net: hns3: streaming dma buffer sync between cpu and device
[linux-block.git] / drivers / net / ethernet / hisilicon / hns3 / hns3_enet.c
1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3
4 #include <linux/dma-mapping.h>
5 #include <linux/etherdevice.h>
6 #include <linux/interrupt.h>
7 #ifdef CONFIG_RFS_ACCEL
8 #include <linux/cpu_rmap.h>
9 #endif
10 #include <linux/if_vlan.h>
11 #include <linux/irq.h>
12 #include <linux/ip.h>
13 #include <linux/ipv6.h>
14 #include <linux/module.h>
15 #include <linux/pci.h>
16 #include <linux/aer.h>
17 #include <linux/skbuff.h>
18 #include <linux/sctp.h>
19 #include <net/gre.h>
20 #include <net/ip6_checksum.h>
21 #include <net/pkt_cls.h>
22 #include <net/tcp.h>
23 #include <net/vxlan.h>
24
25 #include "hnae3.h"
26 #include "hns3_enet.h"
27 /* All hns3 tracepoints are defined by the include below, which
28  * must be included exactly once across the whole kernel with
29  * CREATE_TRACE_POINTS defined
30  */
31 #define CREATE_TRACE_POINTS
32 #include "hns3_trace.h"
33
34 #define hns3_set_field(origin, shift, val)      ((origin) |= ((val) << (shift)))
35 #define hns3_tx_bd_count(S)     DIV_ROUND_UP(S, HNS3_MAX_BD_SIZE)
36
37 #define hns3_rl_err(fmt, ...)                                           \
38         do {                                                            \
39                 if (net_ratelimit())                                    \
40                         netdev_err(fmt, ##__VA_ARGS__);                 \
41         } while (0)
42
43 static void hns3_clear_all_ring(struct hnae3_handle *h, bool force);
44
45 static const char hns3_driver_name[] = "hns3";
46 static const char hns3_driver_string[] =
47                         "Hisilicon Ethernet Network Driver for Hip08 Family";
48 static const char hns3_copyright[] = "Copyright (c) 2017 Huawei Corporation.";
49 static struct hnae3_client client;
50
51 static int debug = -1;
52 module_param(debug, int, 0);
53 MODULE_PARM_DESC(debug, " Network interface message level setting");
54
55 #define DEFAULT_MSG_LEVEL (NETIF_MSG_PROBE | NETIF_MSG_LINK | \
56                            NETIF_MSG_IFDOWN | NETIF_MSG_IFUP)
57
58 #define HNS3_INNER_VLAN_TAG     1
59 #define HNS3_OUTER_VLAN_TAG     2
60
61 #define HNS3_MIN_TX_LEN         33U
62
63 /* hns3_pci_tbl - PCI Device ID Table
64  *
65  * Last entry must be all 0s
66  *
67  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
68  *   Class, Class Mask, private data (not used) }
69  */
70 static const struct pci_device_id hns3_pci_tbl[] = {
71         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_GE), 0},
72         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE), 0},
73         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA),
74          HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
75         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA_MACSEC),
76          HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
77         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA),
78          HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
79         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA_MACSEC),
80          HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
81         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_MACSEC),
82          HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
83         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_VF), 0},
84         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_DCB_PFC_VF),
85          HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
86         /* required last entry */
87         {0, }
88 };
89 MODULE_DEVICE_TABLE(pci, hns3_pci_tbl);
90
91 static irqreturn_t hns3_irq_handle(int irq, void *vector)
92 {
93         struct hns3_enet_tqp_vector *tqp_vector = vector;
94
95         napi_schedule_irqoff(&tqp_vector->napi);
96
97         return IRQ_HANDLED;
98 }
99
100 static void hns3_nic_uninit_irq(struct hns3_nic_priv *priv)
101 {
102         struct hns3_enet_tqp_vector *tqp_vectors;
103         unsigned int i;
104
105         for (i = 0; i < priv->vector_num; i++) {
106                 tqp_vectors = &priv->tqp_vector[i];
107
108                 if (tqp_vectors->irq_init_flag != HNS3_VECTOR_INITED)
109                         continue;
110
111                 /* clear the affinity mask */
112                 irq_set_affinity_hint(tqp_vectors->vector_irq, NULL);
113
114                 /* release the irq resource */
115                 free_irq(tqp_vectors->vector_irq, tqp_vectors);
116                 tqp_vectors->irq_init_flag = HNS3_VECTOR_NOT_INITED;
117         }
118 }
119
120 static int hns3_nic_init_irq(struct hns3_nic_priv *priv)
121 {
122         struct hns3_enet_tqp_vector *tqp_vectors;
123         int txrx_int_idx = 0;
124         int rx_int_idx = 0;
125         int tx_int_idx = 0;
126         unsigned int i;
127         int ret;
128
129         for (i = 0; i < priv->vector_num; i++) {
130                 tqp_vectors = &priv->tqp_vector[i];
131
132                 if (tqp_vectors->irq_init_flag == HNS3_VECTOR_INITED)
133                         continue;
134
135                 if (tqp_vectors->tx_group.ring && tqp_vectors->rx_group.ring) {
136                         snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN,
137                                  "%s-%s-%s-%d", hns3_driver_name,
138                                  pci_name(priv->ae_handle->pdev),
139                                  "TxRx", txrx_int_idx++);
140                         txrx_int_idx++;
141                 } else if (tqp_vectors->rx_group.ring) {
142                         snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN,
143                                  "%s-%s-%s-%d", hns3_driver_name,
144                                  pci_name(priv->ae_handle->pdev),
145                                  "Rx", rx_int_idx++);
146                 } else if (tqp_vectors->tx_group.ring) {
147                         snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN,
148                                  "%s-%s-%s-%d", hns3_driver_name,
149                                  pci_name(priv->ae_handle->pdev),
150                                  "Tx", tx_int_idx++);
151                 } else {
152                         /* Skip this unused q_vector */
153                         continue;
154                 }
155
156                 tqp_vectors->name[HNAE3_INT_NAME_LEN - 1] = '\0';
157
158                 irq_set_status_flags(tqp_vectors->vector_irq, IRQ_NOAUTOEN);
159                 ret = request_irq(tqp_vectors->vector_irq, hns3_irq_handle, 0,
160                                   tqp_vectors->name, tqp_vectors);
161                 if (ret) {
162                         netdev_err(priv->netdev, "request irq(%d) fail\n",
163                                    tqp_vectors->vector_irq);
164                         hns3_nic_uninit_irq(priv);
165                         return ret;
166                 }
167
168                 irq_set_affinity_hint(tqp_vectors->vector_irq,
169                                       &tqp_vectors->affinity_mask);
170
171                 tqp_vectors->irq_init_flag = HNS3_VECTOR_INITED;
172         }
173
174         return 0;
175 }
176
177 static void hns3_mask_vector_irq(struct hns3_enet_tqp_vector *tqp_vector,
178                                  u32 mask_en)
179 {
180         writel(mask_en, tqp_vector->mask_addr);
181 }
182
183 static void hns3_vector_enable(struct hns3_enet_tqp_vector *tqp_vector)
184 {
185         napi_enable(&tqp_vector->napi);
186         enable_irq(tqp_vector->vector_irq);
187
188         /* enable vector */
189         hns3_mask_vector_irq(tqp_vector, 1);
190 }
191
192 static void hns3_vector_disable(struct hns3_enet_tqp_vector *tqp_vector)
193 {
194         /* disable vector */
195         hns3_mask_vector_irq(tqp_vector, 0);
196
197         disable_irq(tqp_vector->vector_irq);
198         napi_disable(&tqp_vector->napi);
199 }
200
201 void hns3_set_vector_coalesce_rl(struct hns3_enet_tqp_vector *tqp_vector,
202                                  u32 rl_value)
203 {
204         u32 rl_reg = hns3_rl_usec_to_reg(rl_value);
205
206         /* this defines the configuration for RL (Interrupt Rate Limiter).
207          * Rl defines rate of interrupts i.e. number of interrupts-per-second
208          * GL and RL(Rate Limiter) are 2 ways to acheive interrupt coalescing
209          */
210
211         if (rl_reg > 0 && !tqp_vector->tx_group.coal.gl_adapt_enable &&
212             !tqp_vector->rx_group.coal.gl_adapt_enable)
213                 /* According to the hardware, the range of rl_reg is
214                  * 0-59 and the unit is 4.
215                  */
216                 rl_reg |=  HNS3_INT_RL_ENABLE_MASK;
217
218         writel(rl_reg, tqp_vector->mask_addr + HNS3_VECTOR_RL_OFFSET);
219 }
220
221 void hns3_set_vector_coalesce_rx_gl(struct hns3_enet_tqp_vector *tqp_vector,
222                                     u32 gl_value)
223 {
224         u32 rx_gl_reg = hns3_gl_usec_to_reg(gl_value);
225
226         writel(rx_gl_reg, tqp_vector->mask_addr + HNS3_VECTOR_GL0_OFFSET);
227 }
228
229 void hns3_set_vector_coalesce_tx_gl(struct hns3_enet_tqp_vector *tqp_vector,
230                                     u32 gl_value)
231 {
232         u32 tx_gl_reg = hns3_gl_usec_to_reg(gl_value);
233
234         writel(tx_gl_reg, tqp_vector->mask_addr + HNS3_VECTOR_GL1_OFFSET);
235 }
236
237 static void hns3_vector_gl_rl_init(struct hns3_enet_tqp_vector *tqp_vector,
238                                    struct hns3_nic_priv *priv)
239 {
240         /* initialize the configuration for interrupt coalescing.
241          * 1. GL (Interrupt Gap Limiter)
242          * 2. RL (Interrupt Rate Limiter)
243          *
244          * Default: enable interrupt coalescing self-adaptive and GL
245          */
246         tqp_vector->tx_group.coal.gl_adapt_enable = 1;
247         tqp_vector->rx_group.coal.gl_adapt_enable = 1;
248
249         tqp_vector->tx_group.coal.int_gl = HNS3_INT_GL_50K;
250         tqp_vector->rx_group.coal.int_gl = HNS3_INT_GL_50K;
251
252         tqp_vector->rx_group.coal.flow_level = HNS3_FLOW_LOW;
253         tqp_vector->tx_group.coal.flow_level = HNS3_FLOW_LOW;
254 }
255
256 static void hns3_vector_gl_rl_init_hw(struct hns3_enet_tqp_vector *tqp_vector,
257                                       struct hns3_nic_priv *priv)
258 {
259         struct hnae3_handle *h = priv->ae_handle;
260
261         hns3_set_vector_coalesce_tx_gl(tqp_vector,
262                                        tqp_vector->tx_group.coal.int_gl);
263         hns3_set_vector_coalesce_rx_gl(tqp_vector,
264                                        tqp_vector->rx_group.coal.int_gl);
265         hns3_set_vector_coalesce_rl(tqp_vector, h->kinfo.int_rl_setting);
266 }
267
268 static int hns3_nic_set_real_num_queue(struct net_device *netdev)
269 {
270         struct hnae3_handle *h = hns3_get_handle(netdev);
271         struct hnae3_knic_private_info *kinfo = &h->kinfo;
272         unsigned int queue_size = kinfo->rss_size * kinfo->num_tc;
273         int i, ret;
274
275         if (kinfo->num_tc <= 1) {
276                 netdev_reset_tc(netdev);
277         } else {
278                 ret = netdev_set_num_tc(netdev, kinfo->num_tc);
279                 if (ret) {
280                         netdev_err(netdev,
281                                    "netdev_set_num_tc fail, ret=%d!\n", ret);
282                         return ret;
283                 }
284
285                 for (i = 0; i < HNAE3_MAX_TC; i++) {
286                         if (!kinfo->tc_info[i].enable)
287                                 continue;
288
289                         netdev_set_tc_queue(netdev,
290                                             kinfo->tc_info[i].tc,
291                                             kinfo->tc_info[i].tqp_count,
292                                             kinfo->tc_info[i].tqp_offset);
293                 }
294         }
295
296         ret = netif_set_real_num_tx_queues(netdev, queue_size);
297         if (ret) {
298                 netdev_err(netdev,
299                            "netif_set_real_num_tx_queues fail, ret=%d!\n", ret);
300                 return ret;
301         }
302
303         ret = netif_set_real_num_rx_queues(netdev, queue_size);
304         if (ret) {
305                 netdev_err(netdev,
306                            "netif_set_real_num_rx_queues fail, ret=%d!\n", ret);
307                 return ret;
308         }
309
310         return 0;
311 }
312
313 static u16 hns3_get_max_available_channels(struct hnae3_handle *h)
314 {
315         u16 alloc_tqps, max_rss_size, rss_size;
316
317         h->ae_algo->ops->get_tqps_and_rss_info(h, &alloc_tqps, &max_rss_size);
318         rss_size = alloc_tqps / h->kinfo.num_tc;
319
320         return min_t(u16, rss_size, max_rss_size);
321 }
322
323 static void hns3_tqp_enable(struct hnae3_queue *tqp)
324 {
325         u32 rcb_reg;
326
327         rcb_reg = hns3_read_dev(tqp, HNS3_RING_EN_REG);
328         rcb_reg |= BIT(HNS3_RING_EN_B);
329         hns3_write_dev(tqp, HNS3_RING_EN_REG, rcb_reg);
330 }
331
332 static void hns3_tqp_disable(struct hnae3_queue *tqp)
333 {
334         u32 rcb_reg;
335
336         rcb_reg = hns3_read_dev(tqp, HNS3_RING_EN_REG);
337         rcb_reg &= ~BIT(HNS3_RING_EN_B);
338         hns3_write_dev(tqp, HNS3_RING_EN_REG, rcb_reg);
339 }
340
341 static void hns3_free_rx_cpu_rmap(struct net_device *netdev)
342 {
343 #ifdef CONFIG_RFS_ACCEL
344         free_irq_cpu_rmap(netdev->rx_cpu_rmap);
345         netdev->rx_cpu_rmap = NULL;
346 #endif
347 }
348
349 static int hns3_set_rx_cpu_rmap(struct net_device *netdev)
350 {
351 #ifdef CONFIG_RFS_ACCEL
352         struct hns3_nic_priv *priv = netdev_priv(netdev);
353         struct hns3_enet_tqp_vector *tqp_vector;
354         int i, ret;
355
356         if (!netdev->rx_cpu_rmap) {
357                 netdev->rx_cpu_rmap = alloc_irq_cpu_rmap(priv->vector_num);
358                 if (!netdev->rx_cpu_rmap)
359                         return -ENOMEM;
360         }
361
362         for (i = 0; i < priv->vector_num; i++) {
363                 tqp_vector = &priv->tqp_vector[i];
364                 ret = irq_cpu_rmap_add(netdev->rx_cpu_rmap,
365                                        tqp_vector->vector_irq);
366                 if (ret) {
367                         hns3_free_rx_cpu_rmap(netdev);
368                         return ret;
369                 }
370         }
371 #endif
372         return 0;
373 }
374
375 static int hns3_nic_net_up(struct net_device *netdev)
376 {
377         struct hns3_nic_priv *priv = netdev_priv(netdev);
378         struct hnae3_handle *h = priv->ae_handle;
379         int i, j;
380         int ret;
381
382         ret = hns3_nic_reset_all_ring(h);
383         if (ret)
384                 return ret;
385
386         clear_bit(HNS3_NIC_STATE_DOWN, &priv->state);
387
388         /* enable the vectors */
389         for (i = 0; i < priv->vector_num; i++)
390                 hns3_vector_enable(&priv->tqp_vector[i]);
391
392         /* enable rcb */
393         for (j = 0; j < h->kinfo.num_tqps; j++)
394                 hns3_tqp_enable(h->kinfo.tqp[j]);
395
396         /* start the ae_dev */
397         ret = h->ae_algo->ops->start ? h->ae_algo->ops->start(h) : 0;
398         if (ret) {
399                 set_bit(HNS3_NIC_STATE_DOWN, &priv->state);
400                 while (j--)
401                         hns3_tqp_disable(h->kinfo.tqp[j]);
402
403                 for (j = i - 1; j >= 0; j--)
404                         hns3_vector_disable(&priv->tqp_vector[j]);
405         }
406
407         return ret;
408 }
409
410 static void hns3_config_xps(struct hns3_nic_priv *priv)
411 {
412         int i;
413
414         for (i = 0; i < priv->vector_num; i++) {
415                 struct hns3_enet_tqp_vector *tqp_vector = &priv->tqp_vector[i];
416                 struct hns3_enet_ring *ring = tqp_vector->tx_group.ring;
417
418                 while (ring) {
419                         int ret;
420
421                         ret = netif_set_xps_queue(priv->netdev,
422                                                   &tqp_vector->affinity_mask,
423                                                   ring->tqp->tqp_index);
424                         if (ret)
425                                 netdev_warn(priv->netdev,
426                                             "set xps queue failed: %d", ret);
427
428                         ring = ring->next;
429                 }
430         }
431 }
432
433 static int hns3_nic_net_open(struct net_device *netdev)
434 {
435         struct hns3_nic_priv *priv = netdev_priv(netdev);
436         struct hnae3_handle *h = hns3_get_handle(netdev);
437         struct hnae3_knic_private_info *kinfo;
438         int i, ret;
439
440         if (hns3_nic_resetting(netdev))
441                 return -EBUSY;
442
443         netif_carrier_off(netdev);
444
445         ret = hns3_nic_set_real_num_queue(netdev);
446         if (ret)
447                 return ret;
448
449         ret = hns3_nic_net_up(netdev);
450         if (ret) {
451                 netdev_err(netdev, "net up fail, ret=%d!\n", ret);
452                 return ret;
453         }
454
455         kinfo = &h->kinfo;
456         for (i = 0; i < HNAE3_MAX_USER_PRIO; i++)
457                 netdev_set_prio_tc_map(netdev, i, kinfo->prio_tc[i]);
458
459         if (h->ae_algo->ops->set_timer_task)
460                 h->ae_algo->ops->set_timer_task(priv->ae_handle, true);
461
462         hns3_config_xps(priv);
463
464         netif_dbg(h, drv, netdev, "net open\n");
465
466         return 0;
467 }
468
469 static void hns3_reset_tx_queue(struct hnae3_handle *h)
470 {
471         struct net_device *ndev = h->kinfo.netdev;
472         struct hns3_nic_priv *priv = netdev_priv(ndev);
473         struct netdev_queue *dev_queue;
474         u32 i;
475
476         for (i = 0; i < h->kinfo.num_tqps; i++) {
477                 dev_queue = netdev_get_tx_queue(ndev,
478                                                 priv->ring[i].queue_index);
479                 netdev_tx_reset_queue(dev_queue);
480         }
481 }
482
483 static void hns3_nic_net_down(struct net_device *netdev)
484 {
485         struct hns3_nic_priv *priv = netdev_priv(netdev);
486         struct hnae3_handle *h = hns3_get_handle(netdev);
487         const struct hnae3_ae_ops *ops;
488         int i;
489
490         /* disable vectors */
491         for (i = 0; i < priv->vector_num; i++)
492                 hns3_vector_disable(&priv->tqp_vector[i]);
493
494         /* disable rcb */
495         for (i = 0; i < h->kinfo.num_tqps; i++)
496                 hns3_tqp_disable(h->kinfo.tqp[i]);
497
498         /* stop ae_dev */
499         ops = priv->ae_handle->ae_algo->ops;
500         if (ops->stop)
501                 ops->stop(priv->ae_handle);
502
503         /* delay ring buffer clearing to hns3_reset_notify_uninit_enet
504          * during reset process, because driver may not be able
505          * to disable the ring through firmware when downing the netdev.
506          */
507         if (!hns3_nic_resetting(netdev))
508                 hns3_clear_all_ring(priv->ae_handle, false);
509
510         hns3_reset_tx_queue(priv->ae_handle);
511 }
512
513 static int hns3_nic_net_stop(struct net_device *netdev)
514 {
515         struct hns3_nic_priv *priv = netdev_priv(netdev);
516         struct hnae3_handle *h = hns3_get_handle(netdev);
517
518         if (test_and_set_bit(HNS3_NIC_STATE_DOWN, &priv->state))
519                 return 0;
520
521         netif_dbg(h, drv, netdev, "net stop\n");
522
523         if (h->ae_algo->ops->set_timer_task)
524                 h->ae_algo->ops->set_timer_task(priv->ae_handle, false);
525
526         netif_tx_stop_all_queues(netdev);
527         netif_carrier_off(netdev);
528
529         hns3_nic_net_down(netdev);
530
531         return 0;
532 }
533
534 static int hns3_nic_uc_sync(struct net_device *netdev,
535                             const unsigned char *addr)
536 {
537         struct hnae3_handle *h = hns3_get_handle(netdev);
538
539         if (h->ae_algo->ops->add_uc_addr)
540                 return h->ae_algo->ops->add_uc_addr(h, addr);
541
542         return 0;
543 }
544
545 static int hns3_nic_uc_unsync(struct net_device *netdev,
546                               const unsigned char *addr)
547 {
548         struct hnae3_handle *h = hns3_get_handle(netdev);
549
550         /* need ignore the request of removing device address, because
551          * we store the device address and other addresses of uc list
552          * in the function's mac filter list.
553          */
554         if (ether_addr_equal(addr, netdev->dev_addr))
555                 return 0;
556
557         if (h->ae_algo->ops->rm_uc_addr)
558                 return h->ae_algo->ops->rm_uc_addr(h, addr);
559
560         return 0;
561 }
562
563 static int hns3_nic_mc_sync(struct net_device *netdev,
564                             const unsigned char *addr)
565 {
566         struct hnae3_handle *h = hns3_get_handle(netdev);
567
568         if (h->ae_algo->ops->add_mc_addr)
569                 return h->ae_algo->ops->add_mc_addr(h, addr);
570
571         return 0;
572 }
573
574 static int hns3_nic_mc_unsync(struct net_device *netdev,
575                               const unsigned char *addr)
576 {
577         struct hnae3_handle *h = hns3_get_handle(netdev);
578
579         if (h->ae_algo->ops->rm_mc_addr)
580                 return h->ae_algo->ops->rm_mc_addr(h, addr);
581
582         return 0;
583 }
584
585 static u8 hns3_get_netdev_flags(struct net_device *netdev)
586 {
587         u8 flags = 0;
588
589         if (netdev->flags & IFF_PROMISC) {
590                 flags = HNAE3_USER_UPE | HNAE3_USER_MPE | HNAE3_BPE;
591         } else {
592                 flags |= HNAE3_VLAN_FLTR;
593                 if (netdev->flags & IFF_ALLMULTI)
594                         flags |= HNAE3_USER_MPE;
595         }
596
597         return flags;
598 }
599
600 static void hns3_nic_set_rx_mode(struct net_device *netdev)
601 {
602         struct hnae3_handle *h = hns3_get_handle(netdev);
603         u8 new_flags;
604
605         new_flags = hns3_get_netdev_flags(netdev);
606
607         __dev_uc_sync(netdev, hns3_nic_uc_sync, hns3_nic_uc_unsync);
608         __dev_mc_sync(netdev, hns3_nic_mc_sync, hns3_nic_mc_unsync);
609
610         /* User mode Promisc mode enable and vlan filtering is disabled to
611          * let all packets in.
612          */
613         h->netdev_flags = new_flags;
614         hns3_request_update_promisc_mode(h);
615 }
616
617 void hns3_request_update_promisc_mode(struct hnae3_handle *handle)
618 {
619         const struct hnae3_ae_ops *ops = handle->ae_algo->ops;
620
621         if (ops->request_update_promisc_mode)
622                 ops->request_update_promisc_mode(handle);
623 }
624
625 int hns3_update_promisc_mode(struct net_device *netdev, u8 promisc_flags)
626 {
627         struct hns3_nic_priv *priv = netdev_priv(netdev);
628         struct hnae3_handle *h = priv->ae_handle;
629
630         if (h->ae_algo->ops->set_promisc_mode) {
631                 return h->ae_algo->ops->set_promisc_mode(h,
632                                                 promisc_flags & HNAE3_UPE,
633                                                 promisc_flags & HNAE3_MPE);
634         }
635
636         return 0;
637 }
638
639 void hns3_enable_vlan_filter(struct net_device *netdev, bool enable)
640 {
641         struct hns3_nic_priv *priv = netdev_priv(netdev);
642         struct hnae3_handle *h = priv->ae_handle;
643         bool last_state;
644
645         if (h->pdev->revision >= 0x21 && h->ae_algo->ops->enable_vlan_filter) {
646                 last_state = h->netdev_flags & HNAE3_VLAN_FLTR ? true : false;
647                 if (enable != last_state) {
648                         netdev_info(netdev,
649                                     "%s vlan filter\n",
650                                     enable ? "enable" : "disable");
651                         h->ae_algo->ops->enable_vlan_filter(h, enable);
652                 }
653         }
654 }
655
656 static int hns3_set_tso(struct sk_buff *skb, u32 *paylen,
657                         u16 *mss, u32 *type_cs_vlan_tso)
658 {
659         u32 l4_offset, hdr_len;
660         union l3_hdr_info l3;
661         union l4_hdr_info l4;
662         u32 l4_paylen;
663         int ret;
664
665         if (!skb_is_gso(skb))
666                 return 0;
667
668         ret = skb_cow_head(skb, 0);
669         if (unlikely(ret < 0))
670                 return ret;
671
672         l3.hdr = skb_network_header(skb);
673         l4.hdr = skb_transport_header(skb);
674
675         /* Software should clear the IPv4's checksum field when tso is
676          * needed.
677          */
678         if (l3.v4->version == 4)
679                 l3.v4->check = 0;
680
681         /* tunnel packet */
682         if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
683                                          SKB_GSO_GRE_CSUM |
684                                          SKB_GSO_UDP_TUNNEL |
685                                          SKB_GSO_UDP_TUNNEL_CSUM)) {
686                 if ((!(skb_shinfo(skb)->gso_type &
687                     SKB_GSO_PARTIAL)) &&
688                     (skb_shinfo(skb)->gso_type &
689                     SKB_GSO_UDP_TUNNEL_CSUM)) {
690                         /* Software should clear the udp's checksum
691                          * field when tso is needed.
692                          */
693                         l4.udp->check = 0;
694                 }
695                 /* reset l3&l4 pointers from outer to inner headers */
696                 l3.hdr = skb_inner_network_header(skb);
697                 l4.hdr = skb_inner_transport_header(skb);
698
699                 /* Software should clear the IPv4's checksum field when
700                  * tso is needed.
701                  */
702                 if (l3.v4->version == 4)
703                         l3.v4->check = 0;
704         }
705
706         /* normal or tunnel packet */
707         l4_offset = l4.hdr - skb->data;
708         hdr_len = (l4.tcp->doff << 2) + l4_offset;
709
710         /* remove payload length from inner pseudo checksum when tso */
711         l4_paylen = skb->len - l4_offset;
712         csum_replace_by_diff(&l4.tcp->check,
713                              (__force __wsum)htonl(l4_paylen));
714
715         /* find the txbd field values */
716         *paylen = skb->len - hdr_len;
717         hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_TSO_B, 1);
718
719         /* get MSS for TSO */
720         *mss = skb_shinfo(skb)->gso_size;
721
722         trace_hns3_tso(skb);
723
724         return 0;
725 }
726
727 static int hns3_get_l4_protocol(struct sk_buff *skb, u8 *ol4_proto,
728                                 u8 *il4_proto)
729 {
730         union l3_hdr_info l3;
731         unsigned char *l4_hdr;
732         unsigned char *exthdr;
733         u8 l4_proto_tmp;
734         __be16 frag_off;
735
736         /* find outer header point */
737         l3.hdr = skb_network_header(skb);
738         l4_hdr = skb_transport_header(skb);
739
740         if (skb->protocol == htons(ETH_P_IPV6)) {
741                 exthdr = l3.hdr + sizeof(*l3.v6);
742                 l4_proto_tmp = l3.v6->nexthdr;
743                 if (l4_hdr != exthdr)
744                         ipv6_skip_exthdr(skb, exthdr - skb->data,
745                                          &l4_proto_tmp, &frag_off);
746         } else if (skb->protocol == htons(ETH_P_IP)) {
747                 l4_proto_tmp = l3.v4->protocol;
748         } else {
749                 return -EINVAL;
750         }
751
752         *ol4_proto = l4_proto_tmp;
753
754         /* tunnel packet */
755         if (!skb->encapsulation) {
756                 *il4_proto = 0;
757                 return 0;
758         }
759
760         /* find inner header point */
761         l3.hdr = skb_inner_network_header(skb);
762         l4_hdr = skb_inner_transport_header(skb);
763
764         if (l3.v6->version == 6) {
765                 exthdr = l3.hdr + sizeof(*l3.v6);
766                 l4_proto_tmp = l3.v6->nexthdr;
767                 if (l4_hdr != exthdr)
768                         ipv6_skip_exthdr(skb, exthdr - skb->data,
769                                          &l4_proto_tmp, &frag_off);
770         } else if (l3.v4->version == 4) {
771                 l4_proto_tmp = l3.v4->protocol;
772         }
773
774         *il4_proto = l4_proto_tmp;
775
776         return 0;
777 }
778
779 /* when skb->encapsulation is 0, skb->ip_summed is CHECKSUM_PARTIAL
780  * and it is udp packet, which has a dest port as the IANA assigned.
781  * the hardware is expected to do the checksum offload, but the
782  * hardware will not do the checksum offload when udp dest port is
783  * 4789.
784  */
785 static bool hns3_tunnel_csum_bug(struct sk_buff *skb)
786 {
787         union l4_hdr_info l4;
788
789         l4.hdr = skb_transport_header(skb);
790
791         if (!(!skb->encapsulation &&
792               l4.udp->dest == htons(IANA_VXLAN_UDP_PORT)))
793                 return false;
794
795         skb_checksum_help(skb);
796
797         return true;
798 }
799
800 static void hns3_set_outer_l2l3l4(struct sk_buff *skb, u8 ol4_proto,
801                                   u32 *ol_type_vlan_len_msec)
802 {
803         u32 l2_len, l3_len, l4_len;
804         unsigned char *il2_hdr;
805         union l3_hdr_info l3;
806         union l4_hdr_info l4;
807
808         l3.hdr = skb_network_header(skb);
809         l4.hdr = skb_transport_header(skb);
810
811         /* compute OL2 header size, defined in 2 Bytes */
812         l2_len = l3.hdr - skb->data;
813         hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L2LEN_S, l2_len >> 1);
814
815         /* compute OL3 header size, defined in 4 Bytes */
816         l3_len = l4.hdr - l3.hdr;
817         hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L3LEN_S, l3_len >> 2);
818
819         il2_hdr = skb_inner_mac_header(skb);
820         /* compute OL4 header size, defined in 4 Bytes */
821         l4_len = il2_hdr - l4.hdr;
822         hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L4LEN_S, l4_len >> 2);
823
824         /* define outer network header type */
825         if (skb->protocol == htons(ETH_P_IP)) {
826                 if (skb_is_gso(skb))
827                         hns3_set_field(*ol_type_vlan_len_msec,
828                                        HNS3_TXD_OL3T_S,
829                                        HNS3_OL3T_IPV4_CSUM);
830                 else
831                         hns3_set_field(*ol_type_vlan_len_msec,
832                                        HNS3_TXD_OL3T_S,
833                                        HNS3_OL3T_IPV4_NO_CSUM);
834
835         } else if (skb->protocol == htons(ETH_P_IPV6)) {
836                 hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_OL3T_S,
837                                HNS3_OL3T_IPV6);
838         }
839
840         if (ol4_proto == IPPROTO_UDP)
841                 hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_TUNTYPE_S,
842                                HNS3_TUN_MAC_IN_UDP);
843         else if (ol4_proto == IPPROTO_GRE)
844                 hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_TUNTYPE_S,
845                                HNS3_TUN_NVGRE);
846 }
847
848 static int hns3_set_l2l3l4(struct sk_buff *skb, u8 ol4_proto,
849                            u8 il4_proto, u32 *type_cs_vlan_tso,
850                            u32 *ol_type_vlan_len_msec)
851 {
852         unsigned char *l2_hdr = skb->data;
853         u32 l4_proto = ol4_proto;
854         union l4_hdr_info l4;
855         union l3_hdr_info l3;
856         u32 l2_len, l3_len;
857
858         l4.hdr = skb_transport_header(skb);
859         l3.hdr = skb_network_header(skb);
860
861         /* handle encapsulation skb */
862         if (skb->encapsulation) {
863                 /* If this is a not UDP/GRE encapsulation skb */
864                 if (!(ol4_proto == IPPROTO_UDP || ol4_proto == IPPROTO_GRE)) {
865                         /* drop the skb tunnel packet if hardware don't support,
866                          * because hardware can't calculate csum when TSO.
867                          */
868                         if (skb_is_gso(skb))
869                                 return -EDOM;
870
871                         /* the stack computes the IP header already,
872                          * driver calculate l4 checksum when not TSO.
873                          */
874                         skb_checksum_help(skb);
875                         return 0;
876                 }
877
878                 hns3_set_outer_l2l3l4(skb, ol4_proto, ol_type_vlan_len_msec);
879
880                 /* switch to inner header */
881                 l2_hdr = skb_inner_mac_header(skb);
882                 l3.hdr = skb_inner_network_header(skb);
883                 l4.hdr = skb_inner_transport_header(skb);
884                 l4_proto = il4_proto;
885         }
886
887         if (l3.v4->version == 4) {
888                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_S,
889                                HNS3_L3T_IPV4);
890
891                 /* the stack computes the IP header already, the only time we
892                  * need the hardware to recompute it is in the case of TSO.
893                  */
894                 if (skb_is_gso(skb))
895                         hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3CS_B, 1);
896         } else if (l3.v6->version == 6) {
897                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_S,
898                                HNS3_L3T_IPV6);
899         }
900
901         /* compute inner(/normal) L2 header size, defined in 2 Bytes */
902         l2_len = l3.hdr - l2_hdr;
903         hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L2LEN_S, l2_len >> 1);
904
905         /* compute inner(/normal) L3 header size, defined in 4 Bytes */
906         l3_len = l4.hdr - l3.hdr;
907         hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3LEN_S, l3_len >> 2);
908
909         /* compute inner(/normal) L4 header size, defined in 4 Bytes */
910         switch (l4_proto) {
911         case IPPROTO_TCP:
912                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
913                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
914                                HNS3_L4T_TCP);
915                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
916                                l4.tcp->doff);
917                 break;
918         case IPPROTO_UDP:
919                 if (hns3_tunnel_csum_bug(skb))
920                         break;
921
922                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
923                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
924                                HNS3_L4T_UDP);
925                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
926                                (sizeof(struct udphdr) >> 2));
927                 break;
928         case IPPROTO_SCTP:
929                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
930                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
931                                HNS3_L4T_SCTP);
932                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
933                                (sizeof(struct sctphdr) >> 2));
934                 break;
935         default:
936                 /* drop the skb tunnel packet if hardware don't support,
937                  * because hardware can't calculate csum when TSO.
938                  */
939                 if (skb_is_gso(skb))
940                         return -EDOM;
941
942                 /* the stack computes the IP header already,
943                  * driver calculate l4 checksum when not TSO.
944                  */
945                 skb_checksum_help(skb);
946                 return 0;
947         }
948
949         return 0;
950 }
951
952 static int hns3_handle_vtags(struct hns3_enet_ring *tx_ring,
953                              struct sk_buff *skb)
954 {
955         struct hnae3_handle *handle = tx_ring->tqp->handle;
956         struct vlan_ethhdr *vhdr;
957         int rc;
958
959         if (!(skb->protocol == htons(ETH_P_8021Q) ||
960               skb_vlan_tag_present(skb)))
961                 return 0;
962
963         /* Since HW limitation, if port based insert VLAN enabled, only one VLAN
964          * header is allowed in skb, otherwise it will cause RAS error.
965          */
966         if (unlikely(skb_vlan_tagged_multi(skb) &&
967                      handle->port_base_vlan_state ==
968                      HNAE3_PORT_BASE_VLAN_ENABLE))
969                 return -EINVAL;
970
971         if (skb->protocol == htons(ETH_P_8021Q) &&
972             !(handle->kinfo.netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
973                 /* When HW VLAN acceleration is turned off, and the stack
974                  * sets the protocol to 802.1q, the driver just need to
975                  * set the protocol to the encapsulated ethertype.
976                  */
977                 skb->protocol = vlan_get_protocol(skb);
978                 return 0;
979         }
980
981         if (skb_vlan_tag_present(skb)) {
982                 /* Based on hw strategy, use out_vtag in two layer tag case,
983                  * and use inner_vtag in one tag case.
984                  */
985                 if (skb->protocol == htons(ETH_P_8021Q) &&
986                     handle->port_base_vlan_state ==
987                     HNAE3_PORT_BASE_VLAN_DISABLE)
988                         rc = HNS3_OUTER_VLAN_TAG;
989                 else
990                         rc = HNS3_INNER_VLAN_TAG;
991
992                 skb->protocol = vlan_get_protocol(skb);
993                 return rc;
994         }
995
996         rc = skb_cow_head(skb, 0);
997         if (unlikely(rc < 0))
998                 return rc;
999
1000         vhdr = (struct vlan_ethhdr *)skb->data;
1001         vhdr->h_vlan_TCI |= cpu_to_be16((skb->priority << VLAN_PRIO_SHIFT)
1002                                          & VLAN_PRIO_MASK);
1003
1004         skb->protocol = vlan_get_protocol(skb);
1005         return 0;
1006 }
1007
1008 static int hns3_fill_skb_desc(struct hns3_enet_ring *ring,
1009                               struct sk_buff *skb, struct hns3_desc *desc)
1010 {
1011         u32 ol_type_vlan_len_msec = 0;
1012         u32 type_cs_vlan_tso = 0;
1013         u32 paylen = skb->len;
1014         u16 inner_vtag = 0;
1015         u16 out_vtag = 0;
1016         u16 mss = 0;
1017         int ret;
1018
1019         ret = hns3_handle_vtags(ring, skb);
1020         if (unlikely(ret < 0)) {
1021                 u64_stats_update_begin(&ring->syncp);
1022                 ring->stats.tx_vlan_err++;
1023                 u64_stats_update_end(&ring->syncp);
1024                 return ret;
1025         } else if (ret == HNS3_INNER_VLAN_TAG) {
1026                 inner_vtag = skb_vlan_tag_get(skb);
1027                 inner_vtag |= (skb->priority << VLAN_PRIO_SHIFT) &
1028                                 VLAN_PRIO_MASK;
1029                 hns3_set_field(type_cs_vlan_tso, HNS3_TXD_VLAN_B, 1);
1030         } else if (ret == HNS3_OUTER_VLAN_TAG) {
1031                 out_vtag = skb_vlan_tag_get(skb);
1032                 out_vtag |= (skb->priority << VLAN_PRIO_SHIFT) &
1033                                 VLAN_PRIO_MASK;
1034                 hns3_set_field(ol_type_vlan_len_msec, HNS3_TXD_OVLAN_B,
1035                                1);
1036         }
1037
1038         if (skb->ip_summed == CHECKSUM_PARTIAL) {
1039                 u8 ol4_proto, il4_proto;
1040
1041                 skb_reset_mac_len(skb);
1042
1043                 ret = hns3_get_l4_protocol(skb, &ol4_proto, &il4_proto);
1044                 if (unlikely(ret < 0)) {
1045                         u64_stats_update_begin(&ring->syncp);
1046                         ring->stats.tx_l4_proto_err++;
1047                         u64_stats_update_end(&ring->syncp);
1048                         return ret;
1049                 }
1050
1051                 ret = hns3_set_l2l3l4(skb, ol4_proto, il4_proto,
1052                                       &type_cs_vlan_tso,
1053                                       &ol_type_vlan_len_msec);
1054                 if (unlikely(ret < 0)) {
1055                         u64_stats_update_begin(&ring->syncp);
1056                         ring->stats.tx_l2l3l4_err++;
1057                         u64_stats_update_end(&ring->syncp);
1058                         return ret;
1059                 }
1060
1061                 ret = hns3_set_tso(skb, &paylen, &mss,
1062                                    &type_cs_vlan_tso);
1063                 if (unlikely(ret < 0)) {
1064                         u64_stats_update_begin(&ring->syncp);
1065                         ring->stats.tx_tso_err++;
1066                         u64_stats_update_end(&ring->syncp);
1067                         return ret;
1068                 }
1069         }
1070
1071         /* Set txbd */
1072         desc->tx.ol_type_vlan_len_msec =
1073                 cpu_to_le32(ol_type_vlan_len_msec);
1074         desc->tx.type_cs_vlan_tso_len = cpu_to_le32(type_cs_vlan_tso);
1075         desc->tx.paylen = cpu_to_le32(paylen);
1076         desc->tx.mss = cpu_to_le16(mss);
1077         desc->tx.vlan_tag = cpu_to_le16(inner_vtag);
1078         desc->tx.outer_vlan_tag = cpu_to_le16(out_vtag);
1079
1080         return 0;
1081 }
1082
1083 static int hns3_fill_desc(struct hns3_enet_ring *ring, void *priv,
1084                           unsigned int size, enum hns_desc_type type)
1085 {
1086 #define HNS3_LIKELY_BD_NUM      1
1087
1088         struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
1089         struct hns3_desc *desc = &ring->desc[ring->next_to_use];
1090         struct device *dev = ring_to_dev(ring);
1091         skb_frag_t *frag;
1092         unsigned int frag_buf_num;
1093         int k, sizeoflast;
1094         dma_addr_t dma;
1095
1096         if (type == DESC_TYPE_SKB) {
1097                 struct sk_buff *skb = (struct sk_buff *)priv;
1098                 int ret;
1099
1100                 ret = hns3_fill_skb_desc(ring, skb, desc);
1101                 if (unlikely(ret < 0))
1102                         return ret;
1103
1104                 dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE);
1105         } else if (type == DESC_TYPE_FRAGLIST_SKB) {
1106                 struct sk_buff *skb = (struct sk_buff *)priv;
1107
1108                 dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE);
1109         } else {
1110                 frag = (skb_frag_t *)priv;
1111                 dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE);
1112         }
1113
1114         if (unlikely(dma_mapping_error(dev, dma))) {
1115                 u64_stats_update_begin(&ring->syncp);
1116                 ring->stats.sw_err_cnt++;
1117                 u64_stats_update_end(&ring->syncp);
1118                 return -ENOMEM;
1119         }
1120
1121         desc_cb->length = size;
1122
1123         if (likely(size <= HNS3_MAX_BD_SIZE)) {
1124                 desc_cb->priv = priv;
1125                 desc_cb->dma = dma;
1126                 desc_cb->type = type;
1127                 desc->addr = cpu_to_le64(dma);
1128                 desc->tx.send_size = cpu_to_le16(size);
1129                 desc->tx.bdtp_fe_sc_vld_ra_ri =
1130                         cpu_to_le16(BIT(HNS3_TXD_VLD_B));
1131
1132                 trace_hns3_tx_desc(ring, ring->next_to_use);
1133                 ring_ptr_move_fw(ring, next_to_use);
1134                 return HNS3_LIKELY_BD_NUM;
1135         }
1136
1137         frag_buf_num = hns3_tx_bd_count(size);
1138         sizeoflast = size & HNS3_TX_LAST_SIZE_M;
1139         sizeoflast = sizeoflast ? sizeoflast : HNS3_MAX_BD_SIZE;
1140
1141         /* When frag size is bigger than hardware limit, split this frag */
1142         for (k = 0; k < frag_buf_num; k++) {
1143                 /* The txbd's baseinfo of DESC_TYPE_PAGE & DESC_TYPE_SKB */
1144                 desc_cb->priv = priv;
1145                 desc_cb->dma = dma + HNS3_MAX_BD_SIZE * k;
1146                 desc_cb->type = ((type == DESC_TYPE_FRAGLIST_SKB ||
1147                                   type == DESC_TYPE_SKB) && !k) ?
1148                                 type : DESC_TYPE_PAGE;
1149
1150                 /* now, fill the descriptor */
1151                 desc->addr = cpu_to_le64(dma + HNS3_MAX_BD_SIZE * k);
1152                 desc->tx.send_size = cpu_to_le16((k == frag_buf_num - 1) ?
1153                                      (u16)sizeoflast : (u16)HNS3_MAX_BD_SIZE);
1154                 desc->tx.bdtp_fe_sc_vld_ra_ri =
1155                                 cpu_to_le16(BIT(HNS3_TXD_VLD_B));
1156
1157                 trace_hns3_tx_desc(ring, ring->next_to_use);
1158                 /* move ring pointer to next */
1159                 ring_ptr_move_fw(ring, next_to_use);
1160
1161                 desc_cb = &ring->desc_cb[ring->next_to_use];
1162                 desc = &ring->desc[ring->next_to_use];
1163         }
1164
1165         return frag_buf_num;
1166 }
1167
1168 static unsigned int hns3_skb_bd_num(struct sk_buff *skb, unsigned int *bd_size,
1169                                     unsigned int bd_num)
1170 {
1171         unsigned int size;
1172         int i;
1173
1174         size = skb_headlen(skb);
1175         while (size > HNS3_MAX_BD_SIZE) {
1176                 bd_size[bd_num++] = HNS3_MAX_BD_SIZE;
1177                 size -= HNS3_MAX_BD_SIZE;
1178
1179                 if (bd_num > HNS3_MAX_TSO_BD_NUM)
1180                         return bd_num;
1181         }
1182
1183         if (size) {
1184                 bd_size[bd_num++] = size;
1185                 if (bd_num > HNS3_MAX_TSO_BD_NUM)
1186                         return bd_num;
1187         }
1188
1189         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1190                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1191                 size = skb_frag_size(frag);
1192                 if (!size)
1193                         continue;
1194
1195                 while (size > HNS3_MAX_BD_SIZE) {
1196                         bd_size[bd_num++] = HNS3_MAX_BD_SIZE;
1197                         size -= HNS3_MAX_BD_SIZE;
1198
1199                         if (bd_num > HNS3_MAX_TSO_BD_NUM)
1200                                 return bd_num;
1201                 }
1202
1203                 bd_size[bd_num++] = size;
1204                 if (bd_num > HNS3_MAX_TSO_BD_NUM)
1205                         return bd_num;
1206         }
1207
1208         return bd_num;
1209 }
1210
1211 static unsigned int hns3_tx_bd_num(struct sk_buff *skb, unsigned int *bd_size)
1212 {
1213         struct sk_buff *frag_skb;
1214         unsigned int bd_num = 0;
1215
1216         /* If the total len is within the max bd limit */
1217         if (likely(skb->len <= HNS3_MAX_BD_SIZE && !skb_has_frag_list(skb) &&
1218                    skb_shinfo(skb)->nr_frags < HNS3_MAX_NON_TSO_BD_NUM))
1219                 return skb_shinfo(skb)->nr_frags + 1U;
1220
1221         /* The below case will always be linearized, return
1222          * HNS3_MAX_BD_NUM_TSO + 1U to make sure it is linearized.
1223          */
1224         if (unlikely(skb->len > HNS3_MAX_TSO_SIZE ||
1225                      (!skb_is_gso(skb) && skb->len > HNS3_MAX_NON_TSO_SIZE)))
1226                 return HNS3_MAX_TSO_BD_NUM + 1U;
1227
1228         bd_num = hns3_skb_bd_num(skb, bd_size, bd_num);
1229
1230         if (!skb_has_frag_list(skb) || bd_num > HNS3_MAX_TSO_BD_NUM)
1231                 return bd_num;
1232
1233         skb_walk_frags(skb, frag_skb) {
1234                 bd_num = hns3_skb_bd_num(frag_skb, bd_size, bd_num);
1235                 if (bd_num > HNS3_MAX_TSO_BD_NUM)
1236                         return bd_num;
1237         }
1238
1239         return bd_num;
1240 }
1241
1242 static unsigned int hns3_gso_hdr_len(struct sk_buff *skb)
1243 {
1244         if (!skb->encapsulation)
1245                 return skb_transport_offset(skb) + tcp_hdrlen(skb);
1246
1247         return skb_inner_transport_offset(skb) + inner_tcp_hdrlen(skb);
1248 }
1249
1250 /* HW need every continuous 8 buffer data to be larger than MSS,
1251  * we simplify it by ensuring skb_headlen + the first continuous
1252  * 7 frags to to be larger than gso header len + mss, and the remaining
1253  * continuous 7 frags to be larger than MSS except the last 7 frags.
1254  */
1255 static bool hns3_skb_need_linearized(struct sk_buff *skb, unsigned int *bd_size,
1256                                      unsigned int bd_num)
1257 {
1258         unsigned int tot_len = 0;
1259         int i;
1260
1261         for (i = 0; i < HNS3_MAX_NON_TSO_BD_NUM - 1U; i++)
1262                 tot_len += bd_size[i];
1263
1264         /* ensure the first 8 frags is greater than mss + header */
1265         if (tot_len + bd_size[HNS3_MAX_NON_TSO_BD_NUM - 1U] <
1266             skb_shinfo(skb)->gso_size + hns3_gso_hdr_len(skb))
1267                 return true;
1268
1269         /* ensure every continuous 7 buffer is greater than mss
1270          * except the last one.
1271          */
1272         for (i = 0; i < bd_num - HNS3_MAX_NON_TSO_BD_NUM; i++) {
1273                 tot_len -= bd_size[i];
1274                 tot_len += bd_size[i + HNS3_MAX_NON_TSO_BD_NUM - 1U];
1275
1276                 if (tot_len < skb_shinfo(skb)->gso_size)
1277                         return true;
1278         }
1279
1280         return false;
1281 }
1282
1283 void hns3_shinfo_pack(struct skb_shared_info *shinfo, __u32 *size)
1284 {
1285         int i = 0;
1286
1287         for (i = 0; i < MAX_SKB_FRAGS; i++)
1288                 size[i] = skb_frag_size(&shinfo->frags[i]);
1289 }
1290
1291 static int hns3_nic_maybe_stop_tx(struct hns3_enet_ring *ring,
1292                                   struct net_device *netdev,
1293                                   struct sk_buff *skb)
1294 {
1295         struct hns3_nic_priv *priv = netdev_priv(netdev);
1296         unsigned int bd_size[HNS3_MAX_TSO_BD_NUM + 1U];
1297         unsigned int bd_num;
1298
1299         bd_num = hns3_tx_bd_num(skb, bd_size);
1300         if (unlikely(bd_num > HNS3_MAX_NON_TSO_BD_NUM)) {
1301                 if (bd_num <= HNS3_MAX_TSO_BD_NUM && skb_is_gso(skb) &&
1302                     !hns3_skb_need_linearized(skb, bd_size, bd_num)) {
1303                         trace_hns3_over_8bd(skb);
1304                         goto out;
1305                 }
1306
1307                 if (__skb_linearize(skb))
1308                         return -ENOMEM;
1309
1310                 bd_num = hns3_tx_bd_count(skb->len);
1311                 if ((skb_is_gso(skb) && bd_num > HNS3_MAX_TSO_BD_NUM) ||
1312                     (!skb_is_gso(skb) &&
1313                      bd_num > HNS3_MAX_NON_TSO_BD_NUM)) {
1314                         trace_hns3_over_8bd(skb);
1315                         return -ENOMEM;
1316                 }
1317
1318                 u64_stats_update_begin(&ring->syncp);
1319                 ring->stats.tx_copy++;
1320                 u64_stats_update_end(&ring->syncp);
1321         }
1322
1323 out:
1324         if (likely(ring_space(ring) >= bd_num))
1325                 return bd_num;
1326
1327         netif_stop_subqueue(netdev, ring->queue_index);
1328         smp_mb(); /* Memory barrier before checking ring_space */
1329
1330         /* Start queue in case hns3_clean_tx_ring has just made room
1331          * available and has not seen the queue stopped state performed
1332          * by netif_stop_subqueue above.
1333          */
1334         if (ring_space(ring) >= bd_num && netif_carrier_ok(netdev) &&
1335             !test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) {
1336                 netif_start_subqueue(netdev, ring->queue_index);
1337                 return bd_num;
1338         }
1339
1340         return -EBUSY;
1341 }
1342
1343 static void hns3_clear_desc(struct hns3_enet_ring *ring, int next_to_use_orig)
1344 {
1345         struct device *dev = ring_to_dev(ring);
1346         unsigned int i;
1347
1348         for (i = 0; i < ring->desc_num; i++) {
1349                 /* check if this is where we started */
1350                 if (ring->next_to_use == next_to_use_orig)
1351                         break;
1352
1353                 /* rollback one */
1354                 ring_ptr_move_bw(ring, next_to_use);
1355
1356                 /* unmap the descriptor dma address */
1357                 if (ring->desc_cb[ring->next_to_use].type == DESC_TYPE_SKB ||
1358                     ring->desc_cb[ring->next_to_use].type ==
1359                     DESC_TYPE_FRAGLIST_SKB)
1360                         dma_unmap_single(dev,
1361                                          ring->desc_cb[ring->next_to_use].dma,
1362                                         ring->desc_cb[ring->next_to_use].length,
1363                                         DMA_TO_DEVICE);
1364                 else if (ring->desc_cb[ring->next_to_use].length)
1365                         dma_unmap_page(dev,
1366                                        ring->desc_cb[ring->next_to_use].dma,
1367                                        ring->desc_cb[ring->next_to_use].length,
1368                                        DMA_TO_DEVICE);
1369
1370                 ring->desc_cb[ring->next_to_use].length = 0;
1371                 ring->desc_cb[ring->next_to_use].dma = 0;
1372         }
1373 }
1374
1375 static int hns3_fill_skb_to_desc(struct hns3_enet_ring *ring,
1376                                  struct sk_buff *skb, enum hns_desc_type type)
1377 {
1378         unsigned int size = skb_headlen(skb);
1379         int i, ret, bd_num = 0;
1380
1381         if (size) {
1382                 ret = hns3_fill_desc(ring, skb, size, type);
1383                 if (unlikely(ret < 0))
1384                         return ret;
1385
1386                 bd_num += ret;
1387         }
1388
1389         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1390                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1391
1392                 size = skb_frag_size(frag);
1393                 if (!size)
1394                         continue;
1395
1396                 ret = hns3_fill_desc(ring, frag, size, DESC_TYPE_PAGE);
1397                 if (unlikely(ret < 0))
1398                         return ret;
1399
1400                 bd_num += ret;
1401         }
1402
1403         return bd_num;
1404 }
1405
1406 netdev_tx_t hns3_nic_net_xmit(struct sk_buff *skb, struct net_device *netdev)
1407 {
1408         struct hns3_nic_priv *priv = netdev_priv(netdev);
1409         struct hns3_enet_ring *ring = &priv->ring[skb->queue_mapping];
1410         struct netdev_queue *dev_queue;
1411         int pre_ntu, next_to_use_head;
1412         struct sk_buff *frag_skb;
1413         int bd_num = 0;
1414         int ret;
1415
1416         /* Hardware can only handle short frames above 32 bytes */
1417         if (skb_put_padto(skb, HNS3_MIN_TX_LEN))
1418                 return NETDEV_TX_OK;
1419
1420         /* Prefetch the data used later */
1421         prefetch(skb->data);
1422
1423         ret = hns3_nic_maybe_stop_tx(ring, netdev, skb);
1424         if (unlikely(ret <= 0)) {
1425                 if (ret == -EBUSY) {
1426                         u64_stats_update_begin(&ring->syncp);
1427                         ring->stats.tx_busy++;
1428                         u64_stats_update_end(&ring->syncp);
1429                         return NETDEV_TX_BUSY;
1430                 } else if (ret == -ENOMEM) {
1431                         u64_stats_update_begin(&ring->syncp);
1432                         ring->stats.sw_err_cnt++;
1433                         u64_stats_update_end(&ring->syncp);
1434                 }
1435
1436                 hns3_rl_err(netdev, "xmit error: %d!\n", ret);
1437                 goto out_err_tx_ok;
1438         }
1439
1440         next_to_use_head = ring->next_to_use;
1441
1442         ret = hns3_fill_skb_to_desc(ring, skb, DESC_TYPE_SKB);
1443         if (unlikely(ret < 0))
1444                 goto fill_err;
1445
1446         bd_num += ret;
1447
1448         skb_walk_frags(skb, frag_skb) {
1449                 ret = hns3_fill_skb_to_desc(ring, frag_skb,
1450                                             DESC_TYPE_FRAGLIST_SKB);
1451                 if (unlikely(ret < 0))
1452                         goto fill_err;
1453
1454                 bd_num += ret;
1455         }
1456
1457         pre_ntu = ring->next_to_use ? (ring->next_to_use - 1) :
1458                                         (ring->desc_num - 1);
1459         ring->desc[pre_ntu].tx.bdtp_fe_sc_vld_ra_ri |=
1460                                 cpu_to_le16(BIT(HNS3_TXD_FE_B));
1461         trace_hns3_tx_desc(ring, pre_ntu);
1462
1463         /* Complete translate all packets */
1464         dev_queue = netdev_get_tx_queue(netdev, ring->queue_index);
1465         netdev_tx_sent_queue(dev_queue, skb->len);
1466
1467         wmb(); /* Commit all data before submit */
1468
1469         hnae3_queue_xmit(ring->tqp, bd_num);
1470
1471         return NETDEV_TX_OK;
1472
1473 fill_err:
1474         hns3_clear_desc(ring, next_to_use_head);
1475
1476 out_err_tx_ok:
1477         dev_kfree_skb_any(skb);
1478         return NETDEV_TX_OK;
1479 }
1480
1481 static int hns3_nic_net_set_mac_address(struct net_device *netdev, void *p)
1482 {
1483         struct hnae3_handle *h = hns3_get_handle(netdev);
1484         struct sockaddr *mac_addr = p;
1485         int ret;
1486
1487         if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data))
1488                 return -EADDRNOTAVAIL;
1489
1490         if (ether_addr_equal(netdev->dev_addr, mac_addr->sa_data)) {
1491                 netdev_info(netdev, "already using mac address %pM\n",
1492                             mac_addr->sa_data);
1493                 return 0;
1494         }
1495
1496         /* For VF device, if there is a perm_addr, then the user will not
1497          * be allowed to change the address.
1498          */
1499         if (!hns3_is_phys_func(h->pdev) &&
1500             !is_zero_ether_addr(netdev->perm_addr)) {
1501                 netdev_err(netdev, "has permanent MAC %pM, user MAC %pM not allow\n",
1502                            netdev->perm_addr, mac_addr->sa_data);
1503                 return -EPERM;
1504         }
1505
1506         ret = h->ae_algo->ops->set_mac_addr(h, mac_addr->sa_data, false);
1507         if (ret) {
1508                 netdev_err(netdev, "set_mac_address fail, ret=%d!\n", ret);
1509                 return ret;
1510         }
1511
1512         ether_addr_copy(netdev->dev_addr, mac_addr->sa_data);
1513
1514         return 0;
1515 }
1516
1517 static int hns3_nic_do_ioctl(struct net_device *netdev,
1518                              struct ifreq *ifr, int cmd)
1519 {
1520         struct hnae3_handle *h = hns3_get_handle(netdev);
1521
1522         if (!netif_running(netdev))
1523                 return -EINVAL;
1524
1525         if (!h->ae_algo->ops->do_ioctl)
1526                 return -EOPNOTSUPP;
1527
1528         return h->ae_algo->ops->do_ioctl(h, ifr, cmd);
1529 }
1530
1531 static int hns3_nic_set_features(struct net_device *netdev,
1532                                  netdev_features_t features)
1533 {
1534         netdev_features_t changed = netdev->features ^ features;
1535         struct hns3_nic_priv *priv = netdev_priv(netdev);
1536         struct hnae3_handle *h = priv->ae_handle;
1537         bool enable;
1538         int ret;
1539
1540         if (changed & (NETIF_F_GRO_HW) && h->ae_algo->ops->set_gro_en) {
1541                 enable = !!(features & NETIF_F_GRO_HW);
1542                 ret = h->ae_algo->ops->set_gro_en(h, enable);
1543                 if (ret)
1544                         return ret;
1545         }
1546
1547         if ((changed & NETIF_F_HW_VLAN_CTAG_RX) &&
1548             h->ae_algo->ops->enable_hw_strip_rxvtag) {
1549                 enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
1550                 ret = h->ae_algo->ops->enable_hw_strip_rxvtag(h, enable);
1551                 if (ret)
1552                         return ret;
1553         }
1554
1555         if ((changed & NETIF_F_NTUPLE) && h->ae_algo->ops->enable_fd) {
1556                 enable = !!(features & NETIF_F_NTUPLE);
1557                 h->ae_algo->ops->enable_fd(h, enable);
1558         }
1559
1560         netdev->features = features;
1561         return 0;
1562 }
1563
1564 static netdev_features_t hns3_features_check(struct sk_buff *skb,
1565                                              struct net_device *dev,
1566                                              netdev_features_t features)
1567 {
1568 #define HNS3_MAX_HDR_LEN        480U
1569 #define HNS3_MAX_L4_HDR_LEN     60U
1570
1571         size_t len;
1572
1573         if (skb->ip_summed != CHECKSUM_PARTIAL)
1574                 return features;
1575
1576         if (skb->encapsulation)
1577                 len = skb_inner_transport_header(skb) - skb->data;
1578         else
1579                 len = skb_transport_header(skb) - skb->data;
1580
1581         /* Assume L4 is 60 byte as TCP is the only protocol with a
1582          * a flexible value, and it's max len is 60 bytes.
1583          */
1584         len += HNS3_MAX_L4_HDR_LEN;
1585
1586         /* Hardware only supports checksum on the skb with a max header
1587          * len of 480 bytes.
1588          */
1589         if (len > HNS3_MAX_HDR_LEN)
1590                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
1591
1592         return features;
1593 }
1594
1595 static void hns3_nic_get_stats64(struct net_device *netdev,
1596                                  struct rtnl_link_stats64 *stats)
1597 {
1598         struct hns3_nic_priv *priv = netdev_priv(netdev);
1599         int queue_num = priv->ae_handle->kinfo.num_tqps;
1600         struct hnae3_handle *handle = priv->ae_handle;
1601         struct hns3_enet_ring *ring;
1602         u64 rx_length_errors = 0;
1603         u64 rx_crc_errors = 0;
1604         u64 rx_multicast = 0;
1605         unsigned int start;
1606         u64 tx_errors = 0;
1607         u64 rx_errors = 0;
1608         unsigned int idx;
1609         u64 tx_bytes = 0;
1610         u64 rx_bytes = 0;
1611         u64 tx_pkts = 0;
1612         u64 rx_pkts = 0;
1613         u64 tx_drop = 0;
1614         u64 rx_drop = 0;
1615
1616         if (test_bit(HNS3_NIC_STATE_DOWN, &priv->state))
1617                 return;
1618
1619         handle->ae_algo->ops->update_stats(handle, &netdev->stats);
1620
1621         for (idx = 0; idx < queue_num; idx++) {
1622                 /* fetch the tx stats */
1623                 ring = &priv->ring[idx];
1624                 do {
1625                         start = u64_stats_fetch_begin_irq(&ring->syncp);
1626                         tx_bytes += ring->stats.tx_bytes;
1627                         tx_pkts += ring->stats.tx_pkts;
1628                         tx_drop += ring->stats.sw_err_cnt;
1629                         tx_drop += ring->stats.tx_vlan_err;
1630                         tx_drop += ring->stats.tx_l4_proto_err;
1631                         tx_drop += ring->stats.tx_l2l3l4_err;
1632                         tx_drop += ring->stats.tx_tso_err;
1633                         tx_errors += ring->stats.sw_err_cnt;
1634                         tx_errors += ring->stats.tx_vlan_err;
1635                         tx_errors += ring->stats.tx_l4_proto_err;
1636                         tx_errors += ring->stats.tx_l2l3l4_err;
1637                         tx_errors += ring->stats.tx_tso_err;
1638                 } while (u64_stats_fetch_retry_irq(&ring->syncp, start));
1639
1640                 /* fetch the rx stats */
1641                 ring = &priv->ring[idx + queue_num];
1642                 do {
1643                         start = u64_stats_fetch_begin_irq(&ring->syncp);
1644                         rx_bytes += ring->stats.rx_bytes;
1645                         rx_pkts += ring->stats.rx_pkts;
1646                         rx_drop += ring->stats.l2_err;
1647                         rx_errors += ring->stats.l2_err;
1648                         rx_errors += ring->stats.l3l4_csum_err;
1649                         rx_crc_errors += ring->stats.l2_err;
1650                         rx_multicast += ring->stats.rx_multicast;
1651                         rx_length_errors += ring->stats.err_pkt_len;
1652                 } while (u64_stats_fetch_retry_irq(&ring->syncp, start));
1653         }
1654
1655         stats->tx_bytes = tx_bytes;
1656         stats->tx_packets = tx_pkts;
1657         stats->rx_bytes = rx_bytes;
1658         stats->rx_packets = rx_pkts;
1659
1660         stats->rx_errors = rx_errors;
1661         stats->multicast = rx_multicast;
1662         stats->rx_length_errors = rx_length_errors;
1663         stats->rx_crc_errors = rx_crc_errors;
1664         stats->rx_missed_errors = netdev->stats.rx_missed_errors;
1665
1666         stats->tx_errors = tx_errors;
1667         stats->rx_dropped = rx_drop;
1668         stats->tx_dropped = tx_drop;
1669         stats->collisions = netdev->stats.collisions;
1670         stats->rx_over_errors = netdev->stats.rx_over_errors;
1671         stats->rx_frame_errors = netdev->stats.rx_frame_errors;
1672         stats->rx_fifo_errors = netdev->stats.rx_fifo_errors;
1673         stats->tx_aborted_errors = netdev->stats.tx_aborted_errors;
1674         stats->tx_carrier_errors = netdev->stats.tx_carrier_errors;
1675         stats->tx_fifo_errors = netdev->stats.tx_fifo_errors;
1676         stats->tx_heartbeat_errors = netdev->stats.tx_heartbeat_errors;
1677         stats->tx_window_errors = netdev->stats.tx_window_errors;
1678         stats->rx_compressed = netdev->stats.rx_compressed;
1679         stats->tx_compressed = netdev->stats.tx_compressed;
1680 }
1681
1682 static int hns3_setup_tc(struct net_device *netdev, void *type_data)
1683 {
1684         struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
1685         u8 *prio_tc = mqprio_qopt->qopt.prio_tc_map;
1686         struct hnae3_knic_private_info *kinfo;
1687         u8 tc = mqprio_qopt->qopt.num_tc;
1688         u16 mode = mqprio_qopt->mode;
1689         u8 hw = mqprio_qopt->qopt.hw;
1690         struct hnae3_handle *h;
1691
1692         if (!((hw == TC_MQPRIO_HW_OFFLOAD_TCS &&
1693                mode == TC_MQPRIO_MODE_CHANNEL) || (!hw && tc == 0)))
1694                 return -EOPNOTSUPP;
1695
1696         if (tc > HNAE3_MAX_TC)
1697                 return -EINVAL;
1698
1699         if (!netdev)
1700                 return -EINVAL;
1701
1702         h = hns3_get_handle(netdev);
1703         kinfo = &h->kinfo;
1704
1705         netif_dbg(h, drv, netdev, "setup tc: num_tc=%u\n", tc);
1706
1707         return (kinfo->dcb_ops && kinfo->dcb_ops->setup_tc) ?
1708                 kinfo->dcb_ops->setup_tc(h, tc ? tc : 1, prio_tc) : -EOPNOTSUPP;
1709 }
1710
1711 static int hns3_nic_setup_tc(struct net_device *dev, enum tc_setup_type type,
1712                              void *type_data)
1713 {
1714         if (type != TC_SETUP_QDISC_MQPRIO)
1715                 return -EOPNOTSUPP;
1716
1717         return hns3_setup_tc(dev, type_data);
1718 }
1719
1720 static int hns3_vlan_rx_add_vid(struct net_device *netdev,
1721                                 __be16 proto, u16 vid)
1722 {
1723         struct hnae3_handle *h = hns3_get_handle(netdev);
1724         int ret = -EIO;
1725
1726         if (h->ae_algo->ops->set_vlan_filter)
1727                 ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, false);
1728
1729         return ret;
1730 }
1731
1732 static int hns3_vlan_rx_kill_vid(struct net_device *netdev,
1733                                  __be16 proto, u16 vid)
1734 {
1735         struct hnae3_handle *h = hns3_get_handle(netdev);
1736         int ret = -EIO;
1737
1738         if (h->ae_algo->ops->set_vlan_filter)
1739                 ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, true);
1740
1741         return ret;
1742 }
1743
1744 static int hns3_ndo_set_vf_vlan(struct net_device *netdev, int vf, u16 vlan,
1745                                 u8 qos, __be16 vlan_proto)
1746 {
1747         struct hnae3_handle *h = hns3_get_handle(netdev);
1748         int ret = -EIO;
1749
1750         netif_dbg(h, drv, netdev,
1751                   "set vf vlan: vf=%d, vlan=%u, qos=%u, vlan_proto=0x%x\n",
1752                   vf, vlan, qos, ntohs(vlan_proto));
1753
1754         if (h->ae_algo->ops->set_vf_vlan_filter)
1755                 ret = h->ae_algo->ops->set_vf_vlan_filter(h, vf, vlan,
1756                                                           qos, vlan_proto);
1757
1758         return ret;
1759 }
1760
1761 static int hns3_set_vf_spoofchk(struct net_device *netdev, int vf, bool enable)
1762 {
1763         struct hnae3_handle *handle = hns3_get_handle(netdev);
1764
1765         if (hns3_nic_resetting(netdev))
1766                 return -EBUSY;
1767
1768         if (!handle->ae_algo->ops->set_vf_spoofchk)
1769                 return -EOPNOTSUPP;
1770
1771         return handle->ae_algo->ops->set_vf_spoofchk(handle, vf, enable);
1772 }
1773
1774 static int hns3_set_vf_trust(struct net_device *netdev, int vf, bool enable)
1775 {
1776         struct hnae3_handle *handle = hns3_get_handle(netdev);
1777
1778         if (!handle->ae_algo->ops->set_vf_trust)
1779                 return -EOPNOTSUPP;
1780
1781         return handle->ae_algo->ops->set_vf_trust(handle, vf, enable);
1782 }
1783
1784 static int hns3_nic_change_mtu(struct net_device *netdev, int new_mtu)
1785 {
1786         struct hnae3_handle *h = hns3_get_handle(netdev);
1787         int ret;
1788
1789         if (hns3_nic_resetting(netdev))
1790                 return -EBUSY;
1791
1792         if (!h->ae_algo->ops->set_mtu)
1793                 return -EOPNOTSUPP;
1794
1795         netif_dbg(h, drv, netdev,
1796                   "change mtu from %u to %d\n", netdev->mtu, new_mtu);
1797
1798         ret = h->ae_algo->ops->set_mtu(h, new_mtu);
1799         if (ret)
1800                 netdev_err(netdev, "failed to change MTU in hardware %d\n",
1801                            ret);
1802         else
1803                 netdev->mtu = new_mtu;
1804
1805         return ret;
1806 }
1807
1808 static bool hns3_get_tx_timeo_queue_info(struct net_device *ndev)
1809 {
1810         struct hns3_nic_priv *priv = netdev_priv(ndev);
1811         struct hnae3_handle *h = hns3_get_handle(ndev);
1812         struct hns3_enet_ring *tx_ring;
1813         struct napi_struct *napi;
1814         int timeout_queue = 0;
1815         int hw_head, hw_tail;
1816         int fbd_num, fbd_oft;
1817         int ebd_num, ebd_oft;
1818         int bd_num, bd_err;
1819         int ring_en, tc;
1820         int i;
1821
1822         /* Find the stopped queue the same way the stack does */
1823         for (i = 0; i < ndev->num_tx_queues; i++) {
1824                 struct netdev_queue *q;
1825                 unsigned long trans_start;
1826
1827                 q = netdev_get_tx_queue(ndev, i);
1828                 trans_start = q->trans_start;
1829                 if (netif_xmit_stopped(q) &&
1830                     time_after(jiffies,
1831                                (trans_start + ndev->watchdog_timeo))) {
1832                         timeout_queue = i;
1833                         netdev_info(ndev, "queue state: 0x%lx, delta msecs: %u\n",
1834                                     q->state,
1835                                     jiffies_to_msecs(jiffies - trans_start));
1836                         break;
1837                 }
1838         }
1839
1840         if (i == ndev->num_tx_queues) {
1841                 netdev_info(ndev,
1842                             "no netdev TX timeout queue found, timeout count: %llu\n",
1843                             priv->tx_timeout_count);
1844                 return false;
1845         }
1846
1847         priv->tx_timeout_count++;
1848
1849         tx_ring = &priv->ring[timeout_queue];
1850         napi = &tx_ring->tqp_vector->napi;
1851
1852         netdev_info(ndev,
1853                     "tx_timeout count: %llu, queue id: %d, SW_NTU: 0x%x, SW_NTC: 0x%x, napi state: %lu\n",
1854                     priv->tx_timeout_count, timeout_queue, tx_ring->next_to_use,
1855                     tx_ring->next_to_clean, napi->state);
1856
1857         netdev_info(ndev,
1858                     "tx_pkts: %llu, tx_bytes: %llu, io_err_cnt: %llu, sw_err_cnt: %llu\n",
1859                     tx_ring->stats.tx_pkts, tx_ring->stats.tx_bytes,
1860                     tx_ring->stats.io_err_cnt, tx_ring->stats.sw_err_cnt);
1861
1862         netdev_info(ndev,
1863                     "seg_pkt_cnt: %llu, tx_err_cnt: %llu, restart_queue: %llu, tx_busy: %llu\n",
1864                     tx_ring->stats.seg_pkt_cnt, tx_ring->stats.tx_err_cnt,
1865                     tx_ring->stats.restart_queue, tx_ring->stats.tx_busy);
1866
1867         /* When mac received many pause frames continuous, it's unable to send
1868          * packets, which may cause tx timeout
1869          */
1870         if (h->ae_algo->ops->get_mac_stats) {
1871                 struct hns3_mac_stats mac_stats;
1872
1873                 h->ae_algo->ops->get_mac_stats(h, &mac_stats);
1874                 netdev_info(ndev, "tx_pause_cnt: %llu, rx_pause_cnt: %llu\n",
1875                             mac_stats.tx_pause_cnt, mac_stats.rx_pause_cnt);
1876         }
1877
1878         hw_head = readl_relaxed(tx_ring->tqp->io_base +
1879                                 HNS3_RING_TX_RING_HEAD_REG);
1880         hw_tail = readl_relaxed(tx_ring->tqp->io_base +
1881                                 HNS3_RING_TX_RING_TAIL_REG);
1882         fbd_num = readl_relaxed(tx_ring->tqp->io_base +
1883                                 HNS3_RING_TX_RING_FBDNUM_REG);
1884         fbd_oft = readl_relaxed(tx_ring->tqp->io_base +
1885                                 HNS3_RING_TX_RING_OFFSET_REG);
1886         ebd_num = readl_relaxed(tx_ring->tqp->io_base +
1887                                 HNS3_RING_TX_RING_EBDNUM_REG);
1888         ebd_oft = readl_relaxed(tx_ring->tqp->io_base +
1889                                 HNS3_RING_TX_RING_EBD_OFFSET_REG);
1890         bd_num = readl_relaxed(tx_ring->tqp->io_base +
1891                                HNS3_RING_TX_RING_BD_NUM_REG);
1892         bd_err = readl_relaxed(tx_ring->tqp->io_base +
1893                                HNS3_RING_TX_RING_BD_ERR_REG);
1894         ring_en = readl_relaxed(tx_ring->tqp->io_base + HNS3_RING_EN_REG);
1895         tc = readl_relaxed(tx_ring->tqp->io_base + HNS3_RING_TX_RING_TC_REG);
1896
1897         netdev_info(ndev,
1898                     "BD_NUM: 0x%x HW_HEAD: 0x%x, HW_TAIL: 0x%x, BD_ERR: 0x%x, INT: 0x%x\n",
1899                     bd_num, hw_head, hw_tail, bd_err,
1900                     readl(tx_ring->tqp_vector->mask_addr));
1901         netdev_info(ndev,
1902                     "RING_EN: 0x%x, TC: 0x%x, FBD_NUM: 0x%x FBD_OFT: 0x%x, EBD_NUM: 0x%x, EBD_OFT: 0x%x\n",
1903                     ring_en, tc, fbd_num, fbd_oft, ebd_num, ebd_oft);
1904
1905         return true;
1906 }
1907
1908 static void hns3_nic_net_timeout(struct net_device *ndev, unsigned int txqueue)
1909 {
1910         struct hns3_nic_priv *priv = netdev_priv(ndev);
1911         struct hnae3_handle *h = priv->ae_handle;
1912
1913         if (!hns3_get_tx_timeo_queue_info(ndev))
1914                 return;
1915
1916         /* request the reset, and let the hclge to determine
1917          * which reset level should be done
1918          */
1919         if (h->ae_algo->ops->reset_event)
1920                 h->ae_algo->ops->reset_event(h->pdev, h);
1921 }
1922
1923 #ifdef CONFIG_RFS_ACCEL
1924 static int hns3_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
1925                               u16 rxq_index, u32 flow_id)
1926 {
1927         struct hnae3_handle *h = hns3_get_handle(dev);
1928         struct flow_keys fkeys;
1929
1930         if (!h->ae_algo->ops->add_arfs_entry)
1931                 return -EOPNOTSUPP;
1932
1933         if (skb->encapsulation)
1934                 return -EPROTONOSUPPORT;
1935
1936         if (!skb_flow_dissect_flow_keys(skb, &fkeys, 0))
1937                 return -EPROTONOSUPPORT;
1938
1939         if ((fkeys.basic.n_proto != htons(ETH_P_IP) &&
1940              fkeys.basic.n_proto != htons(ETH_P_IPV6)) ||
1941             (fkeys.basic.ip_proto != IPPROTO_TCP &&
1942              fkeys.basic.ip_proto != IPPROTO_UDP))
1943                 return -EPROTONOSUPPORT;
1944
1945         return h->ae_algo->ops->add_arfs_entry(h, rxq_index, flow_id, &fkeys);
1946 }
1947 #endif
1948
1949 static int hns3_nic_get_vf_config(struct net_device *ndev, int vf,
1950                                   struct ifla_vf_info *ivf)
1951 {
1952         struct hnae3_handle *h = hns3_get_handle(ndev);
1953
1954         if (!h->ae_algo->ops->get_vf_config)
1955                 return -EOPNOTSUPP;
1956
1957         return h->ae_algo->ops->get_vf_config(h, vf, ivf);
1958 }
1959
1960 static int hns3_nic_set_vf_link_state(struct net_device *ndev, int vf,
1961                                       int link_state)
1962 {
1963         struct hnae3_handle *h = hns3_get_handle(ndev);
1964
1965         if (!h->ae_algo->ops->set_vf_link_state)
1966                 return -EOPNOTSUPP;
1967
1968         return h->ae_algo->ops->set_vf_link_state(h, vf, link_state);
1969 }
1970
1971 static int hns3_nic_set_vf_rate(struct net_device *ndev, int vf,
1972                                 int min_tx_rate, int max_tx_rate)
1973 {
1974         struct hnae3_handle *h = hns3_get_handle(ndev);
1975
1976         if (!h->ae_algo->ops->set_vf_rate)
1977                 return -EOPNOTSUPP;
1978
1979         return h->ae_algo->ops->set_vf_rate(h, vf, min_tx_rate, max_tx_rate,
1980                                             false);
1981 }
1982
1983 static int hns3_nic_set_vf_mac(struct net_device *netdev, int vf_id, u8 *mac)
1984 {
1985         struct hnae3_handle *h = hns3_get_handle(netdev);
1986
1987         if (!h->ae_algo->ops->set_vf_mac)
1988                 return -EOPNOTSUPP;
1989
1990         if (is_multicast_ether_addr(mac)) {
1991                 netdev_err(netdev,
1992                            "Invalid MAC:%pM specified. Could not set MAC\n",
1993                            mac);
1994                 return -EINVAL;
1995         }
1996
1997         return h->ae_algo->ops->set_vf_mac(h, vf_id, mac);
1998 }
1999
2000 static const struct net_device_ops hns3_nic_netdev_ops = {
2001         .ndo_open               = hns3_nic_net_open,
2002         .ndo_stop               = hns3_nic_net_stop,
2003         .ndo_start_xmit         = hns3_nic_net_xmit,
2004         .ndo_tx_timeout         = hns3_nic_net_timeout,
2005         .ndo_set_mac_address    = hns3_nic_net_set_mac_address,
2006         .ndo_do_ioctl           = hns3_nic_do_ioctl,
2007         .ndo_change_mtu         = hns3_nic_change_mtu,
2008         .ndo_set_features       = hns3_nic_set_features,
2009         .ndo_features_check     = hns3_features_check,
2010         .ndo_get_stats64        = hns3_nic_get_stats64,
2011         .ndo_setup_tc           = hns3_nic_setup_tc,
2012         .ndo_set_rx_mode        = hns3_nic_set_rx_mode,
2013         .ndo_vlan_rx_add_vid    = hns3_vlan_rx_add_vid,
2014         .ndo_vlan_rx_kill_vid   = hns3_vlan_rx_kill_vid,
2015         .ndo_set_vf_vlan        = hns3_ndo_set_vf_vlan,
2016         .ndo_set_vf_spoofchk    = hns3_set_vf_spoofchk,
2017         .ndo_set_vf_trust       = hns3_set_vf_trust,
2018 #ifdef CONFIG_RFS_ACCEL
2019         .ndo_rx_flow_steer      = hns3_rx_flow_steer,
2020 #endif
2021         .ndo_get_vf_config      = hns3_nic_get_vf_config,
2022         .ndo_set_vf_link_state  = hns3_nic_set_vf_link_state,
2023         .ndo_set_vf_rate        = hns3_nic_set_vf_rate,
2024         .ndo_set_vf_mac         = hns3_nic_set_vf_mac,
2025 };
2026
2027 bool hns3_is_phys_func(struct pci_dev *pdev)
2028 {
2029         u32 dev_id = pdev->device;
2030
2031         switch (dev_id) {
2032         case HNAE3_DEV_ID_GE:
2033         case HNAE3_DEV_ID_25GE:
2034         case HNAE3_DEV_ID_25GE_RDMA:
2035         case HNAE3_DEV_ID_25GE_RDMA_MACSEC:
2036         case HNAE3_DEV_ID_50GE_RDMA:
2037         case HNAE3_DEV_ID_50GE_RDMA_MACSEC:
2038         case HNAE3_DEV_ID_100G_RDMA_MACSEC:
2039                 return true;
2040         case HNAE3_DEV_ID_100G_VF:
2041         case HNAE3_DEV_ID_100G_RDMA_DCB_PFC_VF:
2042                 return false;
2043         default:
2044                 dev_warn(&pdev->dev, "un-recognized pci device-id %u",
2045                          dev_id);
2046         }
2047
2048         return false;
2049 }
2050
2051 static void hns3_disable_sriov(struct pci_dev *pdev)
2052 {
2053         /* If our VFs are assigned we cannot shut down SR-IOV
2054          * without causing issues, so just leave the hardware
2055          * available but disabled
2056          */
2057         if (pci_vfs_assigned(pdev)) {
2058                 dev_warn(&pdev->dev,
2059                          "disabling driver while VFs are assigned\n");
2060                 return;
2061         }
2062
2063         pci_disable_sriov(pdev);
2064 }
2065
2066 static void hns3_get_dev_capability(struct pci_dev *pdev,
2067                                     struct hnae3_ae_dev *ae_dev)
2068 {
2069         if (pdev->revision >= 0x21) {
2070                 hnae3_set_bit(ae_dev->flag, HNAE3_DEV_SUPPORT_FD_B, 1);
2071                 hnae3_set_bit(ae_dev->flag, HNAE3_DEV_SUPPORT_GRO_B, 1);
2072         }
2073 }
2074
2075 /* hns3_probe - Device initialization routine
2076  * @pdev: PCI device information struct
2077  * @ent: entry in hns3_pci_tbl
2078  *
2079  * hns3_probe initializes a PF identified by a pci_dev structure.
2080  * The OS initialization, configuring of the PF private structure,
2081  * and a hardware reset occur.
2082  *
2083  * Returns 0 on success, negative on failure
2084  */
2085 static int hns3_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2086 {
2087         struct hnae3_ae_dev *ae_dev;
2088         int ret;
2089
2090         ae_dev = devm_kzalloc(&pdev->dev, sizeof(*ae_dev), GFP_KERNEL);
2091         if (!ae_dev)
2092                 return -ENOMEM;
2093
2094         ae_dev->pdev = pdev;
2095         ae_dev->flag = ent->driver_data;
2096         hns3_get_dev_capability(pdev, ae_dev);
2097         pci_set_drvdata(pdev, ae_dev);
2098
2099         ret = hnae3_register_ae_dev(ae_dev);
2100         if (ret)
2101                 pci_set_drvdata(pdev, NULL);
2102
2103         return ret;
2104 }
2105
2106 /* hns3_remove - Device removal routine
2107  * @pdev: PCI device information struct
2108  */
2109 static void hns3_remove(struct pci_dev *pdev)
2110 {
2111         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2112
2113         if (hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV))
2114                 hns3_disable_sriov(pdev);
2115
2116         hnae3_unregister_ae_dev(ae_dev);
2117         pci_set_drvdata(pdev, NULL);
2118 }
2119
2120 /**
2121  * hns3_pci_sriov_configure
2122  * @pdev: pointer to a pci_dev structure
2123  * @num_vfs: number of VFs to allocate
2124  *
2125  * Enable or change the number of VFs. Called when the user updates the number
2126  * of VFs in sysfs.
2127  **/
2128 static int hns3_pci_sriov_configure(struct pci_dev *pdev, int num_vfs)
2129 {
2130         int ret;
2131
2132         if (!(hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV))) {
2133                 dev_warn(&pdev->dev, "Can not config SRIOV\n");
2134                 return -EINVAL;
2135         }
2136
2137         if (num_vfs) {
2138                 ret = pci_enable_sriov(pdev, num_vfs);
2139                 if (ret)
2140                         dev_err(&pdev->dev, "SRIOV enable failed %d\n", ret);
2141                 else
2142                         return num_vfs;
2143         } else if (!pci_vfs_assigned(pdev)) {
2144                 pci_disable_sriov(pdev);
2145         } else {
2146                 dev_warn(&pdev->dev,
2147                          "Unable to free VFs because some are assigned to VMs.\n");
2148         }
2149
2150         return 0;
2151 }
2152
2153 static void hns3_shutdown(struct pci_dev *pdev)
2154 {
2155         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2156
2157         hnae3_unregister_ae_dev(ae_dev);
2158         pci_set_drvdata(pdev, NULL);
2159
2160         if (system_state == SYSTEM_POWER_OFF)
2161                 pci_set_power_state(pdev, PCI_D3hot);
2162 }
2163
2164 static pci_ers_result_t hns3_error_detected(struct pci_dev *pdev,
2165                                             pci_channel_state_t state)
2166 {
2167         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2168         pci_ers_result_t ret;
2169
2170         dev_info(&pdev->dev, "PCI error detected, state(=%d)!!\n", state);
2171
2172         if (state == pci_channel_io_perm_failure)
2173                 return PCI_ERS_RESULT_DISCONNECT;
2174
2175         if (!ae_dev || !ae_dev->ops) {
2176                 dev_err(&pdev->dev,
2177                         "Can't recover - error happened before device initialized\n");
2178                 return PCI_ERS_RESULT_NONE;
2179         }
2180
2181         if (ae_dev->ops->handle_hw_ras_error)
2182                 ret = ae_dev->ops->handle_hw_ras_error(ae_dev);
2183         else
2184                 return PCI_ERS_RESULT_NONE;
2185
2186         return ret;
2187 }
2188
2189 static pci_ers_result_t hns3_slot_reset(struct pci_dev *pdev)
2190 {
2191         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2192         const struct hnae3_ae_ops *ops;
2193         enum hnae3_reset_type reset_type;
2194         struct device *dev = &pdev->dev;
2195
2196         if (!ae_dev || !ae_dev->ops)
2197                 return PCI_ERS_RESULT_NONE;
2198
2199         ops = ae_dev->ops;
2200         /* request the reset */
2201         if (ops->reset_event && ops->get_reset_level &&
2202             ops->set_default_reset_request) {
2203                 if (ae_dev->hw_err_reset_req) {
2204                         reset_type = ops->get_reset_level(ae_dev,
2205                                                 &ae_dev->hw_err_reset_req);
2206                         ops->set_default_reset_request(ae_dev, reset_type);
2207                         dev_info(dev, "requesting reset due to PCI error\n");
2208                         ops->reset_event(pdev, NULL);
2209                 }
2210
2211                 return PCI_ERS_RESULT_RECOVERED;
2212         }
2213
2214         return PCI_ERS_RESULT_DISCONNECT;
2215 }
2216
2217 static void hns3_reset_prepare(struct pci_dev *pdev)
2218 {
2219         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2220
2221         dev_info(&pdev->dev, "FLR prepare\n");
2222         if (ae_dev && ae_dev->ops && ae_dev->ops->flr_prepare)
2223                 ae_dev->ops->flr_prepare(ae_dev);
2224 }
2225
2226 static void hns3_reset_done(struct pci_dev *pdev)
2227 {
2228         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2229
2230         dev_info(&pdev->dev, "FLR done\n");
2231         if (ae_dev && ae_dev->ops && ae_dev->ops->flr_done)
2232                 ae_dev->ops->flr_done(ae_dev);
2233 }
2234
2235 static const struct pci_error_handlers hns3_err_handler = {
2236         .error_detected = hns3_error_detected,
2237         .slot_reset     = hns3_slot_reset,
2238         .reset_prepare  = hns3_reset_prepare,
2239         .reset_done     = hns3_reset_done,
2240 };
2241
2242 static struct pci_driver hns3_driver = {
2243         .name     = hns3_driver_name,
2244         .id_table = hns3_pci_tbl,
2245         .probe    = hns3_probe,
2246         .remove   = hns3_remove,
2247         .shutdown = hns3_shutdown,
2248         .sriov_configure = hns3_pci_sriov_configure,
2249         .err_handler    = &hns3_err_handler,
2250 };
2251
2252 /* set default feature to hns3 */
2253 static void hns3_set_default_feature(struct net_device *netdev)
2254 {
2255         struct hnae3_handle *h = hns3_get_handle(netdev);
2256         struct pci_dev *pdev = h->pdev;
2257
2258         netdev->priv_flags |= IFF_UNICAST_FLT;
2259
2260         netdev->hw_enc_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2261                 NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2262                 NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
2263                 NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
2264                 NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_SCTP_CRC |
2265                 NETIF_F_TSO_MANGLEID | NETIF_F_FRAGLIST;
2266
2267         netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
2268
2269         netdev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2270                 NETIF_F_HW_VLAN_CTAG_FILTER |
2271                 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
2272                 NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2273                 NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
2274                 NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
2275                 NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_SCTP_CRC |
2276                 NETIF_F_FRAGLIST;
2277
2278         netdev->vlan_features |=
2279                 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM |
2280                 NETIF_F_SG | NETIF_F_GSO | NETIF_F_GRO |
2281                 NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
2282                 NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
2283                 NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_SCTP_CRC |
2284                 NETIF_F_FRAGLIST;
2285
2286         netdev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2287                 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
2288                 NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2289                 NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
2290                 NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
2291                 NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_SCTP_CRC |
2292                 NETIF_F_FRAGLIST;
2293
2294         if (pdev->revision >= 0x21) {
2295                 netdev->hw_features |= NETIF_F_GRO_HW;
2296                 netdev->features |= NETIF_F_GRO_HW;
2297
2298                 if (!(h->flags & HNAE3_SUPPORT_VF)) {
2299                         netdev->hw_features |= NETIF_F_NTUPLE;
2300                         netdev->features |= NETIF_F_NTUPLE;
2301                 }
2302         }
2303 }
2304
2305 static int hns3_alloc_buffer(struct hns3_enet_ring *ring,
2306                              struct hns3_desc_cb *cb)
2307 {
2308         unsigned int order = hns3_page_order(ring);
2309         struct page *p;
2310
2311         p = dev_alloc_pages(order);
2312         if (!p)
2313                 return -ENOMEM;
2314
2315         cb->priv = p;
2316         cb->page_offset = 0;
2317         cb->reuse_flag = 0;
2318         cb->buf  = page_address(p);
2319         cb->length = hns3_page_size(ring);
2320         cb->type = DESC_TYPE_PAGE;
2321
2322         return 0;
2323 }
2324
2325 static void hns3_free_buffer(struct hns3_enet_ring *ring,
2326                              struct hns3_desc_cb *cb)
2327 {
2328         if (cb->type == DESC_TYPE_SKB)
2329                 dev_kfree_skb_any((struct sk_buff *)cb->priv);
2330         else if (!HNAE3_IS_TX_RING(ring))
2331                 put_page((struct page *)cb->priv);
2332         memset(cb, 0, sizeof(*cb));
2333 }
2334
2335 static int hns3_map_buffer(struct hns3_enet_ring *ring, struct hns3_desc_cb *cb)
2336 {
2337         cb->dma = dma_map_page(ring_to_dev(ring), cb->priv, 0,
2338                                cb->length, ring_to_dma_dir(ring));
2339
2340         if (unlikely(dma_mapping_error(ring_to_dev(ring), cb->dma)))
2341                 return -EIO;
2342
2343         return 0;
2344 }
2345
2346 static void hns3_unmap_buffer(struct hns3_enet_ring *ring,
2347                               struct hns3_desc_cb *cb)
2348 {
2349         if (cb->type == DESC_TYPE_SKB || cb->type == DESC_TYPE_FRAGLIST_SKB)
2350                 dma_unmap_single(ring_to_dev(ring), cb->dma, cb->length,
2351                                  ring_to_dma_dir(ring));
2352         else if (cb->length)
2353                 dma_unmap_page(ring_to_dev(ring), cb->dma, cb->length,
2354                                ring_to_dma_dir(ring));
2355 }
2356
2357 static void hns3_buffer_detach(struct hns3_enet_ring *ring, int i)
2358 {
2359         hns3_unmap_buffer(ring, &ring->desc_cb[i]);
2360         ring->desc[i].addr = 0;
2361 }
2362
2363 static void hns3_free_buffer_detach(struct hns3_enet_ring *ring, int i)
2364 {
2365         struct hns3_desc_cb *cb = &ring->desc_cb[i];
2366
2367         if (!ring->desc_cb[i].dma)
2368                 return;
2369
2370         hns3_buffer_detach(ring, i);
2371         hns3_free_buffer(ring, cb);
2372 }
2373
2374 static void hns3_free_buffers(struct hns3_enet_ring *ring)
2375 {
2376         int i;
2377
2378         for (i = 0; i < ring->desc_num; i++)
2379                 hns3_free_buffer_detach(ring, i);
2380 }
2381
2382 /* free desc along with its attached buffer */
2383 static void hns3_free_desc(struct hns3_enet_ring *ring)
2384 {
2385         int size = ring->desc_num * sizeof(ring->desc[0]);
2386
2387         hns3_free_buffers(ring);
2388
2389         if (ring->desc) {
2390                 dma_free_coherent(ring_to_dev(ring), size,
2391                                   ring->desc, ring->desc_dma_addr);
2392                 ring->desc = NULL;
2393         }
2394 }
2395
2396 static int hns3_alloc_desc(struct hns3_enet_ring *ring)
2397 {
2398         int size = ring->desc_num * sizeof(ring->desc[0]);
2399
2400         ring->desc = dma_alloc_coherent(ring_to_dev(ring), size,
2401                                         &ring->desc_dma_addr, GFP_KERNEL);
2402         if (!ring->desc)
2403                 return -ENOMEM;
2404
2405         return 0;
2406 }
2407
2408 static int hns3_alloc_and_map_buffer(struct hns3_enet_ring *ring,
2409                                    struct hns3_desc_cb *cb)
2410 {
2411         int ret;
2412
2413         ret = hns3_alloc_buffer(ring, cb);
2414         if (ret)
2415                 goto out;
2416
2417         ret = hns3_map_buffer(ring, cb);
2418         if (ret)
2419                 goto out_with_buf;
2420
2421         return 0;
2422
2423 out_with_buf:
2424         hns3_free_buffer(ring, cb);
2425 out:
2426         return ret;
2427 }
2428
2429 static int hns3_alloc_and_attach_buffer(struct hns3_enet_ring *ring, int i)
2430 {
2431         int ret = hns3_alloc_and_map_buffer(ring, &ring->desc_cb[i]);
2432
2433         if (ret)
2434                 return ret;
2435
2436         ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma);
2437
2438         return 0;
2439 }
2440
2441 /* Allocate memory for raw pkg, and map with dma */
2442 static int hns3_alloc_ring_buffers(struct hns3_enet_ring *ring)
2443 {
2444         int i, j, ret;
2445
2446         for (i = 0; i < ring->desc_num; i++) {
2447                 ret = hns3_alloc_and_attach_buffer(ring, i);
2448                 if (ret)
2449                         goto out_buffer_fail;
2450         }
2451
2452         return 0;
2453
2454 out_buffer_fail:
2455         for (j = i - 1; j >= 0; j--)
2456                 hns3_free_buffer_detach(ring, j);
2457         return ret;
2458 }
2459
2460 /* detach a in-used buffer and replace with a reserved one */
2461 static void hns3_replace_buffer(struct hns3_enet_ring *ring, int i,
2462                                 struct hns3_desc_cb *res_cb)
2463 {
2464         hns3_unmap_buffer(ring, &ring->desc_cb[i]);
2465         ring->desc_cb[i] = *res_cb;
2466         ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma);
2467         ring->desc[i].rx.bd_base_info = 0;
2468 }
2469
2470 static void hns3_reuse_buffer(struct hns3_enet_ring *ring, int i)
2471 {
2472         ring->desc_cb[i].reuse_flag = 0;
2473         ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma +
2474                                          ring->desc_cb[i].page_offset);
2475         ring->desc[i].rx.bd_base_info = 0;
2476
2477         dma_sync_single_for_device(ring_to_dev(ring),
2478                         ring->desc_cb[i].dma + ring->desc_cb[i].page_offset,
2479                         hns3_buf_size(ring),
2480                         DMA_FROM_DEVICE);
2481 }
2482
2483 static void hns3_nic_reclaim_desc(struct hns3_enet_ring *ring, int head,
2484                                   int *bytes, int *pkts)
2485 {
2486         int ntc = ring->next_to_clean;
2487         struct hns3_desc_cb *desc_cb;
2488
2489         while (head != ntc) {
2490                 desc_cb = &ring->desc_cb[ntc];
2491                 (*pkts) += (desc_cb->type == DESC_TYPE_SKB);
2492                 (*bytes) += desc_cb->length;
2493                 /* desc_cb will be cleaned, after hnae3_free_buffer_detach */
2494                 hns3_free_buffer_detach(ring, ntc);
2495
2496                 if (++ntc == ring->desc_num)
2497                         ntc = 0;
2498
2499                 /* Issue prefetch for next Tx descriptor */
2500                 prefetch(&ring->desc_cb[ntc]);
2501         }
2502
2503         /* This smp_store_release() pairs with smp_load_acquire() in
2504          * ring_space called by hns3_nic_net_xmit.
2505          */
2506         smp_store_release(&ring->next_to_clean, ntc);
2507 }
2508
2509 static int is_valid_clean_head(struct hns3_enet_ring *ring, int h)
2510 {
2511         int u = ring->next_to_use;
2512         int c = ring->next_to_clean;
2513
2514         if (unlikely(h > ring->desc_num))
2515                 return 0;
2516
2517         return u > c ? (h > c && h <= u) : (h > c || h <= u);
2518 }
2519
2520 void hns3_clean_tx_ring(struct hns3_enet_ring *ring)
2521 {
2522         struct net_device *netdev = ring_to_netdev(ring);
2523         struct hns3_nic_priv *priv = netdev_priv(netdev);
2524         struct netdev_queue *dev_queue;
2525         int bytes, pkts;
2526         int head;
2527
2528         head = readl_relaxed(ring->tqp->io_base + HNS3_RING_TX_RING_HEAD_REG);
2529
2530         if (is_ring_empty(ring) || head == ring->next_to_clean)
2531                 return; /* no data to poll */
2532
2533         rmb(); /* Make sure head is ready before touch any data */
2534
2535         if (unlikely(!is_valid_clean_head(ring, head))) {
2536                 hns3_rl_err(netdev, "wrong head (%d, %d-%d)\n", head,
2537                             ring->next_to_use, ring->next_to_clean);
2538
2539                 u64_stats_update_begin(&ring->syncp);
2540                 ring->stats.io_err_cnt++;
2541                 u64_stats_update_end(&ring->syncp);
2542                 return;
2543         }
2544
2545         bytes = 0;
2546         pkts = 0;
2547         hns3_nic_reclaim_desc(ring, head, &bytes, &pkts);
2548
2549         ring->tqp_vector->tx_group.total_bytes += bytes;
2550         ring->tqp_vector->tx_group.total_packets += pkts;
2551
2552         u64_stats_update_begin(&ring->syncp);
2553         ring->stats.tx_bytes += bytes;
2554         ring->stats.tx_pkts += pkts;
2555         u64_stats_update_end(&ring->syncp);
2556
2557         dev_queue = netdev_get_tx_queue(netdev, ring->tqp->tqp_index);
2558         netdev_tx_completed_queue(dev_queue, pkts, bytes);
2559
2560         if (unlikely(netif_carrier_ok(netdev) &&
2561                      ring_space(ring) > HNS3_MAX_TSO_BD_NUM)) {
2562                 /* Make sure that anybody stopping the queue after this
2563                  * sees the new next_to_clean.
2564                  */
2565                 smp_mb();
2566                 if (netif_tx_queue_stopped(dev_queue) &&
2567                     !test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) {
2568                         netif_tx_wake_queue(dev_queue);
2569                         ring->stats.restart_queue++;
2570                 }
2571         }
2572 }
2573
2574 static int hns3_desc_unused(struct hns3_enet_ring *ring)
2575 {
2576         int ntc = ring->next_to_clean;
2577         int ntu = ring->next_to_use;
2578
2579         return ((ntc >= ntu) ? 0 : ring->desc_num) + ntc - ntu;
2580 }
2581
2582 static void hns3_nic_alloc_rx_buffers(struct hns3_enet_ring *ring,
2583                                       int cleand_count)
2584 {
2585         struct hns3_desc_cb *desc_cb;
2586         struct hns3_desc_cb res_cbs;
2587         int i, ret;
2588
2589         for (i = 0; i < cleand_count; i++) {
2590                 desc_cb = &ring->desc_cb[ring->next_to_use];
2591                 if (desc_cb->reuse_flag) {
2592                         u64_stats_update_begin(&ring->syncp);
2593                         ring->stats.reuse_pg_cnt++;
2594                         u64_stats_update_end(&ring->syncp);
2595
2596                         hns3_reuse_buffer(ring, ring->next_to_use);
2597                 } else {
2598                         ret = hns3_alloc_and_map_buffer(ring, &res_cbs);
2599                         if (ret) {
2600                                 u64_stats_update_begin(&ring->syncp);
2601                                 ring->stats.sw_err_cnt++;
2602                                 u64_stats_update_end(&ring->syncp);
2603
2604                                 hns3_rl_err(ring_to_netdev(ring),
2605                                             "alloc rx buffer failed: %d\n",
2606                                             ret);
2607                                 break;
2608                         }
2609                         hns3_replace_buffer(ring, ring->next_to_use, &res_cbs);
2610
2611                         u64_stats_update_begin(&ring->syncp);
2612                         ring->stats.non_reuse_pg++;
2613                         u64_stats_update_end(&ring->syncp);
2614                 }
2615
2616                 ring_ptr_move_fw(ring, next_to_use);
2617         }
2618
2619         wmb(); /* Make all data has been write before submit */
2620         writel_relaxed(i, ring->tqp->io_base + HNS3_RING_RX_RING_HEAD_REG);
2621 }
2622
2623 static bool hns3_page_is_reusable(struct page *page)
2624 {
2625         return page_to_nid(page) == numa_mem_id() &&
2626                 !page_is_pfmemalloc(page);
2627 }
2628
2629 static void hns3_nic_reuse_page(struct sk_buff *skb, int i,
2630                                 struct hns3_enet_ring *ring, int pull_len,
2631                                 struct hns3_desc_cb *desc_cb)
2632 {
2633         struct hns3_desc *desc = &ring->desc[ring->next_to_clean];
2634         int size = le16_to_cpu(desc->rx.size);
2635         u32 truesize = hns3_buf_size(ring);
2636
2637         skb_add_rx_frag(skb, i, desc_cb->priv, desc_cb->page_offset + pull_len,
2638                         size - pull_len, truesize);
2639
2640         /* Avoid re-using remote pages, or the stack is still using the page
2641          * when page_offset rollback to zero, flag default unreuse
2642          */
2643         if (unlikely(!hns3_page_is_reusable(desc_cb->priv)) ||
2644             (!desc_cb->page_offset && page_count(desc_cb->priv) > 1))
2645                 return;
2646
2647         /* Move offset up to the next cache line */
2648         desc_cb->page_offset += truesize;
2649
2650         if (desc_cb->page_offset + truesize <= hns3_page_size(ring)) {
2651                 desc_cb->reuse_flag = 1;
2652                 /* Bump ref count on page before it is given */
2653                 get_page(desc_cb->priv);
2654         } else if (page_count(desc_cb->priv) == 1) {
2655                 desc_cb->reuse_flag = 1;
2656                 desc_cb->page_offset = 0;
2657                 get_page(desc_cb->priv);
2658         }
2659 }
2660
2661 static int hns3_gro_complete(struct sk_buff *skb, u32 l234info)
2662 {
2663         __be16 type = skb->protocol;
2664         struct tcphdr *th;
2665         int depth = 0;
2666
2667         while (eth_type_vlan(type)) {
2668                 struct vlan_hdr *vh;
2669
2670                 if ((depth + VLAN_HLEN) > skb_headlen(skb))
2671                         return -EFAULT;
2672
2673                 vh = (struct vlan_hdr *)(skb->data + depth);
2674                 type = vh->h_vlan_encapsulated_proto;
2675                 depth += VLAN_HLEN;
2676         }
2677
2678         skb_set_network_header(skb, depth);
2679
2680         if (type == htons(ETH_P_IP)) {
2681                 const struct iphdr *iph = ip_hdr(skb);
2682
2683                 depth += sizeof(struct iphdr);
2684                 skb_set_transport_header(skb, depth);
2685                 th = tcp_hdr(skb);
2686                 th->check = ~tcp_v4_check(skb->len - depth, iph->saddr,
2687                                           iph->daddr, 0);
2688         } else if (type == htons(ETH_P_IPV6)) {
2689                 const struct ipv6hdr *iph = ipv6_hdr(skb);
2690
2691                 depth += sizeof(struct ipv6hdr);
2692                 skb_set_transport_header(skb, depth);
2693                 th = tcp_hdr(skb);
2694                 th->check = ~tcp_v6_check(skb->len - depth, &iph->saddr,
2695                                           &iph->daddr, 0);
2696         } else {
2697                 hns3_rl_err(skb->dev,
2698                             "Error: FW GRO supports only IPv4/IPv6, not 0x%04x, depth: %d\n",
2699                             be16_to_cpu(type), depth);
2700                 return -EFAULT;
2701         }
2702
2703         skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count;
2704         if (th->cwr)
2705                 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
2706
2707         if (l234info & BIT(HNS3_RXD_GRO_FIXID_B))
2708                 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_FIXEDID;
2709
2710         skb->csum_start = (unsigned char *)th - skb->head;
2711         skb->csum_offset = offsetof(struct tcphdr, check);
2712         skb->ip_summed = CHECKSUM_PARTIAL;
2713
2714         trace_hns3_gro(skb);
2715
2716         return 0;
2717 }
2718
2719 static void hns3_rx_checksum(struct hns3_enet_ring *ring, struct sk_buff *skb,
2720                              u32 l234info, u32 bd_base_info, u32 ol_info)
2721 {
2722         struct net_device *netdev = ring_to_netdev(ring);
2723         int l3_type, l4_type;
2724         int ol4_type;
2725
2726         skb->ip_summed = CHECKSUM_NONE;
2727
2728         skb_checksum_none_assert(skb);
2729
2730         if (!(netdev->features & NETIF_F_RXCSUM))
2731                 return;
2732
2733         /* check if hardware has done checksum */
2734         if (!(bd_base_info & BIT(HNS3_RXD_L3L4P_B)))
2735                 return;
2736
2737         if (unlikely(l234info & (BIT(HNS3_RXD_L3E_B) | BIT(HNS3_RXD_L4E_B) |
2738                                  BIT(HNS3_RXD_OL3E_B) |
2739                                  BIT(HNS3_RXD_OL4E_B)))) {
2740                 u64_stats_update_begin(&ring->syncp);
2741                 ring->stats.l3l4_csum_err++;
2742                 u64_stats_update_end(&ring->syncp);
2743
2744                 return;
2745         }
2746
2747         ol4_type = hnae3_get_field(ol_info, HNS3_RXD_OL4ID_M,
2748                                    HNS3_RXD_OL4ID_S);
2749         switch (ol4_type) {
2750         case HNS3_OL4_TYPE_MAC_IN_UDP:
2751         case HNS3_OL4_TYPE_NVGRE:
2752                 skb->csum_level = 1;
2753                 /* fall through */
2754         case HNS3_OL4_TYPE_NO_TUN:
2755                 l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M,
2756                                           HNS3_RXD_L3ID_S);
2757                 l4_type = hnae3_get_field(l234info, HNS3_RXD_L4ID_M,
2758                                           HNS3_RXD_L4ID_S);
2759
2760                 /* Can checksum ipv4 or ipv6 + UDP/TCP/SCTP packets */
2761                 if ((l3_type == HNS3_L3_TYPE_IPV4 ||
2762                      l3_type == HNS3_L3_TYPE_IPV6) &&
2763                     (l4_type == HNS3_L4_TYPE_UDP ||
2764                      l4_type == HNS3_L4_TYPE_TCP ||
2765                      l4_type == HNS3_L4_TYPE_SCTP))
2766                         skb->ip_summed = CHECKSUM_UNNECESSARY;
2767                 break;
2768         default:
2769                 break;
2770         }
2771 }
2772
2773 static void hns3_rx_skb(struct hns3_enet_ring *ring, struct sk_buff *skb)
2774 {
2775         if (skb_has_frag_list(skb))
2776                 napi_gro_flush(&ring->tqp_vector->napi, false);
2777
2778         napi_gro_receive(&ring->tqp_vector->napi, skb);
2779 }
2780
2781 static bool hns3_parse_vlan_tag(struct hns3_enet_ring *ring,
2782                                 struct hns3_desc *desc, u32 l234info,
2783                                 u16 *vlan_tag)
2784 {
2785         struct hnae3_handle *handle = ring->tqp->handle;
2786         struct pci_dev *pdev = ring->tqp->handle->pdev;
2787
2788         if (pdev->revision == 0x20) {
2789                 *vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
2790                 if (!(*vlan_tag & VLAN_VID_MASK))
2791                         *vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
2792
2793                 return (*vlan_tag != 0);
2794         }
2795
2796 #define HNS3_STRP_OUTER_VLAN    0x1
2797 #define HNS3_STRP_INNER_VLAN    0x2
2798 #define HNS3_STRP_BOTH          0x3
2799
2800         /* Hardware always insert VLAN tag into RX descriptor when
2801          * remove the tag from packet, driver needs to determine
2802          * reporting which tag to stack.
2803          */
2804         switch (hnae3_get_field(l234info, HNS3_RXD_STRP_TAGP_M,
2805                                 HNS3_RXD_STRP_TAGP_S)) {
2806         case HNS3_STRP_OUTER_VLAN:
2807                 if (handle->port_base_vlan_state !=
2808                                 HNAE3_PORT_BASE_VLAN_DISABLE)
2809                         return false;
2810
2811                 *vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
2812                 return true;
2813         case HNS3_STRP_INNER_VLAN:
2814                 if (handle->port_base_vlan_state !=
2815                                 HNAE3_PORT_BASE_VLAN_DISABLE)
2816                         return false;
2817
2818                 *vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
2819                 return true;
2820         case HNS3_STRP_BOTH:
2821                 if (handle->port_base_vlan_state ==
2822                                 HNAE3_PORT_BASE_VLAN_DISABLE)
2823                         *vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
2824                 else
2825                         *vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
2826
2827                 return true;
2828         default:
2829                 return false;
2830         }
2831 }
2832
2833 static int hns3_alloc_skb(struct hns3_enet_ring *ring, unsigned int length,
2834                           unsigned char *va)
2835 {
2836         struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean];
2837         struct net_device *netdev = ring_to_netdev(ring);
2838         struct sk_buff *skb;
2839
2840         ring->skb = napi_alloc_skb(&ring->tqp_vector->napi, HNS3_RX_HEAD_SIZE);
2841         skb = ring->skb;
2842         if (unlikely(!skb)) {
2843                 hns3_rl_err(netdev, "alloc rx skb fail\n");
2844
2845                 u64_stats_update_begin(&ring->syncp);
2846                 ring->stats.sw_err_cnt++;
2847                 u64_stats_update_end(&ring->syncp);
2848
2849                 return -ENOMEM;
2850         }
2851
2852         trace_hns3_rx_desc(ring);
2853         prefetchw(skb->data);
2854
2855         ring->pending_buf = 1;
2856         ring->frag_num = 0;
2857         ring->tail_skb = NULL;
2858         if (length <= HNS3_RX_HEAD_SIZE) {
2859                 memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long)));
2860
2861                 /* We can reuse buffer as-is, just make sure it is local */
2862                 if (likely(hns3_page_is_reusable(desc_cb->priv)))
2863                         desc_cb->reuse_flag = 1;
2864                 else /* This page cannot be reused so discard it */
2865                         put_page(desc_cb->priv);
2866
2867                 ring_ptr_move_fw(ring, next_to_clean);
2868                 return 0;
2869         }
2870         u64_stats_update_begin(&ring->syncp);
2871         ring->stats.seg_pkt_cnt++;
2872         u64_stats_update_end(&ring->syncp);
2873
2874         ring->pull_len = eth_get_headlen(netdev, va, HNS3_RX_HEAD_SIZE);
2875         __skb_put(skb, ring->pull_len);
2876         hns3_nic_reuse_page(skb, ring->frag_num++, ring, ring->pull_len,
2877                             desc_cb);
2878         ring_ptr_move_fw(ring, next_to_clean);
2879
2880         return 0;
2881 }
2882
2883 static int hns3_add_frag(struct hns3_enet_ring *ring)
2884 {
2885         struct sk_buff *skb = ring->skb;
2886         struct sk_buff *head_skb = skb;
2887         struct sk_buff *new_skb;
2888         struct hns3_desc_cb *desc_cb;
2889         struct hns3_desc *desc;
2890         u32 bd_base_info;
2891
2892         do {
2893                 desc = &ring->desc[ring->next_to_clean];
2894                 desc_cb = &ring->desc_cb[ring->next_to_clean];
2895                 bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
2896                 /* make sure HW write desc complete */
2897                 dma_rmb();
2898                 if (!(bd_base_info & BIT(HNS3_RXD_VLD_B)))
2899                         return -ENXIO;
2900
2901                 if (unlikely(ring->frag_num >= MAX_SKB_FRAGS)) {
2902                         new_skb = napi_alloc_skb(&ring->tqp_vector->napi, 0);
2903                         if (unlikely(!new_skb)) {
2904                                 hns3_rl_err(ring_to_netdev(ring),
2905                                             "alloc rx fraglist skb fail\n");
2906                                 return -ENXIO;
2907                         }
2908                         ring->frag_num = 0;
2909
2910                         if (ring->tail_skb) {
2911                                 ring->tail_skb->next = new_skb;
2912                                 ring->tail_skb = new_skb;
2913                         } else {
2914                                 skb_shinfo(skb)->frag_list = new_skb;
2915                                 ring->tail_skb = new_skb;
2916                         }
2917                 }
2918
2919                 if (ring->tail_skb) {
2920                         head_skb->truesize += hns3_buf_size(ring);
2921                         head_skb->data_len += le16_to_cpu(desc->rx.size);
2922                         head_skb->len += le16_to_cpu(desc->rx.size);
2923                         skb = ring->tail_skb;
2924                 }
2925
2926                 dma_sync_single_for_cpu(ring_to_dev(ring),
2927                                 desc_cb->dma + desc_cb->page_offset,
2928                                 hns3_buf_size(ring),
2929                                 DMA_FROM_DEVICE);
2930
2931                 hns3_nic_reuse_page(skb, ring->frag_num++, ring, 0, desc_cb);
2932                 trace_hns3_rx_desc(ring);
2933                 ring_ptr_move_fw(ring, next_to_clean);
2934                 ring->pending_buf++;
2935         } while (!(bd_base_info & BIT(HNS3_RXD_FE_B)));
2936
2937         return 0;
2938 }
2939
2940 static int hns3_set_gro_and_checksum(struct hns3_enet_ring *ring,
2941                                      struct sk_buff *skb, u32 l234info,
2942                                      u32 bd_base_info, u32 ol_info)
2943 {
2944         u32 l3_type;
2945
2946         skb_shinfo(skb)->gso_size = hnae3_get_field(bd_base_info,
2947                                                     HNS3_RXD_GRO_SIZE_M,
2948                                                     HNS3_RXD_GRO_SIZE_S);
2949         /* if there is no HW GRO, do not set gro params */
2950         if (!skb_shinfo(skb)->gso_size) {
2951                 hns3_rx_checksum(ring, skb, l234info, bd_base_info, ol_info);
2952                 return 0;
2953         }
2954
2955         NAPI_GRO_CB(skb)->count = hnae3_get_field(l234info,
2956                                                   HNS3_RXD_GRO_COUNT_M,
2957                                                   HNS3_RXD_GRO_COUNT_S);
2958
2959         l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M, HNS3_RXD_L3ID_S);
2960         if (l3_type == HNS3_L3_TYPE_IPV4)
2961                 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
2962         else if (l3_type == HNS3_L3_TYPE_IPV6)
2963                 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
2964         else
2965                 return -EFAULT;
2966
2967         return  hns3_gro_complete(skb, l234info);
2968 }
2969
2970 static void hns3_set_rx_skb_rss_type(struct hns3_enet_ring *ring,
2971                                      struct sk_buff *skb, u32 rss_hash)
2972 {
2973         struct hnae3_handle *handle = ring->tqp->handle;
2974         enum pkt_hash_types rss_type;
2975
2976         if (rss_hash)
2977                 rss_type = handle->kinfo.rss_type;
2978         else
2979                 rss_type = PKT_HASH_TYPE_NONE;
2980
2981         skb_set_hash(skb, rss_hash, rss_type);
2982 }
2983
2984 static int hns3_handle_bdinfo(struct hns3_enet_ring *ring, struct sk_buff *skb)
2985 {
2986         struct net_device *netdev = ring_to_netdev(ring);
2987         enum hns3_pkt_l2t_type l2_frame_type;
2988         u32 bd_base_info, l234info, ol_info;
2989         struct hns3_desc *desc;
2990         unsigned int len;
2991         int pre_ntc, ret;
2992
2993         /* bdinfo handled below is only valid on the last BD of the
2994          * current packet, and ring->next_to_clean indicates the first
2995          * descriptor of next packet, so need - 1 below.
2996          */
2997         pre_ntc = ring->next_to_clean ? (ring->next_to_clean - 1) :
2998                                         (ring->desc_num - 1);
2999         desc = &ring->desc[pre_ntc];
3000         bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
3001         l234info = le32_to_cpu(desc->rx.l234_info);
3002         ol_info = le32_to_cpu(desc->rx.ol_info);
3003
3004         /* Based on hw strategy, the tag offloaded will be stored at
3005          * ot_vlan_tag in two layer tag case, and stored at vlan_tag
3006          * in one layer tag case.
3007          */
3008         if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX) {
3009                 u16 vlan_tag;
3010
3011                 if (hns3_parse_vlan_tag(ring, desc, l234info, &vlan_tag))
3012                         __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
3013                                                vlan_tag);
3014         }
3015
3016         if (unlikely(!desc->rx.pkt_len || (l234info & (BIT(HNS3_RXD_TRUNCAT_B) |
3017                                   BIT(HNS3_RXD_L2E_B))))) {
3018                 u64_stats_update_begin(&ring->syncp);
3019                 if (l234info & BIT(HNS3_RXD_L2E_B))
3020                         ring->stats.l2_err++;
3021                 else
3022                         ring->stats.err_pkt_len++;
3023                 u64_stats_update_end(&ring->syncp);
3024
3025                 return -EFAULT;
3026         }
3027
3028         len = skb->len;
3029
3030         /* Do update ip stack process */
3031         skb->protocol = eth_type_trans(skb, netdev);
3032
3033         /* This is needed in order to enable forwarding support */
3034         ret = hns3_set_gro_and_checksum(ring, skb, l234info,
3035                                         bd_base_info, ol_info);
3036         if (unlikely(ret)) {
3037                 u64_stats_update_begin(&ring->syncp);
3038                 ring->stats.rx_err_cnt++;
3039                 u64_stats_update_end(&ring->syncp);
3040                 return ret;
3041         }
3042
3043         l2_frame_type = hnae3_get_field(l234info, HNS3_RXD_DMAC_M,
3044                                         HNS3_RXD_DMAC_S);
3045
3046         u64_stats_update_begin(&ring->syncp);
3047         ring->stats.rx_pkts++;
3048         ring->stats.rx_bytes += len;
3049
3050         if (l2_frame_type == HNS3_L2_TYPE_MULTICAST)
3051                 ring->stats.rx_multicast++;
3052
3053         u64_stats_update_end(&ring->syncp);
3054
3055         ring->tqp_vector->rx_group.total_bytes += len;
3056
3057         hns3_set_rx_skb_rss_type(ring, skb, le32_to_cpu(desc->rx.rss_hash));
3058         return 0;
3059 }
3060
3061 static int hns3_handle_rx_bd(struct hns3_enet_ring *ring)
3062 {
3063         struct sk_buff *skb = ring->skb;
3064         struct hns3_desc_cb *desc_cb;
3065         struct hns3_desc *desc;
3066         unsigned int length;
3067         u32 bd_base_info;
3068         int ret;
3069
3070         desc = &ring->desc[ring->next_to_clean];
3071         desc_cb = &ring->desc_cb[ring->next_to_clean];
3072
3073         prefetch(desc);
3074
3075         length = le16_to_cpu(desc->rx.size);
3076         bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
3077
3078         /* Check valid BD */
3079         if (unlikely(!(bd_base_info & BIT(HNS3_RXD_VLD_B))))
3080                 return -ENXIO;
3081
3082         if (!skb) {
3083                 ring->va = desc_cb->buf + desc_cb->page_offset;
3084
3085                 dma_sync_single_for_cpu(ring_to_dev(ring),
3086                                 desc_cb->dma + desc_cb->page_offset,
3087                                 hns3_buf_size(ring),
3088                                 DMA_FROM_DEVICE);
3089         }
3090
3091         /* Prefetch first cache line of first page
3092          * Idea is to cache few bytes of the header of the packet. Our L1 Cache
3093          * line size is 64B so need to prefetch twice to make it 128B. But in
3094          * actual we can have greater size of caches with 128B Level 1 cache
3095          * lines. In such a case, single fetch would suffice to cache in the
3096          * relevant part of the header.
3097          */
3098         prefetch(ring->va);
3099 #if L1_CACHE_BYTES < 128
3100         prefetch(ring->va + L1_CACHE_BYTES);
3101 #endif
3102
3103         if (!skb) {
3104                 ret = hns3_alloc_skb(ring, length, ring->va);
3105                 skb = ring->skb;
3106
3107                 if (ret < 0) /* alloc buffer fail */
3108                         return ret;
3109                 if (!(bd_base_info & BIT(HNS3_RXD_FE_B))) { /* need add frag */
3110                         ret = hns3_add_frag(ring);
3111                         if (ret)
3112                                 return ret;
3113                 }
3114         } else {
3115                 ret = hns3_add_frag(ring);
3116                 if (ret)
3117                         return ret;
3118         }
3119
3120         /* As the head data may be changed when GRO enable, copy
3121          * the head data in after other data rx completed
3122          */
3123         if (skb->len > HNS3_RX_HEAD_SIZE)
3124                 memcpy(skb->data, ring->va,
3125                        ALIGN(ring->pull_len, sizeof(long)));
3126
3127         ret = hns3_handle_bdinfo(ring, skb);
3128         if (unlikely(ret)) {
3129                 dev_kfree_skb_any(skb);
3130                 return ret;
3131         }
3132
3133         skb_record_rx_queue(skb, ring->tqp->tqp_index);
3134         return 0;
3135 }
3136
3137 int hns3_clean_rx_ring(struct hns3_enet_ring *ring, int budget,
3138                        void (*rx_fn)(struct hns3_enet_ring *, struct sk_buff *))
3139 {
3140 #define RCB_NOF_ALLOC_RX_BUFF_ONCE 16
3141         int unused_count = hns3_desc_unused(ring);
3142         int recv_pkts = 0;
3143         int recv_bds = 0;
3144         int err, num;
3145
3146         num = readl_relaxed(ring->tqp->io_base + HNS3_RING_RX_RING_FBDNUM_REG);
3147         num -= unused_count;
3148         unused_count -= ring->pending_buf;
3149
3150         if (num <= 0)
3151                 goto out;
3152
3153         rmb(); /* Make sure num taken effect before the other data is touched */
3154
3155         while (recv_pkts < budget && recv_bds < num) {
3156                 /* Reuse or realloc buffers */
3157                 if (unused_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) {
3158                         hns3_nic_alloc_rx_buffers(ring, unused_count);
3159                         unused_count = hns3_desc_unused(ring) -
3160                                         ring->pending_buf;
3161                 }
3162
3163                 /* Poll one pkt */
3164                 err = hns3_handle_rx_bd(ring);
3165                 /* Do not get FE for the packet or failed to alloc skb */
3166                 if (unlikely(!ring->skb || err == -ENXIO)) {
3167                         goto out;
3168                 } else if (likely(!err)) {
3169                         rx_fn(ring, ring->skb);
3170                         recv_pkts++;
3171                 }
3172
3173                 recv_bds += ring->pending_buf;
3174                 unused_count += ring->pending_buf;
3175                 ring->skb = NULL;
3176                 ring->pending_buf = 0;
3177         }
3178
3179 out:
3180         /* Make all data has been write before submit */
3181         if (unused_count > 0)
3182                 hns3_nic_alloc_rx_buffers(ring, unused_count);
3183
3184         return recv_pkts;
3185 }
3186
3187 static bool hns3_get_new_flow_lvl(struct hns3_enet_ring_group *ring_group)
3188 {
3189 #define HNS3_RX_LOW_BYTE_RATE 10000
3190 #define HNS3_RX_MID_BYTE_RATE 20000
3191 #define HNS3_RX_ULTRA_PACKET_RATE 40
3192
3193         enum hns3_flow_level_range new_flow_level;
3194         struct hns3_enet_tqp_vector *tqp_vector;
3195         int packets_per_msecs, bytes_per_msecs;
3196         u32 time_passed_ms;
3197
3198         tqp_vector = ring_group->ring->tqp_vector;
3199         time_passed_ms =
3200                 jiffies_to_msecs(jiffies - tqp_vector->last_jiffies);
3201         if (!time_passed_ms)
3202                 return false;
3203
3204         do_div(ring_group->total_packets, time_passed_ms);
3205         packets_per_msecs = ring_group->total_packets;
3206
3207         do_div(ring_group->total_bytes, time_passed_ms);
3208         bytes_per_msecs = ring_group->total_bytes;
3209
3210         new_flow_level = ring_group->coal.flow_level;
3211
3212         /* Simple throttlerate management
3213          * 0-10MB/s   lower     (50000 ints/s)
3214          * 10-20MB/s   middle    (20000 ints/s)
3215          * 20-1249MB/s high      (18000 ints/s)
3216          * > 40000pps  ultra     (8000 ints/s)
3217          */
3218         switch (new_flow_level) {
3219         case HNS3_FLOW_LOW:
3220                 if (bytes_per_msecs > HNS3_RX_LOW_BYTE_RATE)
3221                         new_flow_level = HNS3_FLOW_MID;
3222                 break;
3223         case HNS3_FLOW_MID:
3224                 if (bytes_per_msecs > HNS3_RX_MID_BYTE_RATE)
3225                         new_flow_level = HNS3_FLOW_HIGH;
3226                 else if (bytes_per_msecs <= HNS3_RX_LOW_BYTE_RATE)
3227                         new_flow_level = HNS3_FLOW_LOW;
3228                 break;
3229         case HNS3_FLOW_HIGH:
3230         case HNS3_FLOW_ULTRA:
3231         default:
3232                 if (bytes_per_msecs <= HNS3_RX_MID_BYTE_RATE)
3233                         new_flow_level = HNS3_FLOW_MID;
3234                 break;
3235         }
3236
3237         if (packets_per_msecs > HNS3_RX_ULTRA_PACKET_RATE &&
3238             &tqp_vector->rx_group == ring_group)
3239                 new_flow_level = HNS3_FLOW_ULTRA;
3240
3241         ring_group->total_bytes = 0;
3242         ring_group->total_packets = 0;
3243         ring_group->coal.flow_level = new_flow_level;
3244
3245         return true;
3246 }
3247
3248 static bool hns3_get_new_int_gl(struct hns3_enet_ring_group *ring_group)
3249 {
3250         struct hns3_enet_tqp_vector *tqp_vector;
3251         u16 new_int_gl;
3252
3253         if (!ring_group->ring)
3254                 return false;
3255
3256         tqp_vector = ring_group->ring->tqp_vector;
3257         if (!tqp_vector->last_jiffies)
3258                 return false;
3259
3260         if (ring_group->total_packets == 0) {
3261                 ring_group->coal.int_gl = HNS3_INT_GL_50K;
3262                 ring_group->coal.flow_level = HNS3_FLOW_LOW;
3263                 return true;
3264         }
3265
3266         if (!hns3_get_new_flow_lvl(ring_group))
3267                 return false;
3268
3269         new_int_gl = ring_group->coal.int_gl;
3270         switch (ring_group->coal.flow_level) {
3271         case HNS3_FLOW_LOW:
3272                 new_int_gl = HNS3_INT_GL_50K;
3273                 break;
3274         case HNS3_FLOW_MID:
3275                 new_int_gl = HNS3_INT_GL_20K;
3276                 break;
3277         case HNS3_FLOW_HIGH:
3278                 new_int_gl = HNS3_INT_GL_18K;
3279                 break;
3280         case HNS3_FLOW_ULTRA:
3281                 new_int_gl = HNS3_INT_GL_8K;
3282                 break;
3283         default:
3284                 break;
3285         }
3286
3287         if (new_int_gl != ring_group->coal.int_gl) {
3288                 ring_group->coal.int_gl = new_int_gl;
3289                 return true;
3290         }
3291         return false;
3292 }
3293
3294 static void hns3_update_new_int_gl(struct hns3_enet_tqp_vector *tqp_vector)
3295 {
3296         struct hns3_enet_ring_group *rx_group = &tqp_vector->rx_group;
3297         struct hns3_enet_ring_group *tx_group = &tqp_vector->tx_group;
3298         bool rx_update, tx_update;
3299
3300         /* update param every 1000ms */
3301         if (time_before(jiffies,
3302                         tqp_vector->last_jiffies + msecs_to_jiffies(1000)))
3303                 return;
3304
3305         if (rx_group->coal.gl_adapt_enable) {
3306                 rx_update = hns3_get_new_int_gl(rx_group);
3307                 if (rx_update)
3308                         hns3_set_vector_coalesce_rx_gl(tqp_vector,
3309                                                        rx_group->coal.int_gl);
3310         }
3311
3312         if (tx_group->coal.gl_adapt_enable) {
3313                 tx_update = hns3_get_new_int_gl(tx_group);
3314                 if (tx_update)
3315                         hns3_set_vector_coalesce_tx_gl(tqp_vector,
3316                                                        tx_group->coal.int_gl);
3317         }
3318
3319         tqp_vector->last_jiffies = jiffies;
3320 }
3321
3322 static int hns3_nic_common_poll(struct napi_struct *napi, int budget)
3323 {
3324         struct hns3_nic_priv *priv = netdev_priv(napi->dev);
3325         struct hns3_enet_ring *ring;
3326         int rx_pkt_total = 0;
3327
3328         struct hns3_enet_tqp_vector *tqp_vector =
3329                 container_of(napi, struct hns3_enet_tqp_vector, napi);
3330         bool clean_complete = true;
3331         int rx_budget = budget;
3332
3333         if (unlikely(test_bit(HNS3_NIC_STATE_DOWN, &priv->state))) {
3334                 napi_complete(napi);
3335                 return 0;
3336         }
3337
3338         /* Since the actual Tx work is minimal, we can give the Tx a larger
3339          * budget and be more aggressive about cleaning up the Tx descriptors.
3340          */
3341         hns3_for_each_ring(ring, tqp_vector->tx_group)
3342                 hns3_clean_tx_ring(ring);
3343
3344         /* make sure rx ring budget not smaller than 1 */
3345         if (tqp_vector->num_tqps > 1)
3346                 rx_budget = max(budget / tqp_vector->num_tqps, 1);
3347
3348         hns3_for_each_ring(ring, tqp_vector->rx_group) {
3349                 int rx_cleaned = hns3_clean_rx_ring(ring, rx_budget,
3350                                                     hns3_rx_skb);
3351
3352                 if (rx_cleaned >= rx_budget)
3353                         clean_complete = false;
3354
3355                 rx_pkt_total += rx_cleaned;
3356         }
3357
3358         tqp_vector->rx_group.total_packets += rx_pkt_total;
3359
3360         if (!clean_complete)
3361                 return budget;
3362
3363         if (napi_complete(napi) &&
3364             likely(!test_bit(HNS3_NIC_STATE_DOWN, &priv->state))) {
3365                 hns3_update_new_int_gl(tqp_vector);
3366                 hns3_mask_vector_irq(tqp_vector, 1);
3367         }
3368
3369         return rx_pkt_total;
3370 }
3371
3372 static int hns3_get_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector,
3373                                       struct hnae3_ring_chain_node *head)
3374 {
3375         struct pci_dev *pdev = tqp_vector->handle->pdev;
3376         struct hnae3_ring_chain_node *cur_chain = head;
3377         struct hnae3_ring_chain_node *chain;
3378         struct hns3_enet_ring *tx_ring;
3379         struct hns3_enet_ring *rx_ring;
3380
3381         tx_ring = tqp_vector->tx_group.ring;
3382         if (tx_ring) {
3383                 cur_chain->tqp_index = tx_ring->tqp->tqp_index;
3384                 hnae3_set_bit(cur_chain->flag, HNAE3_RING_TYPE_B,
3385                               HNAE3_RING_TYPE_TX);
3386                 hnae3_set_field(cur_chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
3387                                 HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_TX);
3388
3389                 cur_chain->next = NULL;
3390
3391                 while (tx_ring->next) {
3392                         tx_ring = tx_ring->next;
3393
3394                         chain = devm_kzalloc(&pdev->dev, sizeof(*chain),
3395                                              GFP_KERNEL);
3396                         if (!chain)
3397                                 goto err_free_chain;
3398
3399                         cur_chain->next = chain;
3400                         chain->tqp_index = tx_ring->tqp->tqp_index;
3401                         hnae3_set_bit(chain->flag, HNAE3_RING_TYPE_B,
3402                                       HNAE3_RING_TYPE_TX);
3403                         hnae3_set_field(chain->int_gl_idx,
3404                                         HNAE3_RING_GL_IDX_M,
3405                                         HNAE3_RING_GL_IDX_S,
3406                                         HNAE3_RING_GL_TX);
3407
3408                         cur_chain = chain;
3409                 }
3410         }
3411
3412         rx_ring = tqp_vector->rx_group.ring;
3413         if (!tx_ring && rx_ring) {
3414                 cur_chain->next = NULL;
3415                 cur_chain->tqp_index = rx_ring->tqp->tqp_index;
3416                 hnae3_set_bit(cur_chain->flag, HNAE3_RING_TYPE_B,
3417                               HNAE3_RING_TYPE_RX);
3418                 hnae3_set_field(cur_chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
3419                                 HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_RX);
3420
3421                 rx_ring = rx_ring->next;
3422         }
3423
3424         while (rx_ring) {
3425                 chain = devm_kzalloc(&pdev->dev, sizeof(*chain), GFP_KERNEL);
3426                 if (!chain)
3427                         goto err_free_chain;
3428
3429                 cur_chain->next = chain;
3430                 chain->tqp_index = rx_ring->tqp->tqp_index;
3431                 hnae3_set_bit(chain->flag, HNAE3_RING_TYPE_B,
3432                               HNAE3_RING_TYPE_RX);
3433                 hnae3_set_field(chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
3434                                 HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_RX);
3435
3436                 cur_chain = chain;
3437
3438                 rx_ring = rx_ring->next;
3439         }
3440
3441         return 0;
3442
3443 err_free_chain:
3444         cur_chain = head->next;
3445         while (cur_chain) {
3446                 chain = cur_chain->next;
3447                 devm_kfree(&pdev->dev, cur_chain);
3448                 cur_chain = chain;
3449         }
3450         head->next = NULL;
3451
3452         return -ENOMEM;
3453 }
3454
3455 static void hns3_free_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector,
3456                                         struct hnae3_ring_chain_node *head)
3457 {
3458         struct pci_dev *pdev = tqp_vector->handle->pdev;
3459         struct hnae3_ring_chain_node *chain_tmp, *chain;
3460
3461         chain = head->next;
3462
3463         while (chain) {
3464                 chain_tmp = chain->next;
3465                 devm_kfree(&pdev->dev, chain);
3466                 chain = chain_tmp;
3467         }
3468 }
3469
3470 static void hns3_add_ring_to_group(struct hns3_enet_ring_group *group,
3471                                    struct hns3_enet_ring *ring)
3472 {
3473         ring->next = group->ring;
3474         group->ring = ring;
3475
3476         group->count++;
3477 }
3478
3479 static void hns3_nic_set_cpumask(struct hns3_nic_priv *priv)
3480 {
3481         struct pci_dev *pdev = priv->ae_handle->pdev;
3482         struct hns3_enet_tqp_vector *tqp_vector;
3483         int num_vectors = priv->vector_num;
3484         int numa_node;
3485         int vector_i;
3486
3487         numa_node = dev_to_node(&pdev->dev);
3488
3489         for (vector_i = 0; vector_i < num_vectors; vector_i++) {
3490                 tqp_vector = &priv->tqp_vector[vector_i];
3491                 cpumask_set_cpu(cpumask_local_spread(vector_i, numa_node),
3492                                 &tqp_vector->affinity_mask);
3493         }
3494 }
3495
3496 static int hns3_nic_init_vector_data(struct hns3_nic_priv *priv)
3497 {
3498         struct hnae3_ring_chain_node vector_ring_chain;
3499         struct hnae3_handle *h = priv->ae_handle;
3500         struct hns3_enet_tqp_vector *tqp_vector;
3501         int ret = 0;
3502         int i;
3503
3504         hns3_nic_set_cpumask(priv);
3505
3506         for (i = 0; i < priv->vector_num; i++) {
3507                 tqp_vector = &priv->tqp_vector[i];
3508                 hns3_vector_gl_rl_init_hw(tqp_vector, priv);
3509                 tqp_vector->num_tqps = 0;
3510         }
3511
3512         for (i = 0; i < h->kinfo.num_tqps; i++) {
3513                 u16 vector_i = i % priv->vector_num;
3514                 u16 tqp_num = h->kinfo.num_tqps;
3515
3516                 tqp_vector = &priv->tqp_vector[vector_i];
3517
3518                 hns3_add_ring_to_group(&tqp_vector->tx_group,
3519                                        &priv->ring[i]);
3520
3521                 hns3_add_ring_to_group(&tqp_vector->rx_group,
3522                                        &priv->ring[i + tqp_num]);
3523
3524                 priv->ring[i].tqp_vector = tqp_vector;
3525                 priv->ring[i + tqp_num].tqp_vector = tqp_vector;
3526                 tqp_vector->num_tqps++;
3527         }
3528
3529         for (i = 0; i < priv->vector_num; i++) {
3530                 tqp_vector = &priv->tqp_vector[i];
3531
3532                 tqp_vector->rx_group.total_bytes = 0;
3533                 tqp_vector->rx_group.total_packets = 0;
3534                 tqp_vector->tx_group.total_bytes = 0;
3535                 tqp_vector->tx_group.total_packets = 0;
3536                 tqp_vector->handle = h;
3537
3538                 ret = hns3_get_vector_ring_chain(tqp_vector,
3539                                                  &vector_ring_chain);
3540                 if (ret)
3541                         goto map_ring_fail;
3542
3543                 ret = h->ae_algo->ops->map_ring_to_vector(h,
3544                         tqp_vector->vector_irq, &vector_ring_chain);
3545
3546                 hns3_free_vector_ring_chain(tqp_vector, &vector_ring_chain);
3547
3548                 if (ret)
3549                         goto map_ring_fail;
3550
3551                 netif_napi_add(priv->netdev, &tqp_vector->napi,
3552                                hns3_nic_common_poll, NAPI_POLL_WEIGHT);
3553         }
3554
3555         return 0;
3556
3557 map_ring_fail:
3558         while (i--)
3559                 netif_napi_del(&priv->tqp_vector[i].napi);
3560
3561         return ret;
3562 }
3563
3564 static int hns3_nic_alloc_vector_data(struct hns3_nic_priv *priv)
3565 {
3566 #define HNS3_VECTOR_PF_MAX_NUM          64
3567
3568         struct hnae3_handle *h = priv->ae_handle;
3569         struct hns3_enet_tqp_vector *tqp_vector;
3570         struct hnae3_vector_info *vector;
3571         struct pci_dev *pdev = h->pdev;
3572         u16 tqp_num = h->kinfo.num_tqps;
3573         u16 vector_num;
3574         int ret = 0;
3575         u16 i;
3576
3577         /* RSS size, cpu online and vector_num should be the same */
3578         /* Should consider 2p/4p later */
3579         vector_num = min_t(u16, num_online_cpus(), tqp_num);
3580         vector_num = min_t(u16, vector_num, HNS3_VECTOR_PF_MAX_NUM);
3581
3582         vector = devm_kcalloc(&pdev->dev, vector_num, sizeof(*vector),
3583                               GFP_KERNEL);
3584         if (!vector)
3585                 return -ENOMEM;
3586
3587         /* save the actual available vector number */
3588         vector_num = h->ae_algo->ops->get_vector(h, vector_num, vector);
3589
3590         priv->vector_num = vector_num;
3591         priv->tqp_vector = (struct hns3_enet_tqp_vector *)
3592                 devm_kcalloc(&pdev->dev, vector_num, sizeof(*priv->tqp_vector),
3593                              GFP_KERNEL);
3594         if (!priv->tqp_vector) {
3595                 ret = -ENOMEM;
3596                 goto out;
3597         }
3598
3599         for (i = 0; i < priv->vector_num; i++) {
3600                 tqp_vector = &priv->tqp_vector[i];
3601                 tqp_vector->idx = i;
3602                 tqp_vector->mask_addr = vector[i].io_addr;
3603                 tqp_vector->vector_irq = vector[i].vector;
3604                 hns3_vector_gl_rl_init(tqp_vector, priv);
3605         }
3606
3607 out:
3608         devm_kfree(&pdev->dev, vector);
3609         return ret;
3610 }
3611
3612 static void hns3_clear_ring_group(struct hns3_enet_ring_group *group)
3613 {
3614         group->ring = NULL;
3615         group->count = 0;
3616 }
3617
3618 static void hns3_nic_uninit_vector_data(struct hns3_nic_priv *priv)
3619 {
3620         struct hnae3_ring_chain_node vector_ring_chain;
3621         struct hnae3_handle *h = priv->ae_handle;
3622         struct hns3_enet_tqp_vector *tqp_vector;
3623         int i;
3624
3625         for (i = 0; i < priv->vector_num; i++) {
3626                 tqp_vector = &priv->tqp_vector[i];
3627
3628                 if (!tqp_vector->rx_group.ring && !tqp_vector->tx_group.ring)
3629                         continue;
3630
3631                 /* Since the mapping can be overwritten, when fail to get the
3632                  * chain between vector and ring, we should go on to deal with
3633                  * the remaining options.
3634                  */
3635                 if (hns3_get_vector_ring_chain(tqp_vector, &vector_ring_chain))
3636                         dev_warn(priv->dev, "failed to get ring chain\n");
3637
3638                 h->ae_algo->ops->unmap_ring_from_vector(h,
3639                         tqp_vector->vector_irq, &vector_ring_chain);
3640
3641                 hns3_free_vector_ring_chain(tqp_vector, &vector_ring_chain);
3642
3643                 hns3_clear_ring_group(&tqp_vector->rx_group);
3644                 hns3_clear_ring_group(&tqp_vector->tx_group);
3645                 netif_napi_del(&priv->tqp_vector[i].napi);
3646         }
3647 }
3648
3649 static void hns3_nic_dealloc_vector_data(struct hns3_nic_priv *priv)
3650 {
3651         struct hnae3_handle *h = priv->ae_handle;
3652         struct pci_dev *pdev = h->pdev;
3653         int i, ret;
3654
3655         for (i = 0; i < priv->vector_num; i++) {
3656                 struct hns3_enet_tqp_vector *tqp_vector;
3657
3658                 tqp_vector = &priv->tqp_vector[i];
3659                 ret = h->ae_algo->ops->put_vector(h, tqp_vector->vector_irq);
3660                 if (ret)
3661                         return;
3662         }
3663
3664         devm_kfree(&pdev->dev, priv->tqp_vector);
3665 }
3666
3667 static void hns3_ring_get_cfg(struct hnae3_queue *q, struct hns3_nic_priv *priv,
3668                               unsigned int ring_type)
3669 {
3670         int queue_num = priv->ae_handle->kinfo.num_tqps;
3671         struct hns3_enet_ring *ring;
3672         int desc_num;
3673
3674         if (ring_type == HNAE3_RING_TYPE_TX) {
3675                 ring = &priv->ring[q->tqp_index];
3676                 desc_num = priv->ae_handle->kinfo.num_tx_desc;
3677                 ring->queue_index = q->tqp_index;
3678                 ring->io_base = (u8 __iomem *)q->io_base + HNS3_TX_REG_OFFSET;
3679         } else {
3680                 ring = &priv->ring[q->tqp_index + queue_num];
3681                 desc_num = priv->ae_handle->kinfo.num_rx_desc;
3682                 ring->queue_index = q->tqp_index;
3683                 ring->io_base = q->io_base;
3684         }
3685
3686         hnae3_set_bit(ring->flag, HNAE3_RING_TYPE_B, ring_type);
3687
3688         ring->tqp = q;
3689         ring->desc = NULL;
3690         ring->desc_cb = NULL;
3691         ring->dev = priv->dev;
3692         ring->desc_dma_addr = 0;
3693         ring->buf_size = q->buf_size;
3694         ring->desc_num = desc_num;
3695         ring->next_to_use = 0;
3696         ring->next_to_clean = 0;
3697 }
3698
3699 static void hns3_queue_to_ring(struct hnae3_queue *tqp,
3700                                struct hns3_nic_priv *priv)
3701 {
3702         hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_TX);
3703         hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_RX);
3704 }
3705
3706 static int hns3_get_ring_config(struct hns3_nic_priv *priv)
3707 {
3708         struct hnae3_handle *h = priv->ae_handle;
3709         struct pci_dev *pdev = h->pdev;
3710         int i;
3711
3712         priv->ring = devm_kzalloc(&pdev->dev,
3713                                   array3_size(h->kinfo.num_tqps,
3714                                               sizeof(*priv->ring), 2),
3715                                   GFP_KERNEL);
3716         if (!priv->ring)
3717                 return -ENOMEM;
3718
3719         for (i = 0; i < h->kinfo.num_tqps; i++)
3720                 hns3_queue_to_ring(h->kinfo.tqp[i], priv);
3721
3722         return 0;
3723 }
3724
3725 static void hns3_put_ring_config(struct hns3_nic_priv *priv)
3726 {
3727         if (!priv->ring)
3728                 return;
3729
3730         devm_kfree(priv->dev, priv->ring);
3731         priv->ring = NULL;
3732 }
3733
3734 static int hns3_alloc_ring_memory(struct hns3_enet_ring *ring)
3735 {
3736         int ret;
3737
3738         if (ring->desc_num <= 0 || ring->buf_size <= 0)
3739                 return -EINVAL;
3740
3741         ring->desc_cb = devm_kcalloc(ring_to_dev(ring), ring->desc_num,
3742                                      sizeof(ring->desc_cb[0]), GFP_KERNEL);
3743         if (!ring->desc_cb) {
3744                 ret = -ENOMEM;
3745                 goto out;
3746         }
3747
3748         ret = hns3_alloc_desc(ring);
3749         if (ret)
3750                 goto out_with_desc_cb;
3751
3752         if (!HNAE3_IS_TX_RING(ring)) {
3753                 ret = hns3_alloc_ring_buffers(ring);
3754                 if (ret)
3755                         goto out_with_desc;
3756         }
3757
3758         return 0;
3759
3760 out_with_desc:
3761         hns3_free_desc(ring);
3762 out_with_desc_cb:
3763         devm_kfree(ring_to_dev(ring), ring->desc_cb);
3764         ring->desc_cb = NULL;
3765 out:
3766         return ret;
3767 }
3768
3769 void hns3_fini_ring(struct hns3_enet_ring *ring)
3770 {
3771         hns3_free_desc(ring);
3772         devm_kfree(ring_to_dev(ring), ring->desc_cb);
3773         ring->desc_cb = NULL;
3774         ring->next_to_clean = 0;
3775         ring->next_to_use = 0;
3776         ring->pending_buf = 0;
3777         if (ring->skb) {
3778                 dev_kfree_skb_any(ring->skb);
3779                 ring->skb = NULL;
3780         }
3781 }
3782
3783 static int hns3_buf_size2type(u32 buf_size)
3784 {
3785         int bd_size_type;
3786
3787         switch (buf_size) {
3788         case 512:
3789                 bd_size_type = HNS3_BD_SIZE_512_TYPE;
3790                 break;
3791         case 1024:
3792                 bd_size_type = HNS3_BD_SIZE_1024_TYPE;
3793                 break;
3794         case 2048:
3795                 bd_size_type = HNS3_BD_SIZE_2048_TYPE;
3796                 break;
3797         case 4096:
3798                 bd_size_type = HNS3_BD_SIZE_4096_TYPE;
3799                 break;
3800         default:
3801                 bd_size_type = HNS3_BD_SIZE_2048_TYPE;
3802         }
3803
3804         return bd_size_type;
3805 }
3806
3807 static void hns3_init_ring_hw(struct hns3_enet_ring *ring)
3808 {
3809         dma_addr_t dma = ring->desc_dma_addr;
3810         struct hnae3_queue *q = ring->tqp;
3811
3812         if (!HNAE3_IS_TX_RING(ring)) {
3813                 hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_L_REG, (u32)dma);
3814                 hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_H_REG,
3815                                (u32)((dma >> 31) >> 1));
3816
3817                 hns3_write_dev(q, HNS3_RING_RX_RING_BD_LEN_REG,
3818                                hns3_buf_size2type(ring->buf_size));
3819                 hns3_write_dev(q, HNS3_RING_RX_RING_BD_NUM_REG,
3820                                ring->desc_num / 8 - 1);
3821
3822         } else {
3823                 hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_L_REG,
3824                                (u32)dma);
3825                 hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_H_REG,
3826                                (u32)((dma >> 31) >> 1));
3827
3828                 hns3_write_dev(q, HNS3_RING_TX_RING_BD_NUM_REG,
3829                                ring->desc_num / 8 - 1);
3830         }
3831 }
3832
3833 static void hns3_init_tx_ring_tc(struct hns3_nic_priv *priv)
3834 {
3835         struct hnae3_knic_private_info *kinfo = &priv->ae_handle->kinfo;
3836         int i;
3837
3838         for (i = 0; i < HNAE3_MAX_TC; i++) {
3839                 struct hnae3_tc_info *tc_info = &kinfo->tc_info[i];
3840                 int j;
3841
3842                 if (!tc_info->enable)
3843                         continue;
3844
3845                 for (j = 0; j < tc_info->tqp_count; j++) {
3846                         struct hnae3_queue *q;
3847
3848                         q = priv->ring[tc_info->tqp_offset + j].tqp;
3849                         hns3_write_dev(q, HNS3_RING_TX_RING_TC_REG,
3850                                        tc_info->tc);
3851                 }
3852         }
3853 }
3854
3855 int hns3_init_all_ring(struct hns3_nic_priv *priv)
3856 {
3857         struct hnae3_handle *h = priv->ae_handle;
3858         int ring_num = h->kinfo.num_tqps * 2;
3859         int i, j;
3860         int ret;
3861
3862         for (i = 0; i < ring_num; i++) {
3863                 ret = hns3_alloc_ring_memory(&priv->ring[i]);
3864                 if (ret) {
3865                         dev_err(priv->dev,
3866                                 "Alloc ring memory fail! ret=%d\n", ret);
3867                         goto out_when_alloc_ring_memory;
3868                 }
3869
3870                 u64_stats_init(&priv->ring[i].syncp);
3871         }
3872
3873         return 0;
3874
3875 out_when_alloc_ring_memory:
3876         for (j = i - 1; j >= 0; j--)
3877                 hns3_fini_ring(&priv->ring[j]);
3878
3879         return -ENOMEM;
3880 }
3881
3882 int hns3_uninit_all_ring(struct hns3_nic_priv *priv)
3883 {
3884         struct hnae3_handle *h = priv->ae_handle;
3885         int i;
3886
3887         for (i = 0; i < h->kinfo.num_tqps; i++) {
3888                 hns3_fini_ring(&priv->ring[i]);
3889                 hns3_fini_ring(&priv->ring[i + h->kinfo.num_tqps]);
3890         }
3891         return 0;
3892 }
3893
3894 /* Set mac addr if it is configured. or leave it to the AE driver */
3895 static int hns3_init_mac_addr(struct net_device *netdev)
3896 {
3897         struct hns3_nic_priv *priv = netdev_priv(netdev);
3898         struct hnae3_handle *h = priv->ae_handle;
3899         u8 mac_addr_temp[ETH_ALEN];
3900         int ret = 0;
3901
3902         if (h->ae_algo->ops->get_mac_addr)
3903                 h->ae_algo->ops->get_mac_addr(h, mac_addr_temp);
3904
3905         /* Check if the MAC address is valid, if not get a random one */
3906         if (!is_valid_ether_addr(mac_addr_temp)) {
3907                 eth_hw_addr_random(netdev);
3908                 dev_warn(priv->dev, "using random MAC address %pM\n",
3909                          netdev->dev_addr);
3910         } else if (!ether_addr_equal(netdev->dev_addr, mac_addr_temp)) {
3911                 ether_addr_copy(netdev->dev_addr, mac_addr_temp);
3912                 ether_addr_copy(netdev->perm_addr, mac_addr_temp);
3913         } else {
3914                 return 0;
3915         }
3916
3917         if (h->ae_algo->ops->set_mac_addr)
3918                 ret = h->ae_algo->ops->set_mac_addr(h, netdev->dev_addr, true);
3919
3920         return ret;
3921 }
3922
3923 static int hns3_init_phy(struct net_device *netdev)
3924 {
3925         struct hnae3_handle *h = hns3_get_handle(netdev);
3926         int ret = 0;
3927
3928         if (h->ae_algo->ops->mac_connect_phy)
3929                 ret = h->ae_algo->ops->mac_connect_phy(h);
3930
3931         return ret;
3932 }
3933
3934 static void hns3_uninit_phy(struct net_device *netdev)
3935 {
3936         struct hnae3_handle *h = hns3_get_handle(netdev);
3937
3938         if (h->ae_algo->ops->mac_disconnect_phy)
3939                 h->ae_algo->ops->mac_disconnect_phy(h);
3940 }
3941
3942 static void hns3_del_all_fd_rules(struct net_device *netdev, bool clear_list)
3943 {
3944         struct hnae3_handle *h = hns3_get_handle(netdev);
3945
3946         if (h->ae_algo->ops->del_all_fd_entries)
3947                 h->ae_algo->ops->del_all_fd_entries(h, clear_list);
3948 }
3949
3950 static int hns3_client_start(struct hnae3_handle *handle)
3951 {
3952         if (!handle->ae_algo->ops->client_start)
3953                 return 0;
3954
3955         return handle->ae_algo->ops->client_start(handle);
3956 }
3957
3958 static void hns3_client_stop(struct hnae3_handle *handle)
3959 {
3960         if (!handle->ae_algo->ops->client_stop)
3961                 return;
3962
3963         handle->ae_algo->ops->client_stop(handle);
3964 }
3965
3966 static void hns3_info_show(struct hns3_nic_priv *priv)
3967 {
3968         struct hnae3_knic_private_info *kinfo = &priv->ae_handle->kinfo;
3969
3970         dev_info(priv->dev, "MAC address: %pM\n", priv->netdev->dev_addr);
3971         dev_info(priv->dev, "Task queue pairs numbers: %u\n", kinfo->num_tqps);
3972         dev_info(priv->dev, "RSS size: %u\n", kinfo->rss_size);
3973         dev_info(priv->dev, "Allocated RSS size: %u\n", kinfo->req_rss_size);
3974         dev_info(priv->dev, "RX buffer length: %u\n", kinfo->rx_buf_len);
3975         dev_info(priv->dev, "Desc num per TX queue: %u\n", kinfo->num_tx_desc);
3976         dev_info(priv->dev, "Desc num per RX queue: %u\n", kinfo->num_rx_desc);
3977         dev_info(priv->dev, "Total number of enabled TCs: %u\n", kinfo->num_tc);
3978         dev_info(priv->dev, "Max mtu size: %u\n", priv->netdev->max_mtu);
3979 }
3980
3981 static int hns3_client_init(struct hnae3_handle *handle)
3982 {
3983         struct pci_dev *pdev = handle->pdev;
3984         u16 alloc_tqps, max_rss_size;
3985         struct hns3_nic_priv *priv;
3986         struct net_device *netdev;
3987         int ret;
3988
3989         handle->ae_algo->ops->get_tqps_and_rss_info(handle, &alloc_tqps,
3990                                                     &max_rss_size);
3991         netdev = alloc_etherdev_mq(sizeof(struct hns3_nic_priv), alloc_tqps);
3992         if (!netdev)
3993                 return -ENOMEM;
3994
3995         priv = netdev_priv(netdev);
3996         priv->dev = &pdev->dev;
3997         priv->netdev = netdev;
3998         priv->ae_handle = handle;
3999         priv->tx_timeout_count = 0;
4000         set_bit(HNS3_NIC_STATE_DOWN, &priv->state);
4001
4002         handle->msg_enable = netif_msg_init(debug, DEFAULT_MSG_LEVEL);
4003
4004         handle->kinfo.netdev = netdev;
4005         handle->priv = (void *)priv;
4006
4007         hns3_init_mac_addr(netdev);
4008
4009         hns3_set_default_feature(netdev);
4010
4011         netdev->watchdog_timeo = HNS3_TX_TIMEOUT;
4012         netdev->priv_flags |= IFF_UNICAST_FLT;
4013         netdev->netdev_ops = &hns3_nic_netdev_ops;
4014         SET_NETDEV_DEV(netdev, &pdev->dev);
4015         hns3_ethtool_set_ops(netdev);
4016
4017         /* Carrier off reporting is important to ethtool even BEFORE open */
4018         netif_carrier_off(netdev);
4019
4020         ret = hns3_get_ring_config(priv);
4021         if (ret) {
4022                 ret = -ENOMEM;
4023                 goto out_get_ring_cfg;
4024         }
4025
4026         ret = hns3_nic_alloc_vector_data(priv);
4027         if (ret) {
4028                 ret = -ENOMEM;
4029                 goto out_alloc_vector_data;
4030         }
4031
4032         ret = hns3_nic_init_vector_data(priv);
4033         if (ret) {
4034                 ret = -ENOMEM;
4035                 goto out_init_vector_data;
4036         }
4037
4038         ret = hns3_init_all_ring(priv);
4039         if (ret) {
4040                 ret = -ENOMEM;
4041                 goto out_init_ring;
4042         }
4043
4044         ret = hns3_init_phy(netdev);
4045         if (ret)
4046                 goto out_init_phy;
4047
4048         ret = register_netdev(netdev);
4049         if (ret) {
4050                 dev_err(priv->dev, "probe register netdev fail!\n");
4051                 goto out_reg_netdev_fail;
4052         }
4053
4054         /* the device can work without cpu rmap, only aRFS needs it */
4055         ret = hns3_set_rx_cpu_rmap(netdev);
4056         if (ret)
4057                 dev_warn(priv->dev, "set rx cpu rmap fail, ret=%d\n", ret);
4058
4059         ret = hns3_nic_init_irq(priv);
4060         if (ret) {
4061                 dev_err(priv->dev, "init irq failed! ret=%d\n", ret);
4062                 hns3_free_rx_cpu_rmap(netdev);
4063                 goto out_init_irq_fail;
4064         }
4065
4066         ret = hns3_client_start(handle);
4067         if (ret) {
4068                 dev_err(priv->dev, "hns3_client_start fail! ret=%d\n", ret);
4069                 goto out_client_start;
4070         }
4071
4072         hns3_dcbnl_setup(handle);
4073
4074         hns3_dbg_init(handle);
4075
4076         /* MTU range: (ETH_MIN_MTU(kernel default) - 9702) */
4077         netdev->max_mtu = HNS3_MAX_MTU;
4078
4079         set_bit(HNS3_NIC_STATE_INITED, &priv->state);
4080
4081         if (netif_msg_drv(handle))
4082                 hns3_info_show(priv);
4083
4084         return ret;
4085
4086 out_client_start:
4087         hns3_free_rx_cpu_rmap(netdev);
4088         hns3_nic_uninit_irq(priv);
4089 out_init_irq_fail:
4090         unregister_netdev(netdev);
4091 out_reg_netdev_fail:
4092         hns3_uninit_phy(netdev);
4093 out_init_phy:
4094         hns3_uninit_all_ring(priv);
4095 out_init_ring:
4096         hns3_nic_uninit_vector_data(priv);
4097 out_init_vector_data:
4098         hns3_nic_dealloc_vector_data(priv);
4099 out_alloc_vector_data:
4100         priv->ring = NULL;
4101 out_get_ring_cfg:
4102         priv->ae_handle = NULL;
4103         free_netdev(netdev);
4104         return ret;
4105 }
4106
4107 static void hns3_client_uninit(struct hnae3_handle *handle, bool reset)
4108 {
4109         struct net_device *netdev = handle->kinfo.netdev;
4110         struct hns3_nic_priv *priv = netdev_priv(netdev);
4111         int ret;
4112
4113         if (netdev->reg_state != NETREG_UNINITIALIZED)
4114                 unregister_netdev(netdev);
4115
4116         hns3_client_stop(handle);
4117
4118         hns3_uninit_phy(netdev);
4119
4120         if (!test_and_clear_bit(HNS3_NIC_STATE_INITED, &priv->state)) {
4121                 netdev_warn(netdev, "already uninitialized\n");
4122                 goto out_netdev_free;
4123         }
4124
4125         hns3_free_rx_cpu_rmap(netdev);
4126
4127         hns3_nic_uninit_irq(priv);
4128
4129         hns3_del_all_fd_rules(netdev, true);
4130
4131         hns3_clear_all_ring(handle, true);
4132
4133         hns3_nic_uninit_vector_data(priv);
4134
4135         hns3_nic_dealloc_vector_data(priv);
4136
4137         ret = hns3_uninit_all_ring(priv);
4138         if (ret)
4139                 netdev_err(netdev, "uninit ring error\n");
4140
4141         hns3_put_ring_config(priv);
4142
4143         hns3_dbg_uninit(handle);
4144
4145 out_netdev_free:
4146         free_netdev(netdev);
4147 }
4148
4149 static void hns3_link_status_change(struct hnae3_handle *handle, bool linkup)
4150 {
4151         struct net_device *netdev = handle->kinfo.netdev;
4152
4153         if (!netdev)
4154                 return;
4155
4156         if (linkup) {
4157                 netif_carrier_on(netdev);
4158                 netif_tx_wake_all_queues(netdev);
4159                 if (netif_msg_link(handle))
4160                         netdev_info(netdev, "link up\n");
4161         } else {
4162                 netif_carrier_off(netdev);
4163                 netif_tx_stop_all_queues(netdev);
4164                 if (netif_msg_link(handle))
4165                         netdev_info(netdev, "link down\n");
4166         }
4167 }
4168
4169 static int hns3_client_setup_tc(struct hnae3_handle *handle, u8 tc)
4170 {
4171         struct hnae3_knic_private_info *kinfo = &handle->kinfo;
4172         struct net_device *ndev = kinfo->netdev;
4173
4174         if (tc > HNAE3_MAX_TC)
4175                 return -EINVAL;
4176
4177         if (!ndev)
4178                 return -ENODEV;
4179
4180         return hns3_nic_set_real_num_queue(ndev);
4181 }
4182
4183 static void hns3_clear_tx_ring(struct hns3_enet_ring *ring)
4184 {
4185         while (ring->next_to_clean != ring->next_to_use) {
4186                 ring->desc[ring->next_to_clean].tx.bdtp_fe_sc_vld_ra_ri = 0;
4187                 hns3_free_buffer_detach(ring, ring->next_to_clean);
4188                 ring_ptr_move_fw(ring, next_to_clean);
4189         }
4190 }
4191
4192 static int hns3_clear_rx_ring(struct hns3_enet_ring *ring)
4193 {
4194         struct hns3_desc_cb res_cbs;
4195         int ret;
4196
4197         while (ring->next_to_use != ring->next_to_clean) {
4198                 /* When a buffer is not reused, it's memory has been
4199                  * freed in hns3_handle_rx_bd or will be freed by
4200                  * stack, so we need to replace the buffer here.
4201                  */
4202                 if (!ring->desc_cb[ring->next_to_use].reuse_flag) {
4203                         ret = hns3_alloc_and_map_buffer(ring, &res_cbs);
4204                         if (ret) {
4205                                 u64_stats_update_begin(&ring->syncp);
4206                                 ring->stats.sw_err_cnt++;
4207                                 u64_stats_update_end(&ring->syncp);
4208                                 /* if alloc new buffer fail, exit directly
4209                                  * and reclear in up flow.
4210                                  */
4211                                 netdev_warn(ring_to_netdev(ring),
4212                                             "reserve buffer map failed, ret = %d\n",
4213                                             ret);
4214                                 return ret;
4215                         }
4216                         hns3_replace_buffer(ring, ring->next_to_use, &res_cbs);
4217                 }
4218                 ring_ptr_move_fw(ring, next_to_use);
4219         }
4220
4221         /* Free the pending skb in rx ring */
4222         if (ring->skb) {
4223                 dev_kfree_skb_any(ring->skb);
4224                 ring->skb = NULL;
4225                 ring->pending_buf = 0;
4226         }
4227
4228         return 0;
4229 }
4230
4231 static void hns3_force_clear_rx_ring(struct hns3_enet_ring *ring)
4232 {
4233         while (ring->next_to_use != ring->next_to_clean) {
4234                 /* When a buffer is not reused, it's memory has been
4235                  * freed in hns3_handle_rx_bd or will be freed by
4236                  * stack, so only need to unmap the buffer here.
4237                  */
4238                 if (!ring->desc_cb[ring->next_to_use].reuse_flag) {
4239                         hns3_unmap_buffer(ring,
4240                                           &ring->desc_cb[ring->next_to_use]);
4241                         ring->desc_cb[ring->next_to_use].dma = 0;
4242                 }
4243
4244                 ring_ptr_move_fw(ring, next_to_use);
4245         }
4246 }
4247
4248 static void hns3_clear_all_ring(struct hnae3_handle *h, bool force)
4249 {
4250         struct net_device *ndev = h->kinfo.netdev;
4251         struct hns3_nic_priv *priv = netdev_priv(ndev);
4252         u32 i;
4253
4254         for (i = 0; i < h->kinfo.num_tqps; i++) {
4255                 struct hns3_enet_ring *ring;
4256
4257                 ring = &priv->ring[i];
4258                 hns3_clear_tx_ring(ring);
4259
4260                 ring = &priv->ring[i + h->kinfo.num_tqps];
4261                 /* Continue to clear other rings even if clearing some
4262                  * rings failed.
4263                  */
4264                 if (force)
4265                         hns3_force_clear_rx_ring(ring);
4266                 else
4267                         hns3_clear_rx_ring(ring);
4268         }
4269 }
4270
4271 int hns3_nic_reset_all_ring(struct hnae3_handle *h)
4272 {
4273         struct net_device *ndev = h->kinfo.netdev;
4274         struct hns3_nic_priv *priv = netdev_priv(ndev);
4275         struct hns3_enet_ring *rx_ring;
4276         int i, j;
4277         int ret;
4278
4279         for (i = 0; i < h->kinfo.num_tqps; i++) {
4280                 ret = h->ae_algo->ops->reset_queue(h, i);
4281                 if (ret)
4282                         return ret;
4283
4284                 hns3_init_ring_hw(&priv->ring[i]);
4285
4286                 /* We need to clear tx ring here because self test will
4287                  * use the ring and will not run down before up
4288                  */
4289                 hns3_clear_tx_ring(&priv->ring[i]);
4290                 priv->ring[i].next_to_clean = 0;
4291                 priv->ring[i].next_to_use = 0;
4292
4293                 rx_ring = &priv->ring[i + h->kinfo.num_tqps];
4294                 hns3_init_ring_hw(rx_ring);
4295                 ret = hns3_clear_rx_ring(rx_ring);
4296                 if (ret)
4297                         return ret;
4298
4299                 /* We can not know the hardware head and tail when this
4300                  * function is called in reset flow, so we reuse all desc.
4301                  */
4302                 for (j = 0; j < rx_ring->desc_num; j++)
4303                         hns3_reuse_buffer(rx_ring, j);
4304
4305                 rx_ring->next_to_clean = 0;
4306                 rx_ring->next_to_use = 0;
4307         }
4308
4309         hns3_init_tx_ring_tc(priv);
4310
4311         return 0;
4312 }
4313
4314 static void hns3_store_coal(struct hns3_nic_priv *priv)
4315 {
4316         /* ethtool only support setting and querying one coal
4317          * configuration for now, so save the vector 0' coal
4318          * configuration here in order to restore it.
4319          */
4320         memcpy(&priv->tx_coal, &priv->tqp_vector[0].tx_group.coal,
4321                sizeof(struct hns3_enet_coalesce));
4322         memcpy(&priv->rx_coal, &priv->tqp_vector[0].rx_group.coal,
4323                sizeof(struct hns3_enet_coalesce));
4324 }
4325
4326 static void hns3_restore_coal(struct hns3_nic_priv *priv)
4327 {
4328         u16 vector_num = priv->vector_num;
4329         int i;
4330
4331         for (i = 0; i < vector_num; i++) {
4332                 memcpy(&priv->tqp_vector[i].tx_group.coal, &priv->tx_coal,
4333                        sizeof(struct hns3_enet_coalesce));
4334                 memcpy(&priv->tqp_vector[i].rx_group.coal, &priv->rx_coal,
4335                        sizeof(struct hns3_enet_coalesce));
4336         }
4337 }
4338
4339 static int hns3_reset_notify_down_enet(struct hnae3_handle *handle)
4340 {
4341         struct hnae3_knic_private_info *kinfo = &handle->kinfo;
4342         struct net_device *ndev = kinfo->netdev;
4343         struct hns3_nic_priv *priv = netdev_priv(ndev);
4344
4345         if (test_and_set_bit(HNS3_NIC_STATE_RESETTING, &priv->state))
4346                 return 0;
4347
4348         if (!netif_running(ndev))
4349                 return 0;
4350
4351         return hns3_nic_net_stop(ndev);
4352 }
4353
4354 static int hns3_reset_notify_up_enet(struct hnae3_handle *handle)
4355 {
4356         struct hnae3_knic_private_info *kinfo = &handle->kinfo;
4357         struct hns3_nic_priv *priv = netdev_priv(kinfo->netdev);
4358         int ret = 0;
4359
4360         clear_bit(HNS3_NIC_STATE_RESETTING, &priv->state);
4361
4362         if (netif_running(kinfo->netdev)) {
4363                 ret = hns3_nic_net_open(kinfo->netdev);
4364                 if (ret) {
4365                         set_bit(HNS3_NIC_STATE_RESETTING, &priv->state);
4366                         netdev_err(kinfo->netdev,
4367                                    "net up fail, ret=%d!\n", ret);
4368                         return ret;
4369                 }
4370         }
4371
4372         return ret;
4373 }
4374
4375 static int hns3_reset_notify_init_enet(struct hnae3_handle *handle)
4376 {
4377         struct net_device *netdev = handle->kinfo.netdev;
4378         struct hns3_nic_priv *priv = netdev_priv(netdev);
4379         int ret;
4380
4381         /* Carrier off reporting is important to ethtool even BEFORE open */
4382         netif_carrier_off(netdev);
4383
4384         ret = hns3_get_ring_config(priv);
4385         if (ret)
4386                 return ret;
4387
4388         ret = hns3_nic_alloc_vector_data(priv);
4389         if (ret)
4390                 goto err_put_ring;
4391
4392         hns3_restore_coal(priv);
4393
4394         ret = hns3_nic_init_vector_data(priv);
4395         if (ret)
4396                 goto err_dealloc_vector;
4397
4398         ret = hns3_init_all_ring(priv);
4399         if (ret)
4400                 goto err_uninit_vector;
4401
4402         /* the device can work without cpu rmap, only aRFS needs it */
4403         ret = hns3_set_rx_cpu_rmap(netdev);
4404         if (ret)
4405                 dev_warn(priv->dev, "set rx cpu rmap fail, ret=%d\n", ret);
4406
4407         ret = hns3_nic_init_irq(priv);
4408         if (ret) {
4409                 dev_err(priv->dev, "init irq failed! ret=%d\n", ret);
4410                 hns3_free_rx_cpu_rmap(netdev);
4411                 goto err_init_irq_fail;
4412         }
4413
4414         if (!hns3_is_phys_func(handle->pdev))
4415                 hns3_init_mac_addr(netdev);
4416
4417         ret = hns3_client_start(handle);
4418         if (ret) {
4419                 dev_err(priv->dev, "hns3_client_start fail! ret=%d\n", ret);
4420                 goto err_client_start_fail;
4421         }
4422
4423         set_bit(HNS3_NIC_STATE_INITED, &priv->state);
4424
4425         return ret;
4426
4427 err_client_start_fail:
4428         hns3_free_rx_cpu_rmap(netdev);
4429         hns3_nic_uninit_irq(priv);
4430 err_init_irq_fail:
4431         hns3_uninit_all_ring(priv);
4432 err_uninit_vector:
4433         hns3_nic_uninit_vector_data(priv);
4434 err_dealloc_vector:
4435         hns3_nic_dealloc_vector_data(priv);
4436 err_put_ring:
4437         hns3_put_ring_config(priv);
4438
4439         return ret;
4440 }
4441
4442 static int hns3_reset_notify_uninit_enet(struct hnae3_handle *handle)
4443 {
4444         struct net_device *netdev = handle->kinfo.netdev;
4445         struct hns3_nic_priv *priv = netdev_priv(netdev);
4446         int ret;
4447
4448         if (!test_and_clear_bit(HNS3_NIC_STATE_INITED, &priv->state)) {
4449                 netdev_warn(netdev, "already uninitialized\n");
4450                 return 0;
4451         }
4452
4453         hns3_free_rx_cpu_rmap(netdev);
4454         hns3_nic_uninit_irq(priv);
4455         hns3_clear_all_ring(handle, true);
4456         hns3_reset_tx_queue(priv->ae_handle);
4457
4458         hns3_nic_uninit_vector_data(priv);
4459
4460         hns3_store_coal(priv);
4461
4462         hns3_nic_dealloc_vector_data(priv);
4463
4464         ret = hns3_uninit_all_ring(priv);
4465         if (ret)
4466                 netdev_err(netdev, "uninit ring error\n");
4467
4468         hns3_put_ring_config(priv);
4469
4470         return ret;
4471 }
4472
4473 static int hns3_reset_notify(struct hnae3_handle *handle,
4474                              enum hnae3_reset_notify_type type)
4475 {
4476         int ret = 0;
4477
4478         switch (type) {
4479         case HNAE3_UP_CLIENT:
4480                 ret = hns3_reset_notify_up_enet(handle);
4481                 break;
4482         case HNAE3_DOWN_CLIENT:
4483                 ret = hns3_reset_notify_down_enet(handle);
4484                 break;
4485         case HNAE3_INIT_CLIENT:
4486                 ret = hns3_reset_notify_init_enet(handle);
4487                 break;
4488         case HNAE3_UNINIT_CLIENT:
4489                 ret = hns3_reset_notify_uninit_enet(handle);
4490                 break;
4491         default:
4492                 break;
4493         }
4494
4495         return ret;
4496 }
4497
4498 static int hns3_change_channels(struct hnae3_handle *handle, u32 new_tqp_num,
4499                                 bool rxfh_configured)
4500 {
4501         int ret;
4502
4503         ret = handle->ae_algo->ops->set_channels(handle, new_tqp_num,
4504                                                  rxfh_configured);
4505         if (ret) {
4506                 dev_err(&handle->pdev->dev,
4507                         "Change tqp num(%u) fail.\n", new_tqp_num);
4508                 return ret;
4509         }
4510
4511         ret = hns3_reset_notify(handle, HNAE3_INIT_CLIENT);
4512         if (ret)
4513                 return ret;
4514
4515         ret =  hns3_reset_notify(handle, HNAE3_UP_CLIENT);
4516         if (ret)
4517                 hns3_reset_notify(handle, HNAE3_UNINIT_CLIENT);
4518
4519         return ret;
4520 }
4521
4522 int hns3_set_channels(struct net_device *netdev,
4523                       struct ethtool_channels *ch)
4524 {
4525         struct hnae3_handle *h = hns3_get_handle(netdev);
4526         struct hnae3_knic_private_info *kinfo = &h->kinfo;
4527         bool rxfh_configured = netif_is_rxfh_configured(netdev);
4528         u32 new_tqp_num = ch->combined_count;
4529         u16 org_tqp_num;
4530         int ret;
4531
4532         if (hns3_nic_resetting(netdev))
4533                 return -EBUSY;
4534
4535         if (ch->rx_count || ch->tx_count)
4536                 return -EINVAL;
4537
4538         if (new_tqp_num > hns3_get_max_available_channels(h) ||
4539             new_tqp_num < 1) {
4540                 dev_err(&netdev->dev,
4541                         "Change tqps fail, the tqp range is from 1 to %u",
4542                         hns3_get_max_available_channels(h));
4543                 return -EINVAL;
4544         }
4545
4546         if (kinfo->rss_size == new_tqp_num)
4547                 return 0;
4548
4549         netif_dbg(h, drv, netdev,
4550                   "set channels: tqp_num=%u, rxfh=%d\n",
4551                   new_tqp_num, rxfh_configured);
4552
4553         ret = hns3_reset_notify(h, HNAE3_DOWN_CLIENT);
4554         if (ret)
4555                 return ret;
4556
4557         ret = hns3_reset_notify(h, HNAE3_UNINIT_CLIENT);
4558         if (ret)
4559                 return ret;
4560
4561         org_tqp_num = h->kinfo.num_tqps;
4562         ret = hns3_change_channels(h, new_tqp_num, rxfh_configured);
4563         if (ret) {
4564                 int ret1;
4565
4566                 netdev_warn(netdev,
4567                             "Change channels fail, revert to old value\n");
4568                 ret1 = hns3_change_channels(h, org_tqp_num, rxfh_configured);
4569                 if (ret1) {
4570                         netdev_err(netdev,
4571                                    "revert to old channel fail\n");
4572                         return ret1;
4573                 }
4574
4575                 return ret;
4576         }
4577
4578         return 0;
4579 }
4580
4581 static const struct hns3_hw_error_info hns3_hw_err[] = {
4582         { .type = HNAE3_PPU_POISON_ERROR,
4583           .msg = "PPU poison" },
4584         { .type = HNAE3_CMDQ_ECC_ERROR,
4585           .msg = "IMP CMDQ error" },
4586         { .type = HNAE3_IMP_RD_POISON_ERROR,
4587           .msg = "IMP RD poison" },
4588 };
4589
4590 static void hns3_process_hw_error(struct hnae3_handle *handle,
4591                                   enum hnae3_hw_error_type type)
4592 {
4593         int i;
4594
4595         for (i = 0; i < ARRAY_SIZE(hns3_hw_err); i++) {
4596                 if (hns3_hw_err[i].type == type) {
4597                         dev_err(&handle->pdev->dev, "Detected %s!\n",
4598                                 hns3_hw_err[i].msg);
4599                         break;
4600                 }
4601         }
4602 }
4603
4604 static const struct hnae3_client_ops client_ops = {
4605         .init_instance = hns3_client_init,
4606         .uninit_instance = hns3_client_uninit,
4607         .link_status_change = hns3_link_status_change,
4608         .setup_tc = hns3_client_setup_tc,
4609         .reset_notify = hns3_reset_notify,
4610         .process_hw_error = hns3_process_hw_error,
4611 };
4612
4613 /* hns3_init_module - Driver registration routine
4614  * hns3_init_module is the first routine called when the driver is
4615  * loaded. All it does is register with the PCI subsystem.
4616  */
4617 static int __init hns3_init_module(void)
4618 {
4619         int ret;
4620
4621         pr_info("%s: %s - version\n", hns3_driver_name, hns3_driver_string);
4622         pr_info("%s: %s\n", hns3_driver_name, hns3_copyright);
4623
4624         client.type = HNAE3_CLIENT_KNIC;
4625         snprintf(client.name, HNAE3_CLIENT_NAME_LENGTH, "%s",
4626                  hns3_driver_name);
4627
4628         client.ops = &client_ops;
4629
4630         INIT_LIST_HEAD(&client.node);
4631
4632         hns3_dbg_register_debugfs(hns3_driver_name);
4633
4634         ret = hnae3_register_client(&client);
4635         if (ret)
4636                 goto err_reg_client;
4637
4638         ret = pci_register_driver(&hns3_driver);
4639         if (ret)
4640                 goto err_reg_driver;
4641
4642         return ret;
4643
4644 err_reg_driver:
4645         hnae3_unregister_client(&client);
4646 err_reg_client:
4647         hns3_dbg_unregister_debugfs();
4648         return ret;
4649 }
4650 module_init(hns3_init_module);
4651
4652 /* hns3_exit_module - Driver exit cleanup routine
4653  * hns3_exit_module is called just before the driver is removed
4654  * from memory.
4655  */
4656 static void __exit hns3_exit_module(void)
4657 {
4658         pci_unregister_driver(&hns3_driver);
4659         hnae3_unregister_client(&client);
4660         hns3_dbg_unregister_debugfs();
4661 }
4662 module_exit(hns3_exit_module);
4663
4664 MODULE_DESCRIPTION("HNS3: Hisilicon Ethernet Driver");
4665 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
4666 MODULE_LICENSE("GPL");
4667 MODULE_ALIAS("pci:hns-nic");