Merge tag 'sunxi-fixes-for-4.19' of https://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-block.git] / drivers / net / ethernet / hisilicon / hns3 / hns3_enet.c
1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3
4 #include <linux/dma-mapping.h>
5 #include <linux/etherdevice.h>
6 #include <linux/interrupt.h>
7 #include <linux/if_vlan.h>
8 #include <linux/ip.h>
9 #include <linux/ipv6.h>
10 #include <linux/module.h>
11 #include <linux/pci.h>
12 #include <linux/skbuff.h>
13 #include <linux/sctp.h>
14 #include <linux/vermagic.h>
15 #include <net/gre.h>
16 #include <net/pkt_cls.h>
17 #include <net/vxlan.h>
18
19 #include "hnae3.h"
20 #include "hns3_enet.h"
21
22 static void hns3_clear_all_ring(struct hnae3_handle *h);
23 static void hns3_force_clear_all_rx_ring(struct hnae3_handle *h);
24
25 static const char hns3_driver_name[] = "hns3";
26 const char hns3_driver_version[] = VERMAGIC_STRING;
27 static const char hns3_driver_string[] =
28                         "Hisilicon Ethernet Network Driver for Hip08 Family";
29 static const char hns3_copyright[] = "Copyright (c) 2017 Huawei Corporation.";
30 static struct hnae3_client client;
31
32 /* hns3_pci_tbl - PCI Device ID Table
33  *
34  * Last entry must be all 0s
35  *
36  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
37  *   Class, Class Mask, private data (not used) }
38  */
39 static const struct pci_device_id hns3_pci_tbl[] = {
40         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_GE), 0},
41         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE), 0},
42         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA),
43          HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
44         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA_MACSEC),
45          HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
46         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA),
47          HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
48         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA_MACSEC),
49          HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
50         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_MACSEC),
51          HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
52         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_VF), 0},
53         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_DCB_PFC_VF),
54          HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
55         /* required last entry */
56         {0, }
57 };
58 MODULE_DEVICE_TABLE(pci, hns3_pci_tbl);
59
60 static irqreturn_t hns3_irq_handle(int irq, void *vector)
61 {
62         struct hns3_enet_tqp_vector *tqp_vector = vector;
63
64         napi_schedule(&tqp_vector->napi);
65
66         return IRQ_HANDLED;
67 }
68
69 static void hns3_nic_uninit_irq(struct hns3_nic_priv *priv)
70 {
71         struct hns3_enet_tqp_vector *tqp_vectors;
72         unsigned int i;
73
74         for (i = 0; i < priv->vector_num; i++) {
75                 tqp_vectors = &priv->tqp_vector[i];
76
77                 if (tqp_vectors->irq_init_flag != HNS3_VECTOR_INITED)
78                         continue;
79
80                 /* release the irq resource */
81                 free_irq(tqp_vectors->vector_irq, tqp_vectors);
82                 tqp_vectors->irq_init_flag = HNS3_VECTOR_NOT_INITED;
83         }
84 }
85
86 static int hns3_nic_init_irq(struct hns3_nic_priv *priv)
87 {
88         struct hns3_enet_tqp_vector *tqp_vectors;
89         int txrx_int_idx = 0;
90         int rx_int_idx = 0;
91         int tx_int_idx = 0;
92         unsigned int i;
93         int ret;
94
95         for (i = 0; i < priv->vector_num; i++) {
96                 tqp_vectors = &priv->tqp_vector[i];
97
98                 if (tqp_vectors->irq_init_flag == HNS3_VECTOR_INITED)
99                         continue;
100
101                 if (tqp_vectors->tx_group.ring && tqp_vectors->rx_group.ring) {
102                         snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN - 1,
103                                  "%s-%s-%d", priv->netdev->name, "TxRx",
104                                  txrx_int_idx++);
105                         txrx_int_idx++;
106                 } else if (tqp_vectors->rx_group.ring) {
107                         snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN - 1,
108                                  "%s-%s-%d", priv->netdev->name, "Rx",
109                                  rx_int_idx++);
110                 } else if (tqp_vectors->tx_group.ring) {
111                         snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN - 1,
112                                  "%s-%s-%d", priv->netdev->name, "Tx",
113                                  tx_int_idx++);
114                 } else {
115                         /* Skip this unused q_vector */
116                         continue;
117                 }
118
119                 tqp_vectors->name[HNAE3_INT_NAME_LEN - 1] = '\0';
120
121                 ret = request_irq(tqp_vectors->vector_irq, hns3_irq_handle, 0,
122                                   tqp_vectors->name,
123                                        tqp_vectors);
124                 if (ret) {
125                         netdev_err(priv->netdev, "request irq(%d) fail\n",
126                                    tqp_vectors->vector_irq);
127                         return ret;
128                 }
129
130                 tqp_vectors->irq_init_flag = HNS3_VECTOR_INITED;
131         }
132
133         return 0;
134 }
135
136 static void hns3_mask_vector_irq(struct hns3_enet_tqp_vector *tqp_vector,
137                                  u32 mask_en)
138 {
139         writel(mask_en, tqp_vector->mask_addr);
140 }
141
142 static void hns3_vector_enable(struct hns3_enet_tqp_vector *tqp_vector)
143 {
144         napi_enable(&tqp_vector->napi);
145
146         /* enable vector */
147         hns3_mask_vector_irq(tqp_vector, 1);
148 }
149
150 static void hns3_vector_disable(struct hns3_enet_tqp_vector *tqp_vector)
151 {
152         /* disable vector */
153         hns3_mask_vector_irq(tqp_vector, 0);
154
155         disable_irq(tqp_vector->vector_irq);
156         napi_disable(&tqp_vector->napi);
157 }
158
159 void hns3_set_vector_coalesce_rl(struct hns3_enet_tqp_vector *tqp_vector,
160                                  u32 rl_value)
161 {
162         u32 rl_reg = hns3_rl_usec_to_reg(rl_value);
163
164         /* this defines the configuration for RL (Interrupt Rate Limiter).
165          * Rl defines rate of interrupts i.e. number of interrupts-per-second
166          * GL and RL(Rate Limiter) are 2 ways to acheive interrupt coalescing
167          */
168
169         if (rl_reg > 0 && !tqp_vector->tx_group.coal.gl_adapt_enable &&
170             !tqp_vector->rx_group.coal.gl_adapt_enable)
171                 /* According to the hardware, the range of rl_reg is
172                  * 0-59 and the unit is 4.
173                  */
174                 rl_reg |=  HNS3_INT_RL_ENABLE_MASK;
175
176         writel(rl_reg, tqp_vector->mask_addr + HNS3_VECTOR_RL_OFFSET);
177 }
178
179 void hns3_set_vector_coalesce_rx_gl(struct hns3_enet_tqp_vector *tqp_vector,
180                                     u32 gl_value)
181 {
182         u32 rx_gl_reg = hns3_gl_usec_to_reg(gl_value);
183
184         writel(rx_gl_reg, tqp_vector->mask_addr + HNS3_VECTOR_GL0_OFFSET);
185 }
186
187 void hns3_set_vector_coalesce_tx_gl(struct hns3_enet_tqp_vector *tqp_vector,
188                                     u32 gl_value)
189 {
190         u32 tx_gl_reg = hns3_gl_usec_to_reg(gl_value);
191
192         writel(tx_gl_reg, tqp_vector->mask_addr + HNS3_VECTOR_GL1_OFFSET);
193 }
194
195 static void hns3_vector_gl_rl_init(struct hns3_enet_tqp_vector *tqp_vector,
196                                    struct hns3_nic_priv *priv)
197 {
198         struct hnae3_handle *h = priv->ae_handle;
199
200         /* initialize the configuration for interrupt coalescing.
201          * 1. GL (Interrupt Gap Limiter)
202          * 2. RL (Interrupt Rate Limiter)
203          */
204
205         /* Default: enable interrupt coalescing self-adaptive and GL */
206         tqp_vector->tx_group.coal.gl_adapt_enable = 1;
207         tqp_vector->rx_group.coal.gl_adapt_enable = 1;
208
209         tqp_vector->tx_group.coal.int_gl = HNS3_INT_GL_50K;
210         tqp_vector->rx_group.coal.int_gl = HNS3_INT_GL_50K;
211
212         /* Default: disable RL */
213         h->kinfo.int_rl_setting = 0;
214
215         tqp_vector->int_adapt_down = HNS3_INT_ADAPT_DOWN_START;
216         tqp_vector->rx_group.coal.flow_level = HNS3_FLOW_LOW;
217         tqp_vector->tx_group.coal.flow_level = HNS3_FLOW_LOW;
218 }
219
220 static void hns3_vector_gl_rl_init_hw(struct hns3_enet_tqp_vector *tqp_vector,
221                                       struct hns3_nic_priv *priv)
222 {
223         struct hnae3_handle *h = priv->ae_handle;
224
225         hns3_set_vector_coalesce_tx_gl(tqp_vector,
226                                        tqp_vector->tx_group.coal.int_gl);
227         hns3_set_vector_coalesce_rx_gl(tqp_vector,
228                                        tqp_vector->rx_group.coal.int_gl);
229         hns3_set_vector_coalesce_rl(tqp_vector, h->kinfo.int_rl_setting);
230 }
231
232 static int hns3_nic_set_real_num_queue(struct net_device *netdev)
233 {
234         struct hnae3_handle *h = hns3_get_handle(netdev);
235         struct hnae3_knic_private_info *kinfo = &h->kinfo;
236         unsigned int queue_size = kinfo->rss_size * kinfo->num_tc;
237         int i, ret;
238
239         if (kinfo->num_tc <= 1) {
240                 netdev_reset_tc(netdev);
241         } else {
242                 ret = netdev_set_num_tc(netdev, kinfo->num_tc);
243                 if (ret) {
244                         netdev_err(netdev,
245                                    "netdev_set_num_tc fail, ret=%d!\n", ret);
246                         return ret;
247                 }
248
249                 for (i = 0; i < HNAE3_MAX_TC; i++) {
250                         if (!kinfo->tc_info[i].enable)
251                                 continue;
252
253                         netdev_set_tc_queue(netdev,
254                                             kinfo->tc_info[i].tc,
255                                             kinfo->tc_info[i].tqp_count,
256                                             kinfo->tc_info[i].tqp_offset);
257                 }
258         }
259
260         ret = netif_set_real_num_tx_queues(netdev, queue_size);
261         if (ret) {
262                 netdev_err(netdev,
263                            "netif_set_real_num_tx_queues fail, ret=%d!\n",
264                            ret);
265                 return ret;
266         }
267
268         ret = netif_set_real_num_rx_queues(netdev, queue_size);
269         if (ret) {
270                 netdev_err(netdev,
271                            "netif_set_real_num_rx_queues fail, ret=%d!\n", ret);
272                 return ret;
273         }
274
275         return 0;
276 }
277
278 static u16 hns3_get_max_available_channels(struct hnae3_handle *h)
279 {
280         u16 free_tqps, max_rss_size, max_tqps;
281
282         h->ae_algo->ops->get_tqps_and_rss_info(h, &free_tqps, &max_rss_size);
283         max_tqps = h->kinfo.num_tc * max_rss_size;
284
285         return min_t(u16, max_tqps, (free_tqps + h->kinfo.num_tqps));
286 }
287
288 static int hns3_nic_net_up(struct net_device *netdev)
289 {
290         struct hns3_nic_priv *priv = netdev_priv(netdev);
291         struct hnae3_handle *h = priv->ae_handle;
292         int i, j;
293         int ret;
294
295         ret = hns3_nic_reset_all_ring(h);
296         if (ret)
297                 return ret;
298
299         /* get irq resource for all vectors */
300         ret = hns3_nic_init_irq(priv);
301         if (ret) {
302                 netdev_err(netdev, "hns init irq failed! ret=%d\n", ret);
303                 return ret;
304         }
305
306         /* enable the vectors */
307         for (i = 0; i < priv->vector_num; i++)
308                 hns3_vector_enable(&priv->tqp_vector[i]);
309
310         /* start the ae_dev */
311         ret = h->ae_algo->ops->start ? h->ae_algo->ops->start(h) : 0;
312         if (ret)
313                 goto out_start_err;
314
315         clear_bit(HNS3_NIC_STATE_DOWN, &priv->state);
316
317         return 0;
318
319 out_start_err:
320         for (j = i - 1; j >= 0; j--)
321                 hns3_vector_disable(&priv->tqp_vector[j]);
322
323         hns3_nic_uninit_irq(priv);
324
325         return ret;
326 }
327
328 static int hns3_nic_net_open(struct net_device *netdev)
329 {
330         struct hns3_nic_priv *priv = netdev_priv(netdev);
331         struct hnae3_handle *h = hns3_get_handle(netdev);
332         struct hnae3_knic_private_info *kinfo;
333         int i, ret;
334
335         netif_carrier_off(netdev);
336
337         ret = hns3_nic_set_real_num_queue(netdev);
338         if (ret)
339                 return ret;
340
341         ret = hns3_nic_net_up(netdev);
342         if (ret) {
343                 netdev_err(netdev,
344                            "hns net up fail, ret=%d!\n", ret);
345                 return ret;
346         }
347
348         kinfo = &h->kinfo;
349         for (i = 0; i < HNAE3_MAX_USER_PRIO; i++) {
350                 netdev_set_prio_tc_map(netdev, i,
351                                        kinfo->prio_tc[i]);
352         }
353
354         priv->ae_handle->last_reset_time = jiffies;
355         return 0;
356 }
357
358 static void hns3_nic_net_down(struct net_device *netdev)
359 {
360         struct hns3_nic_priv *priv = netdev_priv(netdev);
361         const struct hnae3_ae_ops *ops;
362         int i;
363
364         if (test_and_set_bit(HNS3_NIC_STATE_DOWN, &priv->state))
365                 return;
366
367         /* disable vectors */
368         for (i = 0; i < priv->vector_num; i++)
369                 hns3_vector_disable(&priv->tqp_vector[i]);
370
371         /* stop ae_dev */
372         ops = priv->ae_handle->ae_algo->ops;
373         if (ops->stop)
374                 ops->stop(priv->ae_handle);
375
376         /* free irq resources */
377         hns3_nic_uninit_irq(priv);
378
379         hns3_clear_all_ring(priv->ae_handle);
380 }
381
382 static int hns3_nic_net_stop(struct net_device *netdev)
383 {
384         netif_tx_stop_all_queues(netdev);
385         netif_carrier_off(netdev);
386
387         hns3_nic_net_down(netdev);
388
389         return 0;
390 }
391
392 static int hns3_nic_uc_sync(struct net_device *netdev,
393                             const unsigned char *addr)
394 {
395         struct hnae3_handle *h = hns3_get_handle(netdev);
396
397         if (h->ae_algo->ops->add_uc_addr)
398                 return h->ae_algo->ops->add_uc_addr(h, addr);
399
400         return 0;
401 }
402
403 static int hns3_nic_uc_unsync(struct net_device *netdev,
404                               const unsigned char *addr)
405 {
406         struct hnae3_handle *h = hns3_get_handle(netdev);
407
408         if (h->ae_algo->ops->rm_uc_addr)
409                 return h->ae_algo->ops->rm_uc_addr(h, addr);
410
411         return 0;
412 }
413
414 static int hns3_nic_mc_sync(struct net_device *netdev,
415                             const unsigned char *addr)
416 {
417         struct hnae3_handle *h = hns3_get_handle(netdev);
418
419         if (h->ae_algo->ops->add_mc_addr)
420                 return h->ae_algo->ops->add_mc_addr(h, addr);
421
422         return 0;
423 }
424
425 static int hns3_nic_mc_unsync(struct net_device *netdev,
426                               const unsigned char *addr)
427 {
428         struct hnae3_handle *h = hns3_get_handle(netdev);
429
430         if (h->ae_algo->ops->rm_mc_addr)
431                 return h->ae_algo->ops->rm_mc_addr(h, addr);
432
433         return 0;
434 }
435
436 static void hns3_nic_set_rx_mode(struct net_device *netdev)
437 {
438         struct hnae3_handle *h = hns3_get_handle(netdev);
439
440         if (h->ae_algo->ops->set_promisc_mode) {
441                 if (netdev->flags & IFF_PROMISC)
442                         h->ae_algo->ops->set_promisc_mode(h, true, true);
443                 else if (netdev->flags & IFF_ALLMULTI)
444                         h->ae_algo->ops->set_promisc_mode(h, false, true);
445                 else
446                         h->ae_algo->ops->set_promisc_mode(h, false, false);
447         }
448         if (__dev_uc_sync(netdev, hns3_nic_uc_sync, hns3_nic_uc_unsync))
449                 netdev_err(netdev, "sync uc address fail\n");
450         if (netdev->flags & IFF_MULTICAST) {
451                 if (__dev_mc_sync(netdev, hns3_nic_mc_sync, hns3_nic_mc_unsync))
452                         netdev_err(netdev, "sync mc address fail\n");
453
454                 if (h->ae_algo->ops->update_mta_status)
455                         h->ae_algo->ops->update_mta_status(h);
456         }
457 }
458
459 static int hns3_set_tso(struct sk_buff *skb, u32 *paylen,
460                         u16 *mss, u32 *type_cs_vlan_tso)
461 {
462         u32 l4_offset, hdr_len;
463         union l3_hdr_info l3;
464         union l4_hdr_info l4;
465         u32 l4_paylen;
466         int ret;
467
468         if (!skb_is_gso(skb))
469                 return 0;
470
471         ret = skb_cow_head(skb, 0);
472         if (ret)
473                 return ret;
474
475         l3.hdr = skb_network_header(skb);
476         l4.hdr = skb_transport_header(skb);
477
478         /* Software should clear the IPv4's checksum field when tso is
479          * needed.
480          */
481         if (l3.v4->version == 4)
482                 l3.v4->check = 0;
483
484         /* tunnel packet.*/
485         if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
486                                          SKB_GSO_GRE_CSUM |
487                                          SKB_GSO_UDP_TUNNEL |
488                                          SKB_GSO_UDP_TUNNEL_CSUM)) {
489                 if ((!(skb_shinfo(skb)->gso_type &
490                     SKB_GSO_PARTIAL)) &&
491                     (skb_shinfo(skb)->gso_type &
492                     SKB_GSO_UDP_TUNNEL_CSUM)) {
493                         /* Software should clear the udp's checksum
494                          * field when tso is needed.
495                          */
496                         l4.udp->check = 0;
497                 }
498                 /* reset l3&l4 pointers from outer to inner headers */
499                 l3.hdr = skb_inner_network_header(skb);
500                 l4.hdr = skb_inner_transport_header(skb);
501
502                 /* Software should clear the IPv4's checksum field when
503                  * tso is needed.
504                  */
505                 if (l3.v4->version == 4)
506                         l3.v4->check = 0;
507         }
508
509         /* normal or tunnel packet*/
510         l4_offset = l4.hdr - skb->data;
511         hdr_len = (l4.tcp->doff * 4) + l4_offset;
512
513         /* remove payload length from inner pseudo checksum when tso*/
514         l4_paylen = skb->len - l4_offset;
515         csum_replace_by_diff(&l4.tcp->check,
516                              (__force __wsum)htonl(l4_paylen));
517
518         /* find the txbd field values */
519         *paylen = skb->len - hdr_len;
520         hnae3_set_bit(*type_cs_vlan_tso,
521                       HNS3_TXD_TSO_B, 1);
522
523         /* get MSS for TSO */
524         *mss = skb_shinfo(skb)->gso_size;
525
526         return 0;
527 }
528
529 static int hns3_get_l4_protocol(struct sk_buff *skb, u8 *ol4_proto,
530                                 u8 *il4_proto)
531 {
532         union {
533                 struct iphdr *v4;
534                 struct ipv6hdr *v6;
535                 unsigned char *hdr;
536         } l3;
537         unsigned char *l4_hdr;
538         unsigned char *exthdr;
539         u8 l4_proto_tmp;
540         __be16 frag_off;
541
542         /* find outer header point */
543         l3.hdr = skb_network_header(skb);
544         l4_hdr = skb_transport_header(skb);
545
546         if (skb->protocol == htons(ETH_P_IPV6)) {
547                 exthdr = l3.hdr + sizeof(*l3.v6);
548                 l4_proto_tmp = l3.v6->nexthdr;
549                 if (l4_hdr != exthdr)
550                         ipv6_skip_exthdr(skb, exthdr - skb->data,
551                                          &l4_proto_tmp, &frag_off);
552         } else if (skb->protocol == htons(ETH_P_IP)) {
553                 l4_proto_tmp = l3.v4->protocol;
554         } else {
555                 return -EINVAL;
556         }
557
558         *ol4_proto = l4_proto_tmp;
559
560         /* tunnel packet */
561         if (!skb->encapsulation) {
562                 *il4_proto = 0;
563                 return 0;
564         }
565
566         /* find inner header point */
567         l3.hdr = skb_inner_network_header(skb);
568         l4_hdr = skb_inner_transport_header(skb);
569
570         if (l3.v6->version == 6) {
571                 exthdr = l3.hdr + sizeof(*l3.v6);
572                 l4_proto_tmp = l3.v6->nexthdr;
573                 if (l4_hdr != exthdr)
574                         ipv6_skip_exthdr(skb, exthdr - skb->data,
575                                          &l4_proto_tmp, &frag_off);
576         } else if (l3.v4->version == 4) {
577                 l4_proto_tmp = l3.v4->protocol;
578         }
579
580         *il4_proto = l4_proto_tmp;
581
582         return 0;
583 }
584
585 static void hns3_set_l2l3l4_len(struct sk_buff *skb, u8 ol4_proto,
586                                 u8 il4_proto, u32 *type_cs_vlan_tso,
587                                 u32 *ol_type_vlan_len_msec)
588 {
589         union {
590                 struct iphdr *v4;
591                 struct ipv6hdr *v6;
592                 unsigned char *hdr;
593         } l3;
594         union {
595                 struct tcphdr *tcp;
596                 struct udphdr *udp;
597                 struct gre_base_hdr *gre;
598                 unsigned char *hdr;
599         } l4;
600         unsigned char *l2_hdr;
601         u8 l4_proto = ol4_proto;
602         u32 ol2_len;
603         u32 ol3_len;
604         u32 ol4_len;
605         u32 l2_len;
606         u32 l3_len;
607
608         l3.hdr = skb_network_header(skb);
609         l4.hdr = skb_transport_header(skb);
610
611         /* compute L2 header size for normal packet, defined in 2 Bytes */
612         l2_len = l3.hdr - skb->data;
613         hnae3_set_field(*type_cs_vlan_tso, HNS3_TXD_L2LEN_M,
614                         HNS3_TXD_L2LEN_S, l2_len >> 1);
615
616         /* tunnel packet*/
617         if (skb->encapsulation) {
618                 /* compute OL2 header size, defined in 2 Bytes */
619                 ol2_len = l2_len;
620                 hnae3_set_field(*ol_type_vlan_len_msec,
621                                 HNS3_TXD_L2LEN_M,
622                                 HNS3_TXD_L2LEN_S, ol2_len >> 1);
623
624                 /* compute OL3 header size, defined in 4 Bytes */
625                 ol3_len = l4.hdr - l3.hdr;
626                 hnae3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L3LEN_M,
627                                 HNS3_TXD_L3LEN_S, ol3_len >> 2);
628
629                 /* MAC in UDP, MAC in GRE (0x6558)*/
630                 if ((ol4_proto == IPPROTO_UDP) || (ol4_proto == IPPROTO_GRE)) {
631                         /* switch MAC header ptr from outer to inner header.*/
632                         l2_hdr = skb_inner_mac_header(skb);
633
634                         /* compute OL4 header size, defined in 4 Bytes. */
635                         ol4_len = l2_hdr - l4.hdr;
636                         hnae3_set_field(*ol_type_vlan_len_msec,
637                                         HNS3_TXD_L4LEN_M, HNS3_TXD_L4LEN_S,
638                                         ol4_len >> 2);
639
640                         /* switch IP header ptr from outer to inner header */
641                         l3.hdr = skb_inner_network_header(skb);
642
643                         /* compute inner l2 header size, defined in 2 Bytes. */
644                         l2_len = l3.hdr - l2_hdr;
645                         hnae3_set_field(*type_cs_vlan_tso, HNS3_TXD_L2LEN_M,
646                                         HNS3_TXD_L2LEN_S, l2_len >> 1);
647                 } else {
648                         /* skb packet types not supported by hardware,
649                          * txbd len fild doesn't be filled.
650                          */
651                         return;
652                 }
653
654                 /* switch L4 header pointer from outer to inner */
655                 l4.hdr = skb_inner_transport_header(skb);
656
657                 l4_proto = il4_proto;
658         }
659
660         /* compute inner(/normal) L3 header size, defined in 4 Bytes */
661         l3_len = l4.hdr - l3.hdr;
662         hnae3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3LEN_M,
663                         HNS3_TXD_L3LEN_S, l3_len >> 2);
664
665         /* compute inner(/normal) L4 header size, defined in 4 Bytes */
666         switch (l4_proto) {
667         case IPPROTO_TCP:
668                 hnae3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_M,
669                                 HNS3_TXD_L4LEN_S, l4.tcp->doff);
670                 break;
671         case IPPROTO_SCTP:
672                 hnae3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_M,
673                                 HNS3_TXD_L4LEN_S,
674                                 (sizeof(struct sctphdr) >> 2));
675                 break;
676         case IPPROTO_UDP:
677                 hnae3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_M,
678                                 HNS3_TXD_L4LEN_S,
679                                 (sizeof(struct udphdr) >> 2));
680                 break;
681         default:
682                 /* skb packet types not supported by hardware,
683                  * txbd len fild doesn't be filled.
684                  */
685                 return;
686         }
687 }
688
689 /* when skb->encapsulation is 0, skb->ip_summed is CHECKSUM_PARTIAL
690  * and it is udp packet, which has a dest port as the IANA assigned.
691  * the hardware is expected to do the checksum offload, but the
692  * hardware will not do the checksum offload when udp dest port is
693  * 4789.
694  */
695 static bool hns3_tunnel_csum_bug(struct sk_buff *skb)
696 {
697 #define IANA_VXLAN_PORT 4789
698         union {
699                 struct tcphdr *tcp;
700                 struct udphdr *udp;
701                 struct gre_base_hdr *gre;
702                 unsigned char *hdr;
703         } l4;
704
705         l4.hdr = skb_transport_header(skb);
706
707         if (!(!skb->encapsulation && l4.udp->dest == htons(IANA_VXLAN_PORT)))
708                 return false;
709
710         skb_checksum_help(skb);
711
712         return true;
713 }
714
715 static int hns3_set_l3l4_type_csum(struct sk_buff *skb, u8 ol4_proto,
716                                    u8 il4_proto, u32 *type_cs_vlan_tso,
717                                    u32 *ol_type_vlan_len_msec)
718 {
719         union {
720                 struct iphdr *v4;
721                 struct ipv6hdr *v6;
722                 unsigned char *hdr;
723         } l3;
724         u32 l4_proto = ol4_proto;
725
726         l3.hdr = skb_network_header(skb);
727
728         /* define OL3 type and tunnel type(OL4).*/
729         if (skb->encapsulation) {
730                 /* define outer network header type.*/
731                 if (skb->protocol == htons(ETH_P_IP)) {
732                         if (skb_is_gso(skb))
733                                 hnae3_set_field(*ol_type_vlan_len_msec,
734                                                 HNS3_TXD_OL3T_M,
735                                                 HNS3_TXD_OL3T_S,
736                                                 HNS3_OL3T_IPV4_CSUM);
737                         else
738                                 hnae3_set_field(*ol_type_vlan_len_msec,
739                                                 HNS3_TXD_OL3T_M,
740                                                 HNS3_TXD_OL3T_S,
741                                                 HNS3_OL3T_IPV4_NO_CSUM);
742
743                 } else if (skb->protocol == htons(ETH_P_IPV6)) {
744                         hnae3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_OL3T_M,
745                                         HNS3_TXD_OL3T_S, HNS3_OL3T_IPV6);
746                 }
747
748                 /* define tunnel type(OL4).*/
749                 switch (l4_proto) {
750                 case IPPROTO_UDP:
751                         hnae3_set_field(*ol_type_vlan_len_msec,
752                                         HNS3_TXD_TUNTYPE_M,
753                                         HNS3_TXD_TUNTYPE_S,
754                                         HNS3_TUN_MAC_IN_UDP);
755                         break;
756                 case IPPROTO_GRE:
757                         hnae3_set_field(*ol_type_vlan_len_msec,
758                                         HNS3_TXD_TUNTYPE_M,
759                                         HNS3_TXD_TUNTYPE_S,
760                                         HNS3_TUN_NVGRE);
761                         break;
762                 default:
763                         /* drop the skb tunnel packet if hardware don't support,
764                          * because hardware can't calculate csum when TSO.
765                          */
766                         if (skb_is_gso(skb))
767                                 return -EDOM;
768
769                         /* the stack computes the IP header already,
770                          * driver calculate l4 checksum when not TSO.
771                          */
772                         skb_checksum_help(skb);
773                         return 0;
774                 }
775
776                 l3.hdr = skb_inner_network_header(skb);
777                 l4_proto = il4_proto;
778         }
779
780         if (l3.v4->version == 4) {
781                 hnae3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_M,
782                                 HNS3_TXD_L3T_S, HNS3_L3T_IPV4);
783
784                 /* the stack computes the IP header already, the only time we
785                  * need the hardware to recompute it is in the case of TSO.
786                  */
787                 if (skb_is_gso(skb))
788                         hnae3_set_bit(*type_cs_vlan_tso, HNS3_TXD_L3CS_B, 1);
789         } else if (l3.v6->version == 6) {
790                 hnae3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_M,
791                                 HNS3_TXD_L3T_S, HNS3_L3T_IPV6);
792         }
793
794         switch (l4_proto) {
795         case IPPROTO_TCP:
796                 hnae3_set_bit(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
797                 hnae3_set_field(*type_cs_vlan_tso,
798                                 HNS3_TXD_L4T_M,
799                                 HNS3_TXD_L4T_S,
800                                 HNS3_L4T_TCP);
801                 break;
802         case IPPROTO_UDP:
803                 if (hns3_tunnel_csum_bug(skb))
804                         break;
805
806                 hnae3_set_bit(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
807                 hnae3_set_field(*type_cs_vlan_tso,
808                                 HNS3_TXD_L4T_M,
809                                 HNS3_TXD_L4T_S,
810                                 HNS3_L4T_UDP);
811                 break;
812         case IPPROTO_SCTP:
813                 hnae3_set_bit(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
814                 hnae3_set_field(*type_cs_vlan_tso,
815                                 HNS3_TXD_L4T_M,
816                                 HNS3_TXD_L4T_S,
817                                 HNS3_L4T_SCTP);
818                 break;
819         default:
820                 /* drop the skb tunnel packet if hardware don't support,
821                  * because hardware can't calculate csum when TSO.
822                  */
823                 if (skb_is_gso(skb))
824                         return -EDOM;
825
826                 /* the stack computes the IP header already,
827                  * driver calculate l4 checksum when not TSO.
828                  */
829                 skb_checksum_help(skb);
830                 return 0;
831         }
832
833         return 0;
834 }
835
836 static void hns3_set_txbd_baseinfo(u16 *bdtp_fe_sc_vld_ra_ri, int frag_end)
837 {
838         /* Config bd buffer end */
839         hnae3_set_field(*bdtp_fe_sc_vld_ra_ri, HNS3_TXD_BDTYPE_M,
840                         HNS3_TXD_BDTYPE_S, 0);
841         hnae3_set_bit(*bdtp_fe_sc_vld_ra_ri, HNS3_TXD_FE_B, !!frag_end);
842         hnae3_set_bit(*bdtp_fe_sc_vld_ra_ri, HNS3_TXD_VLD_B, 1);
843         hnae3_set_field(*bdtp_fe_sc_vld_ra_ri, HNS3_TXD_SC_M, HNS3_TXD_SC_S, 0);
844 }
845
846 static int hns3_fill_desc_vtags(struct sk_buff *skb,
847                                 struct hns3_enet_ring *tx_ring,
848                                 u32 *inner_vlan_flag,
849                                 u32 *out_vlan_flag,
850                                 u16 *inner_vtag,
851                                 u16 *out_vtag)
852 {
853 #define HNS3_TX_VLAN_PRIO_SHIFT 13
854
855         if (skb->protocol == htons(ETH_P_8021Q) &&
856             !(tx_ring->tqp->handle->kinfo.netdev->features &
857             NETIF_F_HW_VLAN_CTAG_TX)) {
858                 /* When HW VLAN acceleration is turned off, and the stack
859                  * sets the protocol to 802.1q, the driver just need to
860                  * set the protocol to the encapsulated ethertype.
861                  */
862                 skb->protocol = vlan_get_protocol(skb);
863                 return 0;
864         }
865
866         if (skb_vlan_tag_present(skb)) {
867                 u16 vlan_tag;
868
869                 vlan_tag = skb_vlan_tag_get(skb);
870                 vlan_tag |= (skb->priority & 0x7) << HNS3_TX_VLAN_PRIO_SHIFT;
871
872                 /* Based on hw strategy, use out_vtag in two layer tag case,
873                  * and use inner_vtag in one tag case.
874                  */
875                 if (skb->protocol == htons(ETH_P_8021Q)) {
876                         hnae3_set_bit(*out_vlan_flag, HNS3_TXD_OVLAN_B, 1);
877                         *out_vtag = vlan_tag;
878                 } else {
879                         hnae3_set_bit(*inner_vlan_flag, HNS3_TXD_VLAN_B, 1);
880                         *inner_vtag = vlan_tag;
881                 }
882         } else if (skb->protocol == htons(ETH_P_8021Q)) {
883                 struct vlan_ethhdr *vhdr;
884                 int rc;
885
886                 rc = skb_cow_head(skb, 0);
887                 if (rc < 0)
888                         return rc;
889                 vhdr = (struct vlan_ethhdr *)skb->data;
890                 vhdr->h_vlan_TCI |= cpu_to_be16((skb->priority & 0x7)
891                                         << HNS3_TX_VLAN_PRIO_SHIFT);
892         }
893
894         skb->protocol = vlan_get_protocol(skb);
895         return 0;
896 }
897
898 static int hns3_fill_desc(struct hns3_enet_ring *ring, void *priv,
899                           int size, dma_addr_t dma, int frag_end,
900                           enum hns_desc_type type)
901 {
902         struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
903         struct hns3_desc *desc = &ring->desc[ring->next_to_use];
904         u32 ol_type_vlan_len_msec = 0;
905         u16 bdtp_fe_sc_vld_ra_ri = 0;
906         u32 type_cs_vlan_tso = 0;
907         struct sk_buff *skb;
908         u16 inner_vtag = 0;
909         u16 out_vtag = 0;
910         u32 paylen = 0;
911         u16 mss = 0;
912         u8 ol4_proto;
913         u8 il4_proto;
914         int ret;
915
916         /* The txbd's baseinfo of DESC_TYPE_PAGE & DESC_TYPE_SKB */
917         desc_cb->priv = priv;
918         desc_cb->length = size;
919         desc_cb->dma = dma;
920         desc_cb->type = type;
921
922         /* now, fill the descriptor */
923         desc->addr = cpu_to_le64(dma);
924         desc->tx.send_size = cpu_to_le16((u16)size);
925         hns3_set_txbd_baseinfo(&bdtp_fe_sc_vld_ra_ri, frag_end);
926         desc->tx.bdtp_fe_sc_vld_ra_ri = cpu_to_le16(bdtp_fe_sc_vld_ra_ri);
927
928         if (type == DESC_TYPE_SKB) {
929                 skb = (struct sk_buff *)priv;
930                 paylen = skb->len;
931
932                 ret = hns3_fill_desc_vtags(skb, ring, &type_cs_vlan_tso,
933                                            &ol_type_vlan_len_msec,
934                                            &inner_vtag, &out_vtag);
935                 if (unlikely(ret))
936                         return ret;
937
938                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
939                         skb_reset_mac_len(skb);
940
941                         ret = hns3_get_l4_protocol(skb, &ol4_proto, &il4_proto);
942                         if (ret)
943                                 return ret;
944                         hns3_set_l2l3l4_len(skb, ol4_proto, il4_proto,
945                                             &type_cs_vlan_tso,
946                                             &ol_type_vlan_len_msec);
947                         ret = hns3_set_l3l4_type_csum(skb, ol4_proto, il4_proto,
948                                                       &type_cs_vlan_tso,
949                                                       &ol_type_vlan_len_msec);
950                         if (ret)
951                                 return ret;
952
953                         ret = hns3_set_tso(skb, &paylen, &mss,
954                                            &type_cs_vlan_tso);
955                         if (ret)
956                                 return ret;
957                 }
958
959                 /* Set txbd */
960                 desc->tx.ol_type_vlan_len_msec =
961                         cpu_to_le32(ol_type_vlan_len_msec);
962                 desc->tx.type_cs_vlan_tso_len =
963                         cpu_to_le32(type_cs_vlan_tso);
964                 desc->tx.paylen = cpu_to_le32(paylen);
965                 desc->tx.mss = cpu_to_le16(mss);
966                 desc->tx.vlan_tag = cpu_to_le16(inner_vtag);
967                 desc->tx.outer_vlan_tag = cpu_to_le16(out_vtag);
968         }
969
970         /* move ring pointer to next.*/
971         ring_ptr_move_fw(ring, next_to_use);
972
973         return 0;
974 }
975
976 static int hns3_fill_desc_tso(struct hns3_enet_ring *ring, void *priv,
977                               int size, dma_addr_t dma, int frag_end,
978                               enum hns_desc_type type)
979 {
980         unsigned int frag_buf_num;
981         unsigned int k;
982         int sizeoflast;
983         int ret;
984
985         frag_buf_num = (size + HNS3_MAX_BD_SIZE - 1) / HNS3_MAX_BD_SIZE;
986         sizeoflast = size % HNS3_MAX_BD_SIZE;
987         sizeoflast = sizeoflast ? sizeoflast : HNS3_MAX_BD_SIZE;
988
989         /* When the frag size is bigger than hardware, split this frag */
990         for (k = 0; k < frag_buf_num; k++) {
991                 ret = hns3_fill_desc(ring, priv,
992                                      (k == frag_buf_num - 1) ?
993                                 sizeoflast : HNS3_MAX_BD_SIZE,
994                                 dma + HNS3_MAX_BD_SIZE * k,
995                                 frag_end && (k == frag_buf_num - 1) ? 1 : 0,
996                                 (type == DESC_TYPE_SKB && !k) ?
997                                         DESC_TYPE_SKB : DESC_TYPE_PAGE);
998                 if (ret)
999                         return ret;
1000         }
1001
1002         return 0;
1003 }
1004
1005 static int hns3_nic_maybe_stop_tso(struct sk_buff **out_skb, int *bnum,
1006                                    struct hns3_enet_ring *ring)
1007 {
1008         struct sk_buff *skb = *out_skb;
1009         struct skb_frag_struct *frag;
1010         int bdnum_for_frag;
1011         int frag_num;
1012         int buf_num;
1013         int size;
1014         int i;
1015
1016         size = skb_headlen(skb);
1017         buf_num = (size + HNS3_MAX_BD_SIZE - 1) / HNS3_MAX_BD_SIZE;
1018
1019         frag_num = skb_shinfo(skb)->nr_frags;
1020         for (i = 0; i < frag_num; i++) {
1021                 frag = &skb_shinfo(skb)->frags[i];
1022                 size = skb_frag_size(frag);
1023                 bdnum_for_frag =
1024                         (size + HNS3_MAX_BD_SIZE - 1) / HNS3_MAX_BD_SIZE;
1025                 if (bdnum_for_frag > HNS3_MAX_BD_PER_FRAG)
1026                         return -ENOMEM;
1027
1028                 buf_num += bdnum_for_frag;
1029         }
1030
1031         if (buf_num > ring_space(ring))
1032                 return -EBUSY;
1033
1034         *bnum = buf_num;
1035         return 0;
1036 }
1037
1038 static int hns3_nic_maybe_stop_tx(struct sk_buff **out_skb, int *bnum,
1039                                   struct hns3_enet_ring *ring)
1040 {
1041         struct sk_buff *skb = *out_skb;
1042         int buf_num;
1043
1044         /* No. of segments (plus a header) */
1045         buf_num = skb_shinfo(skb)->nr_frags + 1;
1046
1047         if (buf_num > ring_space(ring))
1048                 return -EBUSY;
1049
1050         *bnum = buf_num;
1051
1052         return 0;
1053 }
1054
1055 static void hns_nic_dma_unmap(struct hns3_enet_ring *ring, int next_to_use_orig)
1056 {
1057         struct device *dev = ring_to_dev(ring);
1058         unsigned int i;
1059
1060         for (i = 0; i < ring->desc_num; i++) {
1061                 /* check if this is where we started */
1062                 if (ring->next_to_use == next_to_use_orig)
1063                         break;
1064
1065                 /* unmap the descriptor dma address */
1066                 if (ring->desc_cb[ring->next_to_use].type == DESC_TYPE_SKB)
1067                         dma_unmap_single(dev,
1068                                          ring->desc_cb[ring->next_to_use].dma,
1069                                         ring->desc_cb[ring->next_to_use].length,
1070                                         DMA_TO_DEVICE);
1071                 else
1072                         dma_unmap_page(dev,
1073                                        ring->desc_cb[ring->next_to_use].dma,
1074                                        ring->desc_cb[ring->next_to_use].length,
1075                                        DMA_TO_DEVICE);
1076
1077                 /* rollback one */
1078                 ring_ptr_move_bw(ring, next_to_use);
1079         }
1080 }
1081
1082 netdev_tx_t hns3_nic_net_xmit(struct sk_buff *skb, struct net_device *netdev)
1083 {
1084         struct hns3_nic_priv *priv = netdev_priv(netdev);
1085         struct hns3_nic_ring_data *ring_data =
1086                 &tx_ring_data(priv, skb->queue_mapping);
1087         struct hns3_enet_ring *ring = ring_data->ring;
1088         struct device *dev = priv->dev;
1089         struct netdev_queue *dev_queue;
1090         struct skb_frag_struct *frag;
1091         int next_to_use_head;
1092         int next_to_use_frag;
1093         dma_addr_t dma;
1094         int buf_num;
1095         int seg_num;
1096         int size;
1097         int ret;
1098         int i;
1099
1100         /* Prefetch the data used later */
1101         prefetch(skb->data);
1102
1103         switch (priv->ops.maybe_stop_tx(&skb, &buf_num, ring)) {
1104         case -EBUSY:
1105                 u64_stats_update_begin(&ring->syncp);
1106                 ring->stats.tx_busy++;
1107                 u64_stats_update_end(&ring->syncp);
1108
1109                 goto out_net_tx_busy;
1110         case -ENOMEM:
1111                 u64_stats_update_begin(&ring->syncp);
1112                 ring->stats.sw_err_cnt++;
1113                 u64_stats_update_end(&ring->syncp);
1114                 netdev_err(netdev, "no memory to xmit!\n");
1115
1116                 goto out_err_tx_ok;
1117         default:
1118                 break;
1119         }
1120
1121         /* No. of segments (plus a header) */
1122         seg_num = skb_shinfo(skb)->nr_frags + 1;
1123         /* Fill the first part */
1124         size = skb_headlen(skb);
1125
1126         next_to_use_head = ring->next_to_use;
1127
1128         dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE);
1129         if (dma_mapping_error(dev, dma)) {
1130                 netdev_err(netdev, "TX head DMA map failed\n");
1131                 ring->stats.sw_err_cnt++;
1132                 goto out_err_tx_ok;
1133         }
1134
1135         ret = priv->ops.fill_desc(ring, skb, size, dma, seg_num == 1 ? 1 : 0,
1136                            DESC_TYPE_SKB);
1137         if (ret)
1138                 goto head_dma_map_err;
1139
1140         next_to_use_frag = ring->next_to_use;
1141         /* Fill the fragments */
1142         for (i = 1; i < seg_num; i++) {
1143                 frag = &skb_shinfo(skb)->frags[i - 1];
1144                 size = skb_frag_size(frag);
1145                 dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE);
1146                 if (dma_mapping_error(dev, dma)) {
1147                         netdev_err(netdev, "TX frag(%d) DMA map failed\n", i);
1148                         ring->stats.sw_err_cnt++;
1149                         goto frag_dma_map_err;
1150                 }
1151                 ret = priv->ops.fill_desc(ring, skb_frag_page(frag), size, dma,
1152                                     seg_num - 1 == i ? 1 : 0,
1153                                     DESC_TYPE_PAGE);
1154
1155                 if (ret)
1156                         goto frag_dma_map_err;
1157         }
1158
1159         /* Complete translate all packets */
1160         dev_queue = netdev_get_tx_queue(netdev, ring_data->queue_index);
1161         netdev_tx_sent_queue(dev_queue, skb->len);
1162
1163         wmb(); /* Commit all data before submit */
1164
1165         hnae3_queue_xmit(ring->tqp, buf_num);
1166
1167         return NETDEV_TX_OK;
1168
1169 frag_dma_map_err:
1170         hns_nic_dma_unmap(ring, next_to_use_frag);
1171
1172 head_dma_map_err:
1173         hns_nic_dma_unmap(ring, next_to_use_head);
1174
1175 out_err_tx_ok:
1176         dev_kfree_skb_any(skb);
1177         return NETDEV_TX_OK;
1178
1179 out_net_tx_busy:
1180         netif_stop_subqueue(netdev, ring_data->queue_index);
1181         smp_mb(); /* Commit all data before submit */
1182
1183         return NETDEV_TX_BUSY;
1184 }
1185
1186 static int hns3_nic_net_set_mac_address(struct net_device *netdev, void *p)
1187 {
1188         struct hnae3_handle *h = hns3_get_handle(netdev);
1189         struct sockaddr *mac_addr = p;
1190         int ret;
1191
1192         if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data))
1193                 return -EADDRNOTAVAIL;
1194
1195         if (ether_addr_equal(netdev->dev_addr, mac_addr->sa_data)) {
1196                 netdev_info(netdev, "already using mac address %pM\n",
1197                             mac_addr->sa_data);
1198                 return 0;
1199         }
1200
1201         ret = h->ae_algo->ops->set_mac_addr(h, mac_addr->sa_data, false);
1202         if (ret) {
1203                 netdev_err(netdev, "set_mac_address fail, ret=%d!\n", ret);
1204                 return ret;
1205         }
1206
1207         ether_addr_copy(netdev->dev_addr, mac_addr->sa_data);
1208
1209         return 0;
1210 }
1211
1212 static int hns3_nic_set_features(struct net_device *netdev,
1213                                  netdev_features_t features)
1214 {
1215         netdev_features_t changed = netdev->features ^ features;
1216         struct hns3_nic_priv *priv = netdev_priv(netdev);
1217         struct hnae3_handle *h = priv->ae_handle;
1218         int ret;
1219
1220         if (changed & (NETIF_F_TSO | NETIF_F_TSO6)) {
1221                 if (features & (NETIF_F_TSO | NETIF_F_TSO6)) {
1222                         priv->ops.fill_desc = hns3_fill_desc_tso;
1223                         priv->ops.maybe_stop_tx = hns3_nic_maybe_stop_tso;
1224                 } else {
1225                         priv->ops.fill_desc = hns3_fill_desc;
1226                         priv->ops.maybe_stop_tx = hns3_nic_maybe_stop_tx;
1227                 }
1228         }
1229
1230         if ((changed & NETIF_F_HW_VLAN_CTAG_FILTER) &&
1231             h->ae_algo->ops->enable_vlan_filter) {
1232                 if (features & NETIF_F_HW_VLAN_CTAG_FILTER)
1233                         h->ae_algo->ops->enable_vlan_filter(h, true);
1234                 else
1235                         h->ae_algo->ops->enable_vlan_filter(h, false);
1236         }
1237
1238         if ((changed & NETIF_F_HW_VLAN_CTAG_RX) &&
1239             h->ae_algo->ops->enable_hw_strip_rxvtag) {
1240                 if (features & NETIF_F_HW_VLAN_CTAG_RX)
1241                         ret = h->ae_algo->ops->enable_hw_strip_rxvtag(h, true);
1242                 else
1243                         ret = h->ae_algo->ops->enable_hw_strip_rxvtag(h, false);
1244
1245                 if (ret)
1246                         return ret;
1247         }
1248
1249         netdev->features = features;
1250         return 0;
1251 }
1252
1253 static void hns3_nic_get_stats64(struct net_device *netdev,
1254                                  struct rtnl_link_stats64 *stats)
1255 {
1256         struct hns3_nic_priv *priv = netdev_priv(netdev);
1257         int queue_num = priv->ae_handle->kinfo.num_tqps;
1258         struct hnae3_handle *handle = priv->ae_handle;
1259         struct hns3_enet_ring *ring;
1260         unsigned int start;
1261         unsigned int idx;
1262         u64 tx_bytes = 0;
1263         u64 rx_bytes = 0;
1264         u64 tx_pkts = 0;
1265         u64 rx_pkts = 0;
1266         u64 tx_drop = 0;
1267         u64 rx_drop = 0;
1268
1269         if (test_bit(HNS3_NIC_STATE_DOWN, &priv->state))
1270                 return;
1271
1272         handle->ae_algo->ops->update_stats(handle, &netdev->stats);
1273
1274         for (idx = 0; idx < queue_num; idx++) {
1275                 /* fetch the tx stats */
1276                 ring = priv->ring_data[idx].ring;
1277                 do {
1278                         start = u64_stats_fetch_begin_irq(&ring->syncp);
1279                         tx_bytes += ring->stats.tx_bytes;
1280                         tx_pkts += ring->stats.tx_pkts;
1281                         tx_drop += ring->stats.tx_busy;
1282                         tx_drop += ring->stats.sw_err_cnt;
1283                 } while (u64_stats_fetch_retry_irq(&ring->syncp, start));
1284
1285                 /* fetch the rx stats */
1286                 ring = priv->ring_data[idx + queue_num].ring;
1287                 do {
1288                         start = u64_stats_fetch_begin_irq(&ring->syncp);
1289                         rx_bytes += ring->stats.rx_bytes;
1290                         rx_pkts += ring->stats.rx_pkts;
1291                         rx_drop += ring->stats.non_vld_descs;
1292                         rx_drop += ring->stats.err_pkt_len;
1293                         rx_drop += ring->stats.l2_err;
1294                 } while (u64_stats_fetch_retry_irq(&ring->syncp, start));
1295         }
1296
1297         stats->tx_bytes = tx_bytes;
1298         stats->tx_packets = tx_pkts;
1299         stats->rx_bytes = rx_bytes;
1300         stats->rx_packets = rx_pkts;
1301
1302         stats->rx_errors = netdev->stats.rx_errors;
1303         stats->multicast = netdev->stats.multicast;
1304         stats->rx_length_errors = netdev->stats.rx_length_errors;
1305         stats->rx_crc_errors = netdev->stats.rx_crc_errors;
1306         stats->rx_missed_errors = netdev->stats.rx_missed_errors;
1307
1308         stats->tx_errors = netdev->stats.tx_errors;
1309         stats->rx_dropped = rx_drop + netdev->stats.rx_dropped;
1310         stats->tx_dropped = tx_drop + netdev->stats.tx_dropped;
1311         stats->collisions = netdev->stats.collisions;
1312         stats->rx_over_errors = netdev->stats.rx_over_errors;
1313         stats->rx_frame_errors = netdev->stats.rx_frame_errors;
1314         stats->rx_fifo_errors = netdev->stats.rx_fifo_errors;
1315         stats->tx_aborted_errors = netdev->stats.tx_aborted_errors;
1316         stats->tx_carrier_errors = netdev->stats.tx_carrier_errors;
1317         stats->tx_fifo_errors = netdev->stats.tx_fifo_errors;
1318         stats->tx_heartbeat_errors = netdev->stats.tx_heartbeat_errors;
1319         stats->tx_window_errors = netdev->stats.tx_window_errors;
1320         stats->rx_compressed = netdev->stats.rx_compressed;
1321         stats->tx_compressed = netdev->stats.tx_compressed;
1322 }
1323
1324 static int hns3_setup_tc(struct net_device *netdev, void *type_data)
1325 {
1326         struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
1327         struct hnae3_handle *h = hns3_get_handle(netdev);
1328         struct hnae3_knic_private_info *kinfo = &h->kinfo;
1329         u8 *prio_tc = mqprio_qopt->qopt.prio_tc_map;
1330         u8 tc = mqprio_qopt->qopt.num_tc;
1331         u16 mode = mqprio_qopt->mode;
1332         u8 hw = mqprio_qopt->qopt.hw;
1333         bool if_running;
1334         int ret;
1335
1336         if (!((hw == TC_MQPRIO_HW_OFFLOAD_TCS &&
1337                mode == TC_MQPRIO_MODE_CHANNEL) || (!hw && tc == 0)))
1338                 return -EOPNOTSUPP;
1339
1340         if (tc > HNAE3_MAX_TC)
1341                 return -EINVAL;
1342
1343         if (!netdev)
1344                 return -EINVAL;
1345
1346         if_running = netif_running(netdev);
1347         if (if_running) {
1348                 hns3_nic_net_stop(netdev);
1349                 msleep(100);
1350         }
1351
1352         ret = (kinfo->dcb_ops && kinfo->dcb_ops->setup_tc) ?
1353                 kinfo->dcb_ops->setup_tc(h, tc, prio_tc) : -EOPNOTSUPP;
1354         if (ret)
1355                 goto out;
1356
1357         ret = hns3_nic_set_real_num_queue(netdev);
1358
1359 out:
1360         if (if_running)
1361                 hns3_nic_net_open(netdev);
1362
1363         return ret;
1364 }
1365
1366 static int hns3_nic_setup_tc(struct net_device *dev, enum tc_setup_type type,
1367                              void *type_data)
1368 {
1369         if (type != TC_SETUP_QDISC_MQPRIO)
1370                 return -EOPNOTSUPP;
1371
1372         return hns3_setup_tc(dev, type_data);
1373 }
1374
1375 static int hns3_vlan_rx_add_vid(struct net_device *netdev,
1376                                 __be16 proto, u16 vid)
1377 {
1378         struct hnae3_handle *h = hns3_get_handle(netdev);
1379         struct hns3_nic_priv *priv = netdev_priv(netdev);
1380         int ret = -EIO;
1381
1382         if (h->ae_algo->ops->set_vlan_filter)
1383                 ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, false);
1384
1385         if (!ret)
1386                 set_bit(vid, priv->active_vlans);
1387
1388         return ret;
1389 }
1390
1391 static int hns3_vlan_rx_kill_vid(struct net_device *netdev,
1392                                  __be16 proto, u16 vid)
1393 {
1394         struct hnae3_handle *h = hns3_get_handle(netdev);
1395         struct hns3_nic_priv *priv = netdev_priv(netdev);
1396         int ret = -EIO;
1397
1398         if (h->ae_algo->ops->set_vlan_filter)
1399                 ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, true);
1400
1401         if (!ret)
1402                 clear_bit(vid, priv->active_vlans);
1403
1404         return ret;
1405 }
1406
1407 static void hns3_restore_vlan(struct net_device *netdev)
1408 {
1409         struct hns3_nic_priv *priv = netdev_priv(netdev);
1410         u16 vid;
1411         int ret;
1412
1413         for_each_set_bit(vid, priv->active_vlans, VLAN_N_VID) {
1414                 ret = hns3_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
1415                 if (ret)
1416                         netdev_warn(netdev, "Restore vlan: %d filter, ret:%d\n",
1417                                     vid, ret);
1418         }
1419 }
1420
1421 static int hns3_ndo_set_vf_vlan(struct net_device *netdev, int vf, u16 vlan,
1422                                 u8 qos, __be16 vlan_proto)
1423 {
1424         struct hnae3_handle *h = hns3_get_handle(netdev);
1425         int ret = -EIO;
1426
1427         if (h->ae_algo->ops->set_vf_vlan_filter)
1428                 ret = h->ae_algo->ops->set_vf_vlan_filter(h, vf, vlan,
1429                                                    qos, vlan_proto);
1430
1431         return ret;
1432 }
1433
1434 static int hns3_nic_change_mtu(struct net_device *netdev, int new_mtu)
1435 {
1436         struct hnae3_handle *h = hns3_get_handle(netdev);
1437         bool if_running = netif_running(netdev);
1438         int ret;
1439
1440         if (!h->ae_algo->ops->set_mtu)
1441                 return -EOPNOTSUPP;
1442
1443         /* if this was called with netdev up then bring netdevice down */
1444         if (if_running) {
1445                 (void)hns3_nic_net_stop(netdev);
1446                 msleep(100);
1447         }
1448
1449         ret = h->ae_algo->ops->set_mtu(h, new_mtu);
1450         if (ret) {
1451                 netdev_err(netdev, "failed to change MTU in hardware %d\n",
1452                            ret);
1453                 return ret;
1454         }
1455
1456         netdev->mtu = new_mtu;
1457
1458         /* if the netdev was running earlier, bring it up again */
1459         if (if_running && hns3_nic_net_open(netdev))
1460                 ret = -EINVAL;
1461
1462         return ret;
1463 }
1464
1465 static bool hns3_get_tx_timeo_queue_info(struct net_device *ndev)
1466 {
1467         struct hns3_nic_priv *priv = netdev_priv(ndev);
1468         struct hns3_enet_ring *tx_ring = NULL;
1469         int timeout_queue = 0;
1470         int hw_head, hw_tail;
1471         int i;
1472
1473         /* Find the stopped queue the same way the stack does */
1474         for (i = 0; i < ndev->real_num_tx_queues; i++) {
1475                 struct netdev_queue *q;
1476                 unsigned long trans_start;
1477
1478                 q = netdev_get_tx_queue(ndev, i);
1479                 trans_start = q->trans_start;
1480                 if (netif_xmit_stopped(q) &&
1481                     time_after(jiffies,
1482                                (trans_start + ndev->watchdog_timeo))) {
1483                         timeout_queue = i;
1484                         break;
1485                 }
1486         }
1487
1488         if (i == ndev->num_tx_queues) {
1489                 netdev_info(ndev,
1490                             "no netdev TX timeout queue found, timeout count: %llu\n",
1491                             priv->tx_timeout_count);
1492                 return false;
1493         }
1494
1495         tx_ring = priv->ring_data[timeout_queue].ring;
1496
1497         hw_head = readl_relaxed(tx_ring->tqp->io_base +
1498                                 HNS3_RING_TX_RING_HEAD_REG);
1499         hw_tail = readl_relaxed(tx_ring->tqp->io_base +
1500                                 HNS3_RING_TX_RING_TAIL_REG);
1501         netdev_info(ndev,
1502                     "tx_timeout count: %llu, queue id: %d, SW_NTU: 0x%x, SW_NTC: 0x%x, HW_HEAD: 0x%x, HW_TAIL: 0x%x, INT: 0x%x\n",
1503                     priv->tx_timeout_count,
1504                     timeout_queue,
1505                     tx_ring->next_to_use,
1506                     tx_ring->next_to_clean,
1507                     hw_head,
1508                     hw_tail,
1509                     readl(tx_ring->tqp_vector->mask_addr));
1510
1511         return true;
1512 }
1513
1514 static void hns3_nic_net_timeout(struct net_device *ndev)
1515 {
1516         struct hns3_nic_priv *priv = netdev_priv(ndev);
1517         struct hnae3_handle *h = priv->ae_handle;
1518
1519         if (!hns3_get_tx_timeo_queue_info(ndev))
1520                 return;
1521
1522         priv->tx_timeout_count++;
1523
1524         if (time_before(jiffies, (h->last_reset_time + ndev->watchdog_timeo)))
1525                 return;
1526
1527         /* request the reset */
1528         if (h->ae_algo->ops->reset_event)
1529                 h->ae_algo->ops->reset_event(h);
1530 }
1531
1532 static const struct net_device_ops hns3_nic_netdev_ops = {
1533         .ndo_open               = hns3_nic_net_open,
1534         .ndo_stop               = hns3_nic_net_stop,
1535         .ndo_start_xmit         = hns3_nic_net_xmit,
1536         .ndo_tx_timeout         = hns3_nic_net_timeout,
1537         .ndo_set_mac_address    = hns3_nic_net_set_mac_address,
1538         .ndo_change_mtu         = hns3_nic_change_mtu,
1539         .ndo_set_features       = hns3_nic_set_features,
1540         .ndo_get_stats64        = hns3_nic_get_stats64,
1541         .ndo_setup_tc           = hns3_nic_setup_tc,
1542         .ndo_set_rx_mode        = hns3_nic_set_rx_mode,
1543         .ndo_vlan_rx_add_vid    = hns3_vlan_rx_add_vid,
1544         .ndo_vlan_rx_kill_vid   = hns3_vlan_rx_kill_vid,
1545         .ndo_set_vf_vlan        = hns3_ndo_set_vf_vlan,
1546 };
1547
1548 static bool hns3_is_phys_func(struct pci_dev *pdev)
1549 {
1550         u32 dev_id = pdev->device;
1551
1552         switch (dev_id) {
1553         case HNAE3_DEV_ID_GE:
1554         case HNAE3_DEV_ID_25GE:
1555         case HNAE3_DEV_ID_25GE_RDMA:
1556         case HNAE3_DEV_ID_25GE_RDMA_MACSEC:
1557         case HNAE3_DEV_ID_50GE_RDMA:
1558         case HNAE3_DEV_ID_50GE_RDMA_MACSEC:
1559         case HNAE3_DEV_ID_100G_RDMA_MACSEC:
1560                 return true;
1561         case HNAE3_DEV_ID_100G_VF:
1562         case HNAE3_DEV_ID_100G_RDMA_DCB_PFC_VF:
1563                 return false;
1564         default:
1565                 dev_warn(&pdev->dev, "un-recognized pci device-id %d",
1566                          dev_id);
1567         }
1568
1569         return false;
1570 }
1571
1572 static void hns3_disable_sriov(struct pci_dev *pdev)
1573 {
1574         /* If our VFs are assigned we cannot shut down SR-IOV
1575          * without causing issues, so just leave the hardware
1576          * available but disabled
1577          */
1578         if (pci_vfs_assigned(pdev)) {
1579                 dev_warn(&pdev->dev,
1580                          "disabling driver while VFs are assigned\n");
1581                 return;
1582         }
1583
1584         pci_disable_sriov(pdev);
1585 }
1586
1587 /* hns3_probe - Device initialization routine
1588  * @pdev: PCI device information struct
1589  * @ent: entry in hns3_pci_tbl
1590  *
1591  * hns3_probe initializes a PF identified by a pci_dev structure.
1592  * The OS initialization, configuring of the PF private structure,
1593  * and a hardware reset occur.
1594  *
1595  * Returns 0 on success, negative on failure
1596  */
1597 static int hns3_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1598 {
1599         struct hnae3_ae_dev *ae_dev;
1600         int ret;
1601
1602         ae_dev = devm_kzalloc(&pdev->dev, sizeof(*ae_dev),
1603                               GFP_KERNEL);
1604         if (!ae_dev) {
1605                 ret = -ENOMEM;
1606                 return ret;
1607         }
1608
1609         ae_dev->pdev = pdev;
1610         ae_dev->flag = ent->driver_data;
1611         ae_dev->dev_type = HNAE3_DEV_KNIC;
1612         pci_set_drvdata(pdev, ae_dev);
1613
1614         hnae3_register_ae_dev(ae_dev);
1615
1616         return 0;
1617 }
1618
1619 /* hns3_remove - Device removal routine
1620  * @pdev: PCI device information struct
1621  */
1622 static void hns3_remove(struct pci_dev *pdev)
1623 {
1624         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1625
1626         if (hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV))
1627                 hns3_disable_sriov(pdev);
1628
1629         hnae3_unregister_ae_dev(ae_dev);
1630 }
1631
1632 /**
1633  * hns3_pci_sriov_configure
1634  * @pdev: pointer to a pci_dev structure
1635  * @num_vfs: number of VFs to allocate
1636  *
1637  * Enable or change the number of VFs. Called when the user updates the number
1638  * of VFs in sysfs.
1639  **/
1640 static int hns3_pci_sriov_configure(struct pci_dev *pdev, int num_vfs)
1641 {
1642         int ret;
1643
1644         if (!(hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV))) {
1645                 dev_warn(&pdev->dev, "Can not config SRIOV\n");
1646                 return -EINVAL;
1647         }
1648
1649         if (num_vfs) {
1650                 ret = pci_enable_sriov(pdev, num_vfs);
1651                 if (ret)
1652                         dev_err(&pdev->dev, "SRIOV enable failed %d\n", ret);
1653                 else
1654                         return num_vfs;
1655         } else if (!pci_vfs_assigned(pdev)) {
1656                 pci_disable_sriov(pdev);
1657         } else {
1658                 dev_warn(&pdev->dev,
1659                          "Unable to free VFs because some are assigned to VMs.\n");
1660         }
1661
1662         return 0;
1663 }
1664
1665 static struct pci_driver hns3_driver = {
1666         .name     = hns3_driver_name,
1667         .id_table = hns3_pci_tbl,
1668         .probe    = hns3_probe,
1669         .remove   = hns3_remove,
1670         .sriov_configure = hns3_pci_sriov_configure,
1671 };
1672
1673 /* set default feature to hns3 */
1674 static void hns3_set_default_feature(struct net_device *netdev)
1675 {
1676         struct hnae3_handle *h = hns3_get_handle(netdev);
1677         struct pci_dev *pdev = h->pdev;
1678
1679         netdev->priv_flags |= IFF_UNICAST_FLT;
1680
1681         netdev->hw_enc_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
1682                 NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
1683                 NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
1684                 NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
1685                 NETIF_F_GSO_UDP_TUNNEL_CSUM;
1686
1687         netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
1688
1689         netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
1690
1691         netdev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
1692                 NETIF_F_HW_VLAN_CTAG_FILTER |
1693                 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
1694                 NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
1695                 NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
1696                 NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
1697                 NETIF_F_GSO_UDP_TUNNEL_CSUM;
1698
1699         netdev->vlan_features |=
1700                 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM |
1701                 NETIF_F_SG | NETIF_F_GSO | NETIF_F_GRO |
1702                 NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
1703                 NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
1704                 NETIF_F_GSO_UDP_TUNNEL_CSUM;
1705
1706         netdev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
1707                 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
1708                 NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
1709                 NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
1710                 NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
1711                 NETIF_F_GSO_UDP_TUNNEL_CSUM;
1712
1713         if (pdev->revision != 0x20)
1714                 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
1715 }
1716
1717 static int hns3_alloc_buffer(struct hns3_enet_ring *ring,
1718                              struct hns3_desc_cb *cb)
1719 {
1720         unsigned int order = hnae3_page_order(ring);
1721         struct page *p;
1722
1723         p = dev_alloc_pages(order);
1724         if (!p)
1725                 return -ENOMEM;
1726
1727         cb->priv = p;
1728         cb->page_offset = 0;
1729         cb->reuse_flag = 0;
1730         cb->buf  = page_address(p);
1731         cb->length = hnae3_page_size(ring);
1732         cb->type = DESC_TYPE_PAGE;
1733
1734         return 0;
1735 }
1736
1737 static void hns3_free_buffer(struct hns3_enet_ring *ring,
1738                              struct hns3_desc_cb *cb)
1739 {
1740         if (cb->type == DESC_TYPE_SKB)
1741                 dev_kfree_skb_any((struct sk_buff *)cb->priv);
1742         else if (!HNAE3_IS_TX_RING(ring))
1743                 put_page((struct page *)cb->priv);
1744         memset(cb, 0, sizeof(*cb));
1745 }
1746
1747 static int hns3_map_buffer(struct hns3_enet_ring *ring, struct hns3_desc_cb *cb)
1748 {
1749         cb->dma = dma_map_page(ring_to_dev(ring), cb->priv, 0,
1750                                cb->length, ring_to_dma_dir(ring));
1751
1752         if (dma_mapping_error(ring_to_dev(ring), cb->dma))
1753                 return -EIO;
1754
1755         return 0;
1756 }
1757
1758 static void hns3_unmap_buffer(struct hns3_enet_ring *ring,
1759                               struct hns3_desc_cb *cb)
1760 {
1761         if (cb->type == DESC_TYPE_SKB)
1762                 dma_unmap_single(ring_to_dev(ring), cb->dma, cb->length,
1763                                  ring_to_dma_dir(ring));
1764         else
1765                 dma_unmap_page(ring_to_dev(ring), cb->dma, cb->length,
1766                                ring_to_dma_dir(ring));
1767 }
1768
1769 static void hns3_buffer_detach(struct hns3_enet_ring *ring, int i)
1770 {
1771         hns3_unmap_buffer(ring, &ring->desc_cb[i]);
1772         ring->desc[i].addr = 0;
1773 }
1774
1775 static void hns3_free_buffer_detach(struct hns3_enet_ring *ring, int i)
1776 {
1777         struct hns3_desc_cb *cb = &ring->desc_cb[i];
1778
1779         if (!ring->desc_cb[i].dma)
1780                 return;
1781
1782         hns3_buffer_detach(ring, i);
1783         hns3_free_buffer(ring, cb);
1784 }
1785
1786 static void hns3_free_buffers(struct hns3_enet_ring *ring)
1787 {
1788         int i;
1789
1790         for (i = 0; i < ring->desc_num; i++)
1791                 hns3_free_buffer_detach(ring, i);
1792 }
1793
1794 /* free desc along with its attached buffer */
1795 static void hns3_free_desc(struct hns3_enet_ring *ring)
1796 {
1797         int size = ring->desc_num * sizeof(ring->desc[0]);
1798
1799         hns3_free_buffers(ring);
1800
1801         if (ring->desc) {
1802                 dma_free_coherent(ring_to_dev(ring), size,
1803                                   ring->desc, ring->desc_dma_addr);
1804                 ring->desc = NULL;
1805         }
1806 }
1807
1808 static int hns3_alloc_desc(struct hns3_enet_ring *ring)
1809 {
1810         int size = ring->desc_num * sizeof(ring->desc[0]);
1811
1812         ring->desc = dma_zalloc_coherent(ring_to_dev(ring), size,
1813                                          &ring->desc_dma_addr,
1814                                          GFP_KERNEL);
1815         if (!ring->desc)
1816                 return -ENOMEM;
1817
1818         return 0;
1819 }
1820
1821 static int hns3_reserve_buffer_map(struct hns3_enet_ring *ring,
1822                                    struct hns3_desc_cb *cb)
1823 {
1824         int ret;
1825
1826         ret = hns3_alloc_buffer(ring, cb);
1827         if (ret)
1828                 goto out;
1829
1830         ret = hns3_map_buffer(ring, cb);
1831         if (ret)
1832                 goto out_with_buf;
1833
1834         return 0;
1835
1836 out_with_buf:
1837         hns3_free_buffer(ring, cb);
1838 out:
1839         return ret;
1840 }
1841
1842 static int hns3_alloc_buffer_attach(struct hns3_enet_ring *ring, int i)
1843 {
1844         int ret = hns3_reserve_buffer_map(ring, &ring->desc_cb[i]);
1845
1846         if (ret)
1847                 return ret;
1848
1849         ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma);
1850
1851         return 0;
1852 }
1853
1854 /* Allocate memory for raw pkg, and map with dma */
1855 static int hns3_alloc_ring_buffers(struct hns3_enet_ring *ring)
1856 {
1857         int i, j, ret;
1858
1859         for (i = 0; i < ring->desc_num; i++) {
1860                 ret = hns3_alloc_buffer_attach(ring, i);
1861                 if (ret)
1862                         goto out_buffer_fail;
1863         }
1864
1865         return 0;
1866
1867 out_buffer_fail:
1868         for (j = i - 1; j >= 0; j--)
1869                 hns3_free_buffer_detach(ring, j);
1870         return ret;
1871 }
1872
1873 /* detach a in-used buffer and replace with a reserved one  */
1874 static void hns3_replace_buffer(struct hns3_enet_ring *ring, int i,
1875                                 struct hns3_desc_cb *res_cb)
1876 {
1877         hns3_unmap_buffer(ring, &ring->desc_cb[i]);
1878         ring->desc_cb[i] = *res_cb;
1879         ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma);
1880         ring->desc[i].rx.bd_base_info = 0;
1881 }
1882
1883 static void hns3_reuse_buffer(struct hns3_enet_ring *ring, int i)
1884 {
1885         ring->desc_cb[i].reuse_flag = 0;
1886         ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma
1887                 + ring->desc_cb[i].page_offset);
1888         ring->desc[i].rx.bd_base_info = 0;
1889 }
1890
1891 static void hns3_nic_reclaim_one_desc(struct hns3_enet_ring *ring, int *bytes,
1892                                       int *pkts)
1893 {
1894         struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean];
1895
1896         (*pkts) += (desc_cb->type == DESC_TYPE_SKB);
1897         (*bytes) += desc_cb->length;
1898         /* desc_cb will be cleaned, after hnae3_free_buffer_detach*/
1899         hns3_free_buffer_detach(ring, ring->next_to_clean);
1900
1901         ring_ptr_move_fw(ring, next_to_clean);
1902 }
1903
1904 static int is_valid_clean_head(struct hns3_enet_ring *ring, int h)
1905 {
1906         int u = ring->next_to_use;
1907         int c = ring->next_to_clean;
1908
1909         if (unlikely(h > ring->desc_num))
1910                 return 0;
1911
1912         return u > c ? (h > c && h <= u) : (h > c || h <= u);
1913 }
1914
1915 bool hns3_clean_tx_ring(struct hns3_enet_ring *ring, int budget)
1916 {
1917         struct net_device *netdev = ring->tqp->handle->kinfo.netdev;
1918         struct netdev_queue *dev_queue;
1919         int bytes, pkts;
1920         int head;
1921
1922         head = readl_relaxed(ring->tqp->io_base + HNS3_RING_TX_RING_HEAD_REG);
1923         rmb(); /* Make sure head is ready before touch any data */
1924
1925         if (is_ring_empty(ring) || head == ring->next_to_clean)
1926                 return true; /* no data to poll */
1927
1928         if (unlikely(!is_valid_clean_head(ring, head))) {
1929                 netdev_err(netdev, "wrong head (%d, %d-%d)\n", head,
1930                            ring->next_to_use, ring->next_to_clean);
1931
1932                 u64_stats_update_begin(&ring->syncp);
1933                 ring->stats.io_err_cnt++;
1934                 u64_stats_update_end(&ring->syncp);
1935                 return true;
1936         }
1937
1938         bytes = 0;
1939         pkts = 0;
1940         while (head != ring->next_to_clean && budget) {
1941                 hns3_nic_reclaim_one_desc(ring, &bytes, &pkts);
1942                 /* Issue prefetch for next Tx descriptor */
1943                 prefetch(&ring->desc_cb[ring->next_to_clean]);
1944                 budget--;
1945         }
1946
1947         ring->tqp_vector->tx_group.total_bytes += bytes;
1948         ring->tqp_vector->tx_group.total_packets += pkts;
1949
1950         u64_stats_update_begin(&ring->syncp);
1951         ring->stats.tx_bytes += bytes;
1952         ring->stats.tx_pkts += pkts;
1953         u64_stats_update_end(&ring->syncp);
1954
1955         dev_queue = netdev_get_tx_queue(netdev, ring->tqp->tqp_index);
1956         netdev_tx_completed_queue(dev_queue, pkts, bytes);
1957
1958         if (unlikely(pkts && netif_carrier_ok(netdev) &&
1959                      (ring_space(ring) > HNS3_MAX_BD_PER_PKT))) {
1960                 /* Make sure that anybody stopping the queue after this
1961                  * sees the new next_to_clean.
1962                  */
1963                 smp_mb();
1964                 if (netif_tx_queue_stopped(dev_queue)) {
1965                         netif_tx_wake_queue(dev_queue);
1966                         ring->stats.restart_queue++;
1967                 }
1968         }
1969
1970         return !!budget;
1971 }
1972
1973 static int hns3_desc_unused(struct hns3_enet_ring *ring)
1974 {
1975         int ntc = ring->next_to_clean;
1976         int ntu = ring->next_to_use;
1977
1978         return ((ntc >= ntu) ? 0 : ring->desc_num) + ntc - ntu;
1979 }
1980
1981 static void
1982 hns3_nic_alloc_rx_buffers(struct hns3_enet_ring *ring, int cleand_count)
1983 {
1984         struct hns3_desc_cb *desc_cb;
1985         struct hns3_desc_cb res_cbs;
1986         int i, ret;
1987
1988         for (i = 0; i < cleand_count; i++) {
1989                 desc_cb = &ring->desc_cb[ring->next_to_use];
1990                 if (desc_cb->reuse_flag) {
1991                         u64_stats_update_begin(&ring->syncp);
1992                         ring->stats.reuse_pg_cnt++;
1993                         u64_stats_update_end(&ring->syncp);
1994
1995                         hns3_reuse_buffer(ring, ring->next_to_use);
1996                 } else {
1997                         ret = hns3_reserve_buffer_map(ring, &res_cbs);
1998                         if (ret) {
1999                                 u64_stats_update_begin(&ring->syncp);
2000                                 ring->stats.sw_err_cnt++;
2001                                 u64_stats_update_end(&ring->syncp);
2002
2003                                 netdev_err(ring->tqp->handle->kinfo.netdev,
2004                                            "hnae reserve buffer map failed.\n");
2005                                 break;
2006                         }
2007                         hns3_replace_buffer(ring, ring->next_to_use, &res_cbs);
2008                 }
2009
2010                 ring_ptr_move_fw(ring, next_to_use);
2011         }
2012
2013         wmb(); /* Make all data has been write before submit */
2014         writel_relaxed(i, ring->tqp->io_base + HNS3_RING_RX_RING_HEAD_REG);
2015 }
2016
2017 static void hns3_nic_reuse_page(struct sk_buff *skb, int i,
2018                                 struct hns3_enet_ring *ring, int pull_len,
2019                                 struct hns3_desc_cb *desc_cb)
2020 {
2021         struct hns3_desc *desc;
2022         int truesize, size;
2023         int last_offset;
2024         bool twobufs;
2025
2026         twobufs = ((PAGE_SIZE < 8192) &&
2027                 hnae3_buf_size(ring) == HNS3_BUFFER_SIZE_2048);
2028
2029         desc = &ring->desc[ring->next_to_clean];
2030         size = le16_to_cpu(desc->rx.size);
2031
2032         truesize = hnae3_buf_size(ring);
2033
2034         if (!twobufs)
2035                 last_offset = hnae3_page_size(ring) - hnae3_buf_size(ring);
2036
2037         skb_add_rx_frag(skb, i, desc_cb->priv, desc_cb->page_offset + pull_len,
2038                         size - pull_len, truesize);
2039
2040          /* Avoid re-using remote pages,flag default unreuse */
2041         if (unlikely(page_to_nid(desc_cb->priv) != numa_node_id()))
2042                 return;
2043
2044         if (twobufs) {
2045                 /* If we are only owner of page we can reuse it */
2046                 if (likely(page_count(desc_cb->priv) == 1)) {
2047                         /* Flip page offset to other buffer */
2048                         desc_cb->page_offset ^= truesize;
2049
2050                         desc_cb->reuse_flag = 1;
2051                         /* bump ref count on page before it is given*/
2052                         get_page(desc_cb->priv);
2053                 }
2054                 return;
2055         }
2056
2057         /* Move offset up to the next cache line */
2058         desc_cb->page_offset += truesize;
2059
2060         if (desc_cb->page_offset <= last_offset) {
2061                 desc_cb->reuse_flag = 1;
2062                 /* Bump ref count on page before it is given*/
2063                 get_page(desc_cb->priv);
2064         }
2065 }
2066
2067 static void hns3_rx_checksum(struct hns3_enet_ring *ring, struct sk_buff *skb,
2068                              struct hns3_desc *desc)
2069 {
2070         struct net_device *netdev = ring->tqp->handle->kinfo.netdev;
2071         int l3_type, l4_type;
2072         u32 bd_base_info;
2073         int ol4_type;
2074         u32 l234info;
2075
2076         bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
2077         l234info = le32_to_cpu(desc->rx.l234_info);
2078
2079         skb->ip_summed = CHECKSUM_NONE;
2080
2081         skb_checksum_none_assert(skb);
2082
2083         if (!(netdev->features & NETIF_F_RXCSUM))
2084                 return;
2085
2086         /* check if hardware has done checksum */
2087         if (!hnae3_get_bit(bd_base_info, HNS3_RXD_L3L4P_B))
2088                 return;
2089
2090         if (unlikely(hnae3_get_bit(l234info, HNS3_RXD_L3E_B) ||
2091                      hnae3_get_bit(l234info, HNS3_RXD_L4E_B) ||
2092                      hnae3_get_bit(l234info, HNS3_RXD_OL3E_B) ||
2093                      hnae3_get_bit(l234info, HNS3_RXD_OL4E_B))) {
2094                 netdev_err(netdev, "L3/L4 error pkt\n");
2095                 u64_stats_update_begin(&ring->syncp);
2096                 ring->stats.l3l4_csum_err++;
2097                 u64_stats_update_end(&ring->syncp);
2098
2099                 return;
2100         }
2101
2102         l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M,
2103                                   HNS3_RXD_L3ID_S);
2104         l4_type = hnae3_get_field(l234info, HNS3_RXD_L4ID_M,
2105                                   HNS3_RXD_L4ID_S);
2106
2107         ol4_type = hnae3_get_field(l234info, HNS3_RXD_OL4ID_M,
2108                                    HNS3_RXD_OL4ID_S);
2109         switch (ol4_type) {
2110         case HNS3_OL4_TYPE_MAC_IN_UDP:
2111         case HNS3_OL4_TYPE_NVGRE:
2112                 skb->csum_level = 1;
2113                 /* fall through */
2114         case HNS3_OL4_TYPE_NO_TUN:
2115                 /* Can checksum ipv4 or ipv6 + UDP/TCP/SCTP packets */
2116                 if ((l3_type == HNS3_L3_TYPE_IPV4 ||
2117                      l3_type == HNS3_L3_TYPE_IPV6) &&
2118                     (l4_type == HNS3_L4_TYPE_UDP ||
2119                      l4_type == HNS3_L4_TYPE_TCP ||
2120                      l4_type == HNS3_L4_TYPE_SCTP))
2121                         skb->ip_summed = CHECKSUM_UNNECESSARY;
2122                 break;
2123         }
2124 }
2125
2126 static void hns3_rx_skb(struct hns3_enet_ring *ring, struct sk_buff *skb)
2127 {
2128         napi_gro_receive(&ring->tqp_vector->napi, skb);
2129 }
2130
2131 static u16 hns3_parse_vlan_tag(struct hns3_enet_ring *ring,
2132                                struct hns3_desc *desc, u32 l234info)
2133 {
2134         struct pci_dev *pdev = ring->tqp->handle->pdev;
2135         u16 vlan_tag;
2136
2137         if (pdev->revision == 0x20) {
2138                 vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
2139                 if (!(vlan_tag & VLAN_VID_MASK))
2140                         vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
2141
2142                 return vlan_tag;
2143         }
2144
2145 #define HNS3_STRP_OUTER_VLAN    0x1
2146 #define HNS3_STRP_INNER_VLAN    0x2
2147
2148         switch (hnae3_get_field(l234info, HNS3_RXD_STRP_TAGP_M,
2149                                 HNS3_RXD_STRP_TAGP_S)) {
2150         case HNS3_STRP_OUTER_VLAN:
2151                 vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
2152                 break;
2153         case HNS3_STRP_INNER_VLAN:
2154                 vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
2155                 break;
2156         default:
2157                 vlan_tag = 0;
2158                 break;
2159         }
2160
2161         return vlan_tag;
2162 }
2163
2164 static int hns3_handle_rx_bd(struct hns3_enet_ring *ring,
2165                              struct sk_buff **out_skb, int *out_bnum)
2166 {
2167         struct net_device *netdev = ring->tqp->handle->kinfo.netdev;
2168         struct hns3_desc_cb *desc_cb;
2169         struct hns3_desc *desc;
2170         struct sk_buff *skb;
2171         unsigned char *va;
2172         u32 bd_base_info;
2173         int pull_len;
2174         u32 l234info;
2175         int length;
2176         int bnum;
2177
2178         desc = &ring->desc[ring->next_to_clean];
2179         desc_cb = &ring->desc_cb[ring->next_to_clean];
2180
2181         prefetch(desc);
2182
2183         length = le16_to_cpu(desc->rx.size);
2184         bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
2185
2186         /* Check valid BD */
2187         if (unlikely(!hnae3_get_bit(bd_base_info, HNS3_RXD_VLD_B)))
2188                 return -EFAULT;
2189
2190         va = (unsigned char *)desc_cb->buf + desc_cb->page_offset;
2191
2192         /* Prefetch first cache line of first page
2193          * Idea is to cache few bytes of the header of the packet. Our L1 Cache
2194          * line size is 64B so need to prefetch twice to make it 128B. But in
2195          * actual we can have greater size of caches with 128B Level 1 cache
2196          * lines. In such a case, single fetch would suffice to cache in the
2197          * relevant part of the header.
2198          */
2199         prefetch(va);
2200 #if L1_CACHE_BYTES < 128
2201         prefetch(va + L1_CACHE_BYTES);
2202 #endif
2203
2204         skb = *out_skb = napi_alloc_skb(&ring->tqp_vector->napi,
2205                                         HNS3_RX_HEAD_SIZE);
2206         if (unlikely(!skb)) {
2207                 netdev_err(netdev, "alloc rx skb fail\n");
2208
2209                 u64_stats_update_begin(&ring->syncp);
2210                 ring->stats.sw_err_cnt++;
2211                 u64_stats_update_end(&ring->syncp);
2212
2213                 return -ENOMEM;
2214         }
2215
2216         prefetchw(skb->data);
2217
2218         bnum = 1;
2219         if (length <= HNS3_RX_HEAD_SIZE) {
2220                 memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long)));
2221
2222                 /* We can reuse buffer as-is, just make sure it is local */
2223                 if (likely(page_to_nid(desc_cb->priv) == numa_node_id()))
2224                         desc_cb->reuse_flag = 1;
2225                 else /* This page cannot be reused so discard it */
2226                         put_page(desc_cb->priv);
2227
2228                 ring_ptr_move_fw(ring, next_to_clean);
2229         } else {
2230                 u64_stats_update_begin(&ring->syncp);
2231                 ring->stats.seg_pkt_cnt++;
2232                 u64_stats_update_end(&ring->syncp);
2233
2234                 pull_len = eth_get_headlen(va, HNS3_RX_HEAD_SIZE);
2235
2236                 memcpy(__skb_put(skb, pull_len), va,
2237                        ALIGN(pull_len, sizeof(long)));
2238
2239                 hns3_nic_reuse_page(skb, 0, ring, pull_len, desc_cb);
2240                 ring_ptr_move_fw(ring, next_to_clean);
2241
2242                 while (!hnae3_get_bit(bd_base_info, HNS3_RXD_FE_B)) {
2243                         desc = &ring->desc[ring->next_to_clean];
2244                         desc_cb = &ring->desc_cb[ring->next_to_clean];
2245                         bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
2246                         hns3_nic_reuse_page(skb, bnum, ring, 0, desc_cb);
2247                         ring_ptr_move_fw(ring, next_to_clean);
2248                         bnum++;
2249                 }
2250         }
2251
2252         *out_bnum = bnum;
2253
2254         l234info = le32_to_cpu(desc->rx.l234_info);
2255
2256         /* Based on hw strategy, the tag offloaded will be stored at
2257          * ot_vlan_tag in two layer tag case, and stored at vlan_tag
2258          * in one layer tag case.
2259          */
2260         if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX) {
2261                 u16 vlan_tag;
2262
2263                 vlan_tag = hns3_parse_vlan_tag(ring, desc, l234info);
2264                 if (vlan_tag & VLAN_VID_MASK)
2265                         __vlan_hwaccel_put_tag(skb,
2266                                                htons(ETH_P_8021Q),
2267                                                vlan_tag);
2268         }
2269
2270         if (unlikely(!hnae3_get_bit(bd_base_info, HNS3_RXD_VLD_B))) {
2271                 netdev_err(netdev, "no valid bd,%016llx,%016llx\n",
2272                            ((u64 *)desc)[0], ((u64 *)desc)[1]);
2273                 u64_stats_update_begin(&ring->syncp);
2274                 ring->stats.non_vld_descs++;
2275                 u64_stats_update_end(&ring->syncp);
2276
2277                 dev_kfree_skb_any(skb);
2278                 return -EINVAL;
2279         }
2280
2281         if (unlikely((!desc->rx.pkt_len) ||
2282                      hnae3_get_bit(l234info, HNS3_RXD_TRUNCAT_B))) {
2283                 netdev_err(netdev, "truncated pkt\n");
2284                 u64_stats_update_begin(&ring->syncp);
2285                 ring->stats.err_pkt_len++;
2286                 u64_stats_update_end(&ring->syncp);
2287
2288                 dev_kfree_skb_any(skb);
2289                 return -EFAULT;
2290         }
2291
2292         if (unlikely(hnae3_get_bit(l234info, HNS3_RXD_L2E_B))) {
2293                 netdev_err(netdev, "L2 error pkt\n");
2294                 u64_stats_update_begin(&ring->syncp);
2295                 ring->stats.l2_err++;
2296                 u64_stats_update_end(&ring->syncp);
2297
2298                 dev_kfree_skb_any(skb);
2299                 return -EFAULT;
2300         }
2301
2302         u64_stats_update_begin(&ring->syncp);
2303         ring->stats.rx_pkts++;
2304         ring->stats.rx_bytes += skb->len;
2305         u64_stats_update_end(&ring->syncp);
2306
2307         ring->tqp_vector->rx_group.total_bytes += skb->len;
2308
2309         hns3_rx_checksum(ring, skb, desc);
2310         return 0;
2311 }
2312
2313 int hns3_clean_rx_ring(
2314                 struct hns3_enet_ring *ring, int budget,
2315                 void (*rx_fn)(struct hns3_enet_ring *, struct sk_buff *))
2316 {
2317 #define RCB_NOF_ALLOC_RX_BUFF_ONCE 16
2318         struct net_device *netdev = ring->tqp->handle->kinfo.netdev;
2319         int recv_pkts, recv_bds, clean_count, err;
2320         int unused_count = hns3_desc_unused(ring);
2321         struct sk_buff *skb = NULL;
2322         int num, bnum = 0;
2323
2324         num = readl_relaxed(ring->tqp->io_base + HNS3_RING_RX_RING_FBDNUM_REG);
2325         rmb(); /* Make sure num taken effect before the other data is touched */
2326
2327         recv_pkts = 0, recv_bds = 0, clean_count = 0;
2328         num -= unused_count;
2329
2330         while (recv_pkts < budget && recv_bds < num) {
2331                 /* Reuse or realloc buffers */
2332                 if (clean_count + unused_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) {
2333                         hns3_nic_alloc_rx_buffers(ring,
2334                                                   clean_count + unused_count);
2335                         clean_count = 0;
2336                         unused_count = hns3_desc_unused(ring);
2337                 }
2338
2339                 /* Poll one pkt */
2340                 err = hns3_handle_rx_bd(ring, &skb, &bnum);
2341                 if (unlikely(!skb)) /* This fault cannot be repaired */
2342                         goto out;
2343
2344                 recv_bds += bnum;
2345                 clean_count += bnum;
2346                 if (unlikely(err)) {  /* Do jump the err */
2347                         recv_pkts++;
2348                         continue;
2349                 }
2350
2351                 /* Do update ip stack process */
2352                 skb->protocol = eth_type_trans(skb, netdev);
2353                 rx_fn(ring, skb);
2354
2355                 recv_pkts++;
2356         }
2357
2358 out:
2359         /* Make all data has been write before submit */
2360         if (clean_count + unused_count > 0)
2361                 hns3_nic_alloc_rx_buffers(ring,
2362                                           clean_count + unused_count);
2363
2364         return recv_pkts;
2365 }
2366
2367 static bool hns3_get_new_int_gl(struct hns3_enet_ring_group *ring_group)
2368 {
2369         struct hns3_enet_tqp_vector *tqp_vector =
2370                                         ring_group->ring->tqp_vector;
2371         enum hns3_flow_level_range new_flow_level;
2372         int packets_per_msecs;
2373         int bytes_per_msecs;
2374         u32 time_passed_ms;
2375         u16 new_int_gl;
2376
2377         if (!ring_group->coal.int_gl || !tqp_vector->last_jiffies)
2378                 return false;
2379
2380         if (ring_group->total_packets == 0) {
2381                 ring_group->coal.int_gl = HNS3_INT_GL_50K;
2382                 ring_group->coal.flow_level = HNS3_FLOW_LOW;
2383                 return true;
2384         }
2385
2386         /* Simple throttlerate management
2387          * 0-10MB/s   lower     (50000 ints/s)
2388          * 10-20MB/s   middle    (20000 ints/s)
2389          * 20-1249MB/s high      (18000 ints/s)
2390          * > 40000pps  ultra     (8000 ints/s)
2391          */
2392         new_flow_level = ring_group->coal.flow_level;
2393         new_int_gl = ring_group->coal.int_gl;
2394         time_passed_ms =
2395                 jiffies_to_msecs(jiffies - tqp_vector->last_jiffies);
2396
2397         if (!time_passed_ms)
2398                 return false;
2399
2400         do_div(ring_group->total_packets, time_passed_ms);
2401         packets_per_msecs = ring_group->total_packets;
2402
2403         do_div(ring_group->total_bytes, time_passed_ms);
2404         bytes_per_msecs = ring_group->total_bytes;
2405
2406 #define HNS3_RX_LOW_BYTE_RATE 10000
2407 #define HNS3_RX_MID_BYTE_RATE 20000
2408
2409         switch (new_flow_level) {
2410         case HNS3_FLOW_LOW:
2411                 if (bytes_per_msecs > HNS3_RX_LOW_BYTE_RATE)
2412                         new_flow_level = HNS3_FLOW_MID;
2413                 break;
2414         case HNS3_FLOW_MID:
2415                 if (bytes_per_msecs > HNS3_RX_MID_BYTE_RATE)
2416                         new_flow_level = HNS3_FLOW_HIGH;
2417                 else if (bytes_per_msecs <= HNS3_RX_LOW_BYTE_RATE)
2418                         new_flow_level = HNS3_FLOW_LOW;
2419                 break;
2420         case HNS3_FLOW_HIGH:
2421         case HNS3_FLOW_ULTRA:
2422         default:
2423                 if (bytes_per_msecs <= HNS3_RX_MID_BYTE_RATE)
2424                         new_flow_level = HNS3_FLOW_MID;
2425                 break;
2426         }
2427
2428 #define HNS3_RX_ULTRA_PACKET_RATE 40
2429
2430         if (packets_per_msecs > HNS3_RX_ULTRA_PACKET_RATE &&
2431             &tqp_vector->rx_group == ring_group)
2432                 new_flow_level = HNS3_FLOW_ULTRA;
2433
2434         switch (new_flow_level) {
2435         case HNS3_FLOW_LOW:
2436                 new_int_gl = HNS3_INT_GL_50K;
2437                 break;
2438         case HNS3_FLOW_MID:
2439                 new_int_gl = HNS3_INT_GL_20K;
2440                 break;
2441         case HNS3_FLOW_HIGH:
2442                 new_int_gl = HNS3_INT_GL_18K;
2443                 break;
2444         case HNS3_FLOW_ULTRA:
2445                 new_int_gl = HNS3_INT_GL_8K;
2446                 break;
2447         default:
2448                 break;
2449         }
2450
2451         ring_group->total_bytes = 0;
2452         ring_group->total_packets = 0;
2453         ring_group->coal.flow_level = new_flow_level;
2454         if (new_int_gl != ring_group->coal.int_gl) {
2455                 ring_group->coal.int_gl = new_int_gl;
2456                 return true;
2457         }
2458         return false;
2459 }
2460
2461 static void hns3_update_new_int_gl(struct hns3_enet_tqp_vector *tqp_vector)
2462 {
2463         struct hns3_enet_ring_group *rx_group = &tqp_vector->rx_group;
2464         struct hns3_enet_ring_group *tx_group = &tqp_vector->tx_group;
2465         bool rx_update, tx_update;
2466
2467         if (tqp_vector->int_adapt_down > 0) {
2468                 tqp_vector->int_adapt_down--;
2469                 return;
2470         }
2471
2472         if (rx_group->coal.gl_adapt_enable) {
2473                 rx_update = hns3_get_new_int_gl(rx_group);
2474                 if (rx_update)
2475                         hns3_set_vector_coalesce_rx_gl(tqp_vector,
2476                                                        rx_group->coal.int_gl);
2477         }
2478
2479         if (tx_group->coal.gl_adapt_enable) {
2480                 tx_update = hns3_get_new_int_gl(&tqp_vector->tx_group);
2481                 if (tx_update)
2482                         hns3_set_vector_coalesce_tx_gl(tqp_vector,
2483                                                        tx_group->coal.int_gl);
2484         }
2485
2486         tqp_vector->last_jiffies = jiffies;
2487         tqp_vector->int_adapt_down = HNS3_INT_ADAPT_DOWN_START;
2488 }
2489
2490 static int hns3_nic_common_poll(struct napi_struct *napi, int budget)
2491 {
2492         struct hns3_enet_ring *ring;
2493         int rx_pkt_total = 0;
2494
2495         struct hns3_enet_tqp_vector *tqp_vector =
2496                 container_of(napi, struct hns3_enet_tqp_vector, napi);
2497         bool clean_complete = true;
2498         int rx_budget;
2499
2500         /* Since the actual Tx work is minimal, we can give the Tx a larger
2501          * budget and be more aggressive about cleaning up the Tx descriptors.
2502          */
2503         hns3_for_each_ring(ring, tqp_vector->tx_group) {
2504                 if (!hns3_clean_tx_ring(ring, budget))
2505                         clean_complete = false;
2506         }
2507
2508         /* make sure rx ring budget not smaller than 1 */
2509         rx_budget = max(budget / tqp_vector->num_tqps, 1);
2510
2511         hns3_for_each_ring(ring, tqp_vector->rx_group) {
2512                 int rx_cleaned = hns3_clean_rx_ring(ring, rx_budget,
2513                                                     hns3_rx_skb);
2514
2515                 if (rx_cleaned >= rx_budget)
2516                         clean_complete = false;
2517
2518                 rx_pkt_total += rx_cleaned;
2519         }
2520
2521         tqp_vector->rx_group.total_packets += rx_pkt_total;
2522
2523         if (!clean_complete)
2524                 return budget;
2525
2526         napi_complete(napi);
2527         hns3_update_new_int_gl(tqp_vector);
2528         hns3_mask_vector_irq(tqp_vector, 1);
2529
2530         return rx_pkt_total;
2531 }
2532
2533 static int hns3_get_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector,
2534                                       struct hnae3_ring_chain_node *head)
2535 {
2536         struct pci_dev *pdev = tqp_vector->handle->pdev;
2537         struct hnae3_ring_chain_node *cur_chain = head;
2538         struct hnae3_ring_chain_node *chain;
2539         struct hns3_enet_ring *tx_ring;
2540         struct hns3_enet_ring *rx_ring;
2541
2542         tx_ring = tqp_vector->tx_group.ring;
2543         if (tx_ring) {
2544                 cur_chain->tqp_index = tx_ring->tqp->tqp_index;
2545                 hnae3_set_bit(cur_chain->flag, HNAE3_RING_TYPE_B,
2546                               HNAE3_RING_TYPE_TX);
2547                 hnae3_set_field(cur_chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
2548                                 HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_TX);
2549
2550                 cur_chain->next = NULL;
2551
2552                 while (tx_ring->next) {
2553                         tx_ring = tx_ring->next;
2554
2555                         chain = devm_kzalloc(&pdev->dev, sizeof(*chain),
2556                                              GFP_KERNEL);
2557                         if (!chain)
2558                                 return -ENOMEM;
2559
2560                         cur_chain->next = chain;
2561                         chain->tqp_index = tx_ring->tqp->tqp_index;
2562                         hnae3_set_bit(chain->flag, HNAE3_RING_TYPE_B,
2563                                       HNAE3_RING_TYPE_TX);
2564                         hnae3_set_field(chain->int_gl_idx,
2565                                         HNAE3_RING_GL_IDX_M,
2566                                         HNAE3_RING_GL_IDX_S,
2567                                         HNAE3_RING_GL_TX);
2568
2569                         cur_chain = chain;
2570                 }
2571         }
2572
2573         rx_ring = tqp_vector->rx_group.ring;
2574         if (!tx_ring && rx_ring) {
2575                 cur_chain->next = NULL;
2576                 cur_chain->tqp_index = rx_ring->tqp->tqp_index;
2577                 hnae3_set_bit(cur_chain->flag, HNAE3_RING_TYPE_B,
2578                               HNAE3_RING_TYPE_RX);
2579                 hnae3_set_field(cur_chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
2580                                 HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_RX);
2581
2582                 rx_ring = rx_ring->next;
2583         }
2584
2585         while (rx_ring) {
2586                 chain = devm_kzalloc(&pdev->dev, sizeof(*chain), GFP_KERNEL);
2587                 if (!chain)
2588                         return -ENOMEM;
2589
2590                 cur_chain->next = chain;
2591                 chain->tqp_index = rx_ring->tqp->tqp_index;
2592                 hnae3_set_bit(chain->flag, HNAE3_RING_TYPE_B,
2593                               HNAE3_RING_TYPE_RX);
2594                 hnae3_set_field(chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
2595                                 HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_RX);
2596
2597                 cur_chain = chain;
2598
2599                 rx_ring = rx_ring->next;
2600         }
2601
2602         return 0;
2603 }
2604
2605 static void hns3_free_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector,
2606                                         struct hnae3_ring_chain_node *head)
2607 {
2608         struct pci_dev *pdev = tqp_vector->handle->pdev;
2609         struct hnae3_ring_chain_node *chain_tmp, *chain;
2610
2611         chain = head->next;
2612
2613         while (chain) {
2614                 chain_tmp = chain->next;
2615                 devm_kfree(&pdev->dev, chain);
2616                 chain = chain_tmp;
2617         }
2618 }
2619
2620 static void hns3_add_ring_to_group(struct hns3_enet_ring_group *group,
2621                                    struct hns3_enet_ring *ring)
2622 {
2623         ring->next = group->ring;
2624         group->ring = ring;
2625
2626         group->count++;
2627 }
2628
2629 static int hns3_nic_init_vector_data(struct hns3_nic_priv *priv)
2630 {
2631         struct hnae3_ring_chain_node vector_ring_chain;
2632         struct hnae3_handle *h = priv->ae_handle;
2633         struct hns3_enet_tqp_vector *tqp_vector;
2634         int ret = 0;
2635         u16 i;
2636
2637         for (i = 0; i < priv->vector_num; i++) {
2638                 tqp_vector = &priv->tqp_vector[i];
2639                 hns3_vector_gl_rl_init_hw(tqp_vector, priv);
2640                 tqp_vector->num_tqps = 0;
2641         }
2642
2643         for (i = 0; i < h->kinfo.num_tqps; i++) {
2644                 u16 vector_i = i % priv->vector_num;
2645                 u16 tqp_num = h->kinfo.num_tqps;
2646
2647                 tqp_vector = &priv->tqp_vector[vector_i];
2648
2649                 hns3_add_ring_to_group(&tqp_vector->tx_group,
2650                                        priv->ring_data[i].ring);
2651
2652                 hns3_add_ring_to_group(&tqp_vector->rx_group,
2653                                        priv->ring_data[i + tqp_num].ring);
2654
2655                 priv->ring_data[i].ring->tqp_vector = tqp_vector;
2656                 priv->ring_data[i + tqp_num].ring->tqp_vector = tqp_vector;
2657                 tqp_vector->num_tqps++;
2658         }
2659
2660         for (i = 0; i < priv->vector_num; i++) {
2661                 tqp_vector = &priv->tqp_vector[i];
2662
2663                 tqp_vector->rx_group.total_bytes = 0;
2664                 tqp_vector->rx_group.total_packets = 0;
2665                 tqp_vector->tx_group.total_bytes = 0;
2666                 tqp_vector->tx_group.total_packets = 0;
2667                 tqp_vector->handle = h;
2668
2669                 ret = hns3_get_vector_ring_chain(tqp_vector,
2670                                                  &vector_ring_chain);
2671                 if (ret)
2672                         return ret;
2673
2674                 ret = h->ae_algo->ops->map_ring_to_vector(h,
2675                         tqp_vector->vector_irq, &vector_ring_chain);
2676
2677                 hns3_free_vector_ring_chain(tqp_vector, &vector_ring_chain);
2678
2679                 if (ret)
2680                         return ret;
2681
2682                 netif_napi_add(priv->netdev, &tqp_vector->napi,
2683                                hns3_nic_common_poll, NAPI_POLL_WEIGHT);
2684         }
2685
2686         return 0;
2687 }
2688
2689 static int hns3_nic_alloc_vector_data(struct hns3_nic_priv *priv)
2690 {
2691         struct hnae3_handle *h = priv->ae_handle;
2692         struct hns3_enet_tqp_vector *tqp_vector;
2693         struct hnae3_vector_info *vector;
2694         struct pci_dev *pdev = h->pdev;
2695         u16 tqp_num = h->kinfo.num_tqps;
2696         u16 vector_num;
2697         int ret = 0;
2698         u16 i;
2699
2700         /* RSS size, cpu online and vector_num should be the same */
2701         /* Should consider 2p/4p later */
2702         vector_num = min_t(u16, num_online_cpus(), tqp_num);
2703         vector = devm_kcalloc(&pdev->dev, vector_num, sizeof(*vector),
2704                               GFP_KERNEL);
2705         if (!vector)
2706                 return -ENOMEM;
2707
2708         vector_num = h->ae_algo->ops->get_vector(h, vector_num, vector);
2709
2710         priv->vector_num = vector_num;
2711         priv->tqp_vector = (struct hns3_enet_tqp_vector *)
2712                 devm_kcalloc(&pdev->dev, vector_num, sizeof(*priv->tqp_vector),
2713                              GFP_KERNEL);
2714         if (!priv->tqp_vector) {
2715                 ret = -ENOMEM;
2716                 goto out;
2717         }
2718
2719         for (i = 0; i < priv->vector_num; i++) {
2720                 tqp_vector = &priv->tqp_vector[i];
2721                 tqp_vector->idx = i;
2722                 tqp_vector->mask_addr = vector[i].io_addr;
2723                 tqp_vector->vector_irq = vector[i].vector;
2724                 hns3_vector_gl_rl_init(tqp_vector, priv);
2725         }
2726
2727 out:
2728         devm_kfree(&pdev->dev, vector);
2729         return ret;
2730 }
2731
2732 static void hns3_clear_ring_group(struct hns3_enet_ring_group *group)
2733 {
2734         group->ring = NULL;
2735         group->count = 0;
2736 }
2737
2738 static int hns3_nic_uninit_vector_data(struct hns3_nic_priv *priv)
2739 {
2740         struct hnae3_ring_chain_node vector_ring_chain;
2741         struct hnae3_handle *h = priv->ae_handle;
2742         struct hns3_enet_tqp_vector *tqp_vector;
2743         int i, ret;
2744
2745         for (i = 0; i < priv->vector_num; i++) {
2746                 tqp_vector = &priv->tqp_vector[i];
2747
2748                 ret = hns3_get_vector_ring_chain(tqp_vector,
2749                                                  &vector_ring_chain);
2750                 if (ret)
2751                         return ret;
2752
2753                 ret = h->ae_algo->ops->unmap_ring_from_vector(h,
2754                         tqp_vector->vector_irq, &vector_ring_chain);
2755                 if (ret)
2756                         return ret;
2757
2758                 hns3_free_vector_ring_chain(tqp_vector, &vector_ring_chain);
2759
2760                 if (priv->tqp_vector[i].irq_init_flag == HNS3_VECTOR_INITED) {
2761                         (void)irq_set_affinity_hint(
2762                                 priv->tqp_vector[i].vector_irq,
2763                                                     NULL);
2764                         free_irq(priv->tqp_vector[i].vector_irq,
2765                                  &priv->tqp_vector[i]);
2766                 }
2767
2768                 priv->ring_data[i].ring->irq_init_flag = HNS3_VECTOR_NOT_INITED;
2769                 hns3_clear_ring_group(&tqp_vector->rx_group);
2770                 hns3_clear_ring_group(&tqp_vector->tx_group);
2771                 netif_napi_del(&priv->tqp_vector[i].napi);
2772         }
2773
2774         return 0;
2775 }
2776
2777 static int hns3_nic_dealloc_vector_data(struct hns3_nic_priv *priv)
2778 {
2779         struct hnae3_handle *h = priv->ae_handle;
2780         struct pci_dev *pdev = h->pdev;
2781         int i, ret;
2782
2783         for (i = 0; i < priv->vector_num; i++) {
2784                 struct hns3_enet_tqp_vector *tqp_vector;
2785
2786                 tqp_vector = &priv->tqp_vector[i];
2787                 ret = h->ae_algo->ops->put_vector(h, tqp_vector->vector_irq);
2788                 if (ret)
2789                         return ret;
2790         }
2791
2792         devm_kfree(&pdev->dev, priv->tqp_vector);
2793         return 0;
2794 }
2795
2796 static int hns3_ring_get_cfg(struct hnae3_queue *q, struct hns3_nic_priv *priv,
2797                              int ring_type)
2798 {
2799         struct hns3_nic_ring_data *ring_data = priv->ring_data;
2800         int queue_num = priv->ae_handle->kinfo.num_tqps;
2801         struct pci_dev *pdev = priv->ae_handle->pdev;
2802         struct hns3_enet_ring *ring;
2803
2804         ring = devm_kzalloc(&pdev->dev, sizeof(*ring), GFP_KERNEL);
2805         if (!ring)
2806                 return -ENOMEM;
2807
2808         if (ring_type == HNAE3_RING_TYPE_TX) {
2809                 ring_data[q->tqp_index].ring = ring;
2810                 ring_data[q->tqp_index].queue_index = q->tqp_index;
2811                 ring->io_base = (u8 __iomem *)q->io_base + HNS3_TX_REG_OFFSET;
2812         } else {
2813                 ring_data[q->tqp_index + queue_num].ring = ring;
2814                 ring_data[q->tqp_index + queue_num].queue_index = q->tqp_index;
2815                 ring->io_base = q->io_base;
2816         }
2817
2818         hnae3_set_bit(ring->flag, HNAE3_RING_TYPE_B, ring_type);
2819
2820         ring->tqp = q;
2821         ring->desc = NULL;
2822         ring->desc_cb = NULL;
2823         ring->dev = priv->dev;
2824         ring->desc_dma_addr = 0;
2825         ring->buf_size = q->buf_size;
2826         ring->desc_num = q->desc_num;
2827         ring->next_to_use = 0;
2828         ring->next_to_clean = 0;
2829
2830         return 0;
2831 }
2832
2833 static int hns3_queue_to_ring(struct hnae3_queue *tqp,
2834                               struct hns3_nic_priv *priv)
2835 {
2836         int ret;
2837
2838         ret = hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_TX);
2839         if (ret)
2840                 return ret;
2841
2842         ret = hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_RX);
2843         if (ret)
2844                 return ret;
2845
2846         return 0;
2847 }
2848
2849 static int hns3_get_ring_config(struct hns3_nic_priv *priv)
2850 {
2851         struct hnae3_handle *h = priv->ae_handle;
2852         struct pci_dev *pdev = h->pdev;
2853         int i, ret;
2854
2855         priv->ring_data =  devm_kzalloc(&pdev->dev,
2856                                         array3_size(h->kinfo.num_tqps,
2857                                                     sizeof(*priv->ring_data),
2858                                                     2),
2859                                         GFP_KERNEL);
2860         if (!priv->ring_data)
2861                 return -ENOMEM;
2862
2863         for (i = 0; i < h->kinfo.num_tqps; i++) {
2864                 ret = hns3_queue_to_ring(h->kinfo.tqp[i], priv);
2865                 if (ret)
2866                         goto err;
2867         }
2868
2869         return 0;
2870 err:
2871         devm_kfree(&pdev->dev, priv->ring_data);
2872         return ret;
2873 }
2874
2875 static void hns3_put_ring_config(struct hns3_nic_priv *priv)
2876 {
2877         struct hnae3_handle *h = priv->ae_handle;
2878         int i;
2879
2880         for (i = 0; i < h->kinfo.num_tqps; i++) {
2881                 devm_kfree(priv->dev, priv->ring_data[i].ring);
2882                 devm_kfree(priv->dev,
2883                            priv->ring_data[i + h->kinfo.num_tqps].ring);
2884         }
2885         devm_kfree(priv->dev, priv->ring_data);
2886 }
2887
2888 static int hns3_alloc_ring_memory(struct hns3_enet_ring *ring)
2889 {
2890         int ret;
2891
2892         if (ring->desc_num <= 0 || ring->buf_size <= 0)
2893                 return -EINVAL;
2894
2895         ring->desc_cb = kcalloc(ring->desc_num, sizeof(ring->desc_cb[0]),
2896                                 GFP_KERNEL);
2897         if (!ring->desc_cb) {
2898                 ret = -ENOMEM;
2899                 goto out;
2900         }
2901
2902         ret = hns3_alloc_desc(ring);
2903         if (ret)
2904                 goto out_with_desc_cb;
2905
2906         if (!HNAE3_IS_TX_RING(ring)) {
2907                 ret = hns3_alloc_ring_buffers(ring);
2908                 if (ret)
2909                         goto out_with_desc;
2910         }
2911
2912         return 0;
2913
2914 out_with_desc:
2915         hns3_free_desc(ring);
2916 out_with_desc_cb:
2917         kfree(ring->desc_cb);
2918         ring->desc_cb = NULL;
2919 out:
2920         return ret;
2921 }
2922
2923 static void hns3_fini_ring(struct hns3_enet_ring *ring)
2924 {
2925         hns3_free_desc(ring);
2926         kfree(ring->desc_cb);
2927         ring->desc_cb = NULL;
2928         ring->next_to_clean = 0;
2929         ring->next_to_use = 0;
2930 }
2931
2932 static int hns3_buf_size2type(u32 buf_size)
2933 {
2934         int bd_size_type;
2935
2936         switch (buf_size) {
2937         case 512:
2938                 bd_size_type = HNS3_BD_SIZE_512_TYPE;
2939                 break;
2940         case 1024:
2941                 bd_size_type = HNS3_BD_SIZE_1024_TYPE;
2942                 break;
2943         case 2048:
2944                 bd_size_type = HNS3_BD_SIZE_2048_TYPE;
2945                 break;
2946         case 4096:
2947                 bd_size_type = HNS3_BD_SIZE_4096_TYPE;
2948                 break;
2949         default:
2950                 bd_size_type = HNS3_BD_SIZE_2048_TYPE;
2951         }
2952
2953         return bd_size_type;
2954 }
2955
2956 static void hns3_init_ring_hw(struct hns3_enet_ring *ring)
2957 {
2958         dma_addr_t dma = ring->desc_dma_addr;
2959         struct hnae3_queue *q = ring->tqp;
2960
2961         if (!HNAE3_IS_TX_RING(ring)) {
2962                 hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_L_REG,
2963                                (u32)dma);
2964                 hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_H_REG,
2965                                (u32)((dma >> 31) >> 1));
2966
2967                 hns3_write_dev(q, HNS3_RING_RX_RING_BD_LEN_REG,
2968                                hns3_buf_size2type(ring->buf_size));
2969                 hns3_write_dev(q, HNS3_RING_RX_RING_BD_NUM_REG,
2970                                ring->desc_num / 8 - 1);
2971
2972         } else {
2973                 hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_L_REG,
2974                                (u32)dma);
2975                 hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_H_REG,
2976                                (u32)((dma >> 31) >> 1));
2977
2978                 hns3_write_dev(q, HNS3_RING_TX_RING_BD_NUM_REG,
2979                                ring->desc_num / 8 - 1);
2980         }
2981 }
2982
2983 static void hns3_init_tx_ring_tc(struct hns3_nic_priv *priv)
2984 {
2985         struct hnae3_knic_private_info *kinfo = &priv->ae_handle->kinfo;
2986         int i;
2987
2988         for (i = 0; i < HNAE3_MAX_TC; i++) {
2989                 struct hnae3_tc_info *tc_info = &kinfo->tc_info[i];
2990                 int j;
2991
2992                 if (!tc_info->enable)
2993                         continue;
2994
2995                 for (j = 0; j < tc_info->tqp_count; j++) {
2996                         struct hnae3_queue *q;
2997
2998                         q = priv->ring_data[tc_info->tqp_offset + j].ring->tqp;
2999                         hns3_write_dev(q, HNS3_RING_TX_RING_TC_REG,
3000                                        tc_info->tc);
3001                 }
3002         }
3003 }
3004
3005 int hns3_init_all_ring(struct hns3_nic_priv *priv)
3006 {
3007         struct hnae3_handle *h = priv->ae_handle;
3008         int ring_num = h->kinfo.num_tqps * 2;
3009         int i, j;
3010         int ret;
3011
3012         for (i = 0; i < ring_num; i++) {
3013                 ret = hns3_alloc_ring_memory(priv->ring_data[i].ring);
3014                 if (ret) {
3015                         dev_err(priv->dev,
3016                                 "Alloc ring memory fail! ret=%d\n", ret);
3017                         goto out_when_alloc_ring_memory;
3018                 }
3019
3020                 u64_stats_init(&priv->ring_data[i].ring->syncp);
3021         }
3022
3023         return 0;
3024
3025 out_when_alloc_ring_memory:
3026         for (j = i - 1; j >= 0; j--)
3027                 hns3_fini_ring(priv->ring_data[j].ring);
3028
3029         return -ENOMEM;
3030 }
3031
3032 int hns3_uninit_all_ring(struct hns3_nic_priv *priv)
3033 {
3034         struct hnae3_handle *h = priv->ae_handle;
3035         int i;
3036
3037         for (i = 0; i < h->kinfo.num_tqps; i++) {
3038                 if (h->ae_algo->ops->reset_queue)
3039                         h->ae_algo->ops->reset_queue(h, i);
3040
3041                 hns3_fini_ring(priv->ring_data[i].ring);
3042                 hns3_fini_ring(priv->ring_data[i + h->kinfo.num_tqps].ring);
3043         }
3044         return 0;
3045 }
3046
3047 /* Set mac addr if it is configured. or leave it to the AE driver */
3048 static void hns3_init_mac_addr(struct net_device *netdev, bool init)
3049 {
3050         struct hns3_nic_priv *priv = netdev_priv(netdev);
3051         struct hnae3_handle *h = priv->ae_handle;
3052         u8 mac_addr_temp[ETH_ALEN];
3053
3054         if (h->ae_algo->ops->get_mac_addr && init) {
3055                 h->ae_algo->ops->get_mac_addr(h, mac_addr_temp);
3056                 ether_addr_copy(netdev->dev_addr, mac_addr_temp);
3057         }
3058
3059         /* Check if the MAC address is valid, if not get a random one */
3060         if (!is_valid_ether_addr(netdev->dev_addr)) {
3061                 eth_hw_addr_random(netdev);
3062                 dev_warn(priv->dev, "using random MAC address %pM\n",
3063                          netdev->dev_addr);
3064         }
3065
3066         if (h->ae_algo->ops->set_mac_addr)
3067                 h->ae_algo->ops->set_mac_addr(h, netdev->dev_addr, true);
3068
3069 }
3070
3071 static void hns3_uninit_mac_addr(struct net_device *netdev)
3072 {
3073         struct hns3_nic_priv *priv = netdev_priv(netdev);
3074         struct hnae3_handle *h = priv->ae_handle;
3075
3076         if (h->ae_algo->ops->rm_uc_addr)
3077                 h->ae_algo->ops->rm_uc_addr(h, netdev->dev_addr);
3078 }
3079
3080 static void hns3_nic_set_priv_ops(struct net_device *netdev)
3081 {
3082         struct hns3_nic_priv *priv = netdev_priv(netdev);
3083
3084         if ((netdev->features & NETIF_F_TSO) ||
3085             (netdev->features & NETIF_F_TSO6)) {
3086                 priv->ops.fill_desc = hns3_fill_desc_tso;
3087                 priv->ops.maybe_stop_tx = hns3_nic_maybe_stop_tso;
3088         } else {
3089                 priv->ops.fill_desc = hns3_fill_desc;
3090                 priv->ops.maybe_stop_tx = hns3_nic_maybe_stop_tx;
3091         }
3092 }
3093
3094 static int hns3_client_init(struct hnae3_handle *handle)
3095 {
3096         struct pci_dev *pdev = handle->pdev;
3097         struct hns3_nic_priv *priv;
3098         struct net_device *netdev;
3099         int ret;
3100
3101         netdev = alloc_etherdev_mq(sizeof(struct hns3_nic_priv),
3102                                    hns3_get_max_available_channels(handle));
3103         if (!netdev)
3104                 return -ENOMEM;
3105
3106         priv = netdev_priv(netdev);
3107         priv->dev = &pdev->dev;
3108         priv->netdev = netdev;
3109         priv->ae_handle = handle;
3110         priv->ae_handle->last_reset_time = jiffies;
3111         priv->tx_timeout_count = 0;
3112
3113         handle->kinfo.netdev = netdev;
3114         handle->priv = (void *)priv;
3115
3116         hns3_init_mac_addr(netdev, true);
3117
3118         hns3_set_default_feature(netdev);
3119
3120         netdev->watchdog_timeo = HNS3_TX_TIMEOUT;
3121         netdev->priv_flags |= IFF_UNICAST_FLT;
3122         netdev->netdev_ops = &hns3_nic_netdev_ops;
3123         SET_NETDEV_DEV(netdev, &pdev->dev);
3124         hns3_ethtool_set_ops(netdev);
3125         hns3_nic_set_priv_ops(netdev);
3126
3127         /* Carrier off reporting is important to ethtool even BEFORE open */
3128         netif_carrier_off(netdev);
3129
3130         if (handle->flags & HNAE3_SUPPORT_VF)
3131                 handle->reset_level = HNAE3_VF_RESET;
3132         else
3133                 handle->reset_level = HNAE3_FUNC_RESET;
3134
3135         ret = hns3_get_ring_config(priv);
3136         if (ret) {
3137                 ret = -ENOMEM;
3138                 goto out_get_ring_cfg;
3139         }
3140
3141         ret = hns3_nic_alloc_vector_data(priv);
3142         if (ret) {
3143                 ret = -ENOMEM;
3144                 goto out_alloc_vector_data;
3145         }
3146
3147         ret = hns3_nic_init_vector_data(priv);
3148         if (ret) {
3149                 ret = -ENOMEM;
3150                 goto out_init_vector_data;
3151         }
3152
3153         ret = hns3_init_all_ring(priv);
3154         if (ret) {
3155                 ret = -ENOMEM;
3156                 goto out_init_ring_data;
3157         }
3158
3159         ret = register_netdev(netdev);
3160         if (ret) {
3161                 dev_err(priv->dev, "probe register netdev fail!\n");
3162                 goto out_reg_netdev_fail;
3163         }
3164
3165         hns3_dcbnl_setup(handle);
3166
3167         /* MTU range: (ETH_MIN_MTU(kernel default) - 9706) */
3168         netdev->max_mtu = HNS3_MAX_MTU - (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
3169
3170         return ret;
3171
3172 out_reg_netdev_fail:
3173 out_init_ring_data:
3174         (void)hns3_nic_uninit_vector_data(priv);
3175 out_init_vector_data:
3176         hns3_nic_dealloc_vector_data(priv);
3177 out_alloc_vector_data:
3178         priv->ring_data = NULL;
3179 out_get_ring_cfg:
3180         priv->ae_handle = NULL;
3181         free_netdev(netdev);
3182         return ret;
3183 }
3184
3185 static void hns3_client_uninit(struct hnae3_handle *handle, bool reset)
3186 {
3187         struct net_device *netdev = handle->kinfo.netdev;
3188         struct hns3_nic_priv *priv = netdev_priv(netdev);
3189         int ret;
3190
3191         if (netdev->reg_state != NETREG_UNINITIALIZED)
3192                 unregister_netdev(netdev);
3193
3194         hns3_force_clear_all_rx_ring(handle);
3195
3196         ret = hns3_nic_uninit_vector_data(priv);
3197         if (ret)
3198                 netdev_err(netdev, "uninit vector error\n");
3199
3200         ret = hns3_nic_dealloc_vector_data(priv);
3201         if (ret)
3202                 netdev_err(netdev, "dealloc vector error\n");
3203
3204         ret = hns3_uninit_all_ring(priv);
3205         if (ret)
3206                 netdev_err(netdev, "uninit ring error\n");
3207
3208         hns3_put_ring_config(priv);
3209
3210         priv->ring_data = NULL;
3211
3212         hns3_uninit_mac_addr(netdev);
3213
3214         free_netdev(netdev);
3215 }
3216
3217 static void hns3_link_status_change(struct hnae3_handle *handle, bool linkup)
3218 {
3219         struct net_device *netdev = handle->kinfo.netdev;
3220
3221         if (!netdev)
3222                 return;
3223
3224         if (linkup) {
3225                 netif_carrier_on(netdev);
3226                 netif_tx_wake_all_queues(netdev);
3227                 netdev_info(netdev, "link up\n");
3228         } else {
3229                 netif_carrier_off(netdev);
3230                 netif_tx_stop_all_queues(netdev);
3231                 netdev_info(netdev, "link down\n");
3232         }
3233 }
3234
3235 static int hns3_client_setup_tc(struct hnae3_handle *handle, u8 tc)
3236 {
3237         struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3238         struct net_device *ndev = kinfo->netdev;
3239         bool if_running;
3240         int ret;
3241
3242         if (tc > HNAE3_MAX_TC)
3243                 return -EINVAL;
3244
3245         if (!ndev)
3246                 return -ENODEV;
3247
3248         if_running = netif_running(ndev);
3249
3250         if (if_running) {
3251                 (void)hns3_nic_net_stop(ndev);
3252                 msleep(100);
3253         }
3254
3255         ret = (kinfo->dcb_ops && kinfo->dcb_ops->map_update) ?
3256                 kinfo->dcb_ops->map_update(handle) : -EOPNOTSUPP;
3257         if (ret)
3258                 goto err_out;
3259
3260         ret = hns3_nic_set_real_num_queue(ndev);
3261
3262 err_out:
3263         if (if_running)
3264                 (void)hns3_nic_net_open(ndev);
3265
3266         return ret;
3267 }
3268
3269 static void hns3_recover_hw_addr(struct net_device *ndev)
3270 {
3271         struct netdev_hw_addr_list *list;
3272         struct netdev_hw_addr *ha, *tmp;
3273
3274         /* go through and sync uc_addr entries to the device */
3275         list = &ndev->uc;
3276         list_for_each_entry_safe(ha, tmp, &list->list, list)
3277                 hns3_nic_uc_sync(ndev, ha->addr);
3278
3279         /* go through and sync mc_addr entries to the device */
3280         list = &ndev->mc;
3281         list_for_each_entry_safe(ha, tmp, &list->list, list)
3282                 hns3_nic_mc_sync(ndev, ha->addr);
3283 }
3284
3285 static void hns3_clear_tx_ring(struct hns3_enet_ring *ring)
3286 {
3287         while (ring->next_to_clean != ring->next_to_use) {
3288                 ring->desc[ring->next_to_clean].tx.bdtp_fe_sc_vld_ra_ri = 0;
3289                 hns3_free_buffer_detach(ring, ring->next_to_clean);
3290                 ring_ptr_move_fw(ring, next_to_clean);
3291         }
3292 }
3293
3294 static int hns3_clear_rx_ring(struct hns3_enet_ring *ring)
3295 {
3296         struct hns3_desc_cb res_cbs;
3297         int ret;
3298
3299         while (ring->next_to_use != ring->next_to_clean) {
3300                 /* When a buffer is not reused, it's memory has been
3301                  * freed in hns3_handle_rx_bd or will be freed by
3302                  * stack, so we need to replace the buffer here.
3303                  */
3304                 if (!ring->desc_cb[ring->next_to_use].reuse_flag) {
3305                         ret = hns3_reserve_buffer_map(ring, &res_cbs);
3306                         if (ret) {
3307                                 u64_stats_update_begin(&ring->syncp);
3308                                 ring->stats.sw_err_cnt++;
3309                                 u64_stats_update_end(&ring->syncp);
3310                                 /* if alloc new buffer fail, exit directly
3311                                  * and reclear in up flow.
3312                                  */
3313                                 netdev_warn(ring->tqp->handle->kinfo.netdev,
3314                                             "reserve buffer map failed, ret = %d\n",
3315                                             ret);
3316                                 return ret;
3317                         }
3318                         hns3_replace_buffer(ring, ring->next_to_use,
3319                                             &res_cbs);
3320                 }
3321                 ring_ptr_move_fw(ring, next_to_use);
3322         }
3323
3324         return 0;
3325 }
3326
3327 static void hns3_force_clear_rx_ring(struct hns3_enet_ring *ring)
3328 {
3329         while (ring->next_to_use != ring->next_to_clean) {
3330                 /* When a buffer is not reused, it's memory has been
3331                  * freed in hns3_handle_rx_bd or will be freed by
3332                  * stack, so only need to unmap the buffer here.
3333                  */
3334                 if (!ring->desc_cb[ring->next_to_use].reuse_flag) {
3335                         hns3_unmap_buffer(ring,
3336                                           &ring->desc_cb[ring->next_to_use]);
3337                         ring->desc_cb[ring->next_to_use].dma = 0;
3338                 }
3339
3340                 ring_ptr_move_fw(ring, next_to_use);
3341         }
3342 }
3343
3344 static void hns3_force_clear_all_rx_ring(struct hnae3_handle *h)
3345 {
3346         struct net_device *ndev = h->kinfo.netdev;
3347         struct hns3_nic_priv *priv = netdev_priv(ndev);
3348         struct hns3_enet_ring *ring;
3349         u32 i;
3350
3351         for (i = 0; i < h->kinfo.num_tqps; i++) {
3352                 ring = priv->ring_data[i + h->kinfo.num_tqps].ring;
3353                 hns3_force_clear_rx_ring(ring);
3354         }
3355 }
3356
3357 static void hns3_clear_all_ring(struct hnae3_handle *h)
3358 {
3359         struct net_device *ndev = h->kinfo.netdev;
3360         struct hns3_nic_priv *priv = netdev_priv(ndev);
3361         u32 i;
3362
3363         for (i = 0; i < h->kinfo.num_tqps; i++) {
3364                 struct netdev_queue *dev_queue;
3365                 struct hns3_enet_ring *ring;
3366
3367                 ring = priv->ring_data[i].ring;
3368                 hns3_clear_tx_ring(ring);
3369                 dev_queue = netdev_get_tx_queue(ndev,
3370                                                 priv->ring_data[i].queue_index);
3371                 netdev_tx_reset_queue(dev_queue);
3372
3373                 ring = priv->ring_data[i + h->kinfo.num_tqps].ring;
3374                 /* Continue to clear other rings even if clearing some
3375                  * rings failed.
3376                  */
3377                 hns3_clear_rx_ring(ring);
3378         }
3379 }
3380
3381 int hns3_nic_reset_all_ring(struct hnae3_handle *h)
3382 {
3383         struct net_device *ndev = h->kinfo.netdev;
3384         struct hns3_nic_priv *priv = netdev_priv(ndev);
3385         struct hns3_enet_ring *rx_ring;
3386         int i, j;
3387         int ret;
3388
3389         for (i = 0; i < h->kinfo.num_tqps; i++) {
3390                 h->ae_algo->ops->reset_queue(h, i);
3391                 hns3_init_ring_hw(priv->ring_data[i].ring);
3392
3393                 /* We need to clear tx ring here because self test will
3394                  * use the ring and will not run down before up
3395                  */
3396                 hns3_clear_tx_ring(priv->ring_data[i].ring);
3397                 priv->ring_data[i].ring->next_to_clean = 0;
3398                 priv->ring_data[i].ring->next_to_use = 0;
3399
3400                 rx_ring = priv->ring_data[i + h->kinfo.num_tqps].ring;
3401                 hns3_init_ring_hw(rx_ring);
3402                 ret = hns3_clear_rx_ring(rx_ring);
3403                 if (ret)
3404                         return ret;
3405
3406                 /* We can not know the hardware head and tail when this
3407                  * function is called in reset flow, so we reuse all desc.
3408                  */
3409                 for (j = 0; j < rx_ring->desc_num; j++)
3410                         hns3_reuse_buffer(rx_ring, j);
3411
3412                 rx_ring->next_to_clean = 0;
3413                 rx_ring->next_to_use = 0;
3414         }
3415
3416         hns3_init_tx_ring_tc(priv);
3417
3418         return 0;
3419 }
3420
3421 static int hns3_reset_notify_down_enet(struct hnae3_handle *handle)
3422 {
3423         struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3424         struct net_device *ndev = kinfo->netdev;
3425
3426         if (!netif_running(ndev))
3427                 return 0;
3428
3429         return hns3_nic_net_stop(ndev);
3430 }
3431
3432 static int hns3_reset_notify_up_enet(struct hnae3_handle *handle)
3433 {
3434         struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3435         int ret = 0;
3436
3437         if (netif_running(kinfo->netdev)) {
3438                 ret = hns3_nic_net_up(kinfo->netdev);
3439                 if (ret) {
3440                         netdev_err(kinfo->netdev,
3441                                    "hns net up fail, ret=%d!\n", ret);
3442                         return ret;
3443                 }
3444                 handle->last_reset_time = jiffies;
3445         }
3446
3447         return ret;
3448 }
3449
3450 static int hns3_reset_notify_init_enet(struct hnae3_handle *handle)
3451 {
3452         struct net_device *netdev = handle->kinfo.netdev;
3453         struct hns3_nic_priv *priv = netdev_priv(netdev);
3454         int ret;
3455
3456         hns3_init_mac_addr(netdev, false);
3457         hns3_nic_set_rx_mode(netdev);
3458         hns3_recover_hw_addr(netdev);
3459
3460         /* Hardware table is only clear when pf resets */
3461         if (!(handle->flags & HNAE3_SUPPORT_VF))
3462                 hns3_restore_vlan(netdev);
3463
3464         /* Carrier off reporting is important to ethtool even BEFORE open */
3465         netif_carrier_off(netdev);
3466
3467         ret = hns3_nic_init_vector_data(priv);
3468         if (ret)
3469                 return ret;
3470
3471         ret = hns3_init_all_ring(priv);
3472         if (ret) {
3473                 hns3_nic_uninit_vector_data(priv);
3474                 priv->ring_data = NULL;
3475         }
3476
3477         return ret;
3478 }
3479
3480 static int hns3_reset_notify_uninit_enet(struct hnae3_handle *handle)
3481 {
3482         struct net_device *netdev = handle->kinfo.netdev;
3483         struct hns3_nic_priv *priv = netdev_priv(netdev);
3484         int ret;
3485
3486         hns3_force_clear_all_rx_ring(handle);
3487
3488         ret = hns3_nic_uninit_vector_data(priv);
3489         if (ret) {
3490                 netdev_err(netdev, "uninit vector error\n");
3491                 return ret;
3492         }
3493
3494         ret = hns3_uninit_all_ring(priv);
3495         if (ret)
3496                 netdev_err(netdev, "uninit ring error\n");
3497
3498         hns3_uninit_mac_addr(netdev);
3499
3500         return ret;
3501 }
3502
3503 static int hns3_reset_notify(struct hnae3_handle *handle,
3504                              enum hnae3_reset_notify_type type)
3505 {
3506         int ret = 0;
3507
3508         switch (type) {
3509         case HNAE3_UP_CLIENT:
3510                 ret = hns3_reset_notify_up_enet(handle);
3511                 break;
3512         case HNAE3_DOWN_CLIENT:
3513                 ret = hns3_reset_notify_down_enet(handle);
3514                 break;
3515         case HNAE3_INIT_CLIENT:
3516                 ret = hns3_reset_notify_init_enet(handle);
3517                 break;
3518         case HNAE3_UNINIT_CLIENT:
3519                 ret = hns3_reset_notify_uninit_enet(handle);
3520                 break;
3521         default:
3522                 break;
3523         }
3524
3525         return ret;
3526 }
3527
3528 static void hns3_restore_coal(struct hns3_nic_priv *priv,
3529                               struct hns3_enet_coalesce *tx,
3530                               struct hns3_enet_coalesce *rx)
3531 {
3532         u16 vector_num = priv->vector_num;
3533         int i;
3534
3535         for (i = 0; i < vector_num; i++) {
3536                 memcpy(&priv->tqp_vector[i].tx_group.coal, tx,
3537                        sizeof(struct hns3_enet_coalesce));
3538                 memcpy(&priv->tqp_vector[i].rx_group.coal, rx,
3539                        sizeof(struct hns3_enet_coalesce));
3540         }
3541 }
3542
3543 static int hns3_modify_tqp_num(struct net_device *netdev, u16 new_tqp_num,
3544                                struct hns3_enet_coalesce *tx,
3545                                struct hns3_enet_coalesce *rx)
3546 {
3547         struct hns3_nic_priv *priv = netdev_priv(netdev);
3548         struct hnae3_handle *h = hns3_get_handle(netdev);
3549         int ret;
3550
3551         ret = h->ae_algo->ops->set_channels(h, new_tqp_num);
3552         if (ret)
3553                 return ret;
3554
3555         ret = hns3_get_ring_config(priv);
3556         if (ret)
3557                 return ret;
3558
3559         ret = hns3_nic_alloc_vector_data(priv);
3560         if (ret)
3561                 goto err_alloc_vector;
3562
3563         hns3_restore_coal(priv, tx, rx);
3564
3565         ret = hns3_nic_init_vector_data(priv);
3566         if (ret)
3567                 goto err_uninit_vector;
3568
3569         ret = hns3_init_all_ring(priv);
3570         if (ret)
3571                 goto err_put_ring;
3572
3573         return 0;
3574
3575 err_put_ring:
3576         hns3_put_ring_config(priv);
3577 err_uninit_vector:
3578         hns3_nic_uninit_vector_data(priv);
3579 err_alloc_vector:
3580         hns3_nic_dealloc_vector_data(priv);
3581         return ret;
3582 }
3583
3584 static int hns3_adjust_tqps_num(u8 num_tc, u32 new_tqp_num)
3585 {
3586         return (new_tqp_num / num_tc) * num_tc;
3587 }
3588
3589 int hns3_set_channels(struct net_device *netdev,
3590                       struct ethtool_channels *ch)
3591 {
3592         struct hns3_nic_priv *priv = netdev_priv(netdev);
3593         struct hnae3_handle *h = hns3_get_handle(netdev);
3594         struct hnae3_knic_private_info *kinfo = &h->kinfo;
3595         struct hns3_enet_coalesce tx_coal, rx_coal;
3596         bool if_running = netif_running(netdev);
3597         u32 new_tqp_num = ch->combined_count;
3598         u16 org_tqp_num;
3599         int ret;
3600
3601         if (ch->rx_count || ch->tx_count)
3602                 return -EINVAL;
3603
3604         if (new_tqp_num > hns3_get_max_available_channels(h) ||
3605             new_tqp_num < kinfo->num_tc) {
3606                 dev_err(&netdev->dev,
3607                         "Change tqps fail, the tqp range is from %d to %d",
3608                         kinfo->num_tc,
3609                         hns3_get_max_available_channels(h));
3610                 return -EINVAL;
3611         }
3612
3613         new_tqp_num = hns3_adjust_tqps_num(kinfo->num_tc, new_tqp_num);
3614         if (kinfo->num_tqps == new_tqp_num)
3615                 return 0;
3616
3617         if (if_running)
3618                 hns3_nic_net_stop(netdev);
3619
3620         ret = hns3_nic_uninit_vector_data(priv);
3621         if (ret) {
3622                 dev_err(&netdev->dev,
3623                         "Unbind vector with tqp fail, nothing is changed");
3624                 goto open_netdev;
3625         }
3626
3627         /* Changing the tqp num may also change the vector num,
3628          * ethtool only support setting and querying one coal
3629          * configuation for now, so save the vector 0' coal
3630          * configuation here in order to restore it.
3631          */
3632         memcpy(&tx_coal, &priv->tqp_vector[0].tx_group.coal,
3633                sizeof(struct hns3_enet_coalesce));
3634         memcpy(&rx_coal, &priv->tqp_vector[0].rx_group.coal,
3635                sizeof(struct hns3_enet_coalesce));
3636
3637         hns3_nic_dealloc_vector_data(priv);
3638
3639         hns3_uninit_all_ring(priv);
3640         hns3_put_ring_config(priv);
3641
3642         org_tqp_num = h->kinfo.num_tqps;
3643         ret = hns3_modify_tqp_num(netdev, new_tqp_num, &tx_coal, &rx_coal);
3644         if (ret) {
3645                 ret = hns3_modify_tqp_num(netdev, org_tqp_num,
3646                                           &tx_coal, &rx_coal);
3647                 if (ret) {
3648                         /* If revert to old tqp failed, fatal error occurred */
3649                         dev_err(&netdev->dev,
3650                                 "Revert to old tqp num fail, ret=%d", ret);
3651                         return ret;
3652                 }
3653                 dev_info(&netdev->dev,
3654                          "Change tqp num fail, Revert to old tqp num");
3655         }
3656
3657 open_netdev:
3658         if (if_running)
3659                 hns3_nic_net_open(netdev);
3660
3661         return ret;
3662 }
3663
3664 static const struct hnae3_client_ops client_ops = {
3665         .init_instance = hns3_client_init,
3666         .uninit_instance = hns3_client_uninit,
3667         .link_status_change = hns3_link_status_change,
3668         .setup_tc = hns3_client_setup_tc,
3669         .reset_notify = hns3_reset_notify,
3670 };
3671
3672 /* hns3_init_module - Driver registration routine
3673  * hns3_init_module is the first routine called when the driver is
3674  * loaded. All it does is register with the PCI subsystem.
3675  */
3676 static int __init hns3_init_module(void)
3677 {
3678         int ret;
3679
3680         pr_info("%s: %s - version\n", hns3_driver_name, hns3_driver_string);
3681         pr_info("%s: %s\n", hns3_driver_name, hns3_copyright);
3682
3683         client.type = HNAE3_CLIENT_KNIC;
3684         snprintf(client.name, HNAE3_CLIENT_NAME_LENGTH - 1, "%s",
3685                  hns3_driver_name);
3686
3687         client.ops = &client_ops;
3688
3689         INIT_LIST_HEAD(&client.node);
3690
3691         ret = hnae3_register_client(&client);
3692         if (ret)
3693                 return ret;
3694
3695         ret = pci_register_driver(&hns3_driver);
3696         if (ret)
3697                 hnae3_unregister_client(&client);
3698
3699         return ret;
3700 }
3701 module_init(hns3_init_module);
3702
3703 /* hns3_exit_module - Driver exit cleanup routine
3704  * hns3_exit_module is called just before the driver is removed
3705  * from memory.
3706  */
3707 static void __exit hns3_exit_module(void)
3708 {
3709         pci_unregister_driver(&hns3_driver);
3710         hnae3_unregister_client(&client);
3711 }
3712 module_exit(hns3_exit_module);
3713
3714 MODULE_DESCRIPTION("HNS3: Hisilicon Ethernet Driver");
3715 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
3716 MODULE_LICENSE("GPL");
3717 MODULE_ALIAS("pci:hns-nic");
3718 MODULE_VERSION(HNS3_MOD_VERSION);