net: fec: Use a spinlock to guard `fep->ptp_clk_on`
[linux-block.git] / drivers / net / ethernet / freescale / fec_ptp.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Fast Ethernet Controller (ENET) PTP driver for MX6x.
4  *
5  * Copyright (C) 2012 Freescale Semiconductor, Inc.
6  */
7
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/string.h>
13 #include <linux/ptrace.h>
14 #include <linux/errno.h>
15 #include <linux/ioport.h>
16 #include <linux/slab.h>
17 #include <linux/interrupt.h>
18 #include <linux/pci.h>
19 #include <linux/delay.h>
20 #include <linux/netdevice.h>
21 #include <linux/etherdevice.h>
22 #include <linux/skbuff.h>
23 #include <linux/spinlock.h>
24 #include <linux/workqueue.h>
25 #include <linux/bitops.h>
26 #include <linux/io.h>
27 #include <linux/irq.h>
28 #include <linux/clk.h>
29 #include <linux/platform_device.h>
30 #include <linux/phy.h>
31 #include <linux/fec.h>
32 #include <linux/of.h>
33 #include <linux/of_device.h>
34 #include <linux/of_gpio.h>
35 #include <linux/of_net.h>
36
37 #include "fec.h"
38
39 /* FEC 1588 register bits */
40 #define FEC_T_CTRL_SLAVE                0x00002000
41 #define FEC_T_CTRL_CAPTURE              0x00000800
42 #define FEC_T_CTRL_RESTART              0x00000200
43 #define FEC_T_CTRL_PERIOD_RST           0x00000030
44 #define FEC_T_CTRL_PERIOD_EN            0x00000010
45 #define FEC_T_CTRL_ENABLE               0x00000001
46
47 #define FEC_T_INC_MASK                  0x0000007f
48 #define FEC_T_INC_OFFSET                0
49 #define FEC_T_INC_CORR_MASK             0x00007f00
50 #define FEC_T_INC_CORR_OFFSET           8
51
52 #define FEC_T_CTRL_PINPER               0x00000080
53 #define FEC_T_TF0_MASK                  0x00000001
54 #define FEC_T_TF0_OFFSET                0
55 #define FEC_T_TF1_MASK                  0x00000002
56 #define FEC_T_TF1_OFFSET                1
57 #define FEC_T_TF2_MASK                  0x00000004
58 #define FEC_T_TF2_OFFSET                2
59 #define FEC_T_TF3_MASK                  0x00000008
60 #define FEC_T_TF3_OFFSET                3
61 #define FEC_T_TDRE_MASK                 0x00000001
62 #define FEC_T_TDRE_OFFSET               0
63 #define FEC_T_TMODE_MASK                0x0000003C
64 #define FEC_T_TMODE_OFFSET              2
65 #define FEC_T_TIE_MASK                  0x00000040
66 #define FEC_T_TIE_OFFSET                6
67 #define FEC_T_TF_MASK                   0x00000080
68 #define FEC_T_TF_OFFSET                 7
69
70 #define FEC_ATIME_CTRL          0x400
71 #define FEC_ATIME               0x404
72 #define FEC_ATIME_EVT_OFFSET    0x408
73 #define FEC_ATIME_EVT_PERIOD    0x40c
74 #define FEC_ATIME_CORR          0x410
75 #define FEC_ATIME_INC           0x414
76 #define FEC_TS_TIMESTAMP        0x418
77
78 #define FEC_TGSR                0x604
79 #define FEC_TCSR(n)             (0x608 + n * 0x08)
80 #define FEC_TCCR(n)             (0x60C + n * 0x08)
81 #define MAX_TIMER_CHANNEL       3
82 #define FEC_TMODE_TOGGLE        0x05
83 #define FEC_HIGH_PULSE          0x0F
84
85 #define FEC_CC_MULT     (1 << 31)
86 #define FEC_COUNTER_PERIOD      (1 << 31)
87 #define PPS_OUPUT_RELOAD_PERIOD NSEC_PER_SEC
88 #define FEC_CHANNLE_0           0
89 #define DEFAULT_PPS_CHANNEL     FEC_CHANNLE_0
90
91 /**
92  * fec_ptp_enable_pps
93  * @fep: the fec_enet_private structure handle
94  * @enable: enable the channel pps output
95  *
96  * This function enble the PPS ouput on the timer channel.
97  */
98 static int fec_ptp_enable_pps(struct fec_enet_private *fep, uint enable)
99 {
100         unsigned long flags;
101         u32 val, tempval;
102         struct timespec64 ts;
103         u64 ns;
104
105         if (fep->pps_enable == enable)
106                 return 0;
107
108         fep->pps_channel = DEFAULT_PPS_CHANNEL;
109         fep->reload_period = PPS_OUPUT_RELOAD_PERIOD;
110
111         spin_lock_irqsave(&fep->tmreg_lock, flags);
112
113         if (enable) {
114                 /* clear capture or output compare interrupt status if have.
115                  */
116                 writel(FEC_T_TF_MASK, fep->hwp + FEC_TCSR(fep->pps_channel));
117
118                 /* It is recommended to double check the TMODE field in the
119                  * TCSR register to be cleared before the first compare counter
120                  * is written into TCCR register. Just add a double check.
121                  */
122                 val = readl(fep->hwp + FEC_TCSR(fep->pps_channel));
123                 do {
124                         val &= ~(FEC_T_TMODE_MASK);
125                         writel(val, fep->hwp + FEC_TCSR(fep->pps_channel));
126                         val = readl(fep->hwp + FEC_TCSR(fep->pps_channel));
127                 } while (val & FEC_T_TMODE_MASK);
128
129                 /* Dummy read counter to update the counter */
130                 timecounter_read(&fep->tc);
131                 /* We want to find the first compare event in the next
132                  * second point. So we need to know what the ptp time
133                  * is now and how many nanoseconds is ahead to get next second.
134                  * The remaining nanosecond ahead before the next second would be
135                  * NSEC_PER_SEC - ts.tv_nsec. Add the remaining nanoseconds
136                  * to current timer would be next second.
137                  */
138                 tempval = fep->cc.read(&fep->cc);
139                 /* Convert the ptp local counter to 1588 timestamp */
140                 ns = timecounter_cyc2time(&fep->tc, tempval);
141                 ts = ns_to_timespec64(ns);
142
143                 /* The tempval is  less than 3 seconds, and  so val is less than
144                  * 4 seconds. No overflow for 32bit calculation.
145                  */
146                 val = NSEC_PER_SEC - (u32)ts.tv_nsec + tempval;
147
148                 /* Need to consider the situation that the current time is
149                  * very close to the second point, which means NSEC_PER_SEC
150                  * - ts.tv_nsec is close to be zero(For example 20ns); Since the timer
151                  * is still running when we calculate the first compare event, it is
152                  * possible that the remaining nanoseonds run out before the compare
153                  * counter is calculated and written into TCCR register. To avoid
154                  * this possibility, we will set the compare event to be the next
155                  * of next second. The current setting is 31-bit timer and wrap
156                  * around over 2 seconds. So it is okay to set the next of next
157                  * seond for the timer.
158                  */
159                 val += NSEC_PER_SEC;
160
161                 /* We add (2 * NSEC_PER_SEC - (u32)ts.tv_nsec) to current
162                  * ptp counter, which maybe cause 32-bit wrap. Since the
163                  * (NSEC_PER_SEC - (u32)ts.tv_nsec) is less than 2 second.
164                  * We can ensure the wrap will not cause issue. If the offset
165                  * is bigger than fep->cc.mask would be a error.
166                  */
167                 val &= fep->cc.mask;
168                 writel(val, fep->hwp + FEC_TCCR(fep->pps_channel));
169
170                 /* Calculate the second the compare event timestamp */
171                 fep->next_counter = (val + fep->reload_period) & fep->cc.mask;
172
173                 /* * Enable compare event when overflow */
174                 val = readl(fep->hwp + FEC_ATIME_CTRL);
175                 val |= FEC_T_CTRL_PINPER;
176                 writel(val, fep->hwp + FEC_ATIME_CTRL);
177
178                 /* Compare channel setting. */
179                 val = readl(fep->hwp + FEC_TCSR(fep->pps_channel));
180                 val |= (1 << FEC_T_TF_OFFSET | 1 << FEC_T_TIE_OFFSET);
181                 val &= ~(1 << FEC_T_TDRE_OFFSET);
182                 val &= ~(FEC_T_TMODE_MASK);
183                 val |= (FEC_HIGH_PULSE << FEC_T_TMODE_OFFSET);
184                 writel(val, fep->hwp + FEC_TCSR(fep->pps_channel));
185
186                 /* Write the second compare event timestamp and calculate
187                  * the third timestamp. Refer the TCCR register detail in the spec.
188                  */
189                 writel(fep->next_counter, fep->hwp + FEC_TCCR(fep->pps_channel));
190                 fep->next_counter = (fep->next_counter + fep->reload_period) & fep->cc.mask;
191         } else {
192                 writel(0, fep->hwp + FEC_TCSR(fep->pps_channel));
193         }
194
195         fep->pps_enable = enable;
196         spin_unlock_irqrestore(&fep->tmreg_lock, flags);
197
198         return 0;
199 }
200
201 /**
202  * fec_ptp_read - read raw cycle counter (to be used by time counter)
203  * @cc: the cyclecounter structure
204  *
205  * this function reads the cyclecounter registers and is called by the
206  * cyclecounter structure used to construct a ns counter from the
207  * arbitrary fixed point registers
208  */
209 static u64 fec_ptp_read(const struct cyclecounter *cc)
210 {
211         struct fec_enet_private *fep =
212                 container_of(cc, struct fec_enet_private, cc);
213         u32 tempval;
214
215         tempval = readl(fep->hwp + FEC_ATIME_CTRL);
216         tempval |= FEC_T_CTRL_CAPTURE;
217         writel(tempval, fep->hwp + FEC_ATIME_CTRL);
218
219         if (fep->quirks & FEC_QUIRK_BUG_CAPTURE)
220                 udelay(1);
221
222         return readl(fep->hwp + FEC_ATIME);
223 }
224
225 /**
226  * fec_ptp_start_cyclecounter - create the cycle counter from hw
227  * @ndev: network device
228  *
229  * this function initializes the timecounter and cyclecounter
230  * structures for use in generated a ns counter from the arbitrary
231  * fixed point cycles registers in the hardware.
232  */
233 void fec_ptp_start_cyclecounter(struct net_device *ndev)
234 {
235         struct fec_enet_private *fep = netdev_priv(ndev);
236         unsigned long flags;
237         int inc;
238
239         inc = 1000000000 / fep->cycle_speed;
240
241         /* grab the ptp lock */
242         spin_lock_irqsave(&fep->tmreg_lock, flags);
243
244         /* 1ns counter */
245         writel(inc << FEC_T_INC_OFFSET, fep->hwp + FEC_ATIME_INC);
246
247         /* use 31-bit timer counter */
248         writel(FEC_COUNTER_PERIOD, fep->hwp + FEC_ATIME_EVT_PERIOD);
249
250         writel(FEC_T_CTRL_ENABLE | FEC_T_CTRL_PERIOD_RST,
251                 fep->hwp + FEC_ATIME_CTRL);
252
253         memset(&fep->cc, 0, sizeof(fep->cc));
254         fep->cc.read = fec_ptp_read;
255         fep->cc.mask = CLOCKSOURCE_MASK(31);
256         fep->cc.shift = 31;
257         fep->cc.mult = FEC_CC_MULT;
258
259         /* reset the ns time counter */
260         timecounter_init(&fep->tc, &fep->cc, 0);
261
262         spin_unlock_irqrestore(&fep->tmreg_lock, flags);
263 }
264
265 /**
266  * fec_ptp_adjfreq - adjust ptp cycle frequency
267  * @ptp: the ptp clock structure
268  * @ppb: parts per billion adjustment from base
269  *
270  * Adjust the frequency of the ptp cycle counter by the
271  * indicated ppb from the base frequency.
272  *
273  * Because ENET hardware frequency adjust is complex,
274  * using software method to do that.
275  */
276 static int fec_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
277 {
278         unsigned long flags;
279         int neg_adj = 0;
280         u32 i, tmp;
281         u32 corr_inc, corr_period;
282         u32 corr_ns;
283         u64 lhs, rhs;
284
285         struct fec_enet_private *fep =
286             container_of(ptp, struct fec_enet_private, ptp_caps);
287
288         if (ppb == 0)
289                 return 0;
290
291         if (ppb < 0) {
292                 ppb = -ppb;
293                 neg_adj = 1;
294         }
295
296         /* In theory, corr_inc/corr_period = ppb/NSEC_PER_SEC;
297          * Try to find the corr_inc  between 1 to fep->ptp_inc to
298          * meet adjustment requirement.
299          */
300         lhs = NSEC_PER_SEC;
301         rhs = (u64)ppb * (u64)fep->ptp_inc;
302         for (i = 1; i <= fep->ptp_inc; i++) {
303                 if (lhs >= rhs) {
304                         corr_inc = i;
305                         corr_period = div_u64(lhs, rhs);
306                         break;
307                 }
308                 lhs += NSEC_PER_SEC;
309         }
310         /* Not found? Set it to high value - double speed
311          * correct in every clock step.
312          */
313         if (i > fep->ptp_inc) {
314                 corr_inc = fep->ptp_inc;
315                 corr_period = 1;
316         }
317
318         if (neg_adj)
319                 corr_ns = fep->ptp_inc - corr_inc;
320         else
321                 corr_ns = fep->ptp_inc + corr_inc;
322
323         spin_lock_irqsave(&fep->tmreg_lock, flags);
324
325         tmp = readl(fep->hwp + FEC_ATIME_INC) & FEC_T_INC_MASK;
326         tmp |= corr_ns << FEC_T_INC_CORR_OFFSET;
327         writel(tmp, fep->hwp + FEC_ATIME_INC);
328         corr_period = corr_period > 1 ? corr_period - 1 : corr_period;
329         writel(corr_period, fep->hwp + FEC_ATIME_CORR);
330         /* dummy read to update the timer. */
331         timecounter_read(&fep->tc);
332
333         spin_unlock_irqrestore(&fep->tmreg_lock, flags);
334
335         return 0;
336 }
337
338 /**
339  * fec_ptp_adjtime
340  * @ptp: the ptp clock structure
341  * @delta: offset to adjust the cycle counter by
342  *
343  * adjust the timer by resetting the timecounter structure.
344  */
345 static int fec_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
346 {
347         struct fec_enet_private *fep =
348             container_of(ptp, struct fec_enet_private, ptp_caps);
349         unsigned long flags;
350
351         spin_lock_irqsave(&fep->tmreg_lock, flags);
352         timecounter_adjtime(&fep->tc, delta);
353         spin_unlock_irqrestore(&fep->tmreg_lock, flags);
354
355         return 0;
356 }
357
358 /**
359  * fec_ptp_gettime
360  * @ptp: the ptp clock structure
361  * @ts: timespec structure to hold the current time value
362  *
363  * read the timecounter and return the correct value on ns,
364  * after converting it into a struct timespec.
365  */
366 static int fec_ptp_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
367 {
368         struct fec_enet_private *fep =
369             container_of(ptp, struct fec_enet_private, ptp_caps);
370         u64 ns;
371         unsigned long flags;
372
373         spin_lock_irqsave(&fep->tmreg_lock, flags);
374         /* Check the ptp clock */
375         if (!fep->ptp_clk_on) {
376                 spin_unlock_irqrestore(&fep->tmreg_lock, flags);
377                 return -EINVAL;
378         }
379         ns = timecounter_read(&fep->tc);
380         spin_unlock_irqrestore(&fep->tmreg_lock, flags);
381
382         *ts = ns_to_timespec64(ns);
383
384         return 0;
385 }
386
387 /**
388  * fec_ptp_settime
389  * @ptp: the ptp clock structure
390  * @ts: the timespec containing the new time for the cycle counter
391  *
392  * reset the timecounter to use a new base value instead of the kernel
393  * wall timer value.
394  */
395 static int fec_ptp_settime(struct ptp_clock_info *ptp,
396                            const struct timespec64 *ts)
397 {
398         struct fec_enet_private *fep =
399             container_of(ptp, struct fec_enet_private, ptp_caps);
400
401         u64 ns;
402         unsigned long flags;
403         u32 counter;
404
405         spin_lock_irqsave(&fep->tmreg_lock, flags);
406         /* Check the ptp clock */
407         if (!fep->ptp_clk_on) {
408                 spin_unlock_irqrestore(&fep->tmreg_lock, flags);
409                 return -EINVAL;
410         }
411
412         ns = timespec64_to_ns(ts);
413         /* Get the timer value based on timestamp.
414          * Update the counter with the masked value.
415          */
416         counter = ns & fep->cc.mask;
417
418         writel(counter, fep->hwp + FEC_ATIME);
419         timecounter_init(&fep->tc, &fep->cc, ns);
420         spin_unlock_irqrestore(&fep->tmreg_lock, flags);
421         return 0;
422 }
423
424 /**
425  * fec_ptp_enable
426  * @ptp: the ptp clock structure
427  * @rq: the requested feature to change
428  * @on: whether to enable or disable the feature
429  *
430  */
431 static int fec_ptp_enable(struct ptp_clock_info *ptp,
432                           struct ptp_clock_request *rq, int on)
433 {
434         struct fec_enet_private *fep =
435             container_of(ptp, struct fec_enet_private, ptp_caps);
436         int ret = 0;
437
438         if (rq->type == PTP_CLK_REQ_PPS) {
439                 ret = fec_ptp_enable_pps(fep, on);
440
441                 return ret;
442         }
443         return -EOPNOTSUPP;
444 }
445
446 /**
447  * fec_ptp_disable_hwts - disable hardware time stamping
448  * @ndev: pointer to net_device
449  */
450 void fec_ptp_disable_hwts(struct net_device *ndev)
451 {
452         struct fec_enet_private *fep = netdev_priv(ndev);
453
454         fep->hwts_tx_en = 0;
455         fep->hwts_rx_en = 0;
456 }
457
458 int fec_ptp_set(struct net_device *ndev, struct ifreq *ifr)
459 {
460         struct fec_enet_private *fep = netdev_priv(ndev);
461
462         struct hwtstamp_config config;
463
464         if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
465                 return -EFAULT;
466
467         switch (config.tx_type) {
468         case HWTSTAMP_TX_OFF:
469                 fep->hwts_tx_en = 0;
470                 break;
471         case HWTSTAMP_TX_ON:
472                 fep->hwts_tx_en = 1;
473                 break;
474         default:
475                 return -ERANGE;
476         }
477
478         switch (config.rx_filter) {
479         case HWTSTAMP_FILTER_NONE:
480                 fep->hwts_rx_en = 0;
481                 break;
482
483         default:
484                 fep->hwts_rx_en = 1;
485                 config.rx_filter = HWTSTAMP_FILTER_ALL;
486                 break;
487         }
488
489         return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
490             -EFAULT : 0;
491 }
492
493 int fec_ptp_get(struct net_device *ndev, struct ifreq *ifr)
494 {
495         struct fec_enet_private *fep = netdev_priv(ndev);
496         struct hwtstamp_config config;
497
498         config.flags = 0;
499         config.tx_type = fep->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
500         config.rx_filter = (fep->hwts_rx_en ?
501                             HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE);
502
503         return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
504                 -EFAULT : 0;
505 }
506
507 /*
508  * fec_time_keep - call timecounter_read every second to avoid timer overrun
509  *                 because ENET just support 32bit counter, will timeout in 4s
510  */
511 static void fec_time_keep(struct work_struct *work)
512 {
513         struct delayed_work *dwork = to_delayed_work(work);
514         struct fec_enet_private *fep = container_of(dwork, struct fec_enet_private, time_keep);
515         unsigned long flags;
516
517         spin_lock_irqsave(&fep->tmreg_lock, flags);
518         if (fep->ptp_clk_on) {
519                 timecounter_read(&fep->tc);
520         }
521         spin_unlock_irqrestore(&fep->tmreg_lock, flags);
522
523         schedule_delayed_work(&fep->time_keep, HZ);
524 }
525
526 /* This function checks the pps event and reloads the timer compare counter. */
527 static irqreturn_t fec_pps_interrupt(int irq, void *dev_id)
528 {
529         struct net_device *ndev = dev_id;
530         struct fec_enet_private *fep = netdev_priv(ndev);
531         u32 val;
532         u8 channel = fep->pps_channel;
533         struct ptp_clock_event event;
534
535         val = readl(fep->hwp + FEC_TCSR(channel));
536         if (val & FEC_T_TF_MASK) {
537                 /* Write the next next compare(not the next according the spec)
538                  * value to the register
539                  */
540                 writel(fep->next_counter, fep->hwp + FEC_TCCR(channel));
541                 do {
542                         writel(val, fep->hwp + FEC_TCSR(channel));
543                 } while (readl(fep->hwp + FEC_TCSR(channel)) & FEC_T_TF_MASK);
544
545                 /* Update the counter; */
546                 fep->next_counter = (fep->next_counter + fep->reload_period) &
547                                 fep->cc.mask;
548
549                 event.type = PTP_CLOCK_PPS;
550                 ptp_clock_event(fep->ptp_clock, &event);
551                 return IRQ_HANDLED;
552         }
553
554         return IRQ_NONE;
555 }
556
557 /**
558  * fec_ptp_init
559  * @pdev: The FEC network adapter
560  * @irq_idx: the interrupt index
561  *
562  * This function performs the required steps for enabling ptp
563  * support. If ptp support has already been loaded it simply calls the
564  * cyclecounter init routine and exits.
565  */
566
567 void fec_ptp_init(struct platform_device *pdev, int irq_idx)
568 {
569         struct net_device *ndev = platform_get_drvdata(pdev);
570         struct fec_enet_private *fep = netdev_priv(ndev);
571         int irq;
572         int ret;
573
574         fep->ptp_caps.owner = THIS_MODULE;
575         strlcpy(fep->ptp_caps.name, "fec ptp", sizeof(fep->ptp_caps.name));
576
577         fep->ptp_caps.max_adj = 250000000;
578         fep->ptp_caps.n_alarm = 0;
579         fep->ptp_caps.n_ext_ts = 0;
580         fep->ptp_caps.n_per_out = 0;
581         fep->ptp_caps.n_pins = 0;
582         fep->ptp_caps.pps = 1;
583         fep->ptp_caps.adjfreq = fec_ptp_adjfreq;
584         fep->ptp_caps.adjtime = fec_ptp_adjtime;
585         fep->ptp_caps.gettime64 = fec_ptp_gettime;
586         fep->ptp_caps.settime64 = fec_ptp_settime;
587         fep->ptp_caps.enable = fec_ptp_enable;
588
589         fep->cycle_speed = clk_get_rate(fep->clk_ptp);
590         if (!fep->cycle_speed) {
591                 fep->cycle_speed = NSEC_PER_SEC;
592                 dev_err(&fep->pdev->dev, "clk_ptp clock rate is zero\n");
593         }
594         fep->ptp_inc = NSEC_PER_SEC / fep->cycle_speed;
595
596         fec_ptp_start_cyclecounter(ndev);
597
598         INIT_DELAYED_WORK(&fep->time_keep, fec_time_keep);
599
600         irq = platform_get_irq_byname_optional(pdev, "pps");
601         if (irq < 0)
602                 irq = platform_get_irq_optional(pdev, irq_idx);
603         /* Failure to get an irq is not fatal,
604          * only the PTP_CLOCK_PPS clock events should stop
605          */
606         if (irq >= 0) {
607                 ret = devm_request_irq(&pdev->dev, irq, fec_pps_interrupt,
608                                        0, pdev->name, ndev);
609                 if (ret < 0)
610                         dev_warn(&pdev->dev, "request for pps irq failed(%d)\n",
611                                  ret);
612         }
613
614         fep->ptp_clock = ptp_clock_register(&fep->ptp_caps, &pdev->dev);
615         if (IS_ERR(fep->ptp_clock)) {
616                 fep->ptp_clock = NULL;
617                 dev_err(&pdev->dev, "ptp_clock_register failed\n");
618         }
619
620         schedule_delayed_work(&fep->time_keep, HZ);
621 }
622
623 void fec_ptp_stop(struct platform_device *pdev)
624 {
625         struct net_device *ndev = platform_get_drvdata(pdev);
626         struct fec_enet_private *fep = netdev_priv(ndev);
627
628         if (fep->pps_enable)
629                 fec_ptp_enable_pps(fep, 0);
630
631         cancel_delayed_work_sync(&fep->time_keep);
632         if (fep->ptp_clock)
633                 ptp_clock_unregister(fep->ptp_clock);
634 }
635
636 void fec_ptp_save_state(struct fec_enet_private *fep)
637 {
638         u32 atime_inc_corr;
639
640         fec_ptp_gettime(&fep->ptp_caps, &fep->ptp_saved_state.ts_phc);
641         fep->ptp_saved_state.ns_sys = ktime_get_ns();
642
643         fep->ptp_saved_state.at_corr = readl(fep->hwp + FEC_ATIME_CORR);
644         atime_inc_corr = readl(fep->hwp + FEC_ATIME_INC) & FEC_T_INC_CORR_MASK;
645         fep->ptp_saved_state.at_inc_corr = (u8)(atime_inc_corr >> FEC_T_INC_CORR_OFFSET);
646 }
647
648 int fec_ptp_restore_state(struct fec_enet_private *fep)
649 {
650         u32 atime_inc = readl(fep->hwp + FEC_ATIME_INC) & FEC_T_INC_MASK;
651         u64 ns_sys;
652
653         writel(fep->ptp_saved_state.at_corr, fep->hwp + FEC_ATIME_CORR);
654         atime_inc |= ((u32)fep->ptp_saved_state.at_inc_corr) << FEC_T_INC_CORR_OFFSET;
655         writel(atime_inc, fep->hwp + FEC_ATIME_INC);
656
657         ns_sys = ktime_get_ns() - fep->ptp_saved_state.ns_sys;
658         timespec64_add_ns(&fep->ptp_saved_state.ts_phc, ns_sys);
659         return fec_ptp_settime(&fep->ptp_caps, &fep->ptp_saved_state.ts_phc);
660 }