456e0336f3f6640b4a0f1b298cf2310824f08a1e
[linux-2.6-block.git] / drivers / net / ethernet / engleder / tsnep_main.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (C) 2021 Gerhard Engleder <gerhard@engleder-embedded.com> */
3
4 /* TSN endpoint Ethernet MAC driver
5  *
6  * The TSN endpoint Ethernet MAC is a FPGA based network device for real-time
7  * communication. It is designed for endpoints within TSN (Time Sensitive
8  * Networking) networks; e.g., for PLCs in the industrial automation case.
9  *
10  * It supports multiple TX/RX queue pairs. The first TX/RX queue pair is used
11  * by the driver.
12  *
13  * More information can be found here:
14  * - www.embedded-experts.at/tsn
15  * - www.engleder-embedded.com
16  */
17
18 #include "tsnep.h"
19 #include "tsnep_hw.h"
20
21 #include <linux/module.h>
22 #include <linux/of.h>
23 #include <linux/of_net.h>
24 #include <linux/of_mdio.h>
25 #include <linux/interrupt.h>
26 #include <linux/etherdevice.h>
27 #include <linux/phy.h>
28 #include <linux/iopoll.h>
29 #include <linux/bpf.h>
30 #include <linux/bpf_trace.h>
31 #include <net/page_pool/helpers.h>
32 #include <net/xdp_sock_drv.h>
33
34 #define TSNEP_RX_OFFSET (max(NET_SKB_PAD, XDP_PACKET_HEADROOM) + NET_IP_ALIGN)
35 #define TSNEP_HEADROOM ALIGN(TSNEP_RX_OFFSET, 4)
36 #define TSNEP_MAX_RX_BUF_SIZE (PAGE_SIZE - TSNEP_HEADROOM - \
37                                SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
38 /* XSK buffer shall store at least Q-in-Q frame */
39 #define TSNEP_XSK_RX_BUF_SIZE (ALIGN(TSNEP_RX_INLINE_METADATA_SIZE + \
40                                      ETH_FRAME_LEN + ETH_FCS_LEN + \
41                                      VLAN_HLEN * 2, 4))
42
43 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
44 #define DMA_ADDR_HIGH(dma_addr) ((u32)(((dma_addr) >> 32) & 0xFFFFFFFF))
45 #else
46 #define DMA_ADDR_HIGH(dma_addr) ((u32)(0))
47 #endif
48 #define DMA_ADDR_LOW(dma_addr) ((u32)((dma_addr) & 0xFFFFFFFF))
49
50 #define TSNEP_COALESCE_USECS_DEFAULT 64
51 #define TSNEP_COALESCE_USECS_MAX     ((ECM_INT_DELAY_MASK >> ECM_INT_DELAY_SHIFT) * \
52                                       ECM_INT_DELAY_BASE_US + ECM_INT_DELAY_BASE_US - 1)
53
54 /* mapping type */
55 #define TSNEP_TX_TYPE_MAP               BIT(0)
56 #define TSNEP_TX_TYPE_MAP_PAGE          BIT(1)
57 #define TSNEP_TX_TYPE_INLINE            BIT(2)
58 /* buffer type */
59 #define TSNEP_TX_TYPE_SKB               BIT(8)
60 #define TSNEP_TX_TYPE_SKB_MAP           (TSNEP_TX_TYPE_SKB | TSNEP_TX_TYPE_MAP)
61 #define TSNEP_TX_TYPE_SKB_INLINE        (TSNEP_TX_TYPE_SKB | TSNEP_TX_TYPE_INLINE)
62 #define TSNEP_TX_TYPE_SKB_FRAG          BIT(9)
63 #define TSNEP_TX_TYPE_SKB_FRAG_MAP_PAGE (TSNEP_TX_TYPE_SKB_FRAG | TSNEP_TX_TYPE_MAP_PAGE)
64 #define TSNEP_TX_TYPE_SKB_FRAG_INLINE   (TSNEP_TX_TYPE_SKB_FRAG | TSNEP_TX_TYPE_INLINE)
65 #define TSNEP_TX_TYPE_XDP_TX            BIT(10)
66 #define TSNEP_TX_TYPE_XDP_NDO           BIT(11)
67 #define TSNEP_TX_TYPE_XDP_NDO_MAP_PAGE  (TSNEP_TX_TYPE_XDP_NDO | TSNEP_TX_TYPE_MAP_PAGE)
68 #define TSNEP_TX_TYPE_XDP               (TSNEP_TX_TYPE_XDP_TX | TSNEP_TX_TYPE_XDP_NDO)
69 #define TSNEP_TX_TYPE_XSK               BIT(12)
70
71 #define TSNEP_XDP_TX            BIT(0)
72 #define TSNEP_XDP_REDIRECT      BIT(1)
73
74 static void tsnep_enable_irq(struct tsnep_adapter *adapter, u32 mask)
75 {
76         iowrite32(mask, adapter->addr + ECM_INT_ENABLE);
77 }
78
79 static void tsnep_disable_irq(struct tsnep_adapter *adapter, u32 mask)
80 {
81         mask |= ECM_INT_DISABLE;
82         iowrite32(mask, adapter->addr + ECM_INT_ENABLE);
83 }
84
85 static irqreturn_t tsnep_irq(int irq, void *arg)
86 {
87         struct tsnep_adapter *adapter = arg;
88         u32 active = ioread32(adapter->addr + ECM_INT_ACTIVE);
89
90         /* acknowledge interrupt */
91         if (active != 0)
92                 iowrite32(active, adapter->addr + ECM_INT_ACKNOWLEDGE);
93
94         /* handle link interrupt */
95         if ((active & ECM_INT_LINK) != 0)
96                 phy_mac_interrupt(adapter->netdev->phydev);
97
98         /* handle TX/RX queue 0 interrupt */
99         if ((active & adapter->queue[0].irq_mask) != 0) {
100                 if (napi_schedule_prep(&adapter->queue[0].napi)) {
101                         tsnep_disable_irq(adapter, adapter->queue[0].irq_mask);
102                         /* schedule after masking to avoid races */
103                         __napi_schedule(&adapter->queue[0].napi);
104                 }
105         }
106
107         return IRQ_HANDLED;
108 }
109
110 static irqreturn_t tsnep_irq_txrx(int irq, void *arg)
111 {
112         struct tsnep_queue *queue = arg;
113
114         /* handle TX/RX queue interrupt */
115         if (napi_schedule_prep(&queue->napi)) {
116                 tsnep_disable_irq(queue->adapter, queue->irq_mask);
117                 /* schedule after masking to avoid races */
118                 __napi_schedule(&queue->napi);
119         }
120
121         return IRQ_HANDLED;
122 }
123
124 int tsnep_set_irq_coalesce(struct tsnep_queue *queue, u32 usecs)
125 {
126         if (usecs > TSNEP_COALESCE_USECS_MAX)
127                 return -ERANGE;
128
129         usecs /= ECM_INT_DELAY_BASE_US;
130         usecs <<= ECM_INT_DELAY_SHIFT;
131         usecs &= ECM_INT_DELAY_MASK;
132
133         queue->irq_delay &= ~ECM_INT_DELAY_MASK;
134         queue->irq_delay |= usecs;
135         iowrite8(queue->irq_delay, queue->irq_delay_addr);
136
137         return 0;
138 }
139
140 u32 tsnep_get_irq_coalesce(struct tsnep_queue *queue)
141 {
142         u32 usecs;
143
144         usecs = (queue->irq_delay & ECM_INT_DELAY_MASK);
145         usecs >>= ECM_INT_DELAY_SHIFT;
146         usecs *= ECM_INT_DELAY_BASE_US;
147
148         return usecs;
149 }
150
151 static int tsnep_mdiobus_read(struct mii_bus *bus, int addr, int regnum)
152 {
153         struct tsnep_adapter *adapter = bus->priv;
154         u32 md;
155         int retval;
156
157         md = ECM_MD_READ;
158         if (!adapter->suppress_preamble)
159                 md |= ECM_MD_PREAMBLE;
160         md |= (regnum << ECM_MD_ADDR_SHIFT) & ECM_MD_ADDR_MASK;
161         md |= (addr << ECM_MD_PHY_ADDR_SHIFT) & ECM_MD_PHY_ADDR_MASK;
162         iowrite32(md, adapter->addr + ECM_MD_CONTROL);
163         retval = readl_poll_timeout_atomic(adapter->addr + ECM_MD_STATUS, md,
164                                            !(md & ECM_MD_BUSY), 16, 1000);
165         if (retval != 0)
166                 return retval;
167
168         return (md & ECM_MD_DATA_MASK) >> ECM_MD_DATA_SHIFT;
169 }
170
171 static int tsnep_mdiobus_write(struct mii_bus *bus, int addr, int regnum,
172                                u16 val)
173 {
174         struct tsnep_adapter *adapter = bus->priv;
175         u32 md;
176         int retval;
177
178         md = ECM_MD_WRITE;
179         if (!adapter->suppress_preamble)
180                 md |= ECM_MD_PREAMBLE;
181         md |= (regnum << ECM_MD_ADDR_SHIFT) & ECM_MD_ADDR_MASK;
182         md |= (addr << ECM_MD_PHY_ADDR_SHIFT) & ECM_MD_PHY_ADDR_MASK;
183         md |= ((u32)val << ECM_MD_DATA_SHIFT) & ECM_MD_DATA_MASK;
184         iowrite32(md, adapter->addr + ECM_MD_CONTROL);
185         retval = readl_poll_timeout_atomic(adapter->addr + ECM_MD_STATUS, md,
186                                            !(md & ECM_MD_BUSY), 16, 1000);
187         if (retval != 0)
188                 return retval;
189
190         return 0;
191 }
192
193 static void tsnep_set_link_mode(struct tsnep_adapter *adapter)
194 {
195         u32 mode;
196
197         switch (adapter->phydev->speed) {
198         case SPEED_100:
199                 mode = ECM_LINK_MODE_100;
200                 break;
201         case SPEED_1000:
202                 mode = ECM_LINK_MODE_1000;
203                 break;
204         default:
205                 mode = ECM_LINK_MODE_OFF;
206                 break;
207         }
208         iowrite32(mode, adapter->addr + ECM_STATUS);
209 }
210
211 static void tsnep_phy_link_status_change(struct net_device *netdev)
212 {
213         struct tsnep_adapter *adapter = netdev_priv(netdev);
214         struct phy_device *phydev = netdev->phydev;
215
216         if (phydev->link)
217                 tsnep_set_link_mode(adapter);
218
219         phy_print_status(netdev->phydev);
220 }
221
222 static int tsnep_phy_loopback(struct tsnep_adapter *adapter, bool enable)
223 {
224         int retval;
225
226         retval = phy_loopback(adapter->phydev, enable);
227
228         /* PHY link state change is not signaled if loopback is enabled, it
229          * would delay a working loopback anyway, let's ensure that loopback
230          * is working immediately by setting link mode directly
231          */
232         if (!retval && enable)
233                 tsnep_set_link_mode(adapter);
234
235         return retval;
236 }
237
238 static int tsnep_phy_open(struct tsnep_adapter *adapter)
239 {
240         struct phy_device *phydev;
241         struct ethtool_eee ethtool_eee;
242         int retval;
243
244         retval = phy_connect_direct(adapter->netdev, adapter->phydev,
245                                     tsnep_phy_link_status_change,
246                                     adapter->phy_mode);
247         if (retval)
248                 return retval;
249         phydev = adapter->netdev->phydev;
250
251         /* MAC supports only 100Mbps|1000Mbps full duplex
252          * SPE (Single Pair Ethernet) is also an option but not implemented yet
253          */
254         phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_10baseT_Half_BIT);
255         phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_10baseT_Full_BIT);
256         phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_100baseT_Half_BIT);
257         phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
258
259         /* disable EEE autoneg, EEE not supported by TSNEP */
260         memset(&ethtool_eee, 0, sizeof(ethtool_eee));
261         phy_ethtool_set_eee(adapter->phydev, &ethtool_eee);
262
263         adapter->phydev->irq = PHY_MAC_INTERRUPT;
264         phy_start(adapter->phydev);
265
266         return 0;
267 }
268
269 static void tsnep_phy_close(struct tsnep_adapter *adapter)
270 {
271         phy_stop(adapter->netdev->phydev);
272         phy_disconnect(adapter->netdev->phydev);
273 }
274
275 static void tsnep_tx_ring_cleanup(struct tsnep_tx *tx)
276 {
277         struct device *dmadev = tx->adapter->dmadev;
278         int i;
279
280         memset(tx->entry, 0, sizeof(tx->entry));
281
282         for (i = 0; i < TSNEP_RING_PAGE_COUNT; i++) {
283                 if (tx->page[i]) {
284                         dma_free_coherent(dmadev, PAGE_SIZE, tx->page[i],
285                                           tx->page_dma[i]);
286                         tx->page[i] = NULL;
287                         tx->page_dma[i] = 0;
288                 }
289         }
290 }
291
292 static int tsnep_tx_ring_create(struct tsnep_tx *tx)
293 {
294         struct device *dmadev = tx->adapter->dmadev;
295         struct tsnep_tx_entry *entry;
296         struct tsnep_tx_entry *next_entry;
297         int i, j;
298         int retval;
299
300         for (i = 0; i < TSNEP_RING_PAGE_COUNT; i++) {
301                 tx->page[i] =
302                         dma_alloc_coherent(dmadev, PAGE_SIZE, &tx->page_dma[i],
303                                            GFP_KERNEL);
304                 if (!tx->page[i]) {
305                         retval = -ENOMEM;
306                         goto alloc_failed;
307                 }
308                 for (j = 0; j < TSNEP_RING_ENTRIES_PER_PAGE; j++) {
309                         entry = &tx->entry[TSNEP_RING_ENTRIES_PER_PAGE * i + j];
310                         entry->desc_wb = (struct tsnep_tx_desc_wb *)
311                                 (((u8 *)tx->page[i]) + TSNEP_DESC_SIZE * j);
312                         entry->desc = (struct tsnep_tx_desc *)
313                                 (((u8 *)entry->desc_wb) + TSNEP_DESC_OFFSET);
314                         entry->desc_dma = tx->page_dma[i] + TSNEP_DESC_SIZE * j;
315                         entry->owner_user_flag = false;
316                 }
317         }
318         for (i = 0; i < TSNEP_RING_SIZE; i++) {
319                 entry = &tx->entry[i];
320                 next_entry = &tx->entry[(i + 1) & TSNEP_RING_MASK];
321                 entry->desc->next = __cpu_to_le64(next_entry->desc_dma);
322         }
323
324         return 0;
325
326 alloc_failed:
327         tsnep_tx_ring_cleanup(tx);
328         return retval;
329 }
330
331 static void tsnep_tx_init(struct tsnep_tx *tx)
332 {
333         dma_addr_t dma;
334
335         dma = tx->entry[0].desc_dma | TSNEP_RESET_OWNER_COUNTER;
336         iowrite32(DMA_ADDR_LOW(dma), tx->addr + TSNEP_TX_DESC_ADDR_LOW);
337         iowrite32(DMA_ADDR_HIGH(dma), tx->addr + TSNEP_TX_DESC_ADDR_HIGH);
338         tx->write = 0;
339         tx->read = 0;
340         tx->owner_counter = 1;
341         tx->increment_owner_counter = TSNEP_RING_SIZE - 1;
342 }
343
344 static void tsnep_tx_enable(struct tsnep_tx *tx)
345 {
346         struct netdev_queue *nq;
347
348         nq = netdev_get_tx_queue(tx->adapter->netdev, tx->queue_index);
349
350         __netif_tx_lock_bh(nq);
351         netif_tx_wake_queue(nq);
352         __netif_tx_unlock_bh(nq);
353 }
354
355 static void tsnep_tx_disable(struct tsnep_tx *tx, struct napi_struct *napi)
356 {
357         struct netdev_queue *nq;
358         u32 val;
359
360         nq = netdev_get_tx_queue(tx->adapter->netdev, tx->queue_index);
361
362         __netif_tx_lock_bh(nq);
363         netif_tx_stop_queue(nq);
364         __netif_tx_unlock_bh(nq);
365
366         /* wait until TX is done in hardware */
367         readx_poll_timeout(ioread32, tx->addr + TSNEP_CONTROL, val,
368                            ((val & TSNEP_CONTROL_TX_ENABLE) == 0), 10000,
369                            1000000);
370
371         /* wait until TX is also done in software */
372         while (READ_ONCE(tx->read) != tx->write) {
373                 napi_schedule(napi);
374                 napi_synchronize(napi);
375         }
376 }
377
378 static void tsnep_tx_activate(struct tsnep_tx *tx, int index, int length,
379                               bool last)
380 {
381         struct tsnep_tx_entry *entry = &tx->entry[index];
382
383         entry->properties = 0;
384         /* xdpf and zc are union with skb */
385         if (entry->skb) {
386                 entry->properties = length & TSNEP_DESC_LENGTH_MASK;
387                 entry->properties |= TSNEP_DESC_INTERRUPT_FLAG;
388                 if ((entry->type & TSNEP_TX_TYPE_SKB) &&
389                     (skb_shinfo(entry->skb)->tx_flags & SKBTX_IN_PROGRESS))
390                         entry->properties |= TSNEP_DESC_EXTENDED_WRITEBACK_FLAG;
391
392                 /* toggle user flag to prevent false acknowledge
393                  *
394                  * Only the first fragment is acknowledged. For all other
395                  * fragments no acknowledge is done and the last written owner
396                  * counter stays in the writeback descriptor. Therefore, it is
397                  * possible that the last written owner counter is identical to
398                  * the new incremented owner counter and a false acknowledge is
399                  * detected before the real acknowledge has been done by
400                  * hardware.
401                  *
402                  * The user flag is used to prevent this situation. The user
403                  * flag is copied to the writeback descriptor by the hardware
404                  * and is used as additional acknowledge data. By toggeling the
405                  * user flag only for the first fragment (which is
406                  * acknowledged), it is guaranteed that the last acknowledge
407                  * done for this descriptor has used a different user flag and
408                  * cannot be detected as false acknowledge.
409                  */
410                 entry->owner_user_flag = !entry->owner_user_flag;
411         }
412         if (last)
413                 entry->properties |= TSNEP_TX_DESC_LAST_FRAGMENT_FLAG;
414         if (index == tx->increment_owner_counter) {
415                 tx->owner_counter++;
416                 if (tx->owner_counter == 4)
417                         tx->owner_counter = 1;
418                 tx->increment_owner_counter--;
419                 if (tx->increment_owner_counter < 0)
420                         tx->increment_owner_counter = TSNEP_RING_SIZE - 1;
421         }
422         entry->properties |=
423                 (tx->owner_counter << TSNEP_DESC_OWNER_COUNTER_SHIFT) &
424                 TSNEP_DESC_OWNER_COUNTER_MASK;
425         if (entry->owner_user_flag)
426                 entry->properties |= TSNEP_TX_DESC_OWNER_USER_FLAG;
427         entry->desc->more_properties =
428                 __cpu_to_le32(entry->len & TSNEP_DESC_LENGTH_MASK);
429         if (entry->type & TSNEP_TX_TYPE_INLINE)
430                 entry->properties |= TSNEP_TX_DESC_DATA_AFTER_DESC_FLAG;
431
432         /* descriptor properties shall be written last, because valid data is
433          * signaled there
434          */
435         dma_wmb();
436
437         entry->desc->properties = __cpu_to_le32(entry->properties);
438 }
439
440 static int tsnep_tx_desc_available(struct tsnep_tx *tx)
441 {
442         if (tx->read <= tx->write)
443                 return TSNEP_RING_SIZE - tx->write + tx->read - 1;
444         else
445                 return tx->read - tx->write - 1;
446 }
447
448 static int tsnep_tx_map_frag(skb_frag_t *frag, struct tsnep_tx_entry *entry,
449                              struct device *dmadev, dma_addr_t *dma)
450 {
451         unsigned int len;
452         int mapped;
453
454         len = skb_frag_size(frag);
455         if (likely(len > TSNEP_DESC_SIZE_DATA_AFTER_INLINE)) {
456                 *dma = skb_frag_dma_map(dmadev, frag, 0, len, DMA_TO_DEVICE);
457                 if (dma_mapping_error(dmadev, *dma))
458                         return -ENOMEM;
459                 entry->type = TSNEP_TX_TYPE_SKB_FRAG_MAP_PAGE;
460                 mapped = 1;
461         } else {
462                 void *fragdata = skb_frag_address_safe(frag);
463
464                 if (likely(fragdata)) {
465                         memcpy(&entry->desc->tx, fragdata, len);
466                 } else {
467                         struct page *page = skb_frag_page(frag);
468
469                         fragdata = kmap_local_page(page);
470                         memcpy(&entry->desc->tx, fragdata + skb_frag_off(frag),
471                                len);
472                         kunmap_local(fragdata);
473                 }
474                 entry->type = TSNEP_TX_TYPE_SKB_FRAG_INLINE;
475                 mapped = 0;
476         }
477
478         return mapped;
479 }
480
481 static int tsnep_tx_map(struct sk_buff *skb, struct tsnep_tx *tx, int count)
482 {
483         struct device *dmadev = tx->adapter->dmadev;
484         struct tsnep_tx_entry *entry;
485         unsigned int len;
486         int map_len = 0;
487         dma_addr_t dma;
488         int i, mapped;
489
490         for (i = 0; i < count; i++) {
491                 entry = &tx->entry[(tx->write + i) & TSNEP_RING_MASK];
492
493                 if (!i) {
494                         len = skb_headlen(skb);
495                         if (likely(len > TSNEP_DESC_SIZE_DATA_AFTER_INLINE)) {
496                                 dma = dma_map_single(dmadev, skb->data, len,
497                                                      DMA_TO_DEVICE);
498                                 if (dma_mapping_error(dmadev, dma))
499                                         return -ENOMEM;
500                                 entry->type = TSNEP_TX_TYPE_SKB_MAP;
501                                 mapped = 1;
502                         } else {
503                                 memcpy(&entry->desc->tx, skb->data, len);
504                                 entry->type = TSNEP_TX_TYPE_SKB_INLINE;
505                                 mapped = 0;
506                         }
507                 } else {
508                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
509
510                         len = skb_frag_size(frag);
511                         mapped = tsnep_tx_map_frag(frag, entry, dmadev, &dma);
512                         if (mapped < 0)
513                                 return mapped;
514                 }
515
516                 entry->len = len;
517                 if (likely(mapped)) {
518                         dma_unmap_addr_set(entry, dma, dma);
519                         entry->desc->tx = __cpu_to_le64(dma);
520                 }
521
522                 map_len += len;
523         }
524
525         return map_len;
526 }
527
528 static int tsnep_tx_unmap(struct tsnep_tx *tx, int index, int count)
529 {
530         struct device *dmadev = tx->adapter->dmadev;
531         struct tsnep_tx_entry *entry;
532         int map_len = 0;
533         int i;
534
535         for (i = 0; i < count; i++) {
536                 entry = &tx->entry[(index + i) & TSNEP_RING_MASK];
537
538                 if (entry->len) {
539                         if (entry->type & TSNEP_TX_TYPE_MAP)
540                                 dma_unmap_single(dmadev,
541                                                  dma_unmap_addr(entry, dma),
542                                                  dma_unmap_len(entry, len),
543                                                  DMA_TO_DEVICE);
544                         else if (entry->type & TSNEP_TX_TYPE_MAP_PAGE)
545                                 dma_unmap_page(dmadev,
546                                                dma_unmap_addr(entry, dma),
547                                                dma_unmap_len(entry, len),
548                                                DMA_TO_DEVICE);
549                         map_len += entry->len;
550                         entry->len = 0;
551                 }
552         }
553
554         return map_len;
555 }
556
557 static netdev_tx_t tsnep_xmit_frame_ring(struct sk_buff *skb,
558                                          struct tsnep_tx *tx)
559 {
560         int count = 1;
561         struct tsnep_tx_entry *entry;
562         int length;
563         int i;
564         int retval;
565
566         if (skb_shinfo(skb)->nr_frags > 0)
567                 count += skb_shinfo(skb)->nr_frags;
568
569         if (tsnep_tx_desc_available(tx) < count) {
570                 /* ring full, shall not happen because queue is stopped if full
571                  * below
572                  */
573                 netif_stop_subqueue(tx->adapter->netdev, tx->queue_index);
574
575                 return NETDEV_TX_BUSY;
576         }
577
578         entry = &tx->entry[tx->write];
579         entry->skb = skb;
580
581         retval = tsnep_tx_map(skb, tx, count);
582         if (retval < 0) {
583                 tsnep_tx_unmap(tx, tx->write, count);
584                 dev_kfree_skb_any(entry->skb);
585                 entry->skb = NULL;
586
587                 tx->dropped++;
588
589                 return NETDEV_TX_OK;
590         }
591         length = retval;
592
593         if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)
594                 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
595
596         for (i = 0; i < count; i++)
597                 tsnep_tx_activate(tx, (tx->write + i) & TSNEP_RING_MASK, length,
598                                   i == count - 1);
599         tx->write = (tx->write + count) & TSNEP_RING_MASK;
600
601         skb_tx_timestamp(skb);
602
603         /* descriptor properties shall be valid before hardware is notified */
604         dma_wmb();
605
606         iowrite32(TSNEP_CONTROL_TX_ENABLE, tx->addr + TSNEP_CONTROL);
607
608         if (tsnep_tx_desc_available(tx) < (MAX_SKB_FRAGS + 1)) {
609                 /* ring can get full with next frame */
610                 netif_stop_subqueue(tx->adapter->netdev, tx->queue_index);
611         }
612
613         return NETDEV_TX_OK;
614 }
615
616 static int tsnep_xdp_tx_map(struct xdp_frame *xdpf, struct tsnep_tx *tx,
617                             struct skb_shared_info *shinfo, int count, u32 type)
618 {
619         struct device *dmadev = tx->adapter->dmadev;
620         struct tsnep_tx_entry *entry;
621         struct page *page;
622         skb_frag_t *frag;
623         unsigned int len;
624         int map_len = 0;
625         dma_addr_t dma;
626         void *data;
627         int i;
628
629         frag = NULL;
630         len = xdpf->len;
631         for (i = 0; i < count; i++) {
632                 entry = &tx->entry[(tx->write + i) & TSNEP_RING_MASK];
633                 if (type & TSNEP_TX_TYPE_XDP_NDO) {
634                         data = unlikely(frag) ? skb_frag_address(frag) :
635                                                 xdpf->data;
636                         dma = dma_map_single(dmadev, data, len, DMA_TO_DEVICE);
637                         if (dma_mapping_error(dmadev, dma))
638                                 return -ENOMEM;
639
640                         entry->type = TSNEP_TX_TYPE_XDP_NDO_MAP_PAGE;
641                 } else {
642                         page = unlikely(frag) ? skb_frag_page(frag) :
643                                                 virt_to_page(xdpf->data);
644                         dma = page_pool_get_dma_addr(page);
645                         if (unlikely(frag))
646                                 dma += skb_frag_off(frag);
647                         else
648                                 dma += sizeof(*xdpf) + xdpf->headroom;
649                         dma_sync_single_for_device(dmadev, dma, len,
650                                                    DMA_BIDIRECTIONAL);
651
652                         entry->type = TSNEP_TX_TYPE_XDP_TX;
653                 }
654
655                 entry->len = len;
656                 dma_unmap_addr_set(entry, dma, dma);
657
658                 entry->desc->tx = __cpu_to_le64(dma);
659
660                 map_len += len;
661
662                 if (i + 1 < count) {
663                         frag = &shinfo->frags[i];
664                         len = skb_frag_size(frag);
665                 }
666         }
667
668         return map_len;
669 }
670
671 /* This function requires __netif_tx_lock is held by the caller. */
672 static bool tsnep_xdp_xmit_frame_ring(struct xdp_frame *xdpf,
673                                       struct tsnep_tx *tx, u32 type)
674 {
675         struct skb_shared_info *shinfo = xdp_get_shared_info_from_frame(xdpf);
676         struct tsnep_tx_entry *entry;
677         int count, length, retval, i;
678
679         count = 1;
680         if (unlikely(xdp_frame_has_frags(xdpf)))
681                 count += shinfo->nr_frags;
682
683         /* ensure that TX ring is not filled up by XDP, always MAX_SKB_FRAGS
684          * will be available for normal TX path and queue is stopped there if
685          * necessary
686          */
687         if (tsnep_tx_desc_available(tx) < (MAX_SKB_FRAGS + 1 + count))
688                 return false;
689
690         entry = &tx->entry[tx->write];
691         entry->xdpf = xdpf;
692
693         retval = tsnep_xdp_tx_map(xdpf, tx, shinfo, count, type);
694         if (retval < 0) {
695                 tsnep_tx_unmap(tx, tx->write, count);
696                 entry->xdpf = NULL;
697
698                 tx->dropped++;
699
700                 return false;
701         }
702         length = retval;
703
704         for (i = 0; i < count; i++)
705                 tsnep_tx_activate(tx, (tx->write + i) & TSNEP_RING_MASK, length,
706                                   i == count - 1);
707         tx->write = (tx->write + count) & TSNEP_RING_MASK;
708
709         /* descriptor properties shall be valid before hardware is notified */
710         dma_wmb();
711
712         return true;
713 }
714
715 static void tsnep_xdp_xmit_flush(struct tsnep_tx *tx)
716 {
717         iowrite32(TSNEP_CONTROL_TX_ENABLE, tx->addr + TSNEP_CONTROL);
718 }
719
720 static bool tsnep_xdp_xmit_back(struct tsnep_adapter *adapter,
721                                 struct xdp_buff *xdp,
722                                 struct netdev_queue *tx_nq, struct tsnep_tx *tx)
723 {
724         struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
725         bool xmit;
726
727         if (unlikely(!xdpf))
728                 return false;
729
730         __netif_tx_lock(tx_nq, smp_processor_id());
731
732         xmit = tsnep_xdp_xmit_frame_ring(xdpf, tx, TSNEP_TX_TYPE_XDP_TX);
733
734         /* Avoid transmit queue timeout since we share it with the slow path */
735         if (xmit)
736                 txq_trans_cond_update(tx_nq);
737
738         __netif_tx_unlock(tx_nq);
739
740         return xmit;
741 }
742
743 static int tsnep_xdp_tx_map_zc(struct xdp_desc *xdpd, struct tsnep_tx *tx)
744 {
745         struct tsnep_tx_entry *entry;
746         dma_addr_t dma;
747
748         entry = &tx->entry[tx->write];
749         entry->zc = true;
750
751         dma = xsk_buff_raw_get_dma(tx->xsk_pool, xdpd->addr);
752         xsk_buff_raw_dma_sync_for_device(tx->xsk_pool, dma, xdpd->len);
753
754         entry->type = TSNEP_TX_TYPE_XSK;
755         entry->len = xdpd->len;
756
757         entry->desc->tx = __cpu_to_le64(dma);
758
759         return xdpd->len;
760 }
761
762 static void tsnep_xdp_xmit_frame_ring_zc(struct xdp_desc *xdpd,
763                                          struct tsnep_tx *tx)
764 {
765         int length;
766
767         length = tsnep_xdp_tx_map_zc(xdpd, tx);
768
769         tsnep_tx_activate(tx, tx->write, length, true);
770         tx->write = (tx->write + 1) & TSNEP_RING_MASK;
771 }
772
773 static void tsnep_xdp_xmit_zc(struct tsnep_tx *tx)
774 {
775         int desc_available = tsnep_tx_desc_available(tx);
776         struct xdp_desc *descs = tx->xsk_pool->tx_descs;
777         int batch, i;
778
779         /* ensure that TX ring is not filled up by XDP, always MAX_SKB_FRAGS
780          * will be available for normal TX path and queue is stopped there if
781          * necessary
782          */
783         if (desc_available <= (MAX_SKB_FRAGS + 1))
784                 return;
785         desc_available -= MAX_SKB_FRAGS + 1;
786
787         batch = xsk_tx_peek_release_desc_batch(tx->xsk_pool, desc_available);
788         for (i = 0; i < batch; i++)
789                 tsnep_xdp_xmit_frame_ring_zc(&descs[i], tx);
790
791         if (batch) {
792                 /* descriptor properties shall be valid before hardware is
793                  * notified
794                  */
795                 dma_wmb();
796
797                 tsnep_xdp_xmit_flush(tx);
798         }
799 }
800
801 static bool tsnep_tx_poll(struct tsnep_tx *tx, int napi_budget)
802 {
803         struct tsnep_tx_entry *entry;
804         struct netdev_queue *nq;
805         int xsk_frames = 0;
806         int budget = 128;
807         int length;
808         int count;
809
810         nq = netdev_get_tx_queue(tx->adapter->netdev, tx->queue_index);
811         __netif_tx_lock(nq, smp_processor_id());
812
813         do {
814                 if (tx->read == tx->write)
815                         break;
816
817                 entry = &tx->entry[tx->read];
818                 if ((__le32_to_cpu(entry->desc_wb->properties) &
819                      TSNEP_TX_DESC_OWNER_MASK) !=
820                     (entry->properties & TSNEP_TX_DESC_OWNER_MASK))
821                         break;
822
823                 /* descriptor properties shall be read first, because valid data
824                  * is signaled there
825                  */
826                 dma_rmb();
827
828                 count = 1;
829                 if ((entry->type & TSNEP_TX_TYPE_SKB) &&
830                     skb_shinfo(entry->skb)->nr_frags > 0)
831                         count += skb_shinfo(entry->skb)->nr_frags;
832                 else if ((entry->type & TSNEP_TX_TYPE_XDP) &&
833                          xdp_frame_has_frags(entry->xdpf))
834                         count += xdp_get_shared_info_from_frame(entry->xdpf)->nr_frags;
835
836                 length = tsnep_tx_unmap(tx, tx->read, count);
837
838                 if ((entry->type & TSNEP_TX_TYPE_SKB) &&
839                     (skb_shinfo(entry->skb)->tx_flags & SKBTX_IN_PROGRESS) &&
840                     (__le32_to_cpu(entry->desc_wb->properties) &
841                      TSNEP_DESC_EXTENDED_WRITEBACK_FLAG)) {
842                         struct skb_shared_hwtstamps hwtstamps;
843                         u64 timestamp;
844
845                         if (skb_shinfo(entry->skb)->tx_flags &
846                             SKBTX_HW_TSTAMP_USE_CYCLES)
847                                 timestamp =
848                                         __le64_to_cpu(entry->desc_wb->counter);
849                         else
850                                 timestamp =
851                                         __le64_to_cpu(entry->desc_wb->timestamp);
852
853                         memset(&hwtstamps, 0, sizeof(hwtstamps));
854                         hwtstamps.hwtstamp = ns_to_ktime(timestamp);
855
856                         skb_tstamp_tx(entry->skb, &hwtstamps);
857                 }
858
859                 if (entry->type & TSNEP_TX_TYPE_SKB)
860                         napi_consume_skb(entry->skb, napi_budget);
861                 else if (entry->type & TSNEP_TX_TYPE_XDP)
862                         xdp_return_frame_rx_napi(entry->xdpf);
863                 else
864                         xsk_frames++;
865                 /* xdpf and zc are union with skb */
866                 entry->skb = NULL;
867
868                 tx->read = (tx->read + count) & TSNEP_RING_MASK;
869
870                 tx->packets++;
871                 tx->bytes += length + ETH_FCS_LEN;
872
873                 budget--;
874         } while (likely(budget));
875
876         if (tx->xsk_pool) {
877                 if (xsk_frames)
878                         xsk_tx_completed(tx->xsk_pool, xsk_frames);
879                 if (xsk_uses_need_wakeup(tx->xsk_pool))
880                         xsk_set_tx_need_wakeup(tx->xsk_pool);
881                 tsnep_xdp_xmit_zc(tx);
882         }
883
884         if ((tsnep_tx_desc_available(tx) >= ((MAX_SKB_FRAGS + 1) * 2)) &&
885             netif_tx_queue_stopped(nq)) {
886                 netif_tx_wake_queue(nq);
887         }
888
889         __netif_tx_unlock(nq);
890
891         return budget != 0;
892 }
893
894 static bool tsnep_tx_pending(struct tsnep_tx *tx)
895 {
896         struct tsnep_tx_entry *entry;
897         struct netdev_queue *nq;
898         bool pending = false;
899
900         nq = netdev_get_tx_queue(tx->adapter->netdev, tx->queue_index);
901         __netif_tx_lock(nq, smp_processor_id());
902
903         if (tx->read != tx->write) {
904                 entry = &tx->entry[tx->read];
905                 if ((__le32_to_cpu(entry->desc_wb->properties) &
906                      TSNEP_TX_DESC_OWNER_MASK) ==
907                     (entry->properties & TSNEP_TX_DESC_OWNER_MASK))
908                         pending = true;
909         }
910
911         __netif_tx_unlock(nq);
912
913         return pending;
914 }
915
916 static int tsnep_tx_open(struct tsnep_tx *tx)
917 {
918         int retval;
919
920         retval = tsnep_tx_ring_create(tx);
921         if (retval)
922                 return retval;
923
924         tsnep_tx_init(tx);
925
926         return 0;
927 }
928
929 static void tsnep_tx_close(struct tsnep_tx *tx)
930 {
931         tsnep_tx_ring_cleanup(tx);
932 }
933
934 static void tsnep_rx_ring_cleanup(struct tsnep_rx *rx)
935 {
936         struct device *dmadev = rx->adapter->dmadev;
937         struct tsnep_rx_entry *entry;
938         int i;
939
940         for (i = 0; i < TSNEP_RING_SIZE; i++) {
941                 entry = &rx->entry[i];
942                 if (!rx->xsk_pool && entry->page)
943                         page_pool_put_full_page(rx->page_pool, entry->page,
944                                                 false);
945                 if (rx->xsk_pool && entry->xdp)
946                         xsk_buff_free(entry->xdp);
947                 /* xdp is union with page */
948                 entry->page = NULL;
949         }
950
951         if (rx->page_pool)
952                 page_pool_destroy(rx->page_pool);
953
954         memset(rx->entry, 0, sizeof(rx->entry));
955
956         for (i = 0; i < TSNEP_RING_PAGE_COUNT; i++) {
957                 if (rx->page[i]) {
958                         dma_free_coherent(dmadev, PAGE_SIZE, rx->page[i],
959                                           rx->page_dma[i]);
960                         rx->page[i] = NULL;
961                         rx->page_dma[i] = 0;
962                 }
963         }
964 }
965
966 static int tsnep_rx_ring_create(struct tsnep_rx *rx)
967 {
968         struct device *dmadev = rx->adapter->dmadev;
969         struct tsnep_rx_entry *entry;
970         struct page_pool_params pp_params = { 0 };
971         struct tsnep_rx_entry *next_entry;
972         int i, j;
973         int retval;
974
975         for (i = 0; i < TSNEP_RING_PAGE_COUNT; i++) {
976                 rx->page[i] =
977                         dma_alloc_coherent(dmadev, PAGE_SIZE, &rx->page_dma[i],
978                                            GFP_KERNEL);
979                 if (!rx->page[i]) {
980                         retval = -ENOMEM;
981                         goto failed;
982                 }
983                 for (j = 0; j < TSNEP_RING_ENTRIES_PER_PAGE; j++) {
984                         entry = &rx->entry[TSNEP_RING_ENTRIES_PER_PAGE * i + j];
985                         entry->desc_wb = (struct tsnep_rx_desc_wb *)
986                                 (((u8 *)rx->page[i]) + TSNEP_DESC_SIZE * j);
987                         entry->desc = (struct tsnep_rx_desc *)
988                                 (((u8 *)entry->desc_wb) + TSNEP_DESC_OFFSET);
989                         entry->desc_dma = rx->page_dma[i] + TSNEP_DESC_SIZE * j;
990                 }
991         }
992
993         pp_params.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV;
994         pp_params.order = 0;
995         pp_params.pool_size = TSNEP_RING_SIZE;
996         pp_params.nid = dev_to_node(dmadev);
997         pp_params.dev = dmadev;
998         pp_params.dma_dir = DMA_BIDIRECTIONAL;
999         pp_params.max_len = TSNEP_MAX_RX_BUF_SIZE;
1000         pp_params.offset = TSNEP_RX_OFFSET;
1001         rx->page_pool = page_pool_create(&pp_params);
1002         if (IS_ERR(rx->page_pool)) {
1003                 retval = PTR_ERR(rx->page_pool);
1004                 rx->page_pool = NULL;
1005                 goto failed;
1006         }
1007
1008         for (i = 0; i < TSNEP_RING_SIZE; i++) {
1009                 entry = &rx->entry[i];
1010                 next_entry = &rx->entry[(i + 1) & TSNEP_RING_MASK];
1011                 entry->desc->next = __cpu_to_le64(next_entry->desc_dma);
1012         }
1013
1014         return 0;
1015
1016 failed:
1017         tsnep_rx_ring_cleanup(rx);
1018         return retval;
1019 }
1020
1021 static void tsnep_rx_init(struct tsnep_rx *rx)
1022 {
1023         dma_addr_t dma;
1024
1025         dma = rx->entry[0].desc_dma | TSNEP_RESET_OWNER_COUNTER;
1026         iowrite32(DMA_ADDR_LOW(dma), rx->addr + TSNEP_RX_DESC_ADDR_LOW);
1027         iowrite32(DMA_ADDR_HIGH(dma), rx->addr + TSNEP_RX_DESC_ADDR_HIGH);
1028         rx->write = 0;
1029         rx->read = 0;
1030         rx->owner_counter = 1;
1031         rx->increment_owner_counter = TSNEP_RING_SIZE - 1;
1032 }
1033
1034 static void tsnep_rx_enable(struct tsnep_rx *rx)
1035 {
1036         /* descriptor properties shall be valid before hardware is notified */
1037         dma_wmb();
1038
1039         iowrite32(TSNEP_CONTROL_RX_ENABLE, rx->addr + TSNEP_CONTROL);
1040 }
1041
1042 static void tsnep_rx_disable(struct tsnep_rx *rx)
1043 {
1044         u32 val;
1045
1046         iowrite32(TSNEP_CONTROL_RX_DISABLE, rx->addr + TSNEP_CONTROL);
1047         readx_poll_timeout(ioread32, rx->addr + TSNEP_CONTROL, val,
1048                            ((val & TSNEP_CONTROL_RX_ENABLE) == 0), 10000,
1049                            1000000);
1050 }
1051
1052 static int tsnep_rx_desc_available(struct tsnep_rx *rx)
1053 {
1054         if (rx->read <= rx->write)
1055                 return TSNEP_RING_SIZE - rx->write + rx->read - 1;
1056         else
1057                 return rx->read - rx->write - 1;
1058 }
1059
1060 static void tsnep_rx_free_page_buffer(struct tsnep_rx *rx)
1061 {
1062         struct page **page;
1063
1064         /* last entry of page_buffer is always zero, because ring cannot be
1065          * filled completely
1066          */
1067         page = rx->page_buffer;
1068         while (*page) {
1069                 page_pool_put_full_page(rx->page_pool, *page, false);
1070                 *page = NULL;
1071                 page++;
1072         }
1073 }
1074
1075 static int tsnep_rx_alloc_page_buffer(struct tsnep_rx *rx)
1076 {
1077         int i;
1078
1079         /* alloc for all ring entries except the last one, because ring cannot
1080          * be filled completely
1081          */
1082         for (i = 0; i < TSNEP_RING_SIZE - 1; i++) {
1083                 rx->page_buffer[i] = page_pool_dev_alloc_pages(rx->page_pool);
1084                 if (!rx->page_buffer[i]) {
1085                         tsnep_rx_free_page_buffer(rx);
1086
1087                         return -ENOMEM;
1088                 }
1089         }
1090
1091         return 0;
1092 }
1093
1094 static void tsnep_rx_set_page(struct tsnep_rx *rx, struct tsnep_rx_entry *entry,
1095                               struct page *page)
1096 {
1097         entry->page = page;
1098         entry->len = TSNEP_MAX_RX_BUF_SIZE;
1099         entry->dma = page_pool_get_dma_addr(entry->page);
1100         entry->desc->rx = __cpu_to_le64(entry->dma + TSNEP_RX_OFFSET);
1101 }
1102
1103 static int tsnep_rx_alloc_buffer(struct tsnep_rx *rx, int index)
1104 {
1105         struct tsnep_rx_entry *entry = &rx->entry[index];
1106         struct page *page;
1107
1108         page = page_pool_dev_alloc_pages(rx->page_pool);
1109         if (unlikely(!page))
1110                 return -ENOMEM;
1111         tsnep_rx_set_page(rx, entry, page);
1112
1113         return 0;
1114 }
1115
1116 static void tsnep_rx_reuse_buffer(struct tsnep_rx *rx, int index)
1117 {
1118         struct tsnep_rx_entry *entry = &rx->entry[index];
1119         struct tsnep_rx_entry *read = &rx->entry[rx->read];
1120
1121         tsnep_rx_set_page(rx, entry, read->page);
1122         read->page = NULL;
1123 }
1124
1125 static void tsnep_rx_activate(struct tsnep_rx *rx, int index)
1126 {
1127         struct tsnep_rx_entry *entry = &rx->entry[index];
1128
1129         /* TSNEP_MAX_RX_BUF_SIZE and TSNEP_XSK_RX_BUF_SIZE are multiple of 4 */
1130         entry->properties = entry->len & TSNEP_DESC_LENGTH_MASK;
1131         entry->properties |= TSNEP_DESC_INTERRUPT_FLAG;
1132         if (index == rx->increment_owner_counter) {
1133                 rx->owner_counter++;
1134                 if (rx->owner_counter == 4)
1135                         rx->owner_counter = 1;
1136                 rx->increment_owner_counter--;
1137                 if (rx->increment_owner_counter < 0)
1138                         rx->increment_owner_counter = TSNEP_RING_SIZE - 1;
1139         }
1140         entry->properties |=
1141                 (rx->owner_counter << TSNEP_DESC_OWNER_COUNTER_SHIFT) &
1142                 TSNEP_DESC_OWNER_COUNTER_MASK;
1143
1144         /* descriptor properties shall be written last, because valid data is
1145          * signaled there
1146          */
1147         dma_wmb();
1148
1149         entry->desc->properties = __cpu_to_le32(entry->properties);
1150 }
1151
1152 static int tsnep_rx_alloc(struct tsnep_rx *rx, int count, bool reuse)
1153 {
1154         bool alloc_failed = false;
1155         int i, index;
1156
1157         for (i = 0; i < count && !alloc_failed; i++) {
1158                 index = (rx->write + i) & TSNEP_RING_MASK;
1159
1160                 if (unlikely(tsnep_rx_alloc_buffer(rx, index))) {
1161                         rx->alloc_failed++;
1162                         alloc_failed = true;
1163
1164                         /* reuse only if no other allocation was successful */
1165                         if (i == 0 && reuse)
1166                                 tsnep_rx_reuse_buffer(rx, index);
1167                         else
1168                                 break;
1169                 }
1170
1171                 tsnep_rx_activate(rx, index);
1172         }
1173
1174         if (i)
1175                 rx->write = (rx->write + i) & TSNEP_RING_MASK;
1176
1177         return i;
1178 }
1179
1180 static int tsnep_rx_refill(struct tsnep_rx *rx, int count, bool reuse)
1181 {
1182         int desc_refilled;
1183
1184         desc_refilled = tsnep_rx_alloc(rx, count, reuse);
1185         if (desc_refilled)
1186                 tsnep_rx_enable(rx);
1187
1188         return desc_refilled;
1189 }
1190
1191 static void tsnep_rx_set_xdp(struct tsnep_rx *rx, struct tsnep_rx_entry *entry,
1192                              struct xdp_buff *xdp)
1193 {
1194         entry->xdp = xdp;
1195         entry->len = TSNEP_XSK_RX_BUF_SIZE;
1196         entry->dma = xsk_buff_xdp_get_dma(entry->xdp);
1197         entry->desc->rx = __cpu_to_le64(entry->dma);
1198 }
1199
1200 static void tsnep_rx_reuse_buffer_zc(struct tsnep_rx *rx, int index)
1201 {
1202         struct tsnep_rx_entry *entry = &rx->entry[index];
1203         struct tsnep_rx_entry *read = &rx->entry[rx->read];
1204
1205         tsnep_rx_set_xdp(rx, entry, read->xdp);
1206         read->xdp = NULL;
1207 }
1208
1209 static int tsnep_rx_alloc_zc(struct tsnep_rx *rx, int count, bool reuse)
1210 {
1211         u32 allocated;
1212         int i;
1213
1214         allocated = xsk_buff_alloc_batch(rx->xsk_pool, rx->xdp_batch, count);
1215         for (i = 0; i < allocated; i++) {
1216                 int index = (rx->write + i) & TSNEP_RING_MASK;
1217                 struct tsnep_rx_entry *entry = &rx->entry[index];
1218
1219                 tsnep_rx_set_xdp(rx, entry, rx->xdp_batch[i]);
1220                 tsnep_rx_activate(rx, index);
1221         }
1222         if (i == 0) {
1223                 rx->alloc_failed++;
1224
1225                 if (reuse) {
1226                         tsnep_rx_reuse_buffer_zc(rx, rx->write);
1227                         tsnep_rx_activate(rx, rx->write);
1228                 }
1229         }
1230
1231         if (i)
1232                 rx->write = (rx->write + i) & TSNEP_RING_MASK;
1233
1234         return i;
1235 }
1236
1237 static void tsnep_rx_free_zc(struct tsnep_rx *rx)
1238 {
1239         int i;
1240
1241         for (i = 0; i < TSNEP_RING_SIZE; i++) {
1242                 struct tsnep_rx_entry *entry = &rx->entry[i];
1243
1244                 if (entry->xdp)
1245                         xsk_buff_free(entry->xdp);
1246                 entry->xdp = NULL;
1247         }
1248 }
1249
1250 static int tsnep_rx_refill_zc(struct tsnep_rx *rx, int count, bool reuse)
1251 {
1252         int desc_refilled;
1253
1254         desc_refilled = tsnep_rx_alloc_zc(rx, count, reuse);
1255         if (desc_refilled)
1256                 tsnep_rx_enable(rx);
1257
1258         return desc_refilled;
1259 }
1260
1261 static bool tsnep_xdp_run_prog(struct tsnep_rx *rx, struct bpf_prog *prog,
1262                                struct xdp_buff *xdp, int *status,
1263                                struct netdev_queue *tx_nq, struct tsnep_tx *tx)
1264 {
1265         unsigned int length;
1266         unsigned int sync;
1267         u32 act;
1268
1269         length = xdp->data_end - xdp->data_hard_start - XDP_PACKET_HEADROOM;
1270
1271         act = bpf_prog_run_xdp(prog, xdp);
1272         switch (act) {
1273         case XDP_PASS:
1274                 return false;
1275         case XDP_TX:
1276                 if (!tsnep_xdp_xmit_back(rx->adapter, xdp, tx_nq, tx))
1277                         goto out_failure;
1278                 *status |= TSNEP_XDP_TX;
1279                 return true;
1280         case XDP_REDIRECT:
1281                 if (xdp_do_redirect(rx->adapter->netdev, xdp, prog) < 0)
1282                         goto out_failure;
1283                 *status |= TSNEP_XDP_REDIRECT;
1284                 return true;
1285         default:
1286                 bpf_warn_invalid_xdp_action(rx->adapter->netdev, prog, act);
1287                 fallthrough;
1288         case XDP_ABORTED:
1289 out_failure:
1290                 trace_xdp_exception(rx->adapter->netdev, prog, act);
1291                 fallthrough;
1292         case XDP_DROP:
1293                 /* Due xdp_adjust_tail: DMA sync for_device cover max len CPU
1294                  * touch
1295                  */
1296                 sync = xdp->data_end - xdp->data_hard_start -
1297                        XDP_PACKET_HEADROOM;
1298                 sync = max(sync, length);
1299                 page_pool_put_page(rx->page_pool, virt_to_head_page(xdp->data),
1300                                    sync, true);
1301                 return true;
1302         }
1303 }
1304
1305 static bool tsnep_xdp_run_prog_zc(struct tsnep_rx *rx, struct bpf_prog *prog,
1306                                   struct xdp_buff *xdp, int *status,
1307                                   struct netdev_queue *tx_nq,
1308                                   struct tsnep_tx *tx)
1309 {
1310         u32 act;
1311
1312         act = bpf_prog_run_xdp(prog, xdp);
1313
1314         /* XDP_REDIRECT is the main action for zero-copy */
1315         if (likely(act == XDP_REDIRECT)) {
1316                 if (xdp_do_redirect(rx->adapter->netdev, xdp, prog) < 0)
1317                         goto out_failure;
1318                 *status |= TSNEP_XDP_REDIRECT;
1319                 return true;
1320         }
1321
1322         switch (act) {
1323         case XDP_PASS:
1324                 return false;
1325         case XDP_TX:
1326                 if (!tsnep_xdp_xmit_back(rx->adapter, xdp, tx_nq, tx))
1327                         goto out_failure;
1328                 *status |= TSNEP_XDP_TX;
1329                 return true;
1330         default:
1331                 bpf_warn_invalid_xdp_action(rx->adapter->netdev, prog, act);
1332                 fallthrough;
1333         case XDP_ABORTED:
1334 out_failure:
1335                 trace_xdp_exception(rx->adapter->netdev, prog, act);
1336                 fallthrough;
1337         case XDP_DROP:
1338                 xsk_buff_free(xdp);
1339                 return true;
1340         }
1341 }
1342
1343 static void tsnep_finalize_xdp(struct tsnep_adapter *adapter, int status,
1344                                struct netdev_queue *tx_nq, struct tsnep_tx *tx)
1345 {
1346         if (status & TSNEP_XDP_TX) {
1347                 __netif_tx_lock(tx_nq, smp_processor_id());
1348                 tsnep_xdp_xmit_flush(tx);
1349                 __netif_tx_unlock(tx_nq);
1350         }
1351
1352         if (status & TSNEP_XDP_REDIRECT)
1353                 xdp_do_flush();
1354 }
1355
1356 static struct sk_buff *tsnep_build_skb(struct tsnep_rx *rx, struct page *page,
1357                                        int length)
1358 {
1359         struct sk_buff *skb;
1360
1361         skb = napi_build_skb(page_address(page), PAGE_SIZE);
1362         if (unlikely(!skb))
1363                 return NULL;
1364
1365         /* update pointers within the skb to store the data */
1366         skb_reserve(skb, TSNEP_RX_OFFSET + TSNEP_RX_INLINE_METADATA_SIZE);
1367         __skb_put(skb, length - ETH_FCS_LEN);
1368
1369         if (rx->adapter->hwtstamp_config.rx_filter == HWTSTAMP_FILTER_ALL) {
1370                 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
1371                 struct tsnep_rx_inline *rx_inline =
1372                         (struct tsnep_rx_inline *)(page_address(page) +
1373                                                    TSNEP_RX_OFFSET);
1374
1375                 skb_shinfo(skb)->tx_flags |=
1376                         SKBTX_HW_TSTAMP_NETDEV;
1377                 memset(hwtstamps, 0, sizeof(*hwtstamps));
1378                 hwtstamps->netdev_data = rx_inline;
1379         }
1380
1381         skb_record_rx_queue(skb, rx->queue_index);
1382         skb->protocol = eth_type_trans(skb, rx->adapter->netdev);
1383
1384         return skb;
1385 }
1386
1387 static void tsnep_rx_page(struct tsnep_rx *rx, struct napi_struct *napi,
1388                           struct page *page, int length)
1389 {
1390         struct sk_buff *skb;
1391
1392         skb = tsnep_build_skb(rx, page, length);
1393         if (skb) {
1394                 skb_mark_for_recycle(skb);
1395
1396                 rx->packets++;
1397                 rx->bytes += length;
1398                 if (skb->pkt_type == PACKET_MULTICAST)
1399                         rx->multicast++;
1400
1401                 napi_gro_receive(napi, skb);
1402         } else {
1403                 page_pool_recycle_direct(rx->page_pool, page);
1404
1405                 rx->dropped++;
1406         }
1407 }
1408
1409 static int tsnep_rx_poll(struct tsnep_rx *rx, struct napi_struct *napi,
1410                          int budget)
1411 {
1412         struct device *dmadev = rx->adapter->dmadev;
1413         enum dma_data_direction dma_dir;
1414         struct tsnep_rx_entry *entry;
1415         struct netdev_queue *tx_nq;
1416         struct bpf_prog *prog;
1417         struct xdp_buff xdp;
1418         struct tsnep_tx *tx;
1419         int desc_available;
1420         int xdp_status = 0;
1421         int done = 0;
1422         int length;
1423
1424         desc_available = tsnep_rx_desc_available(rx);
1425         dma_dir = page_pool_get_dma_dir(rx->page_pool);
1426         prog = READ_ONCE(rx->adapter->xdp_prog);
1427         if (prog) {
1428                 tx_nq = netdev_get_tx_queue(rx->adapter->netdev,
1429                                             rx->tx_queue_index);
1430                 tx = &rx->adapter->tx[rx->tx_queue_index];
1431
1432                 xdp_init_buff(&xdp, PAGE_SIZE, &rx->xdp_rxq);
1433         }
1434
1435         while (likely(done < budget) && (rx->read != rx->write)) {
1436                 entry = &rx->entry[rx->read];
1437                 if ((__le32_to_cpu(entry->desc_wb->properties) &
1438                      TSNEP_DESC_OWNER_COUNTER_MASK) !=
1439                     (entry->properties & TSNEP_DESC_OWNER_COUNTER_MASK))
1440                         break;
1441                 done++;
1442
1443                 if (desc_available >= TSNEP_RING_RX_REFILL) {
1444                         bool reuse = desc_available >= TSNEP_RING_RX_REUSE;
1445
1446                         desc_available -= tsnep_rx_refill(rx, desc_available,
1447                                                           reuse);
1448                         if (!entry->page) {
1449                                 /* buffer has been reused for refill to prevent
1450                                  * empty RX ring, thus buffer cannot be used for
1451                                  * RX processing
1452                                  */
1453                                 rx->read = (rx->read + 1) & TSNEP_RING_MASK;
1454                                 desc_available++;
1455
1456                                 rx->dropped++;
1457
1458                                 continue;
1459                         }
1460                 }
1461
1462                 /* descriptor properties shall be read first, because valid data
1463                  * is signaled there
1464                  */
1465                 dma_rmb();
1466
1467                 prefetch(page_address(entry->page) + TSNEP_RX_OFFSET);
1468                 length = __le32_to_cpu(entry->desc_wb->properties) &
1469                          TSNEP_DESC_LENGTH_MASK;
1470                 dma_sync_single_range_for_cpu(dmadev, entry->dma,
1471                                               TSNEP_RX_OFFSET, length, dma_dir);
1472
1473                 /* RX metadata with timestamps is in front of actual data,
1474                  * subtract metadata size to get length of actual data and
1475                  * consider metadata size as offset of actual data during RX
1476                  * processing
1477                  */
1478                 length -= TSNEP_RX_INLINE_METADATA_SIZE;
1479
1480                 rx->read = (rx->read + 1) & TSNEP_RING_MASK;
1481                 desc_available++;
1482
1483                 if (prog) {
1484                         bool consume;
1485
1486                         xdp_prepare_buff(&xdp, page_address(entry->page),
1487                                          XDP_PACKET_HEADROOM + TSNEP_RX_INLINE_METADATA_SIZE,
1488                                          length - ETH_FCS_LEN, false);
1489
1490                         consume = tsnep_xdp_run_prog(rx, prog, &xdp,
1491                                                      &xdp_status, tx_nq, tx);
1492                         if (consume) {
1493                                 rx->packets++;
1494                                 rx->bytes += length;
1495
1496                                 entry->page = NULL;
1497
1498                                 continue;
1499                         }
1500                 }
1501
1502                 tsnep_rx_page(rx, napi, entry->page, length);
1503                 entry->page = NULL;
1504         }
1505
1506         if (xdp_status)
1507                 tsnep_finalize_xdp(rx->adapter, xdp_status, tx_nq, tx);
1508
1509         if (desc_available)
1510                 tsnep_rx_refill(rx, desc_available, false);
1511
1512         return done;
1513 }
1514
1515 static int tsnep_rx_poll_zc(struct tsnep_rx *rx, struct napi_struct *napi,
1516                             int budget)
1517 {
1518         struct tsnep_rx_entry *entry;
1519         struct netdev_queue *tx_nq;
1520         struct bpf_prog *prog;
1521         struct tsnep_tx *tx;
1522         int desc_available;
1523         int xdp_status = 0;
1524         struct page *page;
1525         int done = 0;
1526         int length;
1527
1528         desc_available = tsnep_rx_desc_available(rx);
1529         prog = READ_ONCE(rx->adapter->xdp_prog);
1530         if (prog) {
1531                 tx_nq = netdev_get_tx_queue(rx->adapter->netdev,
1532                                             rx->tx_queue_index);
1533                 tx = &rx->adapter->tx[rx->tx_queue_index];
1534         }
1535
1536         while (likely(done < budget) && (rx->read != rx->write)) {
1537                 entry = &rx->entry[rx->read];
1538                 if ((__le32_to_cpu(entry->desc_wb->properties) &
1539                      TSNEP_DESC_OWNER_COUNTER_MASK) !=
1540                     (entry->properties & TSNEP_DESC_OWNER_COUNTER_MASK))
1541                         break;
1542                 done++;
1543
1544                 if (desc_available >= TSNEP_RING_RX_REFILL) {
1545                         bool reuse = desc_available >= TSNEP_RING_RX_REUSE;
1546
1547                         desc_available -= tsnep_rx_refill_zc(rx, desc_available,
1548                                                              reuse);
1549                         if (!entry->xdp) {
1550                                 /* buffer has been reused for refill to prevent
1551                                  * empty RX ring, thus buffer cannot be used for
1552                                  * RX processing
1553                                  */
1554                                 rx->read = (rx->read + 1) & TSNEP_RING_MASK;
1555                                 desc_available++;
1556
1557                                 rx->dropped++;
1558
1559                                 continue;
1560                         }
1561                 }
1562
1563                 /* descriptor properties shall be read first, because valid data
1564                  * is signaled there
1565                  */
1566                 dma_rmb();
1567
1568                 prefetch(entry->xdp->data);
1569                 length = __le32_to_cpu(entry->desc_wb->properties) &
1570                          TSNEP_DESC_LENGTH_MASK;
1571                 xsk_buff_set_size(entry->xdp, length - ETH_FCS_LEN);
1572                 xsk_buff_dma_sync_for_cpu(entry->xdp, rx->xsk_pool);
1573
1574                 /* RX metadata with timestamps is in front of actual data,
1575                  * subtract metadata size to get length of actual data and
1576                  * consider metadata size as offset of actual data during RX
1577                  * processing
1578                  */
1579                 length -= TSNEP_RX_INLINE_METADATA_SIZE;
1580
1581                 rx->read = (rx->read + 1) & TSNEP_RING_MASK;
1582                 desc_available++;
1583
1584                 if (prog) {
1585                         bool consume;
1586
1587                         entry->xdp->data += TSNEP_RX_INLINE_METADATA_SIZE;
1588                         entry->xdp->data_meta += TSNEP_RX_INLINE_METADATA_SIZE;
1589
1590                         consume = tsnep_xdp_run_prog_zc(rx, prog, entry->xdp,
1591                                                         &xdp_status, tx_nq, tx);
1592                         if (consume) {
1593                                 rx->packets++;
1594                                 rx->bytes += length;
1595
1596                                 entry->xdp = NULL;
1597
1598                                 continue;
1599                         }
1600                 }
1601
1602                 page = page_pool_dev_alloc_pages(rx->page_pool);
1603                 if (page) {
1604                         memcpy(page_address(page) + TSNEP_RX_OFFSET,
1605                                entry->xdp->data - TSNEP_RX_INLINE_METADATA_SIZE,
1606                                length + TSNEP_RX_INLINE_METADATA_SIZE);
1607                         tsnep_rx_page(rx, napi, page, length);
1608                 } else {
1609                         rx->dropped++;
1610                 }
1611                 xsk_buff_free(entry->xdp);
1612                 entry->xdp = NULL;
1613         }
1614
1615         if (xdp_status)
1616                 tsnep_finalize_xdp(rx->adapter, xdp_status, tx_nq, tx);
1617
1618         if (desc_available)
1619                 desc_available -= tsnep_rx_refill_zc(rx, desc_available, false);
1620
1621         if (xsk_uses_need_wakeup(rx->xsk_pool)) {
1622                 if (desc_available)
1623                         xsk_set_rx_need_wakeup(rx->xsk_pool);
1624                 else
1625                         xsk_clear_rx_need_wakeup(rx->xsk_pool);
1626
1627                 return done;
1628         }
1629
1630         return desc_available ? budget : done;
1631 }
1632
1633 static bool tsnep_rx_pending(struct tsnep_rx *rx)
1634 {
1635         struct tsnep_rx_entry *entry;
1636
1637         if (rx->read != rx->write) {
1638                 entry = &rx->entry[rx->read];
1639                 if ((__le32_to_cpu(entry->desc_wb->properties) &
1640                      TSNEP_DESC_OWNER_COUNTER_MASK) ==
1641                     (entry->properties & TSNEP_DESC_OWNER_COUNTER_MASK))
1642                         return true;
1643         }
1644
1645         return false;
1646 }
1647
1648 static int tsnep_rx_open(struct tsnep_rx *rx)
1649 {
1650         int desc_available;
1651         int retval;
1652
1653         retval = tsnep_rx_ring_create(rx);
1654         if (retval)
1655                 return retval;
1656
1657         tsnep_rx_init(rx);
1658
1659         desc_available = tsnep_rx_desc_available(rx);
1660         if (rx->xsk_pool)
1661                 retval = tsnep_rx_alloc_zc(rx, desc_available, false);
1662         else
1663                 retval = tsnep_rx_alloc(rx, desc_available, false);
1664         if (retval != desc_available) {
1665                 retval = -ENOMEM;
1666
1667                 goto alloc_failed;
1668         }
1669
1670         /* prealloc pages to prevent allocation failures when XSK pool is
1671          * disabled at runtime
1672          */
1673         if (rx->xsk_pool) {
1674                 retval = tsnep_rx_alloc_page_buffer(rx);
1675                 if (retval)
1676                         goto alloc_failed;
1677         }
1678
1679         return 0;
1680
1681 alloc_failed:
1682         tsnep_rx_ring_cleanup(rx);
1683         return retval;
1684 }
1685
1686 static void tsnep_rx_close(struct tsnep_rx *rx)
1687 {
1688         if (rx->xsk_pool)
1689                 tsnep_rx_free_page_buffer(rx);
1690
1691         tsnep_rx_ring_cleanup(rx);
1692 }
1693
1694 static void tsnep_rx_reopen(struct tsnep_rx *rx)
1695 {
1696         struct page **page = rx->page_buffer;
1697         int i;
1698
1699         tsnep_rx_init(rx);
1700
1701         for (i = 0; i < TSNEP_RING_SIZE; i++) {
1702                 struct tsnep_rx_entry *entry = &rx->entry[i];
1703
1704                 /* defined initial values for properties are required for
1705                  * correct owner counter checking
1706                  */
1707                 entry->desc->properties = 0;
1708                 entry->desc_wb->properties = 0;
1709
1710                 /* prevent allocation failures by reusing kept pages */
1711                 if (*page) {
1712                         tsnep_rx_set_page(rx, entry, *page);
1713                         tsnep_rx_activate(rx, rx->write);
1714                         rx->write++;
1715
1716                         *page = NULL;
1717                         page++;
1718                 }
1719         }
1720 }
1721
1722 static void tsnep_rx_reopen_xsk(struct tsnep_rx *rx)
1723 {
1724         struct page **page = rx->page_buffer;
1725         u32 allocated;
1726         int i;
1727
1728         tsnep_rx_init(rx);
1729
1730         /* alloc all ring entries except the last one, because ring cannot be
1731          * filled completely, as many buffers as possible is enough as wakeup is
1732          * done if new buffers are available
1733          */
1734         allocated = xsk_buff_alloc_batch(rx->xsk_pool, rx->xdp_batch,
1735                                          TSNEP_RING_SIZE - 1);
1736
1737         for (i = 0; i < TSNEP_RING_SIZE; i++) {
1738                 struct tsnep_rx_entry *entry = &rx->entry[i];
1739
1740                 /* keep pages to prevent allocation failures when xsk is
1741                  * disabled
1742                  */
1743                 if (entry->page) {
1744                         *page = entry->page;
1745                         entry->page = NULL;
1746
1747                         page++;
1748                 }
1749
1750                 /* defined initial values for properties are required for
1751                  * correct owner counter checking
1752                  */
1753                 entry->desc->properties = 0;
1754                 entry->desc_wb->properties = 0;
1755
1756                 if (allocated) {
1757                         tsnep_rx_set_xdp(rx, entry,
1758                                          rx->xdp_batch[allocated - 1]);
1759                         tsnep_rx_activate(rx, rx->write);
1760                         rx->write++;
1761
1762                         allocated--;
1763                 }
1764         }
1765 }
1766
1767 static bool tsnep_pending(struct tsnep_queue *queue)
1768 {
1769         if (queue->tx && tsnep_tx_pending(queue->tx))
1770                 return true;
1771
1772         if (queue->rx && tsnep_rx_pending(queue->rx))
1773                 return true;
1774
1775         return false;
1776 }
1777
1778 static int tsnep_poll(struct napi_struct *napi, int budget)
1779 {
1780         struct tsnep_queue *queue = container_of(napi, struct tsnep_queue,
1781                                                  napi);
1782         bool complete = true;
1783         int done = 0;
1784
1785         if (queue->tx)
1786                 complete = tsnep_tx_poll(queue->tx, budget);
1787
1788         /* handle case where we are called by netpoll with a budget of 0 */
1789         if (unlikely(budget <= 0))
1790                 return budget;
1791
1792         if (queue->rx) {
1793                 done = queue->rx->xsk_pool ?
1794                        tsnep_rx_poll_zc(queue->rx, napi, budget) :
1795                        tsnep_rx_poll(queue->rx, napi, budget);
1796                 if (done >= budget)
1797                         complete = false;
1798         }
1799
1800         /* if all work not completed, return budget and keep polling */
1801         if (!complete)
1802                 return budget;
1803
1804         if (likely(napi_complete_done(napi, done))) {
1805                 tsnep_enable_irq(queue->adapter, queue->irq_mask);
1806
1807                 /* reschedule if work is already pending, prevent rotten packets
1808                  * which are transmitted or received after polling but before
1809                  * interrupt enable
1810                  */
1811                 if (tsnep_pending(queue)) {
1812                         tsnep_disable_irq(queue->adapter, queue->irq_mask);
1813                         napi_schedule(napi);
1814                 }
1815         }
1816
1817         return min(done, budget - 1);
1818 }
1819
1820 static int tsnep_request_irq(struct tsnep_queue *queue, bool first)
1821 {
1822         const char *name = netdev_name(queue->adapter->netdev);
1823         irq_handler_t handler;
1824         void *dev;
1825         int retval;
1826
1827         if (first) {
1828                 sprintf(queue->name, "%s-mac", name);
1829                 handler = tsnep_irq;
1830                 dev = queue->adapter;
1831         } else {
1832                 if (queue->tx && queue->rx)
1833                         snprintf(queue->name, sizeof(queue->name), "%s-txrx-%d",
1834                                  name, queue->rx->queue_index);
1835                 else if (queue->tx)
1836                         snprintf(queue->name, sizeof(queue->name), "%s-tx-%d",
1837                                  name, queue->tx->queue_index);
1838                 else
1839                         snprintf(queue->name, sizeof(queue->name), "%s-rx-%d",
1840                                  name, queue->rx->queue_index);
1841                 handler = tsnep_irq_txrx;
1842                 dev = queue;
1843         }
1844
1845         retval = request_irq(queue->irq, handler, 0, queue->name, dev);
1846         if (retval) {
1847                 /* if name is empty, then interrupt won't be freed */
1848                 memset(queue->name, 0, sizeof(queue->name));
1849         }
1850
1851         return retval;
1852 }
1853
1854 static void tsnep_free_irq(struct tsnep_queue *queue, bool first)
1855 {
1856         void *dev;
1857
1858         if (!strlen(queue->name))
1859                 return;
1860
1861         if (first)
1862                 dev = queue->adapter;
1863         else
1864                 dev = queue;
1865
1866         free_irq(queue->irq, dev);
1867         memset(queue->name, 0, sizeof(queue->name));
1868 }
1869
1870 static void tsnep_queue_close(struct tsnep_queue *queue, bool first)
1871 {
1872         struct tsnep_rx *rx = queue->rx;
1873
1874         tsnep_free_irq(queue, first);
1875
1876         if (rx) {
1877                 if (xdp_rxq_info_is_reg(&rx->xdp_rxq))
1878                         xdp_rxq_info_unreg(&rx->xdp_rxq);
1879                 if (xdp_rxq_info_is_reg(&rx->xdp_rxq_zc))
1880                         xdp_rxq_info_unreg(&rx->xdp_rxq_zc);
1881         }
1882
1883         netif_napi_del(&queue->napi);
1884 }
1885
1886 static int tsnep_queue_open(struct tsnep_adapter *adapter,
1887                             struct tsnep_queue *queue, bool first)
1888 {
1889         struct tsnep_rx *rx = queue->rx;
1890         struct tsnep_tx *tx = queue->tx;
1891         int retval;
1892
1893         netif_napi_add(adapter->netdev, &queue->napi, tsnep_poll);
1894
1895         if (rx) {
1896                 /* choose TX queue for XDP_TX */
1897                 if (tx)
1898                         rx->tx_queue_index = tx->queue_index;
1899                 else if (rx->queue_index < adapter->num_tx_queues)
1900                         rx->tx_queue_index = rx->queue_index;
1901                 else
1902                         rx->tx_queue_index = 0;
1903
1904                 /* prepare both memory models to eliminate possible registration
1905                  * errors when memory model is switched between page pool and
1906                  * XSK pool during runtime
1907                  */
1908                 retval = xdp_rxq_info_reg(&rx->xdp_rxq, adapter->netdev,
1909                                           rx->queue_index, queue->napi.napi_id);
1910                 if (retval)
1911                         goto failed;
1912                 retval = xdp_rxq_info_reg_mem_model(&rx->xdp_rxq,
1913                                                     MEM_TYPE_PAGE_POOL,
1914                                                     rx->page_pool);
1915                 if (retval)
1916                         goto failed;
1917                 retval = xdp_rxq_info_reg(&rx->xdp_rxq_zc, adapter->netdev,
1918                                           rx->queue_index, queue->napi.napi_id);
1919                 if (retval)
1920                         goto failed;
1921                 retval = xdp_rxq_info_reg_mem_model(&rx->xdp_rxq_zc,
1922                                                     MEM_TYPE_XSK_BUFF_POOL,
1923                                                     NULL);
1924                 if (retval)
1925                         goto failed;
1926                 if (rx->xsk_pool)
1927                         xsk_pool_set_rxq_info(rx->xsk_pool, &rx->xdp_rxq_zc);
1928         }
1929
1930         retval = tsnep_request_irq(queue, first);
1931         if (retval) {
1932                 netif_err(adapter, drv, adapter->netdev,
1933                           "can't get assigned irq %d.\n", queue->irq);
1934                 goto failed;
1935         }
1936
1937         return 0;
1938
1939 failed:
1940         tsnep_queue_close(queue, first);
1941
1942         return retval;
1943 }
1944
1945 static void tsnep_queue_enable(struct tsnep_queue *queue)
1946 {
1947         napi_enable(&queue->napi);
1948         tsnep_enable_irq(queue->adapter, queue->irq_mask);
1949
1950         if (queue->tx)
1951                 tsnep_tx_enable(queue->tx);
1952
1953         if (queue->rx)
1954                 tsnep_rx_enable(queue->rx);
1955 }
1956
1957 static void tsnep_queue_disable(struct tsnep_queue *queue)
1958 {
1959         if (queue->tx)
1960                 tsnep_tx_disable(queue->tx, &queue->napi);
1961
1962         napi_disable(&queue->napi);
1963         tsnep_disable_irq(queue->adapter, queue->irq_mask);
1964
1965         /* disable RX after NAPI polling has been disabled, because RX can be
1966          * enabled during NAPI polling
1967          */
1968         if (queue->rx)
1969                 tsnep_rx_disable(queue->rx);
1970 }
1971
1972 static int tsnep_netdev_open(struct net_device *netdev)
1973 {
1974         struct tsnep_adapter *adapter = netdev_priv(netdev);
1975         int i, retval;
1976
1977         for (i = 0; i < adapter->num_queues; i++) {
1978                 if (adapter->queue[i].tx) {
1979                         retval = tsnep_tx_open(adapter->queue[i].tx);
1980                         if (retval)
1981                                 goto failed;
1982                 }
1983                 if (adapter->queue[i].rx) {
1984                         retval = tsnep_rx_open(adapter->queue[i].rx);
1985                         if (retval)
1986                                 goto failed;
1987                 }
1988
1989                 retval = tsnep_queue_open(adapter, &adapter->queue[i], i == 0);
1990                 if (retval)
1991                         goto failed;
1992         }
1993
1994         retval = netif_set_real_num_tx_queues(adapter->netdev,
1995                                               adapter->num_tx_queues);
1996         if (retval)
1997                 goto failed;
1998         retval = netif_set_real_num_rx_queues(adapter->netdev,
1999                                               adapter->num_rx_queues);
2000         if (retval)
2001                 goto failed;
2002
2003         tsnep_enable_irq(adapter, ECM_INT_LINK);
2004         retval = tsnep_phy_open(adapter);
2005         if (retval)
2006                 goto phy_failed;
2007
2008         for (i = 0; i < adapter->num_queues; i++)
2009                 tsnep_queue_enable(&adapter->queue[i]);
2010
2011         return 0;
2012
2013 phy_failed:
2014         tsnep_disable_irq(adapter, ECM_INT_LINK);
2015 failed:
2016         for (i = 0; i < adapter->num_queues; i++) {
2017                 tsnep_queue_close(&adapter->queue[i], i == 0);
2018
2019                 if (adapter->queue[i].rx)
2020                         tsnep_rx_close(adapter->queue[i].rx);
2021                 if (adapter->queue[i].tx)
2022                         tsnep_tx_close(adapter->queue[i].tx);
2023         }
2024         return retval;
2025 }
2026
2027 static int tsnep_netdev_close(struct net_device *netdev)
2028 {
2029         struct tsnep_adapter *adapter = netdev_priv(netdev);
2030         int i;
2031
2032         tsnep_disable_irq(adapter, ECM_INT_LINK);
2033         tsnep_phy_close(adapter);
2034
2035         for (i = 0; i < adapter->num_queues; i++) {
2036                 tsnep_queue_disable(&adapter->queue[i]);
2037
2038                 tsnep_queue_close(&adapter->queue[i], i == 0);
2039
2040                 if (adapter->queue[i].rx)
2041                         tsnep_rx_close(adapter->queue[i].rx);
2042                 if (adapter->queue[i].tx)
2043                         tsnep_tx_close(adapter->queue[i].tx);
2044         }
2045
2046         return 0;
2047 }
2048
2049 int tsnep_enable_xsk(struct tsnep_queue *queue, struct xsk_buff_pool *pool)
2050 {
2051         bool running = netif_running(queue->adapter->netdev);
2052         u32 frame_size;
2053
2054         frame_size = xsk_pool_get_rx_frame_size(pool);
2055         if (frame_size < TSNEP_XSK_RX_BUF_SIZE)
2056                 return -EOPNOTSUPP;
2057
2058         queue->rx->page_buffer = kcalloc(TSNEP_RING_SIZE,
2059                                          sizeof(*queue->rx->page_buffer),
2060                                          GFP_KERNEL);
2061         if (!queue->rx->page_buffer)
2062                 return -ENOMEM;
2063         queue->rx->xdp_batch = kcalloc(TSNEP_RING_SIZE,
2064                                        sizeof(*queue->rx->xdp_batch),
2065                                        GFP_KERNEL);
2066         if (!queue->rx->xdp_batch) {
2067                 kfree(queue->rx->page_buffer);
2068                 queue->rx->page_buffer = NULL;
2069
2070                 return -ENOMEM;
2071         }
2072
2073         xsk_pool_set_rxq_info(pool, &queue->rx->xdp_rxq_zc);
2074
2075         if (running)
2076                 tsnep_queue_disable(queue);
2077
2078         queue->tx->xsk_pool = pool;
2079         queue->rx->xsk_pool = pool;
2080
2081         if (running) {
2082                 tsnep_rx_reopen_xsk(queue->rx);
2083                 tsnep_queue_enable(queue);
2084         }
2085
2086         return 0;
2087 }
2088
2089 void tsnep_disable_xsk(struct tsnep_queue *queue)
2090 {
2091         bool running = netif_running(queue->adapter->netdev);
2092
2093         if (running)
2094                 tsnep_queue_disable(queue);
2095
2096         tsnep_rx_free_zc(queue->rx);
2097
2098         queue->rx->xsk_pool = NULL;
2099         queue->tx->xsk_pool = NULL;
2100
2101         if (running) {
2102                 tsnep_rx_reopen(queue->rx);
2103                 tsnep_queue_enable(queue);
2104         }
2105
2106         kfree(queue->rx->xdp_batch);
2107         queue->rx->xdp_batch = NULL;
2108         kfree(queue->rx->page_buffer);
2109         queue->rx->page_buffer = NULL;
2110 }
2111
2112 static netdev_tx_t tsnep_netdev_xmit_frame(struct sk_buff *skb,
2113                                            struct net_device *netdev)
2114 {
2115         struct tsnep_adapter *adapter = netdev_priv(netdev);
2116         u16 queue_mapping = skb_get_queue_mapping(skb);
2117
2118         if (queue_mapping >= adapter->num_tx_queues)
2119                 queue_mapping = 0;
2120
2121         return tsnep_xmit_frame_ring(skb, &adapter->tx[queue_mapping]);
2122 }
2123
2124 static int tsnep_netdev_ioctl(struct net_device *netdev, struct ifreq *ifr,
2125                               int cmd)
2126 {
2127         if (!netif_running(netdev))
2128                 return -EINVAL;
2129         if (cmd == SIOCSHWTSTAMP || cmd == SIOCGHWTSTAMP)
2130                 return tsnep_ptp_ioctl(netdev, ifr, cmd);
2131         return phy_mii_ioctl(netdev->phydev, ifr, cmd);
2132 }
2133
2134 static void tsnep_netdev_set_multicast(struct net_device *netdev)
2135 {
2136         struct tsnep_adapter *adapter = netdev_priv(netdev);
2137
2138         u16 rx_filter = 0;
2139
2140         /* configured MAC address and broadcasts are never filtered */
2141         if (netdev->flags & IFF_PROMISC) {
2142                 rx_filter |= TSNEP_RX_FILTER_ACCEPT_ALL_MULTICASTS;
2143                 rx_filter |= TSNEP_RX_FILTER_ACCEPT_ALL_UNICASTS;
2144         } else if (!netdev_mc_empty(netdev) || (netdev->flags & IFF_ALLMULTI)) {
2145                 rx_filter |= TSNEP_RX_FILTER_ACCEPT_ALL_MULTICASTS;
2146         }
2147         iowrite16(rx_filter, adapter->addr + TSNEP_RX_FILTER);
2148 }
2149
2150 static void tsnep_netdev_get_stats64(struct net_device *netdev,
2151                                      struct rtnl_link_stats64 *stats)
2152 {
2153         struct tsnep_adapter *adapter = netdev_priv(netdev);
2154         u32 reg;
2155         u32 val;
2156         int i;
2157
2158         for (i = 0; i < adapter->num_tx_queues; i++) {
2159                 stats->tx_packets += adapter->tx[i].packets;
2160                 stats->tx_bytes += adapter->tx[i].bytes;
2161                 stats->tx_dropped += adapter->tx[i].dropped;
2162         }
2163         for (i = 0; i < adapter->num_rx_queues; i++) {
2164                 stats->rx_packets += adapter->rx[i].packets;
2165                 stats->rx_bytes += adapter->rx[i].bytes;
2166                 stats->rx_dropped += adapter->rx[i].dropped;
2167                 stats->multicast += adapter->rx[i].multicast;
2168
2169                 reg = ioread32(adapter->addr + TSNEP_QUEUE(i) +
2170                                TSNEP_RX_STATISTIC);
2171                 val = (reg & TSNEP_RX_STATISTIC_NO_DESC_MASK) >>
2172                       TSNEP_RX_STATISTIC_NO_DESC_SHIFT;
2173                 stats->rx_dropped += val;
2174                 val = (reg & TSNEP_RX_STATISTIC_BUFFER_TOO_SMALL_MASK) >>
2175                       TSNEP_RX_STATISTIC_BUFFER_TOO_SMALL_SHIFT;
2176                 stats->rx_dropped += val;
2177                 val = (reg & TSNEP_RX_STATISTIC_FIFO_OVERFLOW_MASK) >>
2178                       TSNEP_RX_STATISTIC_FIFO_OVERFLOW_SHIFT;
2179                 stats->rx_errors += val;
2180                 stats->rx_fifo_errors += val;
2181                 val = (reg & TSNEP_RX_STATISTIC_INVALID_FRAME_MASK) >>
2182                       TSNEP_RX_STATISTIC_INVALID_FRAME_SHIFT;
2183                 stats->rx_errors += val;
2184                 stats->rx_frame_errors += val;
2185         }
2186
2187         reg = ioread32(adapter->addr + ECM_STAT);
2188         val = (reg & ECM_STAT_RX_ERR_MASK) >> ECM_STAT_RX_ERR_SHIFT;
2189         stats->rx_errors += val;
2190         val = (reg & ECM_STAT_INV_FRM_MASK) >> ECM_STAT_INV_FRM_SHIFT;
2191         stats->rx_errors += val;
2192         stats->rx_crc_errors += val;
2193         val = (reg & ECM_STAT_FWD_RX_ERR_MASK) >> ECM_STAT_FWD_RX_ERR_SHIFT;
2194         stats->rx_errors += val;
2195 }
2196
2197 static void tsnep_mac_set_address(struct tsnep_adapter *adapter, u8 *addr)
2198 {
2199         iowrite32(*(u32 *)addr, adapter->addr + TSNEP_MAC_ADDRESS_LOW);
2200         iowrite16(*(u16 *)(addr + sizeof(u32)),
2201                   adapter->addr + TSNEP_MAC_ADDRESS_HIGH);
2202
2203         ether_addr_copy(adapter->mac_address, addr);
2204         netif_info(adapter, drv, adapter->netdev, "MAC address set to %pM\n",
2205                    addr);
2206 }
2207
2208 static int tsnep_netdev_set_mac_address(struct net_device *netdev, void *addr)
2209 {
2210         struct tsnep_adapter *adapter = netdev_priv(netdev);
2211         struct sockaddr *sock_addr = addr;
2212         int retval;
2213
2214         retval = eth_prepare_mac_addr_change(netdev, sock_addr);
2215         if (retval)
2216                 return retval;
2217         eth_hw_addr_set(netdev, sock_addr->sa_data);
2218         tsnep_mac_set_address(adapter, sock_addr->sa_data);
2219
2220         return 0;
2221 }
2222
2223 static int tsnep_netdev_set_features(struct net_device *netdev,
2224                                      netdev_features_t features)
2225 {
2226         struct tsnep_adapter *adapter = netdev_priv(netdev);
2227         netdev_features_t changed = netdev->features ^ features;
2228         bool enable;
2229         int retval = 0;
2230
2231         if (changed & NETIF_F_LOOPBACK) {
2232                 enable = !!(features & NETIF_F_LOOPBACK);
2233                 retval = tsnep_phy_loopback(adapter, enable);
2234         }
2235
2236         return retval;
2237 }
2238
2239 static ktime_t tsnep_netdev_get_tstamp(struct net_device *netdev,
2240                                        const struct skb_shared_hwtstamps *hwtstamps,
2241                                        bool cycles)
2242 {
2243         struct tsnep_rx_inline *rx_inline = hwtstamps->netdev_data;
2244         u64 timestamp;
2245
2246         if (cycles)
2247                 timestamp = __le64_to_cpu(rx_inline->counter);
2248         else
2249                 timestamp = __le64_to_cpu(rx_inline->timestamp);
2250
2251         return ns_to_ktime(timestamp);
2252 }
2253
2254 static int tsnep_netdev_bpf(struct net_device *dev, struct netdev_bpf *bpf)
2255 {
2256         struct tsnep_adapter *adapter = netdev_priv(dev);
2257
2258         switch (bpf->command) {
2259         case XDP_SETUP_PROG:
2260                 return tsnep_xdp_setup_prog(adapter, bpf->prog, bpf->extack);
2261         case XDP_SETUP_XSK_POOL:
2262                 return tsnep_xdp_setup_pool(adapter, bpf->xsk.pool,
2263                                             bpf->xsk.queue_id);
2264         default:
2265                 return -EOPNOTSUPP;
2266         }
2267 }
2268
2269 static struct tsnep_tx *tsnep_xdp_get_tx(struct tsnep_adapter *adapter, u32 cpu)
2270 {
2271         if (cpu >= TSNEP_MAX_QUEUES)
2272                 cpu &= TSNEP_MAX_QUEUES - 1;
2273
2274         while (cpu >= adapter->num_tx_queues)
2275                 cpu -= adapter->num_tx_queues;
2276
2277         return &adapter->tx[cpu];
2278 }
2279
2280 static int tsnep_netdev_xdp_xmit(struct net_device *dev, int n,
2281                                  struct xdp_frame **xdp, u32 flags)
2282 {
2283         struct tsnep_adapter *adapter = netdev_priv(dev);
2284         u32 cpu = smp_processor_id();
2285         struct netdev_queue *nq;
2286         struct tsnep_tx *tx;
2287         int nxmit;
2288         bool xmit;
2289
2290         if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
2291                 return -EINVAL;
2292
2293         tx = tsnep_xdp_get_tx(adapter, cpu);
2294         nq = netdev_get_tx_queue(adapter->netdev, tx->queue_index);
2295
2296         __netif_tx_lock(nq, cpu);
2297
2298         for (nxmit = 0; nxmit < n; nxmit++) {
2299                 xmit = tsnep_xdp_xmit_frame_ring(xdp[nxmit], tx,
2300                                                  TSNEP_TX_TYPE_XDP_NDO);
2301                 if (!xmit)
2302                         break;
2303
2304                 /* avoid transmit queue timeout since we share it with the slow
2305                  * path
2306                  */
2307                 txq_trans_cond_update(nq);
2308         }
2309
2310         if (flags & XDP_XMIT_FLUSH)
2311                 tsnep_xdp_xmit_flush(tx);
2312
2313         __netif_tx_unlock(nq);
2314
2315         return nxmit;
2316 }
2317
2318 static int tsnep_netdev_xsk_wakeup(struct net_device *dev, u32 queue_id,
2319                                    u32 flags)
2320 {
2321         struct tsnep_adapter *adapter = netdev_priv(dev);
2322         struct tsnep_queue *queue;
2323
2324         if (queue_id >= adapter->num_rx_queues ||
2325             queue_id >= adapter->num_tx_queues)
2326                 return -EINVAL;
2327
2328         queue = &adapter->queue[queue_id];
2329
2330         if (!napi_if_scheduled_mark_missed(&queue->napi))
2331                 napi_schedule(&queue->napi);
2332
2333         return 0;
2334 }
2335
2336 static const struct net_device_ops tsnep_netdev_ops = {
2337         .ndo_open = tsnep_netdev_open,
2338         .ndo_stop = tsnep_netdev_close,
2339         .ndo_start_xmit = tsnep_netdev_xmit_frame,
2340         .ndo_eth_ioctl = tsnep_netdev_ioctl,
2341         .ndo_set_rx_mode = tsnep_netdev_set_multicast,
2342         .ndo_get_stats64 = tsnep_netdev_get_stats64,
2343         .ndo_set_mac_address = tsnep_netdev_set_mac_address,
2344         .ndo_set_features = tsnep_netdev_set_features,
2345         .ndo_get_tstamp = tsnep_netdev_get_tstamp,
2346         .ndo_setup_tc = tsnep_tc_setup,
2347         .ndo_bpf = tsnep_netdev_bpf,
2348         .ndo_xdp_xmit = tsnep_netdev_xdp_xmit,
2349         .ndo_xsk_wakeup = tsnep_netdev_xsk_wakeup,
2350 };
2351
2352 static int tsnep_mac_init(struct tsnep_adapter *adapter)
2353 {
2354         int retval;
2355
2356         /* initialize RX filtering, at least configured MAC address and
2357          * broadcast are not filtered
2358          */
2359         iowrite16(0, adapter->addr + TSNEP_RX_FILTER);
2360
2361         /* try to get MAC address in the following order:
2362          * - device tree
2363          * - valid MAC address already set
2364          * - MAC address register if valid
2365          * - random MAC address
2366          */
2367         retval = of_get_mac_address(adapter->pdev->dev.of_node,
2368                                     adapter->mac_address);
2369         if (retval == -EPROBE_DEFER)
2370                 return retval;
2371         if (retval && !is_valid_ether_addr(adapter->mac_address)) {
2372                 *(u32 *)adapter->mac_address =
2373                         ioread32(adapter->addr + TSNEP_MAC_ADDRESS_LOW);
2374                 *(u16 *)(adapter->mac_address + sizeof(u32)) =
2375                         ioread16(adapter->addr + TSNEP_MAC_ADDRESS_HIGH);
2376                 if (!is_valid_ether_addr(adapter->mac_address))
2377                         eth_random_addr(adapter->mac_address);
2378         }
2379
2380         tsnep_mac_set_address(adapter, adapter->mac_address);
2381         eth_hw_addr_set(adapter->netdev, adapter->mac_address);
2382
2383         return 0;
2384 }
2385
2386 static int tsnep_mdio_init(struct tsnep_adapter *adapter)
2387 {
2388         struct device_node *np = adapter->pdev->dev.of_node;
2389         int retval;
2390
2391         if (np) {
2392                 np = of_get_child_by_name(np, "mdio");
2393                 if (!np)
2394                         return 0;
2395
2396                 adapter->suppress_preamble =
2397                         of_property_read_bool(np, "suppress-preamble");
2398         }
2399
2400         adapter->mdiobus = devm_mdiobus_alloc(&adapter->pdev->dev);
2401         if (!adapter->mdiobus) {
2402                 retval = -ENOMEM;
2403
2404                 goto out;
2405         }
2406
2407         adapter->mdiobus->priv = (void *)adapter;
2408         adapter->mdiobus->parent = &adapter->pdev->dev;
2409         adapter->mdiobus->read = tsnep_mdiobus_read;
2410         adapter->mdiobus->write = tsnep_mdiobus_write;
2411         adapter->mdiobus->name = TSNEP "-mdiobus";
2412         snprintf(adapter->mdiobus->id, MII_BUS_ID_SIZE, "%s",
2413                  adapter->pdev->name);
2414
2415         /* do not scan broadcast address */
2416         adapter->mdiobus->phy_mask = 0x0000001;
2417
2418         retval = of_mdiobus_register(adapter->mdiobus, np);
2419
2420 out:
2421         of_node_put(np);
2422
2423         return retval;
2424 }
2425
2426 static int tsnep_phy_init(struct tsnep_adapter *adapter)
2427 {
2428         struct device_node *phy_node;
2429         int retval;
2430
2431         retval = of_get_phy_mode(adapter->pdev->dev.of_node,
2432                                  &adapter->phy_mode);
2433         if (retval)
2434                 adapter->phy_mode = PHY_INTERFACE_MODE_GMII;
2435
2436         phy_node = of_parse_phandle(adapter->pdev->dev.of_node, "phy-handle",
2437                                     0);
2438         adapter->phydev = of_phy_find_device(phy_node);
2439         of_node_put(phy_node);
2440         if (!adapter->phydev && adapter->mdiobus)
2441                 adapter->phydev = phy_find_first(adapter->mdiobus);
2442         if (!adapter->phydev)
2443                 return -EIO;
2444
2445         return 0;
2446 }
2447
2448 static int tsnep_queue_init(struct tsnep_adapter *adapter, int queue_count)
2449 {
2450         u32 irq_mask = ECM_INT_TX_0 | ECM_INT_RX_0;
2451         char name[8];
2452         int i;
2453         int retval;
2454
2455         /* one TX/RX queue pair for netdev is mandatory */
2456         if (platform_irq_count(adapter->pdev) == 1)
2457                 retval = platform_get_irq(adapter->pdev, 0);
2458         else
2459                 retval = platform_get_irq_byname(adapter->pdev, "mac");
2460         if (retval < 0)
2461                 return retval;
2462         adapter->num_tx_queues = 1;
2463         adapter->num_rx_queues = 1;
2464         adapter->num_queues = 1;
2465         adapter->queue[0].adapter = adapter;
2466         adapter->queue[0].irq = retval;
2467         adapter->queue[0].tx = &adapter->tx[0];
2468         adapter->queue[0].tx->adapter = adapter;
2469         adapter->queue[0].tx->addr = adapter->addr + TSNEP_QUEUE(0);
2470         adapter->queue[0].tx->queue_index = 0;
2471         adapter->queue[0].rx = &adapter->rx[0];
2472         adapter->queue[0].rx->adapter = adapter;
2473         adapter->queue[0].rx->addr = adapter->addr + TSNEP_QUEUE(0);
2474         adapter->queue[0].rx->queue_index = 0;
2475         adapter->queue[0].irq_mask = irq_mask;
2476         adapter->queue[0].irq_delay_addr = adapter->addr + ECM_INT_DELAY;
2477         retval = tsnep_set_irq_coalesce(&adapter->queue[0],
2478                                         TSNEP_COALESCE_USECS_DEFAULT);
2479         if (retval < 0)
2480                 return retval;
2481
2482         adapter->netdev->irq = adapter->queue[0].irq;
2483
2484         /* add additional TX/RX queue pairs only if dedicated interrupt is
2485          * available
2486          */
2487         for (i = 1; i < queue_count; i++) {
2488                 sprintf(name, "txrx-%d", i);
2489                 retval = platform_get_irq_byname_optional(adapter->pdev, name);
2490                 if (retval < 0)
2491                         break;
2492
2493                 adapter->num_tx_queues++;
2494                 adapter->num_rx_queues++;
2495                 adapter->num_queues++;
2496                 adapter->queue[i].adapter = adapter;
2497                 adapter->queue[i].irq = retval;
2498                 adapter->queue[i].tx = &adapter->tx[i];
2499                 adapter->queue[i].tx->adapter = adapter;
2500                 adapter->queue[i].tx->addr = adapter->addr + TSNEP_QUEUE(i);
2501                 adapter->queue[i].tx->queue_index = i;
2502                 adapter->queue[i].rx = &adapter->rx[i];
2503                 adapter->queue[i].rx->adapter = adapter;
2504                 adapter->queue[i].rx->addr = adapter->addr + TSNEP_QUEUE(i);
2505                 adapter->queue[i].rx->queue_index = i;
2506                 adapter->queue[i].irq_mask =
2507                         irq_mask << (ECM_INT_TXRX_SHIFT * i);
2508                 adapter->queue[i].irq_delay_addr =
2509                         adapter->addr + ECM_INT_DELAY + ECM_INT_DELAY_OFFSET * i;
2510                 retval = tsnep_set_irq_coalesce(&adapter->queue[i],
2511                                                 TSNEP_COALESCE_USECS_DEFAULT);
2512                 if (retval < 0)
2513                         return retval;
2514         }
2515
2516         return 0;
2517 }
2518
2519 static int tsnep_probe(struct platform_device *pdev)
2520 {
2521         struct tsnep_adapter *adapter;
2522         struct net_device *netdev;
2523         struct resource *io;
2524         u32 type;
2525         int revision;
2526         int version;
2527         int queue_count;
2528         int retval;
2529
2530         netdev = devm_alloc_etherdev_mqs(&pdev->dev,
2531                                          sizeof(struct tsnep_adapter),
2532                                          TSNEP_MAX_QUEUES, TSNEP_MAX_QUEUES);
2533         if (!netdev)
2534                 return -ENODEV;
2535         SET_NETDEV_DEV(netdev, &pdev->dev);
2536         adapter = netdev_priv(netdev);
2537         platform_set_drvdata(pdev, adapter);
2538         adapter->pdev = pdev;
2539         adapter->dmadev = &pdev->dev;
2540         adapter->netdev = netdev;
2541         adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE |
2542                               NETIF_MSG_LINK | NETIF_MSG_IFUP |
2543                               NETIF_MSG_IFDOWN | NETIF_MSG_TX_QUEUED;
2544
2545         netdev->min_mtu = ETH_MIN_MTU;
2546         netdev->max_mtu = TSNEP_MAX_FRAME_SIZE;
2547
2548         mutex_init(&adapter->gate_control_lock);
2549         mutex_init(&adapter->rxnfc_lock);
2550         INIT_LIST_HEAD(&adapter->rxnfc_rules);
2551
2552         io = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2553         adapter->addr = devm_ioremap_resource(&pdev->dev, io);
2554         if (IS_ERR(adapter->addr))
2555                 return PTR_ERR(adapter->addr);
2556         netdev->mem_start = io->start;
2557         netdev->mem_end = io->end;
2558
2559         type = ioread32(adapter->addr + ECM_TYPE);
2560         revision = (type & ECM_REVISION_MASK) >> ECM_REVISION_SHIFT;
2561         version = (type & ECM_VERSION_MASK) >> ECM_VERSION_SHIFT;
2562         queue_count = (type & ECM_QUEUE_COUNT_MASK) >> ECM_QUEUE_COUNT_SHIFT;
2563         adapter->gate_control = type & ECM_GATE_CONTROL;
2564         adapter->rxnfc_max = TSNEP_RX_ASSIGN_ETHER_TYPE_COUNT;
2565
2566         tsnep_disable_irq(adapter, ECM_INT_ALL);
2567
2568         retval = tsnep_queue_init(adapter, queue_count);
2569         if (retval)
2570                 return retval;
2571
2572         retval = dma_set_mask_and_coherent(&adapter->pdev->dev,
2573                                            DMA_BIT_MASK(64));
2574         if (retval) {
2575                 dev_err(&adapter->pdev->dev, "no usable DMA configuration.\n");
2576                 return retval;
2577         }
2578
2579         retval = tsnep_mac_init(adapter);
2580         if (retval)
2581                 return retval;
2582
2583         retval = tsnep_mdio_init(adapter);
2584         if (retval)
2585                 goto mdio_init_failed;
2586
2587         retval = tsnep_phy_init(adapter);
2588         if (retval)
2589                 goto phy_init_failed;
2590
2591         retval = tsnep_ptp_init(adapter);
2592         if (retval)
2593                 goto ptp_init_failed;
2594
2595         retval = tsnep_tc_init(adapter);
2596         if (retval)
2597                 goto tc_init_failed;
2598
2599         retval = tsnep_rxnfc_init(adapter);
2600         if (retval)
2601                 goto rxnfc_init_failed;
2602
2603         netdev->netdev_ops = &tsnep_netdev_ops;
2604         netdev->ethtool_ops = &tsnep_ethtool_ops;
2605         netdev->features = NETIF_F_SG;
2606         netdev->hw_features = netdev->features | NETIF_F_LOOPBACK;
2607
2608         netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
2609                                NETDEV_XDP_ACT_NDO_XMIT |
2610                                NETDEV_XDP_ACT_NDO_XMIT_SG |
2611                                NETDEV_XDP_ACT_XSK_ZEROCOPY;
2612
2613         /* carrier off reporting is important to ethtool even BEFORE open */
2614         netif_carrier_off(netdev);
2615
2616         retval = register_netdev(netdev);
2617         if (retval)
2618                 goto register_failed;
2619
2620         dev_info(&adapter->pdev->dev, "device version %d.%02d\n", version,
2621                  revision);
2622         if (adapter->gate_control)
2623                 dev_info(&adapter->pdev->dev, "gate control detected\n");
2624
2625         return 0;
2626
2627 register_failed:
2628         tsnep_rxnfc_cleanup(adapter);
2629 rxnfc_init_failed:
2630         tsnep_tc_cleanup(adapter);
2631 tc_init_failed:
2632         tsnep_ptp_cleanup(adapter);
2633 ptp_init_failed:
2634 phy_init_failed:
2635         if (adapter->mdiobus)
2636                 mdiobus_unregister(adapter->mdiobus);
2637 mdio_init_failed:
2638         return retval;
2639 }
2640
2641 static void tsnep_remove(struct platform_device *pdev)
2642 {
2643         struct tsnep_adapter *adapter = platform_get_drvdata(pdev);
2644
2645         unregister_netdev(adapter->netdev);
2646
2647         tsnep_rxnfc_cleanup(adapter);
2648
2649         tsnep_tc_cleanup(adapter);
2650
2651         tsnep_ptp_cleanup(adapter);
2652
2653         if (adapter->mdiobus)
2654                 mdiobus_unregister(adapter->mdiobus);
2655
2656         tsnep_disable_irq(adapter, ECM_INT_ALL);
2657 }
2658
2659 static const struct of_device_id tsnep_of_match[] = {
2660         { .compatible = "engleder,tsnep", },
2661 { },
2662 };
2663 MODULE_DEVICE_TABLE(of, tsnep_of_match);
2664
2665 static struct platform_driver tsnep_driver = {
2666         .driver = {
2667                 .name = TSNEP,
2668                 .of_match_table = tsnep_of_match,
2669         },
2670         .probe = tsnep_probe,
2671         .remove_new = tsnep_remove,
2672 };
2673 module_platform_driver(tsnep_driver);
2674
2675 MODULE_AUTHOR("Gerhard Engleder <gerhard@engleder-embedded.com>");
2676 MODULE_DESCRIPTION("TSN endpoint Ethernet MAC driver");
2677 MODULE_LICENSE("GPL");