objtool: Re-arrange validate_functions()
[linux-block.git] / drivers / net / ethernet / hisilicon / hns3 / hns3vf / hclgevf_main.c
1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3
4 #include <linux/etherdevice.h>
5 #include <linux/iopoll.h>
6 #include <net/rtnetlink.h>
7 #include "hclgevf_cmd.h"
8 #include "hclgevf_main.h"
9 #include "hclge_mbx.h"
10 #include "hnae3.h"
11
12 #define HCLGEVF_NAME    "hclgevf"
13
14 #define HCLGEVF_RESET_MAX_FAIL_CNT      5
15
16 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev);
17 static struct hnae3_ae_algo ae_algovf;
18
19 static struct workqueue_struct *hclgevf_wq;
20
21 static const struct pci_device_id ae_algovf_pci_tbl[] = {
22         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_VF), 0},
23         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_DCB_PFC_VF), 0},
24         /* required last entry */
25         {0, }
26 };
27
28 static const u8 hclgevf_hash_key[] = {
29         0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2,
30         0x41, 0x67, 0x25, 0x3D, 0x43, 0xA3, 0x8F, 0xB0,
31         0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4,
32         0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C,
33         0x6A, 0x42, 0xB7, 0x3B, 0xBE, 0xAC, 0x01, 0xFA
34 };
35
36 MODULE_DEVICE_TABLE(pci, ae_algovf_pci_tbl);
37
38 static const u32 cmdq_reg_addr_list[] = {HCLGEVF_CMDQ_TX_ADDR_L_REG,
39                                          HCLGEVF_CMDQ_TX_ADDR_H_REG,
40                                          HCLGEVF_CMDQ_TX_DEPTH_REG,
41                                          HCLGEVF_CMDQ_TX_TAIL_REG,
42                                          HCLGEVF_CMDQ_TX_HEAD_REG,
43                                          HCLGEVF_CMDQ_RX_ADDR_L_REG,
44                                          HCLGEVF_CMDQ_RX_ADDR_H_REG,
45                                          HCLGEVF_CMDQ_RX_DEPTH_REG,
46                                          HCLGEVF_CMDQ_RX_TAIL_REG,
47                                          HCLGEVF_CMDQ_RX_HEAD_REG,
48                                          HCLGEVF_VECTOR0_CMDQ_SRC_REG,
49                                          HCLGEVF_CMDQ_INTR_STS_REG,
50                                          HCLGEVF_CMDQ_INTR_EN_REG,
51                                          HCLGEVF_CMDQ_INTR_GEN_REG};
52
53 static const u32 common_reg_addr_list[] = {HCLGEVF_MISC_VECTOR_REG_BASE,
54                                            HCLGEVF_RST_ING,
55                                            HCLGEVF_GRO_EN_REG};
56
57 static const u32 ring_reg_addr_list[] = {HCLGEVF_RING_RX_ADDR_L_REG,
58                                          HCLGEVF_RING_RX_ADDR_H_REG,
59                                          HCLGEVF_RING_RX_BD_NUM_REG,
60                                          HCLGEVF_RING_RX_BD_LENGTH_REG,
61                                          HCLGEVF_RING_RX_MERGE_EN_REG,
62                                          HCLGEVF_RING_RX_TAIL_REG,
63                                          HCLGEVF_RING_RX_HEAD_REG,
64                                          HCLGEVF_RING_RX_FBD_NUM_REG,
65                                          HCLGEVF_RING_RX_OFFSET_REG,
66                                          HCLGEVF_RING_RX_FBD_OFFSET_REG,
67                                          HCLGEVF_RING_RX_STASH_REG,
68                                          HCLGEVF_RING_RX_BD_ERR_REG,
69                                          HCLGEVF_RING_TX_ADDR_L_REG,
70                                          HCLGEVF_RING_TX_ADDR_H_REG,
71                                          HCLGEVF_RING_TX_BD_NUM_REG,
72                                          HCLGEVF_RING_TX_PRIORITY_REG,
73                                          HCLGEVF_RING_TX_TC_REG,
74                                          HCLGEVF_RING_TX_MERGE_EN_REG,
75                                          HCLGEVF_RING_TX_TAIL_REG,
76                                          HCLGEVF_RING_TX_HEAD_REG,
77                                          HCLGEVF_RING_TX_FBD_NUM_REG,
78                                          HCLGEVF_RING_TX_OFFSET_REG,
79                                          HCLGEVF_RING_TX_EBD_NUM_REG,
80                                          HCLGEVF_RING_TX_EBD_OFFSET_REG,
81                                          HCLGEVF_RING_TX_BD_ERR_REG,
82                                          HCLGEVF_RING_EN_REG};
83
84 static const u32 tqp_intr_reg_addr_list[] = {HCLGEVF_TQP_INTR_CTRL_REG,
85                                              HCLGEVF_TQP_INTR_GL0_REG,
86                                              HCLGEVF_TQP_INTR_GL1_REG,
87                                              HCLGEVF_TQP_INTR_GL2_REG,
88                                              HCLGEVF_TQP_INTR_RL_REG};
89
90 static struct hclgevf_dev *hclgevf_ae_get_hdev(struct hnae3_handle *handle)
91 {
92         if (!handle->client)
93                 return container_of(handle, struct hclgevf_dev, nic);
94         else if (handle->client->type == HNAE3_CLIENT_ROCE)
95                 return container_of(handle, struct hclgevf_dev, roce);
96         else
97                 return container_of(handle, struct hclgevf_dev, nic);
98 }
99
100 static int hclgevf_tqps_update_stats(struct hnae3_handle *handle)
101 {
102         struct hnae3_knic_private_info *kinfo = &handle->kinfo;
103         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
104         struct hclgevf_desc desc;
105         struct hclgevf_tqp *tqp;
106         int status;
107         int i;
108
109         for (i = 0; i < kinfo->num_tqps; i++) {
110                 tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
111                 hclgevf_cmd_setup_basic_desc(&desc,
112                                              HCLGEVF_OPC_QUERY_RX_STATUS,
113                                              true);
114
115                 desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
116                 status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
117                 if (status) {
118                         dev_err(&hdev->pdev->dev,
119                                 "Query tqp stat fail, status = %d,queue = %d\n",
120                                 status, i);
121                         return status;
122                 }
123                 tqp->tqp_stats.rcb_rx_ring_pktnum_rcd +=
124                         le32_to_cpu(desc.data[1]);
125
126                 hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_TX_STATUS,
127                                              true);
128
129                 desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
130                 status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
131                 if (status) {
132                         dev_err(&hdev->pdev->dev,
133                                 "Query tqp stat fail, status = %d,queue = %d\n",
134                                 status, i);
135                         return status;
136                 }
137                 tqp->tqp_stats.rcb_tx_ring_pktnum_rcd +=
138                         le32_to_cpu(desc.data[1]);
139         }
140
141         return 0;
142 }
143
144 static u64 *hclgevf_tqps_get_stats(struct hnae3_handle *handle, u64 *data)
145 {
146         struct hnae3_knic_private_info *kinfo = &handle->kinfo;
147         struct hclgevf_tqp *tqp;
148         u64 *buff = data;
149         int i;
150
151         for (i = 0; i < kinfo->num_tqps; i++) {
152                 tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
153                 *buff++ = tqp->tqp_stats.rcb_tx_ring_pktnum_rcd;
154         }
155         for (i = 0; i < kinfo->num_tqps; i++) {
156                 tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
157                 *buff++ = tqp->tqp_stats.rcb_rx_ring_pktnum_rcd;
158         }
159
160         return buff;
161 }
162
163 static int hclgevf_tqps_get_sset_count(struct hnae3_handle *handle, int strset)
164 {
165         struct hnae3_knic_private_info *kinfo = &handle->kinfo;
166
167         return kinfo->num_tqps * 2;
168 }
169
170 static u8 *hclgevf_tqps_get_strings(struct hnae3_handle *handle, u8 *data)
171 {
172         struct hnae3_knic_private_info *kinfo = &handle->kinfo;
173         u8 *buff = data;
174         int i = 0;
175
176         for (i = 0; i < kinfo->num_tqps; i++) {
177                 struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
178                                                        struct hclgevf_tqp, q);
179                 snprintf(buff, ETH_GSTRING_LEN, "txq%d_pktnum_rcd",
180                          tqp->index);
181                 buff += ETH_GSTRING_LEN;
182         }
183
184         for (i = 0; i < kinfo->num_tqps; i++) {
185                 struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
186                                                        struct hclgevf_tqp, q);
187                 snprintf(buff, ETH_GSTRING_LEN, "rxq%d_pktnum_rcd",
188                          tqp->index);
189                 buff += ETH_GSTRING_LEN;
190         }
191
192         return buff;
193 }
194
195 static void hclgevf_update_stats(struct hnae3_handle *handle,
196                                  struct net_device_stats *net_stats)
197 {
198         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
199         int status;
200
201         status = hclgevf_tqps_update_stats(handle);
202         if (status)
203                 dev_err(&hdev->pdev->dev,
204                         "VF update of TQPS stats fail, status = %d.\n",
205                         status);
206 }
207
208 static int hclgevf_get_sset_count(struct hnae3_handle *handle, int strset)
209 {
210         if (strset == ETH_SS_TEST)
211                 return -EOPNOTSUPP;
212         else if (strset == ETH_SS_STATS)
213                 return hclgevf_tqps_get_sset_count(handle, strset);
214
215         return 0;
216 }
217
218 static void hclgevf_get_strings(struct hnae3_handle *handle, u32 strset,
219                                 u8 *data)
220 {
221         u8 *p = (char *)data;
222
223         if (strset == ETH_SS_STATS)
224                 p = hclgevf_tqps_get_strings(handle, p);
225 }
226
227 static void hclgevf_get_stats(struct hnae3_handle *handle, u64 *data)
228 {
229         hclgevf_tqps_get_stats(handle, data);
230 }
231
232 static int hclgevf_get_tc_info(struct hclgevf_dev *hdev)
233 {
234         u8 resp_msg;
235         int status;
236
237         status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_TCINFO, 0, NULL, 0,
238                                       true, &resp_msg, sizeof(resp_msg));
239         if (status) {
240                 dev_err(&hdev->pdev->dev,
241                         "VF request to get TC info from PF failed %d",
242                         status);
243                 return status;
244         }
245
246         hdev->hw_tc_map = resp_msg;
247
248         return 0;
249 }
250
251 static int hclgevf_get_port_base_vlan_filter_state(struct hclgevf_dev *hdev)
252 {
253         struct hnae3_handle *nic = &hdev->nic;
254         u8 resp_msg;
255         int ret;
256
257         ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
258                                    HCLGE_MBX_GET_PORT_BASE_VLAN_STATE,
259                                    NULL, 0, true, &resp_msg, sizeof(u8));
260         if (ret) {
261                 dev_err(&hdev->pdev->dev,
262                         "VF request to get port based vlan state failed %d",
263                         ret);
264                 return ret;
265         }
266
267         nic->port_base_vlan_state = resp_msg;
268
269         return 0;
270 }
271
272 static int hclgevf_get_queue_info(struct hclgevf_dev *hdev)
273 {
274 #define HCLGEVF_TQPS_RSS_INFO_LEN       6
275         u8 resp_msg[HCLGEVF_TQPS_RSS_INFO_LEN];
276         int status;
277
278         status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_QINFO, 0, NULL, 0,
279                                       true, resp_msg,
280                                       HCLGEVF_TQPS_RSS_INFO_LEN);
281         if (status) {
282                 dev_err(&hdev->pdev->dev,
283                         "VF request to get tqp info from PF failed %d",
284                         status);
285                 return status;
286         }
287
288         memcpy(&hdev->num_tqps, &resp_msg[0], sizeof(u16));
289         memcpy(&hdev->rss_size_max, &resp_msg[2], sizeof(u16));
290         memcpy(&hdev->rx_buf_len, &resp_msg[4], sizeof(u16));
291
292         return 0;
293 }
294
295 static int hclgevf_get_queue_depth(struct hclgevf_dev *hdev)
296 {
297 #define HCLGEVF_TQPS_DEPTH_INFO_LEN     4
298         u8 resp_msg[HCLGEVF_TQPS_DEPTH_INFO_LEN];
299         int ret;
300
301         ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_QDEPTH, 0, NULL, 0,
302                                    true, resp_msg,
303                                    HCLGEVF_TQPS_DEPTH_INFO_LEN);
304         if (ret) {
305                 dev_err(&hdev->pdev->dev,
306                         "VF request to get tqp depth info from PF failed %d",
307                         ret);
308                 return ret;
309         }
310
311         memcpy(&hdev->num_tx_desc, &resp_msg[0], sizeof(u16));
312         memcpy(&hdev->num_rx_desc, &resp_msg[2], sizeof(u16));
313
314         return 0;
315 }
316
317 static u16 hclgevf_get_qid_global(struct hnae3_handle *handle, u16 queue_id)
318 {
319         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
320         u8 msg_data[2], resp_data[2];
321         u16 qid_in_pf = 0;
322         int ret;
323
324         memcpy(&msg_data[0], &queue_id, sizeof(queue_id));
325
326         ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_QID_IN_PF, 0, msg_data,
327                                    sizeof(msg_data), true, resp_data,
328                                    sizeof(resp_data));
329         if (!ret)
330                 qid_in_pf = *(u16 *)resp_data;
331
332         return qid_in_pf;
333 }
334
335 static int hclgevf_get_pf_media_type(struct hclgevf_dev *hdev)
336 {
337         u8 resp_msg[2];
338         int ret;
339
340         ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_MEDIA_TYPE, 0, NULL, 0,
341                                    true, resp_msg, sizeof(resp_msg));
342         if (ret) {
343                 dev_err(&hdev->pdev->dev,
344                         "VF request to get the pf port media type failed %d",
345                         ret);
346                 return ret;
347         }
348
349         hdev->hw.mac.media_type = resp_msg[0];
350         hdev->hw.mac.module_type = resp_msg[1];
351
352         return 0;
353 }
354
355 static int hclgevf_alloc_tqps(struct hclgevf_dev *hdev)
356 {
357         struct hclgevf_tqp *tqp;
358         int i;
359
360         hdev->htqp = devm_kcalloc(&hdev->pdev->dev, hdev->num_tqps,
361                                   sizeof(struct hclgevf_tqp), GFP_KERNEL);
362         if (!hdev->htqp)
363                 return -ENOMEM;
364
365         tqp = hdev->htqp;
366
367         for (i = 0; i < hdev->num_tqps; i++) {
368                 tqp->dev = &hdev->pdev->dev;
369                 tqp->index = i;
370
371                 tqp->q.ae_algo = &ae_algovf;
372                 tqp->q.buf_size = hdev->rx_buf_len;
373                 tqp->q.tx_desc_num = hdev->num_tx_desc;
374                 tqp->q.rx_desc_num = hdev->num_rx_desc;
375                 tqp->q.io_base = hdev->hw.io_base + HCLGEVF_TQP_REG_OFFSET +
376                         i * HCLGEVF_TQP_REG_SIZE;
377
378                 tqp++;
379         }
380
381         return 0;
382 }
383
384 static int hclgevf_knic_setup(struct hclgevf_dev *hdev)
385 {
386         struct hnae3_handle *nic = &hdev->nic;
387         struct hnae3_knic_private_info *kinfo;
388         u16 new_tqps = hdev->num_tqps;
389         unsigned int i;
390
391         kinfo = &nic->kinfo;
392         kinfo->num_tc = 0;
393         kinfo->num_tx_desc = hdev->num_tx_desc;
394         kinfo->num_rx_desc = hdev->num_rx_desc;
395         kinfo->rx_buf_len = hdev->rx_buf_len;
396         for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++)
397                 if (hdev->hw_tc_map & BIT(i))
398                         kinfo->num_tc++;
399
400         kinfo->rss_size
401                 = min_t(u16, hdev->rss_size_max, new_tqps / kinfo->num_tc);
402         new_tqps = kinfo->rss_size * kinfo->num_tc;
403         kinfo->num_tqps = min(new_tqps, hdev->num_tqps);
404
405         kinfo->tqp = devm_kcalloc(&hdev->pdev->dev, kinfo->num_tqps,
406                                   sizeof(struct hnae3_queue *), GFP_KERNEL);
407         if (!kinfo->tqp)
408                 return -ENOMEM;
409
410         for (i = 0; i < kinfo->num_tqps; i++) {
411                 hdev->htqp[i].q.handle = &hdev->nic;
412                 hdev->htqp[i].q.tqp_index = i;
413                 kinfo->tqp[i] = &hdev->htqp[i].q;
414         }
415
416         /* after init the max rss_size and tqps, adjust the default tqp numbers
417          * and rss size with the actual vector numbers
418          */
419         kinfo->num_tqps = min_t(u16, hdev->num_nic_msix - 1, kinfo->num_tqps);
420         kinfo->rss_size = min_t(u16, kinfo->num_tqps / kinfo->num_tc,
421                                 kinfo->rss_size);
422
423         return 0;
424 }
425
426 static void hclgevf_request_link_info(struct hclgevf_dev *hdev)
427 {
428         int status;
429         u8 resp_msg;
430
431         status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_LINK_STATUS, 0, NULL,
432                                       0, false, &resp_msg, sizeof(resp_msg));
433         if (status)
434                 dev_err(&hdev->pdev->dev,
435                         "VF failed to fetch link status(%d) from PF", status);
436 }
437
438 void hclgevf_update_link_status(struct hclgevf_dev *hdev, int link_state)
439 {
440         struct hnae3_handle *rhandle = &hdev->roce;
441         struct hnae3_handle *handle = &hdev->nic;
442         struct hnae3_client *rclient;
443         struct hnae3_client *client;
444
445         if (test_and_set_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state))
446                 return;
447
448         client = handle->client;
449         rclient = hdev->roce_client;
450
451         link_state =
452                 test_bit(HCLGEVF_STATE_DOWN, &hdev->state) ? 0 : link_state;
453
454         if (link_state != hdev->hw.mac.link) {
455                 client->ops->link_status_change(handle, !!link_state);
456                 if (rclient && rclient->ops->link_status_change)
457                         rclient->ops->link_status_change(rhandle, !!link_state);
458                 hdev->hw.mac.link = link_state;
459         }
460
461         clear_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state);
462 }
463
464 static void hclgevf_update_link_mode(struct hclgevf_dev *hdev)
465 {
466 #define HCLGEVF_ADVERTISING 0
467 #define HCLGEVF_SUPPORTED   1
468         u8 send_msg;
469         u8 resp_msg;
470
471         send_msg = HCLGEVF_ADVERTISING;
472         hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_LINK_MODE, 0,
473                              &send_msg, sizeof(send_msg), false,
474                              &resp_msg, sizeof(resp_msg));
475         send_msg = HCLGEVF_SUPPORTED;
476         hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_LINK_MODE, 0,
477                              &send_msg, sizeof(send_msg), false,
478                              &resp_msg, sizeof(resp_msg));
479 }
480
481 static int hclgevf_set_handle_info(struct hclgevf_dev *hdev)
482 {
483         struct hnae3_handle *nic = &hdev->nic;
484         int ret;
485
486         nic->ae_algo = &ae_algovf;
487         nic->pdev = hdev->pdev;
488         nic->numa_node_mask = hdev->numa_node_mask;
489         nic->flags |= HNAE3_SUPPORT_VF;
490
491         ret = hclgevf_knic_setup(hdev);
492         if (ret)
493                 dev_err(&hdev->pdev->dev, "VF knic setup failed %d\n",
494                         ret);
495         return ret;
496 }
497
498 static void hclgevf_free_vector(struct hclgevf_dev *hdev, int vector_id)
499 {
500         if (hdev->vector_status[vector_id] == HCLGEVF_INVALID_VPORT) {
501                 dev_warn(&hdev->pdev->dev,
502                          "vector(vector_id %d) has been freed.\n", vector_id);
503                 return;
504         }
505
506         hdev->vector_status[vector_id] = HCLGEVF_INVALID_VPORT;
507         hdev->num_msi_left += 1;
508         hdev->num_msi_used -= 1;
509 }
510
511 static int hclgevf_get_vector(struct hnae3_handle *handle, u16 vector_num,
512                               struct hnae3_vector_info *vector_info)
513 {
514         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
515         struct hnae3_vector_info *vector = vector_info;
516         int alloc = 0;
517         int i, j;
518
519         vector_num = min_t(u16, hdev->num_nic_msix - 1, vector_num);
520         vector_num = min(hdev->num_msi_left, vector_num);
521
522         for (j = 0; j < vector_num; j++) {
523                 for (i = HCLGEVF_MISC_VECTOR_NUM + 1; i < hdev->num_msi; i++) {
524                         if (hdev->vector_status[i] == HCLGEVF_INVALID_VPORT) {
525                                 vector->vector = pci_irq_vector(hdev->pdev, i);
526                                 vector->io_addr = hdev->hw.io_base +
527                                         HCLGEVF_VECTOR_REG_BASE +
528                                         (i - 1) * HCLGEVF_VECTOR_REG_OFFSET;
529                                 hdev->vector_status[i] = 0;
530                                 hdev->vector_irq[i] = vector->vector;
531
532                                 vector++;
533                                 alloc++;
534
535                                 break;
536                         }
537                 }
538         }
539         hdev->num_msi_left -= alloc;
540         hdev->num_msi_used += alloc;
541
542         return alloc;
543 }
544
545 static int hclgevf_get_vector_index(struct hclgevf_dev *hdev, int vector)
546 {
547         int i;
548
549         for (i = 0; i < hdev->num_msi; i++)
550                 if (vector == hdev->vector_irq[i])
551                         return i;
552
553         return -EINVAL;
554 }
555
556 static int hclgevf_set_rss_algo_key(struct hclgevf_dev *hdev,
557                                     const u8 hfunc, const u8 *key)
558 {
559         struct hclgevf_rss_config_cmd *req;
560         unsigned int key_offset = 0;
561         struct hclgevf_desc desc;
562         int key_counts;
563         int key_size;
564         int ret;
565
566         key_counts = HCLGEVF_RSS_KEY_SIZE;
567         req = (struct hclgevf_rss_config_cmd *)desc.data;
568
569         while (key_counts) {
570                 hclgevf_cmd_setup_basic_desc(&desc,
571                                              HCLGEVF_OPC_RSS_GENERIC_CONFIG,
572                                              false);
573
574                 req->hash_config |= (hfunc & HCLGEVF_RSS_HASH_ALGO_MASK);
575                 req->hash_config |=
576                         (key_offset << HCLGEVF_RSS_HASH_KEY_OFFSET_B);
577
578                 key_size = min(HCLGEVF_RSS_HASH_KEY_NUM, key_counts);
579                 memcpy(req->hash_key,
580                        key + key_offset * HCLGEVF_RSS_HASH_KEY_NUM, key_size);
581
582                 key_counts -= key_size;
583                 key_offset++;
584                 ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
585                 if (ret) {
586                         dev_err(&hdev->pdev->dev,
587                                 "Configure RSS config fail, status = %d\n",
588                                 ret);
589                         return ret;
590                 }
591         }
592
593         return 0;
594 }
595
596 static u32 hclgevf_get_rss_key_size(struct hnae3_handle *handle)
597 {
598         return HCLGEVF_RSS_KEY_SIZE;
599 }
600
601 static u32 hclgevf_get_rss_indir_size(struct hnae3_handle *handle)
602 {
603         return HCLGEVF_RSS_IND_TBL_SIZE;
604 }
605
606 static int hclgevf_set_rss_indir_table(struct hclgevf_dev *hdev)
607 {
608         const u8 *indir = hdev->rss_cfg.rss_indirection_tbl;
609         struct hclgevf_rss_indirection_table_cmd *req;
610         struct hclgevf_desc desc;
611         int status;
612         int i, j;
613
614         req = (struct hclgevf_rss_indirection_table_cmd *)desc.data;
615
616         for (i = 0; i < HCLGEVF_RSS_CFG_TBL_NUM; i++) {
617                 hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INDIR_TABLE,
618                                              false);
619                 req->start_table_index = i * HCLGEVF_RSS_CFG_TBL_SIZE;
620                 req->rss_set_bitmap = HCLGEVF_RSS_SET_BITMAP_MSK;
621                 for (j = 0; j < HCLGEVF_RSS_CFG_TBL_SIZE; j++)
622                         req->rss_result[j] =
623                                 indir[i * HCLGEVF_RSS_CFG_TBL_SIZE + j];
624
625                 status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
626                 if (status) {
627                         dev_err(&hdev->pdev->dev,
628                                 "VF failed(=%d) to set RSS indirection table\n",
629                                 status);
630                         return status;
631                 }
632         }
633
634         return 0;
635 }
636
637 static int hclgevf_set_rss_tc_mode(struct hclgevf_dev *hdev,  u16 rss_size)
638 {
639         struct hclgevf_rss_tc_mode_cmd *req;
640         u16 tc_offset[HCLGEVF_MAX_TC_NUM];
641         u16 tc_valid[HCLGEVF_MAX_TC_NUM];
642         u16 tc_size[HCLGEVF_MAX_TC_NUM];
643         struct hclgevf_desc desc;
644         u16 roundup_size;
645         int status;
646         unsigned int i;
647
648         req = (struct hclgevf_rss_tc_mode_cmd *)desc.data;
649
650         roundup_size = roundup_pow_of_two(rss_size);
651         roundup_size = ilog2(roundup_size);
652
653         for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
654                 tc_valid[i] = !!(hdev->hw_tc_map & BIT(i));
655                 tc_size[i] = roundup_size;
656                 tc_offset[i] = rss_size * i;
657         }
658
659         hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_TC_MODE, false);
660         for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
661                 hnae3_set_bit(req->rss_tc_mode[i], HCLGEVF_RSS_TC_VALID_B,
662                               (tc_valid[i] & 0x1));
663                 hnae3_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_SIZE_M,
664                                 HCLGEVF_RSS_TC_SIZE_S, tc_size[i]);
665                 hnae3_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_OFFSET_M,
666                                 HCLGEVF_RSS_TC_OFFSET_S, tc_offset[i]);
667         }
668         status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
669         if (status)
670                 dev_err(&hdev->pdev->dev,
671                         "VF failed(=%d) to set rss tc mode\n", status);
672
673         return status;
674 }
675
676 /* for revision 0x20, vf shared the same rss config with pf */
677 static int hclgevf_get_rss_hash_key(struct hclgevf_dev *hdev)
678 {
679 #define HCLGEVF_RSS_MBX_RESP_LEN        8
680
681         struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
682         u8 resp_msg[HCLGEVF_RSS_MBX_RESP_LEN];
683         u16 msg_num, hash_key_index;
684         u8 index;
685         int ret;
686
687         msg_num = (HCLGEVF_RSS_KEY_SIZE + HCLGEVF_RSS_MBX_RESP_LEN - 1) /
688                         HCLGEVF_RSS_MBX_RESP_LEN;
689         for (index = 0; index < msg_num; index++) {
690                 ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_RSS_KEY, 0,
691                                            &index, sizeof(index),
692                                            true, resp_msg,
693                                            HCLGEVF_RSS_MBX_RESP_LEN);
694                 if (ret) {
695                         dev_err(&hdev->pdev->dev,
696                                 "VF get rss hash key from PF failed, ret=%d",
697                                 ret);
698                         return ret;
699                 }
700
701                 hash_key_index = HCLGEVF_RSS_MBX_RESP_LEN * index;
702                 if (index == msg_num - 1)
703                         memcpy(&rss_cfg->rss_hash_key[hash_key_index],
704                                &resp_msg[0],
705                                HCLGEVF_RSS_KEY_SIZE - hash_key_index);
706                 else
707                         memcpy(&rss_cfg->rss_hash_key[hash_key_index],
708                                &resp_msg[0], HCLGEVF_RSS_MBX_RESP_LEN);
709         }
710
711         return 0;
712 }
713
714 static int hclgevf_get_rss(struct hnae3_handle *handle, u32 *indir, u8 *key,
715                            u8 *hfunc)
716 {
717         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
718         struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
719         int i, ret;
720
721         if (handle->pdev->revision >= 0x21) {
722                 /* Get hash algorithm */
723                 if (hfunc) {
724                         switch (rss_cfg->hash_algo) {
725                         case HCLGEVF_RSS_HASH_ALGO_TOEPLITZ:
726                                 *hfunc = ETH_RSS_HASH_TOP;
727                                 break;
728                         case HCLGEVF_RSS_HASH_ALGO_SIMPLE:
729                                 *hfunc = ETH_RSS_HASH_XOR;
730                                 break;
731                         default:
732                                 *hfunc = ETH_RSS_HASH_UNKNOWN;
733                                 break;
734                         }
735                 }
736
737                 /* Get the RSS Key required by the user */
738                 if (key)
739                         memcpy(key, rss_cfg->rss_hash_key,
740                                HCLGEVF_RSS_KEY_SIZE);
741         } else {
742                 if (hfunc)
743                         *hfunc = ETH_RSS_HASH_TOP;
744                 if (key) {
745                         ret = hclgevf_get_rss_hash_key(hdev);
746                         if (ret)
747                                 return ret;
748                         memcpy(key, rss_cfg->rss_hash_key,
749                                HCLGEVF_RSS_KEY_SIZE);
750                 }
751         }
752
753         if (indir)
754                 for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
755                         indir[i] = rss_cfg->rss_indirection_tbl[i];
756
757         return 0;
758 }
759
760 static int hclgevf_set_rss(struct hnae3_handle *handle, const u32 *indir,
761                            const u8 *key, const u8 hfunc)
762 {
763         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
764         struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
765         int ret, i;
766
767         if (handle->pdev->revision >= 0x21) {
768                 /* Set the RSS Hash Key if specififed by the user */
769                 if (key) {
770                         switch (hfunc) {
771                         case ETH_RSS_HASH_TOP:
772                                 rss_cfg->hash_algo =
773                                         HCLGEVF_RSS_HASH_ALGO_TOEPLITZ;
774                                 break;
775                         case ETH_RSS_HASH_XOR:
776                                 rss_cfg->hash_algo =
777                                         HCLGEVF_RSS_HASH_ALGO_SIMPLE;
778                                 break;
779                         case ETH_RSS_HASH_NO_CHANGE:
780                                 break;
781                         default:
782                                 return -EINVAL;
783                         }
784
785                         ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
786                                                        key);
787                         if (ret)
788                                 return ret;
789
790                         /* Update the shadow RSS key with user specified qids */
791                         memcpy(rss_cfg->rss_hash_key, key,
792                                HCLGEVF_RSS_KEY_SIZE);
793                 }
794         }
795
796         /* update the shadow RSS table with user specified qids */
797         for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
798                 rss_cfg->rss_indirection_tbl[i] = indir[i];
799
800         /* update the hardware */
801         return hclgevf_set_rss_indir_table(hdev);
802 }
803
804 static u8 hclgevf_get_rss_hash_bits(struct ethtool_rxnfc *nfc)
805 {
806         u8 hash_sets = nfc->data & RXH_L4_B_0_1 ? HCLGEVF_S_PORT_BIT : 0;
807
808         if (nfc->data & RXH_L4_B_2_3)
809                 hash_sets |= HCLGEVF_D_PORT_BIT;
810         else
811                 hash_sets &= ~HCLGEVF_D_PORT_BIT;
812
813         if (nfc->data & RXH_IP_SRC)
814                 hash_sets |= HCLGEVF_S_IP_BIT;
815         else
816                 hash_sets &= ~HCLGEVF_S_IP_BIT;
817
818         if (nfc->data & RXH_IP_DST)
819                 hash_sets |= HCLGEVF_D_IP_BIT;
820         else
821                 hash_sets &= ~HCLGEVF_D_IP_BIT;
822
823         if (nfc->flow_type == SCTP_V4_FLOW || nfc->flow_type == SCTP_V6_FLOW)
824                 hash_sets |= HCLGEVF_V_TAG_BIT;
825
826         return hash_sets;
827 }
828
829 static int hclgevf_set_rss_tuple(struct hnae3_handle *handle,
830                                  struct ethtool_rxnfc *nfc)
831 {
832         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
833         struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
834         struct hclgevf_rss_input_tuple_cmd *req;
835         struct hclgevf_desc desc;
836         u8 tuple_sets;
837         int ret;
838
839         if (handle->pdev->revision == 0x20)
840                 return -EOPNOTSUPP;
841
842         if (nfc->data &
843             ~(RXH_IP_SRC | RXH_IP_DST | RXH_L4_B_0_1 | RXH_L4_B_2_3))
844                 return -EINVAL;
845
846         req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
847         hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);
848
849         req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
850         req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
851         req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
852         req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
853         req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
854         req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
855         req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
856         req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;
857
858         tuple_sets = hclgevf_get_rss_hash_bits(nfc);
859         switch (nfc->flow_type) {
860         case TCP_V4_FLOW:
861                 req->ipv4_tcp_en = tuple_sets;
862                 break;
863         case TCP_V6_FLOW:
864                 req->ipv6_tcp_en = tuple_sets;
865                 break;
866         case UDP_V4_FLOW:
867                 req->ipv4_udp_en = tuple_sets;
868                 break;
869         case UDP_V6_FLOW:
870                 req->ipv6_udp_en = tuple_sets;
871                 break;
872         case SCTP_V4_FLOW:
873                 req->ipv4_sctp_en = tuple_sets;
874                 break;
875         case SCTP_V6_FLOW:
876                 if ((nfc->data & RXH_L4_B_0_1) ||
877                     (nfc->data & RXH_L4_B_2_3))
878                         return -EINVAL;
879
880                 req->ipv6_sctp_en = tuple_sets;
881                 break;
882         case IPV4_FLOW:
883                 req->ipv4_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
884                 break;
885         case IPV6_FLOW:
886                 req->ipv6_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
887                 break;
888         default:
889                 return -EINVAL;
890         }
891
892         ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
893         if (ret) {
894                 dev_err(&hdev->pdev->dev,
895                         "Set rss tuple fail, status = %d\n", ret);
896                 return ret;
897         }
898
899         rss_cfg->rss_tuple_sets.ipv4_tcp_en = req->ipv4_tcp_en;
900         rss_cfg->rss_tuple_sets.ipv4_udp_en = req->ipv4_udp_en;
901         rss_cfg->rss_tuple_sets.ipv4_sctp_en = req->ipv4_sctp_en;
902         rss_cfg->rss_tuple_sets.ipv4_fragment_en = req->ipv4_fragment_en;
903         rss_cfg->rss_tuple_sets.ipv6_tcp_en = req->ipv6_tcp_en;
904         rss_cfg->rss_tuple_sets.ipv6_udp_en = req->ipv6_udp_en;
905         rss_cfg->rss_tuple_sets.ipv6_sctp_en = req->ipv6_sctp_en;
906         rss_cfg->rss_tuple_sets.ipv6_fragment_en = req->ipv6_fragment_en;
907         return 0;
908 }
909
910 static int hclgevf_get_rss_tuple(struct hnae3_handle *handle,
911                                  struct ethtool_rxnfc *nfc)
912 {
913         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
914         struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
915         u8 tuple_sets;
916
917         if (handle->pdev->revision == 0x20)
918                 return -EOPNOTSUPP;
919
920         nfc->data = 0;
921
922         switch (nfc->flow_type) {
923         case TCP_V4_FLOW:
924                 tuple_sets = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
925                 break;
926         case UDP_V4_FLOW:
927                 tuple_sets = rss_cfg->rss_tuple_sets.ipv4_udp_en;
928                 break;
929         case TCP_V6_FLOW:
930                 tuple_sets = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
931                 break;
932         case UDP_V6_FLOW:
933                 tuple_sets = rss_cfg->rss_tuple_sets.ipv6_udp_en;
934                 break;
935         case SCTP_V4_FLOW:
936                 tuple_sets = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
937                 break;
938         case SCTP_V6_FLOW:
939                 tuple_sets = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
940                 break;
941         case IPV4_FLOW:
942         case IPV6_FLOW:
943                 tuple_sets = HCLGEVF_S_IP_BIT | HCLGEVF_D_IP_BIT;
944                 break;
945         default:
946                 return -EINVAL;
947         }
948
949         if (!tuple_sets)
950                 return 0;
951
952         if (tuple_sets & HCLGEVF_D_PORT_BIT)
953                 nfc->data |= RXH_L4_B_2_3;
954         if (tuple_sets & HCLGEVF_S_PORT_BIT)
955                 nfc->data |= RXH_L4_B_0_1;
956         if (tuple_sets & HCLGEVF_D_IP_BIT)
957                 nfc->data |= RXH_IP_DST;
958         if (tuple_sets & HCLGEVF_S_IP_BIT)
959                 nfc->data |= RXH_IP_SRC;
960
961         return 0;
962 }
963
964 static int hclgevf_set_rss_input_tuple(struct hclgevf_dev *hdev,
965                                        struct hclgevf_rss_cfg *rss_cfg)
966 {
967         struct hclgevf_rss_input_tuple_cmd *req;
968         struct hclgevf_desc desc;
969         int ret;
970
971         hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);
972
973         req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
974
975         req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
976         req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
977         req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
978         req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
979         req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
980         req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
981         req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
982         req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;
983
984         ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
985         if (ret)
986                 dev_err(&hdev->pdev->dev,
987                         "Configure rss input fail, status = %d\n", ret);
988         return ret;
989 }
990
991 static int hclgevf_get_tc_size(struct hnae3_handle *handle)
992 {
993         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
994         struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
995
996         return rss_cfg->rss_size;
997 }
998
999 static int hclgevf_bind_ring_to_vector(struct hnae3_handle *handle, bool en,
1000                                        int vector_id,
1001                                        struct hnae3_ring_chain_node *ring_chain)
1002 {
1003         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1004         struct hnae3_ring_chain_node *node;
1005         struct hclge_mbx_vf_to_pf_cmd *req;
1006         struct hclgevf_desc desc;
1007         int i = 0;
1008         int status;
1009         u8 type;
1010
1011         req = (struct hclge_mbx_vf_to_pf_cmd *)desc.data;
1012         type = en ? HCLGE_MBX_MAP_RING_TO_VECTOR :
1013                 HCLGE_MBX_UNMAP_RING_TO_VECTOR;
1014
1015         for (node = ring_chain; node; node = node->next) {
1016                 int idx_offset = HCLGE_MBX_RING_MAP_BASIC_MSG_NUM +
1017                                         HCLGE_MBX_RING_NODE_VARIABLE_NUM * i;
1018
1019                 if (i == 0) {
1020                         hclgevf_cmd_setup_basic_desc(&desc,
1021                                                      HCLGEVF_OPC_MBX_VF_TO_PF,
1022                                                      false);
1023                         req->msg[0] = type;
1024                         req->msg[1] = vector_id;
1025                 }
1026
1027                 req->msg[idx_offset] =
1028                                 hnae3_get_bit(node->flag, HNAE3_RING_TYPE_B);
1029                 req->msg[idx_offset + 1] = node->tqp_index;
1030                 req->msg[idx_offset + 2] = hnae3_get_field(node->int_gl_idx,
1031                                                            HNAE3_RING_GL_IDX_M,
1032                                                            HNAE3_RING_GL_IDX_S);
1033
1034                 i++;
1035                 if ((i == (HCLGE_MBX_VF_MSG_DATA_NUM -
1036                      HCLGE_MBX_RING_MAP_BASIC_MSG_NUM) /
1037                      HCLGE_MBX_RING_NODE_VARIABLE_NUM) ||
1038                     !node->next) {
1039                         req->msg[2] = i;
1040
1041                         status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1042                         if (status) {
1043                                 dev_err(&hdev->pdev->dev,
1044                                         "Map TQP fail, status is %d.\n",
1045                                         status);
1046                                 return status;
1047                         }
1048                         i = 0;
1049                         hclgevf_cmd_setup_basic_desc(&desc,
1050                                                      HCLGEVF_OPC_MBX_VF_TO_PF,
1051                                                      false);
1052                         req->msg[0] = type;
1053                         req->msg[1] = vector_id;
1054                 }
1055         }
1056
1057         return 0;
1058 }
1059
1060 static int hclgevf_map_ring_to_vector(struct hnae3_handle *handle, int vector,
1061                                       struct hnae3_ring_chain_node *ring_chain)
1062 {
1063         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1064         int vector_id;
1065
1066         vector_id = hclgevf_get_vector_index(hdev, vector);
1067         if (vector_id < 0) {
1068                 dev_err(&handle->pdev->dev,
1069                         "Get vector index fail. ret =%d\n", vector_id);
1070                 return vector_id;
1071         }
1072
1073         return hclgevf_bind_ring_to_vector(handle, true, vector_id, ring_chain);
1074 }
1075
1076 static int hclgevf_unmap_ring_from_vector(
1077                                 struct hnae3_handle *handle,
1078                                 int vector,
1079                                 struct hnae3_ring_chain_node *ring_chain)
1080 {
1081         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1082         int ret, vector_id;
1083
1084         if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
1085                 return 0;
1086
1087         vector_id = hclgevf_get_vector_index(hdev, vector);
1088         if (vector_id < 0) {
1089                 dev_err(&handle->pdev->dev,
1090                         "Get vector index fail. ret =%d\n", vector_id);
1091                 return vector_id;
1092         }
1093
1094         ret = hclgevf_bind_ring_to_vector(handle, false, vector_id, ring_chain);
1095         if (ret)
1096                 dev_err(&handle->pdev->dev,
1097                         "Unmap ring from vector fail. vector=%d, ret =%d\n",
1098                         vector_id,
1099                         ret);
1100
1101         return ret;
1102 }
1103
1104 static int hclgevf_put_vector(struct hnae3_handle *handle, int vector)
1105 {
1106         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1107         int vector_id;
1108
1109         vector_id = hclgevf_get_vector_index(hdev, vector);
1110         if (vector_id < 0) {
1111                 dev_err(&handle->pdev->dev,
1112                         "hclgevf_put_vector get vector index fail. ret =%d\n",
1113                         vector_id);
1114                 return vector_id;
1115         }
1116
1117         hclgevf_free_vector(hdev, vector_id);
1118
1119         return 0;
1120 }
1121
1122 static int hclgevf_cmd_set_promisc_mode(struct hclgevf_dev *hdev,
1123                                         bool en_uc_pmc, bool en_mc_pmc,
1124                                         bool en_bc_pmc)
1125 {
1126         struct hclge_mbx_vf_to_pf_cmd *req;
1127         struct hclgevf_desc desc;
1128         int ret;
1129
1130         req = (struct hclge_mbx_vf_to_pf_cmd *)desc.data;
1131         hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_MBX_VF_TO_PF, false);
1132         req->msg[0] = HCLGE_MBX_SET_PROMISC_MODE;
1133         req->msg[1] = en_bc_pmc ? 1 : 0;
1134         req->msg[2] = en_uc_pmc ? 1 : 0;
1135         req->msg[3] = en_mc_pmc ? 1 : 0;
1136
1137         ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1138         if (ret)
1139                 dev_err(&hdev->pdev->dev,
1140                         "Set promisc mode fail, status is %d.\n", ret);
1141
1142         return ret;
1143 }
1144
1145 static int hclgevf_set_promisc_mode(struct hnae3_handle *handle, bool en_uc_pmc,
1146                                     bool en_mc_pmc)
1147 {
1148         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1149         struct pci_dev *pdev = hdev->pdev;
1150         bool en_bc_pmc;
1151
1152         en_bc_pmc = pdev->revision != 0x20;
1153
1154         return hclgevf_cmd_set_promisc_mode(hdev, en_uc_pmc, en_mc_pmc,
1155                                             en_bc_pmc);
1156 }
1157
1158 static int hclgevf_tqp_enable(struct hclgevf_dev *hdev, unsigned int tqp_id,
1159                               int stream_id, bool enable)
1160 {
1161         struct hclgevf_cfg_com_tqp_queue_cmd *req;
1162         struct hclgevf_desc desc;
1163         int status;
1164
1165         req = (struct hclgevf_cfg_com_tqp_queue_cmd *)desc.data;
1166
1167         hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_CFG_COM_TQP_QUEUE,
1168                                      false);
1169         req->tqp_id = cpu_to_le16(tqp_id & HCLGEVF_RING_ID_MASK);
1170         req->stream_id = cpu_to_le16(stream_id);
1171         if (enable)
1172                 req->enable |= 1U << HCLGEVF_TQP_ENABLE_B;
1173
1174         status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1175         if (status)
1176                 dev_err(&hdev->pdev->dev,
1177                         "TQP enable fail, status =%d.\n", status);
1178
1179         return status;
1180 }
1181
1182 static void hclgevf_reset_tqp_stats(struct hnae3_handle *handle)
1183 {
1184         struct hnae3_knic_private_info *kinfo = &handle->kinfo;
1185         struct hclgevf_tqp *tqp;
1186         int i;
1187
1188         for (i = 0; i < kinfo->num_tqps; i++) {
1189                 tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
1190                 memset(&tqp->tqp_stats, 0, sizeof(tqp->tqp_stats));
1191         }
1192 }
1193
1194 static int hclgevf_get_host_mac_addr(struct hclgevf_dev *hdev, u8 *p)
1195 {
1196         u8 host_mac[ETH_ALEN];
1197         int status;
1198
1199         status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_MAC_ADDR, 0, NULL, 0,
1200                                       true, host_mac, ETH_ALEN);
1201         if (status) {
1202                 dev_err(&hdev->pdev->dev,
1203                         "fail to get VF MAC from host %d", status);
1204                 return status;
1205         }
1206
1207         ether_addr_copy(p, host_mac);
1208
1209         return 0;
1210 }
1211
1212 static void hclgevf_get_mac_addr(struct hnae3_handle *handle, u8 *p)
1213 {
1214         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1215         u8 host_mac_addr[ETH_ALEN];
1216
1217         if (hclgevf_get_host_mac_addr(hdev, host_mac_addr))
1218                 return;
1219
1220         hdev->has_pf_mac = !is_zero_ether_addr(host_mac_addr);
1221         if (hdev->has_pf_mac)
1222                 ether_addr_copy(p, host_mac_addr);
1223         else
1224                 ether_addr_copy(p, hdev->hw.mac.mac_addr);
1225 }
1226
1227 static int hclgevf_set_mac_addr(struct hnae3_handle *handle, void *p,
1228                                 bool is_first)
1229 {
1230         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1231         u8 *old_mac_addr = (u8 *)hdev->hw.mac.mac_addr;
1232         u8 *new_mac_addr = (u8 *)p;
1233         u8 msg_data[ETH_ALEN * 2];
1234         u16 subcode;
1235         int status;
1236
1237         ether_addr_copy(msg_data, new_mac_addr);
1238         ether_addr_copy(&msg_data[ETH_ALEN], old_mac_addr);
1239
1240         subcode = is_first ? HCLGE_MBX_MAC_VLAN_UC_ADD :
1241                         HCLGE_MBX_MAC_VLAN_UC_MODIFY;
1242
1243         status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
1244                                       subcode, msg_data, sizeof(msg_data),
1245                                       true, NULL, 0);
1246         if (!status)
1247                 ether_addr_copy(hdev->hw.mac.mac_addr, new_mac_addr);
1248
1249         return status;
1250 }
1251
1252 static int hclgevf_add_uc_addr(struct hnae3_handle *handle,
1253                                const unsigned char *addr)
1254 {
1255         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1256
1257         return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
1258                                     HCLGE_MBX_MAC_VLAN_UC_ADD,
1259                                     addr, ETH_ALEN, false, NULL, 0);
1260 }
1261
1262 static int hclgevf_rm_uc_addr(struct hnae3_handle *handle,
1263                               const unsigned char *addr)
1264 {
1265         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1266
1267         return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
1268                                     HCLGE_MBX_MAC_VLAN_UC_REMOVE,
1269                                     addr, ETH_ALEN, false, NULL, 0);
1270 }
1271
1272 static int hclgevf_add_mc_addr(struct hnae3_handle *handle,
1273                                const unsigned char *addr)
1274 {
1275         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1276
1277         return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MULTICAST,
1278                                     HCLGE_MBX_MAC_VLAN_MC_ADD,
1279                                     addr, ETH_ALEN, false, NULL, 0);
1280 }
1281
1282 static int hclgevf_rm_mc_addr(struct hnae3_handle *handle,
1283                               const unsigned char *addr)
1284 {
1285         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1286
1287         return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MULTICAST,
1288                                     HCLGE_MBX_MAC_VLAN_MC_REMOVE,
1289                                     addr, ETH_ALEN, false, NULL, 0);
1290 }
1291
1292 static int hclgevf_set_vlan_filter(struct hnae3_handle *handle,
1293                                    __be16 proto, u16 vlan_id,
1294                                    bool is_kill)
1295 {
1296 #define HCLGEVF_VLAN_MBX_MSG_LEN 5
1297         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1298         u8 msg_data[HCLGEVF_VLAN_MBX_MSG_LEN];
1299         int ret;
1300
1301         if (vlan_id > HCLGEVF_MAX_VLAN_ID)
1302                 return -EINVAL;
1303
1304         if (proto != htons(ETH_P_8021Q))
1305                 return -EPROTONOSUPPORT;
1306
1307         /* When device is resetting, firmware is unable to handle
1308          * mailbox. Just record the vlan id, and remove it after
1309          * reset finished.
1310          */
1311         if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) && is_kill) {
1312                 set_bit(vlan_id, hdev->vlan_del_fail_bmap);
1313                 return -EBUSY;
1314         }
1315
1316         msg_data[0] = is_kill;
1317         memcpy(&msg_data[1], &vlan_id, sizeof(vlan_id));
1318         memcpy(&msg_data[3], &proto, sizeof(proto));
1319         /* when remove hw vlan filter failed, record the vlan id,
1320          * and try to remove it from hw later, to be consistence
1321          * with stack.
1322          */
1323         ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
1324                                    HCLGE_MBX_VLAN_FILTER, msg_data,
1325                                    HCLGEVF_VLAN_MBX_MSG_LEN, true, NULL, 0);
1326         if (is_kill && ret)
1327                 set_bit(vlan_id, hdev->vlan_del_fail_bmap);
1328
1329         return ret;
1330 }
1331
1332 static void hclgevf_sync_vlan_filter(struct hclgevf_dev *hdev)
1333 {
1334 #define HCLGEVF_MAX_SYNC_COUNT  60
1335         struct hnae3_handle *handle = &hdev->nic;
1336         int ret, sync_cnt = 0;
1337         u16 vlan_id;
1338
1339         vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
1340         while (vlan_id != VLAN_N_VID) {
1341                 ret = hclgevf_set_vlan_filter(handle, htons(ETH_P_8021Q),
1342                                               vlan_id, true);
1343                 if (ret)
1344                         return;
1345
1346                 clear_bit(vlan_id, hdev->vlan_del_fail_bmap);
1347                 sync_cnt++;
1348                 if (sync_cnt >= HCLGEVF_MAX_SYNC_COUNT)
1349                         return;
1350
1351                 vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
1352         }
1353 }
1354
1355 static int hclgevf_en_hw_strip_rxvtag(struct hnae3_handle *handle, bool enable)
1356 {
1357         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1358         u8 msg_data;
1359
1360         msg_data = enable ? 1 : 0;
1361         return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
1362                                     HCLGE_MBX_VLAN_RX_OFF_CFG, &msg_data,
1363                                     1, false, NULL, 0);
1364 }
1365
1366 static int hclgevf_reset_tqp(struct hnae3_handle *handle, u16 queue_id)
1367 {
1368         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1369         u8 msg_data[2];
1370         int ret;
1371
1372         memcpy(msg_data, &queue_id, sizeof(queue_id));
1373
1374         /* disable vf queue before send queue reset msg to PF */
1375         ret = hclgevf_tqp_enable(hdev, queue_id, 0, false);
1376         if (ret)
1377                 return ret;
1378
1379         return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_QUEUE_RESET, 0, msg_data,
1380                                     sizeof(msg_data), true, NULL, 0);
1381 }
1382
1383 static int hclgevf_set_mtu(struct hnae3_handle *handle, int new_mtu)
1384 {
1385         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1386
1387         return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MTU, 0, (u8 *)&new_mtu,
1388                                     sizeof(new_mtu), true, NULL, 0);
1389 }
1390
1391 static int hclgevf_notify_client(struct hclgevf_dev *hdev,
1392                                  enum hnae3_reset_notify_type type)
1393 {
1394         struct hnae3_client *client = hdev->nic_client;
1395         struct hnae3_handle *handle = &hdev->nic;
1396         int ret;
1397
1398         if (!test_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state) ||
1399             !client)
1400                 return 0;
1401
1402         if (!client->ops->reset_notify)
1403                 return -EOPNOTSUPP;
1404
1405         ret = client->ops->reset_notify(handle, type);
1406         if (ret)
1407                 dev_err(&hdev->pdev->dev, "notify nic client failed %d(%d)\n",
1408                         type, ret);
1409
1410         return ret;
1411 }
1412
1413 static int hclgevf_reset_wait(struct hclgevf_dev *hdev)
1414 {
1415 #define HCLGEVF_RESET_WAIT_US   20000
1416 #define HCLGEVF_RESET_WAIT_CNT  2000
1417 #define HCLGEVF_RESET_WAIT_TIMEOUT_US   \
1418         (HCLGEVF_RESET_WAIT_US * HCLGEVF_RESET_WAIT_CNT)
1419
1420         u32 val;
1421         int ret;
1422
1423         if (hdev->reset_type == HNAE3_VF_RESET)
1424                 ret = readl_poll_timeout(hdev->hw.io_base +
1425                                          HCLGEVF_VF_RST_ING, val,
1426                                          !(val & HCLGEVF_VF_RST_ING_BIT),
1427                                          HCLGEVF_RESET_WAIT_US,
1428                                          HCLGEVF_RESET_WAIT_TIMEOUT_US);
1429         else
1430                 ret = readl_poll_timeout(hdev->hw.io_base +
1431                                          HCLGEVF_RST_ING, val,
1432                                          !(val & HCLGEVF_RST_ING_BITS),
1433                                          HCLGEVF_RESET_WAIT_US,
1434                                          HCLGEVF_RESET_WAIT_TIMEOUT_US);
1435
1436         /* hardware completion status should be available by this time */
1437         if (ret) {
1438                 dev_err(&hdev->pdev->dev,
1439                         "could'nt get reset done status from h/w, timeout!\n");
1440                 return ret;
1441         }
1442
1443         /* we will wait a bit more to let reset of the stack to complete. This
1444          * might happen in case reset assertion was made by PF. Yes, this also
1445          * means we might end up waiting bit more even for VF reset.
1446          */
1447         msleep(5000);
1448
1449         return 0;
1450 }
1451
1452 static void hclgevf_reset_handshake(struct hclgevf_dev *hdev, bool enable)
1453 {
1454         u32 reg_val;
1455
1456         reg_val = hclgevf_read_dev(&hdev->hw, HCLGEVF_NIC_CSQ_DEPTH_REG);
1457         if (enable)
1458                 reg_val |= HCLGEVF_NIC_SW_RST_RDY;
1459         else
1460                 reg_val &= ~HCLGEVF_NIC_SW_RST_RDY;
1461
1462         hclgevf_write_dev(&hdev->hw, HCLGEVF_NIC_CSQ_DEPTH_REG,
1463                           reg_val);
1464 }
1465
1466 static int hclgevf_reset_stack(struct hclgevf_dev *hdev)
1467 {
1468         int ret;
1469
1470         /* uninitialize the nic client */
1471         ret = hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT);
1472         if (ret)
1473                 return ret;
1474
1475         /* re-initialize the hclge device */
1476         ret = hclgevf_reset_hdev(hdev);
1477         if (ret) {
1478                 dev_err(&hdev->pdev->dev,
1479                         "hclge device re-init failed, VF is disabled!\n");
1480                 return ret;
1481         }
1482
1483         /* bring up the nic client again */
1484         ret = hclgevf_notify_client(hdev, HNAE3_INIT_CLIENT);
1485         if (ret)
1486                 return ret;
1487
1488         ret = hclgevf_notify_client(hdev, HNAE3_RESTORE_CLIENT);
1489         if (ret)
1490                 return ret;
1491
1492         /* clear handshake status with IMP */
1493         hclgevf_reset_handshake(hdev, false);
1494
1495         /* bring up the nic to enable TX/RX again */
1496         return hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
1497 }
1498
1499 static int hclgevf_reset_prepare_wait(struct hclgevf_dev *hdev)
1500 {
1501 #define HCLGEVF_RESET_SYNC_TIME 100
1502
1503         int ret = 0;
1504
1505         if (hdev->reset_type == HNAE3_VF_FUNC_RESET) {
1506                 ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_RESET, 0, NULL,
1507                                            0, true, NULL, sizeof(u8));
1508                 hdev->rst_stats.vf_func_rst_cnt++;
1509         }
1510
1511         set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
1512         /* inform hardware that preparatory work is done */
1513         msleep(HCLGEVF_RESET_SYNC_TIME);
1514         hclgevf_reset_handshake(hdev, true);
1515         dev_info(&hdev->pdev->dev, "prepare reset(%d) wait done, ret:%d\n",
1516                  hdev->reset_type, ret);
1517
1518         return ret;
1519 }
1520
1521 static void hclgevf_dump_rst_info(struct hclgevf_dev *hdev)
1522 {
1523         dev_info(&hdev->pdev->dev, "VF function reset count: %u\n",
1524                  hdev->rst_stats.vf_func_rst_cnt);
1525         dev_info(&hdev->pdev->dev, "FLR reset count: %u\n",
1526                  hdev->rst_stats.flr_rst_cnt);
1527         dev_info(&hdev->pdev->dev, "VF reset count: %u\n",
1528                  hdev->rst_stats.vf_rst_cnt);
1529         dev_info(&hdev->pdev->dev, "reset done count: %u\n",
1530                  hdev->rst_stats.rst_done_cnt);
1531         dev_info(&hdev->pdev->dev, "HW reset done count: %u\n",
1532                  hdev->rst_stats.hw_rst_done_cnt);
1533         dev_info(&hdev->pdev->dev, "reset count: %u\n",
1534                  hdev->rst_stats.rst_cnt);
1535         dev_info(&hdev->pdev->dev, "reset fail count: %u\n",
1536                  hdev->rst_stats.rst_fail_cnt);
1537         dev_info(&hdev->pdev->dev, "vector0 interrupt enable status: 0x%x\n",
1538                  hclgevf_read_dev(&hdev->hw, HCLGEVF_MISC_VECTOR_REG_BASE));
1539         dev_info(&hdev->pdev->dev, "vector0 interrupt status: 0x%x\n",
1540                  hclgevf_read_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_STAT_REG));
1541         dev_info(&hdev->pdev->dev, "handshake status: 0x%x\n",
1542                  hclgevf_read_dev(&hdev->hw, HCLGEVF_CMDQ_TX_DEPTH_REG));
1543         dev_info(&hdev->pdev->dev, "function reset status: 0x%x\n",
1544                  hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING));
1545         dev_info(&hdev->pdev->dev, "hdev state: 0x%lx\n", hdev->state);
1546 }
1547
1548 static void hclgevf_reset_err_handle(struct hclgevf_dev *hdev)
1549 {
1550         /* recover handshake status with IMP when reset fail */
1551         hclgevf_reset_handshake(hdev, true);
1552         hdev->rst_stats.rst_fail_cnt++;
1553         dev_err(&hdev->pdev->dev, "failed to reset VF(%u)\n",
1554                 hdev->rst_stats.rst_fail_cnt);
1555
1556         if (hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT)
1557                 set_bit(hdev->reset_type, &hdev->reset_pending);
1558
1559         if (hclgevf_is_reset_pending(hdev)) {
1560                 set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1561                 hclgevf_reset_task_schedule(hdev);
1562         } else {
1563                 set_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
1564                 hclgevf_dump_rst_info(hdev);
1565         }
1566 }
1567
1568 static int hclgevf_reset_prepare(struct hclgevf_dev *hdev)
1569 {
1570         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
1571         int ret;
1572
1573         /* Initialize ae_dev reset status as well, in case enet layer wants to
1574          * know if device is undergoing reset
1575          */
1576         ae_dev->reset_type = hdev->reset_type;
1577         hdev->rst_stats.rst_cnt++;
1578
1579         rtnl_lock();
1580         /* bring down the nic to stop any ongoing TX/RX */
1581         ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
1582         rtnl_unlock();
1583         if (ret)
1584                 return ret;
1585
1586         return hclgevf_reset_prepare_wait(hdev);
1587 }
1588
1589 static int hclgevf_reset_rebuild(struct hclgevf_dev *hdev)
1590 {
1591         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
1592         int ret;
1593
1594         hdev->rst_stats.hw_rst_done_cnt++;
1595
1596         rtnl_lock();
1597         /* now, re-initialize the nic client and ae device */
1598         ret = hclgevf_reset_stack(hdev);
1599         rtnl_unlock();
1600         if (ret) {
1601                 dev_err(&hdev->pdev->dev, "failed to reset VF stack\n");
1602                 return ret;
1603         }
1604
1605         hdev->last_reset_time = jiffies;
1606         ae_dev->reset_type = HNAE3_NONE_RESET;
1607         hdev->rst_stats.rst_done_cnt++;
1608         hdev->rst_stats.rst_fail_cnt = 0;
1609         clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
1610
1611         return 0;
1612 }
1613
1614 static void hclgevf_reset(struct hclgevf_dev *hdev)
1615 {
1616         if (hclgevf_reset_prepare(hdev))
1617                 goto err_reset;
1618
1619         /* check if VF could successfully fetch the hardware reset completion
1620          * status from the hardware
1621          */
1622         if (hclgevf_reset_wait(hdev)) {
1623                 /* can't do much in this situation, will disable VF */
1624                 dev_err(&hdev->pdev->dev,
1625                         "failed to fetch H/W reset completion status\n");
1626                 goto err_reset;
1627         }
1628
1629         if (hclgevf_reset_rebuild(hdev))
1630                 goto err_reset;
1631
1632         return;
1633
1634 err_reset:
1635         hclgevf_reset_err_handle(hdev);
1636 }
1637
1638 static enum hnae3_reset_type hclgevf_get_reset_level(struct hclgevf_dev *hdev,
1639                                                      unsigned long *addr)
1640 {
1641         enum hnae3_reset_type rst_level = HNAE3_NONE_RESET;
1642
1643         /* return the highest priority reset level amongst all */
1644         if (test_bit(HNAE3_VF_RESET, addr)) {
1645                 rst_level = HNAE3_VF_RESET;
1646                 clear_bit(HNAE3_VF_RESET, addr);
1647                 clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
1648                 clear_bit(HNAE3_VF_FUNC_RESET, addr);
1649         } else if (test_bit(HNAE3_VF_FULL_RESET, addr)) {
1650                 rst_level = HNAE3_VF_FULL_RESET;
1651                 clear_bit(HNAE3_VF_FULL_RESET, addr);
1652                 clear_bit(HNAE3_VF_FUNC_RESET, addr);
1653         } else if (test_bit(HNAE3_VF_PF_FUNC_RESET, addr)) {
1654                 rst_level = HNAE3_VF_PF_FUNC_RESET;
1655                 clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
1656                 clear_bit(HNAE3_VF_FUNC_RESET, addr);
1657         } else if (test_bit(HNAE3_VF_FUNC_RESET, addr)) {
1658                 rst_level = HNAE3_VF_FUNC_RESET;
1659                 clear_bit(HNAE3_VF_FUNC_RESET, addr);
1660         } else if (test_bit(HNAE3_FLR_RESET, addr)) {
1661                 rst_level = HNAE3_FLR_RESET;
1662                 clear_bit(HNAE3_FLR_RESET, addr);
1663         }
1664
1665         return rst_level;
1666 }
1667
1668 static void hclgevf_reset_event(struct pci_dev *pdev,
1669                                 struct hnae3_handle *handle)
1670 {
1671         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1672         struct hclgevf_dev *hdev = ae_dev->priv;
1673
1674         dev_info(&hdev->pdev->dev, "received reset request from VF enet\n");
1675
1676         if (hdev->default_reset_request)
1677                 hdev->reset_level =
1678                         hclgevf_get_reset_level(hdev,
1679                                                 &hdev->default_reset_request);
1680         else
1681                 hdev->reset_level = HNAE3_VF_FUNC_RESET;
1682
1683         /* reset of this VF requested */
1684         set_bit(HCLGEVF_RESET_REQUESTED, &hdev->reset_state);
1685         hclgevf_reset_task_schedule(hdev);
1686
1687         hdev->last_reset_time = jiffies;
1688 }
1689
1690 static void hclgevf_set_def_reset_request(struct hnae3_ae_dev *ae_dev,
1691                                           enum hnae3_reset_type rst_type)
1692 {
1693         struct hclgevf_dev *hdev = ae_dev->priv;
1694
1695         set_bit(rst_type, &hdev->default_reset_request);
1696 }
1697
1698 static void hclgevf_enable_vector(struct hclgevf_misc_vector *vector, bool en)
1699 {
1700         writel(en ? 1 : 0, vector->addr);
1701 }
1702
1703 static void hclgevf_flr_prepare(struct hnae3_ae_dev *ae_dev)
1704 {
1705 #define HCLGEVF_FLR_RETRY_WAIT_MS       500
1706 #define HCLGEVF_FLR_RETRY_CNT           5
1707
1708         struct hclgevf_dev *hdev = ae_dev->priv;
1709         int retry_cnt = 0;
1710         int ret;
1711
1712 retry:
1713         down(&hdev->reset_sem);
1714         set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1715         hdev->reset_type = HNAE3_FLR_RESET;
1716         ret = hclgevf_reset_prepare(hdev);
1717         if (ret) {
1718                 dev_err(&hdev->pdev->dev, "fail to prepare FLR, ret=%d\n",
1719                         ret);
1720                 if (hdev->reset_pending ||
1721                     retry_cnt++ < HCLGEVF_FLR_RETRY_CNT) {
1722                         dev_err(&hdev->pdev->dev,
1723                                 "reset_pending:0x%lx, retry_cnt:%d\n",
1724                                 hdev->reset_pending, retry_cnt);
1725                         clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1726                         up(&hdev->reset_sem);
1727                         msleep(HCLGEVF_FLR_RETRY_WAIT_MS);
1728                         goto retry;
1729                 }
1730         }
1731
1732         /* disable misc vector before FLR done */
1733         hclgevf_enable_vector(&hdev->misc_vector, false);
1734         hdev->rst_stats.flr_rst_cnt++;
1735 }
1736
1737 static void hclgevf_flr_done(struct hnae3_ae_dev *ae_dev)
1738 {
1739         struct hclgevf_dev *hdev = ae_dev->priv;
1740         int ret;
1741
1742         hclgevf_enable_vector(&hdev->misc_vector, true);
1743
1744         ret = hclgevf_reset_rebuild(hdev);
1745         if (ret)
1746                 dev_warn(&hdev->pdev->dev, "fail to rebuild, ret=%d\n",
1747                          ret);
1748
1749         hdev->reset_type = HNAE3_NONE_RESET;
1750         clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1751         up(&hdev->reset_sem);
1752 }
1753
1754 static u32 hclgevf_get_fw_version(struct hnae3_handle *handle)
1755 {
1756         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1757
1758         return hdev->fw_version;
1759 }
1760
1761 static void hclgevf_get_misc_vector(struct hclgevf_dev *hdev)
1762 {
1763         struct hclgevf_misc_vector *vector = &hdev->misc_vector;
1764
1765         vector->vector_irq = pci_irq_vector(hdev->pdev,
1766                                             HCLGEVF_MISC_VECTOR_NUM);
1767         vector->addr = hdev->hw.io_base + HCLGEVF_MISC_VECTOR_REG_BASE;
1768         /* vector status always valid for Vector 0 */
1769         hdev->vector_status[HCLGEVF_MISC_VECTOR_NUM] = 0;
1770         hdev->vector_irq[HCLGEVF_MISC_VECTOR_NUM] = vector->vector_irq;
1771
1772         hdev->num_msi_left -= 1;
1773         hdev->num_msi_used += 1;
1774 }
1775
1776 void hclgevf_reset_task_schedule(struct hclgevf_dev *hdev)
1777 {
1778         if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
1779             !test_and_set_bit(HCLGEVF_STATE_RST_SERVICE_SCHED,
1780                               &hdev->state))
1781                 mod_delayed_work(hclgevf_wq, &hdev->service_task, 0);
1782 }
1783
1784 void hclgevf_mbx_task_schedule(struct hclgevf_dev *hdev)
1785 {
1786         if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
1787             !test_and_set_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED,
1788                               &hdev->state))
1789                 mod_delayed_work(hclgevf_wq, &hdev->service_task, 0);
1790 }
1791
1792 static void hclgevf_task_schedule(struct hclgevf_dev *hdev,
1793                                   unsigned long delay)
1794 {
1795         if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
1796             !test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state))
1797                 mod_delayed_work(hclgevf_wq, &hdev->service_task, delay);
1798 }
1799
1800 static void hclgevf_reset_service_task(struct hclgevf_dev *hdev)
1801 {
1802 #define HCLGEVF_MAX_RESET_ATTEMPTS_CNT  3
1803
1804         if (!test_and_clear_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state))
1805                 return;
1806
1807         down(&hdev->reset_sem);
1808         set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1809
1810         if (test_and_clear_bit(HCLGEVF_RESET_PENDING,
1811                                &hdev->reset_state)) {
1812                 /* PF has initmated that it is about to reset the hardware.
1813                  * We now have to poll & check if hardware has actually
1814                  * completed the reset sequence. On hardware reset completion,
1815                  * VF needs to reset the client and ae device.
1816                  */
1817                 hdev->reset_attempts = 0;
1818
1819                 hdev->last_reset_time = jiffies;
1820                 while ((hdev->reset_type =
1821                         hclgevf_get_reset_level(hdev, &hdev->reset_pending))
1822                        != HNAE3_NONE_RESET)
1823                         hclgevf_reset(hdev);
1824         } else if (test_and_clear_bit(HCLGEVF_RESET_REQUESTED,
1825                                       &hdev->reset_state)) {
1826                 /* we could be here when either of below happens:
1827                  * 1. reset was initiated due to watchdog timeout caused by
1828                  *    a. IMP was earlier reset and our TX got choked down and
1829                  *       which resulted in watchdog reacting and inducing VF
1830                  *       reset. This also means our cmdq would be unreliable.
1831                  *    b. problem in TX due to other lower layer(example link
1832                  *       layer not functioning properly etc.)
1833                  * 2. VF reset might have been initiated due to some config
1834                  *    change.
1835                  *
1836                  * NOTE: Theres no clear way to detect above cases than to react
1837                  * to the response of PF for this reset request. PF will ack the
1838                  * 1b and 2. cases but we will not get any intimation about 1a
1839                  * from PF as cmdq would be in unreliable state i.e. mailbox
1840                  * communication between PF and VF would be broken.
1841                  *
1842                  * if we are never geting into pending state it means either:
1843                  * 1. PF is not receiving our request which could be due to IMP
1844                  *    reset
1845                  * 2. PF is screwed
1846                  * We cannot do much for 2. but to check first we can try reset
1847                  * our PCIe + stack and see if it alleviates the problem.
1848                  */
1849                 if (hdev->reset_attempts > HCLGEVF_MAX_RESET_ATTEMPTS_CNT) {
1850                         /* prepare for full reset of stack + pcie interface */
1851                         set_bit(HNAE3_VF_FULL_RESET, &hdev->reset_pending);
1852
1853                         /* "defer" schedule the reset task again */
1854                         set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1855                 } else {
1856                         hdev->reset_attempts++;
1857
1858                         set_bit(hdev->reset_level, &hdev->reset_pending);
1859                         set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1860                 }
1861                 hclgevf_reset_task_schedule(hdev);
1862         }
1863
1864         hdev->reset_type = HNAE3_NONE_RESET;
1865         clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1866         up(&hdev->reset_sem);
1867 }
1868
1869 static void hclgevf_mailbox_service_task(struct hclgevf_dev *hdev)
1870 {
1871         if (!test_and_clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state))
1872                 return;
1873
1874         if (test_and_set_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state))
1875                 return;
1876
1877         hclgevf_mbx_async_handler(hdev);
1878
1879         clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
1880 }
1881
1882 static void hclgevf_keep_alive(struct hclgevf_dev *hdev)
1883 {
1884         u8 respmsg;
1885         int ret;
1886
1887         if (test_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state))
1888                 return;
1889
1890         ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_KEEP_ALIVE, 0, NULL,
1891                                    0, false, &respmsg, sizeof(respmsg));
1892         if (ret)
1893                 dev_err(&hdev->pdev->dev,
1894                         "VF sends keep alive cmd failed(=%d)\n", ret);
1895 }
1896
1897 static void hclgevf_periodic_service_task(struct hclgevf_dev *hdev)
1898 {
1899         unsigned long delta = round_jiffies_relative(HZ);
1900         struct hnae3_handle *handle = &hdev->nic;
1901
1902         if (time_is_after_jiffies(hdev->last_serv_processed + HZ)) {
1903                 delta = jiffies - hdev->last_serv_processed;
1904
1905                 if (delta < round_jiffies_relative(HZ)) {
1906                         delta = round_jiffies_relative(HZ) - delta;
1907                         goto out;
1908                 }
1909         }
1910
1911         hdev->serv_processed_cnt++;
1912         if (!(hdev->serv_processed_cnt % HCLGEVF_KEEP_ALIVE_TASK_INTERVAL))
1913                 hclgevf_keep_alive(hdev);
1914
1915         if (test_bit(HCLGEVF_STATE_DOWN, &hdev->state)) {
1916                 hdev->last_serv_processed = jiffies;
1917                 goto out;
1918         }
1919
1920         if (!(hdev->serv_processed_cnt % HCLGEVF_STATS_TIMER_INTERVAL))
1921                 hclgevf_tqps_update_stats(handle);
1922
1923         /* request the link status from the PF. PF would be able to tell VF
1924          * about such updates in future so we might remove this later
1925          */
1926         hclgevf_request_link_info(hdev);
1927
1928         hclgevf_update_link_mode(hdev);
1929
1930         hclgevf_sync_vlan_filter(hdev);
1931
1932         hdev->last_serv_processed = jiffies;
1933
1934 out:
1935         hclgevf_task_schedule(hdev, delta);
1936 }
1937
1938 static void hclgevf_service_task(struct work_struct *work)
1939 {
1940         struct hclgevf_dev *hdev = container_of(work, struct hclgevf_dev,
1941                                                 service_task.work);
1942
1943         hclgevf_reset_service_task(hdev);
1944         hclgevf_mailbox_service_task(hdev);
1945         hclgevf_periodic_service_task(hdev);
1946
1947         /* Handle reset and mbx again in case periodical task delays the
1948          * handling by calling hclgevf_task_schedule() in
1949          * hclgevf_periodic_service_task()
1950          */
1951         hclgevf_reset_service_task(hdev);
1952         hclgevf_mailbox_service_task(hdev);
1953 }
1954
1955 static void hclgevf_clear_event_cause(struct hclgevf_dev *hdev, u32 regclr)
1956 {
1957         hclgevf_write_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_SRC_REG, regclr);
1958 }
1959
1960 static enum hclgevf_evt_cause hclgevf_check_evt_cause(struct hclgevf_dev *hdev,
1961                                                       u32 *clearval)
1962 {
1963         u32 val, cmdq_stat_reg, rst_ing_reg;
1964
1965         /* fetch the events from their corresponding regs */
1966         cmdq_stat_reg = hclgevf_read_dev(&hdev->hw,
1967                                          HCLGEVF_VECTOR0_CMDQ_STAT_REG);
1968
1969         if (BIT(HCLGEVF_VECTOR0_RST_INT_B) & cmdq_stat_reg) {
1970                 rst_ing_reg = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
1971                 dev_info(&hdev->pdev->dev,
1972                          "receive reset interrupt 0x%x!\n", rst_ing_reg);
1973                 set_bit(HNAE3_VF_RESET, &hdev->reset_pending);
1974                 set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1975                 set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
1976                 *clearval = ~(1U << HCLGEVF_VECTOR0_RST_INT_B);
1977                 hdev->rst_stats.vf_rst_cnt++;
1978                 /* set up VF hardware reset status, its PF will clear
1979                  * this status when PF has initialized done.
1980                  */
1981                 val = hclgevf_read_dev(&hdev->hw, HCLGEVF_VF_RST_ING);
1982                 hclgevf_write_dev(&hdev->hw, HCLGEVF_VF_RST_ING,
1983                                   val | HCLGEVF_VF_RST_ING_BIT);
1984                 return HCLGEVF_VECTOR0_EVENT_RST;
1985         }
1986
1987         /* check for vector0 mailbox(=CMDQ RX) event source */
1988         if (BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B) & cmdq_stat_reg) {
1989                 /* for revision 0x21, clearing interrupt is writing bit 0
1990                  * to the clear register, writing bit 1 means to keep the
1991                  * old value.
1992                  * for revision 0x20, the clear register is a read & write
1993                  * register, so we should just write 0 to the bit we are
1994                  * handling, and keep other bits as cmdq_stat_reg.
1995                  */
1996                 if (hdev->pdev->revision >= 0x21)
1997                         *clearval = ~(1U << HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
1998                 else
1999                         *clearval = cmdq_stat_reg &
2000                                     ~BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
2001
2002                 return HCLGEVF_VECTOR0_EVENT_MBX;
2003         }
2004
2005         dev_dbg(&hdev->pdev->dev, "vector 0 interrupt from unknown source\n");
2006
2007         return HCLGEVF_VECTOR0_EVENT_OTHER;
2008 }
2009
2010 static irqreturn_t hclgevf_misc_irq_handle(int irq, void *data)
2011 {
2012         enum hclgevf_evt_cause event_cause;
2013         struct hclgevf_dev *hdev = data;
2014         u32 clearval;
2015
2016         hclgevf_enable_vector(&hdev->misc_vector, false);
2017         event_cause = hclgevf_check_evt_cause(hdev, &clearval);
2018
2019         switch (event_cause) {
2020         case HCLGEVF_VECTOR0_EVENT_RST:
2021                 hclgevf_reset_task_schedule(hdev);
2022                 break;
2023         case HCLGEVF_VECTOR0_EVENT_MBX:
2024                 hclgevf_mbx_handler(hdev);
2025                 break;
2026         default:
2027                 break;
2028         }
2029
2030         if (event_cause != HCLGEVF_VECTOR0_EVENT_OTHER) {
2031                 hclgevf_clear_event_cause(hdev, clearval);
2032                 hclgevf_enable_vector(&hdev->misc_vector, true);
2033         }
2034
2035         return IRQ_HANDLED;
2036 }
2037
2038 static int hclgevf_configure(struct hclgevf_dev *hdev)
2039 {
2040         int ret;
2041
2042         /* get current port based vlan state from PF */
2043         ret = hclgevf_get_port_base_vlan_filter_state(hdev);
2044         if (ret)
2045                 return ret;
2046
2047         /* get queue configuration from PF */
2048         ret = hclgevf_get_queue_info(hdev);
2049         if (ret)
2050                 return ret;
2051
2052         /* get queue depth info from PF */
2053         ret = hclgevf_get_queue_depth(hdev);
2054         if (ret)
2055                 return ret;
2056
2057         ret = hclgevf_get_pf_media_type(hdev);
2058         if (ret)
2059                 return ret;
2060
2061         /* get tc configuration from PF */
2062         return hclgevf_get_tc_info(hdev);
2063 }
2064
2065 static int hclgevf_alloc_hdev(struct hnae3_ae_dev *ae_dev)
2066 {
2067         struct pci_dev *pdev = ae_dev->pdev;
2068         struct hclgevf_dev *hdev;
2069
2070         hdev = devm_kzalloc(&pdev->dev, sizeof(*hdev), GFP_KERNEL);
2071         if (!hdev)
2072                 return -ENOMEM;
2073
2074         hdev->pdev = pdev;
2075         hdev->ae_dev = ae_dev;
2076         ae_dev->priv = hdev;
2077
2078         return 0;
2079 }
2080
2081 static int hclgevf_init_roce_base_info(struct hclgevf_dev *hdev)
2082 {
2083         struct hnae3_handle *roce = &hdev->roce;
2084         struct hnae3_handle *nic = &hdev->nic;
2085
2086         roce->rinfo.num_vectors = hdev->num_roce_msix;
2087
2088         if (hdev->num_msi_left < roce->rinfo.num_vectors ||
2089             hdev->num_msi_left == 0)
2090                 return -EINVAL;
2091
2092         roce->rinfo.base_vector = hdev->roce_base_vector;
2093
2094         roce->rinfo.netdev = nic->kinfo.netdev;
2095         roce->rinfo.roce_io_base = hdev->hw.io_base;
2096
2097         roce->pdev = nic->pdev;
2098         roce->ae_algo = nic->ae_algo;
2099         roce->numa_node_mask = nic->numa_node_mask;
2100
2101         return 0;
2102 }
2103
2104 static int hclgevf_config_gro(struct hclgevf_dev *hdev, bool en)
2105 {
2106         struct hclgevf_cfg_gro_status_cmd *req;
2107         struct hclgevf_desc desc;
2108         int ret;
2109
2110         if (!hnae3_dev_gro_supported(hdev))
2111                 return 0;
2112
2113         hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_GRO_GENERIC_CONFIG,
2114                                      false);
2115         req = (struct hclgevf_cfg_gro_status_cmd *)desc.data;
2116
2117         req->gro_en = cpu_to_le16(en ? 1 : 0);
2118
2119         ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
2120         if (ret)
2121                 dev_err(&hdev->pdev->dev,
2122                         "VF GRO hardware config cmd failed, ret = %d.\n", ret);
2123
2124         return ret;
2125 }
2126
2127 static int hclgevf_rss_init_hw(struct hclgevf_dev *hdev)
2128 {
2129         struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
2130         int ret;
2131         u32 i;
2132
2133         rss_cfg->rss_size = hdev->nic.kinfo.rss_size;
2134
2135         if (hdev->pdev->revision >= 0x21) {
2136                 rss_cfg->hash_algo = HCLGEVF_RSS_HASH_ALGO_SIMPLE;
2137                 memcpy(rss_cfg->rss_hash_key, hclgevf_hash_key,
2138                        HCLGEVF_RSS_KEY_SIZE);
2139
2140                 ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
2141                                                rss_cfg->rss_hash_key);
2142                 if (ret)
2143                         return ret;
2144
2145                 rss_cfg->rss_tuple_sets.ipv4_tcp_en =
2146                                         HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2147                 rss_cfg->rss_tuple_sets.ipv4_udp_en =
2148                                         HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2149                 rss_cfg->rss_tuple_sets.ipv4_sctp_en =
2150                                         HCLGEVF_RSS_INPUT_TUPLE_SCTP;
2151                 rss_cfg->rss_tuple_sets.ipv4_fragment_en =
2152                                         HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2153                 rss_cfg->rss_tuple_sets.ipv6_tcp_en =
2154                                         HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2155                 rss_cfg->rss_tuple_sets.ipv6_udp_en =
2156                                         HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2157                 rss_cfg->rss_tuple_sets.ipv6_sctp_en =
2158                                         HCLGEVF_RSS_INPUT_TUPLE_SCTP;
2159                 rss_cfg->rss_tuple_sets.ipv6_fragment_en =
2160                                         HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2161
2162                 ret = hclgevf_set_rss_input_tuple(hdev, rss_cfg);
2163                 if (ret)
2164                         return ret;
2165         }
2166
2167         /* Initialize RSS indirect table */
2168         for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
2169                 rss_cfg->rss_indirection_tbl[i] = i % rss_cfg->rss_size;
2170
2171         ret = hclgevf_set_rss_indir_table(hdev);
2172         if (ret)
2173                 return ret;
2174
2175         return hclgevf_set_rss_tc_mode(hdev, rss_cfg->rss_size);
2176 }
2177
2178 static int hclgevf_init_vlan_config(struct hclgevf_dev *hdev)
2179 {
2180         return hclgevf_set_vlan_filter(&hdev->nic, htons(ETH_P_8021Q), 0,
2181                                        false);
2182 }
2183
2184 static void hclgevf_flush_link_update(struct hclgevf_dev *hdev)
2185 {
2186 #define HCLGEVF_FLUSH_LINK_TIMEOUT      100000
2187
2188         unsigned long last = hdev->serv_processed_cnt;
2189         int i = 0;
2190
2191         while (test_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state) &&
2192                i++ < HCLGEVF_FLUSH_LINK_TIMEOUT &&
2193                last == hdev->serv_processed_cnt)
2194                 usleep_range(1, 1);
2195 }
2196
2197 static void hclgevf_set_timer_task(struct hnae3_handle *handle, bool enable)
2198 {
2199         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2200
2201         if (enable) {
2202                 hclgevf_task_schedule(hdev, 0);
2203         } else {
2204                 set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2205
2206                 /* flush memory to make sure DOWN is seen by service task */
2207                 smp_mb__before_atomic();
2208                 hclgevf_flush_link_update(hdev);
2209         }
2210 }
2211
2212 static int hclgevf_ae_start(struct hnae3_handle *handle)
2213 {
2214         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2215
2216         hclgevf_reset_tqp_stats(handle);
2217
2218         hclgevf_request_link_info(hdev);
2219
2220         hclgevf_update_link_mode(hdev);
2221
2222         clear_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2223
2224         return 0;
2225 }
2226
2227 static void hclgevf_ae_stop(struct hnae3_handle *handle)
2228 {
2229         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2230         int i;
2231
2232         set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2233
2234         if (hdev->reset_type != HNAE3_VF_RESET)
2235                 for (i = 0; i < handle->kinfo.num_tqps; i++)
2236                         if (hclgevf_reset_tqp(handle, i))
2237                                 break;
2238
2239         hclgevf_reset_tqp_stats(handle);
2240         hclgevf_update_link_status(hdev, 0);
2241 }
2242
2243 static int hclgevf_set_alive(struct hnae3_handle *handle, bool alive)
2244 {
2245         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2246         u8 msg_data;
2247
2248         msg_data = alive ? 1 : 0;
2249         return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_ALIVE,
2250                                     0, &msg_data, 1, false, NULL, 0);
2251 }
2252
2253 static int hclgevf_client_start(struct hnae3_handle *handle)
2254 {
2255         int ret;
2256
2257         ret = hclgevf_set_alive(handle, true);
2258         if (ret)
2259                 return ret;
2260
2261         return 0;
2262 }
2263
2264 static void hclgevf_client_stop(struct hnae3_handle *handle)
2265 {
2266         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2267         int ret;
2268
2269         ret = hclgevf_set_alive(handle, false);
2270         if (ret)
2271                 dev_warn(&hdev->pdev->dev,
2272                          "%s failed %d\n", __func__, ret);
2273 }
2274
2275 static void hclgevf_state_init(struct hclgevf_dev *hdev)
2276 {
2277         clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
2278         clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
2279         clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
2280
2281         INIT_DELAYED_WORK(&hdev->service_task, hclgevf_service_task);
2282
2283         mutex_init(&hdev->mbx_resp.mbx_mutex);
2284         sema_init(&hdev->reset_sem, 1);
2285
2286         /* bring the device down */
2287         set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2288 }
2289
2290 static void hclgevf_state_uninit(struct hclgevf_dev *hdev)
2291 {
2292         set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2293         set_bit(HCLGEVF_STATE_REMOVING, &hdev->state);
2294
2295         if (hdev->service_task.work.func)
2296                 cancel_delayed_work_sync(&hdev->service_task);
2297
2298         mutex_destroy(&hdev->mbx_resp.mbx_mutex);
2299 }
2300
2301 static int hclgevf_init_msi(struct hclgevf_dev *hdev)
2302 {
2303         struct pci_dev *pdev = hdev->pdev;
2304         int vectors;
2305         int i;
2306
2307         if (hnae3_dev_roce_supported(hdev))
2308                 vectors = pci_alloc_irq_vectors(pdev,
2309                                                 hdev->roce_base_msix_offset + 1,
2310                                                 hdev->num_msi,
2311                                                 PCI_IRQ_MSIX);
2312         else
2313                 vectors = pci_alloc_irq_vectors(pdev, HNAE3_MIN_VECTOR_NUM,
2314                                                 hdev->num_msi,
2315                                                 PCI_IRQ_MSI | PCI_IRQ_MSIX);
2316
2317         if (vectors < 0) {
2318                 dev_err(&pdev->dev,
2319                         "failed(%d) to allocate MSI/MSI-X vectors\n",
2320                         vectors);
2321                 return vectors;
2322         }
2323         if (vectors < hdev->num_msi)
2324                 dev_warn(&hdev->pdev->dev,
2325                          "requested %u MSI/MSI-X, but allocated %d MSI/MSI-X\n",
2326                          hdev->num_msi, vectors);
2327
2328         hdev->num_msi = vectors;
2329         hdev->num_msi_left = vectors;
2330
2331         hdev->base_msi_vector = pdev->irq;
2332         hdev->roce_base_vector = pdev->irq + hdev->roce_base_msix_offset;
2333
2334         hdev->vector_status = devm_kcalloc(&pdev->dev, hdev->num_msi,
2335                                            sizeof(u16), GFP_KERNEL);
2336         if (!hdev->vector_status) {
2337                 pci_free_irq_vectors(pdev);
2338                 return -ENOMEM;
2339         }
2340
2341         for (i = 0; i < hdev->num_msi; i++)
2342                 hdev->vector_status[i] = HCLGEVF_INVALID_VPORT;
2343
2344         hdev->vector_irq = devm_kcalloc(&pdev->dev, hdev->num_msi,
2345                                         sizeof(int), GFP_KERNEL);
2346         if (!hdev->vector_irq) {
2347                 devm_kfree(&pdev->dev, hdev->vector_status);
2348                 pci_free_irq_vectors(pdev);
2349                 return -ENOMEM;
2350         }
2351
2352         return 0;
2353 }
2354
2355 static void hclgevf_uninit_msi(struct hclgevf_dev *hdev)
2356 {
2357         struct pci_dev *pdev = hdev->pdev;
2358
2359         devm_kfree(&pdev->dev, hdev->vector_status);
2360         devm_kfree(&pdev->dev, hdev->vector_irq);
2361         pci_free_irq_vectors(pdev);
2362 }
2363
2364 static int hclgevf_misc_irq_init(struct hclgevf_dev *hdev)
2365 {
2366         int ret;
2367
2368         hclgevf_get_misc_vector(hdev);
2369
2370         snprintf(hdev->misc_vector.name, HNAE3_INT_NAME_LEN, "%s-misc-%s",
2371                  HCLGEVF_NAME, pci_name(hdev->pdev));
2372         ret = request_irq(hdev->misc_vector.vector_irq, hclgevf_misc_irq_handle,
2373                           0, hdev->misc_vector.name, hdev);
2374         if (ret) {
2375                 dev_err(&hdev->pdev->dev, "VF failed to request misc irq(%d)\n",
2376                         hdev->misc_vector.vector_irq);
2377                 return ret;
2378         }
2379
2380         hclgevf_clear_event_cause(hdev, 0);
2381
2382         /* enable misc. vector(vector 0) */
2383         hclgevf_enable_vector(&hdev->misc_vector, true);
2384
2385         return ret;
2386 }
2387
2388 static void hclgevf_misc_irq_uninit(struct hclgevf_dev *hdev)
2389 {
2390         /* disable misc vector(vector 0) */
2391         hclgevf_enable_vector(&hdev->misc_vector, false);
2392         synchronize_irq(hdev->misc_vector.vector_irq);
2393         free_irq(hdev->misc_vector.vector_irq, hdev);
2394         hclgevf_free_vector(hdev, 0);
2395 }
2396
2397 static void hclgevf_info_show(struct hclgevf_dev *hdev)
2398 {
2399         struct device *dev = &hdev->pdev->dev;
2400
2401         dev_info(dev, "VF info begin:\n");
2402
2403         dev_info(dev, "Task queue pairs numbers: %u\n", hdev->num_tqps);
2404         dev_info(dev, "Desc num per TX queue: %u\n", hdev->num_tx_desc);
2405         dev_info(dev, "Desc num per RX queue: %u\n", hdev->num_rx_desc);
2406         dev_info(dev, "Numbers of vports: %u\n", hdev->num_alloc_vport);
2407         dev_info(dev, "HW tc map: 0x%x\n", hdev->hw_tc_map);
2408         dev_info(dev, "PF media type of this VF: %u\n",
2409                  hdev->hw.mac.media_type);
2410
2411         dev_info(dev, "VF info end.\n");
2412 }
2413
2414 static int hclgevf_init_nic_client_instance(struct hnae3_ae_dev *ae_dev,
2415                                             struct hnae3_client *client)
2416 {
2417         struct hclgevf_dev *hdev = ae_dev->priv;
2418         int ret;
2419
2420         ret = client->ops->init_instance(&hdev->nic);
2421         if (ret)
2422                 return ret;
2423
2424         set_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2425         hnae3_set_client_init_flag(client, ae_dev, 1);
2426
2427         if (netif_msg_drv(&hdev->nic))
2428                 hclgevf_info_show(hdev);
2429
2430         return 0;
2431 }
2432
2433 static int hclgevf_init_roce_client_instance(struct hnae3_ae_dev *ae_dev,
2434                                              struct hnae3_client *client)
2435 {
2436         struct hclgevf_dev *hdev = ae_dev->priv;
2437         int ret;
2438
2439         if (!hnae3_dev_roce_supported(hdev) || !hdev->roce_client ||
2440             !hdev->nic_client)
2441                 return 0;
2442
2443         ret = hclgevf_init_roce_base_info(hdev);
2444         if (ret)
2445                 return ret;
2446
2447         ret = client->ops->init_instance(&hdev->roce);
2448         if (ret)
2449                 return ret;
2450
2451         hnae3_set_client_init_flag(client, ae_dev, 1);
2452
2453         return 0;
2454 }
2455
2456 static int hclgevf_init_client_instance(struct hnae3_client *client,
2457                                         struct hnae3_ae_dev *ae_dev)
2458 {
2459         struct hclgevf_dev *hdev = ae_dev->priv;
2460         int ret;
2461
2462         switch (client->type) {
2463         case HNAE3_CLIENT_KNIC:
2464                 hdev->nic_client = client;
2465                 hdev->nic.client = client;
2466
2467                 ret = hclgevf_init_nic_client_instance(ae_dev, client);
2468                 if (ret)
2469                         goto clear_nic;
2470
2471                 ret = hclgevf_init_roce_client_instance(ae_dev,
2472                                                         hdev->roce_client);
2473                 if (ret)
2474                         goto clear_roce;
2475
2476                 break;
2477         case HNAE3_CLIENT_ROCE:
2478                 if (hnae3_dev_roce_supported(hdev)) {
2479                         hdev->roce_client = client;
2480                         hdev->roce.client = client;
2481                 }
2482
2483                 ret = hclgevf_init_roce_client_instance(ae_dev, client);
2484                 if (ret)
2485                         goto clear_roce;
2486
2487                 break;
2488         default:
2489                 return -EINVAL;
2490         }
2491
2492         return 0;
2493
2494 clear_nic:
2495         hdev->nic_client = NULL;
2496         hdev->nic.client = NULL;
2497         return ret;
2498 clear_roce:
2499         hdev->roce_client = NULL;
2500         hdev->roce.client = NULL;
2501         return ret;
2502 }
2503
2504 static void hclgevf_uninit_client_instance(struct hnae3_client *client,
2505                                            struct hnae3_ae_dev *ae_dev)
2506 {
2507         struct hclgevf_dev *hdev = ae_dev->priv;
2508
2509         /* un-init roce, if it exists */
2510         if (hdev->roce_client) {
2511                 hdev->roce_client->ops->uninit_instance(&hdev->roce, 0);
2512                 hdev->roce_client = NULL;
2513                 hdev->roce.client = NULL;
2514         }
2515
2516         /* un-init nic/unic, if this was not called by roce client */
2517         if (client->ops->uninit_instance && hdev->nic_client &&
2518             client->type != HNAE3_CLIENT_ROCE) {
2519                 clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2520
2521                 client->ops->uninit_instance(&hdev->nic, 0);
2522                 hdev->nic_client = NULL;
2523                 hdev->nic.client = NULL;
2524         }
2525 }
2526
2527 static int hclgevf_pci_init(struct hclgevf_dev *hdev)
2528 {
2529         struct pci_dev *pdev = hdev->pdev;
2530         struct hclgevf_hw *hw;
2531         int ret;
2532
2533         ret = pci_enable_device(pdev);
2534         if (ret) {
2535                 dev_err(&pdev->dev, "failed to enable PCI device\n");
2536                 return ret;
2537         }
2538
2539         ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2540         if (ret) {
2541                 dev_err(&pdev->dev, "can't set consistent PCI DMA, exiting");
2542                 goto err_disable_device;
2543         }
2544
2545         ret = pci_request_regions(pdev, HCLGEVF_DRIVER_NAME);
2546         if (ret) {
2547                 dev_err(&pdev->dev, "PCI request regions failed %d\n", ret);
2548                 goto err_disable_device;
2549         }
2550
2551         pci_set_master(pdev);
2552         hw = &hdev->hw;
2553         hw->hdev = hdev;
2554         hw->io_base = pci_iomap(pdev, 2, 0);
2555         if (!hw->io_base) {
2556                 dev_err(&pdev->dev, "can't map configuration register space\n");
2557                 ret = -ENOMEM;
2558                 goto err_clr_master;
2559         }
2560
2561         return 0;
2562
2563 err_clr_master:
2564         pci_clear_master(pdev);
2565         pci_release_regions(pdev);
2566 err_disable_device:
2567         pci_disable_device(pdev);
2568
2569         return ret;
2570 }
2571
2572 static void hclgevf_pci_uninit(struct hclgevf_dev *hdev)
2573 {
2574         struct pci_dev *pdev = hdev->pdev;
2575
2576         pci_iounmap(pdev, hdev->hw.io_base);
2577         pci_clear_master(pdev);
2578         pci_release_regions(pdev);
2579         pci_disable_device(pdev);
2580 }
2581
2582 static int hclgevf_query_vf_resource(struct hclgevf_dev *hdev)
2583 {
2584         struct hclgevf_query_res_cmd *req;
2585         struct hclgevf_desc desc;
2586         int ret;
2587
2588         hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_VF_RSRC, true);
2589         ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
2590         if (ret) {
2591                 dev_err(&hdev->pdev->dev,
2592                         "query vf resource failed, ret = %d.\n", ret);
2593                 return ret;
2594         }
2595
2596         req = (struct hclgevf_query_res_cmd *)desc.data;
2597
2598         if (hnae3_dev_roce_supported(hdev)) {
2599                 hdev->roce_base_msix_offset =
2600                 hnae3_get_field(le16_to_cpu(req->msixcap_localid_ba_rocee),
2601                                 HCLGEVF_MSIX_OFT_ROCEE_M,
2602                                 HCLGEVF_MSIX_OFT_ROCEE_S);
2603                 hdev->num_roce_msix =
2604                 hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number),
2605                                 HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
2606
2607                 /* nic's msix numbers is always equals to the roce's. */
2608                 hdev->num_nic_msix = hdev->num_roce_msix;
2609
2610                 /* VF should have NIC vectors and Roce vectors, NIC vectors
2611                  * are queued before Roce vectors. The offset is fixed to 64.
2612                  */
2613                 hdev->num_msi = hdev->num_roce_msix +
2614                                 hdev->roce_base_msix_offset;
2615         } else {
2616                 hdev->num_msi =
2617                 hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number),
2618                                 HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
2619
2620                 hdev->num_nic_msix = hdev->num_msi;
2621         }
2622
2623         if (hdev->num_nic_msix < HNAE3_MIN_VECTOR_NUM) {
2624                 dev_err(&hdev->pdev->dev,
2625                         "Just %u msi resources, not enough for vf(min:2).\n",
2626                         hdev->num_nic_msix);
2627                 return -EINVAL;
2628         }
2629
2630         return 0;
2631 }
2632
2633 static int hclgevf_pci_reset(struct hclgevf_dev *hdev)
2634 {
2635         struct pci_dev *pdev = hdev->pdev;
2636         int ret = 0;
2637
2638         if (hdev->reset_type == HNAE3_VF_FULL_RESET &&
2639             test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2640                 hclgevf_misc_irq_uninit(hdev);
2641                 hclgevf_uninit_msi(hdev);
2642                 clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2643         }
2644
2645         if (!test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2646                 pci_set_master(pdev);
2647                 ret = hclgevf_init_msi(hdev);
2648                 if (ret) {
2649                         dev_err(&pdev->dev,
2650                                 "failed(%d) to init MSI/MSI-X\n", ret);
2651                         return ret;
2652                 }
2653
2654                 ret = hclgevf_misc_irq_init(hdev);
2655                 if (ret) {
2656                         hclgevf_uninit_msi(hdev);
2657                         dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
2658                                 ret);
2659                         return ret;
2660                 }
2661
2662                 set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2663         }
2664
2665         return ret;
2666 }
2667
2668 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev)
2669 {
2670         struct pci_dev *pdev = hdev->pdev;
2671         int ret;
2672
2673         ret = hclgevf_pci_reset(hdev);
2674         if (ret) {
2675                 dev_err(&pdev->dev, "pci reset failed %d\n", ret);
2676                 return ret;
2677         }
2678
2679         ret = hclgevf_cmd_init(hdev);
2680         if (ret) {
2681                 dev_err(&pdev->dev, "cmd failed %d\n", ret);
2682                 return ret;
2683         }
2684
2685         ret = hclgevf_rss_init_hw(hdev);
2686         if (ret) {
2687                 dev_err(&hdev->pdev->dev,
2688                         "failed(%d) to initialize RSS\n", ret);
2689                 return ret;
2690         }
2691
2692         ret = hclgevf_config_gro(hdev, true);
2693         if (ret)
2694                 return ret;
2695
2696         ret = hclgevf_init_vlan_config(hdev);
2697         if (ret) {
2698                 dev_err(&hdev->pdev->dev,
2699                         "failed(%d) to initialize VLAN config\n", ret);
2700                 return ret;
2701         }
2702
2703         dev_info(&hdev->pdev->dev, "Reset done\n");
2704
2705         return 0;
2706 }
2707
2708 static int hclgevf_init_hdev(struct hclgevf_dev *hdev)
2709 {
2710         struct pci_dev *pdev = hdev->pdev;
2711         int ret;
2712
2713         ret = hclgevf_pci_init(hdev);
2714         if (ret)
2715                 return ret;
2716
2717         ret = hclgevf_cmd_queue_init(hdev);
2718         if (ret)
2719                 goto err_cmd_queue_init;
2720
2721         ret = hclgevf_cmd_init(hdev);
2722         if (ret)
2723                 goto err_cmd_init;
2724
2725         /* Get vf resource */
2726         ret = hclgevf_query_vf_resource(hdev);
2727         if (ret)
2728                 goto err_cmd_init;
2729
2730         ret = hclgevf_init_msi(hdev);
2731         if (ret) {
2732                 dev_err(&pdev->dev, "failed(%d) to init MSI/MSI-X\n", ret);
2733                 goto err_cmd_init;
2734         }
2735
2736         hclgevf_state_init(hdev);
2737         hdev->reset_level = HNAE3_VF_FUNC_RESET;
2738         hdev->reset_type = HNAE3_NONE_RESET;
2739
2740         ret = hclgevf_misc_irq_init(hdev);
2741         if (ret)
2742                 goto err_misc_irq_init;
2743
2744         set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2745
2746         ret = hclgevf_configure(hdev);
2747         if (ret) {
2748                 dev_err(&pdev->dev, "failed(%d) to fetch configuration\n", ret);
2749                 goto err_config;
2750         }
2751
2752         ret = hclgevf_alloc_tqps(hdev);
2753         if (ret) {
2754                 dev_err(&pdev->dev, "failed(%d) to allocate TQPs\n", ret);
2755                 goto err_config;
2756         }
2757
2758         ret = hclgevf_set_handle_info(hdev);
2759         if (ret)
2760                 goto err_config;
2761
2762         ret = hclgevf_config_gro(hdev, true);
2763         if (ret)
2764                 goto err_config;
2765
2766         /* Initialize RSS for this VF */
2767         ret = hclgevf_rss_init_hw(hdev);
2768         if (ret) {
2769                 dev_err(&hdev->pdev->dev,
2770                         "failed(%d) to initialize RSS\n", ret);
2771                 goto err_config;
2772         }
2773
2774         ret = hclgevf_init_vlan_config(hdev);
2775         if (ret) {
2776                 dev_err(&hdev->pdev->dev,
2777                         "failed(%d) to initialize VLAN config\n", ret);
2778                 goto err_config;
2779         }
2780
2781         hdev->last_reset_time = jiffies;
2782         dev_info(&hdev->pdev->dev, "finished initializing %s driver\n",
2783                  HCLGEVF_DRIVER_NAME);
2784
2785         hclgevf_task_schedule(hdev, round_jiffies_relative(HZ));
2786
2787         return 0;
2788
2789 err_config:
2790         hclgevf_misc_irq_uninit(hdev);
2791 err_misc_irq_init:
2792         hclgevf_state_uninit(hdev);
2793         hclgevf_uninit_msi(hdev);
2794 err_cmd_init:
2795         hclgevf_cmd_uninit(hdev);
2796 err_cmd_queue_init:
2797         hclgevf_pci_uninit(hdev);
2798         clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2799         return ret;
2800 }
2801
2802 static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev)
2803 {
2804         hclgevf_state_uninit(hdev);
2805
2806         if (test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2807                 hclgevf_misc_irq_uninit(hdev);
2808                 hclgevf_uninit_msi(hdev);
2809         }
2810
2811         hclgevf_pci_uninit(hdev);
2812         hclgevf_cmd_uninit(hdev);
2813 }
2814
2815 static int hclgevf_init_ae_dev(struct hnae3_ae_dev *ae_dev)
2816 {
2817         struct pci_dev *pdev = ae_dev->pdev;
2818         int ret;
2819
2820         ret = hclgevf_alloc_hdev(ae_dev);
2821         if (ret) {
2822                 dev_err(&pdev->dev, "hclge device allocation failed\n");
2823                 return ret;
2824         }
2825
2826         ret = hclgevf_init_hdev(ae_dev->priv);
2827         if (ret) {
2828                 dev_err(&pdev->dev, "hclge device initialization failed\n");
2829                 return ret;
2830         }
2831
2832         return 0;
2833 }
2834
2835 static void hclgevf_uninit_ae_dev(struct hnae3_ae_dev *ae_dev)
2836 {
2837         struct hclgevf_dev *hdev = ae_dev->priv;
2838
2839         hclgevf_uninit_hdev(hdev);
2840         ae_dev->priv = NULL;
2841 }
2842
2843 static u32 hclgevf_get_max_channels(struct hclgevf_dev *hdev)
2844 {
2845         struct hnae3_handle *nic = &hdev->nic;
2846         struct hnae3_knic_private_info *kinfo = &nic->kinfo;
2847
2848         return min_t(u32, hdev->rss_size_max,
2849                      hdev->num_tqps / kinfo->num_tc);
2850 }
2851
2852 /**
2853  * hclgevf_get_channels - Get the current channels enabled and max supported.
2854  * @handle: hardware information for network interface
2855  * @ch: ethtool channels structure
2856  *
2857  * We don't support separate tx and rx queues as channels. The other count
2858  * represents how many queues are being used for control. max_combined counts
2859  * how many queue pairs we can support. They may not be mapped 1 to 1 with
2860  * q_vectors since we support a lot more queue pairs than q_vectors.
2861  **/
2862 static void hclgevf_get_channels(struct hnae3_handle *handle,
2863                                  struct ethtool_channels *ch)
2864 {
2865         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2866
2867         ch->max_combined = hclgevf_get_max_channels(hdev);
2868         ch->other_count = 0;
2869         ch->max_other = 0;
2870         ch->combined_count = handle->kinfo.rss_size;
2871 }
2872
2873 static void hclgevf_get_tqps_and_rss_info(struct hnae3_handle *handle,
2874                                           u16 *alloc_tqps, u16 *max_rss_size)
2875 {
2876         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2877
2878         *alloc_tqps = hdev->num_tqps;
2879         *max_rss_size = hdev->rss_size_max;
2880 }
2881
2882 static void hclgevf_update_rss_size(struct hnae3_handle *handle,
2883                                     u32 new_tqps_num)
2884 {
2885         struct hnae3_knic_private_info *kinfo = &handle->kinfo;
2886         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2887         u16 max_rss_size;
2888
2889         kinfo->req_rss_size = new_tqps_num;
2890
2891         max_rss_size = min_t(u16, hdev->rss_size_max,
2892                              hdev->num_tqps / kinfo->num_tc);
2893
2894         /* Use the user's configuration when it is not larger than
2895          * max_rss_size, otherwise, use the maximum specification value.
2896          */
2897         if (kinfo->req_rss_size != kinfo->rss_size && kinfo->req_rss_size &&
2898             kinfo->req_rss_size <= max_rss_size)
2899                 kinfo->rss_size = kinfo->req_rss_size;
2900         else if (kinfo->rss_size > max_rss_size ||
2901                  (!kinfo->req_rss_size && kinfo->rss_size < max_rss_size))
2902                 kinfo->rss_size = max_rss_size;
2903
2904         kinfo->num_tqps = kinfo->num_tc * kinfo->rss_size;
2905 }
2906
2907 static int hclgevf_set_channels(struct hnae3_handle *handle, u32 new_tqps_num,
2908                                 bool rxfh_configured)
2909 {
2910         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2911         struct hnae3_knic_private_info *kinfo = &handle->kinfo;
2912         u16 cur_rss_size = kinfo->rss_size;
2913         u16 cur_tqps = kinfo->num_tqps;
2914         u32 *rss_indir;
2915         unsigned int i;
2916         int ret;
2917
2918         hclgevf_update_rss_size(handle, new_tqps_num);
2919
2920         ret = hclgevf_set_rss_tc_mode(hdev, kinfo->rss_size);
2921         if (ret)
2922                 return ret;
2923
2924         /* RSS indirection table has been configuared by user */
2925         if (rxfh_configured)
2926                 goto out;
2927
2928         /* Reinitializes the rss indirect table according to the new RSS size */
2929         rss_indir = kcalloc(HCLGEVF_RSS_IND_TBL_SIZE, sizeof(u32), GFP_KERNEL);
2930         if (!rss_indir)
2931                 return -ENOMEM;
2932
2933         for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
2934                 rss_indir[i] = i % kinfo->rss_size;
2935
2936         ret = hclgevf_set_rss(handle, rss_indir, NULL, 0);
2937         if (ret)
2938                 dev_err(&hdev->pdev->dev, "set rss indir table fail, ret=%d\n",
2939                         ret);
2940
2941         kfree(rss_indir);
2942
2943 out:
2944         if (!ret)
2945                 dev_info(&hdev->pdev->dev,
2946                          "Channels changed, rss_size from %u to %u, tqps from %u to %u",
2947                          cur_rss_size, kinfo->rss_size,
2948                          cur_tqps, kinfo->rss_size * kinfo->num_tc);
2949
2950         return ret;
2951 }
2952
2953 static int hclgevf_get_status(struct hnae3_handle *handle)
2954 {
2955         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2956
2957         return hdev->hw.mac.link;
2958 }
2959
2960 static void hclgevf_get_ksettings_an_result(struct hnae3_handle *handle,
2961                                             u8 *auto_neg, u32 *speed,
2962                                             u8 *duplex)
2963 {
2964         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2965
2966         if (speed)
2967                 *speed = hdev->hw.mac.speed;
2968         if (duplex)
2969                 *duplex = hdev->hw.mac.duplex;
2970         if (auto_neg)
2971                 *auto_neg = AUTONEG_DISABLE;
2972 }
2973
2974 void hclgevf_update_speed_duplex(struct hclgevf_dev *hdev, u32 speed,
2975                                  u8 duplex)
2976 {
2977         hdev->hw.mac.speed = speed;
2978         hdev->hw.mac.duplex = duplex;
2979 }
2980
2981 static int hclgevf_gro_en(struct hnae3_handle *handle, bool enable)
2982 {
2983         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2984
2985         return hclgevf_config_gro(hdev, enable);
2986 }
2987
2988 static void hclgevf_get_media_type(struct hnae3_handle *handle, u8 *media_type,
2989                                    u8 *module_type)
2990 {
2991         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2992
2993         if (media_type)
2994                 *media_type = hdev->hw.mac.media_type;
2995
2996         if (module_type)
2997                 *module_type = hdev->hw.mac.module_type;
2998 }
2999
3000 static bool hclgevf_get_hw_reset_stat(struct hnae3_handle *handle)
3001 {
3002         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3003
3004         return !!hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
3005 }
3006
3007 static bool hclgevf_ae_dev_resetting(struct hnae3_handle *handle)
3008 {
3009         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3010
3011         return test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
3012 }
3013
3014 static unsigned long hclgevf_ae_dev_reset_cnt(struct hnae3_handle *handle)
3015 {
3016         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3017
3018         return hdev->rst_stats.hw_rst_done_cnt;
3019 }
3020
3021 static void hclgevf_get_link_mode(struct hnae3_handle *handle,
3022                                   unsigned long *supported,
3023                                   unsigned long *advertising)
3024 {
3025         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3026
3027         *supported = hdev->hw.mac.supported;
3028         *advertising = hdev->hw.mac.advertising;
3029 }
3030
3031 #define MAX_SEPARATE_NUM        4
3032 #define SEPARATOR_VALUE         0xFFFFFFFF
3033 #define REG_NUM_PER_LINE        4
3034 #define REG_LEN_PER_LINE        (REG_NUM_PER_LINE * sizeof(u32))
3035
3036 static int hclgevf_get_regs_len(struct hnae3_handle *handle)
3037 {
3038         int cmdq_lines, common_lines, ring_lines, tqp_intr_lines;
3039         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3040
3041         cmdq_lines = sizeof(cmdq_reg_addr_list) / REG_LEN_PER_LINE + 1;
3042         common_lines = sizeof(common_reg_addr_list) / REG_LEN_PER_LINE + 1;
3043         ring_lines = sizeof(ring_reg_addr_list) / REG_LEN_PER_LINE + 1;
3044         tqp_intr_lines = sizeof(tqp_intr_reg_addr_list) / REG_LEN_PER_LINE + 1;
3045
3046         return (cmdq_lines + common_lines + ring_lines * hdev->num_tqps +
3047                 tqp_intr_lines * (hdev->num_msi_used - 1)) * REG_LEN_PER_LINE;
3048 }
3049
3050 static void hclgevf_get_regs(struct hnae3_handle *handle, u32 *version,
3051                              void *data)
3052 {
3053         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3054         int i, j, reg_um, separator_num;
3055         u32 *reg = data;
3056
3057         *version = hdev->fw_version;
3058
3059         /* fetching per-VF registers values from VF PCIe register space */
3060         reg_um = sizeof(cmdq_reg_addr_list) / sizeof(u32);
3061         separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3062         for (i = 0; i < reg_um; i++)
3063                 *reg++ = hclgevf_read_dev(&hdev->hw, cmdq_reg_addr_list[i]);
3064         for (i = 0; i < separator_num; i++)
3065                 *reg++ = SEPARATOR_VALUE;
3066
3067         reg_um = sizeof(common_reg_addr_list) / sizeof(u32);
3068         separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3069         for (i = 0; i < reg_um; i++)
3070                 *reg++ = hclgevf_read_dev(&hdev->hw, common_reg_addr_list[i]);
3071         for (i = 0; i < separator_num; i++)
3072                 *reg++ = SEPARATOR_VALUE;
3073
3074         reg_um = sizeof(ring_reg_addr_list) / sizeof(u32);
3075         separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3076         for (j = 0; j < hdev->num_tqps; j++) {
3077                 for (i = 0; i < reg_um; i++)
3078                         *reg++ = hclgevf_read_dev(&hdev->hw,
3079                                                   ring_reg_addr_list[i] +
3080                                                   0x200 * j);
3081                 for (i = 0; i < separator_num; i++)
3082                         *reg++ = SEPARATOR_VALUE;
3083         }
3084
3085         reg_um = sizeof(tqp_intr_reg_addr_list) / sizeof(u32);
3086         separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3087         for (j = 0; j < hdev->num_msi_used - 1; j++) {
3088                 for (i = 0; i < reg_um; i++)
3089                         *reg++ = hclgevf_read_dev(&hdev->hw,
3090                                                   tqp_intr_reg_addr_list[i] +
3091                                                   4 * j);
3092                 for (i = 0; i < separator_num; i++)
3093                         *reg++ = SEPARATOR_VALUE;
3094         }
3095 }
3096
3097 void hclgevf_update_port_base_vlan_info(struct hclgevf_dev *hdev, u16 state,
3098                                         u8 *port_base_vlan_info, u8 data_size)
3099 {
3100         struct hnae3_handle *nic = &hdev->nic;
3101
3102         rtnl_lock();
3103         hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
3104         rtnl_unlock();
3105
3106         /* send msg to PF and wait update port based vlan info */
3107         hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
3108                              HCLGE_MBX_PORT_BASE_VLAN_CFG,
3109                              port_base_vlan_info, data_size,
3110                              false, NULL, 0);
3111
3112         if (state == HNAE3_PORT_BASE_VLAN_DISABLE)
3113                 nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_DISABLE;
3114         else
3115                 nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_ENABLE;
3116
3117         rtnl_lock();
3118         hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
3119         rtnl_unlock();
3120 }
3121
3122 static const struct hnae3_ae_ops hclgevf_ops = {
3123         .init_ae_dev = hclgevf_init_ae_dev,
3124         .uninit_ae_dev = hclgevf_uninit_ae_dev,
3125         .flr_prepare = hclgevf_flr_prepare,
3126         .flr_done = hclgevf_flr_done,
3127         .init_client_instance = hclgevf_init_client_instance,
3128         .uninit_client_instance = hclgevf_uninit_client_instance,
3129         .start = hclgevf_ae_start,
3130         .stop = hclgevf_ae_stop,
3131         .client_start = hclgevf_client_start,
3132         .client_stop = hclgevf_client_stop,
3133         .map_ring_to_vector = hclgevf_map_ring_to_vector,
3134         .unmap_ring_from_vector = hclgevf_unmap_ring_from_vector,
3135         .get_vector = hclgevf_get_vector,
3136         .put_vector = hclgevf_put_vector,
3137         .reset_queue = hclgevf_reset_tqp,
3138         .get_mac_addr = hclgevf_get_mac_addr,
3139         .set_mac_addr = hclgevf_set_mac_addr,
3140         .add_uc_addr = hclgevf_add_uc_addr,
3141         .rm_uc_addr = hclgevf_rm_uc_addr,
3142         .add_mc_addr = hclgevf_add_mc_addr,
3143         .rm_mc_addr = hclgevf_rm_mc_addr,
3144         .get_stats = hclgevf_get_stats,
3145         .update_stats = hclgevf_update_stats,
3146         .get_strings = hclgevf_get_strings,
3147         .get_sset_count = hclgevf_get_sset_count,
3148         .get_rss_key_size = hclgevf_get_rss_key_size,
3149         .get_rss_indir_size = hclgevf_get_rss_indir_size,
3150         .get_rss = hclgevf_get_rss,
3151         .set_rss = hclgevf_set_rss,
3152         .get_rss_tuple = hclgevf_get_rss_tuple,
3153         .set_rss_tuple = hclgevf_set_rss_tuple,
3154         .get_tc_size = hclgevf_get_tc_size,
3155         .get_fw_version = hclgevf_get_fw_version,
3156         .set_vlan_filter = hclgevf_set_vlan_filter,
3157         .enable_hw_strip_rxvtag = hclgevf_en_hw_strip_rxvtag,
3158         .reset_event = hclgevf_reset_event,
3159         .set_default_reset_request = hclgevf_set_def_reset_request,
3160         .set_channels = hclgevf_set_channels,
3161         .get_channels = hclgevf_get_channels,
3162         .get_tqps_and_rss_info = hclgevf_get_tqps_and_rss_info,
3163         .get_regs_len = hclgevf_get_regs_len,
3164         .get_regs = hclgevf_get_regs,
3165         .get_status = hclgevf_get_status,
3166         .get_ksettings_an_result = hclgevf_get_ksettings_an_result,
3167         .get_media_type = hclgevf_get_media_type,
3168         .get_hw_reset_stat = hclgevf_get_hw_reset_stat,
3169         .ae_dev_resetting = hclgevf_ae_dev_resetting,
3170         .ae_dev_reset_cnt = hclgevf_ae_dev_reset_cnt,
3171         .set_gro_en = hclgevf_gro_en,
3172         .set_mtu = hclgevf_set_mtu,
3173         .get_global_queue_id = hclgevf_get_qid_global,
3174         .set_timer_task = hclgevf_set_timer_task,
3175         .get_link_mode = hclgevf_get_link_mode,
3176         .set_promisc_mode = hclgevf_set_promisc_mode,
3177 };
3178
3179 static struct hnae3_ae_algo ae_algovf = {
3180         .ops = &hclgevf_ops,
3181         .pdev_id_table = ae_algovf_pci_tbl,
3182 };
3183
3184 static int hclgevf_init(void)
3185 {
3186         pr_info("%s is initializing\n", HCLGEVF_NAME);
3187
3188         hclgevf_wq = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, HCLGEVF_NAME);
3189         if (!hclgevf_wq) {
3190                 pr_err("%s: failed to create workqueue\n", HCLGEVF_NAME);
3191                 return -ENOMEM;
3192         }
3193
3194         hnae3_register_ae_algo(&ae_algovf);
3195
3196         return 0;
3197 }
3198
3199 static void hclgevf_exit(void)
3200 {
3201         hnae3_unregister_ae_algo(&ae_algovf);
3202         destroy_workqueue(hclgevf_wq);
3203 }
3204 module_init(hclgevf_init);
3205 module_exit(hclgevf_exit);
3206
3207 MODULE_LICENSE("GPL");
3208 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
3209 MODULE_DESCRIPTION("HCLGEVF Driver");
3210 MODULE_VERSION(HCLGEVF_MOD_VERSION);