PM / hibernate: Drop unused parameter of enough_swap
[linux-2.6-block.git] / drivers / net / ethernet / intel / e1000e / ich8lan.c
1 /* Intel PRO/1000 Linux driver
2  * Copyright(c) 1999 - 2015 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * The full GNU General Public License is included in this distribution in
14  * the file called "COPYING".
15  *
16  * Contact Information:
17  * Linux NICS <linux.nics@intel.com>
18  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
19  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
20  */
21
22 /* 82562G 10/100 Network Connection
23  * 82562G-2 10/100 Network Connection
24  * 82562GT 10/100 Network Connection
25  * 82562GT-2 10/100 Network Connection
26  * 82562V 10/100 Network Connection
27  * 82562V-2 10/100 Network Connection
28  * 82566DC-2 Gigabit Network Connection
29  * 82566DC Gigabit Network Connection
30  * 82566DM-2 Gigabit Network Connection
31  * 82566DM Gigabit Network Connection
32  * 82566MC Gigabit Network Connection
33  * 82566MM Gigabit Network Connection
34  * 82567LM Gigabit Network Connection
35  * 82567LF Gigabit Network Connection
36  * 82567V Gigabit Network Connection
37  * 82567LM-2 Gigabit Network Connection
38  * 82567LF-2 Gigabit Network Connection
39  * 82567V-2 Gigabit Network Connection
40  * 82567LF-3 Gigabit Network Connection
41  * 82567LM-3 Gigabit Network Connection
42  * 82567LM-4 Gigabit Network Connection
43  * 82577LM Gigabit Network Connection
44  * 82577LC Gigabit Network Connection
45  * 82578DM Gigabit Network Connection
46  * 82578DC Gigabit Network Connection
47  * 82579LM Gigabit Network Connection
48  * 82579V Gigabit Network Connection
49  * Ethernet Connection I217-LM
50  * Ethernet Connection I217-V
51  * Ethernet Connection I218-V
52  * Ethernet Connection I218-LM
53  * Ethernet Connection (2) I218-LM
54  * Ethernet Connection (2) I218-V
55  * Ethernet Connection (3) I218-LM
56  * Ethernet Connection (3) I218-V
57  */
58
59 #include "e1000.h"
60
61 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
62 /* Offset 04h HSFSTS */
63 union ich8_hws_flash_status {
64         struct ich8_hsfsts {
65                 u16 flcdone:1;  /* bit 0 Flash Cycle Done */
66                 u16 flcerr:1;   /* bit 1 Flash Cycle Error */
67                 u16 dael:1;     /* bit 2 Direct Access error Log */
68                 u16 berasesz:2; /* bit 4:3 Sector Erase Size */
69                 u16 flcinprog:1;        /* bit 5 flash cycle in Progress */
70                 u16 reserved1:2;        /* bit 13:6 Reserved */
71                 u16 reserved2:6;        /* bit 13:6 Reserved */
72                 u16 fldesvalid:1;       /* bit 14 Flash Descriptor Valid */
73                 u16 flockdn:1;  /* bit 15 Flash Config Lock-Down */
74         } hsf_status;
75         u16 regval;
76 };
77
78 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
79 /* Offset 06h FLCTL */
80 union ich8_hws_flash_ctrl {
81         struct ich8_hsflctl {
82                 u16 flcgo:1;    /* 0 Flash Cycle Go */
83                 u16 flcycle:2;  /* 2:1 Flash Cycle */
84                 u16 reserved:5; /* 7:3 Reserved  */
85                 u16 fldbcount:2;        /* 9:8 Flash Data Byte Count */
86                 u16 flockdn:6;  /* 15:10 Reserved */
87         } hsf_ctrl;
88         u16 regval;
89 };
90
91 /* ICH Flash Region Access Permissions */
92 union ich8_hws_flash_regacc {
93         struct ich8_flracc {
94                 u32 grra:8;     /* 0:7 GbE region Read Access */
95                 u32 grwa:8;     /* 8:15 GbE region Write Access */
96                 u32 gmrag:8;    /* 23:16 GbE Master Read Access Grant */
97                 u32 gmwag:8;    /* 31:24 GbE Master Write Access Grant */
98         } hsf_flregacc;
99         u16 regval;
100 };
101
102 /* ICH Flash Protected Region */
103 union ich8_flash_protected_range {
104         struct ich8_pr {
105                 u32 base:13;    /* 0:12 Protected Range Base */
106                 u32 reserved1:2;        /* 13:14 Reserved */
107                 u32 rpe:1;      /* 15 Read Protection Enable */
108                 u32 limit:13;   /* 16:28 Protected Range Limit */
109                 u32 reserved2:2;        /* 29:30 Reserved */
110                 u32 wpe:1;      /* 31 Write Protection Enable */
111         } range;
112         u32 regval;
113 };
114
115 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
116 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
117 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
118 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
119                                                 u32 offset, u8 byte);
120 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
121                                          u8 *data);
122 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
123                                          u16 *data);
124 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
125                                          u8 size, u16 *data);
126 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
127                                            u32 *data);
128 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw,
129                                           u32 offset, u32 *data);
130 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw,
131                                             u32 offset, u32 data);
132 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
133                                                  u32 offset, u32 dword);
134 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
135 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
136 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
137 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
138 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
139 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
140 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
141 static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
142 static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
143 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
144 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
145 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
146 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
147 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
148 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
149 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
150 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
151 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
152 static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw);
153 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
154 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
155 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force);
156 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
157 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state);
158
159 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
160 {
161         return readw(hw->flash_address + reg);
162 }
163
164 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
165 {
166         return readl(hw->flash_address + reg);
167 }
168
169 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
170 {
171         writew(val, hw->flash_address + reg);
172 }
173
174 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
175 {
176         writel(val, hw->flash_address + reg);
177 }
178
179 #define er16flash(reg)          __er16flash(hw, (reg))
180 #define er32flash(reg)          __er32flash(hw, (reg))
181 #define ew16flash(reg, val)     __ew16flash(hw, (reg), (val))
182 #define ew32flash(reg, val)     __ew32flash(hw, (reg), (val))
183
184 /**
185  *  e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
186  *  @hw: pointer to the HW structure
187  *
188  *  Test access to the PHY registers by reading the PHY ID registers.  If
189  *  the PHY ID is already known (e.g. resume path) compare it with known ID,
190  *  otherwise assume the read PHY ID is correct if it is valid.
191  *
192  *  Assumes the sw/fw/hw semaphore is already acquired.
193  **/
194 static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
195 {
196         u16 phy_reg = 0;
197         u32 phy_id = 0;
198         s32 ret_val = 0;
199         u16 retry_count;
200         u32 mac_reg = 0;
201
202         for (retry_count = 0; retry_count < 2; retry_count++) {
203                 ret_val = e1e_rphy_locked(hw, MII_PHYSID1, &phy_reg);
204                 if (ret_val || (phy_reg == 0xFFFF))
205                         continue;
206                 phy_id = (u32)(phy_reg << 16);
207
208                 ret_val = e1e_rphy_locked(hw, MII_PHYSID2, &phy_reg);
209                 if (ret_val || (phy_reg == 0xFFFF)) {
210                         phy_id = 0;
211                         continue;
212                 }
213                 phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
214                 break;
215         }
216
217         if (hw->phy.id) {
218                 if (hw->phy.id == phy_id)
219                         goto out;
220         } else if (phy_id) {
221                 hw->phy.id = phy_id;
222                 hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
223                 goto out;
224         }
225
226         /* In case the PHY needs to be in mdio slow mode,
227          * set slow mode and try to get the PHY id again.
228          */
229         if (hw->mac.type < e1000_pch_lpt) {
230                 hw->phy.ops.release(hw);
231                 ret_val = e1000_set_mdio_slow_mode_hv(hw);
232                 if (!ret_val)
233                         ret_val = e1000e_get_phy_id(hw);
234                 hw->phy.ops.acquire(hw);
235         }
236
237         if (ret_val)
238                 return false;
239 out:
240         if (hw->mac.type >= e1000_pch_lpt) {
241                 /* Only unforce SMBus if ME is not active */
242                 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
243                         /* Unforce SMBus mode in PHY */
244                         e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg);
245                         phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
246                         e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg);
247
248                         /* Unforce SMBus mode in MAC */
249                         mac_reg = er32(CTRL_EXT);
250                         mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
251                         ew32(CTRL_EXT, mac_reg);
252                 }
253         }
254
255         return true;
256 }
257
258 /**
259  *  e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
260  *  @hw: pointer to the HW structure
261  *
262  *  Toggling the LANPHYPC pin value fully power-cycles the PHY and is
263  *  used to reset the PHY to a quiescent state when necessary.
264  **/
265 static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw)
266 {
267         u32 mac_reg;
268
269         /* Set Phy Config Counter to 50msec */
270         mac_reg = er32(FEXTNVM3);
271         mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
272         mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
273         ew32(FEXTNVM3, mac_reg);
274
275         /* Toggle LANPHYPC Value bit */
276         mac_reg = er32(CTRL);
277         mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
278         mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
279         ew32(CTRL, mac_reg);
280         e1e_flush();
281         usleep_range(10, 20);
282         mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
283         ew32(CTRL, mac_reg);
284         e1e_flush();
285
286         if (hw->mac.type < e1000_pch_lpt) {
287                 msleep(50);
288         } else {
289                 u16 count = 20;
290
291                 do {
292                         usleep_range(5000, 10000);
293                 } while (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LPCD) && count--);
294
295                 msleep(30);
296         }
297 }
298
299 /**
300  *  e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
301  *  @hw: pointer to the HW structure
302  *
303  *  Workarounds/flow necessary for PHY initialization during driver load
304  *  and resume paths.
305  **/
306 static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
307 {
308         struct e1000_adapter *adapter = hw->adapter;
309         u32 mac_reg, fwsm = er32(FWSM);
310         s32 ret_val;
311
312         /* Gate automatic PHY configuration by hardware on managed and
313          * non-managed 82579 and newer adapters.
314          */
315         e1000_gate_hw_phy_config_ich8lan(hw, true);
316
317         /* It is not possible to be certain of the current state of ULP
318          * so forcibly disable it.
319          */
320         hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown;
321         e1000_disable_ulp_lpt_lp(hw, true);
322
323         ret_val = hw->phy.ops.acquire(hw);
324         if (ret_val) {
325                 e_dbg("Failed to initialize PHY flow\n");
326                 goto out;
327         }
328
329         /* The MAC-PHY interconnect may be in SMBus mode.  If the PHY is
330          * inaccessible and resetting the PHY is not blocked, toggle the
331          * LANPHYPC Value bit to force the interconnect to PCIe mode.
332          */
333         switch (hw->mac.type) {
334         case e1000_pch_lpt:
335         case e1000_pch_spt:
336         case e1000_pch_cnp:
337                 if (e1000_phy_is_accessible_pchlan(hw))
338                         break;
339
340                 /* Before toggling LANPHYPC, see if PHY is accessible by
341                  * forcing MAC to SMBus mode first.
342                  */
343                 mac_reg = er32(CTRL_EXT);
344                 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
345                 ew32(CTRL_EXT, mac_reg);
346
347                 /* Wait 50 milliseconds for MAC to finish any retries
348                  * that it might be trying to perform from previous
349                  * attempts to acknowledge any phy read requests.
350                  */
351                 msleep(50);
352
353                 /* fall-through */
354         case e1000_pch2lan:
355                 if (e1000_phy_is_accessible_pchlan(hw))
356                         break;
357
358                 /* fall-through */
359         case e1000_pchlan:
360                 if ((hw->mac.type == e1000_pchlan) &&
361                     (fwsm & E1000_ICH_FWSM_FW_VALID))
362                         break;
363
364                 if (hw->phy.ops.check_reset_block(hw)) {
365                         e_dbg("Required LANPHYPC toggle blocked by ME\n");
366                         ret_val = -E1000_ERR_PHY;
367                         break;
368                 }
369
370                 /* Toggle LANPHYPC Value bit */
371                 e1000_toggle_lanphypc_pch_lpt(hw);
372                 if (hw->mac.type >= e1000_pch_lpt) {
373                         if (e1000_phy_is_accessible_pchlan(hw))
374                                 break;
375
376                         /* Toggling LANPHYPC brings the PHY out of SMBus mode
377                          * so ensure that the MAC is also out of SMBus mode
378                          */
379                         mac_reg = er32(CTRL_EXT);
380                         mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
381                         ew32(CTRL_EXT, mac_reg);
382
383                         if (e1000_phy_is_accessible_pchlan(hw))
384                                 break;
385
386                         ret_val = -E1000_ERR_PHY;
387                 }
388                 break;
389         default:
390                 break;
391         }
392
393         hw->phy.ops.release(hw);
394         if (!ret_val) {
395
396                 /* Check to see if able to reset PHY.  Print error if not */
397                 if (hw->phy.ops.check_reset_block(hw)) {
398                         e_err("Reset blocked by ME\n");
399                         goto out;
400                 }
401
402                 /* Reset the PHY before any access to it.  Doing so, ensures
403                  * that the PHY is in a known good state before we read/write
404                  * PHY registers.  The generic reset is sufficient here,
405                  * because we haven't determined the PHY type yet.
406                  */
407                 ret_val = e1000e_phy_hw_reset_generic(hw);
408                 if (ret_val)
409                         goto out;
410
411                 /* On a successful reset, possibly need to wait for the PHY
412                  * to quiesce to an accessible state before returning control
413                  * to the calling function.  If the PHY does not quiesce, then
414                  * return E1000E_BLK_PHY_RESET, as this is the condition that
415                  *  the PHY is in.
416                  */
417                 ret_val = hw->phy.ops.check_reset_block(hw);
418                 if (ret_val)
419                         e_err("ME blocked access to PHY after reset\n");
420         }
421
422 out:
423         /* Ungate automatic PHY configuration on non-managed 82579 */
424         if ((hw->mac.type == e1000_pch2lan) &&
425             !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
426                 usleep_range(10000, 20000);
427                 e1000_gate_hw_phy_config_ich8lan(hw, false);
428         }
429
430         return ret_val;
431 }
432
433 /**
434  *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
435  *  @hw: pointer to the HW structure
436  *
437  *  Initialize family-specific PHY parameters and function pointers.
438  **/
439 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
440 {
441         struct e1000_phy_info *phy = &hw->phy;
442         s32 ret_val;
443
444         phy->addr = 1;
445         phy->reset_delay_us = 100;
446
447         phy->ops.set_page = e1000_set_page_igp;
448         phy->ops.read_reg = e1000_read_phy_reg_hv;
449         phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
450         phy->ops.read_reg_page = e1000_read_phy_reg_page_hv;
451         phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
452         phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
453         phy->ops.write_reg = e1000_write_phy_reg_hv;
454         phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
455         phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
456         phy->ops.power_up = e1000_power_up_phy_copper;
457         phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
458         phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
459
460         phy->id = e1000_phy_unknown;
461
462         ret_val = e1000_init_phy_workarounds_pchlan(hw);
463         if (ret_val)
464                 return ret_val;
465
466         if (phy->id == e1000_phy_unknown)
467                 switch (hw->mac.type) {
468                 default:
469                         ret_val = e1000e_get_phy_id(hw);
470                         if (ret_val)
471                                 return ret_val;
472                         if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
473                                 break;
474                         /* fall-through */
475                 case e1000_pch2lan:
476                 case e1000_pch_lpt:
477                 case e1000_pch_spt:
478                 case e1000_pch_cnp:
479                         /* In case the PHY needs to be in mdio slow mode,
480                          * set slow mode and try to get the PHY id again.
481                          */
482                         ret_val = e1000_set_mdio_slow_mode_hv(hw);
483                         if (ret_val)
484                                 return ret_val;
485                         ret_val = e1000e_get_phy_id(hw);
486                         if (ret_val)
487                                 return ret_val;
488                         break;
489                 }
490         phy->type = e1000e_get_phy_type_from_id(phy->id);
491
492         switch (phy->type) {
493         case e1000_phy_82577:
494         case e1000_phy_82579:
495         case e1000_phy_i217:
496                 phy->ops.check_polarity = e1000_check_polarity_82577;
497                 phy->ops.force_speed_duplex =
498                     e1000_phy_force_speed_duplex_82577;
499                 phy->ops.get_cable_length = e1000_get_cable_length_82577;
500                 phy->ops.get_info = e1000_get_phy_info_82577;
501                 phy->ops.commit = e1000e_phy_sw_reset;
502                 break;
503         case e1000_phy_82578:
504                 phy->ops.check_polarity = e1000_check_polarity_m88;
505                 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
506                 phy->ops.get_cable_length = e1000e_get_cable_length_m88;
507                 phy->ops.get_info = e1000e_get_phy_info_m88;
508                 break;
509         default:
510                 ret_val = -E1000_ERR_PHY;
511                 break;
512         }
513
514         return ret_val;
515 }
516
517 /**
518  *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
519  *  @hw: pointer to the HW structure
520  *
521  *  Initialize family-specific PHY parameters and function pointers.
522  **/
523 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
524 {
525         struct e1000_phy_info *phy = &hw->phy;
526         s32 ret_val;
527         u16 i = 0;
528
529         phy->addr = 1;
530         phy->reset_delay_us = 100;
531
532         phy->ops.power_up = e1000_power_up_phy_copper;
533         phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
534
535         /* We may need to do this twice - once for IGP and if that fails,
536          * we'll set BM func pointers and try again
537          */
538         ret_val = e1000e_determine_phy_address(hw);
539         if (ret_val) {
540                 phy->ops.write_reg = e1000e_write_phy_reg_bm;
541                 phy->ops.read_reg = e1000e_read_phy_reg_bm;
542                 ret_val = e1000e_determine_phy_address(hw);
543                 if (ret_val) {
544                         e_dbg("Cannot determine PHY addr. Erroring out\n");
545                         return ret_val;
546                 }
547         }
548
549         phy->id = 0;
550         while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
551                (i++ < 100)) {
552                 usleep_range(1000, 2000);
553                 ret_val = e1000e_get_phy_id(hw);
554                 if (ret_val)
555                         return ret_val;
556         }
557
558         /* Verify phy id */
559         switch (phy->id) {
560         case IGP03E1000_E_PHY_ID:
561                 phy->type = e1000_phy_igp_3;
562                 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
563                 phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
564                 phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
565                 phy->ops.get_info = e1000e_get_phy_info_igp;
566                 phy->ops.check_polarity = e1000_check_polarity_igp;
567                 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
568                 break;
569         case IFE_E_PHY_ID:
570         case IFE_PLUS_E_PHY_ID:
571         case IFE_C_E_PHY_ID:
572                 phy->type = e1000_phy_ife;
573                 phy->autoneg_mask = E1000_ALL_NOT_GIG;
574                 phy->ops.get_info = e1000_get_phy_info_ife;
575                 phy->ops.check_polarity = e1000_check_polarity_ife;
576                 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
577                 break;
578         case BME1000_E_PHY_ID:
579                 phy->type = e1000_phy_bm;
580                 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
581                 phy->ops.read_reg = e1000e_read_phy_reg_bm;
582                 phy->ops.write_reg = e1000e_write_phy_reg_bm;
583                 phy->ops.commit = e1000e_phy_sw_reset;
584                 phy->ops.get_info = e1000e_get_phy_info_m88;
585                 phy->ops.check_polarity = e1000_check_polarity_m88;
586                 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
587                 break;
588         default:
589                 return -E1000_ERR_PHY;
590         }
591
592         return 0;
593 }
594
595 /**
596  *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
597  *  @hw: pointer to the HW structure
598  *
599  *  Initialize family-specific NVM parameters and function
600  *  pointers.
601  **/
602 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
603 {
604         struct e1000_nvm_info *nvm = &hw->nvm;
605         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
606         u32 gfpreg, sector_base_addr, sector_end_addr;
607         u16 i;
608         u32 nvm_size;
609
610         nvm->type = e1000_nvm_flash_sw;
611
612         if (hw->mac.type >= e1000_pch_spt) {
613                 /* in SPT, gfpreg doesn't exist. NVM size is taken from the
614                  * STRAP register. This is because in SPT the GbE Flash region
615                  * is no longer accessed through the flash registers. Instead,
616                  * the mechanism has changed, and the Flash region access
617                  * registers are now implemented in GbE memory space.
618                  */
619                 nvm->flash_base_addr = 0;
620                 nvm_size = (((er32(STRAP) >> 1) & 0x1F) + 1)
621                     * NVM_SIZE_MULTIPLIER;
622                 nvm->flash_bank_size = nvm_size / 2;
623                 /* Adjust to word count */
624                 nvm->flash_bank_size /= sizeof(u16);
625                 /* Set the base address for flash register access */
626                 hw->flash_address = hw->hw_addr + E1000_FLASH_BASE_ADDR;
627         } else {
628                 /* Can't read flash registers if register set isn't mapped. */
629                 if (!hw->flash_address) {
630                         e_dbg("ERROR: Flash registers not mapped\n");
631                         return -E1000_ERR_CONFIG;
632                 }
633
634                 gfpreg = er32flash(ICH_FLASH_GFPREG);
635
636                 /* sector_X_addr is a "sector"-aligned address (4096 bytes)
637                  * Add 1 to sector_end_addr since this sector is included in
638                  * the overall size.
639                  */
640                 sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
641                 sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
642
643                 /* flash_base_addr is byte-aligned */
644                 nvm->flash_base_addr = sector_base_addr
645                     << FLASH_SECTOR_ADDR_SHIFT;
646
647                 /* find total size of the NVM, then cut in half since the total
648                  * size represents two separate NVM banks.
649                  */
650                 nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
651                                         << FLASH_SECTOR_ADDR_SHIFT);
652                 nvm->flash_bank_size /= 2;
653                 /* Adjust to word count */
654                 nvm->flash_bank_size /= sizeof(u16);
655         }
656
657         nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
658
659         /* Clear shadow ram */
660         for (i = 0; i < nvm->word_size; i++) {
661                 dev_spec->shadow_ram[i].modified = false;
662                 dev_spec->shadow_ram[i].value = 0xFFFF;
663         }
664
665         return 0;
666 }
667
668 /**
669  *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
670  *  @hw: pointer to the HW structure
671  *
672  *  Initialize family-specific MAC parameters and function
673  *  pointers.
674  **/
675 static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
676 {
677         struct e1000_mac_info *mac = &hw->mac;
678
679         /* Set media type function pointer */
680         hw->phy.media_type = e1000_media_type_copper;
681
682         /* Set mta register count */
683         mac->mta_reg_count = 32;
684         /* Set rar entry count */
685         mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
686         if (mac->type == e1000_ich8lan)
687                 mac->rar_entry_count--;
688         /* FWSM register */
689         mac->has_fwsm = true;
690         /* ARC subsystem not supported */
691         mac->arc_subsystem_valid = false;
692         /* Adaptive IFS supported */
693         mac->adaptive_ifs = true;
694
695         /* LED and other operations */
696         switch (mac->type) {
697         case e1000_ich8lan:
698         case e1000_ich9lan:
699         case e1000_ich10lan:
700                 /* check management mode */
701                 mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
702                 /* ID LED init */
703                 mac->ops.id_led_init = e1000e_id_led_init_generic;
704                 /* blink LED */
705                 mac->ops.blink_led = e1000e_blink_led_generic;
706                 /* setup LED */
707                 mac->ops.setup_led = e1000e_setup_led_generic;
708                 /* cleanup LED */
709                 mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
710                 /* turn on/off LED */
711                 mac->ops.led_on = e1000_led_on_ich8lan;
712                 mac->ops.led_off = e1000_led_off_ich8lan;
713                 break;
714         case e1000_pch2lan:
715                 mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
716                 mac->ops.rar_set = e1000_rar_set_pch2lan;
717                 /* fall-through */
718         case e1000_pch_lpt:
719         case e1000_pch_spt:
720         case e1000_pch_cnp:
721         case e1000_pchlan:
722                 /* check management mode */
723                 mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
724                 /* ID LED init */
725                 mac->ops.id_led_init = e1000_id_led_init_pchlan;
726                 /* setup LED */
727                 mac->ops.setup_led = e1000_setup_led_pchlan;
728                 /* cleanup LED */
729                 mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
730                 /* turn on/off LED */
731                 mac->ops.led_on = e1000_led_on_pchlan;
732                 mac->ops.led_off = e1000_led_off_pchlan;
733                 break;
734         default:
735                 break;
736         }
737
738         if (mac->type >= e1000_pch_lpt) {
739                 mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
740                 mac->ops.rar_set = e1000_rar_set_pch_lpt;
741                 mac->ops.setup_physical_interface =
742                     e1000_setup_copper_link_pch_lpt;
743                 mac->ops.rar_get_count = e1000_rar_get_count_pch_lpt;
744         }
745
746         /* Enable PCS Lock-loss workaround for ICH8 */
747         if (mac->type == e1000_ich8lan)
748                 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
749
750         return 0;
751 }
752
753 /**
754  *  __e1000_access_emi_reg_locked - Read/write EMI register
755  *  @hw: pointer to the HW structure
756  *  @addr: EMI address to program
757  *  @data: pointer to value to read/write from/to the EMI address
758  *  @read: boolean flag to indicate read or write
759  *
760  *  This helper function assumes the SW/FW/HW Semaphore is already acquired.
761  **/
762 static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
763                                          u16 *data, bool read)
764 {
765         s32 ret_val;
766
767         ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, address);
768         if (ret_val)
769                 return ret_val;
770
771         if (read)
772                 ret_val = e1e_rphy_locked(hw, I82579_EMI_DATA, data);
773         else
774                 ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, *data);
775
776         return ret_val;
777 }
778
779 /**
780  *  e1000_read_emi_reg_locked - Read Extended Management Interface register
781  *  @hw: pointer to the HW structure
782  *  @addr: EMI address to program
783  *  @data: value to be read from the EMI address
784  *
785  *  Assumes the SW/FW/HW Semaphore is already acquired.
786  **/
787 s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
788 {
789         return __e1000_access_emi_reg_locked(hw, addr, data, true);
790 }
791
792 /**
793  *  e1000_write_emi_reg_locked - Write Extended Management Interface register
794  *  @hw: pointer to the HW structure
795  *  @addr: EMI address to program
796  *  @data: value to be written to the EMI address
797  *
798  *  Assumes the SW/FW/HW Semaphore is already acquired.
799  **/
800 s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
801 {
802         return __e1000_access_emi_reg_locked(hw, addr, &data, false);
803 }
804
805 /**
806  *  e1000_set_eee_pchlan - Enable/disable EEE support
807  *  @hw: pointer to the HW structure
808  *
809  *  Enable/disable EEE based on setting in dev_spec structure, the duplex of
810  *  the link and the EEE capabilities of the link partner.  The LPI Control
811  *  register bits will remain set only if/when link is up.
812  *
813  *  EEE LPI must not be asserted earlier than one second after link is up.
814  *  On 82579, EEE LPI should not be enabled until such time otherwise there
815  *  can be link issues with some switches.  Other devices can have EEE LPI
816  *  enabled immediately upon link up since they have a timer in hardware which
817  *  prevents LPI from being asserted too early.
818  **/
819 s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
820 {
821         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
822         s32 ret_val;
823         u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
824
825         switch (hw->phy.type) {
826         case e1000_phy_82579:
827                 lpa = I82579_EEE_LP_ABILITY;
828                 pcs_status = I82579_EEE_PCS_STATUS;
829                 adv_addr = I82579_EEE_ADVERTISEMENT;
830                 break;
831         case e1000_phy_i217:
832                 lpa = I217_EEE_LP_ABILITY;
833                 pcs_status = I217_EEE_PCS_STATUS;
834                 adv_addr = I217_EEE_ADVERTISEMENT;
835                 break;
836         default:
837                 return 0;
838         }
839
840         ret_val = hw->phy.ops.acquire(hw);
841         if (ret_val)
842                 return ret_val;
843
844         ret_val = e1e_rphy_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
845         if (ret_val)
846                 goto release;
847
848         /* Clear bits that enable EEE in various speeds */
849         lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
850
851         /* Enable EEE if not disabled by user */
852         if (!dev_spec->eee_disable) {
853                 /* Save off link partner's EEE ability */
854                 ret_val = e1000_read_emi_reg_locked(hw, lpa,
855                                                     &dev_spec->eee_lp_ability);
856                 if (ret_val)
857                         goto release;
858
859                 /* Read EEE advertisement */
860                 ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
861                 if (ret_val)
862                         goto release;
863
864                 /* Enable EEE only for speeds in which the link partner is
865                  * EEE capable and for which we advertise EEE.
866                  */
867                 if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
868                         lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
869
870                 if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
871                         e1e_rphy_locked(hw, MII_LPA, &data);
872                         if (data & LPA_100FULL)
873                                 lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
874                         else
875                                 /* EEE is not supported in 100Half, so ignore
876                                  * partner's EEE in 100 ability if full-duplex
877                                  * is not advertised.
878                                  */
879                                 dev_spec->eee_lp_ability &=
880                                     ~I82579_EEE_100_SUPPORTED;
881                 }
882         }
883
884         if (hw->phy.type == e1000_phy_82579) {
885                 ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
886                                                     &data);
887                 if (ret_val)
888                         goto release;
889
890                 data &= ~I82579_LPI_100_PLL_SHUT;
891                 ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
892                                                      data);
893         }
894
895         /* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
896         ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
897         if (ret_val)
898                 goto release;
899
900         ret_val = e1e_wphy_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
901 release:
902         hw->phy.ops.release(hw);
903
904         return ret_val;
905 }
906
907 /**
908  *  e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
909  *  @hw:   pointer to the HW structure
910  *  @link: link up bool flag
911  *
912  *  When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
913  *  preventing further DMA write requests.  Workaround the issue by disabling
914  *  the de-assertion of the clock request when in 1Gpbs mode.
915  *  Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
916  *  speeds in order to avoid Tx hangs.
917  **/
918 static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
919 {
920         u32 fextnvm6 = er32(FEXTNVM6);
921         u32 status = er32(STATUS);
922         s32 ret_val = 0;
923         u16 reg;
924
925         if (link && (status & E1000_STATUS_SPEED_1000)) {
926                 ret_val = hw->phy.ops.acquire(hw);
927                 if (ret_val)
928                         return ret_val;
929
930                 ret_val =
931                     e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
932                                                 &reg);
933                 if (ret_val)
934                         goto release;
935
936                 ret_val =
937                     e1000e_write_kmrn_reg_locked(hw,
938                                                  E1000_KMRNCTRLSTA_K1_CONFIG,
939                                                  reg &
940                                                  ~E1000_KMRNCTRLSTA_K1_ENABLE);
941                 if (ret_val)
942                         goto release;
943
944                 usleep_range(10, 20);
945
946                 ew32(FEXTNVM6, fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
947
948                 ret_val =
949                     e1000e_write_kmrn_reg_locked(hw,
950                                                  E1000_KMRNCTRLSTA_K1_CONFIG,
951                                                  reg);
952 release:
953                 hw->phy.ops.release(hw);
954         } else {
955                 /* clear FEXTNVM6 bit 8 on link down or 10/100 */
956                 fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;
957
958                 if ((hw->phy.revision > 5) || !link ||
959                     ((status & E1000_STATUS_SPEED_100) &&
960                      (status & E1000_STATUS_FD)))
961                         goto update_fextnvm6;
962
963                 ret_val = e1e_rphy(hw, I217_INBAND_CTRL, &reg);
964                 if (ret_val)
965                         return ret_val;
966
967                 /* Clear link status transmit timeout */
968                 reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
969
970                 if (status & E1000_STATUS_SPEED_100) {
971                         /* Set inband Tx timeout to 5x10us for 100Half */
972                         reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
973
974                         /* Do not extend the K1 entry latency for 100Half */
975                         fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
976                 } else {
977                         /* Set inband Tx timeout to 50x10us for 10Full/Half */
978                         reg |= 50 <<
979                             I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
980
981                         /* Extend the K1 entry latency for 10 Mbps */
982                         fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
983                 }
984
985                 ret_val = e1e_wphy(hw, I217_INBAND_CTRL, reg);
986                 if (ret_val)
987                         return ret_val;
988
989 update_fextnvm6:
990                 ew32(FEXTNVM6, fextnvm6);
991         }
992
993         return ret_val;
994 }
995
996 /**
997  *  e1000_platform_pm_pch_lpt - Set platform power management values
998  *  @hw: pointer to the HW structure
999  *  @link: bool indicating link status
1000  *
1001  *  Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
1002  *  GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
1003  *  when link is up (which must not exceed the maximum latency supported
1004  *  by the platform), otherwise specify there is no LTR requirement.
1005  *  Unlike true-PCIe devices which set the LTR maximum snoop/no-snoop
1006  *  latencies in the LTR Extended Capability Structure in the PCIe Extended
1007  *  Capability register set, on this device LTR is set by writing the
1008  *  equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
1009  *  set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
1010  *  message to the PMC.
1011  **/
1012 static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link)
1013 {
1014         u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) |
1015             link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND;
1016         u16 lat_enc = 0;        /* latency encoded */
1017
1018         if (link) {
1019                 u16 speed, duplex, scale = 0;
1020                 u16 max_snoop, max_nosnoop;
1021                 u16 max_ltr_enc;        /* max LTR latency encoded */
1022                 u64 value;
1023                 u32 rxa;
1024
1025                 if (!hw->adapter->max_frame_size) {
1026                         e_dbg("max_frame_size not set.\n");
1027                         return -E1000_ERR_CONFIG;
1028                 }
1029
1030                 hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1031                 if (!speed) {
1032                         e_dbg("Speed not set.\n");
1033                         return -E1000_ERR_CONFIG;
1034                 }
1035
1036                 /* Rx Packet Buffer Allocation size (KB) */
1037                 rxa = er32(PBA) & E1000_PBA_RXA_MASK;
1038
1039                 /* Determine the maximum latency tolerated by the device.
1040                  *
1041                  * Per the PCIe spec, the tolerated latencies are encoded as
1042                  * a 3-bit encoded scale (only 0-5 are valid) multiplied by
1043                  * a 10-bit value (0-1023) to provide a range from 1 ns to
1044                  * 2^25*(2^10-1) ns.  The scale is encoded as 0=2^0ns,
1045                  * 1=2^5ns, 2=2^10ns,...5=2^25ns.
1046                  */
1047                 rxa *= 512;
1048                 value = (rxa > hw->adapter->max_frame_size) ?
1049                         (rxa - hw->adapter->max_frame_size) * (16000 / speed) :
1050                         0;
1051
1052                 while (value > PCI_LTR_VALUE_MASK) {
1053                         scale++;
1054                         value = DIV_ROUND_UP(value, BIT(5));
1055                 }
1056                 if (scale > E1000_LTRV_SCALE_MAX) {
1057                         e_dbg("Invalid LTR latency scale %d\n", scale);
1058                         return -E1000_ERR_CONFIG;
1059                 }
1060                 lat_enc = (u16)((scale << PCI_LTR_SCALE_SHIFT) | value);
1061
1062                 /* Determine the maximum latency tolerated by the platform */
1063                 pci_read_config_word(hw->adapter->pdev, E1000_PCI_LTR_CAP_LPT,
1064                                      &max_snoop);
1065                 pci_read_config_word(hw->adapter->pdev,
1066                                      E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop);
1067                 max_ltr_enc = max_t(u16, max_snoop, max_nosnoop);
1068
1069                 if (lat_enc > max_ltr_enc)
1070                         lat_enc = max_ltr_enc;
1071         }
1072
1073         /* Set Snoop and No-Snoop latencies the same */
1074         reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT);
1075         ew32(LTRV, reg);
1076
1077         return 0;
1078 }
1079
1080 /**
1081  *  e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
1082  *  @hw: pointer to the HW structure
1083  *  @to_sx: boolean indicating a system power state transition to Sx
1084  *
1085  *  When link is down, configure ULP mode to significantly reduce the power
1086  *  to the PHY.  If on a Manageability Engine (ME) enabled system, tell the
1087  *  ME firmware to start the ULP configuration.  If not on an ME enabled
1088  *  system, configure the ULP mode by software.
1089  */
1090 s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx)
1091 {
1092         u32 mac_reg;
1093         s32 ret_val = 0;
1094         u16 phy_reg;
1095         u16 oem_reg = 0;
1096
1097         if ((hw->mac.type < e1000_pch_lpt) ||
1098             (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1099             (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1100             (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1101             (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1102             (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on))
1103                 return 0;
1104
1105         if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1106                 /* Request ME configure ULP mode in the PHY */
1107                 mac_reg = er32(H2ME);
1108                 mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS;
1109                 ew32(H2ME, mac_reg);
1110
1111                 goto out;
1112         }
1113
1114         if (!to_sx) {
1115                 int i = 0;
1116
1117                 /* Poll up to 5 seconds for Cable Disconnected indication */
1118                 while (!(er32(FEXT) & E1000_FEXT_PHY_CABLE_DISCONNECTED)) {
1119                         /* Bail if link is re-acquired */
1120                         if (er32(STATUS) & E1000_STATUS_LU)
1121                                 return -E1000_ERR_PHY;
1122
1123                         if (i++ == 100)
1124                                 break;
1125
1126                         msleep(50);
1127                 }
1128                 e_dbg("CABLE_DISCONNECTED %s set after %dmsec\n",
1129                       (er32(FEXT) &
1130                        E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not", i * 50);
1131         }
1132
1133         ret_val = hw->phy.ops.acquire(hw);
1134         if (ret_val)
1135                 goto out;
1136
1137         /* Force SMBus mode in PHY */
1138         ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1139         if (ret_val)
1140                 goto release;
1141         phy_reg |= CV_SMB_CTRL_FORCE_SMBUS;
1142         e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1143
1144         /* Force SMBus mode in MAC */
1145         mac_reg = er32(CTRL_EXT);
1146         mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1147         ew32(CTRL_EXT, mac_reg);
1148
1149         /* Si workaround for ULP entry flow on i127/rev6 h/w.  Enable
1150          * LPLU and disable Gig speed when entering ULP
1151          */
1152         if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6)) {
1153                 ret_val = e1000_read_phy_reg_hv_locked(hw, HV_OEM_BITS,
1154                                                        &oem_reg);
1155                 if (ret_val)
1156                         goto release;
1157
1158                 phy_reg = oem_reg;
1159                 phy_reg |= HV_OEM_BITS_LPLU | HV_OEM_BITS_GBE_DIS;
1160
1161                 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1162                                                         phy_reg);
1163
1164                 if (ret_val)
1165                         goto release;
1166         }
1167
1168         /* Set Inband ULP Exit, Reset to SMBus mode and
1169          * Disable SMBus Release on PERST# in PHY
1170          */
1171         ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1172         if (ret_val)
1173                 goto release;
1174         phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS |
1175                     I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1176         if (to_sx) {
1177                 if (er32(WUFC) & E1000_WUFC_LNKC)
1178                         phy_reg |= I218_ULP_CONFIG1_WOL_HOST;
1179                 else
1180                         phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1181
1182                 phy_reg |= I218_ULP_CONFIG1_STICKY_ULP;
1183                 phy_reg &= ~I218_ULP_CONFIG1_INBAND_EXIT;
1184         } else {
1185                 phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT;
1186                 phy_reg &= ~I218_ULP_CONFIG1_STICKY_ULP;
1187                 phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1188         }
1189         e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1190
1191         /* Set Disable SMBus Release on PERST# in MAC */
1192         mac_reg = er32(FEXTNVM7);
1193         mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST;
1194         ew32(FEXTNVM7, mac_reg);
1195
1196         /* Commit ULP changes in PHY by starting auto ULP configuration */
1197         phy_reg |= I218_ULP_CONFIG1_START;
1198         e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1199
1200         if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6) &&
1201             to_sx && (er32(STATUS) & E1000_STATUS_LU)) {
1202                 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1203                                                         oem_reg);
1204                 if (ret_val)
1205                         goto release;
1206         }
1207
1208 release:
1209         hw->phy.ops.release(hw);
1210 out:
1211         if (ret_val)
1212                 e_dbg("Error in ULP enable flow: %d\n", ret_val);
1213         else
1214                 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on;
1215
1216         return ret_val;
1217 }
1218
1219 /**
1220  *  e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
1221  *  @hw: pointer to the HW structure
1222  *  @force: boolean indicating whether or not to force disabling ULP
1223  *
1224  *  Un-configure ULP mode when link is up, the system is transitioned from
1225  *  Sx or the driver is unloaded.  If on a Manageability Engine (ME) enabled
1226  *  system, poll for an indication from ME that ULP has been un-configured.
1227  *  If not on an ME enabled system, un-configure the ULP mode by software.
1228  *
1229  *  During nominal operation, this function is called when link is acquired
1230  *  to disable ULP mode (force=false); otherwise, for example when unloading
1231  *  the driver or during Sx->S0 transitions, this is called with force=true
1232  *  to forcibly disable ULP.
1233  */
1234 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force)
1235 {
1236         s32 ret_val = 0;
1237         u32 mac_reg;
1238         u16 phy_reg;
1239         int i = 0;
1240
1241         if ((hw->mac.type < e1000_pch_lpt) ||
1242             (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1243             (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1244             (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1245             (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1246             (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off))
1247                 return 0;
1248
1249         if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1250                 if (force) {
1251                         /* Request ME un-configure ULP mode in the PHY */
1252                         mac_reg = er32(H2ME);
1253                         mac_reg &= ~E1000_H2ME_ULP;
1254                         mac_reg |= E1000_H2ME_ENFORCE_SETTINGS;
1255                         ew32(H2ME, mac_reg);
1256                 }
1257
1258                 /* Poll up to 300msec for ME to clear ULP_CFG_DONE. */
1259                 while (er32(FWSM) & E1000_FWSM_ULP_CFG_DONE) {
1260                         if (i++ == 30) {
1261                                 ret_val = -E1000_ERR_PHY;
1262                                 goto out;
1263                         }
1264
1265                         usleep_range(10000, 20000);
1266                 }
1267                 e_dbg("ULP_CONFIG_DONE cleared after %dmsec\n", i * 10);
1268
1269                 if (force) {
1270                         mac_reg = er32(H2ME);
1271                         mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS;
1272                         ew32(H2ME, mac_reg);
1273                 } else {
1274                         /* Clear H2ME.ULP after ME ULP configuration */
1275                         mac_reg = er32(H2ME);
1276                         mac_reg &= ~E1000_H2ME_ULP;
1277                         ew32(H2ME, mac_reg);
1278                 }
1279
1280                 goto out;
1281         }
1282
1283         ret_val = hw->phy.ops.acquire(hw);
1284         if (ret_val)
1285                 goto out;
1286
1287         if (force)
1288                 /* Toggle LANPHYPC Value bit */
1289                 e1000_toggle_lanphypc_pch_lpt(hw);
1290
1291         /* Unforce SMBus mode in PHY */
1292         ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1293         if (ret_val) {
1294                 /* The MAC might be in PCIe mode, so temporarily force to
1295                  * SMBus mode in order to access the PHY.
1296                  */
1297                 mac_reg = er32(CTRL_EXT);
1298                 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1299                 ew32(CTRL_EXT, mac_reg);
1300
1301                 msleep(50);
1302
1303                 ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL,
1304                                                        &phy_reg);
1305                 if (ret_val)
1306                         goto release;
1307         }
1308         phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
1309         e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1310
1311         /* Unforce SMBus mode in MAC */
1312         mac_reg = er32(CTRL_EXT);
1313         mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
1314         ew32(CTRL_EXT, mac_reg);
1315
1316         /* When ULP mode was previously entered, K1 was disabled by the
1317          * hardware.  Re-Enable K1 in the PHY when exiting ULP.
1318          */
1319         ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg);
1320         if (ret_val)
1321                 goto release;
1322         phy_reg |= HV_PM_CTRL_K1_ENABLE;
1323         e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg);
1324
1325         /* Clear ULP enabled configuration */
1326         ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1327         if (ret_val)
1328                 goto release;
1329         phy_reg &= ~(I218_ULP_CONFIG1_IND |
1330                      I218_ULP_CONFIG1_STICKY_ULP |
1331                      I218_ULP_CONFIG1_RESET_TO_SMBUS |
1332                      I218_ULP_CONFIG1_WOL_HOST |
1333                      I218_ULP_CONFIG1_INBAND_EXIT |
1334                      I218_ULP_CONFIG1_EN_ULP_LANPHYPC |
1335                      I218_ULP_CONFIG1_DIS_CLR_STICKY_ON_PERST |
1336                      I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1337         e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1338
1339         /* Commit ULP changes by starting auto ULP configuration */
1340         phy_reg |= I218_ULP_CONFIG1_START;
1341         e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1342
1343         /* Clear Disable SMBus Release on PERST# in MAC */
1344         mac_reg = er32(FEXTNVM7);
1345         mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST;
1346         ew32(FEXTNVM7, mac_reg);
1347
1348 release:
1349         hw->phy.ops.release(hw);
1350         if (force) {
1351                 e1000_phy_hw_reset(hw);
1352                 msleep(50);
1353         }
1354 out:
1355         if (ret_val)
1356                 e_dbg("Error in ULP disable flow: %d\n", ret_val);
1357         else
1358                 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off;
1359
1360         return ret_val;
1361 }
1362
1363 /**
1364  *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
1365  *  @hw: pointer to the HW structure
1366  *
1367  *  Checks to see of the link status of the hardware has changed.  If a
1368  *  change in link status has been detected, then we read the PHY registers
1369  *  to get the current speed/duplex if link exists.
1370  **/
1371 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
1372 {
1373         struct e1000_mac_info *mac = &hw->mac;
1374         s32 ret_val, tipg_reg = 0;
1375         u16 emi_addr, emi_val = 0;
1376         bool link;
1377         u16 phy_reg;
1378
1379         /* We only want to go out to the PHY registers to see if Auto-Neg
1380          * has completed and/or if our link status has changed.  The
1381          * get_link_status flag is set upon receiving a Link Status
1382          * Change or Rx Sequence Error interrupt.
1383          */
1384         if (!mac->get_link_status)
1385                 return 0;
1386
1387         /* First we want to see if the MII Status Register reports
1388          * link.  If so, then we want to get the current speed/duplex
1389          * of the PHY.
1390          */
1391         ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1392         if (ret_val)
1393                 return ret_val;
1394
1395         if (hw->mac.type == e1000_pchlan) {
1396                 ret_val = e1000_k1_gig_workaround_hv(hw, link);
1397                 if (ret_val)
1398                         return ret_val;
1399         }
1400
1401         /* When connected at 10Mbps half-duplex, some parts are excessively
1402          * aggressive resulting in many collisions. To avoid this, increase
1403          * the IPG and reduce Rx latency in the PHY.
1404          */
1405         if ((hw->mac.type >= e1000_pch2lan) && link) {
1406                 u16 speed, duplex;
1407
1408                 e1000e_get_speed_and_duplex_copper(hw, &speed, &duplex);
1409                 tipg_reg = er32(TIPG);
1410                 tipg_reg &= ~E1000_TIPG_IPGT_MASK;
1411
1412                 if (duplex == HALF_DUPLEX && speed == SPEED_10) {
1413                         tipg_reg |= 0xFF;
1414                         /* Reduce Rx latency in analog PHY */
1415                         emi_val = 0;
1416                 } else if (hw->mac.type >= e1000_pch_spt &&
1417                            duplex == FULL_DUPLEX && speed != SPEED_1000) {
1418                         tipg_reg |= 0xC;
1419                         emi_val = 1;
1420                 } else {
1421
1422                         /* Roll back the default values */
1423                         tipg_reg |= 0x08;
1424                         emi_val = 1;
1425                 }
1426
1427                 ew32(TIPG, tipg_reg);
1428
1429                 ret_val = hw->phy.ops.acquire(hw);
1430                 if (ret_val)
1431                         return ret_val;
1432
1433                 if (hw->mac.type == e1000_pch2lan)
1434                         emi_addr = I82579_RX_CONFIG;
1435                 else
1436                         emi_addr = I217_RX_CONFIG;
1437                 ret_val = e1000_write_emi_reg_locked(hw, emi_addr, emi_val);
1438
1439                 if (hw->mac.type >= e1000_pch_lpt) {
1440                         u16 phy_reg;
1441
1442                         e1e_rphy_locked(hw, I217_PLL_CLOCK_GATE_REG, &phy_reg);
1443                         phy_reg &= ~I217_PLL_CLOCK_GATE_MASK;
1444                         if (speed == SPEED_100 || speed == SPEED_10)
1445                                 phy_reg |= 0x3E8;
1446                         else
1447                                 phy_reg |= 0xFA;
1448                         e1e_wphy_locked(hw, I217_PLL_CLOCK_GATE_REG, phy_reg);
1449                 }
1450                 hw->phy.ops.release(hw);
1451
1452                 if (ret_val)
1453                         return ret_val;
1454
1455                 if (hw->mac.type >= e1000_pch_spt) {
1456                         u16 data;
1457                         u16 ptr_gap;
1458
1459                         if (speed == SPEED_1000) {
1460                                 ret_val = hw->phy.ops.acquire(hw);
1461                                 if (ret_val)
1462                                         return ret_val;
1463
1464                                 ret_val = e1e_rphy_locked(hw,
1465                                                           PHY_REG(776, 20),
1466                                                           &data);
1467                                 if (ret_val) {
1468                                         hw->phy.ops.release(hw);
1469                                         return ret_val;
1470                                 }
1471
1472                                 ptr_gap = (data & (0x3FF << 2)) >> 2;
1473                                 if (ptr_gap < 0x18) {
1474                                         data &= ~(0x3FF << 2);
1475                                         data |= (0x18 << 2);
1476                                         ret_val =
1477                                             e1e_wphy_locked(hw,
1478                                                             PHY_REG(776, 20),
1479                                                             data);
1480                                 }
1481                                 hw->phy.ops.release(hw);
1482                                 if (ret_val)
1483                                         return ret_val;
1484                         } else {
1485                                 ret_val = hw->phy.ops.acquire(hw);
1486                                 if (ret_val)
1487                                         return ret_val;
1488
1489                                 ret_val = e1e_wphy_locked(hw,
1490                                                           PHY_REG(776, 20),
1491                                                           0xC023);
1492                                 hw->phy.ops.release(hw);
1493                                 if (ret_val)
1494                                         return ret_val;
1495
1496                         }
1497                 }
1498         }
1499
1500         /* I217 Packet Loss issue:
1501          * ensure that FEXTNVM4 Beacon Duration is set correctly
1502          * on power up.
1503          * Set the Beacon Duration for I217 to 8 usec
1504          */
1505         if (hw->mac.type >= e1000_pch_lpt) {
1506                 u32 mac_reg;
1507
1508                 mac_reg = er32(FEXTNVM4);
1509                 mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
1510                 mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1511                 ew32(FEXTNVM4, mac_reg);
1512         }
1513
1514         /* Work-around I218 hang issue */
1515         if ((hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
1516             (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
1517             (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM3) ||
1518             (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V3)) {
1519                 ret_val = e1000_k1_workaround_lpt_lp(hw, link);
1520                 if (ret_val)
1521                         return ret_val;
1522         }
1523         if (hw->mac.type >= e1000_pch_lpt) {
1524                 /* Set platform power management values for
1525                  * Latency Tolerance Reporting (LTR)
1526                  */
1527                 ret_val = e1000_platform_pm_pch_lpt(hw, link);
1528                 if (ret_val)
1529                         return ret_val;
1530         }
1531
1532         /* Clear link partner's EEE ability */
1533         hw->dev_spec.ich8lan.eee_lp_ability = 0;
1534
1535         if (hw->mac.type >= e1000_pch_lpt) {
1536                 u32 fextnvm6 = er32(FEXTNVM6);
1537
1538                 if (hw->mac.type == e1000_pch_spt) {
1539                         /* FEXTNVM6 K1-off workaround - for SPT only */
1540                         u32 pcieanacfg = er32(PCIEANACFG);
1541
1542                         if (pcieanacfg & E1000_FEXTNVM6_K1_OFF_ENABLE)
1543                                 fextnvm6 |= E1000_FEXTNVM6_K1_OFF_ENABLE;
1544                         else
1545                                 fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE;
1546                 }
1547
1548                 ew32(FEXTNVM6, fextnvm6);
1549         }
1550
1551         if (!link)
1552                 return 0;       /* No link detected */
1553
1554         mac->get_link_status = false;
1555
1556         switch (hw->mac.type) {
1557         case e1000_pch2lan:
1558                 ret_val = e1000_k1_workaround_lv(hw);
1559                 if (ret_val)
1560                         return ret_val;
1561                 /* fall-thru */
1562         case e1000_pchlan:
1563                 if (hw->phy.type == e1000_phy_82578) {
1564                         ret_val = e1000_link_stall_workaround_hv(hw);
1565                         if (ret_val)
1566                                 return ret_val;
1567                 }
1568
1569                 /* Workaround for PCHx parts in half-duplex:
1570                  * Set the number of preambles removed from the packet
1571                  * when it is passed from the PHY to the MAC to prevent
1572                  * the MAC from misinterpreting the packet type.
1573                  */
1574                 e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
1575                 phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
1576
1577                 if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
1578                         phy_reg |= BIT(HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
1579
1580                 e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
1581                 break;
1582         default:
1583                 break;
1584         }
1585
1586         /* Check if there was DownShift, must be checked
1587          * immediately after link-up
1588          */
1589         e1000e_check_downshift(hw);
1590
1591         /* Enable/Disable EEE after link up */
1592         if (hw->phy.type > e1000_phy_82579) {
1593                 ret_val = e1000_set_eee_pchlan(hw);
1594                 if (ret_val)
1595                         return ret_val;
1596         }
1597
1598         /* If we are forcing speed/duplex, then we simply return since
1599          * we have already determined whether we have link or not.
1600          */
1601         if (!mac->autoneg)
1602                 return -E1000_ERR_CONFIG;
1603
1604         /* Auto-Neg is enabled.  Auto Speed Detection takes care
1605          * of MAC speed/duplex configuration.  So we only need to
1606          * configure Collision Distance in the MAC.
1607          */
1608         mac->ops.config_collision_dist(hw);
1609
1610         /* Configure Flow Control now that Auto-Neg has completed.
1611          * First, we need to restore the desired flow control
1612          * settings because we may have had to re-autoneg with a
1613          * different link partner.
1614          */
1615         ret_val = e1000e_config_fc_after_link_up(hw);
1616         if (ret_val)
1617                 e_dbg("Error configuring flow control\n");
1618
1619         return ret_val;
1620 }
1621
1622 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
1623 {
1624         struct e1000_hw *hw = &adapter->hw;
1625         s32 rc;
1626
1627         rc = e1000_init_mac_params_ich8lan(hw);
1628         if (rc)
1629                 return rc;
1630
1631         rc = e1000_init_nvm_params_ich8lan(hw);
1632         if (rc)
1633                 return rc;
1634
1635         switch (hw->mac.type) {
1636         case e1000_ich8lan:
1637         case e1000_ich9lan:
1638         case e1000_ich10lan:
1639                 rc = e1000_init_phy_params_ich8lan(hw);
1640                 break;
1641         case e1000_pchlan:
1642         case e1000_pch2lan:
1643         case e1000_pch_lpt:
1644         case e1000_pch_spt:
1645         case e1000_pch_cnp:
1646                 rc = e1000_init_phy_params_pchlan(hw);
1647                 break;
1648         default:
1649                 break;
1650         }
1651         if (rc)
1652                 return rc;
1653
1654         /* Disable Jumbo Frame support on parts with Intel 10/100 PHY or
1655          * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
1656          */
1657         if ((adapter->hw.phy.type == e1000_phy_ife) ||
1658             ((adapter->hw.mac.type >= e1000_pch2lan) &&
1659              (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
1660                 adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
1661                 adapter->max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
1662
1663                 hw->mac.ops.blink_led = NULL;
1664         }
1665
1666         if ((adapter->hw.mac.type == e1000_ich8lan) &&
1667             (adapter->hw.phy.type != e1000_phy_ife))
1668                 adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
1669
1670         /* Enable workaround for 82579 w/ ME enabled */
1671         if ((adapter->hw.mac.type == e1000_pch2lan) &&
1672             (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1673                 adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
1674
1675         return 0;
1676 }
1677
1678 static DEFINE_MUTEX(nvm_mutex);
1679
1680 /**
1681  *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1682  *  @hw: pointer to the HW structure
1683  *
1684  *  Acquires the mutex for performing NVM operations.
1685  **/
1686 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1687 {
1688         mutex_lock(&nvm_mutex);
1689
1690         return 0;
1691 }
1692
1693 /**
1694  *  e1000_release_nvm_ich8lan - Release NVM mutex
1695  *  @hw: pointer to the HW structure
1696  *
1697  *  Releases the mutex used while performing NVM operations.
1698  **/
1699 static void e1000_release_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1700 {
1701         mutex_unlock(&nvm_mutex);
1702 }
1703
1704 /**
1705  *  e1000_acquire_swflag_ich8lan - Acquire software control flag
1706  *  @hw: pointer to the HW structure
1707  *
1708  *  Acquires the software control flag for performing PHY and select
1709  *  MAC CSR accesses.
1710  **/
1711 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1712 {
1713         u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1714         s32 ret_val = 0;
1715
1716         if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
1717                              &hw->adapter->state)) {
1718                 e_dbg("contention for Phy access\n");
1719                 return -E1000_ERR_PHY;
1720         }
1721
1722         while (timeout) {
1723                 extcnf_ctrl = er32(EXTCNF_CTRL);
1724                 if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1725                         break;
1726
1727                 mdelay(1);
1728                 timeout--;
1729         }
1730
1731         if (!timeout) {
1732                 e_dbg("SW has already locked the resource.\n");
1733                 ret_val = -E1000_ERR_CONFIG;
1734                 goto out;
1735         }
1736
1737         timeout = SW_FLAG_TIMEOUT;
1738
1739         extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1740         ew32(EXTCNF_CTRL, extcnf_ctrl);
1741
1742         while (timeout) {
1743                 extcnf_ctrl = er32(EXTCNF_CTRL);
1744                 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1745                         break;
1746
1747                 mdelay(1);
1748                 timeout--;
1749         }
1750
1751         if (!timeout) {
1752                 e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1753                       er32(FWSM), extcnf_ctrl);
1754                 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1755                 ew32(EXTCNF_CTRL, extcnf_ctrl);
1756                 ret_val = -E1000_ERR_CONFIG;
1757                 goto out;
1758         }
1759
1760 out:
1761         if (ret_val)
1762                 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1763
1764         return ret_val;
1765 }
1766
1767 /**
1768  *  e1000_release_swflag_ich8lan - Release software control flag
1769  *  @hw: pointer to the HW structure
1770  *
1771  *  Releases the software control flag for performing PHY and select
1772  *  MAC CSR accesses.
1773  **/
1774 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1775 {
1776         u32 extcnf_ctrl;
1777
1778         extcnf_ctrl = er32(EXTCNF_CTRL);
1779
1780         if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1781                 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1782                 ew32(EXTCNF_CTRL, extcnf_ctrl);
1783         } else {
1784                 e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
1785         }
1786
1787         clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1788 }
1789
1790 /**
1791  *  e1000_check_mng_mode_ich8lan - Checks management mode
1792  *  @hw: pointer to the HW structure
1793  *
1794  *  This checks if the adapter has any manageability enabled.
1795  *  This is a function pointer entry point only called by read/write
1796  *  routines for the PHY and NVM parts.
1797  **/
1798 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1799 {
1800         u32 fwsm;
1801
1802         fwsm = er32(FWSM);
1803         return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1804                 ((fwsm & E1000_FWSM_MODE_MASK) ==
1805                  (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1806 }
1807
1808 /**
1809  *  e1000_check_mng_mode_pchlan - Checks management mode
1810  *  @hw: pointer to the HW structure
1811  *
1812  *  This checks if the adapter has iAMT enabled.
1813  *  This is a function pointer entry point only called by read/write
1814  *  routines for the PHY and NVM parts.
1815  **/
1816 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1817 {
1818         u32 fwsm;
1819
1820         fwsm = er32(FWSM);
1821         return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1822             (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1823 }
1824
1825 /**
1826  *  e1000_rar_set_pch2lan - Set receive address register
1827  *  @hw: pointer to the HW structure
1828  *  @addr: pointer to the receive address
1829  *  @index: receive address array register
1830  *
1831  *  Sets the receive address array register at index to the address passed
1832  *  in by addr.  For 82579, RAR[0] is the base address register that is to
1833  *  contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1834  *  Use SHRA[0-3] in place of those reserved for ME.
1835  **/
1836 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
1837 {
1838         u32 rar_low, rar_high;
1839
1840         /* HW expects these in little endian so we reverse the byte order
1841          * from network order (big endian) to little endian
1842          */
1843         rar_low = ((u32)addr[0] |
1844                    ((u32)addr[1] << 8) |
1845                    ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1846
1847         rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1848
1849         /* If MAC address zero, no need to set the AV bit */
1850         if (rar_low || rar_high)
1851                 rar_high |= E1000_RAH_AV;
1852
1853         if (index == 0) {
1854                 ew32(RAL(index), rar_low);
1855                 e1e_flush();
1856                 ew32(RAH(index), rar_high);
1857                 e1e_flush();
1858                 return 0;
1859         }
1860
1861         /* RAR[1-6] are owned by manageability.  Skip those and program the
1862          * next address into the SHRA register array.
1863          */
1864         if (index < (u32)(hw->mac.rar_entry_count)) {
1865                 s32 ret_val;
1866
1867                 ret_val = e1000_acquire_swflag_ich8lan(hw);
1868                 if (ret_val)
1869                         goto out;
1870
1871                 ew32(SHRAL(index - 1), rar_low);
1872                 e1e_flush();
1873                 ew32(SHRAH(index - 1), rar_high);
1874                 e1e_flush();
1875
1876                 e1000_release_swflag_ich8lan(hw);
1877
1878                 /* verify the register updates */
1879                 if ((er32(SHRAL(index - 1)) == rar_low) &&
1880                     (er32(SHRAH(index - 1)) == rar_high))
1881                         return 0;
1882
1883                 e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1884                       (index - 1), er32(FWSM));
1885         }
1886
1887 out:
1888         e_dbg("Failed to write receive address at index %d\n", index);
1889         return -E1000_ERR_CONFIG;
1890 }
1891
1892 /**
1893  *  e1000_rar_get_count_pch_lpt - Get the number of available SHRA
1894  *  @hw: pointer to the HW structure
1895  *
1896  *  Get the number of available receive registers that the Host can
1897  *  program. SHRA[0-10] are the shared receive address registers
1898  *  that are shared between the Host and manageability engine (ME).
1899  *  ME can reserve any number of addresses and the host needs to be
1900  *  able to tell how many available registers it has access to.
1901  **/
1902 static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw)
1903 {
1904         u32 wlock_mac;
1905         u32 num_entries;
1906
1907         wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1908         wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1909
1910         switch (wlock_mac) {
1911         case 0:
1912                 /* All SHRA[0..10] and RAR[0] available */
1913                 num_entries = hw->mac.rar_entry_count;
1914                 break;
1915         case 1:
1916                 /* Only RAR[0] available */
1917                 num_entries = 1;
1918                 break;
1919         default:
1920                 /* SHRA[0..(wlock_mac - 1)] available + RAR[0] */
1921                 num_entries = wlock_mac + 1;
1922                 break;
1923         }
1924
1925         return num_entries;
1926 }
1927
1928 /**
1929  *  e1000_rar_set_pch_lpt - Set receive address registers
1930  *  @hw: pointer to the HW structure
1931  *  @addr: pointer to the receive address
1932  *  @index: receive address array register
1933  *
1934  *  Sets the receive address register array at index to the address passed
1935  *  in by addr. For LPT, RAR[0] is the base address register that is to
1936  *  contain the MAC address. SHRA[0-10] are the shared receive address
1937  *  registers that are shared between the Host and manageability engine (ME).
1938  **/
1939 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
1940 {
1941         u32 rar_low, rar_high;
1942         u32 wlock_mac;
1943
1944         /* HW expects these in little endian so we reverse the byte order
1945          * from network order (big endian) to little endian
1946          */
1947         rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
1948                    ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1949
1950         rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1951
1952         /* If MAC address zero, no need to set the AV bit */
1953         if (rar_low || rar_high)
1954                 rar_high |= E1000_RAH_AV;
1955
1956         if (index == 0) {
1957                 ew32(RAL(index), rar_low);
1958                 e1e_flush();
1959                 ew32(RAH(index), rar_high);
1960                 e1e_flush();
1961                 return 0;
1962         }
1963
1964         /* The manageability engine (ME) can lock certain SHRAR registers that
1965          * it is using - those registers are unavailable for use.
1966          */
1967         if (index < hw->mac.rar_entry_count) {
1968                 wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1969                 wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1970
1971                 /* Check if all SHRAR registers are locked */
1972                 if (wlock_mac == 1)
1973                         goto out;
1974
1975                 if ((wlock_mac == 0) || (index <= wlock_mac)) {
1976                         s32 ret_val;
1977
1978                         ret_val = e1000_acquire_swflag_ich8lan(hw);
1979
1980                         if (ret_val)
1981                                 goto out;
1982
1983                         ew32(SHRAL_PCH_LPT(index - 1), rar_low);
1984                         e1e_flush();
1985                         ew32(SHRAH_PCH_LPT(index - 1), rar_high);
1986                         e1e_flush();
1987
1988                         e1000_release_swflag_ich8lan(hw);
1989
1990                         /* verify the register updates */
1991                         if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) &&
1992                             (er32(SHRAH_PCH_LPT(index - 1)) == rar_high))
1993                                 return 0;
1994                 }
1995         }
1996
1997 out:
1998         e_dbg("Failed to write receive address at index %d\n", index);
1999         return -E1000_ERR_CONFIG;
2000 }
2001
2002 /**
2003  *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
2004  *  @hw: pointer to the HW structure
2005  *
2006  *  Checks if firmware is blocking the reset of the PHY.
2007  *  This is a function pointer entry point only called by
2008  *  reset routines.
2009  **/
2010 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
2011 {
2012         bool blocked = false;
2013         int i = 0;
2014
2015         while ((blocked = !(er32(FWSM) & E1000_ICH_FWSM_RSPCIPHY)) &&
2016                (i++ < 30))
2017                 usleep_range(10000, 20000);
2018         return blocked ? E1000_BLK_PHY_RESET : 0;
2019 }
2020
2021 /**
2022  *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
2023  *  @hw: pointer to the HW structure
2024  *
2025  *  Assumes semaphore already acquired.
2026  *
2027  **/
2028 static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
2029 {
2030         u16 phy_data;
2031         u32 strap = er32(STRAP);
2032         u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
2033             E1000_STRAP_SMT_FREQ_SHIFT;
2034         s32 ret_val;
2035
2036         strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
2037
2038         ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
2039         if (ret_val)
2040                 return ret_val;
2041
2042         phy_data &= ~HV_SMB_ADDR_MASK;
2043         phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
2044         phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
2045
2046         if (hw->phy.type == e1000_phy_i217) {
2047                 /* Restore SMBus frequency */
2048                 if (freq--) {
2049                         phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
2050                         phy_data |= (freq & BIT(0)) <<
2051                             HV_SMB_ADDR_FREQ_LOW_SHIFT;
2052                         phy_data |= (freq & BIT(1)) <<
2053                             (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
2054                 } else {
2055                         e_dbg("Unsupported SMB frequency in PHY\n");
2056                 }
2057         }
2058
2059         return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
2060 }
2061
2062 /**
2063  *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
2064  *  @hw:   pointer to the HW structure
2065  *
2066  *  SW should configure the LCD from the NVM extended configuration region
2067  *  as a workaround for certain parts.
2068  **/
2069 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
2070 {
2071         struct e1000_phy_info *phy = &hw->phy;
2072         u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
2073         s32 ret_val = 0;
2074         u16 word_addr, reg_data, reg_addr, phy_page = 0;
2075
2076         /* Initialize the PHY from the NVM on ICH platforms.  This
2077          * is needed due to an issue where the NVM configuration is
2078          * not properly autoloaded after power transitions.
2079          * Therefore, after each PHY reset, we will load the
2080          * configuration data out of the NVM manually.
2081          */
2082         switch (hw->mac.type) {
2083         case e1000_ich8lan:
2084                 if (phy->type != e1000_phy_igp_3)
2085                         return ret_val;
2086
2087                 if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
2088                     (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
2089                         sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
2090                         break;
2091                 }
2092                 /* Fall-thru */
2093         case e1000_pchlan:
2094         case e1000_pch2lan:
2095         case e1000_pch_lpt:
2096         case e1000_pch_spt:
2097         case e1000_pch_cnp:
2098                 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
2099                 break;
2100         default:
2101                 return ret_val;
2102         }
2103
2104         ret_val = hw->phy.ops.acquire(hw);
2105         if (ret_val)
2106                 return ret_val;
2107
2108         data = er32(FEXTNVM);
2109         if (!(data & sw_cfg_mask))
2110                 goto release;
2111
2112         /* Make sure HW does not configure LCD from PHY
2113          * extended configuration before SW configuration
2114          */
2115         data = er32(EXTCNF_CTRL);
2116         if ((hw->mac.type < e1000_pch2lan) &&
2117             (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
2118                 goto release;
2119
2120         cnf_size = er32(EXTCNF_SIZE);
2121         cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
2122         cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
2123         if (!cnf_size)
2124                 goto release;
2125
2126         cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
2127         cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
2128
2129         if (((hw->mac.type == e1000_pchlan) &&
2130              !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
2131             (hw->mac.type > e1000_pchlan)) {
2132                 /* HW configures the SMBus address and LEDs when the
2133                  * OEM and LCD Write Enable bits are set in the NVM.
2134                  * When both NVM bits are cleared, SW will configure
2135                  * them instead.
2136                  */
2137                 ret_val = e1000_write_smbus_addr(hw);
2138                 if (ret_val)
2139                         goto release;
2140
2141                 data = er32(LEDCTL);
2142                 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
2143                                                         (u16)data);
2144                 if (ret_val)
2145                         goto release;
2146         }
2147
2148         /* Configure LCD from extended configuration region. */
2149
2150         /* cnf_base_addr is in DWORD */
2151         word_addr = (u16)(cnf_base_addr << 1);
2152
2153         for (i = 0; i < cnf_size; i++) {
2154                 ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1, &reg_data);
2155                 if (ret_val)
2156                         goto release;
2157
2158                 ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
2159                                          1, &reg_addr);
2160                 if (ret_val)
2161                         goto release;
2162
2163                 /* Save off the PHY page for future writes. */
2164                 if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
2165                         phy_page = reg_data;
2166                         continue;
2167                 }
2168
2169                 reg_addr &= PHY_REG_MASK;
2170                 reg_addr |= phy_page;
2171
2172                 ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data);
2173                 if (ret_val)
2174                         goto release;
2175         }
2176
2177 release:
2178         hw->phy.ops.release(hw);
2179         return ret_val;
2180 }
2181
2182 /**
2183  *  e1000_k1_gig_workaround_hv - K1 Si workaround
2184  *  @hw:   pointer to the HW structure
2185  *  @link: link up bool flag
2186  *
2187  *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
2188  *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
2189  *  If link is down, the function will restore the default K1 setting located
2190  *  in the NVM.
2191  **/
2192 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
2193 {
2194         s32 ret_val = 0;
2195         u16 status_reg = 0;
2196         bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
2197
2198         if (hw->mac.type != e1000_pchlan)
2199                 return 0;
2200
2201         /* Wrap the whole flow with the sw flag */
2202         ret_val = hw->phy.ops.acquire(hw);
2203         if (ret_val)
2204                 return ret_val;
2205
2206         /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
2207         if (link) {
2208                 if (hw->phy.type == e1000_phy_82578) {
2209                         ret_val = e1e_rphy_locked(hw, BM_CS_STATUS,
2210                                                   &status_reg);
2211                         if (ret_val)
2212                                 goto release;
2213
2214                         status_reg &= (BM_CS_STATUS_LINK_UP |
2215                                        BM_CS_STATUS_RESOLVED |
2216                                        BM_CS_STATUS_SPEED_MASK);
2217
2218                         if (status_reg == (BM_CS_STATUS_LINK_UP |
2219                                            BM_CS_STATUS_RESOLVED |
2220                                            BM_CS_STATUS_SPEED_1000))
2221                                 k1_enable = false;
2222                 }
2223
2224                 if (hw->phy.type == e1000_phy_82577) {
2225                         ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg);
2226                         if (ret_val)
2227                                 goto release;
2228
2229                         status_reg &= (HV_M_STATUS_LINK_UP |
2230                                        HV_M_STATUS_AUTONEG_COMPLETE |
2231                                        HV_M_STATUS_SPEED_MASK);
2232
2233                         if (status_reg == (HV_M_STATUS_LINK_UP |
2234                                            HV_M_STATUS_AUTONEG_COMPLETE |
2235                                            HV_M_STATUS_SPEED_1000))
2236                                 k1_enable = false;
2237                 }
2238
2239                 /* Link stall fix for link up */
2240                 ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100);
2241                 if (ret_val)
2242                         goto release;
2243
2244         } else {
2245                 /* Link stall fix for link down */
2246                 ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100);
2247                 if (ret_val)
2248                         goto release;
2249         }
2250
2251         ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
2252
2253 release:
2254         hw->phy.ops.release(hw);
2255
2256         return ret_val;
2257 }
2258
2259 /**
2260  *  e1000_configure_k1_ich8lan - Configure K1 power state
2261  *  @hw: pointer to the HW structure
2262  *  @enable: K1 state to configure
2263  *
2264  *  Configure the K1 power state based on the provided parameter.
2265  *  Assumes semaphore already acquired.
2266  *
2267  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2268  **/
2269 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
2270 {
2271         s32 ret_val;
2272         u32 ctrl_reg = 0;
2273         u32 ctrl_ext = 0;
2274         u32 reg = 0;
2275         u16 kmrn_reg = 0;
2276
2277         ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2278                                               &kmrn_reg);
2279         if (ret_val)
2280                 return ret_val;
2281
2282         if (k1_enable)
2283                 kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
2284         else
2285                 kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
2286
2287         ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2288                                                kmrn_reg);
2289         if (ret_val)
2290                 return ret_val;
2291
2292         usleep_range(20, 40);
2293         ctrl_ext = er32(CTRL_EXT);
2294         ctrl_reg = er32(CTRL);
2295
2296         reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2297         reg |= E1000_CTRL_FRCSPD;
2298         ew32(CTRL, reg);
2299
2300         ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
2301         e1e_flush();
2302         usleep_range(20, 40);
2303         ew32(CTRL, ctrl_reg);
2304         ew32(CTRL_EXT, ctrl_ext);
2305         e1e_flush();
2306         usleep_range(20, 40);
2307
2308         return 0;
2309 }
2310
2311 /**
2312  *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
2313  *  @hw:       pointer to the HW structure
2314  *  @d0_state: boolean if entering d0 or d3 device state
2315  *
2316  *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
2317  *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
2318  *  in NVM determines whether HW should configure LPLU and Gbe Disable.
2319  **/
2320 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
2321 {
2322         s32 ret_val = 0;
2323         u32 mac_reg;
2324         u16 oem_reg;
2325
2326         if (hw->mac.type < e1000_pchlan)
2327                 return ret_val;
2328
2329         ret_val = hw->phy.ops.acquire(hw);
2330         if (ret_val)
2331                 return ret_val;
2332
2333         if (hw->mac.type == e1000_pchlan) {
2334                 mac_reg = er32(EXTCNF_CTRL);
2335                 if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
2336                         goto release;
2337         }
2338
2339         mac_reg = er32(FEXTNVM);
2340         if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
2341                 goto release;
2342
2343         mac_reg = er32(PHY_CTRL);
2344
2345         ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg);
2346         if (ret_val)
2347                 goto release;
2348
2349         oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
2350
2351         if (d0_state) {
2352                 if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
2353                         oem_reg |= HV_OEM_BITS_GBE_DIS;
2354
2355                 if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
2356                         oem_reg |= HV_OEM_BITS_LPLU;
2357         } else {
2358                 if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
2359                                E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
2360                         oem_reg |= HV_OEM_BITS_GBE_DIS;
2361
2362                 if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
2363                                E1000_PHY_CTRL_NOND0A_LPLU))
2364                         oem_reg |= HV_OEM_BITS_LPLU;
2365         }
2366
2367         /* Set Restart auto-neg to activate the bits */
2368         if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
2369             !hw->phy.ops.check_reset_block(hw))
2370                 oem_reg |= HV_OEM_BITS_RESTART_AN;
2371
2372         ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg);
2373
2374 release:
2375         hw->phy.ops.release(hw);
2376
2377         return ret_val;
2378 }
2379
2380 /**
2381  *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
2382  *  @hw:   pointer to the HW structure
2383  **/
2384 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
2385 {
2386         s32 ret_val;
2387         u16 data;
2388
2389         ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
2390         if (ret_val)
2391                 return ret_val;
2392
2393         data |= HV_KMRN_MDIO_SLOW;
2394
2395         ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
2396
2397         return ret_val;
2398 }
2399
2400 /**
2401  *  e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2402  *  done after every PHY reset.
2403  **/
2404 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2405 {
2406         s32 ret_val = 0;
2407         u16 phy_data;
2408
2409         if (hw->mac.type != e1000_pchlan)
2410                 return 0;
2411
2412         /* Set MDIO slow mode before any other MDIO access */
2413         if (hw->phy.type == e1000_phy_82577) {
2414                 ret_val = e1000_set_mdio_slow_mode_hv(hw);
2415                 if (ret_val)
2416                         return ret_val;
2417         }
2418
2419         if (((hw->phy.type == e1000_phy_82577) &&
2420              ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
2421             ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
2422                 /* Disable generation of early preamble */
2423                 ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
2424                 if (ret_val)
2425                         return ret_val;
2426
2427                 /* Preamble tuning for SSC */
2428                 ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
2429                 if (ret_val)
2430                         return ret_val;
2431         }
2432
2433         if (hw->phy.type == e1000_phy_82578) {
2434                 /* Return registers to default by doing a soft reset then
2435                  * writing 0x3140 to the control register.
2436                  */
2437                 if (hw->phy.revision < 2) {
2438                         e1000e_phy_sw_reset(hw);
2439                         ret_val = e1e_wphy(hw, MII_BMCR, 0x3140);
2440                         if (ret_val)
2441                                 return ret_val;
2442                 }
2443         }
2444
2445         /* Select page 0 */
2446         ret_val = hw->phy.ops.acquire(hw);
2447         if (ret_val)
2448                 return ret_val;
2449
2450         hw->phy.addr = 1;
2451         ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
2452         hw->phy.ops.release(hw);
2453         if (ret_val)
2454                 return ret_val;
2455
2456         /* Configure the K1 Si workaround during phy reset assuming there is
2457          * link so that it disables K1 if link is in 1Gbps.
2458          */
2459         ret_val = e1000_k1_gig_workaround_hv(hw, true);
2460         if (ret_val)
2461                 return ret_val;
2462
2463         /* Workaround for link disconnects on a busy hub in half duplex */
2464         ret_val = hw->phy.ops.acquire(hw);
2465         if (ret_val)
2466                 return ret_val;
2467         ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data);
2468         if (ret_val)
2469                 goto release;
2470         ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF);
2471         if (ret_val)
2472                 goto release;
2473
2474         /* set MSE higher to enable link to stay up when noise is high */
2475         ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
2476 release:
2477         hw->phy.ops.release(hw);
2478
2479         return ret_val;
2480 }
2481
2482 /**
2483  *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
2484  *  @hw:   pointer to the HW structure
2485  **/
2486 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
2487 {
2488         u32 mac_reg;
2489         u16 i, phy_reg = 0;
2490         s32 ret_val;
2491
2492         ret_val = hw->phy.ops.acquire(hw);
2493         if (ret_val)
2494                 return;
2495         ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2496         if (ret_val)
2497                 goto release;
2498
2499         /* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
2500         for (i = 0; i < (hw->mac.rar_entry_count); i++) {
2501                 mac_reg = er32(RAL(i));
2502                 hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
2503                                            (u16)(mac_reg & 0xFFFF));
2504                 hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
2505                                            (u16)((mac_reg >> 16) & 0xFFFF));
2506
2507                 mac_reg = er32(RAH(i));
2508                 hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
2509                                            (u16)(mac_reg & 0xFFFF));
2510                 hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
2511                                            (u16)((mac_reg & E1000_RAH_AV)
2512                                                  >> 16));
2513         }
2514
2515         e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2516
2517 release:
2518         hw->phy.ops.release(hw);
2519 }
2520
2521 /**
2522  *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
2523  *  with 82579 PHY
2524  *  @hw: pointer to the HW structure
2525  *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
2526  **/
2527 s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
2528 {
2529         s32 ret_val = 0;
2530         u16 phy_reg, data;
2531         u32 mac_reg;
2532         u16 i;
2533
2534         if (hw->mac.type < e1000_pch2lan)
2535                 return 0;
2536
2537         /* disable Rx path while enabling/disabling workaround */
2538         e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
2539         ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | BIT(14));
2540         if (ret_val)
2541                 return ret_val;
2542
2543         if (enable) {
2544                 /* Write Rx addresses (rar_entry_count for RAL/H, and
2545                  * SHRAL/H) and initial CRC values to the MAC
2546                  */
2547                 for (i = 0; i < hw->mac.rar_entry_count; i++) {
2548                         u8 mac_addr[ETH_ALEN] = { 0 };
2549                         u32 addr_high, addr_low;
2550
2551                         addr_high = er32(RAH(i));
2552                         if (!(addr_high & E1000_RAH_AV))
2553                                 continue;
2554                         addr_low = er32(RAL(i));
2555                         mac_addr[0] = (addr_low & 0xFF);
2556                         mac_addr[1] = ((addr_low >> 8) & 0xFF);
2557                         mac_addr[2] = ((addr_low >> 16) & 0xFF);
2558                         mac_addr[3] = ((addr_low >> 24) & 0xFF);
2559                         mac_addr[4] = (addr_high & 0xFF);
2560                         mac_addr[5] = ((addr_high >> 8) & 0xFF);
2561
2562                         ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
2563                 }
2564
2565                 /* Write Rx addresses to the PHY */
2566                 e1000_copy_rx_addrs_to_phy_ich8lan(hw);
2567
2568                 /* Enable jumbo frame workaround in the MAC */
2569                 mac_reg = er32(FFLT_DBG);
2570                 mac_reg &= ~BIT(14);
2571                 mac_reg |= (7 << 15);
2572                 ew32(FFLT_DBG, mac_reg);
2573
2574                 mac_reg = er32(RCTL);
2575                 mac_reg |= E1000_RCTL_SECRC;
2576                 ew32(RCTL, mac_reg);
2577
2578                 ret_val = e1000e_read_kmrn_reg(hw,
2579                                                E1000_KMRNCTRLSTA_CTRL_OFFSET,
2580                                                &data);
2581                 if (ret_val)
2582                         return ret_val;
2583                 ret_val = e1000e_write_kmrn_reg(hw,
2584                                                 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2585                                                 data | BIT(0));
2586                 if (ret_val)
2587                         return ret_val;
2588                 ret_val = e1000e_read_kmrn_reg(hw,
2589                                                E1000_KMRNCTRLSTA_HD_CTRL,
2590                                                &data);
2591                 if (ret_val)
2592                         return ret_val;
2593                 data &= ~(0xF << 8);
2594                 data |= (0xB << 8);
2595                 ret_val = e1000e_write_kmrn_reg(hw,
2596                                                 E1000_KMRNCTRLSTA_HD_CTRL,
2597                                                 data);
2598                 if (ret_val)
2599                         return ret_val;
2600
2601                 /* Enable jumbo frame workaround in the PHY */
2602                 e1e_rphy(hw, PHY_REG(769, 23), &data);
2603                 data &= ~(0x7F << 5);
2604                 data |= (0x37 << 5);
2605                 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2606                 if (ret_val)
2607                         return ret_val;
2608                 e1e_rphy(hw, PHY_REG(769, 16), &data);
2609                 data &= ~BIT(13);
2610                 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2611                 if (ret_val)
2612                         return ret_val;
2613                 e1e_rphy(hw, PHY_REG(776, 20), &data);
2614                 data &= ~(0x3FF << 2);
2615                 data |= (E1000_TX_PTR_GAP << 2);
2616                 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2617                 if (ret_val)
2618                         return ret_val;
2619                 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
2620                 if (ret_val)
2621                         return ret_val;
2622                 e1e_rphy(hw, HV_PM_CTRL, &data);
2623                 ret_val = e1e_wphy(hw, HV_PM_CTRL, data | BIT(10));
2624                 if (ret_val)
2625                         return ret_val;
2626         } else {
2627                 /* Write MAC register values back to h/w defaults */
2628                 mac_reg = er32(FFLT_DBG);
2629                 mac_reg &= ~(0xF << 14);
2630                 ew32(FFLT_DBG, mac_reg);
2631
2632                 mac_reg = er32(RCTL);
2633                 mac_reg &= ~E1000_RCTL_SECRC;
2634                 ew32(RCTL, mac_reg);
2635
2636                 ret_val = e1000e_read_kmrn_reg(hw,
2637                                                E1000_KMRNCTRLSTA_CTRL_OFFSET,
2638                                                &data);
2639                 if (ret_val)
2640                         return ret_val;
2641                 ret_val = e1000e_write_kmrn_reg(hw,
2642                                                 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2643                                                 data & ~BIT(0));
2644                 if (ret_val)
2645                         return ret_val;
2646                 ret_val = e1000e_read_kmrn_reg(hw,
2647                                                E1000_KMRNCTRLSTA_HD_CTRL,
2648                                                &data);
2649                 if (ret_val)
2650                         return ret_val;
2651                 data &= ~(0xF << 8);
2652                 data |= (0xB << 8);
2653                 ret_val = e1000e_write_kmrn_reg(hw,
2654                                                 E1000_KMRNCTRLSTA_HD_CTRL,
2655                                                 data);
2656                 if (ret_val)
2657                         return ret_val;
2658
2659                 /* Write PHY register values back to h/w defaults */
2660                 e1e_rphy(hw, PHY_REG(769, 23), &data);
2661                 data &= ~(0x7F << 5);
2662                 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2663                 if (ret_val)
2664                         return ret_val;
2665                 e1e_rphy(hw, PHY_REG(769, 16), &data);
2666                 data |= BIT(13);
2667                 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2668                 if (ret_val)
2669                         return ret_val;
2670                 e1e_rphy(hw, PHY_REG(776, 20), &data);
2671                 data &= ~(0x3FF << 2);
2672                 data |= (0x8 << 2);
2673                 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2674                 if (ret_val)
2675                         return ret_val;
2676                 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
2677                 if (ret_val)
2678                         return ret_val;
2679                 e1e_rphy(hw, HV_PM_CTRL, &data);
2680                 ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~BIT(10));
2681                 if (ret_val)
2682                         return ret_val;
2683         }
2684
2685         /* re-enable Rx path after enabling/disabling workaround */
2686         return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~BIT(14));
2687 }
2688
2689 /**
2690  *  e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2691  *  done after every PHY reset.
2692  **/
2693 static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2694 {
2695         s32 ret_val = 0;
2696
2697         if (hw->mac.type != e1000_pch2lan)
2698                 return 0;
2699
2700         /* Set MDIO slow mode before any other MDIO access */
2701         ret_val = e1000_set_mdio_slow_mode_hv(hw);
2702         if (ret_val)
2703                 return ret_val;
2704
2705         ret_val = hw->phy.ops.acquire(hw);
2706         if (ret_val)
2707                 return ret_val;
2708         /* set MSE higher to enable link to stay up when noise is high */
2709         ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
2710         if (ret_val)
2711                 goto release;
2712         /* drop link after 5 times MSE threshold was reached */
2713         ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
2714 release:
2715         hw->phy.ops.release(hw);
2716
2717         return ret_val;
2718 }
2719
2720 /**
2721  *  e1000_k1_gig_workaround_lv - K1 Si workaround
2722  *  @hw:   pointer to the HW structure
2723  *
2724  *  Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
2725  *  Disable K1 in 1000Mbps and 100Mbps
2726  **/
2727 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2728 {
2729         s32 ret_val = 0;
2730         u16 status_reg = 0;
2731
2732         if (hw->mac.type != e1000_pch2lan)
2733                 return 0;
2734
2735         /* Set K1 beacon duration based on 10Mbs speed */
2736         ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
2737         if (ret_val)
2738                 return ret_val;
2739
2740         if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2741             == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2742                 if (status_reg &
2743                     (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
2744                         u16 pm_phy_reg;
2745
2746                         /* LV 1G/100 Packet drop issue wa  */
2747                         ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg);
2748                         if (ret_val)
2749                                 return ret_val;
2750                         pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE;
2751                         ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg);
2752                         if (ret_val)
2753                                 return ret_val;
2754                 } else {
2755                         u32 mac_reg;
2756
2757                         mac_reg = er32(FEXTNVM4);
2758                         mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
2759                         mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
2760                         ew32(FEXTNVM4, mac_reg);
2761                 }
2762         }
2763
2764         return ret_val;
2765 }
2766
2767 /**
2768  *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2769  *  @hw:   pointer to the HW structure
2770  *  @gate: boolean set to true to gate, false to ungate
2771  *
2772  *  Gate/ungate the automatic PHY configuration via hardware; perform
2773  *  the configuration via software instead.
2774  **/
2775 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
2776 {
2777         u32 extcnf_ctrl;
2778
2779         if (hw->mac.type < e1000_pch2lan)
2780                 return;
2781
2782         extcnf_ctrl = er32(EXTCNF_CTRL);
2783
2784         if (gate)
2785                 extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2786         else
2787                 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2788
2789         ew32(EXTCNF_CTRL, extcnf_ctrl);
2790 }
2791
2792 /**
2793  *  e1000_lan_init_done_ich8lan - Check for PHY config completion
2794  *  @hw: pointer to the HW structure
2795  *
2796  *  Check the appropriate indication the MAC has finished configuring the
2797  *  PHY after a software reset.
2798  **/
2799 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
2800 {
2801         u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
2802
2803         /* Wait for basic configuration completes before proceeding */
2804         do {
2805                 data = er32(STATUS);
2806                 data &= E1000_STATUS_LAN_INIT_DONE;
2807                 usleep_range(100, 200);
2808         } while ((!data) && --loop);
2809
2810         /* If basic configuration is incomplete before the above loop
2811          * count reaches 0, loading the configuration from NVM will
2812          * leave the PHY in a bad state possibly resulting in no link.
2813          */
2814         if (loop == 0)
2815                 e_dbg("LAN_INIT_DONE not set, increase timeout\n");
2816
2817         /* Clear the Init Done bit for the next init event */
2818         data = er32(STATUS);
2819         data &= ~E1000_STATUS_LAN_INIT_DONE;
2820         ew32(STATUS, data);
2821 }
2822
2823 /**
2824  *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
2825  *  @hw: pointer to the HW structure
2826  **/
2827 static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
2828 {
2829         s32 ret_val = 0;
2830         u16 reg;
2831
2832         if (hw->phy.ops.check_reset_block(hw))
2833                 return 0;
2834
2835         /* Allow time for h/w to get to quiescent state after reset */
2836         usleep_range(10000, 20000);
2837
2838         /* Perform any necessary post-reset workarounds */
2839         switch (hw->mac.type) {
2840         case e1000_pchlan:
2841                 ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2842                 if (ret_val)
2843                         return ret_val;
2844                 break;
2845         case e1000_pch2lan:
2846                 ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
2847                 if (ret_val)
2848                         return ret_val;
2849                 break;
2850         default:
2851                 break;
2852         }
2853
2854         /* Clear the host wakeup bit after lcd reset */
2855         if (hw->mac.type >= e1000_pchlan) {
2856                 e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
2857                 reg &= ~BM_WUC_HOST_WU_BIT;
2858                 e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
2859         }
2860
2861         /* Configure the LCD with the extended configuration region in NVM */
2862         ret_val = e1000_sw_lcd_config_ich8lan(hw);
2863         if (ret_val)
2864                 return ret_val;
2865
2866         /* Configure the LCD with the OEM bits in NVM */
2867         ret_val = e1000_oem_bits_config_ich8lan(hw, true);
2868
2869         if (hw->mac.type == e1000_pch2lan) {
2870                 /* Ungate automatic PHY configuration on non-managed 82579 */
2871                 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
2872                         usleep_range(10000, 20000);
2873                         e1000_gate_hw_phy_config_ich8lan(hw, false);
2874                 }
2875
2876                 /* Set EEE LPI Update Timer to 200usec */
2877                 ret_val = hw->phy.ops.acquire(hw);
2878                 if (ret_val)
2879                         return ret_val;
2880                 ret_val = e1000_write_emi_reg_locked(hw,
2881                                                      I82579_LPI_UPDATE_TIMER,
2882                                                      0x1387);
2883                 hw->phy.ops.release(hw);
2884         }
2885
2886         return ret_val;
2887 }
2888
2889 /**
2890  *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
2891  *  @hw: pointer to the HW structure
2892  *
2893  *  Resets the PHY
2894  *  This is a function pointer entry point called by drivers
2895  *  or other shared routines.
2896  **/
2897 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
2898 {
2899         s32 ret_val = 0;
2900
2901         /* Gate automatic PHY configuration by hardware on non-managed 82579 */
2902         if ((hw->mac.type == e1000_pch2lan) &&
2903             !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
2904                 e1000_gate_hw_phy_config_ich8lan(hw, true);
2905
2906         ret_val = e1000e_phy_hw_reset_generic(hw);
2907         if (ret_val)
2908                 return ret_val;
2909
2910         return e1000_post_phy_reset_ich8lan(hw);
2911 }
2912
2913 /**
2914  *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
2915  *  @hw: pointer to the HW structure
2916  *  @active: true to enable LPLU, false to disable
2917  *
2918  *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
2919  *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
2920  *  the phy speed. This function will manually set the LPLU bit and restart
2921  *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
2922  *  since it configures the same bit.
2923  **/
2924 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
2925 {
2926         s32 ret_val;
2927         u16 oem_reg;
2928
2929         ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
2930         if (ret_val)
2931                 return ret_val;
2932
2933         if (active)
2934                 oem_reg |= HV_OEM_BITS_LPLU;
2935         else
2936                 oem_reg &= ~HV_OEM_BITS_LPLU;
2937
2938         if (!hw->phy.ops.check_reset_block(hw))
2939                 oem_reg |= HV_OEM_BITS_RESTART_AN;
2940
2941         return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
2942 }
2943
2944 /**
2945  *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
2946  *  @hw: pointer to the HW structure
2947  *  @active: true to enable LPLU, false to disable
2948  *
2949  *  Sets the LPLU D0 state according to the active flag.  When
2950  *  activating LPLU this function also disables smart speed
2951  *  and vice versa.  LPLU will not be activated unless the
2952  *  device autonegotiation advertisement meets standards of
2953  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
2954  *  This is a function pointer entry point only called by
2955  *  PHY setup routines.
2956  **/
2957 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2958 {
2959         struct e1000_phy_info *phy = &hw->phy;
2960         u32 phy_ctrl;
2961         s32 ret_val = 0;
2962         u16 data;
2963
2964         if (phy->type == e1000_phy_ife)
2965                 return 0;
2966
2967         phy_ctrl = er32(PHY_CTRL);
2968
2969         if (active) {
2970                 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2971                 ew32(PHY_CTRL, phy_ctrl);
2972
2973                 if (phy->type != e1000_phy_igp_3)
2974                         return 0;
2975
2976                 /* Call gig speed drop workaround on LPLU before accessing
2977                  * any PHY registers
2978                  */
2979                 if (hw->mac.type == e1000_ich8lan)
2980                         e1000e_gig_downshift_workaround_ich8lan(hw);
2981
2982                 /* When LPLU is enabled, we should disable SmartSpeed */
2983                 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
2984                 if (ret_val)
2985                         return ret_val;
2986                 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2987                 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
2988                 if (ret_val)
2989                         return ret_val;
2990         } else {
2991                 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2992                 ew32(PHY_CTRL, phy_ctrl);
2993
2994                 if (phy->type != e1000_phy_igp_3)
2995                         return 0;
2996
2997                 /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
2998                  * during Dx states where the power conservation is most
2999                  * important.  During driver activity we should enable
3000                  * SmartSpeed, so performance is maintained.
3001                  */
3002                 if (phy->smart_speed == e1000_smart_speed_on) {
3003                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3004                                            &data);
3005                         if (ret_val)
3006                                 return ret_val;
3007
3008                         data |= IGP01E1000_PSCFR_SMART_SPEED;
3009                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3010                                            data);
3011                         if (ret_val)
3012                                 return ret_val;
3013                 } else if (phy->smart_speed == e1000_smart_speed_off) {
3014                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3015                                            &data);
3016                         if (ret_val)
3017                                 return ret_val;
3018
3019                         data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3020                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3021                                            data);
3022                         if (ret_val)
3023                                 return ret_val;
3024                 }
3025         }
3026
3027         return 0;
3028 }
3029
3030 /**
3031  *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
3032  *  @hw: pointer to the HW structure
3033  *  @active: true to enable LPLU, false to disable
3034  *
3035  *  Sets the LPLU D3 state according to the active flag.  When
3036  *  activating LPLU this function also disables smart speed
3037  *  and vice versa.  LPLU will not be activated unless the
3038  *  device autonegotiation advertisement meets standards of
3039  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3040  *  This is a function pointer entry point only called by
3041  *  PHY setup routines.
3042  **/
3043 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3044 {
3045         struct e1000_phy_info *phy = &hw->phy;
3046         u32 phy_ctrl;
3047         s32 ret_val = 0;
3048         u16 data;
3049
3050         phy_ctrl = er32(PHY_CTRL);
3051
3052         if (!active) {
3053                 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
3054                 ew32(PHY_CTRL, phy_ctrl);
3055
3056                 if (phy->type != e1000_phy_igp_3)
3057                         return 0;
3058
3059                 /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3060                  * during Dx states where the power conservation is most
3061                  * important.  During driver activity we should enable
3062                  * SmartSpeed, so performance is maintained.
3063                  */
3064                 if (phy->smart_speed == e1000_smart_speed_on) {
3065                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3066                                            &data);
3067                         if (ret_val)
3068                                 return ret_val;
3069
3070                         data |= IGP01E1000_PSCFR_SMART_SPEED;
3071                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3072                                            data);
3073                         if (ret_val)
3074                                 return ret_val;
3075                 } else if (phy->smart_speed == e1000_smart_speed_off) {
3076                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3077                                            &data);
3078                         if (ret_val)
3079                                 return ret_val;
3080
3081                         data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3082                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3083                                            data);
3084                         if (ret_val)
3085                                 return ret_val;
3086                 }
3087         } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
3088                    (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
3089                    (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
3090                 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
3091                 ew32(PHY_CTRL, phy_ctrl);
3092
3093                 if (phy->type != e1000_phy_igp_3)
3094                         return 0;
3095
3096                 /* Call gig speed drop workaround on LPLU before accessing
3097                  * any PHY registers
3098                  */
3099                 if (hw->mac.type == e1000_ich8lan)
3100                         e1000e_gig_downshift_workaround_ich8lan(hw);
3101
3102                 /* When LPLU is enabled, we should disable SmartSpeed */
3103                 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
3104                 if (ret_val)
3105                         return ret_val;
3106
3107                 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3108                 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3109         }
3110
3111         return ret_val;
3112 }
3113
3114 /**
3115  *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
3116  *  @hw: pointer to the HW structure
3117  *  @bank:  pointer to the variable that returns the active bank
3118  *
3119  *  Reads signature byte from the NVM using the flash access registers.
3120  *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
3121  **/
3122 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
3123 {
3124         u32 eecd;
3125         struct e1000_nvm_info *nvm = &hw->nvm;
3126         u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
3127         u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
3128         u32 nvm_dword = 0;
3129         u8 sig_byte = 0;
3130         s32 ret_val;
3131
3132         switch (hw->mac.type) {
3133         case e1000_pch_spt:
3134         case e1000_pch_cnp:
3135                 bank1_offset = nvm->flash_bank_size;
3136                 act_offset = E1000_ICH_NVM_SIG_WORD;
3137
3138                 /* set bank to 0 in case flash read fails */
3139                 *bank = 0;
3140
3141                 /* Check bank 0 */
3142                 ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset,
3143                                                          &nvm_dword);
3144                 if (ret_val)
3145                         return ret_val;
3146                 sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3147                 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3148                     E1000_ICH_NVM_SIG_VALUE) {
3149                         *bank = 0;
3150                         return 0;
3151                 }
3152
3153                 /* Check bank 1 */
3154                 ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset +
3155                                                          bank1_offset,
3156                                                          &nvm_dword);
3157                 if (ret_val)
3158                         return ret_val;
3159                 sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3160                 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3161                     E1000_ICH_NVM_SIG_VALUE) {
3162                         *bank = 1;
3163                         return 0;
3164                 }
3165
3166                 e_dbg("ERROR: No valid NVM bank present\n");
3167                 return -E1000_ERR_NVM;
3168         case e1000_ich8lan:
3169         case e1000_ich9lan:
3170                 eecd = er32(EECD);
3171                 if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
3172                     E1000_EECD_SEC1VAL_VALID_MASK) {
3173                         if (eecd & E1000_EECD_SEC1VAL)
3174                                 *bank = 1;
3175                         else
3176                                 *bank = 0;
3177
3178                         return 0;
3179                 }
3180                 e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
3181                 /* fall-thru */
3182         default:
3183                 /* set bank to 0 in case flash read fails */
3184                 *bank = 0;
3185
3186                 /* Check bank 0 */
3187                 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
3188                                                         &sig_byte);
3189                 if (ret_val)
3190                         return ret_val;
3191                 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3192                     E1000_ICH_NVM_SIG_VALUE) {
3193                         *bank = 0;
3194                         return 0;
3195                 }
3196
3197                 /* Check bank 1 */
3198                 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
3199                                                         bank1_offset,
3200                                                         &sig_byte);
3201                 if (ret_val)
3202                         return ret_val;
3203                 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3204                     E1000_ICH_NVM_SIG_VALUE) {
3205                         *bank = 1;
3206                         return 0;
3207                 }
3208
3209                 e_dbg("ERROR: No valid NVM bank present\n");
3210                 return -E1000_ERR_NVM;
3211         }
3212 }
3213
3214 /**
3215  *  e1000_read_nvm_spt - NVM access for SPT
3216  *  @hw: pointer to the HW structure
3217  *  @offset: The offset (in bytes) of the word(s) to read.
3218  *  @words: Size of data to read in words.
3219  *  @data: pointer to the word(s) to read at offset.
3220  *
3221  *  Reads a word(s) from the NVM
3222  **/
3223 static s32 e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words,
3224                               u16 *data)
3225 {
3226         struct e1000_nvm_info *nvm = &hw->nvm;
3227         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3228         u32 act_offset;
3229         s32 ret_val = 0;
3230         u32 bank = 0;
3231         u32 dword = 0;
3232         u16 offset_to_read;
3233         u16 i;
3234
3235         if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3236             (words == 0)) {
3237                 e_dbg("nvm parameter(s) out of bounds\n");
3238                 ret_val = -E1000_ERR_NVM;
3239                 goto out;
3240         }
3241
3242         nvm->ops.acquire(hw);
3243
3244         ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3245         if (ret_val) {
3246                 e_dbg("Could not detect valid bank, assuming bank 0\n");
3247                 bank = 0;
3248         }
3249
3250         act_offset = (bank) ? nvm->flash_bank_size : 0;
3251         act_offset += offset;
3252
3253         ret_val = 0;
3254
3255         for (i = 0; i < words; i += 2) {
3256                 if (words - i == 1) {
3257                         if (dev_spec->shadow_ram[offset + i].modified) {
3258                                 data[i] =
3259                                     dev_spec->shadow_ram[offset + i].value;
3260                         } else {
3261                                 offset_to_read = act_offset + i -
3262                                     ((act_offset + i) % 2);
3263                                 ret_val =
3264                                   e1000_read_flash_dword_ich8lan(hw,
3265                                                                  offset_to_read,
3266                                                                  &dword);
3267                                 if (ret_val)
3268                                         break;
3269                                 if ((act_offset + i) % 2 == 0)
3270                                         data[i] = (u16)(dword & 0xFFFF);
3271                                 else
3272                                         data[i] = (u16)((dword >> 16) & 0xFFFF);
3273                         }
3274                 } else {
3275                         offset_to_read = act_offset + i;
3276                         if (!(dev_spec->shadow_ram[offset + i].modified) ||
3277                             !(dev_spec->shadow_ram[offset + i + 1].modified)) {
3278                                 ret_val =
3279                                   e1000_read_flash_dword_ich8lan(hw,
3280                                                                  offset_to_read,
3281                                                                  &dword);
3282                                 if (ret_val)
3283                                         break;
3284                         }
3285                         if (dev_spec->shadow_ram[offset + i].modified)
3286                                 data[i] =
3287                                     dev_spec->shadow_ram[offset + i].value;
3288                         else
3289                                 data[i] = (u16)(dword & 0xFFFF);
3290                         if (dev_spec->shadow_ram[offset + i].modified)
3291                                 data[i + 1] =
3292                                     dev_spec->shadow_ram[offset + i + 1].value;
3293                         else
3294                                 data[i + 1] = (u16)(dword >> 16 & 0xFFFF);
3295                 }
3296         }
3297
3298         nvm->ops.release(hw);
3299
3300 out:
3301         if (ret_val)
3302                 e_dbg("NVM read error: %d\n", ret_val);
3303
3304         return ret_val;
3305 }
3306
3307 /**
3308  *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
3309  *  @hw: pointer to the HW structure
3310  *  @offset: The offset (in bytes) of the word(s) to read.
3311  *  @words: Size of data to read in words
3312  *  @data: Pointer to the word(s) to read at offset.
3313  *
3314  *  Reads a word(s) from the NVM using the flash access registers.
3315  **/
3316 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3317                                   u16 *data)
3318 {
3319         struct e1000_nvm_info *nvm = &hw->nvm;
3320         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3321         u32 act_offset;
3322         s32 ret_val = 0;
3323         u32 bank = 0;
3324         u16 i, word;
3325
3326         if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3327             (words == 0)) {
3328                 e_dbg("nvm parameter(s) out of bounds\n");
3329                 ret_val = -E1000_ERR_NVM;
3330                 goto out;
3331         }
3332
3333         nvm->ops.acquire(hw);
3334
3335         ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3336         if (ret_val) {
3337                 e_dbg("Could not detect valid bank, assuming bank 0\n");
3338                 bank = 0;
3339         }
3340
3341         act_offset = (bank) ? nvm->flash_bank_size : 0;
3342         act_offset += offset;
3343
3344         ret_val = 0;
3345         for (i = 0; i < words; i++) {
3346                 if (dev_spec->shadow_ram[offset + i].modified) {
3347                         data[i] = dev_spec->shadow_ram[offset + i].value;
3348                 } else {
3349                         ret_val = e1000_read_flash_word_ich8lan(hw,
3350                                                                 act_offset + i,
3351                                                                 &word);
3352                         if (ret_val)
3353                                 break;
3354                         data[i] = word;
3355                 }
3356         }
3357
3358         nvm->ops.release(hw);
3359
3360 out:
3361         if (ret_val)
3362                 e_dbg("NVM read error: %d\n", ret_val);
3363
3364         return ret_val;
3365 }
3366
3367 /**
3368  *  e1000_flash_cycle_init_ich8lan - Initialize flash
3369  *  @hw: pointer to the HW structure
3370  *
3371  *  This function does initial flash setup so that a new read/write/erase cycle
3372  *  can be started.
3373  **/
3374 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
3375 {
3376         union ich8_hws_flash_status hsfsts;
3377         s32 ret_val = -E1000_ERR_NVM;
3378
3379         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3380
3381         /* Check if the flash descriptor is valid */
3382         if (!hsfsts.hsf_status.fldesvalid) {
3383                 e_dbg("Flash descriptor invalid.  SW Sequencing must be used.\n");
3384                 return -E1000_ERR_NVM;
3385         }
3386
3387         /* Clear FCERR and DAEL in hw status by writing 1 */
3388         hsfsts.hsf_status.flcerr = 1;
3389         hsfsts.hsf_status.dael = 1;
3390         if (hw->mac.type >= e1000_pch_spt)
3391                 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3392         else
3393                 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3394
3395         /* Either we should have a hardware SPI cycle in progress
3396          * bit to check against, in order to start a new cycle or
3397          * FDONE bit should be changed in the hardware so that it
3398          * is 1 after hardware reset, which can then be used as an
3399          * indication whether a cycle is in progress or has been
3400          * completed.
3401          */
3402
3403         if (!hsfsts.hsf_status.flcinprog) {
3404                 /* There is no cycle running at present,
3405                  * so we can start a cycle.
3406                  * Begin by setting Flash Cycle Done.
3407                  */
3408                 hsfsts.hsf_status.flcdone = 1;
3409                 if (hw->mac.type >= e1000_pch_spt)
3410                         ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3411                 else
3412                         ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3413                 ret_val = 0;
3414         } else {
3415                 s32 i;
3416
3417                 /* Otherwise poll for sometime so the current
3418                  * cycle has a chance to end before giving up.
3419                  */
3420                 for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
3421                         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3422                         if (!hsfsts.hsf_status.flcinprog) {
3423                                 ret_val = 0;
3424                                 break;
3425                         }
3426                         udelay(1);
3427                 }
3428                 if (!ret_val) {
3429                         /* Successful in waiting for previous cycle to timeout,
3430                          * now set the Flash Cycle Done.
3431                          */
3432                         hsfsts.hsf_status.flcdone = 1;
3433                         if (hw->mac.type >= e1000_pch_spt)
3434                                 ew32flash(ICH_FLASH_HSFSTS,
3435                                           hsfsts.regval & 0xFFFF);
3436                         else
3437                                 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3438                 } else {
3439                         e_dbg("Flash controller busy, cannot get access\n");
3440                 }
3441         }
3442
3443         return ret_val;
3444 }
3445
3446 /**
3447  *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
3448  *  @hw: pointer to the HW structure
3449  *  @timeout: maximum time to wait for completion
3450  *
3451  *  This function starts a flash cycle and waits for its completion.
3452  **/
3453 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
3454 {
3455         union ich8_hws_flash_ctrl hsflctl;
3456         union ich8_hws_flash_status hsfsts;
3457         u32 i = 0;
3458
3459         /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
3460         if (hw->mac.type >= e1000_pch_spt)
3461                 hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3462         else
3463                 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3464         hsflctl.hsf_ctrl.flcgo = 1;
3465
3466         if (hw->mac.type >= e1000_pch_spt)
3467                 ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
3468         else
3469                 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3470
3471         /* wait till FDONE bit is set to 1 */
3472         do {
3473                 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3474                 if (hsfsts.hsf_status.flcdone)
3475                         break;
3476                 udelay(1);
3477         } while (i++ < timeout);
3478
3479         if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
3480                 return 0;
3481
3482         return -E1000_ERR_NVM;
3483 }
3484
3485 /**
3486  *  e1000_read_flash_dword_ich8lan - Read dword from flash
3487  *  @hw: pointer to the HW structure
3488  *  @offset: offset to data location
3489  *  @data: pointer to the location for storing the data
3490  *
3491  *  Reads the flash dword at offset into data.  Offset is converted
3492  *  to bytes before read.
3493  **/
3494 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset,
3495                                           u32 *data)
3496 {
3497         /* Must convert word offset into bytes. */
3498         offset <<= 1;
3499         return e1000_read_flash_data32_ich8lan(hw, offset, data);
3500 }
3501
3502 /**
3503  *  e1000_read_flash_word_ich8lan - Read word from flash
3504  *  @hw: pointer to the HW structure
3505  *  @offset: offset to data location
3506  *  @data: pointer to the location for storing the data
3507  *
3508  *  Reads the flash word at offset into data.  Offset is converted
3509  *  to bytes before read.
3510  **/
3511 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
3512                                          u16 *data)
3513 {
3514         /* Must convert offset into bytes. */
3515         offset <<= 1;
3516
3517         return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
3518 }
3519
3520 /**
3521  *  e1000_read_flash_byte_ich8lan - Read byte from flash
3522  *  @hw: pointer to the HW structure
3523  *  @offset: The offset of the byte to read.
3524  *  @data: Pointer to a byte to store the value read.
3525  *
3526  *  Reads a single byte from the NVM using the flash access registers.
3527  **/
3528 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3529                                          u8 *data)
3530 {
3531         s32 ret_val;
3532         u16 word = 0;
3533
3534         /* In SPT, only 32 bits access is supported,
3535          * so this function should not be called.
3536          */
3537         if (hw->mac.type >= e1000_pch_spt)
3538                 return -E1000_ERR_NVM;
3539         else
3540                 ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
3541
3542         if (ret_val)
3543                 return ret_val;
3544
3545         *data = (u8)word;
3546
3547         return 0;
3548 }
3549
3550 /**
3551  *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
3552  *  @hw: pointer to the HW structure
3553  *  @offset: The offset (in bytes) of the byte or word to read.
3554  *  @size: Size of data to read, 1=byte 2=word
3555  *  @data: Pointer to the word to store the value read.
3556  *
3557  *  Reads a byte or word from the NVM using the flash access registers.
3558  **/
3559 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3560                                          u8 size, u16 *data)
3561 {
3562         union ich8_hws_flash_status hsfsts;
3563         union ich8_hws_flash_ctrl hsflctl;
3564         u32 flash_linear_addr;
3565         u32 flash_data = 0;
3566         s32 ret_val = -E1000_ERR_NVM;
3567         u8 count = 0;
3568
3569         if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3570                 return -E1000_ERR_NVM;
3571
3572         flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3573                              hw->nvm.flash_base_addr);
3574
3575         do {
3576                 udelay(1);
3577                 /* Steps */
3578                 ret_val = e1000_flash_cycle_init_ich8lan(hw);
3579                 if (ret_val)
3580                         break;
3581
3582                 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3583                 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3584                 hsflctl.hsf_ctrl.fldbcount = size - 1;
3585                 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3586                 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3587
3588                 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3589
3590                 ret_val =
3591                     e1000_flash_cycle_ich8lan(hw,
3592                                               ICH_FLASH_READ_COMMAND_TIMEOUT);
3593
3594                 /* Check if FCERR is set to 1, if set to 1, clear it
3595                  * and try the whole sequence a few more times, else
3596                  * read in (shift in) the Flash Data0, the order is
3597                  * least significant byte first msb to lsb
3598                  */
3599                 if (!ret_val) {
3600                         flash_data = er32flash(ICH_FLASH_FDATA0);
3601                         if (size == 1)
3602                                 *data = (u8)(flash_data & 0x000000FF);
3603                         else if (size == 2)
3604                                 *data = (u16)(flash_data & 0x0000FFFF);
3605                         break;
3606                 } else {
3607                         /* If we've gotten here, then things are probably
3608                          * completely hosed, but if the error condition is
3609                          * detected, it won't hurt to give it another try...
3610                          * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3611                          */
3612                         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3613                         if (hsfsts.hsf_status.flcerr) {
3614                                 /* Repeat for some time before giving up. */
3615                                 continue;
3616                         } else if (!hsfsts.hsf_status.flcdone) {
3617                                 e_dbg("Timeout error - flash cycle did not complete.\n");
3618                                 break;
3619                         }
3620                 }
3621         } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3622
3623         return ret_val;
3624 }
3625
3626 /**
3627  *  e1000_read_flash_data32_ich8lan - Read dword from NVM
3628  *  @hw: pointer to the HW structure
3629  *  @offset: The offset (in bytes) of the dword to read.
3630  *  @data: Pointer to the dword to store the value read.
3631  *
3632  *  Reads a byte or word from the NVM using the flash access registers.
3633  **/
3634
3635 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
3636                                            u32 *data)
3637 {
3638         union ich8_hws_flash_status hsfsts;
3639         union ich8_hws_flash_ctrl hsflctl;
3640         u32 flash_linear_addr;
3641         s32 ret_val = -E1000_ERR_NVM;
3642         u8 count = 0;
3643
3644         if (offset > ICH_FLASH_LINEAR_ADDR_MASK || hw->mac.type < e1000_pch_spt)
3645                 return -E1000_ERR_NVM;
3646         flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3647                              hw->nvm.flash_base_addr);
3648
3649         do {
3650                 udelay(1);
3651                 /* Steps */
3652                 ret_val = e1000_flash_cycle_init_ich8lan(hw);
3653                 if (ret_val)
3654                         break;
3655                 /* In SPT, This register is in Lan memory space, not flash.
3656                  * Therefore, only 32 bit access is supported
3657                  */
3658                 hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3659
3660                 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3661                 hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
3662                 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3663                 /* In SPT, This register is in Lan memory space, not flash.
3664                  * Therefore, only 32 bit access is supported
3665                  */
3666                 ew32flash(ICH_FLASH_HSFSTS, (u32)hsflctl.regval << 16);
3667                 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3668
3669                 ret_val =
3670                    e1000_flash_cycle_ich8lan(hw,
3671                                              ICH_FLASH_READ_COMMAND_TIMEOUT);
3672
3673                 /* Check if FCERR is set to 1, if set to 1, clear it
3674                  * and try the whole sequence a few more times, else
3675                  * read in (shift in) the Flash Data0, the order is
3676                  * least significant byte first msb to lsb
3677                  */
3678                 if (!ret_val) {
3679                         *data = er32flash(ICH_FLASH_FDATA0);
3680                         break;
3681                 } else {
3682                         /* If we've gotten here, then things are probably
3683                          * completely hosed, but if the error condition is
3684                          * detected, it won't hurt to give it another try...
3685                          * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3686                          */
3687                         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3688                         if (hsfsts.hsf_status.flcerr) {
3689                                 /* Repeat for some time before giving up. */
3690                                 continue;
3691                         } else if (!hsfsts.hsf_status.flcdone) {
3692                                 e_dbg("Timeout error - flash cycle did not complete.\n");
3693                                 break;
3694                         }
3695                 }
3696         } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3697
3698         return ret_val;
3699 }
3700
3701 /**
3702  *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
3703  *  @hw: pointer to the HW structure
3704  *  @offset: The offset (in bytes) of the word(s) to write.
3705  *  @words: Size of data to write in words
3706  *  @data: Pointer to the word(s) to write at offset.
3707  *
3708  *  Writes a byte or word to the NVM using the flash access registers.
3709  **/
3710 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3711                                    u16 *data)
3712 {
3713         struct e1000_nvm_info *nvm = &hw->nvm;
3714         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3715         u16 i;
3716
3717         if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3718             (words == 0)) {
3719                 e_dbg("nvm parameter(s) out of bounds\n");
3720                 return -E1000_ERR_NVM;
3721         }
3722
3723         nvm->ops.acquire(hw);
3724
3725         for (i = 0; i < words; i++) {
3726                 dev_spec->shadow_ram[offset + i].modified = true;
3727                 dev_spec->shadow_ram[offset + i].value = data[i];
3728         }
3729
3730         nvm->ops.release(hw);
3731
3732         return 0;
3733 }
3734
3735 /**
3736  *  e1000_update_nvm_checksum_spt - Update the checksum for NVM
3737  *  @hw: pointer to the HW structure
3738  *
3739  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3740  *  which writes the checksum to the shadow ram.  The changes in the shadow
3741  *  ram are then committed to the EEPROM by processing each bank at a time
3742  *  checking for the modified bit and writing only the pending changes.
3743  *  After a successful commit, the shadow ram is cleared and is ready for
3744  *  future writes.
3745  **/
3746 static s32 e1000_update_nvm_checksum_spt(struct e1000_hw *hw)
3747 {
3748         struct e1000_nvm_info *nvm = &hw->nvm;
3749         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3750         u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3751         s32 ret_val;
3752         u32 dword = 0;
3753
3754         ret_val = e1000e_update_nvm_checksum_generic(hw);
3755         if (ret_val)
3756                 goto out;
3757
3758         if (nvm->type != e1000_nvm_flash_sw)
3759                 goto out;
3760
3761         nvm->ops.acquire(hw);
3762
3763         /* We're writing to the opposite bank so if we're on bank 1,
3764          * write to bank 0 etc.  We also need to erase the segment that
3765          * is going to be written
3766          */
3767         ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3768         if (ret_val) {
3769                 e_dbg("Could not detect valid bank, assuming bank 0\n");
3770                 bank = 0;
3771         }
3772
3773         if (bank == 0) {
3774                 new_bank_offset = nvm->flash_bank_size;
3775                 old_bank_offset = 0;
3776                 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3777                 if (ret_val)
3778                         goto release;
3779         } else {
3780                 old_bank_offset = nvm->flash_bank_size;
3781                 new_bank_offset = 0;
3782                 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3783                 if (ret_val)
3784                         goto release;
3785         }
3786         for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i += 2) {
3787                 /* Determine whether to write the value stored
3788                  * in the other NVM bank or a modified value stored
3789                  * in the shadow RAM
3790                  */
3791                 ret_val = e1000_read_flash_dword_ich8lan(hw,
3792                                                          i + old_bank_offset,
3793                                                          &dword);
3794
3795                 if (dev_spec->shadow_ram[i].modified) {
3796                         dword &= 0xffff0000;
3797                         dword |= (dev_spec->shadow_ram[i].value & 0xffff);
3798                 }
3799                 if (dev_spec->shadow_ram[i + 1].modified) {
3800                         dword &= 0x0000ffff;
3801                         dword |= ((dev_spec->shadow_ram[i + 1].value & 0xffff)
3802                                   << 16);
3803                 }
3804                 if (ret_val)
3805                         break;
3806
3807                 /* If the word is 0x13, then make sure the signature bits
3808                  * (15:14) are 11b until the commit has completed.
3809                  * This will allow us to write 10b which indicates the
3810                  * signature is valid.  We want to do this after the write
3811                  * has completed so that we don't mark the segment valid
3812                  * while the write is still in progress
3813                  */
3814                 if (i == E1000_ICH_NVM_SIG_WORD - 1)
3815                         dword |= E1000_ICH_NVM_SIG_MASK << 16;
3816
3817                 /* Convert offset to bytes. */
3818                 act_offset = (i + new_bank_offset) << 1;
3819
3820                 usleep_range(100, 200);
3821
3822                 /* Write the data to the new bank. Offset in words */
3823                 act_offset = i + new_bank_offset;
3824                 ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset,
3825                                                                 dword);
3826                 if (ret_val)
3827                         break;
3828         }
3829
3830         /* Don't bother writing the segment valid bits if sector
3831          * programming failed.
3832          */
3833         if (ret_val) {
3834                 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3835                 e_dbg("Flash commit failed.\n");
3836                 goto release;
3837         }
3838
3839         /* Finally validate the new segment by setting bit 15:14
3840          * to 10b in word 0x13 , this can be done without an
3841          * erase as well since these bits are 11 to start with
3842          * and we need to change bit 14 to 0b
3843          */
3844         act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
3845
3846         /*offset in words but we read dword */
3847         --act_offset;
3848         ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3849
3850         if (ret_val)
3851                 goto release;
3852
3853         dword &= 0xBFFFFFFF;
3854         ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3855
3856         if (ret_val)
3857                 goto release;
3858
3859         /* And invalidate the previously valid segment by setting
3860          * its signature word (0x13) high_byte to 0b. This can be
3861          * done without an erase because flash erase sets all bits
3862          * to 1's. We can write 1's to 0's without an erase
3863          */
3864         act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
3865
3866         /* offset in words but we read dword */
3867         act_offset = old_bank_offset + E1000_ICH_NVM_SIG_WORD - 1;
3868         ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3869
3870         if (ret_val)
3871                 goto release;
3872
3873         dword &= 0x00FFFFFF;
3874         ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3875
3876         if (ret_val)
3877                 goto release;
3878
3879         /* Great!  Everything worked, we can now clear the cached entries. */
3880         for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3881                 dev_spec->shadow_ram[i].modified = false;
3882                 dev_spec->shadow_ram[i].value = 0xFFFF;
3883         }
3884
3885 release:
3886         nvm->ops.release(hw);
3887
3888         /* Reload the EEPROM, or else modifications will not appear
3889          * until after the next adapter reset.
3890          */
3891         if (!ret_val) {
3892                 nvm->ops.reload(hw);
3893                 usleep_range(10000, 20000);
3894         }
3895
3896 out:
3897         if (ret_val)
3898                 e_dbg("NVM update error: %d\n", ret_val);
3899
3900         return ret_val;
3901 }
3902
3903 /**
3904  *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
3905  *  @hw: pointer to the HW structure
3906  *
3907  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3908  *  which writes the checksum to the shadow ram.  The changes in the shadow
3909  *  ram are then committed to the EEPROM by processing each bank at a time
3910  *  checking for the modified bit and writing only the pending changes.
3911  *  After a successful commit, the shadow ram is cleared and is ready for
3912  *  future writes.
3913  **/
3914 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
3915 {
3916         struct e1000_nvm_info *nvm = &hw->nvm;
3917         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3918         u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3919         s32 ret_val;
3920         u16 data = 0;
3921
3922         ret_val = e1000e_update_nvm_checksum_generic(hw);
3923         if (ret_val)
3924                 goto out;
3925
3926         if (nvm->type != e1000_nvm_flash_sw)
3927                 goto out;
3928
3929         nvm->ops.acquire(hw);
3930
3931         /* We're writing to the opposite bank so if we're on bank 1,
3932          * write to bank 0 etc.  We also need to erase the segment that
3933          * is going to be written
3934          */
3935         ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3936         if (ret_val) {
3937                 e_dbg("Could not detect valid bank, assuming bank 0\n");
3938                 bank = 0;
3939         }
3940
3941         if (bank == 0) {
3942                 new_bank_offset = nvm->flash_bank_size;
3943                 old_bank_offset = 0;
3944                 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3945                 if (ret_val)
3946                         goto release;
3947         } else {
3948                 old_bank_offset = nvm->flash_bank_size;
3949                 new_bank_offset = 0;
3950                 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3951                 if (ret_val)
3952                         goto release;
3953         }
3954         for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3955                 if (dev_spec->shadow_ram[i].modified) {
3956                         data = dev_spec->shadow_ram[i].value;
3957                 } else {
3958                         ret_val = e1000_read_flash_word_ich8lan(hw, i +
3959                                                                 old_bank_offset,
3960                                                                 &data);
3961                         if (ret_val)
3962                                 break;
3963                 }
3964
3965                 /* If the word is 0x13, then make sure the signature bits
3966                  * (15:14) are 11b until the commit has completed.
3967                  * This will allow us to write 10b which indicates the
3968                  * signature is valid.  We want to do this after the write
3969                  * has completed so that we don't mark the segment valid
3970                  * while the write is still in progress
3971                  */
3972                 if (i == E1000_ICH_NVM_SIG_WORD)
3973                         data |= E1000_ICH_NVM_SIG_MASK;
3974
3975                 /* Convert offset to bytes. */
3976                 act_offset = (i + new_bank_offset) << 1;
3977
3978                 usleep_range(100, 200);
3979                 /* Write the bytes to the new bank. */
3980                 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3981                                                                act_offset,
3982                                                                (u8)data);
3983                 if (ret_val)
3984                         break;
3985
3986                 usleep_range(100, 200);
3987                 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3988                                                                act_offset + 1,
3989                                                                (u8)(data >> 8));
3990                 if (ret_val)
3991                         break;
3992         }
3993
3994         /* Don't bother writing the segment valid bits if sector
3995          * programming failed.
3996          */
3997         if (ret_val) {
3998                 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3999                 e_dbg("Flash commit failed.\n");
4000                 goto release;
4001         }
4002
4003         /* Finally validate the new segment by setting bit 15:14
4004          * to 10b in word 0x13 , this can be done without an
4005          * erase as well since these bits are 11 to start with
4006          * and we need to change bit 14 to 0b
4007          */
4008         act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
4009         ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
4010         if (ret_val)
4011                 goto release;
4012
4013         data &= 0xBFFF;
4014         ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4015                                                        act_offset * 2 + 1,
4016                                                        (u8)(data >> 8));
4017         if (ret_val)
4018                 goto release;
4019
4020         /* And invalidate the previously valid segment by setting
4021          * its signature word (0x13) high_byte to 0b. This can be
4022          * done without an erase because flash erase sets all bits
4023          * to 1's. We can write 1's to 0's without an erase
4024          */
4025         act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
4026         ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
4027         if (ret_val)
4028                 goto release;
4029
4030         /* Great!  Everything worked, we can now clear the cached entries. */
4031         for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
4032                 dev_spec->shadow_ram[i].modified = false;
4033                 dev_spec->shadow_ram[i].value = 0xFFFF;
4034         }
4035
4036 release:
4037         nvm->ops.release(hw);
4038
4039         /* Reload the EEPROM, or else modifications will not appear
4040          * until after the next adapter reset.
4041          */
4042         if (!ret_val) {
4043                 nvm->ops.reload(hw);
4044                 usleep_range(10000, 20000);
4045         }
4046
4047 out:
4048         if (ret_val)
4049                 e_dbg("NVM update error: %d\n", ret_val);
4050
4051         return ret_val;
4052 }
4053
4054 /**
4055  *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
4056  *  @hw: pointer to the HW structure
4057  *
4058  *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
4059  *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
4060  *  calculated, in which case we need to calculate the checksum and set bit 6.
4061  **/
4062 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
4063 {
4064         s32 ret_val;
4065         u16 data;
4066         u16 word;
4067         u16 valid_csum_mask;
4068
4069         /* Read NVM and check Invalid Image CSUM bit.  If this bit is 0,
4070          * the checksum needs to be fixed.  This bit is an indication that
4071          * the NVM was prepared by OEM software and did not calculate
4072          * the checksum...a likely scenario.
4073          */
4074         switch (hw->mac.type) {
4075         case e1000_pch_lpt:
4076         case e1000_pch_spt:
4077         case e1000_pch_cnp:
4078                 word = NVM_COMPAT;
4079                 valid_csum_mask = NVM_COMPAT_VALID_CSUM;
4080                 break;
4081         default:
4082                 word = NVM_FUTURE_INIT_WORD1;
4083                 valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
4084                 break;
4085         }
4086
4087         ret_val = e1000_read_nvm(hw, word, 1, &data);
4088         if (ret_val)
4089                 return ret_val;
4090
4091         if (!(data & valid_csum_mask)) {
4092                 data |= valid_csum_mask;
4093                 ret_val = e1000_write_nvm(hw, word, 1, &data);
4094                 if (ret_val)
4095                         return ret_val;
4096                 ret_val = e1000e_update_nvm_checksum(hw);
4097                 if (ret_val)
4098                         return ret_val;
4099         }
4100
4101         return e1000e_validate_nvm_checksum_generic(hw);
4102 }
4103
4104 /**
4105  *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
4106  *  @hw: pointer to the HW structure
4107  *
4108  *  To prevent malicious write/erase of the NVM, set it to be read-only
4109  *  so that the hardware ignores all write/erase cycles of the NVM via
4110  *  the flash control registers.  The shadow-ram copy of the NVM will
4111  *  still be updated, however any updates to this copy will not stick
4112  *  across driver reloads.
4113  **/
4114 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
4115 {
4116         struct e1000_nvm_info *nvm = &hw->nvm;
4117         union ich8_flash_protected_range pr0;
4118         union ich8_hws_flash_status hsfsts;
4119         u32 gfpreg;
4120
4121         nvm->ops.acquire(hw);
4122
4123         gfpreg = er32flash(ICH_FLASH_GFPREG);
4124
4125         /* Write-protect GbE Sector of NVM */
4126         pr0.regval = er32flash(ICH_FLASH_PR0);
4127         pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
4128         pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
4129         pr0.range.wpe = true;
4130         ew32flash(ICH_FLASH_PR0, pr0.regval);
4131
4132         /* Lock down a subset of GbE Flash Control Registers, e.g.
4133          * PR0 to prevent the write-protection from being lifted.
4134          * Once FLOCKDN is set, the registers protected by it cannot
4135          * be written until FLOCKDN is cleared by a hardware reset.
4136          */
4137         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4138         hsfsts.hsf_status.flockdn = true;
4139         ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
4140
4141         nvm->ops.release(hw);
4142 }
4143
4144 /**
4145  *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
4146  *  @hw: pointer to the HW structure
4147  *  @offset: The offset (in bytes) of the byte/word to read.
4148  *  @size: Size of data to read, 1=byte 2=word
4149  *  @data: The byte(s) to write to the NVM.
4150  *
4151  *  Writes one/two bytes to the NVM using the flash access registers.
4152  **/
4153 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
4154                                           u8 size, u16 data)
4155 {
4156         union ich8_hws_flash_status hsfsts;
4157         union ich8_hws_flash_ctrl hsflctl;
4158         u32 flash_linear_addr;
4159         u32 flash_data = 0;
4160         s32 ret_val;
4161         u8 count = 0;
4162
4163         if (hw->mac.type >= e1000_pch_spt) {
4164                 if (size != 4 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4165                         return -E1000_ERR_NVM;
4166         } else {
4167                 if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4168                         return -E1000_ERR_NVM;
4169         }
4170
4171         flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4172                              hw->nvm.flash_base_addr);
4173
4174         do {
4175                 udelay(1);
4176                 /* Steps */
4177                 ret_val = e1000_flash_cycle_init_ich8lan(hw);
4178                 if (ret_val)
4179                         break;
4180                 /* In SPT, This register is in Lan memory space, not
4181                  * flash.  Therefore, only 32 bit access is supported
4182                  */
4183                 if (hw->mac.type >= e1000_pch_spt)
4184                         hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
4185                 else
4186                         hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4187
4188                 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
4189                 hsflctl.hsf_ctrl.fldbcount = size - 1;
4190                 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4191                 /* In SPT, This register is in Lan memory space,
4192                  * not flash.  Therefore, only 32 bit access is
4193                  * supported
4194                  */
4195                 if (hw->mac.type >= e1000_pch_spt)
4196                         ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4197                 else
4198                         ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4199
4200                 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4201
4202                 if (size == 1)
4203                         flash_data = (u32)data & 0x00FF;
4204                 else
4205                         flash_data = (u32)data;
4206
4207                 ew32flash(ICH_FLASH_FDATA0, flash_data);
4208
4209                 /* check if FCERR is set to 1 , if set to 1, clear it
4210                  * and try the whole sequence a few more times else done
4211                  */
4212                 ret_val =
4213                     e1000_flash_cycle_ich8lan(hw,
4214                                               ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4215                 if (!ret_val)
4216                         break;
4217
4218                 /* If we're here, then things are most likely
4219                  * completely hosed, but if the error condition
4220                  * is detected, it won't hurt to give it another
4221                  * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4222                  */
4223                 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4224                 if (hsfsts.hsf_status.flcerr)
4225                         /* Repeat for some time before giving up. */
4226                         continue;
4227                 if (!hsfsts.hsf_status.flcdone) {
4228                         e_dbg("Timeout error - flash cycle did not complete.\n");
4229                         break;
4230                 }
4231         } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4232
4233         return ret_val;
4234 }
4235
4236 /**
4237 *  e1000_write_flash_data32_ich8lan - Writes 4 bytes to the NVM
4238 *  @hw: pointer to the HW structure
4239 *  @offset: The offset (in bytes) of the dwords to read.
4240 *  @data: The 4 bytes to write to the NVM.
4241 *
4242 *  Writes one/two/four bytes to the NVM using the flash access registers.
4243 **/
4244 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
4245                                             u32 data)
4246 {
4247         union ich8_hws_flash_status hsfsts;
4248         union ich8_hws_flash_ctrl hsflctl;
4249         u32 flash_linear_addr;
4250         s32 ret_val;
4251         u8 count = 0;
4252
4253         if (hw->mac.type >= e1000_pch_spt) {
4254                 if (offset > ICH_FLASH_LINEAR_ADDR_MASK)
4255                         return -E1000_ERR_NVM;
4256         }
4257         flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4258                              hw->nvm.flash_base_addr);
4259         do {
4260                 udelay(1);
4261                 /* Steps */
4262                 ret_val = e1000_flash_cycle_init_ich8lan(hw);
4263                 if (ret_val)
4264                         break;
4265
4266                 /* In SPT, This register is in Lan memory space, not
4267                  * flash.  Therefore, only 32 bit access is supported
4268                  */
4269                 if (hw->mac.type >= e1000_pch_spt)
4270                         hsflctl.regval = er32flash(ICH_FLASH_HSFSTS)
4271                             >> 16;
4272                 else
4273                         hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4274
4275                 hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
4276                 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4277
4278                 /* In SPT, This register is in Lan memory space,
4279                  * not flash.  Therefore, only 32 bit access is
4280                  * supported
4281                  */
4282                 if (hw->mac.type >= e1000_pch_spt)
4283                         ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4284                 else
4285                         ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4286
4287                 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4288
4289                 ew32flash(ICH_FLASH_FDATA0, data);
4290
4291                 /* check if FCERR is set to 1 , if set to 1, clear it
4292                  * and try the whole sequence a few more times else done
4293                  */
4294                 ret_val =
4295                    e1000_flash_cycle_ich8lan(hw,
4296                                              ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4297
4298                 if (!ret_val)
4299                         break;
4300
4301                 /* If we're here, then things are most likely
4302                  * completely hosed, but if the error condition
4303                  * is detected, it won't hurt to give it another
4304                  * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4305                  */
4306                 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4307
4308                 if (hsfsts.hsf_status.flcerr)
4309                         /* Repeat for some time before giving up. */
4310                         continue;
4311                 if (!hsfsts.hsf_status.flcdone) {
4312                         e_dbg("Timeout error - flash cycle did not complete.\n");
4313                         break;
4314                 }
4315         } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4316
4317         return ret_val;
4318 }
4319
4320 /**
4321  *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
4322  *  @hw: pointer to the HW structure
4323  *  @offset: The index of the byte to read.
4324  *  @data: The byte to write to the NVM.
4325  *
4326  *  Writes a single byte to the NVM using the flash access registers.
4327  **/
4328 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
4329                                           u8 data)
4330 {
4331         u16 word = (u16)data;
4332
4333         return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
4334 }
4335
4336 /**
4337 *  e1000_retry_write_flash_dword_ich8lan - Writes a dword to NVM
4338 *  @hw: pointer to the HW structure
4339 *  @offset: The offset of the word to write.
4340 *  @dword: The dword to write to the NVM.
4341 *
4342 *  Writes a single dword to the NVM using the flash access registers.
4343 *  Goes through a retry algorithm before giving up.
4344 **/
4345 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
4346                                                  u32 offset, u32 dword)
4347 {
4348         s32 ret_val;
4349         u16 program_retries;
4350
4351         /* Must convert word offset into bytes. */
4352         offset <<= 1;
4353         ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4354
4355         if (!ret_val)
4356                 return ret_val;
4357         for (program_retries = 0; program_retries < 100; program_retries++) {
4358                 e_dbg("Retrying Byte %8.8X at offset %u\n", dword, offset);
4359                 usleep_range(100, 200);
4360                 ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4361                 if (!ret_val)
4362                         break;
4363         }
4364         if (program_retries == 100)
4365                 return -E1000_ERR_NVM;
4366
4367         return 0;
4368 }
4369
4370 /**
4371  *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
4372  *  @hw: pointer to the HW structure
4373  *  @offset: The offset of the byte to write.
4374  *  @byte: The byte to write to the NVM.
4375  *
4376  *  Writes a single byte to the NVM using the flash access registers.
4377  *  Goes through a retry algorithm before giving up.
4378  **/
4379 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
4380                                                 u32 offset, u8 byte)
4381 {
4382         s32 ret_val;
4383         u16 program_retries;
4384
4385         ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4386         if (!ret_val)
4387                 return ret_val;
4388
4389         for (program_retries = 0; program_retries < 100; program_retries++) {
4390                 e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
4391                 usleep_range(100, 200);
4392                 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4393                 if (!ret_val)
4394                         break;
4395         }
4396         if (program_retries == 100)
4397                 return -E1000_ERR_NVM;
4398
4399         return 0;
4400 }
4401
4402 /**
4403  *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
4404  *  @hw: pointer to the HW structure
4405  *  @bank: 0 for first bank, 1 for second bank, etc.
4406  *
4407  *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
4408  *  bank N is 4096 * N + flash_reg_addr.
4409  **/
4410 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
4411 {
4412         struct e1000_nvm_info *nvm = &hw->nvm;
4413         union ich8_hws_flash_status hsfsts;
4414         union ich8_hws_flash_ctrl hsflctl;
4415         u32 flash_linear_addr;
4416         /* bank size is in 16bit words - adjust to bytes */
4417         u32 flash_bank_size = nvm->flash_bank_size * 2;
4418         s32 ret_val;
4419         s32 count = 0;
4420         s32 j, iteration, sector_size;
4421
4422         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4423
4424         /* Determine HW Sector size: Read BERASE bits of hw flash status
4425          * register
4426          * 00: The Hw sector is 256 bytes, hence we need to erase 16
4427          *     consecutive sectors.  The start index for the nth Hw sector
4428          *     can be calculated as = bank * 4096 + n * 256
4429          * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
4430          *     The start index for the nth Hw sector can be calculated
4431          *     as = bank * 4096
4432          * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
4433          *     (ich9 only, otherwise error condition)
4434          * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
4435          */
4436         switch (hsfsts.hsf_status.berasesz) {
4437         case 0:
4438                 /* Hw sector size 256 */
4439                 sector_size = ICH_FLASH_SEG_SIZE_256;
4440                 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
4441                 break;
4442         case 1:
4443                 sector_size = ICH_FLASH_SEG_SIZE_4K;
4444                 iteration = 1;
4445                 break;
4446         case 2:
4447                 sector_size = ICH_FLASH_SEG_SIZE_8K;
4448                 iteration = 1;
4449                 break;
4450         case 3:
4451                 sector_size = ICH_FLASH_SEG_SIZE_64K;
4452                 iteration = 1;
4453                 break;
4454         default:
4455                 return -E1000_ERR_NVM;
4456         }
4457
4458         /* Start with the base address, then add the sector offset. */
4459         flash_linear_addr = hw->nvm.flash_base_addr;
4460         flash_linear_addr += (bank) ? flash_bank_size : 0;
4461
4462         for (j = 0; j < iteration; j++) {
4463                 do {
4464                         u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
4465
4466                         /* Steps */
4467                         ret_val = e1000_flash_cycle_init_ich8lan(hw);
4468                         if (ret_val)
4469                                 return ret_val;
4470
4471                         /* Write a value 11 (block Erase) in Flash
4472                          * Cycle field in hw flash control
4473                          */
4474                         if (hw->mac.type >= e1000_pch_spt)
4475                                 hsflctl.regval =
4476                                     er32flash(ICH_FLASH_HSFSTS) >> 16;
4477                         else
4478                                 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4479
4480                         hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
4481                         if (hw->mac.type >= e1000_pch_spt)
4482                                 ew32flash(ICH_FLASH_HSFSTS,
4483                                           hsflctl.regval << 16);
4484                         else
4485                                 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4486
4487                         /* Write the last 24 bits of an index within the
4488                          * block into Flash Linear address field in Flash
4489                          * Address.
4490                          */
4491                         flash_linear_addr += (j * sector_size);
4492                         ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4493
4494                         ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
4495                         if (!ret_val)
4496                                 break;
4497
4498                         /* Check if FCERR is set to 1.  If 1,
4499                          * clear it and try the whole sequence
4500                          * a few more times else Done
4501                          */
4502                         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4503                         if (hsfsts.hsf_status.flcerr)
4504                                 /* repeat for some time before giving up */
4505                                 continue;
4506                         else if (!hsfsts.hsf_status.flcdone)
4507                                 return ret_val;
4508                 } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
4509         }
4510
4511         return 0;
4512 }
4513
4514 /**
4515  *  e1000_valid_led_default_ich8lan - Set the default LED settings
4516  *  @hw: pointer to the HW structure
4517  *  @data: Pointer to the LED settings
4518  *
4519  *  Reads the LED default settings from the NVM to data.  If the NVM LED
4520  *  settings is all 0's or F's, set the LED default to a valid LED default
4521  *  setting.
4522  **/
4523 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
4524 {
4525         s32 ret_val;
4526
4527         ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
4528         if (ret_val) {
4529                 e_dbg("NVM Read Error\n");
4530                 return ret_val;
4531         }
4532
4533         if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
4534                 *data = ID_LED_DEFAULT_ICH8LAN;
4535
4536         return 0;
4537 }
4538
4539 /**
4540  *  e1000_id_led_init_pchlan - store LED configurations
4541  *  @hw: pointer to the HW structure
4542  *
4543  *  PCH does not control LEDs via the LEDCTL register, rather it uses
4544  *  the PHY LED configuration register.
4545  *
4546  *  PCH also does not have an "always on" or "always off" mode which
4547  *  complicates the ID feature.  Instead of using the "on" mode to indicate
4548  *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
4549  *  use "link_up" mode.  The LEDs will still ID on request if there is no
4550  *  link based on logic in e1000_led_[on|off]_pchlan().
4551  **/
4552 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
4553 {
4554         struct e1000_mac_info *mac = &hw->mac;
4555         s32 ret_val;
4556         const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
4557         const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
4558         u16 data, i, temp, shift;
4559
4560         /* Get default ID LED modes */
4561         ret_val = hw->nvm.ops.valid_led_default(hw, &data);
4562         if (ret_val)
4563                 return ret_val;
4564
4565         mac->ledctl_default = er32(LEDCTL);
4566         mac->ledctl_mode1 = mac->ledctl_default;
4567         mac->ledctl_mode2 = mac->ledctl_default;
4568
4569         for (i = 0; i < 4; i++) {
4570                 temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
4571                 shift = (i * 5);
4572                 switch (temp) {
4573                 case ID_LED_ON1_DEF2:
4574                 case ID_LED_ON1_ON2:
4575                 case ID_LED_ON1_OFF2:
4576                         mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4577                         mac->ledctl_mode1 |= (ledctl_on << shift);
4578                         break;
4579                 case ID_LED_OFF1_DEF2:
4580                 case ID_LED_OFF1_ON2:
4581                 case ID_LED_OFF1_OFF2:
4582                         mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4583                         mac->ledctl_mode1 |= (ledctl_off << shift);
4584                         break;
4585                 default:
4586                         /* Do nothing */
4587                         break;
4588                 }
4589                 switch (temp) {
4590                 case ID_LED_DEF1_ON2:
4591                 case ID_LED_ON1_ON2:
4592                 case ID_LED_OFF1_ON2:
4593                         mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4594                         mac->ledctl_mode2 |= (ledctl_on << shift);
4595                         break;
4596                 case ID_LED_DEF1_OFF2:
4597                 case ID_LED_ON1_OFF2:
4598                 case ID_LED_OFF1_OFF2:
4599                         mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4600                         mac->ledctl_mode2 |= (ledctl_off << shift);
4601                         break;
4602                 default:
4603                         /* Do nothing */
4604                         break;
4605                 }
4606         }
4607
4608         return 0;
4609 }
4610
4611 /**
4612  *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
4613  *  @hw: pointer to the HW structure
4614  *
4615  *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
4616  *  register, so the the bus width is hard coded.
4617  **/
4618 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
4619 {
4620         struct e1000_bus_info *bus = &hw->bus;
4621         s32 ret_val;
4622
4623         ret_val = e1000e_get_bus_info_pcie(hw);
4624
4625         /* ICH devices are "PCI Express"-ish.  They have
4626          * a configuration space, but do not contain
4627          * PCI Express Capability registers, so bus width
4628          * must be hardcoded.
4629          */
4630         if (bus->width == e1000_bus_width_unknown)
4631                 bus->width = e1000_bus_width_pcie_x1;
4632
4633         return ret_val;
4634 }
4635
4636 /**
4637  *  e1000_reset_hw_ich8lan - Reset the hardware
4638  *  @hw: pointer to the HW structure
4639  *
4640  *  Does a full reset of the hardware which includes a reset of the PHY and
4641  *  MAC.
4642  **/
4643 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
4644 {
4645         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4646         u16 kum_cfg;
4647         u32 ctrl, reg;
4648         s32 ret_val;
4649
4650         /* Prevent the PCI-E bus from sticking if there is no TLP connection
4651          * on the last TLP read/write transaction when MAC is reset.
4652          */
4653         ret_val = e1000e_disable_pcie_master(hw);
4654         if (ret_val)
4655                 e_dbg("PCI-E Master disable polling has failed.\n");
4656
4657         e_dbg("Masking off all interrupts\n");
4658         ew32(IMC, 0xffffffff);
4659
4660         /* Disable the Transmit and Receive units.  Then delay to allow
4661          * any pending transactions to complete before we hit the MAC
4662          * with the global reset.
4663          */
4664         ew32(RCTL, 0);
4665         ew32(TCTL, E1000_TCTL_PSP);
4666         e1e_flush();
4667
4668         usleep_range(10000, 20000);
4669
4670         /* Workaround for ICH8 bit corruption issue in FIFO memory */
4671         if (hw->mac.type == e1000_ich8lan) {
4672                 /* Set Tx and Rx buffer allocation to 8k apiece. */
4673                 ew32(PBA, E1000_PBA_8K);
4674                 /* Set Packet Buffer Size to 16k. */
4675                 ew32(PBS, E1000_PBS_16K);
4676         }
4677
4678         if (hw->mac.type == e1000_pchlan) {
4679                 /* Save the NVM K1 bit setting */
4680                 ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
4681                 if (ret_val)
4682                         return ret_val;
4683
4684                 if (kum_cfg & E1000_NVM_K1_ENABLE)
4685                         dev_spec->nvm_k1_enabled = true;
4686                 else
4687                         dev_spec->nvm_k1_enabled = false;
4688         }
4689
4690         ctrl = er32(CTRL);
4691
4692         if (!hw->phy.ops.check_reset_block(hw)) {
4693                 /* Full-chip reset requires MAC and PHY reset at the same
4694                  * time to make sure the interface between MAC and the
4695                  * external PHY is reset.
4696                  */
4697                 ctrl |= E1000_CTRL_PHY_RST;
4698
4699                 /* Gate automatic PHY configuration by hardware on
4700                  * non-managed 82579
4701                  */
4702                 if ((hw->mac.type == e1000_pch2lan) &&
4703                     !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
4704                         e1000_gate_hw_phy_config_ich8lan(hw, true);
4705         }
4706         ret_val = e1000_acquire_swflag_ich8lan(hw);
4707         e_dbg("Issuing a global reset to ich8lan\n");
4708         ew32(CTRL, (ctrl | E1000_CTRL_RST));
4709         /* cannot issue a flush here because it hangs the hardware */
4710         msleep(20);
4711
4712         /* Set Phy Config Counter to 50msec */
4713         if (hw->mac.type == e1000_pch2lan) {
4714                 reg = er32(FEXTNVM3);
4715                 reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
4716                 reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
4717                 ew32(FEXTNVM3, reg);
4718         }
4719
4720         if (!ret_val)
4721                 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
4722
4723         if (ctrl & E1000_CTRL_PHY_RST) {
4724                 ret_val = hw->phy.ops.get_cfg_done(hw);
4725                 if (ret_val)
4726                         return ret_val;
4727
4728                 ret_val = e1000_post_phy_reset_ich8lan(hw);
4729                 if (ret_val)
4730                         return ret_val;
4731         }
4732
4733         /* For PCH, this write will make sure that any noise
4734          * will be detected as a CRC error and be dropped rather than show up
4735          * as a bad packet to the DMA engine.
4736          */
4737         if (hw->mac.type == e1000_pchlan)
4738                 ew32(CRC_OFFSET, 0x65656565);
4739
4740         ew32(IMC, 0xffffffff);
4741         er32(ICR);
4742
4743         reg = er32(KABGTXD);
4744         reg |= E1000_KABGTXD_BGSQLBIAS;
4745         ew32(KABGTXD, reg);
4746
4747         return 0;
4748 }
4749
4750 /**
4751  *  e1000_init_hw_ich8lan - Initialize the hardware
4752  *  @hw: pointer to the HW structure
4753  *
4754  *  Prepares the hardware for transmit and receive by doing the following:
4755  *   - initialize hardware bits
4756  *   - initialize LED identification
4757  *   - setup receive address registers
4758  *   - setup flow control
4759  *   - setup transmit descriptors
4760  *   - clear statistics
4761  **/
4762 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
4763 {
4764         struct e1000_mac_info *mac = &hw->mac;
4765         u32 ctrl_ext, txdctl, snoop;
4766         s32 ret_val;
4767         u16 i;
4768
4769         e1000_initialize_hw_bits_ich8lan(hw);
4770
4771         /* Initialize identification LED */
4772         ret_val = mac->ops.id_led_init(hw);
4773         /* An error is not fatal and we should not stop init due to this */
4774         if (ret_val)
4775                 e_dbg("Error initializing identification LED\n");
4776
4777         /* Setup the receive address. */
4778         e1000e_init_rx_addrs(hw, mac->rar_entry_count);
4779
4780         /* Zero out the Multicast HASH table */
4781         e_dbg("Zeroing the MTA\n");
4782         for (i = 0; i < mac->mta_reg_count; i++)
4783                 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
4784
4785         /* The 82578 Rx buffer will stall if wakeup is enabled in host and
4786          * the ME.  Disable wakeup by clearing the host wakeup bit.
4787          * Reset the phy after disabling host wakeup to reset the Rx buffer.
4788          */
4789         if (hw->phy.type == e1000_phy_82578) {
4790                 e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
4791                 i &= ~BM_WUC_HOST_WU_BIT;
4792                 e1e_wphy(hw, BM_PORT_GEN_CFG, i);
4793                 ret_val = e1000_phy_hw_reset_ich8lan(hw);
4794                 if (ret_val)
4795                         return ret_val;
4796         }
4797
4798         /* Setup link and flow control */
4799         ret_val = mac->ops.setup_link(hw);
4800
4801         /* Set the transmit descriptor write-back policy for both queues */
4802         txdctl = er32(TXDCTL(0));
4803         txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4804                   E1000_TXDCTL_FULL_TX_DESC_WB);
4805         txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4806                   E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4807         ew32(TXDCTL(0), txdctl);
4808         txdctl = er32(TXDCTL(1));
4809         txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4810                   E1000_TXDCTL_FULL_TX_DESC_WB);
4811         txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4812                   E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4813         ew32(TXDCTL(1), txdctl);
4814
4815         /* ICH8 has opposite polarity of no_snoop bits.
4816          * By default, we should use snoop behavior.
4817          */
4818         if (mac->type == e1000_ich8lan)
4819                 snoop = PCIE_ICH8_SNOOP_ALL;
4820         else
4821                 snoop = (u32)~(PCIE_NO_SNOOP_ALL);
4822         e1000e_set_pcie_no_snoop(hw, snoop);
4823
4824         ctrl_ext = er32(CTRL_EXT);
4825         ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
4826         ew32(CTRL_EXT, ctrl_ext);
4827
4828         /* Clear all of the statistics registers (clear on read).  It is
4829          * important that we do this after we have tried to establish link
4830          * because the symbol error count will increment wildly if there
4831          * is no link.
4832          */
4833         e1000_clear_hw_cntrs_ich8lan(hw);
4834
4835         return ret_val;
4836 }
4837
4838 /**
4839  *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
4840  *  @hw: pointer to the HW structure
4841  *
4842  *  Sets/Clears required hardware bits necessary for correctly setting up the
4843  *  hardware for transmit and receive.
4844  **/
4845 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
4846 {
4847         u32 reg;
4848
4849         /* Extended Device Control */
4850         reg = er32(CTRL_EXT);
4851         reg |= BIT(22);
4852         /* Enable PHY low-power state when MAC is at D3 w/o WoL */
4853         if (hw->mac.type >= e1000_pchlan)
4854                 reg |= E1000_CTRL_EXT_PHYPDEN;
4855         ew32(CTRL_EXT, reg);
4856
4857         /* Transmit Descriptor Control 0 */
4858         reg = er32(TXDCTL(0));
4859         reg |= BIT(22);
4860         ew32(TXDCTL(0), reg);
4861
4862         /* Transmit Descriptor Control 1 */
4863         reg = er32(TXDCTL(1));
4864         reg |= BIT(22);
4865         ew32(TXDCTL(1), reg);
4866
4867         /* Transmit Arbitration Control 0 */
4868         reg = er32(TARC(0));
4869         if (hw->mac.type == e1000_ich8lan)
4870                 reg |= BIT(28) | BIT(29);
4871         reg |= BIT(23) | BIT(24) | BIT(26) | BIT(27);
4872         ew32(TARC(0), reg);
4873
4874         /* Transmit Arbitration Control 1 */
4875         reg = er32(TARC(1));
4876         if (er32(TCTL) & E1000_TCTL_MULR)
4877                 reg &= ~BIT(28);
4878         else
4879                 reg |= BIT(28);
4880         reg |= BIT(24) | BIT(26) | BIT(30);
4881         ew32(TARC(1), reg);
4882
4883         /* Device Status */
4884         if (hw->mac.type == e1000_ich8lan) {
4885                 reg = er32(STATUS);
4886                 reg &= ~BIT(31);
4887                 ew32(STATUS, reg);
4888         }
4889
4890         /* work-around descriptor data corruption issue during nfs v2 udp
4891          * traffic, just disable the nfs filtering capability
4892          */
4893         reg = er32(RFCTL);
4894         reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
4895
4896         /* Disable IPv6 extension header parsing because some malformed
4897          * IPv6 headers can hang the Rx.
4898          */
4899         if (hw->mac.type == e1000_ich8lan)
4900                 reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
4901         ew32(RFCTL, reg);
4902
4903         /* Enable ECC on Lynxpoint */
4904         if (hw->mac.type >= e1000_pch_lpt) {
4905                 reg = er32(PBECCSTS);
4906                 reg |= E1000_PBECCSTS_ECC_ENABLE;
4907                 ew32(PBECCSTS, reg);
4908
4909                 reg = er32(CTRL);
4910                 reg |= E1000_CTRL_MEHE;
4911                 ew32(CTRL, reg);
4912         }
4913 }
4914
4915 /**
4916  *  e1000_setup_link_ich8lan - Setup flow control and link settings
4917  *  @hw: pointer to the HW structure
4918  *
4919  *  Determines which flow control settings to use, then configures flow
4920  *  control.  Calls the appropriate media-specific link configuration
4921  *  function.  Assuming the adapter has a valid link partner, a valid link
4922  *  should be established.  Assumes the hardware has previously been reset
4923  *  and the transmitter and receiver are not enabled.
4924  **/
4925 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
4926 {
4927         s32 ret_val;
4928
4929         if (hw->phy.ops.check_reset_block(hw))
4930                 return 0;
4931
4932         /* ICH parts do not have a word in the NVM to determine
4933          * the default flow control setting, so we explicitly
4934          * set it to full.
4935          */
4936         if (hw->fc.requested_mode == e1000_fc_default) {
4937                 /* Workaround h/w hang when Tx flow control enabled */
4938                 if (hw->mac.type == e1000_pchlan)
4939                         hw->fc.requested_mode = e1000_fc_rx_pause;
4940                 else
4941                         hw->fc.requested_mode = e1000_fc_full;
4942         }
4943
4944         /* Save off the requested flow control mode for use later.  Depending
4945          * on the link partner's capabilities, we may or may not use this mode.
4946          */
4947         hw->fc.current_mode = hw->fc.requested_mode;
4948
4949         e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
4950
4951         /* Continue to configure the copper link. */
4952         ret_val = hw->mac.ops.setup_physical_interface(hw);
4953         if (ret_val)
4954                 return ret_val;
4955
4956         ew32(FCTTV, hw->fc.pause_time);
4957         if ((hw->phy.type == e1000_phy_82578) ||
4958             (hw->phy.type == e1000_phy_82579) ||
4959             (hw->phy.type == e1000_phy_i217) ||
4960             (hw->phy.type == e1000_phy_82577)) {
4961                 ew32(FCRTV_PCH, hw->fc.refresh_time);
4962
4963                 ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
4964                                    hw->fc.pause_time);
4965                 if (ret_val)
4966                         return ret_val;
4967         }
4968
4969         return e1000e_set_fc_watermarks(hw);
4970 }
4971
4972 /**
4973  *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
4974  *  @hw: pointer to the HW structure
4975  *
4976  *  Configures the kumeran interface to the PHY to wait the appropriate time
4977  *  when polling the PHY, then call the generic setup_copper_link to finish
4978  *  configuring the copper link.
4979  **/
4980 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
4981 {
4982         u32 ctrl;
4983         s32 ret_val;
4984         u16 reg_data;
4985
4986         ctrl = er32(CTRL);
4987         ctrl |= E1000_CTRL_SLU;
4988         ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
4989         ew32(CTRL, ctrl);
4990
4991         /* Set the mac to wait the maximum time between each iteration
4992          * and increase the max iterations when polling the phy;
4993          * this fixes erroneous timeouts at 10Mbps.
4994          */
4995         ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
4996         if (ret_val)
4997                 return ret_val;
4998         ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
4999                                        &reg_data);
5000         if (ret_val)
5001                 return ret_val;
5002         reg_data |= 0x3F;
5003         ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
5004                                         reg_data);
5005         if (ret_val)
5006                 return ret_val;
5007
5008         switch (hw->phy.type) {
5009         case e1000_phy_igp_3:
5010                 ret_val = e1000e_copper_link_setup_igp(hw);
5011                 if (ret_val)
5012                         return ret_val;
5013                 break;
5014         case e1000_phy_bm:
5015         case e1000_phy_82578:
5016                 ret_val = e1000e_copper_link_setup_m88(hw);
5017                 if (ret_val)
5018                         return ret_val;
5019                 break;
5020         case e1000_phy_82577:
5021         case e1000_phy_82579:
5022                 ret_val = e1000_copper_link_setup_82577(hw);
5023                 if (ret_val)
5024                         return ret_val;
5025                 break;
5026         case e1000_phy_ife:
5027                 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
5028                 if (ret_val)
5029                         return ret_val;
5030
5031                 reg_data &= ~IFE_PMC_AUTO_MDIX;
5032
5033                 switch (hw->phy.mdix) {
5034                 case 1:
5035                         reg_data &= ~IFE_PMC_FORCE_MDIX;
5036                         break;
5037                 case 2:
5038                         reg_data |= IFE_PMC_FORCE_MDIX;
5039                         break;
5040                 case 0:
5041                 default:
5042                         reg_data |= IFE_PMC_AUTO_MDIX;
5043                         break;
5044                 }
5045                 ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
5046                 if (ret_val)
5047                         return ret_val;
5048                 break;
5049         default:
5050                 break;
5051         }
5052
5053         return e1000e_setup_copper_link(hw);
5054 }
5055
5056 /**
5057  *  e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
5058  *  @hw: pointer to the HW structure
5059  *
5060  *  Calls the PHY specific link setup function and then calls the
5061  *  generic setup_copper_link to finish configuring the link for
5062  *  Lynxpoint PCH devices
5063  **/
5064 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
5065 {
5066         u32 ctrl;
5067         s32 ret_val;
5068
5069         ctrl = er32(CTRL);
5070         ctrl |= E1000_CTRL_SLU;
5071         ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5072         ew32(CTRL, ctrl);
5073
5074         ret_val = e1000_copper_link_setup_82577(hw);
5075         if (ret_val)
5076                 return ret_val;
5077
5078         return e1000e_setup_copper_link(hw);
5079 }
5080
5081 /**
5082  *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
5083  *  @hw: pointer to the HW structure
5084  *  @speed: pointer to store current link speed
5085  *  @duplex: pointer to store the current link duplex
5086  *
5087  *  Calls the generic get_speed_and_duplex to retrieve the current link
5088  *  information and then calls the Kumeran lock loss workaround for links at
5089  *  gigabit speeds.
5090  **/
5091 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
5092                                           u16 *duplex)
5093 {
5094         s32 ret_val;
5095
5096         ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
5097         if (ret_val)
5098                 return ret_val;
5099
5100         if ((hw->mac.type == e1000_ich8lan) &&
5101             (hw->phy.type == e1000_phy_igp_3) && (*speed == SPEED_1000)) {
5102                 ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
5103         }
5104
5105         return ret_val;
5106 }
5107
5108 /**
5109  *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
5110  *  @hw: pointer to the HW structure
5111  *
5112  *  Work-around for 82566 Kumeran PCS lock loss:
5113  *  On link status change (i.e. PCI reset, speed change) and link is up and
5114  *  speed is gigabit-
5115  *    0) if workaround is optionally disabled do nothing
5116  *    1) wait 1ms for Kumeran link to come up
5117  *    2) check Kumeran Diagnostic register PCS lock loss bit
5118  *    3) if not set the link is locked (all is good), otherwise...
5119  *    4) reset the PHY
5120  *    5) repeat up to 10 times
5121  *  Note: this is only called for IGP3 copper when speed is 1gb.
5122  **/
5123 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
5124 {
5125         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5126         u32 phy_ctrl;
5127         s32 ret_val;
5128         u16 i, data;
5129         bool link;
5130
5131         if (!dev_spec->kmrn_lock_loss_workaround_enabled)
5132                 return 0;
5133
5134         /* Make sure link is up before proceeding.  If not just return.
5135          * Attempting this while link is negotiating fouled up link
5136          * stability
5137          */
5138         ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
5139         if (!link)
5140                 return 0;
5141
5142         for (i = 0; i < 10; i++) {
5143                 /* read once to clear */
5144                 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5145                 if (ret_val)
5146                         return ret_val;
5147                 /* and again to get new status */
5148                 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5149                 if (ret_val)
5150                         return ret_val;
5151
5152                 /* check for PCS lock */
5153                 if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
5154                         return 0;
5155
5156                 /* Issue PHY reset */
5157                 e1000_phy_hw_reset(hw);
5158                 mdelay(5);
5159         }
5160         /* Disable GigE link negotiation */
5161         phy_ctrl = er32(PHY_CTRL);
5162         phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
5163                      E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5164         ew32(PHY_CTRL, phy_ctrl);
5165
5166         /* Call gig speed drop workaround on Gig disable before accessing
5167          * any PHY registers
5168          */
5169         e1000e_gig_downshift_workaround_ich8lan(hw);
5170
5171         /* unable to acquire PCS lock */
5172         return -E1000_ERR_PHY;
5173 }
5174
5175 /**
5176  *  e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
5177  *  @hw: pointer to the HW structure
5178  *  @state: boolean value used to set the current Kumeran workaround state
5179  *
5180  *  If ICH8, set the current Kumeran workaround state (enabled - true
5181  *  /disabled - false).
5182  **/
5183 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
5184                                                   bool state)
5185 {
5186         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5187
5188         if (hw->mac.type != e1000_ich8lan) {
5189                 e_dbg("Workaround applies to ICH8 only.\n");
5190                 return;
5191         }
5192
5193         dev_spec->kmrn_lock_loss_workaround_enabled = state;
5194 }
5195
5196 /**
5197  *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
5198  *  @hw: pointer to the HW structure
5199  *
5200  *  Workaround for 82566 power-down on D3 entry:
5201  *    1) disable gigabit link
5202  *    2) write VR power-down enable
5203  *    3) read it back
5204  *  Continue if successful, else issue LCD reset and repeat
5205  **/
5206 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
5207 {
5208         u32 reg;
5209         u16 data;
5210         u8 retry = 0;
5211
5212         if (hw->phy.type != e1000_phy_igp_3)
5213                 return;
5214
5215         /* Try the workaround twice (if needed) */
5216         do {
5217                 /* Disable link */
5218                 reg = er32(PHY_CTRL);
5219                 reg |= (E1000_PHY_CTRL_GBE_DISABLE |
5220                         E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5221                 ew32(PHY_CTRL, reg);
5222
5223                 /* Call gig speed drop workaround on Gig disable before
5224                  * accessing any PHY registers
5225                  */
5226                 if (hw->mac.type == e1000_ich8lan)
5227                         e1000e_gig_downshift_workaround_ich8lan(hw);
5228
5229                 /* Write VR power-down enable */
5230                 e1e_rphy(hw, IGP3_VR_CTRL, &data);
5231                 data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5232                 e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
5233
5234                 /* Read it back and test */
5235                 e1e_rphy(hw, IGP3_VR_CTRL, &data);
5236                 data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5237                 if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
5238                         break;
5239
5240                 /* Issue PHY reset and repeat at most one more time */
5241                 reg = er32(CTRL);
5242                 ew32(CTRL, reg | E1000_CTRL_PHY_RST);
5243                 retry++;
5244         } while (retry);
5245 }
5246
5247 /**
5248  *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
5249  *  @hw: pointer to the HW structure
5250  *
5251  *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
5252  *  LPLU, Gig disable, MDIC PHY reset):
5253  *    1) Set Kumeran Near-end loopback
5254  *    2) Clear Kumeran Near-end loopback
5255  *  Should only be called for ICH8[m] devices with any 1G Phy.
5256  **/
5257 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
5258 {
5259         s32 ret_val;
5260         u16 reg_data;
5261
5262         if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
5263                 return;
5264
5265         ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5266                                        &reg_data);
5267         if (ret_val)
5268                 return;
5269         reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
5270         ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5271                                         reg_data);
5272         if (ret_val)
5273                 return;
5274         reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
5275         e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, reg_data);
5276 }
5277
5278 /**
5279  *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
5280  *  @hw: pointer to the HW structure
5281  *
5282  *  During S0 to Sx transition, it is possible the link remains at gig
5283  *  instead of negotiating to a lower speed.  Before going to Sx, set
5284  *  'Gig Disable' to force link speed negotiation to a lower speed based on
5285  *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
5286  *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
5287  *  needs to be written.
5288  *  Parts that support (and are linked to a partner which support) EEE in
5289  *  100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
5290  *  than 10Mbps w/o EEE.
5291  **/
5292 void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
5293 {
5294         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5295         u32 phy_ctrl;
5296         s32 ret_val;
5297
5298         phy_ctrl = er32(PHY_CTRL);
5299         phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
5300
5301         if (hw->phy.type == e1000_phy_i217) {
5302                 u16 phy_reg, device_id = hw->adapter->pdev->device;
5303
5304                 if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
5305                     (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
5306                     (device_id == E1000_DEV_ID_PCH_I218_LM3) ||
5307                     (device_id == E1000_DEV_ID_PCH_I218_V3) ||
5308                     (hw->mac.type >= e1000_pch_spt)) {
5309                         u32 fextnvm6 = er32(FEXTNVM6);
5310
5311                         ew32(FEXTNVM6, fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
5312                 }
5313
5314                 ret_val = hw->phy.ops.acquire(hw);
5315                 if (ret_val)
5316                         goto out;
5317
5318                 if (!dev_spec->eee_disable) {
5319                         u16 eee_advert;
5320
5321                         ret_val =
5322                             e1000_read_emi_reg_locked(hw,
5323                                                       I217_EEE_ADVERTISEMENT,
5324                                                       &eee_advert);
5325                         if (ret_val)
5326                                 goto release;
5327
5328                         /* Disable LPLU if both link partners support 100BaseT
5329                          * EEE and 100Full is advertised on both ends of the
5330                          * link, and enable Auto Enable LPI since there will
5331                          * be no driver to enable LPI while in Sx.
5332                          */
5333                         if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
5334                             (dev_spec->eee_lp_ability &
5335                              I82579_EEE_100_SUPPORTED) &&
5336                             (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) {
5337                                 phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
5338                                               E1000_PHY_CTRL_NOND0A_LPLU);
5339
5340                                 /* Set Auto Enable LPI after link up */
5341                                 e1e_rphy_locked(hw,
5342                                                 I217_LPI_GPIO_CTRL, &phy_reg);
5343                                 phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5344                                 e1e_wphy_locked(hw,
5345                                                 I217_LPI_GPIO_CTRL, phy_reg);
5346                         }
5347                 }
5348
5349                 /* For i217 Intel Rapid Start Technology support,
5350                  * when the system is going into Sx and no manageability engine
5351                  * is present, the driver must configure proxy to reset only on
5352                  * power good.  LPI (Low Power Idle) state must also reset only
5353                  * on power good, as well as the MTA (Multicast table array).
5354                  * The SMBus release must also be disabled on LCD reset.
5355                  */
5356                 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5357                         /* Enable proxy to reset only on power good. */
5358                         e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg);
5359                         phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
5360                         e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg);
5361
5362                         /* Set bit enable LPI (EEE) to reset only on
5363                          * power good.
5364                          */
5365                         e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg);
5366                         phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
5367                         e1e_wphy_locked(hw, I217_SxCTRL, phy_reg);
5368
5369                         /* Disable the SMB release on LCD reset. */
5370                         e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5371                         phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
5372                         e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5373                 }
5374
5375                 /* Enable MTA to reset for Intel Rapid Start Technology
5376                  * Support
5377                  */
5378                 e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5379                 phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
5380                 e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5381
5382 release:
5383                 hw->phy.ops.release(hw);
5384         }
5385 out:
5386         ew32(PHY_CTRL, phy_ctrl);
5387
5388         if (hw->mac.type == e1000_ich8lan)
5389                 e1000e_gig_downshift_workaround_ich8lan(hw);
5390
5391         if (hw->mac.type >= e1000_pchlan) {
5392                 e1000_oem_bits_config_ich8lan(hw, false);
5393
5394                 /* Reset PHY to activate OEM bits on 82577/8 */
5395                 if (hw->mac.type == e1000_pchlan)
5396                         e1000e_phy_hw_reset_generic(hw);
5397
5398                 ret_val = hw->phy.ops.acquire(hw);
5399                 if (ret_val)
5400                         return;
5401                 e1000_write_smbus_addr(hw);
5402                 hw->phy.ops.release(hw);
5403         }
5404 }
5405
5406 /**
5407  *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
5408  *  @hw: pointer to the HW structure
5409  *
5410  *  During Sx to S0 transitions on non-managed devices or managed devices
5411  *  on which PHY resets are not blocked, if the PHY registers cannot be
5412  *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
5413  *  the PHY.
5414  *  On i217, setup Intel Rapid Start Technology.
5415  **/
5416 void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
5417 {
5418         s32 ret_val;
5419
5420         if (hw->mac.type < e1000_pch2lan)
5421                 return;
5422
5423         ret_val = e1000_init_phy_workarounds_pchlan(hw);
5424         if (ret_val) {
5425                 e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val);
5426                 return;
5427         }
5428
5429         /* For i217 Intel Rapid Start Technology support when the system
5430          * is transitioning from Sx and no manageability engine is present
5431          * configure SMBus to restore on reset, disable proxy, and enable
5432          * the reset on MTA (Multicast table array).
5433          */
5434         if (hw->phy.type == e1000_phy_i217) {
5435                 u16 phy_reg;
5436
5437                 ret_val = hw->phy.ops.acquire(hw);
5438                 if (ret_val) {
5439                         e_dbg("Failed to setup iRST\n");
5440                         return;
5441                 }
5442
5443                 /* Clear Auto Enable LPI after link up */
5444                 e1e_rphy_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg);
5445                 phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5446                 e1e_wphy_locked(hw, I217_LPI_GPIO_CTRL, phy_reg);
5447
5448                 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5449                         /* Restore clear on SMB if no manageability engine
5450                          * is present
5451                          */
5452                         ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5453                         if (ret_val)
5454                                 goto release;
5455                         phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
5456                         e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5457
5458                         /* Disable Proxy */
5459                         e1e_wphy_locked(hw, I217_PROXY_CTRL, 0);
5460                 }
5461                 /* Enable reset on MTA */
5462                 ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5463                 if (ret_val)
5464                         goto release;
5465                 phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
5466                 e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5467 release:
5468                 if (ret_val)
5469                         e_dbg("Error %d in resume workarounds\n", ret_val);
5470                 hw->phy.ops.release(hw);
5471         }
5472 }
5473
5474 /**
5475  *  e1000_cleanup_led_ich8lan - Restore the default LED operation
5476  *  @hw: pointer to the HW structure
5477  *
5478  *  Return the LED back to the default configuration.
5479  **/
5480 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
5481 {
5482         if (hw->phy.type == e1000_phy_ife)
5483                 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
5484
5485         ew32(LEDCTL, hw->mac.ledctl_default);
5486         return 0;
5487 }
5488
5489 /**
5490  *  e1000_led_on_ich8lan - Turn LEDs on
5491  *  @hw: pointer to the HW structure
5492  *
5493  *  Turn on the LEDs.
5494  **/
5495 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
5496 {
5497         if (hw->phy.type == e1000_phy_ife)
5498                 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5499                                 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
5500
5501         ew32(LEDCTL, hw->mac.ledctl_mode2);
5502         return 0;
5503 }
5504
5505 /**
5506  *  e1000_led_off_ich8lan - Turn LEDs off
5507  *  @hw: pointer to the HW structure
5508  *
5509  *  Turn off the LEDs.
5510  **/
5511 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
5512 {
5513         if (hw->phy.type == e1000_phy_ife)
5514                 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5515                                 (IFE_PSCL_PROBE_MODE |
5516                                  IFE_PSCL_PROBE_LEDS_OFF));
5517
5518         ew32(LEDCTL, hw->mac.ledctl_mode1);
5519         return 0;
5520 }
5521
5522 /**
5523  *  e1000_setup_led_pchlan - Configures SW controllable LED
5524  *  @hw: pointer to the HW structure
5525  *
5526  *  This prepares the SW controllable LED for use.
5527  **/
5528 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
5529 {
5530         return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
5531 }
5532
5533 /**
5534  *  e1000_cleanup_led_pchlan - Restore the default LED operation
5535  *  @hw: pointer to the HW structure
5536  *
5537  *  Return the LED back to the default configuration.
5538  **/
5539 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
5540 {
5541         return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
5542 }
5543
5544 /**
5545  *  e1000_led_on_pchlan - Turn LEDs on
5546  *  @hw: pointer to the HW structure
5547  *
5548  *  Turn on the LEDs.
5549  **/
5550 static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
5551 {
5552         u16 data = (u16)hw->mac.ledctl_mode2;
5553         u32 i, led;
5554
5555         /* If no link, then turn LED on by setting the invert bit
5556          * for each LED that's mode is "link_up" in ledctl_mode2.
5557          */
5558         if (!(er32(STATUS) & E1000_STATUS_LU)) {
5559                 for (i = 0; i < 3; i++) {
5560                         led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5561                         if ((led & E1000_PHY_LED0_MODE_MASK) !=
5562                             E1000_LEDCTL_MODE_LINK_UP)
5563                                 continue;
5564                         if (led & E1000_PHY_LED0_IVRT)
5565                                 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5566                         else
5567                                 data |= (E1000_PHY_LED0_IVRT << (i * 5));
5568                 }
5569         }
5570
5571         return e1e_wphy(hw, HV_LED_CONFIG, data);
5572 }
5573
5574 /**
5575  *  e1000_led_off_pchlan - Turn LEDs off
5576  *  @hw: pointer to the HW structure
5577  *
5578  *  Turn off the LEDs.
5579  **/
5580 static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
5581 {
5582         u16 data = (u16)hw->mac.ledctl_mode1;
5583         u32 i, led;
5584
5585         /* If no link, then turn LED off by clearing the invert bit
5586          * for each LED that's mode is "link_up" in ledctl_mode1.
5587          */
5588         if (!(er32(STATUS) & E1000_STATUS_LU)) {
5589                 for (i = 0; i < 3; i++) {
5590                         led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5591                         if ((led & E1000_PHY_LED0_MODE_MASK) !=
5592                             E1000_LEDCTL_MODE_LINK_UP)
5593                                 continue;
5594                         if (led & E1000_PHY_LED0_IVRT)
5595                                 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5596                         else
5597                                 data |= (E1000_PHY_LED0_IVRT << (i * 5));
5598                 }
5599         }
5600
5601         return e1e_wphy(hw, HV_LED_CONFIG, data);
5602 }
5603
5604 /**
5605  *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
5606  *  @hw: pointer to the HW structure
5607  *
5608  *  Read appropriate register for the config done bit for completion status
5609  *  and configure the PHY through s/w for EEPROM-less parts.
5610  *
5611  *  NOTE: some silicon which is EEPROM-less will fail trying to read the
5612  *  config done bit, so only an error is logged and continues.  If we were
5613  *  to return with error, EEPROM-less silicon would not be able to be reset
5614  *  or change link.
5615  **/
5616 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
5617 {
5618         s32 ret_val = 0;
5619         u32 bank = 0;
5620         u32 status;
5621
5622         e1000e_get_cfg_done_generic(hw);
5623
5624         /* Wait for indication from h/w that it has completed basic config */
5625         if (hw->mac.type >= e1000_ich10lan) {
5626                 e1000_lan_init_done_ich8lan(hw);
5627         } else {
5628                 ret_val = e1000e_get_auto_rd_done(hw);
5629                 if (ret_val) {
5630                         /* When auto config read does not complete, do not
5631                          * return with an error. This can happen in situations
5632                          * where there is no eeprom and prevents getting link.
5633                          */
5634                         e_dbg("Auto Read Done did not complete\n");
5635                         ret_val = 0;
5636                 }
5637         }
5638
5639         /* Clear PHY Reset Asserted bit */
5640         status = er32(STATUS);
5641         if (status & E1000_STATUS_PHYRA)
5642                 ew32(STATUS, status & ~E1000_STATUS_PHYRA);
5643         else
5644                 e_dbg("PHY Reset Asserted not set - needs delay\n");
5645
5646         /* If EEPROM is not marked present, init the IGP 3 PHY manually */
5647         if (hw->mac.type <= e1000_ich9lan) {
5648                 if (!(er32(EECD) & E1000_EECD_PRES) &&
5649                     (hw->phy.type == e1000_phy_igp_3)) {
5650                         e1000e_phy_init_script_igp3(hw);
5651                 }
5652         } else {
5653                 if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
5654                         /* Maybe we should do a basic PHY config */
5655                         e_dbg("EEPROM not present\n");
5656                         ret_val = -E1000_ERR_CONFIG;
5657                 }
5658         }
5659
5660         return ret_val;
5661 }
5662
5663 /**
5664  * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
5665  * @hw: pointer to the HW structure
5666  *
5667  * In the case of a PHY power down to save power, or to turn off link during a
5668  * driver unload, or wake on lan is not enabled, remove the link.
5669  **/
5670 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
5671 {
5672         /* If the management interface is not enabled, then power down */
5673         if (!(hw->mac.ops.check_mng_mode(hw) ||
5674               hw->phy.ops.check_reset_block(hw)))
5675                 e1000_power_down_phy_copper(hw);
5676 }
5677
5678 /**
5679  *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
5680  *  @hw: pointer to the HW structure
5681  *
5682  *  Clears hardware counters specific to the silicon family and calls
5683  *  clear_hw_cntrs_generic to clear all general purpose counters.
5684  **/
5685 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
5686 {
5687         u16 phy_data;
5688         s32 ret_val;
5689
5690         e1000e_clear_hw_cntrs_base(hw);
5691
5692         er32(ALGNERRC);
5693         er32(RXERRC);
5694         er32(TNCRS);
5695         er32(CEXTERR);
5696         er32(TSCTC);
5697         er32(TSCTFC);
5698
5699         er32(MGTPRC);
5700         er32(MGTPDC);
5701         er32(MGTPTC);
5702
5703         er32(IAC);
5704         er32(ICRXOC);
5705
5706         /* Clear PHY statistics registers */
5707         if ((hw->phy.type == e1000_phy_82578) ||
5708             (hw->phy.type == e1000_phy_82579) ||
5709             (hw->phy.type == e1000_phy_i217) ||
5710             (hw->phy.type == e1000_phy_82577)) {
5711                 ret_val = hw->phy.ops.acquire(hw);
5712                 if (ret_val)
5713                         return;
5714                 ret_val = hw->phy.ops.set_page(hw,
5715                                                HV_STATS_PAGE << IGP_PAGE_SHIFT);
5716                 if (ret_val)
5717                         goto release;
5718                 hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
5719                 hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
5720                 hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
5721                 hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
5722                 hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
5723                 hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
5724                 hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
5725                 hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
5726                 hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
5727                 hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
5728                 hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
5729                 hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
5730                 hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
5731                 hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
5732 release:
5733                 hw->phy.ops.release(hw);
5734         }
5735 }
5736
5737 static const struct e1000_mac_operations ich8_mac_ops = {
5738         /* check_mng_mode dependent on mac type */
5739         .check_for_link         = e1000_check_for_copper_link_ich8lan,
5740         /* cleanup_led dependent on mac type */
5741         .clear_hw_cntrs         = e1000_clear_hw_cntrs_ich8lan,
5742         .get_bus_info           = e1000_get_bus_info_ich8lan,
5743         .set_lan_id             = e1000_set_lan_id_single_port,
5744         .get_link_up_info       = e1000_get_link_up_info_ich8lan,
5745         /* led_on dependent on mac type */
5746         /* led_off dependent on mac type */
5747         .update_mc_addr_list    = e1000e_update_mc_addr_list_generic,
5748         .reset_hw               = e1000_reset_hw_ich8lan,
5749         .init_hw                = e1000_init_hw_ich8lan,
5750         .setup_link             = e1000_setup_link_ich8lan,
5751         .setup_physical_interface = e1000_setup_copper_link_ich8lan,
5752         /* id_led_init dependent on mac type */
5753         .config_collision_dist  = e1000e_config_collision_dist_generic,
5754         .rar_set                = e1000e_rar_set_generic,
5755         .rar_get_count          = e1000e_rar_get_count_generic,
5756 };
5757
5758 static const struct e1000_phy_operations ich8_phy_ops = {
5759         .acquire                = e1000_acquire_swflag_ich8lan,
5760         .check_reset_block      = e1000_check_reset_block_ich8lan,
5761         .commit                 = NULL,
5762         .get_cfg_done           = e1000_get_cfg_done_ich8lan,
5763         .get_cable_length       = e1000e_get_cable_length_igp_2,
5764         .read_reg               = e1000e_read_phy_reg_igp,
5765         .release                = e1000_release_swflag_ich8lan,
5766         .reset                  = e1000_phy_hw_reset_ich8lan,
5767         .set_d0_lplu_state      = e1000_set_d0_lplu_state_ich8lan,
5768         .set_d3_lplu_state      = e1000_set_d3_lplu_state_ich8lan,
5769         .write_reg              = e1000e_write_phy_reg_igp,
5770 };
5771
5772 static const struct e1000_nvm_operations ich8_nvm_ops = {
5773         .acquire                = e1000_acquire_nvm_ich8lan,
5774         .read                   = e1000_read_nvm_ich8lan,
5775         .release                = e1000_release_nvm_ich8lan,
5776         .reload                 = e1000e_reload_nvm_generic,
5777         .update                 = e1000_update_nvm_checksum_ich8lan,
5778         .valid_led_default      = e1000_valid_led_default_ich8lan,
5779         .validate               = e1000_validate_nvm_checksum_ich8lan,
5780         .write                  = e1000_write_nvm_ich8lan,
5781 };
5782
5783 static const struct e1000_nvm_operations spt_nvm_ops = {
5784         .acquire                = e1000_acquire_nvm_ich8lan,
5785         .release                = e1000_release_nvm_ich8lan,
5786         .read                   = e1000_read_nvm_spt,
5787         .update                 = e1000_update_nvm_checksum_spt,
5788         .reload                 = e1000e_reload_nvm_generic,
5789         .valid_led_default      = e1000_valid_led_default_ich8lan,
5790         .validate               = e1000_validate_nvm_checksum_ich8lan,
5791         .write                  = e1000_write_nvm_ich8lan,
5792 };
5793
5794 const struct e1000_info e1000_ich8_info = {
5795         .mac                    = e1000_ich8lan,
5796         .flags                  = FLAG_HAS_WOL
5797                                   | FLAG_IS_ICH
5798                                   | FLAG_HAS_CTRLEXT_ON_LOAD
5799                                   | FLAG_HAS_AMT
5800                                   | FLAG_HAS_FLASH
5801                                   | FLAG_APME_IN_WUC,
5802         .pba                    = 8,
5803         .max_hw_frame_size      = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN,
5804         .get_variants           = e1000_get_variants_ich8lan,
5805         .mac_ops                = &ich8_mac_ops,
5806         .phy_ops                = &ich8_phy_ops,
5807         .nvm_ops                = &ich8_nvm_ops,
5808 };
5809
5810 const struct e1000_info e1000_ich9_info = {
5811         .mac                    = e1000_ich9lan,
5812         .flags                  = FLAG_HAS_JUMBO_FRAMES
5813                                   | FLAG_IS_ICH
5814                                   | FLAG_HAS_WOL
5815                                   | FLAG_HAS_CTRLEXT_ON_LOAD
5816                                   | FLAG_HAS_AMT
5817                                   | FLAG_HAS_FLASH
5818                                   | FLAG_APME_IN_WUC,
5819         .pba                    = 18,
5820         .max_hw_frame_size      = DEFAULT_JUMBO,
5821         .get_variants           = e1000_get_variants_ich8lan,
5822         .mac_ops                = &ich8_mac_ops,
5823         .phy_ops                = &ich8_phy_ops,
5824         .nvm_ops                = &ich8_nvm_ops,
5825 };
5826
5827 const struct e1000_info e1000_ich10_info = {
5828         .mac                    = e1000_ich10lan,
5829         .flags                  = FLAG_HAS_JUMBO_FRAMES
5830                                   | FLAG_IS_ICH
5831                                   | FLAG_HAS_WOL
5832                                   | FLAG_HAS_CTRLEXT_ON_LOAD
5833                                   | FLAG_HAS_AMT
5834                                   | FLAG_HAS_FLASH
5835                                   | FLAG_APME_IN_WUC,
5836         .pba                    = 18,
5837         .max_hw_frame_size      = DEFAULT_JUMBO,
5838         .get_variants           = e1000_get_variants_ich8lan,
5839         .mac_ops                = &ich8_mac_ops,
5840         .phy_ops                = &ich8_phy_ops,
5841         .nvm_ops                = &ich8_nvm_ops,
5842 };
5843
5844 const struct e1000_info e1000_pch_info = {
5845         .mac                    = e1000_pchlan,
5846         .flags                  = FLAG_IS_ICH
5847                                   | FLAG_HAS_WOL
5848                                   | FLAG_HAS_CTRLEXT_ON_LOAD
5849                                   | FLAG_HAS_AMT
5850                                   | FLAG_HAS_FLASH
5851                                   | FLAG_HAS_JUMBO_FRAMES
5852                                   | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
5853                                   | FLAG_APME_IN_WUC,
5854         .flags2                 = FLAG2_HAS_PHY_STATS,
5855         .pba                    = 26,
5856         .max_hw_frame_size      = 4096,
5857         .get_variants           = e1000_get_variants_ich8lan,
5858         .mac_ops                = &ich8_mac_ops,
5859         .phy_ops                = &ich8_phy_ops,
5860         .nvm_ops                = &ich8_nvm_ops,
5861 };
5862
5863 const struct e1000_info e1000_pch2_info = {
5864         .mac                    = e1000_pch2lan,
5865         .flags                  = FLAG_IS_ICH
5866                                   | FLAG_HAS_WOL
5867                                   | FLAG_HAS_HW_TIMESTAMP
5868                                   | FLAG_HAS_CTRLEXT_ON_LOAD
5869                                   | FLAG_HAS_AMT
5870                                   | FLAG_HAS_FLASH
5871                                   | FLAG_HAS_JUMBO_FRAMES
5872                                   | FLAG_APME_IN_WUC,
5873         .flags2                 = FLAG2_HAS_PHY_STATS
5874                                   | FLAG2_HAS_EEE
5875                                   | FLAG2_CHECK_SYSTIM_OVERFLOW,
5876         .pba                    = 26,
5877         .max_hw_frame_size      = 9022,
5878         .get_variants           = e1000_get_variants_ich8lan,
5879         .mac_ops                = &ich8_mac_ops,
5880         .phy_ops                = &ich8_phy_ops,
5881         .nvm_ops                = &ich8_nvm_ops,
5882 };
5883
5884 const struct e1000_info e1000_pch_lpt_info = {
5885         .mac                    = e1000_pch_lpt,
5886         .flags                  = FLAG_IS_ICH
5887                                   | FLAG_HAS_WOL
5888                                   | FLAG_HAS_HW_TIMESTAMP
5889                                   | FLAG_HAS_CTRLEXT_ON_LOAD
5890                                   | FLAG_HAS_AMT
5891                                   | FLAG_HAS_FLASH
5892                                   | FLAG_HAS_JUMBO_FRAMES
5893                                   | FLAG_APME_IN_WUC,
5894         .flags2                 = FLAG2_HAS_PHY_STATS
5895                                   | FLAG2_HAS_EEE
5896                                   | FLAG2_CHECK_SYSTIM_OVERFLOW,
5897         .pba                    = 26,
5898         .max_hw_frame_size      = 9022,
5899         .get_variants           = e1000_get_variants_ich8lan,
5900         .mac_ops                = &ich8_mac_ops,
5901         .phy_ops                = &ich8_phy_ops,
5902         .nvm_ops                = &ich8_nvm_ops,
5903 };
5904
5905 const struct e1000_info e1000_pch_spt_info = {
5906         .mac                    = e1000_pch_spt,
5907         .flags                  = FLAG_IS_ICH
5908                                   | FLAG_HAS_WOL
5909                                   | FLAG_HAS_HW_TIMESTAMP
5910                                   | FLAG_HAS_CTRLEXT_ON_LOAD
5911                                   | FLAG_HAS_AMT
5912                                   | FLAG_HAS_FLASH
5913                                   | FLAG_HAS_JUMBO_FRAMES
5914                                   | FLAG_APME_IN_WUC,
5915         .flags2                 = FLAG2_HAS_PHY_STATS
5916                                   | FLAG2_HAS_EEE,
5917         .pba                    = 26,
5918         .max_hw_frame_size      = 9022,
5919         .get_variants           = e1000_get_variants_ich8lan,
5920         .mac_ops                = &ich8_mac_ops,
5921         .phy_ops                = &ich8_phy_ops,
5922         .nvm_ops                = &spt_nvm_ops,
5923 };
5924
5925 const struct e1000_info e1000_pch_cnp_info = {
5926         .mac                    = e1000_pch_cnp,
5927         .flags                  = FLAG_IS_ICH
5928                                   | FLAG_HAS_WOL
5929                                   | FLAG_HAS_HW_TIMESTAMP
5930                                   | FLAG_HAS_CTRLEXT_ON_LOAD
5931                                   | FLAG_HAS_AMT
5932                                   | FLAG_HAS_FLASH
5933                                   | FLAG_HAS_JUMBO_FRAMES
5934                                   | FLAG_APME_IN_WUC,
5935         .flags2                 = FLAG2_HAS_PHY_STATS
5936                                   | FLAG2_HAS_EEE,
5937         .pba                    = 26,
5938         .max_hw_frame_size      = 9022,
5939         .get_variants           = e1000_get_variants_ich8lan,
5940         .mac_ops                = &ich8_mac_ops,
5941         .phy_ops                = &ich8_phy_ops,
5942         .nvm_ops                = &spt_nvm_ops,
5943 };