d94cc8c6681f7291e9e6bbdc519c25f8eb1516a9
[linux-2.6-block.git] / drivers / net / ethernet / hisilicon / hns / hns_enet.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (c) 2014-2015 Hisilicon Limited.
4  */
5
6 #include <linux/clk.h>
7 #include <linux/cpumask.h>
8 #include <linux/etherdevice.h>
9 #include <linux/if_vlan.h>
10 #include <linux/interrupt.h>
11 #include <linux/io.h>
12 #include <linux/ip.h>
13 #include <linux/ipv6.h>
14 #include <linux/irq.h>
15 #include <linux/module.h>
16 #include <linux/phy.h>
17 #include <linux/platform_device.h>
18 #include <linux/skbuff.h>
19
20 #include "hnae.h"
21 #include "hns_enet.h"
22 #include "hns_dsaf_mac.h"
23
24 #define NIC_MAX_Q_PER_VF 16
25 #define HNS_NIC_TX_TIMEOUT (5 * HZ)
26
27 #define SERVICE_TIMER_HZ (1 * HZ)
28
29 #define RCB_IRQ_NOT_INITED 0
30 #define RCB_IRQ_INITED 1
31 #define HNS_BUFFER_SIZE_2048 2048
32
33 #define BD_MAX_SEND_SIZE 8191
34
35 static void fill_v2_desc_hw(struct hnae_ring *ring, void *priv, int size,
36                             int send_sz, dma_addr_t dma, int frag_end,
37                             int buf_num, enum hns_desc_type type, int mtu)
38 {
39         struct hnae_desc *desc = &ring->desc[ring->next_to_use];
40         struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
41         struct iphdr *iphdr;
42         struct ipv6hdr *ipv6hdr;
43         struct sk_buff *skb;
44         __be16 protocol;
45         u8 bn_pid = 0;
46         u8 rrcfv = 0;
47         u8 ip_offset = 0;
48         u8 tvsvsn = 0;
49         u16 mss = 0;
50         u8 l4_len = 0;
51         u16 paylen = 0;
52
53         desc_cb->priv = priv;
54         desc_cb->length = size;
55         desc_cb->dma = dma;
56         desc_cb->type = type;
57
58         desc->addr = cpu_to_le64(dma);
59         desc->tx.send_size = cpu_to_le16((u16)send_sz);
60
61         /* config bd buffer end */
62         hnae_set_bit(rrcfv, HNSV2_TXD_VLD_B, 1);
63         hnae_set_field(bn_pid, HNSV2_TXD_BUFNUM_M, 0, buf_num - 1);
64
65         /* fill port_id in the tx bd for sending management pkts */
66         hnae_set_field(bn_pid, HNSV2_TXD_PORTID_M,
67                        HNSV2_TXD_PORTID_S, ring->q->handle->dport_id);
68
69         if (type == DESC_TYPE_SKB) {
70                 skb = (struct sk_buff *)priv;
71
72                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
73                         skb_reset_mac_len(skb);
74                         protocol = skb->protocol;
75                         ip_offset = ETH_HLEN;
76
77                         if (protocol == htons(ETH_P_8021Q)) {
78                                 ip_offset += VLAN_HLEN;
79                                 protocol = vlan_get_protocol(skb);
80                                 skb->protocol = protocol;
81                         }
82
83                         if (skb->protocol == htons(ETH_P_IP)) {
84                                 iphdr = ip_hdr(skb);
85                                 hnae_set_bit(rrcfv, HNSV2_TXD_L3CS_B, 1);
86                                 hnae_set_bit(rrcfv, HNSV2_TXD_L4CS_B, 1);
87
88                                 /* check for tcp/udp header */
89                                 if (iphdr->protocol == IPPROTO_TCP &&
90                                     skb_is_gso(skb)) {
91                                         hnae_set_bit(tvsvsn,
92                                                      HNSV2_TXD_TSE_B, 1);
93                                         l4_len = tcp_hdrlen(skb);
94                                         mss = skb_shinfo(skb)->gso_size;
95                                         paylen = skb->len - skb_tcp_all_headers(skb);
96                                 }
97                         } else if (skb->protocol == htons(ETH_P_IPV6)) {
98                                 hnae_set_bit(tvsvsn, HNSV2_TXD_IPV6_B, 1);
99                                 ipv6hdr = ipv6_hdr(skb);
100                                 hnae_set_bit(rrcfv, HNSV2_TXD_L4CS_B, 1);
101
102                                 /* check for tcp/udp header */
103                                 if (ipv6hdr->nexthdr == IPPROTO_TCP &&
104                                     skb_is_gso(skb) && skb_is_gso_v6(skb)) {
105                                         hnae_set_bit(tvsvsn,
106                                                      HNSV2_TXD_TSE_B, 1);
107                                         l4_len = tcp_hdrlen(skb);
108                                         mss = skb_shinfo(skb)->gso_size;
109                                         paylen = skb->len - skb_tcp_all_headers(skb);
110                                 }
111                         }
112                         desc->tx.ip_offset = ip_offset;
113                         desc->tx.tse_vlan_snap_v6_sctp_nth = tvsvsn;
114                         desc->tx.mss = cpu_to_le16(mss);
115                         desc->tx.l4_len = l4_len;
116                         desc->tx.paylen = cpu_to_le16(paylen);
117                 }
118         }
119
120         hnae_set_bit(rrcfv, HNSV2_TXD_FE_B, frag_end);
121
122         desc->tx.bn_pid = bn_pid;
123         desc->tx.ra_ri_cs_fe_vld = rrcfv;
124
125         ring_ptr_move_fw(ring, next_to_use);
126 }
127
128 static void fill_v2_desc(struct hnae_ring *ring, void *priv,
129                          int size, dma_addr_t dma, int frag_end,
130                          int buf_num, enum hns_desc_type type, int mtu)
131 {
132         fill_v2_desc_hw(ring, priv, size, size, dma, frag_end,
133                         buf_num, type, mtu);
134 }
135
136 static const struct acpi_device_id hns_enet_acpi_match[] = {
137         { "HISI00C1", 0 },
138         { "HISI00C2", 0 },
139         { },
140 };
141 MODULE_DEVICE_TABLE(acpi, hns_enet_acpi_match);
142
143 static void fill_desc(struct hnae_ring *ring, void *priv,
144                       int size, dma_addr_t dma, int frag_end,
145                       int buf_num, enum hns_desc_type type, int mtu)
146 {
147         struct hnae_desc *desc = &ring->desc[ring->next_to_use];
148         struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
149         struct sk_buff *skb;
150         __be16 protocol;
151         u32 ip_offset;
152         u32 asid_bufnum_pid = 0;
153         u32 flag_ipoffset = 0;
154
155         desc_cb->priv = priv;
156         desc_cb->length = size;
157         desc_cb->dma = dma;
158         desc_cb->type = type;
159
160         desc->addr = cpu_to_le64(dma);
161         desc->tx.send_size = cpu_to_le16((u16)size);
162
163         /*config bd buffer end */
164         flag_ipoffset |= 1 << HNS_TXD_VLD_B;
165
166         asid_bufnum_pid |= buf_num << HNS_TXD_BUFNUM_S;
167
168         if (type == DESC_TYPE_SKB) {
169                 skb = (struct sk_buff *)priv;
170
171                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
172                         protocol = skb->protocol;
173                         ip_offset = ETH_HLEN;
174
175                         /*if it is a SW VLAN check the next protocol*/
176                         if (protocol == htons(ETH_P_8021Q)) {
177                                 ip_offset += VLAN_HLEN;
178                                 protocol = vlan_get_protocol(skb);
179                                 skb->protocol = protocol;
180                         }
181
182                         if (skb->protocol == htons(ETH_P_IP)) {
183                                 flag_ipoffset |= 1 << HNS_TXD_L3CS_B;
184                                 /* check for tcp/udp header */
185                                 flag_ipoffset |= 1 << HNS_TXD_L4CS_B;
186
187                         } else if (skb->protocol == htons(ETH_P_IPV6)) {
188                                 /* ipv6 has not l3 cs, check for L4 header */
189                                 flag_ipoffset |= 1 << HNS_TXD_L4CS_B;
190                         }
191
192                         flag_ipoffset |= ip_offset << HNS_TXD_IPOFFSET_S;
193                 }
194         }
195
196         flag_ipoffset |= frag_end << HNS_TXD_FE_B;
197
198         desc->tx.asid_bufnum_pid = cpu_to_le16(asid_bufnum_pid);
199         desc->tx.flag_ipoffset = cpu_to_le32(flag_ipoffset);
200
201         ring_ptr_move_fw(ring, next_to_use);
202 }
203
204 static void unfill_desc(struct hnae_ring *ring)
205 {
206         ring_ptr_move_bw(ring, next_to_use);
207 }
208
209 static int hns_nic_maybe_stop_tx(
210         struct sk_buff **out_skb, int *bnum, struct hnae_ring *ring)
211 {
212         struct sk_buff *skb = *out_skb;
213         struct sk_buff *new_skb = NULL;
214         int buf_num;
215
216         /* no. of segments (plus a header) */
217         buf_num = skb_shinfo(skb)->nr_frags + 1;
218
219         if (unlikely(buf_num > ring->max_desc_num_per_pkt)) {
220                 if (ring_space(ring) < 1)
221                         return -EBUSY;
222
223                 new_skb = skb_copy(skb, GFP_ATOMIC);
224                 if (!new_skb)
225                         return -ENOMEM;
226
227                 dev_kfree_skb_any(skb);
228                 *out_skb = new_skb;
229                 buf_num = 1;
230         } else if (buf_num > ring_space(ring)) {
231                 return -EBUSY;
232         }
233
234         *bnum = buf_num;
235         return 0;
236 }
237
238 static int hns_nic_maybe_stop_tso(
239         struct sk_buff **out_skb, int *bnum, struct hnae_ring *ring)
240 {
241         int i;
242         int size;
243         int buf_num;
244         int frag_num;
245         struct sk_buff *skb = *out_skb;
246         struct sk_buff *new_skb = NULL;
247         skb_frag_t *frag;
248
249         size = skb_headlen(skb);
250         buf_num = (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
251
252         frag_num = skb_shinfo(skb)->nr_frags;
253         for (i = 0; i < frag_num; i++) {
254                 frag = &skb_shinfo(skb)->frags[i];
255                 size = skb_frag_size(frag);
256                 buf_num += (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
257         }
258
259         if (unlikely(buf_num > ring->max_desc_num_per_pkt)) {
260                 buf_num = (skb->len + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
261                 if (ring_space(ring) < buf_num)
262                         return -EBUSY;
263                 /* manual split the send packet */
264                 new_skb = skb_copy(skb, GFP_ATOMIC);
265                 if (!new_skb)
266                         return -ENOMEM;
267                 dev_kfree_skb_any(skb);
268                 *out_skb = new_skb;
269
270         } else if (ring_space(ring) < buf_num) {
271                 return -EBUSY;
272         }
273
274         *bnum = buf_num;
275         return 0;
276 }
277
278 static void fill_tso_desc(struct hnae_ring *ring, void *priv,
279                           int size, dma_addr_t dma, int frag_end,
280                           int buf_num, enum hns_desc_type type, int mtu)
281 {
282         int frag_buf_num;
283         int sizeoflast;
284         int k;
285
286         frag_buf_num = (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
287         sizeoflast = size % BD_MAX_SEND_SIZE;
288         sizeoflast = sizeoflast ? sizeoflast : BD_MAX_SEND_SIZE;
289
290         /* when the frag size is bigger than hardware, split this frag */
291         for (k = 0; k < frag_buf_num; k++)
292                 fill_v2_desc_hw(ring, priv, k == 0 ? size : 0,
293                                 (k == frag_buf_num - 1) ?
294                                         sizeoflast : BD_MAX_SEND_SIZE,
295                                 dma + BD_MAX_SEND_SIZE * k,
296                                 frag_end && (k == frag_buf_num - 1) ? 1 : 0,
297                                 buf_num,
298                                 (type == DESC_TYPE_SKB && !k) ?
299                                         DESC_TYPE_SKB : DESC_TYPE_PAGE,
300                                 mtu);
301 }
302
303 netdev_tx_t hns_nic_net_xmit_hw(struct net_device *ndev,
304                                 struct sk_buff *skb,
305                                 struct hns_nic_ring_data *ring_data)
306 {
307         struct hns_nic_priv *priv = netdev_priv(ndev);
308         struct hnae_ring *ring = ring_data->ring;
309         struct device *dev = ring_to_dev(ring);
310         struct netdev_queue *dev_queue;
311         skb_frag_t *frag;
312         int buf_num;
313         int seg_num;
314         dma_addr_t dma;
315         int size, next_to_use;
316         int i;
317
318         switch (priv->ops.maybe_stop_tx(&skb, &buf_num, ring)) {
319         case -EBUSY:
320                 ring->stats.tx_busy++;
321                 goto out_net_tx_busy;
322         case -ENOMEM:
323                 ring->stats.sw_err_cnt++;
324                 netdev_err(ndev, "no memory to xmit!\n");
325                 goto out_err_tx_ok;
326         default:
327                 break;
328         }
329
330         /* no. of segments (plus a header) */
331         seg_num = skb_shinfo(skb)->nr_frags + 1;
332         next_to_use = ring->next_to_use;
333
334         /* fill the first part */
335         size = skb_headlen(skb);
336         dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE);
337         if (dma_mapping_error(dev, dma)) {
338                 netdev_err(ndev, "TX head DMA map failed\n");
339                 ring->stats.sw_err_cnt++;
340                 goto out_err_tx_ok;
341         }
342         priv->ops.fill_desc(ring, skb, size, dma, seg_num == 1 ? 1 : 0,
343                             buf_num, DESC_TYPE_SKB, ndev->mtu);
344
345         /* fill the fragments */
346         for (i = 1; i < seg_num; i++) {
347                 frag = &skb_shinfo(skb)->frags[i - 1];
348                 size = skb_frag_size(frag);
349                 dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE);
350                 if (dma_mapping_error(dev, dma)) {
351                         netdev_err(ndev, "TX frag(%d) DMA map failed\n", i);
352                         ring->stats.sw_err_cnt++;
353                         goto out_map_frag_fail;
354                 }
355                 priv->ops.fill_desc(ring, skb_frag_page(frag), size, dma,
356                                     seg_num - 1 == i ? 1 : 0, buf_num,
357                                     DESC_TYPE_PAGE, ndev->mtu);
358         }
359
360         /*complete translate all packets*/
361         dev_queue = netdev_get_tx_queue(ndev, skb->queue_mapping);
362         netdev_tx_sent_queue(dev_queue, skb->len);
363
364         netif_trans_update(ndev);
365         ndev->stats.tx_bytes += skb->len;
366         ndev->stats.tx_packets++;
367
368         wmb(); /* commit all data before submit */
369         assert(skb->queue_mapping < priv->ae_handle->q_num);
370         hnae_queue_xmit(priv->ae_handle->qs[skb->queue_mapping], buf_num);
371
372         return NETDEV_TX_OK;
373
374 out_map_frag_fail:
375
376         while (ring->next_to_use != next_to_use) {
377                 unfill_desc(ring);
378                 if (ring->next_to_use != next_to_use)
379                         dma_unmap_page(dev,
380                                        ring->desc_cb[ring->next_to_use].dma,
381                                        ring->desc_cb[ring->next_to_use].length,
382                                        DMA_TO_DEVICE);
383                 else
384                         dma_unmap_single(dev,
385                                          ring->desc_cb[next_to_use].dma,
386                                          ring->desc_cb[next_to_use].length,
387                                          DMA_TO_DEVICE);
388         }
389
390 out_err_tx_ok:
391
392         dev_kfree_skb_any(skb);
393         return NETDEV_TX_OK;
394
395 out_net_tx_busy:
396
397         netif_stop_subqueue(ndev, skb->queue_mapping);
398
399         /* Herbert's original patch had:
400          *  smp_mb__after_netif_stop_queue();
401          * but since that doesn't exist yet, just open code it.
402          */
403         smp_mb();
404         return NETDEV_TX_BUSY;
405 }
406
407 static void hns_nic_reuse_page(struct sk_buff *skb, int i,
408                                struct hnae_ring *ring, int pull_len,
409                                struct hnae_desc_cb *desc_cb)
410 {
411         struct hnae_desc *desc;
412         u32 truesize;
413         int size;
414         int last_offset;
415         bool twobufs;
416
417         twobufs = ((PAGE_SIZE < 8192) &&
418                 hnae_buf_size(ring) == HNS_BUFFER_SIZE_2048);
419
420         desc = &ring->desc[ring->next_to_clean];
421         size = le16_to_cpu(desc->rx.size);
422
423         if (twobufs) {
424                 truesize = hnae_buf_size(ring);
425         } else {
426                 truesize = ALIGN(size, L1_CACHE_BYTES);
427                 last_offset = hnae_page_size(ring) - hnae_buf_size(ring);
428         }
429
430         skb_add_rx_frag(skb, i, desc_cb->priv, desc_cb->page_offset + pull_len,
431                         size - pull_len, truesize);
432
433          /* avoid re-using remote pages,flag default unreuse */
434         if (unlikely(page_to_nid(desc_cb->priv) != numa_node_id()))
435                 return;
436
437         if (twobufs) {
438                 /* if we are only owner of page we can reuse it */
439                 if (likely(page_count(desc_cb->priv) == 1)) {
440                         /* flip page offset to other buffer */
441                         desc_cb->page_offset ^= truesize;
442
443                         desc_cb->reuse_flag = 1;
444                         /* bump ref count on page before it is given*/
445                         get_page(desc_cb->priv);
446                 }
447                 return;
448         }
449
450         /* move offset up to the next cache line */
451         desc_cb->page_offset += truesize;
452
453         if (desc_cb->page_offset <= last_offset) {
454                 desc_cb->reuse_flag = 1;
455                 /* bump ref count on page before it is given*/
456                 get_page(desc_cb->priv);
457         }
458 }
459
460 static void get_v2rx_desc_bnum(u32 bnum_flag, int *out_bnum)
461 {
462         *out_bnum = hnae_get_field(bnum_flag,
463                                    HNS_RXD_BUFNUM_M, HNS_RXD_BUFNUM_S) + 1;
464 }
465
466 static void get_rx_desc_bnum(u32 bnum_flag, int *out_bnum)
467 {
468         *out_bnum = hnae_get_field(bnum_flag,
469                                    HNS_RXD_BUFNUM_M, HNS_RXD_BUFNUM_S);
470 }
471
472 static void hns_nic_rx_checksum(struct hns_nic_ring_data *ring_data,
473                                 struct sk_buff *skb, u32 flag)
474 {
475         struct net_device *netdev = ring_data->napi.dev;
476         u32 l3id;
477         u32 l4id;
478
479         /* check if RX checksum offload is enabled */
480         if (unlikely(!(netdev->features & NETIF_F_RXCSUM)))
481                 return;
482
483         /* In hardware, we only support checksum for the following protocols:
484          * 1) IPv4,
485          * 2) TCP(over IPv4 or IPv6),
486          * 3) UDP(over IPv4 or IPv6),
487          * 4) SCTP(over IPv4 or IPv6)
488          * but we support many L3(IPv4, IPv6, MPLS, PPPoE etc) and L4(TCP,
489          * UDP, GRE, SCTP, IGMP, ICMP etc.) protocols.
490          *
491          * Hardware limitation:
492          * Our present hardware RX Descriptor lacks L3/L4 checksum "Status &
493          * Error" bit (which usually can be used to indicate whether checksum
494          * was calculated by the hardware and if there was any error encountered
495          * during checksum calculation).
496          *
497          * Software workaround:
498          * We do get info within the RX descriptor about the kind of L3/L4
499          * protocol coming in the packet and the error status. These errors
500          * might not just be checksum errors but could be related to version,
501          * length of IPv4, UDP, TCP etc.
502          * Because there is no-way of knowing if it is a L3/L4 error due to bad
503          * checksum or any other L3/L4 error, we will not (cannot) convey
504          * checksum status for such cases to upper stack and will not maintain
505          * the RX L3/L4 checksum counters as well.
506          */
507
508         l3id = hnae_get_field(flag, HNS_RXD_L3ID_M, HNS_RXD_L3ID_S);
509         l4id = hnae_get_field(flag, HNS_RXD_L4ID_M, HNS_RXD_L4ID_S);
510
511         /*  check L3 protocol for which checksum is supported */
512         if ((l3id != HNS_RX_FLAG_L3ID_IPV4) && (l3id != HNS_RX_FLAG_L3ID_IPV6))
513                 return;
514
515         /* check for any(not just checksum)flagged L3 protocol errors */
516         if (unlikely(hnae_get_bit(flag, HNS_RXD_L3E_B)))
517                 return;
518
519         /* we do not support checksum of fragmented packets */
520         if (unlikely(hnae_get_bit(flag, HNS_RXD_FRAG_B)))
521                 return;
522
523         /*  check L4 protocol for which checksum is supported */
524         if ((l4id != HNS_RX_FLAG_L4ID_TCP) &&
525             (l4id != HNS_RX_FLAG_L4ID_UDP) &&
526             (l4id != HNS_RX_FLAG_L4ID_SCTP))
527                 return;
528
529         /* check for any(not just checksum)flagged L4 protocol errors */
530         if (unlikely(hnae_get_bit(flag, HNS_RXD_L4E_B)))
531                 return;
532
533         /* now, this has to be a packet with valid RX checksum */
534         skb->ip_summed = CHECKSUM_UNNECESSARY;
535 }
536
537 static int hns_nic_poll_rx_skb(struct hns_nic_ring_data *ring_data,
538                                struct sk_buff **out_skb, int *out_bnum)
539 {
540         struct hnae_ring *ring = ring_data->ring;
541         struct net_device *ndev = ring_data->napi.dev;
542         struct hns_nic_priv *priv = netdev_priv(ndev);
543         struct sk_buff *skb;
544         struct hnae_desc *desc;
545         struct hnae_desc_cb *desc_cb;
546         unsigned char *va;
547         int bnum, length, i;
548         int pull_len;
549         u32 bnum_flag;
550
551         desc = &ring->desc[ring->next_to_clean];
552         desc_cb = &ring->desc_cb[ring->next_to_clean];
553
554         prefetch(desc);
555
556         va = (unsigned char *)desc_cb->buf + desc_cb->page_offset;
557
558         /* prefetch first cache line of first page */
559         net_prefetch(va);
560
561         skb = *out_skb = napi_alloc_skb(&ring_data->napi,
562                                         HNS_RX_HEAD_SIZE);
563         if (unlikely(!skb)) {
564                 ring->stats.sw_err_cnt++;
565                 return -ENOMEM;
566         }
567
568         prefetchw(skb->data);
569         length = le16_to_cpu(desc->rx.pkt_len);
570         bnum_flag = le32_to_cpu(desc->rx.ipoff_bnum_pid_flag);
571         priv->ops.get_rxd_bnum(bnum_flag, &bnum);
572         *out_bnum = bnum;
573
574         if (length <= HNS_RX_HEAD_SIZE) {
575                 memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long)));
576
577                 /* we can reuse buffer as-is, just make sure it is local */
578                 if (likely(page_to_nid(desc_cb->priv) == numa_node_id()))
579                         desc_cb->reuse_flag = 1;
580                 else /* this page cannot be reused so discard it */
581                         put_page(desc_cb->priv);
582
583                 ring_ptr_move_fw(ring, next_to_clean);
584
585                 if (unlikely(bnum != 1)) { /* check err*/
586                         *out_bnum = 1;
587                         goto out_bnum_err;
588                 }
589         } else {
590                 ring->stats.seg_pkt_cnt++;
591
592                 pull_len = eth_get_headlen(ndev, va, HNS_RX_HEAD_SIZE);
593                 memcpy(__skb_put(skb, pull_len), va,
594                        ALIGN(pull_len, sizeof(long)));
595
596                 hns_nic_reuse_page(skb, 0, ring, pull_len, desc_cb);
597                 ring_ptr_move_fw(ring, next_to_clean);
598
599                 if (unlikely(bnum >= (int)MAX_SKB_FRAGS)) { /* check err*/
600                         *out_bnum = 1;
601                         goto out_bnum_err;
602                 }
603                 for (i = 1; i < bnum; i++) {
604                         desc = &ring->desc[ring->next_to_clean];
605                         desc_cb = &ring->desc_cb[ring->next_to_clean];
606
607                         hns_nic_reuse_page(skb, i, ring, 0, desc_cb);
608                         ring_ptr_move_fw(ring, next_to_clean);
609                 }
610         }
611
612         /* check except process, free skb and jump the desc */
613         if (unlikely((!bnum) || (bnum > ring->max_desc_num_per_pkt))) {
614 out_bnum_err:
615                 *out_bnum = *out_bnum ? *out_bnum : 1; /* ntc moved,cannot 0*/
616                 netdev_err(ndev, "invalid bnum(%d,%d,%d,%d),%016llx,%016llx\n",
617                            bnum, ring->max_desc_num_per_pkt,
618                            length, (int)MAX_SKB_FRAGS,
619                            ((u64 *)desc)[0], ((u64 *)desc)[1]);
620                 ring->stats.err_bd_num++;
621                 dev_kfree_skb_any(skb);
622                 return -EDOM;
623         }
624
625         bnum_flag = le32_to_cpu(desc->rx.ipoff_bnum_pid_flag);
626
627         if (unlikely(!hnae_get_bit(bnum_flag, HNS_RXD_VLD_B))) {
628                 netdev_err(ndev, "no valid bd,%016llx,%016llx\n",
629                            ((u64 *)desc)[0], ((u64 *)desc)[1]);
630                 ring->stats.non_vld_descs++;
631                 dev_kfree_skb_any(skb);
632                 return -EINVAL;
633         }
634
635         if (unlikely((!desc->rx.pkt_len) ||
636                      hnae_get_bit(bnum_flag, HNS_RXD_DROP_B))) {
637                 ring->stats.err_pkt_len++;
638                 dev_kfree_skb_any(skb);
639                 return -EFAULT;
640         }
641
642         if (unlikely(hnae_get_bit(bnum_flag, HNS_RXD_L2E_B))) {
643                 ring->stats.l2_err++;
644                 dev_kfree_skb_any(skb);
645                 return -EFAULT;
646         }
647
648         ring->stats.rx_pkts++;
649         ring->stats.rx_bytes += skb->len;
650
651         /* indicate to upper stack if our hardware has already calculated
652          * the RX checksum
653          */
654         hns_nic_rx_checksum(ring_data, skb, bnum_flag);
655
656         return 0;
657 }
658
659 static void
660 hns_nic_alloc_rx_buffers(struct hns_nic_ring_data *ring_data, int cleand_count)
661 {
662         int i, ret;
663         struct hnae_desc_cb res_cbs;
664         struct hnae_desc_cb *desc_cb;
665         struct hnae_ring *ring = ring_data->ring;
666         struct net_device *ndev = ring_data->napi.dev;
667
668         for (i = 0; i < cleand_count; i++) {
669                 desc_cb = &ring->desc_cb[ring->next_to_use];
670                 if (desc_cb->reuse_flag) {
671                         ring->stats.reuse_pg_cnt++;
672                         hnae_reuse_buffer(ring, ring->next_to_use);
673                 } else {
674                         ret = hnae_reserve_buffer_map(ring, &res_cbs);
675                         if (ret) {
676                                 ring->stats.sw_err_cnt++;
677                                 netdev_err(ndev, "hnae reserve buffer map failed.\n");
678                                 break;
679                         }
680                         hnae_replace_buffer(ring, ring->next_to_use, &res_cbs);
681                 }
682
683                 ring_ptr_move_fw(ring, next_to_use);
684         }
685
686         wmb(); /* make all data has been write before submit */
687         writel_relaxed(i, ring->io_base + RCB_REG_HEAD);
688 }
689
690 /* return error number for error or number of desc left to take
691  */
692 static void hns_nic_rx_up_pro(struct hns_nic_ring_data *ring_data,
693                               struct sk_buff *skb)
694 {
695         struct net_device *ndev = ring_data->napi.dev;
696
697         skb->protocol = eth_type_trans(skb, ndev);
698         napi_gro_receive(&ring_data->napi, skb);
699 }
700
701 static int hns_desc_unused(struct hnae_ring *ring)
702 {
703         int ntc = ring->next_to_clean;
704         int ntu = ring->next_to_use;
705
706         return ((ntc >= ntu) ? 0 : ring->desc_num) + ntc - ntu;
707 }
708
709 #define HNS_LOWEST_LATENCY_RATE         27      /* 27 MB/s */
710 #define HNS_LOW_LATENCY_RATE                    80      /* 80 MB/s */
711
712 #define HNS_COAL_BDNUM                  3
713
714 static u32 hns_coal_rx_bdnum(struct hnae_ring *ring)
715 {
716         bool coal_enable = ring->q->handle->coal_adapt_en;
717
718         if (coal_enable &&
719             ring->coal_last_rx_bytes > HNS_LOWEST_LATENCY_RATE)
720                 return HNS_COAL_BDNUM;
721         else
722                 return 0;
723 }
724
725 static void hns_update_rx_rate(struct hnae_ring *ring)
726 {
727         bool coal_enable = ring->q->handle->coal_adapt_en;
728         u32 time_passed_ms;
729         u64 total_bytes;
730
731         if (!coal_enable ||
732             time_before(jiffies, ring->coal_last_jiffies + (HZ >> 4)))
733                 return;
734
735         /* ring->stats.rx_bytes overflowed */
736         if (ring->coal_last_rx_bytes > ring->stats.rx_bytes) {
737                 ring->coal_last_rx_bytes = ring->stats.rx_bytes;
738                 ring->coal_last_jiffies = jiffies;
739                 return;
740         }
741
742         total_bytes = ring->stats.rx_bytes - ring->coal_last_rx_bytes;
743         time_passed_ms = jiffies_to_msecs(jiffies - ring->coal_last_jiffies);
744         do_div(total_bytes, time_passed_ms);
745         ring->coal_rx_rate = total_bytes >> 10;
746
747         ring->coal_last_rx_bytes = ring->stats.rx_bytes;
748         ring->coal_last_jiffies = jiffies;
749 }
750
751 /**
752  * smooth_alg - smoothing algrithm for adjusting coalesce parameter
753  * @new_param: new value
754  * @old_param: old value
755  **/
756 static u32 smooth_alg(u32 new_param, u32 old_param)
757 {
758         u32 gap = (new_param > old_param) ? new_param - old_param
759                                           : old_param - new_param;
760
761         if (gap > 8)
762                 gap >>= 3;
763
764         if (new_param > old_param)
765                 return old_param + gap;
766         else
767                 return old_param - gap;
768 }
769
770 /**
771  * hns_nic_adpt_coalesce - self adapte coalesce according to rx rate
772  * @ring_data: pointer to hns_nic_ring_data
773  **/
774 static void hns_nic_adpt_coalesce(struct hns_nic_ring_data *ring_data)
775 {
776         struct hnae_ring *ring = ring_data->ring;
777         struct hnae_handle *handle = ring->q->handle;
778         u32 new_coal_param, old_coal_param = ring->coal_param;
779
780         if (ring->coal_rx_rate < HNS_LOWEST_LATENCY_RATE)
781                 new_coal_param = HNAE_LOWEST_LATENCY_COAL_PARAM;
782         else if (ring->coal_rx_rate < HNS_LOW_LATENCY_RATE)
783                 new_coal_param = HNAE_LOW_LATENCY_COAL_PARAM;
784         else
785                 new_coal_param = HNAE_BULK_LATENCY_COAL_PARAM;
786
787         if (new_coal_param == old_coal_param &&
788             new_coal_param == handle->coal_param)
789                 return;
790
791         new_coal_param = smooth_alg(new_coal_param, old_coal_param);
792         ring->coal_param = new_coal_param;
793
794         /**
795          * Because all ring in one port has one coalesce param, when one ring
796          * calculate its own coalesce param, it cannot write to hardware at
797          * once. There are three conditions as follows:
798          *       1. current ring's coalesce param is larger than the hardware.
799          *       2. or ring which adapt last time can change again.
800          *       3. timeout.
801          */
802         if (new_coal_param == handle->coal_param) {
803                 handle->coal_last_jiffies = jiffies;
804                 handle->coal_ring_idx = ring_data->queue_index;
805         } else if (new_coal_param > handle->coal_param ||
806                    handle->coal_ring_idx == ring_data->queue_index ||
807                    time_after(jiffies, handle->coal_last_jiffies + (HZ >> 4))) {
808                 handle->dev->ops->set_coalesce_usecs(handle,
809                                         new_coal_param);
810                 handle->dev->ops->set_coalesce_frames(handle,
811                                         1, new_coal_param);
812                 handle->coal_param = new_coal_param;
813                 handle->coal_ring_idx = ring_data->queue_index;
814                 handle->coal_last_jiffies = jiffies;
815         }
816 }
817
818 static int hns_nic_rx_poll_one(struct hns_nic_ring_data *ring_data,
819                                int budget, void *v)
820 {
821         struct hnae_ring *ring = ring_data->ring;
822         struct sk_buff *skb;
823         int num, bnum;
824 #define RCB_NOF_ALLOC_RX_BUFF_ONCE 16
825         int recv_pkts, recv_bds, clean_count, err;
826         int unused_count = hns_desc_unused(ring);
827
828         num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
829         rmb(); /* make sure num taken effect before the other data is touched */
830
831         recv_pkts = 0, recv_bds = 0, clean_count = 0;
832         num -= unused_count;
833
834         while (recv_pkts < budget && recv_bds < num) {
835                 /* reuse or realloc buffers */
836                 if (clean_count + unused_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) {
837                         hns_nic_alloc_rx_buffers(ring_data,
838                                                  clean_count + unused_count);
839                         clean_count = 0;
840                         unused_count = hns_desc_unused(ring);
841                 }
842
843                 /* poll one pkt */
844                 err = hns_nic_poll_rx_skb(ring_data, &skb, &bnum);
845                 if (unlikely(!skb)) /* this fault cannot be repaired */
846                         goto out;
847
848                 recv_bds += bnum;
849                 clean_count += bnum;
850                 if (unlikely(err)) {  /* do jump the err */
851                         recv_pkts++;
852                         continue;
853                 }
854
855                 /* do update ip stack process*/
856                 ((void (*)(struct hns_nic_ring_data *, struct sk_buff *))v)(
857                                                         ring_data, skb);
858                 recv_pkts++;
859         }
860
861 out:
862         /* make all data has been write before submit */
863         if (clean_count + unused_count > 0)
864                 hns_nic_alloc_rx_buffers(ring_data,
865                                          clean_count + unused_count);
866
867         return recv_pkts;
868 }
869
870 static bool hns_nic_rx_fini_pro(struct hns_nic_ring_data *ring_data)
871 {
872         struct hnae_ring *ring = ring_data->ring;
873         int num;
874         bool rx_stopped;
875
876         hns_update_rx_rate(ring);
877
878         /* for hardware bug fixed */
879         ring_data->ring->q->handle->dev->ops->toggle_ring_irq(ring, 0);
880         num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
881
882         if (num <= hns_coal_rx_bdnum(ring)) {
883                 if (ring->q->handle->coal_adapt_en)
884                         hns_nic_adpt_coalesce(ring_data);
885
886                 rx_stopped = true;
887         } else {
888                 ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
889                         ring_data->ring, 1);
890
891                 rx_stopped = false;
892         }
893
894         return rx_stopped;
895 }
896
897 static bool hns_nic_rx_fini_pro_v2(struct hns_nic_ring_data *ring_data)
898 {
899         struct hnae_ring *ring = ring_data->ring;
900         int num;
901
902         hns_update_rx_rate(ring);
903         num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
904
905         if (num <= hns_coal_rx_bdnum(ring)) {
906                 if (ring->q->handle->coal_adapt_en)
907                         hns_nic_adpt_coalesce(ring_data);
908
909                 return true;
910         }
911
912         return false;
913 }
914
915 static inline void hns_nic_reclaim_one_desc(struct hnae_ring *ring,
916                                             int *bytes, int *pkts)
917 {
918         struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean];
919
920         (*pkts) += (desc_cb->type == DESC_TYPE_SKB);
921         (*bytes) += desc_cb->length;
922         /* desc_cb will be cleaned, after hnae_free_buffer_detach*/
923         hnae_free_buffer_detach(ring, ring->next_to_clean);
924
925         ring_ptr_move_fw(ring, next_to_clean);
926 }
927
928 static int is_valid_clean_head(struct hnae_ring *ring, int h)
929 {
930         int u = ring->next_to_use;
931         int c = ring->next_to_clean;
932
933         if (unlikely(h > ring->desc_num))
934                 return 0;
935
936         assert(u > 0 && u < ring->desc_num);
937         assert(c > 0 && c < ring->desc_num);
938         assert(u != c && h != c); /* must be checked before call this func */
939
940         return u > c ? (h > c && h <= u) : (h > c || h <= u);
941 }
942
943 /* reclaim all desc in one budget
944  * return error or number of desc left
945  */
946 static int hns_nic_tx_poll_one(struct hns_nic_ring_data *ring_data,
947                                int budget, void *v)
948 {
949         struct hnae_ring *ring = ring_data->ring;
950         struct net_device *ndev = ring_data->napi.dev;
951         struct netdev_queue *dev_queue;
952         struct hns_nic_priv *priv = netdev_priv(ndev);
953         int head;
954         int bytes, pkts;
955
956         head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
957         rmb(); /* make sure head is ready before touch any data */
958
959         if (is_ring_empty(ring) || head == ring->next_to_clean)
960                 return 0; /* no data to poll */
961
962         if (!is_valid_clean_head(ring, head)) {
963                 netdev_err(ndev, "wrong head (%d, %d-%d)\n", head,
964                            ring->next_to_use, ring->next_to_clean);
965                 ring->stats.io_err_cnt++;
966                 return -EIO;
967         }
968
969         bytes = 0;
970         pkts = 0;
971         while (head != ring->next_to_clean) {
972                 hns_nic_reclaim_one_desc(ring, &bytes, &pkts);
973                 /* issue prefetch for next Tx descriptor */
974                 prefetch(&ring->desc_cb[ring->next_to_clean]);
975         }
976         /* update tx ring statistics. */
977         ring->stats.tx_pkts += pkts;
978         ring->stats.tx_bytes += bytes;
979
980         dev_queue = netdev_get_tx_queue(ndev, ring_data->queue_index);
981         netdev_tx_completed_queue(dev_queue, pkts, bytes);
982
983         if (unlikely(priv->link && !netif_carrier_ok(ndev)))
984                 netif_carrier_on(ndev);
985
986         if (unlikely(pkts && netif_carrier_ok(ndev) &&
987                      (ring_space(ring) >= ring->max_desc_num_per_pkt * 2))) {
988                 /* Make sure that anybody stopping the queue after this
989                  * sees the new next_to_clean.
990                  */
991                 smp_mb();
992                 if (netif_tx_queue_stopped(dev_queue) &&
993                     !test_bit(NIC_STATE_DOWN, &priv->state)) {
994                         netif_tx_wake_queue(dev_queue);
995                         ring->stats.restart_queue++;
996                 }
997         }
998         return 0;
999 }
1000
1001 static bool hns_nic_tx_fini_pro(struct hns_nic_ring_data *ring_data)
1002 {
1003         struct hnae_ring *ring = ring_data->ring;
1004         int head;
1005
1006         ring_data->ring->q->handle->dev->ops->toggle_ring_irq(ring, 0);
1007
1008         head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
1009
1010         if (head != ring->next_to_clean) {
1011                 ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
1012                         ring_data->ring, 1);
1013
1014                 return false;
1015         } else {
1016                 return true;
1017         }
1018 }
1019
1020 static bool hns_nic_tx_fini_pro_v2(struct hns_nic_ring_data *ring_data)
1021 {
1022         struct hnae_ring *ring = ring_data->ring;
1023         int head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
1024
1025         if (head == ring->next_to_clean)
1026                 return true;
1027         else
1028                 return false;
1029 }
1030
1031 static void hns_nic_tx_clr_all_bufs(struct hns_nic_ring_data *ring_data)
1032 {
1033         struct hnae_ring *ring = ring_data->ring;
1034         struct net_device *ndev = ring_data->napi.dev;
1035         struct netdev_queue *dev_queue;
1036         int head;
1037         int bytes, pkts;
1038
1039         head = ring->next_to_use; /* ntu :soft setted ring position*/
1040         bytes = 0;
1041         pkts = 0;
1042         while (head != ring->next_to_clean)
1043                 hns_nic_reclaim_one_desc(ring, &bytes, &pkts);
1044
1045         dev_queue = netdev_get_tx_queue(ndev, ring_data->queue_index);
1046         netdev_tx_reset_queue(dev_queue);
1047 }
1048
1049 static int hns_nic_common_poll(struct napi_struct *napi, int budget)
1050 {
1051         int clean_complete = 0;
1052         struct hns_nic_ring_data *ring_data =
1053                 container_of(napi, struct hns_nic_ring_data, napi);
1054         struct hnae_ring *ring = ring_data->ring;
1055
1056         clean_complete += ring_data->poll_one(
1057                                 ring_data, budget - clean_complete,
1058                                 ring_data->ex_process);
1059
1060         if (clean_complete < budget) {
1061                 if (ring_data->fini_process(ring_data)) {
1062                         napi_complete(napi);
1063                         ring->q->handle->dev->ops->toggle_ring_irq(ring, 0);
1064                 } else {
1065                         return budget;
1066                 }
1067         }
1068
1069         return clean_complete;
1070 }
1071
1072 static irqreturn_t hns_irq_handle(int irq, void *dev)
1073 {
1074         struct hns_nic_ring_data *ring_data = (struct hns_nic_ring_data *)dev;
1075
1076         ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
1077                 ring_data->ring, 1);
1078         napi_schedule(&ring_data->napi);
1079
1080         return IRQ_HANDLED;
1081 }
1082
1083 /**
1084  *hns_nic_adjust_link - adjust net work mode by the phy stat or new param
1085  *@ndev: net device
1086  */
1087 static void hns_nic_adjust_link(struct net_device *ndev)
1088 {
1089         struct hns_nic_priv *priv = netdev_priv(ndev);
1090         struct hnae_handle *h = priv->ae_handle;
1091         int state = 1;
1092
1093         /* If there is no phy, do not need adjust link */
1094         if (ndev->phydev) {
1095                 /* When phy link down, do nothing */
1096                 if (ndev->phydev->link == 0)
1097                         return;
1098
1099                 if (h->dev->ops->need_adjust_link(h, ndev->phydev->speed,
1100                                                   ndev->phydev->duplex)) {
1101                         /* because Hi161X chip don't support to change gmac
1102                          * speed and duplex with traffic. Delay 200ms to
1103                          * make sure there is no more data in chip FIFO.
1104                          */
1105                         netif_carrier_off(ndev);
1106                         msleep(200);
1107                         h->dev->ops->adjust_link(h, ndev->phydev->speed,
1108                                                  ndev->phydev->duplex);
1109                         netif_carrier_on(ndev);
1110                 }
1111         }
1112
1113         state = state && h->dev->ops->get_status(h);
1114
1115         if (state != priv->link) {
1116                 if (state) {
1117                         netif_carrier_on(ndev);
1118                         netif_tx_wake_all_queues(ndev);
1119                         netdev_info(ndev, "link up\n");
1120                 } else {
1121                         netif_carrier_off(ndev);
1122                         netdev_info(ndev, "link down\n");
1123                 }
1124                 priv->link = state;
1125         }
1126 }
1127
1128 /**
1129  *hns_nic_init_phy - init phy
1130  *@ndev: net device
1131  *@h: ae handle
1132  * Return 0 on success, negative on failure
1133  */
1134 int hns_nic_init_phy(struct net_device *ndev, struct hnae_handle *h)
1135 {
1136         __ETHTOOL_DECLARE_LINK_MODE_MASK(supported) = { 0, };
1137         struct phy_device *phy_dev = h->phy_dev;
1138         int ret;
1139
1140         if (!h->phy_dev)
1141                 return 0;
1142
1143         ethtool_convert_legacy_u32_to_link_mode(supported, h->if_support);
1144         linkmode_and(phy_dev->supported, phy_dev->supported, supported);
1145         linkmode_copy(phy_dev->advertising, phy_dev->supported);
1146
1147         if (h->phy_if == PHY_INTERFACE_MODE_XGMII)
1148                 phy_dev->autoneg = false;
1149
1150         if (h->phy_if != PHY_INTERFACE_MODE_XGMII) {
1151                 phy_dev->dev_flags = 0;
1152
1153                 ret = phy_connect_direct(ndev, phy_dev, hns_nic_adjust_link,
1154                                          h->phy_if);
1155         } else {
1156                 ret = phy_attach_direct(ndev, phy_dev, 0, h->phy_if);
1157         }
1158         if (unlikely(ret))
1159                 return -ENODEV;
1160
1161         phy_attached_info(phy_dev);
1162
1163         return 0;
1164 }
1165
1166 static int hns_nic_ring_open(struct net_device *netdev, int idx)
1167 {
1168         struct hns_nic_priv *priv = netdev_priv(netdev);
1169         struct hnae_handle *h = priv->ae_handle;
1170
1171         napi_enable(&priv->ring_data[idx].napi);
1172
1173         enable_irq(priv->ring_data[idx].ring->irq);
1174         h->dev->ops->toggle_ring_irq(priv->ring_data[idx].ring, 0);
1175
1176         return 0;
1177 }
1178
1179 static int hns_nic_net_set_mac_address(struct net_device *ndev, void *p)
1180 {
1181         struct hns_nic_priv *priv = netdev_priv(ndev);
1182         struct hnae_handle *h = priv->ae_handle;
1183         struct sockaddr *mac_addr = p;
1184         int ret;
1185
1186         if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data))
1187                 return -EADDRNOTAVAIL;
1188
1189         ret = h->dev->ops->set_mac_addr(h, mac_addr->sa_data);
1190         if (ret) {
1191                 netdev_err(ndev, "set_mac_address fail, ret=%d!\n", ret);
1192                 return ret;
1193         }
1194
1195         eth_hw_addr_set(ndev, mac_addr->sa_data);
1196
1197         return 0;
1198 }
1199
1200 static void hns_nic_update_stats(struct net_device *netdev)
1201 {
1202         struct hns_nic_priv *priv = netdev_priv(netdev);
1203         struct hnae_handle *h = priv->ae_handle;
1204
1205         h->dev->ops->update_stats(h, &netdev->stats);
1206 }
1207
1208 /* set mac addr if it is configed. or leave it to the AE driver */
1209 static void hns_init_mac_addr(struct net_device *ndev)
1210 {
1211         struct hns_nic_priv *priv = netdev_priv(ndev);
1212
1213         if (device_get_ethdev_address(priv->dev, ndev)) {
1214                 eth_hw_addr_random(ndev);
1215                 dev_warn(priv->dev, "No valid mac, use random mac %pM",
1216                          ndev->dev_addr);
1217         }
1218 }
1219
1220 static void hns_nic_ring_close(struct net_device *netdev, int idx)
1221 {
1222         struct hns_nic_priv *priv = netdev_priv(netdev);
1223         struct hnae_handle *h = priv->ae_handle;
1224
1225         h->dev->ops->toggle_ring_irq(priv->ring_data[idx].ring, 1);
1226         disable_irq(priv->ring_data[idx].ring->irq);
1227
1228         napi_disable(&priv->ring_data[idx].napi);
1229 }
1230
1231 static int hns_nic_init_affinity_mask(int q_num, int ring_idx,
1232                                       struct hnae_ring *ring, cpumask_t *mask)
1233 {
1234         int cpu;
1235
1236         /* Different irq balance between 16core and 32core.
1237          * The cpu mask set by ring index according to the ring flag
1238          * which indicate the ring is tx or rx.
1239          */
1240         if (q_num == num_possible_cpus()) {
1241                 if (is_tx_ring(ring))
1242                         cpu = ring_idx;
1243                 else
1244                         cpu = ring_idx - q_num;
1245         } else {
1246                 if (is_tx_ring(ring))
1247                         cpu = ring_idx * 2;
1248                 else
1249                         cpu = (ring_idx - q_num) * 2 + 1;
1250         }
1251
1252         cpumask_clear(mask);
1253         cpumask_set_cpu(cpu, mask);
1254
1255         return cpu;
1256 }
1257
1258 static void hns_nic_free_irq(int q_num, struct hns_nic_priv *priv)
1259 {
1260         int i;
1261
1262         for (i = 0; i < q_num * 2; i++) {
1263                 if (priv->ring_data[i].ring->irq_init_flag == RCB_IRQ_INITED) {
1264                         irq_set_affinity_hint(priv->ring_data[i].ring->irq,
1265                                               NULL);
1266                         free_irq(priv->ring_data[i].ring->irq,
1267                                  &priv->ring_data[i]);
1268                         priv->ring_data[i].ring->irq_init_flag =
1269                                 RCB_IRQ_NOT_INITED;
1270                 }
1271         }
1272 }
1273
1274 static int hns_nic_init_irq(struct hns_nic_priv *priv)
1275 {
1276         struct hnae_handle *h = priv->ae_handle;
1277         struct hns_nic_ring_data *rd;
1278         int i;
1279         int ret;
1280         int cpu;
1281
1282         for (i = 0; i < h->q_num * 2; i++) {
1283                 rd = &priv->ring_data[i];
1284
1285                 if (rd->ring->irq_init_flag == RCB_IRQ_INITED)
1286                         break;
1287
1288                 snprintf(rd->ring->ring_name, RCB_RING_NAME_LEN,
1289                          "%s-%s%d", priv->netdev->name,
1290                          (is_tx_ring(rd->ring) ? "tx" : "rx"), rd->queue_index);
1291
1292                 rd->ring->ring_name[RCB_RING_NAME_LEN - 1] = '\0';
1293
1294                 irq_set_status_flags(rd->ring->irq, IRQ_NOAUTOEN);
1295                 ret = request_irq(rd->ring->irq,
1296                                   hns_irq_handle, 0, rd->ring->ring_name, rd);
1297                 if (ret) {
1298                         netdev_err(priv->netdev, "request irq(%d) fail\n",
1299                                    rd->ring->irq);
1300                         goto out_free_irq;
1301                 }
1302
1303                 cpu = hns_nic_init_affinity_mask(h->q_num, i,
1304                                                  rd->ring, &rd->mask);
1305
1306                 if (cpu_online(cpu))
1307                         irq_set_affinity_hint(rd->ring->irq,
1308                                               &rd->mask);
1309
1310                 rd->ring->irq_init_flag = RCB_IRQ_INITED;
1311         }
1312
1313         return 0;
1314
1315 out_free_irq:
1316         hns_nic_free_irq(h->q_num, priv);
1317         return ret;
1318 }
1319
1320 static int hns_nic_net_up(struct net_device *ndev)
1321 {
1322         struct hns_nic_priv *priv = netdev_priv(ndev);
1323         struct hnae_handle *h = priv->ae_handle;
1324         int i, j;
1325         int ret;
1326
1327         if (!test_bit(NIC_STATE_DOWN, &priv->state))
1328                 return 0;
1329
1330         ret = hns_nic_init_irq(priv);
1331         if (ret != 0) {
1332                 netdev_err(ndev, "hns init irq failed! ret=%d\n", ret);
1333                 return ret;
1334         }
1335
1336         for (i = 0; i < h->q_num * 2; i++) {
1337                 ret = hns_nic_ring_open(ndev, i);
1338                 if (ret)
1339                         goto out_has_some_queues;
1340         }
1341
1342         ret = h->dev->ops->set_mac_addr(h, ndev->dev_addr);
1343         if (ret)
1344                 goto out_set_mac_addr_err;
1345
1346         ret = h->dev->ops->start ? h->dev->ops->start(h) : 0;
1347         if (ret)
1348                 goto out_start_err;
1349
1350         if (ndev->phydev)
1351                 phy_start(ndev->phydev);
1352
1353         clear_bit(NIC_STATE_DOWN, &priv->state);
1354         (void)mod_timer(&priv->service_timer, jiffies + SERVICE_TIMER_HZ);
1355
1356         return 0;
1357
1358 out_start_err:
1359         netif_stop_queue(ndev);
1360 out_set_mac_addr_err:
1361 out_has_some_queues:
1362         for (j = i - 1; j >= 0; j--)
1363                 hns_nic_ring_close(ndev, j);
1364
1365         hns_nic_free_irq(h->q_num, priv);
1366         set_bit(NIC_STATE_DOWN, &priv->state);
1367
1368         return ret;
1369 }
1370
1371 static void hns_nic_net_down(struct net_device *ndev)
1372 {
1373         int i;
1374         struct hnae_ae_ops *ops;
1375         struct hns_nic_priv *priv = netdev_priv(ndev);
1376
1377         if (test_and_set_bit(NIC_STATE_DOWN, &priv->state))
1378                 return;
1379
1380         (void)del_timer_sync(&priv->service_timer);
1381         netif_tx_stop_all_queues(ndev);
1382         netif_carrier_off(ndev);
1383         netif_tx_disable(ndev);
1384         priv->link = 0;
1385
1386         if (ndev->phydev)
1387                 phy_stop(ndev->phydev);
1388
1389         ops = priv->ae_handle->dev->ops;
1390
1391         if (ops->stop)
1392                 ops->stop(priv->ae_handle);
1393
1394         netif_tx_stop_all_queues(ndev);
1395
1396         for (i = priv->ae_handle->q_num - 1; i >= 0; i--) {
1397                 hns_nic_ring_close(ndev, i);
1398                 hns_nic_ring_close(ndev, i + priv->ae_handle->q_num);
1399
1400                 /* clean tx buffers*/
1401                 hns_nic_tx_clr_all_bufs(priv->ring_data + i);
1402         }
1403 }
1404
1405 void hns_nic_net_reset(struct net_device *ndev)
1406 {
1407         struct hns_nic_priv *priv = netdev_priv(ndev);
1408         struct hnae_handle *handle = priv->ae_handle;
1409
1410         while (test_and_set_bit(NIC_STATE_RESETTING, &priv->state))
1411                 usleep_range(1000, 2000);
1412
1413         (void)hnae_reinit_handle(handle);
1414
1415         clear_bit(NIC_STATE_RESETTING, &priv->state);
1416 }
1417
1418 void hns_nic_net_reinit(struct net_device *netdev)
1419 {
1420         struct hns_nic_priv *priv = netdev_priv(netdev);
1421         enum hnae_port_type type = priv->ae_handle->port_type;
1422
1423         netif_trans_update(priv->netdev);
1424         while (test_and_set_bit(NIC_STATE_REINITING, &priv->state))
1425                 usleep_range(1000, 2000);
1426
1427         hns_nic_net_down(netdev);
1428
1429         /* Only do hns_nic_net_reset in debug mode
1430          * because of hardware limitation.
1431          */
1432         if (type == HNAE_PORT_DEBUG)
1433                 hns_nic_net_reset(netdev);
1434
1435         (void)hns_nic_net_up(netdev);
1436         clear_bit(NIC_STATE_REINITING, &priv->state);
1437 }
1438
1439 static int hns_nic_net_open(struct net_device *ndev)
1440 {
1441         struct hns_nic_priv *priv = netdev_priv(ndev);
1442         struct hnae_handle *h = priv->ae_handle;
1443         int ret;
1444
1445         if (test_bit(NIC_STATE_TESTING, &priv->state))
1446                 return -EBUSY;
1447
1448         priv->link = 0;
1449         netif_carrier_off(ndev);
1450
1451         ret = netif_set_real_num_tx_queues(ndev, h->q_num);
1452         if (ret < 0) {
1453                 netdev_err(ndev, "netif_set_real_num_tx_queues fail, ret=%d!\n",
1454                            ret);
1455                 return ret;
1456         }
1457
1458         ret = netif_set_real_num_rx_queues(ndev, h->q_num);
1459         if (ret < 0) {
1460                 netdev_err(ndev,
1461                            "netif_set_real_num_rx_queues fail, ret=%d!\n", ret);
1462                 return ret;
1463         }
1464
1465         ret = hns_nic_net_up(ndev);
1466         if (ret) {
1467                 netdev_err(ndev,
1468                            "hns net up fail, ret=%d!\n", ret);
1469                 return ret;
1470         }
1471
1472         return 0;
1473 }
1474
1475 static int hns_nic_net_stop(struct net_device *ndev)
1476 {
1477         hns_nic_net_down(ndev);
1478
1479         return 0;
1480 }
1481
1482 static void hns_tx_timeout_reset(struct hns_nic_priv *priv);
1483 #define HNS_TX_TIMEO_LIMIT (40 * HZ)
1484 static void hns_nic_net_timeout(struct net_device *ndev, unsigned int txqueue)
1485 {
1486         struct hns_nic_priv *priv = netdev_priv(ndev);
1487
1488         if (ndev->watchdog_timeo < HNS_TX_TIMEO_LIMIT) {
1489                 ndev->watchdog_timeo *= 2;
1490                 netdev_info(ndev, "watchdog_timo changed to %d.\n",
1491                             ndev->watchdog_timeo);
1492         } else {
1493                 ndev->watchdog_timeo = HNS_NIC_TX_TIMEOUT;
1494                 hns_tx_timeout_reset(priv);
1495         }
1496 }
1497
1498 static netdev_tx_t hns_nic_net_xmit(struct sk_buff *skb,
1499                                     struct net_device *ndev)
1500 {
1501         struct hns_nic_priv *priv = netdev_priv(ndev);
1502
1503         assert(skb->queue_mapping < priv->ae_handle->q_num);
1504
1505         return hns_nic_net_xmit_hw(ndev, skb,
1506                                    &tx_ring_data(priv, skb->queue_mapping));
1507 }
1508
1509 static void hns_nic_drop_rx_fetch(struct hns_nic_ring_data *ring_data,
1510                                   struct sk_buff *skb)
1511 {
1512         dev_kfree_skb_any(skb);
1513 }
1514
1515 #define HNS_LB_TX_RING  0
1516 static struct sk_buff *hns_assemble_skb(struct net_device *ndev)
1517 {
1518         struct sk_buff *skb;
1519         struct ethhdr *ethhdr;
1520         int frame_len;
1521
1522         /* allocate test skb */
1523         skb = alloc_skb(64, GFP_KERNEL);
1524         if (!skb)
1525                 return NULL;
1526
1527         skb_put(skb, 64);
1528         skb->dev = ndev;
1529         memset(skb->data, 0xFF, skb->len);
1530
1531         /* must be tcp/ip package */
1532         ethhdr = (struct ethhdr *)skb->data;
1533         ethhdr->h_proto = htons(ETH_P_IP);
1534
1535         frame_len = skb->len & (~1ul);
1536         memset(&skb->data[frame_len / 2], 0xAA,
1537                frame_len / 2 - 1);
1538
1539         skb->queue_mapping = HNS_LB_TX_RING;
1540
1541         return skb;
1542 }
1543
1544 static int hns_enable_serdes_lb(struct net_device *ndev)
1545 {
1546         struct hns_nic_priv *priv = netdev_priv(ndev);
1547         struct hnae_handle *h = priv->ae_handle;
1548         struct hnae_ae_ops *ops = h->dev->ops;
1549         int speed, duplex;
1550         int ret;
1551
1552         ret = ops->set_loopback(h, MAC_INTERNALLOOP_SERDES, 1);
1553         if (ret)
1554                 return ret;
1555
1556         ret = ops->start ? ops->start(h) : 0;
1557         if (ret)
1558                 return ret;
1559
1560         /* link adjust duplex*/
1561         if (h->phy_if != PHY_INTERFACE_MODE_XGMII)
1562                 speed = 1000;
1563         else
1564                 speed = 10000;
1565         duplex = 1;
1566
1567         ops->adjust_link(h, speed, duplex);
1568
1569         /* wait h/w ready */
1570         mdelay(300);
1571
1572         return 0;
1573 }
1574
1575 static void hns_disable_serdes_lb(struct net_device *ndev)
1576 {
1577         struct hns_nic_priv *priv = netdev_priv(ndev);
1578         struct hnae_handle *h = priv->ae_handle;
1579         struct hnae_ae_ops *ops = h->dev->ops;
1580
1581         ops->stop(h);
1582         ops->set_loopback(h, MAC_INTERNALLOOP_SERDES, 0);
1583 }
1584
1585 /**
1586  *hns_nic_clear_all_rx_fetch - clear the chip fetched descriptions. The
1587  *function as follows:
1588  *    1. if one rx ring has found the page_offset is not equal 0 between head
1589  *       and tail, it means that the chip fetched the wrong descs for the ring
1590  *       which buffer size is 4096.
1591  *    2. we set the chip serdes loopback and set rss indirection to the ring.
1592  *    3. construct 64-bytes ip broadcast packages, wait the associated rx ring
1593  *       receiving all packages and it will fetch new descriptions.
1594  *    4. recover to the original state.
1595  *
1596  *@ndev: net device
1597  */
1598 static int hns_nic_clear_all_rx_fetch(struct net_device *ndev)
1599 {
1600         struct hns_nic_priv *priv = netdev_priv(ndev);
1601         struct hnae_handle *h = priv->ae_handle;
1602         struct hnae_ae_ops *ops = h->dev->ops;
1603         struct hns_nic_ring_data *rd;
1604         struct hnae_ring *ring;
1605         struct sk_buff *skb;
1606         u32 *org_indir;
1607         u32 *cur_indir;
1608         int indir_size;
1609         int head, tail;
1610         int fetch_num;
1611         int i, j;
1612         bool found;
1613         int retry_times;
1614         int ret = 0;
1615
1616         /* alloc indir memory */
1617         indir_size = ops->get_rss_indir_size(h) * sizeof(*org_indir);
1618         org_indir = kzalloc(indir_size, GFP_KERNEL);
1619         if (!org_indir)
1620                 return -ENOMEM;
1621
1622         /* store the original indirection */
1623         ops->get_rss(h, org_indir, NULL, NULL);
1624
1625         cur_indir = kzalloc(indir_size, GFP_KERNEL);
1626         if (!cur_indir) {
1627                 ret = -ENOMEM;
1628                 goto cur_indir_alloc_err;
1629         }
1630
1631         /* set loopback */
1632         if (hns_enable_serdes_lb(ndev)) {
1633                 ret = -EINVAL;
1634                 goto enable_serdes_lb_err;
1635         }
1636
1637         /* foreach every rx ring to clear fetch desc */
1638         for (i = 0; i < h->q_num; i++) {
1639                 ring = &h->qs[i]->rx_ring;
1640                 head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
1641                 tail = readl_relaxed(ring->io_base + RCB_REG_TAIL);
1642                 found = false;
1643                 fetch_num = ring_dist(ring, head, tail);
1644
1645                 while (head != tail) {
1646                         if (ring->desc_cb[head].page_offset != 0) {
1647                                 found = true;
1648                                 break;
1649                         }
1650
1651                         head++;
1652                         if (head == ring->desc_num)
1653                                 head = 0;
1654                 }
1655
1656                 if (found) {
1657                         for (j = 0; j < indir_size / sizeof(*org_indir); j++)
1658                                 cur_indir[j] = i;
1659                         ops->set_rss(h, cur_indir, NULL, 0);
1660
1661                         for (j = 0; j < fetch_num; j++) {
1662                                 /* alloc one skb and init */
1663                                 skb = hns_assemble_skb(ndev);
1664                                 if (!skb) {
1665                                         ret = -ENOMEM;
1666                                         goto out;
1667                                 }
1668                                 rd = &tx_ring_data(priv, skb->queue_mapping);
1669                                 hns_nic_net_xmit_hw(ndev, skb, rd);
1670
1671                                 retry_times = 0;
1672                                 while (retry_times++ < 10) {
1673                                         mdelay(10);
1674                                         /* clean rx */
1675                                         rd = &rx_ring_data(priv, i);
1676                                         if (rd->poll_one(rd, fetch_num,
1677                                                          hns_nic_drop_rx_fetch))
1678                                                 break;
1679                                 }
1680
1681                                 retry_times = 0;
1682                                 while (retry_times++ < 10) {
1683                                         mdelay(10);
1684                                         /* clean tx ring 0 send package */
1685                                         rd = &tx_ring_data(priv,
1686                                                            HNS_LB_TX_RING);
1687                                         if (rd->poll_one(rd, fetch_num, NULL))
1688                                                 break;
1689                                 }
1690                         }
1691                 }
1692         }
1693
1694 out:
1695         /* restore everything */
1696         ops->set_rss(h, org_indir, NULL, 0);
1697         hns_disable_serdes_lb(ndev);
1698 enable_serdes_lb_err:
1699         kfree(cur_indir);
1700 cur_indir_alloc_err:
1701         kfree(org_indir);
1702
1703         return ret;
1704 }
1705
1706 static int hns_nic_change_mtu(struct net_device *ndev, int new_mtu)
1707 {
1708         struct hns_nic_priv *priv = netdev_priv(ndev);
1709         struct hnae_handle *h = priv->ae_handle;
1710         bool if_running = netif_running(ndev);
1711         int ret;
1712
1713         /* MTU < 68 is an error and causes problems on some kernels */
1714         if (new_mtu < 68)
1715                 return -EINVAL;
1716
1717         /* MTU no change */
1718         if (new_mtu == ndev->mtu)
1719                 return 0;
1720
1721         if (!h->dev->ops->set_mtu)
1722                 return -ENOTSUPP;
1723
1724         if (if_running) {
1725                 (void)hns_nic_net_stop(ndev);
1726                 msleep(100);
1727         }
1728
1729         if (priv->enet_ver != AE_VERSION_1 &&
1730             ndev->mtu <= BD_SIZE_2048_MAX_MTU &&
1731             new_mtu > BD_SIZE_2048_MAX_MTU) {
1732                 /* update desc */
1733                 hnae_reinit_all_ring_desc(h);
1734
1735                 /* clear the package which the chip has fetched */
1736                 ret = hns_nic_clear_all_rx_fetch(ndev);
1737
1738                 /* the page offset must be consist with desc */
1739                 hnae_reinit_all_ring_page_off(h);
1740
1741                 if (ret) {
1742                         netdev_err(ndev, "clear the fetched desc fail\n");
1743                         goto out;
1744                 }
1745         }
1746
1747         ret = h->dev->ops->set_mtu(h, new_mtu);
1748         if (ret) {
1749                 netdev_err(ndev, "set mtu fail, return value %d\n",
1750                            ret);
1751                 goto out;
1752         }
1753
1754         /* finally, set new mtu to netdevice */
1755         ndev->mtu = new_mtu;
1756
1757 out:
1758         if (if_running) {
1759                 if (hns_nic_net_open(ndev)) {
1760                         netdev_err(ndev, "hns net open fail\n");
1761                         ret = -EINVAL;
1762                 }
1763         }
1764
1765         return ret;
1766 }
1767
1768 static int hns_nic_set_features(struct net_device *netdev,
1769                                 netdev_features_t features)
1770 {
1771         struct hns_nic_priv *priv = netdev_priv(netdev);
1772
1773         switch (priv->enet_ver) {
1774         case AE_VERSION_1:
1775                 if (features & (NETIF_F_TSO | NETIF_F_TSO6))
1776                         netdev_info(netdev, "enet v1 do not support tso!\n");
1777                 break;
1778         default:
1779                 if (features & (NETIF_F_TSO | NETIF_F_TSO6)) {
1780                         priv->ops.fill_desc = fill_tso_desc;
1781                         priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tso;
1782                         /* The chip only support 7*4096 */
1783                         netif_set_tso_max_size(netdev, 7 * 4096);
1784                 } else {
1785                         priv->ops.fill_desc = fill_v2_desc;
1786                         priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
1787                 }
1788                 break;
1789         }
1790         netdev->features = features;
1791         return 0;
1792 }
1793
1794 static netdev_features_t hns_nic_fix_features(
1795                 struct net_device *netdev, netdev_features_t features)
1796 {
1797         struct hns_nic_priv *priv = netdev_priv(netdev);
1798
1799         switch (priv->enet_ver) {
1800         case AE_VERSION_1:
1801                 features &= ~(NETIF_F_TSO | NETIF_F_TSO6 |
1802                                 NETIF_F_HW_VLAN_CTAG_FILTER);
1803                 break;
1804         default:
1805                 break;
1806         }
1807         return features;
1808 }
1809
1810 static int hns_nic_uc_sync(struct net_device *netdev, const unsigned char *addr)
1811 {
1812         struct hns_nic_priv *priv = netdev_priv(netdev);
1813         struct hnae_handle *h = priv->ae_handle;
1814
1815         if (h->dev->ops->add_uc_addr)
1816                 return h->dev->ops->add_uc_addr(h, addr);
1817
1818         return 0;
1819 }
1820
1821 static int hns_nic_uc_unsync(struct net_device *netdev,
1822                              const unsigned char *addr)
1823 {
1824         struct hns_nic_priv *priv = netdev_priv(netdev);
1825         struct hnae_handle *h = priv->ae_handle;
1826
1827         if (h->dev->ops->rm_uc_addr)
1828                 return h->dev->ops->rm_uc_addr(h, addr);
1829
1830         return 0;
1831 }
1832
1833 /**
1834  * hns_set_multicast_list - set mutl mac address
1835  * @ndev: net device
1836  *
1837  * return void
1838  */
1839 static void hns_set_multicast_list(struct net_device *ndev)
1840 {
1841         struct hns_nic_priv *priv = netdev_priv(ndev);
1842         struct hnae_handle *h = priv->ae_handle;
1843         struct netdev_hw_addr *ha = NULL;
1844
1845         if (!h) {
1846                 netdev_err(ndev, "hnae handle is null\n");
1847                 return;
1848         }
1849
1850         if (h->dev->ops->clr_mc_addr)
1851                 if (h->dev->ops->clr_mc_addr(h))
1852                         netdev_err(ndev, "clear multicast address fail\n");
1853
1854         if (h->dev->ops->set_mc_addr) {
1855                 netdev_for_each_mc_addr(ha, ndev)
1856                         if (h->dev->ops->set_mc_addr(h, ha->addr))
1857                                 netdev_err(ndev, "set multicast fail\n");
1858         }
1859 }
1860
1861 static void hns_nic_set_rx_mode(struct net_device *ndev)
1862 {
1863         struct hns_nic_priv *priv = netdev_priv(ndev);
1864         struct hnae_handle *h = priv->ae_handle;
1865
1866         if (h->dev->ops->set_promisc_mode) {
1867                 if (ndev->flags & IFF_PROMISC)
1868                         h->dev->ops->set_promisc_mode(h, 1);
1869                 else
1870                         h->dev->ops->set_promisc_mode(h, 0);
1871         }
1872
1873         hns_set_multicast_list(ndev);
1874
1875         if (__dev_uc_sync(ndev, hns_nic_uc_sync, hns_nic_uc_unsync))
1876                 netdev_err(ndev, "sync uc address fail\n");
1877 }
1878
1879 static void hns_nic_get_stats64(struct net_device *ndev,
1880                                 struct rtnl_link_stats64 *stats)
1881 {
1882         int idx;
1883         u64 tx_bytes = 0;
1884         u64 rx_bytes = 0;
1885         u64 tx_pkts = 0;
1886         u64 rx_pkts = 0;
1887         struct hns_nic_priv *priv = netdev_priv(ndev);
1888         struct hnae_handle *h = priv->ae_handle;
1889
1890         for (idx = 0; idx < h->q_num; idx++) {
1891                 tx_bytes += h->qs[idx]->tx_ring.stats.tx_bytes;
1892                 tx_pkts += h->qs[idx]->tx_ring.stats.tx_pkts;
1893                 rx_bytes += h->qs[idx]->rx_ring.stats.rx_bytes;
1894                 rx_pkts += h->qs[idx]->rx_ring.stats.rx_pkts;
1895         }
1896
1897         stats->tx_bytes = tx_bytes;
1898         stats->tx_packets = tx_pkts;
1899         stats->rx_bytes = rx_bytes;
1900         stats->rx_packets = rx_pkts;
1901
1902         stats->rx_errors = ndev->stats.rx_errors;
1903         stats->multicast = ndev->stats.multicast;
1904         stats->rx_length_errors = ndev->stats.rx_length_errors;
1905         stats->rx_crc_errors = ndev->stats.rx_crc_errors;
1906         stats->rx_missed_errors = ndev->stats.rx_missed_errors;
1907
1908         stats->tx_errors = ndev->stats.tx_errors;
1909         stats->rx_dropped = ndev->stats.rx_dropped;
1910         stats->tx_dropped = ndev->stats.tx_dropped;
1911         stats->collisions = ndev->stats.collisions;
1912         stats->rx_over_errors = ndev->stats.rx_over_errors;
1913         stats->rx_frame_errors = ndev->stats.rx_frame_errors;
1914         stats->rx_fifo_errors = ndev->stats.rx_fifo_errors;
1915         stats->tx_aborted_errors = ndev->stats.tx_aborted_errors;
1916         stats->tx_carrier_errors = ndev->stats.tx_carrier_errors;
1917         stats->tx_fifo_errors = ndev->stats.tx_fifo_errors;
1918         stats->tx_heartbeat_errors = ndev->stats.tx_heartbeat_errors;
1919         stats->tx_window_errors = ndev->stats.tx_window_errors;
1920         stats->rx_compressed = ndev->stats.rx_compressed;
1921         stats->tx_compressed = ndev->stats.tx_compressed;
1922 }
1923
1924 static u16
1925 hns_nic_select_queue(struct net_device *ndev, struct sk_buff *skb,
1926                      struct net_device *sb_dev)
1927 {
1928         struct ethhdr *eth_hdr = (struct ethhdr *)skb->data;
1929         struct hns_nic_priv *priv = netdev_priv(ndev);
1930
1931         /* fix hardware broadcast/multicast packets queue loopback */
1932         if (!AE_IS_VER1(priv->enet_ver) &&
1933             is_multicast_ether_addr(eth_hdr->h_dest))
1934                 return 0;
1935         else
1936                 return netdev_pick_tx(ndev, skb, NULL);
1937 }
1938
1939 static const struct net_device_ops hns_nic_netdev_ops = {
1940         .ndo_open = hns_nic_net_open,
1941         .ndo_stop = hns_nic_net_stop,
1942         .ndo_start_xmit = hns_nic_net_xmit,
1943         .ndo_tx_timeout = hns_nic_net_timeout,
1944         .ndo_set_mac_address = hns_nic_net_set_mac_address,
1945         .ndo_change_mtu = hns_nic_change_mtu,
1946         .ndo_eth_ioctl = phy_do_ioctl_running,
1947         .ndo_set_features = hns_nic_set_features,
1948         .ndo_fix_features = hns_nic_fix_features,
1949         .ndo_get_stats64 = hns_nic_get_stats64,
1950         .ndo_set_rx_mode = hns_nic_set_rx_mode,
1951         .ndo_select_queue = hns_nic_select_queue,
1952 };
1953
1954 static void hns_nic_update_link_status(struct net_device *netdev)
1955 {
1956         struct hns_nic_priv *priv = netdev_priv(netdev);
1957
1958         struct hnae_handle *h = priv->ae_handle;
1959
1960         if (h->phy_dev) {
1961                 if (h->phy_if != PHY_INTERFACE_MODE_XGMII)
1962                         return;
1963
1964                 (void)genphy_read_status(h->phy_dev);
1965         }
1966         hns_nic_adjust_link(netdev);
1967 }
1968
1969 /* for dumping key regs*/
1970 static void hns_nic_dump(struct hns_nic_priv *priv)
1971 {
1972         struct hnae_handle *h = priv->ae_handle;
1973         struct hnae_ae_ops *ops = h->dev->ops;
1974         u32 *data, reg_num, i;
1975
1976         if (ops->get_regs_len && ops->get_regs) {
1977                 reg_num = ops->get_regs_len(priv->ae_handle);
1978                 reg_num = (reg_num + 3ul) & ~3ul;
1979                 data = kcalloc(reg_num, sizeof(u32), GFP_KERNEL);
1980                 if (data) {
1981                         ops->get_regs(priv->ae_handle, data);
1982                         for (i = 0; i < reg_num; i += 4)
1983                                 pr_info("0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
1984                                         i, data[i], data[i + 1],
1985                                         data[i + 2], data[i + 3]);
1986                         kfree(data);
1987                 }
1988         }
1989
1990         for (i = 0; i < h->q_num; i++) {
1991                 pr_info("tx_queue%d_next_to_clean:%d\n",
1992                         i, h->qs[i]->tx_ring.next_to_clean);
1993                 pr_info("tx_queue%d_next_to_use:%d\n",
1994                         i, h->qs[i]->tx_ring.next_to_use);
1995                 pr_info("rx_queue%d_next_to_clean:%d\n",
1996                         i, h->qs[i]->rx_ring.next_to_clean);
1997                 pr_info("rx_queue%d_next_to_use:%d\n",
1998                         i, h->qs[i]->rx_ring.next_to_use);
1999         }
2000 }
2001
2002 /* for resetting subtask */
2003 static void hns_nic_reset_subtask(struct hns_nic_priv *priv)
2004 {
2005         enum hnae_port_type type = priv->ae_handle->port_type;
2006
2007         if (!test_bit(NIC_STATE2_RESET_REQUESTED, &priv->state))
2008                 return;
2009         clear_bit(NIC_STATE2_RESET_REQUESTED, &priv->state);
2010
2011         /* If we're already down, removing or resetting, just bail */
2012         if (test_bit(NIC_STATE_DOWN, &priv->state) ||
2013             test_bit(NIC_STATE_REMOVING, &priv->state) ||
2014             test_bit(NIC_STATE_RESETTING, &priv->state))
2015                 return;
2016
2017         hns_nic_dump(priv);
2018         netdev_info(priv->netdev, "try to reset %s port!\n",
2019                     (type == HNAE_PORT_DEBUG ? "debug" : "service"));
2020
2021         rtnl_lock();
2022         /* put off any impending NetWatchDogTimeout */
2023         netif_trans_update(priv->netdev);
2024         hns_nic_net_reinit(priv->netdev);
2025
2026         rtnl_unlock();
2027 }
2028
2029 /* for doing service complete*/
2030 static void hns_nic_service_event_complete(struct hns_nic_priv *priv)
2031 {
2032         WARN_ON(!test_bit(NIC_STATE_SERVICE_SCHED, &priv->state));
2033         /* make sure to commit the things */
2034         smp_mb__before_atomic();
2035         clear_bit(NIC_STATE_SERVICE_SCHED, &priv->state);
2036 }
2037
2038 static void hns_nic_service_task(struct work_struct *work)
2039 {
2040         struct hns_nic_priv *priv
2041                 = container_of(work, struct hns_nic_priv, service_task);
2042         struct hnae_handle *h = priv->ae_handle;
2043
2044         hns_nic_reset_subtask(priv);
2045         hns_nic_update_link_status(priv->netdev);
2046         h->dev->ops->update_led_status(h);
2047         hns_nic_update_stats(priv->netdev);
2048
2049         hns_nic_service_event_complete(priv);
2050 }
2051
2052 static void hns_nic_task_schedule(struct hns_nic_priv *priv)
2053 {
2054         if (!test_bit(NIC_STATE_DOWN, &priv->state) &&
2055             !test_bit(NIC_STATE_REMOVING, &priv->state) &&
2056             !test_and_set_bit(NIC_STATE_SERVICE_SCHED, &priv->state))
2057                 (void)schedule_work(&priv->service_task);
2058 }
2059
2060 static void hns_nic_service_timer(struct timer_list *t)
2061 {
2062         struct hns_nic_priv *priv = from_timer(priv, t, service_timer);
2063
2064         (void)mod_timer(&priv->service_timer, jiffies + SERVICE_TIMER_HZ);
2065
2066         hns_nic_task_schedule(priv);
2067 }
2068
2069 /**
2070  * hns_tx_timeout_reset - initiate reset due to Tx timeout
2071  * @priv: driver private struct
2072  **/
2073 static void hns_tx_timeout_reset(struct hns_nic_priv *priv)
2074 {
2075         /* Do the reset outside of interrupt context */
2076         if (!test_bit(NIC_STATE_DOWN, &priv->state)) {
2077                 set_bit(NIC_STATE2_RESET_REQUESTED, &priv->state);
2078                 netdev_warn(priv->netdev,
2079                             "initiating reset due to tx timeout(%llu,0x%lx)\n",
2080                             priv->tx_timeout_count, priv->state);
2081                 priv->tx_timeout_count++;
2082                 hns_nic_task_schedule(priv);
2083         }
2084 }
2085
2086 static int hns_nic_init_ring_data(struct hns_nic_priv *priv)
2087 {
2088         struct hnae_handle *h = priv->ae_handle;
2089         struct hns_nic_ring_data *rd;
2090         bool is_ver1 = AE_IS_VER1(priv->enet_ver);
2091         int i;
2092
2093         if (h->q_num > NIC_MAX_Q_PER_VF) {
2094                 netdev_err(priv->netdev, "too much queue (%d)\n", h->q_num);
2095                 return -EINVAL;
2096         }
2097
2098         priv->ring_data = kzalloc(array3_size(h->q_num,
2099                                               sizeof(*priv->ring_data), 2),
2100                                   GFP_KERNEL);
2101         if (!priv->ring_data)
2102                 return -ENOMEM;
2103
2104         for (i = 0; i < h->q_num; i++) {
2105                 rd = &priv->ring_data[i];
2106                 rd->queue_index = i;
2107                 rd->ring = &h->qs[i]->tx_ring;
2108                 rd->poll_one = hns_nic_tx_poll_one;
2109                 rd->fini_process = is_ver1 ? hns_nic_tx_fini_pro :
2110                         hns_nic_tx_fini_pro_v2;
2111
2112                 netif_napi_add(priv->netdev, &rd->napi,
2113                                hns_nic_common_poll, NAPI_POLL_WEIGHT);
2114                 rd->ring->irq_init_flag = RCB_IRQ_NOT_INITED;
2115         }
2116         for (i = h->q_num; i < h->q_num * 2; i++) {
2117                 rd = &priv->ring_data[i];
2118                 rd->queue_index = i - h->q_num;
2119                 rd->ring = &h->qs[i - h->q_num]->rx_ring;
2120                 rd->poll_one = hns_nic_rx_poll_one;
2121                 rd->ex_process = hns_nic_rx_up_pro;
2122                 rd->fini_process = is_ver1 ? hns_nic_rx_fini_pro :
2123                         hns_nic_rx_fini_pro_v2;
2124
2125                 netif_napi_add(priv->netdev, &rd->napi,
2126                                hns_nic_common_poll, NAPI_POLL_WEIGHT);
2127                 rd->ring->irq_init_flag = RCB_IRQ_NOT_INITED;
2128         }
2129
2130         return 0;
2131 }
2132
2133 static void hns_nic_uninit_ring_data(struct hns_nic_priv *priv)
2134 {
2135         struct hnae_handle *h = priv->ae_handle;
2136         int i;
2137
2138         for (i = 0; i < h->q_num * 2; i++) {
2139                 netif_napi_del(&priv->ring_data[i].napi);
2140                 if (priv->ring_data[i].ring->irq_init_flag == RCB_IRQ_INITED) {
2141                         (void)irq_set_affinity_hint(
2142                                 priv->ring_data[i].ring->irq,
2143                                 NULL);
2144                         free_irq(priv->ring_data[i].ring->irq,
2145                                  &priv->ring_data[i]);
2146                 }
2147
2148                 priv->ring_data[i].ring->irq_init_flag = RCB_IRQ_NOT_INITED;
2149         }
2150         kfree(priv->ring_data);
2151 }
2152
2153 static void hns_nic_set_priv_ops(struct net_device *netdev)
2154 {
2155         struct hns_nic_priv *priv = netdev_priv(netdev);
2156         struct hnae_handle *h = priv->ae_handle;
2157
2158         if (AE_IS_VER1(priv->enet_ver)) {
2159                 priv->ops.fill_desc = fill_desc;
2160                 priv->ops.get_rxd_bnum = get_rx_desc_bnum;
2161                 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
2162         } else {
2163                 priv->ops.get_rxd_bnum = get_v2rx_desc_bnum;
2164                 if ((netdev->features & NETIF_F_TSO) ||
2165                     (netdev->features & NETIF_F_TSO6)) {
2166                         priv->ops.fill_desc = fill_tso_desc;
2167                         priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tso;
2168                         /* This chip only support 7*4096 */
2169                         netif_set_tso_max_size(netdev, 7 * 4096);
2170                 } else {
2171                         priv->ops.fill_desc = fill_v2_desc;
2172                         priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
2173                 }
2174                 /* enable tso when init
2175                  * control tso on/off through TSE bit in bd
2176                  */
2177                 h->dev->ops->set_tso_stats(h, 1);
2178         }
2179 }
2180
2181 static int hns_nic_try_get_ae(struct net_device *ndev)
2182 {
2183         struct hns_nic_priv *priv = netdev_priv(ndev);
2184         struct hnae_handle *h;
2185         int ret;
2186
2187         h = hnae_get_handle(&priv->netdev->dev,
2188                             priv->fwnode, priv->port_id, NULL);
2189         if (IS_ERR_OR_NULL(h)) {
2190                 ret = -ENODEV;
2191                 dev_dbg(priv->dev, "has not handle, register notifier!\n");
2192                 goto out;
2193         }
2194         priv->ae_handle = h;
2195
2196         ret = hns_nic_init_phy(ndev, h);
2197         if (ret) {
2198                 dev_err(priv->dev, "probe phy device fail!\n");
2199                 goto out_init_phy;
2200         }
2201
2202         ret = hns_nic_init_ring_data(priv);
2203         if (ret) {
2204                 ret = -ENOMEM;
2205                 goto out_init_ring_data;
2206         }
2207
2208         hns_nic_set_priv_ops(ndev);
2209
2210         ret = register_netdev(ndev);
2211         if (ret) {
2212                 dev_err(priv->dev, "probe register netdev fail!\n");
2213                 goto out_reg_ndev_fail;
2214         }
2215         return 0;
2216
2217 out_reg_ndev_fail:
2218         hns_nic_uninit_ring_data(priv);
2219         priv->ring_data = NULL;
2220 out_init_phy:
2221 out_init_ring_data:
2222         hnae_put_handle(priv->ae_handle);
2223         priv->ae_handle = NULL;
2224 out:
2225         return ret;
2226 }
2227
2228 static int hns_nic_notifier_action(struct notifier_block *nb,
2229                                    unsigned long action, void *data)
2230 {
2231         struct hns_nic_priv *priv =
2232                 container_of(nb, struct hns_nic_priv, notifier_block);
2233
2234         assert(action == HNAE_AE_REGISTER);
2235
2236         if (!hns_nic_try_get_ae(priv->netdev)) {
2237                 hnae_unregister_notifier(&priv->notifier_block);
2238                 priv->notifier_block.notifier_call = NULL;
2239         }
2240         return 0;
2241 }
2242
2243 static int hns_nic_dev_probe(struct platform_device *pdev)
2244 {
2245         struct device *dev = &pdev->dev;
2246         struct net_device *ndev;
2247         struct hns_nic_priv *priv;
2248         u32 port_id;
2249         int ret;
2250
2251         ndev = alloc_etherdev_mq(sizeof(struct hns_nic_priv), NIC_MAX_Q_PER_VF);
2252         if (!ndev)
2253                 return -ENOMEM;
2254
2255         platform_set_drvdata(pdev, ndev);
2256
2257         priv = netdev_priv(ndev);
2258         priv->dev = dev;
2259         priv->netdev = ndev;
2260
2261         if (dev_of_node(dev)) {
2262                 struct device_node *ae_node;
2263
2264                 if (of_device_is_compatible(dev->of_node,
2265                                             "hisilicon,hns-nic-v1"))
2266                         priv->enet_ver = AE_VERSION_1;
2267                 else
2268                         priv->enet_ver = AE_VERSION_2;
2269
2270                 ae_node = of_parse_phandle(dev->of_node, "ae-handle", 0);
2271                 if (!ae_node) {
2272                         ret = -ENODEV;
2273                         dev_err(dev, "not find ae-handle\n");
2274                         goto out_read_prop_fail;
2275                 }
2276                 priv->fwnode = &ae_node->fwnode;
2277         } else if (is_acpi_node(dev->fwnode)) {
2278                 struct fwnode_reference_args args;
2279
2280                 if (acpi_dev_found(hns_enet_acpi_match[0].id))
2281                         priv->enet_ver = AE_VERSION_1;
2282                 else if (acpi_dev_found(hns_enet_acpi_match[1].id))
2283                         priv->enet_ver = AE_VERSION_2;
2284                 else {
2285                         ret = -ENXIO;
2286                         goto out_read_prop_fail;
2287                 }
2288
2289                 /* try to find port-idx-in-ae first */
2290                 ret = acpi_node_get_property_reference(dev->fwnode,
2291                                                        "ae-handle", 0, &args);
2292                 if (ret) {
2293                         dev_err(dev, "not find ae-handle\n");
2294                         goto out_read_prop_fail;
2295                 }
2296                 if (!is_acpi_device_node(args.fwnode)) {
2297                         ret = -EINVAL;
2298                         goto out_read_prop_fail;
2299                 }
2300                 priv->fwnode = args.fwnode;
2301         } else {
2302                 dev_err(dev, "cannot read cfg data from OF or acpi\n");
2303                 ret = -ENXIO;
2304                 goto out_read_prop_fail;
2305         }
2306
2307         ret = device_property_read_u32(dev, "port-idx-in-ae", &port_id);
2308         if (ret) {
2309                 /* only for old code compatible */
2310                 ret = device_property_read_u32(dev, "port-id", &port_id);
2311                 if (ret)
2312                         goto out_read_prop_fail;
2313                 /* for old dts, we need to caculate the port offset */
2314                 port_id = port_id < HNS_SRV_OFFSET ? port_id + HNS_DEBUG_OFFSET
2315                         : port_id - HNS_SRV_OFFSET;
2316         }
2317         priv->port_id = port_id;
2318
2319         hns_init_mac_addr(ndev);
2320
2321         ndev->watchdog_timeo = HNS_NIC_TX_TIMEOUT;
2322         ndev->priv_flags |= IFF_UNICAST_FLT;
2323         ndev->netdev_ops = &hns_nic_netdev_ops;
2324         hns_ethtool_set_ops(ndev);
2325
2326         ndev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2327                 NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2328                 NETIF_F_GRO;
2329         ndev->vlan_features |=
2330                 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM;
2331         ndev->vlan_features |= NETIF_F_SG | NETIF_F_GSO | NETIF_F_GRO;
2332
2333         /* MTU range: 68 - 9578 (v1) or 9706 (v2) */
2334         ndev->min_mtu = MAC_MIN_MTU;
2335         switch (priv->enet_ver) {
2336         case AE_VERSION_2:
2337                 ndev->features |= NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_NTUPLE;
2338                 ndev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2339                         NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2340                         NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6;
2341                 ndev->vlan_features |= NETIF_F_TSO | NETIF_F_TSO6;
2342                 ndev->max_mtu = MAC_MAX_MTU_V2 -
2343                                 (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
2344                 break;
2345         default:
2346                 ndev->max_mtu = MAC_MAX_MTU -
2347                                 (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
2348                 break;
2349         }
2350
2351         SET_NETDEV_DEV(ndev, dev);
2352
2353         if (!dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)))
2354                 dev_dbg(dev, "set mask to 64bit\n");
2355         else
2356                 dev_err(dev, "set mask to 64bit fail!\n");
2357
2358         /* carrier off reporting is important to ethtool even BEFORE open */
2359         netif_carrier_off(ndev);
2360
2361         timer_setup(&priv->service_timer, hns_nic_service_timer, 0);
2362         INIT_WORK(&priv->service_task, hns_nic_service_task);
2363
2364         set_bit(NIC_STATE_SERVICE_INITED, &priv->state);
2365         clear_bit(NIC_STATE_SERVICE_SCHED, &priv->state);
2366         set_bit(NIC_STATE_DOWN, &priv->state);
2367
2368         if (hns_nic_try_get_ae(priv->netdev)) {
2369                 priv->notifier_block.notifier_call = hns_nic_notifier_action;
2370                 ret = hnae_register_notifier(&priv->notifier_block);
2371                 if (ret) {
2372                         dev_err(dev, "register notifier fail!\n");
2373                         goto out_notify_fail;
2374                 }
2375                 dev_dbg(dev, "has not handle, register notifier!\n");
2376         }
2377
2378         return 0;
2379
2380 out_notify_fail:
2381         (void)cancel_work_sync(&priv->service_task);
2382 out_read_prop_fail:
2383         /* safe for ACPI FW */
2384         of_node_put(to_of_node(priv->fwnode));
2385         free_netdev(ndev);
2386         return ret;
2387 }
2388
2389 static int hns_nic_dev_remove(struct platform_device *pdev)
2390 {
2391         struct net_device *ndev = platform_get_drvdata(pdev);
2392         struct hns_nic_priv *priv = netdev_priv(ndev);
2393
2394         if (ndev->reg_state != NETREG_UNINITIALIZED)
2395                 unregister_netdev(ndev);
2396
2397         if (priv->ring_data)
2398                 hns_nic_uninit_ring_data(priv);
2399         priv->ring_data = NULL;
2400
2401         if (ndev->phydev)
2402                 phy_disconnect(ndev->phydev);
2403
2404         if (!IS_ERR_OR_NULL(priv->ae_handle))
2405                 hnae_put_handle(priv->ae_handle);
2406         priv->ae_handle = NULL;
2407         if (priv->notifier_block.notifier_call)
2408                 hnae_unregister_notifier(&priv->notifier_block);
2409         priv->notifier_block.notifier_call = NULL;
2410
2411         set_bit(NIC_STATE_REMOVING, &priv->state);
2412         (void)cancel_work_sync(&priv->service_task);
2413
2414         /* safe for ACPI FW */
2415         of_node_put(to_of_node(priv->fwnode));
2416
2417         free_netdev(ndev);
2418         return 0;
2419 }
2420
2421 static const struct of_device_id hns_enet_of_match[] = {
2422         {.compatible = "hisilicon,hns-nic-v1",},
2423         {.compatible = "hisilicon,hns-nic-v2",},
2424         {},
2425 };
2426
2427 MODULE_DEVICE_TABLE(of, hns_enet_of_match);
2428
2429 static struct platform_driver hns_nic_dev_driver = {
2430         .driver = {
2431                 .name = "hns-nic",
2432                 .of_match_table = hns_enet_of_match,
2433                 .acpi_match_table = ACPI_PTR(hns_enet_acpi_match),
2434         },
2435         .probe = hns_nic_dev_probe,
2436         .remove = hns_nic_dev_remove,
2437 };
2438
2439 module_platform_driver(hns_nic_dev_driver);
2440
2441 MODULE_DESCRIPTION("HISILICON HNS Ethernet driver");
2442 MODULE_AUTHOR("Hisilicon, Inc.");
2443 MODULE_LICENSE("GPL");
2444 MODULE_ALIAS("platform:hns-nic");