Merge tag 'for-6.10-rc6-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave...
[linux-block.git] / drivers / net / ethernet / intel / e1000e / ich8lan.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2018 Intel Corporation. */
3
4 /* 82562G 10/100 Network Connection
5  * 82562G-2 10/100 Network Connection
6  * 82562GT 10/100 Network Connection
7  * 82562GT-2 10/100 Network Connection
8  * 82562V 10/100 Network Connection
9  * 82562V-2 10/100 Network Connection
10  * 82566DC-2 Gigabit Network Connection
11  * 82566DC Gigabit Network Connection
12  * 82566DM-2 Gigabit Network Connection
13  * 82566DM Gigabit Network Connection
14  * 82566MC Gigabit Network Connection
15  * 82566MM Gigabit Network Connection
16  * 82567LM Gigabit Network Connection
17  * 82567LF Gigabit Network Connection
18  * 82567V Gigabit Network Connection
19  * 82567LM-2 Gigabit Network Connection
20  * 82567LF-2 Gigabit Network Connection
21  * 82567V-2 Gigabit Network Connection
22  * 82567LF-3 Gigabit Network Connection
23  * 82567LM-3 Gigabit Network Connection
24  * 82567LM-4 Gigabit Network Connection
25  * 82577LM Gigabit Network Connection
26  * 82577LC Gigabit Network Connection
27  * 82578DM Gigabit Network Connection
28  * 82578DC Gigabit Network Connection
29  * 82579LM Gigabit Network Connection
30  * 82579V Gigabit Network Connection
31  * Ethernet Connection I217-LM
32  * Ethernet Connection I217-V
33  * Ethernet Connection I218-V
34  * Ethernet Connection I218-LM
35  * Ethernet Connection (2) I218-LM
36  * Ethernet Connection (2) I218-V
37  * Ethernet Connection (3) I218-LM
38  * Ethernet Connection (3) I218-V
39  */
40
41 #include "e1000.h"
42
43 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
44 /* Offset 04h HSFSTS */
45 union ich8_hws_flash_status {
46         struct ich8_hsfsts {
47                 u16 flcdone:1;  /* bit 0 Flash Cycle Done */
48                 u16 flcerr:1;   /* bit 1 Flash Cycle Error */
49                 u16 dael:1;     /* bit 2 Direct Access error Log */
50                 u16 berasesz:2; /* bit 4:3 Sector Erase Size */
51                 u16 flcinprog:1;        /* bit 5 flash cycle in Progress */
52                 u16 reserved1:2;        /* bit 13:6 Reserved */
53                 u16 reserved2:6;        /* bit 13:6 Reserved */
54                 u16 fldesvalid:1;       /* bit 14 Flash Descriptor Valid */
55                 u16 flockdn:1;  /* bit 15 Flash Config Lock-Down */
56         } hsf_status;
57         u16 regval;
58 };
59
60 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
61 /* Offset 06h FLCTL */
62 union ich8_hws_flash_ctrl {
63         struct ich8_hsflctl {
64                 u16 flcgo:1;    /* 0 Flash Cycle Go */
65                 u16 flcycle:2;  /* 2:1 Flash Cycle */
66                 u16 reserved:5; /* 7:3 Reserved  */
67                 u16 fldbcount:2;        /* 9:8 Flash Data Byte Count */
68                 u16 flockdn:6;  /* 15:10 Reserved */
69         } hsf_ctrl;
70         u16 regval;
71 };
72
73 /* ICH Flash Region Access Permissions */
74 union ich8_hws_flash_regacc {
75         struct ich8_flracc {
76                 u32 grra:8;     /* 0:7 GbE region Read Access */
77                 u32 grwa:8;     /* 8:15 GbE region Write Access */
78                 u32 gmrag:8;    /* 23:16 GbE Master Read Access Grant */
79                 u32 gmwag:8;    /* 31:24 GbE Master Write Access Grant */
80         } hsf_flregacc;
81         u16 regval;
82 };
83
84 /* ICH Flash Protected Region */
85 union ich8_flash_protected_range {
86         struct ich8_pr {
87                 u32 base:13;    /* 0:12 Protected Range Base */
88                 u32 reserved1:2;        /* 13:14 Reserved */
89                 u32 rpe:1;      /* 15 Read Protection Enable */
90                 u32 limit:13;   /* 16:28 Protected Range Limit */
91                 u32 reserved2:2;        /* 29:30 Reserved */
92                 u32 wpe:1;      /* 31 Write Protection Enable */
93         } range;
94         u32 regval;
95 };
96
97 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
98 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
99 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
100 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
101                                                 u32 offset, u8 byte);
102 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
103                                          u8 *data);
104 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
105                                          u16 *data);
106 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
107                                          u8 size, u16 *data);
108 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
109                                            u32 *data);
110 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw,
111                                           u32 offset, u32 *data);
112 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw,
113                                             u32 offset, u32 data);
114 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
115                                                  u32 offset, u32 dword);
116 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
117 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
118 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
119 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
120 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
121 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
122 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
123 static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
124 static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
125 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
126 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
127 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
128 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
129 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
130 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
131 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
132 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
133 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
134 static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw);
135 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
136 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
137 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force);
138 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
139 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state);
140
141 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
142 {
143         return readw(hw->flash_address + reg);
144 }
145
146 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
147 {
148         return readl(hw->flash_address + reg);
149 }
150
151 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
152 {
153         writew(val, hw->flash_address + reg);
154 }
155
156 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
157 {
158         writel(val, hw->flash_address + reg);
159 }
160
161 #define er16flash(reg)          __er16flash(hw, (reg))
162 #define er32flash(reg)          __er32flash(hw, (reg))
163 #define ew16flash(reg, val)     __ew16flash(hw, (reg), (val))
164 #define ew32flash(reg, val)     __ew32flash(hw, (reg), (val))
165
166 /**
167  *  e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
168  *  @hw: pointer to the HW structure
169  *
170  *  Test access to the PHY registers by reading the PHY ID registers.  If
171  *  the PHY ID is already known (e.g. resume path) compare it with known ID,
172  *  otherwise assume the read PHY ID is correct if it is valid.
173  *
174  *  Assumes the sw/fw/hw semaphore is already acquired.
175  **/
176 static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
177 {
178         u16 phy_reg = 0;
179         u32 phy_id = 0;
180         s32 ret_val = 0;
181         u16 retry_count;
182         u32 mac_reg = 0;
183
184         for (retry_count = 0; retry_count < 2; retry_count++) {
185                 ret_val = e1e_rphy_locked(hw, MII_PHYSID1, &phy_reg);
186                 if (ret_val || (phy_reg == 0xFFFF))
187                         continue;
188                 phy_id = (u32)(phy_reg << 16);
189
190                 ret_val = e1e_rphy_locked(hw, MII_PHYSID2, &phy_reg);
191                 if (ret_val || (phy_reg == 0xFFFF)) {
192                         phy_id = 0;
193                         continue;
194                 }
195                 phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
196                 break;
197         }
198
199         if (hw->phy.id) {
200                 if (hw->phy.id == phy_id)
201                         goto out;
202         } else if (phy_id) {
203                 hw->phy.id = phy_id;
204                 hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
205                 goto out;
206         }
207
208         /* In case the PHY needs to be in mdio slow mode,
209          * set slow mode and try to get the PHY id again.
210          */
211         if (hw->mac.type < e1000_pch_lpt) {
212                 hw->phy.ops.release(hw);
213                 ret_val = e1000_set_mdio_slow_mode_hv(hw);
214                 if (!ret_val)
215                         ret_val = e1000e_get_phy_id(hw);
216                 hw->phy.ops.acquire(hw);
217         }
218
219         if (ret_val)
220                 return false;
221 out:
222         if (hw->mac.type >= e1000_pch_lpt) {
223                 /* Only unforce SMBus if ME is not active */
224                 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
225                         /* Switching PHY interface always returns MDI error
226                          * so disable retry mechanism to avoid wasting time
227                          */
228                         e1000e_disable_phy_retry(hw);
229
230                         /* Unforce SMBus mode in PHY */
231                         e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg);
232                         phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
233                         e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg);
234
235                         e1000e_enable_phy_retry(hw);
236
237                         /* Unforce SMBus mode in MAC */
238                         mac_reg = er32(CTRL_EXT);
239                         mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
240                         ew32(CTRL_EXT, mac_reg);
241                 }
242         }
243
244         return true;
245 }
246
247 /**
248  *  e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
249  *  @hw: pointer to the HW structure
250  *
251  *  Toggling the LANPHYPC pin value fully power-cycles the PHY and is
252  *  used to reset the PHY to a quiescent state when necessary.
253  **/
254 static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw)
255 {
256         u32 mac_reg;
257
258         /* Set Phy Config Counter to 50msec */
259         mac_reg = er32(FEXTNVM3);
260         mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
261         mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
262         ew32(FEXTNVM3, mac_reg);
263
264         /* Toggle LANPHYPC Value bit */
265         mac_reg = er32(CTRL);
266         mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
267         mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
268         ew32(CTRL, mac_reg);
269         e1e_flush();
270         usleep_range(10, 20);
271         mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
272         ew32(CTRL, mac_reg);
273         e1e_flush();
274
275         if (hw->mac.type < e1000_pch_lpt) {
276                 msleep(50);
277         } else {
278                 u16 count = 20;
279
280                 do {
281                         usleep_range(5000, 6000);
282                 } while (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LPCD) && count--);
283
284                 msleep(30);
285         }
286 }
287
288 /**
289  *  e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
290  *  @hw: pointer to the HW structure
291  *
292  *  Workarounds/flow necessary for PHY initialization during driver load
293  *  and resume paths.
294  **/
295 static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
296 {
297         struct e1000_adapter *adapter = hw->adapter;
298         u32 mac_reg, fwsm = er32(FWSM);
299         s32 ret_val;
300
301         /* Gate automatic PHY configuration by hardware on managed and
302          * non-managed 82579 and newer adapters.
303          */
304         e1000_gate_hw_phy_config_ich8lan(hw, true);
305
306         /* It is not possible to be certain of the current state of ULP
307          * so forcibly disable it.
308          */
309         hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown;
310         ret_val = e1000_disable_ulp_lpt_lp(hw, true);
311         if (ret_val)
312                 e_warn("Failed to disable ULP\n");
313
314         ret_val = hw->phy.ops.acquire(hw);
315         if (ret_val) {
316                 e_dbg("Failed to initialize PHY flow\n");
317                 goto out;
318         }
319
320         /* There is no guarantee that the PHY is accessible at this time
321          * so disable retry mechanism to avoid wasting time
322          */
323         e1000e_disable_phy_retry(hw);
324
325         /* The MAC-PHY interconnect may be in SMBus mode.  If the PHY is
326          * inaccessible and resetting the PHY is not blocked, toggle the
327          * LANPHYPC Value bit to force the interconnect to PCIe mode.
328          */
329         switch (hw->mac.type) {
330         case e1000_pch_lpt:
331         case e1000_pch_spt:
332         case e1000_pch_cnp:
333         case e1000_pch_tgp:
334         case e1000_pch_adp:
335         case e1000_pch_mtp:
336         case e1000_pch_lnp:
337         case e1000_pch_ptp:
338         case e1000_pch_nvp:
339                 if (e1000_phy_is_accessible_pchlan(hw))
340                         break;
341
342                 /* Before toggling LANPHYPC, see if PHY is accessible by
343                  * forcing MAC to SMBus mode first.
344                  */
345                 mac_reg = er32(CTRL_EXT);
346                 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
347                 ew32(CTRL_EXT, mac_reg);
348
349                 /* Wait 50 milliseconds for MAC to finish any retries
350                  * that it might be trying to perform from previous
351                  * attempts to acknowledge any phy read requests.
352                  */
353                 msleep(50);
354
355                 fallthrough;
356         case e1000_pch2lan:
357                 if (e1000_phy_is_accessible_pchlan(hw))
358                         break;
359
360                 fallthrough;
361         case e1000_pchlan:
362                 if ((hw->mac.type == e1000_pchlan) &&
363                     (fwsm & E1000_ICH_FWSM_FW_VALID))
364                         break;
365
366                 if (hw->phy.ops.check_reset_block(hw)) {
367                         e_dbg("Required LANPHYPC toggle blocked by ME\n");
368                         ret_val = -E1000_ERR_PHY;
369                         break;
370                 }
371
372                 /* Toggle LANPHYPC Value bit */
373                 e1000_toggle_lanphypc_pch_lpt(hw);
374                 if (hw->mac.type >= e1000_pch_lpt) {
375                         if (e1000_phy_is_accessible_pchlan(hw))
376                                 break;
377
378                         /* Toggling LANPHYPC brings the PHY out of SMBus mode
379                          * so ensure that the MAC is also out of SMBus mode
380                          */
381                         mac_reg = er32(CTRL_EXT);
382                         mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
383                         ew32(CTRL_EXT, mac_reg);
384
385                         if (e1000_phy_is_accessible_pchlan(hw))
386                                 break;
387
388                         ret_val = -E1000_ERR_PHY;
389                 }
390                 break;
391         default:
392                 break;
393         }
394
395         e1000e_enable_phy_retry(hw);
396
397         hw->phy.ops.release(hw);
398         if (!ret_val) {
399
400                 /* Check to see if able to reset PHY.  Print error if not */
401                 if (hw->phy.ops.check_reset_block(hw)) {
402                         e_err("Reset blocked by ME\n");
403                         goto out;
404                 }
405
406                 /* Reset the PHY before any access to it.  Doing so, ensures
407                  * that the PHY is in a known good state before we read/write
408                  * PHY registers.  The generic reset is sufficient here,
409                  * because we haven't determined the PHY type yet.
410                  */
411                 ret_val = e1000e_phy_hw_reset_generic(hw);
412                 if (ret_val)
413                         goto out;
414
415                 /* On a successful reset, possibly need to wait for the PHY
416                  * to quiesce to an accessible state before returning control
417                  * to the calling function.  If the PHY does not quiesce, then
418                  * return E1000E_BLK_PHY_RESET, as this is the condition that
419                  *  the PHY is in.
420                  */
421                 ret_val = hw->phy.ops.check_reset_block(hw);
422                 if (ret_val)
423                         e_err("ME blocked access to PHY after reset\n");
424         }
425
426 out:
427         /* Ungate automatic PHY configuration on non-managed 82579 */
428         if ((hw->mac.type == e1000_pch2lan) &&
429             !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
430                 usleep_range(10000, 11000);
431                 e1000_gate_hw_phy_config_ich8lan(hw, false);
432         }
433
434         return ret_val;
435 }
436
437 /**
438  *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
439  *  @hw: pointer to the HW structure
440  *
441  *  Initialize family-specific PHY parameters and function pointers.
442  **/
443 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
444 {
445         struct e1000_phy_info *phy = &hw->phy;
446         s32 ret_val;
447
448         phy->addr = 1;
449         phy->reset_delay_us = 100;
450
451         phy->ops.set_page = e1000_set_page_igp;
452         phy->ops.read_reg = e1000_read_phy_reg_hv;
453         phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
454         phy->ops.read_reg_page = e1000_read_phy_reg_page_hv;
455         phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
456         phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
457         phy->ops.write_reg = e1000_write_phy_reg_hv;
458         phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
459         phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
460         phy->ops.power_up = e1000_power_up_phy_copper;
461         phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
462         phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
463
464         phy->id = e1000_phy_unknown;
465
466         if (hw->mac.type == e1000_pch_mtp) {
467                 phy->retry_count = 2;
468                 e1000e_enable_phy_retry(hw);
469         }
470
471         ret_val = e1000_init_phy_workarounds_pchlan(hw);
472         if (ret_val)
473                 return ret_val;
474
475         if (phy->id == e1000_phy_unknown)
476                 switch (hw->mac.type) {
477                 default:
478                         ret_val = e1000e_get_phy_id(hw);
479                         if (ret_val)
480                                 return ret_val;
481                         if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
482                                 break;
483                         fallthrough;
484                 case e1000_pch2lan:
485                 case e1000_pch_lpt:
486                 case e1000_pch_spt:
487                 case e1000_pch_cnp:
488                 case e1000_pch_tgp:
489                 case e1000_pch_adp:
490                 case e1000_pch_mtp:
491                 case e1000_pch_lnp:
492                 case e1000_pch_ptp:
493                 case e1000_pch_nvp:
494                         /* In case the PHY needs to be in mdio slow mode,
495                          * set slow mode and try to get the PHY id again.
496                          */
497                         ret_val = e1000_set_mdio_slow_mode_hv(hw);
498                         if (ret_val)
499                                 return ret_val;
500                         ret_val = e1000e_get_phy_id(hw);
501                         if (ret_val)
502                                 return ret_val;
503                         break;
504                 }
505         phy->type = e1000e_get_phy_type_from_id(phy->id);
506
507         switch (phy->type) {
508         case e1000_phy_82577:
509         case e1000_phy_82579:
510         case e1000_phy_i217:
511                 phy->ops.check_polarity = e1000_check_polarity_82577;
512                 phy->ops.force_speed_duplex =
513                     e1000_phy_force_speed_duplex_82577;
514                 phy->ops.get_cable_length = e1000_get_cable_length_82577;
515                 phy->ops.get_info = e1000_get_phy_info_82577;
516                 phy->ops.commit = e1000e_phy_sw_reset;
517                 break;
518         case e1000_phy_82578:
519                 phy->ops.check_polarity = e1000_check_polarity_m88;
520                 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
521                 phy->ops.get_cable_length = e1000e_get_cable_length_m88;
522                 phy->ops.get_info = e1000e_get_phy_info_m88;
523                 break;
524         default:
525                 ret_val = -E1000_ERR_PHY;
526                 break;
527         }
528
529         return ret_val;
530 }
531
532 /**
533  *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
534  *  @hw: pointer to the HW structure
535  *
536  *  Initialize family-specific PHY parameters and function pointers.
537  **/
538 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
539 {
540         struct e1000_phy_info *phy = &hw->phy;
541         s32 ret_val;
542         u16 i = 0;
543
544         phy->addr = 1;
545         phy->reset_delay_us = 100;
546
547         phy->ops.power_up = e1000_power_up_phy_copper;
548         phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
549
550         /* We may need to do this twice - once for IGP and if that fails,
551          * we'll set BM func pointers and try again
552          */
553         ret_val = e1000e_determine_phy_address(hw);
554         if (ret_val) {
555                 phy->ops.write_reg = e1000e_write_phy_reg_bm;
556                 phy->ops.read_reg = e1000e_read_phy_reg_bm;
557                 ret_val = e1000e_determine_phy_address(hw);
558                 if (ret_val) {
559                         e_dbg("Cannot determine PHY addr. Erroring out\n");
560                         return ret_val;
561                 }
562         }
563
564         phy->id = 0;
565         while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
566                (i++ < 100)) {
567                 usleep_range(1000, 1100);
568                 ret_val = e1000e_get_phy_id(hw);
569                 if (ret_val)
570                         return ret_val;
571         }
572
573         /* Verify phy id */
574         switch (phy->id) {
575         case IGP03E1000_E_PHY_ID:
576                 phy->type = e1000_phy_igp_3;
577                 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
578                 phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
579                 phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
580                 phy->ops.get_info = e1000e_get_phy_info_igp;
581                 phy->ops.check_polarity = e1000_check_polarity_igp;
582                 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
583                 break;
584         case IFE_E_PHY_ID:
585         case IFE_PLUS_E_PHY_ID:
586         case IFE_C_E_PHY_ID:
587                 phy->type = e1000_phy_ife;
588                 phy->autoneg_mask = E1000_ALL_NOT_GIG;
589                 phy->ops.get_info = e1000_get_phy_info_ife;
590                 phy->ops.check_polarity = e1000_check_polarity_ife;
591                 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
592                 break;
593         case BME1000_E_PHY_ID:
594                 phy->type = e1000_phy_bm;
595                 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
596                 phy->ops.read_reg = e1000e_read_phy_reg_bm;
597                 phy->ops.write_reg = e1000e_write_phy_reg_bm;
598                 phy->ops.commit = e1000e_phy_sw_reset;
599                 phy->ops.get_info = e1000e_get_phy_info_m88;
600                 phy->ops.check_polarity = e1000_check_polarity_m88;
601                 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
602                 break;
603         default:
604                 return -E1000_ERR_PHY;
605         }
606
607         return 0;
608 }
609
610 /**
611  *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
612  *  @hw: pointer to the HW structure
613  *
614  *  Initialize family-specific NVM parameters and function
615  *  pointers.
616  **/
617 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
618 {
619         struct e1000_nvm_info *nvm = &hw->nvm;
620         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
621         u32 gfpreg, sector_base_addr, sector_end_addr;
622         u16 i;
623         u32 nvm_size;
624
625         nvm->type = e1000_nvm_flash_sw;
626
627         if (hw->mac.type >= e1000_pch_spt) {
628                 /* in SPT, gfpreg doesn't exist. NVM size is taken from the
629                  * STRAP register. This is because in SPT the GbE Flash region
630                  * is no longer accessed through the flash registers. Instead,
631                  * the mechanism has changed, and the Flash region access
632                  * registers are now implemented in GbE memory space.
633                  */
634                 nvm->flash_base_addr = 0;
635                 nvm_size = (((er32(STRAP) >> 1) & 0x1F) + 1)
636                     * NVM_SIZE_MULTIPLIER;
637                 nvm->flash_bank_size = nvm_size / 2;
638                 /* Adjust to word count */
639                 nvm->flash_bank_size /= sizeof(u16);
640                 /* Set the base address for flash register access */
641                 hw->flash_address = hw->hw_addr + E1000_FLASH_BASE_ADDR;
642         } else {
643                 /* Can't read flash registers if register set isn't mapped. */
644                 if (!hw->flash_address) {
645                         e_dbg("ERROR: Flash registers not mapped\n");
646                         return -E1000_ERR_CONFIG;
647                 }
648
649                 gfpreg = er32flash(ICH_FLASH_GFPREG);
650
651                 /* sector_X_addr is a "sector"-aligned address (4096 bytes)
652                  * Add 1 to sector_end_addr since this sector is included in
653                  * the overall size.
654                  */
655                 sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
656                 sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
657
658                 /* flash_base_addr is byte-aligned */
659                 nvm->flash_base_addr = sector_base_addr
660                     << FLASH_SECTOR_ADDR_SHIFT;
661
662                 /* find total size of the NVM, then cut in half since the total
663                  * size represents two separate NVM banks.
664                  */
665                 nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
666                                         << FLASH_SECTOR_ADDR_SHIFT);
667                 nvm->flash_bank_size /= 2;
668                 /* Adjust to word count */
669                 nvm->flash_bank_size /= sizeof(u16);
670         }
671
672         nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
673
674         /* Clear shadow ram */
675         for (i = 0; i < nvm->word_size; i++) {
676                 dev_spec->shadow_ram[i].modified = false;
677                 dev_spec->shadow_ram[i].value = 0xFFFF;
678         }
679
680         return 0;
681 }
682
683 /**
684  *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
685  *  @hw: pointer to the HW structure
686  *
687  *  Initialize family-specific MAC parameters and function
688  *  pointers.
689  **/
690 static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
691 {
692         struct e1000_mac_info *mac = &hw->mac;
693
694         /* Set media type function pointer */
695         hw->phy.media_type = e1000_media_type_copper;
696
697         /* Set mta register count */
698         mac->mta_reg_count = 32;
699         /* Set rar entry count */
700         mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
701         if (mac->type == e1000_ich8lan)
702                 mac->rar_entry_count--;
703         /* FWSM register */
704         mac->has_fwsm = true;
705         /* ARC subsystem not supported */
706         mac->arc_subsystem_valid = false;
707         /* Adaptive IFS supported */
708         mac->adaptive_ifs = true;
709
710         /* LED and other operations */
711         switch (mac->type) {
712         case e1000_ich8lan:
713         case e1000_ich9lan:
714         case e1000_ich10lan:
715                 /* check management mode */
716                 mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
717                 /* ID LED init */
718                 mac->ops.id_led_init = e1000e_id_led_init_generic;
719                 /* blink LED */
720                 mac->ops.blink_led = e1000e_blink_led_generic;
721                 /* setup LED */
722                 mac->ops.setup_led = e1000e_setup_led_generic;
723                 /* cleanup LED */
724                 mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
725                 /* turn on/off LED */
726                 mac->ops.led_on = e1000_led_on_ich8lan;
727                 mac->ops.led_off = e1000_led_off_ich8lan;
728                 break;
729         case e1000_pch2lan:
730                 mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
731                 mac->ops.rar_set = e1000_rar_set_pch2lan;
732                 fallthrough;
733         case e1000_pch_lpt:
734         case e1000_pch_spt:
735         case e1000_pch_cnp:
736         case e1000_pch_tgp:
737         case e1000_pch_adp:
738         case e1000_pch_mtp:
739         case e1000_pch_lnp:
740         case e1000_pch_ptp:
741         case e1000_pch_nvp:
742         case e1000_pchlan:
743                 /* check management mode */
744                 mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
745                 /* ID LED init */
746                 mac->ops.id_led_init = e1000_id_led_init_pchlan;
747                 /* setup LED */
748                 mac->ops.setup_led = e1000_setup_led_pchlan;
749                 /* cleanup LED */
750                 mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
751                 /* turn on/off LED */
752                 mac->ops.led_on = e1000_led_on_pchlan;
753                 mac->ops.led_off = e1000_led_off_pchlan;
754                 break;
755         default:
756                 break;
757         }
758
759         if (mac->type >= e1000_pch_lpt) {
760                 mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
761                 mac->ops.rar_set = e1000_rar_set_pch_lpt;
762                 mac->ops.setup_physical_interface =
763                     e1000_setup_copper_link_pch_lpt;
764                 mac->ops.rar_get_count = e1000_rar_get_count_pch_lpt;
765         }
766
767         /* Enable PCS Lock-loss workaround for ICH8 */
768         if (mac->type == e1000_ich8lan)
769                 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
770
771         return 0;
772 }
773
774 /**
775  *  __e1000_access_emi_reg_locked - Read/write EMI register
776  *  @hw: pointer to the HW structure
777  *  @address: EMI address to program
778  *  @data: pointer to value to read/write from/to the EMI address
779  *  @read: boolean flag to indicate read or write
780  *
781  *  This helper function assumes the SW/FW/HW Semaphore is already acquired.
782  **/
783 static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
784                                          u16 *data, bool read)
785 {
786         s32 ret_val;
787
788         ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, address);
789         if (ret_val)
790                 return ret_val;
791
792         if (read)
793                 ret_val = e1e_rphy_locked(hw, I82579_EMI_DATA, data);
794         else
795                 ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, *data);
796
797         return ret_val;
798 }
799
800 /**
801  *  e1000_read_emi_reg_locked - Read Extended Management Interface register
802  *  @hw: pointer to the HW structure
803  *  @addr: EMI address to program
804  *  @data: value to be read from the EMI address
805  *
806  *  Assumes the SW/FW/HW Semaphore is already acquired.
807  **/
808 s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
809 {
810         return __e1000_access_emi_reg_locked(hw, addr, data, true);
811 }
812
813 /**
814  *  e1000_write_emi_reg_locked - Write Extended Management Interface register
815  *  @hw: pointer to the HW structure
816  *  @addr: EMI address to program
817  *  @data: value to be written to the EMI address
818  *
819  *  Assumes the SW/FW/HW Semaphore is already acquired.
820  **/
821 s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
822 {
823         return __e1000_access_emi_reg_locked(hw, addr, &data, false);
824 }
825
826 /**
827  *  e1000_set_eee_pchlan - Enable/disable EEE support
828  *  @hw: pointer to the HW structure
829  *
830  *  Enable/disable EEE based on setting in dev_spec structure, the duplex of
831  *  the link and the EEE capabilities of the link partner.  The LPI Control
832  *  register bits will remain set only if/when link is up.
833  *
834  *  EEE LPI must not be asserted earlier than one second after link is up.
835  *  On 82579, EEE LPI should not be enabled until such time otherwise there
836  *  can be link issues with some switches.  Other devices can have EEE LPI
837  *  enabled immediately upon link up since they have a timer in hardware which
838  *  prevents LPI from being asserted too early.
839  **/
840 s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
841 {
842         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
843         s32 ret_val;
844         u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
845
846         switch (hw->phy.type) {
847         case e1000_phy_82579:
848                 lpa = I82579_EEE_LP_ABILITY;
849                 pcs_status = I82579_EEE_PCS_STATUS;
850                 adv_addr = I82579_EEE_ADVERTISEMENT;
851                 break;
852         case e1000_phy_i217:
853                 lpa = I217_EEE_LP_ABILITY;
854                 pcs_status = I217_EEE_PCS_STATUS;
855                 adv_addr = I217_EEE_ADVERTISEMENT;
856                 break;
857         default:
858                 return 0;
859         }
860
861         ret_val = hw->phy.ops.acquire(hw);
862         if (ret_val)
863                 return ret_val;
864
865         ret_val = e1e_rphy_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
866         if (ret_val)
867                 goto release;
868
869         /* Clear bits that enable EEE in various speeds */
870         lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
871
872         /* Enable EEE if not disabled by user */
873         if (!dev_spec->eee_disable) {
874                 /* Save off link partner's EEE ability */
875                 ret_val = e1000_read_emi_reg_locked(hw, lpa,
876                                                     &dev_spec->eee_lp_ability);
877                 if (ret_val)
878                         goto release;
879
880                 /* Read EEE advertisement */
881                 ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
882                 if (ret_val)
883                         goto release;
884
885                 /* Enable EEE only for speeds in which the link partner is
886                  * EEE capable and for which we advertise EEE.
887                  */
888                 if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
889                         lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
890
891                 if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
892                         e1e_rphy_locked(hw, MII_LPA, &data);
893                         if (data & LPA_100FULL)
894                                 lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
895                         else
896                                 /* EEE is not supported in 100Half, so ignore
897                                  * partner's EEE in 100 ability if full-duplex
898                                  * is not advertised.
899                                  */
900                                 dev_spec->eee_lp_ability &=
901                                     ~I82579_EEE_100_SUPPORTED;
902                 }
903         }
904
905         if (hw->phy.type == e1000_phy_82579) {
906                 ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
907                                                     &data);
908                 if (ret_val)
909                         goto release;
910
911                 data &= ~I82579_LPI_100_PLL_SHUT;
912                 ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
913                                                      data);
914         }
915
916         /* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
917         ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
918         if (ret_val)
919                 goto release;
920
921         ret_val = e1e_wphy_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
922 release:
923         hw->phy.ops.release(hw);
924
925         return ret_val;
926 }
927
928 /**
929  *  e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
930  *  @hw:   pointer to the HW structure
931  *  @link: link up bool flag
932  *
933  *  When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
934  *  preventing further DMA write requests.  Workaround the issue by disabling
935  *  the de-assertion of the clock request when in 1Gpbs mode.
936  *  Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
937  *  speeds in order to avoid Tx hangs.
938  **/
939 static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
940 {
941         u32 fextnvm6 = er32(FEXTNVM6);
942         u32 status = er32(STATUS);
943         s32 ret_val = 0;
944         u16 reg;
945
946         if (link && (status & E1000_STATUS_SPEED_1000)) {
947                 ret_val = hw->phy.ops.acquire(hw);
948                 if (ret_val)
949                         return ret_val;
950
951                 ret_val =
952                     e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
953                                                 &reg);
954                 if (ret_val)
955                         goto release;
956
957                 ret_val =
958                     e1000e_write_kmrn_reg_locked(hw,
959                                                  E1000_KMRNCTRLSTA_K1_CONFIG,
960                                                  reg &
961                                                  ~E1000_KMRNCTRLSTA_K1_ENABLE);
962                 if (ret_val)
963                         goto release;
964
965                 usleep_range(10, 20);
966
967                 ew32(FEXTNVM6, fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
968
969                 ret_val =
970                     e1000e_write_kmrn_reg_locked(hw,
971                                                  E1000_KMRNCTRLSTA_K1_CONFIG,
972                                                  reg);
973 release:
974                 hw->phy.ops.release(hw);
975         } else {
976                 /* clear FEXTNVM6 bit 8 on link down or 10/100 */
977                 fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;
978
979                 if ((hw->phy.revision > 5) || !link ||
980                     ((status & E1000_STATUS_SPEED_100) &&
981                      (status & E1000_STATUS_FD)))
982                         goto update_fextnvm6;
983
984                 ret_val = e1e_rphy(hw, I217_INBAND_CTRL, &reg);
985                 if (ret_val)
986                         return ret_val;
987
988                 /* Clear link status transmit timeout */
989                 reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
990
991                 if (status & E1000_STATUS_SPEED_100) {
992                         /* Set inband Tx timeout to 5x10us for 100Half */
993                         reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
994
995                         /* Do not extend the K1 entry latency for 100Half */
996                         fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
997                 } else {
998                         /* Set inband Tx timeout to 50x10us for 10Full/Half */
999                         reg |= 50 <<
1000                             I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
1001
1002                         /* Extend the K1 entry latency for 10 Mbps */
1003                         fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
1004                 }
1005
1006                 ret_val = e1e_wphy(hw, I217_INBAND_CTRL, reg);
1007                 if (ret_val)
1008                         return ret_val;
1009
1010 update_fextnvm6:
1011                 ew32(FEXTNVM6, fextnvm6);
1012         }
1013
1014         return ret_val;
1015 }
1016
1017 /**
1018  *  e1000_platform_pm_pch_lpt - Set platform power management values
1019  *  @hw: pointer to the HW structure
1020  *  @link: bool indicating link status
1021  *
1022  *  Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
1023  *  GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
1024  *  when link is up (which must not exceed the maximum latency supported
1025  *  by the platform), otherwise specify there is no LTR requirement.
1026  *  Unlike true-PCIe devices which set the LTR maximum snoop/no-snoop
1027  *  latencies in the LTR Extended Capability Structure in the PCIe Extended
1028  *  Capability register set, on this device LTR is set by writing the
1029  *  equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
1030  *  set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
1031  *  message to the PMC.
1032  **/
1033 static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link)
1034 {
1035         u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) |
1036             link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND;
1037         u32 max_ltr_enc_d = 0;  /* maximum LTR decoded by platform */
1038         u32 lat_enc_d = 0;      /* latency decoded */
1039         u16 lat_enc = 0;        /* latency encoded */
1040
1041         if (link) {
1042                 u16 speed, duplex, scale = 0;
1043                 u16 max_snoop, max_nosnoop;
1044                 u16 max_ltr_enc;        /* max LTR latency encoded */
1045                 u64 value;
1046                 u32 rxa;
1047
1048                 if (!hw->adapter->max_frame_size) {
1049                         e_dbg("max_frame_size not set.\n");
1050                         return -E1000_ERR_CONFIG;
1051                 }
1052
1053                 hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1054                 if (!speed) {
1055                         e_dbg("Speed not set.\n");
1056                         return -E1000_ERR_CONFIG;
1057                 }
1058
1059                 /* Rx Packet Buffer Allocation size (KB) */
1060                 rxa = er32(PBA) & E1000_PBA_RXA_MASK;
1061
1062                 /* Determine the maximum latency tolerated by the device.
1063                  *
1064                  * Per the PCIe spec, the tolerated latencies are encoded as
1065                  * a 3-bit encoded scale (only 0-5 are valid) multiplied by
1066                  * a 10-bit value (0-1023) to provide a range from 1 ns to
1067                  * 2^25*(2^10-1) ns.  The scale is encoded as 0=2^0ns,
1068                  * 1=2^5ns, 2=2^10ns,...5=2^25ns.
1069                  */
1070                 rxa *= 512;
1071                 value = (rxa > hw->adapter->max_frame_size) ?
1072                         (rxa - hw->adapter->max_frame_size) * (16000 / speed) :
1073                         0;
1074
1075                 while (value > PCI_LTR_VALUE_MASK) {
1076                         scale++;
1077                         value = DIV_ROUND_UP(value, BIT(5));
1078                 }
1079                 if (scale > E1000_LTRV_SCALE_MAX) {
1080                         e_dbg("Invalid LTR latency scale %d\n", scale);
1081                         return -E1000_ERR_CONFIG;
1082                 }
1083                 lat_enc = (u16)((scale << PCI_LTR_SCALE_SHIFT) | value);
1084
1085                 /* Determine the maximum latency tolerated by the platform */
1086                 pci_read_config_word(hw->adapter->pdev, E1000_PCI_LTR_CAP_LPT,
1087                                      &max_snoop);
1088                 pci_read_config_word(hw->adapter->pdev,
1089                                      E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop);
1090                 max_ltr_enc = max_t(u16, max_snoop, max_nosnoop);
1091
1092                 lat_enc_d = (lat_enc & E1000_LTRV_VALUE_MASK) *
1093                              (1U << (E1000_LTRV_SCALE_FACTOR *
1094                              FIELD_GET(E1000_LTRV_SCALE_MASK, lat_enc)));
1095
1096                 max_ltr_enc_d = (max_ltr_enc & E1000_LTRV_VALUE_MASK) *
1097                         (1U << (E1000_LTRV_SCALE_FACTOR *
1098                                 FIELD_GET(E1000_LTRV_SCALE_MASK, max_ltr_enc)));
1099
1100                 if (lat_enc_d > max_ltr_enc_d)
1101                         lat_enc = max_ltr_enc;
1102         }
1103
1104         /* Set Snoop and No-Snoop latencies the same */
1105         reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT);
1106         ew32(LTRV, reg);
1107
1108         return 0;
1109 }
1110
1111 /**
1112  *  e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
1113  *  @hw: pointer to the HW structure
1114  *  @to_sx: boolean indicating a system power state transition to Sx
1115  *
1116  *  When link is down, configure ULP mode to significantly reduce the power
1117  *  to the PHY.  If on a Manageability Engine (ME) enabled system, tell the
1118  *  ME firmware to start the ULP configuration.  If not on an ME enabled
1119  *  system, configure the ULP mode by software.
1120  */
1121 s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx)
1122 {
1123         u32 mac_reg;
1124         s32 ret_val = 0;
1125         u16 phy_reg;
1126         u16 oem_reg = 0;
1127
1128         if ((hw->mac.type < e1000_pch_lpt) ||
1129             (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1130             (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1131             (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1132             (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1133             (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on))
1134                 return 0;
1135
1136         if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1137                 /* Request ME configure ULP mode in the PHY */
1138                 mac_reg = er32(H2ME);
1139                 mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS;
1140                 ew32(H2ME, mac_reg);
1141
1142                 goto out;
1143         }
1144
1145         if (!to_sx) {
1146                 int i = 0;
1147
1148                 /* Poll up to 5 seconds for Cable Disconnected indication */
1149                 while (!(er32(FEXT) & E1000_FEXT_PHY_CABLE_DISCONNECTED)) {
1150                         /* Bail if link is re-acquired */
1151                         if (er32(STATUS) & E1000_STATUS_LU)
1152                                 return -E1000_ERR_PHY;
1153
1154                         if (i++ == 100)
1155                                 break;
1156
1157                         msleep(50);
1158                 }
1159                 e_dbg("CABLE_DISCONNECTED %s set after %dmsec\n",
1160                       (er32(FEXT) &
1161                        E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not", i * 50);
1162         }
1163
1164         ret_val = hw->phy.ops.acquire(hw);
1165         if (ret_val)
1166                 goto out;
1167
1168         /* Si workaround for ULP entry flow on i127/rev6 h/w.  Enable
1169          * LPLU and disable Gig speed when entering ULP
1170          */
1171         if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6)) {
1172                 ret_val = e1000_read_phy_reg_hv_locked(hw, HV_OEM_BITS,
1173                                                        &oem_reg);
1174                 if (ret_val)
1175                         goto release;
1176
1177                 phy_reg = oem_reg;
1178                 phy_reg |= HV_OEM_BITS_LPLU | HV_OEM_BITS_GBE_DIS;
1179
1180                 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1181                                                         phy_reg);
1182
1183                 if (ret_val)
1184                         goto release;
1185         }
1186
1187         /* Set Inband ULP Exit, Reset to SMBus mode and
1188          * Disable SMBus Release on PERST# in PHY
1189          */
1190         ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1191         if (ret_val)
1192                 goto release;
1193         phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS |
1194                     I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1195         if (to_sx) {
1196                 if (er32(WUFC) & E1000_WUFC_LNKC)
1197                         phy_reg |= I218_ULP_CONFIG1_WOL_HOST;
1198                 else
1199                         phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1200
1201                 phy_reg |= I218_ULP_CONFIG1_STICKY_ULP;
1202                 phy_reg &= ~I218_ULP_CONFIG1_INBAND_EXIT;
1203         } else {
1204                 phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT;
1205                 phy_reg &= ~I218_ULP_CONFIG1_STICKY_ULP;
1206                 phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1207         }
1208         e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1209
1210         /* Set Disable SMBus Release on PERST# in MAC */
1211         mac_reg = er32(FEXTNVM7);
1212         mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST;
1213         ew32(FEXTNVM7, mac_reg);
1214
1215         /* Commit ULP changes in PHY by starting auto ULP configuration */
1216         phy_reg |= I218_ULP_CONFIG1_START;
1217         e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1218
1219         if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6) &&
1220             to_sx && (er32(STATUS) & E1000_STATUS_LU)) {
1221                 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1222                                                         oem_reg);
1223                 if (ret_val)
1224                         goto release;
1225         }
1226
1227 release:
1228         /* Switching PHY interface always returns MDI error
1229          * so disable retry mechanism to avoid wasting time
1230          */
1231         e1000e_disable_phy_retry(hw);
1232
1233         /* Force SMBus mode in PHY */
1234         ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1235         if (ret_val) {
1236                 e1000e_enable_phy_retry(hw);
1237                 hw->phy.ops.release(hw);
1238                 goto out;
1239         }
1240         phy_reg |= CV_SMB_CTRL_FORCE_SMBUS;
1241         e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1242
1243         e1000e_enable_phy_retry(hw);
1244
1245         /* Force SMBus mode in MAC */
1246         mac_reg = er32(CTRL_EXT);
1247         mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1248         ew32(CTRL_EXT, mac_reg);
1249
1250         hw->phy.ops.release(hw);
1251 out:
1252         if (ret_val)
1253                 e_dbg("Error in ULP enable flow: %d\n", ret_val);
1254         else
1255                 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on;
1256
1257         return ret_val;
1258 }
1259
1260 /**
1261  *  e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
1262  *  @hw: pointer to the HW structure
1263  *  @force: boolean indicating whether or not to force disabling ULP
1264  *
1265  *  Un-configure ULP mode when link is up, the system is transitioned from
1266  *  Sx or the driver is unloaded.  If on a Manageability Engine (ME) enabled
1267  *  system, poll for an indication from ME that ULP has been un-configured.
1268  *  If not on an ME enabled system, un-configure the ULP mode by software.
1269  *
1270  *  During nominal operation, this function is called when link is acquired
1271  *  to disable ULP mode (force=false); otherwise, for example when unloading
1272  *  the driver or during Sx->S0 transitions, this is called with force=true
1273  *  to forcibly disable ULP.
1274  */
1275 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force)
1276 {
1277         s32 ret_val = 0;
1278         u32 mac_reg;
1279         u16 phy_reg;
1280         int i = 0;
1281
1282         if ((hw->mac.type < e1000_pch_lpt) ||
1283             (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1284             (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1285             (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1286             (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1287             (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off))
1288                 return 0;
1289
1290         if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1291                 struct e1000_adapter *adapter = hw->adapter;
1292                 bool firmware_bug = false;
1293
1294                 if (force) {
1295                         /* Request ME un-configure ULP mode in the PHY */
1296                         mac_reg = er32(H2ME);
1297                         mac_reg &= ~E1000_H2ME_ULP;
1298                         mac_reg |= E1000_H2ME_ENFORCE_SETTINGS;
1299                         ew32(H2ME, mac_reg);
1300                 }
1301
1302                 /* Poll up to 2.5 seconds for ME to clear ULP_CFG_DONE.
1303                  * If this takes more than 1 second, show a warning indicating a
1304                  * firmware bug
1305                  */
1306                 while (er32(FWSM) & E1000_FWSM_ULP_CFG_DONE) {
1307                         if (i++ == 250) {
1308                                 ret_val = -E1000_ERR_PHY;
1309                                 goto out;
1310                         }
1311                         if (i > 100 && !firmware_bug)
1312                                 firmware_bug = true;
1313
1314                         usleep_range(10000, 11000);
1315                 }
1316                 if (firmware_bug)
1317                         e_warn("ULP_CONFIG_DONE took %d msec. This is a firmware bug\n",
1318                                i * 10);
1319                 else
1320                         e_dbg("ULP_CONFIG_DONE cleared after %d msec\n",
1321                               i * 10);
1322
1323                 if (force) {
1324                         mac_reg = er32(H2ME);
1325                         mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS;
1326                         ew32(H2ME, mac_reg);
1327                 } else {
1328                         /* Clear H2ME.ULP after ME ULP configuration */
1329                         mac_reg = er32(H2ME);
1330                         mac_reg &= ~E1000_H2ME_ULP;
1331                         ew32(H2ME, mac_reg);
1332                 }
1333
1334                 goto out;
1335         }
1336
1337         ret_val = hw->phy.ops.acquire(hw);
1338         if (ret_val)
1339                 goto out;
1340
1341         if (force)
1342                 /* Toggle LANPHYPC Value bit */
1343                 e1000_toggle_lanphypc_pch_lpt(hw);
1344
1345         /* Switching PHY interface always returns MDI error
1346          * so disable retry mechanism to avoid wasting time
1347          */
1348         e1000e_disable_phy_retry(hw);
1349
1350         /* Unforce SMBus mode in PHY */
1351         ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1352         if (ret_val) {
1353                 /* The MAC might be in PCIe mode, so temporarily force to
1354                  * SMBus mode in order to access the PHY.
1355                  */
1356                 mac_reg = er32(CTRL_EXT);
1357                 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1358                 ew32(CTRL_EXT, mac_reg);
1359
1360                 msleep(50);
1361
1362                 ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL,
1363                                                        &phy_reg);
1364                 if (ret_val)
1365                         goto release;
1366         }
1367         phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
1368         e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1369
1370         e1000e_enable_phy_retry(hw);
1371
1372         /* Unforce SMBus mode in MAC */
1373         mac_reg = er32(CTRL_EXT);
1374         mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
1375         ew32(CTRL_EXT, mac_reg);
1376
1377         /* When ULP mode was previously entered, K1 was disabled by the
1378          * hardware.  Re-Enable K1 in the PHY when exiting ULP.
1379          */
1380         ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg);
1381         if (ret_val)
1382                 goto release;
1383         phy_reg |= HV_PM_CTRL_K1_ENABLE;
1384         e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg);
1385
1386         /* Clear ULP enabled configuration */
1387         ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1388         if (ret_val)
1389                 goto release;
1390         phy_reg &= ~(I218_ULP_CONFIG1_IND |
1391                      I218_ULP_CONFIG1_STICKY_ULP |
1392                      I218_ULP_CONFIG1_RESET_TO_SMBUS |
1393                      I218_ULP_CONFIG1_WOL_HOST |
1394                      I218_ULP_CONFIG1_INBAND_EXIT |
1395                      I218_ULP_CONFIG1_EN_ULP_LANPHYPC |
1396                      I218_ULP_CONFIG1_DIS_CLR_STICKY_ON_PERST |
1397                      I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1398         e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1399
1400         /* Commit ULP changes by starting auto ULP configuration */
1401         phy_reg |= I218_ULP_CONFIG1_START;
1402         e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1403
1404         /* Clear Disable SMBus Release on PERST# in MAC */
1405         mac_reg = er32(FEXTNVM7);
1406         mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST;
1407         ew32(FEXTNVM7, mac_reg);
1408
1409 release:
1410         hw->phy.ops.release(hw);
1411         if (force) {
1412                 e1000_phy_hw_reset(hw);
1413                 msleep(50);
1414         }
1415 out:
1416         if (ret_val)
1417                 e_dbg("Error in ULP disable flow: %d\n", ret_val);
1418         else
1419                 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off;
1420
1421         return ret_val;
1422 }
1423
1424 /**
1425  *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
1426  *  @hw: pointer to the HW structure
1427  *
1428  *  Checks to see of the link status of the hardware has changed.  If a
1429  *  change in link status has been detected, then we read the PHY registers
1430  *  to get the current speed/duplex if link exists.
1431  **/
1432 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
1433 {
1434         struct e1000_mac_info *mac = &hw->mac;
1435         s32 ret_val, tipg_reg = 0;
1436         u16 emi_addr, emi_val = 0;
1437         bool link;
1438         u16 phy_reg;
1439
1440         /* We only want to go out to the PHY registers to see if Auto-Neg
1441          * has completed and/or if our link status has changed.  The
1442          * get_link_status flag is set upon receiving a Link Status
1443          * Change or Rx Sequence Error interrupt.
1444          */
1445         if (!mac->get_link_status)
1446                 return 0;
1447         mac->get_link_status = false;
1448
1449         /* First we want to see if the MII Status Register reports
1450          * link.  If so, then we want to get the current speed/duplex
1451          * of the PHY.
1452          */
1453         ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1454         if (ret_val)
1455                 goto out;
1456
1457         if (hw->mac.type == e1000_pchlan) {
1458                 ret_val = e1000_k1_gig_workaround_hv(hw, link);
1459                 if (ret_val)
1460                         goto out;
1461         }
1462
1463         /* When connected at 10Mbps half-duplex, some parts are excessively
1464          * aggressive resulting in many collisions. To avoid this, increase
1465          * the IPG and reduce Rx latency in the PHY.
1466          */
1467         if ((hw->mac.type >= e1000_pch2lan) && link) {
1468                 u16 speed, duplex;
1469
1470                 e1000e_get_speed_and_duplex_copper(hw, &speed, &duplex);
1471                 tipg_reg = er32(TIPG);
1472                 tipg_reg &= ~E1000_TIPG_IPGT_MASK;
1473
1474                 if (duplex == HALF_DUPLEX && speed == SPEED_10) {
1475                         tipg_reg |= 0xFF;
1476                         /* Reduce Rx latency in analog PHY */
1477                         emi_val = 0;
1478                 } else if (hw->mac.type >= e1000_pch_spt &&
1479                            duplex == FULL_DUPLEX && speed != SPEED_1000) {
1480                         tipg_reg |= 0xC;
1481                         emi_val = 1;
1482                 } else {
1483
1484                         /* Roll back the default values */
1485                         tipg_reg |= 0x08;
1486                         emi_val = 1;
1487                 }
1488
1489                 ew32(TIPG, tipg_reg);
1490
1491                 ret_val = hw->phy.ops.acquire(hw);
1492                 if (ret_val)
1493                         goto out;
1494
1495                 if (hw->mac.type == e1000_pch2lan)
1496                         emi_addr = I82579_RX_CONFIG;
1497                 else
1498                         emi_addr = I217_RX_CONFIG;
1499                 ret_val = e1000_write_emi_reg_locked(hw, emi_addr, emi_val);
1500
1501                 if (hw->mac.type >= e1000_pch_lpt) {
1502                         u16 phy_reg;
1503
1504                         e1e_rphy_locked(hw, I217_PLL_CLOCK_GATE_REG, &phy_reg);
1505                         phy_reg &= ~I217_PLL_CLOCK_GATE_MASK;
1506                         if (speed == SPEED_100 || speed == SPEED_10)
1507                                 phy_reg |= 0x3E8;
1508                         else
1509                                 phy_reg |= 0xFA;
1510                         e1e_wphy_locked(hw, I217_PLL_CLOCK_GATE_REG, phy_reg);
1511
1512                         if (speed == SPEED_1000) {
1513                                 hw->phy.ops.read_reg_locked(hw, HV_PM_CTRL,
1514                                                             &phy_reg);
1515
1516                                 phy_reg |= HV_PM_CTRL_K1_CLK_REQ;
1517
1518                                 hw->phy.ops.write_reg_locked(hw, HV_PM_CTRL,
1519                                                              phy_reg);
1520                         }
1521                 }
1522                 hw->phy.ops.release(hw);
1523
1524                 if (ret_val)
1525                         goto out;
1526
1527                 if (hw->mac.type >= e1000_pch_spt) {
1528                         u16 data;
1529                         u16 ptr_gap;
1530
1531                         if (speed == SPEED_1000) {
1532                                 ret_val = hw->phy.ops.acquire(hw);
1533                                 if (ret_val)
1534                                         goto out;
1535
1536                                 ret_val = e1e_rphy_locked(hw,
1537                                                           PHY_REG(776, 20),
1538                                                           &data);
1539                                 if (ret_val) {
1540                                         hw->phy.ops.release(hw);
1541                                         goto out;
1542                                 }
1543
1544                                 ptr_gap = (data & (0x3FF << 2)) >> 2;
1545                                 if (ptr_gap < 0x18) {
1546                                         data &= ~(0x3FF << 2);
1547                                         data |= (0x18 << 2);
1548                                         ret_val =
1549                                             e1e_wphy_locked(hw,
1550                                                             PHY_REG(776, 20),
1551                                                             data);
1552                                 }
1553                                 hw->phy.ops.release(hw);
1554                                 if (ret_val)
1555                                         goto out;
1556                         } else {
1557                                 ret_val = hw->phy.ops.acquire(hw);
1558                                 if (ret_val)
1559                                         goto out;
1560
1561                                 ret_val = e1e_wphy_locked(hw,
1562                                                           PHY_REG(776, 20),
1563                                                           0xC023);
1564                                 hw->phy.ops.release(hw);
1565                                 if (ret_val)
1566                                         goto out;
1567
1568                         }
1569                 }
1570         }
1571
1572         /* I217 Packet Loss issue:
1573          * ensure that FEXTNVM4 Beacon Duration is set correctly
1574          * on power up.
1575          * Set the Beacon Duration for I217 to 8 usec
1576          */
1577         if (hw->mac.type >= e1000_pch_lpt) {
1578                 u32 mac_reg;
1579
1580                 mac_reg = er32(FEXTNVM4);
1581                 mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
1582                 mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1583                 ew32(FEXTNVM4, mac_reg);
1584         }
1585
1586         /* Work-around I218 hang issue */
1587         if ((hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
1588             (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
1589             (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM3) ||
1590             (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V3)) {
1591                 ret_val = e1000_k1_workaround_lpt_lp(hw, link);
1592                 if (ret_val)
1593                         goto out;
1594         }
1595         if (hw->mac.type >= e1000_pch_lpt) {
1596                 /* Set platform power management values for
1597                  * Latency Tolerance Reporting (LTR)
1598                  */
1599                 ret_val = e1000_platform_pm_pch_lpt(hw, link);
1600                 if (ret_val)
1601                         goto out;
1602         }
1603
1604         /* Clear link partner's EEE ability */
1605         hw->dev_spec.ich8lan.eee_lp_ability = 0;
1606
1607         if (hw->mac.type >= e1000_pch_lpt) {
1608                 u32 fextnvm6 = er32(FEXTNVM6);
1609
1610                 if (hw->mac.type == e1000_pch_spt) {
1611                         /* FEXTNVM6 K1-off workaround - for SPT only */
1612                         u32 pcieanacfg = er32(PCIEANACFG);
1613
1614                         if (pcieanacfg & E1000_FEXTNVM6_K1_OFF_ENABLE)
1615                                 fextnvm6 |= E1000_FEXTNVM6_K1_OFF_ENABLE;
1616                         else
1617                                 fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE;
1618                 }
1619
1620                 ew32(FEXTNVM6, fextnvm6);
1621         }
1622
1623         if (!link)
1624                 goto out;
1625
1626         switch (hw->mac.type) {
1627         case e1000_pch2lan:
1628                 ret_val = e1000_k1_workaround_lv(hw);
1629                 if (ret_val)
1630                         return ret_val;
1631                 fallthrough;
1632         case e1000_pchlan:
1633                 if (hw->phy.type == e1000_phy_82578) {
1634                         ret_val = e1000_link_stall_workaround_hv(hw);
1635                         if (ret_val)
1636                                 return ret_val;
1637                 }
1638
1639                 /* Workaround for PCHx parts in half-duplex:
1640                  * Set the number of preambles removed from the packet
1641                  * when it is passed from the PHY to the MAC to prevent
1642                  * the MAC from misinterpreting the packet type.
1643                  */
1644                 e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
1645                 phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
1646
1647                 if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
1648                         phy_reg |= BIT(HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
1649
1650                 e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
1651                 break;
1652         default:
1653                 break;
1654         }
1655
1656         /* Check if there was DownShift, must be checked
1657          * immediately after link-up
1658          */
1659         e1000e_check_downshift(hw);
1660
1661         /* Enable/Disable EEE after link up */
1662         if (hw->phy.type > e1000_phy_82579) {
1663                 ret_val = e1000_set_eee_pchlan(hw);
1664                 if (ret_val)
1665                         return ret_val;
1666         }
1667
1668         /* If we are forcing speed/duplex, then we simply return since
1669          * we have already determined whether we have link or not.
1670          */
1671         if (!mac->autoneg)
1672                 return -E1000_ERR_CONFIG;
1673
1674         /* Auto-Neg is enabled.  Auto Speed Detection takes care
1675          * of MAC speed/duplex configuration.  So we only need to
1676          * configure Collision Distance in the MAC.
1677          */
1678         mac->ops.config_collision_dist(hw);
1679
1680         /* Configure Flow Control now that Auto-Neg has completed.
1681          * First, we need to restore the desired flow control
1682          * settings because we may have had to re-autoneg with a
1683          * different link partner.
1684          */
1685         ret_val = e1000e_config_fc_after_link_up(hw);
1686         if (ret_val)
1687                 e_dbg("Error configuring flow control\n");
1688
1689         return ret_val;
1690
1691 out:
1692         mac->get_link_status = true;
1693         return ret_val;
1694 }
1695
1696 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
1697 {
1698         struct e1000_hw *hw = &adapter->hw;
1699         s32 rc;
1700
1701         rc = e1000_init_mac_params_ich8lan(hw);
1702         if (rc)
1703                 return rc;
1704
1705         rc = e1000_init_nvm_params_ich8lan(hw);
1706         if (rc)
1707                 return rc;
1708
1709         switch (hw->mac.type) {
1710         case e1000_ich8lan:
1711         case e1000_ich9lan:
1712         case e1000_ich10lan:
1713                 rc = e1000_init_phy_params_ich8lan(hw);
1714                 break;
1715         case e1000_pchlan:
1716         case e1000_pch2lan:
1717         case e1000_pch_lpt:
1718         case e1000_pch_spt:
1719         case e1000_pch_cnp:
1720         case e1000_pch_tgp:
1721         case e1000_pch_adp:
1722         case e1000_pch_mtp:
1723         case e1000_pch_lnp:
1724         case e1000_pch_ptp:
1725         case e1000_pch_nvp:
1726                 rc = e1000_init_phy_params_pchlan(hw);
1727                 break;
1728         default:
1729                 break;
1730         }
1731         if (rc)
1732                 return rc;
1733
1734         /* Disable Jumbo Frame support on parts with Intel 10/100 PHY or
1735          * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
1736          */
1737         if ((adapter->hw.phy.type == e1000_phy_ife) ||
1738             ((adapter->hw.mac.type >= e1000_pch2lan) &&
1739              (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
1740                 adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
1741                 adapter->max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
1742
1743                 hw->mac.ops.blink_led = NULL;
1744         }
1745
1746         if ((adapter->hw.mac.type == e1000_ich8lan) &&
1747             (adapter->hw.phy.type != e1000_phy_ife))
1748                 adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
1749
1750         /* Enable workaround for 82579 w/ ME enabled */
1751         if ((adapter->hw.mac.type == e1000_pch2lan) &&
1752             (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1753                 adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
1754
1755         return 0;
1756 }
1757
1758 static DEFINE_MUTEX(nvm_mutex);
1759
1760 /**
1761  *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1762  *  @hw: pointer to the HW structure
1763  *
1764  *  Acquires the mutex for performing NVM operations.
1765  **/
1766 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1767 {
1768         mutex_lock(&nvm_mutex);
1769
1770         return 0;
1771 }
1772
1773 /**
1774  *  e1000_release_nvm_ich8lan - Release NVM mutex
1775  *  @hw: pointer to the HW structure
1776  *
1777  *  Releases the mutex used while performing NVM operations.
1778  **/
1779 static void e1000_release_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1780 {
1781         mutex_unlock(&nvm_mutex);
1782 }
1783
1784 /**
1785  *  e1000_acquire_swflag_ich8lan - Acquire software control flag
1786  *  @hw: pointer to the HW structure
1787  *
1788  *  Acquires the software control flag for performing PHY and select
1789  *  MAC CSR accesses.
1790  **/
1791 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1792 {
1793         u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1794         s32 ret_val = 0;
1795
1796         if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
1797                              &hw->adapter->state)) {
1798                 e_dbg("contention for Phy access\n");
1799                 return -E1000_ERR_PHY;
1800         }
1801
1802         while (timeout) {
1803                 extcnf_ctrl = er32(EXTCNF_CTRL);
1804                 if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1805                         break;
1806
1807                 mdelay(1);
1808                 timeout--;
1809         }
1810
1811         if (!timeout) {
1812                 e_dbg("SW has already locked the resource.\n");
1813                 ret_val = -E1000_ERR_CONFIG;
1814                 goto out;
1815         }
1816
1817         timeout = SW_FLAG_TIMEOUT;
1818
1819         extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1820         ew32(EXTCNF_CTRL, extcnf_ctrl);
1821
1822         while (timeout) {
1823                 extcnf_ctrl = er32(EXTCNF_CTRL);
1824                 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1825                         break;
1826
1827                 mdelay(1);
1828                 timeout--;
1829         }
1830
1831         if (!timeout) {
1832                 e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1833                       er32(FWSM), extcnf_ctrl);
1834                 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1835                 ew32(EXTCNF_CTRL, extcnf_ctrl);
1836                 ret_val = -E1000_ERR_CONFIG;
1837                 goto out;
1838         }
1839
1840 out:
1841         if (ret_val)
1842                 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1843
1844         return ret_val;
1845 }
1846
1847 /**
1848  *  e1000_release_swflag_ich8lan - Release software control flag
1849  *  @hw: pointer to the HW structure
1850  *
1851  *  Releases the software control flag for performing PHY and select
1852  *  MAC CSR accesses.
1853  **/
1854 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1855 {
1856         u32 extcnf_ctrl;
1857
1858         extcnf_ctrl = er32(EXTCNF_CTRL);
1859
1860         if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1861                 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1862                 ew32(EXTCNF_CTRL, extcnf_ctrl);
1863         } else {
1864                 e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
1865         }
1866
1867         clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1868 }
1869
1870 /**
1871  *  e1000_check_mng_mode_ich8lan - Checks management mode
1872  *  @hw: pointer to the HW structure
1873  *
1874  *  This checks if the adapter has any manageability enabled.
1875  *  This is a function pointer entry point only called by read/write
1876  *  routines for the PHY and NVM parts.
1877  **/
1878 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1879 {
1880         u32 fwsm;
1881
1882         fwsm = er32(FWSM);
1883         return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1884                 ((fwsm & E1000_FWSM_MODE_MASK) ==
1885                  (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1886 }
1887
1888 /**
1889  *  e1000_check_mng_mode_pchlan - Checks management mode
1890  *  @hw: pointer to the HW structure
1891  *
1892  *  This checks if the adapter has iAMT enabled.
1893  *  This is a function pointer entry point only called by read/write
1894  *  routines for the PHY and NVM parts.
1895  **/
1896 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1897 {
1898         u32 fwsm;
1899
1900         fwsm = er32(FWSM);
1901         return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1902             (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1903 }
1904
1905 /**
1906  *  e1000_rar_set_pch2lan - Set receive address register
1907  *  @hw: pointer to the HW structure
1908  *  @addr: pointer to the receive address
1909  *  @index: receive address array register
1910  *
1911  *  Sets the receive address array register at index to the address passed
1912  *  in by addr.  For 82579, RAR[0] is the base address register that is to
1913  *  contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1914  *  Use SHRA[0-3] in place of those reserved for ME.
1915  **/
1916 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
1917 {
1918         u32 rar_low, rar_high;
1919
1920         /* HW expects these in little endian so we reverse the byte order
1921          * from network order (big endian) to little endian
1922          */
1923         rar_low = ((u32)addr[0] |
1924                    ((u32)addr[1] << 8) |
1925                    ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1926
1927         rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1928
1929         /* If MAC address zero, no need to set the AV bit */
1930         if (rar_low || rar_high)
1931                 rar_high |= E1000_RAH_AV;
1932
1933         if (index == 0) {
1934                 ew32(RAL(index), rar_low);
1935                 e1e_flush();
1936                 ew32(RAH(index), rar_high);
1937                 e1e_flush();
1938                 return 0;
1939         }
1940
1941         /* RAR[1-6] are owned by manageability.  Skip those and program the
1942          * next address into the SHRA register array.
1943          */
1944         if (index < (u32)(hw->mac.rar_entry_count)) {
1945                 s32 ret_val;
1946
1947                 ret_val = e1000_acquire_swflag_ich8lan(hw);
1948                 if (ret_val)
1949                         goto out;
1950
1951                 ew32(SHRAL(index - 1), rar_low);
1952                 e1e_flush();
1953                 ew32(SHRAH(index - 1), rar_high);
1954                 e1e_flush();
1955
1956                 e1000_release_swflag_ich8lan(hw);
1957
1958                 /* verify the register updates */
1959                 if ((er32(SHRAL(index - 1)) == rar_low) &&
1960                     (er32(SHRAH(index - 1)) == rar_high))
1961                         return 0;
1962
1963                 e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1964                       (index - 1), er32(FWSM));
1965         }
1966
1967 out:
1968         e_dbg("Failed to write receive address at index %d\n", index);
1969         return -E1000_ERR_CONFIG;
1970 }
1971
1972 /**
1973  *  e1000_rar_get_count_pch_lpt - Get the number of available SHRA
1974  *  @hw: pointer to the HW structure
1975  *
1976  *  Get the number of available receive registers that the Host can
1977  *  program. SHRA[0-10] are the shared receive address registers
1978  *  that are shared between the Host and manageability engine (ME).
1979  *  ME can reserve any number of addresses and the host needs to be
1980  *  able to tell how many available registers it has access to.
1981  **/
1982 static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw)
1983 {
1984         u32 wlock_mac;
1985         u32 num_entries;
1986
1987         wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1988         wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1989
1990         switch (wlock_mac) {
1991         case 0:
1992                 /* All SHRA[0..10] and RAR[0] available */
1993                 num_entries = hw->mac.rar_entry_count;
1994                 break;
1995         case 1:
1996                 /* Only RAR[0] available */
1997                 num_entries = 1;
1998                 break;
1999         default:
2000                 /* SHRA[0..(wlock_mac - 1)] available + RAR[0] */
2001                 num_entries = wlock_mac + 1;
2002                 break;
2003         }
2004
2005         return num_entries;
2006 }
2007
2008 /**
2009  *  e1000_rar_set_pch_lpt - Set receive address registers
2010  *  @hw: pointer to the HW structure
2011  *  @addr: pointer to the receive address
2012  *  @index: receive address array register
2013  *
2014  *  Sets the receive address register array at index to the address passed
2015  *  in by addr. For LPT, RAR[0] is the base address register that is to
2016  *  contain the MAC address. SHRA[0-10] are the shared receive address
2017  *  registers that are shared between the Host and manageability engine (ME).
2018  **/
2019 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
2020 {
2021         u32 rar_low, rar_high;
2022         u32 wlock_mac;
2023
2024         /* HW expects these in little endian so we reverse the byte order
2025          * from network order (big endian) to little endian
2026          */
2027         rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
2028                    ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
2029
2030         rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
2031
2032         /* If MAC address zero, no need to set the AV bit */
2033         if (rar_low || rar_high)
2034                 rar_high |= E1000_RAH_AV;
2035
2036         if (index == 0) {
2037                 ew32(RAL(index), rar_low);
2038                 e1e_flush();
2039                 ew32(RAH(index), rar_high);
2040                 e1e_flush();
2041                 return 0;
2042         }
2043
2044         /* The manageability engine (ME) can lock certain SHRAR registers that
2045          * it is using - those registers are unavailable for use.
2046          */
2047         if (index < hw->mac.rar_entry_count) {
2048                 wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
2049                 wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
2050
2051                 /* Check if all SHRAR registers are locked */
2052                 if (wlock_mac == 1)
2053                         goto out;
2054
2055                 if ((wlock_mac == 0) || (index <= wlock_mac)) {
2056                         s32 ret_val;
2057
2058                         ret_val = e1000_acquire_swflag_ich8lan(hw);
2059
2060                         if (ret_val)
2061                                 goto out;
2062
2063                         ew32(SHRAL_PCH_LPT(index - 1), rar_low);
2064                         e1e_flush();
2065                         ew32(SHRAH_PCH_LPT(index - 1), rar_high);
2066                         e1e_flush();
2067
2068                         e1000_release_swflag_ich8lan(hw);
2069
2070                         /* verify the register updates */
2071                         if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) &&
2072                             (er32(SHRAH_PCH_LPT(index - 1)) == rar_high))
2073                                 return 0;
2074                 }
2075         }
2076
2077 out:
2078         e_dbg("Failed to write receive address at index %d\n", index);
2079         return -E1000_ERR_CONFIG;
2080 }
2081
2082 /**
2083  *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
2084  *  @hw: pointer to the HW structure
2085  *
2086  *  Checks if firmware is blocking the reset of the PHY.
2087  *  This is a function pointer entry point only called by
2088  *  reset routines.
2089  **/
2090 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
2091 {
2092         bool blocked = false;
2093         int i = 0;
2094
2095         while ((blocked = !(er32(FWSM) & E1000_ICH_FWSM_RSPCIPHY)) &&
2096                (i++ < 30))
2097                 usleep_range(10000, 11000);
2098         return blocked ? E1000_BLK_PHY_RESET : 0;
2099 }
2100
2101 /**
2102  *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
2103  *  @hw: pointer to the HW structure
2104  *
2105  *  Assumes semaphore already acquired.
2106  *
2107  **/
2108 static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
2109 {
2110         u16 phy_data;
2111         u32 strap = er32(STRAP);
2112         u32 freq = FIELD_GET(E1000_STRAP_SMT_FREQ_MASK, strap);
2113         s32 ret_val;
2114
2115         strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
2116
2117         ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
2118         if (ret_val)
2119                 return ret_val;
2120
2121         phy_data &= ~HV_SMB_ADDR_MASK;
2122         phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
2123         phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
2124
2125         if (hw->phy.type == e1000_phy_i217) {
2126                 /* Restore SMBus frequency */
2127                 if (freq--) {
2128                         phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
2129                         phy_data |= (freq & BIT(0)) <<
2130                             HV_SMB_ADDR_FREQ_LOW_SHIFT;
2131                         phy_data |= (freq & BIT(1)) <<
2132                             (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
2133                 } else {
2134                         e_dbg("Unsupported SMB frequency in PHY\n");
2135                 }
2136         }
2137
2138         return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
2139 }
2140
2141 /**
2142  *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
2143  *  @hw:   pointer to the HW structure
2144  *
2145  *  SW should configure the LCD from the NVM extended configuration region
2146  *  as a workaround for certain parts.
2147  **/
2148 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
2149 {
2150         struct e1000_phy_info *phy = &hw->phy;
2151         u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
2152         s32 ret_val = 0;
2153         u16 word_addr, reg_data, reg_addr, phy_page = 0;
2154
2155         /* Initialize the PHY from the NVM on ICH platforms.  This
2156          * is needed due to an issue where the NVM configuration is
2157          * not properly autoloaded after power transitions.
2158          * Therefore, after each PHY reset, we will load the
2159          * configuration data out of the NVM manually.
2160          */
2161         switch (hw->mac.type) {
2162         case e1000_ich8lan:
2163                 if (phy->type != e1000_phy_igp_3)
2164                         return ret_val;
2165
2166                 if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
2167                     (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
2168                         sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
2169                         break;
2170                 }
2171                 fallthrough;
2172         case e1000_pchlan:
2173         case e1000_pch2lan:
2174         case e1000_pch_lpt:
2175         case e1000_pch_spt:
2176         case e1000_pch_cnp:
2177         case e1000_pch_tgp:
2178         case e1000_pch_adp:
2179         case e1000_pch_mtp:
2180         case e1000_pch_lnp:
2181         case e1000_pch_ptp:
2182         case e1000_pch_nvp:
2183                 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
2184                 break;
2185         default:
2186                 return ret_val;
2187         }
2188
2189         ret_val = hw->phy.ops.acquire(hw);
2190         if (ret_val)
2191                 return ret_val;
2192
2193         data = er32(FEXTNVM);
2194         if (!(data & sw_cfg_mask))
2195                 goto release;
2196
2197         /* Make sure HW does not configure LCD from PHY
2198          * extended configuration before SW configuration
2199          */
2200         data = er32(EXTCNF_CTRL);
2201         if ((hw->mac.type < e1000_pch2lan) &&
2202             (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
2203                 goto release;
2204
2205         cnf_size = er32(EXTCNF_SIZE);
2206         cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
2207         cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
2208         if (!cnf_size)
2209                 goto release;
2210
2211         cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
2212         cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
2213
2214         if (((hw->mac.type == e1000_pchlan) &&
2215              !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
2216             (hw->mac.type > e1000_pchlan)) {
2217                 /* HW configures the SMBus address and LEDs when the
2218                  * OEM and LCD Write Enable bits are set in the NVM.
2219                  * When both NVM bits are cleared, SW will configure
2220                  * them instead.
2221                  */
2222                 ret_val = e1000_write_smbus_addr(hw);
2223                 if (ret_val)
2224                         goto release;
2225
2226                 data = er32(LEDCTL);
2227                 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
2228                                                         (u16)data);
2229                 if (ret_val)
2230                         goto release;
2231         }
2232
2233         /* Configure LCD from extended configuration region. */
2234
2235         /* cnf_base_addr is in DWORD */
2236         word_addr = (u16)(cnf_base_addr << 1);
2237
2238         for (i = 0; i < cnf_size; i++) {
2239                 ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1, &reg_data);
2240                 if (ret_val)
2241                         goto release;
2242
2243                 ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
2244                                          1, &reg_addr);
2245                 if (ret_val)
2246                         goto release;
2247
2248                 /* Save off the PHY page for future writes. */
2249                 if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
2250                         phy_page = reg_data;
2251                         continue;
2252                 }
2253
2254                 reg_addr &= PHY_REG_MASK;
2255                 reg_addr |= phy_page;
2256
2257                 ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data);
2258                 if (ret_val)
2259                         goto release;
2260         }
2261
2262 release:
2263         hw->phy.ops.release(hw);
2264         return ret_val;
2265 }
2266
2267 /**
2268  *  e1000_k1_gig_workaround_hv - K1 Si workaround
2269  *  @hw:   pointer to the HW structure
2270  *  @link: link up bool flag
2271  *
2272  *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
2273  *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
2274  *  If link is down, the function will restore the default K1 setting located
2275  *  in the NVM.
2276  **/
2277 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
2278 {
2279         s32 ret_val = 0;
2280         u16 status_reg = 0;
2281         bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
2282
2283         if (hw->mac.type != e1000_pchlan)
2284                 return 0;
2285
2286         /* Wrap the whole flow with the sw flag */
2287         ret_val = hw->phy.ops.acquire(hw);
2288         if (ret_val)
2289                 return ret_val;
2290
2291         /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
2292         if (link) {
2293                 if (hw->phy.type == e1000_phy_82578) {
2294                         ret_val = e1e_rphy_locked(hw, BM_CS_STATUS,
2295                                                   &status_reg);
2296                         if (ret_val)
2297                                 goto release;
2298
2299                         status_reg &= (BM_CS_STATUS_LINK_UP |
2300                                        BM_CS_STATUS_RESOLVED |
2301                                        BM_CS_STATUS_SPEED_MASK);
2302
2303                         if (status_reg == (BM_CS_STATUS_LINK_UP |
2304                                            BM_CS_STATUS_RESOLVED |
2305                                            BM_CS_STATUS_SPEED_1000))
2306                                 k1_enable = false;
2307                 }
2308
2309                 if (hw->phy.type == e1000_phy_82577) {
2310                         ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg);
2311                         if (ret_val)
2312                                 goto release;
2313
2314                         status_reg &= (HV_M_STATUS_LINK_UP |
2315                                        HV_M_STATUS_AUTONEG_COMPLETE |
2316                                        HV_M_STATUS_SPEED_MASK);
2317
2318                         if (status_reg == (HV_M_STATUS_LINK_UP |
2319                                            HV_M_STATUS_AUTONEG_COMPLETE |
2320                                            HV_M_STATUS_SPEED_1000))
2321                                 k1_enable = false;
2322                 }
2323
2324                 /* Link stall fix for link up */
2325                 ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100);
2326                 if (ret_val)
2327                         goto release;
2328
2329         } else {
2330                 /* Link stall fix for link down */
2331                 ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100);
2332                 if (ret_val)
2333                         goto release;
2334         }
2335
2336         ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
2337
2338 release:
2339         hw->phy.ops.release(hw);
2340
2341         return ret_val;
2342 }
2343
2344 /**
2345  *  e1000_configure_k1_ich8lan - Configure K1 power state
2346  *  @hw: pointer to the HW structure
2347  *  @k1_enable: K1 state to configure
2348  *
2349  *  Configure the K1 power state based on the provided parameter.
2350  *  Assumes semaphore already acquired.
2351  *
2352  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2353  **/
2354 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
2355 {
2356         s32 ret_val;
2357         u32 ctrl_reg = 0;
2358         u32 ctrl_ext = 0;
2359         u32 reg = 0;
2360         u16 kmrn_reg = 0;
2361
2362         ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2363                                               &kmrn_reg);
2364         if (ret_val)
2365                 return ret_val;
2366
2367         if (k1_enable)
2368                 kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
2369         else
2370                 kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
2371
2372         ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2373                                                kmrn_reg);
2374         if (ret_val)
2375                 return ret_val;
2376
2377         usleep_range(20, 40);
2378         ctrl_ext = er32(CTRL_EXT);
2379         ctrl_reg = er32(CTRL);
2380
2381         reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2382         reg |= E1000_CTRL_FRCSPD;
2383         ew32(CTRL, reg);
2384
2385         ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
2386         e1e_flush();
2387         usleep_range(20, 40);
2388         ew32(CTRL, ctrl_reg);
2389         ew32(CTRL_EXT, ctrl_ext);
2390         e1e_flush();
2391         usleep_range(20, 40);
2392
2393         return 0;
2394 }
2395
2396 /**
2397  *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
2398  *  @hw:       pointer to the HW structure
2399  *  @d0_state: boolean if entering d0 or d3 device state
2400  *
2401  *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
2402  *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
2403  *  in NVM determines whether HW should configure LPLU and Gbe Disable.
2404  **/
2405 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
2406 {
2407         s32 ret_val = 0;
2408         u32 mac_reg;
2409         u16 oem_reg;
2410
2411         if (hw->mac.type < e1000_pchlan)
2412                 return ret_val;
2413
2414         ret_val = hw->phy.ops.acquire(hw);
2415         if (ret_val)
2416                 return ret_val;
2417
2418         if (hw->mac.type == e1000_pchlan) {
2419                 mac_reg = er32(EXTCNF_CTRL);
2420                 if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
2421                         goto release;
2422         }
2423
2424         mac_reg = er32(FEXTNVM);
2425         if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
2426                 goto release;
2427
2428         mac_reg = er32(PHY_CTRL);
2429
2430         ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg);
2431         if (ret_val)
2432                 goto release;
2433
2434         oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
2435
2436         if (d0_state) {
2437                 if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
2438                         oem_reg |= HV_OEM_BITS_GBE_DIS;
2439
2440                 if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
2441                         oem_reg |= HV_OEM_BITS_LPLU;
2442         } else {
2443                 if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
2444                                E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
2445                         oem_reg |= HV_OEM_BITS_GBE_DIS;
2446
2447                 if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
2448                                E1000_PHY_CTRL_NOND0A_LPLU))
2449                         oem_reg |= HV_OEM_BITS_LPLU;
2450         }
2451
2452         /* Set Restart auto-neg to activate the bits */
2453         if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
2454             !hw->phy.ops.check_reset_block(hw))
2455                 oem_reg |= HV_OEM_BITS_RESTART_AN;
2456
2457         ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg);
2458
2459 release:
2460         hw->phy.ops.release(hw);
2461
2462         return ret_val;
2463 }
2464
2465 /**
2466  *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
2467  *  @hw:   pointer to the HW structure
2468  **/
2469 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
2470 {
2471         s32 ret_val;
2472         u16 data;
2473
2474         ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
2475         if (ret_val)
2476                 return ret_val;
2477
2478         data |= HV_KMRN_MDIO_SLOW;
2479
2480         ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
2481
2482         return ret_val;
2483 }
2484
2485 /**
2486  *  e1000_hv_phy_workarounds_ich8lan - apply PHY workarounds
2487  *  @hw: pointer to the HW structure
2488  *
2489  *  A series of PHY workarounds to be done after every PHY reset.
2490  **/
2491 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2492 {
2493         s32 ret_val = 0;
2494         u16 phy_data;
2495
2496         if (hw->mac.type != e1000_pchlan)
2497                 return 0;
2498
2499         /* Set MDIO slow mode before any other MDIO access */
2500         if (hw->phy.type == e1000_phy_82577) {
2501                 ret_val = e1000_set_mdio_slow_mode_hv(hw);
2502                 if (ret_val)
2503                         return ret_val;
2504         }
2505
2506         if (((hw->phy.type == e1000_phy_82577) &&
2507              ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
2508             ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
2509                 /* Disable generation of early preamble */
2510                 ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
2511                 if (ret_val)
2512                         return ret_val;
2513
2514                 /* Preamble tuning for SSC */
2515                 ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
2516                 if (ret_val)
2517                         return ret_val;
2518         }
2519
2520         if (hw->phy.type == e1000_phy_82578) {
2521                 /* Return registers to default by doing a soft reset then
2522                  * writing 0x3140 to the control register.
2523                  */
2524                 if (hw->phy.revision < 2) {
2525                         e1000e_phy_sw_reset(hw);
2526                         ret_val = e1e_wphy(hw, MII_BMCR, 0x3140);
2527                         if (ret_val)
2528                                 return ret_val;
2529                 }
2530         }
2531
2532         /* Select page 0 */
2533         ret_val = hw->phy.ops.acquire(hw);
2534         if (ret_val)
2535                 return ret_val;
2536
2537         hw->phy.addr = 1;
2538         ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
2539         hw->phy.ops.release(hw);
2540         if (ret_val)
2541                 return ret_val;
2542
2543         /* Configure the K1 Si workaround during phy reset assuming there is
2544          * link so that it disables K1 if link is in 1Gbps.
2545          */
2546         ret_val = e1000_k1_gig_workaround_hv(hw, true);
2547         if (ret_val)
2548                 return ret_val;
2549
2550         /* Workaround for link disconnects on a busy hub in half duplex */
2551         ret_val = hw->phy.ops.acquire(hw);
2552         if (ret_val)
2553                 return ret_val;
2554         ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data);
2555         if (ret_val)
2556                 goto release;
2557         ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF);
2558         if (ret_val)
2559                 goto release;
2560
2561         /* set MSE higher to enable link to stay up when noise is high */
2562         ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
2563 release:
2564         hw->phy.ops.release(hw);
2565
2566         return ret_val;
2567 }
2568
2569 /**
2570  *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
2571  *  @hw:   pointer to the HW structure
2572  **/
2573 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
2574 {
2575         u32 mac_reg;
2576         u16 i, phy_reg = 0;
2577         s32 ret_val;
2578
2579         ret_val = hw->phy.ops.acquire(hw);
2580         if (ret_val)
2581                 return;
2582         ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2583         if (ret_val)
2584                 goto release;
2585
2586         /* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
2587         for (i = 0; i < (hw->mac.rar_entry_count); i++) {
2588                 mac_reg = er32(RAL(i));
2589                 hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
2590                                            (u16)(mac_reg & 0xFFFF));
2591                 hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
2592                                            (u16)((mac_reg >> 16) & 0xFFFF));
2593
2594                 mac_reg = er32(RAH(i));
2595                 hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
2596                                            (u16)(mac_reg & 0xFFFF));
2597                 hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
2598                                            (u16)((mac_reg & E1000_RAH_AV) >> 16));
2599         }
2600
2601         e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2602
2603 release:
2604         hw->phy.ops.release(hw);
2605 }
2606
2607 /**
2608  *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
2609  *  with 82579 PHY
2610  *  @hw: pointer to the HW structure
2611  *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
2612  **/
2613 s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
2614 {
2615         s32 ret_val = 0;
2616         u16 phy_reg, data;
2617         u32 mac_reg;
2618         u16 i;
2619
2620         if (hw->mac.type < e1000_pch2lan)
2621                 return 0;
2622
2623         /* disable Rx path while enabling/disabling workaround */
2624         e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
2625         ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | BIT(14));
2626         if (ret_val)
2627                 return ret_val;
2628
2629         if (enable) {
2630                 /* Write Rx addresses (rar_entry_count for RAL/H, and
2631                  * SHRAL/H) and initial CRC values to the MAC
2632                  */
2633                 for (i = 0; i < hw->mac.rar_entry_count; i++) {
2634                         u8 mac_addr[ETH_ALEN] = { 0 };
2635                         u32 addr_high, addr_low;
2636
2637                         addr_high = er32(RAH(i));
2638                         if (!(addr_high & E1000_RAH_AV))
2639                                 continue;
2640                         addr_low = er32(RAL(i));
2641                         mac_addr[0] = (addr_low & 0xFF);
2642                         mac_addr[1] = ((addr_low >> 8) & 0xFF);
2643                         mac_addr[2] = ((addr_low >> 16) & 0xFF);
2644                         mac_addr[3] = ((addr_low >> 24) & 0xFF);
2645                         mac_addr[4] = (addr_high & 0xFF);
2646                         mac_addr[5] = ((addr_high >> 8) & 0xFF);
2647
2648                         ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
2649                 }
2650
2651                 /* Write Rx addresses to the PHY */
2652                 e1000_copy_rx_addrs_to_phy_ich8lan(hw);
2653
2654                 /* Enable jumbo frame workaround in the MAC */
2655                 mac_reg = er32(FFLT_DBG);
2656                 mac_reg &= ~BIT(14);
2657                 mac_reg |= (7 << 15);
2658                 ew32(FFLT_DBG, mac_reg);
2659
2660                 mac_reg = er32(RCTL);
2661                 mac_reg |= E1000_RCTL_SECRC;
2662                 ew32(RCTL, mac_reg);
2663
2664                 ret_val = e1000e_read_kmrn_reg(hw,
2665                                                E1000_KMRNCTRLSTA_CTRL_OFFSET,
2666                                                &data);
2667                 if (ret_val)
2668                         return ret_val;
2669                 ret_val = e1000e_write_kmrn_reg(hw,
2670                                                 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2671                                                 data | BIT(0));
2672                 if (ret_val)
2673                         return ret_val;
2674                 ret_val = e1000e_read_kmrn_reg(hw,
2675                                                E1000_KMRNCTRLSTA_HD_CTRL,
2676                                                &data);
2677                 if (ret_val)
2678                         return ret_val;
2679                 data &= ~(0xF << 8);
2680                 data |= (0xB << 8);
2681                 ret_val = e1000e_write_kmrn_reg(hw,
2682                                                 E1000_KMRNCTRLSTA_HD_CTRL,
2683                                                 data);
2684                 if (ret_val)
2685                         return ret_val;
2686
2687                 /* Enable jumbo frame workaround in the PHY */
2688                 e1e_rphy(hw, PHY_REG(769, 23), &data);
2689                 data &= ~(0x7F << 5);
2690                 data |= (0x37 << 5);
2691                 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2692                 if (ret_val)
2693                         return ret_val;
2694                 e1e_rphy(hw, PHY_REG(769, 16), &data);
2695                 data &= ~BIT(13);
2696                 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2697                 if (ret_val)
2698                         return ret_val;
2699                 e1e_rphy(hw, PHY_REG(776, 20), &data);
2700                 data &= ~(0x3FF << 2);
2701                 data |= (E1000_TX_PTR_GAP << 2);
2702                 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2703                 if (ret_val)
2704                         return ret_val;
2705                 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
2706                 if (ret_val)
2707                         return ret_val;
2708                 e1e_rphy(hw, HV_PM_CTRL, &data);
2709                 ret_val = e1e_wphy(hw, HV_PM_CTRL, data | BIT(10));
2710                 if (ret_val)
2711                         return ret_val;
2712         } else {
2713                 /* Write MAC register values back to h/w defaults */
2714                 mac_reg = er32(FFLT_DBG);
2715                 mac_reg &= ~(0xF << 14);
2716                 ew32(FFLT_DBG, mac_reg);
2717
2718                 mac_reg = er32(RCTL);
2719                 mac_reg &= ~E1000_RCTL_SECRC;
2720                 ew32(RCTL, mac_reg);
2721
2722                 ret_val = e1000e_read_kmrn_reg(hw,
2723                                                E1000_KMRNCTRLSTA_CTRL_OFFSET,
2724                                                &data);
2725                 if (ret_val)
2726                         return ret_val;
2727                 ret_val = e1000e_write_kmrn_reg(hw,
2728                                                 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2729                                                 data & ~BIT(0));
2730                 if (ret_val)
2731                         return ret_val;
2732                 ret_val = e1000e_read_kmrn_reg(hw,
2733                                                E1000_KMRNCTRLSTA_HD_CTRL,
2734                                                &data);
2735                 if (ret_val)
2736                         return ret_val;
2737                 data &= ~(0xF << 8);
2738                 data |= (0xB << 8);
2739                 ret_val = e1000e_write_kmrn_reg(hw,
2740                                                 E1000_KMRNCTRLSTA_HD_CTRL,
2741                                                 data);
2742                 if (ret_val)
2743                         return ret_val;
2744
2745                 /* Write PHY register values back to h/w defaults */
2746                 e1e_rphy(hw, PHY_REG(769, 23), &data);
2747                 data &= ~(0x7F << 5);
2748                 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2749                 if (ret_val)
2750                         return ret_val;
2751                 e1e_rphy(hw, PHY_REG(769, 16), &data);
2752                 data |= BIT(13);
2753                 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2754                 if (ret_val)
2755                         return ret_val;
2756                 e1e_rphy(hw, PHY_REG(776, 20), &data);
2757                 data &= ~(0x3FF << 2);
2758                 data |= (0x8 << 2);
2759                 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2760                 if (ret_val)
2761                         return ret_val;
2762                 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
2763                 if (ret_val)
2764                         return ret_val;
2765                 e1e_rphy(hw, HV_PM_CTRL, &data);
2766                 ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~BIT(10));
2767                 if (ret_val)
2768                         return ret_val;
2769         }
2770
2771         /* re-enable Rx path after enabling/disabling workaround */
2772         return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~BIT(14));
2773 }
2774
2775 /**
2776  *  e1000_lv_phy_workarounds_ich8lan - apply ich8 specific workarounds
2777  *  @hw: pointer to the HW structure
2778  *
2779  *  A series of PHY workarounds to be done after every PHY reset.
2780  **/
2781 static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2782 {
2783         s32 ret_val = 0;
2784
2785         if (hw->mac.type != e1000_pch2lan)
2786                 return 0;
2787
2788         /* Set MDIO slow mode before any other MDIO access */
2789         ret_val = e1000_set_mdio_slow_mode_hv(hw);
2790         if (ret_val)
2791                 return ret_val;
2792
2793         ret_val = hw->phy.ops.acquire(hw);
2794         if (ret_val)
2795                 return ret_val;
2796         /* set MSE higher to enable link to stay up when noise is high */
2797         ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
2798         if (ret_val)
2799                 goto release;
2800         /* drop link after 5 times MSE threshold was reached */
2801         ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
2802 release:
2803         hw->phy.ops.release(hw);
2804
2805         return ret_val;
2806 }
2807
2808 /**
2809  *  e1000_k1_workaround_lv - K1 Si workaround
2810  *  @hw:   pointer to the HW structure
2811  *
2812  *  Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
2813  *  Disable K1 in 1000Mbps and 100Mbps
2814  **/
2815 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2816 {
2817         s32 ret_val = 0;
2818         u16 status_reg = 0;
2819
2820         if (hw->mac.type != e1000_pch2lan)
2821                 return 0;
2822
2823         /* Set K1 beacon duration based on 10Mbs speed */
2824         ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
2825         if (ret_val)
2826                 return ret_val;
2827
2828         if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2829             == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2830                 if (status_reg &
2831                     (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
2832                         u16 pm_phy_reg;
2833
2834                         /* LV 1G/100 Packet drop issue wa  */
2835                         ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg);
2836                         if (ret_val)
2837                                 return ret_val;
2838                         pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE;
2839                         ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg);
2840                         if (ret_val)
2841                                 return ret_val;
2842                 } else {
2843                         u32 mac_reg;
2844
2845                         mac_reg = er32(FEXTNVM4);
2846                         mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
2847                         mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
2848                         ew32(FEXTNVM4, mac_reg);
2849                 }
2850         }
2851
2852         return ret_val;
2853 }
2854
2855 /**
2856  *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2857  *  @hw:   pointer to the HW structure
2858  *  @gate: boolean set to true to gate, false to ungate
2859  *
2860  *  Gate/ungate the automatic PHY configuration via hardware; perform
2861  *  the configuration via software instead.
2862  **/
2863 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
2864 {
2865         u32 extcnf_ctrl;
2866
2867         if (hw->mac.type < e1000_pch2lan)
2868                 return;
2869
2870         extcnf_ctrl = er32(EXTCNF_CTRL);
2871
2872         if (gate)
2873                 extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2874         else
2875                 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2876
2877         ew32(EXTCNF_CTRL, extcnf_ctrl);
2878 }
2879
2880 /**
2881  *  e1000_lan_init_done_ich8lan - Check for PHY config completion
2882  *  @hw: pointer to the HW structure
2883  *
2884  *  Check the appropriate indication the MAC has finished configuring the
2885  *  PHY after a software reset.
2886  **/
2887 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
2888 {
2889         u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
2890
2891         /* Wait for basic configuration completes before proceeding */
2892         do {
2893                 data = er32(STATUS);
2894                 data &= E1000_STATUS_LAN_INIT_DONE;
2895                 usleep_range(100, 200);
2896         } while ((!data) && --loop);
2897
2898         /* If basic configuration is incomplete before the above loop
2899          * count reaches 0, loading the configuration from NVM will
2900          * leave the PHY in a bad state possibly resulting in no link.
2901          */
2902         if (loop == 0)
2903                 e_dbg("LAN_INIT_DONE not set, increase timeout\n");
2904
2905         /* Clear the Init Done bit for the next init event */
2906         data = er32(STATUS);
2907         data &= ~E1000_STATUS_LAN_INIT_DONE;
2908         ew32(STATUS, data);
2909 }
2910
2911 /**
2912  *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
2913  *  @hw: pointer to the HW structure
2914  **/
2915 static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
2916 {
2917         s32 ret_val = 0;
2918         u16 reg;
2919
2920         if (hw->phy.ops.check_reset_block(hw))
2921                 return 0;
2922
2923         /* Allow time for h/w to get to quiescent state after reset */
2924         usleep_range(10000, 11000);
2925
2926         /* Perform any necessary post-reset workarounds */
2927         switch (hw->mac.type) {
2928         case e1000_pchlan:
2929                 ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2930                 if (ret_val)
2931                         return ret_val;
2932                 break;
2933         case e1000_pch2lan:
2934                 ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
2935                 if (ret_val)
2936                         return ret_val;
2937                 break;
2938         default:
2939                 break;
2940         }
2941
2942         /* Clear the host wakeup bit after lcd reset */
2943         if (hw->mac.type >= e1000_pchlan) {
2944                 e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
2945                 reg &= ~BM_WUC_HOST_WU_BIT;
2946                 e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
2947         }
2948
2949         /* Configure the LCD with the extended configuration region in NVM */
2950         ret_val = e1000_sw_lcd_config_ich8lan(hw);
2951         if (ret_val)
2952                 return ret_val;
2953
2954         /* Configure the LCD with the OEM bits in NVM */
2955         ret_val = e1000_oem_bits_config_ich8lan(hw, true);
2956
2957         if (hw->mac.type == e1000_pch2lan) {
2958                 /* Ungate automatic PHY configuration on non-managed 82579 */
2959                 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
2960                         usleep_range(10000, 11000);
2961                         e1000_gate_hw_phy_config_ich8lan(hw, false);
2962                 }
2963
2964                 /* Set EEE LPI Update Timer to 200usec */
2965                 ret_val = hw->phy.ops.acquire(hw);
2966                 if (ret_val)
2967                         return ret_val;
2968                 ret_val = e1000_write_emi_reg_locked(hw,
2969                                                      I82579_LPI_UPDATE_TIMER,
2970                                                      0x1387);
2971                 hw->phy.ops.release(hw);
2972         }
2973
2974         return ret_val;
2975 }
2976
2977 /**
2978  *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
2979  *  @hw: pointer to the HW structure
2980  *
2981  *  Resets the PHY
2982  *  This is a function pointer entry point called by drivers
2983  *  or other shared routines.
2984  **/
2985 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
2986 {
2987         s32 ret_val = 0;
2988
2989         /* Gate automatic PHY configuration by hardware on non-managed 82579 */
2990         if ((hw->mac.type == e1000_pch2lan) &&
2991             !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
2992                 e1000_gate_hw_phy_config_ich8lan(hw, true);
2993
2994         ret_val = e1000e_phy_hw_reset_generic(hw);
2995         if (ret_val)
2996                 return ret_val;
2997
2998         return e1000_post_phy_reset_ich8lan(hw);
2999 }
3000
3001 /**
3002  *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
3003  *  @hw: pointer to the HW structure
3004  *  @active: true to enable LPLU, false to disable
3005  *
3006  *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
3007  *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
3008  *  the phy speed. This function will manually set the LPLU bit and restart
3009  *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
3010  *  since it configures the same bit.
3011  **/
3012 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
3013 {
3014         s32 ret_val;
3015         u16 oem_reg;
3016
3017         ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
3018         if (ret_val)
3019                 return ret_val;
3020
3021         if (active)
3022                 oem_reg |= HV_OEM_BITS_LPLU;
3023         else
3024                 oem_reg &= ~HV_OEM_BITS_LPLU;
3025
3026         if (!hw->phy.ops.check_reset_block(hw))
3027                 oem_reg |= HV_OEM_BITS_RESTART_AN;
3028
3029         return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
3030 }
3031
3032 /**
3033  *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
3034  *  @hw: pointer to the HW structure
3035  *  @active: true to enable LPLU, false to disable
3036  *
3037  *  Sets the LPLU D0 state according to the active flag.  When
3038  *  activating LPLU this function also disables smart speed
3039  *  and vice versa.  LPLU will not be activated unless the
3040  *  device autonegotiation advertisement meets standards of
3041  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3042  *  This is a function pointer entry point only called by
3043  *  PHY setup routines.
3044  **/
3045 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3046 {
3047         struct e1000_phy_info *phy = &hw->phy;
3048         u32 phy_ctrl;
3049         s32 ret_val = 0;
3050         u16 data;
3051
3052         if (phy->type == e1000_phy_ife)
3053                 return 0;
3054
3055         phy_ctrl = er32(PHY_CTRL);
3056
3057         if (active) {
3058                 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
3059                 ew32(PHY_CTRL, phy_ctrl);
3060
3061                 if (phy->type != e1000_phy_igp_3)
3062                         return 0;
3063
3064                 /* Call gig speed drop workaround on LPLU before accessing
3065                  * any PHY registers
3066                  */
3067                 if (hw->mac.type == e1000_ich8lan)
3068                         e1000e_gig_downshift_workaround_ich8lan(hw);
3069
3070                 /* When LPLU is enabled, we should disable SmartSpeed */
3071                 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
3072                 if (ret_val)
3073                         return ret_val;
3074                 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3075                 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3076                 if (ret_val)
3077                         return ret_val;
3078         } else {
3079                 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
3080                 ew32(PHY_CTRL, phy_ctrl);
3081
3082                 if (phy->type != e1000_phy_igp_3)
3083                         return 0;
3084
3085                 /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3086                  * during Dx states where the power conservation is most
3087                  * important.  During driver activity we should enable
3088                  * SmartSpeed, so performance is maintained.
3089                  */
3090                 if (phy->smart_speed == e1000_smart_speed_on) {
3091                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3092                                            &data);
3093                         if (ret_val)
3094                                 return ret_val;
3095
3096                         data |= IGP01E1000_PSCFR_SMART_SPEED;
3097                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3098                                            data);
3099                         if (ret_val)
3100                                 return ret_val;
3101                 } else if (phy->smart_speed == e1000_smart_speed_off) {
3102                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3103                                            &data);
3104                         if (ret_val)
3105                                 return ret_val;
3106
3107                         data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3108                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3109                                            data);
3110                         if (ret_val)
3111                                 return ret_val;
3112                 }
3113         }
3114
3115         return 0;
3116 }
3117
3118 /**
3119  *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
3120  *  @hw: pointer to the HW structure
3121  *  @active: true to enable LPLU, false to disable
3122  *
3123  *  Sets the LPLU D3 state according to the active flag.  When
3124  *  activating LPLU this function also disables smart speed
3125  *  and vice versa.  LPLU will not be activated unless the
3126  *  device autonegotiation advertisement meets standards of
3127  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3128  *  This is a function pointer entry point only called by
3129  *  PHY setup routines.
3130  **/
3131 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3132 {
3133         struct e1000_phy_info *phy = &hw->phy;
3134         u32 phy_ctrl;
3135         s32 ret_val = 0;
3136         u16 data;
3137
3138         phy_ctrl = er32(PHY_CTRL);
3139
3140         if (!active) {
3141                 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
3142                 ew32(PHY_CTRL, phy_ctrl);
3143
3144                 if (phy->type != e1000_phy_igp_3)
3145                         return 0;
3146
3147                 /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3148                  * during Dx states where the power conservation is most
3149                  * important.  During driver activity we should enable
3150                  * SmartSpeed, so performance is maintained.
3151                  */
3152                 if (phy->smart_speed == e1000_smart_speed_on) {
3153                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3154                                            &data);
3155                         if (ret_val)
3156                                 return ret_val;
3157
3158                         data |= IGP01E1000_PSCFR_SMART_SPEED;
3159                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3160                                            data);
3161                         if (ret_val)
3162                                 return ret_val;
3163                 } else if (phy->smart_speed == e1000_smart_speed_off) {
3164                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3165                                            &data);
3166                         if (ret_val)
3167                                 return ret_val;
3168
3169                         data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3170                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3171                                            data);
3172                         if (ret_val)
3173                                 return ret_val;
3174                 }
3175         } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
3176                    (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
3177                    (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
3178                 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
3179                 ew32(PHY_CTRL, phy_ctrl);
3180
3181                 if (phy->type != e1000_phy_igp_3)
3182                         return 0;
3183
3184                 /* Call gig speed drop workaround on LPLU before accessing
3185                  * any PHY registers
3186                  */
3187                 if (hw->mac.type == e1000_ich8lan)
3188                         e1000e_gig_downshift_workaround_ich8lan(hw);
3189
3190                 /* When LPLU is enabled, we should disable SmartSpeed */
3191                 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
3192                 if (ret_val)
3193                         return ret_val;
3194
3195                 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3196                 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3197         }
3198
3199         return ret_val;
3200 }
3201
3202 /**
3203  *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
3204  *  @hw: pointer to the HW structure
3205  *  @bank:  pointer to the variable that returns the active bank
3206  *
3207  *  Reads signature byte from the NVM using the flash access registers.
3208  *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
3209  **/
3210 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
3211 {
3212         u32 eecd;
3213         struct e1000_nvm_info *nvm = &hw->nvm;
3214         u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
3215         u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
3216         u32 nvm_dword = 0;
3217         u8 sig_byte = 0;
3218         s32 ret_val;
3219
3220         switch (hw->mac.type) {
3221         case e1000_pch_spt:
3222         case e1000_pch_cnp:
3223         case e1000_pch_tgp:
3224         case e1000_pch_adp:
3225         case e1000_pch_mtp:
3226         case e1000_pch_lnp:
3227         case e1000_pch_ptp:
3228         case e1000_pch_nvp:
3229                 bank1_offset = nvm->flash_bank_size;
3230                 act_offset = E1000_ICH_NVM_SIG_WORD;
3231
3232                 /* set bank to 0 in case flash read fails */
3233                 *bank = 0;
3234
3235                 /* Check bank 0 */
3236                 ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset,
3237                                                          &nvm_dword);
3238                 if (ret_val)
3239                         return ret_val;
3240                 sig_byte = FIELD_GET(0xFF00, nvm_dword);
3241                 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3242                     E1000_ICH_NVM_SIG_VALUE) {
3243                         *bank = 0;
3244                         return 0;
3245                 }
3246
3247                 /* Check bank 1 */
3248                 ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset +
3249                                                          bank1_offset,
3250                                                          &nvm_dword);
3251                 if (ret_val)
3252                         return ret_val;
3253                 sig_byte = FIELD_GET(0xFF00, nvm_dword);
3254                 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3255                     E1000_ICH_NVM_SIG_VALUE) {
3256                         *bank = 1;
3257                         return 0;
3258                 }
3259
3260                 e_dbg("ERROR: No valid NVM bank present\n");
3261                 return -E1000_ERR_NVM;
3262         case e1000_ich8lan:
3263         case e1000_ich9lan:
3264                 eecd = er32(EECD);
3265                 if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
3266                     E1000_EECD_SEC1VAL_VALID_MASK) {
3267                         if (eecd & E1000_EECD_SEC1VAL)
3268                                 *bank = 1;
3269                         else
3270                                 *bank = 0;
3271
3272                         return 0;
3273                 }
3274                 e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
3275                 fallthrough;
3276         default:
3277                 /* set bank to 0 in case flash read fails */
3278                 *bank = 0;
3279
3280                 /* Check bank 0 */
3281                 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
3282                                                         &sig_byte);
3283                 if (ret_val)
3284                         return ret_val;
3285                 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3286                     E1000_ICH_NVM_SIG_VALUE) {
3287                         *bank = 0;
3288                         return 0;
3289                 }
3290
3291                 /* Check bank 1 */
3292                 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
3293                                                         bank1_offset,
3294                                                         &sig_byte);
3295                 if (ret_val)
3296                         return ret_val;
3297                 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3298                     E1000_ICH_NVM_SIG_VALUE) {
3299                         *bank = 1;
3300                         return 0;
3301                 }
3302
3303                 e_dbg("ERROR: No valid NVM bank present\n");
3304                 return -E1000_ERR_NVM;
3305         }
3306 }
3307
3308 /**
3309  *  e1000_read_nvm_spt - NVM access for SPT
3310  *  @hw: pointer to the HW structure
3311  *  @offset: The offset (in bytes) of the word(s) to read.
3312  *  @words: Size of data to read in words.
3313  *  @data: pointer to the word(s) to read at offset.
3314  *
3315  *  Reads a word(s) from the NVM
3316  **/
3317 static s32 e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words,
3318                               u16 *data)
3319 {
3320         struct e1000_nvm_info *nvm = &hw->nvm;
3321         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3322         u32 act_offset;
3323         s32 ret_val = 0;
3324         u32 bank = 0;
3325         u32 dword = 0;
3326         u16 offset_to_read;
3327         u16 i;
3328
3329         if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3330             (words == 0)) {
3331                 e_dbg("nvm parameter(s) out of bounds\n");
3332                 ret_val = -E1000_ERR_NVM;
3333                 goto out;
3334         }
3335
3336         nvm->ops.acquire(hw);
3337
3338         ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3339         if (ret_val) {
3340                 e_dbg("Could not detect valid bank, assuming bank 0\n");
3341                 bank = 0;
3342         }
3343
3344         act_offset = (bank) ? nvm->flash_bank_size : 0;
3345         act_offset += offset;
3346
3347         ret_val = 0;
3348
3349         for (i = 0; i < words; i += 2) {
3350                 if (words - i == 1) {
3351                         if (dev_spec->shadow_ram[offset + i].modified) {
3352                                 data[i] =
3353                                     dev_spec->shadow_ram[offset + i].value;
3354                         } else {
3355                                 offset_to_read = act_offset + i -
3356                                     ((act_offset + i) % 2);
3357                                 ret_val =
3358                                   e1000_read_flash_dword_ich8lan(hw,
3359                                                                  offset_to_read,
3360                                                                  &dword);
3361                                 if (ret_val)
3362                                         break;
3363                                 if ((act_offset + i) % 2 == 0)
3364                                         data[i] = (u16)(dword & 0xFFFF);
3365                                 else
3366                                         data[i] = (u16)((dword >> 16) & 0xFFFF);
3367                         }
3368                 } else {
3369                         offset_to_read = act_offset + i;
3370                         if (!(dev_spec->shadow_ram[offset + i].modified) ||
3371                             !(dev_spec->shadow_ram[offset + i + 1].modified)) {
3372                                 ret_val =
3373                                   e1000_read_flash_dword_ich8lan(hw,
3374                                                                  offset_to_read,
3375                                                                  &dword);
3376                                 if (ret_val)
3377                                         break;
3378                         }
3379                         if (dev_spec->shadow_ram[offset + i].modified)
3380                                 data[i] =
3381                                     dev_spec->shadow_ram[offset + i].value;
3382                         else
3383                                 data[i] = (u16)(dword & 0xFFFF);
3384                         if (dev_spec->shadow_ram[offset + i].modified)
3385                                 data[i + 1] =
3386                                     dev_spec->shadow_ram[offset + i + 1].value;
3387                         else
3388                                 data[i + 1] = (u16)(dword >> 16 & 0xFFFF);
3389                 }
3390         }
3391
3392         nvm->ops.release(hw);
3393
3394 out:
3395         if (ret_val)
3396                 e_dbg("NVM read error: %d\n", ret_val);
3397
3398         return ret_val;
3399 }
3400
3401 /**
3402  *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
3403  *  @hw: pointer to the HW structure
3404  *  @offset: The offset (in bytes) of the word(s) to read.
3405  *  @words: Size of data to read in words
3406  *  @data: Pointer to the word(s) to read at offset.
3407  *
3408  *  Reads a word(s) from the NVM using the flash access registers.
3409  **/
3410 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3411                                   u16 *data)
3412 {
3413         struct e1000_nvm_info *nvm = &hw->nvm;
3414         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3415         u32 act_offset;
3416         s32 ret_val = 0;
3417         u32 bank = 0;
3418         u16 i, word;
3419
3420         if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3421             (words == 0)) {
3422                 e_dbg("nvm parameter(s) out of bounds\n");
3423                 ret_val = -E1000_ERR_NVM;
3424                 goto out;
3425         }
3426
3427         nvm->ops.acquire(hw);
3428
3429         ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3430         if (ret_val) {
3431                 e_dbg("Could not detect valid bank, assuming bank 0\n");
3432                 bank = 0;
3433         }
3434
3435         act_offset = (bank) ? nvm->flash_bank_size : 0;
3436         act_offset += offset;
3437
3438         ret_val = 0;
3439         for (i = 0; i < words; i++) {
3440                 if (dev_spec->shadow_ram[offset + i].modified) {
3441                         data[i] = dev_spec->shadow_ram[offset + i].value;
3442                 } else {
3443                         ret_val = e1000_read_flash_word_ich8lan(hw,
3444                                                                 act_offset + i,
3445                                                                 &word);
3446                         if (ret_val)
3447                                 break;
3448                         data[i] = word;
3449                 }
3450         }
3451
3452         nvm->ops.release(hw);
3453
3454 out:
3455         if (ret_val)
3456                 e_dbg("NVM read error: %d\n", ret_val);
3457
3458         return ret_val;
3459 }
3460
3461 /**
3462  *  e1000_flash_cycle_init_ich8lan - Initialize flash
3463  *  @hw: pointer to the HW structure
3464  *
3465  *  This function does initial flash setup so that a new read/write/erase cycle
3466  *  can be started.
3467  **/
3468 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
3469 {
3470         union ich8_hws_flash_status hsfsts;
3471         s32 ret_val = -E1000_ERR_NVM;
3472
3473         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3474
3475         /* Check if the flash descriptor is valid */
3476         if (!hsfsts.hsf_status.fldesvalid) {
3477                 e_dbg("Flash descriptor invalid.  SW Sequencing must be used.\n");
3478                 return -E1000_ERR_NVM;
3479         }
3480
3481         /* Clear FCERR and DAEL in hw status by writing 1 */
3482         hsfsts.hsf_status.flcerr = 1;
3483         hsfsts.hsf_status.dael = 1;
3484         if (hw->mac.type >= e1000_pch_spt)
3485                 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3486         else
3487                 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3488
3489         /* Either we should have a hardware SPI cycle in progress
3490          * bit to check against, in order to start a new cycle or
3491          * FDONE bit should be changed in the hardware so that it
3492          * is 1 after hardware reset, which can then be used as an
3493          * indication whether a cycle is in progress or has been
3494          * completed.
3495          */
3496
3497         if (!hsfsts.hsf_status.flcinprog) {
3498                 /* There is no cycle running at present,
3499                  * so we can start a cycle.
3500                  * Begin by setting Flash Cycle Done.
3501                  */
3502                 hsfsts.hsf_status.flcdone = 1;
3503                 if (hw->mac.type >= e1000_pch_spt)
3504                         ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3505                 else
3506                         ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3507                 ret_val = 0;
3508         } else {
3509                 s32 i;
3510
3511                 /* Otherwise poll for sometime so the current
3512                  * cycle has a chance to end before giving up.
3513                  */
3514                 for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
3515                         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3516                         if (!hsfsts.hsf_status.flcinprog) {
3517                                 ret_val = 0;
3518                                 break;
3519                         }
3520                         udelay(1);
3521                 }
3522                 if (!ret_val) {
3523                         /* Successful in waiting for previous cycle to timeout,
3524                          * now set the Flash Cycle Done.
3525                          */
3526                         hsfsts.hsf_status.flcdone = 1;
3527                         if (hw->mac.type >= e1000_pch_spt)
3528                                 ew32flash(ICH_FLASH_HSFSTS,
3529                                           hsfsts.regval & 0xFFFF);
3530                         else
3531                                 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3532                 } else {
3533                         e_dbg("Flash controller busy, cannot get access\n");
3534                 }
3535         }
3536
3537         return ret_val;
3538 }
3539
3540 /**
3541  *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
3542  *  @hw: pointer to the HW structure
3543  *  @timeout: maximum time to wait for completion
3544  *
3545  *  This function starts a flash cycle and waits for its completion.
3546  **/
3547 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
3548 {
3549         union ich8_hws_flash_ctrl hsflctl;
3550         union ich8_hws_flash_status hsfsts;
3551         u32 i = 0;
3552
3553         /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
3554         if (hw->mac.type >= e1000_pch_spt)
3555                 hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3556         else
3557                 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3558         hsflctl.hsf_ctrl.flcgo = 1;
3559
3560         if (hw->mac.type >= e1000_pch_spt)
3561                 ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
3562         else
3563                 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3564
3565         /* wait till FDONE bit is set to 1 */
3566         do {
3567                 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3568                 if (hsfsts.hsf_status.flcdone)
3569                         break;
3570                 udelay(1);
3571         } while (i++ < timeout);
3572
3573         if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
3574                 return 0;
3575
3576         return -E1000_ERR_NVM;
3577 }
3578
3579 /**
3580  *  e1000_read_flash_dword_ich8lan - Read dword from flash
3581  *  @hw: pointer to the HW structure
3582  *  @offset: offset to data location
3583  *  @data: pointer to the location for storing the data
3584  *
3585  *  Reads the flash dword at offset into data.  Offset is converted
3586  *  to bytes before read.
3587  **/
3588 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset,
3589                                           u32 *data)
3590 {
3591         /* Must convert word offset into bytes. */
3592         offset <<= 1;
3593         return e1000_read_flash_data32_ich8lan(hw, offset, data);
3594 }
3595
3596 /**
3597  *  e1000_read_flash_word_ich8lan - Read word from flash
3598  *  @hw: pointer to the HW structure
3599  *  @offset: offset to data location
3600  *  @data: pointer to the location for storing the data
3601  *
3602  *  Reads the flash word at offset into data.  Offset is converted
3603  *  to bytes before read.
3604  **/
3605 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
3606                                          u16 *data)
3607 {
3608         /* Must convert offset into bytes. */
3609         offset <<= 1;
3610
3611         return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
3612 }
3613
3614 /**
3615  *  e1000_read_flash_byte_ich8lan - Read byte from flash
3616  *  @hw: pointer to the HW structure
3617  *  @offset: The offset of the byte to read.
3618  *  @data: Pointer to a byte to store the value read.
3619  *
3620  *  Reads a single byte from the NVM using the flash access registers.
3621  **/
3622 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3623                                          u8 *data)
3624 {
3625         s32 ret_val;
3626         u16 word = 0;
3627
3628         /* In SPT, only 32 bits access is supported,
3629          * so this function should not be called.
3630          */
3631         if (hw->mac.type >= e1000_pch_spt)
3632                 return -E1000_ERR_NVM;
3633         else
3634                 ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
3635
3636         if (ret_val)
3637                 return ret_val;
3638
3639         *data = (u8)word;
3640
3641         return 0;
3642 }
3643
3644 /**
3645  *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
3646  *  @hw: pointer to the HW structure
3647  *  @offset: The offset (in bytes) of the byte or word to read.
3648  *  @size: Size of data to read, 1=byte 2=word
3649  *  @data: Pointer to the word to store the value read.
3650  *
3651  *  Reads a byte or word from the NVM using the flash access registers.
3652  **/
3653 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3654                                          u8 size, u16 *data)
3655 {
3656         union ich8_hws_flash_status hsfsts;
3657         union ich8_hws_flash_ctrl hsflctl;
3658         u32 flash_linear_addr;
3659         u32 flash_data = 0;
3660         s32 ret_val = -E1000_ERR_NVM;
3661         u8 count = 0;
3662
3663         if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3664                 return -E1000_ERR_NVM;
3665
3666         flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3667                              hw->nvm.flash_base_addr);
3668
3669         do {
3670                 udelay(1);
3671                 /* Steps */
3672                 ret_val = e1000_flash_cycle_init_ich8lan(hw);
3673                 if (ret_val)
3674                         break;
3675
3676                 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3677                 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3678                 hsflctl.hsf_ctrl.fldbcount = size - 1;
3679                 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3680                 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3681
3682                 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3683
3684                 ret_val =
3685                     e1000_flash_cycle_ich8lan(hw,
3686                                               ICH_FLASH_READ_COMMAND_TIMEOUT);
3687
3688                 /* Check if FCERR is set to 1, if set to 1, clear it
3689                  * and try the whole sequence a few more times, else
3690                  * read in (shift in) the Flash Data0, the order is
3691                  * least significant byte first msb to lsb
3692                  */
3693                 if (!ret_val) {
3694                         flash_data = er32flash(ICH_FLASH_FDATA0);
3695                         if (size == 1)
3696                                 *data = (u8)(flash_data & 0x000000FF);
3697                         else if (size == 2)
3698                                 *data = (u16)(flash_data & 0x0000FFFF);
3699                         break;
3700                 } else {
3701                         /* If we've gotten here, then things are probably
3702                          * completely hosed, but if the error condition is
3703                          * detected, it won't hurt to give it another try...
3704                          * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3705                          */
3706                         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3707                         if (hsfsts.hsf_status.flcerr) {
3708                                 /* Repeat for some time before giving up. */
3709                                 continue;
3710                         } else if (!hsfsts.hsf_status.flcdone) {
3711                                 e_dbg("Timeout error - flash cycle did not complete.\n");
3712                                 break;
3713                         }
3714                 }
3715         } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3716
3717         return ret_val;
3718 }
3719
3720 /**
3721  *  e1000_read_flash_data32_ich8lan - Read dword from NVM
3722  *  @hw: pointer to the HW structure
3723  *  @offset: The offset (in bytes) of the dword to read.
3724  *  @data: Pointer to the dword to store the value read.
3725  *
3726  *  Reads a byte or word from the NVM using the flash access registers.
3727  **/
3728
3729 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
3730                                            u32 *data)
3731 {
3732         union ich8_hws_flash_status hsfsts;
3733         union ich8_hws_flash_ctrl hsflctl;
3734         u32 flash_linear_addr;
3735         s32 ret_val = -E1000_ERR_NVM;
3736         u8 count = 0;
3737
3738         if (offset > ICH_FLASH_LINEAR_ADDR_MASK || hw->mac.type < e1000_pch_spt)
3739                 return -E1000_ERR_NVM;
3740         flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3741                              hw->nvm.flash_base_addr);
3742
3743         do {
3744                 udelay(1);
3745                 /* Steps */
3746                 ret_val = e1000_flash_cycle_init_ich8lan(hw);
3747                 if (ret_val)
3748                         break;
3749                 /* In SPT, This register is in Lan memory space, not flash.
3750                  * Therefore, only 32 bit access is supported
3751                  */
3752                 hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3753
3754                 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3755                 hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
3756                 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3757                 /* In SPT, This register is in Lan memory space, not flash.
3758                  * Therefore, only 32 bit access is supported
3759                  */
3760                 ew32flash(ICH_FLASH_HSFSTS, (u32)hsflctl.regval << 16);
3761                 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3762
3763                 ret_val =
3764                    e1000_flash_cycle_ich8lan(hw,
3765                                              ICH_FLASH_READ_COMMAND_TIMEOUT);
3766
3767                 /* Check if FCERR is set to 1, if set to 1, clear it
3768                  * and try the whole sequence a few more times, else
3769                  * read in (shift in) the Flash Data0, the order is
3770                  * least significant byte first msb to lsb
3771                  */
3772                 if (!ret_val) {
3773                         *data = er32flash(ICH_FLASH_FDATA0);
3774                         break;
3775                 } else {
3776                         /* If we've gotten here, then things are probably
3777                          * completely hosed, but if the error condition is
3778                          * detected, it won't hurt to give it another try...
3779                          * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3780                          */
3781                         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3782                         if (hsfsts.hsf_status.flcerr) {
3783                                 /* Repeat for some time before giving up. */
3784                                 continue;
3785                         } else if (!hsfsts.hsf_status.flcdone) {
3786                                 e_dbg("Timeout error - flash cycle did not complete.\n");
3787                                 break;
3788                         }
3789                 }
3790         } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3791
3792         return ret_val;
3793 }
3794
3795 /**
3796  *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
3797  *  @hw: pointer to the HW structure
3798  *  @offset: The offset (in bytes) of the word(s) to write.
3799  *  @words: Size of data to write in words
3800  *  @data: Pointer to the word(s) to write at offset.
3801  *
3802  *  Writes a byte or word to the NVM using the flash access registers.
3803  **/
3804 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3805                                    u16 *data)
3806 {
3807         struct e1000_nvm_info *nvm = &hw->nvm;
3808         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3809         u16 i;
3810
3811         if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3812             (words == 0)) {
3813                 e_dbg("nvm parameter(s) out of bounds\n");
3814                 return -E1000_ERR_NVM;
3815         }
3816
3817         nvm->ops.acquire(hw);
3818
3819         for (i = 0; i < words; i++) {
3820                 dev_spec->shadow_ram[offset + i].modified = true;
3821                 dev_spec->shadow_ram[offset + i].value = data[i];
3822         }
3823
3824         nvm->ops.release(hw);
3825
3826         return 0;
3827 }
3828
3829 /**
3830  *  e1000_update_nvm_checksum_spt - Update the checksum for NVM
3831  *  @hw: pointer to the HW structure
3832  *
3833  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3834  *  which writes the checksum to the shadow ram.  The changes in the shadow
3835  *  ram are then committed to the EEPROM by processing each bank at a time
3836  *  checking for the modified bit and writing only the pending changes.
3837  *  After a successful commit, the shadow ram is cleared and is ready for
3838  *  future writes.
3839  **/
3840 static s32 e1000_update_nvm_checksum_spt(struct e1000_hw *hw)
3841 {
3842         struct e1000_nvm_info *nvm = &hw->nvm;
3843         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3844         u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3845         s32 ret_val;
3846         u32 dword = 0;
3847
3848         ret_val = e1000e_update_nvm_checksum_generic(hw);
3849         if (ret_val)
3850                 goto out;
3851
3852         if (nvm->type != e1000_nvm_flash_sw)
3853                 goto out;
3854
3855         nvm->ops.acquire(hw);
3856
3857         /* We're writing to the opposite bank so if we're on bank 1,
3858          * write to bank 0 etc.  We also need to erase the segment that
3859          * is going to be written
3860          */
3861         ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3862         if (ret_val) {
3863                 e_dbg("Could not detect valid bank, assuming bank 0\n");
3864                 bank = 0;
3865         }
3866
3867         if (bank == 0) {
3868                 new_bank_offset = nvm->flash_bank_size;
3869                 old_bank_offset = 0;
3870                 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3871                 if (ret_val)
3872                         goto release;
3873         } else {
3874                 old_bank_offset = nvm->flash_bank_size;
3875                 new_bank_offset = 0;
3876                 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3877                 if (ret_val)
3878                         goto release;
3879         }
3880         for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i += 2) {
3881                 /* Determine whether to write the value stored
3882                  * in the other NVM bank or a modified value stored
3883                  * in the shadow RAM
3884                  */
3885                 ret_val = e1000_read_flash_dword_ich8lan(hw,
3886                                                          i + old_bank_offset,
3887                                                          &dword);
3888
3889                 if (dev_spec->shadow_ram[i].modified) {
3890                         dword &= 0xffff0000;
3891                         dword |= (dev_spec->shadow_ram[i].value & 0xffff);
3892                 }
3893                 if (dev_spec->shadow_ram[i + 1].modified) {
3894                         dword &= 0x0000ffff;
3895                         dword |= ((dev_spec->shadow_ram[i + 1].value & 0xffff)
3896                                   << 16);
3897                 }
3898                 if (ret_val)
3899                         break;
3900
3901                 /* If the word is 0x13, then make sure the signature bits
3902                  * (15:14) are 11b until the commit has completed.
3903                  * This will allow us to write 10b which indicates the
3904                  * signature is valid.  We want to do this after the write
3905                  * has completed so that we don't mark the segment valid
3906                  * while the write is still in progress
3907                  */
3908                 if (i == E1000_ICH_NVM_SIG_WORD - 1)
3909                         dword |= E1000_ICH_NVM_SIG_MASK << 16;
3910
3911                 /* Convert offset to bytes. */
3912                 act_offset = (i + new_bank_offset) << 1;
3913
3914                 usleep_range(100, 200);
3915
3916                 /* Write the data to the new bank. Offset in words */
3917                 act_offset = i + new_bank_offset;
3918                 ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset,
3919                                                                 dword);
3920                 if (ret_val)
3921                         break;
3922         }
3923
3924         /* Don't bother writing the segment valid bits if sector
3925          * programming failed.
3926          */
3927         if (ret_val) {
3928                 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3929                 e_dbg("Flash commit failed.\n");
3930                 goto release;
3931         }
3932
3933         /* Finally validate the new segment by setting bit 15:14
3934          * to 10b in word 0x13 , this can be done without an
3935          * erase as well since these bits are 11 to start with
3936          * and we need to change bit 14 to 0b
3937          */
3938         act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
3939
3940         /*offset in words but we read dword */
3941         --act_offset;
3942         ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3943
3944         if (ret_val)
3945                 goto release;
3946
3947         dword &= 0xBFFFFFFF;
3948         ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3949
3950         if (ret_val)
3951                 goto release;
3952
3953         /* offset in words but we read dword */
3954         act_offset = old_bank_offset + E1000_ICH_NVM_SIG_WORD - 1;
3955         ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3956
3957         if (ret_val)
3958                 goto release;
3959
3960         dword &= 0x00FFFFFF;
3961         ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3962
3963         if (ret_val)
3964                 goto release;
3965
3966         /* Great!  Everything worked, we can now clear the cached entries. */
3967         for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3968                 dev_spec->shadow_ram[i].modified = false;
3969                 dev_spec->shadow_ram[i].value = 0xFFFF;
3970         }
3971
3972 release:
3973         nvm->ops.release(hw);
3974
3975         /* Reload the EEPROM, or else modifications will not appear
3976          * until after the next adapter reset.
3977          */
3978         if (!ret_val) {
3979                 nvm->ops.reload(hw);
3980                 usleep_range(10000, 11000);
3981         }
3982
3983 out:
3984         if (ret_val)
3985                 e_dbg("NVM update error: %d\n", ret_val);
3986
3987         return ret_val;
3988 }
3989
3990 /**
3991  *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
3992  *  @hw: pointer to the HW structure
3993  *
3994  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3995  *  which writes the checksum to the shadow ram.  The changes in the shadow
3996  *  ram are then committed to the EEPROM by processing each bank at a time
3997  *  checking for the modified bit and writing only the pending changes.
3998  *  After a successful commit, the shadow ram is cleared and is ready for
3999  *  future writes.
4000  **/
4001 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
4002 {
4003         struct e1000_nvm_info *nvm = &hw->nvm;
4004         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4005         u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
4006         s32 ret_val;
4007         u16 data = 0;
4008
4009         ret_val = e1000e_update_nvm_checksum_generic(hw);
4010         if (ret_val)
4011                 goto out;
4012
4013         if (nvm->type != e1000_nvm_flash_sw)
4014                 goto out;
4015
4016         nvm->ops.acquire(hw);
4017
4018         /* We're writing to the opposite bank so if we're on bank 1,
4019          * write to bank 0 etc.  We also need to erase the segment that
4020          * is going to be written
4021          */
4022         ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
4023         if (ret_val) {
4024                 e_dbg("Could not detect valid bank, assuming bank 0\n");
4025                 bank = 0;
4026         }
4027
4028         if (bank == 0) {
4029                 new_bank_offset = nvm->flash_bank_size;
4030                 old_bank_offset = 0;
4031                 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
4032                 if (ret_val)
4033                         goto release;
4034         } else {
4035                 old_bank_offset = nvm->flash_bank_size;
4036                 new_bank_offset = 0;
4037                 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
4038                 if (ret_val)
4039                         goto release;
4040         }
4041         for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
4042                 if (dev_spec->shadow_ram[i].modified) {
4043                         data = dev_spec->shadow_ram[i].value;
4044                 } else {
4045                         ret_val = e1000_read_flash_word_ich8lan(hw, i +
4046                                                                 old_bank_offset,
4047                                                                 &data);
4048                         if (ret_val)
4049                                 break;
4050                 }
4051
4052                 /* If the word is 0x13, then make sure the signature bits
4053                  * (15:14) are 11b until the commit has completed.
4054                  * This will allow us to write 10b which indicates the
4055                  * signature is valid.  We want to do this after the write
4056                  * has completed so that we don't mark the segment valid
4057                  * while the write is still in progress
4058                  */
4059                 if (i == E1000_ICH_NVM_SIG_WORD)
4060                         data |= E1000_ICH_NVM_SIG_MASK;
4061
4062                 /* Convert offset to bytes. */
4063                 act_offset = (i + new_bank_offset) << 1;
4064
4065                 usleep_range(100, 200);
4066                 /* Write the bytes to the new bank. */
4067                 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4068                                                                act_offset,
4069                                                                (u8)data);
4070                 if (ret_val)
4071                         break;
4072
4073                 usleep_range(100, 200);
4074                 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4075                                                                act_offset + 1,
4076                                                                (u8)(data >> 8));
4077                 if (ret_val)
4078                         break;
4079         }
4080
4081         /* Don't bother writing the segment valid bits if sector
4082          * programming failed.
4083          */
4084         if (ret_val) {
4085                 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
4086                 e_dbg("Flash commit failed.\n");
4087                 goto release;
4088         }
4089
4090         /* Finally validate the new segment by setting bit 15:14
4091          * to 10b in word 0x13 , this can be done without an
4092          * erase as well since these bits are 11 to start with
4093          * and we need to change bit 14 to 0b
4094          */
4095         act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
4096         ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
4097         if (ret_val)
4098                 goto release;
4099
4100         data &= 0xBFFF;
4101         ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4102                                                        act_offset * 2 + 1,
4103                                                        (u8)(data >> 8));
4104         if (ret_val)
4105                 goto release;
4106
4107         /* And invalidate the previously valid segment by setting
4108          * its signature word (0x13) high_byte to 0b. This can be
4109          * done without an erase because flash erase sets all bits
4110          * to 1's. We can write 1's to 0's without an erase
4111          */
4112         act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
4113         ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
4114         if (ret_val)
4115                 goto release;
4116
4117         /* Great!  Everything worked, we can now clear the cached entries. */
4118         for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
4119                 dev_spec->shadow_ram[i].modified = false;
4120                 dev_spec->shadow_ram[i].value = 0xFFFF;
4121         }
4122
4123 release:
4124         nvm->ops.release(hw);
4125
4126         /* Reload the EEPROM, or else modifications will not appear
4127          * until after the next adapter reset.
4128          */
4129         if (!ret_val) {
4130                 nvm->ops.reload(hw);
4131                 usleep_range(10000, 11000);
4132         }
4133
4134 out:
4135         if (ret_val)
4136                 e_dbg("NVM update error: %d\n", ret_val);
4137
4138         return ret_val;
4139 }
4140
4141 /**
4142  *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
4143  *  @hw: pointer to the HW structure
4144  *
4145  *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
4146  *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
4147  *  calculated, in which case we need to calculate the checksum and set bit 6.
4148  **/
4149 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
4150 {
4151         s32 ret_val;
4152         u16 data;
4153         u16 word;
4154         u16 valid_csum_mask;
4155
4156         /* Read NVM and check Invalid Image CSUM bit.  If this bit is 0,
4157          * the checksum needs to be fixed.  This bit is an indication that
4158          * the NVM was prepared by OEM software and did not calculate
4159          * the checksum...a likely scenario.
4160          */
4161         switch (hw->mac.type) {
4162         case e1000_pch_lpt:
4163         case e1000_pch_spt:
4164         case e1000_pch_cnp:
4165         case e1000_pch_tgp:
4166         case e1000_pch_adp:
4167         case e1000_pch_mtp:
4168         case e1000_pch_lnp:
4169         case e1000_pch_ptp:
4170         case e1000_pch_nvp:
4171                 word = NVM_COMPAT;
4172                 valid_csum_mask = NVM_COMPAT_VALID_CSUM;
4173                 break;
4174         default:
4175                 word = NVM_FUTURE_INIT_WORD1;
4176                 valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
4177                 break;
4178         }
4179
4180         ret_val = e1000_read_nvm(hw, word, 1, &data);
4181         if (ret_val)
4182                 return ret_val;
4183
4184         if (!(data & valid_csum_mask)) {
4185                 e_dbg("NVM Checksum valid bit not set\n");
4186
4187                 if (hw->mac.type < e1000_pch_tgp) {
4188                         data |= valid_csum_mask;
4189                         ret_val = e1000_write_nvm(hw, word, 1, &data);
4190                         if (ret_val)
4191                                 return ret_val;
4192                         ret_val = e1000e_update_nvm_checksum(hw);
4193                         if (ret_val)
4194                                 return ret_val;
4195                 }
4196         }
4197
4198         return e1000e_validate_nvm_checksum_generic(hw);
4199 }
4200
4201 /**
4202  *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
4203  *  @hw: pointer to the HW structure
4204  *
4205  *  To prevent malicious write/erase of the NVM, set it to be read-only
4206  *  so that the hardware ignores all write/erase cycles of the NVM via
4207  *  the flash control registers.  The shadow-ram copy of the NVM will
4208  *  still be updated, however any updates to this copy will not stick
4209  *  across driver reloads.
4210  **/
4211 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
4212 {
4213         struct e1000_nvm_info *nvm = &hw->nvm;
4214         union ich8_flash_protected_range pr0;
4215         union ich8_hws_flash_status hsfsts;
4216         u32 gfpreg;
4217
4218         nvm->ops.acquire(hw);
4219
4220         gfpreg = er32flash(ICH_FLASH_GFPREG);
4221
4222         /* Write-protect GbE Sector of NVM */
4223         pr0.regval = er32flash(ICH_FLASH_PR0);
4224         pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
4225         pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
4226         pr0.range.wpe = true;
4227         ew32flash(ICH_FLASH_PR0, pr0.regval);
4228
4229         /* Lock down a subset of GbE Flash Control Registers, e.g.
4230          * PR0 to prevent the write-protection from being lifted.
4231          * Once FLOCKDN is set, the registers protected by it cannot
4232          * be written until FLOCKDN is cleared by a hardware reset.
4233          */
4234         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4235         hsfsts.hsf_status.flockdn = true;
4236         ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
4237
4238         nvm->ops.release(hw);
4239 }
4240
4241 /**
4242  *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
4243  *  @hw: pointer to the HW structure
4244  *  @offset: The offset (in bytes) of the byte/word to read.
4245  *  @size: Size of data to read, 1=byte 2=word
4246  *  @data: The byte(s) to write to the NVM.
4247  *
4248  *  Writes one/two bytes to the NVM using the flash access registers.
4249  **/
4250 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
4251                                           u8 size, u16 data)
4252 {
4253         union ich8_hws_flash_status hsfsts;
4254         union ich8_hws_flash_ctrl hsflctl;
4255         u32 flash_linear_addr;
4256         u32 flash_data = 0;
4257         s32 ret_val;
4258         u8 count = 0;
4259
4260         if (hw->mac.type >= e1000_pch_spt) {
4261                 if (size != 4 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4262                         return -E1000_ERR_NVM;
4263         } else {
4264                 if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4265                         return -E1000_ERR_NVM;
4266         }
4267
4268         flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4269                              hw->nvm.flash_base_addr);
4270
4271         do {
4272                 udelay(1);
4273                 /* Steps */
4274                 ret_val = e1000_flash_cycle_init_ich8lan(hw);
4275                 if (ret_val)
4276                         break;
4277                 /* In SPT, This register is in Lan memory space, not
4278                  * flash.  Therefore, only 32 bit access is supported
4279                  */
4280                 if (hw->mac.type >= e1000_pch_spt)
4281                         hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
4282                 else
4283                         hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4284
4285                 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
4286                 hsflctl.hsf_ctrl.fldbcount = size - 1;
4287                 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4288                 /* In SPT, This register is in Lan memory space,
4289                  * not flash.  Therefore, only 32 bit access is
4290                  * supported
4291                  */
4292                 if (hw->mac.type >= e1000_pch_spt)
4293                         ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4294                 else
4295                         ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4296
4297                 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4298
4299                 if (size == 1)
4300                         flash_data = (u32)data & 0x00FF;
4301                 else
4302                         flash_data = (u32)data;
4303
4304                 ew32flash(ICH_FLASH_FDATA0, flash_data);
4305
4306                 /* check if FCERR is set to 1 , if set to 1, clear it
4307                  * and try the whole sequence a few more times else done
4308                  */
4309                 ret_val =
4310                     e1000_flash_cycle_ich8lan(hw,
4311                                               ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4312                 if (!ret_val)
4313                         break;
4314
4315                 /* If we're here, then things are most likely
4316                  * completely hosed, but if the error condition
4317                  * is detected, it won't hurt to give it another
4318                  * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4319                  */
4320                 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4321                 if (hsfsts.hsf_status.flcerr)
4322                         /* Repeat for some time before giving up. */
4323                         continue;
4324                 if (!hsfsts.hsf_status.flcdone) {
4325                         e_dbg("Timeout error - flash cycle did not complete.\n");
4326                         break;
4327                 }
4328         } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4329
4330         return ret_val;
4331 }
4332
4333 /**
4334 *  e1000_write_flash_data32_ich8lan - Writes 4 bytes to the NVM
4335 *  @hw: pointer to the HW structure
4336 *  @offset: The offset (in bytes) of the dwords to read.
4337 *  @data: The 4 bytes to write to the NVM.
4338 *
4339 *  Writes one/two/four bytes to the NVM using the flash access registers.
4340 **/
4341 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
4342                                             u32 data)
4343 {
4344         union ich8_hws_flash_status hsfsts;
4345         union ich8_hws_flash_ctrl hsflctl;
4346         u32 flash_linear_addr;
4347         s32 ret_val;
4348         u8 count = 0;
4349
4350         if (hw->mac.type >= e1000_pch_spt) {
4351                 if (offset > ICH_FLASH_LINEAR_ADDR_MASK)
4352                         return -E1000_ERR_NVM;
4353         }
4354         flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4355                              hw->nvm.flash_base_addr);
4356         do {
4357                 udelay(1);
4358                 /* Steps */
4359                 ret_val = e1000_flash_cycle_init_ich8lan(hw);
4360                 if (ret_val)
4361                         break;
4362
4363                 /* In SPT, This register is in Lan memory space, not
4364                  * flash.  Therefore, only 32 bit access is supported
4365                  */
4366                 if (hw->mac.type >= e1000_pch_spt)
4367                         hsflctl.regval = er32flash(ICH_FLASH_HSFSTS)
4368                             >> 16;
4369                 else
4370                         hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4371
4372                 hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
4373                 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4374
4375                 /* In SPT, This register is in Lan memory space,
4376                  * not flash.  Therefore, only 32 bit access is
4377                  * supported
4378                  */
4379                 if (hw->mac.type >= e1000_pch_spt)
4380                         ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4381                 else
4382                         ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4383
4384                 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4385
4386                 ew32flash(ICH_FLASH_FDATA0, data);
4387
4388                 /* check if FCERR is set to 1 , if set to 1, clear it
4389                  * and try the whole sequence a few more times else done
4390                  */
4391                 ret_val =
4392                    e1000_flash_cycle_ich8lan(hw,
4393                                              ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4394
4395                 if (!ret_val)
4396                         break;
4397
4398                 /* If we're here, then things are most likely
4399                  * completely hosed, but if the error condition
4400                  * is detected, it won't hurt to give it another
4401                  * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4402                  */
4403                 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4404
4405                 if (hsfsts.hsf_status.flcerr)
4406                         /* Repeat for some time before giving up. */
4407                         continue;
4408                 if (!hsfsts.hsf_status.flcdone) {
4409                         e_dbg("Timeout error - flash cycle did not complete.\n");
4410                         break;
4411                 }
4412         } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4413
4414         return ret_val;
4415 }
4416
4417 /**
4418  *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
4419  *  @hw: pointer to the HW structure
4420  *  @offset: The index of the byte to read.
4421  *  @data: The byte to write to the NVM.
4422  *
4423  *  Writes a single byte to the NVM using the flash access registers.
4424  **/
4425 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
4426                                           u8 data)
4427 {
4428         u16 word = (u16)data;
4429
4430         return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
4431 }
4432
4433 /**
4434 *  e1000_retry_write_flash_dword_ich8lan - Writes a dword to NVM
4435 *  @hw: pointer to the HW structure
4436 *  @offset: The offset of the word to write.
4437 *  @dword: The dword to write to the NVM.
4438 *
4439 *  Writes a single dword to the NVM using the flash access registers.
4440 *  Goes through a retry algorithm before giving up.
4441 **/
4442 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
4443                                                  u32 offset, u32 dword)
4444 {
4445         s32 ret_val;
4446         u16 program_retries;
4447
4448         /* Must convert word offset into bytes. */
4449         offset <<= 1;
4450         ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4451
4452         if (!ret_val)
4453                 return ret_val;
4454         for (program_retries = 0; program_retries < 100; program_retries++) {
4455                 e_dbg("Retrying Byte %8.8X at offset %u\n", dword, offset);
4456                 usleep_range(100, 200);
4457                 ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4458                 if (!ret_val)
4459                         break;
4460         }
4461         if (program_retries == 100)
4462                 return -E1000_ERR_NVM;
4463
4464         return 0;
4465 }
4466
4467 /**
4468  *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
4469  *  @hw: pointer to the HW structure
4470  *  @offset: The offset of the byte to write.
4471  *  @byte: The byte to write to the NVM.
4472  *
4473  *  Writes a single byte to the NVM using the flash access registers.
4474  *  Goes through a retry algorithm before giving up.
4475  **/
4476 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
4477                                                 u32 offset, u8 byte)
4478 {
4479         s32 ret_val;
4480         u16 program_retries;
4481
4482         ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4483         if (!ret_val)
4484                 return ret_val;
4485
4486         for (program_retries = 0; program_retries < 100; program_retries++) {
4487                 e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
4488                 usleep_range(100, 200);
4489                 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4490                 if (!ret_val)
4491                         break;
4492         }
4493         if (program_retries == 100)
4494                 return -E1000_ERR_NVM;
4495
4496         return 0;
4497 }
4498
4499 /**
4500  *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
4501  *  @hw: pointer to the HW structure
4502  *  @bank: 0 for first bank, 1 for second bank, etc.
4503  *
4504  *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
4505  *  bank N is 4096 * N + flash_reg_addr.
4506  **/
4507 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
4508 {
4509         struct e1000_nvm_info *nvm = &hw->nvm;
4510         union ich8_hws_flash_status hsfsts;
4511         union ich8_hws_flash_ctrl hsflctl;
4512         u32 flash_linear_addr;
4513         /* bank size is in 16bit words - adjust to bytes */
4514         u32 flash_bank_size = nvm->flash_bank_size * 2;
4515         s32 ret_val;
4516         s32 count = 0;
4517         s32 j, iteration, sector_size;
4518
4519         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4520
4521         /* Determine HW Sector size: Read BERASE bits of hw flash status
4522          * register
4523          * 00: The Hw sector is 256 bytes, hence we need to erase 16
4524          *     consecutive sectors.  The start index for the nth Hw sector
4525          *     can be calculated as = bank * 4096 + n * 256
4526          * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
4527          *     The start index for the nth Hw sector can be calculated
4528          *     as = bank * 4096
4529          * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
4530          *     (ich9 only, otherwise error condition)
4531          * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
4532          */
4533         switch (hsfsts.hsf_status.berasesz) {
4534         case 0:
4535                 /* Hw sector size 256 */
4536                 sector_size = ICH_FLASH_SEG_SIZE_256;
4537                 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
4538                 break;
4539         case 1:
4540                 sector_size = ICH_FLASH_SEG_SIZE_4K;
4541                 iteration = 1;
4542                 break;
4543         case 2:
4544                 sector_size = ICH_FLASH_SEG_SIZE_8K;
4545                 iteration = 1;
4546                 break;
4547         case 3:
4548                 sector_size = ICH_FLASH_SEG_SIZE_64K;
4549                 iteration = 1;
4550                 break;
4551         default:
4552                 return -E1000_ERR_NVM;
4553         }
4554
4555         /* Start with the base address, then add the sector offset. */
4556         flash_linear_addr = hw->nvm.flash_base_addr;
4557         flash_linear_addr += (bank) ? flash_bank_size : 0;
4558
4559         for (j = 0; j < iteration; j++) {
4560                 do {
4561                         u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
4562
4563                         /* Steps */
4564                         ret_val = e1000_flash_cycle_init_ich8lan(hw);
4565                         if (ret_val)
4566                                 return ret_val;
4567
4568                         /* Write a value 11 (block Erase) in Flash
4569                          * Cycle field in hw flash control
4570                          */
4571                         if (hw->mac.type >= e1000_pch_spt)
4572                                 hsflctl.regval =
4573                                     er32flash(ICH_FLASH_HSFSTS) >> 16;
4574                         else
4575                                 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4576
4577                         hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
4578                         if (hw->mac.type >= e1000_pch_spt)
4579                                 ew32flash(ICH_FLASH_HSFSTS,
4580                                           hsflctl.regval << 16);
4581                         else
4582                                 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4583
4584                         /* Write the last 24 bits of an index within the
4585                          * block into Flash Linear address field in Flash
4586                          * Address.
4587                          */
4588                         flash_linear_addr += (j * sector_size);
4589                         ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4590
4591                         ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
4592                         if (!ret_val)
4593                                 break;
4594
4595                         /* Check if FCERR is set to 1.  If 1,
4596                          * clear it and try the whole sequence
4597                          * a few more times else Done
4598                          */
4599                         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4600                         if (hsfsts.hsf_status.flcerr)
4601                                 /* repeat for some time before giving up */
4602                                 continue;
4603                         else if (!hsfsts.hsf_status.flcdone)
4604                                 return ret_val;
4605                 } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
4606         }
4607
4608         return 0;
4609 }
4610
4611 /**
4612  *  e1000_valid_led_default_ich8lan - Set the default LED settings
4613  *  @hw: pointer to the HW structure
4614  *  @data: Pointer to the LED settings
4615  *
4616  *  Reads the LED default settings from the NVM to data.  If the NVM LED
4617  *  settings is all 0's or F's, set the LED default to a valid LED default
4618  *  setting.
4619  **/
4620 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
4621 {
4622         s32 ret_val;
4623
4624         ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
4625         if (ret_val) {
4626                 e_dbg("NVM Read Error\n");
4627                 return ret_val;
4628         }
4629
4630         if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
4631                 *data = ID_LED_DEFAULT_ICH8LAN;
4632
4633         return 0;
4634 }
4635
4636 /**
4637  *  e1000_id_led_init_pchlan - store LED configurations
4638  *  @hw: pointer to the HW structure
4639  *
4640  *  PCH does not control LEDs via the LEDCTL register, rather it uses
4641  *  the PHY LED configuration register.
4642  *
4643  *  PCH also does not have an "always on" or "always off" mode which
4644  *  complicates the ID feature.  Instead of using the "on" mode to indicate
4645  *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
4646  *  use "link_up" mode.  The LEDs will still ID on request if there is no
4647  *  link based on logic in e1000_led_[on|off]_pchlan().
4648  **/
4649 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
4650 {
4651         struct e1000_mac_info *mac = &hw->mac;
4652         s32 ret_val;
4653         const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
4654         const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
4655         u16 data, i, temp, shift;
4656
4657         /* Get default ID LED modes */
4658         ret_val = hw->nvm.ops.valid_led_default(hw, &data);
4659         if (ret_val)
4660                 return ret_val;
4661
4662         mac->ledctl_default = er32(LEDCTL);
4663         mac->ledctl_mode1 = mac->ledctl_default;
4664         mac->ledctl_mode2 = mac->ledctl_default;
4665
4666         for (i = 0; i < 4; i++) {
4667                 temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
4668                 shift = (i * 5);
4669                 switch (temp) {
4670                 case ID_LED_ON1_DEF2:
4671                 case ID_LED_ON1_ON2:
4672                 case ID_LED_ON1_OFF2:
4673                         mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4674                         mac->ledctl_mode1 |= (ledctl_on << shift);
4675                         break;
4676                 case ID_LED_OFF1_DEF2:
4677                 case ID_LED_OFF1_ON2:
4678                 case ID_LED_OFF1_OFF2:
4679                         mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4680                         mac->ledctl_mode1 |= (ledctl_off << shift);
4681                         break;
4682                 default:
4683                         /* Do nothing */
4684                         break;
4685                 }
4686                 switch (temp) {
4687                 case ID_LED_DEF1_ON2:
4688                 case ID_LED_ON1_ON2:
4689                 case ID_LED_OFF1_ON2:
4690                         mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4691                         mac->ledctl_mode2 |= (ledctl_on << shift);
4692                         break;
4693                 case ID_LED_DEF1_OFF2:
4694                 case ID_LED_ON1_OFF2:
4695                 case ID_LED_OFF1_OFF2:
4696                         mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4697                         mac->ledctl_mode2 |= (ledctl_off << shift);
4698                         break;
4699                 default:
4700                         /* Do nothing */
4701                         break;
4702                 }
4703         }
4704
4705         return 0;
4706 }
4707
4708 /**
4709  *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
4710  *  @hw: pointer to the HW structure
4711  *
4712  *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
4713  *  register, so the bus width is hard coded.
4714  **/
4715 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
4716 {
4717         struct e1000_bus_info *bus = &hw->bus;
4718         s32 ret_val;
4719
4720         ret_val = e1000e_get_bus_info_pcie(hw);
4721
4722         /* ICH devices are "PCI Express"-ish.  They have
4723          * a configuration space, but do not contain
4724          * PCI Express Capability registers, so bus width
4725          * must be hardcoded.
4726          */
4727         if (bus->width == e1000_bus_width_unknown)
4728                 bus->width = e1000_bus_width_pcie_x1;
4729
4730         return ret_val;
4731 }
4732
4733 /**
4734  *  e1000_reset_hw_ich8lan - Reset the hardware
4735  *  @hw: pointer to the HW structure
4736  *
4737  *  Does a full reset of the hardware which includes a reset of the PHY and
4738  *  MAC.
4739  **/
4740 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
4741 {
4742         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4743         u16 kum_cfg;
4744         u32 ctrl, reg;
4745         s32 ret_val;
4746
4747         /* Prevent the PCI-E bus from sticking if there is no TLP connection
4748          * on the last TLP read/write transaction when MAC is reset.
4749          */
4750         ret_val = e1000e_disable_pcie_master(hw);
4751         if (ret_val)
4752                 e_dbg("PCI-E Master disable polling has failed.\n");
4753
4754         e_dbg("Masking off all interrupts\n");
4755         ew32(IMC, 0xffffffff);
4756
4757         /* Disable the Transmit and Receive units.  Then delay to allow
4758          * any pending transactions to complete before we hit the MAC
4759          * with the global reset.
4760          */
4761         ew32(RCTL, 0);
4762         ew32(TCTL, E1000_TCTL_PSP);
4763         e1e_flush();
4764
4765         usleep_range(10000, 11000);
4766
4767         /* Workaround for ICH8 bit corruption issue in FIFO memory */
4768         if (hw->mac.type == e1000_ich8lan) {
4769                 /* Set Tx and Rx buffer allocation to 8k apiece. */
4770                 ew32(PBA, E1000_PBA_8K);
4771                 /* Set Packet Buffer Size to 16k. */
4772                 ew32(PBS, E1000_PBS_16K);
4773         }
4774
4775         if (hw->mac.type == e1000_pchlan) {
4776                 /* Save the NVM K1 bit setting */
4777                 ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
4778                 if (ret_val)
4779                         return ret_val;
4780
4781                 if (kum_cfg & E1000_NVM_K1_ENABLE)
4782                         dev_spec->nvm_k1_enabled = true;
4783                 else
4784                         dev_spec->nvm_k1_enabled = false;
4785         }
4786
4787         ctrl = er32(CTRL);
4788
4789         if (!hw->phy.ops.check_reset_block(hw)) {
4790                 /* Full-chip reset requires MAC and PHY reset at the same
4791                  * time to make sure the interface between MAC and the
4792                  * external PHY is reset.
4793                  */
4794                 ctrl |= E1000_CTRL_PHY_RST;
4795
4796                 /* Gate automatic PHY configuration by hardware on
4797                  * non-managed 82579
4798                  */
4799                 if ((hw->mac.type == e1000_pch2lan) &&
4800                     !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
4801                         e1000_gate_hw_phy_config_ich8lan(hw, true);
4802         }
4803         ret_val = e1000_acquire_swflag_ich8lan(hw);
4804         e_dbg("Issuing a global reset to ich8lan\n");
4805         ew32(CTRL, (ctrl | E1000_CTRL_RST));
4806         /* cannot issue a flush here because it hangs the hardware */
4807         msleep(20);
4808
4809         /* Set Phy Config Counter to 50msec */
4810         if (hw->mac.type == e1000_pch2lan) {
4811                 reg = er32(FEXTNVM3);
4812                 reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
4813                 reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
4814                 ew32(FEXTNVM3, reg);
4815         }
4816
4817         if (!ret_val)
4818                 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
4819
4820         if (ctrl & E1000_CTRL_PHY_RST) {
4821                 ret_val = hw->phy.ops.get_cfg_done(hw);
4822                 if (ret_val)
4823                         return ret_val;
4824
4825                 ret_val = e1000_post_phy_reset_ich8lan(hw);
4826                 if (ret_val)
4827                         return ret_val;
4828         }
4829
4830         /* For PCH, this write will make sure that any noise
4831          * will be detected as a CRC error and be dropped rather than show up
4832          * as a bad packet to the DMA engine.
4833          */
4834         if (hw->mac.type == e1000_pchlan)
4835                 ew32(CRC_OFFSET, 0x65656565);
4836
4837         ew32(IMC, 0xffffffff);
4838         er32(ICR);
4839
4840         reg = er32(KABGTXD);
4841         reg |= E1000_KABGTXD_BGSQLBIAS;
4842         ew32(KABGTXD, reg);
4843
4844         return 0;
4845 }
4846
4847 /**
4848  *  e1000_init_hw_ich8lan - Initialize the hardware
4849  *  @hw: pointer to the HW structure
4850  *
4851  *  Prepares the hardware for transmit and receive by doing the following:
4852  *   - initialize hardware bits
4853  *   - initialize LED identification
4854  *   - setup receive address registers
4855  *   - setup flow control
4856  *   - setup transmit descriptors
4857  *   - clear statistics
4858  **/
4859 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
4860 {
4861         struct e1000_mac_info *mac = &hw->mac;
4862         u32 ctrl_ext, txdctl, snoop, fflt_dbg;
4863         s32 ret_val;
4864         u16 i;
4865
4866         e1000_initialize_hw_bits_ich8lan(hw);
4867
4868         /* Initialize identification LED */
4869         ret_val = mac->ops.id_led_init(hw);
4870         /* An error is not fatal and we should not stop init due to this */
4871         if (ret_val)
4872                 e_dbg("Error initializing identification LED\n");
4873
4874         /* Setup the receive address. */
4875         e1000e_init_rx_addrs(hw, mac->rar_entry_count);
4876
4877         /* Zero out the Multicast HASH table */
4878         e_dbg("Zeroing the MTA\n");
4879         for (i = 0; i < mac->mta_reg_count; i++)
4880                 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
4881
4882         /* The 82578 Rx buffer will stall if wakeup is enabled in host and
4883          * the ME.  Disable wakeup by clearing the host wakeup bit.
4884          * Reset the phy after disabling host wakeup to reset the Rx buffer.
4885          */
4886         if (hw->phy.type == e1000_phy_82578) {
4887                 e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
4888                 i &= ~BM_WUC_HOST_WU_BIT;
4889                 e1e_wphy(hw, BM_PORT_GEN_CFG, i);
4890                 ret_val = e1000_phy_hw_reset_ich8lan(hw);
4891                 if (ret_val)
4892                         return ret_val;
4893         }
4894
4895         /* Setup link and flow control */
4896         ret_val = mac->ops.setup_link(hw);
4897
4898         /* Set the transmit descriptor write-back policy for both queues */
4899         txdctl = er32(TXDCTL(0));
4900         txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4901                   E1000_TXDCTL_FULL_TX_DESC_WB);
4902         txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4903                   E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4904         ew32(TXDCTL(0), txdctl);
4905         txdctl = er32(TXDCTL(1));
4906         txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4907                   E1000_TXDCTL_FULL_TX_DESC_WB);
4908         txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4909                   E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4910         ew32(TXDCTL(1), txdctl);
4911
4912         /* ICH8 has opposite polarity of no_snoop bits.
4913          * By default, we should use snoop behavior.
4914          */
4915         if (mac->type == e1000_ich8lan)
4916                 snoop = PCIE_ICH8_SNOOP_ALL;
4917         else
4918                 snoop = (u32)~(PCIE_NO_SNOOP_ALL);
4919         e1000e_set_pcie_no_snoop(hw, snoop);
4920
4921         /* Enable workaround for packet loss issue on TGP PCH
4922          * Do not gate DMA clock from the modPHY block
4923          */
4924         if (mac->type >= e1000_pch_tgp) {
4925                 fflt_dbg = er32(FFLT_DBG);
4926                 fflt_dbg |= E1000_FFLT_DBG_DONT_GATE_WAKE_DMA_CLK;
4927                 ew32(FFLT_DBG, fflt_dbg);
4928         }
4929
4930         ctrl_ext = er32(CTRL_EXT);
4931         ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
4932         ew32(CTRL_EXT, ctrl_ext);
4933
4934         /* Clear all of the statistics registers (clear on read).  It is
4935          * important that we do this after we have tried to establish link
4936          * because the symbol error count will increment wildly if there
4937          * is no link.
4938          */
4939         e1000_clear_hw_cntrs_ich8lan(hw);
4940
4941         return ret_val;
4942 }
4943
4944 /**
4945  *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
4946  *  @hw: pointer to the HW structure
4947  *
4948  *  Sets/Clears required hardware bits necessary for correctly setting up the
4949  *  hardware for transmit and receive.
4950  **/
4951 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
4952 {
4953         u32 reg;
4954
4955         /* Extended Device Control */
4956         reg = er32(CTRL_EXT);
4957         reg |= BIT(22);
4958         /* Enable PHY low-power state when MAC is at D3 w/o WoL */
4959         if (hw->mac.type >= e1000_pchlan)
4960                 reg |= E1000_CTRL_EXT_PHYPDEN;
4961         ew32(CTRL_EXT, reg);
4962
4963         /* Transmit Descriptor Control 0 */
4964         reg = er32(TXDCTL(0));
4965         reg |= BIT(22);
4966         ew32(TXDCTL(0), reg);
4967
4968         /* Transmit Descriptor Control 1 */
4969         reg = er32(TXDCTL(1));
4970         reg |= BIT(22);
4971         ew32(TXDCTL(1), reg);
4972
4973         /* Transmit Arbitration Control 0 */
4974         reg = er32(TARC(0));
4975         if (hw->mac.type == e1000_ich8lan)
4976                 reg |= BIT(28) | BIT(29);
4977         reg |= BIT(23) | BIT(24) | BIT(26) | BIT(27);
4978         ew32(TARC(0), reg);
4979
4980         /* Transmit Arbitration Control 1 */
4981         reg = er32(TARC(1));
4982         if (er32(TCTL) & E1000_TCTL_MULR)
4983                 reg &= ~BIT(28);
4984         else
4985                 reg |= BIT(28);
4986         reg |= BIT(24) | BIT(26) | BIT(30);
4987         ew32(TARC(1), reg);
4988
4989         /* Device Status */
4990         if (hw->mac.type == e1000_ich8lan) {
4991                 reg = er32(STATUS);
4992                 reg &= ~BIT(31);
4993                 ew32(STATUS, reg);
4994         }
4995
4996         /* work-around descriptor data corruption issue during nfs v2 udp
4997          * traffic, just disable the nfs filtering capability
4998          */
4999         reg = er32(RFCTL);
5000         reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
5001
5002         /* Disable IPv6 extension header parsing because some malformed
5003          * IPv6 headers can hang the Rx.
5004          */
5005         if (hw->mac.type == e1000_ich8lan)
5006                 reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
5007         ew32(RFCTL, reg);
5008
5009         /* Enable ECC on Lynxpoint */
5010         if (hw->mac.type >= e1000_pch_lpt) {
5011                 reg = er32(PBECCSTS);
5012                 reg |= E1000_PBECCSTS_ECC_ENABLE;
5013                 ew32(PBECCSTS, reg);
5014
5015                 reg = er32(CTRL);
5016                 reg |= E1000_CTRL_MEHE;
5017                 ew32(CTRL, reg);
5018         }
5019 }
5020
5021 /**
5022  *  e1000_setup_link_ich8lan - Setup flow control and link settings
5023  *  @hw: pointer to the HW structure
5024  *
5025  *  Determines which flow control settings to use, then configures flow
5026  *  control.  Calls the appropriate media-specific link configuration
5027  *  function.  Assuming the adapter has a valid link partner, a valid link
5028  *  should be established.  Assumes the hardware has previously been reset
5029  *  and the transmitter and receiver are not enabled.
5030  **/
5031 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
5032 {
5033         s32 ret_val;
5034
5035         if (hw->phy.ops.check_reset_block(hw))
5036                 return 0;
5037
5038         /* ICH parts do not have a word in the NVM to determine
5039          * the default flow control setting, so we explicitly
5040          * set it to full.
5041          */
5042         if (hw->fc.requested_mode == e1000_fc_default) {
5043                 /* Workaround h/w hang when Tx flow control enabled */
5044                 if (hw->mac.type == e1000_pchlan)
5045                         hw->fc.requested_mode = e1000_fc_rx_pause;
5046                 else
5047                         hw->fc.requested_mode = e1000_fc_full;
5048         }
5049
5050         /* Save off the requested flow control mode for use later.  Depending
5051          * on the link partner's capabilities, we may or may not use this mode.
5052          */
5053         hw->fc.current_mode = hw->fc.requested_mode;
5054
5055         e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
5056
5057         /* Continue to configure the copper link. */
5058         ret_val = hw->mac.ops.setup_physical_interface(hw);
5059         if (ret_val)
5060                 return ret_val;
5061
5062         ew32(FCTTV, hw->fc.pause_time);
5063         if ((hw->phy.type == e1000_phy_82578) ||
5064             (hw->phy.type == e1000_phy_82579) ||
5065             (hw->phy.type == e1000_phy_i217) ||
5066             (hw->phy.type == e1000_phy_82577)) {
5067                 ew32(FCRTV_PCH, hw->fc.refresh_time);
5068
5069                 ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
5070                                    hw->fc.pause_time);
5071                 if (ret_val)
5072                         return ret_val;
5073         }
5074
5075         return e1000e_set_fc_watermarks(hw);
5076 }
5077
5078 /**
5079  *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
5080  *  @hw: pointer to the HW structure
5081  *
5082  *  Configures the kumeran interface to the PHY to wait the appropriate time
5083  *  when polling the PHY, then call the generic setup_copper_link to finish
5084  *  configuring the copper link.
5085  **/
5086 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
5087 {
5088         u32 ctrl;
5089         s32 ret_val;
5090         u16 reg_data;
5091
5092         ctrl = er32(CTRL);
5093         ctrl |= E1000_CTRL_SLU;
5094         ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5095         ew32(CTRL, ctrl);
5096
5097         /* Set the mac to wait the maximum time between each iteration
5098          * and increase the max iterations when polling the phy;
5099          * this fixes erroneous timeouts at 10Mbps.
5100          */
5101         ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
5102         if (ret_val)
5103                 return ret_val;
5104         ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
5105                                        &reg_data);
5106         if (ret_val)
5107                 return ret_val;
5108         reg_data |= 0x3F;
5109         ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
5110                                         reg_data);
5111         if (ret_val)
5112                 return ret_val;
5113
5114         switch (hw->phy.type) {
5115         case e1000_phy_igp_3:
5116                 ret_val = e1000e_copper_link_setup_igp(hw);
5117                 if (ret_val)
5118                         return ret_val;
5119                 break;
5120         case e1000_phy_bm:
5121         case e1000_phy_82578:
5122                 ret_val = e1000e_copper_link_setup_m88(hw);
5123                 if (ret_val)
5124                         return ret_val;
5125                 break;
5126         case e1000_phy_82577:
5127         case e1000_phy_82579:
5128                 ret_val = e1000_copper_link_setup_82577(hw);
5129                 if (ret_val)
5130                         return ret_val;
5131                 break;
5132         case e1000_phy_ife:
5133                 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
5134                 if (ret_val)
5135                         return ret_val;
5136
5137                 reg_data &= ~IFE_PMC_AUTO_MDIX;
5138
5139                 switch (hw->phy.mdix) {
5140                 case 1:
5141                         reg_data &= ~IFE_PMC_FORCE_MDIX;
5142                         break;
5143                 case 2:
5144                         reg_data |= IFE_PMC_FORCE_MDIX;
5145                         break;
5146                 case 0:
5147                 default:
5148                         reg_data |= IFE_PMC_AUTO_MDIX;
5149                         break;
5150                 }
5151                 ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
5152                 if (ret_val)
5153                         return ret_val;
5154                 break;
5155         default:
5156                 break;
5157         }
5158
5159         return e1000e_setup_copper_link(hw);
5160 }
5161
5162 /**
5163  *  e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
5164  *  @hw: pointer to the HW structure
5165  *
5166  *  Calls the PHY specific link setup function and then calls the
5167  *  generic setup_copper_link to finish configuring the link for
5168  *  Lynxpoint PCH devices
5169  **/
5170 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
5171 {
5172         u32 ctrl;
5173         s32 ret_val;
5174
5175         ctrl = er32(CTRL);
5176         ctrl |= E1000_CTRL_SLU;
5177         ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5178         ew32(CTRL, ctrl);
5179
5180         ret_val = e1000_copper_link_setup_82577(hw);
5181         if (ret_val)
5182                 return ret_val;
5183
5184         return e1000e_setup_copper_link(hw);
5185 }
5186
5187 /**
5188  *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
5189  *  @hw: pointer to the HW structure
5190  *  @speed: pointer to store current link speed
5191  *  @duplex: pointer to store the current link duplex
5192  *
5193  *  Calls the generic get_speed_and_duplex to retrieve the current link
5194  *  information and then calls the Kumeran lock loss workaround for links at
5195  *  gigabit speeds.
5196  **/
5197 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
5198                                           u16 *duplex)
5199 {
5200         s32 ret_val;
5201
5202         ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
5203         if (ret_val)
5204                 return ret_val;
5205
5206         if ((hw->mac.type == e1000_ich8lan) &&
5207             (hw->phy.type == e1000_phy_igp_3) && (*speed == SPEED_1000)) {
5208                 ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
5209         }
5210
5211         return ret_val;
5212 }
5213
5214 /**
5215  *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
5216  *  @hw: pointer to the HW structure
5217  *
5218  *  Work-around for 82566 Kumeran PCS lock loss:
5219  *  On link status change (i.e. PCI reset, speed change) and link is up and
5220  *  speed is gigabit-
5221  *    0) if workaround is optionally disabled do nothing
5222  *    1) wait 1ms for Kumeran link to come up
5223  *    2) check Kumeran Diagnostic register PCS lock loss bit
5224  *    3) if not set the link is locked (all is good), otherwise...
5225  *    4) reset the PHY
5226  *    5) repeat up to 10 times
5227  *  Note: this is only called for IGP3 copper when speed is 1gb.
5228  **/
5229 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
5230 {
5231         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5232         u32 phy_ctrl;
5233         s32 ret_val;
5234         u16 i, data;
5235         bool link;
5236
5237         if (!dev_spec->kmrn_lock_loss_workaround_enabled)
5238                 return 0;
5239
5240         /* Make sure link is up before proceeding.  If not just return.
5241          * Attempting this while link is negotiating fouled up link
5242          * stability
5243          */
5244         ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
5245         if (!link)
5246                 return 0;
5247
5248         for (i = 0; i < 10; i++) {
5249                 /* read once to clear */
5250                 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5251                 if (ret_val)
5252                         return ret_val;
5253                 /* and again to get new status */
5254                 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5255                 if (ret_val)
5256                         return ret_val;
5257
5258                 /* check for PCS lock */
5259                 if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
5260                         return 0;
5261
5262                 /* Issue PHY reset */
5263                 e1000_phy_hw_reset(hw);
5264                 mdelay(5);
5265         }
5266         /* Disable GigE link negotiation */
5267         phy_ctrl = er32(PHY_CTRL);
5268         phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
5269                      E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5270         ew32(PHY_CTRL, phy_ctrl);
5271
5272         /* Call gig speed drop workaround on Gig disable before accessing
5273          * any PHY registers
5274          */
5275         e1000e_gig_downshift_workaround_ich8lan(hw);
5276
5277         /* unable to acquire PCS lock */
5278         return -E1000_ERR_PHY;
5279 }
5280
5281 /**
5282  *  e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
5283  *  @hw: pointer to the HW structure
5284  *  @state: boolean value used to set the current Kumeran workaround state
5285  *
5286  *  If ICH8, set the current Kumeran workaround state (enabled - true
5287  *  /disabled - false).
5288  **/
5289 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
5290                                                   bool state)
5291 {
5292         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5293
5294         if (hw->mac.type != e1000_ich8lan) {
5295                 e_dbg("Workaround applies to ICH8 only.\n");
5296                 return;
5297         }
5298
5299         dev_spec->kmrn_lock_loss_workaround_enabled = state;
5300 }
5301
5302 /**
5303  *  e1000e_igp3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
5304  *  @hw: pointer to the HW structure
5305  *
5306  *  Workaround for 82566 power-down on D3 entry:
5307  *    1) disable gigabit link
5308  *    2) write VR power-down enable
5309  *    3) read it back
5310  *  Continue if successful, else issue LCD reset and repeat
5311  **/
5312 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
5313 {
5314         u32 reg;
5315         u16 data;
5316         u8 retry = 0;
5317
5318         if (hw->phy.type != e1000_phy_igp_3)
5319                 return;
5320
5321         /* Try the workaround twice (if needed) */
5322         do {
5323                 /* Disable link */
5324                 reg = er32(PHY_CTRL);
5325                 reg |= (E1000_PHY_CTRL_GBE_DISABLE |
5326                         E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5327                 ew32(PHY_CTRL, reg);
5328
5329                 /* Call gig speed drop workaround on Gig disable before
5330                  * accessing any PHY registers
5331                  */
5332                 if (hw->mac.type == e1000_ich8lan)
5333                         e1000e_gig_downshift_workaround_ich8lan(hw);
5334
5335                 /* Write VR power-down enable */
5336                 e1e_rphy(hw, IGP3_VR_CTRL, &data);
5337                 data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5338                 e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
5339
5340                 /* Read it back and test */
5341                 e1e_rphy(hw, IGP3_VR_CTRL, &data);
5342                 data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5343                 if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
5344                         break;
5345
5346                 /* Issue PHY reset and repeat at most one more time */
5347                 reg = er32(CTRL);
5348                 ew32(CTRL, reg | E1000_CTRL_PHY_RST);
5349                 retry++;
5350         } while (retry);
5351 }
5352
5353 /**
5354  *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
5355  *  @hw: pointer to the HW structure
5356  *
5357  *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
5358  *  LPLU, Gig disable, MDIC PHY reset):
5359  *    1) Set Kumeran Near-end loopback
5360  *    2) Clear Kumeran Near-end loopback
5361  *  Should only be called for ICH8[m] devices with any 1G Phy.
5362  **/
5363 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
5364 {
5365         s32 ret_val;
5366         u16 reg_data;
5367
5368         if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
5369                 return;
5370
5371         ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5372                                        &reg_data);
5373         if (ret_val)
5374                 return;
5375         reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
5376         ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5377                                         reg_data);
5378         if (ret_val)
5379                 return;
5380         reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
5381         e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, reg_data);
5382 }
5383
5384 /**
5385  *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
5386  *  @hw: pointer to the HW structure
5387  *
5388  *  During S0 to Sx transition, it is possible the link remains at gig
5389  *  instead of negotiating to a lower speed.  Before going to Sx, set
5390  *  'Gig Disable' to force link speed negotiation to a lower speed based on
5391  *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
5392  *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
5393  *  needs to be written.
5394  *  Parts that support (and are linked to a partner which support) EEE in
5395  *  100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
5396  *  than 10Mbps w/o EEE.
5397  **/
5398 void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
5399 {
5400         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5401         u32 phy_ctrl;
5402         s32 ret_val;
5403
5404         phy_ctrl = er32(PHY_CTRL);
5405         phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
5406
5407         if (hw->phy.type == e1000_phy_i217) {
5408                 u16 phy_reg, device_id = hw->adapter->pdev->device;
5409
5410                 if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
5411                     (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
5412                     (device_id == E1000_DEV_ID_PCH_I218_LM3) ||
5413                     (device_id == E1000_DEV_ID_PCH_I218_V3) ||
5414                     (hw->mac.type >= e1000_pch_spt)) {
5415                         u32 fextnvm6 = er32(FEXTNVM6);
5416
5417                         ew32(FEXTNVM6, fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
5418                 }
5419
5420                 ret_val = hw->phy.ops.acquire(hw);
5421                 if (ret_val)
5422                         goto out;
5423
5424                 if (!dev_spec->eee_disable) {
5425                         u16 eee_advert;
5426
5427                         ret_val =
5428                             e1000_read_emi_reg_locked(hw,
5429                                                       I217_EEE_ADVERTISEMENT,
5430                                                       &eee_advert);
5431                         if (ret_val)
5432                                 goto release;
5433
5434                         /* Disable LPLU if both link partners support 100BaseT
5435                          * EEE and 100Full is advertised on both ends of the
5436                          * link, and enable Auto Enable LPI since there will
5437                          * be no driver to enable LPI while in Sx.
5438                          */
5439                         if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
5440                             (dev_spec->eee_lp_ability &
5441                              I82579_EEE_100_SUPPORTED) &&
5442                             (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) {
5443                                 phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
5444                                               E1000_PHY_CTRL_NOND0A_LPLU);
5445
5446                                 /* Set Auto Enable LPI after link up */
5447                                 e1e_rphy_locked(hw,
5448                                                 I217_LPI_GPIO_CTRL, &phy_reg);
5449                                 phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5450                                 e1e_wphy_locked(hw,
5451                                                 I217_LPI_GPIO_CTRL, phy_reg);
5452                         }
5453                 }
5454
5455                 /* For i217 Intel Rapid Start Technology support,
5456                  * when the system is going into Sx and no manageability engine
5457                  * is present, the driver must configure proxy to reset only on
5458                  * power good.  LPI (Low Power Idle) state must also reset only
5459                  * on power good, as well as the MTA (Multicast table array).
5460                  * The SMBus release must also be disabled on LCD reset.
5461                  */
5462                 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5463                         /* Enable proxy to reset only on power good. */
5464                         e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg);
5465                         phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
5466                         e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg);
5467
5468                         /* Set bit enable LPI (EEE) to reset only on
5469                          * power good.
5470                          */
5471                         e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg);
5472                         phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
5473                         e1e_wphy_locked(hw, I217_SxCTRL, phy_reg);
5474
5475                         /* Disable the SMB release on LCD reset. */
5476                         e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5477                         phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
5478                         e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5479                 }
5480
5481                 /* Enable MTA to reset for Intel Rapid Start Technology
5482                  * Support
5483                  */
5484                 e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5485                 phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
5486                 e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5487
5488 release:
5489                 hw->phy.ops.release(hw);
5490         }
5491 out:
5492         ew32(PHY_CTRL, phy_ctrl);
5493
5494         if (hw->mac.type == e1000_ich8lan)
5495                 e1000e_gig_downshift_workaround_ich8lan(hw);
5496
5497         if (hw->mac.type >= e1000_pchlan) {
5498                 e1000_oem_bits_config_ich8lan(hw, false);
5499
5500                 /* Reset PHY to activate OEM bits on 82577/8 */
5501                 if (hw->mac.type == e1000_pchlan)
5502                         e1000e_phy_hw_reset_generic(hw);
5503
5504                 ret_val = hw->phy.ops.acquire(hw);
5505                 if (ret_val)
5506                         return;
5507                 e1000_write_smbus_addr(hw);
5508                 hw->phy.ops.release(hw);
5509         }
5510 }
5511
5512 /**
5513  *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
5514  *  @hw: pointer to the HW structure
5515  *
5516  *  During Sx to S0 transitions on non-managed devices or managed devices
5517  *  on which PHY resets are not blocked, if the PHY registers cannot be
5518  *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
5519  *  the PHY.
5520  *  On i217, setup Intel Rapid Start Technology.
5521  **/
5522 void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
5523 {
5524         s32 ret_val;
5525
5526         if (hw->mac.type < e1000_pch2lan)
5527                 return;
5528
5529         ret_val = e1000_init_phy_workarounds_pchlan(hw);
5530         if (ret_val) {
5531                 e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val);
5532                 return;
5533         }
5534
5535         /* For i217 Intel Rapid Start Technology support when the system
5536          * is transitioning from Sx and no manageability engine is present
5537          * configure SMBus to restore on reset, disable proxy, and enable
5538          * the reset on MTA (Multicast table array).
5539          */
5540         if (hw->phy.type == e1000_phy_i217) {
5541                 u16 phy_reg;
5542
5543                 ret_val = hw->phy.ops.acquire(hw);
5544                 if (ret_val) {
5545                         e_dbg("Failed to setup iRST\n");
5546                         return;
5547                 }
5548
5549                 /* Clear Auto Enable LPI after link up */
5550                 e1e_rphy_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg);
5551                 phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5552                 e1e_wphy_locked(hw, I217_LPI_GPIO_CTRL, phy_reg);
5553
5554                 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5555                         /* Restore clear on SMB if no manageability engine
5556                          * is present
5557                          */
5558                         ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5559                         if (ret_val)
5560                                 goto release;
5561                         phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
5562                         e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5563
5564                         /* Disable Proxy */
5565                         e1e_wphy_locked(hw, I217_PROXY_CTRL, 0);
5566                 }
5567                 /* Enable reset on MTA */
5568                 ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5569                 if (ret_val)
5570                         goto release;
5571                 phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
5572                 e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5573 release:
5574                 if (ret_val)
5575                         e_dbg("Error %d in resume workarounds\n", ret_val);
5576                 hw->phy.ops.release(hw);
5577         }
5578 }
5579
5580 /**
5581  *  e1000_cleanup_led_ich8lan - Restore the default LED operation
5582  *  @hw: pointer to the HW structure
5583  *
5584  *  Return the LED back to the default configuration.
5585  **/
5586 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
5587 {
5588         if (hw->phy.type == e1000_phy_ife)
5589                 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
5590
5591         ew32(LEDCTL, hw->mac.ledctl_default);
5592         return 0;
5593 }
5594
5595 /**
5596  *  e1000_led_on_ich8lan - Turn LEDs on
5597  *  @hw: pointer to the HW structure
5598  *
5599  *  Turn on the LEDs.
5600  **/
5601 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
5602 {
5603         if (hw->phy.type == e1000_phy_ife)
5604                 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5605                                 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
5606
5607         ew32(LEDCTL, hw->mac.ledctl_mode2);
5608         return 0;
5609 }
5610
5611 /**
5612  *  e1000_led_off_ich8lan - Turn LEDs off
5613  *  @hw: pointer to the HW structure
5614  *
5615  *  Turn off the LEDs.
5616  **/
5617 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
5618 {
5619         if (hw->phy.type == e1000_phy_ife)
5620                 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5621                                 (IFE_PSCL_PROBE_MODE |
5622                                  IFE_PSCL_PROBE_LEDS_OFF));
5623
5624         ew32(LEDCTL, hw->mac.ledctl_mode1);
5625         return 0;
5626 }
5627
5628 /**
5629  *  e1000_setup_led_pchlan - Configures SW controllable LED
5630  *  @hw: pointer to the HW structure
5631  *
5632  *  This prepares the SW controllable LED for use.
5633  **/
5634 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
5635 {
5636         return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
5637 }
5638
5639 /**
5640  *  e1000_cleanup_led_pchlan - Restore the default LED operation
5641  *  @hw: pointer to the HW structure
5642  *
5643  *  Return the LED back to the default configuration.
5644  **/
5645 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
5646 {
5647         return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
5648 }
5649
5650 /**
5651  *  e1000_led_on_pchlan - Turn LEDs on
5652  *  @hw: pointer to the HW structure
5653  *
5654  *  Turn on the LEDs.
5655  **/
5656 static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
5657 {
5658         u16 data = (u16)hw->mac.ledctl_mode2;
5659         u32 i, led;
5660
5661         /* If no link, then turn LED on by setting the invert bit
5662          * for each LED that's mode is "link_up" in ledctl_mode2.
5663          */
5664         if (!(er32(STATUS) & E1000_STATUS_LU)) {
5665                 for (i = 0; i < 3; i++) {
5666                         led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5667                         if ((led & E1000_PHY_LED0_MODE_MASK) !=
5668                             E1000_LEDCTL_MODE_LINK_UP)
5669                                 continue;
5670                         if (led & E1000_PHY_LED0_IVRT)
5671                                 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5672                         else
5673                                 data |= (E1000_PHY_LED0_IVRT << (i * 5));
5674                 }
5675         }
5676
5677         return e1e_wphy(hw, HV_LED_CONFIG, data);
5678 }
5679
5680 /**
5681  *  e1000_led_off_pchlan - Turn LEDs off
5682  *  @hw: pointer to the HW structure
5683  *
5684  *  Turn off the LEDs.
5685  **/
5686 static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
5687 {
5688         u16 data = (u16)hw->mac.ledctl_mode1;
5689         u32 i, led;
5690
5691         /* If no link, then turn LED off by clearing the invert bit
5692          * for each LED that's mode is "link_up" in ledctl_mode1.
5693          */
5694         if (!(er32(STATUS) & E1000_STATUS_LU)) {
5695                 for (i = 0; i < 3; i++) {
5696                         led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5697                         if ((led & E1000_PHY_LED0_MODE_MASK) !=
5698                             E1000_LEDCTL_MODE_LINK_UP)
5699                                 continue;
5700                         if (led & E1000_PHY_LED0_IVRT)
5701                                 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5702                         else
5703                                 data |= (E1000_PHY_LED0_IVRT << (i * 5));
5704                 }
5705         }
5706
5707         return e1e_wphy(hw, HV_LED_CONFIG, data);
5708 }
5709
5710 /**
5711  *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
5712  *  @hw: pointer to the HW structure
5713  *
5714  *  Read appropriate register for the config done bit for completion status
5715  *  and configure the PHY through s/w for EEPROM-less parts.
5716  *
5717  *  NOTE: some silicon which is EEPROM-less will fail trying to read the
5718  *  config done bit, so only an error is logged and continues.  If we were
5719  *  to return with error, EEPROM-less silicon would not be able to be reset
5720  *  or change link.
5721  **/
5722 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
5723 {
5724         s32 ret_val = 0;
5725         u32 bank = 0;
5726         u32 status;
5727
5728         e1000e_get_cfg_done_generic(hw);
5729
5730         /* Wait for indication from h/w that it has completed basic config */
5731         if (hw->mac.type >= e1000_ich10lan) {
5732                 e1000_lan_init_done_ich8lan(hw);
5733         } else {
5734                 ret_val = e1000e_get_auto_rd_done(hw);
5735                 if (ret_val) {
5736                         /* When auto config read does not complete, do not
5737                          * return with an error. This can happen in situations
5738                          * where there is no eeprom and prevents getting link.
5739                          */
5740                         e_dbg("Auto Read Done did not complete\n");
5741                         ret_val = 0;
5742                 }
5743         }
5744
5745         /* Clear PHY Reset Asserted bit */
5746         status = er32(STATUS);
5747         if (status & E1000_STATUS_PHYRA)
5748                 ew32(STATUS, status & ~E1000_STATUS_PHYRA);
5749         else
5750                 e_dbg("PHY Reset Asserted not set - needs delay\n");
5751
5752         /* If EEPROM is not marked present, init the IGP 3 PHY manually */
5753         if (hw->mac.type <= e1000_ich9lan) {
5754                 if (!(er32(EECD) & E1000_EECD_PRES) &&
5755                     (hw->phy.type == e1000_phy_igp_3)) {
5756                         e1000e_phy_init_script_igp3(hw);
5757                 }
5758         } else {
5759                 if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
5760                         /* Maybe we should do a basic PHY config */
5761                         e_dbg("EEPROM not present\n");
5762                         ret_val = -E1000_ERR_CONFIG;
5763                 }
5764         }
5765
5766         return ret_val;
5767 }
5768
5769 /**
5770  * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
5771  * @hw: pointer to the HW structure
5772  *
5773  * In the case of a PHY power down to save power, or to turn off link during a
5774  * driver unload, or wake on lan is not enabled, remove the link.
5775  **/
5776 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
5777 {
5778         /* If the management interface is not enabled, then power down */
5779         if (!(hw->mac.ops.check_mng_mode(hw) ||
5780               hw->phy.ops.check_reset_block(hw)))
5781                 e1000_power_down_phy_copper(hw);
5782 }
5783
5784 /**
5785  *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
5786  *  @hw: pointer to the HW structure
5787  *
5788  *  Clears hardware counters specific to the silicon family and calls
5789  *  clear_hw_cntrs_generic to clear all general purpose counters.
5790  **/
5791 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
5792 {
5793         u16 phy_data;
5794         s32 ret_val;
5795
5796         e1000e_clear_hw_cntrs_base(hw);
5797
5798         er32(ALGNERRC);
5799         er32(RXERRC);
5800         er32(TNCRS);
5801         er32(CEXTERR);
5802         er32(TSCTC);
5803         er32(TSCTFC);
5804
5805         er32(MGTPRC);
5806         er32(MGTPDC);
5807         er32(MGTPTC);
5808
5809         er32(IAC);
5810         er32(ICRXOC);
5811
5812         /* Clear PHY statistics registers */
5813         if ((hw->phy.type == e1000_phy_82578) ||
5814             (hw->phy.type == e1000_phy_82579) ||
5815             (hw->phy.type == e1000_phy_i217) ||
5816             (hw->phy.type == e1000_phy_82577)) {
5817                 ret_val = hw->phy.ops.acquire(hw);
5818                 if (ret_val)
5819                         return;
5820                 ret_val = hw->phy.ops.set_page(hw,
5821                                                HV_STATS_PAGE << IGP_PAGE_SHIFT);
5822                 if (ret_val)
5823                         goto release;
5824                 hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
5825                 hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
5826                 hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
5827                 hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
5828                 hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
5829                 hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
5830                 hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
5831                 hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
5832                 hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
5833                 hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
5834                 hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
5835                 hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
5836                 hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
5837                 hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
5838 release:
5839                 hw->phy.ops.release(hw);
5840         }
5841 }
5842
5843 static const struct e1000_mac_operations ich8_mac_ops = {
5844         /* check_mng_mode dependent on mac type */
5845         .check_for_link         = e1000_check_for_copper_link_ich8lan,
5846         /* cleanup_led dependent on mac type */
5847         .clear_hw_cntrs         = e1000_clear_hw_cntrs_ich8lan,
5848         .get_bus_info           = e1000_get_bus_info_ich8lan,
5849         .set_lan_id             = e1000_set_lan_id_single_port,
5850         .get_link_up_info       = e1000_get_link_up_info_ich8lan,
5851         /* led_on dependent on mac type */
5852         /* led_off dependent on mac type */
5853         .update_mc_addr_list    = e1000e_update_mc_addr_list_generic,
5854         .reset_hw               = e1000_reset_hw_ich8lan,
5855         .init_hw                = e1000_init_hw_ich8lan,
5856         .setup_link             = e1000_setup_link_ich8lan,
5857         .setup_physical_interface = e1000_setup_copper_link_ich8lan,
5858         /* id_led_init dependent on mac type */
5859         .config_collision_dist  = e1000e_config_collision_dist_generic,
5860         .rar_set                = e1000e_rar_set_generic,
5861         .rar_get_count          = e1000e_rar_get_count_generic,
5862 };
5863
5864 static const struct e1000_phy_operations ich8_phy_ops = {
5865         .acquire                = e1000_acquire_swflag_ich8lan,
5866         .check_reset_block      = e1000_check_reset_block_ich8lan,
5867         .commit                 = NULL,
5868         .get_cfg_done           = e1000_get_cfg_done_ich8lan,
5869         .get_cable_length       = e1000e_get_cable_length_igp_2,
5870         .read_reg               = e1000e_read_phy_reg_igp,
5871         .release                = e1000_release_swflag_ich8lan,
5872         .reset                  = e1000_phy_hw_reset_ich8lan,
5873         .set_d0_lplu_state      = e1000_set_d0_lplu_state_ich8lan,
5874         .set_d3_lplu_state      = e1000_set_d3_lplu_state_ich8lan,
5875         .write_reg              = e1000e_write_phy_reg_igp,
5876 };
5877
5878 static const struct e1000_nvm_operations ich8_nvm_ops = {
5879         .acquire                = e1000_acquire_nvm_ich8lan,
5880         .read                   = e1000_read_nvm_ich8lan,
5881         .release                = e1000_release_nvm_ich8lan,
5882         .reload                 = e1000e_reload_nvm_generic,
5883         .update                 = e1000_update_nvm_checksum_ich8lan,
5884         .valid_led_default      = e1000_valid_led_default_ich8lan,
5885         .validate               = e1000_validate_nvm_checksum_ich8lan,
5886         .write                  = e1000_write_nvm_ich8lan,
5887 };
5888
5889 static const struct e1000_nvm_operations spt_nvm_ops = {
5890         .acquire                = e1000_acquire_nvm_ich8lan,
5891         .release                = e1000_release_nvm_ich8lan,
5892         .read                   = e1000_read_nvm_spt,
5893         .update                 = e1000_update_nvm_checksum_spt,
5894         .reload                 = e1000e_reload_nvm_generic,
5895         .valid_led_default      = e1000_valid_led_default_ich8lan,
5896         .validate               = e1000_validate_nvm_checksum_ich8lan,
5897         .write                  = e1000_write_nvm_ich8lan,
5898 };
5899
5900 const struct e1000_info e1000_ich8_info = {
5901         .mac                    = e1000_ich8lan,
5902         .flags                  = FLAG_HAS_WOL
5903                                   | FLAG_IS_ICH
5904                                   | FLAG_HAS_CTRLEXT_ON_LOAD
5905                                   | FLAG_HAS_AMT
5906                                   | FLAG_HAS_FLASH
5907                                   | FLAG_APME_IN_WUC,
5908         .pba                    = 8,
5909         .max_hw_frame_size      = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN,
5910         .get_variants           = e1000_get_variants_ich8lan,
5911         .mac_ops                = &ich8_mac_ops,
5912         .phy_ops                = &ich8_phy_ops,
5913         .nvm_ops                = &ich8_nvm_ops,
5914 };
5915
5916 const struct e1000_info e1000_ich9_info = {
5917         .mac                    = e1000_ich9lan,
5918         .flags                  = FLAG_HAS_JUMBO_FRAMES
5919                                   | FLAG_IS_ICH
5920                                   | FLAG_HAS_WOL
5921                                   | FLAG_HAS_CTRLEXT_ON_LOAD
5922                                   | FLAG_HAS_AMT
5923                                   | FLAG_HAS_FLASH
5924                                   | FLAG_APME_IN_WUC,
5925         .pba                    = 18,
5926         .max_hw_frame_size      = DEFAULT_JUMBO,
5927         .get_variants           = e1000_get_variants_ich8lan,
5928         .mac_ops                = &ich8_mac_ops,
5929         .phy_ops                = &ich8_phy_ops,
5930         .nvm_ops                = &ich8_nvm_ops,
5931 };
5932
5933 const struct e1000_info e1000_ich10_info = {
5934         .mac                    = e1000_ich10lan,
5935         .flags                  = FLAG_HAS_JUMBO_FRAMES
5936                                   | FLAG_IS_ICH
5937                                   | FLAG_HAS_WOL
5938                                   | FLAG_HAS_CTRLEXT_ON_LOAD
5939                                   | FLAG_HAS_AMT
5940                                   | FLAG_HAS_FLASH
5941                                   | FLAG_APME_IN_WUC,
5942         .pba                    = 18,
5943         .max_hw_frame_size      = DEFAULT_JUMBO,
5944         .get_variants           = e1000_get_variants_ich8lan,
5945         .mac_ops                = &ich8_mac_ops,
5946         .phy_ops                = &ich8_phy_ops,
5947         .nvm_ops                = &ich8_nvm_ops,
5948 };
5949
5950 const struct e1000_info e1000_pch_info = {
5951         .mac                    = e1000_pchlan,
5952         .flags                  = FLAG_IS_ICH
5953                                   | FLAG_HAS_WOL
5954                                   | FLAG_HAS_CTRLEXT_ON_LOAD
5955                                   | FLAG_HAS_AMT
5956                                   | FLAG_HAS_FLASH
5957                                   | FLAG_HAS_JUMBO_FRAMES
5958                                   | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
5959                                   | FLAG_APME_IN_WUC,
5960         .flags2                 = FLAG2_HAS_PHY_STATS,
5961         .pba                    = 26,
5962         .max_hw_frame_size      = 4096,
5963         .get_variants           = e1000_get_variants_ich8lan,
5964         .mac_ops                = &ich8_mac_ops,
5965         .phy_ops                = &ich8_phy_ops,
5966         .nvm_ops                = &ich8_nvm_ops,
5967 };
5968
5969 const struct e1000_info e1000_pch2_info = {
5970         .mac                    = e1000_pch2lan,
5971         .flags                  = FLAG_IS_ICH
5972                                   | FLAG_HAS_WOL
5973                                   | FLAG_HAS_HW_TIMESTAMP
5974                                   | FLAG_HAS_CTRLEXT_ON_LOAD
5975                                   | FLAG_HAS_AMT
5976                                   | FLAG_HAS_FLASH
5977                                   | FLAG_HAS_JUMBO_FRAMES
5978                                   | FLAG_APME_IN_WUC,
5979         .flags2                 = FLAG2_HAS_PHY_STATS
5980                                   | FLAG2_HAS_EEE
5981                                   | FLAG2_CHECK_SYSTIM_OVERFLOW,
5982         .pba                    = 26,
5983         .max_hw_frame_size      = 9022,
5984         .get_variants           = e1000_get_variants_ich8lan,
5985         .mac_ops                = &ich8_mac_ops,
5986         .phy_ops                = &ich8_phy_ops,
5987         .nvm_ops                = &ich8_nvm_ops,
5988 };
5989
5990 const struct e1000_info e1000_pch_lpt_info = {
5991         .mac                    = e1000_pch_lpt,
5992         .flags                  = FLAG_IS_ICH
5993                                   | FLAG_HAS_WOL
5994                                   | FLAG_HAS_HW_TIMESTAMP
5995                                   | FLAG_HAS_CTRLEXT_ON_LOAD
5996                                   | FLAG_HAS_AMT
5997                                   | FLAG_HAS_FLASH
5998                                   | FLAG_HAS_JUMBO_FRAMES
5999                                   | FLAG_APME_IN_WUC,
6000         .flags2                 = FLAG2_HAS_PHY_STATS
6001                                   | FLAG2_HAS_EEE
6002                                   | FLAG2_CHECK_SYSTIM_OVERFLOW,
6003         .pba                    = 26,
6004         .max_hw_frame_size      = 9022,
6005         .get_variants           = e1000_get_variants_ich8lan,
6006         .mac_ops                = &ich8_mac_ops,
6007         .phy_ops                = &ich8_phy_ops,
6008         .nvm_ops                = &ich8_nvm_ops,
6009 };
6010
6011 const struct e1000_info e1000_pch_spt_info = {
6012         .mac                    = e1000_pch_spt,
6013         .flags                  = FLAG_IS_ICH
6014                                   | FLAG_HAS_WOL
6015                                   | FLAG_HAS_HW_TIMESTAMP
6016                                   | FLAG_HAS_CTRLEXT_ON_LOAD
6017                                   | FLAG_HAS_AMT
6018                                   | FLAG_HAS_FLASH
6019                                   | FLAG_HAS_JUMBO_FRAMES
6020                                   | FLAG_APME_IN_WUC,
6021         .flags2                 = FLAG2_HAS_PHY_STATS
6022                                   | FLAG2_HAS_EEE,
6023         .pba                    = 26,
6024         .max_hw_frame_size      = 9022,
6025         .get_variants           = e1000_get_variants_ich8lan,
6026         .mac_ops                = &ich8_mac_ops,
6027         .phy_ops                = &ich8_phy_ops,
6028         .nvm_ops                = &spt_nvm_ops,
6029 };
6030
6031 const struct e1000_info e1000_pch_cnp_info = {
6032         .mac                    = e1000_pch_cnp,
6033         .flags                  = FLAG_IS_ICH
6034                                   | FLAG_HAS_WOL
6035                                   | FLAG_HAS_HW_TIMESTAMP
6036                                   | FLAG_HAS_CTRLEXT_ON_LOAD
6037                                   | FLAG_HAS_AMT
6038                                   | FLAG_HAS_FLASH
6039                                   | FLAG_HAS_JUMBO_FRAMES
6040                                   | FLAG_APME_IN_WUC,
6041         .flags2                 = FLAG2_HAS_PHY_STATS
6042                                   | FLAG2_HAS_EEE,
6043         .pba                    = 26,
6044         .max_hw_frame_size      = 9022,
6045         .get_variants           = e1000_get_variants_ich8lan,
6046         .mac_ops                = &ich8_mac_ops,
6047         .phy_ops                = &ich8_phy_ops,
6048         .nvm_ops                = &spt_nvm_ops,
6049 };
6050
6051 const struct e1000_info e1000_pch_tgp_info = {
6052         .mac                    = e1000_pch_tgp,
6053         .flags                  = FLAG_IS_ICH
6054                                   | FLAG_HAS_WOL
6055                                   | FLAG_HAS_HW_TIMESTAMP
6056                                   | FLAG_HAS_CTRLEXT_ON_LOAD
6057                                   | FLAG_HAS_AMT
6058                                   | FLAG_HAS_FLASH
6059                                   | FLAG_HAS_JUMBO_FRAMES
6060                                   | FLAG_APME_IN_WUC,
6061         .flags2                 = FLAG2_HAS_PHY_STATS
6062                                   | FLAG2_HAS_EEE,
6063         .pba                    = 26,
6064         .max_hw_frame_size      = 9022,
6065         .get_variants           = e1000_get_variants_ich8lan,
6066         .mac_ops                = &ich8_mac_ops,
6067         .phy_ops                = &ich8_phy_ops,
6068         .nvm_ops                = &spt_nvm_ops,
6069 };
6070
6071 const struct e1000_info e1000_pch_adp_info = {
6072         .mac                    = e1000_pch_adp,
6073         .flags                  = FLAG_IS_ICH
6074                                   | FLAG_HAS_WOL
6075                                   | FLAG_HAS_HW_TIMESTAMP
6076                                   | FLAG_HAS_CTRLEXT_ON_LOAD
6077                                   | FLAG_HAS_AMT
6078                                   | FLAG_HAS_FLASH
6079                                   | FLAG_HAS_JUMBO_FRAMES
6080                                   | FLAG_APME_IN_WUC,
6081         .flags2                 = FLAG2_HAS_PHY_STATS
6082                                   | FLAG2_HAS_EEE,
6083         .pba                    = 26,
6084         .max_hw_frame_size      = 9022,
6085         .get_variants           = e1000_get_variants_ich8lan,
6086         .mac_ops                = &ich8_mac_ops,
6087         .phy_ops                = &ich8_phy_ops,
6088         .nvm_ops                = &spt_nvm_ops,
6089 };
6090
6091 const struct e1000_info e1000_pch_mtp_info = {
6092         .mac                    = e1000_pch_mtp,
6093         .flags                  = FLAG_IS_ICH
6094                                   | FLAG_HAS_WOL
6095                                   | FLAG_HAS_HW_TIMESTAMP
6096                                   | FLAG_HAS_CTRLEXT_ON_LOAD
6097                                   | FLAG_HAS_AMT
6098                                   | FLAG_HAS_FLASH
6099                                   | FLAG_HAS_JUMBO_FRAMES
6100                                   | FLAG_APME_IN_WUC,
6101         .flags2                 = FLAG2_HAS_PHY_STATS
6102                                   | FLAG2_HAS_EEE,
6103         .pba                    = 26,
6104         .max_hw_frame_size      = 9022,
6105         .get_variants           = e1000_get_variants_ich8lan,
6106         .mac_ops                = &ich8_mac_ops,
6107         .phy_ops                = &ich8_phy_ops,
6108         .nvm_ops                = &spt_nvm_ops,
6109 };