
6187         ret_val = e1000e_config_hwtstamp(adapter, config, extack);
6188         if (ret_val)
6189                 return ret_val;
6190
6191         switch (config->rx_filter) {
6192         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
6193         case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
6194         case HWTSTAMP_FILTER_PTP_V2_SYNC:
6195         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
6196         case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
6197         case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
6198                 /* With V2 type filters which specify a Sync or Delay Request,
6199                  * Path Delay Request/Response messages are also time stamped
6200                  * by hardware so notify the caller the requested packets plus
6201                  * some others are time stamped.
6202                  */
6203                 config->rx_filter = HWTSTAMP_FILTER_SOME;
6204                 break;
6205         default:
6206                 break;
6207         }
6208
6209         return 0;
6210 }
6211
6212 static int e1000e_hwtstamp_get(struct net_device *netdev,
6213                                struct kernel_hwtstamp_config *kernel_config)
6214 {
6215         struct e1000_adapter *adapter = netdev_priv(netdev);
6216
6217         *kernel_config = adapter->hwtstamp_config;
6218
6219         return 0;
6220 }
6221
6222 static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
6223 {
6224         struct e1000_hw *hw = &adapter->hw;
6225         u32 i, mac_reg, wuc;
6226         u16 phy_reg, wuc_enable;
6227         int retval;
6228
6229         /* copy MAC RARs to PHY RARs */
6230         e1000_copy_rx_addrs_to_phy_ich8lan(hw);
6231
6232         retval = hw->phy.ops.acquire(hw);
6233         if (retval) {
6234                 e_err("Could not acquire PHY\n");
6235                 return retval;
6236         }
6237
6238         /* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
6239         retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6240         if (retval)
6241                 goto release;
6242
6243         /* copy MAC MTA to PHY MTA - only needed for pchlan */
6244         for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
6245                 mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
6246                 hw->phy.ops.write_reg_page(hw, BM_MTA(i),
6247                                            (u16)(mac_reg & 0xFFFF));
6248                 hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1,
6249                                            (u16)((mac_reg >> 16) & 0xFFFF));
6250         }
6251
6252         /* configure PHY Rx Control register */
6253         hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg);
6254         mac_reg = er32(RCTL);
6255         if (mac_reg & E1000_RCTL_UPE)
6256                 phy_reg |= BM_RCTL_UPE;
6257         if (mac_reg & E1000_RCTL_MPE)
6258                 phy_reg |= BM_RCTL_MPE;
6259         phy_reg &= ~(BM_RCTL_MO_MASK);
6260         if (mac_reg & E1000_RCTL_MO_3)
6261                 phy_reg |= (FIELD_GET(E1000_RCTL_MO_3, mac_reg)
6262                             << BM_RCTL_MO_SHIFT);
6263         if (mac_reg & E1000_RCTL_BAM)
6264                 phy_reg |= BM_RCTL_BAM;
6265         if (mac_reg & E1000_RCTL_PMCF)
6266                 phy_reg |= BM_RCTL_PMCF;
6267         mac_reg = er32(CTRL);
6268         if (mac_reg & E1000_CTRL_RFCE)
6269                 phy_reg |= BM_RCTL_RFCE;
6270         hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg);
6271
6272         wuc = E1000_WUC_PME_EN;
6273         if (wufc & (E1000_WUFC_MAG | E1000_WUFC_LNKC))
6274                 wuc |= E1000_WUC_APME;
6275
6276         /* enable PHY wakeup in MAC register */
6277         ew32(WUFC, wufc);
6278         ew32(WUC, (E1000_WUC_PHY_WAKE | E1000_WUC_APMPME |
6279                    E1000_WUC_PME_STATUS | wuc));
6280
6281         /* configure and enable PHY wakeup in PHY registers */
6282         hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc);
6283         hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, wuc);
6284
6285         /* activate PHY wakeup */
6286         wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
6287         retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6288         if (retval)
6289                 e_err("Could not set PHY Host Wakeup bit\n");
6290 release:
6291         hw->phy.ops.release(hw);
6292
6293         return retval;
6294 }
6295
6296 static void e1000e_flush_lpic(struct pci_dev *pdev)
6297 {
6298         struct net_device *netdev = pci_get_drvdata(pdev);
6299         struct e1000_adapter *adapter = netdev_priv(netdev);
6300         struct e1000_hw *hw = &adapter->hw;
6301         u32 ret_val;
6302
6303         pm_runtime_get_sync(netdev->dev.parent);
6304
6305         ret_val = hw->phy.ops.acquire(hw);
6306         if (ret_val)
6307                 goto fl_out;
6308
6309         pr_info("EEE TX LPI TIMER: %08X\n",
6310                 er32(LPIC) >> E1000_LPIC_LPIET_SHIFT);
6311
6312         hw->phy.ops.release(hw);
6313
6314 fl_out:
6315         pm_runtime_put_sync(netdev->dev.parent);
6316 }
6317
6318 /* S0ix implementation */
6319 static void e1000e_s0ix_entry_flow(struct e1000_adapter *adapter)
6320 {
6321         struct e1000_hw *hw = &adapter->hw;
6322         u32 mac_data;
6323         u16 phy_data;
6324
6325         if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID &&
6326             hw->mac.type >= e1000_pch_adp) {
6327                 /* Request ME configure the device for S0ix */
6328                 mac_data = er32(H2ME);
6329                 mac_data |= E1000_H2ME_START_DPG;
6330                 mac_data &= ~E1000_H2ME_EXIT_DPG;
6331                 trace_e1000e_trace_mac_register(mac_data);
6332                 ew32(H2ME, mac_data);
6333         } else {
6334                 /* Request driver configure the device to S0ix */
6335                 /* Disable the periodic inband message,
6336                  * don't request PCIe clock in K1 page770_17[10:9] = 10b
6337                  */
6338                 e1e_rphy(hw, HV_PM_CTRL, &phy_data);
6339                 phy_data &= ~HV_PM_CTRL_K1_CLK_REQ;
6340                 phy_data |= BIT(10);
6341                 e1e_wphy(hw, HV_PM_CTRL, phy_data);
6342
6343                 /* Make sure we don't exit K1 every time a new packet arrives
6344                  * 772_29[5] = 1 CS_Mode_Stay_In_K1
6345                  */
6346                 e1e_rphy(hw, I217_CGFREG, &phy_data);
6347                 phy_data |= BIT(5);
6348                 e1e_wphy(hw, I217_CGFREG, phy_data);
6349
6350                 /* Change the MAC/PHY interface to SMBus
6351                  * Force the SMBus in PHY page769_23[0] = 1
6352                  * Force the SMBus in MAC CTRL_EXT[11] = 1
6353                  */
6354                 e1e_rphy(hw, CV_SMB_CTRL, &phy_data);
6355                 phy_data |= CV_SMB_CTRL_FORCE_SMBUS;
6356                 e1e_wphy(hw, CV_SMB_CTRL, phy_data);
6357                 mac_data = er32(CTRL_EXT);
6358                 mac_data |= E1000_CTRL_EXT_FORCE_SMBUS;
6359                 ew32(CTRL_EXT, mac_data);
6360
6361                 /* DFT control: PHY bit: page769_20[0] = 1
6362                  * page769_20[7] - PHY PLL stop
6363                  * page769_20[8] - PHY go to the electrical idle
6364                  * page769_20[9] - PHY serdes disable
6365                  * Gate PPW via EXTCNF_CTRL - set 0x0F00[7] = 1
6366                  */
6367                 e1e_rphy(hw, I82579_DFT_CTRL, &phy_data);
6368                 phy_data |= BIT(0);
6369                 phy_data |= BIT(7);
6370                 phy_data |= BIT(8);
6371                 phy_data |= BIT(9);
6372                 e1e_wphy(hw, I82579_DFT_CTRL, phy_data);
6373
6374                 mac_data = er32(EXTCNF_CTRL);
6375                 mac_data |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
6376                 ew32(EXTCNF_CTRL, mac_data);
6377
6378                 /* Disable disconnected cable conditioning for Power Gating */
6379                 mac_data = er32(DPGFR);
6380                 mac_data |= BIT(2);
6381                 ew32(DPGFR, mac_data);
6382
6383                 /* Enable the Dynamic Clock Gating in the DMA and MAC */
6384                 mac_data = er32(CTRL_EXT);
6385                 mac_data |= E1000_CTRL_EXT_DMA_DYN_CLK_EN;
6386                 ew32(CTRL_EXT, mac_data);
6387         }
6388
6389         /* Enable the Dynamic Power Gating in the MAC */
6390         mac_data = er32(FEXTNVM7);
6391         mac_data |= BIT(22);
6392         ew32(FEXTNVM7, mac_data);
6393
6394         /* Don't wake from dynamic Power Gating with clock request */
6395         mac_data = er32(FEXTNVM12);
6396         mac_data |= BIT(12);
6397         ew32(FEXTNVM12, mac_data);
6398
6399         /* Ungate PGCB clock */
6400         mac_data = er32(FEXTNVM9);
6401         mac_data &= ~BIT(28);
6402         ew32(FEXTNVM9, mac_data);
6403
6404         /* Enable K1 off to enable mPHY Power Gating */
6405         mac_data = er32(FEXTNVM6);
6406         mac_data |= BIT(31);
6407         ew32(FEXTNVM6, mac_data);
6408
6409         /* Enable mPHY power gating for any link and speed */
6410         mac_data = er32(FEXTNVM8);
6411         mac_data |= BIT(9);
6412         ew32(FEXTNVM8, mac_data);
6413
6414         /* No MAC DPG gating SLP_S0 in modern standby
6415          * Switch the logic of the lanphypc to use PMC counter
6416          */
6417         mac_data = er32(FEXTNVM5);
6418         mac_data |= BIT(7);
6419         ew32(FEXTNVM5, mac_data);
6420
6421         /* Disable the time synchronization clock */
6422         mac_data = er32(FEXTNVM7);
6423         mac_data |= BIT(31);
6424         mac_data &= ~BIT(0);
6425         ew32(FEXTNVM7, mac_data);
6426
6427         /* Dynamic Power Gating Enable */
6428         mac_data = er32(CTRL_EXT);
6429         mac_data |= BIT(3);
6430         ew32(CTRL_EXT, mac_data);
6431
6432         /* Check MAC Tx/Rx packet buffer pointers.
6433          * Reset MAC Tx/Rx packet buffer pointers to suppress any
6434          * pending traffic indication that would prevent power gating.
6435          */
6436         mac_data = er32(TDFH);
6437         if (mac_data)
6438                 ew32(TDFH, 0);
6439         mac_data = er32(TDFT);
6440         if (mac_data)
6441                 ew32(TDFT, 0);
6442         mac_data = er32(TDFHS);
6443         if (mac_data)
6444                 ew32(TDFHS, 0);
6445         mac_data = er32(TDFTS);
6446         if (mac_data)
6447                 ew32(TDFTS, 0);
6448         mac_data = er32(TDFPC);
6449         if (mac_data)
6450                 ew32(TDFPC, 0);
6451         mac_data = er32(RDFH);
6452         if (mac_data)
6453                 ew32(RDFH, 0);
6454         mac_data = er32(RDFT);
6455         if (mac_data)
6456                 ew32(RDFT, 0);
6457         mac_data = er32(RDFHS);
6458         if (mac_data)
6459                 ew32(RDFHS, 0);
6460         mac_data = er32(RDFTS);
6461         if (mac_data)
6462                 ew32(RDFTS, 0);
6463         mac_data = er32(RDFPC);
6464         if (mac_data)
6465                 ew32(RDFPC, 0);
6466 }
6467
6468 static void e1000e_s0ix_exit_flow(struct e1000_adapter *adapter)
6469 {
6470         struct e1000_hw *hw = &adapter->hw;
6471         bool firmware_bug = false;
6472         u32 mac_data;
6473         u16 phy_data;
6474         u32 i = 0;
6475
6476         if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID &&
6477             hw->mac.type >= e1000_pch_adp) {
6478                 /* Keep the GPT clock enabled for CSME */
6479                 mac_data = er32(FEXTNVM);
6480                 mac_data |= BIT(3);
6481                 ew32(FEXTNVM, mac_data);
6482                 /* Request ME unconfigure the device from S0ix */
6483                 mac_data = er32(H2ME);
6484                 mac_data &= ~E1000_H2ME_START_DPG;
6485                 mac_data |= E1000_H2ME_EXIT_DPG;
6486                 trace_e1000e_trace_mac_register(mac_data);
6487                 ew32(H2ME, mac_data);
6488
6489                 /* Poll up to 2.5 seconds for ME to unconfigure DPG.
6490                  * If this takes more than 1 second, show a warning indicating a
6491                  * firmware bug
6492                  */
6493                 while (!(er32(EXFWSM) & E1000_EXFWSM_DPG_EXIT_DONE)) {
6494                         if (i > 100 && !firmware_bug)
6495                                 firmware_bug = true;
6496
6497                         if (i++ == 250) {
6498                                 e_dbg("Timeout (firmware bug): %d msec\n",
6499                                       i * 10);
6500                                 break;
6501                         }
6502
6503                         usleep_range(10000, 11000);
6504                 }
6505                 if (firmware_bug)
6506                         e_warn("DPG_EXIT_DONE took %d msec. This is a firmware bug\n",
6507                                i * 10);
6508                 else
6509                         e_dbg("DPG_EXIT_DONE cleared after %d msec\n", i * 10);
6510         } else {
6511                 /* Request driver unconfigure the device from S0ix */
6512
6513                 /* Cancel disable disconnected cable conditioning
6514                  * for Power Gating
6515                  */
6516                 mac_data = er32(DPGFR);
6517                 mac_data &= ~BIT(2);
6518                 ew32(DPGFR, mac_data);
6519
6520                 /* Disable the Dynamic Clock Gating in the DMA and MAC */
6521                 mac_data = er32(CTRL_EXT);
6522                 mac_data &= 0xFFF7FFFF;
6523                 ew32(CTRL_EXT, mac_data);
6524
6525                 /* Enable the periodic inband message,
6526                  * Request PCIe clock in K1 page770_17[10:9] =01b
6527                  */
6528                 e1e_rphy(hw, HV_PM_CTRL, &phy_data);
6529                 phy_data &= 0xFBFF;
6530                 phy_data |= HV_PM_CTRL_K1_CLK_REQ;
6531                 e1e_wphy(hw, HV_PM_CTRL, phy_data);
6532
6533                 /* Return back configuration
6534                  * 772_29[5] = 0 CS_Mode_Stay_In_K1
6535                  */
6536                 e1e_rphy(hw, I217_CGFREG, &phy_data);
6537                 phy_data &= 0xFFDF;
6538                 e1e_wphy(hw, I217_CGFREG, phy_data);
6539
6540                 /* Change the MAC/PHY interface to Kumeran
6541                  * Unforce the SMBus in PHY page769_23[0] = 0
6542                  * Unforce the SMBus in MAC CTRL_EXT[11] = 0
6543                  */
6544                 e1e_rphy(hw, CV_SMB_CTRL, &phy_data);
6545                 phy_data &= ~CV_SMB_CTRL_FORCE_SMBUS;
6546                 e1e_wphy(hw, CV_SMB_CTRL, phy_data);
6547                 mac_data = er32(CTRL_EXT);
6548                 mac_data &= ~E1000_CTRL_EXT_FORCE_SMBUS;
6549                 ew32(CTRL_EXT, mac_data);
6550         }
6551
6552         /* Disable Dynamic Power Gating */
6553         mac_data = er32(CTRL_EXT);
6554         mac_data &= 0xFFFFFFF7;
6555         ew32(CTRL_EXT, mac_data);
6556
6557         /* Enable the time synchronization clock */
6558         mac_data = er32(FEXTNVM7);
6559         mac_data &= ~BIT(31);
6560         mac_data |= BIT(0);
6561         ew32(FEXTNVM7, mac_data);
6562
6563         /* Disable the Dynamic Power Gating in the MAC */
6564         mac_data = er32(FEXTNVM7);
6565         mac_data &= 0xFFBFFFFF;
6566         ew32(FEXTNVM7, mac_data);
6567
6568         /* Disable mPHY power gating for any link and speed */
6569         mac_data = er32(FEXTNVM8);
6570         mac_data &= ~BIT(9);
6571         ew32(FEXTNVM8, mac_data);
6572
6573         /* Disable K1 off */
6574         mac_data = er32(FEXTNVM6);
6575         mac_data &= ~BIT(31);
6576         ew32(FEXTNVM6, mac_data);
6577
6578         /* Disable Ungate PGCB clock */
6579         mac_data = er32(FEXTNVM9);
6580         mac_data |= BIT(28);
6581         ew32(FEXTNVM9, mac_data);
6582
6583         /* Cancel not waking from dynamic
6584          * Power Gating with clock request
6585          */
6586         mac_data = er32(FEXTNVM12);
6587         mac_data &= ~BIT(12);
6588         ew32(FEXTNVM12, mac_data);
6589
6590         /* Revert the lanphypc logic to use the internal Gbe counter
6591          * and not the PMC counter
6592          */
6593         mac_data = er32(FEXTNVM5);
6594         mac_data &= 0xFFFFFF7F;
6595         ew32(FEXTNVM5, mac_data);
6596 }
6597
6598 static int e1000e_pm_freeze(struct device *dev)
6599 {
6600         struct net_device *netdev = dev_get_drvdata(dev);
6601         struct e1000_adapter *adapter = netdev_priv(netdev);
6602         bool present;
6603
6604         rtnl_lock();
6605
6606         present = netif_device_present(netdev);
6607         netif_device_detach(netdev);
6608
6609         if (present && netif_running(netdev)) {
6610                 int count = E1000_CHECK_RESET_COUNT;
6611
6612                 while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
6613                         usleep_range(10000, 11000);
6614
6615                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
6616
6617                 /* Quiesce the device without resetting the hardware */
6618                 e1000e_down(adapter, false);
6619                 e1000_free_irq(adapter);
6620         }
6621         rtnl_unlock();
6622
6623         e1000e_reset_interrupt_capability(adapter);
6624
6625         /* Allow time for pending master requests to run */
6626         e1000e_disable_pcie_master(&adapter->hw);
6627
6628         return 0;
6629 }
6630
6631 static int __e1000_shutdown(struct pci_dev *pdev, bool runtime)
6632 {
6633         struct net_device *netdev = pci_get_drvdata(pdev);
6634         struct e1000_adapter *adapter = netdev_priv(netdev);
6635         struct e1000_hw *hw = &adapter->hw;
6636         u32 ctrl, ctrl_ext, rctl, status, wufc;
6637         int retval = 0;
6638
6639         /* Runtime suspend should only enable wakeup for link changes */
6640         if (runtime)
6641                 wufc = E1000_WUFC_LNKC;
6642         else if (device_may_wakeup(&pdev->dev))
6643                 wufc = adapter->wol;
6644         else
6645                 wufc = 0;
6646
6647         status = er32(STATUS);
6648         if (status & E1000_STATUS_LU)
6649                 wufc &= ~E1000_WUFC_LNKC;
6650
6651         if (wufc) {
6652                 e1000_setup_rctl(adapter);
6653                 e1000e_set_rx_mode(netdev);
6654
6655                 /* turn on all-multi mode if wake on multicast is enabled */
6656                 if (wufc & E1000_WUFC_MC) {
6657                         rctl = er32(RCTL);
6658                         rctl |= E1000_RCTL_MPE;
6659                         ew32(RCTL, rctl);
6660                 }
6661
6662                 ctrl = er32(CTRL);
6663                 ctrl |= E1000_CTRL_ADVD3WUC;
6664                 if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
6665                         ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
6666                 ew32(CTRL, ctrl);
6667
6668                 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
6669                     adapter->hw.phy.media_type ==
6670                     e1000_media_type_internal_serdes) {
6671                         /* keep the laser running in D3 */
6672                         ctrl_ext = er32(CTRL_EXT);
6673                         ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
6674                         ew32(CTRL_EXT, ctrl_ext);
6675                 }
6676
6677                 if (!runtime)
6678                         e1000e_power_up_phy(adapter);
6679
6680                 if (adapter->flags & FLAG_IS_ICH)
6681                         e1000_suspend_workarounds_ich8lan(&adapter->hw);
6682
6683                 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6684                         /* enable wakeup by the PHY */
6685                         retval = e1000_init_phy_wakeup(adapter, wufc);
6686                         if (retval) {
6687                                 e_err("Failed to enable wakeup\n");
6688                                 goto skip_phy_configurations;
6689                         }
6690                 } else {
6691                         /* enable wakeup by the MAC */
6692                         ew32(WUFC, wufc);
6693                         ew32(WUC, E1000_WUC_PME_EN);
6694                 }
6695         } else {
6696                 ew32(WUC, 0);
6697                 ew32(WUFC, 0);
6698
6699                 e1000_power_down_phy(adapter);
6700         }
6701
6702         if (adapter->hw.phy.type == e1000_phy_igp_3) {
6703                 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
6704         } else if (hw->mac.type >= e1000_pch_lpt) {
6705                 if (wufc && !(wufc & (E1000_WUFC_EX | E1000_WUFC_MC | E1000_WUFC_BC))) {
6706                         /* ULP does not support wake from unicast, multicast
6707                          * or broadcast.
6708                          */
6709                         retval = e1000_enable_ulp_lpt_lp(hw, !runtime);
6710                         if (retval) {
6711                                 e_err("Failed to enable ULP\n");
6712                                 goto skip_phy_configurations;
6713                         }
6714                 }
6715         }
6716
6717         /* Ensure that the appropriate bits are set in LPI_CTRL
6718          * for EEE in Sx
6719          */
6720         if ((hw->phy.type >= e1000_phy_i217) &&
6721             adapter->eee_advert && hw->dev_spec.ich8lan.eee_lp_ability) {
6722                 u16 lpi_ctrl = 0;
6723
6724                 retval = hw->phy.ops.acquire(hw);
6725                 if (!retval) {
6726                         retval = e1e_rphy_locked(hw, I82579_LPI_CTRL,
6727                                                  &lpi_ctrl);
6728                         if (!retval) {
6729                                 if (adapter->eee_advert &
6730                                     hw->dev_spec.ich8lan.eee_lp_ability &
6731                                     I82579_EEE_100_SUPPORTED)
6732                                         lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
6733                                 if (adapter->eee_advert &
6734                                     hw->dev_spec.ich8lan.eee_lp_ability &
6735                                     I82579_EEE_1000_SUPPORTED)
6736                                         lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
6737
6738                                 retval = e1e_wphy_locked(hw, I82579_LPI_CTRL,
6739                                                          lpi_ctrl);
6740                         }
6741                 }
6742                 hw->phy.ops.release(hw);
6743         }
6744
6745 skip_phy_configurations:
6746         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
6747          * would have already happened in close and is redundant.
6748          */
6749         e1000e_release_hw_control(adapter);
6750
6751         pci_clear_master(pdev);
6752
6753         /* The pci-e switch on some quad port adapters will report a
6754          * correctable error when the MAC transitions from D0 to D3.  To
6755          * prevent this we need to mask off the correctable errors on the
6756          * downstream port of the pci-e switch.
6757          *
6758          * We don't have the associated upstream bridge while assigning
6759          * the PCI device into guest. For example, the KVM on power is
6760          * one of the cases.
6761          */
6762         if (adapter->flags & FLAG_IS_QUAD_PORT) {
6763                 struct pci_dev *us_dev = pdev->bus->self;
6764                 u16 devctl;
6765
6766                 if (!us_dev)
6767                         return 0;
6768
6769                 pcie_capability_read_word(us_dev, PCI_EXP_DEVCTL, &devctl);
6770                 pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL,
6771                                            (devctl & ~PCI_EXP_DEVCTL_CERE));
6772
6773                 pci_save_state(pdev);
6774                 pci_prepare_to_sleep(pdev);
6775
6776                 pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL, devctl);
6777         }
6778
6779         return 0;
6780 }
6781
6782 /**
6783  * __e1000e_disable_aspm - Disable ASPM states
6784  * @pdev: pointer to PCI device struct
6785  * @state: bit-mask of ASPM states to disable
6786  * @locked: indication if this context holds pci_bus_sem locked.
6787  *
6788  * Some devices *must* have certain ASPM states disabled per hardware errata.
6789  **/
6790 static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state, int locked)
6791 {
6792         struct pci_dev *parent = pdev->bus->self;
6793         u16 aspm_dis_mask = 0;
6794         u16 pdev_aspmc, parent_aspmc;
6795
6796         switch (state) {
6797         case PCIE_LINK_STATE_L0S:
6798         case PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1:
6799                 aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L0S;
6800                 fallthrough; /* can't have L1 without L0s */
6801         case PCIE_LINK_STATE_L1:
6802                 aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L1;
6803                 break;
6804         default:
6805                 return;
6806         }
6807
6808         pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6809         pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6810
6811         if (parent) {
6812                 pcie_capability_read_word(parent, PCI_EXP_LNKCTL,
6813                                           &parent_aspmc);
6814                 parent_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6815         }
6816
6817         /* Nothing to do if the ASPM states to be disabled already are */
6818         if (!(pdev_aspmc & aspm_dis_mask) &&
6819             (!parent || !(parent_aspmc & aspm_dis_mask)))
6820                 return;
6821
6822         dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
6823                  (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L0S) ?
6824                  "L0s" : "",
6825                  (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L1) ?
6826                  "L1" : "");
6827
6828 #ifdef CONFIG_PCIEASPM
6829         if (locked)
6830                 pci_disable_link_state_locked(pdev, state);
6831         else
6832                 pci_disable_link_state(pdev, state);
6833
6834         /* Double-check ASPM control.  If not disabled by the above, the
6835          * BIOS is preventing that from happening (or CONFIG_PCIEASPM is
6836          * not enabled); override by writing PCI config space directly.
6837          */
6838         pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6839         pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6840
6841         if (!(aspm_dis_mask & pdev_aspmc))
6842                 return;
6843 #endif
6844
6845         /* Both device and parent should have the same ASPM setting.
6846          * Disable ASPM in downstream component first and then upstream.
6847          */
6848         pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, aspm_dis_mask);
6849
6850         if (parent)
6851                 pcie_capability_clear_word(parent, PCI_EXP_LNKCTL,
6852                                            aspm_dis_mask);
6853 }
6854
6855 /**
6856  * e1000e_disable_aspm - Disable ASPM states.
6857  * @pdev: pointer to PCI device struct
6858  * @state: bit-mask of ASPM states to disable
6859  *
6860  * This function acquires the pci_bus_sem!
6861  * Some devices *must* have certain ASPM states disabled per hardware errata.
6862  **/
6863 static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
6864 {
6865         __e1000e_disable_aspm(pdev, state, 0);
6866 }
6867
6868 /**
6869  * e1000e_disable_aspm_locked - Disable ASPM states.
6870  * @pdev: pointer to PCI device struct
6871  * @state: bit-mask of ASPM states to disable
6872  *
6873  * This function must be called with pci_bus_sem acquired!
6874  * Some devices *must* have certain ASPM states disabled per hardware errata.
6875  **/
6876 static void e1000e_disable_aspm_locked(struct pci_dev *pdev, u16 state)
6877 {
6878         __e1000e_disable_aspm(pdev, state, 1);
6879 }
6880
6881 static int e1000e_pm_thaw(struct device *dev)
6882 {
6883         struct net_device *netdev = dev_get_drvdata(dev);
6884         struct e1000_adapter *adapter = netdev_priv(netdev);
6885         int rc = 0;
6886
6887         e1000e_set_interrupt_capability(adapter);
6888
6889         rtnl_lock();
6890         if (netif_running(netdev)) {
6891                 rc = e1000_request_irq(adapter);
6892                 if (rc)
6893                         goto err_irq;
6894
6895                 e1000e_up(adapter);
6896         }
6897
6898         netif_device_attach(netdev);
6899 err_irq:
6900         rtnl_unlock();
6901
6902         return rc;
6903 }
6904
6905 static int __e1000_resume(struct pci_dev *pdev)
6906 {
6907         struct net_device *netdev = pci_get_drvdata(pdev);
6908         struct e1000_adapter *adapter = netdev_priv(netdev);
6909         struct e1000_hw *hw = &adapter->hw;
6910         u16 aspm_disable_flag = 0;
6911
6912         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6913                 aspm_disable_flag = PCIE_LINK_STATE_L0S;
6914         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6915                 aspm_disable_flag |= PCIE_LINK_STATE_L1;
6916         if (aspm_disable_flag)
6917                 e1000e_disable_aspm(pdev, aspm_disable_flag);
6918
6919         pci_set_master(pdev);
6920
6921         if (hw->mac.type >= e1000_pch2lan)
6922                 e1000_resume_workarounds_pchlan(&adapter->hw);
6923
6924         e1000e_power_up_phy(adapter);
6925
6926         /* report the system wakeup cause from S3/S4 */
6927         if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6928                 u16 phy_data;
6929
6930                 e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
6931                 if (phy_data) {
6932                         e_info("PHY Wakeup cause - %s\n",
6933                                phy_data & E1000_WUS_EX ? "Unicast Packet" :
6934                                phy_data & E1000_WUS_MC ? "Multicast Packet" :
6935                                phy_data & E1000_WUS_BC ? "Broadcast Packet" :
6936                                phy_data & E1000_WUS_MAG ? "Magic Packet" :
6937                                phy_data & E1000_WUS_LNKC ?
6938                                "Link Status Change" : "other");
6939                 }
6940                 e1e_wphy(&adapter->hw, BM_WUS, ~0);
6941         } else {
6942                 u32 wus = er32(WUS);
6943
6944                 if (wus) {
6945                         e_info("MAC Wakeup cause - %s\n",
6946                                wus & E1000_WUS_EX ? "Unicast Packet" :
6947                                wus & E1000_WUS_MC ? "Multicast Packet" :
6948                                wus & E1000_WUS_BC ? "Broadcast Packet" :
6949                                wus & E1000_WUS_MAG ? "Magic Packet" :
6950                                wus & E1000_WUS_LNKC ? "Link Status Change" :
6951                                "other");
6952                 }
6953                 ew32(WUS, ~0);
6954         }
6955
6956         e1000e_reset(adapter);
6957
6958         e1000_init_manageability_pt(adapter);
6959
6960         /* If the controller has AMT, do not set DRV_LOAD until the interface
6961          * is up.  For all other cases, let the f/w know that the h/w is now
6962          * under the control of the driver.
6963          */
6964         if (!(adapter->flags & FLAG_HAS_AMT))
6965                 e1000e_get_hw_control(adapter);
6966
6967         return 0;
6968 }
6969
6970 static int e1000e_pm_prepare(struct device *dev)
6971 {
6972         return pm_runtime_suspended(dev) &&
6973                 pm_suspend_via_firmware();
6974 }
6975
6976 static int e1000e_pm_suspend(struct device *dev)
6977 {
6978         struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6979         struct e1000_adapter *adapter = netdev_priv(netdev);
6980         struct pci_dev *pdev = to_pci_dev(dev);
6981         int rc;
6982
6983         e1000e_flush_lpic(pdev);
6984
6985         e1000e_pm_freeze(dev);
6986
6987         rc = __e1000_shutdown(pdev, false);
6988         if (!rc) {
6989                 /* Introduce S0ix implementation */
6990                 if (adapter->flags2 & FLAG2_ENABLE_S0IX_FLOWS)
6991                         e1000e_s0ix_entry_flow(adapter);
6992         }
6993
6994         return 0;
6995 }
6996
6997 static int e1000e_pm_resume(struct device *dev)
6998 {
6999         struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
7000         struct e1000_adapter *adapter = netdev_priv(netdev);
7001         struct pci_dev *pdev = to_pci_dev(dev);
7002         int rc;
7003
7004         /* Introduce S0ix implementation */
7005         if (adapter->flags2 & FLAG2_ENABLE_S0IX_FLOWS)
7006                 e1000e_s0ix_exit_flow(adapter);
7007
7008         rc = __e1000_resume(pdev);
7009         if (rc)
7010                 return rc;
7011
7012         return e1000e_pm_thaw(dev);
7013 }
7014
7015 static __maybe_unused int e1000e_pm_runtime_idle(struct device *dev)
7016 {
7017         struct net_device *netdev = dev_get_drvdata(dev);
7018         struct e1000_adapter *adapter = netdev_priv(netdev);
7019         u16 eee_lp;
7020
7021         eee_lp = adapter->hw.dev_spec.ich8lan.eee_lp_ability;
7022
7023         if (!e1000e_has_link(adapter)) {
7024                 adapter->hw.dev_spec.ich8lan.eee_lp_ability = eee_lp;
7025                 pm_schedule_suspend(dev, 5 * MSEC_PER_SEC);
7026         }
7027
7028         return -EBUSY;
7029 }
7030
7031 static int e1000e_pm_runtime_resume(struct device *dev)
7032 {
7033         struct pci_dev *pdev = to_pci_dev(dev);
7034         struct net_device *netdev = pci_get_drvdata(pdev);
7035         struct e1000_adapter *adapter = netdev_priv(netdev);
7036         int rc;
7037
7038         pdev->pme_poll = true;
7039
7040         rc = __e1000_resume(pdev);
7041         if (rc)
7042                 return rc;
7043
7044         if (netdev->flags & IFF_UP)
7045                 e1000e_up(adapter);
7046
7047         return rc;
7048 }
7049
7050 static int e1000e_pm_runtime_suspend(struct device *dev)
7051 {
7052         struct pci_dev *pdev = to_pci_dev(dev);
7053         struct net_device *netdev = pci_get_drvdata(pdev);
7054         struct e1000_adapter *adapter = netdev_priv(netdev);
7055
7056         if (netdev->flags & IFF_UP) {
7057                 int count = E1000_CHECK_RESET_COUNT;
7058
7059                 while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
7060                         usleep_range(10000, 11000);
7061
7062                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
7063
7064                 /* Down the device without resetting the hardware */
7065                 e1000e_down(adapter, false);
7066         }
7067
7068         if (__e1000_shutdown(pdev, true)) {
7069                 e1000e_pm_runtime_resume(dev);
7070                 return -EBUSY;
7071         }
7072
7073         return 0;
7074 }
7075
7076 static void e1000_shutdown(struct pci_dev *pdev)
7077 {
7078         e1000e_flush_lpic(pdev);
7079
7080         e1000e_pm_freeze(&pdev->dev);
7081
7082         __e1000_shutdown(pdev, false);
7083 }
7084
7085 #ifdef CONFIG_NET_POLL_CONTROLLER
7086
7087 static irqreturn_t e1000_intr_msix(int __always_unused irq, void *data)
7088 {
7089         struct net_device *netdev = data;
7090         struct e1000_adapter *adapter = netdev_priv(netdev);
7091
7092         if (adapter->msix_entries) {
7093                 int vector, msix_irq;
7094
7095                 vector = 0;
7096                 msix_irq = adapter->msix_entries[vector].vector;
7097                 if (disable_hardirq(msix_irq))
7098                         e1000_intr_msix_rx(msix_irq, netdev);
7099                 enable_irq(msix_irq);
7100
7101                 vector++;
7102                 msix_irq = adapter->msix_entries[vector].vector;
7103                 if (disable_hardirq(msix_irq))
7104                         e1000_intr_msix_tx(msix_irq, netdev);
7105                 enable_irq(msix_irq);
7106
7107                 vector++;
7108                 msix_irq = adapter->msix_entries[vector].vector;
7109                 if (disable_hardirq(msix_irq))
7110                         e1000_msix_other(msix_irq, netdev);
7111                 enable_irq(msix_irq);
7112         }
7113
7114         return IRQ_HANDLED;
7115 }
7116
7117 /**
7118  * e1000_netpoll
7119  * @netdev: network interface device structure
7120  *
7121  * Polling 'interrupt' - used by things like netconsole to send skbs
7122  * without having to re-enable interrupts. It's not called while
7123  * the interrupt routine is executing.
7124  */
7125 static void e1000_netpoll(struct net_device *netdev)
7126 {
7127         struct e1000_adapter *adapter = netdev_priv(netdev);
7128
7129         switch (adapter->int_mode) {
7130         case E1000E_INT_MODE_MSIX:
7131                 e1000_intr_msix(adapter->pdev->irq, netdev);
7132                 break;
7133         case E1000E_INT_MODE_MSI:
7134                 if (disable_hardirq(adapter->pdev->irq))
7135                         e1000_intr_msi(adapter->pdev->irq, netdev);
7136                 enable_irq(adapter->pdev->irq);
7137                 break;
7138         default:                /* E1000E_INT_MODE_LEGACY */
7139                 if (disable_hardirq(adapter->pdev->irq))
7140                         e1000_intr(adapter->pdev->irq, netdev);
7141                 enable_irq(adapter->pdev->irq);
7142                 break;
7143         }
7144 }
7145 #endif
7146
7147 /**
7148  * e1000_io_error_detected - called when PCI error is detected
7149  * @pdev: Pointer to PCI device
7150  * @state: The current pci connection state
7151  *
7152  * This function is called after a PCI bus error affecting
7153  * this device has been detected.
7154  */
7155 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
7156                                                 pci_channel_state_t state)
7157 {
7158         e1000e_pm_freeze(&pdev->dev);
7159
7160         if (state == pci_channel_io_perm_failure)
7161                 return PCI_ERS_RESULT_DISCONNECT;
7162
7163         pci_disable_device(pdev);
7164
7165         /* Request a slot reset. */
7166         return PCI_ERS_RESULT_NEED_RESET;
7167 }
7168
7169 /**
7170  * e1000_io_slot_reset - called after the pci bus has been reset.
7171  * @pdev: Pointer to PCI device
7172  *
7173  * Restart the card from scratch, as if from a cold-boot. Implementation
7174  * resembles the first-half of the e1000e_pm_resume routine.
7175  */
7176 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
7177 {
7178         struct net_device *netdev = pci_get_drvdata(pdev);
7179         struct e1000_adapter *adapter = netdev_priv(netdev);
7180         struct e1000_hw *hw = &adapter->hw;
7181         u16 aspm_disable_flag = 0;
7182         int err;
7183         pci_ers_result_t result;
7184
7185         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
7186                 aspm_disable_flag = PCIE_LINK_STATE_L0S;
7187         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
7188                 aspm_disable_flag |= PCIE_LINK_STATE_L1;
7189         if (aspm_disable_flag)
7190                 e1000e_disable_aspm_locked(pdev, aspm_disable_flag);
7191
7192         err = pci_enable_device_mem(pdev);
7193         if (err) {
7194                 dev_err(&pdev->dev,
7195                         "Cannot re-enable PCI device after reset.\n");
7196                 result = PCI_ERS_RESULT_DISCONNECT;
7197         } else {
7198                 pdev->state_saved = true;
7199                 pci_restore_state(pdev);
7200                 pci_set_master(pdev);
7201
7202                 pci_enable_wake(pdev, PCI_D3hot, 0);
7203                 pci_enable_wake(pdev, PCI_D3cold, 0);
7204
7205                 e1000e_reset(adapter);
7206                 ew32(WUS, ~0);
7207                 result = PCI_ERS_RESULT_RECOVERED;
7208         }
7209
7210         return result;
7211 }
7212
7213 /**
7214  * e1000_io_resume - called when traffic can start flowing again.
7215  * @pdev: Pointer to PCI device
7216  *
7217  * This callback is called when the error recovery driver tells us that
7218  * its OK to resume normal operation. Implementation resembles the
7219  * second-half of the e1000e_pm_resume routine.
7220  */
7221 static void e1000_io_resume(struct pci_dev *pdev)
7222 {
7223         struct net_device *netdev = pci_get_drvdata(pdev);
7224         struct e1000_adapter *adapter = netdev_priv(netdev);
7225
7226         e1000_init_manageability_pt(adapter);
7227
7228         e1000e_pm_thaw(&pdev->dev);
7229
7230         /* If the controller has AMT, do not set DRV_LOAD until the interface
7231          * is up.  For all other cases, let the f/w know that the h/w is now
7232          * under the control of the driver.
7233          */
7234         if (!(adapter->flags & FLAG_HAS_AMT))
7235                 e1000e_get_hw_control(adapter);
7236 }
7237
7238 static void e1000_print_device_info(struct e1000_adapter *adapter)
7239 {
7240         struct e1000_hw *hw = &adapter->hw;
7241         struct net_device *netdev = adapter->netdev;
7242         u32 ret_val;
7243         u8 pba_str[E1000_PBANUM_LENGTH];
7244
7245         /* print bus type/speed/width info */
7246         e_info("(PCI Express:2.5GT/s:%s) %pM\n",
7247                /* bus width */
7248                ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
7249                 "Width x1"),
7250                /* MAC address */
7251                netdev->dev_addr);
7252         e_info("Intel(R) PRO/%s Network Connection\n",
7253                (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
7254         ret_val = e1000_read_pba_string_generic(hw, pba_str,
7255                                                 E1000_PBANUM_LENGTH);
7256         if (ret_val)
7257                 strscpy((char *)pba_str, "Unknown", sizeof(pba_str));
7258         e_info("MAC: %d, PHY: %d, PBA No: %s\n",
7259                hw->mac.type, hw->phy.type, pba_str);
7260 }
7261
7262 static void e1000_eeprom_checks(struct e1000_adapter *adapter)
7263 {
7264         struct e1000_hw *hw = &adapter->hw;
7265         int ret_val;
7266         u16 buf = 0;
7267
7268         if (hw->mac.type != e1000_82573)
7269                 return;
7270
7271         ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
7272         le16_to_cpus(&buf);
7273         if (!ret_val && (!(buf & BIT(0)))) {
7274                 /* Deep Smart Power Down (DSPD) */
7275                 dev_warn(&adapter->pdev->dev,
7276                          "Warning: detected DSPD enabled in EEPROM\n");
7277         }
7278 }
7279
7280 static netdev_features_t e1000_fix_features(struct net_device *netdev,
7281                                             netdev_features_t features)
7282 {
7283         struct e1000_adapter *adapter = netdev_priv(netdev);
7284         struct e1000_hw *hw = &adapter->hw;
7285
7286         /* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
7287         if ((hw->mac.type >= e1000_pch2lan) && (netdev->mtu > ETH_DATA_LEN))
7288                 features &= ~NETIF_F_RXFCS;
7289
7290         /* Since there is no support for separate Rx/Tx vlan accel
7291          * enable/disable make sure Tx flag is always in same state as Rx.
7292          */
7293         if (features & NETIF_F_HW_VLAN_CTAG_RX)
7294                 features |= NETIF_F_HW_VLAN_CTAG_TX;
7295         else
7296                 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
7297
7298         return features;
7299 }
7300
7301 static int e1000_set_features(struct net_device *netdev,
7302                               netdev_features_t features)
7303 {
7304         struct e1000_adapter *adapter = netdev_priv(netdev);
7305         netdev_features_t changed = features ^ netdev->features;
7306
7307         if (changed & (NETIF_F_TSO | NETIF_F_TSO6))
7308                 adapter->flags |= FLAG_TSO_FORCE;
7309
7310         if (!(changed & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
7311                          NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_RXFCS |
7312                          NETIF_F_RXALL)))
7313                 return 0;
7314
7315         if (changed & NETIF_F_RXFCS) {
7316                 if (features & NETIF_F_RXFCS) {
7317                         adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
7318                 } else {
7319                         /* We need to take it back to defaults, which might mean
7320                          * stripping is still disabled at the adapter level.
7321                          */
7322                         if (adapter->flags2 & FLAG2_DFLT_CRC_STRIPPING)
7323                                 adapter->flags2 |= FLAG2_CRC_STRIPPING;
7324                         else
7325                                 adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
7326                 }
7327         }
7328
7329         netdev->features = features;
7330
7331         if (netif_running(netdev))
7332                 e1000e_reinit_locked(adapter);
7333         else
7334                 e1000e_reset(adapter);
7335
7336         return 1;
7337 }
7338
7339 static const struct net_device_ops e1000e_netdev_ops = {
7340         .ndo_open               = e1000e_open,
7341         .ndo_stop               = e1000e_close,
7342         .ndo_start_xmit         = e1000_xmit_frame,
7343         .ndo_get_stats64        = e1000e_get_stats64,
7344         .ndo_set_rx_mode        = e1000e_set_rx_mode,
7345         .ndo_set_mac_address    = e1000_set_mac,
7346         .ndo_change_mtu         = e1000_change_mtu,
7347         .ndo_eth_ioctl          = e1000_ioctl,
7348         .ndo_tx_timeout         = e1000_tx_timeout,
7349         .ndo_validate_addr      = eth_validate_addr,
7350
7351         .ndo_vlan_rx_add_vid    = e1000_vlan_rx_add_vid,
7352         .ndo_vlan_rx_kill_vid   = e1000_vlan_rx_kill_vid,
7353 #ifdef CONFIG_NET_POLL_CONTROLLER
7354         .ndo_poll_controller    = e1000_netpoll,
7355 #endif
7356         .ndo_set_features       = e1000_set_features,
7357         .ndo_fix_features       = e1000_fix_features,
7358         .ndo_features_check     = passthru_features_check,
7359         .ndo_hwtstamp_get       = e1000e_hwtstamp_get,
7360         .ndo_hwtstamp_set       = e1000e_hwtstamp_set,
7361 };
7362
7363 /**
7364  * e1000_probe - Device Initialization Routine
7365  * @pdev: PCI device information struct
7366  * @ent: entry in e1000_pci_tbl
7367  *
7368  * Returns 0 on success, negative on failure
7369  *
7370  * e1000_probe initializes an adapter identified by a pci_dev structure.
7371  * The OS initialization, configuring of the adapter private structure,
7372  * and a hardware reset occur.
7373  **/
7374 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
7375 {
7376         struct net_device *netdev;
7377         struct e1000_adapter *adapter;
7378         struct e1000_hw *hw;
7379         const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
7380         resource_size_t mmio_start, mmio_len;
7381         resource_size_t flash_start, flash_len;
7382         static int cards_found;
7383         u16 aspm_disable_flag = 0;
7384         u16 eeprom_data = 0;
7385         u16 eeprom_apme_mask = E1000_EEPROM_APME;
7386         int bars, i, err;
7387         s32 ret_val = 0;
7388
7389         if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
7390                 aspm_disable_flag = PCIE_LINK_STATE_L0S;
7391         if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
7392                 aspm_disable_flag |= PCIE_LINK_STATE_L1;
7393         if (aspm_disable_flag)
7394                 e1000e_disable_aspm(pdev, aspm_disable_flag);
7395
7396         err = pci_enable_device_mem(pdev);
7397         if (err)
7398                 return err;
7399
7400         err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
7401         if (err) {
7402                 dev_err(&pdev->dev,
7403                         "No usable DMA configuration, aborting\n");
7404                 goto err_dma;
7405         }
7406
7407         bars = pci_select_bars(pdev, IORESOURCE_MEM);
7408         err = pci_request_selected_regions_exclusive(pdev, bars,
7409                                                      e1000e_driver_name);
7410         if (err)
7411                 goto err_pci_reg;
7412
7413         pci_set_master(pdev);
7414         /* PCI config space info */
7415         err = pci_save_state(pdev);
7416         if (err)
7417                 goto err_alloc_etherdev;
7418
7419         err = -ENOMEM;
7420         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
7421         if (!netdev)
7422                 goto err_alloc_etherdev;
7423
7424         SET_NETDEV_DEV(netdev, &pdev->dev);
7425
7426         netdev->irq = pdev->irq;
7427
7428         pci_set_drvdata(pdev, netdev);
7429         adapter = netdev_priv(netdev);
7430         hw = &adapter->hw;
7431         adapter->netdev = netdev;
7432         adapter->pdev = pdev;
7433         adapter->ei = ei;
7434         adapter->pba = ei->pba;
7435         adapter->flags = ei->flags;
7436         adapter->flags2 = ei->flags2;
7437         adapter->hw.adapter = adapter;
7438         adapter->hw.mac.type = ei->mac;
7439         adapter->max_hw_frame_size = ei->max_hw_frame_size;
7440         adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
7441
7442         mmio_start = pci_resource_start(pdev, 0);
7443         mmio_len = pci_resource_len(pdev, 0);
7444
7445         err = -EIO;
7446         adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
7447         if (!adapter->hw.hw_addr)
7448                 goto err_ioremap;
7449
7450         if ((adapter->flags & FLAG_HAS_FLASH) &&
7451             (pci_resource_flags(pdev, 1) & IORESOURCE_MEM) &&
7452             (hw->mac.type < e1000_pch_spt)) {
7453                 flash_start = pci_resource_start(pdev, 1);
7454                 flash_len = pci_resource_len(pdev, 1);
7455                 adapter->hw.flash_address = ioremap(flash_start, flash_len);
7456                 if (!adapter->hw.flash_address)
7457                         goto err_flashmap;
7458         }
7459
7460         /* Set default EEE advertisement */
7461         if (adapter->flags2 & FLAG2_HAS_EEE)
7462                 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
7463
7464         /* construct the net_device struct */
7465         netdev->netdev_ops = &e1000e_netdev_ops;
7466         e1000e_set_ethtool_ops(netdev);
7467         netdev->watchdog_timeo = 5 * HZ;
7468         netif_napi_add(netdev, &adapter->napi, e1000e_poll);
7469         strscpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
7470
7471         netdev->mem_start = mmio_start;
7472         netdev->mem_end = mmio_start + mmio_len;
7473
7474         adapter->bd_number = cards_found++;
7475
7476         e1000e_check_options(adapter);
7477
7478         /* setup adapter struct */
7479         err = e1000_sw_init(adapter);
7480         if (err)
7481                 goto err_sw_init;
7482
7483         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
7484         memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
7485         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
7486
7487         err = ei->get_variants(adapter);
7488         if (err)
7489                 goto err_hw_init;
7490
7491         if ((adapter->flags & FLAG_IS_ICH) &&
7492             (adapter->flags & FLAG_READ_ONLY_NVM) &&
7493             (hw->mac.type < e1000_pch_spt))
7494                 e1000e_write_protect_nvm_ich8lan(&adapter->hw);
7495
7496         hw->mac.ops.get_bus_info(&adapter->hw);
7497
7498         adapter->hw.phy.autoneg_wait_to_complete = 0;
7499
7500         /* Copper options */
7501         if (adapter->hw.phy.media_type == e1000_media_type_copper) {
7502                 adapter->hw.phy.mdix = AUTO_ALL_MODES;
7503                 adapter->hw.phy.disable_polarity_correction = 0;
7504                 adapter->hw.phy.ms_type = e1000_ms_hw_default;
7505         }
7506
7507         if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
7508                 dev_info(&pdev->dev,
7509                          "PHY reset is blocked due to SOL/IDER session.\n");
7510
7511         /* Set initial default active device features */
7512         netdev->features = (NETIF_F_SG |
7513                             NETIF_F_HW_VLAN_CTAG_RX |
7514                             NETIF_F_HW_VLAN_CTAG_TX |
7515                             NETIF_F_TSO |
7516                             NETIF_F_TSO6 |
7517                             NETIF_F_RXHASH |
7518                             NETIF_F_RXCSUM |
7519                             NETIF_F_HW_CSUM);
7520
7521         /* disable TSO for pcie and 10/100 speeds to avoid
7522          * some hardware issues and for i219 to fix transfer
7523          * speed being capped at 60%
7524          */
7525         if (!(adapter->flags & FLAG_TSO_FORCE)) {
7526                 switch (adapter->link_speed) {
7527                 case SPEED_10:
7528                 case SPEED_100:
7529                         e_info("10/100 speed: disabling TSO\n");
7530                         netdev->features &= ~NETIF_F_TSO;
7531                         netdev->features &= ~NETIF_F_TSO6;
7532                         break;
7533                 case SPEED_1000:
7534                         netdev->features |= NETIF_F_TSO;
7535                         netdev->features |= NETIF_F_TSO6;
7536                         break;
7537                 default:
7538                         /* oops */
7539                         break;
7540                 }
7541                 if (hw->mac.type == e1000_pch_spt) {
7542                         netdev->features &= ~NETIF_F_TSO;
7543                         netdev->features &= ~NETIF_F_TSO6;
7544                 }
7545         }
7546
7547         /* Set user-changeable features (subset of all device features) */
7548         netdev->hw_features = netdev->features;
7549         netdev->hw_features |= NETIF_F_RXFCS;
7550         netdev->priv_flags |= IFF_SUPP_NOFCS;
7551         netdev->hw_features |= NETIF_F_RXALL;
7552
7553         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
7554                 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
7555
7556         netdev->vlan_features |= (NETIF_F_SG |
7557                                   NETIF_F_TSO |
7558                                   NETIF_F_TSO6 |
7559                                   NETIF_F_HW_CSUM);
7560
7561         netdev->priv_flags |= IFF_UNICAST_FLT;
7562
7563         netdev->features |= NETIF_F_HIGHDMA;
7564         netdev->vlan_features |= NETIF_F_HIGHDMA;
7565
7566         /* MTU range: 68 - max_hw_frame_size */
7567         netdev->min_mtu = ETH_MIN_MTU;
7568         netdev->max_mtu = adapter->max_hw_frame_size -
7569                           (VLAN_ETH_HLEN + ETH_FCS_LEN);
7570
7571         if (e1000e_enable_mng_pass_thru(&adapter->hw))
7572                 adapter->flags |= FLAG_MNG_PT_ENABLED;
7573
7574         /* before reading the NVM, reset the controller to
7575          * put the device in a known good starting state
7576          */
7577         adapter->hw.mac.ops.reset_hw(&adapter->hw);
7578
7579         /* systems with ASPM and others may see the checksum fail on the first
7580          * attempt. Let's give it a few tries
7581          */
7582         for (i = 0;; i++) {
7583                 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
7584                         break;
7585                 if (i == 2) {
7586                         dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
7587                         err = -EIO;
7588                         goto err_eeprom;
7589                 }
7590         }
7591
7592         e1000_eeprom_checks(adapter);
7593
7594         /* copy the MAC address */
7595         if (e1000e_read_mac_addr(&adapter->hw))
7596                 dev_err(&pdev->dev,
7597                         "NVM Read Error while reading MAC address\n");
7598
7599         eth_hw_addr_set(netdev, adapter->hw.mac.addr);
7600
7601         if (!is_valid_ether_addr(netdev->dev_addr)) {
7602                 dev_err(&pdev->dev, "Invalid MAC Address: %pM\n",
7603                         netdev->dev_addr);
7604                 err = -EIO;
7605                 goto err_eeprom;
7606         }
7607
7608         timer_setup(&adapter->watchdog_timer, e1000_watchdog, 0);
7609         timer_setup(&adapter->phy_info_timer, e1000_update_phy_info, 0);
7610
7611         INIT_WORK(&adapter->reset_task, e1000_reset_task);
7612         INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
7613         INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
7614         INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
7615         INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
7616
7617         /* Initialize link parameters. User can change them with ethtool */
7618         adapter->hw.mac.autoneg = 1;
7619         adapter->fc_autoneg = true;
7620         adapter->hw.fc.requested_mode = e1000_fc_default;
7621         adapter->hw.fc.current_mode = e1000_fc_default;
7622         adapter->hw.phy.autoneg_advertised = 0x2f;
7623
7624         /* Initial Wake on LAN setting - If APM wake is enabled in
7625          * the EEPROM, enable the ACPI Magic Packet filter
7626          */
7627         if (adapter->flags & FLAG_APME_IN_WUC) {
7628                 /* APME bit in EEPROM is mapped to WUC.APME */
7629                 eeprom_data = er32(WUC);
7630                 eeprom_apme_mask = E1000_WUC_APME;
7631                 if ((hw->mac.type > e1000_ich10lan) &&
7632                     (eeprom_data & E1000_WUC_PHY_WAKE))
7633                         adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
7634         } else if (adapter->flags & FLAG_APME_IN_CTRL3) {
7635                 if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
7636                     (adapter->hw.bus.func == 1))
7637                         ret_val = e1000_read_nvm(&adapter->hw,
7638                                               NVM_INIT_CONTROL3_PORT_B,
7639                                               1, &eeprom_data);
7640                 else
7641                         ret_val = e1000_read_nvm(&adapter->hw,
7642                                               NVM_INIT_CONTROL3_PORT_A,
7643                                               1, &eeprom_data);
7644         }
7645
7646         /* fetch WoL from EEPROM */
7647         if (ret_val)
7648                 e_dbg("NVM read error getting WoL initial values: %d\n", ret_val);
7649         else if (eeprom_data & eeprom_apme_mask)
7650                 adapter->eeprom_wol |= E1000_WUFC_MAG;
7651
7652         /* now that we have the eeprom settings, apply the special cases
7653          * where the eeprom may be wrong or the board simply won't support
7654          * wake on lan on a particular port
7655          */
7656         if (!(adapter->flags & FLAG_HAS_WOL))
7657                 adapter->eeprom_wol = 0;
7658
7659         /* initialize the wol settings based on the eeprom settings */
7660         adapter->wol = adapter->eeprom_wol;
7661
7662         /* make sure adapter isn't asleep if manageability is enabled */
7663         if (adapter->wol || (adapter->flags & FLAG_MNG_PT_ENABLED) ||
7664             (hw->mac.ops.check_mng_mode(hw)))
7665                 device_wakeup_enable(&pdev->dev);
7666
7667         /* save off EEPROM version number */
7668         ret_val = e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
7669
7670         if (ret_val) {
7671                 e_dbg("NVM read error getting EEPROM version: %d\n", ret_val);
7672                 adapter->eeprom_vers = 0;
7673         }
7674
7675         /* init PTP hardware clock */
7676         e1000e_ptp_init(adapter);
7677
7678         /* reset the hardware with the new settings */
7679         e1000e_reset(adapter);
7680
7681         /* If the controller has AMT, do not set DRV_LOAD until the interface
7682          * is up.  For all other cases, let the f/w know that the h/w is now
7683          * under the control of the driver.
7684          */
7685         if (!(adapter->flags & FLAG_HAS_AMT))
7686                 e1000e_get_hw_control(adapter);
7687
7688         if (hw->mac.type >= e1000_pch_cnp)
7689                 adapter->flags2 |= FLAG2_ENABLE_S0IX_FLOWS;
7690
7691         strscpy(netdev->name, "eth%d", sizeof(netdev->name));
7692         err = register_netdev(netdev);
7693         if (err)
7694                 goto err_register;
7695
7696         /* carrier off reporting is important to ethtool even BEFORE open */
7697         netif_carrier_off(netdev);
7698
7699         e1000_print_device_info(adapter);
7700
7701         dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_SMART_PREPARE);
7702
7703         if (pci_dev_run_wake(pdev))
7704                 pm_runtime_put_noidle(&pdev->dev);
7705
7706         return 0;
7707
7708 err_register:
7709         if (!(adapter->flags & FLAG_HAS_AMT))
7710                 e1000e_release_hw_control(adapter);
7711 err_eeprom:
7712         if (hw->phy.ops.check_reset_block && !hw->phy.ops.check_reset_block(hw))
7713                 e1000_phy_hw_reset(&adapter->hw);
7714 err_hw_init:
7715         kfree(adapter->tx_ring);
7716         kfree(adapter->rx_ring);
7717 err_sw_init:
7718         if ((adapter->hw.flash_address) && (hw->mac.type < e1000_pch_spt))
7719                 iounmap(adapter->hw.flash_address);
7720         e1000e_reset_interrupt_capability(adapter);
7721 err_flashmap:
7722         iounmap(adapter->hw.hw_addr);
7723 err_ioremap:
7724         free_netdev(netdev);
7725 err_alloc_etherdev:
7726         pci_release_mem_regions(pdev);
7727 err_pci_reg:
7728 err_dma:
7729         pci_disable_device(pdev);
7730         return err;
7731 }
7732
7733 /**
7734  * e1000_remove - Device Removal Routine
7735  * @pdev: PCI device information struct
7736  *
7737  * e1000_remove is called by the PCI subsystem to alert the driver
7738  * that it should release a PCI device.  This could be caused by a
7739  * Hot-Plug event, or because the driver is going to be removed from
7740  * memory.
7741  **/
7742 static void e1000_remove(struct pci_dev *pdev)
7743 {
7744         struct net_device *netdev = pci_get_drvdata(pdev);
7745         struct e1000_adapter *adapter = netdev_priv(netdev);
7746
7747         e1000e_ptp_remove(adapter);
7748
7749         /* The timers may be rescheduled, so explicitly disable them
7750          * from being rescheduled.
7751          */
7752         set_bit(__E1000_DOWN, &adapter->state);
7753         timer_delete_sync(&adapter->watchdog_timer);
7754         timer_delete_sync(&adapter->phy_info_timer);
7755
7756         cancel_work_sync(&adapter->reset_task);
7757         cancel_work_sync(&adapter->watchdog_task);
7758         cancel_work_sync(&adapter->downshift_task);
7759         cancel_work_sync(&adapter->update_phy_task);
7760         cancel_work_sync(&adapter->print_hang_task);
7761
7762         if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
7763                 cancel_work_sync(&adapter->tx_hwtstamp_work);
7764                 if (adapter->tx_hwtstamp_skb) {
7765                         dev_consume_skb_any(adapter->tx_hwtstamp_skb);
7766                         adapter->tx_hwtstamp_skb = NULL;
7767                 }
7768         }
7769
7770         unregister_netdev(netdev);
7771
7772         if (pci_dev_run_wake(pdev))
7773                 pm_runtime_get_noresume(&pdev->dev);
7774
7775         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
7776          * would have already happened in close and is redundant.
7777          */
7778         e1000e_release_hw_control(adapter);
7779
7780         e1000e_reset_interrupt_capability(adapter);
7781         kfree(adapter->tx_ring);
7782         kfree(adapter->rx_ring);
7783
7784         iounmap(adapter->hw.hw_addr);
7785         if ((adapter->hw.flash_address) &&
7786             (adapter->hw.mac.type < e1000_pch_spt))
7787                 iounmap(adapter->hw.flash_address);
7788         pci_release_mem_regions(pdev);
7789
7790         free_netdev(netdev);
7791
7792         pci_disable_device(pdev);
7793 }
7794
7795 /* PCI Error Recovery (ERS) */
7796 static const struct pci_error_handlers e1000_err_handler = {
7797         .error_detected = e1000_io_error_detected,
7798         .slot_reset = e1000_io_slot_reset,
7799         .resume = e1000_io_resume,
7800 };
7801
7802 static const struct pci_device_id e1000_pci_tbl[] = {
7803         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
7804         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
7805         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
7806         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP),
7807           board_82571 },
7808         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
7809         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
7810         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
7811         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
7812         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
7813
7814         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
7815         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
7816         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
7817         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
7818
7819         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
7820         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
7821         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
7822
7823         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
7824         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
7825         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
7826
7827         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
7828           board_80003es2lan },
7829         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
7830           board_80003es2lan },
7831         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
7832           board_80003es2lan },
7833         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
7834           board_80003es2lan },
7835
7836         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
7837         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
7838         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
7839         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
7840         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
7841         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
7842         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
7843         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
7844
7845         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
7846         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
7847         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
7848         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
7849         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
7850         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
7851         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
7852         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
7853         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
7854
7855         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
7856         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
7857         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
7858
7859         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
7860         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
7861         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
7862
7863         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
7864         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
7865         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
7866         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
7867
7868         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
7869         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },
7870
7871         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_LM), board_pch_lpt },
7872         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_V), board_pch_lpt },
7873         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_LM), board_pch_lpt },
7874         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_V), board_pch_lpt },
7875         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM2), board_pch_lpt },
7876         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V2), board_pch_lpt },
7877         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM3), board_pch_lpt },
7878         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V3), board_pch_lpt },
7879         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM), board_pch_spt },
7880         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V), board_pch_spt },
7881         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM2), board_pch_spt },
7882         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V2), board_pch_spt },
7883         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LBG_I219_LM3), board_pch_spt },
7884         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM4), board_pch_spt },
7885         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V4), board_pch_spt },
7886         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM5), board_pch_spt },
7887         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V5), board_pch_spt },
7888         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_LM6), board_pch_cnp },
7889         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_V6), board_pch_cnp },
7890         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_LM7), board_pch_cnp },
7891         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_V7), board_pch_cnp },
7892         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_LM8), board_pch_cnp },
7893         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_V8), board_pch_cnp },
7894         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_LM9), board_pch_cnp },
7895         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_V9), board_pch_cnp },
7896         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_LM10), board_pch_cnp },
7897         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_V10), board_pch_cnp },
7898         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_LM11), board_pch_cnp },
7899         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_V11), board_pch_cnp },
7900         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_LM12), board_pch_spt },
7901         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_V12), board_pch_spt },
7902         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_LM13), board_pch_tgp },
7903         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_V13), board_pch_tgp },
7904         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_LM14), board_pch_tgp },
7905         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_V14), board_pch_tgp },
7906         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_LM15), board_pch_tgp },
7907         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_V15), board_pch_tgp },
7908         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_RPL_I219_LM23), board_pch_adp },
7909         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_RPL_I219_V23), board_pch_adp },
7910         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_LM16), board_pch_adp },
7911         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_V16), board_pch_adp },
7912         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_LM17), board_pch_adp },
7913         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_V17), board_pch_adp },
7914         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_RPL_I219_LM22), board_pch_adp },
7915         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_RPL_I219_V22), board_pch_adp },
7916         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_LM19), board_pch_adp },
7917         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_V19), board_pch_adp },
7918         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_MTP_I219_LM18), board_pch_mtp },
7919         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_MTP_I219_V18), board_pch_mtp },
7920         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LNP_I219_LM20), board_pch_mtp },
7921         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LNP_I219_V20), board_pch_mtp },
7922         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LNP_I219_LM21), board_pch_mtp },
7923         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LNP_I219_V21), board_pch_mtp },
7924         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ARL_I219_LM24), board_pch_mtp },
7925         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ARL_I219_V24), board_pch_mtp },
7926         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_PTP_I219_LM25), board_pch_mtp },
7927         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_PTP_I219_V25), board_pch_mtp },
7928         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_PTP_I219_LM26), board_pch_mtp },
7929         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_PTP_I219_V26), board_pch_mtp },
7930         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_PTP_I219_LM27), board_pch_mtp },
7931         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_PTP_I219_V27), board_pch_mtp },
7932         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_NVL_I219_LM29), board_pch_mtp },
7933         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_NVL_I219_V29), board_pch_mtp },
7934
7935         { 0, 0, 0, 0, 0, 0, 0 } /* terminate list */
7936 };
7937 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
7938
7939 static const struct dev_pm_ops e1000e_pm_ops = {
7940         .prepare        = e1000e_pm_prepare,
7941         .suspend        = e1000e_pm_suspend,
7942         .resume         = e1000e_pm_resume,
7943         .freeze         = e1000e_pm_freeze,
7944         .thaw           = e1000e_pm_thaw,
7945         .poweroff       = e1000e_pm_suspend,
7946         .restore        = e1000e_pm_resume,
7947         RUNTIME_PM_OPS(e1000e_pm_runtime_suspend, e1000e_pm_runtime_resume,
7948                        e1000e_pm_runtime_idle)
7949 };
7950
7951 /* PCI Device API Driver */
7952 static struct pci_driver e1000_driver = {
7953         .name     = e1000e_driver_name,
7954         .id_table = e1000_pci_tbl,
7955         .probe    = e1000_probe,
7956         .remove   = e1000_remove,
7957         .driver.pm = pm_ptr(&e1000e_pm_ops),
7958         .shutdown = e1000_shutdown,
7959         .err_handler = &e1000_err_handler
7960 };
7961
7962 /**
7963  * e1000_init_module - Driver Registration Routine
7964  *
7965  * e1000_init_module is the first routine called when the driver is
7966  * loaded. All it does is register with the PCI subsystem.
7967  **/
7968 static int __init e1000_init_module(void)
7969 {
7970         pr_info("Intel(R) PRO/1000 Network Driver\n");
7971         pr_info("Copyright(c) 1999 - 2015 Intel Corporation.\n");
7972
7973         return pci_register_driver(&e1000_driver);
7974 }
7975 module_init(e1000_init_module);
7976
7977 /**
7978  * e1000_exit_module - Driver Exit Cleanup Routine
7979  *
7980  * e1000_exit_module is called just before the driver is removed
7981  * from memory.
7982  **/
7983 static void __exit e1000_exit_module(void)
7984 {
7985         pci_unregister_driver(&e1000_driver);
7986 }
7987 module_exit(e1000_exit_module);
7988
7989 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
7990 MODULE_LICENSE("GPL v2");
7991
7992 /* netdev.c */