e1000e: cleanup long [read|write]_reg_locked PHY ops function pointers
[linux-2.6-block.git] / drivers / net / ethernet / intel / e1000e / ich8lan.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2012 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /*
30  * 82562G 10/100 Network Connection
31  * 82562G-2 10/100 Network Connection
32  * 82562GT 10/100 Network Connection
33  * 82562GT-2 10/100 Network Connection
34  * 82562V 10/100 Network Connection
35  * 82562V-2 10/100 Network Connection
36  * 82566DC-2 Gigabit Network Connection
37  * 82566DC Gigabit Network Connection
38  * 82566DM-2 Gigabit Network Connection
39  * 82566DM Gigabit Network Connection
40  * 82566MC Gigabit Network Connection
41  * 82566MM Gigabit Network Connection
42  * 82567LM Gigabit Network Connection
43  * 82567LF Gigabit Network Connection
44  * 82567V Gigabit Network Connection
45  * 82567LM-2 Gigabit Network Connection
46  * 82567LF-2 Gigabit Network Connection
47  * 82567V-2 Gigabit Network Connection
48  * 82567LF-3 Gigabit Network Connection
49  * 82567LM-3 Gigabit Network Connection
50  * 82567LM-4 Gigabit Network Connection
51  * 82577LM Gigabit Network Connection
52  * 82577LC Gigabit Network Connection
53  * 82578DM Gigabit Network Connection
54  * 82578DC Gigabit Network Connection
55  * 82579LM Gigabit Network Connection
56  * 82579V Gigabit Network Connection
57  */
58
59 #include "e1000.h"
60
61 #define ICH_FLASH_GFPREG                0x0000
62 #define ICH_FLASH_HSFSTS                0x0004
63 #define ICH_FLASH_HSFCTL                0x0006
64 #define ICH_FLASH_FADDR                 0x0008
65 #define ICH_FLASH_FDATA0                0x0010
66 #define ICH_FLASH_PR0                   0x0074
67
68 #define ICH_FLASH_READ_COMMAND_TIMEOUT  500
69 #define ICH_FLASH_WRITE_COMMAND_TIMEOUT 500
70 #define ICH_FLASH_ERASE_COMMAND_TIMEOUT 3000000
71 #define ICH_FLASH_LINEAR_ADDR_MASK      0x00FFFFFF
72 #define ICH_FLASH_CYCLE_REPEAT_COUNT    10
73
74 #define ICH_CYCLE_READ                  0
75 #define ICH_CYCLE_WRITE                 2
76 #define ICH_CYCLE_ERASE                 3
77
78 #define FLASH_GFPREG_BASE_MASK          0x1FFF
79 #define FLASH_SECTOR_ADDR_SHIFT         12
80
81 #define ICH_FLASH_SEG_SIZE_256          256
82 #define ICH_FLASH_SEG_SIZE_4K           4096
83 #define ICH_FLASH_SEG_SIZE_8K           8192
84 #define ICH_FLASH_SEG_SIZE_64K          65536
85
86
87 #define E1000_ICH_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI Reset */
88 /* FW established a valid mode */
89 #define E1000_ICH_FWSM_FW_VALID         0x00008000
90
91 #define E1000_ICH_MNG_IAMT_MODE         0x2
92
93 #define ID_LED_DEFAULT_ICH8LAN  ((ID_LED_DEF1_DEF2 << 12) | \
94                                  (ID_LED_DEF1_OFF2 <<  8) | \
95                                  (ID_LED_DEF1_ON2  <<  4) | \
96                                  (ID_LED_DEF1_DEF2))
97
98 #define E1000_ICH_NVM_SIG_WORD          0x13
99 #define E1000_ICH_NVM_SIG_MASK          0xC000
100 #define E1000_ICH_NVM_VALID_SIG_MASK    0xC0
101 #define E1000_ICH_NVM_SIG_VALUE         0x80
102
103 #define E1000_ICH8_LAN_INIT_TIMEOUT     1500
104
105 #define E1000_FEXTNVM_SW_CONFIG         1
106 #define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */
107
108 #define E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK    0x0C000000
109 #define E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC  0x08000000
110
111 #define E1000_FEXTNVM4_BEACON_DURATION_MASK    0x7
112 #define E1000_FEXTNVM4_BEACON_DURATION_8USEC   0x7
113 #define E1000_FEXTNVM4_BEACON_DURATION_16USEC  0x3
114
115 #define PCIE_ICH8_SNOOP_ALL             PCIE_NO_SNOOP_ALL
116
117 #define E1000_ICH_RAR_ENTRIES           7
118 #define E1000_PCH2_RAR_ENTRIES          5 /* RAR[0], SHRA[0-3] */
119
120 #define PHY_PAGE_SHIFT 5
121 #define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
122                            ((reg) & MAX_PHY_REG_ADDRESS))
123 #define IGP3_KMRN_DIAG  PHY_REG(770, 19) /* KMRN Diagnostic */
124 #define IGP3_VR_CTRL    PHY_REG(776, 18) /* Voltage Regulator Control */
125
126 #define IGP3_KMRN_DIAG_PCS_LOCK_LOSS    0x0002
127 #define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300
128 #define IGP3_VR_CTRL_MODE_SHUTDOWN      0x0200
129
130 #define HV_LED_CONFIG           PHY_REG(768, 30) /* LED Configuration */
131
132 #define SW_FLAG_TIMEOUT    1000 /* SW Semaphore flag timeout in milliseconds */
133
134 /* SMBus Address Phy Register */
135 #define HV_SMB_ADDR            PHY_REG(768, 26)
136 #define HV_SMB_ADDR_MASK       0x007F
137 #define HV_SMB_ADDR_PEC_EN     0x0200
138 #define HV_SMB_ADDR_VALID      0x0080
139
140 /* PHY Power Management Control */
141 #define HV_PM_CTRL              PHY_REG(770, 17)
142 #define HV_PM_CTRL_PLL_STOP_IN_K1_GIGA  0x100
143
144 /* PHY Low Power Idle Control */
145 #define I82579_LPI_CTRL                         PHY_REG(772, 20)
146 #define I82579_LPI_CTRL_ENABLE_MASK             0x6000
147 #define I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT    0x80
148
149 /* EMI Registers */
150 #define I82579_EMI_ADDR         0x10
151 #define I82579_EMI_DATA         0x11
152 #define I82579_LPI_UPDATE_TIMER 0x4805  /* in 40ns units + 40 ns base value */
153 #define I82579_MSE_THRESHOLD    0x084F  /* Mean Square Error Threshold */
154 #define I82579_MSE_LINK_DOWN    0x2411  /* MSE count before dropping link */
155
156 /* Strapping Option Register - RO */
157 #define E1000_STRAP                     0x0000C
158 #define E1000_STRAP_SMBUS_ADDRESS_MASK  0x00FE0000
159 #define E1000_STRAP_SMBUS_ADDRESS_SHIFT 17
160
161 /* OEM Bits Phy Register */
162 #define HV_OEM_BITS            PHY_REG(768, 25)
163 #define HV_OEM_BITS_LPLU       0x0004 /* Low Power Link Up */
164 #define HV_OEM_BITS_GBE_DIS    0x0040 /* Gigabit Disable */
165 #define HV_OEM_BITS_RESTART_AN 0x0400 /* Restart Auto-negotiation */
166
167 #define E1000_NVM_K1_CONFIG 0x1B /* NVM K1 Config Word */
168 #define E1000_NVM_K1_ENABLE 0x1  /* NVM Enable K1 bit */
169
170 /* KMRN Mode Control */
171 #define HV_KMRN_MODE_CTRL      PHY_REG(769, 16)
172 #define HV_KMRN_MDIO_SLOW      0x0400
173
174 /* KMRN FIFO Control and Status */
175 #define HV_KMRN_FIFO_CTRLSTA                  PHY_REG(770, 16)
176 #define HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK    0x7000
177 #define HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT   12
178
179 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
180 /* Offset 04h HSFSTS */
181 union ich8_hws_flash_status {
182         struct ich8_hsfsts {
183                 u16 flcdone    :1; /* bit 0 Flash Cycle Done */
184                 u16 flcerr     :1; /* bit 1 Flash Cycle Error */
185                 u16 dael       :1; /* bit 2 Direct Access error Log */
186                 u16 berasesz   :2; /* bit 4:3 Sector Erase Size */
187                 u16 flcinprog  :1; /* bit 5 flash cycle in Progress */
188                 u16 reserved1  :2; /* bit 13:6 Reserved */
189                 u16 reserved2  :6; /* bit 13:6 Reserved */
190                 u16 fldesvalid :1; /* bit 14 Flash Descriptor Valid */
191                 u16 flockdn    :1; /* bit 15 Flash Config Lock-Down */
192         } hsf_status;
193         u16 regval;
194 };
195
196 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
197 /* Offset 06h FLCTL */
198 union ich8_hws_flash_ctrl {
199         struct ich8_hsflctl {
200                 u16 flcgo      :1;   /* 0 Flash Cycle Go */
201                 u16 flcycle    :2;   /* 2:1 Flash Cycle */
202                 u16 reserved   :5;   /* 7:3 Reserved  */
203                 u16 fldbcount  :2;   /* 9:8 Flash Data Byte Count */
204                 u16 flockdn    :6;   /* 15:10 Reserved */
205         } hsf_ctrl;
206         u16 regval;
207 };
208
209 /* ICH Flash Region Access Permissions */
210 union ich8_hws_flash_regacc {
211         struct ich8_flracc {
212                 u32 grra      :8; /* 0:7 GbE region Read Access */
213                 u32 grwa      :8; /* 8:15 GbE region Write Access */
214                 u32 gmrag     :8; /* 23:16 GbE Master Read Access Grant */
215                 u32 gmwag     :8; /* 31:24 GbE Master Write Access Grant */
216         } hsf_flregacc;
217         u16 regval;
218 };
219
220 /* ICH Flash Protected Region */
221 union ich8_flash_protected_range {
222         struct ich8_pr {
223                 u32 base:13;     /* 0:12 Protected Range Base */
224                 u32 reserved1:2; /* 13:14 Reserved */
225                 u32 rpe:1;       /* 15 Read Protection Enable */
226                 u32 limit:13;    /* 16:28 Protected Range Limit */
227                 u32 reserved2:2; /* 29:30 Reserved */
228                 u32 wpe:1;       /* 31 Write Protection Enable */
229         } range;
230         u32 regval;
231 };
232
233 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw);
234 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
235 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
236 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
237 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
238                                                 u32 offset, u8 byte);
239 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
240                                          u8 *data);
241 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
242                                          u16 *data);
243 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
244                                          u8 size, u16 *data);
245 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
246 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
247 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
248 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
249 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
250 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
251 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
252 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
253 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
254 static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
255 static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
256 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
257 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
258 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
259 static s32  e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
260 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
261 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
262 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
263 static void e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
264 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
265 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
266
267 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
268 {
269         return readw(hw->flash_address + reg);
270 }
271
272 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
273 {
274         return readl(hw->flash_address + reg);
275 }
276
277 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
278 {
279         writew(val, hw->flash_address + reg);
280 }
281
282 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
283 {
284         writel(val, hw->flash_address + reg);
285 }
286
287 #define er16flash(reg)          __er16flash(hw, (reg))
288 #define er32flash(reg)          __er32flash(hw, (reg))
289 #define ew16flash(reg, val)     __ew16flash(hw, (reg), (val))
290 #define ew32flash(reg, val)     __ew32flash(hw, (reg), (val))
291
292 /**
293  *  e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
294  *  @hw: pointer to the HW structure
295  *
296  *  Test access to the PHY registers by reading the PHY ID registers.  If
297  *  the PHY ID is already known (e.g. resume path) compare it with known ID,
298  *  otherwise assume the read PHY ID is correct if it is valid.
299  *
300  *  Assumes the sw/fw/hw semaphore is already acquired.
301  **/
302 static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
303 {
304         u16 phy_reg;
305         u32 phy_id;
306
307         e1e_rphy_locked(hw, PHY_ID1, &phy_reg);
308         phy_id = (u32)(phy_reg << 16);
309         e1e_rphy_locked(hw, PHY_ID2, &phy_reg);
310         phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
311
312         if (hw->phy.id) {
313                 if (hw->phy.id == phy_id)
314                         return true;
315         } else {
316                 if ((phy_id != 0) && (phy_id != PHY_REVISION_MASK))
317                         hw->phy.id = phy_id;
318                 return true;
319         }
320
321         return false;
322 }
323
324 /**
325  *  e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
326  *  @hw: pointer to the HW structure
327  *
328  *  Workarounds/flow necessary for PHY initialization during driver load
329  *  and resume paths.
330  **/
331 static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
332 {
333         u32 mac_reg, fwsm = er32(FWSM);
334         s32 ret_val;
335
336         ret_val = hw->phy.ops.acquire(hw);
337         if (ret_val) {
338                 e_dbg("Failed to initialize PHY flow\n");
339                 return ret_val;
340         }
341
342         /*
343          * The MAC-PHY interconnect may be in SMBus mode.  If the PHY is
344          * inaccessible and resetting the PHY is not blocked, toggle the
345          * LANPHYPC Value bit to force the interconnect to PCIe mode.
346          */
347         switch (hw->mac.type) {
348         case e1000_pch2lan:
349                 /*
350                  * Gate automatic PHY configuration by hardware on
351                  * non-managed 82579
352                  */
353                 if (!(fwsm & E1000_ICH_FWSM_FW_VALID))
354                         e1000_gate_hw_phy_config_ich8lan(hw, true);
355
356                 if (e1000_phy_is_accessible_pchlan(hw))
357                         break;
358
359                 /* fall-through */
360         case e1000_pchlan:
361                 if ((hw->mac.type == e1000_pchlan) &&
362                     (fwsm & E1000_ICH_FWSM_FW_VALID))
363                         break;
364
365                 if (hw->phy.ops.check_reset_block(hw)) {
366                         e_dbg("Required LANPHYPC toggle blocked by ME\n");
367                         break;
368                 }
369
370                 e_dbg("Toggling LANPHYPC\n");
371
372                 /* Set Phy Config Counter to 50msec */
373                 mac_reg = er32(FEXTNVM3);
374                 mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
375                 mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
376                 ew32(FEXTNVM3, mac_reg);
377
378                 /* Toggle LANPHYPC Value bit */
379                 mac_reg = er32(CTRL);
380                 mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
381                 mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
382                 ew32(CTRL, mac_reg);
383                 e1e_flush();
384                 udelay(10);
385                 mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
386                 ew32(CTRL, mac_reg);
387                 e1e_flush();
388                 msleep(50);
389                 break;
390         default:
391                 break;
392         }
393
394         hw->phy.ops.release(hw);
395
396         /*
397          * Reset the PHY before any access to it.  Doing so, ensures
398          * that the PHY is in a known good state before we read/write
399          * PHY registers.  The generic reset is sufficient here,
400          * because we haven't determined the PHY type yet.
401          */
402         ret_val = e1000e_phy_hw_reset_generic(hw);
403
404         /* Ungate automatic PHY configuration on non-managed 82579 */
405         if ((hw->mac.type == e1000_pch2lan) &&
406             !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
407                 usleep_range(10000, 20000);
408                 e1000_gate_hw_phy_config_ich8lan(hw, false);
409         }
410
411         return ret_val;
412 }
413
414 /**
415  *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
416  *  @hw: pointer to the HW structure
417  *
418  *  Initialize family-specific PHY parameters and function pointers.
419  **/
420 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
421 {
422         struct e1000_phy_info *phy = &hw->phy;
423         s32 ret_val = 0;
424
425         phy->addr                     = 1;
426         phy->reset_delay_us           = 100;
427
428         phy->ops.set_page             = e1000_set_page_igp;
429         phy->ops.read_reg             = e1000_read_phy_reg_hv;
430         phy->ops.read_reg_locked      = e1000_read_phy_reg_hv_locked;
431         phy->ops.read_reg_page        = e1000_read_phy_reg_page_hv;
432         phy->ops.set_d0_lplu_state    = e1000_set_lplu_state_pchlan;
433         phy->ops.set_d3_lplu_state    = e1000_set_lplu_state_pchlan;
434         phy->ops.write_reg            = e1000_write_phy_reg_hv;
435         phy->ops.write_reg_locked     = e1000_write_phy_reg_hv_locked;
436         phy->ops.write_reg_page       = e1000_write_phy_reg_page_hv;
437         phy->ops.power_up             = e1000_power_up_phy_copper;
438         phy->ops.power_down           = e1000_power_down_phy_copper_ich8lan;
439         phy->autoneg_mask             = AUTONEG_ADVERTISE_SPEED_DEFAULT;
440
441         phy->id = e1000_phy_unknown;
442
443         ret_val = e1000_init_phy_workarounds_pchlan(hw);
444         if (ret_val)
445                 return ret_val;
446
447         if (phy->id == e1000_phy_unknown)
448                 switch (hw->mac.type) {
449                 default:
450                         ret_val = e1000e_get_phy_id(hw);
451                         if (ret_val)
452                                 return ret_val;
453                         if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
454                                 break;
455                         /* fall-through */
456                 case e1000_pch2lan:
457                         /*
458                          * In case the PHY needs to be in mdio slow mode,
459                          * set slow mode and try to get the PHY id again.
460                          */
461                         ret_val = e1000_set_mdio_slow_mode_hv(hw);
462                         if (ret_val)
463                                 return ret_val;
464                         ret_val = e1000e_get_phy_id(hw);
465                         if (ret_val)
466                                 return ret_val;
467                         break;
468                 }
469         phy->type = e1000e_get_phy_type_from_id(phy->id);
470
471         switch (phy->type) {
472         case e1000_phy_82577:
473         case e1000_phy_82579:
474                 phy->ops.check_polarity = e1000_check_polarity_82577;
475                 phy->ops.force_speed_duplex =
476                     e1000_phy_force_speed_duplex_82577;
477                 phy->ops.get_cable_length = e1000_get_cable_length_82577;
478                 phy->ops.get_info = e1000_get_phy_info_82577;
479                 phy->ops.commit = e1000e_phy_sw_reset;
480                 break;
481         case e1000_phy_82578:
482                 phy->ops.check_polarity = e1000_check_polarity_m88;
483                 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
484                 phy->ops.get_cable_length = e1000e_get_cable_length_m88;
485                 phy->ops.get_info = e1000e_get_phy_info_m88;
486                 break;
487         default:
488                 ret_val = -E1000_ERR_PHY;
489                 break;
490         }
491
492         return ret_val;
493 }
494
495 /**
496  *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
497  *  @hw: pointer to the HW structure
498  *
499  *  Initialize family-specific PHY parameters and function pointers.
500  **/
501 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
502 {
503         struct e1000_phy_info *phy = &hw->phy;
504         s32 ret_val;
505         u16 i = 0;
506
507         phy->addr                       = 1;
508         phy->reset_delay_us             = 100;
509
510         phy->ops.power_up               = e1000_power_up_phy_copper;
511         phy->ops.power_down             = e1000_power_down_phy_copper_ich8lan;
512
513         /*
514          * We may need to do this twice - once for IGP and if that fails,
515          * we'll set BM func pointers and try again
516          */
517         ret_val = e1000e_determine_phy_address(hw);
518         if (ret_val) {
519                 phy->ops.write_reg = e1000e_write_phy_reg_bm;
520                 phy->ops.read_reg  = e1000e_read_phy_reg_bm;
521                 ret_val = e1000e_determine_phy_address(hw);
522                 if (ret_val) {
523                         e_dbg("Cannot determine PHY addr. Erroring out\n");
524                         return ret_val;
525                 }
526         }
527
528         phy->id = 0;
529         while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
530                (i++ < 100)) {
531                 usleep_range(1000, 2000);
532                 ret_val = e1000e_get_phy_id(hw);
533                 if (ret_val)
534                         return ret_val;
535         }
536
537         /* Verify phy id */
538         switch (phy->id) {
539         case IGP03E1000_E_PHY_ID:
540                 phy->type = e1000_phy_igp_3;
541                 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
542                 phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
543                 phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
544                 phy->ops.get_info = e1000e_get_phy_info_igp;
545                 phy->ops.check_polarity = e1000_check_polarity_igp;
546                 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
547                 break;
548         case IFE_E_PHY_ID:
549         case IFE_PLUS_E_PHY_ID:
550         case IFE_C_E_PHY_ID:
551                 phy->type = e1000_phy_ife;
552                 phy->autoneg_mask = E1000_ALL_NOT_GIG;
553                 phy->ops.get_info = e1000_get_phy_info_ife;
554                 phy->ops.check_polarity = e1000_check_polarity_ife;
555                 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
556                 break;
557         case BME1000_E_PHY_ID:
558                 phy->type = e1000_phy_bm;
559                 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
560                 phy->ops.read_reg = e1000e_read_phy_reg_bm;
561                 phy->ops.write_reg = e1000e_write_phy_reg_bm;
562                 phy->ops.commit = e1000e_phy_sw_reset;
563                 phy->ops.get_info = e1000e_get_phy_info_m88;
564                 phy->ops.check_polarity = e1000_check_polarity_m88;
565                 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
566                 break;
567         default:
568                 return -E1000_ERR_PHY;
569                 break;
570         }
571
572         return 0;
573 }
574
575 /**
576  *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
577  *  @hw: pointer to the HW structure
578  *
579  *  Initialize family-specific NVM parameters and function
580  *  pointers.
581  **/
582 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
583 {
584         struct e1000_nvm_info *nvm = &hw->nvm;
585         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
586         u32 gfpreg, sector_base_addr, sector_end_addr;
587         u16 i;
588
589         /* Can't read flash registers if the register set isn't mapped. */
590         if (!hw->flash_address) {
591                 e_dbg("ERROR: Flash registers not mapped\n");
592                 return -E1000_ERR_CONFIG;
593         }
594
595         nvm->type = e1000_nvm_flash_sw;
596
597         gfpreg = er32flash(ICH_FLASH_GFPREG);
598
599         /*
600          * sector_X_addr is a "sector"-aligned address (4096 bytes)
601          * Add 1 to sector_end_addr since this sector is included in
602          * the overall size.
603          */
604         sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
605         sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
606
607         /* flash_base_addr is byte-aligned */
608         nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
609
610         /*
611          * find total size of the NVM, then cut in half since the total
612          * size represents two separate NVM banks.
613          */
614         nvm->flash_bank_size = (sector_end_addr - sector_base_addr)
615                                 << FLASH_SECTOR_ADDR_SHIFT;
616         nvm->flash_bank_size /= 2;
617         /* Adjust to word count */
618         nvm->flash_bank_size /= sizeof(u16);
619
620         nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
621
622         /* Clear shadow ram */
623         for (i = 0; i < nvm->word_size; i++) {
624                 dev_spec->shadow_ram[i].modified = false;
625                 dev_spec->shadow_ram[i].value    = 0xFFFF;
626         }
627
628         return 0;
629 }
630
631 /**
632  *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
633  *  @hw: pointer to the HW structure
634  *
635  *  Initialize family-specific MAC parameters and function
636  *  pointers.
637  **/
638 static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
639 {
640         struct e1000_mac_info *mac = &hw->mac;
641
642         /* Set media type function pointer */
643         hw->phy.media_type = e1000_media_type_copper;
644
645         /* Set mta register count */
646         mac->mta_reg_count = 32;
647         /* Set rar entry count */
648         mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
649         if (mac->type == e1000_ich8lan)
650                 mac->rar_entry_count--;
651         /* FWSM register */
652         mac->has_fwsm = true;
653         /* ARC subsystem not supported */
654         mac->arc_subsystem_valid = false;
655         /* Adaptive IFS supported */
656         mac->adaptive_ifs = true;
657
658         /* LED operations */
659         switch (mac->type) {
660         case e1000_ich8lan:
661         case e1000_ich9lan:
662         case e1000_ich10lan:
663                 /* check management mode */
664                 mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
665                 /* ID LED init */
666                 mac->ops.id_led_init = e1000e_id_led_init_generic;
667                 /* blink LED */
668                 mac->ops.blink_led = e1000e_blink_led_generic;
669                 /* setup LED */
670                 mac->ops.setup_led = e1000e_setup_led_generic;
671                 /* cleanup LED */
672                 mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
673                 /* turn on/off LED */
674                 mac->ops.led_on = e1000_led_on_ich8lan;
675                 mac->ops.led_off = e1000_led_off_ich8lan;
676                 break;
677         case e1000_pch2lan:
678                 mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
679                 mac->ops.rar_set = e1000_rar_set_pch2lan;
680                 /* fall-through */
681         case e1000_pchlan:
682                 /* check management mode */
683                 mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
684                 /* ID LED init */
685                 mac->ops.id_led_init = e1000_id_led_init_pchlan;
686                 /* setup LED */
687                 mac->ops.setup_led = e1000_setup_led_pchlan;
688                 /* cleanup LED */
689                 mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
690                 /* turn on/off LED */
691                 mac->ops.led_on = e1000_led_on_pchlan;
692                 mac->ops.led_off = e1000_led_off_pchlan;
693                 break;
694         default:
695                 break;
696         }
697
698         /* Enable PCS Lock-loss workaround for ICH8 */
699         if (mac->type == e1000_ich8lan)
700                 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
701
702         /* Gate automatic PHY configuration by hardware on managed 82579 */
703         if ((mac->type == e1000_pch2lan) &&
704             (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
705                 e1000_gate_hw_phy_config_ich8lan(hw, true);
706
707         return 0;
708 }
709
710 /**
711  *  e1000_set_eee_pchlan - Enable/disable EEE support
712  *  @hw: pointer to the HW structure
713  *
714  *  Enable/disable EEE based on setting in dev_spec structure.  The bits in
715  *  the LPI Control register will remain set only if/when link is up.
716  **/
717 static s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
718 {
719         s32 ret_val = 0;
720         u16 phy_reg;
721
722         if (hw->phy.type != e1000_phy_82579)
723                 return 0;
724
725         ret_val = e1e_rphy(hw, I82579_LPI_CTRL, &phy_reg);
726         if (ret_val)
727                 return ret_val;
728
729         if (hw->dev_spec.ich8lan.eee_disable)
730                 phy_reg &= ~I82579_LPI_CTRL_ENABLE_MASK;
731         else
732                 phy_reg |= I82579_LPI_CTRL_ENABLE_MASK;
733
734         return e1e_wphy(hw, I82579_LPI_CTRL, phy_reg);
735 }
736
737 /**
738  *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
739  *  @hw: pointer to the HW structure
740  *
741  *  Checks to see of the link status of the hardware has changed.  If a
742  *  change in link status has been detected, then we read the PHY registers
743  *  to get the current speed/duplex if link exists.
744  **/
745 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
746 {
747         struct e1000_mac_info *mac = &hw->mac;
748         s32 ret_val;
749         bool link;
750         u16 phy_reg;
751
752         /*
753          * We only want to go out to the PHY registers to see if Auto-Neg
754          * has completed and/or if our link status has changed.  The
755          * get_link_status flag is set upon receiving a Link Status
756          * Change or Rx Sequence Error interrupt.
757          */
758         if (!mac->get_link_status)
759                 return 0;
760
761         /*
762          * First we want to see if the MII Status Register reports
763          * link.  If so, then we want to get the current speed/duplex
764          * of the PHY.
765          */
766         ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
767         if (ret_val)
768                 return ret_val;
769
770         if (hw->mac.type == e1000_pchlan) {
771                 ret_val = e1000_k1_gig_workaround_hv(hw, link);
772                 if (ret_val)
773                         return ret_val;
774         }
775
776         if (!link)
777                 return 0; /* No link detected */
778
779         mac->get_link_status = false;
780
781         switch (hw->mac.type) {
782         case e1000_pch2lan:
783                 ret_val = e1000_k1_workaround_lv(hw);
784                 if (ret_val)
785                         return ret_val;
786                 /* fall-thru */
787         case e1000_pchlan:
788                 if (hw->phy.type == e1000_phy_82578) {
789                         ret_val = e1000_link_stall_workaround_hv(hw);
790                         if (ret_val)
791                                 return ret_val;
792                 }
793
794                 /*
795                  * Workaround for PCHx parts in half-duplex:
796                  * Set the number of preambles removed from the packet
797                  * when it is passed from the PHY to the MAC to prevent
798                  * the MAC from misinterpreting the packet type.
799                  */
800                 e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
801                 phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
802
803                 if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
804                         phy_reg |= (1 << HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
805
806                 e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
807                 break;
808         default:
809                 break;
810         }
811
812         /*
813          * Check if there was DownShift, must be checked
814          * immediately after link-up
815          */
816         e1000e_check_downshift(hw);
817
818         /* Enable/Disable EEE after link up */
819         ret_val = e1000_set_eee_pchlan(hw);
820         if (ret_val)
821                 return ret_val;
822
823         /*
824          * If we are forcing speed/duplex, then we simply return since
825          * we have already determined whether we have link or not.
826          */
827         if (!mac->autoneg)
828                 return -E1000_ERR_CONFIG;
829
830         /*
831          * Auto-Neg is enabled.  Auto Speed Detection takes care
832          * of MAC speed/duplex configuration.  So we only need to
833          * configure Collision Distance in the MAC.
834          */
835         mac->ops.config_collision_dist(hw);
836
837         /*
838          * Configure Flow Control now that Auto-Neg has completed.
839          * First, we need to restore the desired flow control
840          * settings because we may have had to re-autoneg with a
841          * different link partner.
842          */
843         ret_val = e1000e_config_fc_after_link_up(hw);
844         if (ret_val)
845                 e_dbg("Error configuring flow control\n");
846
847         return ret_val;
848 }
849
850 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
851 {
852         struct e1000_hw *hw = &adapter->hw;
853         s32 rc;
854
855         rc = e1000_init_mac_params_ich8lan(hw);
856         if (rc)
857                 return rc;
858
859         rc = e1000_init_nvm_params_ich8lan(hw);
860         if (rc)
861                 return rc;
862
863         switch (hw->mac.type) {
864         case e1000_ich8lan:
865         case e1000_ich9lan:
866         case e1000_ich10lan:
867                 rc = e1000_init_phy_params_ich8lan(hw);
868                 break;
869         case e1000_pchlan:
870         case e1000_pch2lan:
871                 rc = e1000_init_phy_params_pchlan(hw);
872                 break;
873         default:
874                 break;
875         }
876         if (rc)
877                 return rc;
878
879         /*
880          * Disable Jumbo Frame support on parts with Intel 10/100 PHY or
881          * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
882          */
883         if ((adapter->hw.phy.type == e1000_phy_ife) ||
884             ((adapter->hw.mac.type >= e1000_pch2lan) &&
885              (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
886                 adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
887                 adapter->max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN;
888
889                 hw->mac.ops.blink_led = NULL;
890         }
891
892         if ((adapter->hw.mac.type == e1000_ich8lan) &&
893             (adapter->hw.phy.type != e1000_phy_ife))
894                 adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
895
896         /* Enable workaround for 82579 w/ ME enabled */
897         if ((adapter->hw.mac.type == e1000_pch2lan) &&
898             (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
899                 adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
900
901         /* Disable EEE by default until IEEE802.3az spec is finalized */
902         if (adapter->flags2 & FLAG2_HAS_EEE)
903                 adapter->hw.dev_spec.ich8lan.eee_disable = true;
904
905         return 0;
906 }
907
908 static DEFINE_MUTEX(nvm_mutex);
909
910 /**
911  *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
912  *  @hw: pointer to the HW structure
913  *
914  *  Acquires the mutex for performing NVM operations.
915  **/
916 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw)
917 {
918         mutex_lock(&nvm_mutex);
919
920         return 0;
921 }
922
923 /**
924  *  e1000_release_nvm_ich8lan - Release NVM mutex
925  *  @hw: pointer to the HW structure
926  *
927  *  Releases the mutex used while performing NVM operations.
928  **/
929 static void e1000_release_nvm_ich8lan(struct e1000_hw *hw)
930 {
931         mutex_unlock(&nvm_mutex);
932 }
933
934 /**
935  *  e1000_acquire_swflag_ich8lan - Acquire software control flag
936  *  @hw: pointer to the HW structure
937  *
938  *  Acquires the software control flag for performing PHY and select
939  *  MAC CSR accesses.
940  **/
941 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
942 {
943         u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
944         s32 ret_val = 0;
945
946         if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
947                              &hw->adapter->state)) {
948                 e_dbg("contention for Phy access\n");
949                 return -E1000_ERR_PHY;
950         }
951
952         while (timeout) {
953                 extcnf_ctrl = er32(EXTCNF_CTRL);
954                 if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
955                         break;
956
957                 mdelay(1);
958                 timeout--;
959         }
960
961         if (!timeout) {
962                 e_dbg("SW has already locked the resource.\n");
963                 ret_val = -E1000_ERR_CONFIG;
964                 goto out;
965         }
966
967         timeout = SW_FLAG_TIMEOUT;
968
969         extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
970         ew32(EXTCNF_CTRL, extcnf_ctrl);
971
972         while (timeout) {
973                 extcnf_ctrl = er32(EXTCNF_CTRL);
974                 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
975                         break;
976
977                 mdelay(1);
978                 timeout--;
979         }
980
981         if (!timeout) {
982                 e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
983                       er32(FWSM), extcnf_ctrl);
984                 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
985                 ew32(EXTCNF_CTRL, extcnf_ctrl);
986                 ret_val = -E1000_ERR_CONFIG;
987                 goto out;
988         }
989
990 out:
991         if (ret_val)
992                 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
993
994         return ret_val;
995 }
996
997 /**
998  *  e1000_release_swflag_ich8lan - Release software control flag
999  *  @hw: pointer to the HW structure
1000  *
1001  *  Releases the software control flag for performing PHY and select
1002  *  MAC CSR accesses.
1003  **/
1004 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1005 {
1006         u32 extcnf_ctrl;
1007
1008         extcnf_ctrl = er32(EXTCNF_CTRL);
1009
1010         if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1011                 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1012                 ew32(EXTCNF_CTRL, extcnf_ctrl);
1013         } else {
1014                 e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
1015         }
1016
1017         clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1018 }
1019
1020 /**
1021  *  e1000_check_mng_mode_ich8lan - Checks management mode
1022  *  @hw: pointer to the HW structure
1023  *
1024  *  This checks if the adapter has any manageability enabled.
1025  *  This is a function pointer entry point only called by read/write
1026  *  routines for the PHY and NVM parts.
1027  **/
1028 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1029 {
1030         u32 fwsm;
1031
1032         fwsm = er32(FWSM);
1033         return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1034                ((fwsm & E1000_FWSM_MODE_MASK) ==
1035                 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1036 }
1037
1038 /**
1039  *  e1000_check_mng_mode_pchlan - Checks management mode
1040  *  @hw: pointer to the HW structure
1041  *
1042  *  This checks if the adapter has iAMT enabled.
1043  *  This is a function pointer entry point only called by read/write
1044  *  routines for the PHY and NVM parts.
1045  **/
1046 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1047 {
1048         u32 fwsm;
1049
1050         fwsm = er32(FWSM);
1051         return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1052                (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1053 }
1054
1055 /**
1056  *  e1000_rar_set_pch2lan - Set receive address register
1057  *  @hw: pointer to the HW structure
1058  *  @addr: pointer to the receive address
1059  *  @index: receive address array register
1060  *
1061  *  Sets the receive address array register at index to the address passed
1062  *  in by addr.  For 82579, RAR[0] is the base address register that is to
1063  *  contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1064  *  Use SHRA[0-3] in place of those reserved for ME.
1065  **/
1066 static void e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
1067 {
1068         u32 rar_low, rar_high;
1069
1070         /*
1071          * HW expects these in little endian so we reverse the byte order
1072          * from network order (big endian) to little endian
1073          */
1074         rar_low = ((u32)addr[0] |
1075                    ((u32)addr[1] << 8) |
1076                    ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1077
1078         rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1079
1080         /* If MAC address zero, no need to set the AV bit */
1081         if (rar_low || rar_high)
1082                 rar_high |= E1000_RAH_AV;
1083
1084         if (index == 0) {
1085                 ew32(RAL(index), rar_low);
1086                 e1e_flush();
1087                 ew32(RAH(index), rar_high);
1088                 e1e_flush();
1089                 return;
1090         }
1091
1092         if (index < hw->mac.rar_entry_count) {
1093                 s32 ret_val;
1094
1095                 ret_val = e1000_acquire_swflag_ich8lan(hw);
1096                 if (ret_val)
1097                         goto out;
1098
1099                 ew32(SHRAL(index - 1), rar_low);
1100                 e1e_flush();
1101                 ew32(SHRAH(index - 1), rar_high);
1102                 e1e_flush();
1103
1104                 e1000_release_swflag_ich8lan(hw);
1105
1106                 /* verify the register updates */
1107                 if ((er32(SHRAL(index - 1)) == rar_low) &&
1108                     (er32(SHRAH(index - 1)) == rar_high))
1109                         return;
1110
1111                 e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1112                       (index - 1), er32(FWSM));
1113         }
1114
1115 out:
1116         e_dbg("Failed to write receive address at index %d\n", index);
1117 }
1118
1119 /**
1120  *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
1121  *  @hw: pointer to the HW structure
1122  *
1123  *  Checks if firmware is blocking the reset of the PHY.
1124  *  This is a function pointer entry point only called by
1125  *  reset routines.
1126  **/
1127 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
1128 {
1129         u32 fwsm;
1130
1131         fwsm = er32(FWSM);
1132
1133         return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? 0 : E1000_BLK_PHY_RESET;
1134 }
1135
1136 /**
1137  *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
1138  *  @hw: pointer to the HW structure
1139  *
1140  *  Assumes semaphore already acquired.
1141  *
1142  **/
1143 static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
1144 {
1145         u16 phy_data;
1146         u32 strap = er32(STRAP);
1147         s32 ret_val = 0;
1148
1149         strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
1150
1151         ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
1152         if (ret_val)
1153                 return ret_val;
1154
1155         phy_data &= ~HV_SMB_ADDR_MASK;
1156         phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
1157         phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
1158
1159         return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
1160 }
1161
1162 /**
1163  *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
1164  *  @hw:   pointer to the HW structure
1165  *
1166  *  SW should configure the LCD from the NVM extended configuration region
1167  *  as a workaround for certain parts.
1168  **/
1169 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
1170 {
1171         struct e1000_phy_info *phy = &hw->phy;
1172         u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
1173         s32 ret_val = 0;
1174         u16 word_addr, reg_data, reg_addr, phy_page = 0;
1175
1176         /*
1177          * Initialize the PHY from the NVM on ICH platforms.  This
1178          * is needed due to an issue where the NVM configuration is
1179          * not properly autoloaded after power transitions.
1180          * Therefore, after each PHY reset, we will load the
1181          * configuration data out of the NVM manually.
1182          */
1183         switch (hw->mac.type) {
1184         case e1000_ich8lan:
1185                 if (phy->type != e1000_phy_igp_3)
1186                         return ret_val;
1187
1188                 if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
1189                     (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
1190                         sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
1191                         break;
1192                 }
1193                 /* Fall-thru */
1194         case e1000_pchlan:
1195         case e1000_pch2lan:
1196                 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
1197                 break;
1198         default:
1199                 return ret_val;
1200         }
1201
1202         ret_val = hw->phy.ops.acquire(hw);
1203         if (ret_val)
1204                 return ret_val;
1205
1206         data = er32(FEXTNVM);
1207         if (!(data & sw_cfg_mask))
1208                 goto release;
1209
1210         /*
1211          * Make sure HW does not configure LCD from PHY
1212          * extended configuration before SW configuration
1213          */
1214         data = er32(EXTCNF_CTRL);
1215         if (!(hw->mac.type == e1000_pch2lan)) {
1216                 if (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE)
1217                         goto release;
1218         }
1219
1220         cnf_size = er32(EXTCNF_SIZE);
1221         cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
1222         cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
1223         if (!cnf_size)
1224                 goto release;
1225
1226         cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
1227         cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
1228
1229         if ((!(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE) &&
1230             (hw->mac.type == e1000_pchlan)) ||
1231              (hw->mac.type == e1000_pch2lan)) {
1232                 /*
1233                  * HW configures the SMBus address and LEDs when the
1234                  * OEM and LCD Write Enable bits are set in the NVM.
1235                  * When both NVM bits are cleared, SW will configure
1236                  * them instead.
1237                  */
1238                 ret_val = e1000_write_smbus_addr(hw);
1239                 if (ret_val)
1240                         goto release;
1241
1242                 data = er32(LEDCTL);
1243                 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
1244                                                         (u16)data);
1245                 if (ret_val)
1246                         goto release;
1247         }
1248
1249         /* Configure LCD from extended configuration region. */
1250
1251         /* cnf_base_addr is in DWORD */
1252         word_addr = (u16)(cnf_base_addr << 1);
1253
1254         for (i = 0; i < cnf_size; i++) {
1255                 ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1,
1256                                          &reg_data);
1257                 if (ret_val)
1258                         goto release;
1259
1260                 ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
1261                                          1, &reg_addr);
1262                 if (ret_val)
1263                         goto release;
1264
1265                 /* Save off the PHY page for future writes. */
1266                 if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
1267                         phy_page = reg_data;
1268                         continue;
1269                 }
1270
1271                 reg_addr &= PHY_REG_MASK;
1272                 reg_addr |= phy_page;
1273
1274                 ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data);
1275                 if (ret_val)
1276                         goto release;
1277         }
1278
1279 release:
1280         hw->phy.ops.release(hw);
1281         return ret_val;
1282 }
1283
1284 /**
1285  *  e1000_k1_gig_workaround_hv - K1 Si workaround
1286  *  @hw:   pointer to the HW structure
1287  *  @link: link up bool flag
1288  *
1289  *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
1290  *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
1291  *  If link is down, the function will restore the default K1 setting located
1292  *  in the NVM.
1293  **/
1294 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
1295 {
1296         s32 ret_val = 0;
1297         u16 status_reg = 0;
1298         bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
1299
1300         if (hw->mac.type != e1000_pchlan)
1301                 return 0;
1302
1303         /* Wrap the whole flow with the sw flag */
1304         ret_val = hw->phy.ops.acquire(hw);
1305         if (ret_val)
1306                 return ret_val;
1307
1308         /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
1309         if (link) {
1310                 if (hw->phy.type == e1000_phy_82578) {
1311                         ret_val = e1e_rphy_locked(hw, BM_CS_STATUS,
1312                                                   &status_reg);
1313                         if (ret_val)
1314                                 goto release;
1315
1316                         status_reg &= BM_CS_STATUS_LINK_UP |
1317                                       BM_CS_STATUS_RESOLVED |
1318                                       BM_CS_STATUS_SPEED_MASK;
1319
1320                         if (status_reg == (BM_CS_STATUS_LINK_UP |
1321                                            BM_CS_STATUS_RESOLVED |
1322                                            BM_CS_STATUS_SPEED_1000))
1323                                 k1_enable = false;
1324                 }
1325
1326                 if (hw->phy.type == e1000_phy_82577) {
1327                         ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg);
1328                         if (ret_val)
1329                                 goto release;
1330
1331                         status_reg &= HV_M_STATUS_LINK_UP |
1332                                       HV_M_STATUS_AUTONEG_COMPLETE |
1333                                       HV_M_STATUS_SPEED_MASK;
1334
1335                         if (status_reg == (HV_M_STATUS_LINK_UP |
1336                                            HV_M_STATUS_AUTONEG_COMPLETE |
1337                                            HV_M_STATUS_SPEED_1000))
1338                                 k1_enable = false;
1339                 }
1340
1341                 /* Link stall fix for link up */
1342                 ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100);
1343                 if (ret_val)
1344                         goto release;
1345
1346         } else {
1347                 /* Link stall fix for link down */
1348                 ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100);
1349                 if (ret_val)
1350                         goto release;
1351         }
1352
1353         ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
1354
1355 release:
1356         hw->phy.ops.release(hw);
1357
1358         return ret_val;
1359 }
1360
1361 /**
1362  *  e1000_configure_k1_ich8lan - Configure K1 power state
1363  *  @hw: pointer to the HW structure
1364  *  @enable: K1 state to configure
1365  *
1366  *  Configure the K1 power state based on the provided parameter.
1367  *  Assumes semaphore already acquired.
1368  *
1369  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1370  **/
1371 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
1372 {
1373         s32 ret_val = 0;
1374         u32 ctrl_reg = 0;
1375         u32 ctrl_ext = 0;
1376         u32 reg = 0;
1377         u16 kmrn_reg = 0;
1378
1379         ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
1380                                               &kmrn_reg);
1381         if (ret_val)
1382                 return ret_val;
1383
1384         if (k1_enable)
1385                 kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
1386         else
1387                 kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
1388
1389         ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
1390                                                kmrn_reg);
1391         if (ret_val)
1392                 return ret_val;
1393
1394         udelay(20);
1395         ctrl_ext = er32(CTRL_EXT);
1396         ctrl_reg = er32(CTRL);
1397
1398         reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1399         reg |= E1000_CTRL_FRCSPD;
1400         ew32(CTRL, reg);
1401
1402         ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
1403         e1e_flush();
1404         udelay(20);
1405         ew32(CTRL, ctrl_reg);
1406         ew32(CTRL_EXT, ctrl_ext);
1407         e1e_flush();
1408         udelay(20);
1409
1410         return 0;
1411 }
1412
1413 /**
1414  *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
1415  *  @hw:       pointer to the HW structure
1416  *  @d0_state: boolean if entering d0 or d3 device state
1417  *
1418  *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
1419  *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
1420  *  in NVM determines whether HW should configure LPLU and Gbe Disable.
1421  **/
1422 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
1423 {
1424         s32 ret_val = 0;
1425         u32 mac_reg;
1426         u16 oem_reg;
1427
1428         if ((hw->mac.type != e1000_pch2lan) && (hw->mac.type != e1000_pchlan))
1429                 return ret_val;
1430
1431         ret_val = hw->phy.ops.acquire(hw);
1432         if (ret_val)
1433                 return ret_val;
1434
1435         if (!(hw->mac.type == e1000_pch2lan)) {
1436                 mac_reg = er32(EXTCNF_CTRL);
1437                 if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
1438                         goto release;
1439         }
1440
1441         mac_reg = er32(FEXTNVM);
1442         if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
1443                 goto release;
1444
1445         mac_reg = er32(PHY_CTRL);
1446
1447         ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg);
1448         if (ret_val)
1449                 goto release;
1450
1451         oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
1452
1453         if (d0_state) {
1454                 if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
1455                         oem_reg |= HV_OEM_BITS_GBE_DIS;
1456
1457                 if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
1458                         oem_reg |= HV_OEM_BITS_LPLU;
1459         } else {
1460                 if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
1461                                E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
1462                         oem_reg |= HV_OEM_BITS_GBE_DIS;
1463
1464                 if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
1465                                E1000_PHY_CTRL_NOND0A_LPLU))
1466                         oem_reg |= HV_OEM_BITS_LPLU;
1467         }
1468
1469         /* Set Restart auto-neg to activate the bits */
1470         if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
1471             !hw->phy.ops.check_reset_block(hw))
1472                 oem_reg |= HV_OEM_BITS_RESTART_AN;
1473
1474         ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg);
1475
1476 release:
1477         hw->phy.ops.release(hw);
1478
1479         return ret_val;
1480 }
1481
1482
1483 /**
1484  *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
1485  *  @hw:   pointer to the HW structure
1486  **/
1487 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
1488 {
1489         s32 ret_val;
1490         u16 data;
1491
1492         ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
1493         if (ret_val)
1494                 return ret_val;
1495
1496         data |= HV_KMRN_MDIO_SLOW;
1497
1498         ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
1499
1500         return ret_val;
1501 }
1502
1503 /**
1504  *  e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
1505  *  done after every PHY reset.
1506  **/
1507 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
1508 {
1509         s32 ret_val = 0;
1510         u16 phy_data;
1511
1512         if (hw->mac.type != e1000_pchlan)
1513                 return 0;
1514
1515         /* Set MDIO slow mode before any other MDIO access */
1516         if (hw->phy.type == e1000_phy_82577) {
1517                 ret_val = e1000_set_mdio_slow_mode_hv(hw);
1518                 if (ret_val)
1519                         return ret_val;
1520         }
1521
1522         if (((hw->phy.type == e1000_phy_82577) &&
1523              ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
1524             ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
1525                 /* Disable generation of early preamble */
1526                 ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
1527                 if (ret_val)
1528                         return ret_val;
1529
1530                 /* Preamble tuning for SSC */
1531                 ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
1532                 if (ret_val)
1533                         return ret_val;
1534         }
1535
1536         if (hw->phy.type == e1000_phy_82578) {
1537                 /*
1538                  * Return registers to default by doing a soft reset then
1539                  * writing 0x3140 to the control register.
1540                  */
1541                 if (hw->phy.revision < 2) {
1542                         e1000e_phy_sw_reset(hw);
1543                         ret_val = e1e_wphy(hw, PHY_CONTROL, 0x3140);
1544                 }
1545         }
1546
1547         /* Select page 0 */
1548         ret_val = hw->phy.ops.acquire(hw);
1549         if (ret_val)
1550                 return ret_val;
1551
1552         hw->phy.addr = 1;
1553         ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
1554         hw->phy.ops.release(hw);
1555         if (ret_val)
1556                 return ret_val;
1557
1558         /*
1559          * Configure the K1 Si workaround during phy reset assuming there is
1560          * link so that it disables K1 if link is in 1Gbps.
1561          */
1562         ret_val = e1000_k1_gig_workaround_hv(hw, true);
1563         if (ret_val)
1564                 return ret_val;
1565
1566         /* Workaround for link disconnects on a busy hub in half duplex */
1567         ret_val = hw->phy.ops.acquire(hw);
1568         if (ret_val)
1569                 return ret_val;
1570         ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data);
1571         if (ret_val)
1572                 goto release;
1573         ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF);
1574 release:
1575         hw->phy.ops.release(hw);
1576
1577         return ret_val;
1578 }
1579
1580 /**
1581  *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
1582  *  @hw:   pointer to the HW structure
1583  **/
1584 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
1585 {
1586         u32 mac_reg;
1587         u16 i, phy_reg = 0;
1588         s32 ret_val;
1589
1590         ret_val = hw->phy.ops.acquire(hw);
1591         if (ret_val)
1592                 return;
1593         ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
1594         if (ret_val)
1595                 goto release;
1596
1597         /* Copy both RAL/H (rar_entry_count) and SHRAL/H (+4) to PHY */
1598         for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) {
1599                 mac_reg = er32(RAL(i));
1600                 hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
1601                                            (u16)(mac_reg & 0xFFFF));
1602                 hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
1603                                            (u16)((mac_reg >> 16) & 0xFFFF));
1604
1605                 mac_reg = er32(RAH(i));
1606                 hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
1607                                            (u16)(mac_reg & 0xFFFF));
1608                 hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
1609                                            (u16)((mac_reg & E1000_RAH_AV)
1610                                                  >> 16));
1611         }
1612
1613         e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
1614
1615 release:
1616         hw->phy.ops.release(hw);
1617 }
1618
1619 /**
1620  *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
1621  *  with 82579 PHY
1622  *  @hw: pointer to the HW structure
1623  *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
1624  **/
1625 s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
1626 {
1627         s32 ret_val = 0;
1628         u16 phy_reg, data;
1629         u32 mac_reg;
1630         u16 i;
1631
1632         if (hw->mac.type != e1000_pch2lan)
1633                 return 0;
1634
1635         /* disable Rx path while enabling/disabling workaround */
1636         e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1637         ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | (1 << 14));
1638         if (ret_val)
1639                 return ret_val;
1640
1641         if (enable) {
1642                 /*
1643                  * Write Rx addresses (rar_entry_count for RAL/H, +4 for
1644                  * SHRAL/H) and initial CRC values to the MAC
1645                  */
1646                 for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) {
1647                         u8 mac_addr[ETH_ALEN] = {0};
1648                         u32 addr_high, addr_low;
1649
1650                         addr_high = er32(RAH(i));
1651                         if (!(addr_high & E1000_RAH_AV))
1652                                 continue;
1653                         addr_low = er32(RAL(i));
1654                         mac_addr[0] = (addr_low & 0xFF);
1655                         mac_addr[1] = ((addr_low >> 8) & 0xFF);
1656                         mac_addr[2] = ((addr_low >> 16) & 0xFF);
1657                         mac_addr[3] = ((addr_low >> 24) & 0xFF);
1658                         mac_addr[4] = (addr_high & 0xFF);
1659                         mac_addr[5] = ((addr_high >> 8) & 0xFF);
1660
1661                         ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
1662                 }
1663
1664                 /* Write Rx addresses to the PHY */
1665                 e1000_copy_rx_addrs_to_phy_ich8lan(hw);
1666
1667                 /* Enable jumbo frame workaround in the MAC */
1668                 mac_reg = er32(FFLT_DBG);
1669                 mac_reg &= ~(1 << 14);
1670                 mac_reg |= (7 << 15);
1671                 ew32(FFLT_DBG, mac_reg);
1672
1673                 mac_reg = er32(RCTL);
1674                 mac_reg |= E1000_RCTL_SECRC;
1675                 ew32(RCTL, mac_reg);
1676
1677                 ret_val = e1000e_read_kmrn_reg(hw,
1678                                                 E1000_KMRNCTRLSTA_CTRL_OFFSET,
1679                                                 &data);
1680                 if (ret_val)
1681                         return ret_val;
1682                 ret_val = e1000e_write_kmrn_reg(hw,
1683                                                 E1000_KMRNCTRLSTA_CTRL_OFFSET,
1684                                                 data | (1 << 0));
1685                 if (ret_val)
1686                         return ret_val;
1687                 ret_val = e1000e_read_kmrn_reg(hw,
1688                                                 E1000_KMRNCTRLSTA_HD_CTRL,
1689                                                 &data);
1690                 if (ret_val)
1691                         return ret_val;
1692                 data &= ~(0xF << 8);
1693                 data |= (0xB << 8);
1694                 ret_val = e1000e_write_kmrn_reg(hw,
1695                                                 E1000_KMRNCTRLSTA_HD_CTRL,
1696                                                 data);
1697                 if (ret_val)
1698                         return ret_val;
1699
1700                 /* Enable jumbo frame workaround in the PHY */
1701                 e1e_rphy(hw, PHY_REG(769, 23), &data);
1702                 data &= ~(0x7F << 5);
1703                 data |= (0x37 << 5);
1704                 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
1705                 if (ret_val)
1706                         return ret_val;
1707                 e1e_rphy(hw, PHY_REG(769, 16), &data);
1708                 data &= ~(1 << 13);
1709                 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
1710                 if (ret_val)
1711                         return ret_val;
1712                 e1e_rphy(hw, PHY_REG(776, 20), &data);
1713                 data &= ~(0x3FF << 2);
1714                 data |= (0x1A << 2);
1715                 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
1716                 if (ret_val)
1717                         return ret_val;
1718                 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
1719                 if (ret_val)
1720                         return ret_val;
1721                 e1e_rphy(hw, HV_PM_CTRL, &data);
1722                 ret_val = e1e_wphy(hw, HV_PM_CTRL, data | (1 << 10));
1723                 if (ret_val)
1724                         return ret_val;
1725         } else {
1726                 /* Write MAC register values back to h/w defaults */
1727                 mac_reg = er32(FFLT_DBG);
1728                 mac_reg &= ~(0xF << 14);
1729                 ew32(FFLT_DBG, mac_reg);
1730
1731                 mac_reg = er32(RCTL);
1732                 mac_reg &= ~E1000_RCTL_SECRC;
1733                 ew32(RCTL, mac_reg);
1734
1735                 ret_val = e1000e_read_kmrn_reg(hw,
1736                                                 E1000_KMRNCTRLSTA_CTRL_OFFSET,
1737                                                 &data);
1738                 if (ret_val)
1739                         return ret_val;
1740                 ret_val = e1000e_write_kmrn_reg(hw,
1741                                                 E1000_KMRNCTRLSTA_CTRL_OFFSET,
1742                                                 data & ~(1 << 0));
1743                 if (ret_val)
1744                         return ret_val;
1745                 ret_val = e1000e_read_kmrn_reg(hw,
1746                                                 E1000_KMRNCTRLSTA_HD_CTRL,
1747                                                 &data);
1748                 if (ret_val)
1749                         return ret_val;
1750                 data &= ~(0xF << 8);
1751                 data |= (0xB << 8);
1752                 ret_val = e1000e_write_kmrn_reg(hw,
1753                                                 E1000_KMRNCTRLSTA_HD_CTRL,
1754                                                 data);
1755                 if (ret_val)
1756                         return ret_val;
1757
1758                 /* Write PHY register values back to h/w defaults */
1759                 e1e_rphy(hw, PHY_REG(769, 23), &data);
1760                 data &= ~(0x7F << 5);
1761                 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
1762                 if (ret_val)
1763                         return ret_val;
1764                 e1e_rphy(hw, PHY_REG(769, 16), &data);
1765                 data |= (1 << 13);
1766                 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
1767                 if (ret_val)
1768                         return ret_val;
1769                 e1e_rphy(hw, PHY_REG(776, 20), &data);
1770                 data &= ~(0x3FF << 2);
1771                 data |= (0x8 << 2);
1772                 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
1773                 if (ret_val)
1774                         return ret_val;
1775                 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
1776                 if (ret_val)
1777                         return ret_val;
1778                 e1e_rphy(hw, HV_PM_CTRL, &data);
1779                 ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~(1 << 10));
1780                 if (ret_val)
1781                         return ret_val;
1782         }
1783
1784         /* re-enable Rx path after enabling/disabling workaround */
1785         return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~(1 << 14));
1786 }
1787
1788 /**
1789  *  e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
1790  *  done after every PHY reset.
1791  **/
1792 static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
1793 {
1794         s32 ret_val = 0;
1795
1796         if (hw->mac.type != e1000_pch2lan)
1797                 return 0;
1798
1799         /* Set MDIO slow mode before any other MDIO access */
1800         ret_val = e1000_set_mdio_slow_mode_hv(hw);
1801
1802         ret_val = hw->phy.ops.acquire(hw);
1803         if (ret_val)
1804                 return ret_val;
1805         ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, I82579_MSE_THRESHOLD);
1806         if (ret_val)
1807                 goto release;
1808         /* set MSE higher to enable link to stay up when noise is high */
1809         ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, 0x0034);
1810         if (ret_val)
1811                 goto release;
1812         ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, I82579_MSE_LINK_DOWN);
1813         if (ret_val)
1814                 goto release;
1815         /* drop link after 5 times MSE threshold was reached */
1816         ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, 0x0005);
1817 release:
1818         hw->phy.ops.release(hw);
1819
1820         return ret_val;
1821 }
1822
1823 /**
1824  *  e1000_k1_gig_workaround_lv - K1 Si workaround
1825  *  @hw:   pointer to the HW structure
1826  *
1827  *  Workaround to set the K1 beacon duration for 82579 parts
1828  **/
1829 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
1830 {
1831         s32 ret_val = 0;
1832         u16 status_reg = 0;
1833         u32 mac_reg;
1834         u16 phy_reg;
1835
1836         if (hw->mac.type != e1000_pch2lan)
1837                 return 0;
1838
1839         /* Set K1 beacon duration based on 1Gbps speed or otherwise */
1840         ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
1841         if (ret_val)
1842                 return ret_val;
1843
1844         if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
1845             == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
1846                 mac_reg = er32(FEXTNVM4);
1847                 mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
1848
1849                 ret_val = e1e_rphy(hw, I82579_LPI_CTRL, &phy_reg);
1850                 if (ret_val)
1851                         return ret_val;
1852
1853                 if (status_reg & HV_M_STATUS_SPEED_1000) {
1854                         u16 pm_phy_reg;
1855
1856                         mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1857                         phy_reg &= ~I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT;
1858                         /* LV 1G Packet drop issue wa  */
1859                         ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg);
1860                         if (ret_val)
1861                                 return ret_val;
1862                         pm_phy_reg &= ~HV_PM_CTRL_PLL_STOP_IN_K1_GIGA;
1863                         ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg);
1864                         if (ret_val)
1865                                 return ret_val;
1866                 } else {
1867                         mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
1868                         phy_reg |= I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT;
1869                 }
1870                 ew32(FEXTNVM4, mac_reg);
1871                 ret_val = e1e_wphy(hw, I82579_LPI_CTRL, phy_reg);
1872         }
1873
1874         return ret_val;
1875 }
1876
1877 /**
1878  *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
1879  *  @hw:   pointer to the HW structure
1880  *  @gate: boolean set to true to gate, false to ungate
1881  *
1882  *  Gate/ungate the automatic PHY configuration via hardware; perform
1883  *  the configuration via software instead.
1884  **/
1885 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
1886 {
1887         u32 extcnf_ctrl;
1888
1889         if (hw->mac.type != e1000_pch2lan)
1890                 return;
1891
1892         extcnf_ctrl = er32(EXTCNF_CTRL);
1893
1894         if (gate)
1895                 extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
1896         else
1897                 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
1898
1899         ew32(EXTCNF_CTRL, extcnf_ctrl);
1900 }
1901
1902 /**
1903  *  e1000_lan_init_done_ich8lan - Check for PHY config completion
1904  *  @hw: pointer to the HW structure
1905  *
1906  *  Check the appropriate indication the MAC has finished configuring the
1907  *  PHY after a software reset.
1908  **/
1909 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
1910 {
1911         u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
1912
1913         /* Wait for basic configuration completes before proceeding */
1914         do {
1915                 data = er32(STATUS);
1916                 data &= E1000_STATUS_LAN_INIT_DONE;
1917                 udelay(100);
1918         } while ((!data) && --loop);
1919
1920         /*
1921          * If basic configuration is incomplete before the above loop
1922          * count reaches 0, loading the configuration from NVM will
1923          * leave the PHY in a bad state possibly resulting in no link.
1924          */
1925         if (loop == 0)
1926                 e_dbg("LAN_INIT_DONE not set, increase timeout\n");
1927
1928         /* Clear the Init Done bit for the next init event */
1929         data = er32(STATUS);
1930         data &= ~E1000_STATUS_LAN_INIT_DONE;
1931         ew32(STATUS, data);
1932 }
1933
1934 /**
1935  *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
1936  *  @hw: pointer to the HW structure
1937  **/
1938 static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
1939 {
1940         s32 ret_val = 0;
1941         u16 reg;
1942
1943         if (hw->phy.ops.check_reset_block(hw))
1944                 return 0;
1945
1946         /* Allow time for h/w to get to quiescent state after reset */
1947         usleep_range(10000, 20000);
1948
1949         /* Perform any necessary post-reset workarounds */
1950         switch (hw->mac.type) {
1951         case e1000_pchlan:
1952                 ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
1953                 if (ret_val)
1954                         return ret_val;
1955                 break;
1956         case e1000_pch2lan:
1957                 ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
1958                 if (ret_val)
1959                         return ret_val;
1960                 break;
1961         default:
1962                 break;
1963         }
1964
1965         /* Clear the host wakeup bit after lcd reset */
1966         if (hw->mac.type >= e1000_pchlan) {
1967                 e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
1968                 reg &= ~BM_WUC_HOST_WU_BIT;
1969                 e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
1970         }
1971
1972         /* Configure the LCD with the extended configuration region in NVM */
1973         ret_val = e1000_sw_lcd_config_ich8lan(hw);
1974         if (ret_val)
1975                 return ret_val;
1976
1977         /* Configure the LCD with the OEM bits in NVM */
1978         ret_val = e1000_oem_bits_config_ich8lan(hw, true);
1979
1980         if (hw->mac.type == e1000_pch2lan) {
1981                 /* Ungate automatic PHY configuration on non-managed 82579 */
1982                 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
1983                         usleep_range(10000, 20000);
1984                         e1000_gate_hw_phy_config_ich8lan(hw, false);
1985                 }
1986
1987                 /* Set EEE LPI Update Timer to 200usec */
1988                 ret_val = hw->phy.ops.acquire(hw);
1989                 if (ret_val)
1990                         return ret_val;
1991                 ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR,
1992                                           I82579_LPI_UPDATE_TIMER);
1993                 if (!ret_val)
1994                         ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, 0x1387);
1995                 hw->phy.ops.release(hw);
1996         }
1997
1998         return ret_val;
1999 }
2000
2001 /**
2002  *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
2003  *  @hw: pointer to the HW structure
2004  *
2005  *  Resets the PHY
2006  *  This is a function pointer entry point called by drivers
2007  *  or other shared routines.
2008  **/
2009 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
2010 {
2011         s32 ret_val = 0;
2012
2013         /* Gate automatic PHY configuration by hardware on non-managed 82579 */
2014         if ((hw->mac.type == e1000_pch2lan) &&
2015             !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
2016                 e1000_gate_hw_phy_config_ich8lan(hw, true);
2017
2018         ret_val = e1000e_phy_hw_reset_generic(hw);
2019         if (ret_val)
2020                 return ret_val;
2021
2022         return e1000_post_phy_reset_ich8lan(hw);
2023 }
2024
2025 /**
2026  *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
2027  *  @hw: pointer to the HW structure
2028  *  @active: true to enable LPLU, false to disable
2029  *
2030  *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
2031  *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
2032  *  the phy speed. This function will manually set the LPLU bit and restart
2033  *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
2034  *  since it configures the same bit.
2035  **/
2036 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
2037 {
2038         s32 ret_val = 0;
2039         u16 oem_reg;
2040
2041         ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
2042         if (ret_val)
2043                 return ret_val;
2044
2045         if (active)
2046                 oem_reg |= HV_OEM_BITS_LPLU;
2047         else
2048                 oem_reg &= ~HV_OEM_BITS_LPLU;
2049
2050         if (!hw->phy.ops.check_reset_block(hw))
2051                 oem_reg |= HV_OEM_BITS_RESTART_AN;
2052
2053         return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
2054 }
2055
2056 /**
2057  *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
2058  *  @hw: pointer to the HW structure
2059  *  @active: true to enable LPLU, false to disable
2060  *
2061  *  Sets the LPLU D0 state according to the active flag.  When
2062  *  activating LPLU this function also disables smart speed
2063  *  and vice versa.  LPLU will not be activated unless the
2064  *  device autonegotiation advertisement meets standards of
2065  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
2066  *  This is a function pointer entry point only called by
2067  *  PHY setup routines.
2068  **/
2069 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2070 {
2071         struct e1000_phy_info *phy = &hw->phy;
2072         u32 phy_ctrl;
2073         s32 ret_val = 0;
2074         u16 data;
2075
2076         if (phy->type == e1000_phy_ife)
2077                 return 0;
2078
2079         phy_ctrl = er32(PHY_CTRL);
2080
2081         if (active) {
2082                 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2083                 ew32(PHY_CTRL, phy_ctrl);
2084
2085                 if (phy->type != e1000_phy_igp_3)
2086                         return 0;
2087
2088                 /*
2089                  * Call gig speed drop workaround on LPLU before accessing
2090                  * any PHY registers
2091                  */
2092                 if (hw->mac.type == e1000_ich8lan)
2093                         e1000e_gig_downshift_workaround_ich8lan(hw);
2094
2095                 /* When LPLU is enabled, we should disable SmartSpeed */
2096                 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
2097                 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2098                 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
2099                 if (ret_val)
2100                         return ret_val;
2101         } else {
2102                 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2103                 ew32(PHY_CTRL, phy_ctrl);
2104
2105                 if (phy->type != e1000_phy_igp_3)
2106                         return 0;
2107
2108                 /*
2109                  * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
2110                  * during Dx states where the power conservation is most
2111                  * important.  During driver activity we should enable
2112                  * SmartSpeed, so performance is maintained.
2113                  */
2114                 if (phy->smart_speed == e1000_smart_speed_on) {
2115                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2116                                            &data);
2117                         if (ret_val)
2118                                 return ret_val;
2119
2120                         data |= IGP01E1000_PSCFR_SMART_SPEED;
2121                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2122                                            data);
2123                         if (ret_val)
2124                                 return ret_val;
2125                 } else if (phy->smart_speed == e1000_smart_speed_off) {
2126                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2127                                            &data);
2128                         if (ret_val)
2129                                 return ret_val;
2130
2131                         data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2132                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2133                                            data);
2134                         if (ret_val)
2135                                 return ret_val;
2136                 }
2137         }
2138
2139         return 0;
2140 }
2141
2142 /**
2143  *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
2144  *  @hw: pointer to the HW structure
2145  *  @active: true to enable LPLU, false to disable
2146  *
2147  *  Sets the LPLU D3 state according to the active flag.  When
2148  *  activating LPLU this function also disables smart speed
2149  *  and vice versa.  LPLU will not be activated unless the
2150  *  device autonegotiation advertisement meets standards of
2151  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
2152  *  This is a function pointer entry point only called by
2153  *  PHY setup routines.
2154  **/
2155 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2156 {
2157         struct e1000_phy_info *phy = &hw->phy;
2158         u32 phy_ctrl;
2159         s32 ret_val = 0;
2160         u16 data;
2161
2162         phy_ctrl = er32(PHY_CTRL);
2163
2164         if (!active) {
2165                 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
2166                 ew32(PHY_CTRL, phy_ctrl);
2167
2168                 if (phy->type != e1000_phy_igp_3)
2169                         return 0;
2170
2171                 /*
2172                  * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
2173                  * during Dx states where the power conservation is most
2174                  * important.  During driver activity we should enable
2175                  * SmartSpeed, so performance is maintained.
2176                  */
2177                 if (phy->smart_speed == e1000_smart_speed_on) {
2178                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2179                                            &data);
2180                         if (ret_val)
2181                                 return ret_val;
2182
2183                         data |= IGP01E1000_PSCFR_SMART_SPEED;
2184                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2185                                            data);
2186                         if (ret_val)
2187                                 return ret_val;
2188                 } else if (phy->smart_speed == e1000_smart_speed_off) {
2189                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2190                                            &data);
2191                         if (ret_val)
2192                                 return ret_val;
2193
2194                         data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2195                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2196                                            data);
2197                         if (ret_val)
2198                                 return ret_val;
2199                 }
2200         } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
2201                    (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
2202                    (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
2203                 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
2204                 ew32(PHY_CTRL, phy_ctrl);
2205
2206                 if (phy->type != e1000_phy_igp_3)
2207                         return 0;
2208
2209                 /*
2210                  * Call gig speed drop workaround on LPLU before accessing
2211                  * any PHY registers
2212                  */
2213                 if (hw->mac.type == e1000_ich8lan)
2214                         e1000e_gig_downshift_workaround_ich8lan(hw);
2215
2216                 /* When LPLU is enabled, we should disable SmartSpeed */
2217                 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
2218                 if (ret_val)
2219                         return ret_val;
2220
2221                 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2222                 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
2223         }
2224
2225         return ret_val;
2226 }
2227
2228 /**
2229  *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
2230  *  @hw: pointer to the HW structure
2231  *  @bank:  pointer to the variable that returns the active bank
2232  *
2233  *  Reads signature byte from the NVM using the flash access registers.
2234  *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
2235  **/
2236 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
2237 {
2238         u32 eecd;
2239         struct e1000_nvm_info *nvm = &hw->nvm;
2240         u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
2241         u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
2242         u8 sig_byte = 0;
2243         s32 ret_val;
2244
2245         switch (hw->mac.type) {
2246         case e1000_ich8lan:
2247         case e1000_ich9lan:
2248                 eecd = er32(EECD);
2249                 if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
2250                     E1000_EECD_SEC1VAL_VALID_MASK) {
2251                         if (eecd & E1000_EECD_SEC1VAL)
2252                                 *bank = 1;
2253                         else
2254                                 *bank = 0;
2255
2256                         return 0;
2257                 }
2258                 e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
2259                 /* fall-thru */
2260         default:
2261                 /* set bank to 0 in case flash read fails */
2262                 *bank = 0;
2263
2264                 /* Check bank 0 */
2265                 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
2266                                                         &sig_byte);
2267                 if (ret_val)
2268                         return ret_val;
2269                 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
2270                     E1000_ICH_NVM_SIG_VALUE) {
2271                         *bank = 0;
2272                         return 0;
2273                 }
2274
2275                 /* Check bank 1 */
2276                 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
2277                                                         bank1_offset,
2278                                                         &sig_byte);
2279                 if (ret_val)
2280                         return ret_val;
2281                 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
2282                     E1000_ICH_NVM_SIG_VALUE) {
2283                         *bank = 1;
2284                         return 0;
2285                 }
2286
2287                 e_dbg("ERROR: No valid NVM bank present\n");
2288                 return -E1000_ERR_NVM;
2289         }
2290 }
2291
2292 /**
2293  *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
2294  *  @hw: pointer to the HW structure
2295  *  @offset: The offset (in bytes) of the word(s) to read.
2296  *  @words: Size of data to read in words
2297  *  @data: Pointer to the word(s) to read at offset.
2298  *
2299  *  Reads a word(s) from the NVM using the flash access registers.
2300  **/
2301 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
2302                                   u16 *data)
2303 {
2304         struct e1000_nvm_info *nvm = &hw->nvm;
2305         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2306         u32 act_offset;
2307         s32 ret_val = 0;
2308         u32 bank = 0;
2309         u16 i, word;
2310
2311         if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
2312             (words == 0)) {
2313                 e_dbg("nvm parameter(s) out of bounds\n");
2314                 ret_val = -E1000_ERR_NVM;
2315                 goto out;
2316         }
2317
2318         nvm->ops.acquire(hw);
2319
2320         ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
2321         if (ret_val) {
2322                 e_dbg("Could not detect valid bank, assuming bank 0\n");
2323                 bank = 0;
2324         }
2325
2326         act_offset = (bank) ? nvm->flash_bank_size : 0;
2327         act_offset += offset;
2328
2329         ret_val = 0;
2330         for (i = 0; i < words; i++) {
2331                 if (dev_spec->shadow_ram[offset+i].modified) {
2332                         data[i] = dev_spec->shadow_ram[offset+i].value;
2333                 } else {
2334                         ret_val = e1000_read_flash_word_ich8lan(hw,
2335                                                                 act_offset + i,
2336                                                                 &word);
2337                         if (ret_val)
2338                                 break;
2339                         data[i] = word;
2340                 }
2341         }
2342
2343         nvm->ops.release(hw);
2344
2345 out:
2346         if (ret_val)
2347                 e_dbg("NVM read error: %d\n", ret_val);
2348
2349         return ret_val;
2350 }
2351
2352 /**
2353  *  e1000_flash_cycle_init_ich8lan - Initialize flash
2354  *  @hw: pointer to the HW structure
2355  *
2356  *  This function does initial flash setup so that a new read/write/erase cycle
2357  *  can be started.
2358  **/
2359 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
2360 {
2361         union ich8_hws_flash_status hsfsts;
2362         s32 ret_val = -E1000_ERR_NVM;
2363
2364         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2365
2366         /* Check if the flash descriptor is valid */
2367         if (!hsfsts.hsf_status.fldesvalid) {
2368                 e_dbg("Flash descriptor invalid.  SW Sequencing must be used.\n");
2369                 return -E1000_ERR_NVM;
2370         }
2371
2372         /* Clear FCERR and DAEL in hw status by writing 1 */
2373         hsfsts.hsf_status.flcerr = 1;
2374         hsfsts.hsf_status.dael = 1;
2375
2376         ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2377
2378         /*
2379          * Either we should have a hardware SPI cycle in progress
2380          * bit to check against, in order to start a new cycle or
2381          * FDONE bit should be changed in the hardware so that it
2382          * is 1 after hardware reset, which can then be used as an
2383          * indication whether a cycle is in progress or has been
2384          * completed.
2385          */
2386
2387         if (!hsfsts.hsf_status.flcinprog) {
2388                 /*
2389                  * There is no cycle running at present,
2390                  * so we can start a cycle.
2391                  * Begin by setting Flash Cycle Done.
2392                  */
2393                 hsfsts.hsf_status.flcdone = 1;
2394                 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2395                 ret_val = 0;
2396         } else {
2397                 s32 i;
2398
2399                 /*
2400                  * Otherwise poll for sometime so the current
2401                  * cycle has a chance to end before giving up.
2402                  */
2403                 for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
2404                         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2405                         if (!hsfsts.hsf_status.flcinprog) {
2406                                 ret_val = 0;
2407                                 break;
2408                         }
2409                         udelay(1);
2410                 }
2411                 if (!ret_val) {
2412                         /*
2413                          * Successful in waiting for previous cycle to timeout,
2414                          * now set the Flash Cycle Done.
2415                          */
2416                         hsfsts.hsf_status.flcdone = 1;
2417                         ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2418                 } else {
2419                         e_dbg("Flash controller busy, cannot get access\n");
2420                 }
2421         }
2422
2423         return ret_val;
2424 }
2425
2426 /**
2427  *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
2428  *  @hw: pointer to the HW structure
2429  *  @timeout: maximum time to wait for completion
2430  *
2431  *  This function starts a flash cycle and waits for its completion.
2432  **/
2433 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
2434 {
2435         union ich8_hws_flash_ctrl hsflctl;
2436         union ich8_hws_flash_status hsfsts;
2437         u32 i = 0;
2438
2439         /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
2440         hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2441         hsflctl.hsf_ctrl.flcgo = 1;
2442         ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2443
2444         /* wait till FDONE bit is set to 1 */
2445         do {
2446                 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2447                 if (hsfsts.hsf_status.flcdone)
2448                         break;
2449                 udelay(1);
2450         } while (i++ < timeout);
2451
2452         if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
2453                 return 0;
2454
2455         return -E1000_ERR_NVM;
2456 }
2457
2458 /**
2459  *  e1000_read_flash_word_ich8lan - Read word from flash
2460  *  @hw: pointer to the HW structure
2461  *  @offset: offset to data location
2462  *  @data: pointer to the location for storing the data
2463  *
2464  *  Reads the flash word at offset into data.  Offset is converted
2465  *  to bytes before read.
2466  **/
2467 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
2468                                          u16 *data)
2469 {
2470         /* Must convert offset into bytes. */
2471         offset <<= 1;
2472
2473         return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
2474 }
2475
2476 /**
2477  *  e1000_read_flash_byte_ich8lan - Read byte from flash
2478  *  @hw: pointer to the HW structure
2479  *  @offset: The offset of the byte to read.
2480  *  @data: Pointer to a byte to store the value read.
2481  *
2482  *  Reads a single byte from the NVM using the flash access registers.
2483  **/
2484 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
2485                                          u8 *data)
2486 {
2487         s32 ret_val;
2488         u16 word = 0;
2489
2490         ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
2491         if (ret_val)
2492                 return ret_val;
2493
2494         *data = (u8)word;
2495
2496         return 0;
2497 }
2498
2499 /**
2500  *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
2501  *  @hw: pointer to the HW structure
2502  *  @offset: The offset (in bytes) of the byte or word to read.
2503  *  @size: Size of data to read, 1=byte 2=word
2504  *  @data: Pointer to the word to store the value read.
2505  *
2506  *  Reads a byte or word from the NVM using the flash access registers.
2507  **/
2508 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
2509                                          u8 size, u16 *data)
2510 {
2511         union ich8_hws_flash_status hsfsts;
2512         union ich8_hws_flash_ctrl hsflctl;
2513         u32 flash_linear_addr;
2514         u32 flash_data = 0;
2515         s32 ret_val = -E1000_ERR_NVM;
2516         u8 count = 0;
2517
2518         if (size < 1  || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
2519                 return -E1000_ERR_NVM;
2520
2521         flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
2522                             hw->nvm.flash_base_addr;
2523
2524         do {
2525                 udelay(1);
2526                 /* Steps */
2527                 ret_val = e1000_flash_cycle_init_ich8lan(hw);
2528                 if (ret_val)
2529                         break;
2530
2531                 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2532                 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
2533                 hsflctl.hsf_ctrl.fldbcount = size - 1;
2534                 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
2535                 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2536
2537                 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2538
2539                 ret_val = e1000_flash_cycle_ich8lan(hw,
2540                                                 ICH_FLASH_READ_COMMAND_TIMEOUT);
2541
2542                 /*
2543                  * Check if FCERR is set to 1, if set to 1, clear it
2544                  * and try the whole sequence a few more times, else
2545                  * read in (shift in) the Flash Data0, the order is
2546                  * least significant byte first msb to lsb
2547                  */
2548                 if (!ret_val) {
2549                         flash_data = er32flash(ICH_FLASH_FDATA0);
2550                         if (size == 1)
2551                                 *data = (u8)(flash_data & 0x000000FF);
2552                         else if (size == 2)
2553                                 *data = (u16)(flash_data & 0x0000FFFF);
2554                         break;
2555                 } else {
2556                         /*
2557                          * If we've gotten here, then things are probably
2558                          * completely hosed, but if the error condition is
2559                          * detected, it won't hurt to give it another try...
2560                          * ICH_FLASH_CYCLE_REPEAT_COUNT times.
2561                          */
2562                         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2563                         if (hsfsts.hsf_status.flcerr) {
2564                                 /* Repeat for some time before giving up. */
2565                                 continue;
2566                         } else if (!hsfsts.hsf_status.flcdone) {
2567                                 e_dbg("Timeout error - flash cycle did not complete.\n");
2568                                 break;
2569                         }
2570                 }
2571         } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
2572
2573         return ret_val;
2574 }
2575
2576 /**
2577  *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
2578  *  @hw: pointer to the HW structure
2579  *  @offset: The offset (in bytes) of the word(s) to write.
2580  *  @words: Size of data to write in words
2581  *  @data: Pointer to the word(s) to write at offset.
2582  *
2583  *  Writes a byte or word to the NVM using the flash access registers.
2584  **/
2585 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
2586                                    u16 *data)
2587 {
2588         struct e1000_nvm_info *nvm = &hw->nvm;
2589         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2590         u16 i;
2591
2592         if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
2593             (words == 0)) {
2594                 e_dbg("nvm parameter(s) out of bounds\n");
2595                 return -E1000_ERR_NVM;
2596         }
2597
2598         nvm->ops.acquire(hw);
2599
2600         for (i = 0; i < words; i++) {
2601                 dev_spec->shadow_ram[offset+i].modified = true;
2602                 dev_spec->shadow_ram[offset+i].value = data[i];
2603         }
2604
2605         nvm->ops.release(hw);
2606
2607         return 0;
2608 }
2609
2610 /**
2611  *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
2612  *  @hw: pointer to the HW structure
2613  *
2614  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
2615  *  which writes the checksum to the shadow ram.  The changes in the shadow
2616  *  ram are then committed to the EEPROM by processing each bank at a time
2617  *  checking for the modified bit and writing only the pending changes.
2618  *  After a successful commit, the shadow ram is cleared and is ready for
2619  *  future writes.
2620  **/
2621 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
2622 {
2623         struct e1000_nvm_info *nvm = &hw->nvm;
2624         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2625         u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
2626         s32 ret_val;
2627         u16 data;
2628
2629         ret_val = e1000e_update_nvm_checksum_generic(hw);
2630         if (ret_val)
2631                 goto out;
2632
2633         if (nvm->type != e1000_nvm_flash_sw)
2634                 goto out;
2635
2636         nvm->ops.acquire(hw);
2637
2638         /*
2639          * We're writing to the opposite bank so if we're on bank 1,
2640          * write to bank 0 etc.  We also need to erase the segment that
2641          * is going to be written
2642          */
2643         ret_val =  e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
2644         if (ret_val) {
2645                 e_dbg("Could not detect valid bank, assuming bank 0\n");
2646                 bank = 0;
2647         }
2648
2649         if (bank == 0) {
2650                 new_bank_offset = nvm->flash_bank_size;
2651                 old_bank_offset = 0;
2652                 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
2653                 if (ret_val)
2654                         goto release;
2655         } else {
2656                 old_bank_offset = nvm->flash_bank_size;
2657                 new_bank_offset = 0;
2658                 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
2659                 if (ret_val)
2660                         goto release;
2661         }
2662
2663         for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
2664                 /*
2665                  * Determine whether to write the value stored
2666                  * in the other NVM bank or a modified value stored
2667                  * in the shadow RAM
2668                  */
2669                 if (dev_spec->shadow_ram[i].modified) {
2670                         data = dev_spec->shadow_ram[i].value;
2671                 } else {
2672                         ret_val = e1000_read_flash_word_ich8lan(hw, i +
2673                                                                 old_bank_offset,
2674                                                                 &data);
2675                         if (ret_val)
2676                                 break;
2677                 }
2678
2679                 /*
2680                  * If the word is 0x13, then make sure the signature bits
2681                  * (15:14) are 11b until the commit has completed.
2682                  * This will allow us to write 10b which indicates the
2683                  * signature is valid.  We want to do this after the write
2684                  * has completed so that we don't mark the segment valid
2685                  * while the write is still in progress
2686                  */
2687                 if (i == E1000_ICH_NVM_SIG_WORD)
2688                         data |= E1000_ICH_NVM_SIG_MASK;
2689
2690                 /* Convert offset to bytes. */
2691                 act_offset = (i + new_bank_offset) << 1;
2692
2693                 udelay(100);
2694                 /* Write the bytes to the new bank. */
2695                 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2696                                                                act_offset,
2697                                                                (u8)data);
2698                 if (ret_val)
2699                         break;
2700
2701                 udelay(100);
2702                 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2703                                                           act_offset + 1,
2704                                                           (u8)(data >> 8));
2705                 if (ret_val)
2706                         break;
2707         }
2708
2709         /*
2710          * Don't bother writing the segment valid bits if sector
2711          * programming failed.
2712          */
2713         if (ret_val) {
2714                 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
2715                 e_dbg("Flash commit failed.\n");
2716                 goto release;
2717         }
2718
2719         /*
2720          * Finally validate the new segment by setting bit 15:14
2721          * to 10b in word 0x13 , this can be done without an
2722          * erase as well since these bits are 11 to start with
2723          * and we need to change bit 14 to 0b
2724          */
2725         act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
2726         ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
2727         if (ret_val)
2728                 goto release;
2729
2730         data &= 0xBFFF;
2731         ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2732                                                        act_offset * 2 + 1,
2733                                                        (u8)(data >> 8));
2734         if (ret_val)
2735                 goto release;
2736
2737         /*
2738          * And invalidate the previously valid segment by setting
2739          * its signature word (0x13) high_byte to 0b. This can be
2740          * done without an erase because flash erase sets all bits
2741          * to 1's. We can write 1's to 0's without an erase
2742          */
2743         act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
2744         ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
2745         if (ret_val)
2746                 goto release;
2747
2748         /* Great!  Everything worked, we can now clear the cached entries. */
2749         for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
2750                 dev_spec->shadow_ram[i].modified = false;
2751                 dev_spec->shadow_ram[i].value = 0xFFFF;
2752         }
2753
2754 release:
2755         nvm->ops.release(hw);
2756
2757         /*
2758          * Reload the EEPROM, or else modifications will not appear
2759          * until after the next adapter reset.
2760          */
2761         if (!ret_val) {
2762                 nvm->ops.reload(hw);
2763                 usleep_range(10000, 20000);
2764         }
2765
2766 out:
2767         if (ret_val)
2768                 e_dbg("NVM update error: %d\n", ret_val);
2769
2770         return ret_val;
2771 }
2772
2773 /**
2774  *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
2775  *  @hw: pointer to the HW structure
2776  *
2777  *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
2778  *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
2779  *  calculated, in which case we need to calculate the checksum and set bit 6.
2780  **/
2781 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
2782 {
2783         s32 ret_val;
2784         u16 data;
2785
2786         /*
2787          * Read 0x19 and check bit 6.  If this bit is 0, the checksum
2788          * needs to be fixed.  This bit is an indication that the NVM
2789          * was prepared by OEM software and did not calculate the
2790          * checksum...a likely scenario.
2791          */
2792         ret_val = e1000_read_nvm(hw, 0x19, 1, &data);
2793         if (ret_val)
2794                 return ret_val;
2795
2796         if (!(data & 0x40)) {
2797                 data |= 0x40;
2798                 ret_val = e1000_write_nvm(hw, 0x19, 1, &data);
2799                 if (ret_val)
2800                         return ret_val;
2801                 ret_val = e1000e_update_nvm_checksum(hw);
2802                 if (ret_val)
2803                         return ret_val;
2804         }
2805
2806         return e1000e_validate_nvm_checksum_generic(hw);
2807 }
2808
2809 /**
2810  *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
2811  *  @hw: pointer to the HW structure
2812  *
2813  *  To prevent malicious write/erase of the NVM, set it to be read-only
2814  *  so that the hardware ignores all write/erase cycles of the NVM via
2815  *  the flash control registers.  The shadow-ram copy of the NVM will
2816  *  still be updated, however any updates to this copy will not stick
2817  *  across driver reloads.
2818  **/
2819 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
2820 {
2821         struct e1000_nvm_info *nvm = &hw->nvm;
2822         union ich8_flash_protected_range pr0;
2823         union ich8_hws_flash_status hsfsts;
2824         u32 gfpreg;
2825
2826         nvm->ops.acquire(hw);
2827
2828         gfpreg = er32flash(ICH_FLASH_GFPREG);
2829
2830         /* Write-protect GbE Sector of NVM */
2831         pr0.regval = er32flash(ICH_FLASH_PR0);
2832         pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
2833         pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
2834         pr0.range.wpe = true;
2835         ew32flash(ICH_FLASH_PR0, pr0.regval);
2836
2837         /*
2838          * Lock down a subset of GbE Flash Control Registers, e.g.
2839          * PR0 to prevent the write-protection from being lifted.
2840          * Once FLOCKDN is set, the registers protected by it cannot
2841          * be written until FLOCKDN is cleared by a hardware reset.
2842          */
2843         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2844         hsfsts.hsf_status.flockdn = true;
2845         ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2846
2847         nvm->ops.release(hw);
2848 }
2849
2850 /**
2851  *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
2852  *  @hw: pointer to the HW structure
2853  *  @offset: The offset (in bytes) of the byte/word to read.
2854  *  @size: Size of data to read, 1=byte 2=word
2855  *  @data: The byte(s) to write to the NVM.
2856  *
2857  *  Writes one/two bytes to the NVM using the flash access registers.
2858  **/
2859 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
2860                                           u8 size, u16 data)
2861 {
2862         union ich8_hws_flash_status hsfsts;
2863         union ich8_hws_flash_ctrl hsflctl;
2864         u32 flash_linear_addr;
2865         u32 flash_data = 0;
2866         s32 ret_val;
2867         u8 count = 0;
2868
2869         if (size < 1 || size > 2 || data > size * 0xff ||
2870             offset > ICH_FLASH_LINEAR_ADDR_MASK)
2871                 return -E1000_ERR_NVM;
2872
2873         flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
2874                             hw->nvm.flash_base_addr;
2875
2876         do {
2877                 udelay(1);
2878                 /* Steps */
2879                 ret_val = e1000_flash_cycle_init_ich8lan(hw);
2880                 if (ret_val)
2881                         break;
2882
2883                 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2884                 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
2885                 hsflctl.hsf_ctrl.fldbcount = size -1;
2886                 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
2887                 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2888
2889                 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2890
2891                 if (size == 1)
2892                         flash_data = (u32)data & 0x00FF;
2893                 else
2894                         flash_data = (u32)data;
2895
2896                 ew32flash(ICH_FLASH_FDATA0, flash_data);
2897
2898                 /*
2899                  * check if FCERR is set to 1 , if set to 1, clear it
2900                  * and try the whole sequence a few more times else done
2901                  */
2902                 ret_val = e1000_flash_cycle_ich8lan(hw,
2903                                                ICH_FLASH_WRITE_COMMAND_TIMEOUT);
2904                 if (!ret_val)
2905                         break;
2906
2907                 /*
2908                  * If we're here, then things are most likely
2909                  * completely hosed, but if the error condition
2910                  * is detected, it won't hurt to give it another
2911                  * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
2912                  */
2913                 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2914                 if (hsfsts.hsf_status.flcerr)
2915                         /* Repeat for some time before giving up. */
2916                         continue;
2917                 if (!hsfsts.hsf_status.flcdone) {
2918                         e_dbg("Timeout error - flash cycle did not complete.\n");
2919                         break;
2920                 }
2921         } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
2922
2923         return ret_val;
2924 }
2925
2926 /**
2927  *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
2928  *  @hw: pointer to the HW structure
2929  *  @offset: The index of the byte to read.
2930  *  @data: The byte to write to the NVM.
2931  *
2932  *  Writes a single byte to the NVM using the flash access registers.
2933  **/
2934 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
2935                                           u8 data)
2936 {
2937         u16 word = (u16)data;
2938
2939         return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
2940 }
2941
2942 /**
2943  *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
2944  *  @hw: pointer to the HW structure
2945  *  @offset: The offset of the byte to write.
2946  *  @byte: The byte to write to the NVM.
2947  *
2948  *  Writes a single byte to the NVM using the flash access registers.
2949  *  Goes through a retry algorithm before giving up.
2950  **/
2951 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
2952                                                 u32 offset, u8 byte)
2953 {
2954         s32 ret_val;
2955         u16 program_retries;
2956
2957         ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
2958         if (!ret_val)
2959                 return ret_val;
2960
2961         for (program_retries = 0; program_retries < 100; program_retries++) {
2962                 e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
2963                 udelay(100);
2964                 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
2965                 if (!ret_val)
2966                         break;
2967         }
2968         if (program_retries == 100)
2969                 return -E1000_ERR_NVM;
2970
2971         return 0;
2972 }
2973
2974 /**
2975  *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
2976  *  @hw: pointer to the HW structure
2977  *  @bank: 0 for first bank, 1 for second bank, etc.
2978  *
2979  *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
2980  *  bank N is 4096 * N + flash_reg_addr.
2981  **/
2982 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
2983 {
2984         struct e1000_nvm_info *nvm = &hw->nvm;
2985         union ich8_hws_flash_status hsfsts;
2986         union ich8_hws_flash_ctrl hsflctl;
2987         u32 flash_linear_addr;
2988         /* bank size is in 16bit words - adjust to bytes */
2989         u32 flash_bank_size = nvm->flash_bank_size * 2;
2990         s32 ret_val;
2991         s32 count = 0;
2992         s32 j, iteration, sector_size;
2993
2994         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2995
2996         /*
2997          * Determine HW Sector size: Read BERASE bits of hw flash status
2998          * register
2999          * 00: The Hw sector is 256 bytes, hence we need to erase 16
3000          *     consecutive sectors.  The start index for the nth Hw sector
3001          *     can be calculated as = bank * 4096 + n * 256
3002          * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
3003          *     The start index for the nth Hw sector can be calculated
3004          *     as = bank * 4096
3005          * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
3006          *     (ich9 only, otherwise error condition)
3007          * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
3008          */
3009         switch (hsfsts.hsf_status.berasesz) {
3010         case 0:
3011                 /* Hw sector size 256 */
3012                 sector_size = ICH_FLASH_SEG_SIZE_256;
3013                 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
3014                 break;
3015         case 1:
3016                 sector_size = ICH_FLASH_SEG_SIZE_4K;
3017                 iteration = 1;
3018                 break;
3019         case 2:
3020                 sector_size = ICH_FLASH_SEG_SIZE_8K;
3021                 iteration = 1;
3022                 break;
3023         case 3:
3024                 sector_size = ICH_FLASH_SEG_SIZE_64K;
3025                 iteration = 1;
3026                 break;
3027         default:
3028                 return -E1000_ERR_NVM;
3029         }
3030
3031         /* Start with the base address, then add the sector offset. */
3032         flash_linear_addr = hw->nvm.flash_base_addr;
3033         flash_linear_addr += (bank) ? flash_bank_size : 0;
3034
3035         for (j = 0; j < iteration ; j++) {
3036                 do {
3037                         /* Steps */
3038                         ret_val = e1000_flash_cycle_init_ich8lan(hw);
3039                         if (ret_val)
3040                                 return ret_val;
3041
3042                         /*
3043                          * Write a value 11 (block Erase) in Flash
3044                          * Cycle field in hw flash control
3045                          */
3046                         hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3047                         hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
3048                         ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3049
3050                         /*
3051                          * Write the last 24 bits of an index within the
3052                          * block into Flash Linear address field in Flash
3053                          * Address.
3054                          */
3055                         flash_linear_addr += (j * sector_size);
3056                         ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3057
3058                         ret_val = e1000_flash_cycle_ich8lan(hw,
3059                                                ICH_FLASH_ERASE_COMMAND_TIMEOUT);
3060                         if (!ret_val)
3061                                 break;
3062
3063                         /*
3064                          * Check if FCERR is set to 1.  If 1,
3065                          * clear it and try the whole sequence
3066                          * a few more times else Done
3067                          */
3068                         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3069                         if (hsfsts.hsf_status.flcerr)
3070                                 /* repeat for some time before giving up */
3071                                 continue;
3072                         else if (!hsfsts.hsf_status.flcdone)
3073                                 return ret_val;
3074                 } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
3075         }
3076
3077         return 0;
3078 }
3079
3080 /**
3081  *  e1000_valid_led_default_ich8lan - Set the default LED settings
3082  *  @hw: pointer to the HW structure
3083  *  @data: Pointer to the LED settings
3084  *
3085  *  Reads the LED default settings from the NVM to data.  If the NVM LED
3086  *  settings is all 0's or F's, set the LED default to a valid LED default
3087  *  setting.
3088  **/
3089 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
3090 {
3091         s32 ret_val;
3092
3093         ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
3094         if (ret_val) {
3095                 e_dbg("NVM Read Error\n");
3096                 return ret_val;
3097         }
3098
3099         if (*data == ID_LED_RESERVED_0000 ||
3100             *data == ID_LED_RESERVED_FFFF)
3101                 *data = ID_LED_DEFAULT_ICH8LAN;
3102
3103         return 0;
3104 }
3105
3106 /**
3107  *  e1000_id_led_init_pchlan - store LED configurations
3108  *  @hw: pointer to the HW structure
3109  *
3110  *  PCH does not control LEDs via the LEDCTL register, rather it uses
3111  *  the PHY LED configuration register.
3112  *
3113  *  PCH also does not have an "always on" or "always off" mode which
3114  *  complicates the ID feature.  Instead of using the "on" mode to indicate
3115  *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
3116  *  use "link_up" mode.  The LEDs will still ID on request if there is no
3117  *  link based on logic in e1000_led_[on|off]_pchlan().
3118  **/
3119 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
3120 {
3121         struct e1000_mac_info *mac = &hw->mac;
3122         s32 ret_val;
3123         const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
3124         const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
3125         u16 data, i, temp, shift;
3126
3127         /* Get default ID LED modes */
3128         ret_val = hw->nvm.ops.valid_led_default(hw, &data);
3129         if (ret_val)
3130                 return ret_val;
3131
3132         mac->ledctl_default = er32(LEDCTL);
3133         mac->ledctl_mode1 = mac->ledctl_default;
3134         mac->ledctl_mode2 = mac->ledctl_default;
3135
3136         for (i = 0; i < 4; i++) {
3137                 temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
3138                 shift = (i * 5);
3139                 switch (temp) {
3140                 case ID_LED_ON1_DEF2:
3141                 case ID_LED_ON1_ON2:
3142                 case ID_LED_ON1_OFF2:
3143                         mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
3144                         mac->ledctl_mode1 |= (ledctl_on << shift);
3145                         break;
3146                 case ID_LED_OFF1_DEF2:
3147                 case ID_LED_OFF1_ON2:
3148                 case ID_LED_OFF1_OFF2:
3149                         mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
3150                         mac->ledctl_mode1 |= (ledctl_off << shift);
3151                         break;
3152                 default:
3153                         /* Do nothing */
3154                         break;
3155                 }
3156                 switch (temp) {
3157                 case ID_LED_DEF1_ON2:
3158                 case ID_LED_ON1_ON2:
3159                 case ID_LED_OFF1_ON2:
3160                         mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
3161                         mac->ledctl_mode2 |= (ledctl_on << shift);
3162                         break;
3163                 case ID_LED_DEF1_OFF2:
3164                 case ID_LED_ON1_OFF2:
3165                 case ID_LED_OFF1_OFF2:
3166                         mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
3167                         mac->ledctl_mode2 |= (ledctl_off << shift);
3168                         break;
3169                 default:
3170                         /* Do nothing */
3171                         break;
3172                 }
3173         }
3174
3175         return 0;
3176 }
3177
3178 /**
3179  *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
3180  *  @hw: pointer to the HW structure
3181  *
3182  *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
3183  *  register, so the the bus width is hard coded.
3184  **/
3185 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
3186 {
3187         struct e1000_bus_info *bus = &hw->bus;
3188         s32 ret_val;
3189
3190         ret_val = e1000e_get_bus_info_pcie(hw);
3191
3192         /*
3193          * ICH devices are "PCI Express"-ish.  They have
3194          * a configuration space, but do not contain
3195          * PCI Express Capability registers, so bus width
3196          * must be hardcoded.
3197          */
3198         if (bus->width == e1000_bus_width_unknown)
3199                 bus->width = e1000_bus_width_pcie_x1;
3200
3201         return ret_val;
3202 }
3203
3204 /**
3205  *  e1000_reset_hw_ich8lan - Reset the hardware
3206  *  @hw: pointer to the HW structure
3207  *
3208  *  Does a full reset of the hardware which includes a reset of the PHY and
3209  *  MAC.
3210  **/
3211 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
3212 {
3213         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3214         u16 kum_cfg;
3215         u32 ctrl, reg;
3216         s32 ret_val;
3217
3218         /*
3219          * Prevent the PCI-E bus from sticking if there is no TLP connection
3220          * on the last TLP read/write transaction when MAC is reset.
3221          */
3222         ret_val = e1000e_disable_pcie_master(hw);
3223         if (ret_val)
3224                 e_dbg("PCI-E Master disable polling has failed.\n");
3225
3226         e_dbg("Masking off all interrupts\n");
3227         ew32(IMC, 0xffffffff);
3228
3229         /*
3230          * Disable the Transmit and Receive units.  Then delay to allow
3231          * any pending transactions to complete before we hit the MAC
3232          * with the global reset.
3233          */
3234         ew32(RCTL, 0);
3235         ew32(TCTL, E1000_TCTL_PSP);
3236         e1e_flush();
3237
3238         usleep_range(10000, 20000);
3239
3240         /* Workaround for ICH8 bit corruption issue in FIFO memory */
3241         if (hw->mac.type == e1000_ich8lan) {
3242                 /* Set Tx and Rx buffer allocation to 8k apiece. */
3243                 ew32(PBA, E1000_PBA_8K);
3244                 /* Set Packet Buffer Size to 16k. */
3245                 ew32(PBS, E1000_PBS_16K);
3246         }
3247
3248         if (hw->mac.type == e1000_pchlan) {
3249                 /* Save the NVM K1 bit setting */
3250                 ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
3251                 if (ret_val)
3252                         return ret_val;
3253
3254                 if (kum_cfg & E1000_NVM_K1_ENABLE)
3255                         dev_spec->nvm_k1_enabled = true;
3256                 else
3257                         dev_spec->nvm_k1_enabled = false;
3258         }
3259
3260         ctrl = er32(CTRL);
3261
3262         if (!hw->phy.ops.check_reset_block(hw)) {
3263                 /*
3264                  * Full-chip reset requires MAC and PHY reset at the same
3265                  * time to make sure the interface between MAC and the
3266                  * external PHY is reset.
3267                  */
3268                 ctrl |= E1000_CTRL_PHY_RST;
3269
3270                 /*
3271                  * Gate automatic PHY configuration by hardware on
3272                  * non-managed 82579
3273                  */
3274                 if ((hw->mac.type == e1000_pch2lan) &&
3275                     !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
3276                         e1000_gate_hw_phy_config_ich8lan(hw, true);
3277         }
3278         ret_val = e1000_acquire_swflag_ich8lan(hw);
3279         e_dbg("Issuing a global reset to ich8lan\n");
3280         ew32(CTRL, (ctrl | E1000_CTRL_RST));
3281         /* cannot issue a flush here because it hangs the hardware */
3282         msleep(20);
3283
3284         /* Set Phy Config Counter to 50msec */
3285         if (hw->mac.type == e1000_pch2lan) {
3286                 reg = er32(FEXTNVM3);
3287                 reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
3288                 reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
3289                 ew32(FEXTNVM3, reg);
3290         }
3291
3292         if (!ret_val)
3293                 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
3294
3295         if (ctrl & E1000_CTRL_PHY_RST) {
3296                 ret_val = hw->phy.ops.get_cfg_done(hw);
3297                 if (ret_val)
3298                         return ret_val;
3299
3300                 ret_val = e1000_post_phy_reset_ich8lan(hw);
3301                 if (ret_val)
3302                         return ret_val;
3303         }
3304
3305         /*
3306          * For PCH, this write will make sure that any noise
3307          * will be detected as a CRC error and be dropped rather than show up
3308          * as a bad packet to the DMA engine.
3309          */
3310         if (hw->mac.type == e1000_pchlan)
3311                 ew32(CRC_OFFSET, 0x65656565);
3312
3313         ew32(IMC, 0xffffffff);
3314         er32(ICR);
3315
3316         reg = er32(KABGTXD);
3317         reg |= E1000_KABGTXD_BGSQLBIAS;
3318         ew32(KABGTXD, reg);
3319
3320         return 0;
3321 }
3322
3323 /**
3324  *  e1000_init_hw_ich8lan - Initialize the hardware
3325  *  @hw: pointer to the HW structure
3326  *
3327  *  Prepares the hardware for transmit and receive by doing the following:
3328  *   - initialize hardware bits
3329  *   - initialize LED identification
3330  *   - setup receive address registers
3331  *   - setup flow control
3332  *   - setup transmit descriptors
3333  *   - clear statistics
3334  **/
3335 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
3336 {
3337         struct e1000_mac_info *mac = &hw->mac;
3338         u32 ctrl_ext, txdctl, snoop;
3339         s32 ret_val;
3340         u16 i;
3341
3342         e1000_initialize_hw_bits_ich8lan(hw);
3343
3344         /* Initialize identification LED */
3345         ret_val = mac->ops.id_led_init(hw);
3346         if (ret_val)
3347                 e_dbg("Error initializing identification LED\n");
3348                 /* This is not fatal and we should not stop init due to this */
3349
3350         /* Setup the receive address. */
3351         e1000e_init_rx_addrs(hw, mac->rar_entry_count);
3352
3353         /* Zero out the Multicast HASH table */
3354         e_dbg("Zeroing the MTA\n");
3355         for (i = 0; i < mac->mta_reg_count; i++)
3356                 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
3357
3358         /*
3359          * The 82578 Rx buffer will stall if wakeup is enabled in host and
3360          * the ME.  Disable wakeup by clearing the host wakeup bit.
3361          * Reset the phy after disabling host wakeup to reset the Rx buffer.
3362          */
3363         if (hw->phy.type == e1000_phy_82578) {
3364                 e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
3365                 i &= ~BM_WUC_HOST_WU_BIT;
3366                 e1e_wphy(hw, BM_PORT_GEN_CFG, i);
3367                 ret_val = e1000_phy_hw_reset_ich8lan(hw);
3368                 if (ret_val)
3369                         return ret_val;
3370         }
3371
3372         /* Setup link and flow control */
3373         ret_val = mac->ops.setup_link(hw);
3374
3375         /* Set the transmit descriptor write-back policy for both queues */
3376         txdctl = er32(TXDCTL(0));
3377         txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
3378                  E1000_TXDCTL_FULL_TX_DESC_WB;
3379         txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
3380                  E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
3381         ew32(TXDCTL(0), txdctl);
3382         txdctl = er32(TXDCTL(1));
3383         txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
3384                  E1000_TXDCTL_FULL_TX_DESC_WB;
3385         txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
3386                  E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
3387         ew32(TXDCTL(1), txdctl);
3388
3389         /*
3390          * ICH8 has opposite polarity of no_snoop bits.
3391          * By default, we should use snoop behavior.
3392          */
3393         if (mac->type == e1000_ich8lan)
3394                 snoop = PCIE_ICH8_SNOOP_ALL;
3395         else
3396                 snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
3397         e1000e_set_pcie_no_snoop(hw, snoop);
3398
3399         ctrl_ext = er32(CTRL_EXT);
3400         ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
3401         ew32(CTRL_EXT, ctrl_ext);
3402
3403         /*
3404          * Clear all of the statistics registers (clear on read).  It is
3405          * important that we do this after we have tried to establish link
3406          * because the symbol error count will increment wildly if there
3407          * is no link.
3408          */
3409         e1000_clear_hw_cntrs_ich8lan(hw);
3410
3411         return ret_val;
3412 }
3413 /**
3414  *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
3415  *  @hw: pointer to the HW structure
3416  *
3417  *  Sets/Clears required hardware bits necessary for correctly setting up the
3418  *  hardware for transmit and receive.
3419  **/
3420 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
3421 {
3422         u32 reg;
3423
3424         /* Extended Device Control */
3425         reg = er32(CTRL_EXT);
3426         reg |= (1 << 22);
3427         /* Enable PHY low-power state when MAC is at D3 w/o WoL */
3428         if (hw->mac.type >= e1000_pchlan)
3429                 reg |= E1000_CTRL_EXT_PHYPDEN;
3430         ew32(CTRL_EXT, reg);
3431
3432         /* Transmit Descriptor Control 0 */
3433         reg = er32(TXDCTL(0));
3434         reg |= (1 << 22);
3435         ew32(TXDCTL(0), reg);
3436
3437         /* Transmit Descriptor Control 1 */
3438         reg = er32(TXDCTL(1));
3439         reg |= (1 << 22);
3440         ew32(TXDCTL(1), reg);
3441
3442         /* Transmit Arbitration Control 0 */
3443         reg = er32(TARC(0));
3444         if (hw->mac.type == e1000_ich8lan)
3445                 reg |= (1 << 28) | (1 << 29);
3446         reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
3447         ew32(TARC(0), reg);
3448
3449         /* Transmit Arbitration Control 1 */
3450         reg = er32(TARC(1));
3451         if (er32(TCTL) & E1000_TCTL_MULR)
3452                 reg &= ~(1 << 28);
3453         else
3454                 reg |= (1 << 28);
3455         reg |= (1 << 24) | (1 << 26) | (1 << 30);
3456         ew32(TARC(1), reg);
3457
3458         /* Device Status */
3459         if (hw->mac.type == e1000_ich8lan) {
3460                 reg = er32(STATUS);
3461                 reg &= ~(1 << 31);
3462                 ew32(STATUS, reg);
3463         }
3464
3465         /*
3466          * work-around descriptor data corruption issue during nfs v2 udp
3467          * traffic, just disable the nfs filtering capability
3468          */
3469         reg = er32(RFCTL);
3470         reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
3471         ew32(RFCTL, reg);
3472 }
3473
3474 /**
3475  *  e1000_setup_link_ich8lan - Setup flow control and link settings
3476  *  @hw: pointer to the HW structure
3477  *
3478  *  Determines which flow control settings to use, then configures flow
3479  *  control.  Calls the appropriate media-specific link configuration
3480  *  function.  Assuming the adapter has a valid link partner, a valid link
3481  *  should be established.  Assumes the hardware has previously been reset
3482  *  and the transmitter and receiver are not enabled.
3483  **/
3484 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
3485 {
3486         s32 ret_val;
3487
3488         if (hw->phy.ops.check_reset_block(hw))
3489                 return 0;
3490
3491         /*
3492          * ICH parts do not have a word in the NVM to determine
3493          * the default flow control setting, so we explicitly
3494          * set it to full.
3495          */
3496         if (hw->fc.requested_mode == e1000_fc_default) {
3497                 /* Workaround h/w hang when Tx flow control enabled */
3498                 if (hw->mac.type == e1000_pchlan)
3499                         hw->fc.requested_mode = e1000_fc_rx_pause;
3500                 else
3501                         hw->fc.requested_mode = e1000_fc_full;
3502         }
3503
3504         /*
3505          * Save off the requested flow control mode for use later.  Depending
3506          * on the link partner's capabilities, we may or may not use this mode.
3507          */
3508         hw->fc.current_mode = hw->fc.requested_mode;
3509
3510         e_dbg("After fix-ups FlowControl is now = %x\n",
3511                 hw->fc.current_mode);
3512
3513         /* Continue to configure the copper link. */
3514         ret_val = hw->mac.ops.setup_physical_interface(hw);
3515         if (ret_val)
3516                 return ret_val;
3517
3518         ew32(FCTTV, hw->fc.pause_time);
3519         if ((hw->phy.type == e1000_phy_82578) ||
3520             (hw->phy.type == e1000_phy_82579) ||
3521             (hw->phy.type == e1000_phy_82577)) {
3522                 ew32(FCRTV_PCH, hw->fc.refresh_time);
3523
3524                 ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
3525                                    hw->fc.pause_time);
3526                 if (ret_val)
3527                         return ret_val;
3528         }
3529
3530         return e1000e_set_fc_watermarks(hw);
3531 }
3532
3533 /**
3534  *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
3535  *  @hw: pointer to the HW structure
3536  *
3537  *  Configures the kumeran interface to the PHY to wait the appropriate time
3538  *  when polling the PHY, then call the generic setup_copper_link to finish
3539  *  configuring the copper link.
3540  **/
3541 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
3542 {
3543         u32 ctrl;
3544         s32 ret_val;
3545         u16 reg_data;
3546
3547         ctrl = er32(CTRL);
3548         ctrl |= E1000_CTRL_SLU;
3549         ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
3550         ew32(CTRL, ctrl);
3551
3552         /*
3553          * Set the mac to wait the maximum time between each iteration
3554          * and increase the max iterations when polling the phy;
3555          * this fixes erroneous timeouts at 10Mbps.
3556          */
3557         ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
3558         if (ret_val)
3559                 return ret_val;
3560         ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
3561                                        &reg_data);
3562         if (ret_val)
3563                 return ret_val;
3564         reg_data |= 0x3F;
3565         ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
3566                                         reg_data);
3567         if (ret_val)
3568                 return ret_val;
3569
3570         switch (hw->phy.type) {
3571         case e1000_phy_igp_3:
3572                 ret_val = e1000e_copper_link_setup_igp(hw);
3573                 if (ret_val)
3574                         return ret_val;
3575                 break;
3576         case e1000_phy_bm:
3577         case e1000_phy_82578:
3578                 ret_val = e1000e_copper_link_setup_m88(hw);
3579                 if (ret_val)
3580                         return ret_val;
3581                 break;
3582         case e1000_phy_82577:
3583         case e1000_phy_82579:
3584                 ret_val = e1000_copper_link_setup_82577(hw);
3585                 if (ret_val)
3586                         return ret_val;
3587                 break;
3588         case e1000_phy_ife:
3589                 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
3590                 if (ret_val)
3591                         return ret_val;
3592
3593                 reg_data &= ~IFE_PMC_AUTO_MDIX;
3594
3595                 switch (hw->phy.mdix) {
3596                 case 1:
3597                         reg_data &= ~IFE_PMC_FORCE_MDIX;
3598                         break;
3599                 case 2:
3600                         reg_data |= IFE_PMC_FORCE_MDIX;
3601                         break;
3602                 case 0:
3603                 default:
3604                         reg_data |= IFE_PMC_AUTO_MDIX;
3605                         break;
3606                 }
3607                 ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
3608                 if (ret_val)
3609                         return ret_val;
3610                 break;
3611         default:
3612                 break;
3613         }
3614
3615         return e1000e_setup_copper_link(hw);
3616 }
3617
3618 /**
3619  *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
3620  *  @hw: pointer to the HW structure
3621  *  @speed: pointer to store current link speed
3622  *  @duplex: pointer to store the current link duplex
3623  *
3624  *  Calls the generic get_speed_and_duplex to retrieve the current link
3625  *  information and then calls the Kumeran lock loss workaround for links at
3626  *  gigabit speeds.
3627  **/
3628 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
3629                                           u16 *duplex)
3630 {
3631         s32 ret_val;
3632
3633         ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
3634         if (ret_val)
3635                 return ret_val;
3636
3637         if ((hw->mac.type == e1000_ich8lan) &&
3638             (hw->phy.type == e1000_phy_igp_3) &&
3639             (*speed == SPEED_1000)) {
3640                 ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
3641         }
3642
3643         return ret_val;
3644 }
3645
3646 /**
3647  *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
3648  *  @hw: pointer to the HW structure
3649  *
3650  *  Work-around for 82566 Kumeran PCS lock loss:
3651  *  On link status change (i.e. PCI reset, speed change) and link is up and
3652  *  speed is gigabit-
3653  *    0) if workaround is optionally disabled do nothing
3654  *    1) wait 1ms for Kumeran link to come up
3655  *    2) check Kumeran Diagnostic register PCS lock loss bit
3656  *    3) if not set the link is locked (all is good), otherwise...
3657  *    4) reset the PHY
3658  *    5) repeat up to 10 times
3659  *  Note: this is only called for IGP3 copper when speed is 1gb.
3660  **/
3661 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
3662 {
3663         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3664         u32 phy_ctrl;
3665         s32 ret_val;
3666         u16 i, data;
3667         bool link;
3668
3669         if (!dev_spec->kmrn_lock_loss_workaround_enabled)
3670                 return 0;
3671
3672         /*
3673          * Make sure link is up before proceeding.  If not just return.
3674          * Attempting this while link is negotiating fouled up link
3675          * stability
3676          */
3677         ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
3678         if (!link)
3679                 return 0;
3680
3681         for (i = 0; i < 10; i++) {
3682                 /* read once to clear */
3683                 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
3684                 if (ret_val)
3685                         return ret_val;
3686                 /* and again to get new status */
3687                 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
3688                 if (ret_val)
3689                         return ret_val;
3690
3691                 /* check for PCS lock */
3692                 if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
3693                         return 0;
3694
3695                 /* Issue PHY reset */
3696                 e1000_phy_hw_reset(hw);
3697                 mdelay(5);
3698         }
3699         /* Disable GigE link negotiation */
3700         phy_ctrl = er32(PHY_CTRL);
3701         phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
3702                      E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
3703         ew32(PHY_CTRL, phy_ctrl);
3704
3705         /*
3706          * Call gig speed drop workaround on Gig disable before accessing
3707          * any PHY registers
3708          */
3709         e1000e_gig_downshift_workaround_ich8lan(hw);
3710
3711         /* unable to acquire PCS lock */
3712         return -E1000_ERR_PHY;
3713 }
3714
3715 /**
3716  *  e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
3717  *  @hw: pointer to the HW structure
3718  *  @state: boolean value used to set the current Kumeran workaround state
3719  *
3720  *  If ICH8, set the current Kumeran workaround state (enabled - true
3721  *  /disabled - false).
3722  **/
3723 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
3724                                                  bool state)
3725 {
3726         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3727
3728         if (hw->mac.type != e1000_ich8lan) {
3729                 e_dbg("Workaround applies to ICH8 only.\n");
3730                 return;
3731         }
3732
3733         dev_spec->kmrn_lock_loss_workaround_enabled = state;
3734 }
3735
3736 /**
3737  *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
3738  *  @hw: pointer to the HW structure
3739  *
3740  *  Workaround for 82566 power-down on D3 entry:
3741  *    1) disable gigabit link
3742  *    2) write VR power-down enable
3743  *    3) read it back
3744  *  Continue if successful, else issue LCD reset and repeat
3745  **/
3746 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
3747 {
3748         u32 reg;
3749         u16 data;
3750         u8  retry = 0;
3751
3752         if (hw->phy.type != e1000_phy_igp_3)
3753                 return;
3754
3755         /* Try the workaround twice (if needed) */
3756         do {
3757                 /* Disable link */
3758                 reg = er32(PHY_CTRL);
3759                 reg |= (E1000_PHY_CTRL_GBE_DISABLE |
3760                         E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
3761                 ew32(PHY_CTRL, reg);
3762
3763                 /*
3764                  * Call gig speed drop workaround on Gig disable before
3765                  * accessing any PHY registers
3766                  */
3767                 if (hw->mac.type == e1000_ich8lan)
3768                         e1000e_gig_downshift_workaround_ich8lan(hw);
3769
3770                 /* Write VR power-down enable */
3771                 e1e_rphy(hw, IGP3_VR_CTRL, &data);
3772                 data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
3773                 e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
3774
3775                 /* Read it back and test */
3776                 e1e_rphy(hw, IGP3_VR_CTRL, &data);
3777                 data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
3778                 if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
3779                         break;
3780
3781                 /* Issue PHY reset and repeat at most one more time */
3782                 reg = er32(CTRL);
3783                 ew32(CTRL, reg | E1000_CTRL_PHY_RST);
3784                 retry++;
3785         } while (retry);
3786 }
3787
3788 /**
3789  *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
3790  *  @hw: pointer to the HW structure
3791  *
3792  *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
3793  *  LPLU, Gig disable, MDIC PHY reset):
3794  *    1) Set Kumeran Near-end loopback
3795  *    2) Clear Kumeran Near-end loopback
3796  *  Should only be called for ICH8[m] devices with any 1G Phy.
3797  **/
3798 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
3799 {
3800         s32 ret_val;
3801         u16 reg_data;
3802
3803         if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
3804                 return;
3805
3806         ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3807                                       &reg_data);
3808         if (ret_val)
3809                 return;
3810         reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
3811         ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3812                                        reg_data);
3813         if (ret_val)
3814                 return;
3815         reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
3816         ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3817                                        reg_data);
3818 }
3819
3820 /**
3821  *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
3822  *  @hw: pointer to the HW structure
3823  *
3824  *  During S0 to Sx transition, it is possible the link remains at gig
3825  *  instead of negotiating to a lower speed.  Before going to Sx, set
3826  *  'Gig Disable' to force link speed negotiation to a lower speed based on
3827  *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
3828  *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
3829  *  needs to be written.
3830  **/
3831 void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
3832 {
3833         u32 phy_ctrl;
3834         s32 ret_val;
3835
3836         phy_ctrl = er32(PHY_CTRL);
3837         phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
3838         ew32(PHY_CTRL, phy_ctrl);
3839
3840         if (hw->mac.type == e1000_ich8lan)
3841                 e1000e_gig_downshift_workaround_ich8lan(hw);
3842
3843         if (hw->mac.type >= e1000_pchlan) {
3844                 e1000_oem_bits_config_ich8lan(hw, false);
3845
3846                 /* Reset PHY to activate OEM bits on 82577/8 */
3847                 if (hw->mac.type == e1000_pchlan)
3848                         e1000e_phy_hw_reset_generic(hw);
3849
3850                 ret_val = hw->phy.ops.acquire(hw);
3851                 if (ret_val)
3852                         return;
3853                 e1000_write_smbus_addr(hw);
3854                 hw->phy.ops.release(hw);
3855         }
3856 }
3857
3858 /**
3859  *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
3860  *  @hw: pointer to the HW structure
3861  *
3862  *  During Sx to S0 transitions on non-managed devices or managed devices
3863  *  on which PHY resets are not blocked, if the PHY registers cannot be
3864  *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
3865  *  the PHY.
3866  **/
3867 void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
3868 {
3869         s32 ret_val;
3870
3871         if (hw->mac.type < e1000_pch2lan)
3872                 return;
3873
3874         ret_val = e1000_init_phy_workarounds_pchlan(hw);
3875         if (ret_val) {
3876                 e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val);
3877                 return;
3878         }
3879 }
3880
3881 /**
3882  *  e1000_cleanup_led_ich8lan - Restore the default LED operation
3883  *  @hw: pointer to the HW structure
3884  *
3885  *  Return the LED back to the default configuration.
3886  **/
3887 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
3888 {
3889         if (hw->phy.type == e1000_phy_ife)
3890                 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
3891
3892         ew32(LEDCTL, hw->mac.ledctl_default);
3893         return 0;
3894 }
3895
3896 /**
3897  *  e1000_led_on_ich8lan - Turn LEDs on
3898  *  @hw: pointer to the HW structure
3899  *
3900  *  Turn on the LEDs.
3901  **/
3902 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
3903 {
3904         if (hw->phy.type == e1000_phy_ife)
3905                 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
3906                                 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
3907
3908         ew32(LEDCTL, hw->mac.ledctl_mode2);
3909         return 0;
3910 }
3911
3912 /**
3913  *  e1000_led_off_ich8lan - Turn LEDs off
3914  *  @hw: pointer to the HW structure
3915  *
3916  *  Turn off the LEDs.
3917  **/
3918 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
3919 {
3920         if (hw->phy.type == e1000_phy_ife)
3921                 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
3922                                 (IFE_PSCL_PROBE_MODE |
3923                                  IFE_PSCL_PROBE_LEDS_OFF));
3924
3925         ew32(LEDCTL, hw->mac.ledctl_mode1);
3926         return 0;
3927 }
3928
3929 /**
3930  *  e1000_setup_led_pchlan - Configures SW controllable LED
3931  *  @hw: pointer to the HW structure
3932  *
3933  *  This prepares the SW controllable LED for use.
3934  **/
3935 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
3936 {
3937         return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
3938 }
3939
3940 /**
3941  *  e1000_cleanup_led_pchlan - Restore the default LED operation
3942  *  @hw: pointer to the HW structure
3943  *
3944  *  Return the LED back to the default configuration.
3945  **/
3946 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
3947 {
3948         return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
3949 }
3950
3951 /**
3952  *  e1000_led_on_pchlan - Turn LEDs on
3953  *  @hw: pointer to the HW structure
3954  *
3955  *  Turn on the LEDs.
3956  **/
3957 static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
3958 {
3959         u16 data = (u16)hw->mac.ledctl_mode2;
3960         u32 i, led;
3961
3962         /*
3963          * If no link, then turn LED on by setting the invert bit
3964          * for each LED that's mode is "link_up" in ledctl_mode2.
3965          */
3966         if (!(er32(STATUS) & E1000_STATUS_LU)) {
3967                 for (i = 0; i < 3; i++) {
3968                         led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
3969                         if ((led & E1000_PHY_LED0_MODE_MASK) !=
3970                             E1000_LEDCTL_MODE_LINK_UP)
3971                                 continue;
3972                         if (led & E1000_PHY_LED0_IVRT)
3973                                 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
3974                         else
3975                                 data |= (E1000_PHY_LED0_IVRT << (i * 5));
3976                 }
3977         }
3978
3979         return e1e_wphy(hw, HV_LED_CONFIG, data);
3980 }
3981
3982 /**
3983  *  e1000_led_off_pchlan - Turn LEDs off
3984  *  @hw: pointer to the HW structure
3985  *
3986  *  Turn off the LEDs.
3987  **/
3988 static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
3989 {
3990         u16 data = (u16)hw->mac.ledctl_mode1;
3991         u32 i, led;
3992
3993         /*
3994          * If no link, then turn LED off by clearing the invert bit
3995          * for each LED that's mode is "link_up" in ledctl_mode1.
3996          */
3997         if (!(er32(STATUS) & E1000_STATUS_LU)) {
3998                 for (i = 0; i < 3; i++) {
3999                         led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
4000                         if ((led & E1000_PHY_LED0_MODE_MASK) !=
4001                             E1000_LEDCTL_MODE_LINK_UP)
4002                                 continue;
4003                         if (led & E1000_PHY_LED0_IVRT)
4004                                 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
4005                         else
4006                                 data |= (E1000_PHY_LED0_IVRT << (i * 5));
4007                 }
4008         }
4009
4010         return e1e_wphy(hw, HV_LED_CONFIG, data);
4011 }
4012
4013 /**
4014  *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
4015  *  @hw: pointer to the HW structure
4016  *
4017  *  Read appropriate register for the config done bit for completion status
4018  *  and configure the PHY through s/w for EEPROM-less parts.
4019  *
4020  *  NOTE: some silicon which is EEPROM-less will fail trying to read the
4021  *  config done bit, so only an error is logged and continues.  If we were
4022  *  to return with error, EEPROM-less silicon would not be able to be reset
4023  *  or change link.
4024  **/
4025 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
4026 {
4027         s32 ret_val = 0;
4028         u32 bank = 0;
4029         u32 status;
4030
4031         e1000e_get_cfg_done(hw);
4032
4033         /* Wait for indication from h/w that it has completed basic config */
4034         if (hw->mac.type >= e1000_ich10lan) {
4035                 e1000_lan_init_done_ich8lan(hw);
4036         } else {
4037                 ret_val = e1000e_get_auto_rd_done(hw);
4038                 if (ret_val) {
4039                         /*
4040                          * When auto config read does not complete, do not
4041                          * return with an error. This can happen in situations
4042                          * where there is no eeprom and prevents getting link.
4043                          */
4044                         e_dbg("Auto Read Done did not complete\n");
4045                         ret_val = 0;
4046                 }
4047         }
4048
4049         /* Clear PHY Reset Asserted bit */
4050         status = er32(STATUS);
4051         if (status & E1000_STATUS_PHYRA)
4052                 ew32(STATUS, status & ~E1000_STATUS_PHYRA);
4053         else
4054                 e_dbg("PHY Reset Asserted not set - needs delay\n");
4055
4056         /* If EEPROM is not marked present, init the IGP 3 PHY manually */
4057         if (hw->mac.type <= e1000_ich9lan) {
4058                 if (!(er32(EECD) & E1000_EECD_PRES) &&
4059                     (hw->phy.type == e1000_phy_igp_3)) {
4060                         e1000e_phy_init_script_igp3(hw);
4061                 }
4062         } else {
4063                 if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
4064                         /* Maybe we should do a basic PHY config */
4065                         e_dbg("EEPROM not present\n");
4066                         ret_val = -E1000_ERR_CONFIG;
4067                 }
4068         }
4069
4070         return ret_val;
4071 }
4072
4073 /**
4074  * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
4075  * @hw: pointer to the HW structure
4076  *
4077  * In the case of a PHY power down to save power, or to turn off link during a
4078  * driver unload, or wake on lan is not enabled, remove the link.
4079  **/
4080 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
4081 {
4082         /* If the management interface is not enabled, then power down */
4083         if (!(hw->mac.ops.check_mng_mode(hw) ||
4084               hw->phy.ops.check_reset_block(hw)))
4085                 e1000_power_down_phy_copper(hw);
4086 }
4087
4088 /**
4089  *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
4090  *  @hw: pointer to the HW structure
4091  *
4092  *  Clears hardware counters specific to the silicon family and calls
4093  *  clear_hw_cntrs_generic to clear all general purpose counters.
4094  **/
4095 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
4096 {
4097         u16 phy_data;
4098         s32 ret_val;
4099
4100         e1000e_clear_hw_cntrs_base(hw);
4101
4102         er32(ALGNERRC);
4103         er32(RXERRC);
4104         er32(TNCRS);
4105         er32(CEXTERR);
4106         er32(TSCTC);
4107         er32(TSCTFC);
4108
4109         er32(MGTPRC);
4110         er32(MGTPDC);
4111         er32(MGTPTC);
4112
4113         er32(IAC);
4114         er32(ICRXOC);
4115
4116         /* Clear PHY statistics registers */
4117         if ((hw->phy.type == e1000_phy_82578) ||
4118             (hw->phy.type == e1000_phy_82579) ||
4119             (hw->phy.type == e1000_phy_82577)) {
4120                 ret_val = hw->phy.ops.acquire(hw);
4121                 if (ret_val)
4122                         return;
4123                 ret_val = hw->phy.ops.set_page(hw,
4124                                                HV_STATS_PAGE << IGP_PAGE_SHIFT);
4125                 if (ret_val)
4126                         goto release;
4127                 hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4128                 hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4129                 hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4130                 hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4131                 hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4132                 hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4133                 hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4134                 hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4135                 hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4136                 hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4137                 hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4138                 hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4139                 hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4140                 hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4141 release:
4142                 hw->phy.ops.release(hw);
4143         }
4144 }
4145
4146 static const struct e1000_mac_operations ich8_mac_ops = {
4147         /* check_mng_mode dependent on mac type */
4148         .check_for_link         = e1000_check_for_copper_link_ich8lan,
4149         /* cleanup_led dependent on mac type */
4150         .clear_hw_cntrs         = e1000_clear_hw_cntrs_ich8lan,
4151         .get_bus_info           = e1000_get_bus_info_ich8lan,
4152         .set_lan_id             = e1000_set_lan_id_single_port,
4153         .get_link_up_info       = e1000_get_link_up_info_ich8lan,
4154         /* led_on dependent on mac type */
4155         /* led_off dependent on mac type */
4156         .update_mc_addr_list    = e1000e_update_mc_addr_list_generic,
4157         .reset_hw               = e1000_reset_hw_ich8lan,
4158         .init_hw                = e1000_init_hw_ich8lan,
4159         .setup_link             = e1000_setup_link_ich8lan,
4160         .setup_physical_interface= e1000_setup_copper_link_ich8lan,
4161         /* id_led_init dependent on mac type */
4162         .config_collision_dist  = e1000e_config_collision_dist_generic,
4163         .rar_set                = e1000e_rar_set_generic,
4164 };
4165
4166 static const struct e1000_phy_operations ich8_phy_ops = {
4167         .acquire                = e1000_acquire_swflag_ich8lan,
4168         .check_reset_block      = e1000_check_reset_block_ich8lan,
4169         .commit                 = NULL,
4170         .get_cfg_done           = e1000_get_cfg_done_ich8lan,
4171         .get_cable_length       = e1000e_get_cable_length_igp_2,
4172         .read_reg               = e1000e_read_phy_reg_igp,
4173         .release                = e1000_release_swflag_ich8lan,
4174         .reset                  = e1000_phy_hw_reset_ich8lan,
4175         .set_d0_lplu_state      = e1000_set_d0_lplu_state_ich8lan,
4176         .set_d3_lplu_state      = e1000_set_d3_lplu_state_ich8lan,
4177         .write_reg              = e1000e_write_phy_reg_igp,
4178 };
4179
4180 static const struct e1000_nvm_operations ich8_nvm_ops = {
4181         .acquire                = e1000_acquire_nvm_ich8lan,
4182         .read                   = e1000_read_nvm_ich8lan,
4183         .release                = e1000_release_nvm_ich8lan,
4184         .reload                 = e1000e_reload_nvm_generic,
4185         .update                 = e1000_update_nvm_checksum_ich8lan,
4186         .valid_led_default      = e1000_valid_led_default_ich8lan,
4187         .validate               = e1000_validate_nvm_checksum_ich8lan,
4188         .write                  = e1000_write_nvm_ich8lan,
4189 };
4190
4191 const struct e1000_info e1000_ich8_info = {
4192         .mac                    = e1000_ich8lan,
4193         .flags                  = FLAG_HAS_WOL
4194                                   | FLAG_IS_ICH
4195                                   | FLAG_HAS_CTRLEXT_ON_LOAD
4196                                   | FLAG_HAS_AMT
4197                                   | FLAG_HAS_FLASH
4198                                   | FLAG_APME_IN_WUC,
4199         .pba                    = 8,
4200         .max_hw_frame_size      = ETH_FRAME_LEN + ETH_FCS_LEN,
4201         .get_variants           = e1000_get_variants_ich8lan,
4202         .mac_ops                = &ich8_mac_ops,
4203         .phy_ops                = &ich8_phy_ops,
4204         .nvm_ops                = &ich8_nvm_ops,
4205 };
4206
4207 const struct e1000_info e1000_ich9_info = {
4208         .mac                    = e1000_ich9lan,
4209         .flags                  = FLAG_HAS_JUMBO_FRAMES
4210                                   | FLAG_IS_ICH
4211                                   | FLAG_HAS_WOL
4212                                   | FLAG_HAS_CTRLEXT_ON_LOAD
4213                                   | FLAG_HAS_AMT
4214                                   | FLAG_HAS_FLASH
4215                                   | FLAG_APME_IN_WUC,
4216         .pba                    = 18,
4217         .max_hw_frame_size      = DEFAULT_JUMBO,
4218         .get_variants           = e1000_get_variants_ich8lan,
4219         .mac_ops                = &ich8_mac_ops,
4220         .phy_ops                = &ich8_phy_ops,
4221         .nvm_ops                = &ich8_nvm_ops,
4222 };
4223
4224 const struct e1000_info e1000_ich10_info = {
4225         .mac                    = e1000_ich10lan,
4226         .flags                  = FLAG_HAS_JUMBO_FRAMES
4227                                   | FLAG_IS_ICH
4228                                   | FLAG_HAS_WOL
4229                                   | FLAG_HAS_CTRLEXT_ON_LOAD
4230                                   | FLAG_HAS_AMT
4231                                   | FLAG_HAS_FLASH
4232                                   | FLAG_APME_IN_WUC,
4233         .pba                    = 18,
4234         .max_hw_frame_size      = DEFAULT_JUMBO,
4235         .get_variants           = e1000_get_variants_ich8lan,
4236         .mac_ops                = &ich8_mac_ops,
4237         .phy_ops                = &ich8_phy_ops,
4238         .nvm_ops                = &ich8_nvm_ops,
4239 };
4240
4241 const struct e1000_info e1000_pch_info = {
4242         .mac                    = e1000_pchlan,
4243         .flags                  = FLAG_IS_ICH
4244                                   | FLAG_HAS_WOL
4245                                   | FLAG_HAS_CTRLEXT_ON_LOAD
4246                                   | FLAG_HAS_AMT
4247                                   | FLAG_HAS_FLASH
4248                                   | FLAG_HAS_JUMBO_FRAMES
4249                                   | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
4250                                   | FLAG_APME_IN_WUC,
4251         .flags2                 = FLAG2_HAS_PHY_STATS,
4252         .pba                    = 26,
4253         .max_hw_frame_size      = 4096,
4254         .get_variants           = e1000_get_variants_ich8lan,
4255         .mac_ops                = &ich8_mac_ops,
4256         .phy_ops                = &ich8_phy_ops,
4257         .nvm_ops                = &ich8_nvm_ops,
4258 };
4259
4260 const struct e1000_info e1000_pch2_info = {
4261         .mac                    = e1000_pch2lan,
4262         .flags                  = FLAG_IS_ICH
4263                                   | FLAG_HAS_WOL
4264                                   | FLAG_HAS_CTRLEXT_ON_LOAD
4265                                   | FLAG_HAS_AMT
4266                                   | FLAG_HAS_FLASH
4267                                   | FLAG_HAS_JUMBO_FRAMES
4268                                   | FLAG_APME_IN_WUC,
4269         .flags2                 = FLAG2_HAS_PHY_STATS
4270                                   | FLAG2_HAS_EEE,
4271         .pba                    = 26,
4272         .max_hw_frame_size      = DEFAULT_JUMBO,
4273         .get_variants           = e1000_get_variants_ich8lan,
4274         .mac_ops                = &ich8_mac_ops,
4275         .phy_ops                = &ich8_phy_ops,
4276         .nvm_ops                = &ich8_nvm_ops,
4277 };