Merge remote-tracking branch 'drm/drm-next' into drm-misc-next
[linux-block.git] / drivers / net / ethernet / intel / e1000e / ich8lan.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Intel PRO/1000 Linux driver
3  * Copyright(c) 1999 - 2015 Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * The full GNU General Public License is included in this distribution in
15  * the file called "COPYING".
16  *
17  * Contact Information:
18  * Linux NICS <linux.nics@intel.com>
19  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
20  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
21  */
22
23 /* 82562G 10/100 Network Connection
24  * 82562G-2 10/100 Network Connection
25  * 82562GT 10/100 Network Connection
26  * 82562GT-2 10/100 Network Connection
27  * 82562V 10/100 Network Connection
28  * 82562V-2 10/100 Network Connection
29  * 82566DC-2 Gigabit Network Connection
30  * 82566DC Gigabit Network Connection
31  * 82566DM-2 Gigabit Network Connection
32  * 82566DM Gigabit Network Connection
33  * 82566MC Gigabit Network Connection
34  * 82566MM Gigabit Network Connection
35  * 82567LM Gigabit Network Connection
36  * 82567LF Gigabit Network Connection
37  * 82567V Gigabit Network Connection
38  * 82567LM-2 Gigabit Network Connection
39  * 82567LF-2 Gigabit Network Connection
40  * 82567V-2 Gigabit Network Connection
41  * 82567LF-3 Gigabit Network Connection
42  * 82567LM-3 Gigabit Network Connection
43  * 82567LM-4 Gigabit Network Connection
44  * 82577LM Gigabit Network Connection
45  * 82577LC Gigabit Network Connection
46  * 82578DM Gigabit Network Connection
47  * 82578DC Gigabit Network Connection
48  * 82579LM Gigabit Network Connection
49  * 82579V Gigabit Network Connection
50  * Ethernet Connection I217-LM
51  * Ethernet Connection I217-V
52  * Ethernet Connection I218-V
53  * Ethernet Connection I218-LM
54  * Ethernet Connection (2) I218-LM
55  * Ethernet Connection (2) I218-V
56  * Ethernet Connection (3) I218-LM
57  * Ethernet Connection (3) I218-V
58  */
59
60 #include "e1000.h"
61
62 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
63 /* Offset 04h HSFSTS */
64 union ich8_hws_flash_status {
65         struct ich8_hsfsts {
66                 u16 flcdone:1;  /* bit 0 Flash Cycle Done */
67                 u16 flcerr:1;   /* bit 1 Flash Cycle Error */
68                 u16 dael:1;     /* bit 2 Direct Access error Log */
69                 u16 berasesz:2; /* bit 4:3 Sector Erase Size */
70                 u16 flcinprog:1;        /* bit 5 flash cycle in Progress */
71                 u16 reserved1:2;        /* bit 13:6 Reserved */
72                 u16 reserved2:6;        /* bit 13:6 Reserved */
73                 u16 fldesvalid:1;       /* bit 14 Flash Descriptor Valid */
74                 u16 flockdn:1;  /* bit 15 Flash Config Lock-Down */
75         } hsf_status;
76         u16 regval;
77 };
78
79 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
80 /* Offset 06h FLCTL */
81 union ich8_hws_flash_ctrl {
82         struct ich8_hsflctl {
83                 u16 flcgo:1;    /* 0 Flash Cycle Go */
84                 u16 flcycle:2;  /* 2:1 Flash Cycle */
85                 u16 reserved:5; /* 7:3 Reserved  */
86                 u16 fldbcount:2;        /* 9:8 Flash Data Byte Count */
87                 u16 flockdn:6;  /* 15:10 Reserved */
88         } hsf_ctrl;
89         u16 regval;
90 };
91
92 /* ICH Flash Region Access Permissions */
93 union ich8_hws_flash_regacc {
94         struct ich8_flracc {
95                 u32 grra:8;     /* 0:7 GbE region Read Access */
96                 u32 grwa:8;     /* 8:15 GbE region Write Access */
97                 u32 gmrag:8;    /* 23:16 GbE Master Read Access Grant */
98                 u32 gmwag:8;    /* 31:24 GbE Master Write Access Grant */
99         } hsf_flregacc;
100         u16 regval;
101 };
102
103 /* ICH Flash Protected Region */
104 union ich8_flash_protected_range {
105         struct ich8_pr {
106                 u32 base:13;    /* 0:12 Protected Range Base */
107                 u32 reserved1:2;        /* 13:14 Reserved */
108                 u32 rpe:1;      /* 15 Read Protection Enable */
109                 u32 limit:13;   /* 16:28 Protected Range Limit */
110                 u32 reserved2:2;        /* 29:30 Reserved */
111                 u32 wpe:1;      /* 31 Write Protection Enable */
112         } range;
113         u32 regval;
114 };
115
116 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
117 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
118 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
119 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
120                                                 u32 offset, u8 byte);
121 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
122                                          u8 *data);
123 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
124                                          u16 *data);
125 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
126                                          u8 size, u16 *data);
127 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
128                                            u32 *data);
129 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw,
130                                           u32 offset, u32 *data);
131 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw,
132                                             u32 offset, u32 data);
133 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
134                                                  u32 offset, u32 dword);
135 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
136 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
137 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
138 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
139 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
140 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
141 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
142 static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
143 static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
144 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
145 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
146 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
147 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
148 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
149 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
150 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
151 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
152 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
153 static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw);
154 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
155 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
156 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force);
157 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
158 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state);
159
160 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
161 {
162         return readw(hw->flash_address + reg);
163 }
164
165 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
166 {
167         return readl(hw->flash_address + reg);
168 }
169
170 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
171 {
172         writew(val, hw->flash_address + reg);
173 }
174
175 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
176 {
177         writel(val, hw->flash_address + reg);
178 }
179
180 #define er16flash(reg)          __er16flash(hw, (reg))
181 #define er32flash(reg)          __er32flash(hw, (reg))
182 #define ew16flash(reg, val)     __ew16flash(hw, (reg), (val))
183 #define ew32flash(reg, val)     __ew32flash(hw, (reg), (val))
184
185 /**
186  *  e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
187  *  @hw: pointer to the HW structure
188  *
189  *  Test access to the PHY registers by reading the PHY ID registers.  If
190  *  the PHY ID is already known (e.g. resume path) compare it with known ID,
191  *  otherwise assume the read PHY ID is correct if it is valid.
192  *
193  *  Assumes the sw/fw/hw semaphore is already acquired.
194  **/
195 static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
196 {
197         u16 phy_reg = 0;
198         u32 phy_id = 0;
199         s32 ret_val = 0;
200         u16 retry_count;
201         u32 mac_reg = 0;
202
203         for (retry_count = 0; retry_count < 2; retry_count++) {
204                 ret_val = e1e_rphy_locked(hw, MII_PHYSID1, &phy_reg);
205                 if (ret_val || (phy_reg == 0xFFFF))
206                         continue;
207                 phy_id = (u32)(phy_reg << 16);
208
209                 ret_val = e1e_rphy_locked(hw, MII_PHYSID2, &phy_reg);
210                 if (ret_val || (phy_reg == 0xFFFF)) {
211                         phy_id = 0;
212                         continue;
213                 }
214                 phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
215                 break;
216         }
217
218         if (hw->phy.id) {
219                 if (hw->phy.id == phy_id)
220                         goto out;
221         } else if (phy_id) {
222                 hw->phy.id = phy_id;
223                 hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
224                 goto out;
225         }
226
227         /* In case the PHY needs to be in mdio slow mode,
228          * set slow mode and try to get the PHY id again.
229          */
230         if (hw->mac.type < e1000_pch_lpt) {
231                 hw->phy.ops.release(hw);
232                 ret_val = e1000_set_mdio_slow_mode_hv(hw);
233                 if (!ret_val)
234                         ret_val = e1000e_get_phy_id(hw);
235                 hw->phy.ops.acquire(hw);
236         }
237
238         if (ret_val)
239                 return false;
240 out:
241         if (hw->mac.type >= e1000_pch_lpt) {
242                 /* Only unforce SMBus if ME is not active */
243                 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
244                         /* Unforce SMBus mode in PHY */
245                         e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg);
246                         phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
247                         e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg);
248
249                         /* Unforce SMBus mode in MAC */
250                         mac_reg = er32(CTRL_EXT);
251                         mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
252                         ew32(CTRL_EXT, mac_reg);
253                 }
254         }
255
256         return true;
257 }
258
259 /**
260  *  e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
261  *  @hw: pointer to the HW structure
262  *
263  *  Toggling the LANPHYPC pin value fully power-cycles the PHY and is
264  *  used to reset the PHY to a quiescent state when necessary.
265  **/
266 static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw)
267 {
268         u32 mac_reg;
269
270         /* Set Phy Config Counter to 50msec */
271         mac_reg = er32(FEXTNVM3);
272         mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
273         mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
274         ew32(FEXTNVM3, mac_reg);
275
276         /* Toggle LANPHYPC Value bit */
277         mac_reg = er32(CTRL);
278         mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
279         mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
280         ew32(CTRL, mac_reg);
281         e1e_flush();
282         usleep_range(10, 20);
283         mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
284         ew32(CTRL, mac_reg);
285         e1e_flush();
286
287         if (hw->mac.type < e1000_pch_lpt) {
288                 msleep(50);
289         } else {
290                 u16 count = 20;
291
292                 do {
293                         usleep_range(5000, 10000);
294                 } while (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LPCD) && count--);
295
296                 msleep(30);
297         }
298 }
299
300 /**
301  *  e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
302  *  @hw: pointer to the HW structure
303  *
304  *  Workarounds/flow necessary for PHY initialization during driver load
305  *  and resume paths.
306  **/
307 static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
308 {
309         struct e1000_adapter *adapter = hw->adapter;
310         u32 mac_reg, fwsm = er32(FWSM);
311         s32 ret_val;
312
313         /* Gate automatic PHY configuration by hardware on managed and
314          * non-managed 82579 and newer adapters.
315          */
316         e1000_gate_hw_phy_config_ich8lan(hw, true);
317
318         /* It is not possible to be certain of the current state of ULP
319          * so forcibly disable it.
320          */
321         hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown;
322         e1000_disable_ulp_lpt_lp(hw, true);
323
324         ret_val = hw->phy.ops.acquire(hw);
325         if (ret_val) {
326                 e_dbg("Failed to initialize PHY flow\n");
327                 goto out;
328         }
329
330         /* The MAC-PHY interconnect may be in SMBus mode.  If the PHY is
331          * inaccessible and resetting the PHY is not blocked, toggle the
332          * LANPHYPC Value bit to force the interconnect to PCIe mode.
333          */
334         switch (hw->mac.type) {
335         case e1000_pch_lpt:
336         case e1000_pch_spt:
337         case e1000_pch_cnp:
338                 if (e1000_phy_is_accessible_pchlan(hw))
339                         break;
340
341                 /* Before toggling LANPHYPC, see if PHY is accessible by
342                  * forcing MAC to SMBus mode first.
343                  */
344                 mac_reg = er32(CTRL_EXT);
345                 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
346                 ew32(CTRL_EXT, mac_reg);
347
348                 /* Wait 50 milliseconds for MAC to finish any retries
349                  * that it might be trying to perform from previous
350                  * attempts to acknowledge any phy read requests.
351                  */
352                 msleep(50);
353
354                 /* fall-through */
355         case e1000_pch2lan:
356                 if (e1000_phy_is_accessible_pchlan(hw))
357                         break;
358
359                 /* fall-through */
360         case e1000_pchlan:
361                 if ((hw->mac.type == e1000_pchlan) &&
362                     (fwsm & E1000_ICH_FWSM_FW_VALID))
363                         break;
364
365                 if (hw->phy.ops.check_reset_block(hw)) {
366                         e_dbg("Required LANPHYPC toggle blocked by ME\n");
367                         ret_val = -E1000_ERR_PHY;
368                         break;
369                 }
370
371                 /* Toggle LANPHYPC Value bit */
372                 e1000_toggle_lanphypc_pch_lpt(hw);
373                 if (hw->mac.type >= e1000_pch_lpt) {
374                         if (e1000_phy_is_accessible_pchlan(hw))
375                                 break;
376
377                         /* Toggling LANPHYPC brings the PHY out of SMBus mode
378                          * so ensure that the MAC is also out of SMBus mode
379                          */
380                         mac_reg = er32(CTRL_EXT);
381                         mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
382                         ew32(CTRL_EXT, mac_reg);
383
384                         if (e1000_phy_is_accessible_pchlan(hw))
385                                 break;
386
387                         ret_val = -E1000_ERR_PHY;
388                 }
389                 break;
390         default:
391                 break;
392         }
393
394         hw->phy.ops.release(hw);
395         if (!ret_val) {
396
397                 /* Check to see if able to reset PHY.  Print error if not */
398                 if (hw->phy.ops.check_reset_block(hw)) {
399                         e_err("Reset blocked by ME\n");
400                         goto out;
401                 }
402
403                 /* Reset the PHY before any access to it.  Doing so, ensures
404                  * that the PHY is in a known good state before we read/write
405                  * PHY registers.  The generic reset is sufficient here,
406                  * because we haven't determined the PHY type yet.
407                  */
408                 ret_val = e1000e_phy_hw_reset_generic(hw);
409                 if (ret_val)
410                         goto out;
411
412                 /* On a successful reset, possibly need to wait for the PHY
413                  * to quiesce to an accessible state before returning control
414                  * to the calling function.  If the PHY does not quiesce, then
415                  * return E1000E_BLK_PHY_RESET, as this is the condition that
416                  *  the PHY is in.
417                  */
418                 ret_val = hw->phy.ops.check_reset_block(hw);
419                 if (ret_val)
420                         e_err("ME blocked access to PHY after reset\n");
421         }
422
423 out:
424         /* Ungate automatic PHY configuration on non-managed 82579 */
425         if ((hw->mac.type == e1000_pch2lan) &&
426             !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
427                 usleep_range(10000, 20000);
428                 e1000_gate_hw_phy_config_ich8lan(hw, false);
429         }
430
431         return ret_val;
432 }
433
434 /**
435  *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
436  *  @hw: pointer to the HW structure
437  *
438  *  Initialize family-specific PHY parameters and function pointers.
439  **/
440 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
441 {
442         struct e1000_phy_info *phy = &hw->phy;
443         s32 ret_val;
444
445         phy->addr = 1;
446         phy->reset_delay_us = 100;
447
448         phy->ops.set_page = e1000_set_page_igp;
449         phy->ops.read_reg = e1000_read_phy_reg_hv;
450         phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
451         phy->ops.read_reg_page = e1000_read_phy_reg_page_hv;
452         phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
453         phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
454         phy->ops.write_reg = e1000_write_phy_reg_hv;
455         phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
456         phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
457         phy->ops.power_up = e1000_power_up_phy_copper;
458         phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
459         phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
460
461         phy->id = e1000_phy_unknown;
462
463         ret_val = e1000_init_phy_workarounds_pchlan(hw);
464         if (ret_val)
465                 return ret_val;
466
467         if (phy->id == e1000_phy_unknown)
468                 switch (hw->mac.type) {
469                 default:
470                         ret_val = e1000e_get_phy_id(hw);
471                         if (ret_val)
472                                 return ret_val;
473                         if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
474                                 break;
475                         /* fall-through */
476                 case e1000_pch2lan:
477                 case e1000_pch_lpt:
478                 case e1000_pch_spt:
479                 case e1000_pch_cnp:
480                         /* In case the PHY needs to be in mdio slow mode,
481                          * set slow mode and try to get the PHY id again.
482                          */
483                         ret_val = e1000_set_mdio_slow_mode_hv(hw);
484                         if (ret_val)
485                                 return ret_val;
486                         ret_val = e1000e_get_phy_id(hw);
487                         if (ret_val)
488                                 return ret_val;
489                         break;
490                 }
491         phy->type = e1000e_get_phy_type_from_id(phy->id);
492
493         switch (phy->type) {
494         case e1000_phy_82577:
495         case e1000_phy_82579:
496         case e1000_phy_i217:
497                 phy->ops.check_polarity = e1000_check_polarity_82577;
498                 phy->ops.force_speed_duplex =
499                     e1000_phy_force_speed_duplex_82577;
500                 phy->ops.get_cable_length = e1000_get_cable_length_82577;
501                 phy->ops.get_info = e1000_get_phy_info_82577;
502                 phy->ops.commit = e1000e_phy_sw_reset;
503                 break;
504         case e1000_phy_82578:
505                 phy->ops.check_polarity = e1000_check_polarity_m88;
506                 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
507                 phy->ops.get_cable_length = e1000e_get_cable_length_m88;
508                 phy->ops.get_info = e1000e_get_phy_info_m88;
509                 break;
510         default:
511                 ret_val = -E1000_ERR_PHY;
512                 break;
513         }
514
515         return ret_val;
516 }
517
518 /**
519  *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
520  *  @hw: pointer to the HW structure
521  *
522  *  Initialize family-specific PHY parameters and function pointers.
523  **/
524 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
525 {
526         struct e1000_phy_info *phy = &hw->phy;
527         s32 ret_val;
528         u16 i = 0;
529
530         phy->addr = 1;
531         phy->reset_delay_us = 100;
532
533         phy->ops.power_up = e1000_power_up_phy_copper;
534         phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
535
536         /* We may need to do this twice - once for IGP and if that fails,
537          * we'll set BM func pointers and try again
538          */
539         ret_val = e1000e_determine_phy_address(hw);
540         if (ret_val) {
541                 phy->ops.write_reg = e1000e_write_phy_reg_bm;
542                 phy->ops.read_reg = e1000e_read_phy_reg_bm;
543                 ret_val = e1000e_determine_phy_address(hw);
544                 if (ret_val) {
545                         e_dbg("Cannot determine PHY addr. Erroring out\n");
546                         return ret_val;
547                 }
548         }
549
550         phy->id = 0;
551         while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
552                (i++ < 100)) {
553                 usleep_range(1000, 2000);
554                 ret_val = e1000e_get_phy_id(hw);
555                 if (ret_val)
556                         return ret_val;
557         }
558
559         /* Verify phy id */
560         switch (phy->id) {
561         case IGP03E1000_E_PHY_ID:
562                 phy->type = e1000_phy_igp_3;
563                 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
564                 phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
565                 phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
566                 phy->ops.get_info = e1000e_get_phy_info_igp;
567                 phy->ops.check_polarity = e1000_check_polarity_igp;
568                 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
569                 break;
570         case IFE_E_PHY_ID:
571         case IFE_PLUS_E_PHY_ID:
572         case IFE_C_E_PHY_ID:
573                 phy->type = e1000_phy_ife;
574                 phy->autoneg_mask = E1000_ALL_NOT_GIG;
575                 phy->ops.get_info = e1000_get_phy_info_ife;
576                 phy->ops.check_polarity = e1000_check_polarity_ife;
577                 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
578                 break;
579         case BME1000_E_PHY_ID:
580                 phy->type = e1000_phy_bm;
581                 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
582                 phy->ops.read_reg = e1000e_read_phy_reg_bm;
583                 phy->ops.write_reg = e1000e_write_phy_reg_bm;
584                 phy->ops.commit = e1000e_phy_sw_reset;
585                 phy->ops.get_info = e1000e_get_phy_info_m88;
586                 phy->ops.check_polarity = e1000_check_polarity_m88;
587                 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
588                 break;
589         default:
590                 return -E1000_ERR_PHY;
591         }
592
593         return 0;
594 }
595
596 /**
597  *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
598  *  @hw: pointer to the HW structure
599  *
600  *  Initialize family-specific NVM parameters and function
601  *  pointers.
602  **/
603 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
604 {
605         struct e1000_nvm_info *nvm = &hw->nvm;
606         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
607         u32 gfpreg, sector_base_addr, sector_end_addr;
608         u16 i;
609         u32 nvm_size;
610
611         nvm->type = e1000_nvm_flash_sw;
612
613         if (hw->mac.type >= e1000_pch_spt) {
614                 /* in SPT, gfpreg doesn't exist. NVM size is taken from the
615                  * STRAP register. This is because in SPT the GbE Flash region
616                  * is no longer accessed through the flash registers. Instead,
617                  * the mechanism has changed, and the Flash region access
618                  * registers are now implemented in GbE memory space.
619                  */
620                 nvm->flash_base_addr = 0;
621                 nvm_size = (((er32(STRAP) >> 1) & 0x1F) + 1)
622                     * NVM_SIZE_MULTIPLIER;
623                 nvm->flash_bank_size = nvm_size / 2;
624                 /* Adjust to word count */
625                 nvm->flash_bank_size /= sizeof(u16);
626                 /* Set the base address for flash register access */
627                 hw->flash_address = hw->hw_addr + E1000_FLASH_BASE_ADDR;
628         } else {
629                 /* Can't read flash registers if register set isn't mapped. */
630                 if (!hw->flash_address) {
631                         e_dbg("ERROR: Flash registers not mapped\n");
632                         return -E1000_ERR_CONFIG;
633                 }
634
635                 gfpreg = er32flash(ICH_FLASH_GFPREG);
636
637                 /* sector_X_addr is a "sector"-aligned address (4096 bytes)
638                  * Add 1 to sector_end_addr since this sector is included in
639                  * the overall size.
640                  */
641                 sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
642                 sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
643
644                 /* flash_base_addr is byte-aligned */
645                 nvm->flash_base_addr = sector_base_addr
646                     << FLASH_SECTOR_ADDR_SHIFT;
647
648                 /* find total size of the NVM, then cut in half since the total
649                  * size represents two separate NVM banks.
650                  */
651                 nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
652                                         << FLASH_SECTOR_ADDR_SHIFT);
653                 nvm->flash_bank_size /= 2;
654                 /* Adjust to word count */
655                 nvm->flash_bank_size /= sizeof(u16);
656         }
657
658         nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
659
660         /* Clear shadow ram */
661         for (i = 0; i < nvm->word_size; i++) {
662                 dev_spec->shadow_ram[i].modified = false;
663                 dev_spec->shadow_ram[i].value = 0xFFFF;
664         }
665
666         return 0;
667 }
668
669 /**
670  *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
671  *  @hw: pointer to the HW structure
672  *
673  *  Initialize family-specific MAC parameters and function
674  *  pointers.
675  **/
676 static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
677 {
678         struct e1000_mac_info *mac = &hw->mac;
679
680         /* Set media type function pointer */
681         hw->phy.media_type = e1000_media_type_copper;
682
683         /* Set mta register count */
684         mac->mta_reg_count = 32;
685         /* Set rar entry count */
686         mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
687         if (mac->type == e1000_ich8lan)
688                 mac->rar_entry_count--;
689         /* FWSM register */
690         mac->has_fwsm = true;
691         /* ARC subsystem not supported */
692         mac->arc_subsystem_valid = false;
693         /* Adaptive IFS supported */
694         mac->adaptive_ifs = true;
695
696         /* LED and other operations */
697         switch (mac->type) {
698         case e1000_ich8lan:
699         case e1000_ich9lan:
700         case e1000_ich10lan:
701                 /* check management mode */
702                 mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
703                 /* ID LED init */
704                 mac->ops.id_led_init = e1000e_id_led_init_generic;
705                 /* blink LED */
706                 mac->ops.blink_led = e1000e_blink_led_generic;
707                 /* setup LED */
708                 mac->ops.setup_led = e1000e_setup_led_generic;
709                 /* cleanup LED */
710                 mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
711                 /* turn on/off LED */
712                 mac->ops.led_on = e1000_led_on_ich8lan;
713                 mac->ops.led_off = e1000_led_off_ich8lan;
714                 break;
715         case e1000_pch2lan:
716                 mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
717                 mac->ops.rar_set = e1000_rar_set_pch2lan;
718                 /* fall-through */
719         case e1000_pch_lpt:
720         case e1000_pch_spt:
721         case e1000_pch_cnp:
722         case e1000_pchlan:
723                 /* check management mode */
724                 mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
725                 /* ID LED init */
726                 mac->ops.id_led_init = e1000_id_led_init_pchlan;
727                 /* setup LED */
728                 mac->ops.setup_led = e1000_setup_led_pchlan;
729                 /* cleanup LED */
730                 mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
731                 /* turn on/off LED */
732                 mac->ops.led_on = e1000_led_on_pchlan;
733                 mac->ops.led_off = e1000_led_off_pchlan;
734                 break;
735         default:
736                 break;
737         }
738
739         if (mac->type >= e1000_pch_lpt) {
740                 mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
741                 mac->ops.rar_set = e1000_rar_set_pch_lpt;
742                 mac->ops.setup_physical_interface =
743                     e1000_setup_copper_link_pch_lpt;
744                 mac->ops.rar_get_count = e1000_rar_get_count_pch_lpt;
745         }
746
747         /* Enable PCS Lock-loss workaround for ICH8 */
748         if (mac->type == e1000_ich8lan)
749                 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
750
751         return 0;
752 }
753
754 /**
755  *  __e1000_access_emi_reg_locked - Read/write EMI register
756  *  @hw: pointer to the HW structure
757  *  @addr: EMI address to program
758  *  @data: pointer to value to read/write from/to the EMI address
759  *  @read: boolean flag to indicate read or write
760  *
761  *  This helper function assumes the SW/FW/HW Semaphore is already acquired.
762  **/
763 static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
764                                          u16 *data, bool read)
765 {
766         s32 ret_val;
767
768         ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, address);
769         if (ret_val)
770                 return ret_val;
771
772         if (read)
773                 ret_val = e1e_rphy_locked(hw, I82579_EMI_DATA, data);
774         else
775                 ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, *data);
776
777         return ret_val;
778 }
779
780 /**
781  *  e1000_read_emi_reg_locked - Read Extended Management Interface register
782  *  @hw: pointer to the HW structure
783  *  @addr: EMI address to program
784  *  @data: value to be read from the EMI address
785  *
786  *  Assumes the SW/FW/HW Semaphore is already acquired.
787  **/
788 s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
789 {
790         return __e1000_access_emi_reg_locked(hw, addr, data, true);
791 }
792
793 /**
794  *  e1000_write_emi_reg_locked - Write Extended Management Interface register
795  *  @hw: pointer to the HW structure
796  *  @addr: EMI address to program
797  *  @data: value to be written to the EMI address
798  *
799  *  Assumes the SW/FW/HW Semaphore is already acquired.
800  **/
801 s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
802 {
803         return __e1000_access_emi_reg_locked(hw, addr, &data, false);
804 }
805
806 /**
807  *  e1000_set_eee_pchlan - Enable/disable EEE support
808  *  @hw: pointer to the HW structure
809  *
810  *  Enable/disable EEE based on setting in dev_spec structure, the duplex of
811  *  the link and the EEE capabilities of the link partner.  The LPI Control
812  *  register bits will remain set only if/when link is up.
813  *
814  *  EEE LPI must not be asserted earlier than one second after link is up.
815  *  On 82579, EEE LPI should not be enabled until such time otherwise there
816  *  can be link issues with some switches.  Other devices can have EEE LPI
817  *  enabled immediately upon link up since they have a timer in hardware which
818  *  prevents LPI from being asserted too early.
819  **/
820 s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
821 {
822         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
823         s32 ret_val;
824         u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
825
826         switch (hw->phy.type) {
827         case e1000_phy_82579:
828                 lpa = I82579_EEE_LP_ABILITY;
829                 pcs_status = I82579_EEE_PCS_STATUS;
830                 adv_addr = I82579_EEE_ADVERTISEMENT;
831                 break;
832         case e1000_phy_i217:
833                 lpa = I217_EEE_LP_ABILITY;
834                 pcs_status = I217_EEE_PCS_STATUS;
835                 adv_addr = I217_EEE_ADVERTISEMENT;
836                 break;
837         default:
838                 return 0;
839         }
840
841         ret_val = hw->phy.ops.acquire(hw);
842         if (ret_val)
843                 return ret_val;
844
845         ret_val = e1e_rphy_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
846         if (ret_val)
847                 goto release;
848
849         /* Clear bits that enable EEE in various speeds */
850         lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
851
852         /* Enable EEE if not disabled by user */
853         if (!dev_spec->eee_disable) {
854                 /* Save off link partner's EEE ability */
855                 ret_val = e1000_read_emi_reg_locked(hw, lpa,
856                                                     &dev_spec->eee_lp_ability);
857                 if (ret_val)
858                         goto release;
859
860                 /* Read EEE advertisement */
861                 ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
862                 if (ret_val)
863                         goto release;
864
865                 /* Enable EEE only for speeds in which the link partner is
866                  * EEE capable and for which we advertise EEE.
867                  */
868                 if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
869                         lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
870
871                 if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
872                         e1e_rphy_locked(hw, MII_LPA, &data);
873                         if (data & LPA_100FULL)
874                                 lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
875                         else
876                                 /* EEE is not supported in 100Half, so ignore
877                                  * partner's EEE in 100 ability if full-duplex
878                                  * is not advertised.
879                                  */
880                                 dev_spec->eee_lp_ability &=
881                                     ~I82579_EEE_100_SUPPORTED;
882                 }
883         }
884
885         if (hw->phy.type == e1000_phy_82579) {
886                 ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
887                                                     &data);
888                 if (ret_val)
889                         goto release;
890
891                 data &= ~I82579_LPI_100_PLL_SHUT;
892                 ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
893                                                      data);
894         }
895
896         /* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
897         ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
898         if (ret_val)
899                 goto release;
900
901         ret_val = e1e_wphy_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
902 release:
903         hw->phy.ops.release(hw);
904
905         return ret_val;
906 }
907
908 /**
909  *  e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
910  *  @hw:   pointer to the HW structure
911  *  @link: link up bool flag
912  *
913  *  When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
914  *  preventing further DMA write requests.  Workaround the issue by disabling
915  *  the de-assertion of the clock request when in 1Gpbs mode.
916  *  Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
917  *  speeds in order to avoid Tx hangs.
918  **/
919 static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
920 {
921         u32 fextnvm6 = er32(FEXTNVM6);
922         u32 status = er32(STATUS);
923         s32 ret_val = 0;
924         u16 reg;
925
926         if (link && (status & E1000_STATUS_SPEED_1000)) {
927                 ret_val = hw->phy.ops.acquire(hw);
928                 if (ret_val)
929                         return ret_val;
930
931                 ret_val =
932                     e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
933                                                 &reg);
934                 if (ret_val)
935                         goto release;
936
937                 ret_val =
938                     e1000e_write_kmrn_reg_locked(hw,
939                                                  E1000_KMRNCTRLSTA_K1_CONFIG,
940                                                  reg &
941                                                  ~E1000_KMRNCTRLSTA_K1_ENABLE);
942                 if (ret_val)
943                         goto release;
944
945                 usleep_range(10, 20);
946
947                 ew32(FEXTNVM6, fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
948
949                 ret_val =
950                     e1000e_write_kmrn_reg_locked(hw,
951                                                  E1000_KMRNCTRLSTA_K1_CONFIG,
952                                                  reg);
953 release:
954                 hw->phy.ops.release(hw);
955         } else {
956                 /* clear FEXTNVM6 bit 8 on link down or 10/100 */
957                 fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;
958
959                 if ((hw->phy.revision > 5) || !link ||
960                     ((status & E1000_STATUS_SPEED_100) &&
961                      (status & E1000_STATUS_FD)))
962                         goto update_fextnvm6;
963
964                 ret_val = e1e_rphy(hw, I217_INBAND_CTRL, &reg);
965                 if (ret_val)
966                         return ret_val;
967
968                 /* Clear link status transmit timeout */
969                 reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
970
971                 if (status & E1000_STATUS_SPEED_100) {
972                         /* Set inband Tx timeout to 5x10us for 100Half */
973                         reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
974
975                         /* Do not extend the K1 entry latency for 100Half */
976                         fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
977                 } else {
978                         /* Set inband Tx timeout to 50x10us for 10Full/Half */
979                         reg |= 50 <<
980                             I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
981
982                         /* Extend the K1 entry latency for 10 Mbps */
983                         fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
984                 }
985
986                 ret_val = e1e_wphy(hw, I217_INBAND_CTRL, reg);
987                 if (ret_val)
988                         return ret_val;
989
990 update_fextnvm6:
991                 ew32(FEXTNVM6, fextnvm6);
992         }
993
994         return ret_val;
995 }
996
997 /**
998  *  e1000_platform_pm_pch_lpt - Set platform power management values
999  *  @hw: pointer to the HW structure
1000  *  @link: bool indicating link status
1001  *
1002  *  Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
1003  *  GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
1004  *  when link is up (which must not exceed the maximum latency supported
1005  *  by the platform), otherwise specify there is no LTR requirement.
1006  *  Unlike true-PCIe devices which set the LTR maximum snoop/no-snoop
1007  *  latencies in the LTR Extended Capability Structure in the PCIe Extended
1008  *  Capability register set, on this device LTR is set by writing the
1009  *  equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
1010  *  set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
1011  *  message to the PMC.
1012  **/
1013 static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link)
1014 {
1015         u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) |
1016             link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND;
1017         u16 lat_enc = 0;        /* latency encoded */
1018
1019         if (link) {
1020                 u16 speed, duplex, scale = 0;
1021                 u16 max_snoop, max_nosnoop;
1022                 u16 max_ltr_enc;        /* max LTR latency encoded */
1023                 u64 value;
1024                 u32 rxa;
1025
1026                 if (!hw->adapter->max_frame_size) {
1027                         e_dbg("max_frame_size not set.\n");
1028                         return -E1000_ERR_CONFIG;
1029                 }
1030
1031                 hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1032                 if (!speed) {
1033                         e_dbg("Speed not set.\n");
1034                         return -E1000_ERR_CONFIG;
1035                 }
1036
1037                 /* Rx Packet Buffer Allocation size (KB) */
1038                 rxa = er32(PBA) & E1000_PBA_RXA_MASK;
1039
1040                 /* Determine the maximum latency tolerated by the device.
1041                  *
1042                  * Per the PCIe spec, the tolerated latencies are encoded as
1043                  * a 3-bit encoded scale (only 0-5 are valid) multiplied by
1044                  * a 10-bit value (0-1023) to provide a range from 1 ns to
1045                  * 2^25*(2^10-1) ns.  The scale is encoded as 0=2^0ns,
1046                  * 1=2^5ns, 2=2^10ns,...5=2^25ns.
1047                  */
1048                 rxa *= 512;
1049                 value = (rxa > hw->adapter->max_frame_size) ?
1050                         (rxa - hw->adapter->max_frame_size) * (16000 / speed) :
1051                         0;
1052
1053                 while (value > PCI_LTR_VALUE_MASK) {
1054                         scale++;
1055                         value = DIV_ROUND_UP(value, BIT(5));
1056                 }
1057                 if (scale > E1000_LTRV_SCALE_MAX) {
1058                         e_dbg("Invalid LTR latency scale %d\n", scale);
1059                         return -E1000_ERR_CONFIG;
1060                 }
1061                 lat_enc = (u16)((scale << PCI_LTR_SCALE_SHIFT) | value);
1062
1063                 /* Determine the maximum latency tolerated by the platform */
1064                 pci_read_config_word(hw->adapter->pdev, E1000_PCI_LTR_CAP_LPT,
1065                                      &max_snoop);
1066                 pci_read_config_word(hw->adapter->pdev,
1067                                      E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop);
1068                 max_ltr_enc = max_t(u16, max_snoop, max_nosnoop);
1069
1070                 if (lat_enc > max_ltr_enc)
1071                         lat_enc = max_ltr_enc;
1072         }
1073
1074         /* Set Snoop and No-Snoop latencies the same */
1075         reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT);
1076         ew32(LTRV, reg);
1077
1078         return 0;
1079 }
1080
1081 /**
1082  *  e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
1083  *  @hw: pointer to the HW structure
1084  *  @to_sx: boolean indicating a system power state transition to Sx
1085  *
1086  *  When link is down, configure ULP mode to significantly reduce the power
1087  *  to the PHY.  If on a Manageability Engine (ME) enabled system, tell the
1088  *  ME firmware to start the ULP configuration.  If not on an ME enabled
1089  *  system, configure the ULP mode by software.
1090  */
1091 s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx)
1092 {
1093         u32 mac_reg;
1094         s32 ret_val = 0;
1095         u16 phy_reg;
1096         u16 oem_reg = 0;
1097
1098         if ((hw->mac.type < e1000_pch_lpt) ||
1099             (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1100             (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1101             (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1102             (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1103             (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on))
1104                 return 0;
1105
1106         if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1107                 /* Request ME configure ULP mode in the PHY */
1108                 mac_reg = er32(H2ME);
1109                 mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS;
1110                 ew32(H2ME, mac_reg);
1111
1112                 goto out;
1113         }
1114
1115         if (!to_sx) {
1116                 int i = 0;
1117
1118                 /* Poll up to 5 seconds for Cable Disconnected indication */
1119                 while (!(er32(FEXT) & E1000_FEXT_PHY_CABLE_DISCONNECTED)) {
1120                         /* Bail if link is re-acquired */
1121                         if (er32(STATUS) & E1000_STATUS_LU)
1122                                 return -E1000_ERR_PHY;
1123
1124                         if (i++ == 100)
1125                                 break;
1126
1127                         msleep(50);
1128                 }
1129                 e_dbg("CABLE_DISCONNECTED %s set after %dmsec\n",
1130                       (er32(FEXT) &
1131                        E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not", i * 50);
1132         }
1133
1134         ret_val = hw->phy.ops.acquire(hw);
1135         if (ret_val)
1136                 goto out;
1137
1138         /* Force SMBus mode in PHY */
1139         ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1140         if (ret_val)
1141                 goto release;
1142         phy_reg |= CV_SMB_CTRL_FORCE_SMBUS;
1143         e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1144
1145         /* Force SMBus mode in MAC */
1146         mac_reg = er32(CTRL_EXT);
1147         mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1148         ew32(CTRL_EXT, mac_reg);
1149
1150         /* Si workaround for ULP entry flow on i127/rev6 h/w.  Enable
1151          * LPLU and disable Gig speed when entering ULP
1152          */
1153         if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6)) {
1154                 ret_val = e1000_read_phy_reg_hv_locked(hw, HV_OEM_BITS,
1155                                                        &oem_reg);
1156                 if (ret_val)
1157                         goto release;
1158
1159                 phy_reg = oem_reg;
1160                 phy_reg |= HV_OEM_BITS_LPLU | HV_OEM_BITS_GBE_DIS;
1161
1162                 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1163                                                         phy_reg);
1164
1165                 if (ret_val)
1166                         goto release;
1167         }
1168
1169         /* Set Inband ULP Exit, Reset to SMBus mode and
1170          * Disable SMBus Release on PERST# in PHY
1171          */
1172         ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1173         if (ret_val)
1174                 goto release;
1175         phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS |
1176                     I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1177         if (to_sx) {
1178                 if (er32(WUFC) & E1000_WUFC_LNKC)
1179                         phy_reg |= I218_ULP_CONFIG1_WOL_HOST;
1180                 else
1181                         phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1182
1183                 phy_reg |= I218_ULP_CONFIG1_STICKY_ULP;
1184                 phy_reg &= ~I218_ULP_CONFIG1_INBAND_EXIT;
1185         } else {
1186                 phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT;
1187                 phy_reg &= ~I218_ULP_CONFIG1_STICKY_ULP;
1188                 phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1189         }
1190         e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1191
1192         /* Set Disable SMBus Release on PERST# in MAC */
1193         mac_reg = er32(FEXTNVM7);
1194         mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST;
1195         ew32(FEXTNVM7, mac_reg);
1196
1197         /* Commit ULP changes in PHY by starting auto ULP configuration */
1198         phy_reg |= I218_ULP_CONFIG1_START;
1199         e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1200
1201         if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6) &&
1202             to_sx && (er32(STATUS) & E1000_STATUS_LU)) {
1203                 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1204                                                         oem_reg);
1205                 if (ret_val)
1206                         goto release;
1207         }
1208
1209 release:
1210         hw->phy.ops.release(hw);
1211 out:
1212         if (ret_val)
1213                 e_dbg("Error in ULP enable flow: %d\n", ret_val);
1214         else
1215                 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on;
1216
1217         return ret_val;
1218 }
1219
1220 /**
1221  *  e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
1222  *  @hw: pointer to the HW structure
1223  *  @force: boolean indicating whether or not to force disabling ULP
1224  *
1225  *  Un-configure ULP mode when link is up, the system is transitioned from
1226  *  Sx or the driver is unloaded.  If on a Manageability Engine (ME) enabled
1227  *  system, poll for an indication from ME that ULP has been un-configured.
1228  *  If not on an ME enabled system, un-configure the ULP mode by software.
1229  *
1230  *  During nominal operation, this function is called when link is acquired
1231  *  to disable ULP mode (force=false); otherwise, for example when unloading
1232  *  the driver or during Sx->S0 transitions, this is called with force=true
1233  *  to forcibly disable ULP.
1234  */
1235 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force)
1236 {
1237         s32 ret_val = 0;
1238         u32 mac_reg;
1239         u16 phy_reg;
1240         int i = 0;
1241
1242         if ((hw->mac.type < e1000_pch_lpt) ||
1243             (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1244             (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1245             (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1246             (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1247             (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off))
1248                 return 0;
1249
1250         if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1251                 if (force) {
1252                         /* Request ME un-configure ULP mode in the PHY */
1253                         mac_reg = er32(H2ME);
1254                         mac_reg &= ~E1000_H2ME_ULP;
1255                         mac_reg |= E1000_H2ME_ENFORCE_SETTINGS;
1256                         ew32(H2ME, mac_reg);
1257                 }
1258
1259                 /* Poll up to 300msec for ME to clear ULP_CFG_DONE. */
1260                 while (er32(FWSM) & E1000_FWSM_ULP_CFG_DONE) {
1261                         if (i++ == 30) {
1262                                 ret_val = -E1000_ERR_PHY;
1263                                 goto out;
1264                         }
1265
1266                         usleep_range(10000, 20000);
1267                 }
1268                 e_dbg("ULP_CONFIG_DONE cleared after %dmsec\n", i * 10);
1269
1270                 if (force) {
1271                         mac_reg = er32(H2ME);
1272                         mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS;
1273                         ew32(H2ME, mac_reg);
1274                 } else {
1275                         /* Clear H2ME.ULP after ME ULP configuration */
1276                         mac_reg = er32(H2ME);
1277                         mac_reg &= ~E1000_H2ME_ULP;
1278                         ew32(H2ME, mac_reg);
1279                 }
1280
1281                 goto out;
1282         }
1283
1284         ret_val = hw->phy.ops.acquire(hw);
1285         if (ret_val)
1286                 goto out;
1287
1288         if (force)
1289                 /* Toggle LANPHYPC Value bit */
1290                 e1000_toggle_lanphypc_pch_lpt(hw);
1291
1292         /* Unforce SMBus mode in PHY */
1293         ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1294         if (ret_val) {
1295                 /* The MAC might be in PCIe mode, so temporarily force to
1296                  * SMBus mode in order to access the PHY.
1297                  */
1298                 mac_reg = er32(CTRL_EXT);
1299                 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1300                 ew32(CTRL_EXT, mac_reg);
1301
1302                 msleep(50);
1303
1304                 ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL,
1305                                                        &phy_reg);
1306                 if (ret_val)
1307                         goto release;
1308         }
1309         phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
1310         e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1311
1312         /* Unforce SMBus mode in MAC */
1313         mac_reg = er32(CTRL_EXT);
1314         mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
1315         ew32(CTRL_EXT, mac_reg);
1316
1317         /* When ULP mode was previously entered, K1 was disabled by the
1318          * hardware.  Re-Enable K1 in the PHY when exiting ULP.
1319          */
1320         ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg);
1321         if (ret_val)
1322                 goto release;
1323         phy_reg |= HV_PM_CTRL_K1_ENABLE;
1324         e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg);
1325
1326         /* Clear ULP enabled configuration */
1327         ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1328         if (ret_val)
1329                 goto release;
1330         phy_reg &= ~(I218_ULP_CONFIG1_IND |
1331                      I218_ULP_CONFIG1_STICKY_ULP |
1332                      I218_ULP_CONFIG1_RESET_TO_SMBUS |
1333                      I218_ULP_CONFIG1_WOL_HOST |
1334                      I218_ULP_CONFIG1_INBAND_EXIT |
1335                      I218_ULP_CONFIG1_EN_ULP_LANPHYPC |
1336                      I218_ULP_CONFIG1_DIS_CLR_STICKY_ON_PERST |
1337                      I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1338         e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1339
1340         /* Commit ULP changes by starting auto ULP configuration */
1341         phy_reg |= I218_ULP_CONFIG1_START;
1342         e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1343
1344         /* Clear Disable SMBus Release on PERST# in MAC */
1345         mac_reg = er32(FEXTNVM7);
1346         mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST;
1347         ew32(FEXTNVM7, mac_reg);
1348
1349 release:
1350         hw->phy.ops.release(hw);
1351         if (force) {
1352                 e1000_phy_hw_reset(hw);
1353                 msleep(50);
1354         }
1355 out:
1356         if (ret_val)
1357                 e_dbg("Error in ULP disable flow: %d\n", ret_val);
1358         else
1359                 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off;
1360
1361         return ret_val;
1362 }
1363
1364 /**
1365  *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
1366  *  @hw: pointer to the HW structure
1367  *
1368  *  Checks to see of the link status of the hardware has changed.  If a
1369  *  change in link status has been detected, then we read the PHY registers
1370  *  to get the current speed/duplex if link exists.
1371  **/
1372 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
1373 {
1374         struct e1000_mac_info *mac = &hw->mac;
1375         s32 ret_val, tipg_reg = 0;
1376         u16 emi_addr, emi_val = 0;
1377         bool link;
1378         u16 phy_reg;
1379
1380         /* We only want to go out to the PHY registers to see if Auto-Neg
1381          * has completed and/or if our link status has changed.  The
1382          * get_link_status flag is set upon receiving a Link Status
1383          * Change or Rx Sequence Error interrupt.
1384          */
1385         if (!mac->get_link_status)
1386                 return 0;
1387         mac->get_link_status = false;
1388
1389         /* First we want to see if the MII Status Register reports
1390          * link.  If so, then we want to get the current speed/duplex
1391          * of the PHY.
1392          */
1393         ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1394         if (ret_val)
1395                 goto out;
1396
1397         if (hw->mac.type == e1000_pchlan) {
1398                 ret_val = e1000_k1_gig_workaround_hv(hw, link);
1399                 if (ret_val)
1400                         goto out;
1401         }
1402
1403         /* When connected at 10Mbps half-duplex, some parts are excessively
1404          * aggressive resulting in many collisions. To avoid this, increase
1405          * the IPG and reduce Rx latency in the PHY.
1406          */
1407         if ((hw->mac.type >= e1000_pch2lan) && link) {
1408                 u16 speed, duplex;
1409
1410                 e1000e_get_speed_and_duplex_copper(hw, &speed, &duplex);
1411                 tipg_reg = er32(TIPG);
1412                 tipg_reg &= ~E1000_TIPG_IPGT_MASK;
1413
1414                 if (duplex == HALF_DUPLEX && speed == SPEED_10) {
1415                         tipg_reg |= 0xFF;
1416                         /* Reduce Rx latency in analog PHY */
1417                         emi_val = 0;
1418                 } else if (hw->mac.type >= e1000_pch_spt &&
1419                            duplex == FULL_DUPLEX && speed != SPEED_1000) {
1420                         tipg_reg |= 0xC;
1421                         emi_val = 1;
1422                 } else {
1423
1424                         /* Roll back the default values */
1425                         tipg_reg |= 0x08;
1426                         emi_val = 1;
1427                 }
1428
1429                 ew32(TIPG, tipg_reg);
1430
1431                 ret_val = hw->phy.ops.acquire(hw);
1432                 if (ret_val)
1433                         goto out;
1434
1435                 if (hw->mac.type == e1000_pch2lan)
1436                         emi_addr = I82579_RX_CONFIG;
1437                 else
1438                         emi_addr = I217_RX_CONFIG;
1439                 ret_val = e1000_write_emi_reg_locked(hw, emi_addr, emi_val);
1440
1441                 if (hw->mac.type >= e1000_pch_lpt) {
1442                         u16 phy_reg;
1443
1444                         e1e_rphy_locked(hw, I217_PLL_CLOCK_GATE_REG, &phy_reg);
1445                         phy_reg &= ~I217_PLL_CLOCK_GATE_MASK;
1446                         if (speed == SPEED_100 || speed == SPEED_10)
1447                                 phy_reg |= 0x3E8;
1448                         else
1449                                 phy_reg |= 0xFA;
1450                         e1e_wphy_locked(hw, I217_PLL_CLOCK_GATE_REG, phy_reg);
1451                 }
1452                 hw->phy.ops.release(hw);
1453
1454                 if (ret_val)
1455                         goto out;
1456
1457                 if (hw->mac.type >= e1000_pch_spt) {
1458                         u16 data;
1459                         u16 ptr_gap;
1460
1461                         if (speed == SPEED_1000) {
1462                                 ret_val = hw->phy.ops.acquire(hw);
1463                                 if (ret_val)
1464                                         goto out;
1465
1466                                 ret_val = e1e_rphy_locked(hw,
1467                                                           PHY_REG(776, 20),
1468                                                           &data);
1469                                 if (ret_val) {
1470                                         hw->phy.ops.release(hw);
1471                                         goto out;
1472                                 }
1473
1474                                 ptr_gap = (data & (0x3FF << 2)) >> 2;
1475                                 if (ptr_gap < 0x18) {
1476                                         data &= ~(0x3FF << 2);
1477                                         data |= (0x18 << 2);
1478                                         ret_val =
1479                                             e1e_wphy_locked(hw,
1480                                                             PHY_REG(776, 20),
1481                                                             data);
1482                                 }
1483                                 hw->phy.ops.release(hw);
1484                                 if (ret_val)
1485                                         goto out;
1486                         } else {
1487                                 ret_val = hw->phy.ops.acquire(hw);
1488                                 if (ret_val)
1489                                         goto out;
1490
1491                                 ret_val = e1e_wphy_locked(hw,
1492                                                           PHY_REG(776, 20),
1493                                                           0xC023);
1494                                 hw->phy.ops.release(hw);
1495                                 if (ret_val)
1496                                         goto out;
1497
1498                         }
1499                 }
1500         }
1501
1502         /* I217 Packet Loss issue:
1503          * ensure that FEXTNVM4 Beacon Duration is set correctly
1504          * on power up.
1505          * Set the Beacon Duration for I217 to 8 usec
1506          */
1507         if (hw->mac.type >= e1000_pch_lpt) {
1508                 u32 mac_reg;
1509
1510                 mac_reg = er32(FEXTNVM4);
1511                 mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
1512                 mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1513                 ew32(FEXTNVM4, mac_reg);
1514         }
1515
1516         /* Work-around I218 hang issue */
1517         if ((hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
1518             (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
1519             (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM3) ||
1520             (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V3)) {
1521                 ret_val = e1000_k1_workaround_lpt_lp(hw, link);
1522                 if (ret_val)
1523                         goto out;
1524         }
1525         if (hw->mac.type >= e1000_pch_lpt) {
1526                 /* Set platform power management values for
1527                  * Latency Tolerance Reporting (LTR)
1528                  */
1529                 ret_val = e1000_platform_pm_pch_lpt(hw, link);
1530                 if (ret_val)
1531                         goto out;
1532         }
1533
1534         /* Clear link partner's EEE ability */
1535         hw->dev_spec.ich8lan.eee_lp_ability = 0;
1536
1537         if (hw->mac.type >= e1000_pch_lpt) {
1538                 u32 fextnvm6 = er32(FEXTNVM6);
1539
1540                 if (hw->mac.type == e1000_pch_spt) {
1541                         /* FEXTNVM6 K1-off workaround - for SPT only */
1542                         u32 pcieanacfg = er32(PCIEANACFG);
1543
1544                         if (pcieanacfg & E1000_FEXTNVM6_K1_OFF_ENABLE)
1545                                 fextnvm6 |= E1000_FEXTNVM6_K1_OFF_ENABLE;
1546                         else
1547                                 fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE;
1548                 }
1549
1550                 ew32(FEXTNVM6, fextnvm6);
1551         }
1552
1553         if (!link)
1554                 goto out;
1555
1556         switch (hw->mac.type) {
1557         case e1000_pch2lan:
1558                 ret_val = e1000_k1_workaround_lv(hw);
1559                 if (ret_val)
1560                         return ret_val;
1561                 /* fall-thru */
1562         case e1000_pchlan:
1563                 if (hw->phy.type == e1000_phy_82578) {
1564                         ret_val = e1000_link_stall_workaround_hv(hw);
1565                         if (ret_val)
1566                                 return ret_val;
1567                 }
1568
1569                 /* Workaround for PCHx parts in half-duplex:
1570                  * Set the number of preambles removed from the packet
1571                  * when it is passed from the PHY to the MAC to prevent
1572                  * the MAC from misinterpreting the packet type.
1573                  */
1574                 e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
1575                 phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
1576
1577                 if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
1578                         phy_reg |= BIT(HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
1579
1580                 e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
1581                 break;
1582         default:
1583                 break;
1584         }
1585
1586         /* Check if there was DownShift, must be checked
1587          * immediately after link-up
1588          */
1589         e1000e_check_downshift(hw);
1590
1591         /* Enable/Disable EEE after link up */
1592         if (hw->phy.type > e1000_phy_82579) {
1593                 ret_val = e1000_set_eee_pchlan(hw);
1594                 if (ret_val)
1595                         return ret_val;
1596         }
1597
1598         /* If we are forcing speed/duplex, then we simply return since
1599          * we have already determined whether we have link or not.
1600          */
1601         if (!mac->autoneg)
1602                 return -E1000_ERR_CONFIG;
1603
1604         /* Auto-Neg is enabled.  Auto Speed Detection takes care
1605          * of MAC speed/duplex configuration.  So we only need to
1606          * configure Collision Distance in the MAC.
1607          */
1608         mac->ops.config_collision_dist(hw);
1609
1610         /* Configure Flow Control now that Auto-Neg has completed.
1611          * First, we need to restore the desired flow control
1612          * settings because we may have had to re-autoneg with a
1613          * different link partner.
1614          */
1615         ret_val = e1000e_config_fc_after_link_up(hw);
1616         if (ret_val)
1617                 e_dbg("Error configuring flow control\n");
1618
1619         return ret_val;
1620
1621 out:
1622         mac->get_link_status = true;
1623         return ret_val;
1624 }
1625
1626 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
1627 {
1628         struct e1000_hw *hw = &adapter->hw;
1629         s32 rc;
1630
1631         rc = e1000_init_mac_params_ich8lan(hw);
1632         if (rc)
1633                 return rc;
1634
1635         rc = e1000_init_nvm_params_ich8lan(hw);
1636         if (rc)
1637                 return rc;
1638
1639         switch (hw->mac.type) {
1640         case e1000_ich8lan:
1641         case e1000_ich9lan:
1642         case e1000_ich10lan:
1643                 rc = e1000_init_phy_params_ich8lan(hw);
1644                 break;
1645         case e1000_pchlan:
1646         case e1000_pch2lan:
1647         case e1000_pch_lpt:
1648         case e1000_pch_spt:
1649         case e1000_pch_cnp:
1650                 rc = e1000_init_phy_params_pchlan(hw);
1651                 break;
1652         default:
1653                 break;
1654         }
1655         if (rc)
1656                 return rc;
1657
1658         /* Disable Jumbo Frame support on parts with Intel 10/100 PHY or
1659          * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
1660          */
1661         if ((adapter->hw.phy.type == e1000_phy_ife) ||
1662             ((adapter->hw.mac.type >= e1000_pch2lan) &&
1663              (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
1664                 adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
1665                 adapter->max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
1666
1667                 hw->mac.ops.blink_led = NULL;
1668         }
1669
1670         if ((adapter->hw.mac.type == e1000_ich8lan) &&
1671             (adapter->hw.phy.type != e1000_phy_ife))
1672                 adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
1673
1674         /* Enable workaround for 82579 w/ ME enabled */
1675         if ((adapter->hw.mac.type == e1000_pch2lan) &&
1676             (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1677                 adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
1678
1679         return 0;
1680 }
1681
1682 static DEFINE_MUTEX(nvm_mutex);
1683
1684 /**
1685  *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1686  *  @hw: pointer to the HW structure
1687  *
1688  *  Acquires the mutex for performing NVM operations.
1689  **/
1690 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1691 {
1692         mutex_lock(&nvm_mutex);
1693
1694         return 0;
1695 }
1696
1697 /**
1698  *  e1000_release_nvm_ich8lan - Release NVM mutex
1699  *  @hw: pointer to the HW structure
1700  *
1701  *  Releases the mutex used while performing NVM operations.
1702  **/
1703 static void e1000_release_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1704 {
1705         mutex_unlock(&nvm_mutex);
1706 }
1707
1708 /**
1709  *  e1000_acquire_swflag_ich8lan - Acquire software control flag
1710  *  @hw: pointer to the HW structure
1711  *
1712  *  Acquires the software control flag for performing PHY and select
1713  *  MAC CSR accesses.
1714  **/
1715 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1716 {
1717         u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1718         s32 ret_val = 0;
1719
1720         if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
1721                              &hw->adapter->state)) {
1722                 e_dbg("contention for Phy access\n");
1723                 return -E1000_ERR_PHY;
1724         }
1725
1726         while (timeout) {
1727                 extcnf_ctrl = er32(EXTCNF_CTRL);
1728                 if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1729                         break;
1730
1731                 mdelay(1);
1732                 timeout--;
1733         }
1734
1735         if (!timeout) {
1736                 e_dbg("SW has already locked the resource.\n");
1737                 ret_val = -E1000_ERR_CONFIG;
1738                 goto out;
1739         }
1740
1741         timeout = SW_FLAG_TIMEOUT;
1742
1743         extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1744         ew32(EXTCNF_CTRL, extcnf_ctrl);
1745
1746         while (timeout) {
1747                 extcnf_ctrl = er32(EXTCNF_CTRL);
1748                 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1749                         break;
1750
1751                 mdelay(1);
1752                 timeout--;
1753         }
1754
1755         if (!timeout) {
1756                 e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1757                       er32(FWSM), extcnf_ctrl);
1758                 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1759                 ew32(EXTCNF_CTRL, extcnf_ctrl);
1760                 ret_val = -E1000_ERR_CONFIG;
1761                 goto out;
1762         }
1763
1764 out:
1765         if (ret_val)
1766                 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1767
1768         return ret_val;
1769 }
1770
1771 /**
1772  *  e1000_release_swflag_ich8lan - Release software control flag
1773  *  @hw: pointer to the HW structure
1774  *
1775  *  Releases the software control flag for performing PHY and select
1776  *  MAC CSR accesses.
1777  **/
1778 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1779 {
1780         u32 extcnf_ctrl;
1781
1782         extcnf_ctrl = er32(EXTCNF_CTRL);
1783
1784         if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1785                 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1786                 ew32(EXTCNF_CTRL, extcnf_ctrl);
1787         } else {
1788                 e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
1789         }
1790
1791         clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1792 }
1793
1794 /**
1795  *  e1000_check_mng_mode_ich8lan - Checks management mode
1796  *  @hw: pointer to the HW structure
1797  *
1798  *  This checks if the adapter has any manageability enabled.
1799  *  This is a function pointer entry point only called by read/write
1800  *  routines for the PHY and NVM parts.
1801  **/
1802 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1803 {
1804         u32 fwsm;
1805
1806         fwsm = er32(FWSM);
1807         return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1808                 ((fwsm & E1000_FWSM_MODE_MASK) ==
1809                  (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1810 }
1811
1812 /**
1813  *  e1000_check_mng_mode_pchlan - Checks management mode
1814  *  @hw: pointer to the HW structure
1815  *
1816  *  This checks if the adapter has iAMT enabled.
1817  *  This is a function pointer entry point only called by read/write
1818  *  routines for the PHY and NVM parts.
1819  **/
1820 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1821 {
1822         u32 fwsm;
1823
1824         fwsm = er32(FWSM);
1825         return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1826             (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1827 }
1828
1829 /**
1830  *  e1000_rar_set_pch2lan - Set receive address register
1831  *  @hw: pointer to the HW structure
1832  *  @addr: pointer to the receive address
1833  *  @index: receive address array register
1834  *
1835  *  Sets the receive address array register at index to the address passed
1836  *  in by addr.  For 82579, RAR[0] is the base address register that is to
1837  *  contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1838  *  Use SHRA[0-3] in place of those reserved for ME.
1839  **/
1840 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
1841 {
1842         u32 rar_low, rar_high;
1843
1844         /* HW expects these in little endian so we reverse the byte order
1845          * from network order (big endian) to little endian
1846          */
1847         rar_low = ((u32)addr[0] |
1848                    ((u32)addr[1] << 8) |
1849                    ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1850
1851         rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1852
1853         /* If MAC address zero, no need to set the AV bit */
1854         if (rar_low || rar_high)
1855                 rar_high |= E1000_RAH_AV;
1856
1857         if (index == 0) {
1858                 ew32(RAL(index), rar_low);
1859                 e1e_flush();
1860                 ew32(RAH(index), rar_high);
1861                 e1e_flush();
1862                 return 0;
1863         }
1864
1865         /* RAR[1-6] are owned by manageability.  Skip those and program the
1866          * next address into the SHRA register array.
1867          */
1868         if (index < (u32)(hw->mac.rar_entry_count)) {
1869                 s32 ret_val;
1870
1871                 ret_val = e1000_acquire_swflag_ich8lan(hw);
1872                 if (ret_val)
1873                         goto out;
1874
1875                 ew32(SHRAL(index - 1), rar_low);
1876                 e1e_flush();
1877                 ew32(SHRAH(index - 1), rar_high);
1878                 e1e_flush();
1879
1880                 e1000_release_swflag_ich8lan(hw);
1881
1882                 /* verify the register updates */
1883                 if ((er32(SHRAL(index - 1)) == rar_low) &&
1884                     (er32(SHRAH(index - 1)) == rar_high))
1885                         return 0;
1886
1887                 e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1888                       (index - 1), er32(FWSM));
1889         }
1890
1891 out:
1892         e_dbg("Failed to write receive address at index %d\n", index);
1893         return -E1000_ERR_CONFIG;
1894 }
1895
1896 /**
1897  *  e1000_rar_get_count_pch_lpt - Get the number of available SHRA
1898  *  @hw: pointer to the HW structure
1899  *
1900  *  Get the number of available receive registers that the Host can
1901  *  program. SHRA[0-10] are the shared receive address registers
1902  *  that are shared between the Host and manageability engine (ME).
1903  *  ME can reserve any number of addresses and the host needs to be
1904  *  able to tell how many available registers it has access to.
1905  **/
1906 static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw)
1907 {
1908         u32 wlock_mac;
1909         u32 num_entries;
1910
1911         wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1912         wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1913
1914         switch (wlock_mac) {
1915         case 0:
1916                 /* All SHRA[0..10] and RAR[0] available */
1917                 num_entries = hw->mac.rar_entry_count;
1918                 break;
1919         case 1:
1920                 /* Only RAR[0] available */
1921                 num_entries = 1;
1922                 break;
1923         default:
1924                 /* SHRA[0..(wlock_mac - 1)] available + RAR[0] */
1925                 num_entries = wlock_mac + 1;
1926                 break;
1927         }
1928
1929         return num_entries;
1930 }
1931
1932 /**
1933  *  e1000_rar_set_pch_lpt - Set receive address registers
1934  *  @hw: pointer to the HW structure
1935  *  @addr: pointer to the receive address
1936  *  @index: receive address array register
1937  *
1938  *  Sets the receive address register array at index to the address passed
1939  *  in by addr. For LPT, RAR[0] is the base address register that is to
1940  *  contain the MAC address. SHRA[0-10] are the shared receive address
1941  *  registers that are shared between the Host and manageability engine (ME).
1942  **/
1943 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
1944 {
1945         u32 rar_low, rar_high;
1946         u32 wlock_mac;
1947
1948         /* HW expects these in little endian so we reverse the byte order
1949          * from network order (big endian) to little endian
1950          */
1951         rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
1952                    ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1953
1954         rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1955
1956         /* If MAC address zero, no need to set the AV bit */
1957         if (rar_low || rar_high)
1958                 rar_high |= E1000_RAH_AV;
1959
1960         if (index == 0) {
1961                 ew32(RAL(index), rar_low);
1962                 e1e_flush();
1963                 ew32(RAH(index), rar_high);
1964                 e1e_flush();
1965                 return 0;
1966         }
1967
1968         /* The manageability engine (ME) can lock certain SHRAR registers that
1969          * it is using - those registers are unavailable for use.
1970          */
1971         if (index < hw->mac.rar_entry_count) {
1972                 wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1973                 wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1974
1975                 /* Check if all SHRAR registers are locked */
1976                 if (wlock_mac == 1)
1977                         goto out;
1978
1979                 if ((wlock_mac == 0) || (index <= wlock_mac)) {
1980                         s32 ret_val;
1981
1982                         ret_val = e1000_acquire_swflag_ich8lan(hw);
1983
1984                         if (ret_val)
1985                                 goto out;
1986
1987                         ew32(SHRAL_PCH_LPT(index - 1), rar_low);
1988                         e1e_flush();
1989                         ew32(SHRAH_PCH_LPT(index - 1), rar_high);
1990                         e1e_flush();
1991
1992                         e1000_release_swflag_ich8lan(hw);
1993
1994                         /* verify the register updates */
1995                         if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) &&
1996                             (er32(SHRAH_PCH_LPT(index - 1)) == rar_high))
1997                                 return 0;
1998                 }
1999         }
2000
2001 out:
2002         e_dbg("Failed to write receive address at index %d\n", index);
2003         return -E1000_ERR_CONFIG;
2004 }
2005
2006 /**
2007  *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
2008  *  @hw: pointer to the HW structure
2009  *
2010  *  Checks if firmware is blocking the reset of the PHY.
2011  *  This is a function pointer entry point only called by
2012  *  reset routines.
2013  **/
2014 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
2015 {
2016         bool blocked = false;
2017         int i = 0;
2018
2019         while ((blocked = !(er32(FWSM) & E1000_ICH_FWSM_RSPCIPHY)) &&
2020                (i++ < 30))
2021                 usleep_range(10000, 20000);
2022         return blocked ? E1000_BLK_PHY_RESET : 0;
2023 }
2024
2025 /**
2026  *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
2027  *  @hw: pointer to the HW structure
2028  *
2029  *  Assumes semaphore already acquired.
2030  *
2031  **/
2032 static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
2033 {
2034         u16 phy_data;
2035         u32 strap = er32(STRAP);
2036         u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
2037             E1000_STRAP_SMT_FREQ_SHIFT;
2038         s32 ret_val;
2039
2040         strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
2041
2042         ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
2043         if (ret_val)
2044                 return ret_val;
2045
2046         phy_data &= ~HV_SMB_ADDR_MASK;
2047         phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
2048         phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
2049
2050         if (hw->phy.type == e1000_phy_i217) {
2051                 /* Restore SMBus frequency */
2052                 if (freq--) {
2053                         phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
2054                         phy_data |= (freq & BIT(0)) <<
2055                             HV_SMB_ADDR_FREQ_LOW_SHIFT;
2056                         phy_data |= (freq & BIT(1)) <<
2057                             (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
2058                 } else {
2059                         e_dbg("Unsupported SMB frequency in PHY\n");
2060                 }
2061         }
2062
2063         return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
2064 }
2065
2066 /**
2067  *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
2068  *  @hw:   pointer to the HW structure
2069  *
2070  *  SW should configure the LCD from the NVM extended configuration region
2071  *  as a workaround for certain parts.
2072  **/
2073 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
2074 {
2075         struct e1000_phy_info *phy = &hw->phy;
2076         u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
2077         s32 ret_val = 0;
2078         u16 word_addr, reg_data, reg_addr, phy_page = 0;
2079
2080         /* Initialize the PHY from the NVM on ICH platforms.  This
2081          * is needed due to an issue where the NVM configuration is
2082          * not properly autoloaded after power transitions.
2083          * Therefore, after each PHY reset, we will load the
2084          * configuration data out of the NVM manually.
2085          */
2086         switch (hw->mac.type) {
2087         case e1000_ich8lan:
2088                 if (phy->type != e1000_phy_igp_3)
2089                         return ret_val;
2090
2091                 if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
2092                     (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
2093                         sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
2094                         break;
2095                 }
2096                 /* Fall-thru */
2097         case e1000_pchlan:
2098         case e1000_pch2lan:
2099         case e1000_pch_lpt:
2100         case e1000_pch_spt:
2101         case e1000_pch_cnp:
2102                 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
2103                 break;
2104         default:
2105                 return ret_val;
2106         }
2107
2108         ret_val = hw->phy.ops.acquire(hw);
2109         if (ret_val)
2110                 return ret_val;
2111
2112         data = er32(FEXTNVM);
2113         if (!(data & sw_cfg_mask))
2114                 goto release;
2115
2116         /* Make sure HW does not configure LCD from PHY
2117          * extended configuration before SW configuration
2118          */
2119         data = er32(EXTCNF_CTRL);
2120         if ((hw->mac.type < e1000_pch2lan) &&
2121             (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
2122                 goto release;
2123
2124         cnf_size = er32(EXTCNF_SIZE);
2125         cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
2126         cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
2127         if (!cnf_size)
2128                 goto release;
2129
2130         cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
2131         cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
2132
2133         if (((hw->mac.type == e1000_pchlan) &&
2134              !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
2135             (hw->mac.type > e1000_pchlan)) {
2136                 /* HW configures the SMBus address and LEDs when the
2137                  * OEM and LCD Write Enable bits are set in the NVM.
2138                  * When both NVM bits are cleared, SW will configure
2139                  * them instead.
2140                  */
2141                 ret_val = e1000_write_smbus_addr(hw);
2142                 if (ret_val)
2143                         goto release;
2144
2145                 data = er32(LEDCTL);
2146                 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
2147                                                         (u16)data);
2148                 if (ret_val)
2149                         goto release;
2150         }
2151
2152         /* Configure LCD from extended configuration region. */
2153
2154         /* cnf_base_addr is in DWORD */
2155         word_addr = (u16)(cnf_base_addr << 1);
2156
2157         for (i = 0; i < cnf_size; i++) {
2158                 ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1, &reg_data);
2159                 if (ret_val)
2160                         goto release;
2161
2162                 ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
2163                                          1, &reg_addr);
2164                 if (ret_val)
2165                         goto release;
2166
2167                 /* Save off the PHY page for future writes. */
2168                 if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
2169                         phy_page = reg_data;
2170                         continue;
2171                 }
2172
2173                 reg_addr &= PHY_REG_MASK;
2174                 reg_addr |= phy_page;
2175
2176                 ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data);
2177                 if (ret_val)
2178                         goto release;
2179         }
2180
2181 release:
2182         hw->phy.ops.release(hw);
2183         return ret_val;
2184 }
2185
2186 /**
2187  *  e1000_k1_gig_workaround_hv - K1 Si workaround
2188  *  @hw:   pointer to the HW structure
2189  *  @link: link up bool flag
2190  *
2191  *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
2192  *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
2193  *  If link is down, the function will restore the default K1 setting located
2194  *  in the NVM.
2195  **/
2196 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
2197 {
2198         s32 ret_val = 0;
2199         u16 status_reg = 0;
2200         bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
2201
2202         if (hw->mac.type != e1000_pchlan)
2203                 return 0;
2204
2205         /* Wrap the whole flow with the sw flag */
2206         ret_val = hw->phy.ops.acquire(hw);
2207         if (ret_val)
2208                 return ret_val;
2209
2210         /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
2211         if (link) {
2212                 if (hw->phy.type == e1000_phy_82578) {
2213                         ret_val = e1e_rphy_locked(hw, BM_CS_STATUS,
2214                                                   &status_reg);
2215                         if (ret_val)
2216                                 goto release;
2217
2218                         status_reg &= (BM_CS_STATUS_LINK_UP |
2219                                        BM_CS_STATUS_RESOLVED |
2220                                        BM_CS_STATUS_SPEED_MASK);
2221
2222                         if (status_reg == (BM_CS_STATUS_LINK_UP |
2223                                            BM_CS_STATUS_RESOLVED |
2224                                            BM_CS_STATUS_SPEED_1000))
2225                                 k1_enable = false;
2226                 }
2227
2228                 if (hw->phy.type == e1000_phy_82577) {
2229                         ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg);
2230                         if (ret_val)
2231                                 goto release;
2232
2233                         status_reg &= (HV_M_STATUS_LINK_UP |
2234                                        HV_M_STATUS_AUTONEG_COMPLETE |
2235                                        HV_M_STATUS_SPEED_MASK);
2236
2237                         if (status_reg == (HV_M_STATUS_LINK_UP |
2238                                            HV_M_STATUS_AUTONEG_COMPLETE |
2239                                            HV_M_STATUS_SPEED_1000))
2240                                 k1_enable = false;
2241                 }
2242
2243                 /* Link stall fix for link up */
2244                 ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100);
2245                 if (ret_val)
2246                         goto release;
2247
2248         } else {
2249                 /* Link stall fix for link down */
2250                 ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100);
2251                 if (ret_val)
2252                         goto release;
2253         }
2254
2255         ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
2256
2257 release:
2258         hw->phy.ops.release(hw);
2259
2260         return ret_val;
2261 }
2262
2263 /**
2264  *  e1000_configure_k1_ich8lan - Configure K1 power state
2265  *  @hw: pointer to the HW structure
2266  *  @enable: K1 state to configure
2267  *
2268  *  Configure the K1 power state based on the provided parameter.
2269  *  Assumes semaphore already acquired.
2270  *
2271  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2272  **/
2273 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
2274 {
2275         s32 ret_val;
2276         u32 ctrl_reg = 0;
2277         u32 ctrl_ext = 0;
2278         u32 reg = 0;
2279         u16 kmrn_reg = 0;
2280
2281         ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2282                                               &kmrn_reg);
2283         if (ret_val)
2284                 return ret_val;
2285
2286         if (k1_enable)
2287                 kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
2288         else
2289                 kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
2290
2291         ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2292                                                kmrn_reg);
2293         if (ret_val)
2294                 return ret_val;
2295
2296         usleep_range(20, 40);
2297         ctrl_ext = er32(CTRL_EXT);
2298         ctrl_reg = er32(CTRL);
2299
2300         reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2301         reg |= E1000_CTRL_FRCSPD;
2302         ew32(CTRL, reg);
2303
2304         ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
2305         e1e_flush();
2306         usleep_range(20, 40);
2307         ew32(CTRL, ctrl_reg);
2308         ew32(CTRL_EXT, ctrl_ext);
2309         e1e_flush();
2310         usleep_range(20, 40);
2311
2312         return 0;
2313 }
2314
2315 /**
2316  *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
2317  *  @hw:       pointer to the HW structure
2318  *  @d0_state: boolean if entering d0 or d3 device state
2319  *
2320  *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
2321  *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
2322  *  in NVM determines whether HW should configure LPLU and Gbe Disable.
2323  **/
2324 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
2325 {
2326         s32 ret_val = 0;
2327         u32 mac_reg;
2328         u16 oem_reg;
2329
2330         if (hw->mac.type < e1000_pchlan)
2331                 return ret_val;
2332
2333         ret_val = hw->phy.ops.acquire(hw);
2334         if (ret_val)
2335                 return ret_val;
2336
2337         if (hw->mac.type == e1000_pchlan) {
2338                 mac_reg = er32(EXTCNF_CTRL);
2339                 if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
2340                         goto release;
2341         }
2342
2343         mac_reg = er32(FEXTNVM);
2344         if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
2345                 goto release;
2346
2347         mac_reg = er32(PHY_CTRL);
2348
2349         ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg);
2350         if (ret_val)
2351                 goto release;
2352
2353         oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
2354
2355         if (d0_state) {
2356                 if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
2357                         oem_reg |= HV_OEM_BITS_GBE_DIS;
2358
2359                 if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
2360                         oem_reg |= HV_OEM_BITS_LPLU;
2361         } else {
2362                 if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
2363                                E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
2364                         oem_reg |= HV_OEM_BITS_GBE_DIS;
2365
2366                 if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
2367                                E1000_PHY_CTRL_NOND0A_LPLU))
2368                         oem_reg |= HV_OEM_BITS_LPLU;
2369         }
2370
2371         /* Set Restart auto-neg to activate the bits */
2372         if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
2373             !hw->phy.ops.check_reset_block(hw))
2374                 oem_reg |= HV_OEM_BITS_RESTART_AN;
2375
2376         ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg);
2377
2378 release:
2379         hw->phy.ops.release(hw);
2380
2381         return ret_val;
2382 }
2383
2384 /**
2385  *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
2386  *  @hw:   pointer to the HW structure
2387  **/
2388 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
2389 {
2390         s32 ret_val;
2391         u16 data;
2392
2393         ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
2394         if (ret_val)
2395                 return ret_val;
2396
2397         data |= HV_KMRN_MDIO_SLOW;
2398
2399         ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
2400
2401         return ret_val;
2402 }
2403
2404 /**
2405  *  e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2406  *  done after every PHY reset.
2407  **/
2408 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2409 {
2410         s32 ret_val = 0;
2411         u16 phy_data;
2412
2413         if (hw->mac.type != e1000_pchlan)
2414                 return 0;
2415
2416         /* Set MDIO slow mode before any other MDIO access */
2417         if (hw->phy.type == e1000_phy_82577) {
2418                 ret_val = e1000_set_mdio_slow_mode_hv(hw);
2419                 if (ret_val)
2420                         return ret_val;
2421         }
2422
2423         if (((hw->phy.type == e1000_phy_82577) &&
2424              ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
2425             ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
2426                 /* Disable generation of early preamble */
2427                 ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
2428                 if (ret_val)
2429                         return ret_val;
2430
2431                 /* Preamble tuning for SSC */
2432                 ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
2433                 if (ret_val)
2434                         return ret_val;
2435         }
2436
2437         if (hw->phy.type == e1000_phy_82578) {
2438                 /* Return registers to default by doing a soft reset then
2439                  * writing 0x3140 to the control register.
2440                  */
2441                 if (hw->phy.revision < 2) {
2442                         e1000e_phy_sw_reset(hw);
2443                         ret_val = e1e_wphy(hw, MII_BMCR, 0x3140);
2444                         if (ret_val)
2445                                 return ret_val;
2446                 }
2447         }
2448
2449         /* Select page 0 */
2450         ret_val = hw->phy.ops.acquire(hw);
2451         if (ret_val)
2452                 return ret_val;
2453
2454         hw->phy.addr = 1;
2455         ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
2456         hw->phy.ops.release(hw);
2457         if (ret_val)
2458                 return ret_val;
2459
2460         /* Configure the K1 Si workaround during phy reset assuming there is
2461          * link so that it disables K1 if link is in 1Gbps.
2462          */
2463         ret_val = e1000_k1_gig_workaround_hv(hw, true);
2464         if (ret_val)
2465                 return ret_val;
2466
2467         /* Workaround for link disconnects on a busy hub in half duplex */
2468         ret_val = hw->phy.ops.acquire(hw);
2469         if (ret_val)
2470                 return ret_val;
2471         ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data);
2472         if (ret_val)
2473                 goto release;
2474         ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF);
2475         if (ret_val)
2476                 goto release;
2477
2478         /* set MSE higher to enable link to stay up when noise is high */
2479         ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
2480 release:
2481         hw->phy.ops.release(hw);
2482
2483         return ret_val;
2484 }
2485
2486 /**
2487  *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
2488  *  @hw:   pointer to the HW structure
2489  **/
2490 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
2491 {
2492         u32 mac_reg;
2493         u16 i, phy_reg = 0;
2494         s32 ret_val;
2495
2496         ret_val = hw->phy.ops.acquire(hw);
2497         if (ret_val)
2498                 return;
2499         ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2500         if (ret_val)
2501                 goto release;
2502
2503         /* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
2504         for (i = 0; i < (hw->mac.rar_entry_count); i++) {
2505                 mac_reg = er32(RAL(i));
2506                 hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
2507                                            (u16)(mac_reg & 0xFFFF));
2508                 hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
2509                                            (u16)((mac_reg >> 16) & 0xFFFF));
2510
2511                 mac_reg = er32(RAH(i));
2512                 hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
2513                                            (u16)(mac_reg & 0xFFFF));
2514                 hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
2515                                            (u16)((mac_reg & E1000_RAH_AV)
2516                                                  >> 16));
2517         }
2518
2519         e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2520
2521 release:
2522         hw->phy.ops.release(hw);
2523 }
2524
2525 /**
2526  *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
2527  *  with 82579 PHY
2528  *  @hw: pointer to the HW structure
2529  *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
2530  **/
2531 s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
2532 {
2533         s32 ret_val = 0;
2534         u16 phy_reg, data;
2535         u32 mac_reg;
2536         u16 i;
2537
2538         if (hw->mac.type < e1000_pch2lan)
2539                 return 0;
2540
2541         /* disable Rx path while enabling/disabling workaround */
2542         e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
2543         ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | BIT(14));
2544         if (ret_val)
2545                 return ret_val;
2546
2547         if (enable) {
2548                 /* Write Rx addresses (rar_entry_count for RAL/H, and
2549                  * SHRAL/H) and initial CRC values to the MAC
2550                  */
2551                 for (i = 0; i < hw->mac.rar_entry_count; i++) {
2552                         u8 mac_addr[ETH_ALEN] = { 0 };
2553                         u32 addr_high, addr_low;
2554
2555                         addr_high = er32(RAH(i));
2556                         if (!(addr_high & E1000_RAH_AV))
2557                                 continue;
2558                         addr_low = er32(RAL(i));
2559                         mac_addr[0] = (addr_low & 0xFF);
2560                         mac_addr[1] = ((addr_low >> 8) & 0xFF);
2561                         mac_addr[2] = ((addr_low >> 16) & 0xFF);
2562                         mac_addr[3] = ((addr_low >> 24) & 0xFF);
2563                         mac_addr[4] = (addr_high & 0xFF);
2564                         mac_addr[5] = ((addr_high >> 8) & 0xFF);
2565
2566                         ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
2567                 }
2568
2569                 /* Write Rx addresses to the PHY */
2570                 e1000_copy_rx_addrs_to_phy_ich8lan(hw);
2571
2572                 /* Enable jumbo frame workaround in the MAC */
2573                 mac_reg = er32(FFLT_DBG);
2574                 mac_reg &= ~BIT(14);
2575                 mac_reg |= (7 << 15);
2576                 ew32(FFLT_DBG, mac_reg);
2577
2578                 mac_reg = er32(RCTL);
2579                 mac_reg |= E1000_RCTL_SECRC;
2580                 ew32(RCTL, mac_reg);
2581
2582                 ret_val = e1000e_read_kmrn_reg(hw,
2583                                                E1000_KMRNCTRLSTA_CTRL_OFFSET,
2584                                                &data);
2585                 if (ret_val)
2586                         return ret_val;
2587                 ret_val = e1000e_write_kmrn_reg(hw,
2588                                                 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2589                                                 data | BIT(0));
2590                 if (ret_val)
2591                         return ret_val;
2592                 ret_val = e1000e_read_kmrn_reg(hw,
2593                                                E1000_KMRNCTRLSTA_HD_CTRL,
2594                                                &data);
2595                 if (ret_val)
2596                         return ret_val;
2597                 data &= ~(0xF << 8);
2598                 data |= (0xB << 8);
2599                 ret_val = e1000e_write_kmrn_reg(hw,
2600                                                 E1000_KMRNCTRLSTA_HD_CTRL,
2601                                                 data);
2602                 if (ret_val)
2603                         return ret_val;
2604
2605                 /* Enable jumbo frame workaround in the PHY */
2606                 e1e_rphy(hw, PHY_REG(769, 23), &data);
2607                 data &= ~(0x7F << 5);
2608                 data |= (0x37 << 5);
2609                 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2610                 if (ret_val)
2611                         return ret_val;
2612                 e1e_rphy(hw, PHY_REG(769, 16), &data);
2613                 data &= ~BIT(13);
2614                 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2615                 if (ret_val)
2616                         return ret_val;
2617                 e1e_rphy(hw, PHY_REG(776, 20), &data);
2618                 data &= ~(0x3FF << 2);
2619                 data |= (E1000_TX_PTR_GAP << 2);
2620                 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2621                 if (ret_val)
2622                         return ret_val;
2623                 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
2624                 if (ret_val)
2625                         return ret_val;
2626                 e1e_rphy(hw, HV_PM_CTRL, &data);
2627                 ret_val = e1e_wphy(hw, HV_PM_CTRL, data | BIT(10));
2628                 if (ret_val)
2629                         return ret_val;
2630         } else {
2631                 /* Write MAC register values back to h/w defaults */
2632                 mac_reg = er32(FFLT_DBG);
2633                 mac_reg &= ~(0xF << 14);
2634                 ew32(FFLT_DBG, mac_reg);
2635
2636                 mac_reg = er32(RCTL);
2637                 mac_reg &= ~E1000_RCTL_SECRC;
2638                 ew32(RCTL, mac_reg);
2639
2640                 ret_val = e1000e_read_kmrn_reg(hw,
2641                                                E1000_KMRNCTRLSTA_CTRL_OFFSET,
2642                                                &data);
2643                 if (ret_val)
2644                         return ret_val;
2645                 ret_val = e1000e_write_kmrn_reg(hw,
2646                                                 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2647                                                 data & ~BIT(0));
2648                 if (ret_val)
2649                         return ret_val;
2650                 ret_val = e1000e_read_kmrn_reg(hw,
2651                                                E1000_KMRNCTRLSTA_HD_CTRL,
2652                                                &data);
2653                 if (ret_val)
2654                         return ret_val;
2655                 data &= ~(0xF << 8);
2656                 data |= (0xB << 8);
2657                 ret_val = e1000e_write_kmrn_reg(hw,
2658                                                 E1000_KMRNCTRLSTA_HD_CTRL,
2659                                                 data);
2660                 if (ret_val)
2661                         return ret_val;
2662
2663                 /* Write PHY register values back to h/w defaults */
2664                 e1e_rphy(hw, PHY_REG(769, 23), &data);
2665                 data &= ~(0x7F << 5);
2666                 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2667                 if (ret_val)
2668                         return ret_val;
2669                 e1e_rphy(hw, PHY_REG(769, 16), &data);
2670                 data |= BIT(13);
2671                 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2672                 if (ret_val)
2673                         return ret_val;
2674                 e1e_rphy(hw, PHY_REG(776, 20), &data);
2675                 data &= ~(0x3FF << 2);
2676                 data |= (0x8 << 2);
2677                 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2678                 if (ret_val)
2679                         return ret_val;
2680                 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
2681                 if (ret_val)
2682                         return ret_val;
2683                 e1e_rphy(hw, HV_PM_CTRL, &data);
2684                 ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~BIT(10));
2685                 if (ret_val)
2686                         return ret_val;
2687         }
2688
2689         /* re-enable Rx path after enabling/disabling workaround */
2690         return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~BIT(14));
2691 }
2692
2693 /**
2694  *  e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2695  *  done after every PHY reset.
2696  **/
2697 static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2698 {
2699         s32 ret_val = 0;
2700
2701         if (hw->mac.type != e1000_pch2lan)
2702                 return 0;
2703
2704         /* Set MDIO slow mode before any other MDIO access */
2705         ret_val = e1000_set_mdio_slow_mode_hv(hw);
2706         if (ret_val)
2707                 return ret_val;
2708
2709         ret_val = hw->phy.ops.acquire(hw);
2710         if (ret_val)
2711                 return ret_val;
2712         /* set MSE higher to enable link to stay up when noise is high */
2713         ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
2714         if (ret_val)
2715                 goto release;
2716         /* drop link after 5 times MSE threshold was reached */
2717         ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
2718 release:
2719         hw->phy.ops.release(hw);
2720
2721         return ret_val;
2722 }
2723
2724 /**
2725  *  e1000_k1_gig_workaround_lv - K1 Si workaround
2726  *  @hw:   pointer to the HW structure
2727  *
2728  *  Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
2729  *  Disable K1 in 1000Mbps and 100Mbps
2730  **/
2731 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2732 {
2733         s32 ret_val = 0;
2734         u16 status_reg = 0;
2735
2736         if (hw->mac.type != e1000_pch2lan)
2737                 return 0;
2738
2739         /* Set K1 beacon duration based on 10Mbs speed */
2740         ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
2741         if (ret_val)
2742                 return ret_val;
2743
2744         if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2745             == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2746                 if (status_reg &
2747                     (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
2748                         u16 pm_phy_reg;
2749
2750                         /* LV 1G/100 Packet drop issue wa  */
2751                         ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg);
2752                         if (ret_val)
2753                                 return ret_val;
2754                         pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE;
2755                         ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg);
2756                         if (ret_val)
2757                                 return ret_val;
2758                 } else {
2759                         u32 mac_reg;
2760
2761                         mac_reg = er32(FEXTNVM4);
2762                         mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
2763                         mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
2764                         ew32(FEXTNVM4, mac_reg);
2765                 }
2766         }
2767
2768         return ret_val;
2769 }
2770
2771 /**
2772  *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2773  *  @hw:   pointer to the HW structure
2774  *  @gate: boolean set to true to gate, false to ungate
2775  *
2776  *  Gate/ungate the automatic PHY configuration via hardware; perform
2777  *  the configuration via software instead.
2778  **/
2779 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
2780 {
2781         u32 extcnf_ctrl;
2782
2783         if (hw->mac.type < e1000_pch2lan)
2784                 return;
2785
2786         extcnf_ctrl = er32(EXTCNF_CTRL);
2787
2788         if (gate)
2789                 extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2790         else
2791                 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2792
2793         ew32(EXTCNF_CTRL, extcnf_ctrl);
2794 }
2795
2796 /**
2797  *  e1000_lan_init_done_ich8lan - Check for PHY config completion
2798  *  @hw: pointer to the HW structure
2799  *
2800  *  Check the appropriate indication the MAC has finished configuring the
2801  *  PHY after a software reset.
2802  **/
2803 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
2804 {
2805         u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
2806
2807         /* Wait for basic configuration completes before proceeding */
2808         do {
2809                 data = er32(STATUS);
2810                 data &= E1000_STATUS_LAN_INIT_DONE;
2811                 usleep_range(100, 200);
2812         } while ((!data) && --loop);
2813
2814         /* If basic configuration is incomplete before the above loop
2815          * count reaches 0, loading the configuration from NVM will
2816          * leave the PHY in a bad state possibly resulting in no link.
2817          */
2818         if (loop == 0)
2819                 e_dbg("LAN_INIT_DONE not set, increase timeout\n");
2820
2821         /* Clear the Init Done bit for the next init event */
2822         data = er32(STATUS);
2823         data &= ~E1000_STATUS_LAN_INIT_DONE;
2824         ew32(STATUS, data);
2825 }
2826
2827 /**
2828  *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
2829  *  @hw: pointer to the HW structure
2830  **/
2831 static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
2832 {
2833         s32 ret_val = 0;
2834         u16 reg;
2835
2836         if (hw->phy.ops.check_reset_block(hw))
2837                 return 0;
2838
2839         /* Allow time for h/w to get to quiescent state after reset */
2840         usleep_range(10000, 20000);
2841
2842         /* Perform any necessary post-reset workarounds */
2843         switch (hw->mac.type) {
2844         case e1000_pchlan:
2845                 ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2846                 if (ret_val)
2847                         return ret_val;
2848                 break;
2849         case e1000_pch2lan:
2850                 ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
2851                 if (ret_val)
2852                         return ret_val;
2853                 break;
2854         default:
2855                 break;
2856         }
2857
2858         /* Clear the host wakeup bit after lcd reset */
2859         if (hw->mac.type >= e1000_pchlan) {
2860                 e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
2861                 reg &= ~BM_WUC_HOST_WU_BIT;
2862                 e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
2863         }
2864
2865         /* Configure the LCD with the extended configuration region in NVM */
2866         ret_val = e1000_sw_lcd_config_ich8lan(hw);
2867         if (ret_val)
2868                 return ret_val;
2869
2870         /* Configure the LCD with the OEM bits in NVM */
2871         ret_val = e1000_oem_bits_config_ich8lan(hw, true);
2872
2873         if (hw->mac.type == e1000_pch2lan) {
2874                 /* Ungate automatic PHY configuration on non-managed 82579 */
2875                 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
2876                         usleep_range(10000, 20000);
2877                         e1000_gate_hw_phy_config_ich8lan(hw, false);
2878                 }
2879
2880                 /* Set EEE LPI Update Timer to 200usec */
2881                 ret_val = hw->phy.ops.acquire(hw);
2882                 if (ret_val)
2883                         return ret_val;
2884                 ret_val = e1000_write_emi_reg_locked(hw,
2885                                                      I82579_LPI_UPDATE_TIMER,
2886                                                      0x1387);
2887                 hw->phy.ops.release(hw);
2888         }
2889
2890         return ret_val;
2891 }
2892
2893 /**
2894  *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
2895  *  @hw: pointer to the HW structure
2896  *
2897  *  Resets the PHY
2898  *  This is a function pointer entry point called by drivers
2899  *  or other shared routines.
2900  **/
2901 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
2902 {
2903         s32 ret_val = 0;
2904
2905         /* Gate automatic PHY configuration by hardware on non-managed 82579 */
2906         if ((hw->mac.type == e1000_pch2lan) &&
2907             !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
2908                 e1000_gate_hw_phy_config_ich8lan(hw, true);
2909
2910         ret_val = e1000e_phy_hw_reset_generic(hw);
2911         if (ret_val)
2912                 return ret_val;
2913
2914         return e1000_post_phy_reset_ich8lan(hw);
2915 }
2916
2917 /**
2918  *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
2919  *  @hw: pointer to the HW structure
2920  *  @active: true to enable LPLU, false to disable
2921  *
2922  *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
2923  *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
2924  *  the phy speed. This function will manually set the LPLU bit and restart
2925  *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
2926  *  since it configures the same bit.
2927  **/
2928 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
2929 {
2930         s32 ret_val;
2931         u16 oem_reg;
2932
2933         ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
2934         if (ret_val)
2935                 return ret_val;
2936
2937         if (active)
2938                 oem_reg |= HV_OEM_BITS_LPLU;
2939         else
2940                 oem_reg &= ~HV_OEM_BITS_LPLU;
2941
2942         if (!hw->phy.ops.check_reset_block(hw))
2943                 oem_reg |= HV_OEM_BITS_RESTART_AN;
2944
2945         return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
2946 }
2947
2948 /**
2949  *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
2950  *  @hw: pointer to the HW structure
2951  *  @active: true to enable LPLU, false to disable
2952  *
2953  *  Sets the LPLU D0 state according to the active flag.  When
2954  *  activating LPLU this function also disables smart speed
2955  *  and vice versa.  LPLU will not be activated unless the
2956  *  device autonegotiation advertisement meets standards of
2957  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
2958  *  This is a function pointer entry point only called by
2959  *  PHY setup routines.
2960  **/
2961 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2962 {
2963         struct e1000_phy_info *phy = &hw->phy;
2964         u32 phy_ctrl;
2965         s32 ret_val = 0;
2966         u16 data;
2967
2968         if (phy->type == e1000_phy_ife)
2969                 return 0;
2970
2971         phy_ctrl = er32(PHY_CTRL);
2972
2973         if (active) {
2974                 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2975                 ew32(PHY_CTRL, phy_ctrl);
2976
2977                 if (phy->type != e1000_phy_igp_3)
2978                         return 0;
2979
2980                 /* Call gig speed drop workaround on LPLU before accessing
2981                  * any PHY registers
2982                  */
2983                 if (hw->mac.type == e1000_ich8lan)
2984                         e1000e_gig_downshift_workaround_ich8lan(hw);
2985
2986                 /* When LPLU is enabled, we should disable SmartSpeed */
2987                 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
2988                 if (ret_val)
2989                         return ret_val;
2990                 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2991                 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
2992                 if (ret_val)
2993                         return ret_val;
2994         } else {
2995                 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2996                 ew32(PHY_CTRL, phy_ctrl);
2997
2998                 if (phy->type != e1000_phy_igp_3)
2999                         return 0;
3000
3001                 /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3002                  * during Dx states where the power conservation is most
3003                  * important.  During driver activity we should enable
3004                  * SmartSpeed, so performance is maintained.
3005                  */
3006                 if (phy->smart_speed == e1000_smart_speed_on) {
3007                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3008                                            &data);
3009                         if (ret_val)
3010                                 return ret_val;
3011
3012                         data |= IGP01E1000_PSCFR_SMART_SPEED;
3013                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3014                                            data);
3015                         if (ret_val)
3016                                 return ret_val;
3017                 } else if (phy->smart_speed == e1000_smart_speed_off) {
3018                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3019                                            &data);
3020                         if (ret_val)
3021                                 return ret_val;
3022
3023                         data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3024                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3025                                            data);
3026                         if (ret_val)
3027                                 return ret_val;
3028                 }
3029         }
3030
3031         return 0;
3032 }
3033
3034 /**
3035  *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
3036  *  @hw: pointer to the HW structure
3037  *  @active: true to enable LPLU, false to disable
3038  *
3039  *  Sets the LPLU D3 state according to the active flag.  When
3040  *  activating LPLU this function also disables smart speed
3041  *  and vice versa.  LPLU will not be activated unless the
3042  *  device autonegotiation advertisement meets standards of
3043  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3044  *  This is a function pointer entry point only called by
3045  *  PHY setup routines.
3046  **/
3047 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3048 {
3049         struct e1000_phy_info *phy = &hw->phy;
3050         u32 phy_ctrl;
3051         s32 ret_val = 0;
3052         u16 data;
3053
3054         phy_ctrl = er32(PHY_CTRL);
3055
3056         if (!active) {
3057                 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
3058                 ew32(PHY_CTRL, phy_ctrl);
3059
3060                 if (phy->type != e1000_phy_igp_3)
3061                         return 0;
3062
3063                 /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3064                  * during Dx states where the power conservation is most
3065                  * important.  During driver activity we should enable
3066                  * SmartSpeed, so performance is maintained.
3067                  */
3068                 if (phy->smart_speed == e1000_smart_speed_on) {
3069                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3070                                            &data);
3071                         if (ret_val)
3072                                 return ret_val;
3073
3074                         data |= IGP01E1000_PSCFR_SMART_SPEED;
3075                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3076                                            data);
3077                         if (ret_val)
3078                                 return ret_val;
3079                 } else if (phy->smart_speed == e1000_smart_speed_off) {
3080                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3081                                            &data);
3082                         if (ret_val)
3083                                 return ret_val;
3084
3085                         data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3086                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3087                                            data);
3088                         if (ret_val)
3089                                 return ret_val;
3090                 }
3091         } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
3092                    (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
3093                    (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
3094                 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
3095                 ew32(PHY_CTRL, phy_ctrl);
3096
3097                 if (phy->type != e1000_phy_igp_3)
3098                         return 0;
3099
3100                 /* Call gig speed drop workaround on LPLU before accessing
3101                  * any PHY registers
3102                  */
3103                 if (hw->mac.type == e1000_ich8lan)
3104                         e1000e_gig_downshift_workaround_ich8lan(hw);
3105
3106                 /* When LPLU is enabled, we should disable SmartSpeed */
3107                 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
3108                 if (ret_val)
3109                         return ret_val;
3110
3111                 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3112                 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3113         }
3114
3115         return ret_val;
3116 }
3117
3118 /**
3119  *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
3120  *  @hw: pointer to the HW structure
3121  *  @bank:  pointer to the variable that returns the active bank
3122  *
3123  *  Reads signature byte from the NVM using the flash access registers.
3124  *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
3125  **/
3126 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
3127 {
3128         u32 eecd;
3129         struct e1000_nvm_info *nvm = &hw->nvm;
3130         u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
3131         u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
3132         u32 nvm_dword = 0;
3133         u8 sig_byte = 0;
3134         s32 ret_val;
3135
3136         switch (hw->mac.type) {
3137         case e1000_pch_spt:
3138         case e1000_pch_cnp:
3139                 bank1_offset = nvm->flash_bank_size;
3140                 act_offset = E1000_ICH_NVM_SIG_WORD;
3141
3142                 /* set bank to 0 in case flash read fails */
3143                 *bank = 0;
3144
3145                 /* Check bank 0 */
3146                 ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset,
3147                                                          &nvm_dword);
3148                 if (ret_val)
3149                         return ret_val;
3150                 sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3151                 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3152                     E1000_ICH_NVM_SIG_VALUE) {
3153                         *bank = 0;
3154                         return 0;
3155                 }
3156
3157                 /* Check bank 1 */
3158                 ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset +
3159                                                          bank1_offset,
3160                                                          &nvm_dword);
3161                 if (ret_val)
3162                         return ret_val;
3163                 sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3164                 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3165                     E1000_ICH_NVM_SIG_VALUE) {
3166                         *bank = 1;
3167                         return 0;
3168                 }
3169
3170                 e_dbg("ERROR: No valid NVM bank present\n");
3171                 return -E1000_ERR_NVM;
3172         case e1000_ich8lan:
3173         case e1000_ich9lan:
3174                 eecd = er32(EECD);
3175                 if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
3176                     E1000_EECD_SEC1VAL_VALID_MASK) {
3177                         if (eecd & E1000_EECD_SEC1VAL)
3178                                 *bank = 1;
3179                         else
3180                                 *bank = 0;
3181
3182                         return 0;
3183                 }
3184                 e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
3185                 /* fall-thru */
3186         default:
3187                 /* set bank to 0 in case flash read fails */
3188                 *bank = 0;
3189
3190                 /* Check bank 0 */
3191                 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
3192                                                         &sig_byte);
3193                 if (ret_val)
3194                         return ret_val;
3195                 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3196                     E1000_ICH_NVM_SIG_VALUE) {
3197                         *bank = 0;
3198                         return 0;
3199                 }
3200
3201                 /* Check bank 1 */
3202                 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
3203                                                         bank1_offset,
3204                                                         &sig_byte);
3205                 if (ret_val)
3206                         return ret_val;
3207                 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3208                     E1000_ICH_NVM_SIG_VALUE) {
3209                         *bank = 1;
3210                         return 0;
3211                 }
3212
3213                 e_dbg("ERROR: No valid NVM bank present\n");
3214                 return -E1000_ERR_NVM;
3215         }
3216 }
3217
3218 /**
3219  *  e1000_read_nvm_spt - NVM access for SPT
3220  *  @hw: pointer to the HW structure
3221  *  @offset: The offset (in bytes) of the word(s) to read.
3222  *  @words: Size of data to read in words.
3223  *  @data: pointer to the word(s) to read at offset.
3224  *
3225  *  Reads a word(s) from the NVM
3226  **/
3227 static s32 e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words,
3228                               u16 *data)
3229 {
3230         struct e1000_nvm_info *nvm = &hw->nvm;
3231         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3232         u32 act_offset;
3233         s32 ret_val = 0;
3234         u32 bank = 0;
3235         u32 dword = 0;
3236         u16 offset_to_read;
3237         u16 i;
3238
3239         if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3240             (words == 0)) {
3241                 e_dbg("nvm parameter(s) out of bounds\n");
3242                 ret_val = -E1000_ERR_NVM;
3243                 goto out;
3244         }
3245
3246         nvm->ops.acquire(hw);
3247
3248         ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3249         if (ret_val) {
3250                 e_dbg("Could not detect valid bank, assuming bank 0\n");
3251                 bank = 0;
3252         }
3253
3254         act_offset = (bank) ? nvm->flash_bank_size : 0;
3255         act_offset += offset;
3256
3257         ret_val = 0;
3258
3259         for (i = 0; i < words; i += 2) {
3260                 if (words - i == 1) {
3261                         if (dev_spec->shadow_ram[offset + i].modified) {
3262                                 data[i] =
3263                                     dev_spec->shadow_ram[offset + i].value;
3264                         } else {
3265                                 offset_to_read = act_offset + i -
3266                                     ((act_offset + i) % 2);
3267                                 ret_val =
3268                                   e1000_read_flash_dword_ich8lan(hw,
3269                                                                  offset_to_read,
3270                                                                  &dword);
3271                                 if (ret_val)
3272                                         break;
3273                                 if ((act_offset + i) % 2 == 0)
3274                                         data[i] = (u16)(dword & 0xFFFF);
3275                                 else
3276                                         data[i] = (u16)((dword >> 16) & 0xFFFF);
3277                         }
3278                 } else {
3279                         offset_to_read = act_offset + i;
3280                         if (!(dev_spec->shadow_ram[offset + i].modified) ||
3281                             !(dev_spec->shadow_ram[offset + i + 1].modified)) {
3282                                 ret_val =
3283                                   e1000_read_flash_dword_ich8lan(hw,
3284                                                                  offset_to_read,
3285                                                                  &dword);
3286                                 if (ret_val)
3287                                         break;
3288                         }
3289                         if (dev_spec->shadow_ram[offset + i].modified)
3290                                 data[i] =
3291                                     dev_spec->shadow_ram[offset + i].value;
3292                         else
3293                                 data[i] = (u16)(dword & 0xFFFF);
3294                         if (dev_spec->shadow_ram[offset + i].modified)
3295                                 data[i + 1] =
3296                                     dev_spec->shadow_ram[offset + i + 1].value;
3297                         else
3298                                 data[i + 1] = (u16)(dword >> 16 & 0xFFFF);
3299                 }
3300         }
3301
3302         nvm->ops.release(hw);
3303
3304 out:
3305         if (ret_val)
3306                 e_dbg("NVM read error: %d\n", ret_val);
3307
3308         return ret_val;
3309 }
3310
3311 /**
3312  *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
3313  *  @hw: pointer to the HW structure
3314  *  @offset: The offset (in bytes) of the word(s) to read.
3315  *  @words: Size of data to read in words
3316  *  @data: Pointer to the word(s) to read at offset.
3317  *
3318  *  Reads a word(s) from the NVM using the flash access registers.
3319  **/
3320 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3321                                   u16 *data)
3322 {
3323         struct e1000_nvm_info *nvm = &hw->nvm;
3324         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3325         u32 act_offset;
3326         s32 ret_val = 0;
3327         u32 bank = 0;
3328         u16 i, word;
3329
3330         if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3331             (words == 0)) {
3332                 e_dbg("nvm parameter(s) out of bounds\n");
3333                 ret_val = -E1000_ERR_NVM;
3334                 goto out;
3335         }
3336
3337         nvm->ops.acquire(hw);
3338
3339         ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3340         if (ret_val) {
3341                 e_dbg("Could not detect valid bank, assuming bank 0\n");
3342                 bank = 0;
3343         }
3344
3345         act_offset = (bank) ? nvm->flash_bank_size : 0;
3346         act_offset += offset;
3347
3348         ret_val = 0;
3349         for (i = 0; i < words; i++) {
3350                 if (dev_spec->shadow_ram[offset + i].modified) {
3351                         data[i] = dev_spec->shadow_ram[offset + i].value;
3352                 } else {
3353                         ret_val = e1000_read_flash_word_ich8lan(hw,
3354                                                                 act_offset + i,
3355                                                                 &word);
3356                         if (ret_val)
3357                                 break;
3358                         data[i] = word;
3359                 }
3360         }
3361
3362         nvm->ops.release(hw);
3363
3364 out:
3365         if (ret_val)
3366                 e_dbg("NVM read error: %d\n", ret_val);
3367
3368         return ret_val;
3369 }
3370
3371 /**
3372  *  e1000_flash_cycle_init_ich8lan - Initialize flash
3373  *  @hw: pointer to the HW structure
3374  *
3375  *  This function does initial flash setup so that a new read/write/erase cycle
3376  *  can be started.
3377  **/
3378 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
3379 {
3380         union ich8_hws_flash_status hsfsts;
3381         s32 ret_val = -E1000_ERR_NVM;
3382
3383         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3384
3385         /* Check if the flash descriptor is valid */
3386         if (!hsfsts.hsf_status.fldesvalid) {
3387                 e_dbg("Flash descriptor invalid.  SW Sequencing must be used.\n");
3388                 return -E1000_ERR_NVM;
3389         }
3390
3391         /* Clear FCERR and DAEL in hw status by writing 1 */
3392         hsfsts.hsf_status.flcerr = 1;
3393         hsfsts.hsf_status.dael = 1;
3394         if (hw->mac.type >= e1000_pch_spt)
3395                 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3396         else
3397                 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3398
3399         /* Either we should have a hardware SPI cycle in progress
3400          * bit to check against, in order to start a new cycle or
3401          * FDONE bit should be changed in the hardware so that it
3402          * is 1 after hardware reset, which can then be used as an
3403          * indication whether a cycle is in progress or has been
3404          * completed.
3405          */
3406
3407         if (!hsfsts.hsf_status.flcinprog) {
3408                 /* There is no cycle running at present,
3409                  * so we can start a cycle.
3410                  * Begin by setting Flash Cycle Done.
3411                  */
3412                 hsfsts.hsf_status.flcdone = 1;
3413                 if (hw->mac.type >= e1000_pch_spt)
3414                         ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3415                 else
3416                         ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3417                 ret_val = 0;
3418         } else {
3419                 s32 i;
3420
3421                 /* Otherwise poll for sometime so the current
3422                  * cycle has a chance to end before giving up.
3423                  */
3424                 for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
3425                         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3426                         if (!hsfsts.hsf_status.flcinprog) {
3427                                 ret_val = 0;
3428                                 break;
3429                         }
3430                         udelay(1);
3431                 }
3432                 if (!ret_val) {
3433                         /* Successful in waiting for previous cycle to timeout,
3434                          * now set the Flash Cycle Done.
3435                          */
3436                         hsfsts.hsf_status.flcdone = 1;
3437                         if (hw->mac.type >= e1000_pch_spt)
3438                                 ew32flash(ICH_FLASH_HSFSTS,
3439                                           hsfsts.regval & 0xFFFF);
3440                         else
3441                                 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3442                 } else {
3443                         e_dbg("Flash controller busy, cannot get access\n");
3444                 }
3445         }
3446
3447         return ret_val;
3448 }
3449
3450 /**
3451  *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
3452  *  @hw: pointer to the HW structure
3453  *  @timeout: maximum time to wait for completion
3454  *
3455  *  This function starts a flash cycle and waits for its completion.
3456  **/
3457 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
3458 {
3459         union ich8_hws_flash_ctrl hsflctl;
3460         union ich8_hws_flash_status hsfsts;
3461         u32 i = 0;
3462
3463         /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
3464         if (hw->mac.type >= e1000_pch_spt)
3465                 hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3466         else
3467                 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3468         hsflctl.hsf_ctrl.flcgo = 1;
3469
3470         if (hw->mac.type >= e1000_pch_spt)
3471                 ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
3472         else
3473                 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3474
3475         /* wait till FDONE bit is set to 1 */
3476         do {
3477                 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3478                 if (hsfsts.hsf_status.flcdone)
3479                         break;
3480                 udelay(1);
3481         } while (i++ < timeout);
3482
3483         if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
3484                 return 0;
3485
3486         return -E1000_ERR_NVM;
3487 }
3488
3489 /**
3490  *  e1000_read_flash_dword_ich8lan - Read dword from flash
3491  *  @hw: pointer to the HW structure
3492  *  @offset: offset to data location
3493  *  @data: pointer to the location for storing the data
3494  *
3495  *  Reads the flash dword at offset into data.  Offset is converted
3496  *  to bytes before read.
3497  **/
3498 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset,
3499                                           u32 *data)
3500 {
3501         /* Must convert word offset into bytes. */
3502         offset <<= 1;
3503         return e1000_read_flash_data32_ich8lan(hw, offset, data);
3504 }
3505
3506 /**
3507  *  e1000_read_flash_word_ich8lan - Read word from flash
3508  *  @hw: pointer to the HW structure
3509  *  @offset: offset to data location
3510  *  @data: pointer to the location for storing the data
3511  *
3512  *  Reads the flash word at offset into data.  Offset is converted
3513  *  to bytes before read.
3514  **/
3515 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
3516                                          u16 *data)
3517 {
3518         /* Must convert offset into bytes. */
3519         offset <<= 1;
3520
3521         return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
3522 }
3523
3524 /**
3525  *  e1000_read_flash_byte_ich8lan - Read byte from flash
3526  *  @hw: pointer to the HW structure
3527  *  @offset: The offset of the byte to read.
3528  *  @data: Pointer to a byte to store the value read.
3529  *
3530  *  Reads a single byte from the NVM using the flash access registers.
3531  **/
3532 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3533                                          u8 *data)
3534 {
3535         s32 ret_val;
3536         u16 word = 0;
3537
3538         /* In SPT, only 32 bits access is supported,
3539          * so this function should not be called.
3540          */
3541         if (hw->mac.type >= e1000_pch_spt)
3542                 return -E1000_ERR_NVM;
3543         else
3544                 ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
3545
3546         if (ret_val)
3547                 return ret_val;
3548
3549         *data = (u8)word;
3550
3551         return 0;
3552 }
3553
3554 /**
3555  *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
3556  *  @hw: pointer to the HW structure
3557  *  @offset: The offset (in bytes) of the byte or word to read.
3558  *  @size: Size of data to read, 1=byte 2=word
3559  *  @data: Pointer to the word to store the value read.
3560  *
3561  *  Reads a byte or word from the NVM using the flash access registers.
3562  **/
3563 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3564                                          u8 size, u16 *data)
3565 {
3566         union ich8_hws_flash_status hsfsts;
3567         union ich8_hws_flash_ctrl hsflctl;
3568         u32 flash_linear_addr;
3569         u32 flash_data = 0;
3570         s32 ret_val = -E1000_ERR_NVM;
3571         u8 count = 0;
3572
3573         if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3574                 return -E1000_ERR_NVM;
3575
3576         flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3577                              hw->nvm.flash_base_addr);
3578
3579         do {
3580                 udelay(1);
3581                 /* Steps */
3582                 ret_val = e1000_flash_cycle_init_ich8lan(hw);
3583                 if (ret_val)
3584                         break;
3585
3586                 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3587                 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3588                 hsflctl.hsf_ctrl.fldbcount = size - 1;
3589                 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3590                 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3591
3592                 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3593
3594                 ret_val =
3595                     e1000_flash_cycle_ich8lan(hw,
3596                                               ICH_FLASH_READ_COMMAND_TIMEOUT);
3597
3598                 /* Check if FCERR is set to 1, if set to 1, clear it
3599                  * and try the whole sequence a few more times, else
3600                  * read in (shift in) the Flash Data0, the order is
3601                  * least significant byte first msb to lsb
3602                  */
3603                 if (!ret_val) {
3604                         flash_data = er32flash(ICH_FLASH_FDATA0);
3605                         if (size == 1)
3606                                 *data = (u8)(flash_data & 0x000000FF);
3607                         else if (size == 2)
3608                                 *data = (u16)(flash_data & 0x0000FFFF);
3609                         break;
3610                 } else {
3611                         /* If we've gotten here, then things are probably
3612                          * completely hosed, but if the error condition is
3613                          * detected, it won't hurt to give it another try...
3614                          * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3615                          */
3616                         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3617                         if (hsfsts.hsf_status.flcerr) {
3618                                 /* Repeat for some time before giving up. */
3619                                 continue;
3620                         } else if (!hsfsts.hsf_status.flcdone) {
3621                                 e_dbg("Timeout error - flash cycle did not complete.\n");
3622                                 break;
3623                         }
3624                 }
3625         } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3626
3627         return ret_val;
3628 }
3629
3630 /**
3631  *  e1000_read_flash_data32_ich8lan - Read dword from NVM
3632  *  @hw: pointer to the HW structure
3633  *  @offset: The offset (in bytes) of the dword to read.
3634  *  @data: Pointer to the dword to store the value read.
3635  *
3636  *  Reads a byte or word from the NVM using the flash access registers.
3637  **/
3638
3639 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
3640                                            u32 *data)
3641 {
3642         union ich8_hws_flash_status hsfsts;
3643         union ich8_hws_flash_ctrl hsflctl;
3644         u32 flash_linear_addr;
3645         s32 ret_val = -E1000_ERR_NVM;
3646         u8 count = 0;
3647
3648         if (offset > ICH_FLASH_LINEAR_ADDR_MASK || hw->mac.type < e1000_pch_spt)
3649                 return -E1000_ERR_NVM;
3650         flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3651                              hw->nvm.flash_base_addr);
3652
3653         do {
3654                 udelay(1);
3655                 /* Steps */
3656                 ret_val = e1000_flash_cycle_init_ich8lan(hw);
3657                 if (ret_val)
3658                         break;
3659                 /* In SPT, This register is in Lan memory space, not flash.
3660                  * Therefore, only 32 bit access is supported
3661                  */
3662                 hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3663
3664                 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3665                 hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
3666                 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3667                 /* In SPT, This register is in Lan memory space, not flash.
3668                  * Therefore, only 32 bit access is supported
3669                  */
3670                 ew32flash(ICH_FLASH_HSFSTS, (u32)hsflctl.regval << 16);
3671                 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3672
3673                 ret_val =
3674                    e1000_flash_cycle_ich8lan(hw,
3675                                              ICH_FLASH_READ_COMMAND_TIMEOUT);
3676
3677                 /* Check if FCERR is set to 1, if set to 1, clear it
3678                  * and try the whole sequence a few more times, else
3679                  * read in (shift in) the Flash Data0, the order is
3680                  * least significant byte first msb to lsb
3681                  */
3682                 if (!ret_val) {
3683                         *data = er32flash(ICH_FLASH_FDATA0);
3684                         break;
3685                 } else {
3686                         /* If we've gotten here, then things are probably
3687                          * completely hosed, but if the error condition is
3688                          * detected, it won't hurt to give it another try...
3689                          * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3690                          */
3691                         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3692                         if (hsfsts.hsf_status.flcerr) {
3693                                 /* Repeat for some time before giving up. */
3694                                 continue;
3695                         } else if (!hsfsts.hsf_status.flcdone) {
3696                                 e_dbg("Timeout error - flash cycle did not complete.\n");
3697                                 break;
3698                         }
3699                 }
3700         } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3701
3702         return ret_val;
3703 }
3704
3705 /**
3706  *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
3707  *  @hw: pointer to the HW structure
3708  *  @offset: The offset (in bytes) of the word(s) to write.
3709  *  @words: Size of data to write in words
3710  *  @data: Pointer to the word(s) to write at offset.
3711  *
3712  *  Writes a byte or word to the NVM using the flash access registers.
3713  **/
3714 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3715                                    u16 *data)
3716 {
3717         struct e1000_nvm_info *nvm = &hw->nvm;
3718         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3719         u16 i;
3720
3721         if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3722             (words == 0)) {
3723                 e_dbg("nvm parameter(s) out of bounds\n");
3724                 return -E1000_ERR_NVM;
3725         }
3726
3727         nvm->ops.acquire(hw);
3728
3729         for (i = 0; i < words; i++) {
3730                 dev_spec->shadow_ram[offset + i].modified = true;
3731                 dev_spec->shadow_ram[offset + i].value = data[i];
3732         }
3733
3734         nvm->ops.release(hw);
3735
3736         return 0;
3737 }
3738
3739 /**
3740  *  e1000_update_nvm_checksum_spt - Update the checksum for NVM
3741  *  @hw: pointer to the HW structure
3742  *
3743  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3744  *  which writes the checksum to the shadow ram.  The changes in the shadow
3745  *  ram are then committed to the EEPROM by processing each bank at a time
3746  *  checking for the modified bit and writing only the pending changes.
3747  *  After a successful commit, the shadow ram is cleared and is ready for
3748  *  future writes.
3749  **/
3750 static s32 e1000_update_nvm_checksum_spt(struct e1000_hw *hw)
3751 {
3752         struct e1000_nvm_info *nvm = &hw->nvm;
3753         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3754         u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3755         s32 ret_val;
3756         u32 dword = 0;
3757
3758         ret_val = e1000e_update_nvm_checksum_generic(hw);
3759         if (ret_val)
3760                 goto out;
3761
3762         if (nvm->type != e1000_nvm_flash_sw)
3763                 goto out;
3764
3765         nvm->ops.acquire(hw);
3766
3767         /* We're writing to the opposite bank so if we're on bank 1,
3768          * write to bank 0 etc.  We also need to erase the segment that
3769          * is going to be written
3770          */
3771         ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3772         if (ret_val) {
3773                 e_dbg("Could not detect valid bank, assuming bank 0\n");
3774                 bank = 0;
3775         }
3776
3777         if (bank == 0) {
3778                 new_bank_offset = nvm->flash_bank_size;
3779                 old_bank_offset = 0;
3780                 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3781                 if (ret_val)
3782                         goto release;
3783         } else {
3784                 old_bank_offset = nvm->flash_bank_size;
3785                 new_bank_offset = 0;
3786                 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3787                 if (ret_val)
3788                         goto release;
3789         }
3790         for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i += 2) {
3791                 /* Determine whether to write the value stored
3792                  * in the other NVM bank or a modified value stored
3793                  * in the shadow RAM
3794                  */
3795                 ret_val = e1000_read_flash_dword_ich8lan(hw,
3796                                                          i + old_bank_offset,
3797                                                          &dword);
3798
3799                 if (dev_spec->shadow_ram[i].modified) {
3800                         dword &= 0xffff0000;
3801                         dword |= (dev_spec->shadow_ram[i].value & 0xffff);
3802                 }
3803                 if (dev_spec->shadow_ram[i + 1].modified) {
3804                         dword &= 0x0000ffff;
3805                         dword |= ((dev_spec->shadow_ram[i + 1].value & 0xffff)
3806                                   << 16);
3807                 }
3808                 if (ret_val)
3809                         break;
3810
3811                 /* If the word is 0x13, then make sure the signature bits
3812                  * (15:14) are 11b until the commit has completed.
3813                  * This will allow us to write 10b which indicates the
3814                  * signature is valid.  We want to do this after the write
3815                  * has completed so that we don't mark the segment valid
3816                  * while the write is still in progress
3817                  */
3818                 if (i == E1000_ICH_NVM_SIG_WORD - 1)
3819                         dword |= E1000_ICH_NVM_SIG_MASK << 16;
3820
3821                 /* Convert offset to bytes. */
3822                 act_offset = (i + new_bank_offset) << 1;
3823
3824                 usleep_range(100, 200);
3825
3826                 /* Write the data to the new bank. Offset in words */
3827                 act_offset = i + new_bank_offset;
3828                 ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset,
3829                                                                 dword);
3830                 if (ret_val)
3831                         break;
3832         }
3833
3834         /* Don't bother writing the segment valid bits if sector
3835          * programming failed.
3836          */
3837         if (ret_val) {
3838                 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3839                 e_dbg("Flash commit failed.\n");
3840                 goto release;
3841         }
3842
3843         /* Finally validate the new segment by setting bit 15:14
3844          * to 10b in word 0x13 , this can be done without an
3845          * erase as well since these bits are 11 to start with
3846          * and we need to change bit 14 to 0b
3847          */
3848         act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
3849
3850         /*offset in words but we read dword */
3851         --act_offset;
3852         ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3853
3854         if (ret_val)
3855                 goto release;
3856
3857         dword &= 0xBFFFFFFF;
3858         ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3859
3860         if (ret_val)
3861                 goto release;
3862
3863         /* And invalidate the previously valid segment by setting
3864          * its signature word (0x13) high_byte to 0b. This can be
3865          * done without an erase because flash erase sets all bits
3866          * to 1's. We can write 1's to 0's without an erase
3867          */
3868         act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
3869
3870         /* offset in words but we read dword */
3871         act_offset = old_bank_offset + E1000_ICH_NVM_SIG_WORD - 1;
3872         ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3873
3874         if (ret_val)
3875                 goto release;
3876
3877         dword &= 0x00FFFFFF;
3878         ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3879
3880         if (ret_val)
3881                 goto release;
3882
3883         /* Great!  Everything worked, we can now clear the cached entries. */
3884         for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3885                 dev_spec->shadow_ram[i].modified = false;
3886                 dev_spec->shadow_ram[i].value = 0xFFFF;
3887         }
3888
3889 release:
3890         nvm->ops.release(hw);
3891
3892         /* Reload the EEPROM, or else modifications will not appear
3893          * until after the next adapter reset.
3894          */
3895         if (!ret_val) {
3896                 nvm->ops.reload(hw);
3897                 usleep_range(10000, 20000);
3898         }
3899
3900 out:
3901         if (ret_val)
3902                 e_dbg("NVM update error: %d\n", ret_val);
3903
3904         return ret_val;
3905 }
3906
3907 /**
3908  *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
3909  *  @hw: pointer to the HW structure
3910  *
3911  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3912  *  which writes the checksum to the shadow ram.  The changes in the shadow
3913  *  ram are then committed to the EEPROM by processing each bank at a time
3914  *  checking for the modified bit and writing only the pending changes.
3915  *  After a successful commit, the shadow ram is cleared and is ready for
3916  *  future writes.
3917  **/
3918 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
3919 {
3920         struct e1000_nvm_info *nvm = &hw->nvm;
3921         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3922         u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3923         s32 ret_val;
3924         u16 data = 0;
3925
3926         ret_val = e1000e_update_nvm_checksum_generic(hw);
3927         if (ret_val)
3928                 goto out;
3929
3930         if (nvm->type != e1000_nvm_flash_sw)
3931                 goto out;
3932
3933         nvm->ops.acquire(hw);
3934
3935         /* We're writing to the opposite bank so if we're on bank 1,
3936          * write to bank 0 etc.  We also need to erase the segment that
3937          * is going to be written
3938          */
3939         ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3940         if (ret_val) {
3941                 e_dbg("Could not detect valid bank, assuming bank 0\n");
3942                 bank = 0;
3943         }
3944
3945         if (bank == 0) {
3946                 new_bank_offset = nvm->flash_bank_size;
3947                 old_bank_offset = 0;
3948                 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3949                 if (ret_val)
3950                         goto release;
3951         } else {
3952                 old_bank_offset = nvm->flash_bank_size;
3953                 new_bank_offset = 0;
3954                 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3955                 if (ret_val)
3956                         goto release;
3957         }
3958         for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3959                 if (dev_spec->shadow_ram[i].modified) {
3960                         data = dev_spec->shadow_ram[i].value;
3961                 } else {
3962                         ret_val = e1000_read_flash_word_ich8lan(hw, i +
3963                                                                 old_bank_offset,
3964                                                                 &data);
3965                         if (ret_val)
3966                                 break;
3967                 }
3968
3969                 /* If the word is 0x13, then make sure the signature bits
3970                  * (15:14) are 11b until the commit has completed.
3971                  * This will allow us to write 10b which indicates the
3972                  * signature is valid.  We want to do this after the write
3973                  * has completed so that we don't mark the segment valid
3974                  * while the write is still in progress
3975                  */
3976                 if (i == E1000_ICH_NVM_SIG_WORD)
3977                         data |= E1000_ICH_NVM_SIG_MASK;
3978
3979                 /* Convert offset to bytes. */
3980                 act_offset = (i + new_bank_offset) << 1;
3981
3982                 usleep_range(100, 200);
3983                 /* Write the bytes to the new bank. */
3984                 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3985                                                                act_offset,
3986                                                                (u8)data);
3987                 if (ret_val)
3988                         break;
3989
3990                 usleep_range(100, 200);
3991                 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3992                                                                act_offset + 1,
3993                                                                (u8)(data >> 8));
3994                 if (ret_val)
3995                         break;
3996         }
3997
3998         /* Don't bother writing the segment valid bits if sector
3999          * programming failed.
4000          */
4001         if (ret_val) {
4002                 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
4003                 e_dbg("Flash commit failed.\n");
4004                 goto release;
4005         }
4006
4007         /* Finally validate the new segment by setting bit 15:14
4008          * to 10b in word 0x13 , this can be done without an
4009          * erase as well since these bits are 11 to start with
4010          * and we need to change bit 14 to 0b
4011          */
4012         act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
4013         ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
4014         if (ret_val)
4015                 goto release;
4016
4017         data &= 0xBFFF;
4018         ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4019                                                        act_offset * 2 + 1,
4020                                                        (u8)(data >> 8));
4021         if (ret_val)
4022                 goto release;
4023
4024         /* And invalidate the previously valid segment by setting
4025          * its signature word (0x13) high_byte to 0b. This can be
4026          * done without an erase because flash erase sets all bits
4027          * to 1's. We can write 1's to 0's without an erase
4028          */
4029         act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
4030         ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
4031         if (ret_val)
4032                 goto release;
4033
4034         /* Great!  Everything worked, we can now clear the cached entries. */
4035         for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
4036                 dev_spec->shadow_ram[i].modified = false;
4037                 dev_spec->shadow_ram[i].value = 0xFFFF;
4038         }
4039
4040 release:
4041         nvm->ops.release(hw);
4042
4043         /* Reload the EEPROM, or else modifications will not appear
4044          * until after the next adapter reset.
4045          */
4046         if (!ret_val) {
4047                 nvm->ops.reload(hw);
4048                 usleep_range(10000, 20000);
4049         }
4050
4051 out:
4052         if (ret_val)
4053                 e_dbg("NVM update error: %d\n", ret_val);
4054
4055         return ret_val;
4056 }
4057
4058 /**
4059  *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
4060  *  @hw: pointer to the HW structure
4061  *
4062  *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
4063  *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
4064  *  calculated, in which case we need to calculate the checksum and set bit 6.
4065  **/
4066 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
4067 {
4068         s32 ret_val;
4069         u16 data;
4070         u16 word;
4071         u16 valid_csum_mask;
4072
4073         /* Read NVM and check Invalid Image CSUM bit.  If this bit is 0,
4074          * the checksum needs to be fixed.  This bit is an indication that
4075          * the NVM was prepared by OEM software and did not calculate
4076          * the checksum...a likely scenario.
4077          */
4078         switch (hw->mac.type) {
4079         case e1000_pch_lpt:
4080         case e1000_pch_spt:
4081         case e1000_pch_cnp:
4082                 word = NVM_COMPAT;
4083                 valid_csum_mask = NVM_COMPAT_VALID_CSUM;
4084                 break;
4085         default:
4086                 word = NVM_FUTURE_INIT_WORD1;
4087                 valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
4088                 break;
4089         }
4090
4091         ret_val = e1000_read_nvm(hw, word, 1, &data);
4092         if (ret_val)
4093                 return ret_val;
4094
4095         if (!(data & valid_csum_mask)) {
4096                 data |= valid_csum_mask;
4097                 ret_val = e1000_write_nvm(hw, word, 1, &data);
4098                 if (ret_val)
4099                         return ret_val;
4100                 ret_val = e1000e_update_nvm_checksum(hw);
4101                 if (ret_val)
4102                         return ret_val;
4103         }
4104
4105         return e1000e_validate_nvm_checksum_generic(hw);
4106 }
4107
4108 /**
4109  *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
4110  *  @hw: pointer to the HW structure
4111  *
4112  *  To prevent malicious write/erase of the NVM, set it to be read-only
4113  *  so that the hardware ignores all write/erase cycles of the NVM via
4114  *  the flash control registers.  The shadow-ram copy of the NVM will
4115  *  still be updated, however any updates to this copy will not stick
4116  *  across driver reloads.
4117  **/
4118 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
4119 {
4120         struct e1000_nvm_info *nvm = &hw->nvm;
4121         union ich8_flash_protected_range pr0;
4122         union ich8_hws_flash_status hsfsts;
4123         u32 gfpreg;
4124
4125         nvm->ops.acquire(hw);
4126
4127         gfpreg = er32flash(ICH_FLASH_GFPREG);
4128
4129         /* Write-protect GbE Sector of NVM */
4130         pr0.regval = er32flash(ICH_FLASH_PR0);
4131         pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
4132         pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
4133         pr0.range.wpe = true;
4134         ew32flash(ICH_FLASH_PR0, pr0.regval);
4135
4136         /* Lock down a subset of GbE Flash Control Registers, e.g.
4137          * PR0 to prevent the write-protection from being lifted.
4138          * Once FLOCKDN is set, the registers protected by it cannot
4139          * be written until FLOCKDN is cleared by a hardware reset.
4140          */
4141         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4142         hsfsts.hsf_status.flockdn = true;
4143         ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
4144
4145         nvm->ops.release(hw);
4146 }
4147
4148 /**
4149  *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
4150  *  @hw: pointer to the HW structure
4151  *  @offset: The offset (in bytes) of the byte/word to read.
4152  *  @size: Size of data to read, 1=byte 2=word
4153  *  @data: The byte(s) to write to the NVM.
4154  *
4155  *  Writes one/two bytes to the NVM using the flash access registers.
4156  **/
4157 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
4158                                           u8 size, u16 data)
4159 {
4160         union ich8_hws_flash_status hsfsts;
4161         union ich8_hws_flash_ctrl hsflctl;
4162         u32 flash_linear_addr;
4163         u32 flash_data = 0;
4164         s32 ret_val;
4165         u8 count = 0;
4166
4167         if (hw->mac.type >= e1000_pch_spt) {
4168                 if (size != 4 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4169                         return -E1000_ERR_NVM;
4170         } else {
4171                 if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4172                         return -E1000_ERR_NVM;
4173         }
4174
4175         flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4176                              hw->nvm.flash_base_addr);
4177
4178         do {
4179                 udelay(1);
4180                 /* Steps */
4181                 ret_val = e1000_flash_cycle_init_ich8lan(hw);
4182                 if (ret_val)
4183                         break;
4184                 /* In SPT, This register is in Lan memory space, not
4185                  * flash.  Therefore, only 32 bit access is supported
4186                  */
4187                 if (hw->mac.type >= e1000_pch_spt)
4188                         hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
4189                 else
4190                         hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4191
4192                 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
4193                 hsflctl.hsf_ctrl.fldbcount = size - 1;
4194                 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4195                 /* In SPT, This register is in Lan memory space,
4196                  * not flash.  Therefore, only 32 bit access is
4197                  * supported
4198                  */
4199                 if (hw->mac.type >= e1000_pch_spt)
4200                         ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4201                 else
4202                         ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4203
4204                 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4205
4206                 if (size == 1)
4207                         flash_data = (u32)data & 0x00FF;
4208                 else
4209                         flash_data = (u32)data;
4210
4211                 ew32flash(ICH_FLASH_FDATA0, flash_data);
4212
4213                 /* check if FCERR is set to 1 , if set to 1, clear it
4214                  * and try the whole sequence a few more times else done
4215                  */
4216                 ret_val =
4217                     e1000_flash_cycle_ich8lan(hw,
4218                                               ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4219                 if (!ret_val)
4220                         break;
4221
4222                 /* If we're here, then things are most likely
4223                  * completely hosed, but if the error condition
4224                  * is detected, it won't hurt to give it another
4225                  * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4226                  */
4227                 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4228                 if (hsfsts.hsf_status.flcerr)
4229                         /* Repeat for some time before giving up. */
4230                         continue;
4231                 if (!hsfsts.hsf_status.flcdone) {
4232                         e_dbg("Timeout error - flash cycle did not complete.\n");
4233                         break;
4234                 }
4235         } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4236
4237         return ret_val;
4238 }
4239
4240 /**
4241 *  e1000_write_flash_data32_ich8lan - Writes 4 bytes to the NVM
4242 *  @hw: pointer to the HW structure
4243 *  @offset: The offset (in bytes) of the dwords to read.
4244 *  @data: The 4 bytes to write to the NVM.
4245 *
4246 *  Writes one/two/four bytes to the NVM using the flash access registers.
4247 **/
4248 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
4249                                             u32 data)
4250 {
4251         union ich8_hws_flash_status hsfsts;
4252         union ich8_hws_flash_ctrl hsflctl;
4253         u32 flash_linear_addr;
4254         s32 ret_val;
4255         u8 count = 0;
4256
4257         if (hw->mac.type >= e1000_pch_spt) {
4258                 if (offset > ICH_FLASH_LINEAR_ADDR_MASK)
4259                         return -E1000_ERR_NVM;
4260         }
4261         flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4262                              hw->nvm.flash_base_addr);
4263         do {
4264                 udelay(1);
4265                 /* Steps */
4266                 ret_val = e1000_flash_cycle_init_ich8lan(hw);
4267                 if (ret_val)
4268                         break;
4269
4270                 /* In SPT, This register is in Lan memory space, not
4271                  * flash.  Therefore, only 32 bit access is supported
4272                  */
4273                 if (hw->mac.type >= e1000_pch_spt)
4274                         hsflctl.regval = er32flash(ICH_FLASH_HSFSTS)
4275                             >> 16;
4276                 else
4277                         hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4278
4279                 hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
4280                 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4281
4282                 /* In SPT, This register is in Lan memory space,
4283                  * not flash.  Therefore, only 32 bit access is
4284                  * supported
4285                  */
4286                 if (hw->mac.type >= e1000_pch_spt)
4287                         ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4288                 else
4289                         ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4290
4291                 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4292
4293                 ew32flash(ICH_FLASH_FDATA0, data);
4294
4295                 /* check if FCERR is set to 1 , if set to 1, clear it
4296                  * and try the whole sequence a few more times else done
4297                  */
4298                 ret_val =
4299                    e1000_flash_cycle_ich8lan(hw,
4300                                              ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4301
4302                 if (!ret_val)
4303                         break;
4304
4305                 /* If we're here, then things are most likely
4306                  * completely hosed, but if the error condition
4307                  * is detected, it won't hurt to give it another
4308                  * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4309                  */
4310                 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4311
4312                 if (hsfsts.hsf_status.flcerr)
4313                         /* Repeat for some time before giving up. */
4314                         continue;
4315                 if (!hsfsts.hsf_status.flcdone) {
4316                         e_dbg("Timeout error - flash cycle did not complete.\n");
4317                         break;
4318                 }
4319         } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4320
4321         return ret_val;
4322 }
4323
4324 /**
4325  *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
4326  *  @hw: pointer to the HW structure
4327  *  @offset: The index of the byte to read.
4328  *  @data: The byte to write to the NVM.
4329  *
4330  *  Writes a single byte to the NVM using the flash access registers.
4331  **/
4332 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
4333                                           u8 data)
4334 {
4335         u16 word = (u16)data;
4336
4337         return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
4338 }
4339
4340 /**
4341 *  e1000_retry_write_flash_dword_ich8lan - Writes a dword to NVM
4342 *  @hw: pointer to the HW structure
4343 *  @offset: The offset of the word to write.
4344 *  @dword: The dword to write to the NVM.
4345 *
4346 *  Writes a single dword to the NVM using the flash access registers.
4347 *  Goes through a retry algorithm before giving up.
4348 **/
4349 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
4350                                                  u32 offset, u32 dword)
4351 {
4352         s32 ret_val;
4353         u16 program_retries;
4354
4355         /* Must convert word offset into bytes. */
4356         offset <<= 1;
4357         ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4358
4359         if (!ret_val)
4360                 return ret_val;
4361         for (program_retries = 0; program_retries < 100; program_retries++) {
4362                 e_dbg("Retrying Byte %8.8X at offset %u\n", dword, offset);
4363                 usleep_range(100, 200);
4364                 ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4365                 if (!ret_val)
4366                         break;
4367         }
4368         if (program_retries == 100)
4369                 return -E1000_ERR_NVM;
4370
4371         return 0;
4372 }
4373
4374 /**
4375  *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
4376  *  @hw: pointer to the HW structure
4377  *  @offset: The offset of the byte to write.
4378  *  @byte: The byte to write to the NVM.
4379  *
4380  *  Writes a single byte to the NVM using the flash access registers.
4381  *  Goes through a retry algorithm before giving up.
4382  **/
4383 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
4384                                                 u32 offset, u8 byte)
4385 {
4386         s32 ret_val;
4387         u16 program_retries;
4388
4389         ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4390         if (!ret_val)
4391                 return ret_val;
4392
4393         for (program_retries = 0; program_retries < 100; program_retries++) {
4394                 e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
4395                 usleep_range(100, 200);
4396                 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4397                 if (!ret_val)
4398                         break;
4399         }
4400         if (program_retries == 100)
4401                 return -E1000_ERR_NVM;
4402
4403         return 0;
4404 }
4405
4406 /**
4407  *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
4408  *  @hw: pointer to the HW structure
4409  *  @bank: 0 for first bank, 1 for second bank, etc.
4410  *
4411  *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
4412  *  bank N is 4096 * N + flash_reg_addr.
4413  **/
4414 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
4415 {
4416         struct e1000_nvm_info *nvm = &hw->nvm;
4417         union ich8_hws_flash_status hsfsts;
4418         union ich8_hws_flash_ctrl hsflctl;
4419         u32 flash_linear_addr;
4420         /* bank size is in 16bit words - adjust to bytes */
4421         u32 flash_bank_size = nvm->flash_bank_size * 2;
4422         s32 ret_val;
4423         s32 count = 0;
4424         s32 j, iteration, sector_size;
4425
4426         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4427
4428         /* Determine HW Sector size: Read BERASE bits of hw flash status
4429          * register
4430          * 00: The Hw sector is 256 bytes, hence we need to erase 16
4431          *     consecutive sectors.  The start index for the nth Hw sector
4432          *     can be calculated as = bank * 4096 + n * 256
4433          * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
4434          *     The start index for the nth Hw sector can be calculated
4435          *     as = bank * 4096
4436          * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
4437          *     (ich9 only, otherwise error condition)
4438          * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
4439          */
4440         switch (hsfsts.hsf_status.berasesz) {
4441         case 0:
4442                 /* Hw sector size 256 */
4443                 sector_size = ICH_FLASH_SEG_SIZE_256;
4444                 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
4445                 break;
4446         case 1:
4447                 sector_size = ICH_FLASH_SEG_SIZE_4K;
4448                 iteration = 1;
4449                 break;
4450         case 2:
4451                 sector_size = ICH_FLASH_SEG_SIZE_8K;
4452                 iteration = 1;
4453                 break;
4454         case 3:
4455                 sector_size = ICH_FLASH_SEG_SIZE_64K;
4456                 iteration = 1;
4457                 break;
4458         default:
4459                 return -E1000_ERR_NVM;
4460         }
4461
4462         /* Start with the base address, then add the sector offset. */
4463         flash_linear_addr = hw->nvm.flash_base_addr;
4464         flash_linear_addr += (bank) ? flash_bank_size : 0;
4465
4466         for (j = 0; j < iteration; j++) {
4467                 do {
4468                         u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
4469
4470                         /* Steps */
4471                         ret_val = e1000_flash_cycle_init_ich8lan(hw);
4472                         if (ret_val)
4473                                 return ret_val;
4474
4475                         /* Write a value 11 (block Erase) in Flash
4476                          * Cycle field in hw flash control
4477                          */
4478                         if (hw->mac.type >= e1000_pch_spt)
4479                                 hsflctl.regval =
4480                                     er32flash(ICH_FLASH_HSFSTS) >> 16;
4481                         else
4482                                 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4483
4484                         hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
4485                         if (hw->mac.type >= e1000_pch_spt)
4486                                 ew32flash(ICH_FLASH_HSFSTS,
4487                                           hsflctl.regval << 16);
4488                         else
4489                                 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4490
4491                         /* Write the last 24 bits of an index within the
4492                          * block into Flash Linear address field in Flash
4493                          * Address.
4494                          */
4495                         flash_linear_addr += (j * sector_size);
4496                         ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4497
4498                         ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
4499                         if (!ret_val)
4500                                 break;
4501
4502                         /* Check if FCERR is set to 1.  If 1,
4503                          * clear it and try the whole sequence
4504                          * a few more times else Done
4505                          */
4506                         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4507                         if (hsfsts.hsf_status.flcerr)
4508                                 /* repeat for some time before giving up */
4509                                 continue;
4510                         else if (!hsfsts.hsf_status.flcdone)
4511                                 return ret_val;
4512                 } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
4513         }
4514
4515         return 0;
4516 }
4517
4518 /**
4519  *  e1000_valid_led_default_ich8lan - Set the default LED settings
4520  *  @hw: pointer to the HW structure
4521  *  @data: Pointer to the LED settings
4522  *
4523  *  Reads the LED default settings from the NVM to data.  If the NVM LED
4524  *  settings is all 0's or F's, set the LED default to a valid LED default
4525  *  setting.
4526  **/
4527 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
4528 {
4529         s32 ret_val;
4530
4531         ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
4532         if (ret_val) {
4533                 e_dbg("NVM Read Error\n");
4534                 return ret_val;
4535         }
4536
4537         if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
4538                 *data = ID_LED_DEFAULT_ICH8LAN;
4539
4540         return 0;
4541 }
4542
4543 /**
4544  *  e1000_id_led_init_pchlan - store LED configurations
4545  *  @hw: pointer to the HW structure
4546  *
4547  *  PCH does not control LEDs via the LEDCTL register, rather it uses
4548  *  the PHY LED configuration register.
4549  *
4550  *  PCH also does not have an "always on" or "always off" mode which
4551  *  complicates the ID feature.  Instead of using the "on" mode to indicate
4552  *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
4553  *  use "link_up" mode.  The LEDs will still ID on request if there is no
4554  *  link based on logic in e1000_led_[on|off]_pchlan().
4555  **/
4556 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
4557 {
4558         struct e1000_mac_info *mac = &hw->mac;
4559         s32 ret_val;
4560         const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
4561         const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
4562         u16 data, i, temp, shift;
4563
4564         /* Get default ID LED modes */
4565         ret_val = hw->nvm.ops.valid_led_default(hw, &data);
4566         if (ret_val)
4567                 return ret_val;
4568
4569         mac->ledctl_default = er32(LEDCTL);
4570         mac->ledctl_mode1 = mac->ledctl_default;
4571         mac->ledctl_mode2 = mac->ledctl_default;
4572
4573         for (i = 0; i < 4; i++) {
4574                 temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
4575                 shift = (i * 5);
4576                 switch (temp) {
4577                 case ID_LED_ON1_DEF2:
4578                 case ID_LED_ON1_ON2:
4579                 case ID_LED_ON1_OFF2:
4580                         mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4581                         mac->ledctl_mode1 |= (ledctl_on << shift);
4582                         break;
4583                 case ID_LED_OFF1_DEF2:
4584                 case ID_LED_OFF1_ON2:
4585                 case ID_LED_OFF1_OFF2:
4586                         mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4587                         mac->ledctl_mode1 |= (ledctl_off << shift);
4588                         break;
4589                 default:
4590                         /* Do nothing */
4591                         break;
4592                 }
4593                 switch (temp) {
4594                 case ID_LED_DEF1_ON2:
4595                 case ID_LED_ON1_ON2:
4596                 case ID_LED_OFF1_ON2:
4597                         mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4598                         mac->ledctl_mode2 |= (ledctl_on << shift);
4599                         break;
4600                 case ID_LED_DEF1_OFF2:
4601                 case ID_LED_ON1_OFF2:
4602                 case ID_LED_OFF1_OFF2:
4603                         mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4604                         mac->ledctl_mode2 |= (ledctl_off << shift);
4605                         break;
4606                 default:
4607                         /* Do nothing */
4608                         break;
4609                 }
4610         }
4611
4612         return 0;
4613 }
4614
4615 /**
4616  *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
4617  *  @hw: pointer to the HW structure
4618  *
4619  *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
4620  *  register, so the the bus width is hard coded.
4621  **/
4622 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
4623 {
4624         struct e1000_bus_info *bus = &hw->bus;
4625         s32 ret_val;
4626
4627         ret_val = e1000e_get_bus_info_pcie(hw);
4628
4629         /* ICH devices are "PCI Express"-ish.  They have
4630          * a configuration space, but do not contain
4631          * PCI Express Capability registers, so bus width
4632          * must be hardcoded.
4633          */
4634         if (bus->width == e1000_bus_width_unknown)
4635                 bus->width = e1000_bus_width_pcie_x1;
4636
4637         return ret_val;
4638 }
4639
4640 /**
4641  *  e1000_reset_hw_ich8lan - Reset the hardware
4642  *  @hw: pointer to the HW structure
4643  *
4644  *  Does a full reset of the hardware which includes a reset of the PHY and
4645  *  MAC.
4646  **/
4647 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
4648 {
4649         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4650         u16 kum_cfg;
4651         u32 ctrl, reg;
4652         s32 ret_val;
4653
4654         /* Prevent the PCI-E bus from sticking if there is no TLP connection
4655          * on the last TLP read/write transaction when MAC is reset.
4656          */
4657         ret_val = e1000e_disable_pcie_master(hw);
4658         if (ret_val)
4659                 e_dbg("PCI-E Master disable polling has failed.\n");
4660
4661         e_dbg("Masking off all interrupts\n");
4662         ew32(IMC, 0xffffffff);
4663
4664         /* Disable the Transmit and Receive units.  Then delay to allow
4665          * any pending transactions to complete before we hit the MAC
4666          * with the global reset.
4667          */
4668         ew32(RCTL, 0);
4669         ew32(TCTL, E1000_TCTL_PSP);
4670         e1e_flush();
4671
4672         usleep_range(10000, 20000);
4673
4674         /* Workaround for ICH8 bit corruption issue in FIFO memory */
4675         if (hw->mac.type == e1000_ich8lan) {
4676                 /* Set Tx and Rx buffer allocation to 8k apiece. */
4677                 ew32(PBA, E1000_PBA_8K);
4678                 /* Set Packet Buffer Size to 16k. */
4679                 ew32(PBS, E1000_PBS_16K);
4680         }
4681
4682         if (hw->mac.type == e1000_pchlan) {
4683                 /* Save the NVM K1 bit setting */
4684                 ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
4685                 if (ret_val)
4686                         return ret_val;
4687
4688                 if (kum_cfg & E1000_NVM_K1_ENABLE)
4689                         dev_spec->nvm_k1_enabled = true;
4690                 else
4691                         dev_spec->nvm_k1_enabled = false;
4692         }
4693
4694         ctrl = er32(CTRL);
4695
4696         if (!hw->phy.ops.check_reset_block(hw)) {
4697                 /* Full-chip reset requires MAC and PHY reset at the same
4698                  * time to make sure the interface between MAC and the
4699                  * external PHY is reset.
4700                  */
4701                 ctrl |= E1000_CTRL_PHY_RST;
4702
4703                 /* Gate automatic PHY configuration by hardware on
4704                  * non-managed 82579
4705                  */
4706                 if ((hw->mac.type == e1000_pch2lan) &&
4707                     !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
4708                         e1000_gate_hw_phy_config_ich8lan(hw, true);
4709         }
4710         ret_val = e1000_acquire_swflag_ich8lan(hw);
4711         e_dbg("Issuing a global reset to ich8lan\n");
4712         ew32(CTRL, (ctrl | E1000_CTRL_RST));
4713         /* cannot issue a flush here because it hangs the hardware */
4714         msleep(20);
4715
4716         /* Set Phy Config Counter to 50msec */
4717         if (hw->mac.type == e1000_pch2lan) {
4718                 reg = er32(FEXTNVM3);
4719                 reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
4720                 reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
4721                 ew32(FEXTNVM3, reg);
4722         }
4723
4724         if (!ret_val)
4725                 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
4726
4727         if (ctrl & E1000_CTRL_PHY_RST) {
4728                 ret_val = hw->phy.ops.get_cfg_done(hw);
4729                 if (ret_val)
4730                         return ret_val;
4731
4732                 ret_val = e1000_post_phy_reset_ich8lan(hw);
4733                 if (ret_val)
4734                         return ret_val;
4735         }
4736
4737         /* For PCH, this write will make sure that any noise
4738          * will be detected as a CRC error and be dropped rather than show up
4739          * as a bad packet to the DMA engine.
4740          */
4741         if (hw->mac.type == e1000_pchlan)
4742                 ew32(CRC_OFFSET, 0x65656565);
4743
4744         ew32(IMC, 0xffffffff);
4745         er32(ICR);
4746
4747         reg = er32(KABGTXD);
4748         reg |= E1000_KABGTXD_BGSQLBIAS;
4749         ew32(KABGTXD, reg);
4750
4751         return 0;
4752 }
4753
4754 /**
4755  *  e1000_init_hw_ich8lan - Initialize the hardware
4756  *  @hw: pointer to the HW structure
4757  *
4758  *  Prepares the hardware for transmit and receive by doing the following:
4759  *   - initialize hardware bits
4760  *   - initialize LED identification
4761  *   - setup receive address registers
4762  *   - setup flow control
4763  *   - setup transmit descriptors
4764  *   - clear statistics
4765  **/
4766 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
4767 {
4768         struct e1000_mac_info *mac = &hw->mac;
4769         u32 ctrl_ext, txdctl, snoop;
4770         s32 ret_val;
4771         u16 i;
4772
4773         e1000_initialize_hw_bits_ich8lan(hw);
4774
4775         /* Initialize identification LED */
4776         ret_val = mac->ops.id_led_init(hw);
4777         /* An error is not fatal and we should not stop init due to this */
4778         if (ret_val)
4779                 e_dbg("Error initializing identification LED\n");
4780
4781         /* Setup the receive address. */
4782         e1000e_init_rx_addrs(hw, mac->rar_entry_count);
4783
4784         /* Zero out the Multicast HASH table */
4785         e_dbg("Zeroing the MTA\n");
4786         for (i = 0; i < mac->mta_reg_count; i++)
4787                 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
4788
4789         /* The 82578 Rx buffer will stall if wakeup is enabled in host and
4790          * the ME.  Disable wakeup by clearing the host wakeup bit.
4791          * Reset the phy after disabling host wakeup to reset the Rx buffer.
4792          */
4793         if (hw->phy.type == e1000_phy_82578) {
4794                 e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
4795                 i &= ~BM_WUC_HOST_WU_BIT;
4796                 e1e_wphy(hw, BM_PORT_GEN_CFG, i);
4797                 ret_val = e1000_phy_hw_reset_ich8lan(hw);
4798                 if (ret_val)
4799                         return ret_val;
4800         }
4801
4802         /* Setup link and flow control */
4803         ret_val = mac->ops.setup_link(hw);
4804
4805         /* Set the transmit descriptor write-back policy for both queues */
4806         txdctl = er32(TXDCTL(0));
4807         txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4808                   E1000_TXDCTL_FULL_TX_DESC_WB);
4809         txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4810                   E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4811         ew32(TXDCTL(0), txdctl);
4812         txdctl = er32(TXDCTL(1));
4813         txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4814                   E1000_TXDCTL_FULL_TX_DESC_WB);
4815         txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4816                   E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4817         ew32(TXDCTL(1), txdctl);
4818
4819         /* ICH8 has opposite polarity of no_snoop bits.
4820          * By default, we should use snoop behavior.
4821          */
4822         if (mac->type == e1000_ich8lan)
4823                 snoop = PCIE_ICH8_SNOOP_ALL;
4824         else
4825                 snoop = (u32)~(PCIE_NO_SNOOP_ALL);
4826         e1000e_set_pcie_no_snoop(hw, snoop);
4827
4828         ctrl_ext = er32(CTRL_EXT);
4829         ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
4830         ew32(CTRL_EXT, ctrl_ext);
4831
4832         /* Clear all of the statistics registers (clear on read).  It is
4833          * important that we do this after we have tried to establish link
4834          * because the symbol error count will increment wildly if there
4835          * is no link.
4836          */
4837         e1000_clear_hw_cntrs_ich8lan(hw);
4838
4839         return ret_val;
4840 }
4841
4842 /**
4843  *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
4844  *  @hw: pointer to the HW structure
4845  *
4846  *  Sets/Clears required hardware bits necessary for correctly setting up the
4847  *  hardware for transmit and receive.
4848  **/
4849 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
4850 {
4851         u32 reg;
4852
4853         /* Extended Device Control */
4854         reg = er32(CTRL_EXT);
4855         reg |= BIT(22);
4856         /* Enable PHY low-power state when MAC is at D3 w/o WoL */
4857         if (hw->mac.type >= e1000_pchlan)
4858                 reg |= E1000_CTRL_EXT_PHYPDEN;
4859         ew32(CTRL_EXT, reg);
4860
4861         /* Transmit Descriptor Control 0 */
4862         reg = er32(TXDCTL(0));
4863         reg |= BIT(22);
4864         ew32(TXDCTL(0), reg);
4865
4866         /* Transmit Descriptor Control 1 */
4867         reg = er32(TXDCTL(1));
4868         reg |= BIT(22);
4869         ew32(TXDCTL(1), reg);
4870
4871         /* Transmit Arbitration Control 0 */
4872         reg = er32(TARC(0));
4873         if (hw->mac.type == e1000_ich8lan)
4874                 reg |= BIT(28) | BIT(29);
4875         reg |= BIT(23) | BIT(24) | BIT(26) | BIT(27);
4876         ew32(TARC(0), reg);
4877
4878         /* Transmit Arbitration Control 1 */
4879         reg = er32(TARC(1));
4880         if (er32(TCTL) & E1000_TCTL_MULR)
4881                 reg &= ~BIT(28);
4882         else
4883                 reg |= BIT(28);
4884         reg |= BIT(24) | BIT(26) | BIT(30);
4885         ew32(TARC(1), reg);
4886
4887         /* Device Status */
4888         if (hw->mac.type == e1000_ich8lan) {
4889                 reg = er32(STATUS);
4890                 reg &= ~BIT(31);
4891                 ew32(STATUS, reg);
4892         }
4893
4894         /* work-around descriptor data corruption issue during nfs v2 udp
4895          * traffic, just disable the nfs filtering capability
4896          */
4897         reg = er32(RFCTL);
4898         reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
4899
4900         /* Disable IPv6 extension header parsing because some malformed
4901          * IPv6 headers can hang the Rx.
4902          */
4903         if (hw->mac.type == e1000_ich8lan)
4904                 reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
4905         ew32(RFCTL, reg);
4906
4907         /* Enable ECC on Lynxpoint */
4908         if (hw->mac.type >= e1000_pch_lpt) {
4909                 reg = er32(PBECCSTS);
4910                 reg |= E1000_PBECCSTS_ECC_ENABLE;
4911                 ew32(PBECCSTS, reg);
4912
4913                 reg = er32(CTRL);
4914                 reg |= E1000_CTRL_MEHE;
4915                 ew32(CTRL, reg);
4916         }
4917 }
4918
4919 /**
4920  *  e1000_setup_link_ich8lan - Setup flow control and link settings
4921  *  @hw: pointer to the HW structure
4922  *
4923  *  Determines which flow control settings to use, then configures flow
4924  *  control.  Calls the appropriate media-specific link configuration
4925  *  function.  Assuming the adapter has a valid link partner, a valid link
4926  *  should be established.  Assumes the hardware has previously been reset
4927  *  and the transmitter and receiver are not enabled.
4928  **/
4929 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
4930 {
4931         s32 ret_val;
4932
4933         if (hw->phy.ops.check_reset_block(hw))
4934                 return 0;
4935
4936         /* ICH parts do not have a word in the NVM to determine
4937          * the default flow control setting, so we explicitly
4938          * set it to full.
4939          */
4940         if (hw->fc.requested_mode == e1000_fc_default) {
4941                 /* Workaround h/w hang when Tx flow control enabled */
4942                 if (hw->mac.type == e1000_pchlan)
4943                         hw->fc.requested_mode = e1000_fc_rx_pause;
4944                 else
4945                         hw->fc.requested_mode = e1000_fc_full;
4946         }
4947
4948         /* Save off the requested flow control mode for use later.  Depending
4949          * on the link partner's capabilities, we may or may not use this mode.
4950          */
4951         hw->fc.current_mode = hw->fc.requested_mode;
4952
4953         e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
4954
4955         /* Continue to configure the copper link. */
4956         ret_val = hw->mac.ops.setup_physical_interface(hw);
4957         if (ret_val)
4958                 return ret_val;
4959
4960         ew32(FCTTV, hw->fc.pause_time);
4961         if ((hw->phy.type == e1000_phy_82578) ||
4962             (hw->phy.type == e1000_phy_82579) ||
4963             (hw->phy.type == e1000_phy_i217) ||
4964             (hw->phy.type == e1000_phy_82577)) {
4965                 ew32(FCRTV_PCH, hw->fc.refresh_time);
4966
4967                 ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
4968                                    hw->fc.pause_time);
4969                 if (ret_val)
4970                         return ret_val;
4971         }
4972
4973         return e1000e_set_fc_watermarks(hw);
4974 }
4975
4976 /**
4977  *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
4978  *  @hw: pointer to the HW structure
4979  *
4980  *  Configures the kumeran interface to the PHY to wait the appropriate time
4981  *  when polling the PHY, then call the generic setup_copper_link to finish
4982  *  configuring the copper link.
4983  **/
4984 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
4985 {
4986         u32 ctrl;
4987         s32 ret_val;
4988         u16 reg_data;
4989
4990         ctrl = er32(CTRL);
4991         ctrl |= E1000_CTRL_SLU;
4992         ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
4993         ew32(CTRL, ctrl);
4994
4995         /* Set the mac to wait the maximum time between each iteration
4996          * and increase the max iterations when polling the phy;
4997          * this fixes erroneous timeouts at 10Mbps.
4998          */
4999         ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
5000         if (ret_val)
5001                 return ret_val;
5002         ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
5003                                        &reg_data);
5004         if (ret_val)
5005                 return ret_val;
5006         reg_data |= 0x3F;
5007         ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
5008                                         reg_data);
5009         if (ret_val)
5010                 return ret_val;
5011
5012         switch (hw->phy.type) {
5013         case e1000_phy_igp_3:
5014                 ret_val = e1000e_copper_link_setup_igp(hw);
5015                 if (ret_val)
5016                         return ret_val;
5017                 break;
5018         case e1000_phy_bm:
5019         case e1000_phy_82578:
5020                 ret_val = e1000e_copper_link_setup_m88(hw);
5021                 if (ret_val)
5022                         return ret_val;
5023                 break;
5024         case e1000_phy_82577:
5025         case e1000_phy_82579:
5026                 ret_val = e1000_copper_link_setup_82577(hw);
5027                 if (ret_val)
5028                         return ret_val;
5029                 break;
5030         case e1000_phy_ife:
5031                 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
5032                 if (ret_val)
5033                         return ret_val;
5034
5035                 reg_data &= ~IFE_PMC_AUTO_MDIX;
5036
5037                 switch (hw->phy.mdix) {
5038                 case 1:
5039                         reg_data &= ~IFE_PMC_FORCE_MDIX;
5040                         break;
5041                 case 2:
5042                         reg_data |= IFE_PMC_FORCE_MDIX;
5043                         break;
5044                 case 0:
5045                 default:
5046                         reg_data |= IFE_PMC_AUTO_MDIX;
5047                         break;
5048                 }
5049                 ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
5050                 if (ret_val)
5051                         return ret_val;
5052                 break;
5053         default:
5054                 break;
5055         }
5056
5057         return e1000e_setup_copper_link(hw);
5058 }
5059
5060 /**
5061  *  e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
5062  *  @hw: pointer to the HW structure
5063  *
5064  *  Calls the PHY specific link setup function and then calls the
5065  *  generic setup_copper_link to finish configuring the link for
5066  *  Lynxpoint PCH devices
5067  **/
5068 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
5069 {
5070         u32 ctrl;
5071         s32 ret_val;
5072
5073         ctrl = er32(CTRL);
5074         ctrl |= E1000_CTRL_SLU;
5075         ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5076         ew32(CTRL, ctrl);
5077
5078         ret_val = e1000_copper_link_setup_82577(hw);
5079         if (ret_val)
5080                 return ret_val;
5081
5082         return e1000e_setup_copper_link(hw);
5083 }
5084
5085 /**
5086  *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
5087  *  @hw: pointer to the HW structure
5088  *  @speed: pointer to store current link speed
5089  *  @duplex: pointer to store the current link duplex
5090  *
5091  *  Calls the generic get_speed_and_duplex to retrieve the current link
5092  *  information and then calls the Kumeran lock loss workaround for links at
5093  *  gigabit speeds.
5094  **/
5095 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
5096                                           u16 *duplex)
5097 {
5098         s32 ret_val;
5099
5100         ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
5101         if (ret_val)
5102                 return ret_val;
5103
5104         if ((hw->mac.type == e1000_ich8lan) &&
5105             (hw->phy.type == e1000_phy_igp_3) && (*speed == SPEED_1000)) {
5106                 ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
5107         }
5108
5109         return ret_val;
5110 }
5111
5112 /**
5113  *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
5114  *  @hw: pointer to the HW structure
5115  *
5116  *  Work-around for 82566 Kumeran PCS lock loss:
5117  *  On link status change (i.e. PCI reset, speed change) and link is up and
5118  *  speed is gigabit-
5119  *    0) if workaround is optionally disabled do nothing
5120  *    1) wait 1ms for Kumeran link to come up
5121  *    2) check Kumeran Diagnostic register PCS lock loss bit
5122  *    3) if not set the link is locked (all is good), otherwise...
5123  *    4) reset the PHY
5124  *    5) repeat up to 10 times
5125  *  Note: this is only called for IGP3 copper when speed is 1gb.
5126  **/
5127 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
5128 {
5129         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5130         u32 phy_ctrl;
5131         s32 ret_val;
5132         u16 i, data;
5133         bool link;
5134
5135         if (!dev_spec->kmrn_lock_loss_workaround_enabled)
5136                 return 0;
5137
5138         /* Make sure link is up before proceeding.  If not just return.
5139          * Attempting this while link is negotiating fouled up link
5140          * stability
5141          */
5142         ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
5143         if (!link)
5144                 return 0;
5145
5146         for (i = 0; i < 10; i++) {
5147                 /* read once to clear */
5148                 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5149                 if (ret_val)
5150                         return ret_val;
5151                 /* and again to get new status */
5152                 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5153                 if (ret_val)
5154                         return ret_val;
5155
5156                 /* check for PCS lock */
5157                 if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
5158                         return 0;
5159
5160                 /* Issue PHY reset */
5161                 e1000_phy_hw_reset(hw);
5162                 mdelay(5);
5163         }
5164         /* Disable GigE link negotiation */
5165         phy_ctrl = er32(PHY_CTRL);
5166         phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
5167                      E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5168         ew32(PHY_CTRL, phy_ctrl);
5169
5170         /* Call gig speed drop workaround on Gig disable before accessing
5171          * any PHY registers
5172          */
5173         e1000e_gig_downshift_workaround_ich8lan(hw);
5174
5175         /* unable to acquire PCS lock */
5176         return -E1000_ERR_PHY;
5177 }
5178
5179 /**
5180  *  e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
5181  *  @hw: pointer to the HW structure
5182  *  @state: boolean value used to set the current Kumeran workaround state
5183  *
5184  *  If ICH8, set the current Kumeran workaround state (enabled - true
5185  *  /disabled - false).
5186  **/
5187 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
5188                                                   bool state)
5189 {
5190         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5191
5192         if (hw->mac.type != e1000_ich8lan) {
5193                 e_dbg("Workaround applies to ICH8 only.\n");
5194                 return;
5195         }
5196
5197         dev_spec->kmrn_lock_loss_workaround_enabled = state;
5198 }
5199
5200 /**
5201  *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
5202  *  @hw: pointer to the HW structure
5203  *
5204  *  Workaround for 82566 power-down on D3 entry:
5205  *    1) disable gigabit link
5206  *    2) write VR power-down enable
5207  *    3) read it back
5208  *  Continue if successful, else issue LCD reset and repeat
5209  **/
5210 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
5211 {
5212         u32 reg;
5213         u16 data;
5214         u8 retry = 0;
5215
5216         if (hw->phy.type != e1000_phy_igp_3)
5217                 return;
5218
5219         /* Try the workaround twice (if needed) */
5220         do {
5221                 /* Disable link */
5222                 reg = er32(PHY_CTRL);
5223                 reg |= (E1000_PHY_CTRL_GBE_DISABLE |
5224                         E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5225                 ew32(PHY_CTRL, reg);
5226
5227                 /* Call gig speed drop workaround on Gig disable before
5228                  * accessing any PHY registers
5229                  */
5230                 if (hw->mac.type == e1000_ich8lan)
5231                         e1000e_gig_downshift_workaround_ich8lan(hw);
5232
5233                 /* Write VR power-down enable */
5234                 e1e_rphy(hw, IGP3_VR_CTRL, &data);
5235                 data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5236                 e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
5237
5238                 /* Read it back and test */
5239                 e1e_rphy(hw, IGP3_VR_CTRL, &data);
5240                 data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5241                 if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
5242                         break;
5243
5244                 /* Issue PHY reset and repeat at most one more time */
5245                 reg = er32(CTRL);
5246                 ew32(CTRL, reg | E1000_CTRL_PHY_RST);
5247                 retry++;
5248         } while (retry);
5249 }
5250
5251 /**
5252  *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
5253  *  @hw: pointer to the HW structure
5254  *
5255  *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
5256  *  LPLU, Gig disable, MDIC PHY reset):
5257  *    1) Set Kumeran Near-end loopback
5258  *    2) Clear Kumeran Near-end loopback
5259  *  Should only be called for ICH8[m] devices with any 1G Phy.
5260  **/
5261 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
5262 {
5263         s32 ret_val;
5264         u16 reg_data;
5265
5266         if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
5267                 return;
5268
5269         ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5270                                        &reg_data);
5271         if (ret_val)
5272                 return;
5273         reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
5274         ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5275                                         reg_data);
5276         if (ret_val)
5277                 return;
5278         reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
5279         e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, reg_data);
5280 }
5281
5282 /**
5283  *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
5284  *  @hw: pointer to the HW structure
5285  *
5286  *  During S0 to Sx transition, it is possible the link remains at gig
5287  *  instead of negotiating to a lower speed.  Before going to Sx, set
5288  *  'Gig Disable' to force link speed negotiation to a lower speed based on
5289  *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
5290  *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
5291  *  needs to be written.
5292  *  Parts that support (and are linked to a partner which support) EEE in
5293  *  100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
5294  *  than 10Mbps w/o EEE.
5295  **/
5296 void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
5297 {
5298         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5299         u32 phy_ctrl;
5300         s32 ret_val;
5301
5302         phy_ctrl = er32(PHY_CTRL);
5303         phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
5304
5305         if (hw->phy.type == e1000_phy_i217) {
5306                 u16 phy_reg, device_id = hw->adapter->pdev->device;
5307
5308                 if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
5309                     (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
5310                     (device_id == E1000_DEV_ID_PCH_I218_LM3) ||
5311                     (device_id == E1000_DEV_ID_PCH_I218_V3) ||
5312                     (hw->mac.type >= e1000_pch_spt)) {
5313                         u32 fextnvm6 = er32(FEXTNVM6);
5314
5315                         ew32(FEXTNVM6, fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
5316                 }
5317
5318                 ret_val = hw->phy.ops.acquire(hw);
5319                 if (ret_val)
5320                         goto out;
5321
5322                 if (!dev_spec->eee_disable) {
5323                         u16 eee_advert;
5324
5325                         ret_val =
5326                             e1000_read_emi_reg_locked(hw,
5327                                                       I217_EEE_ADVERTISEMENT,
5328                                                       &eee_advert);
5329                         if (ret_val)
5330                                 goto release;
5331
5332                         /* Disable LPLU if both link partners support 100BaseT
5333                          * EEE and 100Full is advertised on both ends of the
5334                          * link, and enable Auto Enable LPI since there will
5335                          * be no driver to enable LPI while in Sx.
5336                          */
5337                         if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
5338                             (dev_spec->eee_lp_ability &
5339                              I82579_EEE_100_SUPPORTED) &&
5340                             (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) {
5341                                 phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
5342                                               E1000_PHY_CTRL_NOND0A_LPLU);
5343
5344                                 /* Set Auto Enable LPI after link up */
5345                                 e1e_rphy_locked(hw,
5346                                                 I217_LPI_GPIO_CTRL, &phy_reg);
5347                                 phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5348                                 e1e_wphy_locked(hw,
5349                                                 I217_LPI_GPIO_CTRL, phy_reg);
5350                         }
5351                 }
5352
5353                 /* For i217 Intel Rapid Start Technology support,
5354                  * when the system is going into Sx and no manageability engine
5355                  * is present, the driver must configure proxy to reset only on
5356                  * power good.  LPI (Low Power Idle) state must also reset only
5357                  * on power good, as well as the MTA (Multicast table array).
5358                  * The SMBus release must also be disabled on LCD reset.
5359                  */
5360                 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5361                         /* Enable proxy to reset only on power good. */
5362                         e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg);
5363                         phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
5364                         e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg);
5365
5366                         /* Set bit enable LPI (EEE) to reset only on
5367                          * power good.
5368                          */
5369                         e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg);
5370                         phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
5371                         e1e_wphy_locked(hw, I217_SxCTRL, phy_reg);
5372
5373                         /* Disable the SMB release on LCD reset. */
5374                         e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5375                         phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
5376                         e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5377                 }
5378
5379                 /* Enable MTA to reset for Intel Rapid Start Technology
5380                  * Support
5381                  */
5382                 e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5383                 phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
5384                 e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5385
5386 release:
5387                 hw->phy.ops.release(hw);
5388         }
5389 out:
5390         ew32(PHY_CTRL, phy_ctrl);
5391
5392         if (hw->mac.type == e1000_ich8lan)
5393                 e1000e_gig_downshift_workaround_ich8lan(hw);
5394
5395         if (hw->mac.type >= e1000_pchlan) {
5396                 e1000_oem_bits_config_ich8lan(hw, false);
5397
5398                 /* Reset PHY to activate OEM bits on 82577/8 */
5399                 if (hw->mac.type == e1000_pchlan)
5400                         e1000e_phy_hw_reset_generic(hw);
5401
5402                 ret_val = hw->phy.ops.acquire(hw);
5403                 if (ret_val)
5404                         return;
5405                 e1000_write_smbus_addr(hw);
5406                 hw->phy.ops.release(hw);
5407         }
5408 }
5409
5410 /**
5411  *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
5412  *  @hw: pointer to the HW structure
5413  *
5414  *  During Sx to S0 transitions on non-managed devices or managed devices
5415  *  on which PHY resets are not blocked, if the PHY registers cannot be
5416  *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
5417  *  the PHY.
5418  *  On i217, setup Intel Rapid Start Technology.
5419  **/
5420 void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
5421 {
5422         s32 ret_val;
5423
5424         if (hw->mac.type < e1000_pch2lan)
5425                 return;
5426
5427         ret_val = e1000_init_phy_workarounds_pchlan(hw);
5428         if (ret_val) {
5429                 e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val);
5430                 return;
5431         }
5432
5433         /* For i217 Intel Rapid Start Technology support when the system
5434          * is transitioning from Sx and no manageability engine is present
5435          * configure SMBus to restore on reset, disable proxy, and enable
5436          * the reset on MTA (Multicast table array).
5437          */
5438         if (hw->phy.type == e1000_phy_i217) {
5439                 u16 phy_reg;
5440
5441                 ret_val = hw->phy.ops.acquire(hw);
5442                 if (ret_val) {
5443                         e_dbg("Failed to setup iRST\n");
5444                         return;
5445                 }
5446
5447                 /* Clear Auto Enable LPI after link up */
5448                 e1e_rphy_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg);
5449                 phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5450                 e1e_wphy_locked(hw, I217_LPI_GPIO_CTRL, phy_reg);
5451
5452                 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5453                         /* Restore clear on SMB if no manageability engine
5454                          * is present
5455                          */
5456                         ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5457                         if (ret_val)
5458                                 goto release;
5459                         phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
5460                         e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5461
5462                         /* Disable Proxy */
5463                         e1e_wphy_locked(hw, I217_PROXY_CTRL, 0);
5464                 }
5465                 /* Enable reset on MTA */
5466                 ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5467                 if (ret_val)
5468                         goto release;
5469                 phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
5470                 e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5471 release:
5472                 if (ret_val)
5473                         e_dbg("Error %d in resume workarounds\n", ret_val);
5474                 hw->phy.ops.release(hw);
5475         }
5476 }
5477
5478 /**
5479  *  e1000_cleanup_led_ich8lan - Restore the default LED operation
5480  *  @hw: pointer to the HW structure
5481  *
5482  *  Return the LED back to the default configuration.
5483  **/
5484 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
5485 {
5486         if (hw->phy.type == e1000_phy_ife)
5487                 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
5488
5489         ew32(LEDCTL, hw->mac.ledctl_default);
5490         return 0;
5491 }
5492
5493 /**
5494  *  e1000_led_on_ich8lan - Turn LEDs on
5495  *  @hw: pointer to the HW structure
5496  *
5497  *  Turn on the LEDs.
5498  **/
5499 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
5500 {
5501         if (hw->phy.type == e1000_phy_ife)
5502                 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5503                                 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
5504
5505         ew32(LEDCTL, hw->mac.ledctl_mode2);
5506         return 0;
5507 }
5508
5509 /**
5510  *  e1000_led_off_ich8lan - Turn LEDs off
5511  *  @hw: pointer to the HW structure
5512  *
5513  *  Turn off the LEDs.
5514  **/
5515 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
5516 {
5517         if (hw->phy.type == e1000_phy_ife)
5518                 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5519                                 (IFE_PSCL_PROBE_MODE |
5520                                  IFE_PSCL_PROBE_LEDS_OFF));
5521
5522         ew32(LEDCTL, hw->mac.ledctl_mode1);
5523         return 0;
5524 }
5525
5526 /**
5527  *  e1000_setup_led_pchlan - Configures SW controllable LED
5528  *  @hw: pointer to the HW structure
5529  *
5530  *  This prepares the SW controllable LED for use.
5531  **/
5532 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
5533 {
5534         return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
5535 }
5536
5537 /**
5538  *  e1000_cleanup_led_pchlan - Restore the default LED operation
5539  *  @hw: pointer to the HW structure
5540  *
5541  *  Return the LED back to the default configuration.
5542  **/
5543 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
5544 {
5545         return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
5546 }
5547
5548 /**
5549  *  e1000_led_on_pchlan - Turn LEDs on
5550  *  @hw: pointer to the HW structure
5551  *
5552  *  Turn on the LEDs.
5553  **/
5554 static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
5555 {
5556         u16 data = (u16)hw->mac.ledctl_mode2;
5557         u32 i, led;
5558
5559         /* If no link, then turn LED on by setting the invert bit
5560          * for each LED that's mode is "link_up" in ledctl_mode2.
5561          */
5562         if (!(er32(STATUS) & E1000_STATUS_LU)) {
5563                 for (i = 0; i < 3; i++) {
5564                         led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5565                         if ((led & E1000_PHY_LED0_MODE_MASK) !=
5566                             E1000_LEDCTL_MODE_LINK_UP)
5567                                 continue;
5568                         if (led & E1000_PHY_LED0_IVRT)
5569                                 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5570                         else
5571                                 data |= (E1000_PHY_LED0_IVRT << (i * 5));
5572                 }
5573         }
5574
5575         return e1e_wphy(hw, HV_LED_CONFIG, data);
5576 }
5577
5578 /**
5579  *  e1000_led_off_pchlan - Turn LEDs off
5580  *  @hw: pointer to the HW structure
5581  *
5582  *  Turn off the LEDs.
5583  **/
5584 static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
5585 {
5586         u16 data = (u16)hw->mac.ledctl_mode1;
5587         u32 i, led;
5588
5589         /* If no link, then turn LED off by clearing the invert bit
5590          * for each LED that's mode is "link_up" in ledctl_mode1.
5591          */
5592         if (!(er32(STATUS) & E1000_STATUS_LU)) {
5593                 for (i = 0; i < 3; i++) {
5594                         led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5595                         if ((led & E1000_PHY_LED0_MODE_MASK) !=
5596                             E1000_LEDCTL_MODE_LINK_UP)
5597                                 continue;
5598                         if (led & E1000_PHY_LED0_IVRT)
5599                                 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5600                         else
5601                                 data |= (E1000_PHY_LED0_IVRT << (i * 5));
5602                 }
5603         }
5604
5605         return e1e_wphy(hw, HV_LED_CONFIG, data);
5606 }
5607
5608 /**
5609  *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
5610  *  @hw: pointer to the HW structure
5611  *
5612  *  Read appropriate register for the config done bit for completion status
5613  *  and configure the PHY through s/w for EEPROM-less parts.
5614  *
5615  *  NOTE: some silicon which is EEPROM-less will fail trying to read the
5616  *  config done bit, so only an error is logged and continues.  If we were
5617  *  to return with error, EEPROM-less silicon would not be able to be reset
5618  *  or change link.
5619  **/
5620 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
5621 {
5622         s32 ret_val = 0;
5623         u32 bank = 0;
5624         u32 status;
5625
5626         e1000e_get_cfg_done_generic(hw);
5627
5628         /* Wait for indication from h/w that it has completed basic config */
5629         if (hw->mac.type >= e1000_ich10lan) {
5630                 e1000_lan_init_done_ich8lan(hw);
5631         } else {
5632                 ret_val = e1000e_get_auto_rd_done(hw);
5633                 if (ret_val) {
5634                         /* When auto config read does not complete, do not
5635                          * return with an error. This can happen in situations
5636                          * where there is no eeprom and prevents getting link.
5637                          */
5638                         e_dbg("Auto Read Done did not complete\n");
5639                         ret_val = 0;
5640                 }
5641         }
5642
5643         /* Clear PHY Reset Asserted bit */
5644         status = er32(STATUS);
5645         if (status & E1000_STATUS_PHYRA)
5646                 ew32(STATUS, status & ~E1000_STATUS_PHYRA);
5647         else
5648                 e_dbg("PHY Reset Asserted not set - needs delay\n");
5649
5650         /* If EEPROM is not marked present, init the IGP 3 PHY manually */
5651         if (hw->mac.type <= e1000_ich9lan) {
5652                 if (!(er32(EECD) & E1000_EECD_PRES) &&
5653                     (hw->phy.type == e1000_phy_igp_3)) {
5654                         e1000e_phy_init_script_igp3(hw);
5655                 }
5656         } else {
5657                 if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
5658                         /* Maybe we should do a basic PHY config */
5659                         e_dbg("EEPROM not present\n");
5660                         ret_val = -E1000_ERR_CONFIG;
5661                 }
5662         }
5663
5664         return ret_val;
5665 }
5666
5667 /**
5668  * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
5669  * @hw: pointer to the HW structure
5670  *
5671  * In the case of a PHY power down to save power, or to turn off link during a
5672  * driver unload, or wake on lan is not enabled, remove the link.
5673  **/
5674 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
5675 {
5676         /* If the management interface is not enabled, then power down */
5677         if (!(hw->mac.ops.check_mng_mode(hw) ||
5678               hw->phy.ops.check_reset_block(hw)))
5679                 e1000_power_down_phy_copper(hw);
5680 }
5681
5682 /**
5683  *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
5684  *  @hw: pointer to the HW structure
5685  *
5686  *  Clears hardware counters specific to the silicon family and calls
5687  *  clear_hw_cntrs_generic to clear all general purpose counters.
5688  **/
5689 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
5690 {
5691         u16 phy_data;
5692         s32 ret_val;
5693
5694         e1000e_clear_hw_cntrs_base(hw);
5695
5696         er32(ALGNERRC);
5697         er32(RXERRC);
5698         er32(TNCRS);
5699         er32(CEXTERR);
5700         er32(TSCTC);
5701         er32(TSCTFC);
5702
5703         er32(MGTPRC);
5704         er32(MGTPDC);
5705         er32(MGTPTC);
5706
5707         er32(IAC);
5708         er32(ICRXOC);
5709
5710         /* Clear PHY statistics registers */
5711         if ((hw->phy.type == e1000_phy_82578) ||
5712             (hw->phy.type == e1000_phy_82579) ||
5713             (hw->phy.type == e1000_phy_i217) ||
5714             (hw->phy.type == e1000_phy_82577)) {
5715                 ret_val = hw->phy.ops.acquire(hw);
5716                 if (ret_val)
5717                         return;
5718                 ret_val = hw->phy.ops.set_page(hw,
5719                                                HV_STATS_PAGE << IGP_PAGE_SHIFT);
5720                 if (ret_val)
5721                         goto release;
5722                 hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
5723                 hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
5724                 hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
5725                 hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
5726                 hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
5727                 hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
5728                 hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
5729                 hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
5730                 hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
5731                 hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
5732                 hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
5733                 hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
5734                 hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
5735                 hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
5736 release:
5737                 hw->phy.ops.release(hw);
5738         }
5739 }
5740
5741 static const struct e1000_mac_operations ich8_mac_ops = {
5742         /* check_mng_mode dependent on mac type */
5743         .check_for_link         = e1000_check_for_copper_link_ich8lan,
5744         /* cleanup_led dependent on mac type */
5745         .clear_hw_cntrs         = e1000_clear_hw_cntrs_ich8lan,
5746         .get_bus_info           = e1000_get_bus_info_ich8lan,
5747         .set_lan_id             = e1000_set_lan_id_single_port,
5748         .get_link_up_info       = e1000_get_link_up_info_ich8lan,
5749         /* led_on dependent on mac type */
5750         /* led_off dependent on mac type */
5751         .update_mc_addr_list    = e1000e_update_mc_addr_list_generic,
5752         .reset_hw               = e1000_reset_hw_ich8lan,
5753         .init_hw                = e1000_init_hw_ich8lan,
5754         .setup_link             = e1000_setup_link_ich8lan,
5755         .setup_physical_interface = e1000_setup_copper_link_ich8lan,
5756         /* id_led_init dependent on mac type */
5757         .config_collision_dist  = e1000e_config_collision_dist_generic,
5758         .rar_set                = e1000e_rar_set_generic,
5759         .rar_get_count          = e1000e_rar_get_count_generic,
5760 };
5761
5762 static const struct e1000_phy_operations ich8_phy_ops = {
5763         .acquire                = e1000_acquire_swflag_ich8lan,
5764         .check_reset_block      = e1000_check_reset_block_ich8lan,
5765         .commit                 = NULL,
5766         .get_cfg_done           = e1000_get_cfg_done_ich8lan,
5767         .get_cable_length       = e1000e_get_cable_length_igp_2,
5768         .read_reg               = e1000e_read_phy_reg_igp,
5769         .release                = e1000_release_swflag_ich8lan,
5770         .reset                  = e1000_phy_hw_reset_ich8lan,
5771         .set_d0_lplu_state      = e1000_set_d0_lplu_state_ich8lan,
5772         .set_d3_lplu_state      = e1000_set_d3_lplu_state_ich8lan,
5773         .write_reg              = e1000e_write_phy_reg_igp,
5774 };
5775
5776 static const struct e1000_nvm_operations ich8_nvm_ops = {
5777         .acquire                = e1000_acquire_nvm_ich8lan,
5778         .read                   = e1000_read_nvm_ich8lan,
5779         .release                = e1000_release_nvm_ich8lan,
5780         .reload                 = e1000e_reload_nvm_generic,
5781         .update                 = e1000_update_nvm_checksum_ich8lan,
5782         .valid_led_default      = e1000_valid_led_default_ich8lan,
5783         .validate               = e1000_validate_nvm_checksum_ich8lan,
5784         .write                  = e1000_write_nvm_ich8lan,
5785 };
5786
5787 static const struct e1000_nvm_operations spt_nvm_ops = {
5788         .acquire                = e1000_acquire_nvm_ich8lan,
5789         .release                = e1000_release_nvm_ich8lan,
5790         .read                   = e1000_read_nvm_spt,
5791         .update                 = e1000_update_nvm_checksum_spt,
5792         .reload                 = e1000e_reload_nvm_generic,
5793         .valid_led_default      = e1000_valid_led_default_ich8lan,
5794         .validate               = e1000_validate_nvm_checksum_ich8lan,
5795         .write                  = e1000_write_nvm_ich8lan,
5796 };
5797
5798 const struct e1000_info e1000_ich8_info = {
5799         .mac                    = e1000_ich8lan,
5800         .flags                  = FLAG_HAS_WOL
5801                                   | FLAG_IS_ICH
5802                                   | FLAG_HAS_CTRLEXT_ON_LOAD
5803                                   | FLAG_HAS_AMT
5804                                   | FLAG_HAS_FLASH
5805                                   | FLAG_APME_IN_WUC,
5806         .pba                    = 8,
5807         .max_hw_frame_size      = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN,
5808         .get_variants           = e1000_get_variants_ich8lan,
5809         .mac_ops                = &ich8_mac_ops,
5810         .phy_ops                = &ich8_phy_ops,
5811         .nvm_ops                = &ich8_nvm_ops,
5812 };
5813
5814 const struct e1000_info e1000_ich9_info = {
5815         .mac                    = e1000_ich9lan,
5816         .flags                  = FLAG_HAS_JUMBO_FRAMES
5817                                   | FLAG_IS_ICH
5818                                   | FLAG_HAS_WOL
5819                                   | FLAG_HAS_CTRLEXT_ON_LOAD
5820                                   | FLAG_HAS_AMT
5821                                   | FLAG_HAS_FLASH
5822                                   | FLAG_APME_IN_WUC,
5823         .pba                    = 18,
5824         .max_hw_frame_size      = DEFAULT_JUMBO,
5825         .get_variants           = e1000_get_variants_ich8lan,
5826         .mac_ops                = &ich8_mac_ops,
5827         .phy_ops                = &ich8_phy_ops,
5828         .nvm_ops                = &ich8_nvm_ops,
5829 };
5830
5831 const struct e1000_info e1000_ich10_info = {
5832         .mac                    = e1000_ich10lan,
5833         .flags                  = FLAG_HAS_JUMBO_FRAMES
5834                                   | FLAG_IS_ICH
5835                                   | FLAG_HAS_WOL
5836                                   | FLAG_HAS_CTRLEXT_ON_LOAD
5837                                   | FLAG_HAS_AMT
5838                                   | FLAG_HAS_FLASH
5839                                   | FLAG_APME_IN_WUC,
5840         .pba                    = 18,
5841         .max_hw_frame_size      = DEFAULT_JUMBO,
5842         .get_variants           = e1000_get_variants_ich8lan,
5843         .mac_ops                = &ich8_mac_ops,
5844         .phy_ops                = &ich8_phy_ops,
5845         .nvm_ops                = &ich8_nvm_ops,
5846 };
5847
5848 const struct e1000_info e1000_pch_info = {
5849         .mac                    = e1000_pchlan,
5850         .flags                  = FLAG_IS_ICH
5851                                   | FLAG_HAS_WOL
5852                                   | FLAG_HAS_CTRLEXT_ON_LOAD
5853                                   | FLAG_HAS_AMT
5854                                   | FLAG_HAS_FLASH
5855                                   | FLAG_HAS_JUMBO_FRAMES
5856                                   | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
5857                                   | FLAG_APME_IN_WUC,
5858         .flags2                 = FLAG2_HAS_PHY_STATS,
5859         .pba                    = 26,
5860         .max_hw_frame_size      = 4096,
5861         .get_variants           = e1000_get_variants_ich8lan,
5862         .mac_ops                = &ich8_mac_ops,
5863         .phy_ops                = &ich8_phy_ops,
5864         .nvm_ops                = &ich8_nvm_ops,
5865 };
5866
5867 const struct e1000_info e1000_pch2_info = {
5868         .mac                    = e1000_pch2lan,
5869         .flags                  = FLAG_IS_ICH
5870                                   | FLAG_HAS_WOL
5871                                   | FLAG_HAS_HW_TIMESTAMP
5872                                   | FLAG_HAS_CTRLEXT_ON_LOAD
5873                                   | FLAG_HAS_AMT
5874                                   | FLAG_HAS_FLASH
5875                                   | FLAG_HAS_JUMBO_FRAMES
5876                                   | FLAG_APME_IN_WUC,
5877         .flags2                 = FLAG2_HAS_PHY_STATS
5878                                   | FLAG2_HAS_EEE
5879                                   | FLAG2_CHECK_SYSTIM_OVERFLOW,
5880         .pba                    = 26,
5881         .max_hw_frame_size      = 9022,
5882         .get_variants           = e1000_get_variants_ich8lan,
5883         .mac_ops                = &ich8_mac_ops,
5884         .phy_ops                = &ich8_phy_ops,
5885         .nvm_ops                = &ich8_nvm_ops,
5886 };
5887
5888 const struct e1000_info e1000_pch_lpt_info = {
5889         .mac                    = e1000_pch_lpt,
5890         .flags                  = FLAG_IS_ICH
5891                                   | FLAG_HAS_WOL
5892                                   | FLAG_HAS_HW_TIMESTAMP
5893                                   | FLAG_HAS_CTRLEXT_ON_LOAD
5894                                   | FLAG_HAS_AMT
5895                                   | FLAG_HAS_FLASH
5896                                   | FLAG_HAS_JUMBO_FRAMES
5897                                   | FLAG_APME_IN_WUC,
5898         .flags2                 = FLAG2_HAS_PHY_STATS
5899                                   | FLAG2_HAS_EEE
5900                                   | FLAG2_CHECK_SYSTIM_OVERFLOW,
5901         .pba                    = 26,
5902         .max_hw_frame_size      = 9022,
5903         .get_variants           = e1000_get_variants_ich8lan,
5904         .mac_ops                = &ich8_mac_ops,
5905         .phy_ops                = &ich8_phy_ops,
5906         .nvm_ops                = &ich8_nvm_ops,
5907 };
5908
5909 const struct e1000_info e1000_pch_spt_info = {
5910         .mac                    = e1000_pch_spt,
5911         .flags                  = FLAG_IS_ICH
5912                                   | FLAG_HAS_WOL
5913                                   | FLAG_HAS_HW_TIMESTAMP
5914                                   | FLAG_HAS_CTRLEXT_ON_LOAD
5915                                   | FLAG_HAS_AMT
5916                                   | FLAG_HAS_FLASH
5917                                   | FLAG_HAS_JUMBO_FRAMES
5918                                   | FLAG_APME_IN_WUC,
5919         .flags2                 = FLAG2_HAS_PHY_STATS
5920                                   | FLAG2_HAS_EEE,
5921         .pba                    = 26,
5922         .max_hw_frame_size      = 9022,
5923         .get_variants           = e1000_get_variants_ich8lan,
5924         .mac_ops                = &ich8_mac_ops,
5925         .phy_ops                = &ich8_phy_ops,
5926         .nvm_ops                = &spt_nvm_ops,
5927 };
5928
5929 const struct e1000_info e1000_pch_cnp_info = {
5930         .mac                    = e1000_pch_cnp,
5931         .flags                  = FLAG_IS_ICH
5932                                   | FLAG_HAS_WOL
5933                                   | FLAG_HAS_HW_TIMESTAMP
5934                                   | FLAG_HAS_CTRLEXT_ON_LOAD
5935                                   | FLAG_HAS_AMT
5936                                   | FLAG_HAS_FLASH
5937                                   | FLAG_HAS_JUMBO_FRAMES
5938                                   | FLAG_APME_IN_WUC,
5939         .flags2                 = FLAG2_HAS_PHY_STATS
5940                                   | FLAG2_HAS_EEE,
5941         .pba                    = 26,
5942         .max_hw_frame_size      = 9022,
5943         .get_variants           = e1000_get_variants_ich8lan,
5944         .mac_ops                = &ich8_mac_ops,
5945         .phy_ops                = &ich8_phy_ops,
5946         .nvm_ops                = &spt_nvm_ops,
5947 };