treewide: Use fallthrough pseudo-keyword
[linux-block.git] / drivers / net / ethernet / chelsio / cxgb4 / t4_hw.c
1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34
35 #include <linux/delay.h>
36 #include "cxgb4.h"
37 #include "t4_regs.h"
38 #include "t4_values.h"
39 #include "t4fw_api.h"
40 #include "t4fw_version.h"
41
42 /**
43  *      t4_wait_op_done_val - wait until an operation is completed
44  *      @adapter: the adapter performing the operation
45  *      @reg: the register to check for completion
46  *      @mask: a single-bit field within @reg that indicates completion
47  *      @polarity: the value of the field when the operation is completed
48  *      @attempts: number of check iterations
49  *      @delay: delay in usecs between iterations
50  *      @valp: where to store the value of the register at completion time
51  *
52  *      Wait until an operation is completed by checking a bit in a register
53  *      up to @attempts times.  If @valp is not NULL the value of the register
54  *      at the time it indicated completion is stored there.  Returns 0 if the
55  *      operation completes and -EAGAIN otherwise.
56  */
57 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
58                                int polarity, int attempts, int delay, u32 *valp)
59 {
60         while (1) {
61                 u32 val = t4_read_reg(adapter, reg);
62
63                 if (!!(val & mask) == polarity) {
64                         if (valp)
65                                 *valp = val;
66                         return 0;
67                 }
68                 if (--attempts == 0)
69                         return -EAGAIN;
70                 if (delay)
71                         udelay(delay);
72         }
73 }
74
75 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
76                                   int polarity, int attempts, int delay)
77 {
78         return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
79                                    delay, NULL);
80 }
81
82 /**
83  *      t4_set_reg_field - set a register field to a value
84  *      @adapter: the adapter to program
85  *      @addr: the register address
86  *      @mask: specifies the portion of the register to modify
87  *      @val: the new value for the register field
88  *
89  *      Sets a register field specified by the supplied mask to the
90  *      given value.
91  */
92 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
93                       u32 val)
94 {
95         u32 v = t4_read_reg(adapter, addr) & ~mask;
96
97         t4_write_reg(adapter, addr, v | val);
98         (void) t4_read_reg(adapter, addr);      /* flush */
99 }
100
101 /**
102  *      t4_read_indirect - read indirectly addressed registers
103  *      @adap: the adapter
104  *      @addr_reg: register holding the indirect address
105  *      @data_reg: register holding the value of the indirect register
106  *      @vals: where the read register values are stored
107  *      @nregs: how many indirect registers to read
108  *      @start_idx: index of first indirect register to read
109  *
110  *      Reads registers that are accessed indirectly through an address/data
111  *      register pair.
112  */
113 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
114                              unsigned int data_reg, u32 *vals,
115                              unsigned int nregs, unsigned int start_idx)
116 {
117         while (nregs--) {
118                 t4_write_reg(adap, addr_reg, start_idx);
119                 *vals++ = t4_read_reg(adap, data_reg);
120                 start_idx++;
121         }
122 }
123
124 /**
125  *      t4_write_indirect - write indirectly addressed registers
126  *      @adap: the adapter
127  *      @addr_reg: register holding the indirect addresses
128  *      @data_reg: register holding the value for the indirect registers
129  *      @vals: values to write
130  *      @nregs: how many indirect registers to write
131  *      @start_idx: address of first indirect register to write
132  *
133  *      Writes a sequential block of registers that are accessed indirectly
134  *      through an address/data register pair.
135  */
136 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
137                        unsigned int data_reg, const u32 *vals,
138                        unsigned int nregs, unsigned int start_idx)
139 {
140         while (nregs--) {
141                 t4_write_reg(adap, addr_reg, start_idx++);
142                 t4_write_reg(adap, data_reg, *vals++);
143         }
144 }
145
146 /*
147  * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
148  * mechanism.  This guarantees that we get the real value even if we're
149  * operating within a Virtual Machine and the Hypervisor is trapping our
150  * Configuration Space accesses.
151  */
152 void t4_hw_pci_read_cfg4(struct adapter *adap, int reg, u32 *val)
153 {
154         u32 req = FUNCTION_V(adap->pf) | REGISTER_V(reg);
155
156         if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
157                 req |= ENABLE_F;
158         else
159                 req |= T6_ENABLE_F;
160
161         if (is_t4(adap->params.chip))
162                 req |= LOCALCFG_F;
163
164         t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, req);
165         *val = t4_read_reg(adap, PCIE_CFG_SPACE_DATA_A);
166
167         /* Reset ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
168          * Configuration Space read.  (None of the other fields matter when
169          * ENABLE is 0 so a simple register write is easier than a
170          * read-modify-write via t4_set_reg_field().)
171          */
172         t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, 0);
173 }
174
175 /*
176  * t4_report_fw_error - report firmware error
177  * @adap: the adapter
178  *
179  * The adapter firmware can indicate error conditions to the host.
180  * If the firmware has indicated an error, print out the reason for
181  * the firmware error.
182  */
183 static void t4_report_fw_error(struct adapter *adap)
184 {
185         static const char *const reason[] = {
186                 "Crash",                        /* PCIE_FW_EVAL_CRASH */
187                 "During Device Preparation",    /* PCIE_FW_EVAL_PREP */
188                 "During Device Configuration",  /* PCIE_FW_EVAL_CONF */
189                 "During Device Initialization", /* PCIE_FW_EVAL_INIT */
190                 "Unexpected Event",             /* PCIE_FW_EVAL_UNEXPECTEDEVENT */
191                 "Insufficient Airflow",         /* PCIE_FW_EVAL_OVERHEAT */
192                 "Device Shutdown",              /* PCIE_FW_EVAL_DEVICESHUTDOWN */
193                 "Reserved",                     /* reserved */
194         };
195         u32 pcie_fw;
196
197         pcie_fw = t4_read_reg(adap, PCIE_FW_A);
198         if (pcie_fw & PCIE_FW_ERR_F) {
199                 dev_err(adap->pdev_dev, "Firmware reports adapter error: %s\n",
200                         reason[PCIE_FW_EVAL_G(pcie_fw)]);
201                 adap->flags &= ~CXGB4_FW_OK;
202         }
203 }
204
205 /*
206  * Get the reply to a mailbox command and store it in @rpl in big-endian order.
207  */
208 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
209                          u32 mbox_addr)
210 {
211         for ( ; nflit; nflit--, mbox_addr += 8)
212                 *rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
213 }
214
215 /*
216  * Handle a FW assertion reported in a mailbox.
217  */
218 static void fw_asrt(struct adapter *adap, u32 mbox_addr)
219 {
220         struct fw_debug_cmd asrt;
221
222         get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr);
223         dev_alert(adap->pdev_dev,
224                   "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
225                   asrt.u.assert.filename_0_7, be32_to_cpu(asrt.u.assert.line),
226                   be32_to_cpu(asrt.u.assert.x), be32_to_cpu(asrt.u.assert.y));
227 }
228
229 /**
230  *      t4_record_mbox - record a Firmware Mailbox Command/Reply in the log
231  *      @adapter: the adapter
232  *      @cmd: the Firmware Mailbox Command or Reply
233  *      @size: command length in bytes
234  *      @access: the time (ms) needed to access the Firmware Mailbox
235  *      @execute: the time (ms) the command spent being executed
236  */
237 static void t4_record_mbox(struct adapter *adapter,
238                            const __be64 *cmd, unsigned int size,
239                            int access, int execute)
240 {
241         struct mbox_cmd_log *log = adapter->mbox_log;
242         struct mbox_cmd *entry;
243         int i;
244
245         entry = mbox_cmd_log_entry(log, log->cursor++);
246         if (log->cursor == log->size)
247                 log->cursor = 0;
248
249         for (i = 0; i < size / 8; i++)
250                 entry->cmd[i] = be64_to_cpu(cmd[i]);
251         while (i < MBOX_LEN / 8)
252                 entry->cmd[i++] = 0;
253         entry->timestamp = jiffies;
254         entry->seqno = log->seqno++;
255         entry->access = access;
256         entry->execute = execute;
257 }
258
259 /**
260  *      t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
261  *      @adap: the adapter
262  *      @mbox: index of the mailbox to use
263  *      @cmd: the command to write
264  *      @size: command length in bytes
265  *      @rpl: where to optionally store the reply
266  *      @sleep_ok: if true we may sleep while awaiting command completion
267  *      @timeout: time to wait for command to finish before timing out
268  *
269  *      Sends the given command to FW through the selected mailbox and waits
270  *      for the FW to execute the command.  If @rpl is not %NULL it is used to
271  *      store the FW's reply to the command.  The command and its optional
272  *      reply are of the same length.  FW can take up to %FW_CMD_MAX_TIMEOUT ms
273  *      to respond.  @sleep_ok determines whether we may sleep while awaiting
274  *      the response.  If sleeping is allowed we use progressive backoff
275  *      otherwise we spin.
276  *
277  *      The return value is 0 on success or a negative errno on failure.  A
278  *      failure can happen either because we are not able to execute the
279  *      command or FW executes it but signals an error.  In the latter case
280  *      the return value is the error code indicated by FW (negated).
281  */
282 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
283                             int size, void *rpl, bool sleep_ok, int timeout)
284 {
285         static const int delay[] = {
286                 1, 1, 3, 5, 10, 10, 20, 50, 100, 200
287         };
288
289         struct mbox_list entry;
290         u16 access = 0;
291         u16 execute = 0;
292         u32 v;
293         u64 res;
294         int i, ms, delay_idx, ret;
295         const __be64 *p = cmd;
296         u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA_A);
297         u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL_A);
298         __be64 cmd_rpl[MBOX_LEN / 8];
299         u32 pcie_fw;
300
301         if ((size & 15) || size > MBOX_LEN)
302                 return -EINVAL;
303
304         /*
305          * If the device is off-line, as in EEH, commands will time out.
306          * Fail them early so we don't waste time waiting.
307          */
308         if (adap->pdev->error_state != pci_channel_io_normal)
309                 return -EIO;
310
311         /* If we have a negative timeout, that implies that we can't sleep. */
312         if (timeout < 0) {
313                 sleep_ok = false;
314                 timeout = -timeout;
315         }
316
317         /* Queue ourselves onto the mailbox access list.  When our entry is at
318          * the front of the list, we have rights to access the mailbox.  So we
319          * wait [for a while] till we're at the front [or bail out with an
320          * EBUSY] ...
321          */
322         spin_lock_bh(&adap->mbox_lock);
323         list_add_tail(&entry.list, &adap->mlist.list);
324         spin_unlock_bh(&adap->mbox_lock);
325
326         delay_idx = 0;
327         ms = delay[0];
328
329         for (i = 0; ; i += ms) {
330                 /* If we've waited too long, return a busy indication.  This
331                  * really ought to be based on our initial position in the
332                  * mailbox access list but this is a start.  We very rarely
333                  * contend on access to the mailbox ...
334                  */
335                 pcie_fw = t4_read_reg(adap, PCIE_FW_A);
336                 if (i > FW_CMD_MAX_TIMEOUT || (pcie_fw & PCIE_FW_ERR_F)) {
337                         spin_lock_bh(&adap->mbox_lock);
338                         list_del(&entry.list);
339                         spin_unlock_bh(&adap->mbox_lock);
340                         ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -EBUSY;
341                         t4_record_mbox(adap, cmd, size, access, ret);
342                         return ret;
343                 }
344
345                 /* If we're at the head, break out and start the mailbox
346                  * protocol.
347                  */
348                 if (list_first_entry(&adap->mlist.list, struct mbox_list,
349                                      list) == &entry)
350                         break;
351
352                 /* Delay for a bit before checking again ... */
353                 if (sleep_ok) {
354                         ms = delay[delay_idx];  /* last element may repeat */
355                         if (delay_idx < ARRAY_SIZE(delay) - 1)
356                                 delay_idx++;
357                         msleep(ms);
358                 } else {
359                         mdelay(ms);
360                 }
361         }
362
363         /* Loop trying to get ownership of the mailbox.  Return an error
364          * if we can't gain ownership.
365          */
366         v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
367         for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
368                 v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
369         if (v != MBOX_OWNER_DRV) {
370                 spin_lock_bh(&adap->mbox_lock);
371                 list_del(&entry.list);
372                 spin_unlock_bh(&adap->mbox_lock);
373                 ret = (v == MBOX_OWNER_FW) ? -EBUSY : -ETIMEDOUT;
374                 t4_record_mbox(adap, cmd, size, access, ret);
375                 return ret;
376         }
377
378         /* Copy in the new mailbox command and send it on its way ... */
379         t4_record_mbox(adap, cmd, size, access, 0);
380         for (i = 0; i < size; i += 8)
381                 t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++));
382
383         t4_write_reg(adap, ctl_reg, MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW));
384         t4_read_reg(adap, ctl_reg);          /* flush write */
385
386         delay_idx = 0;
387         ms = delay[0];
388
389         for (i = 0;
390              !((pcie_fw = t4_read_reg(adap, PCIE_FW_A)) & PCIE_FW_ERR_F) &&
391              i < timeout;
392              i += ms) {
393                 if (sleep_ok) {
394                         ms = delay[delay_idx];  /* last element may repeat */
395                         if (delay_idx < ARRAY_SIZE(delay) - 1)
396                                 delay_idx++;
397                         msleep(ms);
398                 } else
399                         mdelay(ms);
400
401                 v = t4_read_reg(adap, ctl_reg);
402                 if (MBOWNER_G(v) == MBOX_OWNER_DRV) {
403                         if (!(v & MBMSGVALID_F)) {
404                                 t4_write_reg(adap, ctl_reg, 0);
405                                 continue;
406                         }
407
408                         get_mbox_rpl(adap, cmd_rpl, MBOX_LEN / 8, data_reg);
409                         res = be64_to_cpu(cmd_rpl[0]);
410
411                         if (FW_CMD_OP_G(res >> 32) == FW_DEBUG_CMD) {
412                                 fw_asrt(adap, data_reg);
413                                 res = FW_CMD_RETVAL_V(EIO);
414                         } else if (rpl) {
415                                 memcpy(rpl, cmd_rpl, size);
416                         }
417
418                         t4_write_reg(adap, ctl_reg, 0);
419
420                         execute = i + ms;
421                         t4_record_mbox(adap, cmd_rpl,
422                                        MBOX_LEN, access, execute);
423                         spin_lock_bh(&adap->mbox_lock);
424                         list_del(&entry.list);
425                         spin_unlock_bh(&adap->mbox_lock);
426                         return -FW_CMD_RETVAL_G((int)res);
427                 }
428         }
429
430         ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -ETIMEDOUT;
431         t4_record_mbox(adap, cmd, size, access, ret);
432         dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n",
433                 *(const u8 *)cmd, mbox);
434         t4_report_fw_error(adap);
435         spin_lock_bh(&adap->mbox_lock);
436         list_del(&entry.list);
437         spin_unlock_bh(&adap->mbox_lock);
438         t4_fatal_err(adap);
439         return ret;
440 }
441
442 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
443                     void *rpl, bool sleep_ok)
444 {
445         return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl, sleep_ok,
446                                        FW_CMD_MAX_TIMEOUT);
447 }
448
449 static int t4_edc_err_read(struct adapter *adap, int idx)
450 {
451         u32 edc_ecc_err_addr_reg;
452         u32 rdata_reg;
453
454         if (is_t4(adap->params.chip)) {
455                 CH_WARN(adap, "%s: T4 NOT supported.\n", __func__);
456                 return 0;
457         }
458         if (idx != 0 && idx != 1) {
459                 CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx);
460                 return 0;
461         }
462
463         edc_ecc_err_addr_reg = EDC_T5_REG(EDC_H_ECC_ERR_ADDR_A, idx);
464         rdata_reg = EDC_T5_REG(EDC_H_BIST_STATUS_RDATA_A, idx);
465
466         CH_WARN(adap,
467                 "edc%d err addr 0x%x: 0x%x.\n",
468                 idx, edc_ecc_err_addr_reg,
469                 t4_read_reg(adap, edc_ecc_err_addr_reg));
470         CH_WARN(adap,
471                 "bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n",
472                 rdata_reg,
473                 (unsigned long long)t4_read_reg64(adap, rdata_reg),
474                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 8),
475                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 16),
476                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 24),
477                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 32),
478                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 40),
479                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 48),
480                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 56),
481                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 64));
482
483         return 0;
484 }
485
486 /**
487  * t4_memory_rw_init - Get memory window relative offset, base, and size.
488  * @adap: the adapter
489  * @win: PCI-E Memory Window to use
490  * @mtype: memory type: MEM_EDC0, MEM_EDC1, MEM_HMA or MEM_MC
491  * @mem_off: memory relative offset with respect to @mtype.
492  * @mem_base: configured memory base address.
493  * @mem_aperture: configured memory window aperture.
494  *
495  * Get the configured memory window's relative offset, base, and size.
496  */
497 int t4_memory_rw_init(struct adapter *adap, int win, int mtype, u32 *mem_off,
498                       u32 *mem_base, u32 *mem_aperture)
499 {
500         u32 edc_size, mc_size, mem_reg;
501
502         /* Offset into the region of memory which is being accessed
503          * MEM_EDC0 = 0
504          * MEM_EDC1 = 1
505          * MEM_MC   = 2 -- MEM_MC for chips with only 1 memory controller
506          * MEM_MC1  = 3 -- for chips with 2 memory controllers (e.g. T5)
507          * MEM_HMA  = 4
508          */
509         edc_size  = EDRAM0_SIZE_G(t4_read_reg(adap, MA_EDRAM0_BAR_A));
510         if (mtype == MEM_HMA) {
511                 *mem_off = 2 * (edc_size * 1024 * 1024);
512         } else if (mtype != MEM_MC1) {
513                 *mem_off = (mtype * (edc_size * 1024 * 1024));
514         } else {
515                 mc_size = EXT_MEM0_SIZE_G(t4_read_reg(adap,
516                                                       MA_EXT_MEMORY0_BAR_A));
517                 *mem_off = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024;
518         }
519
520         /* Each PCI-E Memory Window is programmed with a window size -- or
521          * "aperture" -- which controls the granularity of its mapping onto
522          * adapter memory.  We need to grab that aperture in order to know
523          * how to use the specified window.  The window is also programmed
524          * with the base address of the Memory Window in BAR0's address
525          * space.  For T4 this is an absolute PCI-E Bus Address.  For T5
526          * the address is relative to BAR0.
527          */
528         mem_reg = t4_read_reg(adap,
529                               PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A,
530                                                   win));
531         /* a dead adapter will return 0xffffffff for PIO reads */
532         if (mem_reg == 0xffffffff)
533                 return -ENXIO;
534
535         *mem_aperture = 1 << (WINDOW_G(mem_reg) + WINDOW_SHIFT_X);
536         *mem_base = PCIEOFST_G(mem_reg) << PCIEOFST_SHIFT_X;
537         if (is_t4(adap->params.chip))
538                 *mem_base -= adap->t4_bar0;
539
540         return 0;
541 }
542
543 /**
544  * t4_memory_update_win - Move memory window to specified address.
545  * @adap: the adapter
546  * @win: PCI-E Memory Window to use
547  * @addr: location to move.
548  *
549  * Move memory window to specified address.
550  */
551 void t4_memory_update_win(struct adapter *adap, int win, u32 addr)
552 {
553         t4_write_reg(adap,
554                      PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win),
555                      addr);
556         /* Read it back to ensure that changes propagate before we
557          * attempt to use the new value.
558          */
559         t4_read_reg(adap,
560                     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win));
561 }
562
563 /**
564  * t4_memory_rw_residual - Read/Write residual data.
565  * @adap: the adapter
566  * @off: relative offset within residual to start read/write.
567  * @addr: address within indicated memory type.
568  * @buf: host memory buffer
569  * @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
570  *
571  * Read/Write residual data less than 32-bits.
572  */
573 void t4_memory_rw_residual(struct adapter *adap, u32 off, u32 addr, u8 *buf,
574                            int dir)
575 {
576         union {
577                 u32 word;
578                 char byte[4];
579         } last;
580         unsigned char *bp;
581         int i;
582
583         if (dir == T4_MEMORY_READ) {
584                 last.word = le32_to_cpu((__force __le32)
585                                         t4_read_reg(adap, addr));
586                 for (bp = (unsigned char *)buf, i = off; i < 4; i++)
587                         bp[i] = last.byte[i];
588         } else {
589                 last.word = *buf;
590                 for (i = off; i < 4; i++)
591                         last.byte[i] = 0;
592                 t4_write_reg(adap, addr,
593                              (__force u32)cpu_to_le32(last.word));
594         }
595 }
596
597 /**
598  *      t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window
599  *      @adap: the adapter
600  *      @win: PCI-E Memory Window to use
601  *      @mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
602  *      @addr: address within indicated memory type
603  *      @len: amount of memory to transfer
604  *      @hbuf: host memory buffer
605  *      @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
606  *
607  *      Reads/writes an [almost] arbitrary memory region in the firmware: the
608  *      firmware memory address and host buffer must be aligned on 32-bit
609  *      boundaries; the length may be arbitrary.  The memory is transferred as
610  *      a raw byte sequence from/to the firmware's memory.  If this memory
611  *      contains data structures which contain multi-byte integers, it's the
612  *      caller's responsibility to perform appropriate byte order conversions.
613  */
614 int t4_memory_rw(struct adapter *adap, int win, int mtype, u32 addr,
615                  u32 len, void *hbuf, int dir)
616 {
617         u32 pos, offset, resid, memoffset;
618         u32 win_pf, mem_aperture, mem_base;
619         u32 *buf;
620         int ret;
621
622         /* Argument sanity checks ...
623          */
624         if (addr & 0x3 || (uintptr_t)hbuf & 0x3)
625                 return -EINVAL;
626         buf = (u32 *)hbuf;
627
628         /* It's convenient to be able to handle lengths which aren't a
629          * multiple of 32-bits because we often end up transferring files to
630          * the firmware.  So we'll handle that by normalizing the length here
631          * and then handling any residual transfer at the end.
632          */
633         resid = len & 0x3;
634         len -= resid;
635
636         ret = t4_memory_rw_init(adap, win, mtype, &memoffset, &mem_base,
637                                 &mem_aperture);
638         if (ret)
639                 return ret;
640
641         /* Determine the PCIE_MEM_ACCESS_OFFSET */
642         addr = addr + memoffset;
643
644         win_pf = is_t4(adap->params.chip) ? 0 : PFNUM_V(adap->pf);
645
646         /* Calculate our initial PCI-E Memory Window Position and Offset into
647          * that Window.
648          */
649         pos = addr & ~(mem_aperture - 1);
650         offset = addr - pos;
651
652         /* Set up initial PCI-E Memory Window to cover the start of our
653          * transfer.
654          */
655         t4_memory_update_win(adap, win, pos | win_pf);
656
657         /* Transfer data to/from the adapter as long as there's an integral
658          * number of 32-bit transfers to complete.
659          *
660          * A note on Endianness issues:
661          *
662          * The "register" reads and writes below from/to the PCI-E Memory
663          * Window invoke the standard adapter Big-Endian to PCI-E Link
664          * Little-Endian "swizzel."  As a result, if we have the following
665          * data in adapter memory:
666          *
667          *     Memory:  ... | b0 | b1 | b2 | b3 | ...
668          *     Address:      i+0  i+1  i+2  i+3
669          *
670          * Then a read of the adapter memory via the PCI-E Memory Window
671          * will yield:
672          *
673          *     x = readl(i)
674          *         31                  0
675          *         [ b3 | b2 | b1 | b0 ]
676          *
677          * If this value is stored into local memory on a Little-Endian system
678          * it will show up correctly in local memory as:
679          *
680          *     ( ..., b0, b1, b2, b3, ... )
681          *
682          * But on a Big-Endian system, the store will show up in memory
683          * incorrectly swizzled as:
684          *
685          *     ( ..., b3, b2, b1, b0, ... )
686          *
687          * So we need to account for this in the reads and writes to the
688          * PCI-E Memory Window below by undoing the register read/write
689          * swizzels.
690          */
691         while (len > 0) {
692                 if (dir == T4_MEMORY_READ)
693                         *buf++ = le32_to_cpu((__force __le32)t4_read_reg(adap,
694                                                 mem_base + offset));
695                 else
696                         t4_write_reg(adap, mem_base + offset,
697                                      (__force u32)cpu_to_le32(*buf++));
698                 offset += sizeof(__be32);
699                 len -= sizeof(__be32);
700
701                 /* If we've reached the end of our current window aperture,
702                  * move the PCI-E Memory Window on to the next.  Note that
703                  * doing this here after "len" may be 0 allows us to set up
704                  * the PCI-E Memory Window for a possible final residual
705                  * transfer below ...
706                  */
707                 if (offset == mem_aperture) {
708                         pos += mem_aperture;
709                         offset = 0;
710                         t4_memory_update_win(adap, win, pos | win_pf);
711                 }
712         }
713
714         /* If the original transfer had a length which wasn't a multiple of
715          * 32-bits, now's where we need to finish off the transfer of the
716          * residual amount.  The PCI-E Memory Window has already been moved
717          * above (if necessary) to cover this final transfer.
718          */
719         if (resid)
720                 t4_memory_rw_residual(adap, resid, mem_base + offset,
721                                       (u8 *)buf, dir);
722
723         return 0;
724 }
725
726 /* Return the specified PCI-E Configuration Space register from our Physical
727  * Function.  We try first via a Firmware LDST Command since we prefer to let
728  * the firmware own all of these registers, but if that fails we go for it
729  * directly ourselves.
730  */
731 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg)
732 {
733         u32 val, ldst_addrspace;
734
735         /* If fw_attach != 0, construct and send the Firmware LDST Command to
736          * retrieve the specified PCI-E Configuration Space register.
737          */
738         struct fw_ldst_cmd ldst_cmd;
739         int ret;
740
741         memset(&ldst_cmd, 0, sizeof(ldst_cmd));
742         ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FUNC_PCIE);
743         ldst_cmd.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
744                                                FW_CMD_REQUEST_F |
745                                                FW_CMD_READ_F |
746                                                ldst_addrspace);
747         ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
748         ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS_V(1);
749         ldst_cmd.u.pcie.ctrl_to_fn =
750                 (FW_LDST_CMD_LC_F | FW_LDST_CMD_FN_V(adap->pf));
751         ldst_cmd.u.pcie.r = reg;
752
753         /* If the LDST Command succeeds, return the result, otherwise
754          * fall through to reading it directly ourselves ...
755          */
756         ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
757                          &ldst_cmd);
758         if (ret == 0)
759                 val = be32_to_cpu(ldst_cmd.u.pcie.data[0]);
760         else
761                 /* Read the desired Configuration Space register via the PCI-E
762                  * Backdoor mechanism.
763                  */
764                 t4_hw_pci_read_cfg4(adap, reg, &val);
765         return val;
766 }
767
768 /* Get the window based on base passed to it.
769  * Window aperture is currently unhandled, but there is no use case for it
770  * right now
771  */
772 static u32 t4_get_window(struct adapter *adap, u32 pci_base, u64 pci_mask,
773                          u32 memwin_base)
774 {
775         u32 ret;
776
777         if (is_t4(adap->params.chip)) {
778                 u32 bar0;
779
780                 /* Truncation intentional: we only read the bottom 32-bits of
781                  * the 64-bit BAR0/BAR1 ...  We use the hardware backdoor
782                  * mechanism to read BAR0 instead of using
783                  * pci_resource_start() because we could be operating from
784                  * within a Virtual Machine which is trapping our accesses to
785                  * our Configuration Space and we need to set up the PCI-E
786                  * Memory Window decoders with the actual addresses which will
787                  * be coming across the PCI-E link.
788                  */
789                 bar0 = t4_read_pcie_cfg4(adap, pci_base);
790                 bar0 &= pci_mask;
791                 adap->t4_bar0 = bar0;
792
793                 ret = bar0 + memwin_base;
794         } else {
795                 /* For T5, only relative offset inside the PCIe BAR is passed */
796                 ret = memwin_base;
797         }
798         return ret;
799 }
800
801 /* Get the default utility window (win0) used by everyone */
802 u32 t4_get_util_window(struct adapter *adap)
803 {
804         return t4_get_window(adap, PCI_BASE_ADDRESS_0,
805                              PCI_BASE_ADDRESS_MEM_MASK, MEMWIN0_BASE);
806 }
807
808 /* Set up memory window for accessing adapter memory ranges.  (Read
809  * back MA register to ensure that changes propagate before we attempt
810  * to use the new values.)
811  */
812 void t4_setup_memwin(struct adapter *adap, u32 memwin_base, u32 window)
813 {
814         t4_write_reg(adap,
815                      PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window),
816                      memwin_base | BIR_V(0) |
817                      WINDOW_V(ilog2(MEMWIN0_APERTURE) - WINDOW_SHIFT_X));
818         t4_read_reg(adap,
819                     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window));
820 }
821
822 /**
823  *      t4_get_regs_len - return the size of the chips register set
824  *      @adapter: the adapter
825  *
826  *      Returns the size of the chip's BAR0 register space.
827  */
828 unsigned int t4_get_regs_len(struct adapter *adapter)
829 {
830         unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
831
832         switch (chip_version) {
833         case CHELSIO_T4:
834                 return T4_REGMAP_SIZE;
835
836         case CHELSIO_T5:
837         case CHELSIO_T6:
838                 return T5_REGMAP_SIZE;
839         }
840
841         dev_err(adapter->pdev_dev,
842                 "Unsupported chip version %d\n", chip_version);
843         return 0;
844 }
845
846 /**
847  *      t4_get_regs - read chip registers into provided buffer
848  *      @adap: the adapter
849  *      @buf: register buffer
850  *      @buf_size: size (in bytes) of register buffer
851  *
852  *      If the provided register buffer isn't large enough for the chip's
853  *      full register range, the register dump will be truncated to the
854  *      register buffer's size.
855  */
856 void t4_get_regs(struct adapter *adap, void *buf, size_t buf_size)
857 {
858         static const unsigned int t4_reg_ranges[] = {
859                 0x1008, 0x1108,
860                 0x1180, 0x1184,
861                 0x1190, 0x1194,
862                 0x11a0, 0x11a4,
863                 0x11b0, 0x11b4,
864                 0x11fc, 0x123c,
865                 0x1300, 0x173c,
866                 0x1800, 0x18fc,
867                 0x3000, 0x30d8,
868                 0x30e0, 0x30e4,
869                 0x30ec, 0x5910,
870                 0x5920, 0x5924,
871                 0x5960, 0x5960,
872                 0x5968, 0x5968,
873                 0x5970, 0x5970,
874                 0x5978, 0x5978,
875                 0x5980, 0x5980,
876                 0x5988, 0x5988,
877                 0x5990, 0x5990,
878                 0x5998, 0x5998,
879                 0x59a0, 0x59d4,
880                 0x5a00, 0x5ae0,
881                 0x5ae8, 0x5ae8,
882                 0x5af0, 0x5af0,
883                 0x5af8, 0x5af8,
884                 0x6000, 0x6098,
885                 0x6100, 0x6150,
886                 0x6200, 0x6208,
887                 0x6240, 0x6248,
888                 0x6280, 0x62b0,
889                 0x62c0, 0x6338,
890                 0x6370, 0x638c,
891                 0x6400, 0x643c,
892                 0x6500, 0x6524,
893                 0x6a00, 0x6a04,
894                 0x6a14, 0x6a38,
895                 0x6a60, 0x6a70,
896                 0x6a78, 0x6a78,
897                 0x6b00, 0x6b0c,
898                 0x6b1c, 0x6b84,
899                 0x6bf0, 0x6bf8,
900                 0x6c00, 0x6c0c,
901                 0x6c1c, 0x6c84,
902                 0x6cf0, 0x6cf8,
903                 0x6d00, 0x6d0c,
904                 0x6d1c, 0x6d84,
905                 0x6df0, 0x6df8,
906                 0x6e00, 0x6e0c,
907                 0x6e1c, 0x6e84,
908                 0x6ef0, 0x6ef8,
909                 0x6f00, 0x6f0c,
910                 0x6f1c, 0x6f84,
911                 0x6ff0, 0x6ff8,
912                 0x7000, 0x700c,
913                 0x701c, 0x7084,
914                 0x70f0, 0x70f8,
915                 0x7100, 0x710c,
916                 0x711c, 0x7184,
917                 0x71f0, 0x71f8,
918                 0x7200, 0x720c,
919                 0x721c, 0x7284,
920                 0x72f0, 0x72f8,
921                 0x7300, 0x730c,
922                 0x731c, 0x7384,
923                 0x73f0, 0x73f8,
924                 0x7400, 0x7450,
925                 0x7500, 0x7530,
926                 0x7600, 0x760c,
927                 0x7614, 0x761c,
928                 0x7680, 0x76cc,
929                 0x7700, 0x7798,
930                 0x77c0, 0x77fc,
931                 0x7900, 0x79fc,
932                 0x7b00, 0x7b58,
933                 0x7b60, 0x7b84,
934                 0x7b8c, 0x7c38,
935                 0x7d00, 0x7d38,
936                 0x7d40, 0x7d80,
937                 0x7d8c, 0x7ddc,
938                 0x7de4, 0x7e04,
939                 0x7e10, 0x7e1c,
940                 0x7e24, 0x7e38,
941                 0x7e40, 0x7e44,
942                 0x7e4c, 0x7e78,
943                 0x7e80, 0x7ea4,
944                 0x7eac, 0x7edc,
945                 0x7ee8, 0x7efc,
946                 0x8dc0, 0x8e04,
947                 0x8e10, 0x8e1c,
948                 0x8e30, 0x8e78,
949                 0x8ea0, 0x8eb8,
950                 0x8ec0, 0x8f6c,
951                 0x8fc0, 0x9008,
952                 0x9010, 0x9058,
953                 0x9060, 0x9060,
954                 0x9068, 0x9074,
955                 0x90fc, 0x90fc,
956                 0x9400, 0x9408,
957                 0x9410, 0x9458,
958                 0x9600, 0x9600,
959                 0x9608, 0x9638,
960                 0x9640, 0x96bc,
961                 0x9800, 0x9808,
962                 0x9820, 0x983c,
963                 0x9850, 0x9864,
964                 0x9c00, 0x9c6c,
965                 0x9c80, 0x9cec,
966                 0x9d00, 0x9d6c,
967                 0x9d80, 0x9dec,
968                 0x9e00, 0x9e6c,
969                 0x9e80, 0x9eec,
970                 0x9f00, 0x9f6c,
971                 0x9f80, 0x9fec,
972                 0xd004, 0xd004,
973                 0xd010, 0xd03c,
974                 0xdfc0, 0xdfe0,
975                 0xe000, 0xea7c,
976                 0xf000, 0x11110,
977                 0x11118, 0x11190,
978                 0x19040, 0x1906c,
979                 0x19078, 0x19080,
980                 0x1908c, 0x190e4,
981                 0x190f0, 0x190f8,
982                 0x19100, 0x19110,
983                 0x19120, 0x19124,
984                 0x19150, 0x19194,
985                 0x1919c, 0x191b0,
986                 0x191d0, 0x191e8,
987                 0x19238, 0x1924c,
988                 0x193f8, 0x1943c,
989                 0x1944c, 0x19474,
990                 0x19490, 0x194e0,
991                 0x194f0, 0x194f8,
992                 0x19800, 0x19c08,
993                 0x19c10, 0x19c90,
994                 0x19ca0, 0x19ce4,
995                 0x19cf0, 0x19d40,
996                 0x19d50, 0x19d94,
997                 0x19da0, 0x19de8,
998                 0x19df0, 0x19e40,
999                 0x19e50, 0x19e90,
1000                 0x19ea0, 0x19f4c,
1001                 0x1a000, 0x1a004,
1002                 0x1a010, 0x1a06c,
1003                 0x1a0b0, 0x1a0e4,
1004                 0x1a0ec, 0x1a0f4,
1005                 0x1a100, 0x1a108,
1006                 0x1a114, 0x1a120,
1007                 0x1a128, 0x1a130,
1008                 0x1a138, 0x1a138,
1009                 0x1a190, 0x1a1c4,
1010                 0x1a1fc, 0x1a1fc,
1011                 0x1e040, 0x1e04c,
1012                 0x1e284, 0x1e28c,
1013                 0x1e2c0, 0x1e2c0,
1014                 0x1e2e0, 0x1e2e0,
1015                 0x1e300, 0x1e384,
1016                 0x1e3c0, 0x1e3c8,
1017                 0x1e440, 0x1e44c,
1018                 0x1e684, 0x1e68c,
1019                 0x1e6c0, 0x1e6c0,
1020                 0x1e6e0, 0x1e6e0,
1021                 0x1e700, 0x1e784,
1022                 0x1e7c0, 0x1e7c8,
1023                 0x1e840, 0x1e84c,
1024                 0x1ea84, 0x1ea8c,
1025                 0x1eac0, 0x1eac0,
1026                 0x1eae0, 0x1eae0,
1027                 0x1eb00, 0x1eb84,
1028                 0x1ebc0, 0x1ebc8,
1029                 0x1ec40, 0x1ec4c,
1030                 0x1ee84, 0x1ee8c,
1031                 0x1eec0, 0x1eec0,
1032                 0x1eee0, 0x1eee0,
1033                 0x1ef00, 0x1ef84,
1034                 0x1efc0, 0x1efc8,
1035                 0x1f040, 0x1f04c,
1036                 0x1f284, 0x1f28c,
1037                 0x1f2c0, 0x1f2c0,
1038                 0x1f2e0, 0x1f2e0,
1039                 0x1f300, 0x1f384,
1040                 0x1f3c0, 0x1f3c8,
1041                 0x1f440, 0x1f44c,
1042                 0x1f684, 0x1f68c,
1043                 0x1f6c0, 0x1f6c0,
1044                 0x1f6e0, 0x1f6e0,
1045                 0x1f700, 0x1f784,
1046                 0x1f7c0, 0x1f7c8,
1047                 0x1f840, 0x1f84c,
1048                 0x1fa84, 0x1fa8c,
1049                 0x1fac0, 0x1fac0,
1050                 0x1fae0, 0x1fae0,
1051                 0x1fb00, 0x1fb84,
1052                 0x1fbc0, 0x1fbc8,
1053                 0x1fc40, 0x1fc4c,
1054                 0x1fe84, 0x1fe8c,
1055                 0x1fec0, 0x1fec0,
1056                 0x1fee0, 0x1fee0,
1057                 0x1ff00, 0x1ff84,
1058                 0x1ffc0, 0x1ffc8,
1059                 0x20000, 0x2002c,
1060                 0x20100, 0x2013c,
1061                 0x20190, 0x201a0,
1062                 0x201a8, 0x201b8,
1063                 0x201c4, 0x201c8,
1064                 0x20200, 0x20318,
1065                 0x20400, 0x204b4,
1066                 0x204c0, 0x20528,
1067                 0x20540, 0x20614,
1068                 0x21000, 0x21040,
1069                 0x2104c, 0x21060,
1070                 0x210c0, 0x210ec,
1071                 0x21200, 0x21268,
1072                 0x21270, 0x21284,
1073                 0x212fc, 0x21388,
1074                 0x21400, 0x21404,
1075                 0x21500, 0x21500,
1076                 0x21510, 0x21518,
1077                 0x2152c, 0x21530,
1078                 0x2153c, 0x2153c,
1079                 0x21550, 0x21554,
1080                 0x21600, 0x21600,
1081                 0x21608, 0x2161c,
1082                 0x21624, 0x21628,
1083                 0x21630, 0x21634,
1084                 0x2163c, 0x2163c,
1085                 0x21700, 0x2171c,
1086                 0x21780, 0x2178c,
1087                 0x21800, 0x21818,
1088                 0x21820, 0x21828,
1089                 0x21830, 0x21848,
1090                 0x21850, 0x21854,
1091                 0x21860, 0x21868,
1092                 0x21870, 0x21870,
1093                 0x21878, 0x21898,
1094                 0x218a0, 0x218a8,
1095                 0x218b0, 0x218c8,
1096                 0x218d0, 0x218d4,
1097                 0x218e0, 0x218e8,
1098                 0x218f0, 0x218f0,
1099                 0x218f8, 0x21a18,
1100                 0x21a20, 0x21a28,
1101                 0x21a30, 0x21a48,
1102                 0x21a50, 0x21a54,
1103                 0x21a60, 0x21a68,
1104                 0x21a70, 0x21a70,
1105                 0x21a78, 0x21a98,
1106                 0x21aa0, 0x21aa8,
1107                 0x21ab0, 0x21ac8,
1108                 0x21ad0, 0x21ad4,
1109                 0x21ae0, 0x21ae8,
1110                 0x21af0, 0x21af0,
1111                 0x21af8, 0x21c18,
1112                 0x21c20, 0x21c20,
1113                 0x21c28, 0x21c30,
1114                 0x21c38, 0x21c38,
1115                 0x21c80, 0x21c98,
1116                 0x21ca0, 0x21ca8,
1117                 0x21cb0, 0x21cc8,
1118                 0x21cd0, 0x21cd4,
1119                 0x21ce0, 0x21ce8,
1120                 0x21cf0, 0x21cf0,
1121                 0x21cf8, 0x21d7c,
1122                 0x21e00, 0x21e04,
1123                 0x22000, 0x2202c,
1124                 0x22100, 0x2213c,
1125                 0x22190, 0x221a0,
1126                 0x221a8, 0x221b8,
1127                 0x221c4, 0x221c8,
1128                 0x22200, 0x22318,
1129                 0x22400, 0x224b4,
1130                 0x224c0, 0x22528,
1131                 0x22540, 0x22614,
1132                 0x23000, 0x23040,
1133                 0x2304c, 0x23060,
1134                 0x230c0, 0x230ec,
1135                 0x23200, 0x23268,
1136                 0x23270, 0x23284,
1137                 0x232fc, 0x23388,
1138                 0x23400, 0x23404,
1139                 0x23500, 0x23500,
1140                 0x23510, 0x23518,
1141                 0x2352c, 0x23530,
1142                 0x2353c, 0x2353c,
1143                 0x23550, 0x23554,
1144                 0x23600, 0x23600,
1145                 0x23608, 0x2361c,
1146                 0x23624, 0x23628,
1147                 0x23630, 0x23634,
1148                 0x2363c, 0x2363c,
1149                 0x23700, 0x2371c,
1150                 0x23780, 0x2378c,
1151                 0x23800, 0x23818,
1152                 0x23820, 0x23828,
1153                 0x23830, 0x23848,
1154                 0x23850, 0x23854,
1155                 0x23860, 0x23868,
1156                 0x23870, 0x23870,
1157                 0x23878, 0x23898,
1158                 0x238a0, 0x238a8,
1159                 0x238b0, 0x238c8,
1160                 0x238d0, 0x238d4,
1161                 0x238e0, 0x238e8,
1162                 0x238f0, 0x238f0,
1163                 0x238f8, 0x23a18,
1164                 0x23a20, 0x23a28,
1165                 0x23a30, 0x23a48,
1166                 0x23a50, 0x23a54,
1167                 0x23a60, 0x23a68,
1168                 0x23a70, 0x23a70,
1169                 0x23a78, 0x23a98,
1170                 0x23aa0, 0x23aa8,
1171                 0x23ab0, 0x23ac8,
1172                 0x23ad0, 0x23ad4,
1173                 0x23ae0, 0x23ae8,
1174                 0x23af0, 0x23af0,
1175                 0x23af8, 0x23c18,
1176                 0x23c20, 0x23c20,
1177                 0x23c28, 0x23c30,
1178                 0x23c38, 0x23c38,
1179                 0x23c80, 0x23c98,
1180                 0x23ca0, 0x23ca8,
1181                 0x23cb0, 0x23cc8,
1182                 0x23cd0, 0x23cd4,
1183                 0x23ce0, 0x23ce8,
1184                 0x23cf0, 0x23cf0,
1185                 0x23cf8, 0x23d7c,
1186                 0x23e00, 0x23e04,
1187                 0x24000, 0x2402c,
1188                 0x24100, 0x2413c,
1189                 0x24190, 0x241a0,
1190                 0x241a8, 0x241b8,
1191                 0x241c4, 0x241c8,
1192                 0x24200, 0x24318,
1193                 0x24400, 0x244b4,
1194                 0x244c0, 0x24528,
1195                 0x24540, 0x24614,
1196                 0x25000, 0x25040,
1197                 0x2504c, 0x25060,
1198                 0x250c0, 0x250ec,
1199                 0x25200, 0x25268,
1200                 0x25270, 0x25284,
1201                 0x252fc, 0x25388,
1202                 0x25400, 0x25404,
1203                 0x25500, 0x25500,
1204                 0x25510, 0x25518,
1205                 0x2552c, 0x25530,
1206                 0x2553c, 0x2553c,
1207                 0x25550, 0x25554,
1208                 0x25600, 0x25600,
1209                 0x25608, 0x2561c,
1210                 0x25624, 0x25628,
1211                 0x25630, 0x25634,
1212                 0x2563c, 0x2563c,
1213                 0x25700, 0x2571c,
1214                 0x25780, 0x2578c,
1215                 0x25800, 0x25818,
1216                 0x25820, 0x25828,
1217                 0x25830, 0x25848,
1218                 0x25850, 0x25854,
1219                 0x25860, 0x25868,
1220                 0x25870, 0x25870,
1221                 0x25878, 0x25898,
1222                 0x258a0, 0x258a8,
1223                 0x258b0, 0x258c8,
1224                 0x258d0, 0x258d4,
1225                 0x258e0, 0x258e8,
1226                 0x258f0, 0x258f0,
1227                 0x258f8, 0x25a18,
1228                 0x25a20, 0x25a28,
1229                 0x25a30, 0x25a48,
1230                 0x25a50, 0x25a54,
1231                 0x25a60, 0x25a68,
1232                 0x25a70, 0x25a70,
1233                 0x25a78, 0x25a98,
1234                 0x25aa0, 0x25aa8,
1235                 0x25ab0, 0x25ac8,
1236                 0x25ad0, 0x25ad4,
1237                 0x25ae0, 0x25ae8,
1238                 0x25af0, 0x25af0,
1239                 0x25af8, 0x25c18,
1240                 0x25c20, 0x25c20,
1241                 0x25c28, 0x25c30,
1242                 0x25c38, 0x25c38,
1243                 0x25c80, 0x25c98,
1244                 0x25ca0, 0x25ca8,
1245                 0x25cb0, 0x25cc8,
1246                 0x25cd0, 0x25cd4,
1247                 0x25ce0, 0x25ce8,
1248                 0x25cf0, 0x25cf0,
1249                 0x25cf8, 0x25d7c,
1250                 0x25e00, 0x25e04,
1251                 0x26000, 0x2602c,
1252                 0x26100, 0x2613c,
1253                 0x26190, 0x261a0,
1254                 0x261a8, 0x261b8,
1255                 0x261c4, 0x261c8,
1256                 0x26200, 0x26318,
1257                 0x26400, 0x264b4,
1258                 0x264c0, 0x26528,
1259                 0x26540, 0x26614,
1260                 0x27000, 0x27040,
1261                 0x2704c, 0x27060,
1262                 0x270c0, 0x270ec,
1263                 0x27200, 0x27268,
1264                 0x27270, 0x27284,
1265                 0x272fc, 0x27388,
1266                 0x27400, 0x27404,
1267                 0x27500, 0x27500,
1268                 0x27510, 0x27518,
1269                 0x2752c, 0x27530,
1270                 0x2753c, 0x2753c,
1271                 0x27550, 0x27554,
1272                 0x27600, 0x27600,
1273                 0x27608, 0x2761c,
1274                 0x27624, 0x27628,
1275                 0x27630, 0x27634,
1276                 0x2763c, 0x2763c,
1277                 0x27700, 0x2771c,
1278                 0x27780, 0x2778c,
1279                 0x27800, 0x27818,
1280                 0x27820, 0x27828,
1281                 0x27830, 0x27848,
1282                 0x27850, 0x27854,
1283                 0x27860, 0x27868,
1284                 0x27870, 0x27870,
1285                 0x27878, 0x27898,
1286                 0x278a0, 0x278a8,
1287                 0x278b0, 0x278c8,
1288                 0x278d0, 0x278d4,
1289                 0x278e0, 0x278e8,
1290                 0x278f0, 0x278f0,
1291                 0x278f8, 0x27a18,
1292                 0x27a20, 0x27a28,
1293                 0x27a30, 0x27a48,
1294                 0x27a50, 0x27a54,
1295                 0x27a60, 0x27a68,
1296                 0x27a70, 0x27a70,
1297                 0x27a78, 0x27a98,
1298                 0x27aa0, 0x27aa8,
1299                 0x27ab0, 0x27ac8,
1300                 0x27ad0, 0x27ad4,
1301                 0x27ae0, 0x27ae8,
1302                 0x27af0, 0x27af0,
1303                 0x27af8, 0x27c18,
1304                 0x27c20, 0x27c20,
1305                 0x27c28, 0x27c30,
1306                 0x27c38, 0x27c38,
1307                 0x27c80, 0x27c98,
1308                 0x27ca0, 0x27ca8,
1309                 0x27cb0, 0x27cc8,
1310                 0x27cd0, 0x27cd4,
1311                 0x27ce0, 0x27ce8,
1312                 0x27cf0, 0x27cf0,
1313                 0x27cf8, 0x27d7c,
1314                 0x27e00, 0x27e04,
1315         };
1316
1317         static const unsigned int t5_reg_ranges[] = {
1318                 0x1008, 0x10c0,
1319                 0x10cc, 0x10f8,
1320                 0x1100, 0x1100,
1321                 0x110c, 0x1148,
1322                 0x1180, 0x1184,
1323                 0x1190, 0x1194,
1324                 0x11a0, 0x11a4,
1325                 0x11b0, 0x11b4,
1326                 0x11fc, 0x123c,
1327                 0x1280, 0x173c,
1328                 0x1800, 0x18fc,
1329                 0x3000, 0x3028,
1330                 0x3060, 0x30b0,
1331                 0x30b8, 0x30d8,
1332                 0x30e0, 0x30fc,
1333                 0x3140, 0x357c,
1334                 0x35a8, 0x35cc,
1335                 0x35ec, 0x35ec,
1336                 0x3600, 0x5624,
1337                 0x56cc, 0x56ec,
1338                 0x56f4, 0x5720,
1339                 0x5728, 0x575c,
1340                 0x580c, 0x5814,
1341                 0x5890, 0x589c,
1342                 0x58a4, 0x58ac,
1343                 0x58b8, 0x58bc,
1344                 0x5940, 0x59c8,
1345                 0x59d0, 0x59dc,
1346                 0x59fc, 0x5a18,
1347                 0x5a60, 0x5a70,
1348                 0x5a80, 0x5a9c,
1349                 0x5b94, 0x5bfc,
1350                 0x6000, 0x6020,
1351                 0x6028, 0x6040,
1352                 0x6058, 0x609c,
1353                 0x60a8, 0x614c,
1354                 0x7700, 0x7798,
1355                 0x77c0, 0x78fc,
1356                 0x7b00, 0x7b58,
1357                 0x7b60, 0x7b84,
1358                 0x7b8c, 0x7c54,
1359                 0x7d00, 0x7d38,
1360                 0x7d40, 0x7d80,
1361                 0x7d8c, 0x7ddc,
1362                 0x7de4, 0x7e04,
1363                 0x7e10, 0x7e1c,
1364                 0x7e24, 0x7e38,
1365                 0x7e40, 0x7e44,
1366                 0x7e4c, 0x7e78,
1367                 0x7e80, 0x7edc,
1368                 0x7ee8, 0x7efc,
1369                 0x8dc0, 0x8de0,
1370                 0x8df8, 0x8e04,
1371                 0x8e10, 0x8e84,
1372                 0x8ea0, 0x8f84,
1373                 0x8fc0, 0x9058,
1374                 0x9060, 0x9060,
1375                 0x9068, 0x90f8,
1376                 0x9400, 0x9408,
1377                 0x9410, 0x9470,
1378                 0x9600, 0x9600,
1379                 0x9608, 0x9638,
1380                 0x9640, 0x96f4,
1381                 0x9800, 0x9808,
1382                 0x9810, 0x9864,
1383                 0x9c00, 0x9c6c,
1384                 0x9c80, 0x9cec,
1385                 0x9d00, 0x9d6c,
1386                 0x9d80, 0x9dec,
1387                 0x9e00, 0x9e6c,
1388                 0x9e80, 0x9eec,
1389                 0x9f00, 0x9f6c,
1390                 0x9f80, 0xa020,
1391                 0xd000, 0xd004,
1392                 0xd010, 0xd03c,
1393                 0xdfc0, 0xdfe0,
1394                 0xe000, 0x1106c,
1395                 0x11074, 0x11088,
1396                 0x1109c, 0x1117c,
1397                 0x11190, 0x11204,
1398                 0x19040, 0x1906c,
1399                 0x19078, 0x19080,
1400                 0x1908c, 0x190e8,
1401                 0x190f0, 0x190f8,
1402                 0x19100, 0x19110,
1403                 0x19120, 0x19124,
1404                 0x19150, 0x19194,
1405                 0x1919c, 0x191b0,
1406                 0x191d0, 0x191e8,
1407                 0x19238, 0x19290,
1408                 0x193f8, 0x19428,
1409                 0x19430, 0x19444,
1410                 0x1944c, 0x1946c,
1411                 0x19474, 0x19474,
1412                 0x19490, 0x194cc,
1413                 0x194f0, 0x194f8,
1414                 0x19c00, 0x19c08,
1415                 0x19c10, 0x19c60,
1416                 0x19c94, 0x19ce4,
1417                 0x19cf0, 0x19d40,
1418                 0x19d50, 0x19d94,
1419                 0x19da0, 0x19de8,
1420                 0x19df0, 0x19e10,
1421                 0x19e50, 0x19e90,
1422                 0x19ea0, 0x19f24,
1423                 0x19f34, 0x19f34,
1424                 0x19f40, 0x19f50,
1425                 0x19f90, 0x19fb4,
1426                 0x19fc4, 0x19fe4,
1427                 0x1a000, 0x1a004,
1428                 0x1a010, 0x1a06c,
1429                 0x1a0b0, 0x1a0e4,
1430                 0x1a0ec, 0x1a0f8,
1431                 0x1a100, 0x1a108,
1432                 0x1a114, 0x1a130,
1433                 0x1a138, 0x1a1c4,
1434                 0x1a1fc, 0x1a1fc,
1435                 0x1e008, 0x1e00c,
1436                 0x1e040, 0x1e044,
1437                 0x1e04c, 0x1e04c,
1438                 0x1e284, 0x1e290,
1439                 0x1e2c0, 0x1e2c0,
1440                 0x1e2e0, 0x1e2e0,
1441                 0x1e300, 0x1e384,
1442                 0x1e3c0, 0x1e3c8,
1443                 0x1e408, 0x1e40c,
1444                 0x1e440, 0x1e444,
1445                 0x1e44c, 0x1e44c,
1446                 0x1e684, 0x1e690,
1447                 0x1e6c0, 0x1e6c0,
1448                 0x1e6e0, 0x1e6e0,
1449                 0x1e700, 0x1e784,
1450                 0x1e7c0, 0x1e7c8,
1451                 0x1e808, 0x1e80c,
1452                 0x1e840, 0x1e844,
1453                 0x1e84c, 0x1e84c,
1454                 0x1ea84, 0x1ea90,
1455                 0x1eac0, 0x1eac0,
1456                 0x1eae0, 0x1eae0,
1457                 0x1eb00, 0x1eb84,
1458                 0x1ebc0, 0x1ebc8,
1459                 0x1ec08, 0x1ec0c,
1460                 0x1ec40, 0x1ec44,
1461                 0x1ec4c, 0x1ec4c,
1462                 0x1ee84, 0x1ee90,
1463                 0x1eec0, 0x1eec0,
1464                 0x1eee0, 0x1eee0,
1465                 0x1ef00, 0x1ef84,
1466                 0x1efc0, 0x1efc8,
1467                 0x1f008, 0x1f00c,
1468                 0x1f040, 0x1f044,
1469                 0x1f04c, 0x1f04c,
1470                 0x1f284, 0x1f290,
1471                 0x1f2c0, 0x1f2c0,
1472                 0x1f2e0, 0x1f2e0,
1473                 0x1f300, 0x1f384,
1474                 0x1f3c0, 0x1f3c8,
1475                 0x1f408, 0x1f40c,
1476                 0x1f440, 0x1f444,
1477                 0x1f44c, 0x1f44c,
1478                 0x1f684, 0x1f690,
1479                 0x1f6c0, 0x1f6c0,
1480                 0x1f6e0, 0x1f6e0,
1481                 0x1f700, 0x1f784,
1482                 0x1f7c0, 0x1f7c8,
1483                 0x1f808, 0x1f80c,
1484                 0x1f840, 0x1f844,
1485                 0x1f84c, 0x1f84c,
1486                 0x1fa84, 0x1fa90,
1487                 0x1fac0, 0x1fac0,
1488                 0x1fae0, 0x1fae0,
1489                 0x1fb00, 0x1fb84,
1490                 0x1fbc0, 0x1fbc8,
1491                 0x1fc08, 0x1fc0c,
1492                 0x1fc40, 0x1fc44,
1493                 0x1fc4c, 0x1fc4c,
1494                 0x1fe84, 0x1fe90,
1495                 0x1fec0, 0x1fec0,
1496                 0x1fee0, 0x1fee0,
1497                 0x1ff00, 0x1ff84,
1498                 0x1ffc0, 0x1ffc8,
1499                 0x30000, 0x30030,
1500                 0x30100, 0x30144,
1501                 0x30190, 0x301a0,
1502                 0x301a8, 0x301b8,
1503                 0x301c4, 0x301c8,
1504                 0x301d0, 0x301d0,
1505                 0x30200, 0x30318,
1506                 0x30400, 0x304b4,
1507                 0x304c0, 0x3052c,
1508                 0x30540, 0x3061c,
1509                 0x30800, 0x30828,
1510                 0x30834, 0x30834,
1511                 0x308c0, 0x30908,
1512                 0x30910, 0x309ac,
1513                 0x30a00, 0x30a14,
1514                 0x30a1c, 0x30a2c,
1515                 0x30a44, 0x30a50,
1516                 0x30a74, 0x30a74,
1517                 0x30a7c, 0x30afc,
1518                 0x30b08, 0x30c24,
1519                 0x30d00, 0x30d00,
1520                 0x30d08, 0x30d14,
1521                 0x30d1c, 0x30d20,
1522                 0x30d3c, 0x30d3c,
1523                 0x30d48, 0x30d50,
1524                 0x31200, 0x3120c,
1525                 0x31220, 0x31220,
1526                 0x31240, 0x31240,
1527                 0x31600, 0x3160c,
1528                 0x31a00, 0x31a1c,
1529                 0x31e00, 0x31e20,
1530                 0x31e38, 0x31e3c,
1531                 0x31e80, 0x31e80,
1532                 0x31e88, 0x31ea8,
1533                 0x31eb0, 0x31eb4,
1534                 0x31ec8, 0x31ed4,
1535                 0x31fb8, 0x32004,
1536                 0x32200, 0x32200,
1537                 0x32208, 0x32240,
1538                 0x32248, 0x32280,
1539                 0x32288, 0x322c0,
1540                 0x322c8, 0x322fc,
1541                 0x32600, 0x32630,
1542                 0x32a00, 0x32abc,
1543                 0x32b00, 0x32b10,
1544                 0x32b20, 0x32b30,
1545                 0x32b40, 0x32b50,
1546                 0x32b60, 0x32b70,
1547                 0x33000, 0x33028,
1548                 0x33030, 0x33048,
1549                 0x33060, 0x33068,
1550                 0x33070, 0x3309c,
1551                 0x330f0, 0x33128,
1552                 0x33130, 0x33148,
1553                 0x33160, 0x33168,
1554                 0x33170, 0x3319c,
1555                 0x331f0, 0x33238,
1556                 0x33240, 0x33240,
1557                 0x33248, 0x33250,
1558                 0x3325c, 0x33264,
1559                 0x33270, 0x332b8,
1560                 0x332c0, 0x332e4,
1561                 0x332f8, 0x33338,
1562                 0x33340, 0x33340,
1563                 0x33348, 0x33350,
1564                 0x3335c, 0x33364,
1565                 0x33370, 0x333b8,
1566                 0x333c0, 0x333e4,
1567                 0x333f8, 0x33428,
1568                 0x33430, 0x33448,
1569                 0x33460, 0x33468,
1570                 0x33470, 0x3349c,
1571                 0x334f0, 0x33528,
1572                 0x33530, 0x33548,
1573                 0x33560, 0x33568,
1574                 0x33570, 0x3359c,
1575                 0x335f0, 0x33638,
1576                 0x33640, 0x33640,
1577                 0x33648, 0x33650,
1578                 0x3365c, 0x33664,
1579                 0x33670, 0x336b8,
1580                 0x336c0, 0x336e4,
1581                 0x336f8, 0x33738,
1582                 0x33740, 0x33740,
1583                 0x33748, 0x33750,
1584                 0x3375c, 0x33764,
1585                 0x33770, 0x337b8,
1586                 0x337c0, 0x337e4,
1587                 0x337f8, 0x337fc,
1588                 0x33814, 0x33814,
1589                 0x3382c, 0x3382c,
1590                 0x33880, 0x3388c,
1591                 0x338e8, 0x338ec,
1592                 0x33900, 0x33928,
1593                 0x33930, 0x33948,
1594                 0x33960, 0x33968,
1595                 0x33970, 0x3399c,
1596                 0x339f0, 0x33a38,
1597                 0x33a40, 0x33a40,
1598                 0x33a48, 0x33a50,
1599                 0x33a5c, 0x33a64,
1600                 0x33a70, 0x33ab8,
1601                 0x33ac0, 0x33ae4,
1602                 0x33af8, 0x33b10,
1603                 0x33b28, 0x33b28,
1604                 0x33b3c, 0x33b50,
1605                 0x33bf0, 0x33c10,
1606                 0x33c28, 0x33c28,
1607                 0x33c3c, 0x33c50,
1608                 0x33cf0, 0x33cfc,
1609                 0x34000, 0x34030,
1610                 0x34100, 0x34144,
1611                 0x34190, 0x341a0,
1612                 0x341a8, 0x341b8,
1613                 0x341c4, 0x341c8,
1614                 0x341d0, 0x341d0,
1615                 0x34200, 0x34318,
1616                 0x34400, 0x344b4,
1617                 0x344c0, 0x3452c,
1618                 0x34540, 0x3461c,
1619                 0x34800, 0x34828,
1620                 0x34834, 0x34834,
1621                 0x348c0, 0x34908,
1622                 0x34910, 0x349ac,
1623                 0x34a00, 0x34a14,
1624                 0x34a1c, 0x34a2c,
1625                 0x34a44, 0x34a50,
1626                 0x34a74, 0x34a74,
1627                 0x34a7c, 0x34afc,
1628                 0x34b08, 0x34c24,
1629                 0x34d00, 0x34d00,
1630                 0x34d08, 0x34d14,
1631                 0x34d1c, 0x34d20,
1632                 0x34d3c, 0x34d3c,
1633                 0x34d48, 0x34d50,
1634                 0x35200, 0x3520c,
1635                 0x35220, 0x35220,
1636                 0x35240, 0x35240,
1637                 0x35600, 0x3560c,
1638                 0x35a00, 0x35a1c,
1639                 0x35e00, 0x35e20,
1640                 0x35e38, 0x35e3c,
1641                 0x35e80, 0x35e80,
1642                 0x35e88, 0x35ea8,
1643                 0x35eb0, 0x35eb4,
1644                 0x35ec8, 0x35ed4,
1645                 0x35fb8, 0x36004,
1646                 0x36200, 0x36200,
1647                 0x36208, 0x36240,
1648                 0x36248, 0x36280,
1649                 0x36288, 0x362c0,
1650                 0x362c8, 0x362fc,
1651                 0x36600, 0x36630,
1652                 0x36a00, 0x36abc,
1653                 0x36b00, 0x36b10,
1654                 0x36b20, 0x36b30,
1655                 0x36b40, 0x36b50,
1656                 0x36b60, 0x36b70,
1657                 0x37000, 0x37028,
1658                 0x37030, 0x37048,
1659                 0x37060, 0x37068,
1660                 0x37070, 0x3709c,
1661                 0x370f0, 0x37128,
1662                 0x37130, 0x37148,
1663                 0x37160, 0x37168,
1664                 0x37170, 0x3719c,
1665                 0x371f0, 0x37238,
1666                 0x37240, 0x37240,
1667                 0x37248, 0x37250,
1668                 0x3725c, 0x37264,
1669                 0x37270, 0x372b8,
1670                 0x372c0, 0x372e4,
1671                 0x372f8, 0x37338,
1672                 0x37340, 0x37340,
1673                 0x37348, 0x37350,
1674                 0x3735c, 0x37364,
1675                 0x37370, 0x373b8,
1676                 0x373c0, 0x373e4,
1677                 0x373f8, 0x37428,
1678                 0x37430, 0x37448,
1679                 0x37460, 0x37468,
1680                 0x37470, 0x3749c,
1681                 0x374f0, 0x37528,
1682                 0x37530, 0x37548,
1683                 0x37560, 0x37568,
1684                 0x37570, 0x3759c,
1685                 0x375f0, 0x37638,
1686                 0x37640, 0x37640,
1687                 0x37648, 0x37650,
1688                 0x3765c, 0x37664,
1689                 0x37670, 0x376b8,
1690                 0x376c0, 0x376e4,
1691                 0x376f8, 0x37738,
1692                 0x37740, 0x37740,
1693                 0x37748, 0x37750,
1694                 0x3775c, 0x37764,
1695                 0x37770, 0x377b8,
1696                 0x377c0, 0x377e4,
1697                 0x377f8, 0x377fc,
1698                 0x37814, 0x37814,
1699                 0x3782c, 0x3782c,
1700                 0x37880, 0x3788c,
1701                 0x378e8, 0x378ec,
1702                 0x37900, 0x37928,
1703                 0x37930, 0x37948,
1704                 0x37960, 0x37968,
1705                 0x37970, 0x3799c,
1706                 0x379f0, 0x37a38,
1707                 0x37a40, 0x37a40,
1708                 0x37a48, 0x37a50,
1709                 0x37a5c, 0x37a64,
1710                 0x37a70, 0x37ab8,
1711                 0x37ac0, 0x37ae4,
1712                 0x37af8, 0x37b10,
1713                 0x37b28, 0x37b28,
1714                 0x37b3c, 0x37b50,
1715                 0x37bf0, 0x37c10,
1716                 0x37c28, 0x37c28,
1717                 0x37c3c, 0x37c50,
1718                 0x37cf0, 0x37cfc,
1719                 0x38000, 0x38030,
1720                 0x38100, 0x38144,
1721                 0x38190, 0x381a0,
1722                 0x381a8, 0x381b8,
1723                 0x381c4, 0x381c8,
1724                 0x381d0, 0x381d0,
1725                 0x38200, 0x38318,
1726                 0x38400, 0x384b4,
1727                 0x384c0, 0x3852c,
1728                 0x38540, 0x3861c,
1729                 0x38800, 0x38828,
1730                 0x38834, 0x38834,
1731                 0x388c0, 0x38908,
1732                 0x38910, 0x389ac,
1733                 0x38a00, 0x38a14,
1734                 0x38a1c, 0x38a2c,
1735                 0x38a44, 0x38a50,
1736                 0x38a74, 0x38a74,
1737                 0x38a7c, 0x38afc,
1738                 0x38b08, 0x38c24,
1739                 0x38d00, 0x38d00,
1740                 0x38d08, 0x38d14,
1741                 0x38d1c, 0x38d20,
1742                 0x38d3c, 0x38d3c,
1743                 0x38d48, 0x38d50,
1744                 0x39200, 0x3920c,
1745                 0x39220, 0x39220,
1746                 0x39240, 0x39240,
1747                 0x39600, 0x3960c,
1748                 0x39a00, 0x39a1c,
1749                 0x39e00, 0x39e20,
1750                 0x39e38, 0x39e3c,
1751                 0x39e80, 0x39e80,
1752                 0x39e88, 0x39ea8,
1753                 0x39eb0, 0x39eb4,
1754                 0x39ec8, 0x39ed4,
1755                 0x39fb8, 0x3a004,
1756                 0x3a200, 0x3a200,
1757                 0x3a208, 0x3a240,
1758                 0x3a248, 0x3a280,
1759                 0x3a288, 0x3a2c0,
1760                 0x3a2c8, 0x3a2fc,
1761                 0x3a600, 0x3a630,
1762                 0x3aa00, 0x3aabc,
1763                 0x3ab00, 0x3ab10,
1764                 0x3ab20, 0x3ab30,
1765                 0x3ab40, 0x3ab50,
1766                 0x3ab60, 0x3ab70,
1767                 0x3b000, 0x3b028,
1768                 0x3b030, 0x3b048,
1769                 0x3b060, 0x3b068,
1770                 0x3b070, 0x3b09c,
1771                 0x3b0f0, 0x3b128,
1772                 0x3b130, 0x3b148,
1773                 0x3b160, 0x3b168,
1774                 0x3b170, 0x3b19c,
1775                 0x3b1f0, 0x3b238,
1776                 0x3b240, 0x3b240,
1777                 0x3b248, 0x3b250,
1778                 0x3b25c, 0x3b264,
1779                 0x3b270, 0x3b2b8,
1780                 0x3b2c0, 0x3b2e4,
1781                 0x3b2f8, 0x3b338,
1782                 0x3b340, 0x3b340,
1783                 0x3b348, 0x3b350,
1784                 0x3b35c, 0x3b364,
1785                 0x3b370, 0x3b3b8,
1786                 0x3b3c0, 0x3b3e4,
1787                 0x3b3f8, 0x3b428,
1788                 0x3b430, 0x3b448,
1789                 0x3b460, 0x3b468,
1790                 0x3b470, 0x3b49c,
1791                 0x3b4f0, 0x3b528,
1792                 0x3b530, 0x3b548,
1793                 0x3b560, 0x3b568,
1794                 0x3b570, 0x3b59c,
1795                 0x3b5f0, 0x3b638,
1796                 0x3b640, 0x3b640,
1797                 0x3b648, 0x3b650,
1798                 0x3b65c, 0x3b664,
1799                 0x3b670, 0x3b6b8,
1800                 0x3b6c0, 0x3b6e4,
1801                 0x3b6f8, 0x3b738,
1802                 0x3b740, 0x3b740,
1803                 0x3b748, 0x3b750,
1804                 0x3b75c, 0x3b764,
1805                 0x3b770, 0x3b7b8,
1806                 0x3b7c0, 0x3b7e4,
1807                 0x3b7f8, 0x3b7fc,
1808                 0x3b814, 0x3b814,
1809                 0x3b82c, 0x3b82c,
1810                 0x3b880, 0x3b88c,
1811                 0x3b8e8, 0x3b8ec,
1812                 0x3b900, 0x3b928,
1813                 0x3b930, 0x3b948,
1814                 0x3b960, 0x3b968,
1815                 0x3b970, 0x3b99c,
1816                 0x3b9f0, 0x3ba38,
1817                 0x3ba40, 0x3ba40,
1818                 0x3ba48, 0x3ba50,
1819                 0x3ba5c, 0x3ba64,
1820                 0x3ba70, 0x3bab8,
1821                 0x3bac0, 0x3bae4,
1822                 0x3baf8, 0x3bb10,
1823                 0x3bb28, 0x3bb28,
1824                 0x3bb3c, 0x3bb50,
1825                 0x3bbf0, 0x3bc10,
1826                 0x3bc28, 0x3bc28,
1827                 0x3bc3c, 0x3bc50,
1828                 0x3bcf0, 0x3bcfc,
1829                 0x3c000, 0x3c030,
1830                 0x3c100, 0x3c144,
1831                 0x3c190, 0x3c1a0,
1832                 0x3c1a8, 0x3c1b8,
1833                 0x3c1c4, 0x3c1c8,
1834                 0x3c1d0, 0x3c1d0,
1835                 0x3c200, 0x3c318,
1836                 0x3c400, 0x3c4b4,
1837                 0x3c4c0, 0x3c52c,
1838                 0x3c540, 0x3c61c,
1839                 0x3c800, 0x3c828,
1840                 0x3c834, 0x3c834,
1841                 0x3c8c0, 0x3c908,
1842                 0x3c910, 0x3c9ac,
1843                 0x3ca00, 0x3ca14,
1844                 0x3ca1c, 0x3ca2c,
1845                 0x3ca44, 0x3ca50,
1846                 0x3ca74, 0x3ca74,
1847                 0x3ca7c, 0x3cafc,
1848                 0x3cb08, 0x3cc24,
1849                 0x3cd00, 0x3cd00,
1850                 0x3cd08, 0x3cd14,
1851                 0x3cd1c, 0x3cd20,
1852                 0x3cd3c, 0x3cd3c,
1853                 0x3cd48, 0x3cd50,
1854                 0x3d200, 0x3d20c,
1855                 0x3d220, 0x3d220,
1856                 0x3d240, 0x3d240,
1857                 0x3d600, 0x3d60c,
1858                 0x3da00, 0x3da1c,
1859                 0x3de00, 0x3de20,
1860                 0x3de38, 0x3de3c,
1861                 0x3de80, 0x3de80,
1862                 0x3de88, 0x3dea8,
1863                 0x3deb0, 0x3deb4,
1864                 0x3dec8, 0x3ded4,
1865                 0x3dfb8, 0x3e004,
1866                 0x3e200, 0x3e200,
1867                 0x3e208, 0x3e240,
1868                 0x3e248, 0x3e280,
1869                 0x3e288, 0x3e2c0,
1870                 0x3e2c8, 0x3e2fc,
1871                 0x3e600, 0x3e630,
1872                 0x3ea00, 0x3eabc,
1873                 0x3eb00, 0x3eb10,
1874                 0x3eb20, 0x3eb30,
1875                 0x3eb40, 0x3eb50,
1876                 0x3eb60, 0x3eb70,
1877                 0x3f000, 0x3f028,
1878                 0x3f030, 0x3f048,
1879                 0x3f060, 0x3f068,
1880                 0x3f070, 0x3f09c,
1881                 0x3f0f0, 0x3f128,
1882                 0x3f130, 0x3f148,
1883                 0x3f160, 0x3f168,
1884                 0x3f170, 0x3f19c,
1885                 0x3f1f0, 0x3f238,
1886                 0x3f240, 0x3f240,
1887                 0x3f248, 0x3f250,
1888                 0x3f25c, 0x3f264,
1889                 0x3f270, 0x3f2b8,
1890                 0x3f2c0, 0x3f2e4,
1891                 0x3f2f8, 0x3f338,
1892                 0x3f340, 0x3f340,
1893                 0x3f348, 0x3f350,
1894                 0x3f35c, 0x3f364,
1895                 0x3f370, 0x3f3b8,
1896                 0x3f3c0, 0x3f3e4,
1897                 0x3f3f8, 0x3f428,
1898                 0x3f430, 0x3f448,
1899                 0x3f460, 0x3f468,
1900                 0x3f470, 0x3f49c,
1901                 0x3f4f0, 0x3f528,
1902                 0x3f530, 0x3f548,
1903                 0x3f560, 0x3f568,
1904                 0x3f570, 0x3f59c,
1905                 0x3f5f0, 0x3f638,
1906                 0x3f640, 0x3f640,
1907                 0x3f648, 0x3f650,
1908                 0x3f65c, 0x3f664,
1909                 0x3f670, 0x3f6b8,
1910                 0x3f6c0, 0x3f6e4,
1911                 0x3f6f8, 0x3f738,
1912                 0x3f740, 0x3f740,
1913                 0x3f748, 0x3f750,
1914                 0x3f75c, 0x3f764,
1915                 0x3f770, 0x3f7b8,
1916                 0x3f7c0, 0x3f7e4,
1917                 0x3f7f8, 0x3f7fc,
1918                 0x3f814, 0x3f814,
1919                 0x3f82c, 0x3f82c,
1920                 0x3f880, 0x3f88c,
1921                 0x3f8e8, 0x3f8ec,
1922                 0x3f900, 0x3f928,
1923                 0x3f930, 0x3f948,
1924                 0x3f960, 0x3f968,
1925                 0x3f970, 0x3f99c,
1926                 0x3f9f0, 0x3fa38,
1927                 0x3fa40, 0x3fa40,
1928                 0x3fa48, 0x3fa50,
1929                 0x3fa5c, 0x3fa64,
1930                 0x3fa70, 0x3fab8,
1931                 0x3fac0, 0x3fae4,
1932                 0x3faf8, 0x3fb10,
1933                 0x3fb28, 0x3fb28,
1934                 0x3fb3c, 0x3fb50,
1935                 0x3fbf0, 0x3fc10,
1936                 0x3fc28, 0x3fc28,
1937                 0x3fc3c, 0x3fc50,
1938                 0x3fcf0, 0x3fcfc,
1939                 0x40000, 0x4000c,
1940                 0x40040, 0x40050,
1941                 0x40060, 0x40068,
1942                 0x4007c, 0x4008c,
1943                 0x40094, 0x400b0,
1944                 0x400c0, 0x40144,
1945                 0x40180, 0x4018c,
1946                 0x40200, 0x40254,
1947                 0x40260, 0x40264,
1948                 0x40270, 0x40288,
1949                 0x40290, 0x40298,
1950                 0x402ac, 0x402c8,
1951                 0x402d0, 0x402e0,
1952                 0x402f0, 0x402f0,
1953                 0x40300, 0x4033c,
1954                 0x403f8, 0x403fc,
1955                 0x41304, 0x413c4,
1956                 0x41400, 0x4140c,
1957                 0x41414, 0x4141c,
1958                 0x41480, 0x414d0,
1959                 0x44000, 0x44054,
1960                 0x4405c, 0x44078,
1961                 0x440c0, 0x44174,
1962                 0x44180, 0x441ac,
1963                 0x441b4, 0x441b8,
1964                 0x441c0, 0x44254,
1965                 0x4425c, 0x44278,
1966                 0x442c0, 0x44374,
1967                 0x44380, 0x443ac,
1968                 0x443b4, 0x443b8,
1969                 0x443c0, 0x44454,
1970                 0x4445c, 0x44478,
1971                 0x444c0, 0x44574,
1972                 0x44580, 0x445ac,
1973                 0x445b4, 0x445b8,
1974                 0x445c0, 0x44654,
1975                 0x4465c, 0x44678,
1976                 0x446c0, 0x44774,
1977                 0x44780, 0x447ac,
1978                 0x447b4, 0x447b8,
1979                 0x447c0, 0x44854,
1980                 0x4485c, 0x44878,
1981                 0x448c0, 0x44974,
1982                 0x44980, 0x449ac,
1983                 0x449b4, 0x449b8,
1984                 0x449c0, 0x449fc,
1985                 0x45000, 0x45004,
1986                 0x45010, 0x45030,
1987                 0x45040, 0x45060,
1988                 0x45068, 0x45068,
1989                 0x45080, 0x45084,
1990                 0x450a0, 0x450b0,
1991                 0x45200, 0x45204,
1992                 0x45210, 0x45230,
1993                 0x45240, 0x45260,
1994                 0x45268, 0x45268,
1995                 0x45280, 0x45284,
1996                 0x452a0, 0x452b0,
1997                 0x460c0, 0x460e4,
1998                 0x47000, 0x4703c,
1999                 0x47044, 0x4708c,
2000                 0x47200, 0x47250,
2001                 0x47400, 0x47408,
2002                 0x47414, 0x47420,
2003                 0x47600, 0x47618,
2004                 0x47800, 0x47814,
2005                 0x48000, 0x4800c,
2006                 0x48040, 0x48050,
2007                 0x48060, 0x48068,
2008                 0x4807c, 0x4808c,
2009                 0x48094, 0x480b0,
2010                 0x480c0, 0x48144,
2011                 0x48180, 0x4818c,
2012                 0x48200, 0x48254,
2013                 0x48260, 0x48264,
2014                 0x48270, 0x48288,
2015                 0x48290, 0x48298,
2016                 0x482ac, 0x482c8,
2017                 0x482d0, 0x482e0,
2018                 0x482f0, 0x482f0,
2019                 0x48300, 0x4833c,
2020                 0x483f8, 0x483fc,
2021                 0x49304, 0x493c4,
2022                 0x49400, 0x4940c,
2023                 0x49414, 0x4941c,
2024                 0x49480, 0x494d0,
2025                 0x4c000, 0x4c054,
2026                 0x4c05c, 0x4c078,
2027                 0x4c0c0, 0x4c174,
2028                 0x4c180, 0x4c1ac,
2029                 0x4c1b4, 0x4c1b8,
2030                 0x4c1c0, 0x4c254,
2031                 0x4c25c, 0x4c278,
2032                 0x4c2c0, 0x4c374,
2033                 0x4c380, 0x4c3ac,
2034                 0x4c3b4, 0x4c3b8,
2035                 0x4c3c0, 0x4c454,
2036                 0x4c45c, 0x4c478,
2037                 0x4c4c0, 0x4c574,
2038                 0x4c580, 0x4c5ac,
2039                 0x4c5b4, 0x4c5b8,
2040                 0x4c5c0, 0x4c654,
2041                 0x4c65c, 0x4c678,
2042                 0x4c6c0, 0x4c774,
2043                 0x4c780, 0x4c7ac,
2044                 0x4c7b4, 0x4c7b8,
2045                 0x4c7c0, 0x4c854,
2046                 0x4c85c, 0x4c878,
2047                 0x4c8c0, 0x4c974,
2048                 0x4c980, 0x4c9ac,
2049                 0x4c9b4, 0x4c9b8,
2050                 0x4c9c0, 0x4c9fc,
2051                 0x4d000, 0x4d004,
2052                 0x4d010, 0x4d030,
2053                 0x4d040, 0x4d060,
2054                 0x4d068, 0x4d068,
2055                 0x4d080, 0x4d084,
2056                 0x4d0a0, 0x4d0b0,
2057                 0x4d200, 0x4d204,
2058                 0x4d210, 0x4d230,
2059                 0x4d240, 0x4d260,
2060                 0x4d268, 0x4d268,
2061                 0x4d280, 0x4d284,
2062                 0x4d2a0, 0x4d2b0,
2063                 0x4e0c0, 0x4e0e4,
2064                 0x4f000, 0x4f03c,
2065                 0x4f044, 0x4f08c,
2066                 0x4f200, 0x4f250,
2067                 0x4f400, 0x4f408,
2068                 0x4f414, 0x4f420,
2069                 0x4f600, 0x4f618,
2070                 0x4f800, 0x4f814,
2071                 0x50000, 0x50084,
2072                 0x50090, 0x500cc,
2073                 0x50400, 0x50400,
2074                 0x50800, 0x50884,
2075                 0x50890, 0x508cc,
2076                 0x50c00, 0x50c00,
2077                 0x51000, 0x5101c,
2078                 0x51300, 0x51308,
2079         };
2080
2081         static const unsigned int t6_reg_ranges[] = {
2082                 0x1008, 0x101c,
2083                 0x1024, 0x10a8,
2084                 0x10b4, 0x10f8,
2085                 0x1100, 0x1114,
2086                 0x111c, 0x112c,
2087                 0x1138, 0x113c,
2088                 0x1144, 0x114c,
2089                 0x1180, 0x1184,
2090                 0x1190, 0x1194,
2091                 0x11a0, 0x11a4,
2092                 0x11b0, 0x11b4,
2093                 0x11fc, 0x1274,
2094                 0x1280, 0x133c,
2095                 0x1800, 0x18fc,
2096                 0x3000, 0x302c,
2097                 0x3060, 0x30b0,
2098                 0x30b8, 0x30d8,
2099                 0x30e0, 0x30fc,
2100                 0x3140, 0x357c,
2101                 0x35a8, 0x35cc,
2102                 0x35ec, 0x35ec,
2103                 0x3600, 0x5624,
2104                 0x56cc, 0x56ec,
2105                 0x56f4, 0x5720,
2106                 0x5728, 0x575c,
2107                 0x580c, 0x5814,
2108                 0x5890, 0x589c,
2109                 0x58a4, 0x58ac,
2110                 0x58b8, 0x58bc,
2111                 0x5940, 0x595c,
2112                 0x5980, 0x598c,
2113                 0x59b0, 0x59c8,
2114                 0x59d0, 0x59dc,
2115                 0x59fc, 0x5a18,
2116                 0x5a60, 0x5a6c,
2117                 0x5a80, 0x5a8c,
2118                 0x5a94, 0x5a9c,
2119                 0x5b94, 0x5bfc,
2120                 0x5c10, 0x5e48,
2121                 0x5e50, 0x5e94,
2122                 0x5ea0, 0x5eb0,
2123                 0x5ec0, 0x5ec0,
2124                 0x5ec8, 0x5ed0,
2125                 0x5ee0, 0x5ee0,
2126                 0x5ef0, 0x5ef0,
2127                 0x5f00, 0x5f00,
2128                 0x6000, 0x6020,
2129                 0x6028, 0x6040,
2130                 0x6058, 0x609c,
2131                 0x60a8, 0x619c,
2132                 0x7700, 0x7798,
2133                 0x77c0, 0x7880,
2134                 0x78cc, 0x78fc,
2135                 0x7b00, 0x7b58,
2136                 0x7b60, 0x7b84,
2137                 0x7b8c, 0x7c54,
2138                 0x7d00, 0x7d38,
2139                 0x7d40, 0x7d84,
2140                 0x7d8c, 0x7ddc,
2141                 0x7de4, 0x7e04,
2142                 0x7e10, 0x7e1c,
2143                 0x7e24, 0x7e38,
2144                 0x7e40, 0x7e44,
2145                 0x7e4c, 0x7e78,
2146                 0x7e80, 0x7edc,
2147                 0x7ee8, 0x7efc,
2148                 0x8dc0, 0x8de4,
2149                 0x8df8, 0x8e04,
2150                 0x8e10, 0x8e84,
2151                 0x8ea0, 0x8f88,
2152                 0x8fb8, 0x9058,
2153                 0x9060, 0x9060,
2154                 0x9068, 0x90f8,
2155                 0x9100, 0x9124,
2156                 0x9400, 0x9470,
2157                 0x9600, 0x9600,
2158                 0x9608, 0x9638,
2159                 0x9640, 0x9704,
2160                 0x9710, 0x971c,
2161                 0x9800, 0x9808,
2162                 0x9810, 0x9864,
2163                 0x9c00, 0x9c6c,
2164                 0x9c80, 0x9cec,
2165                 0x9d00, 0x9d6c,
2166                 0x9d80, 0x9dec,
2167                 0x9e00, 0x9e6c,
2168                 0x9e80, 0x9eec,
2169                 0x9f00, 0x9f6c,
2170                 0x9f80, 0xa020,
2171                 0xd000, 0xd03c,
2172                 0xd100, 0xd118,
2173                 0xd200, 0xd214,
2174                 0xd220, 0xd234,
2175                 0xd240, 0xd254,
2176                 0xd260, 0xd274,
2177                 0xd280, 0xd294,
2178                 0xd2a0, 0xd2b4,
2179                 0xd2c0, 0xd2d4,
2180                 0xd2e0, 0xd2f4,
2181                 0xd300, 0xd31c,
2182                 0xdfc0, 0xdfe0,
2183                 0xe000, 0xf008,
2184                 0xf010, 0xf018,
2185                 0xf020, 0xf028,
2186                 0x11000, 0x11014,
2187                 0x11048, 0x1106c,
2188                 0x11074, 0x11088,
2189                 0x11098, 0x11120,
2190                 0x1112c, 0x1117c,
2191                 0x11190, 0x112e0,
2192                 0x11300, 0x1130c,
2193                 0x12000, 0x1206c,
2194                 0x19040, 0x1906c,
2195                 0x19078, 0x19080,
2196                 0x1908c, 0x190e8,
2197                 0x190f0, 0x190f8,
2198                 0x19100, 0x19110,
2199                 0x19120, 0x19124,
2200                 0x19150, 0x19194,
2201                 0x1919c, 0x191b0,
2202                 0x191d0, 0x191e8,
2203                 0x19238, 0x19290,
2204                 0x192a4, 0x192b0,
2205                 0x192bc, 0x192bc,
2206                 0x19348, 0x1934c,
2207                 0x193f8, 0x19418,
2208                 0x19420, 0x19428,
2209                 0x19430, 0x19444,
2210                 0x1944c, 0x1946c,
2211                 0x19474, 0x19474,
2212                 0x19490, 0x194cc,
2213                 0x194f0, 0x194f8,
2214                 0x19c00, 0x19c48,
2215                 0x19c50, 0x19c80,
2216                 0x19c94, 0x19c98,
2217                 0x19ca0, 0x19cbc,
2218                 0x19ce4, 0x19ce4,
2219                 0x19cf0, 0x19cf8,
2220                 0x19d00, 0x19d28,
2221                 0x19d50, 0x19d78,
2222                 0x19d94, 0x19d98,
2223                 0x19da0, 0x19dc8,
2224                 0x19df0, 0x19e10,
2225                 0x19e50, 0x19e6c,
2226                 0x19ea0, 0x19ebc,
2227                 0x19ec4, 0x19ef4,
2228                 0x19f04, 0x19f2c,
2229                 0x19f34, 0x19f34,
2230                 0x19f40, 0x19f50,
2231                 0x19f90, 0x19fac,
2232                 0x19fc4, 0x19fc8,
2233                 0x19fd0, 0x19fe4,
2234                 0x1a000, 0x1a004,
2235                 0x1a010, 0x1a06c,
2236                 0x1a0b0, 0x1a0e4,
2237                 0x1a0ec, 0x1a0f8,
2238                 0x1a100, 0x1a108,
2239                 0x1a114, 0x1a130,
2240                 0x1a138, 0x1a1c4,
2241                 0x1a1fc, 0x1a1fc,
2242                 0x1e008, 0x1e00c,
2243                 0x1e040, 0x1e044,
2244                 0x1e04c, 0x1e04c,
2245                 0x1e284, 0x1e290,
2246                 0x1e2c0, 0x1e2c0,
2247                 0x1e2e0, 0x1e2e0,
2248                 0x1e300, 0x1e384,
2249                 0x1e3c0, 0x1e3c8,
2250                 0x1e408, 0x1e40c,
2251                 0x1e440, 0x1e444,
2252                 0x1e44c, 0x1e44c,
2253                 0x1e684, 0x1e690,
2254                 0x1e6c0, 0x1e6c0,
2255                 0x1e6e0, 0x1e6e0,
2256                 0x1e700, 0x1e784,
2257                 0x1e7c0, 0x1e7c8,
2258                 0x1e808, 0x1e80c,
2259                 0x1e840, 0x1e844,
2260                 0x1e84c, 0x1e84c,
2261                 0x1ea84, 0x1ea90,
2262                 0x1eac0, 0x1eac0,
2263                 0x1eae0, 0x1eae0,
2264                 0x1eb00, 0x1eb84,
2265                 0x1ebc0, 0x1ebc8,
2266                 0x1ec08, 0x1ec0c,
2267                 0x1ec40, 0x1ec44,
2268                 0x1ec4c, 0x1ec4c,
2269                 0x1ee84, 0x1ee90,
2270                 0x1eec0, 0x1eec0,
2271                 0x1eee0, 0x1eee0,
2272                 0x1ef00, 0x1ef84,
2273                 0x1efc0, 0x1efc8,
2274                 0x1f008, 0x1f00c,
2275                 0x1f040, 0x1f044,
2276                 0x1f04c, 0x1f04c,
2277                 0x1f284, 0x1f290,
2278                 0x1f2c0, 0x1f2c0,
2279                 0x1f2e0, 0x1f2e0,
2280                 0x1f300, 0x1f384,
2281                 0x1f3c0, 0x1f3c8,
2282                 0x1f408, 0x1f40c,
2283                 0x1f440, 0x1f444,
2284                 0x1f44c, 0x1f44c,
2285                 0x1f684, 0x1f690,
2286                 0x1f6c0, 0x1f6c0,
2287                 0x1f6e0, 0x1f6e0,
2288                 0x1f700, 0x1f784,
2289                 0x1f7c0, 0x1f7c8,
2290                 0x1f808, 0x1f80c,
2291                 0x1f840, 0x1f844,
2292                 0x1f84c, 0x1f84c,
2293                 0x1fa84, 0x1fa90,
2294                 0x1fac0, 0x1fac0,
2295                 0x1fae0, 0x1fae0,
2296                 0x1fb00, 0x1fb84,
2297                 0x1fbc0, 0x1fbc8,
2298                 0x1fc08, 0x1fc0c,
2299                 0x1fc40, 0x1fc44,
2300                 0x1fc4c, 0x1fc4c,
2301                 0x1fe84, 0x1fe90,
2302                 0x1fec0, 0x1fec0,
2303                 0x1fee0, 0x1fee0,
2304                 0x1ff00, 0x1ff84,
2305                 0x1ffc0, 0x1ffc8,
2306                 0x30000, 0x30030,
2307                 0x30100, 0x30168,
2308                 0x30190, 0x301a0,
2309                 0x301a8, 0x301b8,
2310                 0x301c4, 0x301c8,
2311                 0x301d0, 0x301d0,
2312                 0x30200, 0x30320,
2313                 0x30400, 0x304b4,
2314                 0x304c0, 0x3052c,
2315                 0x30540, 0x3061c,
2316                 0x30800, 0x308a0,
2317                 0x308c0, 0x30908,
2318                 0x30910, 0x309b8,
2319                 0x30a00, 0x30a04,
2320                 0x30a0c, 0x30a14,
2321                 0x30a1c, 0x30a2c,
2322                 0x30a44, 0x30a50,
2323                 0x30a74, 0x30a74,
2324                 0x30a7c, 0x30afc,
2325                 0x30b08, 0x30c24,
2326                 0x30d00, 0x30d14,
2327                 0x30d1c, 0x30d3c,
2328                 0x30d44, 0x30d4c,
2329                 0x30d54, 0x30d74,
2330                 0x30d7c, 0x30d7c,
2331                 0x30de0, 0x30de0,
2332                 0x30e00, 0x30ed4,
2333                 0x30f00, 0x30fa4,
2334                 0x30fc0, 0x30fc4,
2335                 0x31000, 0x31004,
2336                 0x31080, 0x310fc,
2337                 0x31208, 0x31220,
2338                 0x3123c, 0x31254,
2339                 0x31300, 0x31300,
2340                 0x31308, 0x3131c,
2341                 0x31338, 0x3133c,
2342                 0x31380, 0x31380,
2343                 0x31388, 0x313a8,
2344                 0x313b4, 0x313b4,
2345                 0x31400, 0x31420,
2346                 0x31438, 0x3143c,
2347                 0x31480, 0x31480,
2348                 0x314a8, 0x314a8,
2349                 0x314b0, 0x314b4,
2350                 0x314c8, 0x314d4,
2351                 0x31a40, 0x31a4c,
2352                 0x31af0, 0x31b20,
2353                 0x31b38, 0x31b3c,
2354                 0x31b80, 0x31b80,
2355                 0x31ba8, 0x31ba8,
2356                 0x31bb0, 0x31bb4,
2357                 0x31bc8, 0x31bd4,
2358                 0x32140, 0x3218c,
2359                 0x321f0, 0x321f4,
2360                 0x32200, 0x32200,
2361                 0x32218, 0x32218,
2362                 0x32400, 0x32400,
2363                 0x32408, 0x3241c,
2364                 0x32618, 0x32620,
2365                 0x32664, 0x32664,
2366                 0x326a8, 0x326a8,
2367                 0x326ec, 0x326ec,
2368                 0x32a00, 0x32abc,
2369                 0x32b00, 0x32b18,
2370                 0x32b20, 0x32b38,
2371                 0x32b40, 0x32b58,
2372                 0x32b60, 0x32b78,
2373                 0x32c00, 0x32c00,
2374                 0x32c08, 0x32c3c,
2375                 0x33000, 0x3302c,
2376                 0x33034, 0x33050,
2377                 0x33058, 0x33058,
2378                 0x33060, 0x3308c,
2379                 0x3309c, 0x330ac,
2380                 0x330c0, 0x330c0,
2381                 0x330c8, 0x330d0,
2382                 0x330d8, 0x330e0,
2383                 0x330ec, 0x3312c,
2384                 0x33134, 0x33150,
2385                 0x33158, 0x33158,
2386                 0x33160, 0x3318c,
2387                 0x3319c, 0x331ac,
2388                 0x331c0, 0x331c0,
2389                 0x331c8, 0x331d0,
2390                 0x331d8, 0x331e0,
2391                 0x331ec, 0x33290,
2392                 0x33298, 0x332c4,
2393                 0x332e4, 0x33390,
2394                 0x33398, 0x333c4,
2395                 0x333e4, 0x3342c,
2396                 0x33434, 0x33450,
2397                 0x33458, 0x33458,
2398                 0x33460, 0x3348c,
2399                 0x3349c, 0x334ac,
2400                 0x334c0, 0x334c0,
2401                 0x334c8, 0x334d0,
2402                 0x334d8, 0x334e0,
2403                 0x334ec, 0x3352c,
2404                 0x33534, 0x33550,
2405                 0x33558, 0x33558,
2406                 0x33560, 0x3358c,
2407                 0x3359c, 0x335ac,
2408                 0x335c0, 0x335c0,
2409                 0x335c8, 0x335d0,
2410                 0x335d8, 0x335e0,
2411                 0x335ec, 0x33690,
2412                 0x33698, 0x336c4,
2413                 0x336e4, 0x33790,
2414                 0x33798, 0x337c4,
2415                 0x337e4, 0x337fc,
2416                 0x33814, 0x33814,
2417                 0x33854, 0x33868,
2418                 0x33880, 0x3388c,
2419                 0x338c0, 0x338d0,
2420                 0x338e8, 0x338ec,
2421                 0x33900, 0x3392c,
2422                 0x33934, 0x33950,
2423                 0x33958, 0x33958,
2424                 0x33960, 0x3398c,
2425                 0x3399c, 0x339ac,
2426                 0x339c0, 0x339c0,
2427                 0x339c8, 0x339d0,
2428                 0x339d8, 0x339e0,
2429                 0x339ec, 0x33a90,
2430                 0x33a98, 0x33ac4,
2431                 0x33ae4, 0x33b10,
2432                 0x33b24, 0x33b28,
2433                 0x33b38, 0x33b50,
2434                 0x33bf0, 0x33c10,
2435                 0x33c24, 0x33c28,
2436                 0x33c38, 0x33c50,
2437                 0x33cf0, 0x33cfc,
2438                 0x34000, 0x34030,
2439                 0x34100, 0x34168,
2440                 0x34190, 0x341a0,
2441                 0x341a8, 0x341b8,
2442                 0x341c4, 0x341c8,
2443                 0x341d0, 0x341d0,
2444                 0x34200, 0x34320,
2445                 0x34400, 0x344b4,
2446                 0x344c0, 0x3452c,
2447                 0x34540, 0x3461c,
2448                 0x34800, 0x348a0,
2449                 0x348c0, 0x34908,
2450                 0x34910, 0x349b8,
2451                 0x34a00, 0x34a04,
2452                 0x34a0c, 0x34a14,
2453                 0x34a1c, 0x34a2c,
2454                 0x34a44, 0x34a50,
2455                 0x34a74, 0x34a74,
2456                 0x34a7c, 0x34afc,
2457                 0x34b08, 0x34c24,
2458                 0x34d00, 0x34d14,
2459                 0x34d1c, 0x34d3c,
2460                 0x34d44, 0x34d4c,
2461                 0x34d54, 0x34d74,
2462                 0x34d7c, 0x34d7c,
2463                 0x34de0, 0x34de0,
2464                 0x34e00, 0x34ed4,
2465                 0x34f00, 0x34fa4,
2466                 0x34fc0, 0x34fc4,
2467                 0x35000, 0x35004,
2468                 0x35080, 0x350fc,
2469                 0x35208, 0x35220,
2470                 0x3523c, 0x35254,
2471                 0x35300, 0x35300,
2472                 0x35308, 0x3531c,
2473                 0x35338, 0x3533c,
2474                 0x35380, 0x35380,
2475                 0x35388, 0x353a8,
2476                 0x353b4, 0x353b4,
2477                 0x35400, 0x35420,
2478                 0x35438, 0x3543c,
2479                 0x35480, 0x35480,
2480                 0x354a8, 0x354a8,
2481                 0x354b0, 0x354b4,
2482                 0x354c8, 0x354d4,
2483                 0x35a40, 0x35a4c,
2484                 0x35af0, 0x35b20,
2485                 0x35b38, 0x35b3c,
2486                 0x35b80, 0x35b80,
2487                 0x35ba8, 0x35ba8,
2488                 0x35bb0, 0x35bb4,
2489                 0x35bc8, 0x35bd4,
2490                 0x36140, 0x3618c,
2491                 0x361f0, 0x361f4,
2492                 0x36200, 0x36200,
2493                 0x36218, 0x36218,
2494                 0x36400, 0x36400,
2495                 0x36408, 0x3641c,
2496                 0x36618, 0x36620,
2497                 0x36664, 0x36664,
2498                 0x366a8, 0x366a8,
2499                 0x366ec, 0x366ec,
2500                 0x36a00, 0x36abc,
2501                 0x36b00, 0x36b18,
2502                 0x36b20, 0x36b38,
2503                 0x36b40, 0x36b58,
2504                 0x36b60, 0x36b78,
2505                 0x36c00, 0x36c00,
2506                 0x36c08, 0x36c3c,
2507                 0x37000, 0x3702c,
2508                 0x37034, 0x37050,
2509                 0x37058, 0x37058,
2510                 0x37060, 0x3708c,
2511                 0x3709c, 0x370ac,
2512                 0x370c0, 0x370c0,
2513                 0x370c8, 0x370d0,
2514                 0x370d8, 0x370e0,
2515                 0x370ec, 0x3712c,
2516                 0x37134, 0x37150,
2517                 0x37158, 0x37158,
2518                 0x37160, 0x3718c,
2519                 0x3719c, 0x371ac,
2520                 0x371c0, 0x371c0,
2521                 0x371c8, 0x371d0,
2522                 0x371d8, 0x371e0,
2523                 0x371ec, 0x37290,
2524                 0x37298, 0x372c4,
2525                 0x372e4, 0x37390,
2526                 0x37398, 0x373c4,
2527                 0x373e4, 0x3742c,
2528                 0x37434, 0x37450,
2529                 0x37458, 0x37458,
2530                 0x37460, 0x3748c,
2531                 0x3749c, 0x374ac,
2532                 0x374c0, 0x374c0,
2533                 0x374c8, 0x374d0,
2534                 0x374d8, 0x374e0,
2535                 0x374ec, 0x3752c,
2536                 0x37534, 0x37550,
2537                 0x37558, 0x37558,
2538                 0x37560, 0x3758c,
2539                 0x3759c, 0x375ac,
2540                 0x375c0, 0x375c0,
2541                 0x375c8, 0x375d0,
2542                 0x375d8, 0x375e0,
2543                 0x375ec, 0x37690,
2544                 0x37698, 0x376c4,
2545                 0x376e4, 0x37790,
2546                 0x37798, 0x377c4,
2547                 0x377e4, 0x377fc,
2548                 0x37814, 0x37814,
2549                 0x37854, 0x37868,
2550                 0x37880, 0x3788c,
2551                 0x378c0, 0x378d0,
2552                 0x378e8, 0x378ec,
2553                 0x37900, 0x3792c,
2554                 0x37934, 0x37950,
2555                 0x37958, 0x37958,
2556                 0x37960, 0x3798c,
2557                 0x3799c, 0x379ac,
2558                 0x379c0, 0x379c0,
2559                 0x379c8, 0x379d0,
2560                 0x379d8, 0x379e0,
2561                 0x379ec, 0x37a90,
2562                 0x37a98, 0x37ac4,
2563                 0x37ae4, 0x37b10,
2564                 0x37b24, 0x37b28,
2565                 0x37b38, 0x37b50,
2566                 0x37bf0, 0x37c10,
2567                 0x37c24, 0x37c28,
2568                 0x37c38, 0x37c50,
2569                 0x37cf0, 0x37cfc,
2570                 0x40040, 0x40040,
2571                 0x40080, 0x40084,
2572                 0x40100, 0x40100,
2573                 0x40140, 0x401bc,
2574                 0x40200, 0x40214,
2575                 0x40228, 0x40228,
2576                 0x40240, 0x40258,
2577                 0x40280, 0x40280,
2578                 0x40304, 0x40304,
2579                 0x40330, 0x4033c,
2580                 0x41304, 0x413c8,
2581                 0x413d0, 0x413dc,
2582                 0x413f0, 0x413f0,
2583                 0x41400, 0x4140c,
2584                 0x41414, 0x4141c,
2585                 0x41480, 0x414d0,
2586                 0x44000, 0x4407c,
2587                 0x440c0, 0x441ac,
2588                 0x441b4, 0x4427c,
2589                 0x442c0, 0x443ac,
2590                 0x443b4, 0x4447c,
2591                 0x444c0, 0x445ac,
2592                 0x445b4, 0x4467c,
2593                 0x446c0, 0x447ac,
2594                 0x447b4, 0x4487c,
2595                 0x448c0, 0x449ac,
2596                 0x449b4, 0x44a7c,
2597                 0x44ac0, 0x44bac,
2598                 0x44bb4, 0x44c7c,
2599                 0x44cc0, 0x44dac,
2600                 0x44db4, 0x44e7c,
2601                 0x44ec0, 0x44fac,
2602                 0x44fb4, 0x4507c,
2603                 0x450c0, 0x451ac,
2604                 0x451b4, 0x451fc,
2605                 0x45800, 0x45804,
2606                 0x45810, 0x45830,
2607                 0x45840, 0x45860,
2608                 0x45868, 0x45868,
2609                 0x45880, 0x45884,
2610                 0x458a0, 0x458b0,
2611                 0x45a00, 0x45a04,
2612                 0x45a10, 0x45a30,
2613                 0x45a40, 0x45a60,
2614                 0x45a68, 0x45a68,
2615                 0x45a80, 0x45a84,
2616                 0x45aa0, 0x45ab0,
2617                 0x460c0, 0x460e4,
2618                 0x47000, 0x4703c,
2619                 0x47044, 0x4708c,
2620                 0x47200, 0x47250,
2621                 0x47400, 0x47408,
2622                 0x47414, 0x47420,
2623                 0x47600, 0x47618,
2624                 0x47800, 0x47814,
2625                 0x47820, 0x4782c,
2626                 0x50000, 0x50084,
2627                 0x50090, 0x500cc,
2628                 0x50300, 0x50384,
2629                 0x50400, 0x50400,
2630                 0x50800, 0x50884,
2631                 0x50890, 0x508cc,
2632                 0x50b00, 0x50b84,
2633                 0x50c00, 0x50c00,
2634                 0x51000, 0x51020,
2635                 0x51028, 0x510b0,
2636                 0x51300, 0x51324,
2637         };
2638
2639         u32 *buf_end = (u32 *)((char *)buf + buf_size);
2640         const unsigned int *reg_ranges;
2641         int reg_ranges_size, range;
2642         unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
2643
2644         /* Select the right set of register ranges to dump depending on the
2645          * adapter chip type.
2646          */
2647         switch (chip_version) {
2648         case CHELSIO_T4:
2649                 reg_ranges = t4_reg_ranges;
2650                 reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
2651                 break;
2652
2653         case CHELSIO_T5:
2654                 reg_ranges = t5_reg_ranges;
2655                 reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
2656                 break;
2657
2658         case CHELSIO_T6:
2659                 reg_ranges = t6_reg_ranges;
2660                 reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
2661                 break;
2662
2663         default:
2664                 dev_err(adap->pdev_dev,
2665                         "Unsupported chip version %d\n", chip_version);
2666                 return;
2667         }
2668
2669         /* Clear the register buffer and insert the appropriate register
2670          * values selected by the above register ranges.
2671          */
2672         memset(buf, 0, buf_size);
2673         for (range = 0; range < reg_ranges_size; range += 2) {
2674                 unsigned int reg = reg_ranges[range];
2675                 unsigned int last_reg = reg_ranges[range + 1];
2676                 u32 *bufp = (u32 *)((char *)buf + reg);
2677
2678                 /* Iterate across the register range filling in the register
2679                  * buffer but don't write past the end of the register buffer.
2680                  */
2681                 while (reg <= last_reg && bufp < buf_end) {
2682                         *bufp++ = t4_read_reg(adap, reg);
2683                         reg += sizeof(u32);
2684                 }
2685         }
2686 }
2687
2688 #define EEPROM_STAT_ADDR   0x7bfc
2689 #define VPD_BASE           0x400
2690 #define VPD_BASE_OLD       0
2691 #define VPD_LEN            1024
2692 #define CHELSIO_VPD_UNIQUE_ID 0x82
2693
2694 /**
2695  * t4_eeprom_ptov - translate a physical EEPROM address to virtual
2696  * @phys_addr: the physical EEPROM address
2697  * @fn: the PCI function number
2698  * @sz: size of function-specific area
2699  *
2700  * Translate a physical EEPROM address to virtual.  The first 1K is
2701  * accessed through virtual addresses starting at 31K, the rest is
2702  * accessed through virtual addresses starting at 0.
2703  *
2704  * The mapping is as follows:
2705  * [0..1K) -> [31K..32K)
2706  * [1K..1K+A) -> [31K-A..31K)
2707  * [1K+A..ES) -> [0..ES-A-1K)
2708  *
2709  * where A = @fn * @sz, and ES = EEPROM size.
2710  */
2711 int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
2712 {
2713         fn *= sz;
2714         if (phys_addr < 1024)
2715                 return phys_addr + (31 << 10);
2716         if (phys_addr < 1024 + fn)
2717                 return 31744 - fn + phys_addr - 1024;
2718         if (phys_addr < EEPROMSIZE)
2719                 return phys_addr - 1024 - fn;
2720         return -EINVAL;
2721 }
2722
2723 /**
2724  *      t4_seeprom_wp - enable/disable EEPROM write protection
2725  *      @adapter: the adapter
2726  *      @enable: whether to enable or disable write protection
2727  *
2728  *      Enables or disables write protection on the serial EEPROM.
2729  */
2730 int t4_seeprom_wp(struct adapter *adapter, bool enable)
2731 {
2732         unsigned int v = enable ? 0xc : 0;
2733         int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v);
2734         return ret < 0 ? ret : 0;
2735 }
2736
2737 /**
2738  *      t4_get_raw_vpd_params - read VPD parameters from VPD EEPROM
2739  *      @adapter: adapter to read
2740  *      @p: where to store the parameters
2741  *
2742  *      Reads card parameters stored in VPD EEPROM.
2743  */
2744 int t4_get_raw_vpd_params(struct adapter *adapter, struct vpd_params *p)
2745 {
2746         int i, ret = 0, addr;
2747         int ec, sn, pn, na;
2748         u8 *vpd, csum;
2749         unsigned int vpdr_len, kw_offset, id_len;
2750
2751         vpd = vmalloc(VPD_LEN);
2752         if (!vpd)
2753                 return -ENOMEM;
2754
2755         /* Card information normally starts at VPD_BASE but early cards had
2756          * it at 0.
2757          */
2758         ret = pci_read_vpd(adapter->pdev, VPD_BASE, sizeof(u32), vpd);
2759         if (ret < 0)
2760                 goto out;
2761
2762         /* The VPD shall have a unique identifier specified by the PCI SIG.
2763          * For chelsio adapters, the identifier is 0x82. The first byte of a VPD
2764          * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software
2765          * is expected to automatically put this entry at the
2766          * beginning of the VPD.
2767          */
2768         addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
2769
2770         ret = pci_read_vpd(adapter->pdev, addr, VPD_LEN, vpd);
2771         if (ret < 0)
2772                 goto out;
2773
2774         if (vpd[0] != PCI_VPD_LRDT_ID_STRING) {
2775                 dev_err(adapter->pdev_dev, "missing VPD ID string\n");
2776                 ret = -EINVAL;
2777                 goto out;
2778         }
2779
2780         id_len = pci_vpd_lrdt_size(vpd);
2781         if (id_len > ID_LEN)
2782                 id_len = ID_LEN;
2783
2784         i = pci_vpd_find_tag(vpd, 0, VPD_LEN, PCI_VPD_LRDT_RO_DATA);
2785         if (i < 0) {
2786                 dev_err(adapter->pdev_dev, "missing VPD-R section\n");
2787                 ret = -EINVAL;
2788                 goto out;
2789         }
2790
2791         vpdr_len = pci_vpd_lrdt_size(&vpd[i]);
2792         kw_offset = i + PCI_VPD_LRDT_TAG_SIZE;
2793         if (vpdr_len + kw_offset > VPD_LEN) {
2794                 dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len);
2795                 ret = -EINVAL;
2796                 goto out;
2797         }
2798
2799 #define FIND_VPD_KW(var, name) do { \
2800         var = pci_vpd_find_info_keyword(vpd, kw_offset, vpdr_len, name); \
2801         if (var < 0) { \
2802                 dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \
2803                 ret = -EINVAL; \
2804                 goto out; \
2805         } \
2806         var += PCI_VPD_INFO_FLD_HDR_SIZE; \
2807 } while (0)
2808
2809         FIND_VPD_KW(i, "RV");
2810         for (csum = 0; i >= 0; i--)
2811                 csum += vpd[i];
2812
2813         if (csum) {
2814                 dev_err(adapter->pdev_dev,
2815                         "corrupted VPD EEPROM, actual csum %u\n", csum);
2816                 ret = -EINVAL;
2817                 goto out;
2818         }
2819
2820         FIND_VPD_KW(ec, "EC");
2821         FIND_VPD_KW(sn, "SN");
2822         FIND_VPD_KW(pn, "PN");
2823         FIND_VPD_KW(na, "NA");
2824 #undef FIND_VPD_KW
2825
2826         memcpy(p->id, vpd + PCI_VPD_LRDT_TAG_SIZE, id_len);
2827         strim(p->id);
2828         memcpy(p->ec, vpd + ec, EC_LEN);
2829         strim(p->ec);
2830         i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE);
2831         memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
2832         strim(p->sn);
2833         i = pci_vpd_info_field_size(vpd + pn - PCI_VPD_INFO_FLD_HDR_SIZE);
2834         memcpy(p->pn, vpd + pn, min(i, PN_LEN));
2835         strim(p->pn);
2836         memcpy(p->na, vpd + na, min(i, MACADDR_LEN));
2837         strim((char *)p->na);
2838
2839 out:
2840         vfree(vpd);
2841         return ret < 0 ? ret : 0;
2842 }
2843
2844 /**
2845  *      t4_get_vpd_params - read VPD parameters & retrieve Core Clock
2846  *      @adapter: adapter to read
2847  *      @p: where to store the parameters
2848  *
2849  *      Reads card parameters stored in VPD EEPROM and retrieves the Core
2850  *      Clock.  This can only be called after a connection to the firmware
2851  *      is established.
2852  */
2853 int t4_get_vpd_params(struct adapter *adapter, struct vpd_params *p)
2854 {
2855         u32 cclk_param, cclk_val;
2856         int ret;
2857
2858         /* Grab the raw VPD parameters.
2859          */
2860         ret = t4_get_raw_vpd_params(adapter, p);
2861         if (ret)
2862                 return ret;
2863
2864         /* Ask firmware for the Core Clock since it knows how to translate the
2865          * Reference Clock ('V2') VPD field into a Core Clock value ...
2866          */
2867         cclk_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
2868                       FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK));
2869         ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
2870                               1, &cclk_param, &cclk_val);
2871
2872         if (ret)
2873                 return ret;
2874         p->cclk = cclk_val;
2875
2876         return 0;
2877 }
2878
2879 /**
2880  *      t4_get_pfres - retrieve VF resource limits
2881  *      @adapter: the adapter
2882  *
2883  *      Retrieves configured resource limits and capabilities for a physical
2884  *      function.  The results are stored in @adapter->pfres.
2885  */
2886 int t4_get_pfres(struct adapter *adapter)
2887 {
2888         struct pf_resources *pfres = &adapter->params.pfres;
2889         struct fw_pfvf_cmd cmd, rpl;
2890         int v;
2891         u32 word;
2892
2893         /* Execute PFVF Read command to get VF resource limits; bail out early
2894          * with error on command failure.
2895          */
2896         memset(&cmd, 0, sizeof(cmd));
2897         cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) |
2898                                     FW_CMD_REQUEST_F |
2899                                     FW_CMD_READ_F |
2900                                     FW_PFVF_CMD_PFN_V(adapter->pf) |
2901                                     FW_PFVF_CMD_VFN_V(0));
2902         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
2903         v = t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &rpl);
2904         if (v != FW_SUCCESS)
2905                 return v;
2906
2907         /* Extract PF resource limits and return success.
2908          */
2909         word = be32_to_cpu(rpl.niqflint_niq);
2910         pfres->niqflint = FW_PFVF_CMD_NIQFLINT_G(word);
2911         pfres->niq = FW_PFVF_CMD_NIQ_G(word);
2912
2913         word = be32_to_cpu(rpl.type_to_neq);
2914         pfres->neq = FW_PFVF_CMD_NEQ_G(word);
2915         pfres->pmask = FW_PFVF_CMD_PMASK_G(word);
2916
2917         word = be32_to_cpu(rpl.tc_to_nexactf);
2918         pfres->tc = FW_PFVF_CMD_TC_G(word);
2919         pfres->nvi = FW_PFVF_CMD_NVI_G(word);
2920         pfres->nexactf = FW_PFVF_CMD_NEXACTF_G(word);
2921
2922         word = be32_to_cpu(rpl.r_caps_to_nethctrl);
2923         pfres->r_caps = FW_PFVF_CMD_R_CAPS_G(word);
2924         pfres->wx_caps = FW_PFVF_CMD_WX_CAPS_G(word);
2925         pfres->nethctrl = FW_PFVF_CMD_NETHCTRL_G(word);
2926
2927         return 0;
2928 }
2929
2930 /* serial flash and firmware constants */
2931 enum {
2932         SF_ATTEMPTS = 10,             /* max retries for SF operations */
2933
2934         /* flash command opcodes */
2935         SF_PROG_PAGE    = 2,          /* program page */
2936         SF_WR_DISABLE   = 4,          /* disable writes */
2937         SF_RD_STATUS    = 5,          /* read status register */
2938         SF_WR_ENABLE    = 6,          /* enable writes */
2939         SF_RD_DATA_FAST = 0xb,        /* read flash */
2940         SF_RD_ID        = 0x9f,       /* read ID */
2941         SF_ERASE_SECTOR = 0xd8,       /* erase sector */
2942 };
2943
2944 /**
2945  *      sf1_read - read data from the serial flash
2946  *      @adapter: the adapter
2947  *      @byte_cnt: number of bytes to read
2948  *      @cont: whether another operation will be chained
2949  *      @lock: whether to lock SF for PL access only
2950  *      @valp: where to store the read data
2951  *
2952  *      Reads up to 4 bytes of data from the serial flash.  The location of
2953  *      the read needs to be specified prior to calling this by issuing the
2954  *      appropriate commands to the serial flash.
2955  */
2956 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
2957                     int lock, u32 *valp)
2958 {
2959         int ret;
2960
2961         if (!byte_cnt || byte_cnt > 4)
2962                 return -EINVAL;
2963         if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
2964                 return -EBUSY;
2965         t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2966                      SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1));
2967         ret = t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
2968         if (!ret)
2969                 *valp = t4_read_reg(adapter, SF_DATA_A);
2970         return ret;
2971 }
2972
2973 /**
2974  *      sf1_write - write data to the serial flash
2975  *      @adapter: the adapter
2976  *      @byte_cnt: number of bytes to write
2977  *      @cont: whether another operation will be chained
2978  *      @lock: whether to lock SF for PL access only
2979  *      @val: value to write
2980  *
2981  *      Writes up to 4 bytes of data to the serial flash.  The location of
2982  *      the write needs to be specified prior to calling this by issuing the
2983  *      appropriate commands to the serial flash.
2984  */
2985 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
2986                      int lock, u32 val)
2987 {
2988         if (!byte_cnt || byte_cnt > 4)
2989                 return -EINVAL;
2990         if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
2991                 return -EBUSY;
2992         t4_write_reg(adapter, SF_DATA_A, val);
2993         t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2994                      SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) | OP_V(1));
2995         return t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
2996 }
2997
2998 /**
2999  *      flash_wait_op - wait for a flash operation to complete
3000  *      @adapter: the adapter
3001  *      @attempts: max number of polls of the status register
3002  *      @delay: delay between polls in ms
3003  *
3004  *      Wait for a flash operation to complete by polling the status register.
3005  */
3006 static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
3007 {
3008         int ret;
3009         u32 status;
3010
3011         while (1) {
3012                 if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
3013                     (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
3014                         return ret;
3015                 if (!(status & 1))
3016                         return 0;
3017                 if (--attempts == 0)
3018                         return -EAGAIN;
3019                 if (delay)
3020                         msleep(delay);
3021         }
3022 }
3023
3024 /**
3025  *      t4_read_flash - read words from serial flash
3026  *      @adapter: the adapter
3027  *      @addr: the start address for the read
3028  *      @nwords: how many 32-bit words to read
3029  *      @data: where to store the read data
3030  *      @byte_oriented: whether to store data as bytes or as words
3031  *
3032  *      Read the specified number of 32-bit words from the serial flash.
3033  *      If @byte_oriented is set the read data is stored as a byte array
3034  *      (i.e., big-endian), otherwise as 32-bit words in the platform's
3035  *      natural endianness.
3036  */
3037 int t4_read_flash(struct adapter *adapter, unsigned int addr,
3038                   unsigned int nwords, u32 *data, int byte_oriented)
3039 {
3040         int ret;
3041
3042         if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
3043                 return -EINVAL;
3044
3045         addr = swab32(addr) | SF_RD_DATA_FAST;
3046
3047         if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
3048             (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
3049                 return ret;
3050
3051         for ( ; nwords; nwords--, data++) {
3052                 ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
3053                 if (nwords == 1)
3054                         t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3055                 if (ret)
3056                         return ret;
3057                 if (byte_oriented)
3058                         *data = (__force __u32)(cpu_to_be32(*data));
3059         }
3060         return 0;
3061 }
3062
3063 /**
3064  *      t4_write_flash - write up to a page of data to the serial flash
3065  *      @adapter: the adapter
3066  *      @addr: the start address to write
3067  *      @n: length of data to write in bytes
3068  *      @data: the data to write
3069  *
3070  *      Writes up to a page of data (256 bytes) to the serial flash starting
3071  *      at the given address.  All the data must be written to the same page.
3072  */
3073 static int t4_write_flash(struct adapter *adapter, unsigned int addr,
3074                           unsigned int n, const u8 *data)
3075 {
3076         int ret;
3077         u32 buf[64];
3078         unsigned int i, c, left, val, offset = addr & 0xff;
3079
3080         if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
3081                 return -EINVAL;
3082
3083         val = swab32(addr) | SF_PROG_PAGE;
3084
3085         if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3086             (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
3087                 goto unlock;
3088
3089         for (left = n; left; left -= c) {
3090                 c = min(left, 4U);
3091                 for (val = 0, i = 0; i < c; ++i)
3092                         val = (val << 8) + *data++;
3093
3094                 ret = sf1_write(adapter, c, c != left, 1, val);
3095                 if (ret)
3096                         goto unlock;
3097         }
3098         ret = flash_wait_op(adapter, 8, 1);
3099         if (ret)
3100                 goto unlock;
3101
3102         t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3103
3104         /* Read the page to verify the write succeeded */
3105         ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
3106         if (ret)
3107                 return ret;
3108
3109         if (memcmp(data - n, (u8 *)buf + offset, n)) {
3110                 dev_err(adapter->pdev_dev,
3111                         "failed to correctly write the flash page at %#x\n",
3112                         addr);
3113                 return -EIO;
3114         }
3115         return 0;
3116
3117 unlock:
3118         t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3119         return ret;
3120 }
3121
3122 /**
3123  *      t4_get_fw_version - read the firmware version
3124  *      @adapter: the adapter
3125  *      @vers: where to place the version
3126  *
3127  *      Reads the FW version from flash.
3128  */
3129 int t4_get_fw_version(struct adapter *adapter, u32 *vers)
3130 {
3131         return t4_read_flash(adapter, FLASH_FW_START +
3132                              offsetof(struct fw_hdr, fw_ver), 1,
3133                              vers, 0);
3134 }
3135
3136 /**
3137  *      t4_get_bs_version - read the firmware bootstrap version
3138  *      @adapter: the adapter
3139  *      @vers: where to place the version
3140  *
3141  *      Reads the FW Bootstrap version from flash.
3142  */
3143 int t4_get_bs_version(struct adapter *adapter, u32 *vers)
3144 {
3145         return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START +
3146                              offsetof(struct fw_hdr, fw_ver), 1,
3147                              vers, 0);
3148 }
3149
3150 /**
3151  *      t4_get_tp_version - read the TP microcode version
3152  *      @adapter: the adapter
3153  *      @vers: where to place the version
3154  *
3155  *      Reads the TP microcode version from flash.
3156  */
3157 int t4_get_tp_version(struct adapter *adapter, u32 *vers)
3158 {
3159         return t4_read_flash(adapter, FLASH_FW_START +
3160                              offsetof(struct fw_hdr, tp_microcode_ver),
3161                              1, vers, 0);
3162 }
3163
3164 /**
3165  *      t4_get_exprom_version - return the Expansion ROM version (if any)
3166  *      @adap: the adapter
3167  *      @vers: where to place the version
3168  *
3169  *      Reads the Expansion ROM header from FLASH and returns the version
3170  *      number (if present) through the @vers return value pointer.  We return
3171  *      this in the Firmware Version Format since it's convenient.  Return
3172  *      0 on success, -ENOENT if no Expansion ROM is present.
3173  */
3174 int t4_get_exprom_version(struct adapter *adap, u32 *vers)
3175 {
3176         struct exprom_header {
3177                 unsigned char hdr_arr[16];      /* must start with 0x55aa */
3178                 unsigned char hdr_ver[4];       /* Expansion ROM version */
3179         } *hdr;
3180         u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
3181                                            sizeof(u32))];
3182         int ret;
3183
3184         ret = t4_read_flash(adap, FLASH_EXP_ROM_START,
3185                             ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
3186                             0);
3187         if (ret)
3188                 return ret;
3189
3190         hdr = (struct exprom_header *)exprom_header_buf;
3191         if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
3192                 return -ENOENT;
3193
3194         *vers = (FW_HDR_FW_VER_MAJOR_V(hdr->hdr_ver[0]) |
3195                  FW_HDR_FW_VER_MINOR_V(hdr->hdr_ver[1]) |
3196                  FW_HDR_FW_VER_MICRO_V(hdr->hdr_ver[2]) |
3197                  FW_HDR_FW_VER_BUILD_V(hdr->hdr_ver[3]));
3198         return 0;
3199 }
3200
3201 /**
3202  *      t4_get_vpd_version - return the VPD version
3203  *      @adapter: the adapter
3204  *      @vers: where to place the version
3205  *
3206  *      Reads the VPD via the Firmware interface (thus this can only be called
3207  *      once we're ready to issue Firmware commands).  The format of the
3208  *      VPD version is adapter specific.  Returns 0 on success, an error on
3209  *      failure.
3210  *
3211  *      Note that early versions of the Firmware didn't include the ability
3212  *      to retrieve the VPD version, so we zero-out the return-value parameter
3213  *      in that case to avoid leaving it with garbage in it.
3214  *
3215  *      Also note that the Firmware will return its cached copy of the VPD
3216  *      Revision ID, not the actual Revision ID as written in the Serial
3217  *      EEPROM.  This is only an issue if a new VPD has been written and the
3218  *      Firmware/Chip haven't yet gone through a RESET sequence.  So it's best
3219  *      to defer calling this routine till after a FW_RESET_CMD has been issued
3220  *      if the Host Driver will be performing a full adapter initialization.
3221  */
3222 int t4_get_vpd_version(struct adapter *adapter, u32 *vers)
3223 {
3224         u32 vpdrev_param;
3225         int ret;
3226
3227         vpdrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3228                         FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_VPDREV));
3229         ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3230                               1, &vpdrev_param, vers);
3231         if (ret)
3232                 *vers = 0;
3233         return ret;
3234 }
3235
3236 /**
3237  *      t4_get_scfg_version - return the Serial Configuration version
3238  *      @adapter: the adapter
3239  *      @vers: where to place the version
3240  *
3241  *      Reads the Serial Configuration Version via the Firmware interface
3242  *      (thus this can only be called once we're ready to issue Firmware
3243  *      commands).  The format of the Serial Configuration version is
3244  *      adapter specific.  Returns 0 on success, an error on failure.
3245  *
3246  *      Note that early versions of the Firmware didn't include the ability
3247  *      to retrieve the Serial Configuration version, so we zero-out the
3248  *      return-value parameter in that case to avoid leaving it with
3249  *      garbage in it.
3250  *
3251  *      Also note that the Firmware will return its cached copy of the Serial
3252  *      Initialization Revision ID, not the actual Revision ID as written in
3253  *      the Serial EEPROM.  This is only an issue if a new VPD has been written
3254  *      and the Firmware/Chip haven't yet gone through a RESET sequence.  So
3255  *      it's best to defer calling this routine till after a FW_RESET_CMD has
3256  *      been issued if the Host Driver will be performing a full adapter
3257  *      initialization.
3258  */
3259 int t4_get_scfg_version(struct adapter *adapter, u32 *vers)
3260 {
3261         u32 scfgrev_param;
3262         int ret;
3263
3264         scfgrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3265                          FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_SCFGREV));
3266         ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3267                               1, &scfgrev_param, vers);
3268         if (ret)
3269                 *vers = 0;
3270         return ret;
3271 }
3272
3273 /**
3274  *      t4_get_version_info - extract various chip/firmware version information
3275  *      @adapter: the adapter
3276  *
3277  *      Reads various chip/firmware version numbers and stores them into the
3278  *      adapter Adapter Parameters structure.  If any of the efforts fails
3279  *      the first failure will be returned, but all of the version numbers
3280  *      will be read.
3281  */
3282 int t4_get_version_info(struct adapter *adapter)
3283 {
3284         int ret = 0;
3285
3286         #define FIRST_RET(__getvinfo) \
3287         do { \
3288                 int __ret = __getvinfo; \
3289                 if (__ret && !ret) \
3290                         ret = __ret; \
3291         } while (0)
3292
3293         FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers));
3294         FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers));
3295         FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers));
3296         FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers));
3297         FIRST_RET(t4_get_scfg_version(adapter, &adapter->params.scfg_vers));
3298         FIRST_RET(t4_get_vpd_version(adapter, &adapter->params.vpd_vers));
3299
3300         #undef FIRST_RET
3301         return ret;
3302 }
3303
3304 /**
3305  *      t4_dump_version_info - dump all of the adapter configuration IDs
3306  *      @adapter: the adapter
3307  *
3308  *      Dumps all of the various bits of adapter configuration version/revision
3309  *      IDs information.  This is typically called at some point after
3310  *      t4_get_version_info() has been called.
3311  */
3312 void t4_dump_version_info(struct adapter *adapter)
3313 {
3314         /* Device information */
3315         dev_info(adapter->pdev_dev, "Chelsio %s rev %d\n",
3316                  adapter->params.vpd.id,
3317                  CHELSIO_CHIP_RELEASE(adapter->params.chip));
3318         dev_info(adapter->pdev_dev, "S/N: %s, P/N: %s\n",
3319                  adapter->params.vpd.sn, adapter->params.vpd.pn);
3320
3321         /* Firmware Version */
3322         if (!adapter->params.fw_vers)
3323                 dev_warn(adapter->pdev_dev, "No firmware loaded\n");
3324         else
3325                 dev_info(adapter->pdev_dev, "Firmware version: %u.%u.%u.%u\n",
3326                          FW_HDR_FW_VER_MAJOR_G(adapter->params.fw_vers),
3327                          FW_HDR_FW_VER_MINOR_G(adapter->params.fw_vers),
3328                          FW_HDR_FW_VER_MICRO_G(adapter->params.fw_vers),
3329                          FW_HDR_FW_VER_BUILD_G(adapter->params.fw_vers));
3330
3331         /* Bootstrap Firmware Version. (Some adapters don't have Bootstrap
3332          * Firmware, so dev_info() is more appropriate here.)
3333          */
3334         if (!adapter->params.bs_vers)
3335                 dev_info(adapter->pdev_dev, "No bootstrap loaded\n");
3336         else
3337                 dev_info(adapter->pdev_dev, "Bootstrap version: %u.%u.%u.%u\n",
3338                          FW_HDR_FW_VER_MAJOR_G(adapter->params.bs_vers),
3339                          FW_HDR_FW_VER_MINOR_G(adapter->params.bs_vers),
3340                          FW_HDR_FW_VER_MICRO_G(adapter->params.bs_vers),
3341                          FW_HDR_FW_VER_BUILD_G(adapter->params.bs_vers));
3342
3343         /* TP Microcode Version */
3344         if (!adapter->params.tp_vers)
3345                 dev_warn(adapter->pdev_dev, "No TP Microcode loaded\n");
3346         else
3347                 dev_info(adapter->pdev_dev,
3348                          "TP Microcode version: %u.%u.%u.%u\n",
3349                          FW_HDR_FW_VER_MAJOR_G(adapter->params.tp_vers),
3350                          FW_HDR_FW_VER_MINOR_G(adapter->params.tp_vers),
3351                          FW_HDR_FW_VER_MICRO_G(adapter->params.tp_vers),
3352                          FW_HDR_FW_VER_BUILD_G(adapter->params.tp_vers));
3353
3354         /* Expansion ROM version */
3355         if (!adapter->params.er_vers)
3356                 dev_info(adapter->pdev_dev, "No Expansion ROM loaded\n");
3357         else
3358                 dev_info(adapter->pdev_dev,
3359                          "Expansion ROM version: %u.%u.%u.%u\n",
3360                          FW_HDR_FW_VER_MAJOR_G(adapter->params.er_vers),
3361                          FW_HDR_FW_VER_MINOR_G(adapter->params.er_vers),
3362                          FW_HDR_FW_VER_MICRO_G(adapter->params.er_vers),
3363                          FW_HDR_FW_VER_BUILD_G(adapter->params.er_vers));
3364
3365         /* Serial Configuration version */
3366         dev_info(adapter->pdev_dev, "Serial Configuration version: %#x\n",
3367                  adapter->params.scfg_vers);
3368
3369         /* VPD Version */
3370         dev_info(adapter->pdev_dev, "VPD version: %#x\n",
3371                  adapter->params.vpd_vers);
3372 }
3373
3374 /**
3375  *      t4_check_fw_version - check if the FW is supported with this driver
3376  *      @adap: the adapter
3377  *
3378  *      Checks if an adapter's FW is compatible with the driver.  Returns 0
3379  *      if there's exact match, a negative error if the version could not be
3380  *      read or there's a major version mismatch
3381  */
3382 int t4_check_fw_version(struct adapter *adap)
3383 {
3384         int i, ret, major, minor, micro;
3385         int exp_major, exp_minor, exp_micro;
3386         unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
3387
3388         ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3389         /* Try multiple times before returning error */
3390         for (i = 0; (ret == -EBUSY || ret == -EAGAIN) && i < 3; i++)
3391                 ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3392
3393         if (ret)
3394                 return ret;
3395
3396         major = FW_HDR_FW_VER_MAJOR_G(adap->params.fw_vers);
3397         minor = FW_HDR_FW_VER_MINOR_G(adap->params.fw_vers);
3398         micro = FW_HDR_FW_VER_MICRO_G(adap->params.fw_vers);
3399
3400         switch (chip_version) {
3401         case CHELSIO_T4:
3402                 exp_major = T4FW_MIN_VERSION_MAJOR;
3403                 exp_minor = T4FW_MIN_VERSION_MINOR;
3404                 exp_micro = T4FW_MIN_VERSION_MICRO;
3405                 break;
3406         case CHELSIO_T5:
3407                 exp_major = T5FW_MIN_VERSION_MAJOR;
3408                 exp_minor = T5FW_MIN_VERSION_MINOR;
3409                 exp_micro = T5FW_MIN_VERSION_MICRO;
3410                 break;
3411         case CHELSIO_T6:
3412                 exp_major = T6FW_MIN_VERSION_MAJOR;
3413                 exp_minor = T6FW_MIN_VERSION_MINOR;
3414                 exp_micro = T6FW_MIN_VERSION_MICRO;
3415                 break;
3416         default:
3417                 dev_err(adap->pdev_dev, "Unsupported chip type, %x\n",
3418                         adap->chip);
3419                 return -EINVAL;
3420         }
3421
3422         if (major < exp_major || (major == exp_major && minor < exp_minor) ||
3423             (major == exp_major && minor == exp_minor && micro < exp_micro)) {
3424                 dev_err(adap->pdev_dev,
3425                         "Card has firmware version %u.%u.%u, minimum "
3426                         "supported firmware is %u.%u.%u.\n", major, minor,
3427                         micro, exp_major, exp_minor, exp_micro);
3428                 return -EFAULT;
3429         }
3430         return 0;
3431 }
3432
3433 /* Is the given firmware API compatible with the one the driver was compiled
3434  * with?
3435  */
3436 static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2)
3437 {
3438
3439         /* short circuit if it's the exact same firmware version */
3440         if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
3441                 return 1;
3442
3443 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
3444         if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
3445             SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe))
3446                 return 1;
3447 #undef SAME_INTF
3448
3449         return 0;
3450 }
3451
3452 /* The firmware in the filesystem is usable, but should it be installed?
3453  * This routine explains itself in detail if it indicates the filesystem
3454  * firmware should be installed.
3455  */
3456 static int should_install_fs_fw(struct adapter *adap, int card_fw_usable,
3457                                 int k, int c)
3458 {
3459         const char *reason;
3460
3461         if (!card_fw_usable) {
3462                 reason = "incompatible or unusable";
3463                 goto install;
3464         }
3465
3466         if (k > c) {
3467                 reason = "older than the version supported with this driver";
3468                 goto install;
3469         }
3470
3471         return 0;
3472
3473 install:
3474         dev_err(adap->pdev_dev, "firmware on card (%u.%u.%u.%u) is %s, "
3475                 "installing firmware %u.%u.%u.%u on card.\n",
3476                 FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3477                 FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason,
3478                 FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3479                 FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
3480
3481         return 1;
3482 }
3483
3484 int t4_prep_fw(struct adapter *adap, struct fw_info *fw_info,
3485                const u8 *fw_data, unsigned int fw_size,
3486                struct fw_hdr *card_fw, enum dev_state state,
3487                int *reset)
3488 {
3489         int ret, card_fw_usable, fs_fw_usable;
3490         const struct fw_hdr *fs_fw;
3491         const struct fw_hdr *drv_fw;
3492
3493         drv_fw = &fw_info->fw_hdr;
3494
3495         /* Read the header of the firmware on the card */
3496         ret = t4_read_flash(adap, FLASH_FW_START,
3497                             sizeof(*card_fw) / sizeof(uint32_t),
3498                             (uint32_t *)card_fw, 1);
3499         if (ret == 0) {
3500                 card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw);
3501         } else {
3502                 dev_err(adap->pdev_dev,
3503                         "Unable to read card's firmware header: %d\n", ret);
3504                 card_fw_usable = 0;
3505         }
3506
3507         if (fw_data != NULL) {
3508                 fs_fw = (const void *)fw_data;
3509                 fs_fw_usable = fw_compatible(drv_fw, fs_fw);
3510         } else {
3511                 fs_fw = NULL;
3512                 fs_fw_usable = 0;
3513         }
3514
3515         if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver &&
3516             (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) {
3517                 /* Common case: the firmware on the card is an exact match and
3518                  * the filesystem one is an exact match too, or the filesystem
3519                  * one is absent/incompatible.
3520                  */
3521         } else if (fs_fw_usable && state == DEV_STATE_UNINIT &&
3522                    should_install_fs_fw(adap, card_fw_usable,
3523                                         be32_to_cpu(fs_fw->fw_ver),
3524                                         be32_to_cpu(card_fw->fw_ver))) {
3525                 ret = t4_fw_upgrade(adap, adap->mbox, fw_data,
3526                                     fw_size, 0);
3527                 if (ret != 0) {
3528                         dev_err(adap->pdev_dev,
3529                                 "failed to install firmware: %d\n", ret);
3530                         goto bye;
3531                 }
3532
3533                 /* Installed successfully, update the cached header too. */
3534                 *card_fw = *fs_fw;
3535                 card_fw_usable = 1;
3536                 *reset = 0;     /* already reset as part of load_fw */
3537         }
3538
3539         if (!card_fw_usable) {
3540                 uint32_t d, c, k;
3541
3542                 d = be32_to_cpu(drv_fw->fw_ver);
3543                 c = be32_to_cpu(card_fw->fw_ver);
3544                 k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0;
3545
3546                 dev_err(adap->pdev_dev, "Cannot find a usable firmware: "
3547                         "chip state %d, "
3548                         "driver compiled with %d.%d.%d.%d, "
3549                         "card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n",
3550                         state,
3551                         FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d),
3552                         FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d),
3553                         FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3554                         FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c),
3555                         FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3556                         FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
3557                 ret = -EINVAL;
3558                 goto bye;
3559         }
3560
3561         /* We're using whatever's on the card and it's known to be good. */
3562         adap->params.fw_vers = be32_to_cpu(card_fw->fw_ver);
3563         adap->params.tp_vers = be32_to_cpu(card_fw->tp_microcode_ver);
3564
3565 bye:
3566         return ret;
3567 }
3568
3569 /**
3570  *      t4_flash_erase_sectors - erase a range of flash sectors
3571  *      @adapter: the adapter
3572  *      @start: the first sector to erase
3573  *      @end: the last sector to erase
3574  *
3575  *      Erases the sectors in the given inclusive range.
3576  */
3577 static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
3578 {
3579         int ret = 0;
3580
3581         if (end >= adapter->params.sf_nsec)
3582                 return -EINVAL;
3583
3584         while (start <= end) {
3585                 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3586                     (ret = sf1_write(adapter, 4, 0, 1,
3587                                      SF_ERASE_SECTOR | (start << 8))) != 0 ||
3588                     (ret = flash_wait_op(adapter, 14, 500)) != 0) {
3589                         dev_err(adapter->pdev_dev,
3590                                 "erase of flash sector %d failed, error %d\n",
3591                                 start, ret);
3592                         break;
3593                 }
3594                 start++;
3595         }
3596         t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3597         return ret;
3598 }
3599
3600 /**
3601  *      t4_flash_cfg_addr - return the address of the flash configuration file
3602  *      @adapter: the adapter
3603  *
3604  *      Return the address within the flash where the Firmware Configuration
3605  *      File is stored.
3606  */
3607 unsigned int t4_flash_cfg_addr(struct adapter *adapter)
3608 {
3609         if (adapter->params.sf_size == 0x100000)
3610                 return FLASH_FPGA_CFG_START;
3611         else
3612                 return FLASH_CFG_START;
3613 }
3614
3615 /* Return TRUE if the specified firmware matches the adapter.  I.e. T4
3616  * firmware for T4 adapters, T5 firmware for T5 adapters, etc.  We go ahead
3617  * and emit an error message for mismatched firmware to save our caller the
3618  * effort ...
3619  */
3620 static bool t4_fw_matches_chip(const struct adapter *adap,
3621                                const struct fw_hdr *hdr)
3622 {
3623         /* The expression below will return FALSE for any unsupported adapter
3624          * which will keep us "honest" in the future ...
3625          */
3626         if ((is_t4(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T4) ||
3627             (is_t5(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T5) ||
3628             (is_t6(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T6))
3629                 return true;
3630
3631         dev_err(adap->pdev_dev,
3632                 "FW image (%d) is not suitable for this adapter (%d)\n",
3633                 hdr->chip, CHELSIO_CHIP_VERSION(adap->params.chip));
3634         return false;
3635 }
3636
3637 /**
3638  *      t4_load_fw - download firmware
3639  *      @adap: the adapter
3640  *      @fw_data: the firmware image to write
3641  *      @size: image size
3642  *
3643  *      Write the supplied firmware image to the card's serial flash.
3644  */
3645 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
3646 {
3647         u32 csum;
3648         int ret, addr;
3649         unsigned int i;
3650         u8 first_page[SF_PAGE_SIZE];
3651         const __be32 *p = (const __be32 *)fw_data;
3652         const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
3653         unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
3654         unsigned int fw_start_sec = FLASH_FW_START_SEC;
3655         unsigned int fw_size = FLASH_FW_MAX_SIZE;
3656         unsigned int fw_start = FLASH_FW_START;
3657
3658         if (!size) {
3659                 dev_err(adap->pdev_dev, "FW image has no data\n");
3660                 return -EINVAL;
3661         }
3662         if (size & 511) {
3663                 dev_err(adap->pdev_dev,
3664                         "FW image size not multiple of 512 bytes\n");
3665                 return -EINVAL;
3666         }
3667         if ((unsigned int)be16_to_cpu(hdr->len512) * 512 != size) {
3668                 dev_err(adap->pdev_dev,
3669                         "FW image size differs from size in FW header\n");
3670                 return -EINVAL;
3671         }
3672         if (size > fw_size) {
3673                 dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n",
3674                         fw_size);
3675                 return -EFBIG;
3676         }
3677         if (!t4_fw_matches_chip(adap, hdr))
3678                 return -EINVAL;
3679
3680         for (csum = 0, i = 0; i < size / sizeof(csum); i++)
3681                 csum += be32_to_cpu(p[i]);
3682
3683         if (csum != 0xffffffff) {
3684                 dev_err(adap->pdev_dev,
3685                         "corrupted firmware image, checksum %#x\n", csum);
3686                 return -EINVAL;
3687         }
3688
3689         i = DIV_ROUND_UP(size, sf_sec_size);        /* # of sectors spanned */
3690         ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
3691         if (ret)
3692                 goto out;
3693
3694         /*
3695          * We write the correct version at the end so the driver can see a bad
3696          * version if the FW write fails.  Start by writing a copy of the
3697          * first page with a bad version.
3698          */
3699         memcpy(first_page, fw_data, SF_PAGE_SIZE);
3700         ((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
3701         ret = t4_write_flash(adap, fw_start, SF_PAGE_SIZE, first_page);
3702         if (ret)
3703                 goto out;
3704
3705         addr = fw_start;
3706         for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
3707                 addr += SF_PAGE_SIZE;
3708                 fw_data += SF_PAGE_SIZE;
3709                 ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data);
3710                 if (ret)
3711                         goto out;
3712         }
3713
3714         ret = t4_write_flash(adap,
3715                              fw_start + offsetof(struct fw_hdr, fw_ver),
3716                              sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver);
3717 out:
3718         if (ret)
3719                 dev_err(adap->pdev_dev, "firmware download failed, error %d\n",
3720                         ret);
3721         else
3722                 ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3723         return ret;
3724 }
3725
3726 /**
3727  *      t4_phy_fw_ver - return current PHY firmware version
3728  *      @adap: the adapter
3729  *      @phy_fw_ver: return value buffer for PHY firmware version
3730  *
3731  *      Returns the current version of external PHY firmware on the
3732  *      adapter.
3733  */
3734 int t4_phy_fw_ver(struct adapter *adap, int *phy_fw_ver)
3735 {
3736         u32 param, val;
3737         int ret;
3738
3739         param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3740                  FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3741                  FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3742                  FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_VERSION));
3743         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
3744                               &param, &val);
3745         if (ret)
3746                 return ret;
3747         *phy_fw_ver = val;
3748         return 0;
3749 }
3750
3751 /**
3752  *      t4_load_phy_fw - download port PHY firmware
3753  *      @adap: the adapter
3754  *      @win: the PCI-E Memory Window index to use for t4_memory_rw()
3755  *      @phy_fw_version: function to check PHY firmware versions
3756  *      @phy_fw_data: the PHY firmware image to write
3757  *      @phy_fw_size: image size
3758  *
3759  *      Transfer the specified PHY firmware to the adapter.  If a non-NULL
3760  *      @phy_fw_version is supplied, then it will be used to determine if
3761  *      it's necessary to perform the transfer by comparing the version
3762  *      of any existing adapter PHY firmware with that of the passed in
3763  *      PHY firmware image.
3764  *
3765  *      A negative error number will be returned if an error occurs.  If
3766  *      version number support is available and there's no need to upgrade
3767  *      the firmware, 0 will be returned.  If firmware is successfully
3768  *      transferred to the adapter, 1 will be returned.
3769  *
3770  *      NOTE: some adapters only have local RAM to store the PHY firmware.  As
3771  *      a result, a RESET of the adapter would cause that RAM to lose its
3772  *      contents.  Thus, loading PHY firmware on such adapters must happen
3773  *      after any FW_RESET_CMDs ...
3774  */
3775 int t4_load_phy_fw(struct adapter *adap, int win,
3776                    int (*phy_fw_version)(const u8 *, size_t),
3777                    const u8 *phy_fw_data, size_t phy_fw_size)
3778 {
3779         int cur_phy_fw_ver = 0, new_phy_fw_vers = 0;
3780         unsigned long mtype = 0, maddr = 0;
3781         u32 param, val;
3782         int ret;
3783
3784         /* If we have version number support, then check to see if the adapter
3785          * already has up-to-date PHY firmware loaded.
3786          */
3787         if (phy_fw_version) {
3788                 new_phy_fw_vers = phy_fw_version(phy_fw_data, phy_fw_size);
3789                 ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3790                 if (ret < 0)
3791                         return ret;
3792
3793                 if (cur_phy_fw_ver >= new_phy_fw_vers) {
3794                         CH_WARN(adap, "PHY Firmware already up-to-date, "
3795                                 "version %#x\n", cur_phy_fw_ver);
3796                         return 0;
3797                 }
3798         }
3799
3800         /* Ask the firmware where it wants us to copy the PHY firmware image.
3801          * The size of the file requires a special version of the READ command
3802          * which will pass the file size via the values field in PARAMS_CMD and
3803          * retrieve the return value from firmware and place it in the same
3804          * buffer values
3805          */
3806         param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3807                  FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3808                  FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3809                  FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3810         val = phy_fw_size;
3811         ret = t4_query_params_rw(adap, adap->mbox, adap->pf, 0, 1,
3812                                  &param, &val, 1, true);
3813         if (ret < 0)
3814                 return ret;
3815         mtype = val >> 8;
3816         maddr = (val & 0xff) << 16;
3817
3818         /* Copy the supplied PHY Firmware image to the adapter memory location
3819          * allocated by the adapter firmware.
3820          */
3821         ret = t4_memory_rw(adap, win, mtype, maddr,
3822                            phy_fw_size, (__be32 *)phy_fw_data,
3823                            T4_MEMORY_WRITE);
3824         if (ret)
3825                 return ret;
3826
3827         /* Tell the firmware that the PHY firmware image has been written to
3828          * RAM and it can now start copying it over to the PHYs.  The chip
3829          * firmware will RESET the affected PHYs as part of this operation
3830          * leaving them running the new PHY firmware image.
3831          */
3832         param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3833                  FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3834                  FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3835                  FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3836         ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
3837                                     &param, &val, 30000);
3838
3839         /* If we have version number support, then check to see that the new
3840          * firmware got loaded properly.
3841          */
3842         if (phy_fw_version) {
3843                 ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3844                 if (ret < 0)
3845                         return ret;
3846
3847                 if (cur_phy_fw_ver != new_phy_fw_vers) {
3848                         CH_WARN(adap, "PHY Firmware did not update: "
3849                                 "version on adapter %#x, "
3850                                 "version flashed %#x\n",
3851                                 cur_phy_fw_ver, new_phy_fw_vers);
3852                         return -ENXIO;
3853                 }
3854         }
3855
3856         return 1;
3857 }
3858
3859 /**
3860  *      t4_fwcache - firmware cache operation
3861  *      @adap: the adapter
3862  *      @op  : the operation (flush or flush and invalidate)
3863  */
3864 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
3865 {
3866         struct fw_params_cmd c;
3867
3868         memset(&c, 0, sizeof(c));
3869         c.op_to_vfn =
3870                 cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
3871                             FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
3872                             FW_PARAMS_CMD_PFN_V(adap->pf) |
3873                             FW_PARAMS_CMD_VFN_V(0));
3874         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3875         c.param[0].mnem =
3876                 cpu_to_be32(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3877                             FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWCACHE));
3878         c.param[0].val = cpu_to_be32(op);
3879
3880         return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
3881 }
3882
3883 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
3884                         unsigned int *pif_req_wrptr,
3885                         unsigned int *pif_rsp_wrptr)
3886 {
3887         int i, j;
3888         u32 cfg, val, req, rsp;
3889
3890         cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3891         if (cfg & LADBGEN_F)
3892                 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3893
3894         val = t4_read_reg(adap, CIM_DEBUGSTS_A);
3895         req = POLADBGWRPTR_G(val);
3896         rsp = PILADBGWRPTR_G(val);
3897         if (pif_req_wrptr)
3898                 *pif_req_wrptr = req;
3899         if (pif_rsp_wrptr)
3900                 *pif_rsp_wrptr = rsp;
3901
3902         for (i = 0; i < CIM_PIFLA_SIZE; i++) {
3903                 for (j = 0; j < 6; j++) {
3904                         t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(req) |
3905                                      PILADBGRDPTR_V(rsp));
3906                         *pif_req++ = t4_read_reg(adap, CIM_PO_LA_DEBUGDATA_A);
3907                         *pif_rsp++ = t4_read_reg(adap, CIM_PI_LA_DEBUGDATA_A);
3908                         req++;
3909                         rsp++;
3910                 }
3911                 req = (req + 2) & POLADBGRDPTR_M;
3912                 rsp = (rsp + 2) & PILADBGRDPTR_M;
3913         }
3914         t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3915 }
3916
3917 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
3918 {
3919         u32 cfg;
3920         int i, j, idx;
3921
3922         cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3923         if (cfg & LADBGEN_F)
3924                 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3925
3926         for (i = 0; i < CIM_MALA_SIZE; i++) {
3927                 for (j = 0; j < 5; j++) {
3928                         idx = 8 * i + j;
3929                         t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(idx) |
3930                                      PILADBGRDPTR_V(idx));
3931                         *ma_req++ = t4_read_reg(adap, CIM_PO_LA_MADEBUGDATA_A);
3932                         *ma_rsp++ = t4_read_reg(adap, CIM_PI_LA_MADEBUGDATA_A);
3933                 }
3934         }
3935         t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3936 }
3937
3938 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
3939 {
3940         unsigned int i, j;
3941
3942         for (i = 0; i < 8; i++) {
3943                 u32 *p = la_buf + i;
3944
3945                 t4_write_reg(adap, ULP_RX_LA_CTL_A, i);
3946                 j = t4_read_reg(adap, ULP_RX_LA_WRPTR_A);
3947                 t4_write_reg(adap, ULP_RX_LA_RDPTR_A, j);
3948                 for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
3949                         *p = t4_read_reg(adap, ULP_RX_LA_RDDATA_A);
3950         }
3951 }
3952
3953 /* The ADVERT_MASK is used to mask out all of the Advertised Firmware Port
3954  * Capabilities which we control with separate controls -- see, for instance,
3955  * Pause Frames and Forward Error Correction.  In order to determine what the
3956  * full set of Advertised Port Capabilities are, the base Advertised Port
3957  * Capabilities (masked by ADVERT_MASK) must be combined with the Advertised
3958  * Port Capabilities associated with those other controls.  See
3959  * t4_link_acaps() for how this is done.
3960  */
3961 #define ADVERT_MASK (FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_M) | \
3962                      FW_PORT_CAP32_ANEG)
3963
3964 /**
3965  *      fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits
3966  *      @caps16: a 16-bit Port Capabilities value
3967  *
3968  *      Returns the equivalent 32-bit Port Capabilities value.
3969  */
3970 static fw_port_cap32_t fwcaps16_to_caps32(fw_port_cap16_t caps16)
3971 {
3972         fw_port_cap32_t caps32 = 0;
3973
3974         #define CAP16_TO_CAP32(__cap) \
3975                 do { \
3976                         if (caps16 & FW_PORT_CAP_##__cap) \
3977                                 caps32 |= FW_PORT_CAP32_##__cap; \
3978                 } while (0)
3979
3980         CAP16_TO_CAP32(SPEED_100M);
3981         CAP16_TO_CAP32(SPEED_1G);
3982         CAP16_TO_CAP32(SPEED_25G);
3983         CAP16_TO_CAP32(SPEED_10G);
3984         CAP16_TO_CAP32(SPEED_40G);
3985         CAP16_TO_CAP32(SPEED_100G);
3986         CAP16_TO_CAP32(FC_RX);
3987         CAP16_TO_CAP32(FC_TX);
3988         CAP16_TO_CAP32(ANEG);
3989         CAP16_TO_CAP32(FORCE_PAUSE);
3990         CAP16_TO_CAP32(MDIAUTO);
3991         CAP16_TO_CAP32(MDISTRAIGHT);
3992         CAP16_TO_CAP32(FEC_RS);
3993         CAP16_TO_CAP32(FEC_BASER_RS);
3994         CAP16_TO_CAP32(802_3_PAUSE);
3995         CAP16_TO_CAP32(802_3_ASM_DIR);
3996
3997         #undef CAP16_TO_CAP32
3998
3999         return caps32;
4000 }
4001
4002 /**
4003  *      fwcaps32_to_caps16 - convert 32-bit Port Capabilities to 16-bits
4004  *      @caps32: a 32-bit Port Capabilities value
4005  *
4006  *      Returns the equivalent 16-bit Port Capabilities value.  Note that
4007  *      not all 32-bit Port Capabilities can be represented in the 16-bit
4008  *      Port Capabilities and some fields/values may not make it.
4009  */
4010 static fw_port_cap16_t fwcaps32_to_caps16(fw_port_cap32_t caps32)
4011 {
4012         fw_port_cap16_t caps16 = 0;
4013
4014         #define CAP32_TO_CAP16(__cap) \
4015                 do { \
4016                         if (caps32 & FW_PORT_CAP32_##__cap) \
4017                                 caps16 |= FW_PORT_CAP_##__cap; \
4018                 } while (0)
4019
4020         CAP32_TO_CAP16(SPEED_100M);
4021         CAP32_TO_CAP16(SPEED_1G);
4022         CAP32_TO_CAP16(SPEED_10G);
4023         CAP32_TO_CAP16(SPEED_25G);
4024         CAP32_TO_CAP16(SPEED_40G);
4025         CAP32_TO_CAP16(SPEED_100G);
4026         CAP32_TO_CAP16(FC_RX);
4027         CAP32_TO_CAP16(FC_TX);
4028         CAP32_TO_CAP16(802_3_PAUSE);
4029         CAP32_TO_CAP16(802_3_ASM_DIR);
4030         CAP32_TO_CAP16(ANEG);
4031         CAP32_TO_CAP16(FORCE_PAUSE);
4032         CAP32_TO_CAP16(MDIAUTO);
4033         CAP32_TO_CAP16(MDISTRAIGHT);
4034         CAP32_TO_CAP16(FEC_RS);
4035         CAP32_TO_CAP16(FEC_BASER_RS);
4036
4037         #undef CAP32_TO_CAP16
4038
4039         return caps16;
4040 }
4041
4042 /* Translate Firmware Port Capabilities Pause specification to Common Code */
4043 static inline enum cc_pause fwcap_to_cc_pause(fw_port_cap32_t fw_pause)
4044 {
4045         enum cc_pause cc_pause = 0;
4046
4047         if (fw_pause & FW_PORT_CAP32_FC_RX)
4048                 cc_pause |= PAUSE_RX;
4049         if (fw_pause & FW_PORT_CAP32_FC_TX)
4050                 cc_pause |= PAUSE_TX;
4051
4052         return cc_pause;
4053 }
4054
4055 /* Translate Common Code Pause specification into Firmware Port Capabilities */
4056 static inline fw_port_cap32_t cc_to_fwcap_pause(enum cc_pause cc_pause)
4057 {
4058         /* Translate orthogonal RX/TX Pause Controls for L1 Configure
4059          * commands, etc.
4060          */
4061         fw_port_cap32_t fw_pause = 0;
4062
4063         if (cc_pause & PAUSE_RX)
4064                 fw_pause |= FW_PORT_CAP32_FC_RX;
4065         if (cc_pause & PAUSE_TX)
4066                 fw_pause |= FW_PORT_CAP32_FC_TX;
4067         if (!(cc_pause & PAUSE_AUTONEG))
4068                 fw_pause |= FW_PORT_CAP32_FORCE_PAUSE;
4069
4070         /* Translate orthogonal Pause controls into IEEE 802.3 Pause,
4071          * Asymmetrical Pause for use in reporting to upper layer OS code, etc.
4072          * Note that these bits are ignored in L1 Configure commands.
4073          */
4074         if (cc_pause & PAUSE_RX) {
4075                 if (cc_pause & PAUSE_TX)
4076                         fw_pause |= FW_PORT_CAP32_802_3_PAUSE;
4077                 else
4078                         fw_pause |= FW_PORT_CAP32_802_3_ASM_DIR |
4079                                     FW_PORT_CAP32_802_3_PAUSE;
4080         } else if (cc_pause & PAUSE_TX) {
4081                 fw_pause |= FW_PORT_CAP32_802_3_ASM_DIR;
4082         }
4083
4084         return fw_pause;
4085 }
4086
4087 /* Translate Firmware Forward Error Correction specification to Common Code */
4088 static inline enum cc_fec fwcap_to_cc_fec(fw_port_cap32_t fw_fec)
4089 {
4090         enum cc_fec cc_fec = 0;
4091
4092         if (fw_fec & FW_PORT_CAP32_FEC_RS)
4093                 cc_fec |= FEC_RS;
4094         if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS)
4095                 cc_fec |= FEC_BASER_RS;
4096
4097         return cc_fec;
4098 }
4099
4100 /* Translate Common Code Forward Error Correction specification to Firmware */
4101 static inline fw_port_cap32_t cc_to_fwcap_fec(enum cc_fec cc_fec)
4102 {
4103         fw_port_cap32_t fw_fec = 0;
4104
4105         if (cc_fec & FEC_RS)
4106                 fw_fec |= FW_PORT_CAP32_FEC_RS;
4107         if (cc_fec & FEC_BASER_RS)
4108                 fw_fec |= FW_PORT_CAP32_FEC_BASER_RS;
4109
4110         return fw_fec;
4111 }
4112
4113 /**
4114  *      t4_link_acaps - compute Link Advertised Port Capabilities
4115  *      @adapter: the adapter
4116  *      @port: the Port ID
4117  *      @lc: the Port's Link Configuration
4118  *
4119  *      Synthesize the Advertised Port Capabilities we'll be using based on
4120  *      the base Advertised Port Capabilities (which have been filtered by
4121  *      ADVERT_MASK) plus the individual controls for things like Pause
4122  *      Frames, Forward Error Correction, MDI, etc.
4123  */
4124 fw_port_cap32_t t4_link_acaps(struct adapter *adapter, unsigned int port,
4125                               struct link_config *lc)
4126 {
4127         fw_port_cap32_t fw_fc, fw_fec, acaps;
4128         unsigned int fw_mdi;
4129         char cc_fec;
4130
4131         fw_mdi = (FW_PORT_CAP32_MDI_V(FW_PORT_CAP32_MDI_AUTO) & lc->pcaps);
4132
4133         /* Convert driver coding of Pause Frame Flow Control settings into the
4134          * Firmware's API.
4135          */
4136         fw_fc = cc_to_fwcap_pause(lc->requested_fc);
4137
4138         /* Convert Common Code Forward Error Control settings into the
4139          * Firmware's API.  If the current Requested FEC has "Automatic"
4140          * (IEEE 802.3) specified, then we use whatever the Firmware
4141          * sent us as part of its IEEE 802.3-based interpretation of
4142          * the Transceiver Module EPROM FEC parameters.  Otherwise we
4143          * use whatever is in the current Requested FEC settings.
4144          */
4145         if (lc->requested_fec & FEC_AUTO)
4146                 cc_fec = fwcap_to_cc_fec(lc->def_acaps);
4147         else
4148                 cc_fec = lc->requested_fec;
4149         fw_fec = cc_to_fwcap_fec(cc_fec);
4150
4151         /* Figure out what our Requested Port Capabilities are going to be.
4152          * Note parallel structure in t4_handle_get_port_info() and
4153          * init_link_config().
4154          */
4155         if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) {
4156                 acaps = lc->acaps | fw_fc | fw_fec;
4157                 lc->fc = lc->requested_fc & ~PAUSE_AUTONEG;
4158                 lc->fec = cc_fec;
4159         } else if (lc->autoneg == AUTONEG_DISABLE) {
4160                 acaps = lc->speed_caps | fw_fc | fw_fec | fw_mdi;
4161                 lc->fc = lc->requested_fc & ~PAUSE_AUTONEG;
4162                 lc->fec = cc_fec;
4163         } else {
4164                 acaps = lc->acaps | fw_fc | fw_fec | fw_mdi;
4165         }
4166
4167         /* Some Requested Port Capabilities are trivially wrong if they exceed
4168          * the Physical Port Capabilities.  We can check that here and provide
4169          * moderately useful feedback in the system log.
4170          *
4171          * Note that older Firmware doesn't have FW_PORT_CAP32_FORCE_PAUSE, so
4172          * we need to exclude this from this check in order to maintain
4173          * compatibility ...
4174          */
4175         if ((acaps & ~lc->pcaps) & ~FW_PORT_CAP32_FORCE_PAUSE) {
4176                 dev_err(adapter->pdev_dev, "Requested Port Capabilities %#x exceed Physical Port Capabilities %#x\n",
4177                         acaps, lc->pcaps);
4178                 return -EINVAL;
4179         }
4180
4181         return acaps;
4182 }
4183
4184 /**
4185  *      t4_link_l1cfg_core - apply link configuration to MAC/PHY
4186  *      @adapter: the adapter
4187  *      @mbox: the Firmware Mailbox to use
4188  *      @port: the Port ID
4189  *      @lc: the Port's Link Configuration
4190  *      @sleep_ok: if true we may sleep while awaiting command completion
4191  *      @timeout: time to wait for command to finish before timing out
4192  *              (negative implies @sleep_ok=false)
4193  *
4194  *      Set up a port's MAC and PHY according to a desired link configuration.
4195  *      - If the PHY can auto-negotiate first decide what to advertise, then
4196  *        enable/disable auto-negotiation as desired, and reset.
4197  *      - If the PHY does not auto-negotiate just reset it.
4198  *      - If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
4199  *        otherwise do it later based on the outcome of auto-negotiation.
4200  */
4201 int t4_link_l1cfg_core(struct adapter *adapter, unsigned int mbox,
4202                        unsigned int port, struct link_config *lc,
4203                        u8 sleep_ok, int timeout)
4204 {
4205         unsigned int fw_caps = adapter->params.fw_caps_support;
4206         struct fw_port_cmd cmd;
4207         fw_port_cap32_t rcap;
4208         int ret;
4209
4210         if (!(lc->pcaps & FW_PORT_CAP32_ANEG) &&
4211             lc->autoneg == AUTONEG_ENABLE) {
4212                 return -EINVAL;
4213         }
4214
4215         /* Compute our Requested Port Capabilities and send that on to the
4216          * Firmware.
4217          */
4218         rcap = t4_link_acaps(adapter, port, lc);
4219         memset(&cmd, 0, sizeof(cmd));
4220         cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
4221                                        FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
4222                                        FW_PORT_CMD_PORTID_V(port));
4223         cmd.action_to_len16 =
4224                 cpu_to_be32(FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
4225                                                  ? FW_PORT_ACTION_L1_CFG
4226                                                  : FW_PORT_ACTION_L1_CFG32) |
4227                                                  FW_LEN16(cmd));
4228         if (fw_caps == FW_CAPS16)
4229                 cmd.u.l1cfg.rcap = cpu_to_be32(fwcaps32_to_caps16(rcap));
4230         else
4231                 cmd.u.l1cfg32.rcap32 = cpu_to_be32(rcap);
4232
4233         ret = t4_wr_mbox_meat_timeout(adapter, mbox, &cmd, sizeof(cmd), NULL,
4234                                       sleep_ok, timeout);
4235
4236         /* Unfortunately, even if the Requested Port Capabilities "fit" within
4237          * the Physical Port Capabilities, some combinations of features may
4238          * still not be legal.  For example, 40Gb/s and Reed-Solomon Forward
4239          * Error Correction.  So if the Firmware rejects the L1 Configure
4240          * request, flag that here.
4241          */
4242         if (ret) {
4243                 dev_err(adapter->pdev_dev,
4244                         "Requested Port Capabilities %#x rejected, error %d\n",
4245                         rcap, -ret);
4246                 return ret;
4247         }
4248         return 0;
4249 }
4250
4251 /**
4252  *      t4_restart_aneg - restart autonegotiation
4253  *      @adap: the adapter
4254  *      @mbox: mbox to use for the FW command
4255  *      @port: the port id
4256  *
4257  *      Restarts autonegotiation for the selected port.
4258  */
4259 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
4260 {
4261         unsigned int fw_caps = adap->params.fw_caps_support;
4262         struct fw_port_cmd c;
4263
4264         memset(&c, 0, sizeof(c));
4265         c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
4266                                      FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
4267                                      FW_PORT_CMD_PORTID_V(port));
4268         c.action_to_len16 =
4269                 cpu_to_be32(FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
4270                                                  ? FW_PORT_ACTION_L1_CFG
4271                                                  : FW_PORT_ACTION_L1_CFG32) |
4272                             FW_LEN16(c));
4273         if (fw_caps == FW_CAPS16)
4274                 c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG);
4275         else
4276                 c.u.l1cfg32.rcap32 = cpu_to_be32(FW_PORT_CAP32_ANEG);
4277         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4278 }
4279
4280 typedef void (*int_handler_t)(struct adapter *adap);
4281
4282 struct intr_info {
4283         unsigned int mask;       /* bits to check in interrupt status */
4284         const char *msg;         /* message to print or NULL */
4285         short stat_idx;          /* stat counter to increment or -1 */
4286         unsigned short fatal;    /* whether the condition reported is fatal */
4287         int_handler_t int_handler; /* platform-specific int handler */
4288 };
4289
4290 /**
4291  *      t4_handle_intr_status - table driven interrupt handler
4292  *      @adapter: the adapter that generated the interrupt
4293  *      @reg: the interrupt status register to process
4294  *      @acts: table of interrupt actions
4295  *
4296  *      A table driven interrupt handler that applies a set of masks to an
4297  *      interrupt status word and performs the corresponding actions if the
4298  *      interrupts described by the mask have occurred.  The actions include
4299  *      optionally emitting a warning or alert message.  The table is terminated
4300  *      by an entry specifying mask 0.  Returns the number of fatal interrupt
4301  *      conditions.
4302  */
4303 static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
4304                                  const struct intr_info *acts)
4305 {
4306         int fatal = 0;
4307         unsigned int mask = 0;
4308         unsigned int status = t4_read_reg(adapter, reg);
4309
4310         for ( ; acts->mask; ++acts) {
4311                 if (!(status & acts->mask))
4312                         continue;
4313                 if (acts->fatal) {
4314                         fatal++;
4315                         dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
4316                                   status & acts->mask);
4317                 } else if (acts->msg && printk_ratelimit())
4318                         dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
4319                                  status & acts->mask);
4320                 if (acts->int_handler)
4321                         acts->int_handler(adapter);
4322                 mask |= acts->mask;
4323         }
4324         status &= mask;
4325         if (status)                           /* clear processed interrupts */
4326                 t4_write_reg(adapter, reg, status);
4327         return fatal;
4328 }
4329
4330 /*
4331  * Interrupt handler for the PCIE module.
4332  */
4333 static void pcie_intr_handler(struct adapter *adapter)
4334 {
4335         static const struct intr_info sysbus_intr_info[] = {
4336                 { RNPP_F, "RXNP array parity error", -1, 1 },
4337                 { RPCP_F, "RXPC array parity error", -1, 1 },
4338                 { RCIP_F, "RXCIF array parity error", -1, 1 },
4339                 { RCCP_F, "Rx completions control array parity error", -1, 1 },
4340                 { RFTP_F, "RXFT array parity error", -1, 1 },
4341                 { 0 }
4342         };
4343         static const struct intr_info pcie_port_intr_info[] = {
4344                 { TPCP_F, "TXPC array parity error", -1, 1 },
4345                 { TNPP_F, "TXNP array parity error", -1, 1 },
4346                 { TFTP_F, "TXFT array parity error", -1, 1 },
4347                 { TCAP_F, "TXCA array parity error", -1, 1 },
4348                 { TCIP_F, "TXCIF array parity error", -1, 1 },
4349                 { RCAP_F, "RXCA array parity error", -1, 1 },
4350                 { OTDD_F, "outbound request TLP discarded", -1, 1 },
4351                 { RDPE_F, "Rx data parity error", -1, 1 },
4352                 { TDUE_F, "Tx uncorrectable data error", -1, 1 },
4353                 { 0 }
4354         };
4355         static const struct intr_info pcie_intr_info[] = {
4356                 { MSIADDRLPERR_F, "MSI AddrL parity error", -1, 1 },
4357                 { MSIADDRHPERR_F, "MSI AddrH parity error", -1, 1 },
4358                 { MSIDATAPERR_F, "MSI data parity error", -1, 1 },
4359                 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
4360                 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
4361                 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
4362                 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
4363                 { PIOCPLPERR_F, "PCI PIO completion FIFO parity error", -1, 1 },
4364                 { PIOREQPERR_F, "PCI PIO request FIFO parity error", -1, 1 },
4365                 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
4366                 { CCNTPERR_F, "PCI CMD channel count parity error", -1, 1 },
4367                 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
4368                 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
4369                 { DCNTPERR_F, "PCI DMA channel count parity error", -1, 1 },
4370                 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
4371                 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
4372                 { HCNTPERR_F, "PCI HMA channel count parity error", -1, 1 },
4373                 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
4374                 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
4375                 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
4376                 { FIDPERR_F, "PCI FID parity error", -1, 1 },
4377                 { INTXCLRPERR_F, "PCI INTx clear parity error", -1, 1 },
4378                 { MATAGPERR_F, "PCI MA tag parity error", -1, 1 },
4379                 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
4380                 { RXCPLPERR_F, "PCI Rx completion parity error", -1, 1 },
4381                 { RXWRPERR_F, "PCI Rx write parity error", -1, 1 },
4382                 { RPLPERR_F, "PCI replay buffer parity error", -1, 1 },
4383                 { PCIESINT_F, "PCI core secondary fault", -1, 1 },
4384                 { PCIEPINT_F, "PCI core primary fault", -1, 1 },
4385                 { UNXSPLCPLERR_F, "PCI unexpected split completion error",
4386                   -1, 0 },
4387                 { 0 }
4388         };
4389
4390         static struct intr_info t5_pcie_intr_info[] = {
4391                 { MSTGRPPERR_F, "Master Response Read Queue parity error",
4392                   -1, 1 },
4393                 { MSTTIMEOUTPERR_F, "Master Timeout FIFO parity error", -1, 1 },
4394                 { MSIXSTIPERR_F, "MSI-X STI SRAM parity error", -1, 1 },
4395                 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
4396                 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
4397                 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
4398                 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
4399                 { PIOCPLGRPPERR_F, "PCI PIO completion Group FIFO parity error",
4400                   -1, 1 },
4401                 { PIOREQGRPPERR_F, "PCI PIO request Group FIFO parity error",
4402                   -1, 1 },
4403                 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
4404                 { MSTTAGQPERR_F, "PCI master tag queue parity error", -1, 1 },
4405                 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
4406                 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
4407                 { DREQWRPERR_F, "PCI DMA channel write request parity error",
4408                   -1, 1 },
4409                 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
4410                 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
4411                 { HREQWRPERR_F, "PCI HMA channel count parity error", -1, 1 },
4412                 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
4413                 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
4414                 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
4415                 { FIDPERR_F, "PCI FID parity error", -1, 1 },
4416                 { VFIDPERR_F, "PCI INTx clear parity error", -1, 1 },
4417                 { MAGRPPERR_F, "PCI MA group FIFO parity error", -1, 1 },
4418                 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
4419                 { IPRXHDRGRPPERR_F, "PCI IP Rx header group parity error",
4420                   -1, 1 },
4421                 { IPRXDATAGRPPERR_F, "PCI IP Rx data group parity error",
4422                   -1, 1 },
4423                 { RPLPERR_F, "PCI IP replay buffer parity error", -1, 1 },
4424                 { IPSOTPERR_F, "PCI IP SOT buffer parity error", -1, 1 },
4425                 { TRGT1GRPPERR_F, "PCI TRGT1 group FIFOs parity error", -1, 1 },
4426                 { READRSPERR_F, "Outbound read error", -1, 0 },
4427                 { 0 }
4428         };
4429
4430         int fat;
4431
4432         if (is_t4(adapter->params.chip))
4433                 fat = t4_handle_intr_status(adapter,
4434                                 PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS_A,
4435                                 sysbus_intr_info) +
4436                         t4_handle_intr_status(adapter,
4437                                         PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS_A,
4438                                         pcie_port_intr_info) +
4439                         t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
4440                                               pcie_intr_info);
4441         else
4442                 fat = t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
4443                                             t5_pcie_intr_info);
4444
4445         if (fat)
4446                 t4_fatal_err(adapter);
4447 }
4448
4449 /*
4450  * TP interrupt handler.
4451  */
4452 static void tp_intr_handler(struct adapter *adapter)
4453 {
4454         static const struct intr_info tp_intr_info[] = {
4455                 { 0x3fffffff, "TP parity error", -1, 1 },
4456                 { FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 },
4457                 { 0 }
4458         };
4459
4460         if (t4_handle_intr_status(adapter, TP_INT_CAUSE_A, tp_intr_info))
4461                 t4_fatal_err(adapter);
4462 }
4463
4464 /*
4465  * SGE interrupt handler.
4466  */
4467 static void sge_intr_handler(struct adapter *adapter)
4468 {
4469         u32 v = 0, perr;
4470         u32 err;
4471
4472         static const struct intr_info sge_intr_info[] = {
4473                 { ERR_CPL_EXCEED_IQE_SIZE_F,
4474                   "SGE received CPL exceeding IQE size", -1, 1 },
4475                 { ERR_INVALID_CIDX_INC_F,
4476                   "SGE GTS CIDX increment too large", -1, 0 },
4477                 { ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 },
4478                 { DBFIFO_LP_INT_F, NULL, -1, 0, t4_db_full },
4479                 { ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F,
4480                   "SGE IQID > 1023 received CPL for FL", -1, 0 },
4481                 { ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1,
4482                   0 },
4483                 { ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1,
4484                   0 },
4485                 { ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1,
4486                   0 },
4487                 { ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1,
4488                   0 },
4489                 { ERR_ING_CTXT_PRIO_F,
4490                   "SGE too many priority ingress contexts", -1, 0 },
4491                 { INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 },
4492                 { EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 },
4493                 { 0 }
4494         };
4495
4496         static struct intr_info t4t5_sge_intr_info[] = {
4497                 { ERR_DROPPED_DB_F, NULL, -1, 0, t4_db_dropped },
4498                 { DBFIFO_HP_INT_F, NULL, -1, 0, t4_db_full },
4499                 { ERR_EGR_CTXT_PRIO_F,
4500                   "SGE too many priority egress contexts", -1, 0 },
4501                 { 0 }
4502         };
4503
4504         perr = t4_read_reg(adapter, SGE_INT_CAUSE1_A);
4505         if (perr) {
4506                 v |= perr;
4507                 dev_alert(adapter->pdev_dev, "SGE Cause1 Parity Error %#x\n",
4508                           perr);
4509         }
4510
4511         perr = t4_read_reg(adapter, SGE_INT_CAUSE2_A);
4512         if (perr) {
4513                 v |= perr;
4514                 dev_alert(adapter->pdev_dev, "SGE Cause2 Parity Error %#x\n",
4515                           perr);
4516         }
4517
4518         if (CHELSIO_CHIP_VERSION(adapter->params.chip) >= CHELSIO_T5) {
4519                 perr = t4_read_reg(adapter, SGE_INT_CAUSE5_A);
4520                 /* Parity error (CRC) for err_T_RxCRC is trivial, ignore it */
4521                 perr &= ~ERR_T_RXCRC_F;
4522                 if (perr) {
4523                         v |= perr;
4524                         dev_alert(adapter->pdev_dev,
4525                                   "SGE Cause5 Parity Error %#x\n", perr);
4526                 }
4527         }
4528
4529         v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, sge_intr_info);
4530         if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
4531                 v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A,
4532                                            t4t5_sge_intr_info);
4533
4534         err = t4_read_reg(adapter, SGE_ERROR_STATS_A);
4535         if (err & ERROR_QID_VALID_F) {
4536                 dev_err(adapter->pdev_dev, "SGE error for queue %u\n",
4537                         ERROR_QID_G(err));
4538                 if (err & UNCAPTURED_ERROR_F)
4539                         dev_err(adapter->pdev_dev,
4540                                 "SGE UNCAPTURED_ERROR set (clearing)\n");
4541                 t4_write_reg(adapter, SGE_ERROR_STATS_A, ERROR_QID_VALID_F |
4542                              UNCAPTURED_ERROR_F);
4543         }
4544
4545         if (v != 0)
4546                 t4_fatal_err(adapter);
4547 }
4548
4549 #define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\
4550                       OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F)
4551 #define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\
4552                       IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F)
4553
4554 /*
4555  * CIM interrupt handler.
4556  */
4557 static void cim_intr_handler(struct adapter *adapter)
4558 {
4559         static const struct intr_info cim_intr_info[] = {
4560                 { PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 },
4561                 { CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
4562                 { CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
4563                 { MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 },
4564                 { MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 },
4565                 { TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 },
4566                 { TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 },
4567                 { TIMER0INT_F, "CIM TIMER0 interrupt", -1, 1 },
4568                 { 0 }
4569         };
4570         static const struct intr_info cim_upintr_info[] = {
4571                 { RSVDSPACEINT_F, "CIM reserved space access", -1, 1 },
4572                 { ILLTRANSINT_F, "CIM illegal transaction", -1, 1 },
4573                 { ILLWRINT_F, "CIM illegal write", -1, 1 },
4574                 { ILLRDINT_F, "CIM illegal read", -1, 1 },
4575                 { ILLRDBEINT_F, "CIM illegal read BE", -1, 1 },
4576                 { ILLWRBEINT_F, "CIM illegal write BE", -1, 1 },
4577                 { SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 },
4578                 { SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 },
4579                 { BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 },
4580                 { SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 },
4581                 { SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 },
4582                 { BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 },
4583                 { SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 },
4584                 { SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 },
4585                 { BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 },
4586                 { BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 },
4587                 { SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 },
4588                 { SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 },
4589                 { BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 },
4590                 { BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 },
4591                 { SGLRDPLINT_F, "CIM single read from PL space", -1, 1 },
4592                 { SGLWRPLINT_F, "CIM single write to PL space", -1, 1 },
4593                 { BLKRDPLINT_F, "CIM block read from PL space", -1, 1 },
4594                 { BLKWRPLINT_F, "CIM block write to PL space", -1, 1 },
4595                 { REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 },
4596                 { RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 },
4597                 { TIMEOUTINT_F, "CIM PIF timeout", -1, 1 },
4598                 { TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 },
4599                 { 0 }
4600         };
4601
4602         u32 val, fw_err;
4603         int fat;
4604
4605         fw_err = t4_read_reg(adapter, PCIE_FW_A);
4606         if (fw_err & PCIE_FW_ERR_F)
4607                 t4_report_fw_error(adapter);
4608
4609         /* When the Firmware detects an internal error which normally
4610          * wouldn't raise a Host Interrupt, it forces a CIM Timer0 interrupt
4611          * in order to make sure the Host sees the Firmware Crash.  So
4612          * if we have a Timer0 interrupt and don't see a Firmware Crash,
4613          * ignore the Timer0 interrupt.
4614          */
4615
4616         val = t4_read_reg(adapter, CIM_HOST_INT_CAUSE_A);
4617         if (val & TIMER0INT_F)
4618                 if (!(fw_err & PCIE_FW_ERR_F) ||
4619                     (PCIE_FW_EVAL_G(fw_err) != PCIE_FW_EVAL_CRASH))
4620                         t4_write_reg(adapter, CIM_HOST_INT_CAUSE_A,
4621                                      TIMER0INT_F);
4622
4623         fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE_A,
4624                                     cim_intr_info) +
4625               t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE_A,
4626                                     cim_upintr_info);
4627         if (fat)
4628                 t4_fatal_err(adapter);
4629 }
4630
4631 /*
4632  * ULP RX interrupt handler.
4633  */
4634 static void ulprx_intr_handler(struct adapter *adapter)
4635 {
4636         static const struct intr_info ulprx_intr_info[] = {
4637                 { 0x1800000, "ULPRX context error", -1, 1 },
4638                 { 0x7fffff, "ULPRX parity error", -1, 1 },
4639                 { 0 }
4640         };
4641
4642         if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE_A, ulprx_intr_info))
4643                 t4_fatal_err(adapter);
4644 }
4645
4646 /*
4647  * ULP TX interrupt handler.
4648  */
4649 static void ulptx_intr_handler(struct adapter *adapter)
4650 {
4651         static const struct intr_info ulptx_intr_info[] = {
4652                 { PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1,
4653                   0 },
4654                 { PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1,
4655                   0 },
4656                 { PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1,
4657                   0 },
4658                 { PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1,
4659                   0 },
4660                 { 0xfffffff, "ULPTX parity error", -1, 1 },
4661                 { 0 }
4662         };
4663
4664         if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE_A, ulptx_intr_info))
4665                 t4_fatal_err(adapter);
4666 }
4667
4668 /*
4669  * PM TX interrupt handler.
4670  */
4671 static void pmtx_intr_handler(struct adapter *adapter)
4672 {
4673         static const struct intr_info pmtx_intr_info[] = {
4674                 { PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 },
4675                 { PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 },
4676                 { PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 },
4677                 { ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 },
4678                 { PMTX_FRAMING_ERROR_F, "PMTX framing error", -1, 1 },
4679                 { OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 },
4680                 { DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error",
4681                   -1, 1 },
4682                 { ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 },
4683                 { PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1},
4684                 { 0 }
4685         };
4686
4687         if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE_A, pmtx_intr_info))
4688                 t4_fatal_err(adapter);
4689 }
4690
4691 /*
4692  * PM RX interrupt handler.
4693  */
4694 static void pmrx_intr_handler(struct adapter *adapter)
4695 {
4696         static const struct intr_info pmrx_intr_info[] = {
4697                 { ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 },
4698                 { PMRX_FRAMING_ERROR_F, "PMRX framing error", -1, 1 },
4699                 { OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 },
4700                 { DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error",
4701                   -1, 1 },
4702                 { IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 },
4703                 { PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1},
4704                 { 0 }
4705         };
4706
4707         if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE_A, pmrx_intr_info))
4708                 t4_fatal_err(adapter);
4709 }
4710
4711 /*
4712  * CPL switch interrupt handler.
4713  */
4714 static void cplsw_intr_handler(struct adapter *adapter)
4715 {
4716         static const struct intr_info cplsw_intr_info[] = {
4717                 { CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 },
4718                 { CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 },
4719                 { TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 },
4720                 { SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 },
4721                 { CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 },
4722                 { ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 },
4723                 { 0 }
4724         };
4725
4726         if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE_A, cplsw_intr_info))
4727                 t4_fatal_err(adapter);
4728 }
4729
4730 /*
4731  * LE interrupt handler.
4732  */
4733 static void le_intr_handler(struct adapter *adap)
4734 {
4735         enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip);
4736         static const struct intr_info le_intr_info[] = {
4737                 { LIPMISS_F, "LE LIP miss", -1, 0 },
4738                 { LIP0_F, "LE 0 LIP error", -1, 0 },
4739                 { PARITYERR_F, "LE parity error", -1, 1 },
4740                 { UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4741                 { REQQPARERR_F, "LE request queue parity error", -1, 1 },
4742                 { 0 }
4743         };
4744
4745         static struct intr_info t6_le_intr_info[] = {
4746                 { T6_LIPMISS_F, "LE LIP miss", -1, 0 },
4747                 { T6_LIP0_F, "LE 0 LIP error", -1, 0 },
4748                 { TCAMINTPERR_F, "LE parity error", -1, 1 },
4749                 { T6_UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4750                 { SSRAMINTPERR_F, "LE request queue parity error", -1, 1 },
4751                 { 0 }
4752         };
4753
4754         if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE_A,
4755                                   (chip <= CHELSIO_T5) ?
4756                                   le_intr_info : t6_le_intr_info))
4757                 t4_fatal_err(adap);
4758 }
4759
4760 /*
4761  * MPS interrupt handler.
4762  */
4763 static void mps_intr_handler(struct adapter *adapter)
4764 {
4765         static const struct intr_info mps_rx_intr_info[] = {
4766                 { 0xffffff, "MPS Rx parity error", -1, 1 },
4767                 { 0 }
4768         };
4769         static const struct intr_info mps_tx_intr_info[] = {
4770                 { TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
4771                 { NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4772                 { TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
4773                   -1, 1 },
4774                 { TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
4775                   -1, 1 },
4776                 { BUBBLE_F, "MPS Tx underflow", -1, 1 },
4777                 { SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
4778                 { FRMERR_F, "MPS Tx framing error", -1, 1 },
4779                 { 0 }
4780         };
4781         static const struct intr_info t6_mps_tx_intr_info[] = {
4782                 { TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
4783                 { NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4784                 { TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
4785                   -1, 1 },
4786                 { TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
4787                   -1, 1 },
4788                 /* MPS Tx Bubble is normal for T6 */
4789                 { SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
4790                 { FRMERR_F, "MPS Tx framing error", -1, 1 },
4791                 { 0 }
4792         };
4793         static const struct intr_info mps_trc_intr_info[] = {
4794                 { FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 },
4795                 { PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error",
4796                   -1, 1 },
4797                 { MISCPERR_F, "MPS TRC misc parity error", -1, 1 },
4798                 { 0 }
4799         };
4800         static const struct intr_info mps_stat_sram_intr_info[] = {
4801                 { 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
4802                 { 0 }
4803         };
4804         static const struct intr_info mps_stat_tx_intr_info[] = {
4805                 { 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
4806                 { 0 }
4807         };
4808         static const struct intr_info mps_stat_rx_intr_info[] = {
4809                 { 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
4810                 { 0 }
4811         };
4812         static const struct intr_info mps_cls_intr_info[] = {
4813                 { MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 },
4814                 { MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 },
4815                 { HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 },
4816                 { 0 }
4817         };
4818
4819         int fat;
4820
4821         fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE_A,
4822                                     mps_rx_intr_info) +
4823               t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE_A,
4824                                     is_t6(adapter->params.chip)
4825                                     ? t6_mps_tx_intr_info
4826                                     : mps_tx_intr_info) +
4827               t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE_A,
4828                                     mps_trc_intr_info) +
4829               t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM_A,
4830                                     mps_stat_sram_intr_info) +
4831               t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A,
4832                                     mps_stat_tx_intr_info) +
4833               t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A,
4834                                     mps_stat_rx_intr_info) +
4835               t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE_A,
4836                                     mps_cls_intr_info);
4837
4838         t4_write_reg(adapter, MPS_INT_CAUSE_A, 0);
4839         t4_read_reg(adapter, MPS_INT_CAUSE_A);                    /* flush */
4840         if (fat)
4841                 t4_fatal_err(adapter);
4842 }
4843
4844 #define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \
4845                       ECC_UE_INT_CAUSE_F)
4846
4847 /*
4848  * EDC/MC interrupt handler.
4849  */
4850 static void mem_intr_handler(struct adapter *adapter, int idx)
4851 {
4852         static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" };
4853
4854         unsigned int addr, cnt_addr, v;
4855
4856         if (idx <= MEM_EDC1) {
4857                 addr = EDC_REG(EDC_INT_CAUSE_A, idx);
4858                 cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx);
4859         } else if (idx == MEM_MC) {
4860                 if (is_t4(adapter->params.chip)) {
4861                         addr = MC_INT_CAUSE_A;
4862                         cnt_addr = MC_ECC_STATUS_A;
4863                 } else {
4864                         addr = MC_P_INT_CAUSE_A;
4865                         cnt_addr = MC_P_ECC_STATUS_A;
4866                 }
4867         } else {
4868                 addr = MC_REG(MC_P_INT_CAUSE_A, 1);
4869                 cnt_addr = MC_REG(MC_P_ECC_STATUS_A, 1);
4870         }
4871
4872         v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
4873         if (v & PERR_INT_CAUSE_F)
4874                 dev_alert(adapter->pdev_dev, "%s FIFO parity error\n",
4875                           name[idx]);
4876         if (v & ECC_CE_INT_CAUSE_F) {
4877                 u32 cnt = ECC_CECNT_G(t4_read_reg(adapter, cnt_addr));
4878
4879                 t4_edc_err_read(adapter, idx);
4880
4881                 t4_write_reg(adapter, cnt_addr, ECC_CECNT_V(ECC_CECNT_M));
4882                 if (printk_ratelimit())
4883                         dev_warn(adapter->pdev_dev,
4884                                  "%u %s correctable ECC data error%s\n",
4885                                  cnt, name[idx], cnt > 1 ? "s" : "");
4886         }
4887         if (v & ECC_UE_INT_CAUSE_F)
4888                 dev_alert(adapter->pdev_dev,
4889                           "%s uncorrectable ECC data error\n", name[idx]);
4890
4891         t4_write_reg(adapter, addr, v);
4892         if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F))
4893                 t4_fatal_err(adapter);
4894 }
4895
4896 /*
4897  * MA interrupt handler.
4898  */
4899 static void ma_intr_handler(struct adapter *adap)
4900 {
4901         u32 v, status = t4_read_reg(adap, MA_INT_CAUSE_A);
4902
4903         if (status & MEM_PERR_INT_CAUSE_F) {
4904                 dev_alert(adap->pdev_dev,
4905                           "MA parity error, parity status %#x\n",
4906                           t4_read_reg(adap, MA_PARITY_ERROR_STATUS1_A));
4907                 if (is_t5(adap->params.chip))
4908                         dev_alert(adap->pdev_dev,
4909                                   "MA parity error, parity status %#x\n",
4910                                   t4_read_reg(adap,
4911                                               MA_PARITY_ERROR_STATUS2_A));
4912         }
4913         if (status & MEM_WRAP_INT_CAUSE_F) {
4914                 v = t4_read_reg(adap, MA_INT_WRAP_STATUS_A);
4915                 dev_alert(adap->pdev_dev, "MA address wrap-around error by "
4916                           "client %u to address %#x\n",
4917                           MEM_WRAP_CLIENT_NUM_G(v),
4918                           MEM_WRAP_ADDRESS_G(v) << 4);
4919         }
4920         t4_write_reg(adap, MA_INT_CAUSE_A, status);
4921         t4_fatal_err(adap);
4922 }
4923
4924 /*
4925  * SMB interrupt handler.
4926  */
4927 static void smb_intr_handler(struct adapter *adap)
4928 {
4929         static const struct intr_info smb_intr_info[] = {
4930                 { MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 },
4931                 { MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 },
4932                 { SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 },
4933                 { 0 }
4934         };
4935
4936         if (t4_handle_intr_status(adap, SMB_INT_CAUSE_A, smb_intr_info))
4937                 t4_fatal_err(adap);
4938 }
4939
4940 /*
4941  * NC-SI interrupt handler.
4942  */
4943 static void ncsi_intr_handler(struct adapter *adap)
4944 {
4945         static const struct intr_info ncsi_intr_info[] = {
4946                 { CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 },
4947                 { MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 },
4948                 { TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 },
4949                 { RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 },
4950                 { 0 }
4951         };
4952
4953         if (t4_handle_intr_status(adap, NCSI_INT_CAUSE_A, ncsi_intr_info))
4954                 t4_fatal_err(adap);
4955 }
4956
4957 /*
4958  * XGMAC interrupt handler.
4959  */
4960 static void xgmac_intr_handler(struct adapter *adap, int port)
4961 {
4962         u32 v, int_cause_reg;
4963
4964         if (is_t4(adap->params.chip))
4965                 int_cause_reg = PORT_REG(port, XGMAC_PORT_INT_CAUSE_A);
4966         else
4967                 int_cause_reg = T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A);
4968
4969         v = t4_read_reg(adap, int_cause_reg);
4970
4971         v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F;
4972         if (!v)
4973                 return;
4974
4975         if (v & TXFIFO_PRTY_ERR_F)
4976                 dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n",
4977                           port);
4978         if (v & RXFIFO_PRTY_ERR_F)
4979                 dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n",
4980                           port);
4981         t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE_A), v);
4982         t4_fatal_err(adap);
4983 }
4984
4985 /*
4986  * PL interrupt handler.
4987  */
4988 static void pl_intr_handler(struct adapter *adap)
4989 {
4990         static const struct intr_info pl_intr_info[] = {
4991                 { FATALPERR_F, "T4 fatal parity error", -1, 1 },
4992                 { PERRVFID_F, "PL VFID_MAP parity error", -1, 1 },
4993                 { 0 }
4994         };
4995
4996         if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE_A, pl_intr_info))
4997                 t4_fatal_err(adap);
4998 }
4999
5000 #define PF_INTR_MASK (PFSW_F)
5001 #define GLBL_INTR_MASK (CIM_F | MPS_F | PL_F | PCIE_F | MC_F | EDC0_F | \
5002                 EDC1_F | LE_F | TP_F | MA_F | PM_TX_F | PM_RX_F | ULP_RX_F | \
5003                 CPL_SWITCH_F | SGE_F | ULP_TX_F | SF_F)
5004
5005 /**
5006  *      t4_slow_intr_handler - control path interrupt handler
5007  *      @adapter: the adapter
5008  *
5009  *      T4 interrupt handler for non-data global interrupt events, e.g., errors.
5010  *      The designation 'slow' is because it involves register reads, while
5011  *      data interrupts typically don't involve any MMIOs.
5012  */
5013 int t4_slow_intr_handler(struct adapter *adapter)
5014 {
5015         /* There are rare cases where a PL_INT_CAUSE bit may end up getting
5016          * set when the corresponding PL_INT_ENABLE bit isn't set.  It's
5017          * easiest just to mask that case here.
5018          */
5019         u32 raw_cause = t4_read_reg(adapter, PL_INT_CAUSE_A);
5020         u32 enable = t4_read_reg(adapter, PL_INT_ENABLE_A);
5021         u32 cause = raw_cause & enable;
5022
5023         if (!(cause & GLBL_INTR_MASK))
5024                 return 0;
5025         if (cause & CIM_F)
5026                 cim_intr_handler(adapter);
5027         if (cause & MPS_F)
5028                 mps_intr_handler(adapter);
5029         if (cause & NCSI_F)
5030                 ncsi_intr_handler(adapter);
5031         if (cause & PL_F)
5032                 pl_intr_handler(adapter);
5033         if (cause & SMB_F)
5034                 smb_intr_handler(adapter);
5035         if (cause & XGMAC0_F)
5036                 xgmac_intr_handler(adapter, 0);
5037         if (cause & XGMAC1_F)
5038                 xgmac_intr_handler(adapter, 1);
5039         if (cause & XGMAC_KR0_F)
5040                 xgmac_intr_handler(adapter, 2);
5041         if (cause & XGMAC_KR1_F)
5042                 xgmac_intr_handler(adapter, 3);
5043         if (cause & PCIE_F)
5044                 pcie_intr_handler(adapter);
5045         if (cause & MC_F)
5046                 mem_intr_handler(adapter, MEM_MC);
5047         if (is_t5(adapter->params.chip) && (cause & MC1_F))
5048                 mem_intr_handler(adapter, MEM_MC1);
5049         if (cause & EDC0_F)
5050                 mem_intr_handler(adapter, MEM_EDC0);
5051         if (cause & EDC1_F)
5052                 mem_intr_handler(adapter, MEM_EDC1);
5053         if (cause & LE_F)
5054                 le_intr_handler(adapter);
5055         if (cause & TP_F)
5056                 tp_intr_handler(adapter);
5057         if (cause & MA_F)
5058                 ma_intr_handler(adapter);
5059         if (cause & PM_TX_F)
5060                 pmtx_intr_handler(adapter);
5061         if (cause & PM_RX_F)
5062                 pmrx_intr_handler(adapter);
5063         if (cause & ULP_RX_F)
5064                 ulprx_intr_handler(adapter);
5065         if (cause & CPL_SWITCH_F)
5066                 cplsw_intr_handler(adapter);
5067         if (cause & SGE_F)
5068                 sge_intr_handler(adapter);
5069         if (cause & ULP_TX_F)
5070                 ulptx_intr_handler(adapter);
5071
5072         /* Clear the interrupts just processed for which we are the master. */
5073         t4_write_reg(adapter, PL_INT_CAUSE_A, raw_cause & GLBL_INTR_MASK);
5074         (void)t4_read_reg(adapter, PL_INT_CAUSE_A); /* flush */
5075         return 1;
5076 }
5077
5078 /**
5079  *      t4_intr_enable - enable interrupts
5080  *      @adapter: the adapter whose interrupts should be enabled
5081  *
5082  *      Enable PF-specific interrupts for the calling function and the top-level
5083  *      interrupt concentrator for global interrupts.  Interrupts are already
5084  *      enabled at each module, here we just enable the roots of the interrupt
5085  *      hierarchies.
5086  *
5087  *      Note: this function should be called only when the driver manages
5088  *      non PF-specific interrupts from the various HW modules.  Only one PCI
5089  *      function at a time should be doing this.
5090  */
5091 void t4_intr_enable(struct adapter *adapter)
5092 {
5093         u32 val = 0;
5094         u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A);
5095         u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
5096                         SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
5097
5098         if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
5099                 val = ERR_DROPPED_DB_F | ERR_EGR_CTXT_PRIO_F | DBFIFO_HP_INT_F;
5100         t4_write_reg(adapter, SGE_INT_ENABLE3_A, ERR_CPL_EXCEED_IQE_SIZE_F |
5101                      ERR_INVALID_CIDX_INC_F | ERR_CPL_OPCODE_0_F |
5102                      ERR_DATA_CPL_ON_HIGH_QID1_F | INGRESS_SIZE_ERR_F |
5103                      ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F |
5104                      ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F |
5105                      ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F |
5106                      DBFIFO_LP_INT_F | EGRESS_SIZE_ERR_F | val);
5107         t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), PF_INTR_MASK);
5108         t4_set_reg_field(adapter, PL_INT_MAP0_A, 0, 1 << pf);
5109 }
5110
5111 /**
5112  *      t4_intr_disable - disable interrupts
5113  *      @adapter: the adapter whose interrupts should be disabled
5114  *
5115  *      Disable interrupts.  We only disable the top-level interrupt
5116  *      concentrators.  The caller must be a PCI function managing global
5117  *      interrupts.
5118  */
5119 void t4_intr_disable(struct adapter *adapter)
5120 {
5121         u32 whoami, pf;
5122
5123         if (pci_channel_offline(adapter->pdev))
5124                 return;
5125
5126         whoami = t4_read_reg(adapter, PL_WHOAMI_A);
5127         pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
5128                         SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
5129
5130         t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), 0);
5131         t4_set_reg_field(adapter, PL_INT_MAP0_A, 1 << pf, 0);
5132 }
5133
5134 unsigned int t4_chip_rss_size(struct adapter *adap)
5135 {
5136         if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
5137                 return RSS_NENTRIES;
5138         else
5139                 return T6_RSS_NENTRIES;
5140 }
5141
5142 /**
5143  *      t4_config_rss_range - configure a portion of the RSS mapping table
5144  *      @adapter: the adapter
5145  *      @mbox: mbox to use for the FW command
5146  *      @viid: virtual interface whose RSS subtable is to be written
5147  *      @start: start entry in the table to write
5148  *      @n: how many table entries to write
5149  *      @rspq: values for the response queue lookup table
5150  *      @nrspq: number of values in @rspq
5151  *
5152  *      Programs the selected part of the VI's RSS mapping table with the
5153  *      provided values.  If @nrspq < @n the supplied values are used repeatedly
5154  *      until the full table range is populated.
5155  *
5156  *      The caller must ensure the values in @rspq are in the range allowed for
5157  *      @viid.
5158  */
5159 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
5160                         int start, int n, const u16 *rspq, unsigned int nrspq)
5161 {
5162         int ret;
5163         const u16 *rsp = rspq;
5164         const u16 *rsp_end = rspq + nrspq;
5165         struct fw_rss_ind_tbl_cmd cmd;
5166
5167         memset(&cmd, 0, sizeof(cmd));
5168         cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) |
5169                                FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5170                                FW_RSS_IND_TBL_CMD_VIID_V(viid));
5171         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
5172
5173         /* each fw_rss_ind_tbl_cmd takes up to 32 entries */
5174         while (n > 0) {
5175                 int nq = min(n, 32);
5176                 __be32 *qp = &cmd.iq0_to_iq2;
5177
5178                 cmd.niqid = cpu_to_be16(nq);
5179                 cmd.startidx = cpu_to_be16(start);
5180
5181                 start += nq;
5182                 n -= nq;
5183
5184                 while (nq > 0) {
5185                         unsigned int v;
5186
5187                         v = FW_RSS_IND_TBL_CMD_IQ0_V(*rsp);
5188                         if (++rsp >= rsp_end)
5189                                 rsp = rspq;
5190                         v |= FW_RSS_IND_TBL_CMD_IQ1_V(*rsp);
5191                         if (++rsp >= rsp_end)
5192                                 rsp = rspq;
5193                         v |= FW_RSS_IND_TBL_CMD_IQ2_V(*rsp);
5194                         if (++rsp >= rsp_end)
5195                                 rsp = rspq;
5196
5197                         *qp++ = cpu_to_be32(v);
5198                         nq -= 3;
5199                 }
5200
5201                 ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
5202                 if (ret)
5203                         return ret;
5204         }
5205         return 0;
5206 }
5207
5208 /**
5209  *      t4_config_glbl_rss - configure the global RSS mode
5210  *      @adapter: the adapter
5211  *      @mbox: mbox to use for the FW command
5212  *      @mode: global RSS mode
5213  *      @flags: mode-specific flags
5214  *
5215  *      Sets the global RSS mode.
5216  */
5217 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
5218                        unsigned int flags)
5219 {
5220         struct fw_rss_glb_config_cmd c;
5221
5222         memset(&c, 0, sizeof(c));
5223         c.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) |
5224                                     FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
5225         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5226         if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
5227                 c.u.manual.mode_pkd =
5228                         cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
5229         } else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
5230                 c.u.basicvirtual.mode_pkd =
5231                         cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
5232                 c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
5233         } else
5234                 return -EINVAL;
5235         return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5236 }
5237
5238 /**
5239  *      t4_config_vi_rss - configure per VI RSS settings
5240  *      @adapter: the adapter
5241  *      @mbox: mbox to use for the FW command
5242  *      @viid: the VI id
5243  *      @flags: RSS flags
5244  *      @defq: id of the default RSS queue for the VI.
5245  *
5246  *      Configures VI-specific RSS properties.
5247  */
5248 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
5249                      unsigned int flags, unsigned int defq)
5250 {
5251         struct fw_rss_vi_config_cmd c;
5252
5253         memset(&c, 0, sizeof(c));
5254         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
5255                                    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5256                                    FW_RSS_VI_CONFIG_CMD_VIID_V(viid));
5257         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5258         c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
5259                                         FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(defq));
5260         return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5261 }
5262
5263 /* Read an RSS table row */
5264 static int rd_rss_row(struct adapter *adap, int row, u32 *val)
5265 {
5266         t4_write_reg(adap, TP_RSS_LKP_TABLE_A, 0xfff00000 | row);
5267         return t4_wait_op_done_val(adap, TP_RSS_LKP_TABLE_A, LKPTBLROWVLD_F, 1,
5268                                    5, 0, val);
5269 }
5270
5271 /**
5272  *      t4_read_rss - read the contents of the RSS mapping table
5273  *      @adapter: the adapter
5274  *      @map: holds the contents of the RSS mapping table
5275  *
5276  *      Reads the contents of the RSS hash->queue mapping table.
5277  */
5278 int t4_read_rss(struct adapter *adapter, u16 *map)
5279 {
5280         int i, ret, nentries;
5281         u32 val;
5282
5283         nentries = t4_chip_rss_size(adapter);
5284         for (i = 0; i < nentries / 2; ++i) {
5285                 ret = rd_rss_row(adapter, i, &val);
5286                 if (ret)
5287                         return ret;
5288                 *map++ = LKPTBLQUEUE0_G(val);
5289                 *map++ = LKPTBLQUEUE1_G(val);
5290         }
5291         return 0;
5292 }
5293
5294 static unsigned int t4_use_ldst(struct adapter *adap)
5295 {
5296         return (adap->flags & CXGB4_FW_OK) && !adap->use_bd;
5297 }
5298
5299 /**
5300  * t4_tp_fw_ldst_rw - Access TP indirect register through LDST
5301  * @adap: the adapter
5302  * @cmd: TP fw ldst address space type
5303  * @vals: where the indirect register values are stored/written
5304  * @nregs: how many indirect registers to read/write
5305  * @start_index: index of first indirect register to read/write
5306  * @rw: Read (1) or Write (0)
5307  * @sleep_ok: if true we may sleep while awaiting command completion
5308  *
5309  * Access TP indirect registers through LDST
5310  */
5311 static int t4_tp_fw_ldst_rw(struct adapter *adap, int cmd, u32 *vals,
5312                             unsigned int nregs, unsigned int start_index,
5313                             unsigned int rw, bool sleep_ok)
5314 {
5315         int ret = 0;
5316         unsigned int i;
5317         struct fw_ldst_cmd c;
5318
5319         for (i = 0; i < nregs; i++) {
5320                 memset(&c, 0, sizeof(c));
5321                 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5322                                                 FW_CMD_REQUEST_F |
5323                                                 (rw ? FW_CMD_READ_F :
5324                                                       FW_CMD_WRITE_F) |
5325                                                 FW_LDST_CMD_ADDRSPACE_V(cmd));
5326                 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5327
5328                 c.u.addrval.addr = cpu_to_be32(start_index + i);
5329                 c.u.addrval.val  = rw ? 0 : cpu_to_be32(vals[i]);
5330                 ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c,
5331                                       sleep_ok);
5332                 if (ret)
5333                         return ret;
5334
5335                 if (rw)
5336                         vals[i] = be32_to_cpu(c.u.addrval.val);
5337         }
5338         return 0;
5339 }
5340
5341 /**
5342  * t4_tp_indirect_rw - Read/Write TP indirect register through LDST or backdoor
5343  * @adap: the adapter
5344  * @reg_addr: Address Register
5345  * @reg_data: Data register
5346  * @buff: where the indirect register values are stored/written
5347  * @nregs: how many indirect registers to read/write
5348  * @start_index: index of first indirect register to read/write
5349  * @rw: READ(1) or WRITE(0)
5350  * @sleep_ok: if true we may sleep while awaiting command completion
5351  *
5352  * Read/Write TP indirect registers through LDST if possible.
5353  * Else, use backdoor access
5354  **/
5355 static void t4_tp_indirect_rw(struct adapter *adap, u32 reg_addr, u32 reg_data,
5356                               u32 *buff, u32 nregs, u32 start_index, int rw,
5357                               bool sleep_ok)
5358 {
5359         int rc = -EINVAL;
5360         int cmd;
5361
5362         switch (reg_addr) {
5363         case TP_PIO_ADDR_A:
5364                 cmd = FW_LDST_ADDRSPC_TP_PIO;
5365                 break;
5366         case TP_TM_PIO_ADDR_A:
5367                 cmd = FW_LDST_ADDRSPC_TP_TM_PIO;
5368                 break;
5369         case TP_MIB_INDEX_A:
5370                 cmd = FW_LDST_ADDRSPC_TP_MIB;
5371                 break;
5372         default:
5373                 goto indirect_access;
5374         }
5375
5376         if (t4_use_ldst(adap))
5377                 rc = t4_tp_fw_ldst_rw(adap, cmd, buff, nregs, start_index, rw,
5378                                       sleep_ok);
5379
5380 indirect_access:
5381
5382         if (rc) {
5383                 if (rw)
5384                         t4_read_indirect(adap, reg_addr, reg_data, buff, nregs,
5385                                          start_index);
5386                 else
5387                         t4_write_indirect(adap, reg_addr, reg_data, buff, nregs,
5388                                           start_index);
5389         }
5390 }
5391
5392 /**
5393  * t4_tp_pio_read - Read TP PIO registers
5394  * @adap: the adapter
5395  * @buff: where the indirect register values are written
5396  * @nregs: how many indirect registers to read
5397  * @start_index: index of first indirect register to read
5398  * @sleep_ok: if true we may sleep while awaiting command completion
5399  *
5400  * Read TP PIO Registers
5401  **/
5402 void t4_tp_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5403                     u32 start_index, bool sleep_ok)
5404 {
5405         t4_tp_indirect_rw(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, buff, nregs,
5406                           start_index, 1, sleep_ok);
5407 }
5408
5409 /**
5410  * t4_tp_pio_write - Write TP PIO registers
5411  * @adap: the adapter
5412  * @buff: where the indirect register values are stored
5413  * @nregs: how many indirect registers to write
5414  * @start_index: index of first indirect register to write
5415  * @sleep_ok: if true we may sleep while awaiting command completion
5416  *
5417  * Write TP PIO Registers
5418  **/
5419 static void t4_tp_pio_write(struct adapter *adap, u32 *buff, u32 nregs,
5420                             u32 start_index, bool sleep_ok)
5421 {
5422         t4_tp_indirect_rw(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, buff, nregs,
5423                           start_index, 0, sleep_ok);
5424 }
5425
5426 /**
5427  * t4_tp_tm_pio_read - Read TP TM PIO registers
5428  * @adap: the adapter
5429  * @buff: where the indirect register values are written
5430  * @nregs: how many indirect registers to read
5431  * @start_index: index of first indirect register to read
5432  * @sleep_ok: if true we may sleep while awaiting command completion
5433  *
5434  * Read TP TM PIO Registers
5435  **/
5436 void t4_tp_tm_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5437                        u32 start_index, bool sleep_ok)
5438 {
5439         t4_tp_indirect_rw(adap, TP_TM_PIO_ADDR_A, TP_TM_PIO_DATA_A, buff,
5440                           nregs, start_index, 1, sleep_ok);
5441 }
5442
5443 /**
5444  * t4_tp_mib_read - Read TP MIB registers
5445  * @adap: the adapter
5446  * @buff: where the indirect register values are written
5447  * @nregs: how many indirect registers to read
5448  * @start_index: index of first indirect register to read
5449  * @sleep_ok: if true we may sleep while awaiting command completion
5450  *
5451  * Read TP MIB Registers
5452  **/
5453 void t4_tp_mib_read(struct adapter *adap, u32 *buff, u32 nregs, u32 start_index,
5454                     bool sleep_ok)
5455 {
5456         t4_tp_indirect_rw(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, buff, nregs,
5457                           start_index, 1, sleep_ok);
5458 }
5459
5460 /**
5461  *      t4_read_rss_key - read the global RSS key
5462  *      @adap: the adapter
5463  *      @key: 10-entry array holding the 320-bit RSS key
5464  *      @sleep_ok: if true we may sleep while awaiting command completion
5465  *
5466  *      Reads the global 320-bit RSS key.
5467  */
5468 void t4_read_rss_key(struct adapter *adap, u32 *key, bool sleep_ok)
5469 {
5470         t4_tp_pio_read(adap, key, 10, TP_RSS_SECRET_KEY0_A, sleep_ok);
5471 }
5472
5473 /**
5474  *      t4_write_rss_key - program one of the RSS keys
5475  *      @adap: the adapter
5476  *      @key: 10-entry array holding the 320-bit RSS key
5477  *      @idx: which RSS key to write
5478  *      @sleep_ok: if true we may sleep while awaiting command completion
5479  *
5480  *      Writes one of the RSS keys with the given 320-bit value.  If @idx is
5481  *      0..15 the corresponding entry in the RSS key table is written,
5482  *      otherwise the global RSS key is written.
5483  */
5484 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx,
5485                       bool sleep_ok)
5486 {
5487         u8 rss_key_addr_cnt = 16;
5488         u32 vrt = t4_read_reg(adap, TP_RSS_CONFIG_VRT_A);
5489
5490         /* T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
5491          * allows access to key addresses 16-63 by using KeyWrAddrX
5492          * as index[5:4](upper 2) into key table
5493          */
5494         if ((CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) &&
5495             (vrt & KEYEXTEND_F) && (KEYMODE_G(vrt) == 3))
5496                 rss_key_addr_cnt = 32;
5497
5498         t4_tp_pio_write(adap, (void *)key, 10, TP_RSS_SECRET_KEY0_A, sleep_ok);
5499
5500         if (idx >= 0 && idx < rss_key_addr_cnt) {
5501                 if (rss_key_addr_cnt > 16)
5502                         t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
5503                                      KEYWRADDRX_V(idx >> 4) |
5504                                      T6_VFWRADDR_V(idx) | KEYWREN_F);
5505                 else
5506                         t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
5507                                      KEYWRADDR_V(idx) | KEYWREN_F);
5508         }
5509 }
5510
5511 /**
5512  *      t4_read_rss_pf_config - read PF RSS Configuration Table
5513  *      @adapter: the adapter
5514  *      @index: the entry in the PF RSS table to read
5515  *      @valp: where to store the returned value
5516  *      @sleep_ok: if true we may sleep while awaiting command completion
5517  *
5518  *      Reads the PF RSS Configuration Table at the specified index and returns
5519  *      the value found there.
5520  */
5521 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
5522                            u32 *valp, bool sleep_ok)
5523 {
5524         t4_tp_pio_read(adapter, valp, 1, TP_RSS_PF0_CONFIG_A + index, sleep_ok);
5525 }
5526
5527 /**
5528  *      t4_read_rss_vf_config - read VF RSS Configuration Table
5529  *      @adapter: the adapter
5530  *      @index: the entry in the VF RSS table to read
5531  *      @vfl: where to store the returned VFL
5532  *      @vfh: where to store the returned VFH
5533  *      @sleep_ok: if true we may sleep while awaiting command completion
5534  *
5535  *      Reads the VF RSS Configuration Table at the specified index and returns
5536  *      the (VFL, VFH) values found there.
5537  */
5538 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
5539                            u32 *vfl, u32 *vfh, bool sleep_ok)
5540 {
5541         u32 vrt, mask, data;
5542
5543         if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) {
5544                 mask = VFWRADDR_V(VFWRADDR_M);
5545                 data = VFWRADDR_V(index);
5546         } else {
5547                  mask =  T6_VFWRADDR_V(T6_VFWRADDR_M);
5548                  data = T6_VFWRADDR_V(index);
5549         }
5550
5551         /* Request that the index'th VF Table values be read into VFL/VFH.
5552          */
5553         vrt = t4_read_reg(adapter, TP_RSS_CONFIG_VRT_A);
5554         vrt &= ~(VFRDRG_F | VFWREN_F | KEYWREN_F | mask);
5555         vrt |= data | VFRDEN_F;
5556         t4_write_reg(adapter, TP_RSS_CONFIG_VRT_A, vrt);
5557
5558         /* Grab the VFL/VFH values ...
5559          */
5560         t4_tp_pio_read(adapter, vfl, 1, TP_RSS_VFL_CONFIG_A, sleep_ok);
5561         t4_tp_pio_read(adapter, vfh, 1, TP_RSS_VFH_CONFIG_A, sleep_ok);
5562 }
5563
5564 /**
5565  *      t4_read_rss_pf_map - read PF RSS Map
5566  *      @adapter: the adapter
5567  *      @sleep_ok: if true we may sleep while awaiting command completion
5568  *
5569  *      Reads the PF RSS Map register and returns its value.
5570  */
5571 u32 t4_read_rss_pf_map(struct adapter *adapter, bool sleep_ok)
5572 {
5573         u32 pfmap;
5574
5575         t4_tp_pio_read(adapter, &pfmap, 1, TP_RSS_PF_MAP_A, sleep_ok);
5576         return pfmap;
5577 }
5578
5579 /**
5580  *      t4_read_rss_pf_mask - read PF RSS Mask
5581  *      @adapter: the adapter
5582  *      @sleep_ok: if true we may sleep while awaiting command completion
5583  *
5584  *      Reads the PF RSS Mask register and returns its value.
5585  */
5586 u32 t4_read_rss_pf_mask(struct adapter *adapter, bool sleep_ok)
5587 {
5588         u32 pfmask;
5589
5590         t4_tp_pio_read(adapter, &pfmask, 1, TP_RSS_PF_MSK_A, sleep_ok);
5591         return pfmask;
5592 }
5593
5594 /**
5595  *      t4_tp_get_tcp_stats - read TP's TCP MIB counters
5596  *      @adap: the adapter
5597  *      @v4: holds the TCP/IP counter values
5598  *      @v6: holds the TCP/IPv6 counter values
5599  *      @sleep_ok: if true we may sleep while awaiting command completion
5600  *
5601  *      Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
5602  *      Either @v4 or @v6 may be %NULL to skip the corresponding stats.
5603  */
5604 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
5605                          struct tp_tcp_stats *v6, bool sleep_ok)
5606 {
5607         u32 val[TP_MIB_TCP_RXT_SEG_LO_A - TP_MIB_TCP_OUT_RST_A + 1];
5608
5609 #define STAT_IDX(x) ((TP_MIB_TCP_##x##_A) - TP_MIB_TCP_OUT_RST_A)
5610 #define STAT(x)     val[STAT_IDX(x)]
5611 #define STAT64(x)   (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
5612
5613         if (v4) {
5614                 t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
5615                                TP_MIB_TCP_OUT_RST_A, sleep_ok);
5616                 v4->tcp_out_rsts = STAT(OUT_RST);
5617                 v4->tcp_in_segs  = STAT64(IN_SEG);
5618                 v4->tcp_out_segs = STAT64(OUT_SEG);
5619                 v4->tcp_retrans_segs = STAT64(RXT_SEG);
5620         }
5621         if (v6) {
5622                 t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
5623                                TP_MIB_TCP_V6OUT_RST_A, sleep_ok);
5624                 v6->tcp_out_rsts = STAT(OUT_RST);
5625                 v6->tcp_in_segs  = STAT64(IN_SEG);
5626                 v6->tcp_out_segs = STAT64(OUT_SEG);
5627                 v6->tcp_retrans_segs = STAT64(RXT_SEG);
5628         }
5629 #undef STAT64
5630 #undef STAT
5631 #undef STAT_IDX
5632 }
5633
5634 /**
5635  *      t4_tp_get_err_stats - read TP's error MIB counters
5636  *      @adap: the adapter
5637  *      @st: holds the counter values
5638  *      @sleep_ok: if true we may sleep while awaiting command completion
5639  *
5640  *      Returns the values of TP's error counters.
5641  */
5642 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st,
5643                          bool sleep_ok)
5644 {
5645         int nchan = adap->params.arch.nchan;
5646
5647         t4_tp_mib_read(adap, st->mac_in_errs, nchan, TP_MIB_MAC_IN_ERR_0_A,
5648                        sleep_ok);
5649         t4_tp_mib_read(adap, st->hdr_in_errs, nchan, TP_MIB_HDR_IN_ERR_0_A,
5650                        sleep_ok);
5651         t4_tp_mib_read(adap, st->tcp_in_errs, nchan, TP_MIB_TCP_IN_ERR_0_A,
5652                        sleep_ok);
5653         t4_tp_mib_read(adap, st->tnl_cong_drops, nchan,
5654                        TP_MIB_TNL_CNG_DROP_0_A, sleep_ok);
5655         t4_tp_mib_read(adap, st->ofld_chan_drops, nchan,
5656                        TP_MIB_OFD_CHN_DROP_0_A, sleep_ok);
5657         t4_tp_mib_read(adap, st->tnl_tx_drops, nchan, TP_MIB_TNL_DROP_0_A,
5658                        sleep_ok);
5659         t4_tp_mib_read(adap, st->ofld_vlan_drops, nchan,
5660                        TP_MIB_OFD_VLN_DROP_0_A, sleep_ok);
5661         t4_tp_mib_read(adap, st->tcp6_in_errs, nchan,
5662                        TP_MIB_TCP_V6IN_ERR_0_A, sleep_ok);
5663         t4_tp_mib_read(adap, &st->ofld_no_neigh, 2, TP_MIB_OFD_ARP_DROP_A,
5664                        sleep_ok);
5665 }
5666
5667 /**
5668  *      t4_tp_get_cpl_stats - read TP's CPL MIB counters
5669  *      @adap: the adapter
5670  *      @st: holds the counter values
5671  *      @sleep_ok: if true we may sleep while awaiting command completion
5672  *
5673  *      Returns the values of TP's CPL counters.
5674  */
5675 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st,
5676                          bool sleep_ok)
5677 {
5678         int nchan = adap->params.arch.nchan;
5679
5680         t4_tp_mib_read(adap, st->req, nchan, TP_MIB_CPL_IN_REQ_0_A, sleep_ok);
5681
5682         t4_tp_mib_read(adap, st->rsp, nchan, TP_MIB_CPL_OUT_RSP_0_A, sleep_ok);
5683 }
5684
5685 /**
5686  *      t4_tp_get_rdma_stats - read TP's RDMA MIB counters
5687  *      @adap: the adapter
5688  *      @st: holds the counter values
5689  *      @sleep_ok: if true we may sleep while awaiting command completion
5690  *
5691  *      Returns the values of TP's RDMA counters.
5692  */
5693 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st,
5694                           bool sleep_ok)
5695 {
5696         t4_tp_mib_read(adap, &st->rqe_dfr_pkt, 2, TP_MIB_RQE_DFR_PKT_A,
5697                        sleep_ok);
5698 }
5699
5700 /**
5701  *      t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
5702  *      @adap: the adapter
5703  *      @idx: the port index
5704  *      @st: holds the counter values
5705  *      @sleep_ok: if true we may sleep while awaiting command completion
5706  *
5707  *      Returns the values of TP's FCoE counters for the selected port.
5708  */
5709 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
5710                        struct tp_fcoe_stats *st, bool sleep_ok)
5711 {
5712         u32 val[2];
5713
5714         t4_tp_mib_read(adap, &st->frames_ddp, 1, TP_MIB_FCOE_DDP_0_A + idx,
5715                        sleep_ok);
5716
5717         t4_tp_mib_read(adap, &st->frames_drop, 1,
5718                        TP_MIB_FCOE_DROP_0_A + idx, sleep_ok);
5719
5720         t4_tp_mib_read(adap, val, 2, TP_MIB_FCOE_BYTE_0_HI_A + 2 * idx,
5721                        sleep_ok);
5722
5723         st->octets_ddp = ((u64)val[0] << 32) | val[1];
5724 }
5725
5726 /**
5727  *      t4_get_usm_stats - read TP's non-TCP DDP MIB counters
5728  *      @adap: the adapter
5729  *      @st: holds the counter values
5730  *      @sleep_ok: if true we may sleep while awaiting command completion
5731  *
5732  *      Returns the values of TP's counters for non-TCP directly-placed packets.
5733  */
5734 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st,
5735                       bool sleep_ok)
5736 {
5737         u32 val[4];
5738
5739         t4_tp_mib_read(adap, val, 4, TP_MIB_USM_PKTS_A, sleep_ok);
5740         st->frames = val[0];
5741         st->drops = val[1];
5742         st->octets = ((u64)val[2] << 32) | val[3];
5743 }
5744
5745 /**
5746  *      t4_read_mtu_tbl - returns the values in the HW path MTU table
5747  *      @adap: the adapter
5748  *      @mtus: where to store the MTU values
5749  *      @mtu_log: where to store the MTU base-2 log (may be %NULL)
5750  *
5751  *      Reads the HW path MTU table.
5752  */
5753 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
5754 {
5755         u32 v;
5756         int i;
5757
5758         for (i = 0; i < NMTUS; ++i) {
5759                 t4_write_reg(adap, TP_MTU_TABLE_A,
5760                              MTUINDEX_V(0xff) | MTUVALUE_V(i));
5761                 v = t4_read_reg(adap, TP_MTU_TABLE_A);
5762                 mtus[i] = MTUVALUE_G(v);
5763                 if (mtu_log)
5764                         mtu_log[i] = MTUWIDTH_G(v);
5765         }
5766 }
5767
5768 /**
5769  *      t4_read_cong_tbl - reads the congestion control table
5770  *      @adap: the adapter
5771  *      @incr: where to store the alpha values
5772  *
5773  *      Reads the additive increments programmed into the HW congestion
5774  *      control table.
5775  */
5776 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
5777 {
5778         unsigned int mtu, w;
5779
5780         for (mtu = 0; mtu < NMTUS; ++mtu)
5781                 for (w = 0; w < NCCTRL_WIN; ++w) {
5782                         t4_write_reg(adap, TP_CCTRL_TABLE_A,
5783                                      ROWINDEX_V(0xffff) | (mtu << 5) | w);
5784                         incr[mtu][w] = (u16)t4_read_reg(adap,
5785                                                 TP_CCTRL_TABLE_A) & 0x1fff;
5786                 }
5787 }
5788
5789 /**
5790  *      t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
5791  *      @adap: the adapter
5792  *      @addr: the indirect TP register address
5793  *      @mask: specifies the field within the register to modify
5794  *      @val: new value for the field
5795  *
5796  *      Sets a field of an indirect TP register to the given value.
5797  */
5798 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
5799                             unsigned int mask, unsigned int val)
5800 {
5801         t4_write_reg(adap, TP_PIO_ADDR_A, addr);
5802         val |= t4_read_reg(adap, TP_PIO_DATA_A) & ~mask;
5803         t4_write_reg(adap, TP_PIO_DATA_A, val);
5804 }
5805
5806 /**
5807  *      init_cong_ctrl - initialize congestion control parameters
5808  *      @a: the alpha values for congestion control
5809  *      @b: the beta values for congestion control
5810  *
5811  *      Initialize the congestion control parameters.
5812  */
5813 static void init_cong_ctrl(unsigned short *a, unsigned short *b)
5814 {
5815         a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
5816         a[9] = 2;
5817         a[10] = 3;
5818         a[11] = 4;
5819         a[12] = 5;
5820         a[13] = 6;
5821         a[14] = 7;
5822         a[15] = 8;
5823         a[16] = 9;
5824         a[17] = 10;
5825         a[18] = 14;
5826         a[19] = 17;
5827         a[20] = 21;
5828         a[21] = 25;
5829         a[22] = 30;
5830         a[23] = 35;
5831         a[24] = 45;
5832         a[25] = 60;
5833         a[26] = 80;
5834         a[27] = 100;
5835         a[28] = 200;
5836         a[29] = 300;
5837         a[30] = 400;
5838         a[31] = 500;
5839
5840         b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
5841         b[9] = b[10] = 1;
5842         b[11] = b[12] = 2;
5843         b[13] = b[14] = b[15] = b[16] = 3;
5844         b[17] = b[18] = b[19] = b[20] = b[21] = 4;
5845         b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
5846         b[28] = b[29] = 6;
5847         b[30] = b[31] = 7;
5848 }
5849
5850 /* The minimum additive increment value for the congestion control table */
5851 #define CC_MIN_INCR 2U
5852
5853 /**
5854  *      t4_load_mtus - write the MTU and congestion control HW tables
5855  *      @adap: the adapter
5856  *      @mtus: the values for the MTU table
5857  *      @alpha: the values for the congestion control alpha parameter
5858  *      @beta: the values for the congestion control beta parameter
5859  *
5860  *      Write the HW MTU table with the supplied MTUs and the high-speed
5861  *      congestion control table with the supplied alpha, beta, and MTUs.
5862  *      We write the two tables together because the additive increments
5863  *      depend on the MTUs.
5864  */
5865 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
5866                   const unsigned short *alpha, const unsigned short *beta)
5867 {
5868         static const unsigned int avg_pkts[NCCTRL_WIN] = {
5869                 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
5870                 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
5871                 28672, 40960, 57344, 81920, 114688, 163840, 229376
5872         };
5873
5874         unsigned int i, w;
5875
5876         for (i = 0; i < NMTUS; ++i) {
5877                 unsigned int mtu = mtus[i];
5878                 unsigned int log2 = fls(mtu);
5879
5880                 if (!(mtu & ((1 << log2) >> 2)))     /* round */
5881                         log2--;
5882                 t4_write_reg(adap, TP_MTU_TABLE_A, MTUINDEX_V(i) |
5883                              MTUWIDTH_V(log2) | MTUVALUE_V(mtu));
5884
5885                 for (w = 0; w < NCCTRL_WIN; ++w) {
5886                         unsigned int inc;
5887
5888                         inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
5889                                   CC_MIN_INCR);
5890
5891                         t4_write_reg(adap, TP_CCTRL_TABLE_A, (i << 21) |
5892                                      (w << 16) | (beta[w] << 13) | inc);
5893                 }
5894         }
5895 }
5896
5897 /* Calculates a rate in bytes/s given the number of 256-byte units per 4K core
5898  * clocks.  The formula is
5899  *
5900  * bytes/s = bytes256 * 256 * ClkFreq / 4096
5901  *
5902  * which is equivalent to
5903  *
5904  * bytes/s = 62.5 * bytes256 * ClkFreq_ms
5905  */
5906 static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
5907 {
5908         u64 v = bytes256 * adap->params.vpd.cclk;
5909
5910         return v * 62 + v / 2;
5911 }
5912
5913 /**
5914  *      t4_get_chan_txrate - get the current per channel Tx rates
5915  *      @adap: the adapter
5916  *      @nic_rate: rates for NIC traffic
5917  *      @ofld_rate: rates for offloaded traffic
5918  *
5919  *      Return the current Tx rates in bytes/s for NIC and offloaded traffic
5920  *      for each channel.
5921  */
5922 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
5923 {
5924         u32 v;
5925
5926         v = t4_read_reg(adap, TP_TX_TRATE_A);
5927         nic_rate[0] = chan_rate(adap, TNLRATE0_G(v));
5928         nic_rate[1] = chan_rate(adap, TNLRATE1_G(v));
5929         if (adap->params.arch.nchan == NCHAN) {
5930                 nic_rate[2] = chan_rate(adap, TNLRATE2_G(v));
5931                 nic_rate[3] = chan_rate(adap, TNLRATE3_G(v));
5932         }
5933
5934         v = t4_read_reg(adap, TP_TX_ORATE_A);
5935         ofld_rate[0] = chan_rate(adap, OFDRATE0_G(v));
5936         ofld_rate[1] = chan_rate(adap, OFDRATE1_G(v));
5937         if (adap->params.arch.nchan == NCHAN) {
5938                 ofld_rate[2] = chan_rate(adap, OFDRATE2_G(v));
5939                 ofld_rate[3] = chan_rate(adap, OFDRATE3_G(v));
5940         }
5941 }
5942
5943 /**
5944  *      t4_set_trace_filter - configure one of the tracing filters
5945  *      @adap: the adapter
5946  *      @tp: the desired trace filter parameters
5947  *      @idx: which filter to configure
5948  *      @enable: whether to enable or disable the filter
5949  *
5950  *      Configures one of the tracing filters available in HW.  If @enable is
5951  *      %0 @tp is not examined and may be %NULL. The user is responsible to
5952  *      set the single/multiple trace mode by writing to MPS_TRC_CFG_A register
5953  */
5954 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
5955                         int idx, int enable)
5956 {
5957         int i, ofst = idx * 4;
5958         u32 data_reg, mask_reg, cfg;
5959
5960         if (!enable) {
5961                 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5962                 return 0;
5963         }
5964
5965         cfg = t4_read_reg(adap, MPS_TRC_CFG_A);
5966         if (cfg & TRCMULTIFILTER_F) {
5967                 /* If multiple tracers are enabled, then maximum
5968                  * capture size is 2.5KB (FIFO size of a single channel)
5969                  * minus 2 flits for CPL_TRACE_PKT header.
5970                  */
5971                 if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
5972                         return -EINVAL;
5973         } else {
5974                 /* If multiple tracers are disabled, to avoid deadlocks
5975                  * maximum packet capture size of 9600 bytes is recommended.
5976                  * Also in this mode, only trace0 can be enabled and running.
5977                  */
5978                 if (tp->snap_len > 9600 || idx)
5979                         return -EINVAL;
5980         }
5981
5982         if (tp->port > (is_t4(adap->params.chip) ? 11 : 19) || tp->invert > 1 ||
5983             tp->skip_len > TFLENGTH_M || tp->skip_ofst > TFOFFSET_M ||
5984             tp->min_len > TFMINPKTSIZE_M)
5985                 return -EINVAL;
5986
5987         /* stop the tracer we'll be changing */
5988         t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5989
5990         idx *= (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A);
5991         data_reg = MPS_TRC_FILTER0_MATCH_A + idx;
5992         mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + idx;
5993
5994         for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5995                 t4_write_reg(adap, data_reg, tp->data[i]);
5996                 t4_write_reg(adap, mask_reg, ~tp->mask[i]);
5997         }
5998         t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst,
5999                      TFCAPTUREMAX_V(tp->snap_len) |
6000                      TFMINPKTSIZE_V(tp->min_len));
6001         t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst,
6002                      TFOFFSET_V(tp->skip_ofst) | TFLENGTH_V(tp->skip_len) |
6003                      (is_t4(adap->params.chip) ?
6004                      TFPORT_V(tp->port) | TFEN_F | TFINVERTMATCH_V(tp->invert) :
6005                      T5_TFPORT_V(tp->port) | T5_TFEN_F |
6006                      T5_TFINVERTMATCH_V(tp->invert)));
6007
6008         return 0;
6009 }
6010
6011 /**
6012  *      t4_get_trace_filter - query one of the tracing filters
6013  *      @adap: the adapter
6014  *      @tp: the current trace filter parameters
6015  *      @idx: which trace filter to query
6016  *      @enabled: non-zero if the filter is enabled
6017  *
6018  *      Returns the current settings of one of the HW tracing filters.
6019  */
6020 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
6021                          int *enabled)
6022 {
6023         u32 ctla, ctlb;
6024         int i, ofst = idx * 4;
6025         u32 data_reg, mask_reg;
6026
6027         ctla = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst);
6028         ctlb = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst);
6029
6030         if (is_t4(adap->params.chip)) {
6031                 *enabled = !!(ctla & TFEN_F);
6032                 tp->port =  TFPORT_G(ctla);
6033                 tp->invert = !!(ctla & TFINVERTMATCH_F);
6034         } else {
6035                 *enabled = !!(ctla & T5_TFEN_F);
6036                 tp->port = T5_TFPORT_G(ctla);
6037                 tp->invert = !!(ctla & T5_TFINVERTMATCH_F);
6038         }
6039         tp->snap_len = TFCAPTUREMAX_G(ctlb);
6040         tp->min_len = TFMINPKTSIZE_G(ctlb);
6041         tp->skip_ofst = TFOFFSET_G(ctla);
6042         tp->skip_len = TFLENGTH_G(ctla);
6043
6044         ofst = (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A) * idx;
6045         data_reg = MPS_TRC_FILTER0_MATCH_A + ofst;
6046         mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + ofst;
6047
6048         for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
6049                 tp->mask[i] = ~t4_read_reg(adap, mask_reg);
6050                 tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
6051         }
6052 }
6053
6054 /**
6055  *      t4_pmtx_get_stats - returns the HW stats from PMTX
6056  *      @adap: the adapter
6057  *      @cnt: where to store the count statistics
6058  *      @cycles: where to store the cycle statistics
6059  *
6060  *      Returns performance statistics from PMTX.
6061  */
6062 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
6063 {
6064         int i;
6065         u32 data[2];
6066
6067         for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
6068                 t4_write_reg(adap, PM_TX_STAT_CONFIG_A, i + 1);
6069                 cnt[i] = t4_read_reg(adap, PM_TX_STAT_COUNT_A);
6070                 if (is_t4(adap->params.chip)) {
6071                         cycles[i] = t4_read_reg64(adap, PM_TX_STAT_LSB_A);
6072                 } else {
6073                         t4_read_indirect(adap, PM_TX_DBG_CTRL_A,
6074                                          PM_TX_DBG_DATA_A, data, 2,
6075                                          PM_TX_DBG_STAT_MSB_A);
6076                         cycles[i] = (((u64)data[0] << 32) | data[1]);
6077                 }
6078         }
6079 }
6080
6081 /**
6082  *      t4_pmrx_get_stats - returns the HW stats from PMRX
6083  *      @adap: the adapter
6084  *      @cnt: where to store the count statistics
6085  *      @cycles: where to store the cycle statistics
6086  *
6087  *      Returns performance statistics from PMRX.
6088  */
6089 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
6090 {
6091         int i;
6092         u32 data[2];
6093
6094         for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
6095                 t4_write_reg(adap, PM_RX_STAT_CONFIG_A, i + 1);
6096                 cnt[i] = t4_read_reg(adap, PM_RX_STAT_COUNT_A);
6097                 if (is_t4(adap->params.chip)) {
6098                         cycles[i] = t4_read_reg64(adap, PM_RX_STAT_LSB_A);
6099                 } else {
6100                         t4_read_indirect(adap, PM_RX_DBG_CTRL_A,
6101                                          PM_RX_DBG_DATA_A, data, 2,
6102                                          PM_RX_DBG_STAT_MSB_A);
6103                         cycles[i] = (((u64)data[0] << 32) | data[1]);
6104                 }
6105         }
6106 }
6107
6108 /**
6109  *      compute_mps_bg_map - compute the MPS Buffer Group Map for a Port
6110  *      @adapter: the adapter
6111  *      @pidx: the port index
6112  *
6113  *      Computes and returns a bitmap indicating which MPS buffer groups are
6114  *      associated with the given Port.  Bit i is set if buffer group i is
6115  *      used by the Port.
6116  */
6117 static inline unsigned int compute_mps_bg_map(struct adapter *adapter,
6118                                               int pidx)
6119 {
6120         unsigned int chip_version, nports;
6121
6122         chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
6123         nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A));
6124
6125         switch (chip_version) {
6126         case CHELSIO_T4:
6127         case CHELSIO_T5:
6128                 switch (nports) {
6129                 case 1: return 0xf;
6130                 case 2: return 3 << (2 * pidx);
6131                 case 4: return 1 << pidx;
6132                 }
6133                 break;
6134
6135         case CHELSIO_T6:
6136                 switch (nports) {
6137                 case 2: return 1 << (2 * pidx);
6138                 }
6139                 break;
6140         }
6141
6142         dev_err(adapter->pdev_dev, "Need MPS Buffer Group Map for Chip %0x, Nports %d\n",
6143                 chip_version, nports);
6144
6145         return 0;
6146 }
6147
6148 /**
6149  *      t4_get_mps_bg_map - return the buffer groups associated with a port
6150  *      @adapter: the adapter
6151  *      @pidx: the port index
6152  *
6153  *      Returns a bitmap indicating which MPS buffer groups are associated
6154  *      with the given Port.  Bit i is set if buffer group i is used by the
6155  *      Port.
6156  */
6157 unsigned int t4_get_mps_bg_map(struct adapter *adapter, int pidx)
6158 {
6159         u8 *mps_bg_map;
6160         unsigned int nports;
6161
6162         nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A));
6163         if (pidx >= nports) {
6164                 CH_WARN(adapter, "MPS Port Index %d >= Nports %d\n",
6165                         pidx, nports);
6166                 return 0;
6167         }
6168
6169         /* If we've already retrieved/computed this, just return the result.
6170          */
6171         mps_bg_map = adapter->params.mps_bg_map;
6172         if (mps_bg_map[pidx])
6173                 return mps_bg_map[pidx];
6174
6175         /* Newer Firmware can tell us what the MPS Buffer Group Map is.
6176          * If we're talking to such Firmware, let it tell us.  If the new
6177          * API isn't supported, revert back to old hardcoded way.  The value
6178          * obtained from Firmware is encoded in below format:
6179          *
6180          * val = (( MPSBGMAP[Port 3] << 24 ) |
6181          *        ( MPSBGMAP[Port 2] << 16 ) |
6182          *        ( MPSBGMAP[Port 1] <<  8 ) |
6183          *        ( MPSBGMAP[Port 0] <<  0 ))
6184          */
6185         if (adapter->flags & CXGB4_FW_OK) {
6186                 u32 param, val;
6187                 int ret;
6188
6189                 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
6190                          FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_MPSBGMAP));
6191                 ret = t4_query_params_ns(adapter, adapter->mbox, adapter->pf,
6192                                          0, 1, &param, &val);
6193                 if (!ret) {
6194                         int p;
6195
6196                         /* Store the BG Map for all of the Ports in order to
6197                          * avoid more calls to the Firmware in the future.
6198                          */
6199                         for (p = 0; p < MAX_NPORTS; p++, val >>= 8)
6200                                 mps_bg_map[p] = val & 0xff;
6201
6202                         return mps_bg_map[pidx];
6203                 }
6204         }
6205
6206         /* Either we're not talking to the Firmware or we're dealing with
6207          * older Firmware which doesn't support the new API to get the MPS
6208          * Buffer Group Map.  Fall back to computing it ourselves.
6209          */
6210         mps_bg_map[pidx] = compute_mps_bg_map(adapter, pidx);
6211         return mps_bg_map[pidx];
6212 }
6213
6214 /**
6215  *      t4_get_tp_e2c_map - return the E2C channel map associated with a port
6216  *      @adapter: the adapter
6217  *      @pidx: the port index
6218  */
6219 static unsigned int t4_get_tp_e2c_map(struct adapter *adapter, int pidx)
6220 {
6221         unsigned int nports;
6222         u32 param, val = 0;
6223         int ret;
6224
6225         nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A));
6226         if (pidx >= nports) {
6227                 CH_WARN(adapter, "TP E2C Channel Port Index %d >= Nports %d\n",
6228                         pidx, nports);
6229                 return 0;
6230         }
6231
6232         /* FW version >= 1.16.44.0 can determine E2C channel map using
6233          * FW_PARAMS_PARAM_DEV_TPCHMAP API.
6234          */
6235         param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
6236                  FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_TPCHMAP));
6237         ret = t4_query_params_ns(adapter, adapter->mbox, adapter->pf,
6238                                  0, 1, &param, &val);
6239         if (!ret)
6240                 return (val >> (8 * pidx)) & 0xff;
6241
6242         return 0;
6243 }
6244
6245 /**
6246  *      t4_get_tp_ch_map - return TP ingress channels associated with a port
6247  *      @adap: the adapter
6248  *      @pidx: the port index
6249  *
6250  *      Returns a bitmap indicating which TP Ingress Channels are associated
6251  *      with a given Port.  Bit i is set if TP Ingress Channel i is used by
6252  *      the Port.
6253  */
6254 unsigned int t4_get_tp_ch_map(struct adapter *adap, int pidx)
6255 {
6256         unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
6257         unsigned int nports = 1 << NUMPORTS_G(t4_read_reg(adap, MPS_CMN_CTL_A));
6258
6259         if (pidx >= nports) {
6260                 dev_warn(adap->pdev_dev, "TP Port Index %d >= Nports %d\n",
6261                          pidx, nports);
6262                 return 0;
6263         }
6264
6265         switch (chip_version) {
6266         case CHELSIO_T4:
6267         case CHELSIO_T5:
6268                 /* Note that this happens to be the same values as the MPS
6269                  * Buffer Group Map for these Chips.  But we replicate the code
6270                  * here because they're really separate concepts.
6271                  */
6272                 switch (nports) {
6273                 case 1: return 0xf;
6274                 case 2: return 3 << (2 * pidx);
6275                 case 4: return 1 << pidx;
6276                 }
6277                 break;
6278
6279         case CHELSIO_T6:
6280                 switch (nports) {
6281                 case 1:
6282                 case 2: return 1 << pidx;
6283                 }
6284                 break;
6285         }
6286
6287         dev_err(adap->pdev_dev, "Need TP Channel Map for Chip %0x, Nports %d\n",
6288                 chip_version, nports);
6289         return 0;
6290 }
6291
6292 /**
6293  *      t4_get_port_type_description - return Port Type string description
6294  *      @port_type: firmware Port Type enumeration
6295  */
6296 const char *t4_get_port_type_description(enum fw_port_type port_type)
6297 {
6298         static const char *const port_type_description[] = {
6299                 "Fiber_XFI",
6300                 "Fiber_XAUI",
6301                 "BT_SGMII",
6302                 "BT_XFI",
6303                 "BT_XAUI",
6304                 "KX4",
6305                 "CX4",
6306                 "KX",
6307                 "KR",
6308                 "SFP",
6309                 "BP_AP",
6310                 "BP4_AP",
6311                 "QSFP_10G",
6312                 "QSA",
6313                 "QSFP",
6314                 "BP40_BA",
6315                 "KR4_100G",
6316                 "CR4_QSFP",
6317                 "CR_QSFP",
6318                 "CR2_QSFP",
6319                 "SFP28",
6320                 "KR_SFP28",
6321                 "KR_XLAUI"
6322         };
6323
6324         if (port_type < ARRAY_SIZE(port_type_description))
6325                 return port_type_description[port_type];
6326         return "UNKNOWN";
6327 }
6328
6329 /**
6330  *      t4_get_port_stats_offset - collect port stats relative to a previous
6331  *                                 snapshot
6332  *      @adap: The adapter
6333  *      @idx: The port
6334  *      @stats: Current stats to fill
6335  *      @offset: Previous stats snapshot
6336  */
6337 void t4_get_port_stats_offset(struct adapter *adap, int idx,
6338                               struct port_stats *stats,
6339                               struct port_stats *offset)
6340 {
6341         u64 *s, *o;
6342         int i;
6343
6344         t4_get_port_stats(adap, idx, stats);
6345         for (i = 0, s = (u64 *)stats, o = (u64 *)offset;
6346                         i < (sizeof(struct port_stats) / sizeof(u64));
6347                         i++, s++, o++)
6348                 *s -= *o;
6349 }
6350
6351 /**
6352  *      t4_get_port_stats - collect port statistics
6353  *      @adap: the adapter
6354  *      @idx: the port index
6355  *      @p: the stats structure to fill
6356  *
6357  *      Collect statistics related to the given port from HW.
6358  */
6359 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
6360 {
6361         u32 bgmap = t4_get_mps_bg_map(adap, idx);
6362         u32 stat_ctl = t4_read_reg(adap, MPS_STAT_CTL_A);
6363
6364 #define GET_STAT(name) \
6365         t4_read_reg64(adap, \
6366         (is_t4(adap->params.chip) ? PORT_REG(idx, MPS_PORT_STAT_##name##_L) : \
6367         T5_PORT_REG(idx, MPS_PORT_STAT_##name##_L)))
6368 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
6369
6370         p->tx_octets           = GET_STAT(TX_PORT_BYTES);
6371         p->tx_frames           = GET_STAT(TX_PORT_FRAMES);
6372         p->tx_bcast_frames     = GET_STAT(TX_PORT_BCAST);
6373         p->tx_mcast_frames     = GET_STAT(TX_PORT_MCAST);
6374         p->tx_ucast_frames     = GET_STAT(TX_PORT_UCAST);
6375         p->tx_error_frames     = GET_STAT(TX_PORT_ERROR);
6376         p->tx_frames_64        = GET_STAT(TX_PORT_64B);
6377         p->tx_frames_65_127    = GET_STAT(TX_PORT_65B_127B);
6378         p->tx_frames_128_255   = GET_STAT(TX_PORT_128B_255B);
6379         p->tx_frames_256_511   = GET_STAT(TX_PORT_256B_511B);
6380         p->tx_frames_512_1023  = GET_STAT(TX_PORT_512B_1023B);
6381         p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B);
6382         p->tx_frames_1519_max  = GET_STAT(TX_PORT_1519B_MAX);
6383         p->tx_drop             = GET_STAT(TX_PORT_DROP);
6384         p->tx_pause            = GET_STAT(TX_PORT_PAUSE);
6385         p->tx_ppp0             = GET_STAT(TX_PORT_PPP0);
6386         p->tx_ppp1             = GET_STAT(TX_PORT_PPP1);
6387         p->tx_ppp2             = GET_STAT(TX_PORT_PPP2);
6388         p->tx_ppp3             = GET_STAT(TX_PORT_PPP3);
6389         p->tx_ppp4             = GET_STAT(TX_PORT_PPP4);
6390         p->tx_ppp5             = GET_STAT(TX_PORT_PPP5);
6391         p->tx_ppp6             = GET_STAT(TX_PORT_PPP6);
6392         p->tx_ppp7             = GET_STAT(TX_PORT_PPP7);
6393
6394         if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) {
6395                 if (stat_ctl & COUNTPAUSESTATTX_F)
6396                         p->tx_frames_64 -= p->tx_pause;
6397                 if (stat_ctl & COUNTPAUSEMCTX_F)
6398                         p->tx_mcast_frames -= p->tx_pause;
6399         }
6400         p->rx_octets           = GET_STAT(RX_PORT_BYTES);
6401         p->rx_frames           = GET_STAT(RX_PORT_FRAMES);
6402         p->rx_bcast_frames     = GET_STAT(RX_PORT_BCAST);
6403         p->rx_mcast_frames     = GET_STAT(RX_PORT_MCAST);
6404         p->rx_ucast_frames     = GET_STAT(RX_PORT_UCAST);
6405         p->rx_too_long         = GET_STAT(RX_PORT_MTU_ERROR);
6406         p->rx_jabber           = GET_STAT(RX_PORT_MTU_CRC_ERROR);
6407         p->rx_fcs_err          = GET_STAT(RX_PORT_CRC_ERROR);
6408         p->rx_len_err          = GET_STAT(RX_PORT_LEN_ERROR);
6409         p->rx_symbol_err       = GET_STAT(RX_PORT_SYM_ERROR);
6410         p->rx_runt             = GET_STAT(RX_PORT_LESS_64B);
6411         p->rx_frames_64        = GET_STAT(RX_PORT_64B);
6412         p->rx_frames_65_127    = GET_STAT(RX_PORT_65B_127B);
6413         p->rx_frames_128_255   = GET_STAT(RX_PORT_128B_255B);
6414         p->rx_frames_256_511   = GET_STAT(RX_PORT_256B_511B);
6415         p->rx_frames_512_1023  = GET_STAT(RX_PORT_512B_1023B);
6416         p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B);
6417         p->rx_frames_1519_max  = GET_STAT(RX_PORT_1519B_MAX);
6418         p->rx_pause            = GET_STAT(RX_PORT_PAUSE);
6419         p->rx_ppp0             = GET_STAT(RX_PORT_PPP0);
6420         p->rx_ppp1             = GET_STAT(RX_PORT_PPP1);
6421         p->rx_ppp2             = GET_STAT(RX_PORT_PPP2);
6422         p->rx_ppp3             = GET_STAT(RX_PORT_PPP3);
6423         p->rx_ppp4             = GET_STAT(RX_PORT_PPP4);
6424         p->rx_ppp5             = GET_STAT(RX_PORT_PPP5);
6425         p->rx_ppp6             = GET_STAT(RX_PORT_PPP6);
6426         p->rx_ppp7             = GET_STAT(RX_PORT_PPP7);
6427
6428         if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) {
6429                 if (stat_ctl & COUNTPAUSESTATRX_F)
6430                         p->rx_frames_64 -= p->rx_pause;
6431                 if (stat_ctl & COUNTPAUSEMCRX_F)
6432                         p->rx_mcast_frames -= p->rx_pause;
6433         }
6434
6435         p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
6436         p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
6437         p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
6438         p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
6439         p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
6440         p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
6441         p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
6442         p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
6443
6444 #undef GET_STAT
6445 #undef GET_STAT_COM
6446 }
6447
6448 /**
6449  *      t4_get_lb_stats - collect loopback port statistics
6450  *      @adap: the adapter
6451  *      @idx: the loopback port index
6452  *      @p: the stats structure to fill
6453  *
6454  *      Return HW statistics for the given loopback port.
6455  */
6456 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
6457 {
6458         u32 bgmap = t4_get_mps_bg_map(adap, idx);
6459
6460 #define GET_STAT(name) \
6461         t4_read_reg64(adap, \
6462         (is_t4(adap->params.chip) ? \
6463         PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L) : \
6464         T5_PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L)))
6465 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
6466
6467         p->octets           = GET_STAT(BYTES);
6468         p->frames           = GET_STAT(FRAMES);
6469         p->bcast_frames     = GET_STAT(BCAST);
6470         p->mcast_frames     = GET_STAT(MCAST);
6471         p->ucast_frames     = GET_STAT(UCAST);
6472         p->error_frames     = GET_STAT(ERROR);
6473
6474         p->frames_64        = GET_STAT(64B);
6475         p->frames_65_127    = GET_STAT(65B_127B);
6476         p->frames_128_255   = GET_STAT(128B_255B);
6477         p->frames_256_511   = GET_STAT(256B_511B);
6478         p->frames_512_1023  = GET_STAT(512B_1023B);
6479         p->frames_1024_1518 = GET_STAT(1024B_1518B);
6480         p->frames_1519_max  = GET_STAT(1519B_MAX);
6481         p->drop             = GET_STAT(DROP_FRAMES);
6482
6483         p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
6484         p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
6485         p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
6486         p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
6487         p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
6488         p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
6489         p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
6490         p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
6491
6492 #undef GET_STAT
6493 #undef GET_STAT_COM
6494 }
6495
6496 /*     t4_mk_filtdelwr - create a delete filter WR
6497  *     @ftid: the filter ID
6498  *     @wr: the filter work request to populate
6499  *     @qid: ingress queue to receive the delete notification
6500  *
6501  *     Creates a filter work request to delete the supplied filter.  If @qid is
6502  *     negative the delete notification is suppressed.
6503  */
6504 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
6505 {
6506         memset(wr, 0, sizeof(*wr));
6507         wr->op_pkd = cpu_to_be32(FW_WR_OP_V(FW_FILTER_WR));
6508         wr->len16_pkd = cpu_to_be32(FW_WR_LEN16_V(sizeof(*wr) / 16));
6509         wr->tid_to_iq = cpu_to_be32(FW_FILTER_WR_TID_V(ftid) |
6510                                     FW_FILTER_WR_NOREPLY_V(qid < 0));
6511         wr->del_filter_to_l2tix = cpu_to_be32(FW_FILTER_WR_DEL_FILTER_F);
6512         if (qid >= 0)
6513                 wr->rx_chan_rx_rpl_iq =
6514                         cpu_to_be16(FW_FILTER_WR_RX_RPL_IQ_V(qid));
6515 }
6516
6517 #define INIT_CMD(var, cmd, rd_wr) do { \
6518         (var).op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_##cmd##_CMD) | \
6519                                         FW_CMD_REQUEST_F | \
6520                                         FW_CMD_##rd_wr##_F); \
6521         (var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
6522 } while (0)
6523
6524 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
6525                           u32 addr, u32 val)
6526 {
6527         u32 ldst_addrspace;
6528         struct fw_ldst_cmd c;
6529
6530         memset(&c, 0, sizeof(c));
6531         ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FIRMWARE);
6532         c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6533                                         FW_CMD_REQUEST_F |
6534                                         FW_CMD_WRITE_F |
6535                                         ldst_addrspace);
6536         c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6537         c.u.addrval.addr = cpu_to_be32(addr);
6538         c.u.addrval.val = cpu_to_be32(val);
6539
6540         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6541 }
6542
6543 /**
6544  *      t4_mdio_rd - read a PHY register through MDIO
6545  *      @adap: the adapter
6546  *      @mbox: mailbox to use for the FW command
6547  *      @phy_addr: the PHY address
6548  *      @mmd: the PHY MMD to access (0 for clause 22 PHYs)
6549  *      @reg: the register to read
6550  *      @valp: where to store the value
6551  *
6552  *      Issues a FW command through the given mailbox to read a PHY register.
6553  */
6554 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6555                unsigned int mmd, unsigned int reg, u16 *valp)
6556 {
6557         int ret;
6558         u32 ldst_addrspace;
6559         struct fw_ldst_cmd c;
6560
6561         memset(&c, 0, sizeof(c));
6562         ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
6563         c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6564                                         FW_CMD_REQUEST_F | FW_CMD_READ_F |
6565                                         ldst_addrspace);
6566         c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6567         c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
6568                                          FW_LDST_CMD_MMD_V(mmd));
6569         c.u.mdio.raddr = cpu_to_be16(reg);
6570
6571         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6572         if (ret == 0)
6573                 *valp = be16_to_cpu(c.u.mdio.rval);
6574         return ret;
6575 }
6576
6577 /**
6578  *      t4_mdio_wr - write a PHY register through MDIO
6579  *      @adap: the adapter
6580  *      @mbox: mailbox to use for the FW command
6581  *      @phy_addr: the PHY address
6582  *      @mmd: the PHY MMD to access (0 for clause 22 PHYs)
6583  *      @reg: the register to write
6584  *      @val: value to write
6585  *
6586  *      Issues a FW command through the given mailbox to write a PHY register.
6587  */
6588 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6589                unsigned int mmd, unsigned int reg, u16 val)
6590 {
6591         u32 ldst_addrspace;
6592         struct fw_ldst_cmd c;
6593
6594         memset(&c, 0, sizeof(c));
6595         ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
6596         c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6597                                         FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6598                                         ldst_addrspace);
6599         c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6600         c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
6601                                          FW_LDST_CMD_MMD_V(mmd));
6602         c.u.mdio.raddr = cpu_to_be16(reg);
6603         c.u.mdio.rval = cpu_to_be16(val);
6604
6605         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6606 }
6607
6608 /**
6609  *      t4_sge_decode_idma_state - decode the idma state
6610  *      @adapter: the adapter
6611  *      @state: the state idma is stuck in
6612  */
6613 void t4_sge_decode_idma_state(struct adapter *adapter, int state)
6614 {
6615         static const char * const t4_decode[] = {
6616                 "IDMA_IDLE",
6617                 "IDMA_PUSH_MORE_CPL_FIFO",
6618                 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6619                 "Not used",
6620                 "IDMA_PHYSADDR_SEND_PCIEHDR",
6621                 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6622                 "IDMA_PHYSADDR_SEND_PAYLOAD",
6623                 "IDMA_SEND_FIFO_TO_IMSG",
6624                 "IDMA_FL_REQ_DATA_FL_PREP",
6625                 "IDMA_FL_REQ_DATA_FL",
6626                 "IDMA_FL_DROP",
6627                 "IDMA_FL_H_REQ_HEADER_FL",
6628                 "IDMA_FL_H_SEND_PCIEHDR",
6629                 "IDMA_FL_H_PUSH_CPL_FIFO",
6630                 "IDMA_FL_H_SEND_CPL",
6631                 "IDMA_FL_H_SEND_IP_HDR_FIRST",
6632                 "IDMA_FL_H_SEND_IP_HDR",
6633                 "IDMA_FL_H_REQ_NEXT_HEADER_FL",
6634                 "IDMA_FL_H_SEND_NEXT_PCIEHDR",
6635                 "IDMA_FL_H_SEND_IP_HDR_PADDING",
6636                 "IDMA_FL_D_SEND_PCIEHDR",
6637                 "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6638                 "IDMA_FL_D_REQ_NEXT_DATA_FL",
6639                 "IDMA_FL_SEND_PCIEHDR",
6640                 "IDMA_FL_PUSH_CPL_FIFO",
6641                 "IDMA_FL_SEND_CPL",
6642                 "IDMA_FL_SEND_PAYLOAD_FIRST",
6643                 "IDMA_FL_SEND_PAYLOAD",
6644                 "IDMA_FL_REQ_NEXT_DATA_FL",
6645                 "IDMA_FL_SEND_NEXT_PCIEHDR",
6646                 "IDMA_FL_SEND_PADDING",
6647                 "IDMA_FL_SEND_COMPLETION_TO_IMSG",
6648                 "IDMA_FL_SEND_FIFO_TO_IMSG",
6649                 "IDMA_FL_REQ_DATAFL_DONE",
6650                 "IDMA_FL_REQ_HEADERFL_DONE",
6651         };
6652         static const char * const t5_decode[] = {
6653                 "IDMA_IDLE",
6654                 "IDMA_ALMOST_IDLE",
6655                 "IDMA_PUSH_MORE_CPL_FIFO",
6656                 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6657                 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6658                 "IDMA_PHYSADDR_SEND_PCIEHDR",
6659                 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6660                 "IDMA_PHYSADDR_SEND_PAYLOAD",
6661                 "IDMA_SEND_FIFO_TO_IMSG",
6662                 "IDMA_FL_REQ_DATA_FL",
6663                 "IDMA_FL_DROP",
6664                 "IDMA_FL_DROP_SEND_INC",
6665                 "IDMA_FL_H_REQ_HEADER_FL",
6666                 "IDMA_FL_H_SEND_PCIEHDR",
6667                 "IDMA_FL_H_PUSH_CPL_FIFO",
6668                 "IDMA_FL_H_SEND_CPL",
6669                 "IDMA_FL_H_SEND_IP_HDR_FIRST",
6670                 "IDMA_FL_H_SEND_IP_HDR",
6671                 "IDMA_FL_H_REQ_NEXT_HEADER_FL",
6672                 "IDMA_FL_H_SEND_NEXT_PCIEHDR",
6673                 "IDMA_FL_H_SEND_IP_HDR_PADDING",
6674                 "IDMA_FL_D_SEND_PCIEHDR",
6675                 "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6676                 "IDMA_FL_D_REQ_NEXT_DATA_FL",
6677                 "IDMA_FL_SEND_PCIEHDR",
6678                 "IDMA_FL_PUSH_CPL_FIFO",
6679                 "IDMA_FL_SEND_CPL",
6680                 "IDMA_FL_SEND_PAYLOAD_FIRST",
6681                 "IDMA_FL_SEND_PAYLOAD",
6682                 "IDMA_FL_REQ_NEXT_DATA_FL",
6683                 "IDMA_FL_SEND_NEXT_PCIEHDR",
6684                 "IDMA_FL_SEND_PADDING",
6685                 "IDMA_FL_SEND_COMPLETION_TO_IMSG",
6686         };
6687         static const char * const t6_decode[] = {
6688                 "IDMA_IDLE",
6689                 "IDMA_PUSH_MORE_CPL_FIFO",
6690                 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6691                 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6692                 "IDMA_PHYSADDR_SEND_PCIEHDR",
6693                 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6694                 "IDMA_PHYSADDR_SEND_PAYLOAD",
6695                 "IDMA_FL_REQ_DATA_FL",
6696                 "IDMA_FL_DROP",
6697                 "IDMA_FL_DROP_SEND_INC",
6698                 "IDMA_FL_H_REQ_HEADER_FL",
6699                 "IDMA_FL_H_SEND_PCIEHDR",
6700                 "IDMA_FL_H_PUSH_CPL_FIFO",
6701                 "IDMA_FL_H_SEND_CPL",
6702                 "IDMA_FL_H_SEND_IP_HDR_FIRST",
6703                 "IDMA_FL_H_SEND_IP_HDR",
6704                 "IDMA_FL_H_REQ_NEXT_HEADER_FL",
6705                 "IDMA_FL_H_SEND_NEXT_PCIEHDR",
6706                 "IDMA_FL_H_SEND_IP_HDR_PADDING",
6707                 "IDMA_FL_D_SEND_PCIEHDR",
6708                 "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6709                 "IDMA_FL_D_REQ_NEXT_DATA_FL",
6710                 "IDMA_FL_SEND_PCIEHDR",
6711                 "IDMA_FL_PUSH_CPL_FIFO",
6712                 "IDMA_FL_SEND_CPL",
6713                 "IDMA_FL_SEND_PAYLOAD_FIRST",
6714                 "IDMA_FL_SEND_PAYLOAD",
6715                 "IDMA_FL_REQ_NEXT_DATA_FL",
6716                 "IDMA_FL_SEND_NEXT_PCIEHDR",
6717                 "IDMA_FL_SEND_PADDING",
6718                 "IDMA_FL_SEND_COMPLETION_TO_IMSG",
6719         };
6720         static const u32 sge_regs[] = {
6721                 SGE_DEBUG_DATA_LOW_INDEX_2_A,
6722                 SGE_DEBUG_DATA_LOW_INDEX_3_A,
6723                 SGE_DEBUG_DATA_HIGH_INDEX_10_A,
6724         };
6725         const char **sge_idma_decode;
6726         int sge_idma_decode_nstates;
6727         int i;
6728         unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
6729
6730         /* Select the right set of decode strings to dump depending on the
6731          * adapter chip type.
6732          */
6733         switch (chip_version) {
6734         case CHELSIO_T4:
6735                 sge_idma_decode = (const char **)t4_decode;
6736                 sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
6737                 break;
6738
6739         case CHELSIO_T5:
6740                 sge_idma_decode = (const char **)t5_decode;
6741                 sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
6742                 break;
6743
6744         case CHELSIO_T6:
6745                 sge_idma_decode = (const char **)t6_decode;
6746                 sge_idma_decode_nstates = ARRAY_SIZE(t6_decode);
6747                 break;
6748
6749         default:
6750                 dev_err(adapter->pdev_dev,
6751                         "Unsupported chip version %d\n", chip_version);
6752                 return;
6753         }
6754
6755         if (is_t4(adapter->params.chip)) {
6756                 sge_idma_decode = (const char **)t4_decode;
6757                 sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
6758         } else {
6759                 sge_idma_decode = (const char **)t5_decode;
6760                 sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
6761         }
6762
6763         if (state < sge_idma_decode_nstates)
6764                 CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
6765         else
6766                 CH_WARN(adapter, "idma state %d unknown\n", state);
6767
6768         for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
6769                 CH_WARN(adapter, "SGE register %#x value %#x\n",
6770                         sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
6771 }
6772
6773 /**
6774  *      t4_sge_ctxt_flush - flush the SGE context cache
6775  *      @adap: the adapter
6776  *      @mbox: mailbox to use for the FW command
6777  *      @ctxt_type: Egress or Ingress
6778  *
6779  *      Issues a FW command through the given mailbox to flush the
6780  *      SGE context cache.
6781  */
6782 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox, int ctxt_type)
6783 {
6784         int ret;
6785         u32 ldst_addrspace;
6786         struct fw_ldst_cmd c;
6787
6788         memset(&c, 0, sizeof(c));
6789         ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(ctxt_type == CTXT_EGRESS ?
6790                                                  FW_LDST_ADDRSPC_SGE_EGRC :
6791                                                  FW_LDST_ADDRSPC_SGE_INGC);
6792         c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6793                                         FW_CMD_REQUEST_F | FW_CMD_READ_F |
6794                                         ldst_addrspace);
6795         c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6796         c.u.idctxt.msg_ctxtflush = cpu_to_be32(FW_LDST_CMD_CTXTFLUSH_F);
6797
6798         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6799         return ret;
6800 }
6801
6802 /**
6803  *      t4_read_sge_dbqtimers - read SGE Doorbell Queue Timer values
6804  *      @adap: the adapter
6805  *      @ndbqtimers: size of the provided SGE Doorbell Queue Timer table
6806  *      @dbqtimers: SGE Doorbell Queue Timer table
6807  *
6808  *      Reads the SGE Doorbell Queue Timer values into the provided table.
6809  *      Returns 0 on success (Firmware and Hardware support this feature),
6810  *      an error on failure.
6811  */
6812 int t4_read_sge_dbqtimers(struct adapter *adap, unsigned int ndbqtimers,
6813                           u16 *dbqtimers)
6814 {
6815         int ret, dbqtimerix;
6816
6817         ret = 0;
6818         dbqtimerix = 0;
6819         while (dbqtimerix < ndbqtimers) {
6820                 int nparams, param;
6821                 u32 params[7], vals[7];
6822
6823                 nparams = ndbqtimers - dbqtimerix;
6824                 if (nparams > ARRAY_SIZE(params))
6825                         nparams = ARRAY_SIZE(params);
6826
6827                 for (param = 0; param < nparams; param++)
6828                         params[param] =
6829                           (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
6830                            FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_DBQ_TIMER) |
6831                            FW_PARAMS_PARAM_Y_V(dbqtimerix + param));
6832                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
6833                                       nparams, params, vals);
6834                 if (ret)
6835                         break;
6836
6837                 for (param = 0; param < nparams; param++)
6838                         dbqtimers[dbqtimerix++] = vals[param];
6839         }
6840         return ret;
6841 }
6842
6843 /**
6844  *      t4_fw_hello - establish communication with FW
6845  *      @adap: the adapter
6846  *      @mbox: mailbox to use for the FW command
6847  *      @evt_mbox: mailbox to receive async FW events
6848  *      @master: specifies the caller's willingness to be the device master
6849  *      @state: returns the current device state (if non-NULL)
6850  *
6851  *      Issues a command to establish communication with FW.  Returns either
6852  *      an error (negative integer) or the mailbox of the Master PF.
6853  */
6854 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
6855                 enum dev_master master, enum dev_state *state)
6856 {
6857         int ret;
6858         struct fw_hello_cmd c;
6859         u32 v;
6860         unsigned int master_mbox;
6861         int retries = FW_CMD_HELLO_RETRIES;
6862
6863 retry:
6864         memset(&c, 0, sizeof(c));
6865         INIT_CMD(c, HELLO, WRITE);
6866         c.err_to_clearinit = cpu_to_be32(
6867                 FW_HELLO_CMD_MASTERDIS_V(master == MASTER_CANT) |
6868                 FW_HELLO_CMD_MASTERFORCE_V(master == MASTER_MUST) |
6869                 FW_HELLO_CMD_MBMASTER_V(master == MASTER_MUST ?
6870                                         mbox : FW_HELLO_CMD_MBMASTER_M) |
6871                 FW_HELLO_CMD_MBASYNCNOT_V(evt_mbox) |
6872                 FW_HELLO_CMD_STAGE_V(fw_hello_cmd_stage_os) |
6873                 FW_HELLO_CMD_CLEARINIT_F);
6874
6875         /*
6876          * Issue the HELLO command to the firmware.  If it's not successful
6877          * but indicates that we got a "busy" or "timeout" condition, retry
6878          * the HELLO until we exhaust our retry limit.  If we do exceed our
6879          * retry limit, check to see if the firmware left us any error
6880          * information and report that if so.
6881          */
6882         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6883         if (ret < 0) {
6884                 if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
6885                         goto retry;
6886                 if (t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_ERR_F)
6887                         t4_report_fw_error(adap);
6888                 return ret;
6889         }
6890
6891         v = be32_to_cpu(c.err_to_clearinit);
6892         master_mbox = FW_HELLO_CMD_MBMASTER_G(v);
6893         if (state) {
6894                 if (v & FW_HELLO_CMD_ERR_F)
6895                         *state = DEV_STATE_ERR;
6896                 else if (v & FW_HELLO_CMD_INIT_F)
6897                         *state = DEV_STATE_INIT;
6898                 else
6899                         *state = DEV_STATE_UNINIT;
6900         }
6901
6902         /*
6903          * If we're not the Master PF then we need to wait around for the
6904          * Master PF Driver to finish setting up the adapter.
6905          *
6906          * Note that we also do this wait if we're a non-Master-capable PF and
6907          * there is no current Master PF; a Master PF may show up momentarily
6908          * and we wouldn't want to fail pointlessly.  (This can happen when an
6909          * OS loads lots of different drivers rapidly at the same time).  In
6910          * this case, the Master PF returned by the firmware will be
6911          * PCIE_FW_MASTER_M so the test below will work ...
6912          */
6913         if ((v & (FW_HELLO_CMD_ERR_F|FW_HELLO_CMD_INIT_F)) == 0 &&
6914             master_mbox != mbox) {
6915                 int waiting = FW_CMD_HELLO_TIMEOUT;
6916
6917                 /*
6918                  * Wait for the firmware to either indicate an error or
6919                  * initialized state.  If we see either of these we bail out
6920                  * and report the issue to the caller.  If we exhaust the
6921                  * "hello timeout" and we haven't exhausted our retries, try
6922                  * again.  Otherwise bail with a timeout error.
6923                  */
6924                 for (;;) {
6925                         u32 pcie_fw;
6926
6927                         msleep(50);
6928                         waiting -= 50;
6929
6930                         /*
6931                          * If neither Error nor Initialized are indicated
6932                          * by the firmware keep waiting till we exhaust our
6933                          * timeout ... and then retry if we haven't exhausted
6934                          * our retries ...
6935                          */
6936                         pcie_fw = t4_read_reg(adap, PCIE_FW_A);
6937                         if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) {
6938                                 if (waiting <= 0) {
6939                                         if (retries-- > 0)
6940                                                 goto retry;
6941
6942                                         return -ETIMEDOUT;
6943                                 }
6944                                 continue;
6945                         }
6946
6947                         /*
6948                          * We either have an Error or Initialized condition
6949                          * report errors preferentially.
6950                          */
6951                         if (state) {
6952                                 if (pcie_fw & PCIE_FW_ERR_F)
6953                                         *state = DEV_STATE_ERR;
6954                                 else if (pcie_fw & PCIE_FW_INIT_F)
6955                                         *state = DEV_STATE_INIT;
6956                         }
6957
6958                         /*
6959                          * If we arrived before a Master PF was selected and
6960                          * there's not a valid Master PF, grab its identity
6961                          * for our caller.
6962                          */
6963                         if (master_mbox == PCIE_FW_MASTER_M &&
6964                             (pcie_fw & PCIE_FW_MASTER_VLD_F))
6965                                 master_mbox = PCIE_FW_MASTER_G(pcie_fw);
6966                         break;
6967                 }
6968         }
6969
6970         return master_mbox;
6971 }
6972
6973 /**
6974  *      t4_fw_bye - end communication with FW
6975  *      @adap: the adapter
6976  *      @mbox: mailbox to use for the FW command
6977  *
6978  *      Issues a command to terminate communication with FW.
6979  */
6980 int t4_fw_bye(struct adapter *adap, unsigned int mbox)
6981 {
6982         struct fw_bye_cmd c;
6983
6984         memset(&c, 0, sizeof(c));
6985         INIT_CMD(c, BYE, WRITE);
6986         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6987 }
6988
6989 /**
6990  *      t4_init_cmd - ask FW to initialize the device
6991  *      @adap: the adapter
6992  *      @mbox: mailbox to use for the FW command
6993  *
6994  *      Issues a command to FW to partially initialize the device.  This
6995  *      performs initialization that generally doesn't depend on user input.
6996  */
6997 int t4_early_init(struct adapter *adap, unsigned int mbox)
6998 {
6999         struct fw_initialize_cmd c;
7000
7001         memset(&c, 0, sizeof(c));
7002         INIT_CMD(c, INITIALIZE, WRITE);
7003         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7004 }
7005
7006 /**
7007  *      t4_fw_reset - issue a reset to FW
7008  *      @adap: the adapter
7009  *      @mbox: mailbox to use for the FW command
7010  *      @reset: specifies the type of reset to perform
7011  *
7012  *      Issues a reset command of the specified type to FW.
7013  */
7014 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
7015 {
7016         struct fw_reset_cmd c;
7017
7018         memset(&c, 0, sizeof(c));
7019         INIT_CMD(c, RESET, WRITE);
7020         c.val = cpu_to_be32(reset);
7021         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7022 }
7023
7024 /**
7025  *      t4_fw_halt - issue a reset/halt to FW and put uP into RESET
7026  *      @adap: the adapter
7027  *      @mbox: mailbox to use for the FW RESET command (if desired)
7028  *      @force: force uP into RESET even if FW RESET command fails
7029  *
7030  *      Issues a RESET command to firmware (if desired) with a HALT indication
7031  *      and then puts the microprocessor into RESET state.  The RESET command
7032  *      will only be issued if a legitimate mailbox is provided (mbox <=
7033  *      PCIE_FW_MASTER_M).
7034  *
7035  *      This is generally used in order for the host to safely manipulate the
7036  *      adapter without fear of conflicting with whatever the firmware might
7037  *      be doing.  The only way out of this state is to RESTART the firmware
7038  *      ...
7039  */
7040 static int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
7041 {
7042         int ret = 0;
7043
7044         /*
7045          * If a legitimate mailbox is provided, issue a RESET command
7046          * with a HALT indication.
7047          */
7048         if (mbox <= PCIE_FW_MASTER_M) {
7049                 struct fw_reset_cmd c;
7050
7051                 memset(&c, 0, sizeof(c));
7052                 INIT_CMD(c, RESET, WRITE);
7053                 c.val = cpu_to_be32(PIORST_F | PIORSTMODE_F);
7054                 c.halt_pkd = cpu_to_be32(FW_RESET_CMD_HALT_F);
7055                 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7056         }
7057
7058         /*
7059          * Normally we won't complete the operation if the firmware RESET
7060          * command fails but if our caller insists we'll go ahead and put the
7061          * uP into RESET.  This can be useful if the firmware is hung or even
7062          * missing ...  We'll have to take the risk of putting the uP into
7063          * RESET without the cooperation of firmware in that case.
7064          *
7065          * We also force the firmware's HALT flag to be on in case we bypassed
7066          * the firmware RESET command above or we're dealing with old firmware
7067          * which doesn't have the HALT capability.  This will serve as a flag
7068          * for the incoming firmware to know that it's coming out of a HALT
7069          * rather than a RESET ... if it's new enough to understand that ...
7070          */
7071         if (ret == 0 || force) {
7072                 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F);
7073                 t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F,
7074                                  PCIE_FW_HALT_F);
7075         }
7076
7077         /*
7078          * And we always return the result of the firmware RESET command
7079          * even when we force the uP into RESET ...
7080          */
7081         return ret;
7082 }
7083
7084 /**
7085  *      t4_fw_restart - restart the firmware by taking the uP out of RESET
7086  *      @adap: the adapter
7087  *      @mbox: mailbox to use for the FW command
7088  *      @reset: if we want to do a RESET to restart things
7089  *
7090  *      Restart firmware previously halted by t4_fw_halt().  On successful
7091  *      return the previous PF Master remains as the new PF Master and there
7092  *      is no need to issue a new HELLO command, etc.
7093  *
7094  *      We do this in two ways:
7095  *
7096  *       1. If we're dealing with newer firmware we'll simply want to take
7097  *          the chip's microprocessor out of RESET.  This will cause the
7098  *          firmware to start up from its start vector.  And then we'll loop
7099  *          until the firmware indicates it's started again (PCIE_FW.HALT
7100  *          reset to 0) or we timeout.
7101  *
7102  *       2. If we're dealing with older firmware then we'll need to RESET
7103  *          the chip since older firmware won't recognize the PCIE_FW.HALT
7104  *          flag and automatically RESET itself on startup.
7105  */
7106 static int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
7107 {
7108         if (reset) {
7109                 /*
7110                  * Since we're directing the RESET instead of the firmware
7111                  * doing it automatically, we need to clear the PCIE_FW.HALT
7112                  * bit.
7113                  */
7114                 t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 0);
7115
7116                 /*
7117                  * If we've been given a valid mailbox, first try to get the
7118                  * firmware to do the RESET.  If that works, great and we can
7119                  * return success.  Otherwise, if we haven't been given a
7120                  * valid mailbox or the RESET command failed, fall back to
7121                  * hitting the chip with a hammer.
7122                  */
7123                 if (mbox <= PCIE_FW_MASTER_M) {
7124                         t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
7125                         msleep(100);
7126                         if (t4_fw_reset(adap, mbox,
7127                                         PIORST_F | PIORSTMODE_F) == 0)
7128                                 return 0;
7129                 }
7130
7131                 t4_write_reg(adap, PL_RST_A, PIORST_F | PIORSTMODE_F);
7132                 msleep(2000);
7133         } else {
7134                 int ms;
7135
7136                 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
7137                 for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
7138                         if (!(t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_HALT_F))
7139                                 return 0;
7140                         msleep(100);
7141                         ms += 100;
7142                 }
7143                 return -ETIMEDOUT;
7144         }
7145         return 0;
7146 }
7147
7148 /**
7149  *      t4_fw_upgrade - perform all of the steps necessary to upgrade FW
7150  *      @adap: the adapter
7151  *      @mbox: mailbox to use for the FW RESET command (if desired)
7152  *      @fw_data: the firmware image to write
7153  *      @size: image size
7154  *      @force: force upgrade even if firmware doesn't cooperate
7155  *
7156  *      Perform all of the steps necessary for upgrading an adapter's
7157  *      firmware image.  Normally this requires the cooperation of the
7158  *      existing firmware in order to halt all existing activities
7159  *      but if an invalid mailbox token is passed in we skip that step
7160  *      (though we'll still put the adapter microprocessor into RESET in
7161  *      that case).
7162  *
7163  *      On successful return the new firmware will have been loaded and
7164  *      the adapter will have been fully RESET losing all previous setup
7165  *      state.  On unsuccessful return the adapter may be completely hosed ...
7166  *      positive errno indicates that the adapter is ~probably~ intact, a
7167  *      negative errno indicates that things are looking bad ...
7168  */
7169 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
7170                   const u8 *fw_data, unsigned int size, int force)
7171 {
7172         const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
7173         int reset, ret;
7174
7175         if (!t4_fw_matches_chip(adap, fw_hdr))
7176                 return -EINVAL;
7177
7178         /* Disable CXGB4_FW_OK flag so that mbox commands with CXGB4_FW_OK flag
7179          * set wont be sent when we are flashing FW.
7180          */
7181         adap->flags &= ~CXGB4_FW_OK;
7182
7183         ret = t4_fw_halt(adap, mbox, force);
7184         if (ret < 0 && !force)
7185                 goto out;
7186
7187         ret = t4_load_fw(adap, fw_data, size);
7188         if (ret < 0)
7189                 goto out;
7190
7191         /*
7192          * If there was a Firmware Configuration File stored in FLASH,
7193          * there's a good chance that it won't be compatible with the new
7194          * Firmware.  In order to prevent difficult to diagnose adapter
7195          * initialization issues, we clear out the Firmware Configuration File
7196          * portion of the FLASH .  The user will need to re-FLASH a new
7197          * Firmware Configuration File which is compatible with the new
7198          * Firmware if that's desired.
7199          */
7200         (void)t4_load_cfg(adap, NULL, 0);
7201
7202         /*
7203          * Older versions of the firmware don't understand the new
7204          * PCIE_FW.HALT flag and so won't know to perform a RESET when they
7205          * restart.  So for newly loaded older firmware we'll have to do the
7206          * RESET for it so it starts up on a clean slate.  We can tell if
7207          * the newly loaded firmware will handle this right by checking
7208          * its header flags to see if it advertises the capability.
7209          */
7210         reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
7211         ret = t4_fw_restart(adap, mbox, reset);
7212
7213         /* Grab potentially new Firmware Device Log parameters so we can see
7214          * how healthy the new Firmware is.  It's okay to contact the new
7215          * Firmware for these parameters even though, as far as it's
7216          * concerned, we've never said "HELLO" to it ...
7217          */
7218         (void)t4_init_devlog_params(adap);
7219 out:
7220         adap->flags |= CXGB4_FW_OK;
7221         return ret;
7222 }
7223
7224 /**
7225  *      t4_fl_pkt_align - return the fl packet alignment
7226  *      @adap: the adapter
7227  *
7228  *      T4 has a single field to specify the packing and padding boundary.
7229  *      T5 onwards has separate fields for this and hence the alignment for
7230  *      next packet offset is maximum of these two.
7231  *
7232  */
7233 int t4_fl_pkt_align(struct adapter *adap)
7234 {
7235         u32 sge_control, sge_control2;
7236         unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift;
7237
7238         sge_control = t4_read_reg(adap, SGE_CONTROL_A);
7239
7240         /* T4 uses a single control field to specify both the PCIe Padding and
7241          * Packing Boundary.  T5 introduced the ability to specify these
7242          * separately.  The actual Ingress Packet Data alignment boundary
7243          * within Packed Buffer Mode is the maximum of these two
7244          * specifications.  (Note that it makes no real practical sense to
7245          * have the Padding Boundary be larger than the Packing Boundary but you
7246          * could set the chip up that way and, in fact, legacy T4 code would
7247          * end doing this because it would initialize the Padding Boundary and
7248          * leave the Packing Boundary initialized to 0 (16 bytes).)
7249          * Padding Boundary values in T6 starts from 8B,
7250          * where as it is 32B for T4 and T5.
7251          */
7252         if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
7253                 ingpad_shift = INGPADBOUNDARY_SHIFT_X;
7254         else
7255                 ingpad_shift = T6_INGPADBOUNDARY_SHIFT_X;
7256
7257         ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) + ingpad_shift);
7258
7259         fl_align = ingpadboundary;
7260         if (!is_t4(adap->params.chip)) {
7261                 /* T5 has a weird interpretation of one of the PCIe Packing
7262                  * Boundary values.  No idea why ...
7263                  */
7264                 sge_control2 = t4_read_reg(adap, SGE_CONTROL2_A);
7265                 ingpackboundary = INGPACKBOUNDARY_G(sge_control2);
7266                 if (ingpackboundary == INGPACKBOUNDARY_16B_X)
7267                         ingpackboundary = 16;
7268                 else
7269                         ingpackboundary = 1 << (ingpackboundary +
7270                                                 INGPACKBOUNDARY_SHIFT_X);
7271
7272                 fl_align = max(ingpadboundary, ingpackboundary);
7273         }
7274         return fl_align;
7275 }
7276
7277 /**
7278  *      t4_fixup_host_params - fix up host-dependent parameters
7279  *      @adap: the adapter
7280  *      @page_size: the host's Base Page Size
7281  *      @cache_line_size: the host's Cache Line Size
7282  *
7283  *      Various registers in T4 contain values which are dependent on the
7284  *      host's Base Page and Cache Line Sizes.  This function will fix all of
7285  *      those registers with the appropriate values as passed in ...
7286  */
7287 int t4_fixup_host_params(struct adapter *adap, unsigned int page_size,
7288                          unsigned int cache_line_size)
7289 {
7290         unsigned int page_shift = fls(page_size) - 1;
7291         unsigned int sge_hps = page_shift - 10;
7292         unsigned int stat_len = cache_line_size > 64 ? 128 : 64;
7293         unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size;
7294         unsigned int fl_align_log = fls(fl_align) - 1;
7295
7296         t4_write_reg(adap, SGE_HOST_PAGE_SIZE_A,
7297                      HOSTPAGESIZEPF0_V(sge_hps) |
7298                      HOSTPAGESIZEPF1_V(sge_hps) |
7299                      HOSTPAGESIZEPF2_V(sge_hps) |
7300                      HOSTPAGESIZEPF3_V(sge_hps) |
7301                      HOSTPAGESIZEPF4_V(sge_hps) |
7302                      HOSTPAGESIZEPF5_V(sge_hps) |
7303                      HOSTPAGESIZEPF6_V(sge_hps) |
7304                      HOSTPAGESIZEPF7_V(sge_hps));
7305
7306         if (is_t4(adap->params.chip)) {
7307                 t4_set_reg_field(adap, SGE_CONTROL_A,
7308                                  INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
7309                                  EGRSTATUSPAGESIZE_F,
7310                                  INGPADBOUNDARY_V(fl_align_log -
7311                                                   INGPADBOUNDARY_SHIFT_X) |
7312                                  EGRSTATUSPAGESIZE_V(stat_len != 64));
7313         } else {
7314                 unsigned int pack_align;
7315                 unsigned int ingpad, ingpack;
7316
7317                 /* T5 introduced the separation of the Free List Padding and
7318                  * Packing Boundaries.  Thus, we can select a smaller Padding
7319                  * Boundary to avoid uselessly chewing up PCIe Link and Memory
7320                  * Bandwidth, and use a Packing Boundary which is large enough
7321                  * to avoid false sharing between CPUs, etc.
7322                  *
7323                  * For the PCI Link, the smaller the Padding Boundary the
7324                  * better.  For the Memory Controller, a smaller Padding
7325                  * Boundary is better until we cross under the Memory Line
7326                  * Size (the minimum unit of transfer to/from Memory).  If we
7327                  * have a Padding Boundary which is smaller than the Memory
7328                  * Line Size, that'll involve a Read-Modify-Write cycle on the
7329                  * Memory Controller which is never good.
7330                  */
7331
7332                 /* We want the Packing Boundary to be based on the Cache Line
7333                  * Size in order to help avoid False Sharing performance
7334                  * issues between CPUs, etc.  We also want the Packing
7335                  * Boundary to incorporate the PCI-E Maximum Payload Size.  We
7336                  * get best performance when the Packing Boundary is a
7337                  * multiple of the Maximum Payload Size.
7338                  */
7339                 pack_align = fl_align;
7340                 if (pci_is_pcie(adap->pdev)) {
7341                         unsigned int mps, mps_log;
7342                         u16 devctl;
7343
7344                         /* The PCIe Device Control Maximum Payload Size field
7345                          * [bits 7:5] encodes sizes as powers of 2 starting at
7346                          * 128 bytes.
7347                          */
7348                         pcie_capability_read_word(adap->pdev, PCI_EXP_DEVCTL,
7349                                                   &devctl);
7350                         mps_log = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5) + 7;
7351                         mps = 1 << mps_log;
7352                         if (mps > pack_align)
7353                                 pack_align = mps;
7354                 }
7355
7356                 /* N.B. T5/T6 have a crazy special interpretation of the "0"
7357                  * value for the Packing Boundary.  This corresponds to 16
7358                  * bytes instead of the expected 32 bytes.  So if we want 32
7359                  * bytes, the best we can really do is 64 bytes ...
7360                  */
7361                 if (pack_align <= 16) {
7362                         ingpack = INGPACKBOUNDARY_16B_X;
7363                         fl_align = 16;
7364                 } else if (pack_align == 32) {
7365                         ingpack = INGPACKBOUNDARY_64B_X;
7366                         fl_align = 64;
7367                 } else {
7368                         unsigned int pack_align_log = fls(pack_align) - 1;
7369
7370                         ingpack = pack_align_log - INGPACKBOUNDARY_SHIFT_X;
7371                         fl_align = pack_align;
7372                 }
7373
7374                 /* Use the smallest Ingress Padding which isn't smaller than
7375                  * the Memory Controller Read/Write Size.  We'll take that as
7376                  * being 8 bytes since we don't know of any system with a
7377                  * wider Memory Controller Bus Width.
7378                  */
7379                 if (is_t5(adap->params.chip))
7380                         ingpad = INGPADBOUNDARY_32B_X;
7381                 else
7382                         ingpad = T6_INGPADBOUNDARY_8B_X;
7383
7384                 t4_set_reg_field(adap, SGE_CONTROL_A,
7385                                  INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
7386                                  EGRSTATUSPAGESIZE_F,
7387                                  INGPADBOUNDARY_V(ingpad) |
7388                                  EGRSTATUSPAGESIZE_V(stat_len != 64));
7389                 t4_set_reg_field(adap, SGE_CONTROL2_A,
7390                                  INGPACKBOUNDARY_V(INGPACKBOUNDARY_M),
7391                                  INGPACKBOUNDARY_V(ingpack));
7392         }
7393         /*
7394          * Adjust various SGE Free List Host Buffer Sizes.
7395          *
7396          * This is something of a crock since we're using fixed indices into
7397          * the array which are also known by the sge.c code and the T4
7398          * Firmware Configuration File.  We need to come up with a much better
7399          * approach to managing this array.  For now, the first four entries
7400          * are:
7401          *
7402          *   0: Host Page Size
7403          *   1: 64KB
7404          *   2: Buffer size corresponding to 1500 byte MTU (unpacked mode)
7405          *   3: Buffer size corresponding to 9000 byte MTU (unpacked mode)
7406          *
7407          * For the single-MTU buffers in unpacked mode we need to include
7408          * space for the SGE Control Packet Shift, 14 byte Ethernet header,
7409          * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet
7410          * Padding boundary.  All of these are accommodated in the Factory
7411          * Default Firmware Configuration File but we need to adjust it for
7412          * this host's cache line size.
7413          */
7414         t4_write_reg(adap, SGE_FL_BUFFER_SIZE0_A, page_size);
7415         t4_write_reg(adap, SGE_FL_BUFFER_SIZE2_A,
7416                      (t4_read_reg(adap, SGE_FL_BUFFER_SIZE2_A) + fl_align-1)
7417                      & ~(fl_align-1));
7418         t4_write_reg(adap, SGE_FL_BUFFER_SIZE3_A,
7419                      (t4_read_reg(adap, SGE_FL_BUFFER_SIZE3_A) + fl_align-1)
7420                      & ~(fl_align-1));
7421
7422         t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(page_shift - 12));
7423
7424         return 0;
7425 }
7426
7427 /**
7428  *      t4_fw_initialize - ask FW to initialize the device
7429  *      @adap: the adapter
7430  *      @mbox: mailbox to use for the FW command
7431  *
7432  *      Issues a command to FW to partially initialize the device.  This
7433  *      performs initialization that generally doesn't depend on user input.
7434  */
7435 int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
7436 {
7437         struct fw_initialize_cmd c;
7438
7439         memset(&c, 0, sizeof(c));
7440         INIT_CMD(c, INITIALIZE, WRITE);
7441         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7442 }
7443
7444 /**
7445  *      t4_query_params_rw - query FW or device parameters
7446  *      @adap: the adapter
7447  *      @mbox: mailbox to use for the FW command
7448  *      @pf: the PF
7449  *      @vf: the VF
7450  *      @nparams: the number of parameters
7451  *      @params: the parameter names
7452  *      @val: the parameter values
7453  *      @rw: Write and read flag
7454  *      @sleep_ok: if true, we may sleep awaiting mbox cmd completion
7455  *
7456  *      Reads the value of FW or device parameters.  Up to 7 parameters can be
7457  *      queried at once.
7458  */
7459 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
7460                        unsigned int vf, unsigned int nparams, const u32 *params,
7461                        u32 *val, int rw, bool sleep_ok)
7462 {
7463         int i, ret;
7464         struct fw_params_cmd c;
7465         __be32 *p = &c.param[0].mnem;
7466
7467         if (nparams > 7)
7468                 return -EINVAL;
7469
7470         memset(&c, 0, sizeof(c));
7471         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
7472                                   FW_CMD_REQUEST_F | FW_CMD_READ_F |
7473                                   FW_PARAMS_CMD_PFN_V(pf) |
7474                                   FW_PARAMS_CMD_VFN_V(vf));
7475         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7476
7477         for (i = 0; i < nparams; i++) {
7478                 *p++ = cpu_to_be32(*params++);
7479                 if (rw)
7480                         *p = cpu_to_be32(*(val + i));
7481                 p++;
7482         }
7483
7484         ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
7485         if (ret == 0)
7486                 for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
7487                         *val++ = be32_to_cpu(*p);
7488         return ret;
7489 }
7490
7491 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7492                     unsigned int vf, unsigned int nparams, const u32 *params,
7493                     u32 *val)
7494 {
7495         return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0,
7496                                   true);
7497 }
7498
7499 int t4_query_params_ns(struct adapter *adap, unsigned int mbox, unsigned int pf,
7500                        unsigned int vf, unsigned int nparams, const u32 *params,
7501                        u32 *val)
7502 {
7503         return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0,
7504                                   false);
7505 }
7506
7507 /**
7508  *      t4_set_params_timeout - sets FW or device parameters
7509  *      @adap: the adapter
7510  *      @mbox: mailbox to use for the FW command
7511  *      @pf: the PF
7512  *      @vf: the VF
7513  *      @nparams: the number of parameters
7514  *      @params: the parameter names
7515  *      @val: the parameter values
7516  *      @timeout: the timeout time
7517  *
7518  *      Sets the value of FW or device parameters.  Up to 7 parameters can be
7519  *      specified at once.
7520  */
7521 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
7522                           unsigned int pf, unsigned int vf,
7523                           unsigned int nparams, const u32 *params,
7524                           const u32 *val, int timeout)
7525 {
7526         struct fw_params_cmd c;
7527         __be32 *p = &c.param[0].mnem;
7528
7529         if (nparams > 7)
7530                 return -EINVAL;
7531
7532         memset(&c, 0, sizeof(c));
7533         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
7534                                   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7535                                   FW_PARAMS_CMD_PFN_V(pf) |
7536                                   FW_PARAMS_CMD_VFN_V(vf));
7537         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7538
7539         while (nparams--) {
7540                 *p++ = cpu_to_be32(*params++);
7541                 *p++ = cpu_to_be32(*val++);
7542         }
7543
7544         return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
7545 }
7546
7547 /**
7548  *      t4_set_params - sets FW or device parameters
7549  *      @adap: the adapter
7550  *      @mbox: mailbox to use for the FW command
7551  *      @pf: the PF
7552  *      @vf: the VF
7553  *      @nparams: the number of parameters
7554  *      @params: the parameter names
7555  *      @val: the parameter values
7556  *
7557  *      Sets the value of FW or device parameters.  Up to 7 parameters can be
7558  *      specified at once.
7559  */
7560 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7561                   unsigned int vf, unsigned int nparams, const u32 *params,
7562                   const u32 *val)
7563 {
7564         return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
7565                                      FW_CMD_MAX_TIMEOUT);
7566 }
7567
7568 /**
7569  *      t4_cfg_pfvf - configure PF/VF resource limits
7570  *      @adap: the adapter
7571  *      @mbox: mailbox to use for the FW command
7572  *      @pf: the PF being configured
7573  *      @vf: the VF being configured
7574  *      @txq: the max number of egress queues
7575  *      @txq_eth_ctrl: the max number of egress Ethernet or control queues
7576  *      @rxqi: the max number of interrupt-capable ingress queues
7577  *      @rxq: the max number of interruptless ingress queues
7578  *      @tc: the PCI traffic class
7579  *      @vi: the max number of virtual interfaces
7580  *      @cmask: the channel access rights mask for the PF/VF
7581  *      @pmask: the port access rights mask for the PF/VF
7582  *      @nexact: the maximum number of exact MPS filters
7583  *      @rcaps: read capabilities
7584  *      @wxcaps: write/execute capabilities
7585  *
7586  *      Configures resource limits and capabilities for a physical or virtual
7587  *      function.
7588  */
7589 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
7590                 unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
7591                 unsigned int rxqi, unsigned int rxq, unsigned int tc,
7592                 unsigned int vi, unsigned int cmask, unsigned int pmask,
7593                 unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
7594 {
7595         struct fw_pfvf_cmd c;
7596
7597         memset(&c, 0, sizeof(c));
7598         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | FW_CMD_REQUEST_F |
7599                                   FW_CMD_WRITE_F | FW_PFVF_CMD_PFN_V(pf) |
7600                                   FW_PFVF_CMD_VFN_V(vf));
7601         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7602         c.niqflint_niq = cpu_to_be32(FW_PFVF_CMD_NIQFLINT_V(rxqi) |
7603                                      FW_PFVF_CMD_NIQ_V(rxq));
7604         c.type_to_neq = cpu_to_be32(FW_PFVF_CMD_CMASK_V(cmask) |
7605                                     FW_PFVF_CMD_PMASK_V(pmask) |
7606                                     FW_PFVF_CMD_NEQ_V(txq));
7607         c.tc_to_nexactf = cpu_to_be32(FW_PFVF_CMD_TC_V(tc) |
7608                                       FW_PFVF_CMD_NVI_V(vi) |
7609                                       FW_PFVF_CMD_NEXACTF_V(nexact));
7610         c.r_caps_to_nethctrl = cpu_to_be32(FW_PFVF_CMD_R_CAPS_V(rcaps) |
7611                                         FW_PFVF_CMD_WX_CAPS_V(wxcaps) |
7612                                         FW_PFVF_CMD_NETHCTRL_V(txq_eth_ctrl));
7613         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7614 }
7615
7616 /**
7617  *      t4_alloc_vi - allocate a virtual interface
7618  *      @adap: the adapter
7619  *      @mbox: mailbox to use for the FW command
7620  *      @port: physical port associated with the VI
7621  *      @pf: the PF owning the VI
7622  *      @vf: the VF owning the VI
7623  *      @nmac: number of MAC addresses needed (1 to 5)
7624  *      @mac: the MAC addresses of the VI
7625  *      @rss_size: size of RSS table slice associated with this VI
7626  *      @vivld: the destination to store the VI Valid value.
7627  *      @vin: the destination to store the VIN value.
7628  *
7629  *      Allocates a virtual interface for the given physical port.  If @mac is
7630  *      not %NULL it contains the MAC addresses of the VI as assigned by FW.
7631  *      @mac should be large enough to hold @nmac Ethernet addresses, they are
7632  *      stored consecutively so the space needed is @nmac * 6 bytes.
7633  *      Returns a negative error number or the non-negative VI id.
7634  */
7635 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
7636                 unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
7637                 unsigned int *rss_size, u8 *vivld, u8 *vin)
7638 {
7639         int ret;
7640         struct fw_vi_cmd c;
7641
7642         memset(&c, 0, sizeof(c));
7643         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | FW_CMD_REQUEST_F |
7644                                   FW_CMD_WRITE_F | FW_CMD_EXEC_F |
7645                                   FW_VI_CMD_PFN_V(pf) | FW_VI_CMD_VFN_V(vf));
7646         c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_ALLOC_F | FW_LEN16(c));
7647         c.portid_pkd = FW_VI_CMD_PORTID_V(port);
7648         c.nmac = nmac - 1;
7649
7650         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7651         if (ret)
7652                 return ret;
7653
7654         if (mac) {
7655                 memcpy(mac, c.mac, sizeof(c.mac));
7656                 switch (nmac) {
7657                 case 5:
7658                         memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
7659                         fallthrough;
7660                 case 4:
7661                         memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
7662                         fallthrough;
7663                 case 3:
7664                         memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
7665                         fallthrough;
7666                 case 2:
7667                         memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
7668                 }
7669         }
7670         if (rss_size)
7671                 *rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(c.rsssize_pkd));
7672
7673         if (vivld)
7674                 *vivld = FW_VI_CMD_VFVLD_G(be32_to_cpu(c.alloc_to_len16));
7675
7676         if (vin)
7677                 *vin = FW_VI_CMD_VIN_G(be32_to_cpu(c.alloc_to_len16));
7678
7679         return FW_VI_CMD_VIID_G(be16_to_cpu(c.type_viid));
7680 }
7681
7682 /**
7683  *      t4_free_vi - free a virtual interface
7684  *      @adap: the adapter
7685  *      @mbox: mailbox to use for the FW command
7686  *      @pf: the PF owning the VI
7687  *      @vf: the VF owning the VI
7688  *      @viid: virtual interface identifiler
7689  *
7690  *      Free a previously allocated virtual interface.
7691  */
7692 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
7693                unsigned int vf, unsigned int viid)
7694 {
7695         struct fw_vi_cmd c;
7696
7697         memset(&c, 0, sizeof(c));
7698         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
7699                                   FW_CMD_REQUEST_F |
7700                                   FW_CMD_EXEC_F |
7701                                   FW_VI_CMD_PFN_V(pf) |
7702                                   FW_VI_CMD_VFN_V(vf));
7703         c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_FREE_F | FW_LEN16(c));
7704         c.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid));
7705
7706         return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7707 }
7708
7709 /**
7710  *      t4_set_rxmode - set Rx properties of a virtual interface
7711  *      @adap: the adapter
7712  *      @mbox: mailbox to use for the FW command
7713  *      @viid: the VI id
7714  *      @viid_mirror: the mirror VI id
7715  *      @mtu: the new MTU or -1
7716  *      @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
7717  *      @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
7718  *      @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
7719  *      @vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
7720  *      @sleep_ok: if true we may sleep while awaiting command completion
7721  *
7722  *      Sets Rx properties of a virtual interface.
7723  */
7724 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
7725                   unsigned int viid_mirror, int mtu, int promisc, int all_multi,
7726                   int bcast, int vlanex, bool sleep_ok)
7727 {
7728         struct fw_vi_rxmode_cmd c, c_mirror;
7729         int ret;
7730
7731         /* convert to FW values */
7732         if (mtu < 0)
7733                 mtu = FW_RXMODE_MTU_NO_CHG;
7734         if (promisc < 0)
7735                 promisc = FW_VI_RXMODE_CMD_PROMISCEN_M;
7736         if (all_multi < 0)
7737                 all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M;
7738         if (bcast < 0)
7739                 bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M;
7740         if (vlanex < 0)
7741                 vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M;
7742
7743         memset(&c, 0, sizeof(c));
7744         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
7745                                    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7746                                    FW_VI_RXMODE_CMD_VIID_V(viid));
7747         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7748         c.mtu_to_vlanexen =
7749                 cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) |
7750                             FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) |
7751                             FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) |
7752                             FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) |
7753                             FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex));
7754
7755         if (viid_mirror) {
7756                 memcpy(&c_mirror, &c, sizeof(c_mirror));
7757                 c_mirror.op_to_viid =
7758                         cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
7759                                     FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7760                                     FW_VI_RXMODE_CMD_VIID_V(viid_mirror));
7761         }
7762
7763         ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
7764         if (ret)
7765                 return ret;
7766
7767         if (viid_mirror)
7768                 ret = t4_wr_mbox_meat(adap, mbox, &c_mirror, sizeof(c_mirror),
7769                                       NULL, sleep_ok);
7770
7771         return ret;
7772 }
7773
7774 /**
7775  *      t4_free_encap_mac_filt - frees MPS entry at given index
7776  *      @adap: the adapter
7777  *      @viid: the VI id
7778  *      @idx: index of MPS entry to be freed
7779  *      @sleep_ok: call is allowed to sleep
7780  *
7781  *      Frees the MPS entry at supplied index
7782  *
7783  *      Returns a negative error number or zero on success
7784  */
7785 int t4_free_encap_mac_filt(struct adapter *adap, unsigned int viid,
7786                            int idx, bool sleep_ok)
7787 {
7788         struct fw_vi_mac_exact *p;
7789         u8 addr[] = {0, 0, 0, 0, 0, 0};
7790         struct fw_vi_mac_cmd c;
7791         int ret = 0;
7792         u32 exact;
7793
7794         memset(&c, 0, sizeof(c));
7795         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7796                                    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7797                                    FW_CMD_EXEC_V(0) |
7798                                    FW_VI_MAC_CMD_VIID_V(viid));
7799         exact = FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_EXACTMAC);
7800         c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
7801                                           exact |
7802                                           FW_CMD_LEN16_V(1));
7803         p = c.u.exact;
7804         p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
7805                                       FW_VI_MAC_CMD_IDX_V(idx));
7806         memcpy(p->macaddr, addr, sizeof(p->macaddr));
7807         ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7808         return ret;
7809 }
7810
7811 /**
7812  *      t4_free_raw_mac_filt - Frees a raw mac entry in mps tcam
7813  *      @adap: the adapter
7814  *      @viid: the VI id
7815  *      @addr: the MAC address
7816  *      @mask: the mask
7817  *      @idx: index of the entry in mps tcam
7818  *      @lookup_type: MAC address for inner (1) or outer (0) header
7819  *      @port_id: the port index
7820  *      @sleep_ok: call is allowed to sleep
7821  *
7822  *      Removes the mac entry at the specified index using raw mac interface.
7823  *
7824  *      Returns a negative error number on failure.
7825  */
7826 int t4_free_raw_mac_filt(struct adapter *adap, unsigned int viid,
7827                          const u8 *addr, const u8 *mask, unsigned int idx,
7828                          u8 lookup_type, u8 port_id, bool sleep_ok)
7829 {
7830         struct fw_vi_mac_cmd c;
7831         struct fw_vi_mac_raw *p = &c.u.raw;
7832         u32 val;
7833
7834         memset(&c, 0, sizeof(c));
7835         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7836                                    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7837                                    FW_CMD_EXEC_V(0) |
7838                                    FW_VI_MAC_CMD_VIID_V(viid));
7839         val = FW_CMD_LEN16_V(1) |
7840               FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_RAW);
7841         c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
7842                                           FW_CMD_LEN16_V(val));
7843
7844         p->raw_idx_pkd = cpu_to_be32(FW_VI_MAC_CMD_RAW_IDX_V(idx) |
7845                                      FW_VI_MAC_ID_BASED_FREE);
7846
7847         /* Lookup Type. Outer header: 0, Inner header: 1 */
7848         p->data0_pkd = cpu_to_be32(DATALKPTYPE_V(lookup_type) |
7849                                    DATAPORTNUM_V(port_id));
7850         /* Lookup mask and port mask */
7851         p->data0m_pkd = cpu_to_be64(DATALKPTYPE_V(DATALKPTYPE_M) |
7852                                     DATAPORTNUM_V(DATAPORTNUM_M));
7853
7854         /* Copy the address and the mask */
7855         memcpy((u8 *)&p->data1[0] + 2, addr, ETH_ALEN);
7856         memcpy((u8 *)&p->data1m[0] + 2, mask, ETH_ALEN);
7857
7858         return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7859 }
7860
7861 /**
7862  *      t4_alloc_encap_mac_filt - Adds a mac entry in mps tcam with VNI support
7863  *      @adap: the adapter
7864  *      @viid: the VI id
7865  *      @addr: the MAC address
7866  *      @mask: the mask
7867  *      @vni: the VNI id for the tunnel protocol
7868  *      @vni_mask: mask for the VNI id
7869  *      @dip_hit: to enable DIP match for the MPS entry
7870  *      @lookup_type: MAC address for inner (1) or outer (0) header
7871  *      @sleep_ok: call is allowed to sleep
7872  *
7873  *      Allocates an MPS entry with specified MAC address and VNI value.
7874  *
7875  *      Returns a negative error number or the allocated index for this mac.
7876  */
7877 int t4_alloc_encap_mac_filt(struct adapter *adap, unsigned int viid,
7878                             const u8 *addr, const u8 *mask, unsigned int vni,
7879                             unsigned int vni_mask, u8 dip_hit, u8 lookup_type,
7880                             bool sleep_ok)
7881 {
7882         struct fw_vi_mac_cmd c;
7883         struct fw_vi_mac_vni *p = c.u.exact_vni;
7884         int ret = 0;
7885         u32 val;
7886
7887         memset(&c, 0, sizeof(c));
7888         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7889                                    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7890                                    FW_VI_MAC_CMD_VIID_V(viid));
7891         val = FW_CMD_LEN16_V(1) |
7892               FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_EXACTMAC_VNI);
7893         c.freemacs_to_len16 = cpu_to_be32(val);
7894         p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
7895                                       FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_ADD_MAC));
7896         memcpy(p->macaddr, addr, sizeof(p->macaddr));
7897         memcpy(p->macaddr_mask, mask, sizeof(p->macaddr_mask));
7898
7899         p->lookup_type_to_vni =
7900                 cpu_to_be32(FW_VI_MAC_CMD_VNI_V(vni) |
7901                             FW_VI_MAC_CMD_DIP_HIT_V(dip_hit) |
7902                             FW_VI_MAC_CMD_LOOKUP_TYPE_V(lookup_type));
7903         p->vni_mask_pkd = cpu_to_be32(FW_VI_MAC_CMD_VNI_MASK_V(vni_mask));
7904         ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7905         if (ret == 0)
7906                 ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
7907         return ret;
7908 }
7909
7910 /**
7911  *      t4_alloc_raw_mac_filt - Adds a mac entry in mps tcam
7912  *      @adap: the adapter
7913  *      @viid: the VI id
7914  *      @addr: the MAC address
7915  *      @mask: the mask
7916  *      @idx: index at which to add this entry
7917  *      @lookup_type: MAC address for inner (1) or outer (0) header
7918  *      @port_id: the port index
7919  *      @sleep_ok: call is allowed to sleep
7920  *
7921  *      Adds the mac entry at the specified index using raw mac interface.
7922  *
7923  *      Returns a negative error number or the allocated index for this mac.
7924  */
7925 int t4_alloc_raw_mac_filt(struct adapter *adap, unsigned int viid,
7926                           const u8 *addr, const u8 *mask, unsigned int idx,
7927                           u8 lookup_type, u8 port_id, bool sleep_ok)
7928 {
7929         int ret = 0;
7930         struct fw_vi_mac_cmd c;
7931         struct fw_vi_mac_raw *p = &c.u.raw;
7932         u32 val;
7933
7934         memset(&c, 0, sizeof(c));
7935         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7936                                    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7937                                    FW_VI_MAC_CMD_VIID_V(viid));
7938         val = FW_CMD_LEN16_V(1) |
7939               FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_RAW);
7940         c.freemacs_to_len16 = cpu_to_be32(val);
7941
7942         /* Specify that this is an inner mac address */
7943         p->raw_idx_pkd = cpu_to_be32(FW_VI_MAC_CMD_RAW_IDX_V(idx));
7944
7945         /* Lookup Type. Outer header: 0, Inner header: 1 */
7946         p->data0_pkd = cpu_to_be32(DATALKPTYPE_V(lookup_type) |
7947                                    DATAPORTNUM_V(port_id));
7948         /* Lookup mask and port mask */
7949         p->data0m_pkd = cpu_to_be64(DATALKPTYPE_V(DATALKPTYPE_M) |
7950                                     DATAPORTNUM_V(DATAPORTNUM_M));
7951
7952         /* Copy the address and the mask */
7953         memcpy((u8 *)&p->data1[0] + 2, addr, ETH_ALEN);
7954         memcpy((u8 *)&p->data1m[0] + 2, mask, ETH_ALEN);
7955
7956         ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7957         if (ret == 0) {
7958                 ret = FW_VI_MAC_CMD_RAW_IDX_G(be32_to_cpu(p->raw_idx_pkd));
7959                 if (ret != idx)
7960                         ret = -ENOMEM;
7961         }
7962
7963         return ret;
7964 }
7965
7966 /**
7967  *      t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
7968  *      @adap: the adapter
7969  *      @mbox: mailbox to use for the FW command
7970  *      @viid: the VI id
7971  *      @free: if true any existing filters for this VI id are first removed
7972  *      @naddr: the number of MAC addresses to allocate filters for (up to 7)
7973  *      @addr: the MAC address(es)
7974  *      @idx: where to store the index of each allocated filter
7975  *      @hash: pointer to hash address filter bitmap
7976  *      @sleep_ok: call is allowed to sleep
7977  *
7978  *      Allocates an exact-match filter for each of the supplied addresses and
7979  *      sets it to the corresponding address.  If @idx is not %NULL it should
7980  *      have at least @naddr entries, each of which will be set to the index of
7981  *      the filter allocated for the corresponding MAC address.  If a filter
7982  *      could not be allocated for an address its index is set to 0xffff.
7983  *      If @hash is not %NULL addresses that fail to allocate an exact filter
7984  *      are hashed and update the hash filter bitmap pointed at by @hash.
7985  *
7986  *      Returns a negative error number or the number of filters allocated.
7987  */
7988 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
7989                       unsigned int viid, bool free, unsigned int naddr,
7990                       const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
7991 {
7992         int offset, ret = 0;
7993         struct fw_vi_mac_cmd c;
7994         unsigned int nfilters = 0;
7995         unsigned int max_naddr = adap->params.arch.mps_tcam_size;
7996         unsigned int rem = naddr;
7997
7998         if (naddr > max_naddr)
7999                 return -EINVAL;
8000
8001         for (offset = 0; offset < naddr ; /**/) {
8002                 unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) ?
8003                                          rem : ARRAY_SIZE(c.u.exact));
8004                 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
8005                                                      u.exact[fw_naddr]), 16);
8006                 struct fw_vi_mac_exact *p;
8007                 int i;
8008
8009                 memset(&c, 0, sizeof(c));
8010                 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
8011                                            FW_CMD_REQUEST_F |
8012                                            FW_CMD_WRITE_F |
8013                                            FW_CMD_EXEC_V(free) |
8014                                            FW_VI_MAC_CMD_VIID_V(viid));
8015                 c.freemacs_to_len16 =
8016                         cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) |
8017                                     FW_CMD_LEN16_V(len16));
8018
8019                 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8020                         p->valid_to_idx =
8021                                 cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
8022                                             FW_VI_MAC_CMD_IDX_V(
8023                                                     FW_VI_MAC_ADD_MAC));
8024                         memcpy(p->macaddr, addr[offset + i],
8025                                sizeof(p->macaddr));
8026                 }
8027
8028                 /* It's okay if we run out of space in our MAC address arena.
8029                  * Some of the addresses we submit may get stored so we need
8030                  * to run through the reply to see what the results were ...
8031                  */
8032                 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
8033                 if (ret && ret != -FW_ENOMEM)
8034                         break;
8035
8036                 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8037                         u16 index = FW_VI_MAC_CMD_IDX_G(
8038                                         be16_to_cpu(p->valid_to_idx));
8039
8040                         if (idx)
8041                                 idx[offset + i] = (index >= max_naddr ?
8042                                                    0xffff : index);
8043                         if (index < max_naddr)
8044                                 nfilters++;
8045                         else if (hash)
8046                                 *hash |= (1ULL <<
8047                                           hash_mac_addr(addr[offset + i]));
8048                 }
8049
8050                 free = false;
8051                 offset += fw_naddr;
8052                 rem -= fw_naddr;
8053         }
8054
8055         if (ret == 0 || ret == -FW_ENOMEM)
8056                 ret = nfilters;
8057         return ret;
8058 }
8059
8060 /**
8061  *      t4_free_mac_filt - frees exact-match filters of given MAC addresses
8062  *      @adap: the adapter
8063  *      @mbox: mailbox to use for the FW command
8064  *      @viid: the VI id
8065  *      @naddr: the number of MAC addresses to allocate filters for (up to 7)
8066  *      @addr: the MAC address(es)
8067  *      @sleep_ok: call is allowed to sleep
8068  *
8069  *      Frees the exact-match filter for each of the supplied addresses
8070  *
8071  *      Returns a negative error number or the number of filters freed.
8072  */
8073 int t4_free_mac_filt(struct adapter *adap, unsigned int mbox,
8074                      unsigned int viid, unsigned int naddr,
8075                      const u8 **addr, bool sleep_ok)
8076 {
8077         int offset, ret = 0;
8078         struct fw_vi_mac_cmd c;
8079         unsigned int nfilters = 0;
8080         unsigned int max_naddr = is_t4(adap->params.chip) ?
8081                                        NUM_MPS_CLS_SRAM_L_INSTANCES :
8082                                        NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
8083         unsigned int rem = naddr;
8084
8085         if (naddr > max_naddr)
8086                 return -EINVAL;
8087
8088         for (offset = 0; offset < (int)naddr ; /**/) {
8089                 unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
8090                                          ? rem
8091                                          : ARRAY_SIZE(c.u.exact));
8092                 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
8093                                                      u.exact[fw_naddr]), 16);
8094                 struct fw_vi_mac_exact *p;
8095                 int i;
8096
8097                 memset(&c, 0, sizeof(c));
8098                 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
8099                                      FW_CMD_REQUEST_F |
8100                                      FW_CMD_WRITE_F |
8101                                      FW_CMD_EXEC_V(0) |
8102                                      FW_VI_MAC_CMD_VIID_V(viid));
8103                 c.freemacs_to_len16 =
8104                                 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
8105                                             FW_CMD_LEN16_V(len16));
8106
8107                 for (i = 0, p = c.u.exact; i < (int)fw_naddr; i++, p++) {
8108                         p->valid_to_idx = cpu_to_be16(
8109                                 FW_VI_MAC_CMD_VALID_F |
8110                                 FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_MAC_BASED_FREE));
8111                         memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
8112                 }
8113
8114                 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
8115                 if (ret)
8116                         break;
8117
8118                 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8119                         u16 index = FW_VI_MAC_CMD_IDX_G(
8120                                                 be16_to_cpu(p->valid_to_idx));
8121
8122                         if (index < max_naddr)
8123                                 nfilters++;
8124                 }
8125
8126                 offset += fw_naddr;
8127                 rem -= fw_naddr;
8128         }
8129
8130         if (ret == 0)
8131                 ret = nfilters;
8132         return ret;
8133 }
8134
8135 /**
8136  *      t4_change_mac - modifies the exact-match filter for a MAC address
8137  *      @adap: the adapter
8138  *      @mbox: mailbox to use for the FW command
8139  *      @viid: the VI id
8140  *      @idx: index of existing filter for old value of MAC address, or -1
8141  *      @addr: the new MAC address value
8142  *      @persist: whether a new MAC allocation should be persistent
8143  *      @smt_idx: the destination to store the new SMT index.
8144  *
8145  *      Modifies an exact-match filter and sets it to the new MAC address.
8146  *      Note that in general it is not possible to modify the value of a given
8147  *      filter so the generic way to modify an address filter is to free the one
8148  *      being used by the old address value and allocate a new filter for the
8149  *      new address value.  @idx can be -1 if the address is a new addition.
8150  *
8151  *      Returns a negative error number or the index of the filter with the new
8152  *      MAC value.
8153  */
8154 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
8155                   int idx, const u8 *addr, bool persist, u8 *smt_idx)
8156 {
8157         int ret, mode;
8158         struct fw_vi_mac_cmd c;
8159         struct fw_vi_mac_exact *p = c.u.exact;
8160         unsigned int max_mac_addr = adap->params.arch.mps_tcam_size;
8161
8162         if (idx < 0)                             /* new allocation */
8163                 idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
8164         mode = smt_idx ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
8165
8166         memset(&c, 0, sizeof(c));
8167         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
8168                                    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
8169                                    FW_VI_MAC_CMD_VIID_V(viid));
8170         c.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(1));
8171         p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
8172                                       FW_VI_MAC_CMD_SMAC_RESULT_V(mode) |
8173                                       FW_VI_MAC_CMD_IDX_V(idx));
8174         memcpy(p->macaddr, addr, sizeof(p->macaddr));
8175
8176         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
8177         if (ret == 0) {
8178                 ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
8179                 if (ret >= max_mac_addr)
8180                         ret = -ENOMEM;
8181                 if (smt_idx) {
8182                         if (adap->params.viid_smt_extn_support) {
8183                                 *smt_idx = FW_VI_MAC_CMD_SMTID_G
8184                                                     (be32_to_cpu(c.op_to_viid));
8185                         } else {
8186                                 /* In T4/T5, SMT contains 256 SMAC entries
8187                                  * organized in 128 rows of 2 entries each.
8188                                  * In T6, SMT contains 256 SMAC entries in
8189                                  * 256 rows.
8190                                  */
8191                                 if (CHELSIO_CHIP_VERSION(adap->params.chip) <=
8192                                                                      CHELSIO_T5)
8193                                         *smt_idx = (viid & FW_VIID_VIN_M) << 1;
8194                                 else
8195                                         *smt_idx = (viid & FW_VIID_VIN_M);
8196                         }
8197                 }
8198         }
8199         return ret;
8200 }
8201
8202 /**
8203  *      t4_set_addr_hash - program the MAC inexact-match hash filter
8204  *      @adap: the adapter
8205  *      @mbox: mailbox to use for the FW command
8206  *      @viid: the VI id
8207  *      @ucast: whether the hash filter should also match unicast addresses
8208  *      @vec: the value to be written to the hash filter
8209  *      @sleep_ok: call is allowed to sleep
8210  *
8211  *      Sets the 64-bit inexact-match hash filter for a virtual interface.
8212  */
8213 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
8214                      bool ucast, u64 vec, bool sleep_ok)
8215 {
8216         struct fw_vi_mac_cmd c;
8217
8218         memset(&c, 0, sizeof(c));
8219         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
8220                                    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
8221                                    FW_VI_ENABLE_CMD_VIID_V(viid));
8222         c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F |
8223                                           FW_VI_MAC_CMD_HASHUNIEN_V(ucast) |
8224                                           FW_CMD_LEN16_V(1));
8225         c.u.hash.hashvec = cpu_to_be64(vec);
8226         return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
8227 }
8228
8229 /**
8230  *      t4_enable_vi_params - enable/disable a virtual interface
8231  *      @adap: the adapter
8232  *      @mbox: mailbox to use for the FW command
8233  *      @viid: the VI id
8234  *      @rx_en: 1=enable Rx, 0=disable Rx
8235  *      @tx_en: 1=enable Tx, 0=disable Tx
8236  *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
8237  *
8238  *      Enables/disables a virtual interface.  Note that setting DCB Enable
8239  *      only makes sense when enabling a Virtual Interface ...
8240  */
8241 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
8242                         unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
8243 {
8244         struct fw_vi_enable_cmd c;
8245
8246         memset(&c, 0, sizeof(c));
8247         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
8248                                    FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8249                                    FW_VI_ENABLE_CMD_VIID_V(viid));
8250         c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) |
8251                                      FW_VI_ENABLE_CMD_EEN_V(tx_en) |
8252                                      FW_VI_ENABLE_CMD_DCB_INFO_V(dcb_en) |
8253                                      FW_LEN16(c));
8254         return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
8255 }
8256
8257 /**
8258  *      t4_enable_vi - enable/disable a virtual interface
8259  *      @adap: the adapter
8260  *      @mbox: mailbox to use for the FW command
8261  *      @viid: the VI id
8262  *      @rx_en: 1=enable Rx, 0=disable Rx
8263  *      @tx_en: 1=enable Tx, 0=disable Tx
8264  *
8265  *      Enables/disables a virtual interface.
8266  */
8267 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
8268                  bool rx_en, bool tx_en)
8269 {
8270         return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
8271 }
8272
8273 /**
8274  *      t4_enable_pi_params - enable/disable a Port's Virtual Interface
8275  *      @adap: the adapter
8276  *      @mbox: mailbox to use for the FW command
8277  *      @pi: the Port Information structure
8278  *      @rx_en: 1=enable Rx, 0=disable Rx
8279  *      @tx_en: 1=enable Tx, 0=disable Tx
8280  *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
8281  *
8282  *      Enables/disables a Port's Virtual Interface.  Note that setting DCB
8283  *      Enable only makes sense when enabling a Virtual Interface ...
8284  *      If the Virtual Interface enable/disable operation is successful,
8285  *      we notify the OS-specific code of a potential Link Status change
8286  *      via the OS Contract API t4_os_link_changed().
8287  */
8288 int t4_enable_pi_params(struct adapter *adap, unsigned int mbox,
8289                         struct port_info *pi,
8290                         bool rx_en, bool tx_en, bool dcb_en)
8291 {
8292         int ret = t4_enable_vi_params(adap, mbox, pi->viid,
8293                                       rx_en, tx_en, dcb_en);
8294         if (ret)
8295                 return ret;
8296         t4_os_link_changed(adap, pi->port_id,
8297                            rx_en && tx_en && pi->link_cfg.link_ok);
8298         return 0;
8299 }
8300
8301 /**
8302  *      t4_identify_port - identify a VI's port by blinking its LED
8303  *      @adap: the adapter
8304  *      @mbox: mailbox to use for the FW command
8305  *      @viid: the VI id
8306  *      @nblinks: how many times to blink LED at 2.5 Hz
8307  *
8308  *      Identifies a VI's port by blinking its LED.
8309  */
8310 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
8311                      unsigned int nblinks)
8312 {
8313         struct fw_vi_enable_cmd c;
8314
8315         memset(&c, 0, sizeof(c));
8316         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
8317                                    FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8318                                    FW_VI_ENABLE_CMD_VIID_V(viid));
8319         c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F | FW_LEN16(c));
8320         c.blinkdur = cpu_to_be16(nblinks);
8321         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8322 }
8323
8324 /**
8325  *      t4_iq_stop - stop an ingress queue and its FLs
8326  *      @adap: the adapter
8327  *      @mbox: mailbox to use for the FW command
8328  *      @pf: the PF owning the queues
8329  *      @vf: the VF owning the queues
8330  *      @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
8331  *      @iqid: ingress queue id
8332  *      @fl0id: FL0 queue id or 0xffff if no attached FL0
8333  *      @fl1id: FL1 queue id or 0xffff if no attached FL1
8334  *
8335  *      Stops an ingress queue and its associated FLs, if any.  This causes
8336  *      any current or future data/messages destined for these queues to be
8337  *      tossed.
8338  */
8339 int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf,
8340                unsigned int vf, unsigned int iqtype, unsigned int iqid,
8341                unsigned int fl0id, unsigned int fl1id)
8342 {
8343         struct fw_iq_cmd c;
8344
8345         memset(&c, 0, sizeof(c));
8346         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
8347                                   FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
8348                                   FW_IQ_CMD_VFN_V(vf));
8349         c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_IQSTOP_F | FW_LEN16(c));
8350         c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
8351         c.iqid = cpu_to_be16(iqid);
8352         c.fl0id = cpu_to_be16(fl0id);
8353         c.fl1id = cpu_to_be16(fl1id);
8354         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8355 }
8356
8357 /**
8358  *      t4_iq_free - free an ingress queue and its FLs
8359  *      @adap: the adapter
8360  *      @mbox: mailbox to use for the FW command
8361  *      @pf: the PF owning the queues
8362  *      @vf: the VF owning the queues
8363  *      @iqtype: the ingress queue type
8364  *      @iqid: ingress queue id
8365  *      @fl0id: FL0 queue id or 0xffff if no attached FL0
8366  *      @fl1id: FL1 queue id or 0xffff if no attached FL1
8367  *
8368  *      Frees an ingress queue and its associated FLs, if any.
8369  */
8370 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8371                unsigned int vf, unsigned int iqtype, unsigned int iqid,
8372                unsigned int fl0id, unsigned int fl1id)
8373 {
8374         struct fw_iq_cmd c;
8375
8376         memset(&c, 0, sizeof(c));
8377         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
8378                                   FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
8379                                   FW_IQ_CMD_VFN_V(vf));
8380         c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F | FW_LEN16(c));
8381         c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
8382         c.iqid = cpu_to_be16(iqid);
8383         c.fl0id = cpu_to_be16(fl0id);
8384         c.fl1id = cpu_to_be16(fl1id);
8385         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8386 }
8387
8388 /**
8389  *      t4_eth_eq_free - free an Ethernet egress queue
8390  *      @adap: the adapter
8391  *      @mbox: mailbox to use for the FW command
8392  *      @pf: the PF owning the queue
8393  *      @vf: the VF owning the queue
8394  *      @eqid: egress queue id
8395  *
8396  *      Frees an Ethernet egress queue.
8397  */
8398 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8399                    unsigned int vf, unsigned int eqid)
8400 {
8401         struct fw_eq_eth_cmd c;
8402
8403         memset(&c, 0, sizeof(c));
8404         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
8405                                   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8406                                   FW_EQ_ETH_CMD_PFN_V(pf) |
8407                                   FW_EQ_ETH_CMD_VFN_V(vf));
8408         c.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F | FW_LEN16(c));
8409         c.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid));
8410         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8411 }
8412
8413 /**
8414  *      t4_ctrl_eq_free - free a control egress queue
8415  *      @adap: the adapter
8416  *      @mbox: mailbox to use for the FW command
8417  *      @pf: the PF owning the queue
8418  *      @vf: the VF owning the queue
8419  *      @eqid: egress queue id
8420  *
8421  *      Frees a control egress queue.
8422  */
8423 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8424                     unsigned int vf, unsigned int eqid)
8425 {
8426         struct fw_eq_ctrl_cmd c;
8427
8428         memset(&c, 0, sizeof(c));
8429         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_CTRL_CMD) |
8430                                   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8431                                   FW_EQ_CTRL_CMD_PFN_V(pf) |
8432                                   FW_EQ_CTRL_CMD_VFN_V(vf));
8433         c.alloc_to_len16 = cpu_to_be32(FW_EQ_CTRL_CMD_FREE_F | FW_LEN16(c));
8434         c.cmpliqid_eqid = cpu_to_be32(FW_EQ_CTRL_CMD_EQID_V(eqid));
8435         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8436 }
8437
8438 /**
8439  *      t4_ofld_eq_free - free an offload egress queue
8440  *      @adap: the adapter
8441  *      @mbox: mailbox to use for the FW command
8442  *      @pf: the PF owning the queue
8443  *      @vf: the VF owning the queue
8444  *      @eqid: egress queue id
8445  *
8446  *      Frees a control egress queue.
8447  */
8448 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8449                     unsigned int vf, unsigned int eqid)
8450 {
8451         struct fw_eq_ofld_cmd c;
8452
8453         memset(&c, 0, sizeof(c));
8454         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_OFLD_CMD) |
8455                                   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8456                                   FW_EQ_OFLD_CMD_PFN_V(pf) |
8457                                   FW_EQ_OFLD_CMD_VFN_V(vf));
8458         c.alloc_to_len16 = cpu_to_be32(FW_EQ_OFLD_CMD_FREE_F | FW_LEN16(c));
8459         c.eqid_pkd = cpu_to_be32(FW_EQ_OFLD_CMD_EQID_V(eqid));
8460         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8461 }
8462
8463 /**
8464  *      t4_link_down_rc_str - return a string for a Link Down Reason Code
8465  *      @link_down_rc: Link Down Reason Code
8466  *
8467  *      Returns a string representation of the Link Down Reason Code.
8468  */
8469 static const char *t4_link_down_rc_str(unsigned char link_down_rc)
8470 {
8471         static const char * const reason[] = {
8472                 "Link Down",
8473                 "Remote Fault",
8474                 "Auto-negotiation Failure",
8475                 "Reserved",
8476                 "Insufficient Airflow",
8477                 "Unable To Determine Reason",
8478                 "No RX Signal Detected",
8479                 "Reserved",
8480         };
8481
8482         if (link_down_rc >= ARRAY_SIZE(reason))
8483                 return "Bad Reason Code";
8484
8485         return reason[link_down_rc];
8486 }
8487
8488 /* Return the highest speed set in the port capabilities, in Mb/s. */
8489 static unsigned int fwcap_to_speed(fw_port_cap32_t caps)
8490 {
8491         #define TEST_SPEED_RETURN(__caps_speed, __speed) \
8492                 do { \
8493                         if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
8494                                 return __speed; \
8495                 } while (0)
8496
8497         TEST_SPEED_RETURN(400G, 400000);
8498         TEST_SPEED_RETURN(200G, 200000);
8499         TEST_SPEED_RETURN(100G, 100000);
8500         TEST_SPEED_RETURN(50G,   50000);
8501         TEST_SPEED_RETURN(40G,   40000);
8502         TEST_SPEED_RETURN(25G,   25000);
8503         TEST_SPEED_RETURN(10G,   10000);
8504         TEST_SPEED_RETURN(1G,     1000);
8505         TEST_SPEED_RETURN(100M,    100);
8506
8507         #undef TEST_SPEED_RETURN
8508
8509         return 0;
8510 }
8511
8512 /**
8513  *      fwcap_to_fwspeed - return highest speed in Port Capabilities
8514  *      @acaps: advertised Port Capabilities
8515  *
8516  *      Get the highest speed for the port from the advertised Port
8517  *      Capabilities.  It will be either the highest speed from the list of
8518  *      speeds or whatever user has set using ethtool.
8519  */
8520 static fw_port_cap32_t fwcap_to_fwspeed(fw_port_cap32_t acaps)
8521 {
8522         #define TEST_SPEED_RETURN(__caps_speed) \
8523                 do { \
8524                         if (acaps & FW_PORT_CAP32_SPEED_##__caps_speed) \
8525                                 return FW_PORT_CAP32_SPEED_##__caps_speed; \
8526                 } while (0)
8527
8528         TEST_SPEED_RETURN(400G);
8529         TEST_SPEED_RETURN(200G);
8530         TEST_SPEED_RETURN(100G);
8531         TEST_SPEED_RETURN(50G);
8532         TEST_SPEED_RETURN(40G);
8533         TEST_SPEED_RETURN(25G);
8534         TEST_SPEED_RETURN(10G);
8535         TEST_SPEED_RETURN(1G);
8536         TEST_SPEED_RETURN(100M);
8537
8538         #undef TEST_SPEED_RETURN
8539
8540         return 0;
8541 }
8542
8543 /**
8544  *      lstatus_to_fwcap - translate old lstatus to 32-bit Port Capabilities
8545  *      @lstatus: old FW_PORT_ACTION_GET_PORT_INFO lstatus value
8546  *
8547  *      Translates old FW_PORT_ACTION_GET_PORT_INFO lstatus field into new
8548  *      32-bit Port Capabilities value.
8549  */
8550 static fw_port_cap32_t lstatus_to_fwcap(u32 lstatus)
8551 {
8552         fw_port_cap32_t linkattr = 0;
8553
8554         /* Unfortunately the format of the Link Status in the old
8555          * 16-bit Port Information message isn't the same as the
8556          * 16-bit Port Capabilities bitfield used everywhere else ...
8557          */
8558         if (lstatus & FW_PORT_CMD_RXPAUSE_F)
8559                 linkattr |= FW_PORT_CAP32_FC_RX;
8560         if (lstatus & FW_PORT_CMD_TXPAUSE_F)
8561                 linkattr |= FW_PORT_CAP32_FC_TX;
8562         if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
8563                 linkattr |= FW_PORT_CAP32_SPEED_100M;
8564         if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
8565                 linkattr |= FW_PORT_CAP32_SPEED_1G;
8566         if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
8567                 linkattr |= FW_PORT_CAP32_SPEED_10G;
8568         if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_25G))
8569                 linkattr |= FW_PORT_CAP32_SPEED_25G;
8570         if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
8571                 linkattr |= FW_PORT_CAP32_SPEED_40G;
8572         if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100G))
8573                 linkattr |= FW_PORT_CAP32_SPEED_100G;
8574
8575         return linkattr;
8576 }
8577
8578 /**
8579  *      t4_handle_get_port_info - process a FW reply message
8580  *      @pi: the port info
8581  *      @rpl: start of the FW message
8582  *
8583  *      Processes a GET_PORT_INFO FW reply message.
8584  */
8585 void t4_handle_get_port_info(struct port_info *pi, const __be64 *rpl)
8586 {
8587         const struct fw_port_cmd *cmd = (const void *)rpl;
8588         fw_port_cap32_t pcaps, acaps, lpacaps, linkattr;
8589         struct link_config *lc = &pi->link_cfg;
8590         struct adapter *adapter = pi->adapter;
8591         unsigned int speed, fc, fec, adv_fc;
8592         enum fw_port_module_type mod_type;
8593         int action, link_ok, linkdnrc;
8594         enum fw_port_type port_type;
8595
8596         /* Extract the various fields from the Port Information message.
8597          */
8598         action = FW_PORT_CMD_ACTION_G(be32_to_cpu(cmd->action_to_len16));
8599         switch (action) {
8600         case FW_PORT_ACTION_GET_PORT_INFO: {
8601                 u32 lstatus = be32_to_cpu(cmd->u.info.lstatus_to_modtype);
8602
8603                 link_ok = (lstatus & FW_PORT_CMD_LSTATUS_F) != 0;
8604                 linkdnrc = FW_PORT_CMD_LINKDNRC_G(lstatus);
8605                 port_type = FW_PORT_CMD_PTYPE_G(lstatus);
8606                 mod_type = FW_PORT_CMD_MODTYPE_G(lstatus);
8607                 pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.pcap));
8608                 acaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.acap));
8609                 lpacaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.lpacap));
8610                 linkattr = lstatus_to_fwcap(lstatus);
8611                 break;
8612         }
8613
8614         case FW_PORT_ACTION_GET_PORT_INFO32: {
8615                 u32 lstatus32;
8616
8617                 lstatus32 = be32_to_cpu(cmd->u.info32.lstatus32_to_cbllen32);
8618                 link_ok = (lstatus32 & FW_PORT_CMD_LSTATUS32_F) != 0;
8619                 linkdnrc = FW_PORT_CMD_LINKDNRC32_G(lstatus32);
8620                 port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32);
8621                 mod_type = FW_PORT_CMD_MODTYPE32_G(lstatus32);
8622                 pcaps = be32_to_cpu(cmd->u.info32.pcaps32);
8623                 acaps = be32_to_cpu(cmd->u.info32.acaps32);
8624                 lpacaps = be32_to_cpu(cmd->u.info32.lpacaps32);
8625                 linkattr = be32_to_cpu(cmd->u.info32.linkattr32);
8626                 break;
8627         }
8628
8629         default:
8630                 dev_err(adapter->pdev_dev, "Handle Port Information: Bad Command/Action %#x\n",
8631                         be32_to_cpu(cmd->action_to_len16));
8632                 return;
8633         }
8634
8635         fec = fwcap_to_cc_fec(acaps);
8636         adv_fc = fwcap_to_cc_pause(acaps);
8637         fc = fwcap_to_cc_pause(linkattr);
8638         speed = fwcap_to_speed(linkattr);
8639
8640         /* Reset state for communicating new Transceiver Module status and
8641          * whether the OS-dependent layer wants us to redo the current
8642          * "sticky" L1 Configure Link Parameters.
8643          */
8644         lc->new_module = false;
8645         lc->redo_l1cfg = false;
8646
8647         if (mod_type != pi->mod_type) {
8648                 /* With the newer SFP28 and QSFP28 Transceiver Module Types,
8649                  * various fundamental Port Capabilities which used to be
8650                  * immutable can now change radically.  We can now have
8651                  * Speeds, Auto-Negotiation, Forward Error Correction, etc.
8652                  * all change based on what Transceiver Module is inserted.
8653                  * So we need to record the Physical "Port" Capabilities on
8654                  * every Transceiver Module change.
8655                  */
8656                 lc->pcaps = pcaps;
8657
8658                 /* When a new Transceiver Module is inserted, the Firmware
8659                  * will examine its i2c EPROM to determine its type and
8660                  * general operating parameters including things like Forward
8661                  * Error Control, etc.  Various IEEE 802.3 standards dictate
8662                  * how to interpret these i2c values to determine default
8663                  * "sutomatic" settings.  We record these for future use when
8664                  * the user explicitly requests these standards-based values.
8665                  */
8666                 lc->def_acaps = acaps;
8667
8668                 /* Some versions of the early T6 Firmware "cheated" when
8669                  * handling different Transceiver Modules by changing the
8670                  * underlaying Port Type reported to the Host Drivers.  As
8671                  * such we need to capture whatever Port Type the Firmware
8672                  * sends us and record it in case it's different from what we
8673                  * were told earlier.  Unfortunately, since Firmware is
8674                  * forever, we'll need to keep this code here forever, but in
8675                  * later T6 Firmware it should just be an assignment of the
8676                  * same value already recorded.
8677                  */
8678                 pi->port_type = port_type;
8679
8680                 /* Record new Module Type information.
8681                  */
8682                 pi->mod_type = mod_type;
8683
8684                 /* Let the OS-dependent layer know if we have a new
8685                  * Transceiver Module inserted.
8686                  */
8687                 lc->new_module = t4_is_inserted_mod_type(mod_type);
8688
8689                 t4_os_portmod_changed(adapter, pi->port_id);
8690         }
8691
8692         if (link_ok != lc->link_ok || speed != lc->speed ||
8693             fc != lc->fc || adv_fc != lc->advertised_fc ||
8694             fec != lc->fec) {
8695                 /* something changed */
8696                 if (!link_ok && lc->link_ok) {
8697                         lc->link_down_rc = linkdnrc;
8698                         dev_warn_ratelimited(adapter->pdev_dev,
8699                                              "Port %d link down, reason: %s\n",
8700                                              pi->tx_chan,
8701                                              t4_link_down_rc_str(linkdnrc));
8702                 }
8703                 lc->link_ok = link_ok;
8704                 lc->speed = speed;
8705                 lc->advertised_fc = adv_fc;
8706                 lc->fc = fc;
8707                 lc->fec = fec;
8708
8709                 lc->lpacaps = lpacaps;
8710                 lc->acaps = acaps & ADVERT_MASK;
8711
8712                 /* If we're not physically capable of Auto-Negotiation, note
8713                  * this as Auto-Negotiation disabled.  Otherwise, we track
8714                  * what Auto-Negotiation settings we have.  Note parallel
8715                  * structure in t4_link_l1cfg_core() and init_link_config().
8716                  */
8717                 if (!(lc->acaps & FW_PORT_CAP32_ANEG)) {
8718                         lc->autoneg = AUTONEG_DISABLE;
8719                 } else if (lc->acaps & FW_PORT_CAP32_ANEG) {
8720                         lc->autoneg = AUTONEG_ENABLE;
8721                 } else {
8722                         /* When Autoneg is disabled, user needs to set
8723                          * single speed.
8724                          * Similar to cxgb4_ethtool.c: set_link_ksettings
8725                          */
8726                         lc->acaps = 0;
8727                         lc->speed_caps = fwcap_to_fwspeed(acaps);
8728                         lc->autoneg = AUTONEG_DISABLE;
8729                 }
8730
8731                 t4_os_link_changed(adapter, pi->port_id, link_ok);
8732         }
8733
8734         /* If we have a new Transceiver Module and the OS-dependent code has
8735          * told us that it wants us to redo whatever "sticky" L1 Configuration
8736          * Link Parameters are set, do that now.
8737          */
8738         if (lc->new_module && lc->redo_l1cfg) {
8739                 struct link_config old_lc;
8740                 int ret;
8741
8742                 /* Save the current L1 Configuration and restore it if an
8743                  * error occurs.  We probably should fix the l1_cfg*()
8744                  * routines not to change the link_config when an error
8745                  * occurs ...
8746                  */
8747                 old_lc = *lc;
8748                 ret = t4_link_l1cfg_ns(adapter, adapter->mbox, pi->lport, lc);
8749                 if (ret) {
8750                         *lc = old_lc;
8751                         dev_warn(adapter->pdev_dev,
8752                                  "Attempt to update new Transceiver Module settings failed\n");
8753                 }
8754         }
8755         lc->new_module = false;
8756         lc->redo_l1cfg = false;
8757 }
8758
8759 /**
8760  *      t4_update_port_info - retrieve and update port information if changed
8761  *      @pi: the port_info
8762  *
8763  *      We issue a Get Port Information Command to the Firmware and, if
8764  *      successful, we check to see if anything is different from what we
8765  *      last recorded and update things accordingly.
8766  */
8767 int t4_update_port_info(struct port_info *pi)
8768 {
8769         unsigned int fw_caps = pi->adapter->params.fw_caps_support;
8770         struct fw_port_cmd port_cmd;
8771         int ret;
8772
8773         memset(&port_cmd, 0, sizeof(port_cmd));
8774         port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
8775                                             FW_CMD_REQUEST_F | FW_CMD_READ_F |
8776                                             FW_PORT_CMD_PORTID_V(pi->tx_chan));
8777         port_cmd.action_to_len16 = cpu_to_be32(
8778                 FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
8779                                      ? FW_PORT_ACTION_GET_PORT_INFO
8780                                      : FW_PORT_ACTION_GET_PORT_INFO32) |
8781                 FW_LEN16(port_cmd));
8782         ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox,
8783                          &port_cmd, sizeof(port_cmd), &port_cmd);
8784         if (ret)
8785                 return ret;
8786
8787         t4_handle_get_port_info(pi, (__be64 *)&port_cmd);
8788         return 0;
8789 }
8790
8791 /**
8792  *      t4_get_link_params - retrieve basic link parameters for given port
8793  *      @pi: the port
8794  *      @link_okp: value return pointer for link up/down
8795  *      @speedp: value return pointer for speed (Mb/s)
8796  *      @mtup: value return pointer for mtu
8797  *
8798  *      Retrieves basic link parameters for a port: link up/down, speed (Mb/s),
8799  *      and MTU for a specified port.  A negative error is returned on
8800  *      failure; 0 on success.
8801  */
8802 int t4_get_link_params(struct port_info *pi, unsigned int *link_okp,
8803                        unsigned int *speedp, unsigned int *mtup)
8804 {
8805         unsigned int fw_caps = pi->adapter->params.fw_caps_support;
8806         unsigned int action, link_ok, mtu;
8807         struct fw_port_cmd port_cmd;
8808         fw_port_cap32_t linkattr;
8809         int ret;
8810
8811         memset(&port_cmd, 0, sizeof(port_cmd));
8812         port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
8813                                             FW_CMD_REQUEST_F | FW_CMD_READ_F |
8814                                             FW_PORT_CMD_PORTID_V(pi->tx_chan));
8815         action = (fw_caps == FW_CAPS16
8816                   ? FW_PORT_ACTION_GET_PORT_INFO
8817                   : FW_PORT_ACTION_GET_PORT_INFO32);
8818         port_cmd.action_to_len16 = cpu_to_be32(
8819                 FW_PORT_CMD_ACTION_V(action) |
8820                 FW_LEN16(port_cmd));
8821         ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox,
8822                          &port_cmd, sizeof(port_cmd), &port_cmd);
8823         if (ret)
8824                 return ret;
8825
8826         if (action == FW_PORT_ACTION_GET_PORT_INFO) {
8827                 u32 lstatus = be32_to_cpu(port_cmd.u.info.lstatus_to_modtype);
8828
8829                 link_ok = !!(lstatus & FW_PORT_CMD_LSTATUS_F);
8830                 linkattr = lstatus_to_fwcap(lstatus);
8831                 mtu = be16_to_cpu(port_cmd.u.info.mtu);
8832         } else {
8833                 u32 lstatus32 =
8834                            be32_to_cpu(port_cmd.u.info32.lstatus32_to_cbllen32);
8835
8836                 link_ok = !!(lstatus32 & FW_PORT_CMD_LSTATUS32_F);
8837                 linkattr = be32_to_cpu(port_cmd.u.info32.linkattr32);
8838                 mtu = FW_PORT_CMD_MTU32_G(
8839                         be32_to_cpu(port_cmd.u.info32.auxlinfo32_mtu32));
8840         }
8841
8842         if (link_okp)
8843                 *link_okp = link_ok;
8844         if (speedp)
8845                 *speedp = fwcap_to_speed(linkattr);
8846         if (mtup)
8847                 *mtup = mtu;
8848
8849         return 0;
8850 }
8851
8852 /**
8853  *      t4_handle_fw_rpl - process a FW reply message
8854  *      @adap: the adapter
8855  *      @rpl: start of the FW message
8856  *
8857  *      Processes a FW message, such as link state change messages.
8858  */
8859 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
8860 {
8861         u8 opcode = *(const u8 *)rpl;
8862
8863         /* This might be a port command ... this simplifies the following
8864          * conditionals ...  We can get away with pre-dereferencing
8865          * action_to_len16 because it's in the first 16 bytes and all messages
8866          * will be at least that long.
8867          */
8868         const struct fw_port_cmd *p = (const void *)rpl;
8869         unsigned int action =
8870                 FW_PORT_CMD_ACTION_G(be32_to_cpu(p->action_to_len16));
8871
8872         if (opcode == FW_PORT_CMD &&
8873             (action == FW_PORT_ACTION_GET_PORT_INFO ||
8874              action == FW_PORT_ACTION_GET_PORT_INFO32)) {
8875                 int i;
8876                 int chan = FW_PORT_CMD_PORTID_G(be32_to_cpu(p->op_to_portid));
8877                 struct port_info *pi = NULL;
8878
8879                 for_each_port(adap, i) {
8880                         pi = adap2pinfo(adap, i);
8881                         if (pi->tx_chan == chan)
8882                                 break;
8883                 }
8884
8885                 t4_handle_get_port_info(pi, rpl);
8886         } else {
8887                 dev_warn(adap->pdev_dev, "Unknown firmware reply %d\n",
8888                          opcode);
8889                 return -EINVAL;
8890         }
8891         return 0;
8892 }
8893
8894 static void get_pci_mode(struct adapter *adapter, struct pci_params *p)
8895 {
8896         u16 val;
8897
8898         if (pci_is_pcie(adapter->pdev)) {
8899                 pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val);
8900                 p->speed = val & PCI_EXP_LNKSTA_CLS;
8901                 p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
8902         }
8903 }
8904
8905 /**
8906  *      init_link_config - initialize a link's SW state
8907  *      @lc: pointer to structure holding the link state
8908  *      @pcaps: link Port Capabilities
8909  *      @acaps: link current Advertised Port Capabilities
8910  *
8911  *      Initializes the SW state maintained for each link, including the link's
8912  *      capabilities and default speed/flow-control/autonegotiation settings.
8913  */
8914 static void init_link_config(struct link_config *lc, fw_port_cap32_t pcaps,
8915                              fw_port_cap32_t acaps)
8916 {
8917         lc->pcaps = pcaps;
8918         lc->def_acaps = acaps;
8919         lc->lpacaps = 0;
8920         lc->speed_caps = 0;
8921         lc->speed = 0;
8922         lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
8923
8924         /* For Forward Error Control, we default to whatever the Firmware
8925          * tells us the Link is currently advertising.
8926          */
8927         lc->requested_fec = FEC_AUTO;
8928         lc->fec = fwcap_to_cc_fec(lc->def_acaps);
8929
8930         /* If the Port is capable of Auto-Negtotiation, initialize it as
8931          * "enabled" and copy over all of the Physical Port Capabilities
8932          * to the Advertised Port Capabilities.  Otherwise mark it as
8933          * Auto-Negotiate disabled and select the highest supported speed
8934          * for the link.  Note parallel structure in t4_link_l1cfg_core()
8935          * and t4_handle_get_port_info().
8936          */
8937         if (lc->pcaps & FW_PORT_CAP32_ANEG) {
8938                 lc->acaps = lc->pcaps & ADVERT_MASK;
8939                 lc->autoneg = AUTONEG_ENABLE;
8940                 lc->requested_fc |= PAUSE_AUTONEG;
8941         } else {
8942                 lc->acaps = 0;
8943                 lc->autoneg = AUTONEG_DISABLE;
8944                 lc->speed_caps = fwcap_to_fwspeed(acaps);
8945         }
8946 }
8947
8948 #define CIM_PF_NOACCESS 0xeeeeeeee
8949
8950 int t4_wait_dev_ready(void __iomem *regs)
8951 {
8952         u32 whoami;
8953
8954         whoami = readl(regs + PL_WHOAMI_A);
8955         if (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS)
8956                 return 0;
8957
8958         msleep(500);
8959         whoami = readl(regs + PL_WHOAMI_A);
8960         return (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS ? 0 : -EIO);
8961 }
8962
8963 struct flash_desc {
8964         u32 vendor_and_model_id;
8965         u32 size_mb;
8966 };
8967
8968 static int t4_get_flash_params(struct adapter *adap)
8969 {
8970         /* Table for non-Numonix supported flash parts.  Numonix parts are left
8971          * to the preexisting code.  All flash parts have 64KB sectors.
8972          */
8973         static struct flash_desc supported_flash[] = {
8974                 { 0x150201, 4 << 20 },       /* Spansion 4MB S25FL032P */
8975         };
8976
8977         unsigned int part, manufacturer;
8978         unsigned int density, size = 0;
8979         u32 flashid = 0;
8980         int ret;
8981
8982         /* Issue a Read ID Command to the Flash part.  We decode supported
8983          * Flash parts and their sizes from this.  There's a newer Query
8984          * Command which can retrieve detailed geometry information but many
8985          * Flash parts don't support it.
8986          */
8987
8988         ret = sf1_write(adap, 1, 1, 0, SF_RD_ID);
8989         if (!ret)
8990                 ret = sf1_read(adap, 3, 0, 1, &flashid);
8991         t4_write_reg(adap, SF_OP_A, 0);                    /* unlock SF */
8992         if (ret)
8993                 return ret;
8994
8995         /* Check to see if it's one of our non-standard supported Flash parts.
8996          */
8997         for (part = 0; part < ARRAY_SIZE(supported_flash); part++)
8998                 if (supported_flash[part].vendor_and_model_id == flashid) {
8999                         adap->params.sf_size = supported_flash[part].size_mb;
9000                         adap->params.sf_nsec =
9001                                 adap->params.sf_size / SF_SEC_SIZE;
9002                         goto found;
9003                 }
9004
9005         /* Decode Flash part size.  The code below looks repetitive with
9006          * common encodings, but that's not guaranteed in the JEDEC
9007          * specification for the Read JEDEC ID command.  The only thing that
9008          * we're guaranteed by the JEDEC specification is where the
9009          * Manufacturer ID is in the returned result.  After that each
9010          * Manufacturer ~could~ encode things completely differently.
9011          * Note, all Flash parts must have 64KB sectors.
9012          */
9013         manufacturer = flashid & 0xff;
9014         switch (manufacturer) {
9015         case 0x20: { /* Micron/Numonix */
9016                 /* This Density -> Size decoding table is taken from Micron
9017                  * Data Sheets.
9018                  */
9019                 density = (flashid >> 16) & 0xff;
9020                 switch (density) {
9021                 case 0x14: /* 1MB */
9022                         size = 1 << 20;
9023                         break;
9024                 case 0x15: /* 2MB */
9025                         size = 1 << 21;
9026                         break;
9027                 case 0x16: /* 4MB */
9028                         size = 1 << 22;
9029                         break;
9030                 case 0x17: /* 8MB */
9031                         size = 1 << 23;
9032                         break;
9033                 case 0x18: /* 16MB */
9034                         size = 1 << 24;
9035                         break;
9036                 case 0x19: /* 32MB */
9037                         size = 1 << 25;
9038                         break;
9039                 case 0x20: /* 64MB */
9040                         size = 1 << 26;
9041                         break;
9042                 case 0x21: /* 128MB */
9043                         size = 1 << 27;
9044                         break;
9045                 case 0x22: /* 256MB */
9046                         size = 1 << 28;
9047                         break;
9048                 }
9049                 break;
9050         }
9051         case 0x9d: { /* ISSI -- Integrated Silicon Solution, Inc. */
9052                 /* This Density -> Size decoding table is taken from ISSI
9053                  * Data Sheets.
9054                  */
9055                 density = (flashid >> 16) & 0xff;
9056                 switch (density) {
9057                 case 0x16: /* 32 MB */
9058                         size = 1 << 25;
9059                         break;
9060                 case 0x17: /* 64MB */
9061                         size = 1 << 26;
9062                         break;
9063                 }
9064                 break;
9065         }
9066         case 0xc2: { /* Macronix */
9067                 /* This Density -> Size decoding table is taken from Macronix
9068                  * Data Sheets.
9069                  */
9070                 density = (flashid >> 16) & 0xff;
9071                 switch (density) {
9072                 case 0x17: /* 8MB */
9073                         size = 1 << 23;
9074                         break;
9075                 case 0x18: /* 16MB */
9076                         size = 1 << 24;
9077                         break;
9078                 }
9079                 break;
9080         }
9081         case 0xef: { /* Winbond */
9082                 /* This Density -> Size decoding table is taken from Winbond
9083                  * Data Sheets.
9084                  */
9085                 density = (flashid >> 16) & 0xff;
9086                 switch (density) {
9087                 case 0x17: /* 8MB */
9088                         size = 1 << 23;
9089                         break;
9090                 case 0x18: /* 16MB */
9091                         size = 1 << 24;
9092                         break;
9093                 }
9094                 break;
9095         }
9096         }
9097
9098         /* If we didn't recognize the FLASH part, that's no real issue: the
9099          * Hardware/Software contract says that Hardware will _*ALWAYS*_
9100          * use a FLASH part which is at least 4MB in size and has 64KB
9101          * sectors.  The unrecognized FLASH part is likely to be much larger
9102          * than 4MB, but that's all we really need.
9103          */
9104         if (size == 0) {
9105                 dev_warn(adap->pdev_dev, "Unknown Flash Part, ID = %#x, assuming 4MB\n",
9106                          flashid);
9107                 size = 1 << 22;
9108         }
9109
9110         /* Store decoded Flash size and fall through into vetting code. */
9111         adap->params.sf_size = size;
9112         adap->params.sf_nsec = size / SF_SEC_SIZE;
9113
9114 found:
9115         if (adap->params.sf_size < FLASH_MIN_SIZE)
9116                 dev_warn(adap->pdev_dev, "WARNING: Flash Part ID %#x, size %#x < %#x\n",
9117                          flashid, adap->params.sf_size, FLASH_MIN_SIZE);
9118         return 0;
9119 }
9120
9121 /**
9122  *      t4_prep_adapter - prepare SW and HW for operation
9123  *      @adapter: the adapter
9124  *
9125  *      Initialize adapter SW state for the various HW modules, set initial
9126  *      values for some adapter tunables, take PHYs out of reset, and
9127  *      initialize the MDIO interface.
9128  */
9129 int t4_prep_adapter(struct adapter *adapter)
9130 {
9131         int ret, ver;
9132         uint16_t device_id;
9133         u32 pl_rev;
9134
9135         get_pci_mode(adapter, &adapter->params.pci);
9136         pl_rev = REV_G(t4_read_reg(adapter, PL_REV_A));
9137
9138         ret = t4_get_flash_params(adapter);
9139         if (ret < 0) {
9140                 dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret);
9141                 return ret;
9142         }
9143
9144         /* Retrieve adapter's device ID
9145          */
9146         pci_read_config_word(adapter->pdev, PCI_DEVICE_ID, &device_id);
9147         ver = device_id >> 12;
9148         adapter->params.chip = 0;
9149         switch (ver) {
9150         case CHELSIO_T4:
9151                 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
9152                 adapter->params.arch.sge_fl_db = DBPRIO_F;
9153                 adapter->params.arch.mps_tcam_size =
9154                                  NUM_MPS_CLS_SRAM_L_INSTANCES;
9155                 adapter->params.arch.mps_rplc_size = 128;
9156                 adapter->params.arch.nchan = NCHAN;
9157                 adapter->params.arch.pm_stats_cnt = PM_NSTATS;
9158                 adapter->params.arch.vfcount = 128;
9159                 /* Congestion map is for 4 channels so that
9160                  * MPS can have 4 priority per port.
9161                  */
9162                 adapter->params.arch.cng_ch_bits_log = 2;
9163                 break;
9164         case CHELSIO_T5:
9165                 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
9166                 adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F;
9167                 adapter->params.arch.mps_tcam_size =
9168                                  NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
9169                 adapter->params.arch.mps_rplc_size = 128;
9170                 adapter->params.arch.nchan = NCHAN;
9171                 adapter->params.arch.pm_stats_cnt = PM_NSTATS;
9172                 adapter->params.arch.vfcount = 128;
9173                 adapter->params.arch.cng_ch_bits_log = 2;
9174                 break;
9175         case CHELSIO_T6:
9176                 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
9177                 adapter->params.arch.sge_fl_db = 0;
9178                 adapter->params.arch.mps_tcam_size =
9179                                  NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
9180                 adapter->params.arch.mps_rplc_size = 256;
9181                 adapter->params.arch.nchan = 2;
9182                 adapter->params.arch.pm_stats_cnt = T6_PM_NSTATS;
9183                 adapter->params.arch.vfcount = 256;
9184                 /* Congestion map will be for 2 channels so that
9185                  * MPS can have 8 priority per port.
9186                  */
9187                 adapter->params.arch.cng_ch_bits_log = 3;
9188                 break;
9189         default:
9190                 dev_err(adapter->pdev_dev, "Device %d is not supported\n",
9191                         device_id);
9192                 return -EINVAL;
9193         }
9194
9195         adapter->params.cim_la_size = CIMLA_SIZE;
9196         init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
9197
9198         /*
9199          * Default port for debugging in case we can't reach FW.
9200          */
9201         adapter->params.nports = 1;
9202         adapter->params.portvec = 1;
9203         adapter->params.vpd.cclk = 50000;
9204
9205         /* Set PCIe completion timeout to 4 seconds. */
9206         pcie_capability_clear_and_set_word(adapter->pdev, PCI_EXP_DEVCTL2,
9207                                            PCI_EXP_DEVCTL2_COMP_TIMEOUT, 0xd);
9208         return 0;
9209 }
9210
9211 /**
9212  *      t4_shutdown_adapter - shut down adapter, host & wire
9213  *      @adapter: the adapter
9214  *
9215  *      Perform an emergency shutdown of the adapter and stop it from
9216  *      continuing any further communication on the ports or DMA to the
9217  *      host.  This is typically used when the adapter and/or firmware
9218  *      have crashed and we want to prevent any further accidental
9219  *      communication with the rest of the world.  This will also force
9220  *      the port Link Status to go down -- if register writes work --
9221  *      which should help our peers figure out that we're down.
9222  */
9223 int t4_shutdown_adapter(struct adapter *adapter)
9224 {
9225         int port;
9226
9227         t4_intr_disable(adapter);
9228         t4_write_reg(adapter, DBG_GPIO_EN_A, 0);
9229         for_each_port(adapter, port) {
9230                 u32 a_port_cfg = is_t4(adapter->params.chip) ?
9231                                        PORT_REG(port, XGMAC_PORT_CFG_A) :
9232                                        T5_PORT_REG(port, MAC_PORT_CFG_A);
9233
9234                 t4_write_reg(adapter, a_port_cfg,
9235                              t4_read_reg(adapter, a_port_cfg)
9236                              & ~SIGNAL_DET_V(1));
9237         }
9238         t4_set_reg_field(adapter, SGE_CONTROL_A, GLOBALENABLE_F, 0);
9239
9240         return 0;
9241 }
9242
9243 /**
9244  *      t4_bar2_sge_qregs - return BAR2 SGE Queue register information
9245  *      @adapter: the adapter
9246  *      @qid: the Queue ID
9247  *      @qtype: the Ingress or Egress type for @qid
9248  *      @user: true if this request is for a user mode queue
9249  *      @pbar2_qoffset: BAR2 Queue Offset
9250  *      @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
9251  *
9252  *      Returns the BAR2 SGE Queue Registers information associated with the
9253  *      indicated Absolute Queue ID.  These are passed back in return value
9254  *      pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
9255  *      and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
9256  *
9257  *      This may return an error which indicates that BAR2 SGE Queue
9258  *      registers aren't available.  If an error is not returned, then the
9259  *      following values are returned:
9260  *
9261  *        *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
9262  *        *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
9263  *
9264  *      If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
9265  *      require the "Inferred Queue ID" ability may be used.  E.g. the
9266  *      Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
9267  *      then these "Inferred Queue ID" register may not be used.
9268  */
9269 int t4_bar2_sge_qregs(struct adapter *adapter,
9270                       unsigned int qid,
9271                       enum t4_bar2_qtype qtype,
9272                       int user,
9273                       u64 *pbar2_qoffset,
9274                       unsigned int *pbar2_qid)
9275 {
9276         unsigned int page_shift, page_size, qpp_shift, qpp_mask;
9277         u64 bar2_page_offset, bar2_qoffset;
9278         unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
9279
9280         /* T4 doesn't support BAR2 SGE Queue registers for kernel mode queues */
9281         if (!user && is_t4(adapter->params.chip))
9282                 return -EINVAL;
9283
9284         /* Get our SGE Page Size parameters.
9285          */
9286         page_shift = adapter->params.sge.hps + 10;
9287         page_size = 1 << page_shift;
9288
9289         /* Get the right Queues per Page parameters for our Queue.
9290          */
9291         qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
9292                      ? adapter->params.sge.eq_qpp
9293                      : adapter->params.sge.iq_qpp);
9294         qpp_mask = (1 << qpp_shift) - 1;
9295
9296         /*  Calculate the basics of the BAR2 SGE Queue register area:
9297          *  o The BAR2 page the Queue registers will be in.
9298          *  o The BAR2 Queue ID.
9299          *  o The BAR2 Queue ID Offset into the BAR2 page.
9300          */
9301         bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
9302         bar2_qid = qid & qpp_mask;
9303         bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
9304
9305         /* If the BAR2 Queue ID Offset is less than the Page Size, then the
9306          * hardware will infer the Absolute Queue ID simply from the writes to
9307          * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
9308          * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
9309          * write to the first BAR2 SGE Queue Area within the BAR2 Page with
9310          * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
9311          * from the BAR2 Page and BAR2 Queue ID.
9312          *
9313          * One important censequence of this is that some BAR2 SGE registers
9314          * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
9315          * there.  But other registers synthesize the SGE Queue ID purely
9316          * from the writes to the registers -- the Write Combined Doorbell
9317          * Buffer is a good example.  These BAR2 SGE Registers are only
9318          * available for those BAR2 SGE Register areas where the SGE Absolute
9319          * Queue ID can be inferred from simple writes.
9320          */
9321         bar2_qoffset = bar2_page_offset;
9322         bar2_qinferred = (bar2_qid_offset < page_size);
9323         if (bar2_qinferred) {
9324                 bar2_qoffset += bar2_qid_offset;
9325                 bar2_qid = 0;
9326         }
9327
9328         *pbar2_qoffset = bar2_qoffset;
9329         *pbar2_qid = bar2_qid;
9330         return 0;
9331 }
9332
9333 /**
9334  *      t4_init_devlog_params - initialize adapter->params.devlog
9335  *      @adap: the adapter
9336  *
9337  *      Initialize various fields of the adapter's Firmware Device Log
9338  *      Parameters structure.
9339  */
9340 int t4_init_devlog_params(struct adapter *adap)
9341 {
9342         struct devlog_params *dparams = &adap->params.devlog;
9343         u32 pf_dparams;
9344         unsigned int devlog_meminfo;
9345         struct fw_devlog_cmd devlog_cmd;
9346         int ret;
9347
9348         /* If we're dealing with newer firmware, the Device Log Parameters
9349          * are stored in a designated register which allows us to access the
9350          * Device Log even if we can't talk to the firmware.
9351          */
9352         pf_dparams =
9353                 t4_read_reg(adap, PCIE_FW_REG(PCIE_FW_PF_A, PCIE_FW_PF_DEVLOG));
9354         if (pf_dparams) {
9355                 unsigned int nentries, nentries128;
9356
9357                 dparams->memtype = PCIE_FW_PF_DEVLOG_MEMTYPE_G(pf_dparams);
9358                 dparams->start = PCIE_FW_PF_DEVLOG_ADDR16_G(pf_dparams) << 4;
9359
9360                 nentries128 = PCIE_FW_PF_DEVLOG_NENTRIES128_G(pf_dparams);
9361                 nentries = (nentries128 + 1) * 128;
9362                 dparams->size = nentries * sizeof(struct fw_devlog_e);
9363
9364                 return 0;
9365         }
9366
9367         /* Otherwise, ask the firmware for it's Device Log Parameters.
9368          */
9369         memset(&devlog_cmd, 0, sizeof(devlog_cmd));
9370         devlog_cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_DEVLOG_CMD) |
9371                                              FW_CMD_REQUEST_F | FW_CMD_READ_F);
9372         devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
9373         ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
9374                          &devlog_cmd);
9375         if (ret)
9376                 return ret;
9377
9378         devlog_meminfo =
9379                 be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
9380         dparams->memtype = FW_DEVLOG_CMD_MEMTYPE_DEVLOG_G(devlog_meminfo);
9381         dparams->start = FW_DEVLOG_CMD_MEMADDR16_DEVLOG_G(devlog_meminfo) << 4;
9382         dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
9383
9384         return 0;
9385 }
9386
9387 /**
9388  *      t4_init_sge_params - initialize adap->params.sge
9389  *      @adapter: the adapter
9390  *
9391  *      Initialize various fields of the adapter's SGE Parameters structure.
9392  */
9393 int t4_init_sge_params(struct adapter *adapter)
9394 {
9395         struct sge_params *sge_params = &adapter->params.sge;
9396         u32 hps, qpp;
9397         unsigned int s_hps, s_qpp;
9398
9399         /* Extract the SGE Page Size for our PF.
9400          */
9401         hps = t4_read_reg(adapter, SGE_HOST_PAGE_SIZE_A);
9402         s_hps = (HOSTPAGESIZEPF0_S +
9403                  (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * adapter->pf);
9404         sge_params->hps = ((hps >> s_hps) & HOSTPAGESIZEPF0_M);
9405
9406         /* Extract the SGE Egress and Ingess Queues Per Page for our PF.
9407          */
9408         s_qpp = (QUEUESPERPAGEPF0_S +
9409                 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * adapter->pf);
9410         qpp = t4_read_reg(adapter, SGE_EGRESS_QUEUES_PER_PAGE_PF_A);
9411         sge_params->eq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
9412         qpp = t4_read_reg(adapter, SGE_INGRESS_QUEUES_PER_PAGE_PF_A);
9413         sge_params->iq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
9414
9415         return 0;
9416 }
9417
9418 /**
9419  *      t4_init_tp_params - initialize adap->params.tp
9420  *      @adap: the adapter
9421  *      @sleep_ok: if true we may sleep while awaiting command completion
9422  *
9423  *      Initialize various fields of the adapter's TP Parameters structure.
9424  */
9425 int t4_init_tp_params(struct adapter *adap, bool sleep_ok)
9426 {
9427         u32 param, val, v;
9428         int chan, ret;
9429
9430
9431         v = t4_read_reg(adap, TP_TIMER_RESOLUTION_A);
9432         adap->params.tp.tre = TIMERRESOLUTION_G(v);
9433         adap->params.tp.dack_re = DELAYEDACKRESOLUTION_G(v);
9434
9435         /* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
9436         for (chan = 0; chan < NCHAN; chan++)
9437                 adap->params.tp.tx_modq[chan] = chan;
9438
9439         /* Cache the adapter's Compressed Filter Mode/Mask and global Ingress
9440          * Configuration.
9441          */
9442         param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
9443                  FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FILTER) |
9444                  FW_PARAMS_PARAM_Y_V(FW_PARAM_DEV_FILTER_MODE_MASK));
9445
9446         /* Read current value */
9447         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
9448                               &param, &val);
9449         if (ret == 0) {
9450                 dev_info(adap->pdev_dev,
9451                          "Current filter mode/mask 0x%x:0x%x\n",
9452                          FW_PARAMS_PARAM_FILTER_MODE_G(val),
9453                          FW_PARAMS_PARAM_FILTER_MASK_G(val));
9454                 adap->params.tp.vlan_pri_map =
9455                         FW_PARAMS_PARAM_FILTER_MODE_G(val);
9456                 adap->params.tp.filter_mask =
9457                         FW_PARAMS_PARAM_FILTER_MASK_G(val);
9458         } else {
9459                 dev_info(adap->pdev_dev,
9460                          "Failed to read filter mode/mask via fw api, using indirect-reg-read\n");
9461
9462                 /* Incase of older-fw (which doesn't expose the api
9463                  * FW_PARAM_DEV_FILTER_MODE_MASK) and newer-driver (which uses
9464                  * the fw api) combination, fall-back to older method of reading
9465                  * the filter mode from indirect-register
9466                  */
9467                 t4_tp_pio_read(adap, &adap->params.tp.vlan_pri_map, 1,
9468                                TP_VLAN_PRI_MAP_A, sleep_ok);
9469
9470                 /* With the older-fw and newer-driver combination we might run
9471                  * into an issue when user wants to use hash filter region but
9472                  * the filter_mask is zero, in this case filter_mask validation
9473                  * is tough. To avoid that we set the filter_mask same as filter
9474                  * mode, which will behave exactly as the older way of ignoring
9475                  * the filter mask validation.
9476                  */
9477                 adap->params.tp.filter_mask = adap->params.tp.vlan_pri_map;
9478         }
9479
9480         t4_tp_pio_read(adap, &adap->params.tp.ingress_config, 1,
9481                        TP_INGRESS_CONFIG_A, sleep_ok);
9482
9483         /* For T6, cache the adapter's compressed error vector
9484          * and passing outer header info for encapsulated packets.
9485          */
9486         if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) {
9487                 v = t4_read_reg(adap, TP_OUT_CONFIG_A);
9488                 adap->params.tp.rx_pkt_encap = (v & CRXPKTENC_F) ? 1 : 0;
9489         }
9490
9491         /* Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
9492          * shift positions of several elements of the Compressed Filter Tuple
9493          * for this adapter which we need frequently ...
9494          */
9495         adap->params.tp.fcoe_shift = t4_filter_field_shift(adap, FCOE_F);
9496         adap->params.tp.port_shift = t4_filter_field_shift(adap, PORT_F);
9497         adap->params.tp.vnic_shift = t4_filter_field_shift(adap, VNIC_ID_F);
9498         adap->params.tp.vlan_shift = t4_filter_field_shift(adap, VLAN_F);
9499         adap->params.tp.tos_shift = t4_filter_field_shift(adap, TOS_F);
9500         adap->params.tp.protocol_shift = t4_filter_field_shift(adap,
9501                                                                PROTOCOL_F);
9502         adap->params.tp.ethertype_shift = t4_filter_field_shift(adap,
9503                                                                 ETHERTYPE_F);
9504         adap->params.tp.macmatch_shift = t4_filter_field_shift(adap,
9505                                                                MACMATCH_F);
9506         adap->params.tp.matchtype_shift = t4_filter_field_shift(adap,
9507                                                                 MPSHITTYPE_F);
9508         adap->params.tp.frag_shift = t4_filter_field_shift(adap,
9509                                                            FRAGMENTATION_F);
9510
9511         /* If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID
9512          * represents the presence of an Outer VLAN instead of a VNIC ID.
9513          */
9514         if ((adap->params.tp.ingress_config & VNIC_F) == 0)
9515                 adap->params.tp.vnic_shift = -1;
9516
9517         v = t4_read_reg(adap, LE_3_DB_HASH_MASK_GEN_IPV4_T6_A);
9518         adap->params.tp.hash_filter_mask = v;
9519         v = t4_read_reg(adap, LE_4_DB_HASH_MASK_GEN_IPV4_T6_A);
9520         adap->params.tp.hash_filter_mask |= ((u64)v << 32);
9521         return 0;
9522 }
9523
9524 /**
9525  *      t4_filter_field_shift - calculate filter field shift
9526  *      @adap: the adapter
9527  *      @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
9528  *
9529  *      Return the shift position of a filter field within the Compressed
9530  *      Filter Tuple.  The filter field is specified via its selection bit
9531  *      within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
9532  */
9533 int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
9534 {
9535         unsigned int filter_mode = adap->params.tp.vlan_pri_map;
9536         unsigned int sel;
9537         int field_shift;
9538
9539         if ((filter_mode & filter_sel) == 0)
9540                 return -1;
9541
9542         for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
9543                 switch (filter_mode & sel) {
9544                 case FCOE_F:
9545                         field_shift += FT_FCOE_W;
9546                         break;
9547                 case PORT_F:
9548                         field_shift += FT_PORT_W;
9549                         break;
9550                 case VNIC_ID_F:
9551                         field_shift += FT_VNIC_ID_W;
9552                         break;
9553                 case VLAN_F:
9554                         field_shift += FT_VLAN_W;
9555                         break;
9556                 case TOS_F:
9557                         field_shift += FT_TOS_W;
9558                         break;
9559                 case PROTOCOL_F:
9560                         field_shift += FT_PROTOCOL_W;
9561                         break;
9562                 case ETHERTYPE_F:
9563                         field_shift += FT_ETHERTYPE_W;
9564                         break;
9565                 case MACMATCH_F:
9566                         field_shift += FT_MACMATCH_W;
9567                         break;
9568                 case MPSHITTYPE_F:
9569                         field_shift += FT_MPSHITTYPE_W;
9570                         break;
9571                 case FRAGMENTATION_F:
9572                         field_shift += FT_FRAGMENTATION_W;
9573                         break;
9574                 }
9575         }
9576         return field_shift;
9577 }
9578
9579 int t4_init_rss_mode(struct adapter *adap, int mbox)
9580 {
9581         int i, ret;
9582         struct fw_rss_vi_config_cmd rvc;
9583
9584         memset(&rvc, 0, sizeof(rvc));
9585
9586         for_each_port(adap, i) {
9587                 struct port_info *p = adap2pinfo(adap, i);
9588
9589                 rvc.op_to_viid =
9590                         cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
9591                                     FW_CMD_REQUEST_F | FW_CMD_READ_F |
9592                                     FW_RSS_VI_CONFIG_CMD_VIID_V(p->viid));
9593                 rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc));
9594                 ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
9595                 if (ret)
9596                         return ret;
9597                 p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen);
9598         }
9599         return 0;
9600 }
9601
9602 /**
9603  *      t4_init_portinfo - allocate a virtual interface and initialize port_info
9604  *      @pi: the port_info
9605  *      @mbox: mailbox to use for the FW command
9606  *      @port: physical port associated with the VI
9607  *      @pf: the PF owning the VI
9608  *      @vf: the VF owning the VI
9609  *      @mac: the MAC address of the VI
9610  *
9611  *      Allocates a virtual interface for the given physical port.  If @mac is
9612  *      not %NULL it contains the MAC address of the VI as assigned by FW.
9613  *      @mac should be large enough to hold an Ethernet address.
9614  *      Returns < 0 on error.
9615  */
9616 int t4_init_portinfo(struct port_info *pi, int mbox,
9617                      int port, int pf, int vf, u8 mac[])
9618 {
9619         struct adapter *adapter = pi->adapter;
9620         unsigned int fw_caps = adapter->params.fw_caps_support;
9621         struct fw_port_cmd cmd;
9622         unsigned int rss_size;
9623         enum fw_port_type port_type;
9624         int mdio_addr;
9625         fw_port_cap32_t pcaps, acaps;
9626         u8 vivld = 0, vin = 0;
9627         int ret;
9628
9629         /* If we haven't yet determined whether we're talking to Firmware
9630          * which knows the new 32-bit Port Capabilities, it's time to find
9631          * out now.  This will also tell new Firmware to send us Port Status
9632          * Updates using the new 32-bit Port Capabilities version of the
9633          * Port Information message.
9634          */
9635         if (fw_caps == FW_CAPS_UNKNOWN) {
9636                 u32 param, val;
9637
9638                 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
9639                          FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_PORT_CAPS32));
9640                 val = 1;
9641                 ret = t4_set_params(adapter, mbox, pf, vf, 1, &param, &val);
9642                 fw_caps = (ret == 0 ? FW_CAPS32 : FW_CAPS16);
9643                 adapter->params.fw_caps_support = fw_caps;
9644         }
9645
9646         memset(&cmd, 0, sizeof(cmd));
9647         cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
9648                                        FW_CMD_REQUEST_F | FW_CMD_READ_F |
9649                                        FW_PORT_CMD_PORTID_V(port));
9650         cmd.action_to_len16 = cpu_to_be32(
9651                 FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
9652                                      ? FW_PORT_ACTION_GET_PORT_INFO
9653                                      : FW_PORT_ACTION_GET_PORT_INFO32) |
9654                 FW_LEN16(cmd));
9655         ret = t4_wr_mbox(pi->adapter, mbox, &cmd, sizeof(cmd), &cmd);
9656         if (ret)
9657                 return ret;
9658
9659         /* Extract the various fields from the Port Information message.
9660          */
9661         if (fw_caps == FW_CAPS16) {
9662                 u32 lstatus = be32_to_cpu(cmd.u.info.lstatus_to_modtype);
9663
9664                 port_type = FW_PORT_CMD_PTYPE_G(lstatus);
9665                 mdio_addr = ((lstatus & FW_PORT_CMD_MDIOCAP_F)
9666                              ? FW_PORT_CMD_MDIOADDR_G(lstatus)
9667                              : -1);
9668                 pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.pcap));
9669                 acaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.acap));
9670         } else {
9671                 u32 lstatus32 = be32_to_cpu(cmd.u.info32.lstatus32_to_cbllen32);
9672
9673                 port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32);
9674                 mdio_addr = ((lstatus32 & FW_PORT_CMD_MDIOCAP32_F)
9675                              ? FW_PORT_CMD_MDIOADDR32_G(lstatus32)
9676                              : -1);
9677                 pcaps = be32_to_cpu(cmd.u.info32.pcaps32);
9678                 acaps = be32_to_cpu(cmd.u.info32.acaps32);
9679         }
9680
9681         ret = t4_alloc_vi(pi->adapter, mbox, port, pf, vf, 1, mac, &rss_size,
9682                           &vivld, &vin);
9683         if (ret < 0)
9684                 return ret;
9685
9686         pi->viid = ret;
9687         pi->tx_chan = port;
9688         pi->lport = port;
9689         pi->rss_size = rss_size;
9690         pi->rx_cchan = t4_get_tp_e2c_map(pi->adapter, port);
9691
9692         /* If fw supports returning the VIN as part of FW_VI_CMD,
9693          * save the returned values.
9694          */
9695         if (adapter->params.viid_smt_extn_support) {
9696                 pi->vivld = vivld;
9697                 pi->vin = vin;
9698         } else {
9699                 /* Retrieve the values from VIID */
9700                 pi->vivld = FW_VIID_VIVLD_G(pi->viid);
9701                 pi->vin =  FW_VIID_VIN_G(pi->viid);
9702         }
9703
9704         pi->port_type = port_type;
9705         pi->mdio_addr = mdio_addr;
9706         pi->mod_type = FW_PORT_MOD_TYPE_NA;
9707
9708         init_link_config(&pi->link_cfg, pcaps, acaps);
9709         return 0;
9710 }
9711
9712 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf)
9713 {
9714         u8 addr[6];
9715         int ret, i, j = 0;
9716
9717         for_each_port(adap, i) {
9718                 struct port_info *pi = adap2pinfo(adap, i);
9719
9720                 while ((adap->params.portvec & (1 << j)) == 0)
9721                         j++;
9722
9723                 ret = t4_init_portinfo(pi, mbox, j, pf, vf, addr);
9724                 if (ret)
9725                         return ret;
9726
9727                 memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN);
9728                 j++;
9729         }
9730         return 0;
9731 }
9732
9733 int t4_init_port_mirror(struct port_info *pi, u8 mbox, u8 port, u8 pf, u8 vf,
9734                         u16 *mirror_viid)
9735 {
9736         int ret;
9737
9738         ret = t4_alloc_vi(pi->adapter, mbox, port, pf, vf, 1, NULL, NULL,
9739                           NULL, NULL);
9740         if (ret < 0)
9741                 return ret;
9742
9743         if (mirror_viid)
9744                 *mirror_viid = ret;
9745
9746         return 0;
9747 }
9748
9749 /**
9750  *      t4_read_cimq_cfg - read CIM queue configuration
9751  *      @adap: the adapter
9752  *      @base: holds the queue base addresses in bytes
9753  *      @size: holds the queue sizes in bytes
9754  *      @thres: holds the queue full thresholds in bytes
9755  *
9756  *      Returns the current configuration of the CIM queues, starting with
9757  *      the IBQs, then the OBQs.
9758  */
9759 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
9760 {
9761         unsigned int i, v;
9762         int cim_num_obq = is_t4(adap->params.chip) ?
9763                                 CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
9764
9765         for (i = 0; i < CIM_NUM_IBQ; i++) {
9766                 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, IBQSELECT_F |
9767                              QUENUMSELECT_V(i));
9768                 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
9769                 /* value is in 256-byte units */
9770                 *base++ = CIMQBASE_G(v) * 256;
9771                 *size++ = CIMQSIZE_G(v) * 256;
9772                 *thres++ = QUEFULLTHRSH_G(v) * 8; /* 8-byte unit */
9773         }
9774         for (i = 0; i < cim_num_obq; i++) {
9775                 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
9776                              QUENUMSELECT_V(i));
9777                 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
9778                 /* value is in 256-byte units */
9779                 *base++ = CIMQBASE_G(v) * 256;
9780                 *size++ = CIMQSIZE_G(v) * 256;
9781         }
9782 }
9783
9784 /**
9785  *      t4_read_cim_ibq - read the contents of a CIM inbound queue
9786  *      @adap: the adapter
9787  *      @qid: the queue index
9788  *      @data: where to store the queue contents
9789  *      @n: capacity of @data in 32-bit words
9790  *
9791  *      Reads the contents of the selected CIM queue starting at address 0 up
9792  *      to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
9793  *      error and the number of 32-bit words actually read on success.
9794  */
9795 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
9796 {
9797         int i, err, attempts;
9798         unsigned int addr;
9799         const unsigned int nwords = CIM_IBQ_SIZE * 4;
9800
9801         if (qid > 5 || (n & 3))
9802                 return -EINVAL;
9803
9804         addr = qid * nwords;
9805         if (n > nwords)
9806                 n = nwords;
9807
9808         /* It might take 3-10ms before the IBQ debug read access is allowed.
9809          * Wait for 1 Sec with a delay of 1 usec.
9810          */
9811         attempts = 1000000;
9812
9813         for (i = 0; i < n; i++, addr++) {
9814                 t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, IBQDBGADDR_V(addr) |
9815                              IBQDBGEN_F);
9816                 err = t4_wait_op_done(adap, CIM_IBQ_DBG_CFG_A, IBQDBGBUSY_F, 0,
9817                                       attempts, 1);
9818                 if (err)
9819                         return err;
9820                 *data++ = t4_read_reg(adap, CIM_IBQ_DBG_DATA_A);
9821         }
9822         t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, 0);
9823         return i;
9824 }
9825
9826 /**
9827  *      t4_read_cim_obq - read the contents of a CIM outbound queue
9828  *      @adap: the adapter
9829  *      @qid: the queue index
9830  *      @data: where to store the queue contents
9831  *      @n: capacity of @data in 32-bit words
9832  *
9833  *      Reads the contents of the selected CIM queue starting at address 0 up
9834  *      to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
9835  *      error and the number of 32-bit words actually read on success.
9836  */
9837 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
9838 {
9839         int i, err;
9840         unsigned int addr, v, nwords;
9841         int cim_num_obq = is_t4(adap->params.chip) ?
9842                                 CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
9843
9844         if ((qid > (cim_num_obq - 1)) || (n & 3))
9845                 return -EINVAL;
9846
9847         t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
9848                      QUENUMSELECT_V(qid));
9849         v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
9850
9851         addr = CIMQBASE_G(v) * 64;    /* muliple of 256 -> muliple of 4 */
9852         nwords = CIMQSIZE_G(v) * 64;  /* same */
9853         if (n > nwords)
9854                 n = nwords;
9855
9856         for (i = 0; i < n; i++, addr++) {
9857                 t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, OBQDBGADDR_V(addr) |
9858                              OBQDBGEN_F);
9859                 err = t4_wait_op_done(adap, CIM_OBQ_DBG_CFG_A, OBQDBGBUSY_F, 0,
9860                                       2, 1);
9861                 if (err)
9862                         return err;
9863                 *data++ = t4_read_reg(adap, CIM_OBQ_DBG_DATA_A);
9864         }
9865         t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, 0);
9866         return i;
9867 }
9868
9869 /**
9870  *      t4_cim_read - read a block from CIM internal address space
9871  *      @adap: the adapter
9872  *      @addr: the start address within the CIM address space
9873  *      @n: number of words to read
9874  *      @valp: where to store the result
9875  *
9876  *      Reads a block of 4-byte words from the CIM intenal address space.
9877  */
9878 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
9879                 unsigned int *valp)
9880 {
9881         int ret = 0;
9882
9883         if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
9884                 return -EBUSY;
9885
9886         for ( ; !ret && n--; addr += 4) {
9887                 t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr);
9888                 ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
9889                                       0, 5, 2);
9890                 if (!ret)
9891                         *valp++ = t4_read_reg(adap, CIM_HOST_ACC_DATA_A);
9892         }
9893         return ret;
9894 }
9895
9896 /**
9897  *      t4_cim_write - write a block into CIM internal address space
9898  *      @adap: the adapter
9899  *      @addr: the start address within the CIM address space
9900  *      @n: number of words to write
9901  *      @valp: set of values to write
9902  *
9903  *      Writes a block of 4-byte words into the CIM intenal address space.
9904  */
9905 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
9906                  const unsigned int *valp)
9907 {
9908         int ret = 0;
9909
9910         if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
9911                 return -EBUSY;
9912
9913         for ( ; !ret && n--; addr += 4) {
9914                 t4_write_reg(adap, CIM_HOST_ACC_DATA_A, *valp++);
9915                 t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr | HOSTWRITE_F);
9916                 ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
9917                                       0, 5, 2);
9918         }
9919         return ret;
9920 }
9921
9922 static int t4_cim_write1(struct adapter *adap, unsigned int addr,
9923                          unsigned int val)
9924 {
9925         return t4_cim_write(adap, addr, 1, &val);
9926 }
9927
9928 /**
9929  *      t4_cim_read_la - read CIM LA capture buffer
9930  *      @adap: the adapter
9931  *      @la_buf: where to store the LA data
9932  *      @wrptr: the HW write pointer within the capture buffer
9933  *
9934  *      Reads the contents of the CIM LA buffer with the most recent entry at
9935  *      the end of the returned data and with the entry at @wrptr first.
9936  *      We try to leave the LA in the running state we find it in.
9937  */
9938 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
9939 {
9940         int i, ret;
9941         unsigned int cfg, val, idx;
9942
9943         ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &cfg);
9944         if (ret)
9945                 return ret;
9946
9947         if (cfg & UPDBGLAEN_F) {        /* LA is running, freeze it */
9948                 ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 0);
9949                 if (ret)
9950                         return ret;
9951         }
9952
9953         ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
9954         if (ret)
9955                 goto restart;
9956
9957         idx = UPDBGLAWRPTR_G(val);
9958         if (wrptr)
9959                 *wrptr = idx;
9960
9961         for (i = 0; i < adap->params.cim_la_size; i++) {
9962                 ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
9963                                     UPDBGLARDPTR_V(idx) | UPDBGLARDEN_F);
9964                 if (ret)
9965                         break;
9966                 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
9967                 if (ret)
9968                         break;
9969                 if (val & UPDBGLARDEN_F) {
9970                         ret = -ETIMEDOUT;
9971                         break;
9972                 }
9973                 ret = t4_cim_read(adap, UP_UP_DBG_LA_DATA_A, 1, &la_buf[i]);
9974                 if (ret)
9975                         break;
9976
9977                 /* Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to
9978                  * identify the 32-bit portion of the full 312-bit data
9979                  */
9980                 if (is_t6(adap->params.chip) && (idx & 0xf) >= 9)
9981                         idx = (idx & 0xff0) + 0x10;
9982                 else
9983                         idx++;
9984                 /* address can't exceed 0xfff */
9985                 idx &= UPDBGLARDPTR_M;
9986         }
9987 restart:
9988         if (cfg & UPDBGLAEN_F) {
9989                 int r = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
9990                                       cfg & ~UPDBGLARDEN_F);
9991                 if (!ret)
9992                         ret = r;
9993         }
9994         return ret;
9995 }
9996
9997 /**
9998  *      t4_tp_read_la - read TP LA capture buffer
9999  *      @adap: the adapter
10000  *      @la_buf: where to store the LA data
10001  *      @wrptr: the HW write pointer within the capture buffer
10002  *
10003  *      Reads the contents of the TP LA buffer with the most recent entry at
10004  *      the end of the returned data and with the entry at @wrptr first.
10005  *      We leave the LA in the running state we find it in.
10006  */
10007 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
10008 {
10009         bool last_incomplete;
10010         unsigned int i, cfg, val, idx;
10011
10012         cfg = t4_read_reg(adap, TP_DBG_LA_CONFIG_A) & 0xffff;
10013         if (cfg & DBGLAENABLE_F)                        /* freeze LA */
10014                 t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
10015                              adap->params.tp.la_mask | (cfg ^ DBGLAENABLE_F));
10016
10017         val = t4_read_reg(adap, TP_DBG_LA_CONFIG_A);
10018         idx = DBGLAWPTR_G(val);
10019         last_incomplete = DBGLAMODE_G(val) >= 2 && (val & DBGLAWHLF_F) == 0;
10020         if (last_incomplete)
10021                 idx = (idx + 1) & DBGLARPTR_M;
10022         if (wrptr)
10023                 *wrptr = idx;
10024
10025         val &= 0xffff;
10026         val &= ~DBGLARPTR_V(DBGLARPTR_M);
10027         val |= adap->params.tp.la_mask;
10028
10029         for (i = 0; i < TPLA_SIZE; i++) {
10030                 t4_write_reg(adap, TP_DBG_LA_CONFIG_A, DBGLARPTR_V(idx) | val);
10031                 la_buf[i] = t4_read_reg64(adap, TP_DBG_LA_DATAL_A);
10032                 idx = (idx + 1) & DBGLARPTR_M;
10033         }
10034
10035         /* Wipe out last entry if it isn't valid */
10036         if (last_incomplete)
10037                 la_buf[TPLA_SIZE - 1] = ~0ULL;
10038
10039         if (cfg & DBGLAENABLE_F)                    /* restore running state */
10040                 t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
10041                              cfg | adap->params.tp.la_mask);
10042 }
10043
10044 /* SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
10045  * seconds).  If we find one of the SGE Ingress DMA State Machines in the same
10046  * state for more than the Warning Threshold then we'll issue a warning about
10047  * a potential hang.  We'll repeat the warning as the SGE Ingress DMA Channel
10048  * appears to be hung every Warning Repeat second till the situation clears.
10049  * If the situation clears, we'll note that as well.
10050  */
10051 #define SGE_IDMA_WARN_THRESH 1
10052 #define SGE_IDMA_WARN_REPEAT 300
10053
10054 /**
10055  *      t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
10056  *      @adapter: the adapter
10057  *      @idma: the adapter IDMA Monitor state
10058  *
10059  *      Initialize the state of an SGE Ingress DMA Monitor.
10060  */
10061 void t4_idma_monitor_init(struct adapter *adapter,
10062                           struct sge_idma_monitor_state *idma)
10063 {
10064         /* Initialize the state variables for detecting an SGE Ingress DMA
10065          * hang.  The SGE has internal counters which count up on each clock
10066          * tick whenever the SGE finds its Ingress DMA State Engines in the
10067          * same state they were on the previous clock tick.  The clock used is
10068          * the Core Clock so we have a limit on the maximum "time" they can
10069          * record; typically a very small number of seconds.  For instance,
10070          * with a 600MHz Core Clock, we can only count up to a bit more than
10071          * 7s.  So we'll synthesize a larger counter in order to not run the
10072          * risk of having the "timers" overflow and give us the flexibility to
10073          * maintain a Hung SGE State Machine of our own which operates across
10074          * a longer time frame.
10075          */
10076         idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
10077         idma->idma_stalled[0] = 0;
10078         idma->idma_stalled[1] = 0;
10079 }
10080
10081 /**
10082  *      t4_idma_monitor - monitor SGE Ingress DMA state
10083  *      @adapter: the adapter
10084  *      @idma: the adapter IDMA Monitor state
10085  *      @hz: number of ticks/second
10086  *      @ticks: number of ticks since the last IDMA Monitor call
10087  */
10088 void t4_idma_monitor(struct adapter *adapter,
10089                      struct sge_idma_monitor_state *idma,
10090                      int hz, int ticks)
10091 {
10092         int i, idma_same_state_cnt[2];
10093
10094          /* Read the SGE Debug Ingress DMA Same State Count registers.  These
10095           * are counters inside the SGE which count up on each clock when the
10096           * SGE finds its Ingress DMA State Engines in the same states they
10097           * were in the previous clock.  The counters will peg out at
10098           * 0xffffffff without wrapping around so once they pass the 1s
10099           * threshold they'll stay above that till the IDMA state changes.
10100           */
10101         t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 13);
10102         idma_same_state_cnt[0] = t4_read_reg(adapter, SGE_DEBUG_DATA_HIGH_A);
10103         idma_same_state_cnt[1] = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
10104
10105         for (i = 0; i < 2; i++) {
10106                 u32 debug0, debug11;
10107
10108                 /* If the Ingress DMA Same State Counter ("timer") is less
10109                  * than 1s, then we can reset our synthesized Stall Timer and
10110                  * continue.  If we have previously emitted warnings about a
10111                  * potential stalled Ingress Queue, issue a note indicating
10112                  * that the Ingress Queue has resumed forward progress.
10113                  */
10114                 if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
10115                         if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH * hz)
10116                                 dev_warn(adapter->pdev_dev, "SGE idma%d, queue %u, "
10117                                          "resumed after %d seconds\n",
10118                                          i, idma->idma_qid[i],
10119                                          idma->idma_stalled[i] / hz);
10120                         idma->idma_stalled[i] = 0;
10121                         continue;
10122                 }
10123
10124                 /* Synthesize an SGE Ingress DMA Same State Timer in the Hz
10125                  * domain.  The first time we get here it'll be because we
10126                  * passed the 1s Threshold; each additional time it'll be
10127                  * because the RX Timer Callback is being fired on its regular
10128                  * schedule.
10129                  *
10130                  * If the stall is below our Potential Hung Ingress Queue
10131                  * Warning Threshold, continue.
10132                  */
10133                 if (idma->idma_stalled[i] == 0) {
10134                         idma->idma_stalled[i] = hz;
10135                         idma->idma_warn[i] = 0;
10136                 } else {
10137                         idma->idma_stalled[i] += ticks;
10138                         idma->idma_warn[i] -= ticks;
10139                 }
10140
10141                 if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH * hz)
10142                         continue;
10143
10144                 /* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
10145                  */
10146                 if (idma->idma_warn[i] > 0)
10147                         continue;
10148                 idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT * hz;
10149
10150                 /* Read and save the SGE IDMA State and Queue ID information.
10151                  * We do this every time in case it changes across time ...
10152                  * can't be too careful ...
10153                  */
10154                 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 0);
10155                 debug0 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
10156                 idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
10157
10158                 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 11);
10159                 debug11 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
10160                 idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
10161
10162                 dev_warn(adapter->pdev_dev, "SGE idma%u, queue %u, potentially stuck in "
10163                          "state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
10164                          i, idma->idma_qid[i], idma->idma_state[i],
10165                          idma->idma_stalled[i] / hz,
10166                          debug0, debug11);
10167                 t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
10168         }
10169 }
10170
10171 /**
10172  *      t4_load_cfg - download config file
10173  *      @adap: the adapter
10174  *      @cfg_data: the cfg text file to write
10175  *      @size: text file size
10176  *
10177  *      Write the supplied config text file to the card's serial flash.
10178  */
10179 int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
10180 {
10181         int ret, i, n, cfg_addr;
10182         unsigned int addr;
10183         unsigned int flash_cfg_start_sec;
10184         unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
10185
10186         cfg_addr = t4_flash_cfg_addr(adap);
10187         if (cfg_addr < 0)
10188                 return cfg_addr;
10189
10190         addr = cfg_addr;
10191         flash_cfg_start_sec = addr / SF_SEC_SIZE;
10192
10193         if (size > FLASH_CFG_MAX_SIZE) {
10194                 dev_err(adap->pdev_dev, "cfg file too large, max is %u bytes\n",
10195                         FLASH_CFG_MAX_SIZE);
10196                 return -EFBIG;
10197         }
10198
10199         i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE,    /* # of sectors spanned */
10200                          sf_sec_size);
10201         ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
10202                                      flash_cfg_start_sec + i - 1);
10203         /* If size == 0 then we're simply erasing the FLASH sectors associated
10204          * with the on-adapter Firmware Configuration File.
10205          */
10206         if (ret || size == 0)
10207                 goto out;
10208
10209         /* this will write to the flash up to SF_PAGE_SIZE at a time */
10210         for (i = 0; i < size; i += SF_PAGE_SIZE) {
10211                 if ((size - i) <  SF_PAGE_SIZE)
10212                         n = size - i;
10213                 else
10214                         n = SF_PAGE_SIZE;
10215                 ret = t4_write_flash(adap, addr, n, cfg_data);
10216                 if (ret)
10217                         goto out;
10218
10219                 addr += SF_PAGE_SIZE;
10220                 cfg_data += SF_PAGE_SIZE;
10221         }
10222
10223 out:
10224         if (ret)
10225                 dev_err(adap->pdev_dev, "config file %s failed %d\n",
10226                         (size == 0 ? "clear" : "download"), ret);
10227         return ret;
10228 }
10229
10230 /**
10231  *      t4_set_vf_mac - Set MAC address for the specified VF
10232  *      @adapter: The adapter
10233  *      @vf: one of the VFs instantiated by the specified PF
10234  *      @naddr: the number of MAC addresses
10235  *      @addr: the MAC address(es) to be set to the specified VF
10236  */
10237 int t4_set_vf_mac_acl(struct adapter *adapter, unsigned int vf,
10238                       unsigned int naddr, u8 *addr)
10239 {
10240         struct fw_acl_mac_cmd cmd;
10241
10242         memset(&cmd, 0, sizeof(cmd));
10243         cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_MAC_CMD) |
10244                                     FW_CMD_REQUEST_F |
10245                                     FW_CMD_WRITE_F |
10246                                     FW_ACL_MAC_CMD_PFN_V(adapter->pf) |
10247                                     FW_ACL_MAC_CMD_VFN_V(vf));
10248
10249         /* Note: Do not enable the ACL */
10250         cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd));
10251         cmd.nmac = naddr;
10252
10253         switch (adapter->pf) {
10254         case 3:
10255                 memcpy(cmd.macaddr3, addr, sizeof(cmd.macaddr3));
10256                 break;
10257         case 2:
10258                 memcpy(cmd.macaddr2, addr, sizeof(cmd.macaddr2));
10259                 break;
10260         case 1:
10261                 memcpy(cmd.macaddr1, addr, sizeof(cmd.macaddr1));
10262                 break;
10263         case 0:
10264                 memcpy(cmd.macaddr0, addr, sizeof(cmd.macaddr0));
10265                 break;
10266         }
10267
10268         return t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &cmd);
10269 }
10270
10271 /**
10272  * t4_read_pace_tbl - read the pace table
10273  * @adap: the adapter
10274  * @pace_vals: holds the returned values
10275  *
10276  * Returns the values of TP's pace table in microseconds.
10277  */
10278 void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED])
10279 {
10280         unsigned int i, v;
10281
10282         for (i = 0; i < NTX_SCHED; i++) {
10283                 t4_write_reg(adap, TP_PACE_TABLE_A, 0xffff0000 + i);
10284                 v = t4_read_reg(adap, TP_PACE_TABLE_A);
10285                 pace_vals[i] = dack_ticks_to_usec(adap, v);
10286         }
10287 }
10288
10289 /**
10290  * t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler
10291  * @adap: the adapter
10292  * @sched: the scheduler index
10293  * @kbps: the byte rate in Kbps
10294  * @ipg: the interpacket delay in tenths of nanoseconds
10295  * @sleep_ok: if true we may sleep while awaiting command completion
10296  *
10297  * Return the current configuration of a HW Tx scheduler.
10298  */
10299 void t4_get_tx_sched(struct adapter *adap, unsigned int sched,
10300                      unsigned int *kbps, unsigned int *ipg, bool sleep_ok)
10301 {
10302         unsigned int v, addr, bpt, cpt;
10303
10304         if (kbps) {
10305                 addr = TP_TX_MOD_Q1_Q0_RATE_LIMIT_A - sched / 2;
10306                 t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
10307                 if (sched & 1)
10308                         v >>= 16;
10309                 bpt = (v >> 8) & 0xff;
10310                 cpt = v & 0xff;
10311                 if (!cpt) {
10312                         *kbps = 0;      /* scheduler disabled */
10313                 } else {
10314                         v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */
10315                         *kbps = (v * bpt) / 125;
10316                 }
10317         }
10318         if (ipg) {
10319                 addr = TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR_A - sched / 2;
10320                 t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
10321                 if (sched & 1)
10322                         v >>= 16;
10323                 v &= 0xffff;
10324                 *ipg = (10000 * v) / core_ticks_per_usec(adap);
10325         }
10326 }
10327
10328 /* t4_sge_ctxt_rd - read an SGE context through FW
10329  * @adap: the adapter
10330  * @mbox: mailbox to use for the FW command
10331  * @cid: the context id
10332  * @ctype: the context type
10333  * @data: where to store the context data
10334  *
10335  * Issues a FW command through the given mailbox to read an SGE context.
10336  */
10337 int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid,
10338                    enum ctxt_type ctype, u32 *data)
10339 {
10340         struct fw_ldst_cmd c;
10341         int ret;
10342
10343         if (ctype == CTXT_FLM)
10344                 ret = FW_LDST_ADDRSPC_SGE_FLMC;
10345         else
10346                 ret = FW_LDST_ADDRSPC_SGE_CONMC;
10347
10348         memset(&c, 0, sizeof(c));
10349         c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
10350                                         FW_CMD_REQUEST_F | FW_CMD_READ_F |
10351                                         FW_LDST_CMD_ADDRSPACE_V(ret));
10352         c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
10353         c.u.idctxt.physid = cpu_to_be32(cid);
10354
10355         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
10356         if (ret == 0) {
10357                 data[0] = be32_to_cpu(c.u.idctxt.ctxt_data0);
10358                 data[1] = be32_to_cpu(c.u.idctxt.ctxt_data1);
10359                 data[2] = be32_to_cpu(c.u.idctxt.ctxt_data2);
10360                 data[3] = be32_to_cpu(c.u.idctxt.ctxt_data3);
10361                 data[4] = be32_to_cpu(c.u.idctxt.ctxt_data4);
10362                 data[5] = be32_to_cpu(c.u.idctxt.ctxt_data5);
10363         }
10364         return ret;
10365 }
10366
10367 /**
10368  * t4_sge_ctxt_rd_bd - read an SGE context bypassing FW
10369  * @adap: the adapter
10370  * @cid: the context id
10371  * @ctype: the context type
10372  * @data: where to store the context data
10373  *
10374  * Reads an SGE context directly, bypassing FW.  This is only for
10375  * debugging when FW is unavailable.
10376  */
10377 int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid,
10378                       enum ctxt_type ctype, u32 *data)
10379 {
10380         int i, ret;
10381
10382         t4_write_reg(adap, SGE_CTXT_CMD_A, CTXTQID_V(cid) | CTXTTYPE_V(ctype));
10383         ret = t4_wait_op_done(adap, SGE_CTXT_CMD_A, BUSY_F, 0, 3, 1);
10384         if (!ret)
10385                 for (i = SGE_CTXT_DATA0_A; i <= SGE_CTXT_DATA5_A; i += 4)
10386                         *data++ = t4_read_reg(adap, i);
10387         return ret;
10388 }
10389
10390 int t4_sched_params(struct adapter *adapter, u8 type, u8 level, u8 mode,
10391                     u8 rateunit, u8 ratemode, u8 channel, u8 class,
10392                     u32 minrate, u32 maxrate, u16 weight, u16 pktsize,
10393                     u16 burstsize)
10394 {
10395         struct fw_sched_cmd cmd;
10396
10397         memset(&cmd, 0, sizeof(cmd));
10398         cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_SCHED_CMD) |
10399                                       FW_CMD_REQUEST_F |
10400                                       FW_CMD_WRITE_F);
10401         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
10402
10403         cmd.u.params.sc = FW_SCHED_SC_PARAMS;
10404         cmd.u.params.type = type;
10405         cmd.u.params.level = level;
10406         cmd.u.params.mode = mode;
10407         cmd.u.params.ch = channel;
10408         cmd.u.params.cl = class;
10409         cmd.u.params.unit = rateunit;
10410         cmd.u.params.rate = ratemode;
10411         cmd.u.params.min = cpu_to_be32(minrate);
10412         cmd.u.params.max = cpu_to_be32(maxrate);
10413         cmd.u.params.weight = cpu_to_be16(weight);
10414         cmd.u.params.pktsize = cpu_to_be16(pktsize);
10415         cmd.u.params.burstsize = cpu_to_be16(burstsize);
10416
10417         return t4_wr_mbox_meat(adapter, adapter->mbox, &cmd, sizeof(cmd),
10418                                NULL, 1);
10419 }
10420
10421 /**
10422  *      t4_i2c_rd - read I2C data from adapter
10423  *      @adap: the adapter
10424  *      @mbox: mailbox to use for the FW command
10425  *      @port: Port number if per-port device; <0 if not
10426  *      @devid: per-port device ID or absolute device ID
10427  *      @offset: byte offset into device I2C space
10428  *      @len: byte length of I2C space data
10429  *      @buf: buffer in which to return I2C data
10430  *
10431  *      Reads the I2C data from the indicated device and location.
10432  */
10433 int t4_i2c_rd(struct adapter *adap, unsigned int mbox, int port,
10434               unsigned int devid, unsigned int offset,
10435               unsigned int len, u8 *buf)
10436 {
10437         struct fw_ldst_cmd ldst_cmd, ldst_rpl;
10438         unsigned int i2c_max = sizeof(ldst_cmd.u.i2c.data);
10439         int ret = 0;
10440
10441         if (len > I2C_PAGE_SIZE)
10442                 return -EINVAL;
10443
10444         /* Dont allow reads that spans multiple pages */
10445         if (offset < I2C_PAGE_SIZE && offset + len > I2C_PAGE_SIZE)
10446                 return -EINVAL;
10447
10448         memset(&ldst_cmd, 0, sizeof(ldst_cmd));
10449         ldst_cmd.op_to_addrspace =
10450                 cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
10451                             FW_CMD_REQUEST_F |
10452                             FW_CMD_READ_F |
10453                             FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_I2C));
10454         ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
10455         ldst_cmd.u.i2c.pid = (port < 0 ? 0xff : port);
10456         ldst_cmd.u.i2c.did = devid;
10457
10458         while (len > 0) {
10459                 unsigned int i2c_len = (len < i2c_max) ? len : i2c_max;
10460
10461                 ldst_cmd.u.i2c.boffset = offset;
10462                 ldst_cmd.u.i2c.blen = i2c_len;
10463
10464                 ret = t4_wr_mbox(adap, mbox, &ldst_cmd, sizeof(ldst_cmd),
10465                                  &ldst_rpl);
10466                 if (ret)
10467                         break;
10468
10469                 memcpy(buf, ldst_rpl.u.i2c.data, i2c_len);
10470                 offset += i2c_len;
10471                 buf += i2c_len;
10472                 len -= i2c_len;
10473         }
10474
10475         return ret;
10476 }
10477
10478 /**
10479  *      t4_set_vlan_acl - Set a VLAN id for the specified VF
10480  *      @adap: the adapter
10481  *      @mbox: mailbox to use for the FW command
10482  *      @vf: one of the VFs instantiated by the specified PF
10483  *      @vlan: The vlanid to be set
10484  */
10485 int t4_set_vlan_acl(struct adapter *adap, unsigned int mbox, unsigned int vf,
10486                     u16 vlan)
10487 {
10488         struct fw_acl_vlan_cmd vlan_cmd;
10489         unsigned int enable;
10490
10491         enable = (vlan ? FW_ACL_VLAN_CMD_EN_F : 0);
10492         memset(&vlan_cmd, 0, sizeof(vlan_cmd));
10493         vlan_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_VLAN_CMD) |
10494                                          FW_CMD_REQUEST_F |
10495                                          FW_CMD_WRITE_F |
10496                                          FW_CMD_EXEC_F |
10497                                          FW_ACL_VLAN_CMD_PFN_V(adap->pf) |
10498                                          FW_ACL_VLAN_CMD_VFN_V(vf));
10499         vlan_cmd.en_to_len16 = cpu_to_be32(enable | FW_LEN16(vlan_cmd));
10500         /* Drop all packets that donot match vlan id */
10501         vlan_cmd.dropnovlan_fm = (enable
10502                                   ? (FW_ACL_VLAN_CMD_DROPNOVLAN_F |
10503                                      FW_ACL_VLAN_CMD_FM_F) : 0);
10504         if (enable != 0) {
10505                 vlan_cmd.nvlan = 1;
10506                 vlan_cmd.vlanid[0] = cpu_to_be16(vlan);
10507         }
10508
10509         return t4_wr_mbox(adap, adap->mbox, &vlan_cmd, sizeof(vlan_cmd), NULL);
10510 }
10511
10512 /**
10513  *      modify_device_id - Modifies the device ID of the Boot BIOS image
10514  *      @device_id: the device ID to write.
10515  *      @boot_data: the boot image to modify.
10516  *
10517  *      Write the supplied device ID to the boot BIOS image.
10518  */
10519 static void modify_device_id(int device_id, u8 *boot_data)
10520 {
10521         struct cxgb4_pcir_data *pcir_header;
10522         struct legacy_pci_rom_hdr *header;
10523         u8 *cur_header = boot_data;
10524         u16 pcir_offset;
10525
10526          /* Loop through all chained images and change the device ID's */
10527         do {
10528                 header = (struct legacy_pci_rom_hdr *)cur_header;
10529                 pcir_offset = le16_to_cpu(header->pcir_offset);
10530                 pcir_header = (struct cxgb4_pcir_data *)(cur_header +
10531                               pcir_offset);
10532
10533                 /**
10534                  * Only modify the Device ID if code type is Legacy or HP.
10535                  * 0x00: Okay to modify
10536                  * 0x01: FCODE. Do not modify
10537                  * 0x03: Okay to modify
10538                  * 0x04-0xFF: Do not modify
10539                  */
10540                 if (pcir_header->code_type == CXGB4_HDR_CODE1) {
10541                         u8 csum = 0;
10542                         int i;
10543
10544                         /**
10545                          * Modify Device ID to match current adatper
10546                          */
10547                         pcir_header->device_id = cpu_to_le16(device_id);
10548
10549                         /**
10550                          * Set checksum temporarily to 0.
10551                          * We will recalculate it later.
10552                          */
10553                         header->cksum = 0x0;
10554
10555                         /**
10556                          * Calculate and update checksum
10557                          */
10558                         for (i = 0; i < (header->size512 * 512); i++)
10559                                 csum += cur_header[i];
10560
10561                         /**
10562                          * Invert summed value to create the checksum
10563                          * Writing new checksum value directly to the boot data
10564                          */
10565                         cur_header[7] = -csum;
10566
10567                 } else if (pcir_header->code_type == CXGB4_HDR_CODE2) {
10568                         /**
10569                          * Modify Device ID to match current adatper
10570                          */
10571                         pcir_header->device_id = cpu_to_le16(device_id);
10572                 }
10573
10574                 /**
10575                  * Move header pointer up to the next image in the ROM.
10576                  */
10577                 cur_header += header->size512 * 512;
10578         } while (!(pcir_header->indicator & CXGB4_HDR_INDI));
10579 }
10580
10581 /**
10582  *      t4_load_boot - download boot flash
10583  *      @adap: the adapter
10584  *      @boot_data: the boot image to write
10585  *      @boot_addr: offset in flash to write boot_data
10586  *      @size: image size
10587  *
10588  *      Write the supplied boot image to the card's serial flash.
10589  *      The boot image has the following sections: a 28-byte header and the
10590  *      boot image.
10591  */
10592 int t4_load_boot(struct adapter *adap, u8 *boot_data,
10593                  unsigned int boot_addr, unsigned int size)
10594 {
10595         unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
10596         unsigned int boot_sector = (boot_addr * 1024);
10597         struct cxgb4_pci_exp_rom_header *header;
10598         struct cxgb4_pcir_data *pcir_header;
10599         int pcir_offset;
10600         unsigned int i;
10601         u16 device_id;
10602         int ret, addr;
10603
10604         /**
10605          * Make sure the boot image does not encroach on the firmware region
10606          */
10607         if ((boot_sector + size) >> 16 > FLASH_FW_START_SEC) {
10608                 dev_err(adap->pdev_dev, "boot image encroaching on firmware region\n");
10609                 return -EFBIG;
10610         }
10611
10612         /* Get boot header */
10613         header = (struct cxgb4_pci_exp_rom_header *)boot_data;
10614         pcir_offset = le16_to_cpu(header->pcir_offset);
10615         /* PCIR Data Structure */
10616         pcir_header = (struct cxgb4_pcir_data *)&boot_data[pcir_offset];
10617
10618         /**
10619          * Perform some primitive sanity testing to avoid accidentally
10620          * writing garbage over the boot sectors.  We ought to check for
10621          * more but it's not worth it for now ...
10622          */
10623         if (size < BOOT_MIN_SIZE || size > BOOT_MAX_SIZE) {
10624                 dev_err(adap->pdev_dev, "boot image too small/large\n");
10625                 return -EFBIG;
10626         }
10627
10628         if (le16_to_cpu(header->signature) != BOOT_SIGNATURE) {
10629                 dev_err(adap->pdev_dev, "Boot image missing signature\n");
10630                 return -EINVAL;
10631         }
10632
10633         /* Check PCI header signature */
10634         if (le32_to_cpu(pcir_header->signature) != PCIR_SIGNATURE) {
10635                 dev_err(adap->pdev_dev, "PCI header missing signature\n");
10636                 return -EINVAL;
10637         }
10638
10639         /* Check Vendor ID matches Chelsio ID*/
10640         if (le16_to_cpu(pcir_header->vendor_id) != PCI_VENDOR_ID_CHELSIO) {
10641                 dev_err(adap->pdev_dev, "Vendor ID missing signature\n");
10642                 return -EINVAL;
10643         }
10644
10645         /**
10646          * The boot sector is comprised of the Expansion-ROM boot, iSCSI boot,
10647          * and Boot configuration data sections. These 3 boot sections span
10648          * sectors 0 to 7 in flash and live right before the FW image location.
10649          */
10650         i = DIV_ROUND_UP(size ? size : FLASH_FW_START,  sf_sec_size);
10651         ret = t4_flash_erase_sectors(adap, boot_sector >> 16,
10652                                      (boot_sector >> 16) + i - 1);
10653
10654         /**
10655          * If size == 0 then we're simply erasing the FLASH sectors associated
10656          * with the on-adapter option ROM file
10657          */
10658         if (ret || size == 0)
10659                 goto out;
10660         /* Retrieve adapter's device ID */
10661         pci_read_config_word(adap->pdev, PCI_DEVICE_ID, &device_id);
10662        /* Want to deal with PF 0 so I strip off PF 4 indicator */
10663         device_id = device_id & 0xf0ff;
10664
10665          /* Check PCIE Device ID */
10666         if (le16_to_cpu(pcir_header->device_id) != device_id) {
10667                 /**
10668                  * Change the device ID in the Boot BIOS image to match
10669                  * the Device ID of the current adapter.
10670                  */
10671                 modify_device_id(device_id, boot_data);
10672         }
10673
10674         /**
10675          * Skip over the first SF_PAGE_SIZE worth of data and write it after
10676          * we finish copying the rest of the boot image. This will ensure
10677          * that the BIOS boot header will only be written if the boot image
10678          * was written in full.
10679          */
10680         addr = boot_sector;
10681         for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
10682                 addr += SF_PAGE_SIZE;
10683                 boot_data += SF_PAGE_SIZE;
10684                 ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, boot_data);
10685                 if (ret)
10686                         goto out;
10687         }
10688
10689         ret = t4_write_flash(adap, boot_sector, SF_PAGE_SIZE,
10690                              (const u8 *)header);
10691
10692 out:
10693         if (ret)
10694                 dev_err(adap->pdev_dev, "boot image load failed, error %d\n",
10695                         ret);
10696         return ret;
10697 }
10698
10699 /**
10700  *      t4_flash_bootcfg_addr - return the address of the flash
10701  *      optionrom configuration
10702  *      @adapter: the adapter
10703  *
10704  *      Return the address within the flash where the OptionROM Configuration
10705  *      is stored, or an error if the device FLASH is too small to contain
10706  *      a OptionROM Configuration.
10707  */
10708 static int t4_flash_bootcfg_addr(struct adapter *adapter)
10709 {
10710         /**
10711          * If the device FLASH isn't large enough to hold a Firmware
10712          * Configuration File, return an error.
10713          */
10714         if (adapter->params.sf_size <
10715             FLASH_BOOTCFG_START + FLASH_BOOTCFG_MAX_SIZE)
10716                 return -ENOSPC;
10717
10718         return FLASH_BOOTCFG_START;
10719 }
10720
10721 int t4_load_bootcfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
10722 {
10723         unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
10724         struct cxgb4_bootcfg_data *header;
10725         unsigned int flash_cfg_start_sec;
10726         unsigned int addr, npad;
10727         int ret, i, n, cfg_addr;
10728
10729         cfg_addr = t4_flash_bootcfg_addr(adap);
10730         if (cfg_addr < 0)
10731                 return cfg_addr;
10732
10733         addr = cfg_addr;
10734         flash_cfg_start_sec = addr / SF_SEC_SIZE;
10735
10736         if (size > FLASH_BOOTCFG_MAX_SIZE) {
10737                 dev_err(adap->pdev_dev, "bootcfg file too large, max is %u bytes\n",
10738                         FLASH_BOOTCFG_MAX_SIZE);
10739                 return -EFBIG;
10740         }
10741
10742         header = (struct cxgb4_bootcfg_data *)cfg_data;
10743         if (le16_to_cpu(header->signature) != BOOT_CFG_SIG) {
10744                 dev_err(adap->pdev_dev, "Wrong bootcfg signature\n");
10745                 ret = -EINVAL;
10746                 goto out;
10747         }
10748
10749         i = DIV_ROUND_UP(FLASH_BOOTCFG_MAX_SIZE,
10750                          sf_sec_size);
10751         ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
10752                                      flash_cfg_start_sec + i - 1);
10753
10754         /**
10755          * If size == 0 then we're simply erasing the FLASH sectors associated
10756          * with the on-adapter OptionROM Configuration File.
10757          */
10758         if (ret || size == 0)
10759                 goto out;
10760
10761         /* this will write to the flash up to SF_PAGE_SIZE at a time */
10762         for (i = 0; i < size; i += SF_PAGE_SIZE) {
10763                 n = min_t(u32, size - i, SF_PAGE_SIZE);
10764
10765                 ret = t4_write_flash(adap, addr, n, cfg_data);
10766                 if (ret)
10767                         goto out;
10768
10769                 addr += SF_PAGE_SIZE;
10770                 cfg_data += SF_PAGE_SIZE;
10771         }
10772
10773         npad = ((size + 4 - 1) & ~3) - size;
10774         for (i = 0; i < npad; i++) {
10775                 u8 data = 0;
10776
10777                 ret = t4_write_flash(adap, cfg_addr + size + i, 1, &data);
10778                 if (ret)
10779                         goto out;
10780         }
10781
10782 out:
10783         if (ret)
10784                 dev_err(adap->pdev_dev, "boot config data %s failed %d\n",
10785                         (size == 0 ? "clear" : "download"), ret);
10786         return ret;
10787 }