Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[linux-2.6-block.git] / drivers / net / ethernet / chelsio / cxgb4 / cxgb4_main.c
1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36
37 #include <linux/bitmap.h>
38 #include <linux/crc32.h>
39 #include <linux/ctype.h>
40 #include <linux/debugfs.h>
41 #include <linux/err.h>
42 #include <linux/etherdevice.h>
43 #include <linux/firmware.h>
44 #include <linux/if.h>
45 #include <linux/if_vlan.h>
46 #include <linux/init.h>
47 #include <linux/log2.h>
48 #include <linux/mdio.h>
49 #include <linux/module.h>
50 #include <linux/moduleparam.h>
51 #include <linux/mutex.h>
52 #include <linux/netdevice.h>
53 #include <linux/pci.h>
54 #include <linux/aer.h>
55 #include <linux/rtnetlink.h>
56 #include <linux/sched.h>
57 #include <linux/seq_file.h>
58 #include <linux/sockios.h>
59 #include <linux/vmalloc.h>
60 #include <linux/workqueue.h>
61 #include <net/neighbour.h>
62 #include <net/netevent.h>
63 #include <net/addrconf.h>
64 #include <asm/uaccess.h>
65
66 #include "cxgb4.h"
67 #include "t4_regs.h"
68 #include "t4_msg.h"
69 #include "t4fw_api.h"
70 #include "cxgb4_dcb.h"
71 #include "l2t.h"
72
73 #include <../drivers/net/bonding/bonding.h>
74
75 #ifdef DRV_VERSION
76 #undef DRV_VERSION
77 #endif
78 #define DRV_VERSION "2.0.0-ko"
79 #define DRV_DESC "Chelsio T4/T5 Network Driver"
80
81 /*
82  * Max interrupt hold-off timer value in us.  Queues fall back to this value
83  * under extreme memory pressure so it's largish to give the system time to
84  * recover.
85  */
86 #define MAX_SGE_TIMERVAL 200U
87
88 enum {
89         /*
90          * Physical Function provisioning constants.
91          */
92         PFRES_NVI = 4,                  /* # of Virtual Interfaces */
93         PFRES_NETHCTRL = 128,           /* # of EQs used for ETH or CTRL Qs */
94         PFRES_NIQFLINT = 128,           /* # of ingress Qs/w Free List(s)/intr
95                                          */
96         PFRES_NEQ = 256,                /* # of egress queues */
97         PFRES_NIQ = 0,                  /* # of ingress queues */
98         PFRES_TC = 0,                   /* PCI-E traffic class */
99         PFRES_NEXACTF = 128,            /* # of exact MPS filters */
100
101         PFRES_R_CAPS = FW_CMD_CAP_PF,
102         PFRES_WX_CAPS = FW_CMD_CAP_PF,
103
104 #ifdef CONFIG_PCI_IOV
105         /*
106          * Virtual Function provisioning constants.  We need two extra Ingress
107          * Queues with Interrupt capability to serve as the VF's Firmware
108          * Event Queue and Forwarded Interrupt Queue (when using MSI mode) --
109          * neither will have Free Lists associated with them).  For each
110          * Ethernet/Control Egress Queue and for each Free List, we need an
111          * Egress Context.
112          */
113         VFRES_NPORTS = 1,               /* # of "ports" per VF */
114         VFRES_NQSETS = 2,               /* # of "Queue Sets" per VF */
115
116         VFRES_NVI = VFRES_NPORTS,       /* # of Virtual Interfaces */
117         VFRES_NETHCTRL = VFRES_NQSETS,  /* # of EQs used for ETH or CTRL Qs */
118         VFRES_NIQFLINT = VFRES_NQSETS+2,/* # of ingress Qs/w Free List(s)/intr */
119         VFRES_NEQ = VFRES_NQSETS*2,     /* # of egress queues */
120         VFRES_NIQ = 0,                  /* # of non-fl/int ingress queues */
121         VFRES_TC = 0,                   /* PCI-E traffic class */
122         VFRES_NEXACTF = 16,             /* # of exact MPS filters */
123
124         VFRES_R_CAPS = FW_CMD_CAP_DMAQ|FW_CMD_CAP_VF|FW_CMD_CAP_PORT,
125         VFRES_WX_CAPS = FW_CMD_CAP_DMAQ|FW_CMD_CAP_VF,
126 #endif
127 };
128
129 /*
130  * Provide a Port Access Rights Mask for the specified PF/VF.  This is very
131  * static and likely not to be useful in the long run.  We really need to
132  * implement some form of persistent configuration which the firmware
133  * controls.
134  */
135 static unsigned int pfvfres_pmask(struct adapter *adapter,
136                                   unsigned int pf, unsigned int vf)
137 {
138         unsigned int portn, portvec;
139
140         /*
141          * Give PF's access to all of the ports.
142          */
143         if (vf == 0)
144                 return FW_PFVF_CMD_PMASK_MASK;
145
146         /*
147          * For VFs, we'll assign them access to the ports based purely on the
148          * PF.  We assign active ports in order, wrapping around if there are
149          * fewer active ports than PFs: e.g. active port[pf % nports].
150          * Unfortunately the adapter's port_info structs haven't been
151          * initialized yet so we have to compute this.
152          */
153         if (adapter->params.nports == 0)
154                 return 0;
155
156         portn = pf % adapter->params.nports;
157         portvec = adapter->params.portvec;
158         for (;;) {
159                 /*
160                  * Isolate the lowest set bit in the port vector.  If we're at
161                  * the port number that we want, return that as the pmask.
162                  * otherwise mask that bit out of the port vector and
163                  * decrement our port number ...
164                  */
165                 unsigned int pmask = portvec ^ (portvec & (portvec-1));
166                 if (portn == 0)
167                         return pmask;
168                 portn--;
169                 portvec &= ~pmask;
170         }
171         /*NOTREACHED*/
172 }
173
174 enum {
175         MAX_TXQ_ENTRIES      = 16384,
176         MAX_CTRL_TXQ_ENTRIES = 1024,
177         MAX_RSPQ_ENTRIES     = 16384,
178         MAX_RX_BUFFERS       = 16384,
179         MIN_TXQ_ENTRIES      = 32,
180         MIN_CTRL_TXQ_ENTRIES = 32,
181         MIN_RSPQ_ENTRIES     = 128,
182         MIN_FL_ENTRIES       = 16
183 };
184
185 /* Host shadow copy of ingress filter entry.  This is in host native format
186  * and doesn't match the ordering or bit order, etc. of the hardware of the
187  * firmware command.  The use of bit-field structure elements is purely to
188  * remind ourselves of the field size limitations and save memory in the case
189  * where the filter table is large.
190  */
191 struct filter_entry {
192         /* Administrative fields for filter.
193          */
194         u32 valid:1;            /* filter allocated and valid */
195         u32 locked:1;           /* filter is administratively locked */
196
197         u32 pending:1;          /* filter action is pending firmware reply */
198         u32 smtidx:8;           /* Source MAC Table index for smac */
199         struct l2t_entry *l2t;  /* Layer Two Table entry for dmac */
200
201         /* The filter itself.  Most of this is a straight copy of information
202          * provided by the extended ioctl().  Some fields are translated to
203          * internal forms -- for instance the Ingress Queue ID passed in from
204          * the ioctl() is translated into the Absolute Ingress Queue ID.
205          */
206         struct ch_filter_specification fs;
207 };
208
209 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
210                          NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
211                          NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
212
213 #define CH_DEVICE(devid, data) { PCI_VDEVICE(CHELSIO, devid), (data) }
214
215 static const struct pci_device_id cxgb4_pci_tbl[] = {
216         CH_DEVICE(0xa000, 0),  /* PE10K */
217         CH_DEVICE(0x4001, -1),
218         CH_DEVICE(0x4002, -1),
219         CH_DEVICE(0x4003, -1),
220         CH_DEVICE(0x4004, -1),
221         CH_DEVICE(0x4005, -1),
222         CH_DEVICE(0x4006, -1),
223         CH_DEVICE(0x4007, -1),
224         CH_DEVICE(0x4008, -1),
225         CH_DEVICE(0x4009, -1),
226         CH_DEVICE(0x400a, -1),
227         CH_DEVICE(0x400d, -1),
228         CH_DEVICE(0x400e, -1),
229         CH_DEVICE(0x4080, -1),
230         CH_DEVICE(0x4081, -1),
231         CH_DEVICE(0x4082, -1),
232         CH_DEVICE(0x4083, -1),
233         CH_DEVICE(0x4084, -1),
234         CH_DEVICE(0x4085, -1),
235         CH_DEVICE(0x4086, -1),
236         CH_DEVICE(0x4087, -1),
237         CH_DEVICE(0x4088, -1),
238         CH_DEVICE(0x4401, 4),
239         CH_DEVICE(0x4402, 4),
240         CH_DEVICE(0x4403, 4),
241         CH_DEVICE(0x4404, 4),
242         CH_DEVICE(0x4405, 4),
243         CH_DEVICE(0x4406, 4),
244         CH_DEVICE(0x4407, 4),
245         CH_DEVICE(0x4408, 4),
246         CH_DEVICE(0x4409, 4),
247         CH_DEVICE(0x440a, 4),
248         CH_DEVICE(0x440d, 4),
249         CH_DEVICE(0x440e, 4),
250         CH_DEVICE(0x4480, 4),
251         CH_DEVICE(0x4481, 4),
252         CH_DEVICE(0x4482, 4),
253         CH_DEVICE(0x4483, 4),
254         CH_DEVICE(0x4484, 4),
255         CH_DEVICE(0x4485, 4),
256         CH_DEVICE(0x4486, 4),
257         CH_DEVICE(0x4487, 4),
258         CH_DEVICE(0x4488, 4),
259         CH_DEVICE(0x5001, 4),
260         CH_DEVICE(0x5002, 4),
261         CH_DEVICE(0x5003, 4),
262         CH_DEVICE(0x5004, 4),
263         CH_DEVICE(0x5005, 4),
264         CH_DEVICE(0x5006, 4),
265         CH_DEVICE(0x5007, 4),
266         CH_DEVICE(0x5008, 4),
267         CH_DEVICE(0x5009, 4),
268         CH_DEVICE(0x500A, 4),
269         CH_DEVICE(0x500B, 4),
270         CH_DEVICE(0x500C, 4),
271         CH_DEVICE(0x500D, 4),
272         CH_DEVICE(0x500E, 4),
273         CH_DEVICE(0x500F, 4),
274         CH_DEVICE(0x5010, 4),
275         CH_DEVICE(0x5011, 4),
276         CH_DEVICE(0x5012, 4),
277         CH_DEVICE(0x5013, 4),
278         CH_DEVICE(0x5014, 4),
279         CH_DEVICE(0x5015, 4),
280         CH_DEVICE(0x5080, 4),
281         CH_DEVICE(0x5081, 4),
282         CH_DEVICE(0x5082, 4),
283         CH_DEVICE(0x5083, 4),
284         CH_DEVICE(0x5084, 4),
285         CH_DEVICE(0x5085, 4),
286         CH_DEVICE(0x5086, 4),
287         CH_DEVICE(0x5401, 4),
288         CH_DEVICE(0x5402, 4),
289         CH_DEVICE(0x5403, 4),
290         CH_DEVICE(0x5404, 4),
291         CH_DEVICE(0x5405, 4),
292         CH_DEVICE(0x5406, 4),
293         CH_DEVICE(0x5407, 4),
294         CH_DEVICE(0x5408, 4),
295         CH_DEVICE(0x5409, 4),
296         CH_DEVICE(0x540A, 4),
297         CH_DEVICE(0x540B, 4),
298         CH_DEVICE(0x540C, 4),
299         CH_DEVICE(0x540D, 4),
300         CH_DEVICE(0x540E, 4),
301         CH_DEVICE(0x540F, 4),
302         CH_DEVICE(0x5410, 4),
303         CH_DEVICE(0x5411, 4),
304         CH_DEVICE(0x5412, 4),
305         CH_DEVICE(0x5413, 4),
306         CH_DEVICE(0x5414, 4),
307         CH_DEVICE(0x5415, 4),
308         CH_DEVICE(0x5480, 4),
309         CH_DEVICE(0x5481, 4),
310         CH_DEVICE(0x5482, 4),
311         CH_DEVICE(0x5483, 4),
312         CH_DEVICE(0x5484, 4),
313         CH_DEVICE(0x5485, 4),
314         CH_DEVICE(0x5486, 4),
315         { 0, }
316 };
317
318 #define FW4_FNAME "cxgb4/t4fw.bin"
319 #define FW5_FNAME "cxgb4/t5fw.bin"
320 #define FW4_CFNAME "cxgb4/t4-config.txt"
321 #define FW5_CFNAME "cxgb4/t5-config.txt"
322
323 MODULE_DESCRIPTION(DRV_DESC);
324 MODULE_AUTHOR("Chelsio Communications");
325 MODULE_LICENSE("Dual BSD/GPL");
326 MODULE_VERSION(DRV_VERSION);
327 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
328 MODULE_FIRMWARE(FW4_FNAME);
329 MODULE_FIRMWARE(FW5_FNAME);
330
331 /*
332  * Normally we're willing to become the firmware's Master PF but will be happy
333  * if another PF has already become the Master and initialized the adapter.
334  * Setting "force_init" will cause this driver to forcibly establish itself as
335  * the Master PF and initialize the adapter.
336  */
337 static uint force_init;
338
339 module_param(force_init, uint, 0644);
340 MODULE_PARM_DESC(force_init, "Forcibly become Master PF and initialize adapter");
341
342 /*
343  * Normally if the firmware we connect to has Configuration File support, we
344  * use that and only fall back to the old Driver-based initialization if the
345  * Configuration File fails for some reason.  If force_old_init is set, then
346  * we'll always use the old Driver-based initialization sequence.
347  */
348 static uint force_old_init;
349
350 module_param(force_old_init, uint, 0644);
351 MODULE_PARM_DESC(force_old_init, "Force old initialization sequence");
352
353 static int dflt_msg_enable = DFLT_MSG_ENABLE;
354
355 module_param(dflt_msg_enable, int, 0644);
356 MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T4 default message enable bitmap");
357
358 /*
359  * The driver uses the best interrupt scheme available on a platform in the
360  * order MSI-X, MSI, legacy INTx interrupts.  This parameter determines which
361  * of these schemes the driver may consider as follows:
362  *
363  * msi = 2: choose from among all three options
364  * msi = 1: only consider MSI and INTx interrupts
365  * msi = 0: force INTx interrupts
366  */
367 static int msi = 2;
368
369 module_param(msi, int, 0644);
370 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");
371
372 /*
373  * Queue interrupt hold-off timer values.  Queues default to the first of these
374  * upon creation.
375  */
376 static unsigned int intr_holdoff[SGE_NTIMERS - 1] = { 5, 10, 20, 50, 100 };
377
378 module_param_array(intr_holdoff, uint, NULL, 0644);
379 MODULE_PARM_DESC(intr_holdoff, "values for queue interrupt hold-off timers "
380                  "0..4 in microseconds");
381
382 static unsigned int intr_cnt[SGE_NCOUNTERS - 1] = { 4, 8, 16 };
383
384 module_param_array(intr_cnt, uint, NULL, 0644);
385 MODULE_PARM_DESC(intr_cnt,
386                  "thresholds 1..3 for queue interrupt packet counters");
387
388 /*
389  * Normally we tell the chip to deliver Ingress Packets into our DMA buffers
390  * offset by 2 bytes in order to have the IP headers line up on 4-byte
391  * boundaries.  This is a requirement for many architectures which will throw
392  * a machine check fault if an attempt is made to access one of the 4-byte IP
393  * header fields on a non-4-byte boundary.  And it's a major performance issue
394  * even on some architectures which allow it like some implementations of the
395  * x86 ISA.  However, some architectures don't mind this and for some very
396  * edge-case performance sensitive applications (like forwarding large volumes
397  * of small packets), setting this DMA offset to 0 will decrease the number of
398  * PCI-E Bus transfers enough to measurably affect performance.
399  */
400 static int rx_dma_offset = 2;
401
402 static bool vf_acls;
403
404 #ifdef CONFIG_PCI_IOV
405 module_param(vf_acls, bool, 0644);
406 MODULE_PARM_DESC(vf_acls, "if set enable virtualization L2 ACL enforcement");
407
408 /* Configure the number of PCI-E Virtual Function which are to be instantiated
409  * on SR-IOV Capable Physical Functions.
410  */
411 static unsigned int num_vf[NUM_OF_PF_WITH_SRIOV];
412
413 module_param_array(num_vf, uint, NULL, 0644);
414 MODULE_PARM_DESC(num_vf, "number of VFs for each of PFs 0-3");
415 #endif
416
417 /* TX Queue select used to determine what algorithm to use for selecting TX
418  * queue. Select between the kernel provided function (select_queue=0) or user
419  * cxgb_select_queue function (select_queue=1)
420  *
421  * Default: select_queue=0
422  */
423 static int select_queue;
424 module_param(select_queue, int, 0644);
425 MODULE_PARM_DESC(select_queue,
426                  "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method.");
427
428 /*
429  * The filter TCAM has a fixed portion and a variable portion.  The fixed
430  * portion can match on source/destination IP IPv4/IPv6 addresses and TCP/UDP
431  * ports.  The variable portion is 36 bits which can include things like Exact
432  * Match MAC Index (9 bits), Ether Type (16 bits), IP Protocol (8 bits),
433  * [Inner] VLAN Tag (17 bits), etc. which, if all were somehow selected, would
434  * far exceed the 36-bit budget for this "compressed" header portion of the
435  * filter.  Thus, we have a scarce resource which must be carefully managed.
436  *
437  * By default we set this up to mostly match the set of filter matching
438  * capabilities of T3 but with accommodations for some of T4's more
439  * interesting features:
440  *
441  *   { IP Fragment (1), MPS Match Type (3), IP Protocol (8),
442  *     [Inner] VLAN (17), Port (3), FCoE (1) }
443  */
444 enum {
445         TP_VLAN_PRI_MAP_DEFAULT = HW_TPL_FR_MT_PR_IV_P_FC,
446         TP_VLAN_PRI_MAP_FIRST = FCOE_SHIFT,
447         TP_VLAN_PRI_MAP_LAST = FRAGMENTATION_SHIFT,
448 };
449
450 static unsigned int tp_vlan_pri_map = TP_VLAN_PRI_MAP_DEFAULT;
451
452 module_param(tp_vlan_pri_map, uint, 0644);
453 MODULE_PARM_DESC(tp_vlan_pri_map, "global compressed filter configuration");
454
455 static struct dentry *cxgb4_debugfs_root;
456
457 static LIST_HEAD(adapter_list);
458 static DEFINE_MUTEX(uld_mutex);
459 /* Adapter list to be accessed from atomic context */
460 static LIST_HEAD(adap_rcu_list);
461 static DEFINE_SPINLOCK(adap_rcu_lock);
462 static struct cxgb4_uld_info ulds[CXGB4_ULD_MAX];
463 static const char *uld_str[] = { "RDMA", "iSCSI" };
464
465 static void link_report(struct net_device *dev)
466 {
467         if (!netif_carrier_ok(dev))
468                 netdev_info(dev, "link down\n");
469         else {
470                 static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };
471
472                 const char *s = "10Mbps";
473                 const struct port_info *p = netdev_priv(dev);
474
475                 switch (p->link_cfg.speed) {
476                 case 10000:
477                         s = "10Gbps";
478                         break;
479                 case 1000:
480                         s = "1000Mbps";
481                         break;
482                 case 100:
483                         s = "100Mbps";
484                         break;
485                 case 40000:
486                         s = "40Gbps";
487                         break;
488                 }
489
490                 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
491                             fc[p->link_cfg.fc]);
492         }
493 }
494
495 #ifdef CONFIG_CHELSIO_T4_DCB
496 /* Set up/tear down Data Center Bridging Priority mapping for a net device. */
497 static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable)
498 {
499         struct port_info *pi = netdev_priv(dev);
500         struct adapter *adap = pi->adapter;
501         struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset];
502         int i;
503
504         /* We use a simple mapping of Port TX Queue Index to DCB
505          * Priority when we're enabling DCB.
506          */
507         for (i = 0; i < pi->nqsets; i++, txq++) {
508                 u32 name, value;
509                 int err;
510
511                 name = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
512                         FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) |
513                         FW_PARAMS_PARAM_YZ(txq->q.cntxt_id));
514                 value = enable ? i : 0xffffffff;
515
516                 /* Since we can be called while atomic (from "interrupt
517                  * level") we need to issue the Set Parameters Commannd
518                  * without sleeping (timeout < 0).
519                  */
520                 err = t4_set_params_nosleep(adap, adap->mbox, adap->fn, 0, 1,
521                                             &name, &value);
522
523                 if (err)
524                         dev_err(adap->pdev_dev,
525                                 "Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n",
526                                 enable ? "set" : "unset", pi->port_id, i, -err);
527                 else
528                         txq->dcb_prio = value;
529         }
530 }
531 #endif /* CONFIG_CHELSIO_T4_DCB */
532
533 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
534 {
535         struct net_device *dev = adapter->port[port_id];
536
537         /* Skip changes from disabled ports. */
538         if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
539                 if (link_stat)
540                         netif_carrier_on(dev);
541                 else {
542 #ifdef CONFIG_CHELSIO_T4_DCB
543                         cxgb4_dcb_state_init(dev);
544                         dcb_tx_queue_prio_enable(dev, false);
545 #endif /* CONFIG_CHELSIO_T4_DCB */
546                         netif_carrier_off(dev);
547                 }
548
549                 link_report(dev);
550         }
551 }
552
553 void t4_os_portmod_changed(const struct adapter *adap, int port_id)
554 {
555         static const char *mod_str[] = {
556                 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
557         };
558
559         const struct net_device *dev = adap->port[port_id];
560         const struct port_info *pi = netdev_priv(dev);
561
562         if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
563                 netdev_info(dev, "port module unplugged\n");
564         else if (pi->mod_type < ARRAY_SIZE(mod_str))
565                 netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
566 }
567
568 /*
569  * Configure the exact and hash address filters to handle a port's multicast
570  * and secondary unicast MAC addresses.
571  */
572 static int set_addr_filters(const struct net_device *dev, bool sleep)
573 {
574         u64 mhash = 0;
575         u64 uhash = 0;
576         bool free = true;
577         u16 filt_idx[7];
578         const u8 *addr[7];
579         int ret, naddr = 0;
580         const struct netdev_hw_addr *ha;
581         int uc_cnt = netdev_uc_count(dev);
582         int mc_cnt = netdev_mc_count(dev);
583         const struct port_info *pi = netdev_priv(dev);
584         unsigned int mb = pi->adapter->fn;
585
586         /* first do the secondary unicast addresses */
587         netdev_for_each_uc_addr(ha, dev) {
588                 addr[naddr++] = ha->addr;
589                 if (--uc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
590                         ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free,
591                                         naddr, addr, filt_idx, &uhash, sleep);
592                         if (ret < 0)
593                                 return ret;
594
595                         free = false;
596                         naddr = 0;
597                 }
598         }
599
600         /* next set up the multicast addresses */
601         netdev_for_each_mc_addr(ha, dev) {
602                 addr[naddr++] = ha->addr;
603                 if (--mc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
604                         ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free,
605                                         naddr, addr, filt_idx, &mhash, sleep);
606                         if (ret < 0)
607                                 return ret;
608
609                         free = false;
610                         naddr = 0;
611                 }
612         }
613
614         return t4_set_addr_hash(pi->adapter, mb, pi->viid, uhash != 0,
615                                 uhash | mhash, sleep);
616 }
617
618 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */
619 module_param(dbfifo_int_thresh, int, 0644);
620 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold");
621
622 /*
623  * usecs to sleep while draining the dbfifo
624  */
625 static int dbfifo_drain_delay = 1000;
626 module_param(dbfifo_drain_delay, int, 0644);
627 MODULE_PARM_DESC(dbfifo_drain_delay,
628                  "usecs to sleep while draining the dbfifo");
629
630 /*
631  * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
632  * If @mtu is -1 it is left unchanged.
633  */
634 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
635 {
636         int ret;
637         struct port_info *pi = netdev_priv(dev);
638
639         ret = set_addr_filters(dev, sleep_ok);
640         if (ret == 0)
641                 ret = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, mtu,
642                                     (dev->flags & IFF_PROMISC) ? 1 : 0,
643                                     (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
644                                     sleep_ok);
645         return ret;
646 }
647
648 /**
649  *      link_start - enable a port
650  *      @dev: the port to enable
651  *
652  *      Performs the MAC and PHY actions needed to enable a port.
653  */
654 static int link_start(struct net_device *dev)
655 {
656         int ret;
657         struct port_info *pi = netdev_priv(dev);
658         unsigned int mb = pi->adapter->fn;
659
660         /*
661          * We do not set address filters and promiscuity here, the stack does
662          * that step explicitly.
663          */
664         ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1,
665                             !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
666         if (ret == 0) {
667                 ret = t4_change_mac(pi->adapter, mb, pi->viid,
668                                     pi->xact_addr_filt, dev->dev_addr, true,
669                                     true);
670                 if (ret >= 0) {
671                         pi->xact_addr_filt = ret;
672                         ret = 0;
673                 }
674         }
675         if (ret == 0)
676                 ret = t4_link_start(pi->adapter, mb, pi->tx_chan,
677                                     &pi->link_cfg);
678         if (ret == 0) {
679                 local_bh_disable();
680                 ret = t4_enable_vi_params(pi->adapter, mb, pi->viid, true,
681                                           true, CXGB4_DCB_ENABLED);
682                 local_bh_enable();
683         }
684
685         return ret;
686 }
687
688 int cxgb4_dcb_enabled(const struct net_device *dev)
689 {
690 #ifdef CONFIG_CHELSIO_T4_DCB
691         struct port_info *pi = netdev_priv(dev);
692
693         return pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED;
694 #else
695         return 0;
696 #endif
697 }
698 EXPORT_SYMBOL(cxgb4_dcb_enabled);
699
700 #ifdef CONFIG_CHELSIO_T4_DCB
701 /* Handle a Data Center Bridging update message from the firmware. */
702 static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd)
703 {
704         int port = FW_PORT_CMD_PORTID_GET(ntohl(pcmd->op_to_portid));
705         struct net_device *dev = adap->port[port];
706         int old_dcb_enabled = cxgb4_dcb_enabled(dev);
707         int new_dcb_enabled;
708
709         cxgb4_dcb_handle_fw_update(adap, pcmd);
710         new_dcb_enabled = cxgb4_dcb_enabled(dev);
711
712         /* If the DCB has become enabled or disabled on the port then we're
713          * going to need to set up/tear down DCB Priority parameters for the
714          * TX Queues associated with the port.
715          */
716         if (new_dcb_enabled != old_dcb_enabled)
717                 dcb_tx_queue_prio_enable(dev, new_dcb_enabled);
718 }
719 #endif /* CONFIG_CHELSIO_T4_DCB */
720
721 /* Clear a filter and release any of its resources that we own.  This also
722  * clears the filter's "pending" status.
723  */
724 static void clear_filter(struct adapter *adap, struct filter_entry *f)
725 {
726         /* If the new or old filter have loopback rewriteing rules then we'll
727          * need to free any existing Layer Two Table (L2T) entries of the old
728          * filter rule.  The firmware will handle freeing up any Source MAC
729          * Table (SMT) entries used for rewriting Source MAC Addresses in
730          * loopback rules.
731          */
732         if (f->l2t)
733                 cxgb4_l2t_release(f->l2t);
734
735         /* The zeroing of the filter rule below clears the filter valid,
736          * pending, locked flags, l2t pointer, etc. so it's all we need for
737          * this operation.
738          */
739         memset(f, 0, sizeof(*f));
740 }
741
742 /* Handle a filter write/deletion reply.
743  */
744 static void filter_rpl(struct adapter *adap, const struct cpl_set_tcb_rpl *rpl)
745 {
746         unsigned int idx = GET_TID(rpl);
747         unsigned int nidx = idx - adap->tids.ftid_base;
748         unsigned int ret;
749         struct filter_entry *f;
750
751         if (idx >= adap->tids.ftid_base && nidx <
752            (adap->tids.nftids + adap->tids.nsftids)) {
753                 idx = nidx;
754                 ret = GET_TCB_COOKIE(rpl->cookie);
755                 f = &adap->tids.ftid_tab[idx];
756
757                 if (ret == FW_FILTER_WR_FLT_DELETED) {
758                         /* Clear the filter when we get confirmation from the
759                          * hardware that the filter has been deleted.
760                          */
761                         clear_filter(adap, f);
762                 } else if (ret == FW_FILTER_WR_SMT_TBL_FULL) {
763                         dev_err(adap->pdev_dev, "filter %u setup failed due to full SMT\n",
764                                 idx);
765                         clear_filter(adap, f);
766                 } else if (ret == FW_FILTER_WR_FLT_ADDED) {
767                         f->smtidx = (be64_to_cpu(rpl->oldval) >> 24) & 0xff;
768                         f->pending = 0;  /* asynchronous setup completed */
769                         f->valid = 1;
770                 } else {
771                         /* Something went wrong.  Issue a warning about the
772                          * problem and clear everything out.
773                          */
774                         dev_err(adap->pdev_dev, "filter %u setup failed with error %u\n",
775                                 idx, ret);
776                         clear_filter(adap, f);
777                 }
778         }
779 }
780
781 /* Response queue handler for the FW event queue.
782  */
783 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
784                           const struct pkt_gl *gl)
785 {
786         u8 opcode = ((const struct rss_header *)rsp)->opcode;
787
788         rsp++;                                          /* skip RSS header */
789
790         /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
791          */
792         if (unlikely(opcode == CPL_FW4_MSG &&
793            ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) {
794                 rsp++;
795                 opcode = ((const struct rss_header *)rsp)->opcode;
796                 rsp++;
797                 if (opcode != CPL_SGE_EGR_UPDATE) {
798                         dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
799                                 , opcode);
800                         goto out;
801                 }
802         }
803
804         if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
805                 const struct cpl_sge_egr_update *p = (void *)rsp;
806                 unsigned int qid = EGR_QID(ntohl(p->opcode_qid));
807                 struct sge_txq *txq;
808
809                 txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
810                 txq->restarts++;
811                 if ((u8 *)txq < (u8 *)q->adap->sge.ofldtxq) {
812                         struct sge_eth_txq *eq;
813
814                         eq = container_of(txq, struct sge_eth_txq, q);
815                         netif_tx_wake_queue(eq->txq);
816                 } else {
817                         struct sge_ofld_txq *oq;
818
819                         oq = container_of(txq, struct sge_ofld_txq, q);
820                         tasklet_schedule(&oq->qresume_tsk);
821                 }
822         } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
823                 const struct cpl_fw6_msg *p = (void *)rsp;
824
825 #ifdef CONFIG_CHELSIO_T4_DCB
826                 const struct fw_port_cmd *pcmd = (const void *)p->data;
827                 unsigned int cmd = FW_CMD_OP_GET(ntohl(pcmd->op_to_portid));
828                 unsigned int action =
829                         FW_PORT_CMD_ACTION_GET(ntohl(pcmd->action_to_len16));
830
831                 if (cmd == FW_PORT_CMD &&
832                     action == FW_PORT_ACTION_GET_PORT_INFO) {
833                         int port = FW_PORT_CMD_PORTID_GET(
834                                         be32_to_cpu(pcmd->op_to_portid));
835                         struct net_device *dev = q->adap->port[port];
836                         int state_input = ((pcmd->u.info.dcbxdis_pkd &
837                                             FW_PORT_CMD_DCBXDIS)
838                                            ? CXGB4_DCB_INPUT_FW_DISABLED
839                                            : CXGB4_DCB_INPUT_FW_ENABLED);
840
841                         cxgb4_dcb_state_fsm(dev, state_input);
842                 }
843
844                 if (cmd == FW_PORT_CMD &&
845                     action == FW_PORT_ACTION_L2_DCB_CFG)
846                         dcb_rpl(q->adap, pcmd);
847                 else
848 #endif
849                         if (p->type == 0)
850                                 t4_handle_fw_rpl(q->adap, p->data);
851         } else if (opcode == CPL_L2T_WRITE_RPL) {
852                 const struct cpl_l2t_write_rpl *p = (void *)rsp;
853
854                 do_l2t_write_rpl(q->adap, p);
855         } else if (opcode == CPL_SET_TCB_RPL) {
856                 const struct cpl_set_tcb_rpl *p = (void *)rsp;
857
858                 filter_rpl(q->adap, p);
859         } else
860                 dev_err(q->adap->pdev_dev,
861                         "unexpected CPL %#x on FW event queue\n", opcode);
862 out:
863         return 0;
864 }
865
866 /**
867  *      uldrx_handler - response queue handler for ULD queues
868  *      @q: the response queue that received the packet
869  *      @rsp: the response queue descriptor holding the offload message
870  *      @gl: the gather list of packet fragments
871  *
872  *      Deliver an ingress offload packet to a ULD.  All processing is done by
873  *      the ULD, we just maintain statistics.
874  */
875 static int uldrx_handler(struct sge_rspq *q, const __be64 *rsp,
876                          const struct pkt_gl *gl)
877 {
878         struct sge_ofld_rxq *rxq = container_of(q, struct sge_ofld_rxq, rspq);
879
880         /* FW can send CPLs encapsulated in a CPL_FW4_MSG.
881          */
882         if (((const struct rss_header *)rsp)->opcode == CPL_FW4_MSG &&
883             ((const struct cpl_fw4_msg *)(rsp + 1))->type == FW_TYPE_RSSCPL)
884                 rsp += 2;
885
886         if (ulds[q->uld].rx_handler(q->adap->uld_handle[q->uld], rsp, gl)) {
887                 rxq->stats.nomem++;
888                 return -1;
889         }
890         if (gl == NULL)
891                 rxq->stats.imm++;
892         else if (gl == CXGB4_MSG_AN)
893                 rxq->stats.an++;
894         else
895                 rxq->stats.pkts++;
896         return 0;
897 }
898
899 static void disable_msi(struct adapter *adapter)
900 {
901         if (adapter->flags & USING_MSIX) {
902                 pci_disable_msix(adapter->pdev);
903                 adapter->flags &= ~USING_MSIX;
904         } else if (adapter->flags & USING_MSI) {
905                 pci_disable_msi(adapter->pdev);
906                 adapter->flags &= ~USING_MSI;
907         }
908 }
909
910 /*
911  * Interrupt handler for non-data events used with MSI-X.
912  */
913 static irqreturn_t t4_nondata_intr(int irq, void *cookie)
914 {
915         struct adapter *adap = cookie;
916
917         u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE));
918         if (v & PFSW) {
919                 adap->swintr = 1;
920                 t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE), v);
921         }
922         t4_slow_intr_handler(adap);
923         return IRQ_HANDLED;
924 }
925
926 /*
927  * Name the MSI-X interrupts.
928  */
929 static void name_msix_vecs(struct adapter *adap)
930 {
931         int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc);
932
933         /* non-data interrupts */
934         snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name);
935
936         /* FW events */
937         snprintf(adap->msix_info[1].desc, n, "%s-FWeventq",
938                  adap->port[0]->name);
939
940         /* Ethernet queues */
941         for_each_port(adap, j) {
942                 struct net_device *d = adap->port[j];
943                 const struct port_info *pi = netdev_priv(d);
944
945                 for (i = 0; i < pi->nqsets; i++, msi_idx++)
946                         snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d",
947                                  d->name, i);
948         }
949
950         /* offload queues */
951         for_each_ofldrxq(&adap->sge, i)
952                 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-ofld%d",
953                          adap->port[0]->name, i);
954
955         for_each_rdmarxq(&adap->sge, i)
956                 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma%d",
957                          adap->port[0]->name, i);
958
959         for_each_rdmaciq(&adap->sge, i)
960                 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma-ciq%d",
961                          adap->port[0]->name, i);
962 }
963
964 static int request_msix_queue_irqs(struct adapter *adap)
965 {
966         struct sge *s = &adap->sge;
967         int err, ethqidx, ofldqidx = 0, rdmaqidx = 0, rdmaciqqidx = 0;
968         int msi_index = 2;
969
970         err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0,
971                           adap->msix_info[1].desc, &s->fw_evtq);
972         if (err)
973                 return err;
974
975         for_each_ethrxq(s, ethqidx) {
976                 err = request_irq(adap->msix_info[msi_index].vec,
977                                   t4_sge_intr_msix, 0,
978                                   adap->msix_info[msi_index].desc,
979                                   &s->ethrxq[ethqidx].rspq);
980                 if (err)
981                         goto unwind;
982                 msi_index++;
983         }
984         for_each_ofldrxq(s, ofldqidx) {
985                 err = request_irq(adap->msix_info[msi_index].vec,
986                                   t4_sge_intr_msix, 0,
987                                   adap->msix_info[msi_index].desc,
988                                   &s->ofldrxq[ofldqidx].rspq);
989                 if (err)
990                         goto unwind;
991                 msi_index++;
992         }
993         for_each_rdmarxq(s, rdmaqidx) {
994                 err = request_irq(adap->msix_info[msi_index].vec,
995                                   t4_sge_intr_msix, 0,
996                                   adap->msix_info[msi_index].desc,
997                                   &s->rdmarxq[rdmaqidx].rspq);
998                 if (err)
999                         goto unwind;
1000                 msi_index++;
1001         }
1002         for_each_rdmaciq(s, rdmaciqqidx) {
1003                 err = request_irq(adap->msix_info[msi_index].vec,
1004                                   t4_sge_intr_msix, 0,
1005                                   adap->msix_info[msi_index].desc,
1006                                   &s->rdmaciq[rdmaciqqidx].rspq);
1007                 if (err)
1008                         goto unwind;
1009                 msi_index++;
1010         }
1011         return 0;
1012
1013 unwind:
1014         while (--rdmaciqqidx >= 0)
1015                 free_irq(adap->msix_info[--msi_index].vec,
1016                          &s->rdmaciq[rdmaciqqidx].rspq);
1017         while (--rdmaqidx >= 0)
1018                 free_irq(adap->msix_info[--msi_index].vec,
1019                          &s->rdmarxq[rdmaqidx].rspq);
1020         while (--ofldqidx >= 0)
1021                 free_irq(adap->msix_info[--msi_index].vec,
1022                          &s->ofldrxq[ofldqidx].rspq);
1023         while (--ethqidx >= 0)
1024                 free_irq(adap->msix_info[--msi_index].vec,
1025                          &s->ethrxq[ethqidx].rspq);
1026         free_irq(adap->msix_info[1].vec, &s->fw_evtq);
1027         return err;
1028 }
1029
1030 static void free_msix_queue_irqs(struct adapter *adap)
1031 {
1032         int i, msi_index = 2;
1033         struct sge *s = &adap->sge;
1034
1035         free_irq(adap->msix_info[1].vec, &s->fw_evtq);
1036         for_each_ethrxq(s, i)
1037                 free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq);
1038         for_each_ofldrxq(s, i)
1039                 free_irq(adap->msix_info[msi_index++].vec, &s->ofldrxq[i].rspq);
1040         for_each_rdmarxq(s, i)
1041                 free_irq(adap->msix_info[msi_index++].vec, &s->rdmarxq[i].rspq);
1042         for_each_rdmaciq(s, i)
1043                 free_irq(adap->msix_info[msi_index++].vec, &s->rdmaciq[i].rspq);
1044 }
1045
1046 /**
1047  *      write_rss - write the RSS table for a given port
1048  *      @pi: the port
1049  *      @queues: array of queue indices for RSS
1050  *
1051  *      Sets up the portion of the HW RSS table for the port's VI to distribute
1052  *      packets to the Rx queues in @queues.
1053  */
1054 static int write_rss(const struct port_info *pi, const u16 *queues)
1055 {
1056         u16 *rss;
1057         int i, err;
1058         const struct sge_eth_rxq *q = &pi->adapter->sge.ethrxq[pi->first_qset];
1059
1060         rss = kmalloc(pi->rss_size * sizeof(u16), GFP_KERNEL);
1061         if (!rss)
1062                 return -ENOMEM;
1063
1064         /* map the queue indices to queue ids */
1065         for (i = 0; i < pi->rss_size; i++, queues++)
1066                 rss[i] = q[*queues].rspq.abs_id;
1067
1068         err = t4_config_rss_range(pi->adapter, pi->adapter->fn, pi->viid, 0,
1069                                   pi->rss_size, rss, pi->rss_size);
1070         kfree(rss);
1071         return err;
1072 }
1073
1074 /**
1075  *      setup_rss - configure RSS
1076  *      @adap: the adapter
1077  *
1078  *      Sets up RSS for each port.
1079  */
1080 static int setup_rss(struct adapter *adap)
1081 {
1082         int i, err;
1083
1084         for_each_port(adap, i) {
1085                 const struct port_info *pi = adap2pinfo(adap, i);
1086
1087                 err = write_rss(pi, pi->rss);
1088                 if (err)
1089                         return err;
1090         }
1091         return 0;
1092 }
1093
1094 /*
1095  * Return the channel of the ingress queue with the given qid.
1096  */
1097 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
1098 {
1099         qid -= p->ingr_start;
1100         return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
1101 }
1102
1103 /*
1104  * Wait until all NAPI handlers are descheduled.
1105  */
1106 static void quiesce_rx(struct adapter *adap)
1107 {
1108         int i;
1109
1110         for (i = 0; i < ARRAY_SIZE(adap->sge.ingr_map); i++) {
1111                 struct sge_rspq *q = adap->sge.ingr_map[i];
1112
1113                 if (q && q->handler)
1114                         napi_disable(&q->napi);
1115         }
1116 }
1117
1118 /*
1119  * Enable NAPI scheduling and interrupt generation for all Rx queues.
1120  */
1121 static void enable_rx(struct adapter *adap)
1122 {
1123         int i;
1124
1125         for (i = 0; i < ARRAY_SIZE(adap->sge.ingr_map); i++) {
1126                 struct sge_rspq *q = adap->sge.ingr_map[i];
1127
1128                 if (!q)
1129                         continue;
1130                 if (q->handler)
1131                         napi_enable(&q->napi);
1132                 /* 0-increment GTS to start the timer and enable interrupts */
1133                 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS),
1134                              SEINTARM(q->intr_params) |
1135                              INGRESSQID(q->cntxt_id));
1136         }
1137 }
1138
1139 /**
1140  *      setup_sge_queues - configure SGE Tx/Rx/response queues
1141  *      @adap: the adapter
1142  *
1143  *      Determines how many sets of SGE queues to use and initializes them.
1144  *      We support multiple queue sets per port if we have MSI-X, otherwise
1145  *      just one queue set per port.
1146  */
1147 static int setup_sge_queues(struct adapter *adap)
1148 {
1149         int err, msi_idx, i, j;
1150         struct sge *s = &adap->sge;
1151
1152         bitmap_zero(s->starving_fl, MAX_EGRQ);
1153         bitmap_zero(s->txq_maperr, MAX_EGRQ);
1154
1155         if (adap->flags & USING_MSIX)
1156                 msi_idx = 1;         /* vector 0 is for non-queue interrupts */
1157         else {
1158                 err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
1159                                        NULL, NULL);
1160                 if (err)
1161                         return err;
1162                 msi_idx = -((int)s->intrq.abs_id + 1);
1163         }
1164
1165         err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
1166                                msi_idx, NULL, fwevtq_handler);
1167         if (err) {
1168 freeout:        t4_free_sge_resources(adap);
1169                 return err;
1170         }
1171
1172         for_each_port(adap, i) {
1173                 struct net_device *dev = adap->port[i];
1174                 struct port_info *pi = netdev_priv(dev);
1175                 struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
1176                 struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];
1177
1178                 for (j = 0; j < pi->nqsets; j++, q++) {
1179                         if (msi_idx > 0)
1180                                 msi_idx++;
1181                         err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
1182                                                msi_idx, &q->fl,
1183                                                t4_ethrx_handler);
1184                         if (err)
1185                                 goto freeout;
1186                         q->rspq.idx = j;
1187                         memset(&q->stats, 0, sizeof(q->stats));
1188                 }
1189                 for (j = 0; j < pi->nqsets; j++, t++) {
1190                         err = t4_sge_alloc_eth_txq(adap, t, dev,
1191                                         netdev_get_tx_queue(dev, j),
1192                                         s->fw_evtq.cntxt_id);
1193                         if (err)
1194                                 goto freeout;
1195                 }
1196         }
1197
1198         j = s->ofldqsets / adap->params.nports; /* ofld queues per channel */
1199         for_each_ofldrxq(s, i) {
1200                 struct sge_ofld_rxq *q = &s->ofldrxq[i];
1201                 struct net_device *dev = adap->port[i / j];
1202
1203                 if (msi_idx > 0)
1204                         msi_idx++;
1205                 err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev, msi_idx,
1206                                        q->fl.size ? &q->fl : NULL,
1207                                        uldrx_handler);
1208                 if (err)
1209                         goto freeout;
1210                 memset(&q->stats, 0, sizeof(q->stats));
1211                 s->ofld_rxq[i] = q->rspq.abs_id;
1212                 err = t4_sge_alloc_ofld_txq(adap, &s->ofldtxq[i], dev,
1213                                             s->fw_evtq.cntxt_id);
1214                 if (err)
1215                         goto freeout;
1216         }
1217
1218         for_each_rdmarxq(s, i) {
1219                 struct sge_ofld_rxq *q = &s->rdmarxq[i];
1220
1221                 if (msi_idx > 0)
1222                         msi_idx++;
1223                 err = t4_sge_alloc_rxq(adap, &q->rspq, false, adap->port[i],
1224                                        msi_idx, q->fl.size ? &q->fl : NULL,
1225                                        uldrx_handler);
1226                 if (err)
1227                         goto freeout;
1228                 memset(&q->stats, 0, sizeof(q->stats));
1229                 s->rdma_rxq[i] = q->rspq.abs_id;
1230         }
1231
1232         for_each_rdmaciq(s, i) {
1233                 struct sge_ofld_rxq *q = &s->rdmaciq[i];
1234
1235                 if (msi_idx > 0)
1236                         msi_idx++;
1237                 err = t4_sge_alloc_rxq(adap, &q->rspq, false, adap->port[i],
1238                                        msi_idx, q->fl.size ? &q->fl : NULL,
1239                                        uldrx_handler);
1240                 if (err)
1241                         goto freeout;
1242                 memset(&q->stats, 0, sizeof(q->stats));
1243                 s->rdma_ciq[i] = q->rspq.abs_id;
1244         }
1245
1246         for_each_port(adap, i) {
1247                 /*
1248                  * Note that ->rdmarxq[i].rspq.cntxt_id below is 0 if we don't
1249                  * have RDMA queues, and that's the right value.
1250                  */
1251                 err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
1252                                             s->fw_evtq.cntxt_id,
1253                                             s->rdmarxq[i].rspq.cntxt_id);
1254                 if (err)
1255                         goto freeout;
1256         }
1257
1258         t4_write_reg(adap, is_t4(adap->params.chip) ?
1259                                 MPS_TRC_RSS_CONTROL :
1260                                 MPS_T5_TRC_RSS_CONTROL,
1261                      RSSCONTROL(netdev2pinfo(adap->port[0])->tx_chan) |
1262                      QUEUENUMBER(s->ethrxq[0].rspq.abs_id));
1263         return 0;
1264 }
1265
1266 /*
1267  * Allocate a chunk of memory using kmalloc or, if that fails, vmalloc.
1268  * The allocated memory is cleared.
1269  */
1270 void *t4_alloc_mem(size_t size)
1271 {
1272         void *p = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1273
1274         if (!p)
1275                 p = vzalloc(size);
1276         return p;
1277 }
1278
1279 /*
1280  * Free memory allocated through alloc_mem().
1281  */
1282 static void t4_free_mem(void *addr)
1283 {
1284         if (is_vmalloc_addr(addr))
1285                 vfree(addr);
1286         else
1287                 kfree(addr);
1288 }
1289
1290 /* Send a Work Request to write the filter at a specified index.  We construct
1291  * a Firmware Filter Work Request to have the work done and put the indicated
1292  * filter into "pending" mode which will prevent any further actions against
1293  * it till we get a reply from the firmware on the completion status of the
1294  * request.
1295  */
1296 static int set_filter_wr(struct adapter *adapter, int fidx)
1297 {
1298         struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1299         struct sk_buff *skb;
1300         struct fw_filter_wr *fwr;
1301         unsigned int ftid;
1302
1303         /* If the new filter requires loopback Destination MAC and/or VLAN
1304          * rewriting then we need to allocate a Layer 2 Table (L2T) entry for
1305          * the filter.
1306          */
1307         if (f->fs.newdmac || f->fs.newvlan) {
1308                 /* allocate L2T entry for new filter */
1309                 f->l2t = t4_l2t_alloc_switching(adapter->l2t);
1310                 if (f->l2t == NULL)
1311                         return -EAGAIN;
1312                 if (t4_l2t_set_switching(adapter, f->l2t, f->fs.vlan,
1313                                         f->fs.eport, f->fs.dmac)) {
1314                         cxgb4_l2t_release(f->l2t);
1315                         f->l2t = NULL;
1316                         return -ENOMEM;
1317                 }
1318         }
1319
1320         ftid = adapter->tids.ftid_base + fidx;
1321
1322         skb = alloc_skb(sizeof(*fwr), GFP_KERNEL | __GFP_NOFAIL);
1323         fwr = (struct fw_filter_wr *)__skb_put(skb, sizeof(*fwr));
1324         memset(fwr, 0, sizeof(*fwr));
1325
1326         /* It would be nice to put most of the following in t4_hw.c but most
1327          * of the work is translating the cxgbtool ch_filter_specification
1328          * into the Work Request and the definition of that structure is
1329          * currently in cxgbtool.h which isn't appropriate to pull into the
1330          * common code.  We may eventually try to come up with a more neutral
1331          * filter specification structure but for now it's easiest to simply
1332          * put this fairly direct code in line ...
1333          */
1334         fwr->op_pkd = htonl(FW_WR_OP(FW_FILTER_WR));
1335         fwr->len16_pkd = htonl(FW_WR_LEN16(sizeof(*fwr)/16));
1336         fwr->tid_to_iq =
1337                 htonl(V_FW_FILTER_WR_TID(ftid) |
1338                       V_FW_FILTER_WR_RQTYPE(f->fs.type) |
1339                       V_FW_FILTER_WR_NOREPLY(0) |
1340                       V_FW_FILTER_WR_IQ(f->fs.iq));
1341         fwr->del_filter_to_l2tix =
1342                 htonl(V_FW_FILTER_WR_RPTTID(f->fs.rpttid) |
1343                       V_FW_FILTER_WR_DROP(f->fs.action == FILTER_DROP) |
1344                       V_FW_FILTER_WR_DIRSTEER(f->fs.dirsteer) |
1345                       V_FW_FILTER_WR_MASKHASH(f->fs.maskhash) |
1346                       V_FW_FILTER_WR_DIRSTEERHASH(f->fs.dirsteerhash) |
1347                       V_FW_FILTER_WR_LPBK(f->fs.action == FILTER_SWITCH) |
1348                       V_FW_FILTER_WR_DMAC(f->fs.newdmac) |
1349                       V_FW_FILTER_WR_SMAC(f->fs.newsmac) |
1350                       V_FW_FILTER_WR_INSVLAN(f->fs.newvlan == VLAN_INSERT ||
1351                                              f->fs.newvlan == VLAN_REWRITE) |
1352                       V_FW_FILTER_WR_RMVLAN(f->fs.newvlan == VLAN_REMOVE ||
1353                                             f->fs.newvlan == VLAN_REWRITE) |
1354                       V_FW_FILTER_WR_HITCNTS(f->fs.hitcnts) |
1355                       V_FW_FILTER_WR_TXCHAN(f->fs.eport) |
1356                       V_FW_FILTER_WR_PRIO(f->fs.prio) |
1357                       V_FW_FILTER_WR_L2TIX(f->l2t ? f->l2t->idx : 0));
1358         fwr->ethtype = htons(f->fs.val.ethtype);
1359         fwr->ethtypem = htons(f->fs.mask.ethtype);
1360         fwr->frag_to_ovlan_vldm =
1361                 (V_FW_FILTER_WR_FRAG(f->fs.val.frag) |
1362                  V_FW_FILTER_WR_FRAGM(f->fs.mask.frag) |
1363                  V_FW_FILTER_WR_IVLAN_VLD(f->fs.val.ivlan_vld) |
1364                  V_FW_FILTER_WR_OVLAN_VLD(f->fs.val.ovlan_vld) |
1365                  V_FW_FILTER_WR_IVLAN_VLDM(f->fs.mask.ivlan_vld) |
1366                  V_FW_FILTER_WR_OVLAN_VLDM(f->fs.mask.ovlan_vld));
1367         fwr->smac_sel = 0;
1368         fwr->rx_chan_rx_rpl_iq =
1369                 htons(V_FW_FILTER_WR_RX_CHAN(0) |
1370                       V_FW_FILTER_WR_RX_RPL_IQ(adapter->sge.fw_evtq.abs_id));
1371         fwr->maci_to_matchtypem =
1372                 htonl(V_FW_FILTER_WR_MACI(f->fs.val.macidx) |
1373                       V_FW_FILTER_WR_MACIM(f->fs.mask.macidx) |
1374                       V_FW_FILTER_WR_FCOE(f->fs.val.fcoe) |
1375                       V_FW_FILTER_WR_FCOEM(f->fs.mask.fcoe) |
1376                       V_FW_FILTER_WR_PORT(f->fs.val.iport) |
1377                       V_FW_FILTER_WR_PORTM(f->fs.mask.iport) |
1378                       V_FW_FILTER_WR_MATCHTYPE(f->fs.val.matchtype) |
1379                       V_FW_FILTER_WR_MATCHTYPEM(f->fs.mask.matchtype));
1380         fwr->ptcl = f->fs.val.proto;
1381         fwr->ptclm = f->fs.mask.proto;
1382         fwr->ttyp = f->fs.val.tos;
1383         fwr->ttypm = f->fs.mask.tos;
1384         fwr->ivlan = htons(f->fs.val.ivlan);
1385         fwr->ivlanm = htons(f->fs.mask.ivlan);
1386         fwr->ovlan = htons(f->fs.val.ovlan);
1387         fwr->ovlanm = htons(f->fs.mask.ovlan);
1388         memcpy(fwr->lip, f->fs.val.lip, sizeof(fwr->lip));
1389         memcpy(fwr->lipm, f->fs.mask.lip, sizeof(fwr->lipm));
1390         memcpy(fwr->fip, f->fs.val.fip, sizeof(fwr->fip));
1391         memcpy(fwr->fipm, f->fs.mask.fip, sizeof(fwr->fipm));
1392         fwr->lp = htons(f->fs.val.lport);
1393         fwr->lpm = htons(f->fs.mask.lport);
1394         fwr->fp = htons(f->fs.val.fport);
1395         fwr->fpm = htons(f->fs.mask.fport);
1396         if (f->fs.newsmac)
1397                 memcpy(fwr->sma, f->fs.smac, sizeof(fwr->sma));
1398
1399         /* Mark the filter as "pending" and ship off the Filter Work Request.
1400          * When we get the Work Request Reply we'll clear the pending status.
1401          */
1402         f->pending = 1;
1403         set_wr_txq(skb, CPL_PRIORITY_CONTROL, f->fs.val.iport & 0x3);
1404         t4_ofld_send(adapter, skb);
1405         return 0;
1406 }
1407
1408 /* Delete the filter at a specified index.
1409  */
1410 static int del_filter_wr(struct adapter *adapter, int fidx)
1411 {
1412         struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1413         struct sk_buff *skb;
1414         struct fw_filter_wr *fwr;
1415         unsigned int len, ftid;
1416
1417         len = sizeof(*fwr);
1418         ftid = adapter->tids.ftid_base + fidx;
1419
1420         skb = alloc_skb(len, GFP_KERNEL | __GFP_NOFAIL);
1421         fwr = (struct fw_filter_wr *)__skb_put(skb, len);
1422         t4_mk_filtdelwr(ftid, fwr, adapter->sge.fw_evtq.abs_id);
1423
1424         /* Mark the filter as "pending" and ship off the Filter Work Request.
1425          * When we get the Work Request Reply we'll clear the pending status.
1426          */
1427         f->pending = 1;
1428         t4_mgmt_tx(adapter, skb);
1429         return 0;
1430 }
1431
1432 static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb,
1433                              void *accel_priv, select_queue_fallback_t fallback)
1434 {
1435         int txq;
1436
1437 #ifdef CONFIG_CHELSIO_T4_DCB
1438         /* If a Data Center Bridging has been successfully negotiated on this
1439          * link then we'll use the skb's priority to map it to a TX Queue.
1440          * The skb's priority is determined via the VLAN Tag Priority Code
1441          * Point field.
1442          */
1443         if (cxgb4_dcb_enabled(dev)) {
1444                 u16 vlan_tci;
1445                 int err;
1446
1447                 err = vlan_get_tag(skb, &vlan_tci);
1448                 if (unlikely(err)) {
1449                         if (net_ratelimit())
1450                                 netdev_warn(dev,
1451                                             "TX Packet without VLAN Tag on DCB Link\n");
1452                         txq = 0;
1453                 } else {
1454                         txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
1455                 }
1456                 return txq;
1457         }
1458 #endif /* CONFIG_CHELSIO_T4_DCB */
1459
1460         if (select_queue) {
1461                 txq = (skb_rx_queue_recorded(skb)
1462                         ? skb_get_rx_queue(skb)
1463                         : smp_processor_id());
1464
1465                 while (unlikely(txq >= dev->real_num_tx_queues))
1466                         txq -= dev->real_num_tx_queues;
1467
1468                 return txq;
1469         }
1470
1471         return fallback(dev, skb) % dev->real_num_tx_queues;
1472 }
1473
1474 static inline int is_offload(const struct adapter *adap)
1475 {
1476         return adap->params.offload;
1477 }
1478
1479 /*
1480  * Implementation of ethtool operations.
1481  */
1482
1483 static u32 get_msglevel(struct net_device *dev)
1484 {
1485         return netdev2adap(dev)->msg_enable;
1486 }
1487
1488 static void set_msglevel(struct net_device *dev, u32 val)
1489 {
1490         netdev2adap(dev)->msg_enable = val;
1491 }
1492
1493 static char stats_strings[][ETH_GSTRING_LEN] = {
1494         "TxOctetsOK         ",
1495         "TxFramesOK         ",
1496         "TxBroadcastFrames  ",
1497         "TxMulticastFrames  ",
1498         "TxUnicastFrames    ",
1499         "TxErrorFrames      ",
1500
1501         "TxFrames64         ",
1502         "TxFrames65To127    ",
1503         "TxFrames128To255   ",
1504         "TxFrames256To511   ",
1505         "TxFrames512To1023  ",
1506         "TxFrames1024To1518 ",
1507         "TxFrames1519ToMax  ",
1508
1509         "TxFramesDropped    ",
1510         "TxPauseFrames      ",
1511         "TxPPP0Frames       ",
1512         "TxPPP1Frames       ",
1513         "TxPPP2Frames       ",
1514         "TxPPP3Frames       ",
1515         "TxPPP4Frames       ",
1516         "TxPPP5Frames       ",
1517         "TxPPP6Frames       ",
1518         "TxPPP7Frames       ",
1519
1520         "RxOctetsOK         ",
1521         "RxFramesOK         ",
1522         "RxBroadcastFrames  ",
1523         "RxMulticastFrames  ",
1524         "RxUnicastFrames    ",
1525
1526         "RxFramesTooLong    ",
1527         "RxJabberErrors     ",
1528         "RxFCSErrors        ",
1529         "RxLengthErrors     ",
1530         "RxSymbolErrors     ",
1531         "RxRuntFrames       ",
1532
1533         "RxFrames64         ",
1534         "RxFrames65To127    ",
1535         "RxFrames128To255   ",
1536         "RxFrames256To511   ",
1537         "RxFrames512To1023  ",
1538         "RxFrames1024To1518 ",
1539         "RxFrames1519ToMax  ",
1540
1541         "RxPauseFrames      ",
1542         "RxPPP0Frames       ",
1543         "RxPPP1Frames       ",
1544         "RxPPP2Frames       ",
1545         "RxPPP3Frames       ",
1546         "RxPPP4Frames       ",
1547         "RxPPP5Frames       ",
1548         "RxPPP6Frames       ",
1549         "RxPPP7Frames       ",
1550
1551         "RxBG0FramesDropped ",
1552         "RxBG1FramesDropped ",
1553         "RxBG2FramesDropped ",
1554         "RxBG3FramesDropped ",
1555         "RxBG0FramesTrunc   ",
1556         "RxBG1FramesTrunc   ",
1557         "RxBG2FramesTrunc   ",
1558         "RxBG3FramesTrunc   ",
1559
1560         "TSO                ",
1561         "TxCsumOffload      ",
1562         "RxCsumGood         ",
1563         "VLANextractions    ",
1564         "VLANinsertions     ",
1565         "GROpackets         ",
1566         "GROmerged          ",
1567         "WriteCoalSuccess   ",
1568         "WriteCoalFail      ",
1569 };
1570
1571 static int get_sset_count(struct net_device *dev, int sset)
1572 {
1573         switch (sset) {
1574         case ETH_SS_STATS:
1575                 return ARRAY_SIZE(stats_strings);
1576         default:
1577                 return -EOPNOTSUPP;
1578         }
1579 }
1580
1581 #define T4_REGMAP_SIZE (160 * 1024)
1582 #define T5_REGMAP_SIZE (332 * 1024)
1583
1584 static int get_regs_len(struct net_device *dev)
1585 {
1586         struct adapter *adap = netdev2adap(dev);
1587         if (is_t4(adap->params.chip))
1588                 return T4_REGMAP_SIZE;
1589         else
1590                 return T5_REGMAP_SIZE;
1591 }
1592
1593 static int get_eeprom_len(struct net_device *dev)
1594 {
1595         return EEPROMSIZE;
1596 }
1597
1598 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1599 {
1600         struct adapter *adapter = netdev2adap(dev);
1601
1602         strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
1603         strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1604         strlcpy(info->bus_info, pci_name(adapter->pdev),
1605                 sizeof(info->bus_info));
1606
1607         if (adapter->params.fw_vers)
1608                 snprintf(info->fw_version, sizeof(info->fw_version),
1609                         "%u.%u.%u.%u, TP %u.%u.%u.%u",
1610                         FW_HDR_FW_VER_MAJOR_GET(adapter->params.fw_vers),
1611                         FW_HDR_FW_VER_MINOR_GET(adapter->params.fw_vers),
1612                         FW_HDR_FW_VER_MICRO_GET(adapter->params.fw_vers),
1613                         FW_HDR_FW_VER_BUILD_GET(adapter->params.fw_vers),
1614                         FW_HDR_FW_VER_MAJOR_GET(adapter->params.tp_vers),
1615                         FW_HDR_FW_VER_MINOR_GET(adapter->params.tp_vers),
1616                         FW_HDR_FW_VER_MICRO_GET(adapter->params.tp_vers),
1617                         FW_HDR_FW_VER_BUILD_GET(adapter->params.tp_vers));
1618 }
1619
1620 static void get_strings(struct net_device *dev, u32 stringset, u8 *data)
1621 {
1622         if (stringset == ETH_SS_STATS)
1623                 memcpy(data, stats_strings, sizeof(stats_strings));
1624 }
1625
1626 /*
1627  * port stats maintained per queue of the port.  They should be in the same
1628  * order as in stats_strings above.
1629  */
1630 struct queue_port_stats {
1631         u64 tso;
1632         u64 tx_csum;
1633         u64 rx_csum;
1634         u64 vlan_ex;
1635         u64 vlan_ins;
1636         u64 gro_pkts;
1637         u64 gro_merged;
1638 };
1639
1640 static void collect_sge_port_stats(const struct adapter *adap,
1641                 const struct port_info *p, struct queue_port_stats *s)
1642 {
1643         int i;
1644         const struct sge_eth_txq *tx = &adap->sge.ethtxq[p->first_qset];
1645         const struct sge_eth_rxq *rx = &adap->sge.ethrxq[p->first_qset];
1646
1647         memset(s, 0, sizeof(*s));
1648         for (i = 0; i < p->nqsets; i++, rx++, tx++) {
1649                 s->tso += tx->tso;
1650                 s->tx_csum += tx->tx_cso;
1651                 s->rx_csum += rx->stats.rx_cso;
1652                 s->vlan_ex += rx->stats.vlan_ex;
1653                 s->vlan_ins += tx->vlan_ins;
1654                 s->gro_pkts += rx->stats.lro_pkts;
1655                 s->gro_merged += rx->stats.lro_merged;
1656         }
1657 }
1658
1659 static void get_stats(struct net_device *dev, struct ethtool_stats *stats,
1660                       u64 *data)
1661 {
1662         struct port_info *pi = netdev_priv(dev);
1663         struct adapter *adapter = pi->adapter;
1664         u32 val1, val2;
1665
1666         t4_get_port_stats(adapter, pi->tx_chan, (struct port_stats *)data);
1667
1668         data += sizeof(struct port_stats) / sizeof(u64);
1669         collect_sge_port_stats(adapter, pi, (struct queue_port_stats *)data);
1670         data += sizeof(struct queue_port_stats) / sizeof(u64);
1671         if (!is_t4(adapter->params.chip)) {
1672                 t4_write_reg(adapter, SGE_STAT_CFG, STATSOURCE_T5(7));
1673                 val1 = t4_read_reg(adapter, SGE_STAT_TOTAL);
1674                 val2 = t4_read_reg(adapter, SGE_STAT_MATCH);
1675                 *data = val1 - val2;
1676                 data++;
1677                 *data = val2;
1678                 data++;
1679         } else {
1680                 memset(data, 0, 2 * sizeof(u64));
1681                 *data += 2;
1682         }
1683 }
1684
1685 /*
1686  * Return a version number to identify the type of adapter.  The scheme is:
1687  * - bits 0..9: chip version
1688  * - bits 10..15: chip revision
1689  * - bits 16..23: register dump version
1690  */
1691 static inline unsigned int mk_adap_vers(const struct adapter *ap)
1692 {
1693         return CHELSIO_CHIP_VERSION(ap->params.chip) |
1694                 (CHELSIO_CHIP_RELEASE(ap->params.chip) << 10) | (1 << 16);
1695 }
1696
1697 static void reg_block_dump(struct adapter *ap, void *buf, unsigned int start,
1698                            unsigned int end)
1699 {
1700         u32 *p = buf + start;
1701
1702         for ( ; start <= end; start += sizeof(u32))
1703                 *p++ = t4_read_reg(ap, start);
1704 }
1705
1706 static void get_regs(struct net_device *dev, struct ethtool_regs *regs,
1707                      void *buf)
1708 {
1709         static const unsigned int t4_reg_ranges[] = {
1710                 0x1008, 0x1108,
1711                 0x1180, 0x11b4,
1712                 0x11fc, 0x123c,
1713                 0x1300, 0x173c,
1714                 0x1800, 0x18fc,
1715                 0x3000, 0x30d8,
1716                 0x30e0, 0x5924,
1717                 0x5960, 0x59d4,
1718                 0x5a00, 0x5af8,
1719                 0x6000, 0x6098,
1720                 0x6100, 0x6150,
1721                 0x6200, 0x6208,
1722                 0x6240, 0x6248,
1723                 0x6280, 0x6338,
1724                 0x6370, 0x638c,
1725                 0x6400, 0x643c,
1726                 0x6500, 0x6524,
1727                 0x6a00, 0x6a38,
1728                 0x6a60, 0x6a78,
1729                 0x6b00, 0x6b84,
1730                 0x6bf0, 0x6c84,
1731                 0x6cf0, 0x6d84,
1732                 0x6df0, 0x6e84,
1733                 0x6ef0, 0x6f84,
1734                 0x6ff0, 0x7084,
1735                 0x70f0, 0x7184,
1736                 0x71f0, 0x7284,
1737                 0x72f0, 0x7384,
1738                 0x73f0, 0x7450,
1739                 0x7500, 0x7530,
1740                 0x7600, 0x761c,
1741                 0x7680, 0x76cc,
1742                 0x7700, 0x7798,
1743                 0x77c0, 0x77fc,
1744                 0x7900, 0x79fc,
1745                 0x7b00, 0x7c38,
1746                 0x7d00, 0x7efc,
1747                 0x8dc0, 0x8e1c,
1748                 0x8e30, 0x8e78,
1749                 0x8ea0, 0x8f6c,
1750                 0x8fc0, 0x9074,
1751                 0x90fc, 0x90fc,
1752                 0x9400, 0x9458,
1753                 0x9600, 0x96bc,
1754                 0x9800, 0x9808,
1755                 0x9820, 0x983c,
1756                 0x9850, 0x9864,
1757                 0x9c00, 0x9c6c,
1758                 0x9c80, 0x9cec,
1759                 0x9d00, 0x9d6c,
1760                 0x9d80, 0x9dec,
1761                 0x9e00, 0x9e6c,
1762                 0x9e80, 0x9eec,
1763                 0x9f00, 0x9f6c,
1764                 0x9f80, 0x9fec,
1765                 0xd004, 0xd03c,
1766                 0xdfc0, 0xdfe0,
1767                 0xe000, 0xea7c,
1768                 0xf000, 0x11110,
1769                 0x11118, 0x11190,
1770                 0x19040, 0x1906c,
1771                 0x19078, 0x19080,
1772                 0x1908c, 0x19124,
1773                 0x19150, 0x191b0,
1774                 0x191d0, 0x191e8,
1775                 0x19238, 0x1924c,
1776                 0x193f8, 0x19474,
1777                 0x19490, 0x194f8,
1778                 0x19800, 0x19f30,
1779                 0x1a000, 0x1a06c,
1780                 0x1a0b0, 0x1a120,
1781                 0x1a128, 0x1a138,
1782                 0x1a190, 0x1a1c4,
1783                 0x1a1fc, 0x1a1fc,
1784                 0x1e040, 0x1e04c,
1785                 0x1e284, 0x1e28c,
1786                 0x1e2c0, 0x1e2c0,
1787                 0x1e2e0, 0x1e2e0,
1788                 0x1e300, 0x1e384,
1789                 0x1e3c0, 0x1e3c8,
1790                 0x1e440, 0x1e44c,
1791                 0x1e684, 0x1e68c,
1792                 0x1e6c0, 0x1e6c0,
1793                 0x1e6e0, 0x1e6e0,
1794                 0x1e700, 0x1e784,
1795                 0x1e7c0, 0x1e7c8,
1796                 0x1e840, 0x1e84c,
1797                 0x1ea84, 0x1ea8c,
1798                 0x1eac0, 0x1eac0,
1799                 0x1eae0, 0x1eae0,
1800                 0x1eb00, 0x1eb84,
1801                 0x1ebc0, 0x1ebc8,
1802                 0x1ec40, 0x1ec4c,
1803                 0x1ee84, 0x1ee8c,
1804                 0x1eec0, 0x1eec0,
1805                 0x1eee0, 0x1eee0,
1806                 0x1ef00, 0x1ef84,
1807                 0x1efc0, 0x1efc8,
1808                 0x1f040, 0x1f04c,
1809                 0x1f284, 0x1f28c,
1810                 0x1f2c0, 0x1f2c0,
1811                 0x1f2e0, 0x1f2e0,
1812                 0x1f300, 0x1f384,
1813                 0x1f3c0, 0x1f3c8,
1814                 0x1f440, 0x1f44c,
1815                 0x1f684, 0x1f68c,
1816                 0x1f6c0, 0x1f6c0,
1817                 0x1f6e0, 0x1f6e0,
1818                 0x1f700, 0x1f784,
1819                 0x1f7c0, 0x1f7c8,
1820                 0x1f840, 0x1f84c,
1821                 0x1fa84, 0x1fa8c,
1822                 0x1fac0, 0x1fac0,
1823                 0x1fae0, 0x1fae0,
1824                 0x1fb00, 0x1fb84,
1825                 0x1fbc0, 0x1fbc8,
1826                 0x1fc40, 0x1fc4c,
1827                 0x1fe84, 0x1fe8c,
1828                 0x1fec0, 0x1fec0,
1829                 0x1fee0, 0x1fee0,
1830                 0x1ff00, 0x1ff84,
1831                 0x1ffc0, 0x1ffc8,
1832                 0x20000, 0x2002c,
1833                 0x20100, 0x2013c,
1834                 0x20190, 0x201c8,
1835                 0x20200, 0x20318,
1836                 0x20400, 0x20528,
1837                 0x20540, 0x20614,
1838                 0x21000, 0x21040,
1839                 0x2104c, 0x21060,
1840                 0x210c0, 0x210ec,
1841                 0x21200, 0x21268,
1842                 0x21270, 0x21284,
1843                 0x212fc, 0x21388,
1844                 0x21400, 0x21404,
1845                 0x21500, 0x21518,
1846                 0x2152c, 0x2153c,
1847                 0x21550, 0x21554,
1848                 0x21600, 0x21600,
1849                 0x21608, 0x21628,
1850                 0x21630, 0x2163c,
1851                 0x21700, 0x2171c,
1852                 0x21780, 0x2178c,
1853                 0x21800, 0x21c38,
1854                 0x21c80, 0x21d7c,
1855                 0x21e00, 0x21e04,
1856                 0x22000, 0x2202c,
1857                 0x22100, 0x2213c,
1858                 0x22190, 0x221c8,
1859                 0x22200, 0x22318,
1860                 0x22400, 0x22528,
1861                 0x22540, 0x22614,
1862                 0x23000, 0x23040,
1863                 0x2304c, 0x23060,
1864                 0x230c0, 0x230ec,
1865                 0x23200, 0x23268,
1866                 0x23270, 0x23284,
1867                 0x232fc, 0x23388,
1868                 0x23400, 0x23404,
1869                 0x23500, 0x23518,
1870                 0x2352c, 0x2353c,
1871                 0x23550, 0x23554,
1872                 0x23600, 0x23600,
1873                 0x23608, 0x23628,
1874                 0x23630, 0x2363c,
1875                 0x23700, 0x2371c,
1876                 0x23780, 0x2378c,
1877                 0x23800, 0x23c38,
1878                 0x23c80, 0x23d7c,
1879                 0x23e00, 0x23e04,
1880                 0x24000, 0x2402c,
1881                 0x24100, 0x2413c,
1882                 0x24190, 0x241c8,
1883                 0x24200, 0x24318,
1884                 0x24400, 0x24528,
1885                 0x24540, 0x24614,
1886                 0x25000, 0x25040,
1887                 0x2504c, 0x25060,
1888                 0x250c0, 0x250ec,
1889                 0x25200, 0x25268,
1890                 0x25270, 0x25284,
1891                 0x252fc, 0x25388,
1892                 0x25400, 0x25404,
1893                 0x25500, 0x25518,
1894                 0x2552c, 0x2553c,
1895                 0x25550, 0x25554,
1896                 0x25600, 0x25600,
1897                 0x25608, 0x25628,
1898                 0x25630, 0x2563c,
1899                 0x25700, 0x2571c,
1900                 0x25780, 0x2578c,
1901                 0x25800, 0x25c38,
1902                 0x25c80, 0x25d7c,
1903                 0x25e00, 0x25e04,
1904                 0x26000, 0x2602c,
1905                 0x26100, 0x2613c,
1906                 0x26190, 0x261c8,
1907                 0x26200, 0x26318,
1908                 0x26400, 0x26528,
1909                 0x26540, 0x26614,
1910                 0x27000, 0x27040,
1911                 0x2704c, 0x27060,
1912                 0x270c0, 0x270ec,
1913                 0x27200, 0x27268,
1914                 0x27270, 0x27284,
1915                 0x272fc, 0x27388,
1916                 0x27400, 0x27404,
1917                 0x27500, 0x27518,
1918                 0x2752c, 0x2753c,
1919                 0x27550, 0x27554,
1920                 0x27600, 0x27600,
1921                 0x27608, 0x27628,
1922                 0x27630, 0x2763c,
1923                 0x27700, 0x2771c,
1924                 0x27780, 0x2778c,
1925                 0x27800, 0x27c38,
1926                 0x27c80, 0x27d7c,
1927                 0x27e00, 0x27e04
1928         };
1929
1930         static const unsigned int t5_reg_ranges[] = {
1931                 0x1008, 0x1148,
1932                 0x1180, 0x11b4,
1933                 0x11fc, 0x123c,
1934                 0x1280, 0x173c,
1935                 0x1800, 0x18fc,
1936                 0x3000, 0x3028,
1937                 0x3060, 0x30d8,
1938                 0x30e0, 0x30fc,
1939                 0x3140, 0x357c,
1940                 0x35a8, 0x35cc,
1941                 0x35ec, 0x35ec,
1942                 0x3600, 0x5624,
1943                 0x56cc, 0x575c,
1944                 0x580c, 0x5814,
1945                 0x5890, 0x58bc,
1946                 0x5940, 0x59dc,
1947                 0x59fc, 0x5a18,
1948                 0x5a60, 0x5a9c,
1949                 0x5b9c, 0x5bfc,
1950                 0x6000, 0x6040,
1951                 0x6058, 0x614c,
1952                 0x7700, 0x7798,
1953                 0x77c0, 0x78fc,
1954                 0x7b00, 0x7c54,
1955                 0x7d00, 0x7efc,
1956                 0x8dc0, 0x8de0,
1957                 0x8df8, 0x8e84,
1958                 0x8ea0, 0x8f84,
1959                 0x8fc0, 0x90f8,
1960                 0x9400, 0x9470,
1961                 0x9600, 0x96f4,
1962                 0x9800, 0x9808,
1963                 0x9820, 0x983c,
1964                 0x9850, 0x9864,
1965                 0x9c00, 0x9c6c,
1966                 0x9c80, 0x9cec,
1967                 0x9d00, 0x9d6c,
1968                 0x9d80, 0x9dec,
1969                 0x9e00, 0x9e6c,
1970                 0x9e80, 0x9eec,
1971                 0x9f00, 0x9f6c,
1972                 0x9f80, 0xa020,
1973                 0xd004, 0xd03c,
1974                 0xdfc0, 0xdfe0,
1975                 0xe000, 0x11088,
1976                 0x1109c, 0x11110,
1977                 0x11118, 0x1117c,
1978                 0x11190, 0x11204,
1979                 0x19040, 0x1906c,
1980                 0x19078, 0x19080,
1981                 0x1908c, 0x19124,
1982                 0x19150, 0x191b0,
1983                 0x191d0, 0x191e8,
1984                 0x19238, 0x19290,
1985                 0x193f8, 0x19474,
1986                 0x19490, 0x194cc,
1987                 0x194f0, 0x194f8,
1988                 0x19c00, 0x19c60,
1989                 0x19c94, 0x19e10,
1990                 0x19e50, 0x19f34,
1991                 0x19f40, 0x19f50,
1992                 0x19f90, 0x19fe4,
1993                 0x1a000, 0x1a06c,
1994                 0x1a0b0, 0x1a120,
1995                 0x1a128, 0x1a138,
1996                 0x1a190, 0x1a1c4,
1997                 0x1a1fc, 0x1a1fc,
1998                 0x1e008, 0x1e00c,
1999                 0x1e040, 0x1e04c,
2000                 0x1e284, 0x1e290,
2001                 0x1e2c0, 0x1e2c0,
2002                 0x1e2e0, 0x1e2e0,
2003                 0x1e300, 0x1e384,
2004                 0x1e3c0, 0x1e3c8,
2005                 0x1e408, 0x1e40c,
2006                 0x1e440, 0x1e44c,
2007                 0x1e684, 0x1e690,
2008                 0x1e6c0, 0x1e6c0,
2009                 0x1e6e0, 0x1e6e0,
2010                 0x1e700, 0x1e784,
2011                 0x1e7c0, 0x1e7c8,
2012                 0x1e808, 0x1e80c,
2013                 0x1e840, 0x1e84c,
2014                 0x1ea84, 0x1ea90,
2015                 0x1eac0, 0x1eac0,
2016                 0x1eae0, 0x1eae0,
2017                 0x1eb00, 0x1eb84,
2018                 0x1ebc0, 0x1ebc8,
2019                 0x1ec08, 0x1ec0c,
2020                 0x1ec40, 0x1ec4c,
2021                 0x1ee84, 0x1ee90,
2022                 0x1eec0, 0x1eec0,
2023                 0x1eee0, 0x1eee0,
2024                 0x1ef00, 0x1ef84,
2025                 0x1efc0, 0x1efc8,
2026                 0x1f008, 0x1f00c,
2027                 0x1f040, 0x1f04c,
2028                 0x1f284, 0x1f290,
2029                 0x1f2c0, 0x1f2c0,
2030                 0x1f2e0, 0x1f2e0,
2031                 0x1f300, 0x1f384,
2032                 0x1f3c0, 0x1f3c8,
2033                 0x1f408, 0x1f40c,
2034                 0x1f440, 0x1f44c,
2035                 0x1f684, 0x1f690,
2036                 0x1f6c0, 0x1f6c0,
2037                 0x1f6e0, 0x1f6e0,
2038                 0x1f700, 0x1f784,
2039                 0x1f7c0, 0x1f7c8,
2040                 0x1f808, 0x1f80c,
2041                 0x1f840, 0x1f84c,
2042                 0x1fa84, 0x1fa90,
2043                 0x1fac0, 0x1fac0,
2044                 0x1fae0, 0x1fae0,
2045                 0x1fb00, 0x1fb84,
2046                 0x1fbc0, 0x1fbc8,
2047                 0x1fc08, 0x1fc0c,
2048                 0x1fc40, 0x1fc4c,
2049                 0x1fe84, 0x1fe90,
2050                 0x1fec0, 0x1fec0,
2051                 0x1fee0, 0x1fee0,
2052                 0x1ff00, 0x1ff84,
2053                 0x1ffc0, 0x1ffc8,
2054                 0x30000, 0x30030,
2055                 0x30100, 0x30144,
2056                 0x30190, 0x301d0,
2057                 0x30200, 0x30318,
2058                 0x30400, 0x3052c,
2059                 0x30540, 0x3061c,
2060                 0x30800, 0x30834,
2061                 0x308c0, 0x30908,
2062                 0x30910, 0x309ac,
2063                 0x30a00, 0x30a04,
2064                 0x30a0c, 0x30a2c,
2065                 0x30a44, 0x30a50,
2066                 0x30a74, 0x30c24,
2067                 0x30d08, 0x30d14,
2068                 0x30d1c, 0x30d20,
2069                 0x30d3c, 0x30d50,
2070                 0x31200, 0x3120c,
2071                 0x31220, 0x31220,
2072                 0x31240, 0x31240,
2073                 0x31600, 0x31600,
2074                 0x31608, 0x3160c,
2075                 0x31a00, 0x31a1c,
2076                 0x31e04, 0x31e20,
2077                 0x31e38, 0x31e3c,
2078                 0x31e80, 0x31e80,
2079                 0x31e88, 0x31ea8,
2080                 0x31eb0, 0x31eb4,
2081                 0x31ec8, 0x31ed4,
2082                 0x31fb8, 0x32004,
2083                 0x32208, 0x3223c,
2084                 0x32600, 0x32630,
2085                 0x32a00, 0x32abc,
2086                 0x32b00, 0x32b70,
2087                 0x33000, 0x33048,
2088                 0x33060, 0x3309c,
2089                 0x330f0, 0x33148,
2090                 0x33160, 0x3319c,
2091                 0x331f0, 0x332e4,
2092                 0x332f8, 0x333e4,
2093                 0x333f8, 0x33448,
2094                 0x33460, 0x3349c,
2095                 0x334f0, 0x33548,
2096                 0x33560, 0x3359c,
2097                 0x335f0, 0x336e4,
2098                 0x336f8, 0x337e4,
2099                 0x337f8, 0x337fc,
2100                 0x33814, 0x33814,
2101                 0x3382c, 0x3382c,
2102                 0x33880, 0x3388c,
2103                 0x338e8, 0x338ec,
2104                 0x33900, 0x33948,
2105                 0x33960, 0x3399c,
2106                 0x339f0, 0x33ae4,
2107                 0x33af8, 0x33b10,
2108                 0x33b28, 0x33b28,
2109                 0x33b3c, 0x33b50,
2110                 0x33bf0, 0x33c10,
2111                 0x33c28, 0x33c28,
2112                 0x33c3c, 0x33c50,
2113                 0x33cf0, 0x33cfc,
2114                 0x34000, 0x34030,
2115                 0x34100, 0x34144,
2116                 0x34190, 0x341d0,
2117                 0x34200, 0x34318,
2118                 0x34400, 0x3452c,
2119                 0x34540, 0x3461c,
2120                 0x34800, 0x34834,
2121                 0x348c0, 0x34908,
2122                 0x34910, 0x349ac,
2123                 0x34a00, 0x34a04,
2124                 0x34a0c, 0x34a2c,
2125                 0x34a44, 0x34a50,
2126                 0x34a74, 0x34c24,
2127                 0x34d08, 0x34d14,
2128                 0x34d1c, 0x34d20,
2129                 0x34d3c, 0x34d50,
2130                 0x35200, 0x3520c,
2131                 0x35220, 0x35220,
2132                 0x35240, 0x35240,
2133                 0x35600, 0x35600,
2134                 0x35608, 0x3560c,
2135                 0x35a00, 0x35a1c,
2136                 0x35e04, 0x35e20,
2137                 0x35e38, 0x35e3c,
2138                 0x35e80, 0x35e80,
2139                 0x35e88, 0x35ea8,
2140                 0x35eb0, 0x35eb4,
2141                 0x35ec8, 0x35ed4,
2142                 0x35fb8, 0x36004,
2143                 0x36208, 0x3623c,
2144                 0x36600, 0x36630,
2145                 0x36a00, 0x36abc,
2146                 0x36b00, 0x36b70,
2147                 0x37000, 0x37048,
2148                 0x37060, 0x3709c,
2149                 0x370f0, 0x37148,
2150                 0x37160, 0x3719c,
2151                 0x371f0, 0x372e4,
2152                 0x372f8, 0x373e4,
2153                 0x373f8, 0x37448,
2154                 0x37460, 0x3749c,
2155                 0x374f0, 0x37548,
2156                 0x37560, 0x3759c,
2157                 0x375f0, 0x376e4,
2158                 0x376f8, 0x377e4,
2159                 0x377f8, 0x377fc,
2160                 0x37814, 0x37814,
2161                 0x3782c, 0x3782c,
2162                 0x37880, 0x3788c,
2163                 0x378e8, 0x378ec,
2164                 0x37900, 0x37948,
2165                 0x37960, 0x3799c,
2166                 0x379f0, 0x37ae4,
2167                 0x37af8, 0x37b10,
2168                 0x37b28, 0x37b28,
2169                 0x37b3c, 0x37b50,
2170                 0x37bf0, 0x37c10,
2171                 0x37c28, 0x37c28,
2172                 0x37c3c, 0x37c50,
2173                 0x37cf0, 0x37cfc,
2174                 0x38000, 0x38030,
2175                 0x38100, 0x38144,
2176                 0x38190, 0x381d0,
2177                 0x38200, 0x38318,
2178                 0x38400, 0x3852c,
2179                 0x38540, 0x3861c,
2180                 0x38800, 0x38834,
2181                 0x388c0, 0x38908,
2182                 0x38910, 0x389ac,
2183                 0x38a00, 0x38a04,
2184                 0x38a0c, 0x38a2c,
2185                 0x38a44, 0x38a50,
2186                 0x38a74, 0x38c24,
2187                 0x38d08, 0x38d14,
2188                 0x38d1c, 0x38d20,
2189                 0x38d3c, 0x38d50,
2190                 0x39200, 0x3920c,
2191                 0x39220, 0x39220,
2192                 0x39240, 0x39240,
2193                 0x39600, 0x39600,
2194                 0x39608, 0x3960c,
2195                 0x39a00, 0x39a1c,
2196                 0x39e04, 0x39e20,
2197                 0x39e38, 0x39e3c,
2198                 0x39e80, 0x39e80,
2199                 0x39e88, 0x39ea8,
2200                 0x39eb0, 0x39eb4,
2201                 0x39ec8, 0x39ed4,
2202                 0x39fb8, 0x3a004,
2203                 0x3a208, 0x3a23c,
2204                 0x3a600, 0x3a630,
2205                 0x3aa00, 0x3aabc,
2206                 0x3ab00, 0x3ab70,
2207                 0x3b000, 0x3b048,
2208                 0x3b060, 0x3b09c,
2209                 0x3b0f0, 0x3b148,
2210                 0x3b160, 0x3b19c,
2211                 0x3b1f0, 0x3b2e4,
2212                 0x3b2f8, 0x3b3e4,
2213                 0x3b3f8, 0x3b448,
2214                 0x3b460, 0x3b49c,
2215                 0x3b4f0, 0x3b548,
2216                 0x3b560, 0x3b59c,
2217                 0x3b5f0, 0x3b6e4,
2218                 0x3b6f8, 0x3b7e4,
2219                 0x3b7f8, 0x3b7fc,
2220                 0x3b814, 0x3b814,
2221                 0x3b82c, 0x3b82c,
2222                 0x3b880, 0x3b88c,
2223                 0x3b8e8, 0x3b8ec,
2224                 0x3b900, 0x3b948,
2225                 0x3b960, 0x3b99c,
2226                 0x3b9f0, 0x3bae4,
2227                 0x3baf8, 0x3bb10,
2228                 0x3bb28, 0x3bb28,
2229                 0x3bb3c, 0x3bb50,
2230                 0x3bbf0, 0x3bc10,
2231                 0x3bc28, 0x3bc28,
2232                 0x3bc3c, 0x3bc50,
2233                 0x3bcf0, 0x3bcfc,
2234                 0x3c000, 0x3c030,
2235                 0x3c100, 0x3c144,
2236                 0x3c190, 0x3c1d0,
2237                 0x3c200, 0x3c318,
2238                 0x3c400, 0x3c52c,
2239                 0x3c540, 0x3c61c,
2240                 0x3c800, 0x3c834,
2241                 0x3c8c0, 0x3c908,
2242                 0x3c910, 0x3c9ac,
2243                 0x3ca00, 0x3ca04,
2244                 0x3ca0c, 0x3ca2c,
2245                 0x3ca44, 0x3ca50,
2246                 0x3ca74, 0x3cc24,
2247                 0x3cd08, 0x3cd14,
2248                 0x3cd1c, 0x3cd20,
2249                 0x3cd3c, 0x3cd50,
2250                 0x3d200, 0x3d20c,
2251                 0x3d220, 0x3d220,
2252                 0x3d240, 0x3d240,
2253                 0x3d600, 0x3d600,
2254                 0x3d608, 0x3d60c,
2255                 0x3da00, 0x3da1c,
2256                 0x3de04, 0x3de20,
2257                 0x3de38, 0x3de3c,
2258                 0x3de80, 0x3de80,
2259                 0x3de88, 0x3dea8,
2260                 0x3deb0, 0x3deb4,
2261                 0x3dec8, 0x3ded4,
2262                 0x3dfb8, 0x3e004,
2263                 0x3e208, 0x3e23c,
2264                 0x3e600, 0x3e630,
2265                 0x3ea00, 0x3eabc,
2266                 0x3eb00, 0x3eb70,
2267                 0x3f000, 0x3f048,
2268                 0x3f060, 0x3f09c,
2269                 0x3f0f0, 0x3f148,
2270                 0x3f160, 0x3f19c,
2271                 0x3f1f0, 0x3f2e4,
2272                 0x3f2f8, 0x3f3e4,
2273                 0x3f3f8, 0x3f448,
2274                 0x3f460, 0x3f49c,
2275                 0x3f4f0, 0x3f548,
2276                 0x3f560, 0x3f59c,
2277                 0x3f5f0, 0x3f6e4,
2278                 0x3f6f8, 0x3f7e4,
2279                 0x3f7f8, 0x3f7fc,
2280                 0x3f814, 0x3f814,
2281                 0x3f82c, 0x3f82c,
2282                 0x3f880, 0x3f88c,
2283                 0x3f8e8, 0x3f8ec,
2284                 0x3f900, 0x3f948,
2285                 0x3f960, 0x3f99c,
2286                 0x3f9f0, 0x3fae4,
2287                 0x3faf8, 0x3fb10,
2288                 0x3fb28, 0x3fb28,
2289                 0x3fb3c, 0x3fb50,
2290                 0x3fbf0, 0x3fc10,
2291                 0x3fc28, 0x3fc28,
2292                 0x3fc3c, 0x3fc50,
2293                 0x3fcf0, 0x3fcfc,
2294                 0x40000, 0x4000c,
2295                 0x40040, 0x40068,
2296                 0x40080, 0x40144,
2297                 0x40180, 0x4018c,
2298                 0x40200, 0x40298,
2299                 0x402ac, 0x4033c,
2300                 0x403f8, 0x403fc,
2301                 0x41304, 0x413c4,
2302                 0x41400, 0x4141c,
2303                 0x41480, 0x414d0,
2304                 0x44000, 0x44078,
2305                 0x440c0, 0x44278,
2306                 0x442c0, 0x44478,
2307                 0x444c0, 0x44678,
2308                 0x446c0, 0x44878,
2309                 0x448c0, 0x449fc,
2310                 0x45000, 0x45068,
2311                 0x45080, 0x45084,
2312                 0x450a0, 0x450b0,
2313                 0x45200, 0x45268,
2314                 0x45280, 0x45284,
2315                 0x452a0, 0x452b0,
2316                 0x460c0, 0x460e4,
2317                 0x47000, 0x4708c,
2318                 0x47200, 0x47250,
2319                 0x47400, 0x47420,
2320                 0x47600, 0x47618,
2321                 0x47800, 0x47814,
2322                 0x48000, 0x4800c,
2323                 0x48040, 0x48068,
2324                 0x48080, 0x48144,
2325                 0x48180, 0x4818c,
2326                 0x48200, 0x48298,
2327                 0x482ac, 0x4833c,
2328                 0x483f8, 0x483fc,
2329                 0x49304, 0x493c4,
2330                 0x49400, 0x4941c,
2331                 0x49480, 0x494d0,
2332                 0x4c000, 0x4c078,
2333                 0x4c0c0, 0x4c278,
2334                 0x4c2c0, 0x4c478,
2335                 0x4c4c0, 0x4c678,
2336                 0x4c6c0, 0x4c878,
2337                 0x4c8c0, 0x4c9fc,
2338                 0x4d000, 0x4d068,
2339                 0x4d080, 0x4d084,
2340                 0x4d0a0, 0x4d0b0,
2341                 0x4d200, 0x4d268,
2342                 0x4d280, 0x4d284,
2343                 0x4d2a0, 0x4d2b0,
2344                 0x4e0c0, 0x4e0e4,
2345                 0x4f000, 0x4f08c,
2346                 0x4f200, 0x4f250,
2347                 0x4f400, 0x4f420,
2348                 0x4f600, 0x4f618,
2349                 0x4f800, 0x4f814,
2350                 0x50000, 0x500cc,
2351                 0x50400, 0x50400,
2352                 0x50800, 0x508cc,
2353                 0x50c00, 0x50c00,
2354                 0x51000, 0x5101c,
2355                 0x51300, 0x51308,
2356         };
2357
2358         int i;
2359         struct adapter *ap = netdev2adap(dev);
2360         static const unsigned int *reg_ranges;
2361         int arr_size = 0, buf_size = 0;
2362
2363         if (is_t4(ap->params.chip)) {
2364                 reg_ranges = &t4_reg_ranges[0];
2365                 arr_size = ARRAY_SIZE(t4_reg_ranges);
2366                 buf_size = T4_REGMAP_SIZE;
2367         } else {
2368                 reg_ranges = &t5_reg_ranges[0];
2369                 arr_size = ARRAY_SIZE(t5_reg_ranges);
2370                 buf_size = T5_REGMAP_SIZE;
2371         }
2372
2373         regs->version = mk_adap_vers(ap);
2374
2375         memset(buf, 0, buf_size);
2376         for (i = 0; i < arr_size; i += 2)
2377                 reg_block_dump(ap, buf, reg_ranges[i], reg_ranges[i + 1]);
2378 }
2379
2380 static int restart_autoneg(struct net_device *dev)
2381 {
2382         struct port_info *p = netdev_priv(dev);
2383
2384         if (!netif_running(dev))
2385                 return -EAGAIN;
2386         if (p->link_cfg.autoneg != AUTONEG_ENABLE)
2387                 return -EINVAL;
2388         t4_restart_aneg(p->adapter, p->adapter->fn, p->tx_chan);
2389         return 0;
2390 }
2391
2392 static int identify_port(struct net_device *dev,
2393                          enum ethtool_phys_id_state state)
2394 {
2395         unsigned int val;
2396         struct adapter *adap = netdev2adap(dev);
2397
2398         if (state == ETHTOOL_ID_ACTIVE)
2399                 val = 0xffff;
2400         else if (state == ETHTOOL_ID_INACTIVE)
2401                 val = 0;
2402         else
2403                 return -EINVAL;
2404
2405         return t4_identify_port(adap, adap->fn, netdev2pinfo(dev)->viid, val);
2406 }
2407
2408 static unsigned int from_fw_linkcaps(unsigned int type, unsigned int caps)
2409 {
2410         unsigned int v = 0;
2411
2412         if (type == FW_PORT_TYPE_BT_SGMII || type == FW_PORT_TYPE_BT_XFI ||
2413             type == FW_PORT_TYPE_BT_XAUI) {
2414                 v |= SUPPORTED_TP;
2415                 if (caps & FW_PORT_CAP_SPEED_100M)
2416                         v |= SUPPORTED_100baseT_Full;
2417                 if (caps & FW_PORT_CAP_SPEED_1G)
2418                         v |= SUPPORTED_1000baseT_Full;
2419                 if (caps & FW_PORT_CAP_SPEED_10G)
2420                         v |= SUPPORTED_10000baseT_Full;
2421         } else if (type == FW_PORT_TYPE_KX4 || type == FW_PORT_TYPE_KX) {
2422                 v |= SUPPORTED_Backplane;
2423                 if (caps & FW_PORT_CAP_SPEED_1G)
2424                         v |= SUPPORTED_1000baseKX_Full;
2425                 if (caps & FW_PORT_CAP_SPEED_10G)
2426                         v |= SUPPORTED_10000baseKX4_Full;
2427         } else if (type == FW_PORT_TYPE_KR)
2428                 v |= SUPPORTED_Backplane | SUPPORTED_10000baseKR_Full;
2429         else if (type == FW_PORT_TYPE_BP_AP)
2430                 v |= SUPPORTED_Backplane | SUPPORTED_10000baseR_FEC |
2431                      SUPPORTED_10000baseKR_Full | SUPPORTED_1000baseKX_Full;
2432         else if (type == FW_PORT_TYPE_BP4_AP)
2433                 v |= SUPPORTED_Backplane | SUPPORTED_10000baseR_FEC |
2434                      SUPPORTED_10000baseKR_Full | SUPPORTED_1000baseKX_Full |
2435                      SUPPORTED_10000baseKX4_Full;
2436         else if (type == FW_PORT_TYPE_FIBER_XFI ||
2437                  type == FW_PORT_TYPE_FIBER_XAUI || type == FW_PORT_TYPE_SFP)
2438                 v |= SUPPORTED_FIBRE;
2439         else if (type == FW_PORT_TYPE_BP40_BA)
2440                 v |= SUPPORTED_40000baseSR4_Full;
2441
2442         if (caps & FW_PORT_CAP_ANEG)
2443                 v |= SUPPORTED_Autoneg;
2444         return v;
2445 }
2446
2447 static unsigned int to_fw_linkcaps(unsigned int caps)
2448 {
2449         unsigned int v = 0;
2450
2451         if (caps & ADVERTISED_100baseT_Full)
2452                 v |= FW_PORT_CAP_SPEED_100M;
2453         if (caps & ADVERTISED_1000baseT_Full)
2454                 v |= FW_PORT_CAP_SPEED_1G;
2455         if (caps & ADVERTISED_10000baseT_Full)
2456                 v |= FW_PORT_CAP_SPEED_10G;
2457         if (caps & ADVERTISED_40000baseSR4_Full)
2458                 v |= FW_PORT_CAP_SPEED_40G;
2459         return v;
2460 }
2461
2462 static int get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2463 {
2464         const struct port_info *p = netdev_priv(dev);
2465
2466         if (p->port_type == FW_PORT_TYPE_BT_SGMII ||
2467             p->port_type == FW_PORT_TYPE_BT_XFI ||
2468             p->port_type == FW_PORT_TYPE_BT_XAUI)
2469                 cmd->port = PORT_TP;
2470         else if (p->port_type == FW_PORT_TYPE_FIBER_XFI ||
2471                  p->port_type == FW_PORT_TYPE_FIBER_XAUI)
2472                 cmd->port = PORT_FIBRE;
2473         else if (p->port_type == FW_PORT_TYPE_SFP ||
2474                  p->port_type == FW_PORT_TYPE_QSFP_10G ||
2475                  p->port_type == FW_PORT_TYPE_QSFP) {
2476                 if (p->mod_type == FW_PORT_MOD_TYPE_LR ||
2477                     p->mod_type == FW_PORT_MOD_TYPE_SR ||
2478                     p->mod_type == FW_PORT_MOD_TYPE_ER ||
2479                     p->mod_type == FW_PORT_MOD_TYPE_LRM)
2480                         cmd->port = PORT_FIBRE;
2481                 else if (p->mod_type == FW_PORT_MOD_TYPE_TWINAX_PASSIVE ||
2482                          p->mod_type == FW_PORT_MOD_TYPE_TWINAX_ACTIVE)
2483                         cmd->port = PORT_DA;
2484                 else
2485                         cmd->port = PORT_OTHER;
2486         } else
2487                 cmd->port = PORT_OTHER;
2488
2489         if (p->mdio_addr >= 0) {
2490                 cmd->phy_address = p->mdio_addr;
2491                 cmd->transceiver = XCVR_EXTERNAL;
2492                 cmd->mdio_support = p->port_type == FW_PORT_TYPE_BT_SGMII ?
2493                         MDIO_SUPPORTS_C22 : MDIO_SUPPORTS_C45;
2494         } else {
2495                 cmd->phy_address = 0;  /* not really, but no better option */
2496                 cmd->transceiver = XCVR_INTERNAL;
2497                 cmd->mdio_support = 0;
2498         }
2499
2500         cmd->supported = from_fw_linkcaps(p->port_type, p->link_cfg.supported);
2501         cmd->advertising = from_fw_linkcaps(p->port_type,
2502                                             p->link_cfg.advertising);
2503         ethtool_cmd_speed_set(cmd,
2504                               netif_carrier_ok(dev) ? p->link_cfg.speed : 0);
2505         cmd->duplex = DUPLEX_FULL;
2506         cmd->autoneg = p->link_cfg.autoneg;
2507         cmd->maxtxpkt = 0;
2508         cmd->maxrxpkt = 0;
2509         return 0;
2510 }
2511
2512 static unsigned int speed_to_caps(int speed)
2513 {
2514         if (speed == 100)
2515                 return FW_PORT_CAP_SPEED_100M;
2516         if (speed == 1000)
2517                 return FW_PORT_CAP_SPEED_1G;
2518         if (speed == 10000)
2519                 return FW_PORT_CAP_SPEED_10G;
2520         if (speed == 40000)
2521                 return FW_PORT_CAP_SPEED_40G;
2522         return 0;
2523 }
2524
2525 static int set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2526 {
2527         unsigned int cap;
2528         struct port_info *p = netdev_priv(dev);
2529         struct link_config *lc = &p->link_cfg;
2530         u32 speed = ethtool_cmd_speed(cmd);
2531
2532         if (cmd->duplex != DUPLEX_FULL)     /* only full-duplex supported */
2533                 return -EINVAL;
2534
2535         if (!(lc->supported & FW_PORT_CAP_ANEG)) {
2536                 /*
2537                  * PHY offers a single speed.  See if that's what's
2538                  * being requested.
2539                  */
2540                 if (cmd->autoneg == AUTONEG_DISABLE &&
2541                     (lc->supported & speed_to_caps(speed)))
2542                         return 0;
2543                 return -EINVAL;
2544         }
2545
2546         if (cmd->autoneg == AUTONEG_DISABLE) {
2547                 cap = speed_to_caps(speed);
2548
2549                 if (!(lc->supported & cap) ||
2550                     (speed == 1000) ||
2551                     (speed == 10000) ||
2552                     (speed == 40000))
2553                         return -EINVAL;
2554                 lc->requested_speed = cap;
2555                 lc->advertising = 0;
2556         } else {
2557                 cap = to_fw_linkcaps(cmd->advertising);
2558                 if (!(lc->supported & cap))
2559                         return -EINVAL;
2560                 lc->requested_speed = 0;
2561                 lc->advertising = cap | FW_PORT_CAP_ANEG;
2562         }
2563         lc->autoneg = cmd->autoneg;
2564
2565         if (netif_running(dev))
2566                 return t4_link_start(p->adapter, p->adapter->fn, p->tx_chan,
2567                                      lc);
2568         return 0;
2569 }
2570
2571 static void get_pauseparam(struct net_device *dev,
2572                            struct ethtool_pauseparam *epause)
2573 {
2574         struct port_info *p = netdev_priv(dev);
2575
2576         epause->autoneg = (p->link_cfg.requested_fc & PAUSE_AUTONEG) != 0;
2577         epause->rx_pause = (p->link_cfg.fc & PAUSE_RX) != 0;
2578         epause->tx_pause = (p->link_cfg.fc & PAUSE_TX) != 0;
2579 }
2580
2581 static int set_pauseparam(struct net_device *dev,
2582                           struct ethtool_pauseparam *epause)
2583 {
2584         struct port_info *p = netdev_priv(dev);
2585         struct link_config *lc = &p->link_cfg;
2586
2587         if (epause->autoneg == AUTONEG_DISABLE)
2588                 lc->requested_fc = 0;
2589         else if (lc->supported & FW_PORT_CAP_ANEG)
2590                 lc->requested_fc = PAUSE_AUTONEG;
2591         else
2592                 return -EINVAL;
2593
2594         if (epause->rx_pause)
2595                 lc->requested_fc |= PAUSE_RX;
2596         if (epause->tx_pause)
2597                 lc->requested_fc |= PAUSE_TX;
2598         if (netif_running(dev))
2599                 return t4_link_start(p->adapter, p->adapter->fn, p->tx_chan,
2600                                      lc);
2601         return 0;
2602 }
2603
2604 static void get_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
2605 {
2606         const struct port_info *pi = netdev_priv(dev);
2607         const struct sge *s = &pi->adapter->sge;
2608
2609         e->rx_max_pending = MAX_RX_BUFFERS;
2610         e->rx_mini_max_pending = MAX_RSPQ_ENTRIES;
2611         e->rx_jumbo_max_pending = 0;
2612         e->tx_max_pending = MAX_TXQ_ENTRIES;
2613
2614         e->rx_pending = s->ethrxq[pi->first_qset].fl.size - 8;
2615         e->rx_mini_pending = s->ethrxq[pi->first_qset].rspq.size;
2616         e->rx_jumbo_pending = 0;
2617         e->tx_pending = s->ethtxq[pi->first_qset].q.size;
2618 }
2619
2620 static int set_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
2621 {
2622         int i;
2623         const struct port_info *pi = netdev_priv(dev);
2624         struct adapter *adapter = pi->adapter;
2625         struct sge *s = &adapter->sge;
2626
2627         if (e->rx_pending > MAX_RX_BUFFERS || e->rx_jumbo_pending ||
2628             e->tx_pending > MAX_TXQ_ENTRIES ||
2629             e->rx_mini_pending > MAX_RSPQ_ENTRIES ||
2630             e->rx_mini_pending < MIN_RSPQ_ENTRIES ||
2631             e->rx_pending < MIN_FL_ENTRIES || e->tx_pending < MIN_TXQ_ENTRIES)
2632                 return -EINVAL;
2633
2634         if (adapter->flags & FULL_INIT_DONE)
2635                 return -EBUSY;
2636
2637         for (i = 0; i < pi->nqsets; ++i) {
2638                 s->ethtxq[pi->first_qset + i].q.size = e->tx_pending;
2639                 s->ethrxq[pi->first_qset + i].fl.size = e->rx_pending + 8;
2640                 s->ethrxq[pi->first_qset + i].rspq.size = e->rx_mini_pending;
2641         }
2642         return 0;
2643 }
2644
2645 static int closest_timer(const struct sge *s, int time)
2646 {
2647         int i, delta, match = 0, min_delta = INT_MAX;
2648
2649         for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
2650                 delta = time - s->timer_val[i];
2651                 if (delta < 0)
2652                         delta = -delta;
2653                 if (delta < min_delta) {
2654                         min_delta = delta;
2655                         match = i;
2656                 }
2657         }
2658         return match;
2659 }
2660
2661 static int closest_thres(const struct sge *s, int thres)
2662 {
2663         int i, delta, match = 0, min_delta = INT_MAX;
2664
2665         for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
2666                 delta = thres - s->counter_val[i];
2667                 if (delta < 0)
2668                         delta = -delta;
2669                 if (delta < min_delta) {
2670                         min_delta = delta;
2671                         match = i;
2672                 }
2673         }
2674         return match;
2675 }
2676
2677 /*
2678  * Return a queue's interrupt hold-off time in us.  0 means no timer.
2679  */
2680 static unsigned int qtimer_val(const struct adapter *adap,
2681                                const struct sge_rspq *q)
2682 {
2683         unsigned int idx = q->intr_params >> 1;
2684
2685         return idx < SGE_NTIMERS ? adap->sge.timer_val[idx] : 0;
2686 }
2687
2688 /**
2689  *      set_rspq_intr_params - set a queue's interrupt holdoff parameters
2690  *      @q: the Rx queue
2691  *      @us: the hold-off time in us, or 0 to disable timer
2692  *      @cnt: the hold-off packet count, or 0 to disable counter
2693  *
2694  *      Sets an Rx queue's interrupt hold-off time and packet count.  At least
2695  *      one of the two needs to be enabled for the queue to generate interrupts.
2696  */
2697 static int set_rspq_intr_params(struct sge_rspq *q,
2698                                 unsigned int us, unsigned int cnt)
2699 {
2700         struct adapter *adap = q->adap;
2701
2702         if ((us | cnt) == 0)
2703                 cnt = 1;
2704
2705         if (cnt) {
2706                 int err;
2707                 u32 v, new_idx;
2708
2709                 new_idx = closest_thres(&adap->sge, cnt);
2710                 if (q->desc && q->pktcnt_idx != new_idx) {
2711                         /* the queue has already been created, update it */
2712                         v = FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
2713                             FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
2714                             FW_PARAMS_PARAM_YZ(q->cntxt_id);
2715                         err = t4_set_params(adap, adap->fn, adap->fn, 0, 1, &v,
2716                                             &new_idx);
2717                         if (err)
2718                                 return err;
2719                 }
2720                 q->pktcnt_idx = new_idx;
2721         }
2722
2723         us = us == 0 ? 6 : closest_timer(&adap->sge, us);
2724         q->intr_params = QINTR_TIMER_IDX(us) | (cnt > 0 ? QINTR_CNT_EN : 0);
2725         return 0;
2726 }
2727
2728 /**
2729  * set_rx_intr_params - set a net devices's RX interrupt holdoff paramete!
2730  * @dev: the network device
2731  * @us: the hold-off time in us, or 0 to disable timer
2732  * @cnt: the hold-off packet count, or 0 to disable counter
2733  *
2734  * Set the RX interrupt hold-off parameters for a network device.
2735  */
2736 static int set_rx_intr_params(struct net_device *dev,
2737                               unsigned int us, unsigned int cnt)
2738 {
2739         int i, err;
2740         struct port_info *pi = netdev_priv(dev);
2741         struct adapter *adap = pi->adapter;
2742         struct sge_eth_rxq *q = &adap->sge.ethrxq[pi->first_qset];
2743
2744         for (i = 0; i < pi->nqsets; i++, q++) {
2745                 err = set_rspq_intr_params(&q->rspq, us, cnt);
2746                 if (err)
2747                         return err;
2748         }
2749         return 0;
2750 }
2751
2752 static int set_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
2753 {
2754         return set_rx_intr_params(dev, c->rx_coalesce_usecs,
2755                                   c->rx_max_coalesced_frames);
2756 }
2757
2758 static int get_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
2759 {
2760         const struct port_info *pi = netdev_priv(dev);
2761         const struct adapter *adap = pi->adapter;
2762         const struct sge_rspq *rq = &adap->sge.ethrxq[pi->first_qset].rspq;
2763
2764         c->rx_coalesce_usecs = qtimer_val(adap, rq);
2765         c->rx_max_coalesced_frames = (rq->intr_params & QINTR_CNT_EN) ?
2766                 adap->sge.counter_val[rq->pktcnt_idx] : 0;
2767         return 0;
2768 }
2769
2770 /**
2771  *      eeprom_ptov - translate a physical EEPROM address to virtual
2772  *      @phys_addr: the physical EEPROM address
2773  *      @fn: the PCI function number
2774  *      @sz: size of function-specific area
2775  *
2776  *      Translate a physical EEPROM address to virtual.  The first 1K is
2777  *      accessed through virtual addresses starting at 31K, the rest is
2778  *      accessed through virtual addresses starting at 0.
2779  *
2780  *      The mapping is as follows:
2781  *      [0..1K) -> [31K..32K)
2782  *      [1K..1K+A) -> [31K-A..31K)
2783  *      [1K+A..ES) -> [0..ES-A-1K)
2784  *
2785  *      where A = @fn * @sz, and ES = EEPROM size.
2786  */
2787 static int eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
2788 {
2789         fn *= sz;
2790         if (phys_addr < 1024)
2791                 return phys_addr + (31 << 10);
2792         if (phys_addr < 1024 + fn)
2793                 return 31744 - fn + phys_addr - 1024;
2794         if (phys_addr < EEPROMSIZE)
2795                 return phys_addr - 1024 - fn;
2796         return -EINVAL;
2797 }
2798
2799 /*
2800  * The next two routines implement eeprom read/write from physical addresses.
2801  */
2802 static int eeprom_rd_phys(struct adapter *adap, unsigned int phys_addr, u32 *v)
2803 {
2804         int vaddr = eeprom_ptov(phys_addr, adap->fn, EEPROMPFSIZE);
2805
2806         if (vaddr >= 0)
2807                 vaddr = pci_read_vpd(adap->pdev, vaddr, sizeof(u32), v);
2808         return vaddr < 0 ? vaddr : 0;
2809 }
2810
2811 static int eeprom_wr_phys(struct adapter *adap, unsigned int phys_addr, u32 v)
2812 {
2813         int vaddr = eeprom_ptov(phys_addr, adap->fn, EEPROMPFSIZE);
2814
2815         if (vaddr >= 0)
2816                 vaddr = pci_write_vpd(adap->pdev, vaddr, sizeof(u32), &v);
2817         return vaddr < 0 ? vaddr : 0;
2818 }
2819
2820 #define EEPROM_MAGIC 0x38E2F10C
2821
2822 static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *e,
2823                       u8 *data)
2824 {
2825         int i, err = 0;
2826         struct adapter *adapter = netdev2adap(dev);
2827
2828         u8 *buf = kmalloc(EEPROMSIZE, GFP_KERNEL);
2829         if (!buf)
2830                 return -ENOMEM;
2831
2832         e->magic = EEPROM_MAGIC;
2833         for (i = e->offset & ~3; !err && i < e->offset + e->len; i += 4)
2834                 err = eeprom_rd_phys(adapter, i, (u32 *)&buf[i]);
2835
2836         if (!err)
2837                 memcpy(data, buf + e->offset, e->len);
2838         kfree(buf);
2839         return err;
2840 }
2841
2842 static int set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
2843                       u8 *data)
2844 {
2845         u8 *buf;
2846         int err = 0;
2847         u32 aligned_offset, aligned_len, *p;
2848         struct adapter *adapter = netdev2adap(dev);
2849
2850         if (eeprom->magic != EEPROM_MAGIC)
2851                 return -EINVAL;
2852
2853         aligned_offset = eeprom->offset & ~3;
2854         aligned_len = (eeprom->len + (eeprom->offset & 3) + 3) & ~3;
2855
2856         if (adapter->fn > 0) {
2857                 u32 start = 1024 + adapter->fn * EEPROMPFSIZE;
2858
2859                 if (aligned_offset < start ||
2860                     aligned_offset + aligned_len > start + EEPROMPFSIZE)
2861                         return -EPERM;
2862         }
2863
2864         if (aligned_offset != eeprom->offset || aligned_len != eeprom->len) {
2865                 /*
2866                  * RMW possibly needed for first or last words.
2867                  */
2868                 buf = kmalloc(aligned_len, GFP_KERNEL);
2869                 if (!buf)
2870                         return -ENOMEM;
2871                 err = eeprom_rd_phys(adapter, aligned_offset, (u32 *)buf);
2872                 if (!err && aligned_len > 4)
2873                         err = eeprom_rd_phys(adapter,
2874                                              aligned_offset + aligned_len - 4,
2875                                              (u32 *)&buf[aligned_len - 4]);
2876                 if (err)
2877                         goto out;
2878                 memcpy(buf + (eeprom->offset & 3), data, eeprom->len);
2879         } else
2880                 buf = data;
2881
2882         err = t4_seeprom_wp(adapter, false);
2883         if (err)
2884                 goto out;
2885
2886         for (p = (u32 *)buf; !err && aligned_len; aligned_len -= 4, p++) {
2887                 err = eeprom_wr_phys(adapter, aligned_offset, *p);
2888                 aligned_offset += 4;
2889         }
2890
2891         if (!err)
2892                 err = t4_seeprom_wp(adapter, true);
2893 out:
2894         if (buf != data)
2895                 kfree(buf);
2896         return err;
2897 }
2898
2899 static int set_flash(struct net_device *netdev, struct ethtool_flash *ef)
2900 {
2901         int ret;
2902         const struct firmware *fw;
2903         struct adapter *adap = netdev2adap(netdev);
2904
2905         ef->data[sizeof(ef->data) - 1] = '\0';
2906         ret = request_firmware(&fw, ef->data, adap->pdev_dev);
2907         if (ret < 0)
2908                 return ret;
2909
2910         ret = t4_load_fw(adap, fw->data, fw->size);
2911         release_firmware(fw);
2912         if (!ret)
2913                 dev_info(adap->pdev_dev, "loaded firmware %s\n", ef->data);
2914         return ret;
2915 }
2916
2917 #define WOL_SUPPORTED (WAKE_BCAST | WAKE_MAGIC)
2918 #define BCAST_CRC 0xa0ccc1a6
2919
2920 static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2921 {
2922         wol->supported = WAKE_BCAST | WAKE_MAGIC;
2923         wol->wolopts = netdev2adap(dev)->wol;
2924         memset(&wol->sopass, 0, sizeof(wol->sopass));
2925 }
2926
2927 static int set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2928 {
2929         int err = 0;
2930         struct port_info *pi = netdev_priv(dev);
2931
2932         if (wol->wolopts & ~WOL_SUPPORTED)
2933                 return -EINVAL;
2934         t4_wol_magic_enable(pi->adapter, pi->tx_chan,
2935                             (wol->wolopts & WAKE_MAGIC) ? dev->dev_addr : NULL);
2936         if (wol->wolopts & WAKE_BCAST) {
2937                 err = t4_wol_pat_enable(pi->adapter, pi->tx_chan, 0xfe, ~0ULL,
2938                                         ~0ULL, 0, false);
2939                 if (!err)
2940                         err = t4_wol_pat_enable(pi->adapter, pi->tx_chan, 1,
2941                                                 ~6ULL, ~0ULL, BCAST_CRC, true);
2942         } else
2943                 t4_wol_pat_enable(pi->adapter, pi->tx_chan, 0, 0, 0, 0, false);
2944         return err;
2945 }
2946
2947 static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
2948 {
2949         const struct port_info *pi = netdev_priv(dev);
2950         netdev_features_t changed = dev->features ^ features;
2951         int err;
2952
2953         if (!(changed & NETIF_F_HW_VLAN_CTAG_RX))
2954                 return 0;
2955
2956         err = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, -1,
2957                             -1, -1, -1,
2958                             !!(features & NETIF_F_HW_VLAN_CTAG_RX), true);
2959         if (unlikely(err))
2960                 dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX;
2961         return err;
2962 }
2963
2964 static u32 get_rss_table_size(struct net_device *dev)
2965 {
2966         const struct port_info *pi = netdev_priv(dev);
2967
2968         return pi->rss_size;
2969 }
2970
2971 static int get_rss_table(struct net_device *dev, u32 *p, u8 *key)
2972 {
2973         const struct port_info *pi = netdev_priv(dev);
2974         unsigned int n = pi->rss_size;
2975
2976         while (n--)
2977                 p[n] = pi->rss[n];
2978         return 0;
2979 }
2980
2981 static int set_rss_table(struct net_device *dev, const u32 *p, const u8 *key)
2982 {
2983         unsigned int i;
2984         struct port_info *pi = netdev_priv(dev);
2985
2986         for (i = 0; i < pi->rss_size; i++)
2987                 pi->rss[i] = p[i];
2988         if (pi->adapter->flags & FULL_INIT_DONE)
2989                 return write_rss(pi, pi->rss);
2990         return 0;
2991 }
2992
2993 static int get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
2994                      u32 *rules)
2995 {
2996         const struct port_info *pi = netdev_priv(dev);
2997
2998         switch (info->cmd) {
2999         case ETHTOOL_GRXFH: {
3000                 unsigned int v = pi->rss_mode;
3001
3002                 info->data = 0;
3003                 switch (info->flow_type) {
3004                 case TCP_V4_FLOW:
3005                         if (v & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN)
3006                                 info->data = RXH_IP_SRC | RXH_IP_DST |
3007                                              RXH_L4_B_0_1 | RXH_L4_B_2_3;
3008                         else if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
3009                                 info->data = RXH_IP_SRC | RXH_IP_DST;
3010                         break;
3011                 case UDP_V4_FLOW:
3012                         if ((v & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN) &&
3013                             (v & FW_RSS_VI_CONFIG_CMD_UDPEN))
3014                                 info->data = RXH_IP_SRC | RXH_IP_DST |
3015                                              RXH_L4_B_0_1 | RXH_L4_B_2_3;
3016                         else if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
3017                                 info->data = RXH_IP_SRC | RXH_IP_DST;
3018                         break;
3019                 case SCTP_V4_FLOW:
3020                 case AH_ESP_V4_FLOW:
3021                 case IPV4_FLOW:
3022                         if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
3023                                 info->data = RXH_IP_SRC | RXH_IP_DST;
3024                         break;
3025                 case TCP_V6_FLOW:
3026                         if (v & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)
3027                                 info->data = RXH_IP_SRC | RXH_IP_DST |
3028                                              RXH_L4_B_0_1 | RXH_L4_B_2_3;
3029                         else if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
3030                                 info->data = RXH_IP_SRC | RXH_IP_DST;
3031                         break;
3032                 case UDP_V6_FLOW:
3033                         if ((v & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN) &&
3034                             (v & FW_RSS_VI_CONFIG_CMD_UDPEN))
3035                                 info->data = RXH_IP_SRC | RXH_IP_DST |
3036                                              RXH_L4_B_0_1 | RXH_L4_B_2_3;
3037                         else if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
3038                                 info->data = RXH_IP_SRC | RXH_IP_DST;
3039                         break;
3040                 case SCTP_V6_FLOW:
3041                 case AH_ESP_V6_FLOW:
3042                 case IPV6_FLOW:
3043                         if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
3044                                 info->data = RXH_IP_SRC | RXH_IP_DST;
3045                         break;
3046                 }
3047                 return 0;
3048         }
3049         case ETHTOOL_GRXRINGS:
3050                 info->data = pi->nqsets;
3051                 return 0;
3052         }
3053         return -EOPNOTSUPP;
3054 }
3055
3056 static const struct ethtool_ops cxgb_ethtool_ops = {
3057         .get_settings      = get_settings,
3058         .set_settings      = set_settings,
3059         .get_drvinfo       = get_drvinfo,
3060         .get_msglevel      = get_msglevel,
3061         .set_msglevel      = set_msglevel,
3062         .get_ringparam     = get_sge_param,
3063         .set_ringparam     = set_sge_param,
3064         .get_coalesce      = get_coalesce,
3065         .set_coalesce      = set_coalesce,
3066         .get_eeprom_len    = get_eeprom_len,
3067         .get_eeprom        = get_eeprom,
3068         .set_eeprom        = set_eeprom,
3069         .get_pauseparam    = get_pauseparam,
3070         .set_pauseparam    = set_pauseparam,
3071         .get_link          = ethtool_op_get_link,
3072         .get_strings       = get_strings,
3073         .set_phys_id       = identify_port,
3074         .nway_reset        = restart_autoneg,
3075         .get_sset_count    = get_sset_count,
3076         .get_ethtool_stats = get_stats,
3077         .get_regs_len      = get_regs_len,
3078         .get_regs          = get_regs,
3079         .get_wol           = get_wol,
3080         .set_wol           = set_wol,
3081         .get_rxnfc         = get_rxnfc,
3082         .get_rxfh_indir_size = get_rss_table_size,
3083         .get_rxfh          = get_rss_table,
3084         .set_rxfh          = set_rss_table,
3085         .flash_device      = set_flash,
3086 };
3087
3088 /*
3089  * debugfs support
3090  */
3091 static ssize_t mem_read(struct file *file, char __user *buf, size_t count,
3092                         loff_t *ppos)
3093 {
3094         loff_t pos = *ppos;
3095         loff_t avail = file_inode(file)->i_size;
3096         unsigned int mem = (uintptr_t)file->private_data & 3;
3097         struct adapter *adap = file->private_data - mem;
3098         __be32 *data;
3099         int ret;
3100
3101         if (pos < 0)
3102                 return -EINVAL;
3103         if (pos >= avail)
3104                 return 0;
3105         if (count > avail - pos)
3106                 count = avail - pos;
3107
3108         data = t4_alloc_mem(count);
3109         if (!data)
3110                 return -ENOMEM;
3111
3112         spin_lock(&adap->win0_lock);
3113         ret = t4_memory_rw(adap, 0, mem, pos, count, data, T4_MEMORY_READ);
3114         spin_unlock(&adap->win0_lock);
3115         if (ret) {
3116                 t4_free_mem(data);
3117                 return ret;
3118         }
3119         ret = copy_to_user(buf, data, count);
3120
3121         t4_free_mem(data);
3122         if (ret)
3123                 return -EFAULT;
3124
3125         *ppos = pos + count;
3126         return count;
3127 }
3128
3129 static const struct file_operations mem_debugfs_fops = {
3130         .owner   = THIS_MODULE,
3131         .open    = simple_open,
3132         .read    = mem_read,
3133         .llseek  = default_llseek,
3134 };
3135
3136 static void add_debugfs_mem(struct adapter *adap, const char *name,
3137                             unsigned int idx, unsigned int size_mb)
3138 {
3139         struct dentry *de;
3140
3141         de = debugfs_create_file(name, S_IRUSR, adap->debugfs_root,
3142                                  (void *)adap + idx, &mem_debugfs_fops);
3143         if (de && de->d_inode)
3144                 de->d_inode->i_size = size_mb << 20;
3145 }
3146
3147 static int setup_debugfs(struct adapter *adap)
3148 {
3149         int i;
3150         u32 size;
3151
3152         if (IS_ERR_OR_NULL(adap->debugfs_root))
3153                 return -1;
3154
3155         i = t4_read_reg(adap, MA_TARGET_MEM_ENABLE);
3156         if (i & EDRAM0_ENABLE) {
3157                 size = t4_read_reg(adap, MA_EDRAM0_BAR);
3158                 add_debugfs_mem(adap, "edc0", MEM_EDC0, EDRAM_SIZE_GET(size));
3159         }
3160         if (i & EDRAM1_ENABLE) {
3161                 size = t4_read_reg(adap, MA_EDRAM1_BAR);
3162                 add_debugfs_mem(adap, "edc1", MEM_EDC1, EDRAM_SIZE_GET(size));
3163         }
3164         if (is_t4(adap->params.chip)) {
3165                 size = t4_read_reg(adap, MA_EXT_MEMORY_BAR);
3166                 if (i & EXT_MEM_ENABLE)
3167                         add_debugfs_mem(adap, "mc", MEM_MC,
3168                                         EXT_MEM_SIZE_GET(size));
3169         } else {
3170                 if (i & EXT_MEM_ENABLE) {
3171                         size = t4_read_reg(adap, MA_EXT_MEMORY_BAR);
3172                         add_debugfs_mem(adap, "mc0", MEM_MC0,
3173                                         EXT_MEM_SIZE_GET(size));
3174                 }
3175                 if (i & EXT_MEM1_ENABLE) {
3176                         size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR);
3177                         add_debugfs_mem(adap, "mc1", MEM_MC1,
3178                                         EXT_MEM_SIZE_GET(size));
3179                 }
3180         }
3181         if (adap->l2t)
3182                 debugfs_create_file("l2t", S_IRUSR, adap->debugfs_root, adap,
3183                                     &t4_l2t_fops);
3184         return 0;
3185 }
3186
3187 /*
3188  * upper-layer driver support
3189  */
3190
3191 /*
3192  * Allocate an active-open TID and set it to the supplied value.
3193  */
3194 int cxgb4_alloc_atid(struct tid_info *t, void *data)
3195 {
3196         int atid = -1;
3197
3198         spin_lock_bh(&t->atid_lock);
3199         if (t->afree) {
3200                 union aopen_entry *p = t->afree;
3201
3202                 atid = (p - t->atid_tab) + t->atid_base;
3203                 t->afree = p->next;
3204                 p->data = data;
3205                 t->atids_in_use++;
3206         }
3207         spin_unlock_bh(&t->atid_lock);
3208         return atid;
3209 }
3210 EXPORT_SYMBOL(cxgb4_alloc_atid);
3211
3212 /*
3213  * Release an active-open TID.
3214  */
3215 void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
3216 {
3217         union aopen_entry *p = &t->atid_tab[atid - t->atid_base];
3218
3219         spin_lock_bh(&t->atid_lock);
3220         p->next = t->afree;
3221         t->afree = p;
3222         t->atids_in_use--;
3223         spin_unlock_bh(&t->atid_lock);
3224 }
3225 EXPORT_SYMBOL(cxgb4_free_atid);
3226
3227 /*
3228  * Allocate a server TID and set it to the supplied value.
3229  */
3230 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
3231 {
3232         int stid;
3233
3234         spin_lock_bh(&t->stid_lock);
3235         if (family == PF_INET) {
3236                 stid = find_first_zero_bit(t->stid_bmap, t->nstids);
3237                 if (stid < t->nstids)
3238                         __set_bit(stid, t->stid_bmap);
3239                 else
3240                         stid = -1;
3241         } else {
3242                 stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 2);
3243                 if (stid < 0)
3244                         stid = -1;
3245         }
3246         if (stid >= 0) {
3247                 t->stid_tab[stid].data = data;
3248                 stid += t->stid_base;
3249                 /* IPv6 requires max of 520 bits or 16 cells in TCAM
3250                  * This is equivalent to 4 TIDs. With CLIP enabled it
3251                  * needs 2 TIDs.
3252                  */
3253                 if (family == PF_INET)
3254                         t->stids_in_use++;
3255                 else
3256                         t->stids_in_use += 4;
3257         }
3258         spin_unlock_bh(&t->stid_lock);
3259         return stid;
3260 }
3261 EXPORT_SYMBOL(cxgb4_alloc_stid);
3262
3263 /* Allocate a server filter TID and set it to the supplied value.
3264  */
3265 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data)
3266 {
3267         int stid;
3268
3269         spin_lock_bh(&t->stid_lock);
3270         if (family == PF_INET) {
3271                 stid = find_next_zero_bit(t->stid_bmap,
3272                                 t->nstids + t->nsftids, t->nstids);
3273                 if (stid < (t->nstids + t->nsftids))
3274                         __set_bit(stid, t->stid_bmap);
3275                 else
3276                         stid = -1;
3277         } else {
3278                 stid = -1;
3279         }
3280         if (stid >= 0) {
3281                 t->stid_tab[stid].data = data;
3282                 stid -= t->nstids;
3283                 stid += t->sftid_base;
3284                 t->stids_in_use++;
3285         }
3286         spin_unlock_bh(&t->stid_lock);
3287         return stid;
3288 }
3289 EXPORT_SYMBOL(cxgb4_alloc_sftid);
3290
3291 /* Release a server TID.
3292  */
3293 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
3294 {
3295         /* Is it a server filter TID? */
3296         if (t->nsftids && (stid >= t->sftid_base)) {
3297                 stid -= t->sftid_base;
3298                 stid += t->nstids;
3299         } else {
3300                 stid -= t->stid_base;
3301         }
3302
3303         spin_lock_bh(&t->stid_lock);
3304         if (family == PF_INET)
3305                 __clear_bit(stid, t->stid_bmap);
3306         else
3307                 bitmap_release_region(t->stid_bmap, stid, 2);
3308         t->stid_tab[stid].data = NULL;
3309         if (family == PF_INET)
3310                 t->stids_in_use--;
3311         else
3312                 t->stids_in_use -= 4;
3313         spin_unlock_bh(&t->stid_lock);
3314 }
3315 EXPORT_SYMBOL(cxgb4_free_stid);
3316
3317 /*
3318  * Populate a TID_RELEASE WR.  Caller must properly size the skb.
3319  */
3320 static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
3321                            unsigned int tid)
3322 {
3323         struct cpl_tid_release *req;
3324
3325         set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
3326         req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req));
3327         INIT_TP_WR(req, tid);
3328         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
3329 }
3330
3331 /*
3332  * Queue a TID release request and if necessary schedule a work queue to
3333  * process it.
3334  */
3335 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
3336                                     unsigned int tid)
3337 {
3338         void **p = &t->tid_tab[tid];
3339         struct adapter *adap = container_of(t, struct adapter, tids);
3340
3341         spin_lock_bh(&adap->tid_release_lock);
3342         *p = adap->tid_release_head;
3343         /* Low 2 bits encode the Tx channel number */
3344         adap->tid_release_head = (void **)((uintptr_t)p | chan);
3345         if (!adap->tid_release_task_busy) {
3346                 adap->tid_release_task_busy = true;
3347                 queue_work(adap->workq, &adap->tid_release_task);
3348         }
3349         spin_unlock_bh(&adap->tid_release_lock);
3350 }
3351
3352 /*
3353  * Process the list of pending TID release requests.
3354  */
3355 static void process_tid_release_list(struct work_struct *work)
3356 {
3357         struct sk_buff *skb;
3358         struct adapter *adap;
3359
3360         adap = container_of(work, struct adapter, tid_release_task);
3361
3362         spin_lock_bh(&adap->tid_release_lock);
3363         while (adap->tid_release_head) {
3364                 void **p = adap->tid_release_head;
3365                 unsigned int chan = (uintptr_t)p & 3;
3366                 p = (void *)p - chan;
3367
3368                 adap->tid_release_head = *p;
3369                 *p = NULL;
3370                 spin_unlock_bh(&adap->tid_release_lock);
3371
3372                 while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
3373                                          GFP_KERNEL)))
3374                         schedule_timeout_uninterruptible(1);
3375
3376                 mk_tid_release(skb, chan, p - adap->tids.tid_tab);
3377                 t4_ofld_send(adap, skb);
3378                 spin_lock_bh(&adap->tid_release_lock);
3379         }
3380         adap->tid_release_task_busy = false;
3381         spin_unlock_bh(&adap->tid_release_lock);
3382 }
3383
3384 /*
3385  * Release a TID and inform HW.  If we are unable to allocate the release
3386  * message we defer to a work queue.
3387  */
3388 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid)
3389 {
3390         void *old;
3391         struct sk_buff *skb;
3392         struct adapter *adap = container_of(t, struct adapter, tids);
3393
3394         old = t->tid_tab[tid];
3395         skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
3396         if (likely(skb)) {
3397                 t->tid_tab[tid] = NULL;
3398                 mk_tid_release(skb, chan, tid);
3399                 t4_ofld_send(adap, skb);
3400         } else
3401                 cxgb4_queue_tid_release(t, chan, tid);
3402         if (old)
3403                 atomic_dec(&t->tids_in_use);
3404 }
3405 EXPORT_SYMBOL(cxgb4_remove_tid);
3406
3407 /*
3408  * Allocate and initialize the TID tables.  Returns 0 on success.
3409  */
3410 static int tid_init(struct tid_info *t)
3411 {
3412         size_t size;
3413         unsigned int stid_bmap_size;
3414         unsigned int natids = t->natids;
3415         struct adapter *adap = container_of(t, struct adapter, tids);
3416
3417         stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids);
3418         size = t->ntids * sizeof(*t->tid_tab) +
3419                natids * sizeof(*t->atid_tab) +
3420                t->nstids * sizeof(*t->stid_tab) +
3421                t->nsftids * sizeof(*t->stid_tab) +
3422                stid_bmap_size * sizeof(long) +
3423                t->nftids * sizeof(*t->ftid_tab) +
3424                t->nsftids * sizeof(*t->ftid_tab);
3425
3426         t->tid_tab = t4_alloc_mem(size);
3427         if (!t->tid_tab)
3428                 return -ENOMEM;
3429
3430         t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
3431         t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
3432         t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids];
3433         t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size];
3434         spin_lock_init(&t->stid_lock);
3435         spin_lock_init(&t->atid_lock);
3436
3437         t->stids_in_use = 0;
3438         t->afree = NULL;
3439         t->atids_in_use = 0;
3440         atomic_set(&t->tids_in_use, 0);
3441
3442         /* Setup the free list for atid_tab and clear the stid bitmap. */
3443         if (natids) {
3444                 while (--natids)
3445                         t->atid_tab[natids - 1].next = &t->atid_tab[natids];
3446                 t->afree = t->atid_tab;
3447         }
3448         bitmap_zero(t->stid_bmap, t->nstids + t->nsftids);
3449         /* Reserve stid 0 for T4/T5 adapters */
3450         if (!t->stid_base &&
3451             (is_t4(adap->params.chip) || is_t5(adap->params.chip)))
3452                 __set_bit(0, t->stid_bmap);
3453
3454         return 0;
3455 }
3456
3457 int cxgb4_clip_get(const struct net_device *dev,
3458                    const struct in6_addr *lip)
3459 {
3460         struct adapter *adap;
3461         struct fw_clip_cmd c;
3462
3463         adap = netdev2adap(dev);
3464         memset(&c, 0, sizeof(c));
3465         c.op_to_write = htonl(FW_CMD_OP(FW_CLIP_CMD) |
3466                         FW_CMD_REQUEST | FW_CMD_WRITE);
3467         c.alloc_to_len16 = htonl(F_FW_CLIP_CMD_ALLOC | FW_LEN16(c));
3468         c.ip_hi = *(__be64 *)(lip->s6_addr);
3469         c.ip_lo = *(__be64 *)(lip->s6_addr + 8);
3470         return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, false);
3471 }
3472 EXPORT_SYMBOL(cxgb4_clip_get);
3473
3474 int cxgb4_clip_release(const struct net_device *dev,
3475                        const struct in6_addr *lip)
3476 {
3477         struct adapter *adap;
3478         struct fw_clip_cmd c;
3479
3480         adap = netdev2adap(dev);
3481         memset(&c, 0, sizeof(c));
3482         c.op_to_write = htonl(FW_CMD_OP(FW_CLIP_CMD) |
3483                         FW_CMD_REQUEST | FW_CMD_READ);
3484         c.alloc_to_len16 = htonl(F_FW_CLIP_CMD_FREE | FW_LEN16(c));
3485         c.ip_hi = *(__be64 *)(lip->s6_addr);
3486         c.ip_lo = *(__be64 *)(lip->s6_addr + 8);
3487         return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, false);
3488 }
3489 EXPORT_SYMBOL(cxgb4_clip_release);
3490
3491 /**
3492  *      cxgb4_create_server - create an IP server
3493  *      @dev: the device
3494  *      @stid: the server TID
3495  *      @sip: local IP address to bind server to
3496  *      @sport: the server's TCP port
3497  *      @queue: queue to direct messages from this server to
3498  *
3499  *      Create an IP server for the given port and address.
3500  *      Returns <0 on error and one of the %NET_XMIT_* values on success.
3501  */
3502 int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
3503                         __be32 sip, __be16 sport, __be16 vlan,
3504                         unsigned int queue)
3505 {
3506         unsigned int chan;
3507         struct sk_buff *skb;
3508         struct adapter *adap;
3509         struct cpl_pass_open_req *req;
3510         int ret;
3511
3512         skb = alloc_skb(sizeof(*req), GFP_KERNEL);
3513         if (!skb)
3514                 return -ENOMEM;
3515
3516         adap = netdev2adap(dev);
3517         req = (struct cpl_pass_open_req *)__skb_put(skb, sizeof(*req));
3518         INIT_TP_WR(req, 0);
3519         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
3520         req->local_port = sport;
3521         req->peer_port = htons(0);
3522         req->local_ip = sip;
3523         req->peer_ip = htonl(0);
3524         chan = rxq_to_chan(&adap->sge, queue);
3525         req->opt0 = cpu_to_be64(TX_CHAN(chan));
3526         req->opt1 = cpu_to_be64(CONN_POLICY_ASK |
3527                                 SYN_RSS_ENABLE | SYN_RSS_QUEUE(queue));
3528         ret = t4_mgmt_tx(adap, skb);
3529         return net_xmit_eval(ret);
3530 }
3531 EXPORT_SYMBOL(cxgb4_create_server);
3532
3533 /*      cxgb4_create_server6 - create an IPv6 server
3534  *      @dev: the device
3535  *      @stid: the server TID
3536  *      @sip: local IPv6 address to bind server to
3537  *      @sport: the server's TCP port
3538  *      @queue: queue to direct messages from this server to
3539  *
3540  *      Create an IPv6 server for the given port and address.
3541  *      Returns <0 on error and one of the %NET_XMIT_* values on success.
3542  */
3543 int cxgb4_create_server6(const struct net_device *dev, unsigned int stid,
3544                          const struct in6_addr *sip, __be16 sport,
3545                          unsigned int queue)
3546 {
3547         unsigned int chan;
3548         struct sk_buff *skb;
3549         struct adapter *adap;
3550         struct cpl_pass_open_req6 *req;
3551         int ret;
3552
3553         skb = alloc_skb(sizeof(*req), GFP_KERNEL);
3554         if (!skb)
3555                 return -ENOMEM;
3556
3557         adap = netdev2adap(dev);
3558         req = (struct cpl_pass_open_req6 *)__skb_put(skb, sizeof(*req));
3559         INIT_TP_WR(req, 0);
3560         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid));
3561         req->local_port = sport;
3562         req->peer_port = htons(0);
3563         req->local_ip_hi = *(__be64 *)(sip->s6_addr);
3564         req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8);
3565         req->peer_ip_hi = cpu_to_be64(0);
3566         req->peer_ip_lo = cpu_to_be64(0);
3567         chan = rxq_to_chan(&adap->sge, queue);
3568         req->opt0 = cpu_to_be64(TX_CHAN(chan));
3569         req->opt1 = cpu_to_be64(CONN_POLICY_ASK |
3570                                 SYN_RSS_ENABLE | SYN_RSS_QUEUE(queue));
3571         ret = t4_mgmt_tx(adap, skb);
3572         return net_xmit_eval(ret);
3573 }
3574 EXPORT_SYMBOL(cxgb4_create_server6);
3575
3576 int cxgb4_remove_server(const struct net_device *dev, unsigned int stid,
3577                         unsigned int queue, bool ipv6)
3578 {
3579         struct sk_buff *skb;
3580         struct adapter *adap;
3581         struct cpl_close_listsvr_req *req;
3582         int ret;
3583
3584         adap = netdev2adap(dev);
3585
3586         skb = alloc_skb(sizeof(*req), GFP_KERNEL);
3587         if (!skb)
3588                 return -ENOMEM;
3589
3590         req = (struct cpl_close_listsvr_req *)__skb_put(skb, sizeof(*req));
3591         INIT_TP_WR(req, 0);
3592         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid));
3593         req->reply_ctrl = htons(NO_REPLY(0) | (ipv6 ? LISTSVR_IPV6(1) :
3594                                 LISTSVR_IPV6(0)) | QUEUENO(queue));
3595         ret = t4_mgmt_tx(adap, skb);
3596         return net_xmit_eval(ret);
3597 }
3598 EXPORT_SYMBOL(cxgb4_remove_server);
3599
3600 /**
3601  *      cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
3602  *      @mtus: the HW MTU table
3603  *      @mtu: the target MTU
3604  *      @idx: index of selected entry in the MTU table
3605  *
3606  *      Returns the index and the value in the HW MTU table that is closest to
3607  *      but does not exceed @mtu, unless @mtu is smaller than any value in the
3608  *      table, in which case that smallest available value is selected.
3609  */
3610 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
3611                             unsigned int *idx)
3612 {
3613         unsigned int i = 0;
3614
3615         while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
3616                 ++i;
3617         if (idx)
3618                 *idx = i;
3619         return mtus[i];
3620 }
3621 EXPORT_SYMBOL(cxgb4_best_mtu);
3622
3623 /**
3624  *     cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned
3625  *     @mtus: the HW MTU table
3626  *     @header_size: Header Size
3627  *     @data_size_max: maximum Data Segment Size
3628  *     @data_size_align: desired Data Segment Size Alignment (2^N)
3629  *     @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL)
3630  *
3631  *     Similar to cxgb4_best_mtu() but instead of searching the Hardware
3632  *     MTU Table based solely on a Maximum MTU parameter, we break that
3633  *     parameter up into a Header Size and Maximum Data Segment Size, and
3634  *     provide a desired Data Segment Size Alignment.  If we find an MTU in
3635  *     the Hardware MTU Table which will result in a Data Segment Size with
3636  *     the requested alignment _and_ that MTU isn't "too far" from the
3637  *     closest MTU, then we'll return that rather than the closest MTU.
3638  */
3639 unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus,
3640                                     unsigned short header_size,
3641                                     unsigned short data_size_max,
3642                                     unsigned short data_size_align,
3643                                     unsigned int *mtu_idxp)
3644 {
3645         unsigned short max_mtu = header_size + data_size_max;
3646         unsigned short data_size_align_mask = data_size_align - 1;
3647         int mtu_idx, aligned_mtu_idx;
3648
3649         /* Scan the MTU Table till we find an MTU which is larger than our
3650          * Maximum MTU or we reach the end of the table.  Along the way,
3651          * record the last MTU found, if any, which will result in a Data
3652          * Segment Length matching the requested alignment.
3653          */
3654         for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) {
3655                 unsigned short data_size = mtus[mtu_idx] - header_size;
3656
3657                 /* If this MTU minus the Header Size would result in a
3658                  * Data Segment Size of the desired alignment, remember it.
3659                  */
3660                 if ((data_size & data_size_align_mask) == 0)
3661                         aligned_mtu_idx = mtu_idx;
3662
3663                 /* If we're not at the end of the Hardware MTU Table and the
3664                  * next element is larger than our Maximum MTU, drop out of
3665                  * the loop.
3666                  */
3667                 if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu)
3668                         break;
3669         }
3670
3671         /* If we fell out of the loop because we ran to the end of the table,
3672          * then we just have to use the last [largest] entry.
3673          */
3674         if (mtu_idx == NMTUS)
3675                 mtu_idx--;
3676
3677         /* If we found an MTU which resulted in the requested Data Segment
3678          * Length alignment and that's "not far" from the largest MTU which is
3679          * less than or equal to the maximum MTU, then use that.
3680          */
3681         if (aligned_mtu_idx >= 0 &&
3682             mtu_idx - aligned_mtu_idx <= 1)
3683                 mtu_idx = aligned_mtu_idx;
3684
3685         /* If the caller has passed in an MTU Index pointer, pass the
3686          * MTU Index back.  Return the MTU value.
3687          */
3688         if (mtu_idxp)
3689                 *mtu_idxp = mtu_idx;
3690         return mtus[mtu_idx];
3691 }
3692 EXPORT_SYMBOL(cxgb4_best_aligned_mtu);
3693
3694 /**
3695  *      cxgb4_port_chan - get the HW channel of a port
3696  *      @dev: the net device for the port
3697  *
3698  *      Return the HW Tx channel of the given port.
3699  */
3700 unsigned int cxgb4_port_chan(const struct net_device *dev)
3701 {
3702         return netdev2pinfo(dev)->tx_chan;
3703 }
3704 EXPORT_SYMBOL(cxgb4_port_chan);
3705
3706 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo)
3707 {
3708         struct adapter *adap = netdev2adap(dev);
3709         u32 v1, v2, lp_count, hp_count;
3710
3711         v1 = t4_read_reg(adap, A_SGE_DBFIFO_STATUS);
3712         v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2);
3713         if (is_t4(adap->params.chip)) {
3714                 lp_count = G_LP_COUNT(v1);
3715                 hp_count = G_HP_COUNT(v1);
3716         } else {
3717                 lp_count = G_LP_COUNT_T5(v1);
3718                 hp_count = G_HP_COUNT_T5(v2);
3719         }
3720         return lpfifo ? lp_count : hp_count;
3721 }
3722 EXPORT_SYMBOL(cxgb4_dbfifo_count);
3723
3724 /**
3725  *      cxgb4_port_viid - get the VI id of a port
3726  *      @dev: the net device for the port
3727  *
3728  *      Return the VI id of the given port.
3729  */
3730 unsigned int cxgb4_port_viid(const struct net_device *dev)
3731 {
3732         return netdev2pinfo(dev)->viid;
3733 }
3734 EXPORT_SYMBOL(cxgb4_port_viid);
3735
3736 /**
3737  *      cxgb4_port_idx - get the index of a port
3738  *      @dev: the net device for the port
3739  *
3740  *      Return the index of the given port.
3741  */
3742 unsigned int cxgb4_port_idx(const struct net_device *dev)
3743 {
3744         return netdev2pinfo(dev)->port_id;
3745 }
3746 EXPORT_SYMBOL(cxgb4_port_idx);
3747
3748 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
3749                          struct tp_tcp_stats *v6)
3750 {
3751         struct adapter *adap = pci_get_drvdata(pdev);
3752
3753         spin_lock(&adap->stats_lock);
3754         t4_tp_get_tcp_stats(adap, v4, v6);
3755         spin_unlock(&adap->stats_lock);
3756 }
3757 EXPORT_SYMBOL(cxgb4_get_tcp_stats);
3758
3759 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
3760                       const unsigned int *pgsz_order)
3761 {
3762         struct adapter *adap = netdev2adap(dev);
3763
3764         t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK, tag_mask);
3765         t4_write_reg(adap, ULP_RX_ISCSI_PSZ, HPZ0(pgsz_order[0]) |
3766                      HPZ1(pgsz_order[1]) | HPZ2(pgsz_order[2]) |
3767                      HPZ3(pgsz_order[3]));
3768 }
3769 EXPORT_SYMBOL(cxgb4_iscsi_init);
3770
3771 int cxgb4_flush_eq_cache(struct net_device *dev)
3772 {
3773         struct adapter *adap = netdev2adap(dev);
3774         int ret;
3775
3776         ret = t4_fwaddrspace_write(adap, adap->mbox,
3777                                    0xe1000000 + A_SGE_CTXT_CMD, 0x20000000);
3778         return ret;
3779 }
3780 EXPORT_SYMBOL(cxgb4_flush_eq_cache);
3781
3782 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx)
3783 {
3784         u32 addr = t4_read_reg(adap, A_SGE_DBQ_CTXT_BADDR) + 24 * qid + 8;
3785         __be64 indices;
3786         int ret;
3787
3788         spin_lock(&adap->win0_lock);
3789         ret = t4_memory_rw(adap, 0, MEM_EDC0, addr,
3790                            sizeof(indices), (__be32 *)&indices,
3791                            T4_MEMORY_READ);
3792         spin_unlock(&adap->win0_lock);
3793         if (!ret) {
3794                 *cidx = (be64_to_cpu(indices) >> 25) & 0xffff;
3795                 *pidx = (be64_to_cpu(indices) >> 9) & 0xffff;
3796         }
3797         return ret;
3798 }
3799
3800 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx,
3801                         u16 size)
3802 {
3803         struct adapter *adap = netdev2adap(dev);
3804         u16 hw_pidx, hw_cidx;
3805         int ret;
3806
3807         ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx);
3808         if (ret)
3809                 goto out;
3810
3811         if (pidx != hw_pidx) {
3812                 u16 delta;
3813
3814                 if (pidx >= hw_pidx)
3815                         delta = pidx - hw_pidx;
3816                 else
3817                         delta = size - hw_pidx + pidx;
3818                 wmb();
3819                 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL),
3820                              QID(qid) | PIDX(delta));
3821         }
3822 out:
3823         return ret;
3824 }
3825 EXPORT_SYMBOL(cxgb4_sync_txq_pidx);
3826
3827 void cxgb4_disable_db_coalescing(struct net_device *dev)
3828 {
3829         struct adapter *adap;
3830
3831         adap = netdev2adap(dev);
3832         t4_set_reg_field(adap, A_SGE_DOORBELL_CONTROL, F_NOCOALESCE,
3833                          F_NOCOALESCE);
3834 }
3835 EXPORT_SYMBOL(cxgb4_disable_db_coalescing);
3836
3837 void cxgb4_enable_db_coalescing(struct net_device *dev)
3838 {
3839         struct adapter *adap;
3840
3841         adap = netdev2adap(dev);
3842         t4_set_reg_field(adap, A_SGE_DOORBELL_CONTROL, F_NOCOALESCE, 0);
3843 }
3844 EXPORT_SYMBOL(cxgb4_enable_db_coalescing);
3845
3846 int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte)
3847 {
3848         struct adapter *adap;
3849         u32 offset, memtype, memaddr;
3850         u32 edc0_size, edc1_size, mc0_size, mc1_size;
3851         u32 edc0_end, edc1_end, mc0_end, mc1_end;
3852         int ret;
3853
3854         adap = netdev2adap(dev);
3855
3856         offset = ((stag >> 8) * 32) + adap->vres.stag.start;
3857
3858         /* Figure out where the offset lands in the Memory Type/Address scheme.
3859          * This code assumes that the memory is laid out starting at offset 0
3860          * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0
3861          * and EDC1.  Some cards will have neither MC0 nor MC1, most cards have
3862          * MC0, and some have both MC0 and MC1.
3863          */
3864         edc0_size = EDRAM_SIZE_GET(t4_read_reg(adap, MA_EDRAM0_BAR)) << 20;
3865         edc1_size = EDRAM_SIZE_GET(t4_read_reg(adap, MA_EDRAM1_BAR)) << 20;
3866         mc0_size = EXT_MEM_SIZE_GET(t4_read_reg(adap, MA_EXT_MEMORY_BAR)) << 20;
3867
3868         edc0_end = edc0_size;
3869         edc1_end = edc0_end + edc1_size;
3870         mc0_end = edc1_end + mc0_size;
3871
3872         if (offset < edc0_end) {
3873                 memtype = MEM_EDC0;
3874                 memaddr = offset;
3875         } else if (offset < edc1_end) {
3876                 memtype = MEM_EDC1;
3877                 memaddr = offset - edc0_end;
3878         } else {
3879                 if (offset < mc0_end) {
3880                         memtype = MEM_MC0;
3881                         memaddr = offset - edc1_end;
3882                 } else if (is_t4(adap->params.chip)) {
3883                         /* T4 only has a single memory channel */
3884                         goto err;
3885                 } else {
3886                         mc1_size = EXT_MEM_SIZE_GET(
3887                                         t4_read_reg(adap,
3888                                                     MA_EXT_MEMORY1_BAR)) << 20;
3889                         mc1_end = mc0_end + mc1_size;
3890                         if (offset < mc1_end) {
3891                                 memtype = MEM_MC1;
3892                                 memaddr = offset - mc0_end;
3893                         } else {
3894                                 /* offset beyond the end of any memory */
3895                                 goto err;
3896                         }
3897                 }
3898         }
3899
3900         spin_lock(&adap->win0_lock);
3901         ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ);
3902         spin_unlock(&adap->win0_lock);
3903         return ret;
3904
3905 err:
3906         dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n",
3907                 stag, offset);
3908         return -EINVAL;
3909 }
3910 EXPORT_SYMBOL(cxgb4_read_tpte);
3911
3912 u64 cxgb4_read_sge_timestamp(struct net_device *dev)
3913 {
3914         u32 hi, lo;
3915         struct adapter *adap;
3916
3917         adap = netdev2adap(dev);
3918         lo = t4_read_reg(adap, SGE_TIMESTAMP_LO);
3919         hi = GET_TSVAL(t4_read_reg(adap, SGE_TIMESTAMP_HI));
3920
3921         return ((u64)hi << 32) | (u64)lo;
3922 }
3923 EXPORT_SYMBOL(cxgb4_read_sge_timestamp);
3924
3925 static struct pci_driver cxgb4_driver;
3926
3927 static void check_neigh_update(struct neighbour *neigh)
3928 {
3929         const struct device *parent;
3930         const struct net_device *netdev = neigh->dev;
3931
3932         if (netdev->priv_flags & IFF_802_1Q_VLAN)
3933                 netdev = vlan_dev_real_dev(netdev);
3934         parent = netdev->dev.parent;
3935         if (parent && parent->driver == &cxgb4_driver.driver)
3936                 t4_l2t_update(dev_get_drvdata(parent), neigh);
3937 }
3938
3939 static int netevent_cb(struct notifier_block *nb, unsigned long event,
3940                        void *data)
3941 {
3942         switch (event) {
3943         case NETEVENT_NEIGH_UPDATE:
3944                 check_neigh_update(data);
3945                 break;
3946         case NETEVENT_REDIRECT:
3947         default:
3948                 break;
3949         }
3950         return 0;
3951 }
3952
3953 static bool netevent_registered;
3954 static struct notifier_block cxgb4_netevent_nb = {
3955         .notifier_call = netevent_cb
3956 };
3957
3958 static void drain_db_fifo(struct adapter *adap, int usecs)
3959 {
3960         u32 v1, v2, lp_count, hp_count;
3961
3962         do {
3963                 v1 = t4_read_reg(adap, A_SGE_DBFIFO_STATUS);
3964                 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2);
3965                 if (is_t4(adap->params.chip)) {
3966                         lp_count = G_LP_COUNT(v1);
3967                         hp_count = G_HP_COUNT(v1);
3968                 } else {
3969                         lp_count = G_LP_COUNT_T5(v1);
3970                         hp_count = G_HP_COUNT_T5(v2);
3971                 }
3972
3973                 if (lp_count == 0 && hp_count == 0)
3974                         break;
3975                 set_current_state(TASK_UNINTERRUPTIBLE);
3976                 schedule_timeout(usecs_to_jiffies(usecs));
3977         } while (1);
3978 }
3979
3980 static void disable_txq_db(struct sge_txq *q)
3981 {
3982         unsigned long flags;
3983
3984         spin_lock_irqsave(&q->db_lock, flags);
3985         q->db_disabled = 1;
3986         spin_unlock_irqrestore(&q->db_lock, flags);
3987 }
3988
3989 static void enable_txq_db(struct adapter *adap, struct sge_txq *q)
3990 {
3991         spin_lock_irq(&q->db_lock);
3992         if (q->db_pidx_inc) {
3993                 /* Make sure that all writes to the TX descriptors
3994                  * are committed before we tell HW about them.
3995                  */
3996                 wmb();
3997                 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL),
3998                              QID(q->cntxt_id) | PIDX(q->db_pidx_inc));
3999                 q->db_pidx_inc = 0;
4000         }
4001         q->db_disabled = 0;
4002         spin_unlock_irq(&q->db_lock);
4003 }
4004
4005 static void disable_dbs(struct adapter *adap)
4006 {
4007         int i;
4008
4009         for_each_ethrxq(&adap->sge, i)
4010                 disable_txq_db(&adap->sge.ethtxq[i].q);
4011         for_each_ofldrxq(&adap->sge, i)
4012                 disable_txq_db(&adap->sge.ofldtxq[i].q);
4013         for_each_port(adap, i)
4014                 disable_txq_db(&adap->sge.ctrlq[i].q);
4015 }
4016
4017 static void enable_dbs(struct adapter *adap)
4018 {
4019         int i;
4020
4021         for_each_ethrxq(&adap->sge, i)
4022                 enable_txq_db(adap, &adap->sge.ethtxq[i].q);
4023         for_each_ofldrxq(&adap->sge, i)
4024                 enable_txq_db(adap, &adap->sge.ofldtxq[i].q);
4025         for_each_port(adap, i)
4026                 enable_txq_db(adap, &adap->sge.ctrlq[i].q);
4027 }
4028
4029 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd)
4030 {
4031         if (adap->uld_handle[CXGB4_ULD_RDMA])
4032                 ulds[CXGB4_ULD_RDMA].control(adap->uld_handle[CXGB4_ULD_RDMA],
4033                                 cmd);
4034 }
4035
4036 static void process_db_full(struct work_struct *work)
4037 {
4038         struct adapter *adap;
4039
4040         adap = container_of(work, struct adapter, db_full_task);
4041
4042         drain_db_fifo(adap, dbfifo_drain_delay);
4043         enable_dbs(adap);
4044         notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
4045         t4_set_reg_field(adap, SGE_INT_ENABLE3,
4046                          DBFIFO_HP_INT | DBFIFO_LP_INT,
4047                          DBFIFO_HP_INT | DBFIFO_LP_INT);
4048 }
4049
4050 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q)
4051 {
4052         u16 hw_pidx, hw_cidx;
4053         int ret;
4054
4055         spin_lock_irq(&q->db_lock);
4056         ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx);
4057         if (ret)
4058                 goto out;
4059         if (q->db_pidx != hw_pidx) {
4060                 u16 delta;
4061
4062                 if (q->db_pidx >= hw_pidx)
4063                         delta = q->db_pidx - hw_pidx;
4064                 else
4065                         delta = q->size - hw_pidx + q->db_pidx;
4066                 wmb();
4067                 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL),
4068                              QID(q->cntxt_id) | PIDX(delta));
4069         }
4070 out:
4071         q->db_disabled = 0;
4072         q->db_pidx_inc = 0;
4073         spin_unlock_irq(&q->db_lock);
4074         if (ret)
4075                 CH_WARN(adap, "DB drop recovery failed.\n");
4076 }
4077 static void recover_all_queues(struct adapter *adap)
4078 {
4079         int i;
4080
4081         for_each_ethrxq(&adap->sge, i)
4082                 sync_txq_pidx(adap, &adap->sge.ethtxq[i].q);
4083         for_each_ofldrxq(&adap->sge, i)
4084                 sync_txq_pidx(adap, &adap->sge.ofldtxq[i].q);
4085         for_each_port(adap, i)
4086                 sync_txq_pidx(adap, &adap->sge.ctrlq[i].q);
4087 }
4088
4089 static void process_db_drop(struct work_struct *work)
4090 {
4091         struct adapter *adap;
4092
4093         adap = container_of(work, struct adapter, db_drop_task);
4094
4095         if (is_t4(adap->params.chip)) {
4096                 drain_db_fifo(adap, dbfifo_drain_delay);
4097                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP);
4098                 drain_db_fifo(adap, dbfifo_drain_delay);
4099                 recover_all_queues(adap);
4100                 drain_db_fifo(adap, dbfifo_drain_delay);
4101                 enable_dbs(adap);
4102                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
4103         } else {
4104                 u32 dropped_db = t4_read_reg(adap, 0x010ac);
4105                 u16 qid = (dropped_db >> 15) & 0x1ffff;
4106                 u16 pidx_inc = dropped_db & 0x1fff;
4107                 unsigned int s_qpp;
4108                 unsigned short udb_density;
4109                 unsigned long qpshift;
4110                 int page;
4111                 u32 udb;
4112
4113                 dev_warn(adap->pdev_dev,
4114                          "Dropped DB 0x%x qid %d bar2 %d coalesce %d pidx %d\n",
4115                          dropped_db, qid,
4116                          (dropped_db >> 14) & 1,
4117                          (dropped_db >> 13) & 1,
4118                          pidx_inc);
4119
4120                 drain_db_fifo(adap, 1);
4121
4122                 s_qpp = QUEUESPERPAGEPF1 * adap->fn;
4123                 udb_density = 1 << QUEUESPERPAGEPF0_GET(t4_read_reg(adap,
4124                                 SGE_EGRESS_QUEUES_PER_PAGE_PF) >> s_qpp);
4125                 qpshift = PAGE_SHIFT - ilog2(udb_density);
4126                 udb = qid << qpshift;
4127                 udb &= PAGE_MASK;
4128                 page = udb / PAGE_SIZE;
4129                 udb += (qid - (page * udb_density)) * 128;
4130
4131                 writel(PIDX(pidx_inc),  adap->bar2 + udb + 8);
4132
4133                 /* Re-enable BAR2 WC */
4134                 t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15);
4135         }
4136
4137         t4_set_reg_field(adap, A_SGE_DOORBELL_CONTROL, F_DROPPED_DB, 0);
4138 }
4139
4140 void t4_db_full(struct adapter *adap)
4141 {
4142         if (is_t4(adap->params.chip)) {
4143                 disable_dbs(adap);
4144                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
4145                 t4_set_reg_field(adap, SGE_INT_ENABLE3,
4146                                  DBFIFO_HP_INT | DBFIFO_LP_INT, 0);
4147                 queue_work(adap->workq, &adap->db_full_task);
4148         }
4149 }
4150
4151 void t4_db_dropped(struct adapter *adap)
4152 {
4153         if (is_t4(adap->params.chip)) {
4154                 disable_dbs(adap);
4155                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
4156         }
4157         queue_work(adap->workq, &adap->db_drop_task);
4158 }
4159
4160 static void uld_attach(struct adapter *adap, unsigned int uld)
4161 {
4162         void *handle;
4163         struct cxgb4_lld_info lli;
4164         unsigned short i;
4165
4166         lli.pdev = adap->pdev;
4167         lli.pf = adap->fn;
4168         lli.l2t = adap->l2t;
4169         lli.tids = &adap->tids;
4170         lli.ports = adap->port;
4171         lli.vr = &adap->vres;
4172         lli.mtus = adap->params.mtus;
4173         if (uld == CXGB4_ULD_RDMA) {
4174                 lli.rxq_ids = adap->sge.rdma_rxq;
4175                 lli.ciq_ids = adap->sge.rdma_ciq;
4176                 lli.nrxq = adap->sge.rdmaqs;
4177                 lli.nciq = adap->sge.rdmaciqs;
4178         } else if (uld == CXGB4_ULD_ISCSI) {
4179                 lli.rxq_ids = adap->sge.ofld_rxq;
4180                 lli.nrxq = adap->sge.ofldqsets;
4181         }
4182         lli.ntxq = adap->sge.ofldqsets;
4183         lli.nchan = adap->params.nports;
4184         lli.nports = adap->params.nports;
4185         lli.wr_cred = adap->params.ofldq_wr_cred;
4186         lli.adapter_type = adap->params.chip;
4187         lli.iscsi_iolen = MAXRXDATA_GET(t4_read_reg(adap, TP_PARA_REG2));
4188         lli.cclk_ps = 1000000000 / adap->params.vpd.cclk;
4189         lli.udb_density = 1 << QUEUESPERPAGEPF0_GET(
4190                         t4_read_reg(adap, SGE_EGRESS_QUEUES_PER_PAGE_PF) >>
4191                         (adap->fn * 4));
4192         lli.ucq_density = 1 << QUEUESPERPAGEPF0_GET(
4193                         t4_read_reg(adap, SGE_INGRESS_QUEUES_PER_PAGE_PF) >>
4194                         (adap->fn * 4));
4195         lli.filt_mode = adap->params.tp.vlan_pri_map;
4196         /* MODQ_REQ_MAP sets queues 0-3 to chan 0-3 */
4197         for (i = 0; i < NCHAN; i++)
4198                 lli.tx_modq[i] = i;
4199         lli.gts_reg = adap->regs + MYPF_REG(SGE_PF_GTS);
4200         lli.db_reg = adap->regs + MYPF_REG(SGE_PF_KDOORBELL);
4201         lli.fw_vers = adap->params.fw_vers;
4202         lli.dbfifo_int_thresh = dbfifo_int_thresh;
4203         lli.sge_ingpadboundary = adap->sge.fl_align;
4204         lli.sge_egrstatuspagesize = adap->sge.stat_len;
4205         lli.sge_pktshift = adap->sge.pktshift;
4206         lli.enable_fw_ofld_conn = adap->flags & FW_OFLD_CONN;
4207         lli.max_ordird_qp = adap->params.max_ordird_qp;
4208         lli.max_ird_adapter = adap->params.max_ird_adapter;
4209         lli.ulptx_memwrite_dsgl = adap->params.ulptx_memwrite_dsgl;
4210
4211         handle = ulds[uld].add(&lli);
4212         if (IS_ERR(handle)) {
4213                 dev_warn(adap->pdev_dev,
4214                          "could not attach to the %s driver, error %ld\n",
4215                          uld_str[uld], PTR_ERR(handle));
4216                 return;
4217         }
4218
4219         adap->uld_handle[uld] = handle;
4220
4221         if (!netevent_registered) {
4222                 register_netevent_notifier(&cxgb4_netevent_nb);
4223                 netevent_registered = true;
4224         }
4225
4226         if (adap->flags & FULL_INIT_DONE)
4227                 ulds[uld].state_change(handle, CXGB4_STATE_UP);
4228 }
4229
4230 static void attach_ulds(struct adapter *adap)
4231 {
4232         unsigned int i;
4233
4234         spin_lock(&adap_rcu_lock);
4235         list_add_tail_rcu(&adap->rcu_node, &adap_rcu_list);
4236         spin_unlock(&adap_rcu_lock);
4237
4238         mutex_lock(&uld_mutex);
4239         list_add_tail(&adap->list_node, &adapter_list);
4240         for (i = 0; i < CXGB4_ULD_MAX; i++)
4241                 if (ulds[i].add)
4242                         uld_attach(adap, i);
4243         mutex_unlock(&uld_mutex);
4244 }
4245
4246 static void detach_ulds(struct adapter *adap)
4247 {
4248         unsigned int i;
4249
4250         mutex_lock(&uld_mutex);
4251         list_del(&adap->list_node);
4252         for (i = 0; i < CXGB4_ULD_MAX; i++)
4253                 if (adap->uld_handle[i]) {
4254                         ulds[i].state_change(adap->uld_handle[i],
4255                                              CXGB4_STATE_DETACH);
4256                         adap->uld_handle[i] = NULL;
4257                 }
4258         if (netevent_registered && list_empty(&adapter_list)) {
4259                 unregister_netevent_notifier(&cxgb4_netevent_nb);
4260                 netevent_registered = false;
4261         }
4262         mutex_unlock(&uld_mutex);
4263
4264         spin_lock(&adap_rcu_lock);
4265         list_del_rcu(&adap->rcu_node);
4266         spin_unlock(&adap_rcu_lock);
4267 }
4268
4269 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
4270 {
4271         unsigned int i;
4272
4273         mutex_lock(&uld_mutex);
4274         for (i = 0; i < CXGB4_ULD_MAX; i++)
4275                 if (adap->uld_handle[i])
4276                         ulds[i].state_change(adap->uld_handle[i], new_state);
4277         mutex_unlock(&uld_mutex);
4278 }
4279
4280 /**
4281  *      cxgb4_register_uld - register an upper-layer driver
4282  *      @type: the ULD type
4283  *      @p: the ULD methods
4284  *
4285  *      Registers an upper-layer driver with this driver and notifies the ULD
4286  *      about any presently available devices that support its type.  Returns
4287  *      %-EBUSY if a ULD of the same type is already registered.
4288  */
4289 int cxgb4_register_uld(enum cxgb4_uld type, const struct cxgb4_uld_info *p)
4290 {
4291         int ret = 0;
4292         struct adapter *adap;
4293
4294         if (type >= CXGB4_ULD_MAX)
4295                 return -EINVAL;
4296         mutex_lock(&uld_mutex);
4297         if (ulds[type].add) {
4298                 ret = -EBUSY;
4299                 goto out;
4300         }
4301         ulds[type] = *p;
4302         list_for_each_entry(adap, &adapter_list, list_node)
4303                 uld_attach(adap, type);
4304 out:    mutex_unlock(&uld_mutex);
4305         return ret;
4306 }
4307 EXPORT_SYMBOL(cxgb4_register_uld);
4308
4309 /**
4310  *      cxgb4_unregister_uld - unregister an upper-layer driver
4311  *      @type: the ULD type
4312  *
4313  *      Unregisters an existing upper-layer driver.
4314  */
4315 int cxgb4_unregister_uld(enum cxgb4_uld type)
4316 {
4317         struct adapter *adap;
4318
4319         if (type >= CXGB4_ULD_MAX)
4320                 return -EINVAL;
4321         mutex_lock(&uld_mutex);
4322         list_for_each_entry(adap, &adapter_list, list_node)
4323                 adap->uld_handle[type] = NULL;
4324         ulds[type].add = NULL;
4325         mutex_unlock(&uld_mutex);
4326         return 0;
4327 }
4328 EXPORT_SYMBOL(cxgb4_unregister_uld);
4329
4330 /* Check if netdev on which event is occured belongs to us or not. Return
4331  * success (true) if it belongs otherwise failure (false).
4332  * Called with rcu_read_lock() held.
4333  */
4334 static bool cxgb4_netdev(const struct net_device *netdev)
4335 {
4336         struct adapter *adap;
4337         int i;
4338
4339         list_for_each_entry_rcu(adap, &adap_rcu_list, rcu_node)
4340                 for (i = 0; i < MAX_NPORTS; i++)
4341                         if (adap->port[i] == netdev)
4342                                 return true;
4343         return false;
4344 }
4345
4346 static int clip_add(struct net_device *event_dev, struct inet6_ifaddr *ifa,
4347                     unsigned long event)
4348 {
4349         int ret = NOTIFY_DONE;
4350
4351         rcu_read_lock();
4352         if (cxgb4_netdev(event_dev)) {
4353                 switch (event) {
4354                 case NETDEV_UP:
4355                         ret = cxgb4_clip_get(event_dev,
4356                                 (const struct in6_addr *)ifa->addr.s6_addr);
4357                         if (ret < 0) {
4358                                 rcu_read_unlock();
4359                                 return ret;
4360                         }
4361                         ret = NOTIFY_OK;
4362                         break;
4363                 case NETDEV_DOWN:
4364                         cxgb4_clip_release(event_dev,
4365                                 (const struct in6_addr *)ifa->addr.s6_addr);
4366                         ret = NOTIFY_OK;
4367                         break;
4368                 default:
4369                         break;
4370                 }
4371         }
4372         rcu_read_unlock();
4373         return ret;
4374 }
4375
4376 static int cxgb4_inet6addr_handler(struct notifier_block *this,
4377                 unsigned long event, void *data)
4378 {
4379         struct inet6_ifaddr *ifa = data;
4380         struct net_device *event_dev;
4381         int ret = NOTIFY_DONE;
4382         struct bonding *bond = netdev_priv(ifa->idev->dev);
4383         struct list_head *iter;
4384         struct slave *slave;
4385         struct pci_dev *first_pdev = NULL;
4386
4387         if (ifa->idev->dev->priv_flags & IFF_802_1Q_VLAN) {
4388                 event_dev = vlan_dev_real_dev(ifa->idev->dev);
4389                 ret = clip_add(event_dev, ifa, event);
4390         } else if (ifa->idev->dev->flags & IFF_MASTER) {
4391                 /* It is possible that two different adapters are bonded in one
4392                  * bond. We need to find such different adapters and add clip
4393                  * in all of them only once.
4394                  */
4395                 bond_for_each_slave(bond, slave, iter) {
4396                         if (!first_pdev) {
4397                                 ret = clip_add(slave->dev, ifa, event);
4398                                 /* If clip_add is success then only initialize
4399                                  * first_pdev since it means it is our device
4400                                  */
4401                                 if (ret == NOTIFY_OK)
4402                                         first_pdev = to_pci_dev(
4403                                                         slave->dev->dev.parent);
4404                         } else if (first_pdev !=
4405                                    to_pci_dev(slave->dev->dev.parent))
4406                                         ret = clip_add(slave->dev, ifa, event);
4407                 }
4408         } else
4409                 ret = clip_add(ifa->idev->dev, ifa, event);
4410
4411         return ret;
4412 }
4413
4414 static struct notifier_block cxgb4_inet6addr_notifier = {
4415         .notifier_call = cxgb4_inet6addr_handler
4416 };
4417
4418 /* Retrieves IPv6 addresses from a root device (bond, vlan) associated with
4419  * a physical device.
4420  * The physical device reference is needed to send the actul CLIP command.
4421  */
4422 static int update_dev_clip(struct net_device *root_dev, struct net_device *dev)
4423 {
4424         struct inet6_dev *idev = NULL;
4425         struct inet6_ifaddr *ifa;
4426         int ret = 0;
4427
4428         idev = __in6_dev_get(root_dev);
4429         if (!idev)
4430                 return ret;
4431
4432         read_lock_bh(&idev->lock);
4433         list_for_each_entry(ifa, &idev->addr_list, if_list) {
4434                 ret = cxgb4_clip_get(dev,
4435                                 (const struct in6_addr *)ifa->addr.s6_addr);
4436                 if (ret < 0)
4437                         break;
4438         }
4439         read_unlock_bh(&idev->lock);
4440
4441         return ret;
4442 }
4443
4444 static int update_root_dev_clip(struct net_device *dev)
4445 {
4446         struct net_device *root_dev = NULL;
4447         int i, ret = 0;
4448
4449         /* First populate the real net device's IPv6 addresses */
4450         ret = update_dev_clip(dev, dev);
4451         if (ret)
4452                 return ret;
4453
4454         /* Parse all bond and vlan devices layered on top of the physical dev */
4455         for (i = 0; i < VLAN_N_VID; i++) {
4456                 root_dev = __vlan_find_dev_deep_rcu(dev, htons(ETH_P_8021Q), i);
4457                 if (!root_dev)
4458                         continue;
4459
4460                 ret = update_dev_clip(root_dev, dev);
4461                 if (ret)
4462                         break;
4463         }
4464         return ret;
4465 }
4466
4467 static void update_clip(const struct adapter *adap)
4468 {
4469         int i;
4470         struct net_device *dev;
4471         int ret;
4472
4473         rcu_read_lock();
4474
4475         for (i = 0; i < MAX_NPORTS; i++) {
4476                 dev = adap->port[i];
4477                 ret = 0;
4478
4479                 if (dev)
4480                         ret = update_root_dev_clip(dev);
4481
4482                 if (ret < 0)
4483                         break;
4484         }
4485         rcu_read_unlock();
4486 }
4487
4488 /**
4489  *      cxgb_up - enable the adapter
4490  *      @adap: adapter being enabled
4491  *
4492  *      Called when the first port is enabled, this function performs the
4493  *      actions necessary to make an adapter operational, such as completing
4494  *      the initialization of HW modules, and enabling interrupts.
4495  *
4496  *      Must be called with the rtnl lock held.
4497  */
4498 static int cxgb_up(struct adapter *adap)
4499 {
4500         int err;
4501
4502         err = setup_sge_queues(adap);
4503         if (err)
4504                 goto out;
4505         err = setup_rss(adap);
4506         if (err)
4507                 goto freeq;
4508
4509         if (adap->flags & USING_MSIX) {
4510                 name_msix_vecs(adap);
4511                 err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0,
4512                                   adap->msix_info[0].desc, adap);
4513                 if (err)
4514                         goto irq_err;
4515
4516                 err = request_msix_queue_irqs(adap);
4517                 if (err) {
4518                         free_irq(adap->msix_info[0].vec, adap);
4519                         goto irq_err;
4520                 }
4521         } else {
4522                 err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
4523                                   (adap->flags & USING_MSI) ? 0 : IRQF_SHARED,
4524                                   adap->port[0]->name, adap);
4525                 if (err)
4526                         goto irq_err;
4527         }
4528         enable_rx(adap);
4529         t4_sge_start(adap);
4530         t4_intr_enable(adap);
4531         adap->flags |= FULL_INIT_DONE;
4532         notify_ulds(adap, CXGB4_STATE_UP);
4533         update_clip(adap);
4534  out:
4535         return err;
4536  irq_err:
4537         dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
4538  freeq:
4539         t4_free_sge_resources(adap);
4540         goto out;
4541 }
4542
4543 static void cxgb_down(struct adapter *adapter)
4544 {
4545         t4_intr_disable(adapter);
4546         cancel_work_sync(&adapter->tid_release_task);
4547         cancel_work_sync(&adapter->db_full_task);
4548         cancel_work_sync(&adapter->db_drop_task);
4549         adapter->tid_release_task_busy = false;
4550         adapter->tid_release_head = NULL;
4551
4552         if (adapter->flags & USING_MSIX) {
4553                 free_msix_queue_irqs(adapter);
4554                 free_irq(adapter->msix_info[0].vec, adapter);
4555         } else
4556                 free_irq(adapter->pdev->irq, adapter);
4557         quiesce_rx(adapter);
4558         t4_sge_stop(adapter);
4559         t4_free_sge_resources(adapter);
4560         adapter->flags &= ~FULL_INIT_DONE;
4561 }
4562
4563 /*
4564  * net_device operations
4565  */
4566 static int cxgb_open(struct net_device *dev)
4567 {
4568         int err;
4569         struct port_info *pi = netdev_priv(dev);
4570         struct adapter *adapter = pi->adapter;
4571
4572         netif_carrier_off(dev);
4573
4574         if (!(adapter->flags & FULL_INIT_DONE)) {
4575                 err = cxgb_up(adapter);
4576                 if (err < 0)
4577                         return err;
4578         }
4579
4580         err = link_start(dev);
4581         if (!err)
4582                 netif_tx_start_all_queues(dev);
4583         return err;
4584 }
4585
4586 static int cxgb_close(struct net_device *dev)
4587 {
4588         struct port_info *pi = netdev_priv(dev);
4589         struct adapter *adapter = pi->adapter;
4590
4591         netif_tx_stop_all_queues(dev);
4592         netif_carrier_off(dev);
4593         return t4_enable_vi(adapter, adapter->fn, pi->viid, false, false);
4594 }
4595
4596 /* Return an error number if the indicated filter isn't writable ...
4597  */
4598 static int writable_filter(struct filter_entry *f)
4599 {
4600         if (f->locked)
4601                 return -EPERM;
4602         if (f->pending)
4603                 return -EBUSY;
4604
4605         return 0;
4606 }
4607
4608 /* Delete the filter at the specified index (if valid).  The checks for all
4609  * the common problems with doing this like the filter being locked, currently
4610  * pending in another operation, etc.
4611  */
4612 static int delete_filter(struct adapter *adapter, unsigned int fidx)
4613 {
4614         struct filter_entry *f;
4615         int ret;
4616
4617         if (fidx >= adapter->tids.nftids + adapter->tids.nsftids)
4618                 return -EINVAL;
4619
4620         f = &adapter->tids.ftid_tab[fidx];
4621         ret = writable_filter(f);
4622         if (ret)
4623                 return ret;
4624         if (f->valid)
4625                 return del_filter_wr(adapter, fidx);
4626
4627         return 0;
4628 }
4629
4630 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid,
4631                 __be32 sip, __be16 sport, __be16 vlan,
4632                 unsigned int queue, unsigned char port, unsigned char mask)
4633 {
4634         int ret;
4635         struct filter_entry *f;
4636         struct adapter *adap;
4637         int i;
4638         u8 *val;
4639
4640         adap = netdev2adap(dev);
4641
4642         /* Adjust stid to correct filter index */
4643         stid -= adap->tids.sftid_base;
4644         stid += adap->tids.nftids;
4645
4646         /* Check to make sure the filter requested is writable ...
4647          */
4648         f = &adap->tids.ftid_tab[stid];
4649         ret = writable_filter(f);
4650         if (ret)
4651                 return ret;
4652
4653         /* Clear out any old resources being used by the filter before
4654          * we start constructing the new filter.
4655          */
4656         if (f->valid)
4657                 clear_filter(adap, f);
4658
4659         /* Clear out filter specifications */
4660         memset(&f->fs, 0, sizeof(struct ch_filter_specification));
4661         f->fs.val.lport = cpu_to_be16(sport);
4662         f->fs.mask.lport  = ~0;
4663         val = (u8 *)&sip;
4664         if ((val[0] | val[1] | val[2] | val[3]) != 0) {
4665                 for (i = 0; i < 4; i++) {
4666                         f->fs.val.lip[i] = val[i];
4667                         f->fs.mask.lip[i] = ~0;
4668                 }
4669                 if (adap->params.tp.vlan_pri_map & F_PORT) {
4670                         f->fs.val.iport = port;
4671                         f->fs.mask.iport = mask;
4672                 }
4673         }
4674
4675         if (adap->params.tp.vlan_pri_map & F_PROTOCOL) {
4676                 f->fs.val.proto = IPPROTO_TCP;
4677                 f->fs.mask.proto = ~0;
4678         }
4679
4680         f->fs.dirsteer = 1;
4681         f->fs.iq = queue;
4682         /* Mark filter as locked */
4683         f->locked = 1;
4684         f->fs.rpttid = 1;
4685
4686         ret = set_filter_wr(adap, stid);
4687         if (ret) {
4688                 clear_filter(adap, f);
4689                 return ret;
4690         }
4691
4692         return 0;
4693 }
4694 EXPORT_SYMBOL(cxgb4_create_server_filter);
4695
4696 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid,
4697                 unsigned int queue, bool ipv6)
4698 {
4699         int ret;
4700         struct filter_entry *f;
4701         struct adapter *adap;
4702
4703         adap = netdev2adap(dev);
4704
4705         /* Adjust stid to correct filter index */
4706         stid -= adap->tids.sftid_base;
4707         stid += adap->tids.nftids;
4708
4709         f = &adap->tids.ftid_tab[stid];
4710         /* Unlock the filter */
4711         f->locked = 0;
4712
4713         ret = delete_filter(adap, stid);
4714         if (ret)
4715                 return ret;
4716
4717         return 0;
4718 }
4719 EXPORT_SYMBOL(cxgb4_remove_server_filter);
4720
4721 static struct rtnl_link_stats64 *cxgb_get_stats(struct net_device *dev,
4722                                                 struct rtnl_link_stats64 *ns)
4723 {
4724         struct port_stats stats;
4725         struct port_info *p = netdev_priv(dev);
4726         struct adapter *adapter = p->adapter;
4727
4728         /* Block retrieving statistics during EEH error
4729          * recovery. Otherwise, the recovery might fail
4730          * and the PCI device will be removed permanently
4731          */
4732         spin_lock(&adapter->stats_lock);
4733         if (!netif_device_present(dev)) {
4734                 spin_unlock(&adapter->stats_lock);
4735                 return ns;
4736         }
4737         t4_get_port_stats(adapter, p->tx_chan, &stats);
4738         spin_unlock(&adapter->stats_lock);
4739
4740         ns->tx_bytes   = stats.tx_octets;
4741         ns->tx_packets = stats.tx_frames;
4742         ns->rx_bytes   = stats.rx_octets;
4743         ns->rx_packets = stats.rx_frames;
4744         ns->multicast  = stats.rx_mcast_frames;
4745
4746         /* detailed rx_errors */
4747         ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
4748                                stats.rx_runt;
4749         ns->rx_over_errors   = 0;
4750         ns->rx_crc_errors    = stats.rx_fcs_err;
4751         ns->rx_frame_errors  = stats.rx_symbol_err;
4752         ns->rx_fifo_errors   = stats.rx_ovflow0 + stats.rx_ovflow1 +
4753                                stats.rx_ovflow2 + stats.rx_ovflow3 +
4754                                stats.rx_trunc0 + stats.rx_trunc1 +
4755                                stats.rx_trunc2 + stats.rx_trunc3;
4756         ns->rx_missed_errors = 0;
4757
4758         /* detailed tx_errors */
4759         ns->tx_aborted_errors   = 0;
4760         ns->tx_carrier_errors   = 0;
4761         ns->tx_fifo_errors      = 0;
4762         ns->tx_heartbeat_errors = 0;
4763         ns->tx_window_errors    = 0;
4764
4765         ns->tx_errors = stats.tx_error_frames;
4766         ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
4767                 ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
4768         return ns;
4769 }
4770
4771 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
4772 {
4773         unsigned int mbox;
4774         int ret = 0, prtad, devad;
4775         struct port_info *pi = netdev_priv(dev);
4776         struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;
4777
4778         switch (cmd) {
4779         case SIOCGMIIPHY:
4780                 if (pi->mdio_addr < 0)
4781                         return -EOPNOTSUPP;
4782                 data->phy_id = pi->mdio_addr;
4783                 break;
4784         case SIOCGMIIREG:
4785         case SIOCSMIIREG:
4786                 if (mdio_phy_id_is_c45(data->phy_id)) {
4787                         prtad = mdio_phy_id_prtad(data->phy_id);
4788                         devad = mdio_phy_id_devad(data->phy_id);
4789                 } else if (data->phy_id < 32) {
4790                         prtad = data->phy_id;
4791                         devad = 0;
4792                         data->reg_num &= 0x1f;
4793                 } else
4794                         return -EINVAL;
4795
4796                 mbox = pi->adapter->fn;
4797                 if (cmd == SIOCGMIIREG)
4798                         ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
4799                                          data->reg_num, &data->val_out);
4800                 else
4801                         ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
4802                                          data->reg_num, data->val_in);
4803                 break;
4804         default:
4805                 return -EOPNOTSUPP;
4806         }
4807         return ret;
4808 }
4809
4810 static void cxgb_set_rxmode(struct net_device *dev)
4811 {
4812         /* unfortunately we can't return errors to the stack */
4813         set_rxmode(dev, -1, false);
4814 }
4815
4816 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
4817 {
4818         int ret;
4819         struct port_info *pi = netdev_priv(dev);
4820
4821         if (new_mtu < 81 || new_mtu > MAX_MTU)         /* accommodate SACK */
4822                 return -EINVAL;
4823         ret = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, new_mtu, -1,
4824                             -1, -1, -1, true);
4825         if (!ret)
4826                 dev->mtu = new_mtu;
4827         return ret;
4828 }
4829
4830 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
4831 {
4832         int ret;
4833         struct sockaddr *addr = p;
4834         struct port_info *pi = netdev_priv(dev);
4835
4836         if (!is_valid_ether_addr(addr->sa_data))
4837                 return -EADDRNOTAVAIL;
4838
4839         ret = t4_change_mac(pi->adapter, pi->adapter->fn, pi->viid,
4840                             pi->xact_addr_filt, addr->sa_data, true, true);
4841         if (ret < 0)
4842                 return ret;
4843
4844         memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
4845         pi->xact_addr_filt = ret;
4846         return 0;
4847 }
4848
4849 #ifdef CONFIG_NET_POLL_CONTROLLER
4850 static void cxgb_netpoll(struct net_device *dev)
4851 {
4852         struct port_info *pi = netdev_priv(dev);
4853         struct adapter *adap = pi->adapter;
4854
4855         if (adap->flags & USING_MSIX) {
4856                 int i;
4857                 struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];
4858
4859                 for (i = pi->nqsets; i; i--, rx++)
4860                         t4_sge_intr_msix(0, &rx->rspq);
4861         } else
4862                 t4_intr_handler(adap)(0, adap);
4863 }
4864 #endif
4865
4866 static const struct net_device_ops cxgb4_netdev_ops = {
4867         .ndo_open             = cxgb_open,
4868         .ndo_stop             = cxgb_close,
4869         .ndo_start_xmit       = t4_eth_xmit,
4870         .ndo_select_queue     = cxgb_select_queue,
4871         .ndo_get_stats64      = cxgb_get_stats,
4872         .ndo_set_rx_mode      = cxgb_set_rxmode,
4873         .ndo_set_mac_address  = cxgb_set_mac_addr,
4874         .ndo_set_features     = cxgb_set_features,
4875         .ndo_validate_addr    = eth_validate_addr,
4876         .ndo_do_ioctl         = cxgb_ioctl,
4877         .ndo_change_mtu       = cxgb_change_mtu,
4878 #ifdef CONFIG_NET_POLL_CONTROLLER
4879         .ndo_poll_controller  = cxgb_netpoll,
4880 #endif
4881 };
4882
4883 void t4_fatal_err(struct adapter *adap)
4884 {
4885         t4_set_reg_field(adap, SGE_CONTROL, GLOBALENABLE, 0);
4886         t4_intr_disable(adap);
4887         dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
4888 }
4889
4890 /* Return the specified PCI-E Configuration Space register from our Physical
4891  * Function.  We try first via a Firmware LDST Command since we prefer to let
4892  * the firmware own all of these registers, but if that fails we go for it
4893  * directly ourselves.
4894  */
4895 static u32 t4_read_pcie_cfg4(struct adapter *adap, int reg)
4896 {
4897         struct fw_ldst_cmd ldst_cmd;
4898         u32 val;
4899         int ret;
4900
4901         /* Construct and send the Firmware LDST Command to retrieve the
4902          * specified PCI-E Configuration Space register.
4903          */
4904         memset(&ldst_cmd, 0, sizeof(ldst_cmd));
4905         ldst_cmd.op_to_addrspace =
4906                 htonl(FW_CMD_OP(FW_LDST_CMD) |
4907                       FW_CMD_REQUEST |
4908                       FW_CMD_READ |
4909                       FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FUNC_PCIE));
4910         ldst_cmd.cycles_to_len16 = htonl(FW_LEN16(ldst_cmd));
4911         ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS(1);
4912         ldst_cmd.u.pcie.ctrl_to_fn =
4913                 (FW_LDST_CMD_LC | FW_LDST_CMD_FN(adap->fn));
4914         ldst_cmd.u.pcie.r = reg;
4915         ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
4916                          &ldst_cmd);
4917
4918         /* If the LDST Command suucceeded, exctract the returned register
4919          * value.  Otherwise read it directly ourself.
4920          */
4921         if (ret == 0)
4922                 val = ntohl(ldst_cmd.u.pcie.data[0]);
4923         else
4924                 t4_hw_pci_read_cfg4(adap, reg, &val);
4925
4926         return val;
4927 }
4928
4929 static void setup_memwin(struct adapter *adap)
4930 {
4931         u32 mem_win0_base, mem_win1_base, mem_win2_base, mem_win2_aperture;
4932
4933         if (is_t4(adap->params.chip)) {
4934                 u32 bar0;
4935
4936                 /* Truncation intentional: we only read the bottom 32-bits of
4937                  * the 64-bit BAR0/BAR1 ...  We use the hardware backdoor
4938                  * mechanism to read BAR0 instead of using
4939                  * pci_resource_start() because we could be operating from
4940                  * within a Virtual Machine which is trapping our accesses to
4941                  * our Configuration Space and we need to set up the PCI-E
4942                  * Memory Window decoders with the actual addresses which will
4943                  * be coming across the PCI-E link.
4944                  */
4945                 bar0 = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_0);
4946                 bar0 &= PCI_BASE_ADDRESS_MEM_MASK;
4947                 adap->t4_bar0 = bar0;
4948
4949                 mem_win0_base = bar0 + MEMWIN0_BASE;
4950                 mem_win1_base = bar0 + MEMWIN1_BASE;
4951                 mem_win2_base = bar0 + MEMWIN2_BASE;
4952                 mem_win2_aperture = MEMWIN2_APERTURE;
4953         } else {
4954                 /* For T5, only relative offset inside the PCIe BAR is passed */
4955                 mem_win0_base = MEMWIN0_BASE;
4956                 mem_win1_base = MEMWIN1_BASE;
4957                 mem_win2_base = MEMWIN2_BASE_T5;
4958                 mem_win2_aperture = MEMWIN2_APERTURE_T5;
4959         }
4960         t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 0),
4961                      mem_win0_base | BIR(0) |
4962                      WINDOW(ilog2(MEMWIN0_APERTURE) - 10));
4963         t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 1),
4964                      mem_win1_base | BIR(0) |
4965                      WINDOW(ilog2(MEMWIN1_APERTURE) - 10));
4966         t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 2),
4967                      mem_win2_base | BIR(0) |
4968                      WINDOW(ilog2(mem_win2_aperture) - 10));
4969         t4_read_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 2));
4970 }
4971
4972 static void setup_memwin_rdma(struct adapter *adap)
4973 {
4974         if (adap->vres.ocq.size) {
4975                 u32 start;
4976                 unsigned int sz_kb;
4977
4978                 start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2);
4979                 start &= PCI_BASE_ADDRESS_MEM_MASK;
4980                 start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
4981                 sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
4982                 t4_write_reg(adap,
4983                              PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 3),
4984                              start | BIR(1) | WINDOW(ilog2(sz_kb)));
4985                 t4_write_reg(adap,
4986                              PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET, 3),
4987                              adap->vres.ocq.start);
4988                 t4_read_reg(adap,
4989                             PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET, 3));
4990         }
4991 }
4992
4993 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
4994 {
4995         u32 v;
4996         int ret;
4997
4998         /* get device capabilities */
4999         memset(c, 0, sizeof(*c));
5000         c->op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5001                                FW_CMD_REQUEST | FW_CMD_READ);
5002         c->cfvalid_to_len16 = htonl(FW_LEN16(*c));
5003         ret = t4_wr_mbox(adap, adap->fn, c, sizeof(*c), c);
5004         if (ret < 0)
5005                 return ret;
5006
5007         /* select capabilities we'll be using */
5008         if (c->niccaps & htons(FW_CAPS_CONFIG_NIC_VM)) {
5009                 if (!vf_acls)
5010                         c->niccaps ^= htons(FW_CAPS_CONFIG_NIC_VM);
5011                 else
5012                         c->niccaps = htons(FW_CAPS_CONFIG_NIC_VM);
5013         } else if (vf_acls) {
5014                 dev_err(adap->pdev_dev, "virtualization ACLs not supported");
5015                 return ret;
5016         }
5017         c->op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5018                                FW_CMD_REQUEST | FW_CMD_WRITE);
5019         ret = t4_wr_mbox(adap, adap->fn, c, sizeof(*c), NULL);
5020         if (ret < 0)
5021                 return ret;
5022
5023         ret = t4_config_glbl_rss(adap, adap->fn,
5024                                  FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
5025                                  FW_RSS_GLB_CONFIG_CMD_TNLMAPEN |
5026                                  FW_RSS_GLB_CONFIG_CMD_TNLALLLKP);
5027         if (ret < 0)
5028                 return ret;
5029
5030         ret = t4_cfg_pfvf(adap, adap->fn, adap->fn, 0, MAX_EGRQ, 64, MAX_INGQ,
5031                           0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF, FW_CMD_CAP_PF);
5032         if (ret < 0)
5033                 return ret;
5034
5035         t4_sge_init(adap);
5036
5037         /* tweak some settings */
5038         t4_write_reg(adap, TP_SHIFT_CNT, 0x64f8849);
5039         t4_write_reg(adap, ULP_RX_TDDP_PSZ, HPZ0(PAGE_SHIFT - 12));
5040         t4_write_reg(adap, TP_PIO_ADDR, TP_INGRESS_CONFIG);
5041         v = t4_read_reg(adap, TP_PIO_DATA);
5042         t4_write_reg(adap, TP_PIO_DATA, v & ~CSUM_HAS_PSEUDO_HDR);
5043
5044         /* first 4 Tx modulation queues point to consecutive Tx channels */
5045         adap->params.tp.tx_modq_map = 0xE4;
5046         t4_write_reg(adap, A_TP_TX_MOD_QUEUE_REQ_MAP,
5047                      V_TX_MOD_QUEUE_REQ_MAP(adap->params.tp.tx_modq_map));
5048
5049         /* associate each Tx modulation queue with consecutive Tx channels */
5050         v = 0x84218421;
5051         t4_write_indirect(adap, TP_PIO_ADDR, TP_PIO_DATA,
5052                           &v, 1, A_TP_TX_SCHED_HDR);
5053         t4_write_indirect(adap, TP_PIO_ADDR, TP_PIO_DATA,
5054                           &v, 1, A_TP_TX_SCHED_FIFO);
5055         t4_write_indirect(adap, TP_PIO_ADDR, TP_PIO_DATA,
5056                           &v, 1, A_TP_TX_SCHED_PCMD);
5057
5058 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */
5059         if (is_offload(adap)) {
5060                 t4_write_reg(adap, A_TP_TX_MOD_QUEUE_WEIGHT0,
5061                              V_TX_MODQ_WEIGHT0(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
5062                              V_TX_MODQ_WEIGHT1(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
5063                              V_TX_MODQ_WEIGHT2(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
5064                              V_TX_MODQ_WEIGHT3(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
5065                 t4_write_reg(adap, A_TP_TX_MOD_CHANNEL_WEIGHT,
5066                              V_TX_MODQ_WEIGHT0(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
5067                              V_TX_MODQ_WEIGHT1(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
5068                              V_TX_MODQ_WEIGHT2(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
5069                              V_TX_MODQ_WEIGHT3(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
5070         }
5071
5072         /* get basic stuff going */
5073         return t4_early_init(adap, adap->fn);
5074 }
5075
5076 /*
5077  * Max # of ATIDs.  The absolute HW max is 16K but we keep it lower.
5078  */
5079 #define MAX_ATIDS 8192U
5080
5081 /*
5082  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
5083  *
5084  * If the firmware we're dealing with has Configuration File support, then
5085  * we use that to perform all configuration
5086  */
5087
5088 /*
5089  * Tweak configuration based on module parameters, etc.  Most of these have
5090  * defaults assigned to them by Firmware Configuration Files (if we're using
5091  * them) but need to be explicitly set if we're using hard-coded
5092  * initialization.  But even in the case of using Firmware Configuration
5093  * Files, we'd like to expose the ability to change these via module
5094  * parameters so these are essentially common tweaks/settings for
5095  * Configuration Files and hard-coded initialization ...
5096  */
5097 static int adap_init0_tweaks(struct adapter *adapter)
5098 {
5099         /*
5100          * Fix up various Host-Dependent Parameters like Page Size, Cache
5101          * Line Size, etc.  The firmware default is for a 4KB Page Size and
5102          * 64B Cache Line Size ...
5103          */
5104         t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES);
5105
5106         /*
5107          * Process module parameters which affect early initialization.
5108          */
5109         if (rx_dma_offset != 2 && rx_dma_offset != 0) {
5110                 dev_err(&adapter->pdev->dev,
5111                         "Ignoring illegal rx_dma_offset=%d, using 2\n",
5112                         rx_dma_offset);
5113                 rx_dma_offset = 2;
5114         }
5115         t4_set_reg_field(adapter, SGE_CONTROL,
5116                          PKTSHIFT_MASK,
5117                          PKTSHIFT(rx_dma_offset));
5118
5119         /*
5120          * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
5121          * adds the pseudo header itself.
5122          */
5123         t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG,
5124                                CSUM_HAS_PSEUDO_HDR, 0);
5125
5126         return 0;
5127 }
5128
5129 /*
5130  * Attempt to initialize the adapter via a Firmware Configuration File.
5131  */
5132 static int adap_init0_config(struct adapter *adapter, int reset)
5133 {
5134         struct fw_caps_config_cmd caps_cmd;
5135         const struct firmware *cf;
5136         unsigned long mtype = 0, maddr = 0;
5137         u32 finiver, finicsum, cfcsum;
5138         int ret;
5139         int config_issued = 0;
5140         char *fw_config_file, fw_config_file_path[256];
5141         char *config_name = NULL;
5142
5143         /*
5144          * Reset device if necessary.
5145          */
5146         if (reset) {
5147                 ret = t4_fw_reset(adapter, adapter->mbox,
5148                                   PIORSTMODE | PIORST);
5149                 if (ret < 0)
5150                         goto bye;
5151         }
5152
5153         /*
5154          * If we have a T4 configuration file under /lib/firmware/cxgb4/,
5155          * then use that.  Otherwise, use the configuration file stored
5156          * in the adapter flash ...
5157          */
5158         switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
5159         case CHELSIO_T4:
5160                 fw_config_file = FW4_CFNAME;
5161                 break;
5162         case CHELSIO_T5:
5163                 fw_config_file = FW5_CFNAME;
5164                 break;
5165         default:
5166                 dev_err(adapter->pdev_dev, "Device %d is not supported\n",
5167                        adapter->pdev->device);
5168                 ret = -EINVAL;
5169                 goto bye;
5170         }
5171
5172         ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev);
5173         if (ret < 0) {
5174                 config_name = "On FLASH";
5175                 mtype = FW_MEMTYPE_CF_FLASH;
5176                 maddr = t4_flash_cfg_addr(adapter);
5177         } else {
5178                 u32 params[7], val[7];
5179
5180                 sprintf(fw_config_file_path,
5181                         "/lib/firmware/%s", fw_config_file);
5182                 config_name = fw_config_file_path;
5183
5184                 if (cf->size >= FLASH_CFG_MAX_SIZE)
5185                         ret = -ENOMEM;
5186                 else {
5187                         params[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
5188                              FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_CF));
5189                         ret = t4_query_params(adapter, adapter->mbox,
5190                                               adapter->fn, 0, 1, params, val);
5191                         if (ret == 0) {
5192                                 /*
5193                                  * For t4_memory_rw() below addresses and
5194                                  * sizes have to be in terms of multiples of 4
5195                                  * bytes.  So, if the Configuration File isn't
5196                                  * a multiple of 4 bytes in length we'll have
5197                                  * to write that out separately since we can't
5198                                  * guarantee that the bytes following the
5199                                  * residual byte in the buffer returned by
5200                                  * request_firmware() are zeroed out ...
5201                                  */
5202                                 size_t resid = cf->size & 0x3;
5203                                 size_t size = cf->size & ~0x3;
5204                                 __be32 *data = (__be32 *)cf->data;
5205
5206                                 mtype = FW_PARAMS_PARAM_Y_GET(val[0]);
5207                                 maddr = FW_PARAMS_PARAM_Z_GET(val[0]) << 16;
5208
5209                                 spin_lock(&adapter->win0_lock);
5210                                 ret = t4_memory_rw(adapter, 0, mtype, maddr,
5211                                                    size, data, T4_MEMORY_WRITE);
5212                                 if (ret == 0 && resid != 0) {
5213                                         union {
5214                                                 __be32 word;
5215                                                 char buf[4];
5216                                         } last;
5217                                         int i;
5218
5219                                         last.word = data[size >> 2];
5220                                         for (i = resid; i < 4; i++)
5221                                                 last.buf[i] = 0;
5222                                         ret = t4_memory_rw(adapter, 0, mtype,
5223                                                            maddr + size,
5224                                                            4, &last.word,
5225                                                            T4_MEMORY_WRITE);
5226                                 }
5227                                 spin_unlock(&adapter->win0_lock);
5228                         }
5229                 }
5230
5231                 release_firmware(cf);
5232                 if (ret)
5233                         goto bye;
5234         }
5235
5236         /*
5237          * Issue a Capability Configuration command to the firmware to get it
5238          * to parse the Configuration File.  We don't use t4_fw_config_file()
5239          * because we want the ability to modify various features after we've
5240          * processed the configuration file ...
5241          */
5242         memset(&caps_cmd, 0, sizeof(caps_cmd));
5243         caps_cmd.op_to_write =
5244                 htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5245                       FW_CMD_REQUEST |
5246                       FW_CMD_READ);
5247         caps_cmd.cfvalid_to_len16 =
5248                 htonl(FW_CAPS_CONFIG_CMD_CFVALID |
5249                       FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) |
5250                       FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(maddr >> 16) |
5251                       FW_LEN16(caps_cmd));
5252         ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
5253                          &caps_cmd);
5254
5255         /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
5256          * Configuration File in FLASH), our last gasp effort is to use the
5257          * Firmware Configuration File which is embedded in the firmware.  A
5258          * very few early versions of the firmware didn't have one embedded
5259          * but we can ignore those.
5260          */
5261         if (ret == -ENOENT) {
5262                 memset(&caps_cmd, 0, sizeof(caps_cmd));
5263                 caps_cmd.op_to_write =
5264                         htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5265                                         FW_CMD_REQUEST |
5266                                         FW_CMD_READ);
5267                 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
5268                 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
5269                                 sizeof(caps_cmd), &caps_cmd);
5270                 config_name = "Firmware Default";
5271         }
5272
5273         config_issued = 1;
5274         if (ret < 0)
5275                 goto bye;
5276
5277         finiver = ntohl(caps_cmd.finiver);
5278         finicsum = ntohl(caps_cmd.finicsum);
5279         cfcsum = ntohl(caps_cmd.cfcsum);
5280         if (finicsum != cfcsum)
5281                 dev_warn(adapter->pdev_dev, "Configuration File checksum "\
5282                          "mismatch: [fini] csum=%#x, computed csum=%#x\n",
5283                          finicsum, cfcsum);
5284
5285         /*
5286          * And now tell the firmware to use the configuration we just loaded.
5287          */
5288         caps_cmd.op_to_write =
5289                 htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5290                       FW_CMD_REQUEST |
5291                       FW_CMD_WRITE);
5292         caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
5293         ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
5294                          NULL);
5295         if (ret < 0)
5296                 goto bye;
5297
5298         /*
5299          * Tweak configuration based on system architecture, module
5300          * parameters, etc.
5301          */
5302         ret = adap_init0_tweaks(adapter);
5303         if (ret < 0)
5304                 goto bye;
5305
5306         /*
5307          * And finally tell the firmware to initialize itself using the
5308          * parameters from the Configuration File.
5309          */
5310         ret = t4_fw_initialize(adapter, adapter->mbox);
5311         if (ret < 0)
5312                 goto bye;
5313
5314         /*
5315          * Return successfully and note that we're operating with parameters
5316          * not supplied by the driver, rather than from hard-wired
5317          * initialization constants burried in the driver.
5318          */
5319         adapter->flags |= USING_SOFT_PARAMS;
5320         dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\
5321                  "Configuration File \"%s\", version %#x, computed checksum %#x\n",
5322                  config_name, finiver, cfcsum);
5323         return 0;
5324
5325         /*
5326          * Something bad happened.  Return the error ...  (If the "error"
5327          * is that there's no Configuration File on the adapter we don't
5328          * want to issue a warning since this is fairly common.)
5329          */
5330 bye:
5331         if (config_issued && ret != -ENOENT)
5332                 dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n",
5333                          config_name, -ret);
5334         return ret;
5335 }
5336
5337 /*
5338  * Attempt to initialize the adapter via hard-coded, driver supplied
5339  * parameters ...
5340  */
5341 static int adap_init0_no_config(struct adapter *adapter, int reset)
5342 {
5343         struct sge *s = &adapter->sge;
5344         struct fw_caps_config_cmd caps_cmd;
5345         u32 v;
5346         int i, ret;
5347
5348         /*
5349          * Reset device if necessary
5350          */
5351         if (reset) {
5352                 ret = t4_fw_reset(adapter, adapter->mbox,
5353                                   PIORSTMODE | PIORST);
5354                 if (ret < 0)
5355                         goto bye;
5356         }
5357
5358         /*
5359          * Get device capabilities and select which we'll be using.
5360          */
5361         memset(&caps_cmd, 0, sizeof(caps_cmd));
5362         caps_cmd.op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5363                                      FW_CMD_REQUEST | FW_CMD_READ);
5364         caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
5365         ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
5366                          &caps_cmd);
5367         if (ret < 0)
5368                 goto bye;
5369
5370         if (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_VM)) {
5371                 if (!vf_acls)
5372                         caps_cmd.niccaps ^= htons(FW_CAPS_CONFIG_NIC_VM);
5373                 else
5374                         caps_cmd.niccaps = htons(FW_CAPS_CONFIG_NIC_VM);
5375         } else if (vf_acls) {
5376                 dev_err(adapter->pdev_dev, "virtualization ACLs not supported");
5377                 goto bye;
5378         }
5379         caps_cmd.op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5380                               FW_CMD_REQUEST | FW_CMD_WRITE);
5381         ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
5382                          NULL);
5383         if (ret < 0)
5384                 goto bye;
5385
5386         /*
5387          * Tweak configuration based on system architecture, module
5388          * parameters, etc.
5389          */
5390         ret = adap_init0_tweaks(adapter);
5391         if (ret < 0)
5392                 goto bye;
5393
5394         /*
5395          * Select RSS Global Mode we want to use.  We use "Basic Virtual"
5396          * mode which maps each Virtual Interface to its own section of
5397          * the RSS Table and we turn on all map and hash enables ...
5398          */
5399         adapter->flags |= RSS_TNLALLLOOKUP;
5400         ret = t4_config_glbl_rss(adapter, adapter->mbox,
5401                                  FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
5402                                  FW_RSS_GLB_CONFIG_CMD_TNLMAPEN |
5403                                  FW_RSS_GLB_CONFIG_CMD_HASHTOEPLITZ |
5404                                  ((adapter->flags & RSS_TNLALLLOOKUP) ?
5405                                         FW_RSS_GLB_CONFIG_CMD_TNLALLLKP : 0));
5406         if (ret < 0)
5407                 goto bye;
5408
5409         /*
5410          * Set up our own fundamental resource provisioning ...
5411          */
5412         ret = t4_cfg_pfvf(adapter, adapter->mbox, adapter->fn, 0,
5413                           PFRES_NEQ, PFRES_NETHCTRL,
5414                           PFRES_NIQFLINT, PFRES_NIQ,
5415                           PFRES_TC, PFRES_NVI,
5416                           FW_PFVF_CMD_CMASK_MASK,
5417                           pfvfres_pmask(adapter, adapter->fn, 0),
5418                           PFRES_NEXACTF,
5419                           PFRES_R_CAPS, PFRES_WX_CAPS);
5420         if (ret < 0)
5421                 goto bye;
5422
5423         /*
5424          * Perform low level SGE initialization.  We need to do this before we
5425          * send the firmware the INITIALIZE command because that will cause
5426          * any other PF Drivers which are waiting for the Master
5427          * Initialization to proceed forward.
5428          */
5429         for (i = 0; i < SGE_NTIMERS - 1; i++)
5430                 s->timer_val[i] = min(intr_holdoff[i], MAX_SGE_TIMERVAL);
5431         s->timer_val[SGE_NTIMERS - 1] = MAX_SGE_TIMERVAL;
5432         s->counter_val[0] = 1;
5433         for (i = 1; i < SGE_NCOUNTERS; i++)
5434                 s->counter_val[i] = min(intr_cnt[i - 1],
5435                                         THRESHOLD_0_GET(THRESHOLD_0_MASK));
5436         t4_sge_init(adapter);
5437
5438 #ifdef CONFIG_PCI_IOV
5439         /*
5440          * Provision resource limits for Virtual Functions.  We currently
5441          * grant them all the same static resource limits except for the Port
5442          * Access Rights Mask which we're assigning based on the PF.  All of
5443          * the static provisioning stuff for both the PF and VF really needs
5444          * to be managed in a persistent manner for each device which the
5445          * firmware controls.
5446          */
5447         {
5448                 int pf, vf;
5449
5450                 for (pf = 0; pf < ARRAY_SIZE(num_vf); pf++) {
5451                         if (num_vf[pf] <= 0)
5452                                 continue;
5453
5454                         /* VF numbering starts at 1! */
5455                         for (vf = 1; vf <= num_vf[pf]; vf++) {
5456                                 ret = t4_cfg_pfvf(adapter, adapter->mbox,
5457                                                   pf, vf,
5458                                                   VFRES_NEQ, VFRES_NETHCTRL,
5459                                                   VFRES_NIQFLINT, VFRES_NIQ,
5460                                                   VFRES_TC, VFRES_NVI,
5461                                                   FW_PFVF_CMD_CMASK_MASK,
5462                                                   pfvfres_pmask(
5463                                                   adapter, pf, vf),
5464                                                   VFRES_NEXACTF,
5465                                                   VFRES_R_CAPS, VFRES_WX_CAPS);
5466                                 if (ret < 0)
5467                                         dev_warn(adapter->pdev_dev,
5468                                                  "failed to "\
5469                                                  "provision pf/vf=%d/%d; "
5470                                                  "err=%d\n", pf, vf, ret);
5471                         }
5472                 }
5473         }
5474 #endif
5475
5476         /*
5477          * Set up the default filter mode.  Later we'll want to implement this
5478          * via a firmware command, etc. ...  This needs to be done before the
5479          * firmare initialization command ...  If the selected set of fields
5480          * isn't equal to the default value, we'll need to make sure that the
5481          * field selections will fit in the 36-bit budget.
5482          */
5483         if (tp_vlan_pri_map != TP_VLAN_PRI_MAP_DEFAULT) {
5484                 int j, bits = 0;
5485
5486                 for (j = TP_VLAN_PRI_MAP_FIRST; j <= TP_VLAN_PRI_MAP_LAST; j++)
5487                         switch (tp_vlan_pri_map & (1 << j)) {
5488                         case 0:
5489                                 /* compressed filter field not enabled */
5490                                 break;
5491                         case FCOE_MASK:
5492                                 bits +=  1;
5493                                 break;
5494                         case PORT_MASK:
5495                                 bits +=  3;
5496                                 break;
5497                         case VNIC_ID_MASK:
5498                                 bits += 17;
5499                                 break;
5500                         case VLAN_MASK:
5501                                 bits += 17;
5502                                 break;
5503                         case TOS_MASK:
5504                                 bits +=  8;
5505                                 break;
5506                         case PROTOCOL_MASK:
5507                                 bits +=  8;
5508                                 break;
5509                         case ETHERTYPE_MASK:
5510                                 bits += 16;
5511                                 break;
5512                         case MACMATCH_MASK:
5513                                 bits +=  9;
5514                                 break;
5515                         case MPSHITTYPE_MASK:
5516                                 bits +=  3;
5517                                 break;
5518                         case FRAGMENTATION_MASK:
5519                                 bits +=  1;
5520                                 break;
5521                         }
5522
5523                 if (bits > 36) {
5524                         dev_err(adapter->pdev_dev,
5525                                 "tp_vlan_pri_map=%#x needs %d bits > 36;"\
5526                                 " using %#x\n", tp_vlan_pri_map, bits,
5527                                 TP_VLAN_PRI_MAP_DEFAULT);
5528                         tp_vlan_pri_map = TP_VLAN_PRI_MAP_DEFAULT;
5529                 }
5530         }
5531         v = tp_vlan_pri_map;
5532         t4_write_indirect(adapter, TP_PIO_ADDR, TP_PIO_DATA,
5533                           &v, 1, TP_VLAN_PRI_MAP);
5534
5535         /*
5536          * We need Five Tuple Lookup mode to be set in TP_GLOBAL_CONFIG order
5537          * to support any of the compressed filter fields above.  Newer
5538          * versions of the firmware do this automatically but it doesn't hurt
5539          * to set it here.  Meanwhile, we do _not_ need to set Lookup Every
5540          * Packet in TP_INGRESS_CONFIG to support matching non-TCP packets
5541          * since the firmware automatically turns this on and off when we have
5542          * a non-zero number of filters active (since it does have a
5543          * performance impact).
5544          */
5545         if (tp_vlan_pri_map)
5546                 t4_set_reg_field(adapter, TP_GLOBAL_CONFIG,
5547                                  FIVETUPLELOOKUP_MASK,
5548                                  FIVETUPLELOOKUP_MASK);
5549
5550         /*
5551          * Tweak some settings.
5552          */
5553         t4_write_reg(adapter, TP_SHIFT_CNT, SYNSHIFTMAX(6) |
5554                      RXTSHIFTMAXR1(4) | RXTSHIFTMAXR2(15) |
5555                      PERSHIFTBACKOFFMAX(8) | PERSHIFTMAX(8) |
5556                      KEEPALIVEMAXR1(4) | KEEPALIVEMAXR2(9));
5557
5558         /*
5559          * Get basic stuff going by issuing the Firmware Initialize command.
5560          * Note that this _must_ be after all PFVF commands ...
5561          */
5562         ret = t4_fw_initialize(adapter, adapter->mbox);
5563         if (ret < 0)
5564                 goto bye;
5565
5566         /*
5567          * Return successfully!
5568          */
5569         dev_info(adapter->pdev_dev, "Successfully configured using built-in "\
5570                  "driver parameters\n");
5571         return 0;
5572
5573         /*
5574          * Something bad happened.  Return the error ...
5575          */
5576 bye:
5577         return ret;
5578 }
5579
5580 static struct fw_info fw_info_array[] = {
5581         {
5582                 .chip = CHELSIO_T4,
5583                 .fs_name = FW4_CFNAME,
5584                 .fw_mod_name = FW4_FNAME,
5585                 .fw_hdr = {
5586                         .chip = FW_HDR_CHIP_T4,
5587                         .fw_ver = __cpu_to_be32(FW_VERSION(T4)),
5588                         .intfver_nic = FW_INTFVER(T4, NIC),
5589                         .intfver_vnic = FW_INTFVER(T4, VNIC),
5590                         .intfver_ri = FW_INTFVER(T4, RI),
5591                         .intfver_iscsi = FW_INTFVER(T4, ISCSI),
5592                         .intfver_fcoe = FW_INTFVER(T4, FCOE),
5593                 },
5594         }, {
5595                 .chip = CHELSIO_T5,
5596                 .fs_name = FW5_CFNAME,
5597                 .fw_mod_name = FW5_FNAME,
5598                 .fw_hdr = {
5599                         .chip = FW_HDR_CHIP_T5,
5600                         .fw_ver = __cpu_to_be32(FW_VERSION(T5)),
5601                         .intfver_nic = FW_INTFVER(T5, NIC),
5602                         .intfver_vnic = FW_INTFVER(T5, VNIC),
5603                         .intfver_ri = FW_INTFVER(T5, RI),
5604                         .intfver_iscsi = FW_INTFVER(T5, ISCSI),
5605                         .intfver_fcoe = FW_INTFVER(T5, FCOE),
5606                 },
5607         }
5608 };
5609
5610 static struct fw_info *find_fw_info(int chip)
5611 {
5612         int i;
5613
5614         for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
5615                 if (fw_info_array[i].chip == chip)
5616                         return &fw_info_array[i];
5617         }
5618         return NULL;
5619 }
5620
5621 /*
5622  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
5623  */
5624 static int adap_init0(struct adapter *adap)
5625 {
5626         int ret;
5627         u32 v, port_vec;
5628         enum dev_state state;
5629         u32 params[7], val[7];
5630         struct fw_caps_config_cmd caps_cmd;
5631         int reset = 1;
5632
5633         /*
5634          * Contact FW, advertising Master capability (and potentially forcing
5635          * ourselves as the Master PF if our module parameter force_init is
5636          * set).
5637          */
5638         ret = t4_fw_hello(adap, adap->mbox, adap->fn,
5639                           force_init ? MASTER_MUST : MASTER_MAY,
5640                           &state);
5641         if (ret < 0) {
5642                 dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
5643                         ret);
5644                 return ret;
5645         }
5646         if (ret == adap->mbox)
5647                 adap->flags |= MASTER_PF;
5648         if (force_init && state == DEV_STATE_INIT)
5649                 state = DEV_STATE_UNINIT;
5650
5651         /*
5652          * If we're the Master PF Driver and the device is uninitialized,
5653          * then let's consider upgrading the firmware ...  (We always want
5654          * to check the firmware version number in order to A. get it for
5655          * later reporting and B. to warn if the currently loaded firmware
5656          * is excessively mismatched relative to the driver.)
5657          */
5658         t4_get_fw_version(adap, &adap->params.fw_vers);
5659         t4_get_tp_version(adap, &adap->params.tp_vers);
5660         if ((adap->flags & MASTER_PF) && state != DEV_STATE_INIT) {
5661                 struct fw_info *fw_info;
5662                 struct fw_hdr *card_fw;
5663                 const struct firmware *fw;
5664                 const u8 *fw_data = NULL;
5665                 unsigned int fw_size = 0;
5666
5667                 /* This is the firmware whose headers the driver was compiled
5668                  * against
5669                  */
5670                 fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip));
5671                 if (fw_info == NULL) {
5672                         dev_err(adap->pdev_dev,
5673                                 "unable to get firmware info for chip %d.\n",
5674                                 CHELSIO_CHIP_VERSION(adap->params.chip));
5675                         return -EINVAL;
5676                 }
5677
5678                 /* allocate memory to read the header of the firmware on the
5679                  * card
5680                  */
5681                 card_fw = t4_alloc_mem(sizeof(*card_fw));
5682
5683                 /* Get FW from from /lib/firmware/ */
5684                 ret = request_firmware(&fw, fw_info->fw_mod_name,
5685                                        adap->pdev_dev);
5686                 if (ret < 0) {
5687                         dev_err(adap->pdev_dev,
5688                                 "unable to load firmware image %s, error %d\n",
5689                                 fw_info->fw_mod_name, ret);
5690                 } else {
5691                         fw_data = fw->data;
5692                         fw_size = fw->size;
5693                 }
5694
5695                 /* upgrade FW logic */
5696                 ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw,
5697                                  state, &reset);
5698
5699                 /* Cleaning up */
5700                 if (fw != NULL)
5701                         release_firmware(fw);
5702                 t4_free_mem(card_fw);
5703
5704                 if (ret < 0)
5705                         goto bye;
5706         }
5707
5708         /*
5709          * Grab VPD parameters.  This should be done after we establish a
5710          * connection to the firmware since some of the VPD parameters
5711          * (notably the Core Clock frequency) are retrieved via requests to
5712          * the firmware.  On the other hand, we need these fairly early on
5713          * so we do this right after getting ahold of the firmware.
5714          */
5715         ret = get_vpd_params(adap, &adap->params.vpd);
5716         if (ret < 0)
5717                 goto bye;
5718
5719         /*
5720          * Find out what ports are available to us.  Note that we need to do
5721          * this before calling adap_init0_no_config() since it needs nports
5722          * and portvec ...
5723          */
5724         v =
5725             FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
5726             FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_PORTVEC);
5727         ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 1, &v, &port_vec);
5728         if (ret < 0)
5729                 goto bye;
5730
5731         adap->params.nports = hweight32(port_vec);
5732         adap->params.portvec = port_vec;
5733
5734         /*
5735          * If the firmware is initialized already (and we're not forcing a
5736          * master initialization), note that we're living with existing
5737          * adapter parameters.  Otherwise, it's time to try initializing the
5738          * adapter ...
5739          */
5740         if (state == DEV_STATE_INIT) {
5741                 dev_info(adap->pdev_dev, "Coming up as %s: "\
5742                          "Adapter already initialized\n",
5743                          adap->flags & MASTER_PF ? "MASTER" : "SLAVE");
5744                 adap->flags |= USING_SOFT_PARAMS;
5745         } else {
5746                 dev_info(adap->pdev_dev, "Coming up as MASTER: "\
5747                          "Initializing adapter\n");
5748
5749                 /*
5750                  * If the firmware doesn't support Configuration
5751                  * Files warn user and exit,
5752                  */
5753                 if (ret < 0)
5754                         dev_warn(adap->pdev_dev, "Firmware doesn't support "
5755                                  "configuration file.\n");
5756                 if (force_old_init)
5757                         ret = adap_init0_no_config(adap, reset);
5758                 else {
5759                         /*
5760                          * Find out whether we're dealing with a version of
5761                          * the firmware which has configuration file support.
5762                          */
5763                         params[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
5764                                      FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_CF));
5765                         ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 1,
5766                                               params, val);
5767
5768                         /*
5769                          * If the firmware doesn't support Configuration
5770                          * Files, use the old Driver-based, hard-wired
5771                          * initialization.  Otherwise, try using the
5772                          * Configuration File support and fall back to the
5773                          * Driver-based initialization if there's no
5774                          * Configuration File found.
5775                          */
5776                         if (ret < 0)
5777                                 ret = adap_init0_no_config(adap, reset);
5778                         else {
5779                                 /*
5780                                  * The firmware provides us with a memory
5781                                  * buffer where we can load a Configuration
5782                                  * File from the host if we want to override
5783                                  * the Configuration File in flash.
5784                                  */
5785
5786                                 ret = adap_init0_config(adap, reset);
5787                                 if (ret == -ENOENT) {
5788                                         dev_info(adap->pdev_dev,
5789                                             "No Configuration File present "
5790                                             "on adapter. Using hard-wired "
5791                                             "configuration parameters.\n");
5792                                         ret = adap_init0_no_config(adap, reset);
5793                                 }
5794                         }
5795                 }
5796                 if (ret < 0) {
5797                         dev_err(adap->pdev_dev,
5798                                 "could not initialize adapter, error %d\n",
5799                                 -ret);
5800                         goto bye;
5801                 }
5802         }
5803
5804         /*
5805          * If we're living with non-hard-coded parameters (either from a
5806          * Firmware Configuration File or values programmed by a different PF
5807          * Driver), give the SGE code a chance to pull in anything that it
5808          * needs ...  Note that this must be called after we retrieve our VPD
5809          * parameters in order to know how to convert core ticks to seconds.
5810          */
5811         if (adap->flags & USING_SOFT_PARAMS) {
5812                 ret = t4_sge_init(adap);
5813                 if (ret < 0)
5814                         goto bye;
5815         }
5816
5817         if (is_bypass_device(adap->pdev->device))
5818                 adap->params.bypass = 1;
5819
5820         /*
5821          * Grab some of our basic fundamental operating parameters.
5822          */
5823 #define FW_PARAM_DEV(param) \
5824         (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | \
5825         FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_##param))
5826
5827 #define FW_PARAM_PFVF(param) \
5828         FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) | \
5829         FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_##param)|  \
5830         FW_PARAMS_PARAM_Y(0) | \
5831         FW_PARAMS_PARAM_Z(0)
5832
5833         params[0] = FW_PARAM_PFVF(EQ_START);
5834         params[1] = FW_PARAM_PFVF(L2T_START);
5835         params[2] = FW_PARAM_PFVF(L2T_END);
5836         params[3] = FW_PARAM_PFVF(FILTER_START);
5837         params[4] = FW_PARAM_PFVF(FILTER_END);
5838         params[5] = FW_PARAM_PFVF(IQFLINT_START);
5839         ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6, params, val);
5840         if (ret < 0)
5841                 goto bye;
5842         adap->sge.egr_start = val[0];
5843         adap->l2t_start = val[1];
5844         adap->l2t_end = val[2];
5845         adap->tids.ftid_base = val[3];
5846         adap->tids.nftids = val[4] - val[3] + 1;
5847         adap->sge.ingr_start = val[5];
5848
5849         /* query params related to active filter region */
5850         params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START);
5851         params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END);
5852         ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2, params, val);
5853         /* If Active filter size is set we enable establishing
5854          * offload connection through firmware work request
5855          */
5856         if ((val[0] != val[1]) && (ret >= 0)) {
5857                 adap->flags |= FW_OFLD_CONN;
5858                 adap->tids.aftid_base = val[0];
5859                 adap->tids.aftid_end = val[1];
5860         }
5861
5862         /* If we're running on newer firmware, let it know that we're
5863          * prepared to deal with encapsulated CPL messages.  Older
5864          * firmware won't understand this and we'll just get
5865          * unencapsulated messages ...
5866          */
5867         params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
5868         val[0] = 1;
5869         (void) t4_set_params(adap, adap->mbox, adap->fn, 0, 1, params, val);
5870
5871         /*
5872          * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
5873          * capability.  Earlier versions of the firmware didn't have the
5874          * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
5875          * permission to use ULPTX MEMWRITE DSGL.
5876          */
5877         if (is_t4(adap->params.chip)) {
5878                 adap->params.ulptx_memwrite_dsgl = false;
5879         } else {
5880                 params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
5881                 ret = t4_query_params(adap, adap->mbox, adap->fn, 0,
5882                                       1, params, val);
5883                 adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
5884         }
5885
5886         /*
5887          * Get device capabilities so we can determine what resources we need
5888          * to manage.
5889          */
5890         memset(&caps_cmd, 0, sizeof(caps_cmd));
5891         caps_cmd.op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5892                                      FW_CMD_REQUEST | FW_CMD_READ);
5893         caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
5894         ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
5895                          &caps_cmd);
5896         if (ret < 0)
5897                 goto bye;
5898
5899         if (caps_cmd.ofldcaps) {
5900                 /* query offload-related parameters */
5901                 params[0] = FW_PARAM_DEV(NTID);
5902                 params[1] = FW_PARAM_PFVF(SERVER_START);
5903                 params[2] = FW_PARAM_PFVF(SERVER_END);
5904                 params[3] = FW_PARAM_PFVF(TDDP_START);
5905                 params[4] = FW_PARAM_PFVF(TDDP_END);
5906                 params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
5907                 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6,
5908                                       params, val);
5909                 if (ret < 0)
5910                         goto bye;
5911                 adap->tids.ntids = val[0];
5912                 adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
5913                 adap->tids.stid_base = val[1];
5914                 adap->tids.nstids = val[2] - val[1] + 1;
5915                 /*
5916                  * Setup server filter region. Divide the availble filter
5917                  * region into two parts. Regular filters get 1/3rd and server
5918                  * filters get 2/3rd part. This is only enabled if workarond
5919                  * path is enabled.
5920                  * 1. For regular filters.
5921                  * 2. Server filter: This are special filters which are used
5922                  * to redirect SYN packets to offload queue.
5923                  */
5924                 if (adap->flags & FW_OFLD_CONN && !is_bypass(adap)) {
5925                         adap->tids.sftid_base = adap->tids.ftid_base +
5926                                         DIV_ROUND_UP(adap->tids.nftids, 3);
5927                         adap->tids.nsftids = adap->tids.nftids -
5928                                          DIV_ROUND_UP(adap->tids.nftids, 3);
5929                         adap->tids.nftids = adap->tids.sftid_base -
5930                                                 adap->tids.ftid_base;
5931                 }
5932                 adap->vres.ddp.start = val[3];
5933                 adap->vres.ddp.size = val[4] - val[3] + 1;
5934                 adap->params.ofldq_wr_cred = val[5];
5935
5936                 adap->params.offload = 1;
5937         }
5938         if (caps_cmd.rdmacaps) {
5939                 params[0] = FW_PARAM_PFVF(STAG_START);
5940                 params[1] = FW_PARAM_PFVF(STAG_END);
5941                 params[2] = FW_PARAM_PFVF(RQ_START);
5942                 params[3] = FW_PARAM_PFVF(RQ_END);
5943                 params[4] = FW_PARAM_PFVF(PBL_START);
5944                 params[5] = FW_PARAM_PFVF(PBL_END);
5945                 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6,
5946                                       params, val);
5947                 if (ret < 0)
5948                         goto bye;
5949                 adap->vres.stag.start = val[0];
5950                 adap->vres.stag.size = val[1] - val[0] + 1;
5951                 adap->vres.rq.start = val[2];
5952                 adap->vres.rq.size = val[3] - val[2] + 1;
5953                 adap->vres.pbl.start = val[4];
5954                 adap->vres.pbl.size = val[5] - val[4] + 1;
5955
5956                 params[0] = FW_PARAM_PFVF(SQRQ_START);
5957                 params[1] = FW_PARAM_PFVF(SQRQ_END);
5958                 params[2] = FW_PARAM_PFVF(CQ_START);
5959                 params[3] = FW_PARAM_PFVF(CQ_END);
5960                 params[4] = FW_PARAM_PFVF(OCQ_START);
5961                 params[5] = FW_PARAM_PFVF(OCQ_END);
5962                 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6, params,
5963                                       val);
5964                 if (ret < 0)
5965                         goto bye;
5966                 adap->vres.qp.start = val[0];
5967                 adap->vres.qp.size = val[1] - val[0] + 1;
5968                 adap->vres.cq.start = val[2];
5969                 adap->vres.cq.size = val[3] - val[2] + 1;
5970                 adap->vres.ocq.start = val[4];
5971                 adap->vres.ocq.size = val[5] - val[4] + 1;
5972
5973                 params[0] = FW_PARAM_DEV(MAXORDIRD_QP);
5974                 params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER);
5975                 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2, params,
5976                                       val);
5977                 if (ret < 0) {
5978                         adap->params.max_ordird_qp = 8;
5979                         adap->params.max_ird_adapter = 32 * adap->tids.ntids;
5980                         ret = 0;
5981                 } else {
5982                         adap->params.max_ordird_qp = val[0];
5983                         adap->params.max_ird_adapter = val[1];
5984                 }
5985                 dev_info(adap->pdev_dev,
5986                          "max_ordird_qp %d max_ird_adapter %d\n",
5987                          adap->params.max_ordird_qp,
5988                          adap->params.max_ird_adapter);
5989         }
5990         if (caps_cmd.iscsicaps) {
5991                 params[0] = FW_PARAM_PFVF(ISCSI_START);
5992                 params[1] = FW_PARAM_PFVF(ISCSI_END);
5993                 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2,
5994                                       params, val);
5995                 if (ret < 0)
5996                         goto bye;
5997                 adap->vres.iscsi.start = val[0];
5998                 adap->vres.iscsi.size = val[1] - val[0] + 1;
5999         }
6000 #undef FW_PARAM_PFVF
6001 #undef FW_PARAM_DEV
6002
6003         /* The MTU/MSS Table is initialized by now, so load their values.  If
6004          * we're initializing the adapter, then we'll make any modifications
6005          * we want to the MTU/MSS Table and also initialize the congestion
6006          * parameters.
6007          */
6008         t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
6009         if (state != DEV_STATE_INIT) {
6010                 int i;
6011
6012                 /* The default MTU Table contains values 1492 and 1500.
6013                  * However, for TCP, it's better to have two values which are
6014                  * a multiple of 8 +/- 4 bytes apart near this popular MTU.
6015                  * This allows us to have a TCP Data Payload which is a
6016                  * multiple of 8 regardless of what combination of TCP Options
6017                  * are in use (always a multiple of 4 bytes) which is
6018                  * important for performance reasons.  For instance, if no
6019                  * options are in use, then we have a 20-byte IP header and a
6020                  * 20-byte TCP header.  In this case, a 1500-byte MSS would
6021                  * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
6022                  * which is not a multiple of 8.  So using an MSS of 1488 in
6023                  * this case results in a TCP Data Payload of 1448 bytes which
6024                  * is a multiple of 8.  On the other hand, if 12-byte TCP Time
6025                  * Stamps have been negotiated, then an MTU of 1500 bytes
6026                  * results in a TCP Data Payload of 1448 bytes which, as
6027                  * above, is a multiple of 8 bytes ...
6028                  */
6029                 for (i = 0; i < NMTUS; i++)
6030                         if (adap->params.mtus[i] == 1492) {
6031                                 adap->params.mtus[i] = 1488;
6032                                 break;
6033                         }
6034
6035                 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
6036                              adap->params.b_wnd);
6037         }
6038         t4_init_tp_params(adap);
6039         adap->flags |= FW_OK;
6040         return 0;
6041
6042         /*
6043          * Something bad happened.  If a command timed out or failed with EIO
6044          * FW does not operate within its spec or something catastrophic
6045          * happened to HW/FW, stop issuing commands.
6046          */
6047 bye:
6048         if (ret != -ETIMEDOUT && ret != -EIO)
6049                 t4_fw_bye(adap, adap->mbox);
6050         return ret;
6051 }
6052
6053 /* EEH callbacks */
6054
6055 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
6056                                          pci_channel_state_t state)
6057 {
6058         int i;
6059         struct adapter *adap = pci_get_drvdata(pdev);
6060
6061         if (!adap)
6062                 goto out;
6063
6064         rtnl_lock();
6065         adap->flags &= ~FW_OK;
6066         notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
6067         spin_lock(&adap->stats_lock);
6068         for_each_port(adap, i) {
6069                 struct net_device *dev = adap->port[i];
6070
6071                 netif_device_detach(dev);
6072                 netif_carrier_off(dev);
6073         }
6074         spin_unlock(&adap->stats_lock);
6075         if (adap->flags & FULL_INIT_DONE)
6076                 cxgb_down(adap);
6077         rtnl_unlock();
6078         if ((adap->flags & DEV_ENABLED)) {
6079                 pci_disable_device(pdev);
6080                 adap->flags &= ~DEV_ENABLED;
6081         }
6082 out:    return state == pci_channel_io_perm_failure ?
6083                 PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
6084 }
6085
6086 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
6087 {
6088         int i, ret;
6089         struct fw_caps_config_cmd c;
6090         struct adapter *adap = pci_get_drvdata(pdev);
6091
6092         if (!adap) {
6093                 pci_restore_state(pdev);
6094                 pci_save_state(pdev);
6095                 return PCI_ERS_RESULT_RECOVERED;
6096         }
6097
6098         if (!(adap->flags & DEV_ENABLED)) {
6099                 if (pci_enable_device(pdev)) {
6100                         dev_err(&pdev->dev, "Cannot reenable PCI "
6101                                             "device after reset\n");
6102                         return PCI_ERS_RESULT_DISCONNECT;
6103                 }
6104                 adap->flags |= DEV_ENABLED;
6105         }
6106
6107         pci_set_master(pdev);
6108         pci_restore_state(pdev);
6109         pci_save_state(pdev);
6110         pci_cleanup_aer_uncorrect_error_status(pdev);
6111
6112         if (t4_wait_dev_ready(adap) < 0)
6113                 return PCI_ERS_RESULT_DISCONNECT;
6114         if (t4_fw_hello(adap, adap->fn, adap->fn, MASTER_MUST, NULL) < 0)
6115                 return PCI_ERS_RESULT_DISCONNECT;
6116         adap->flags |= FW_OK;
6117         if (adap_init1(adap, &c))
6118                 return PCI_ERS_RESULT_DISCONNECT;
6119
6120         for_each_port(adap, i) {
6121                 struct port_info *p = adap2pinfo(adap, i);
6122
6123                 ret = t4_alloc_vi(adap, adap->fn, p->tx_chan, adap->fn, 0, 1,
6124                                   NULL, NULL);
6125                 if (ret < 0)
6126                         return PCI_ERS_RESULT_DISCONNECT;
6127                 p->viid = ret;
6128                 p->xact_addr_filt = -1;
6129         }
6130
6131         t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
6132                      adap->params.b_wnd);
6133         setup_memwin(adap);
6134         if (cxgb_up(adap))
6135                 return PCI_ERS_RESULT_DISCONNECT;
6136         return PCI_ERS_RESULT_RECOVERED;
6137 }
6138
6139 static void eeh_resume(struct pci_dev *pdev)
6140 {
6141         int i;
6142         struct adapter *adap = pci_get_drvdata(pdev);
6143
6144         if (!adap)
6145                 return;
6146
6147         rtnl_lock();
6148         for_each_port(adap, i) {
6149                 struct net_device *dev = adap->port[i];
6150
6151                 if (netif_running(dev)) {
6152                         link_start(dev);
6153                         cxgb_set_rxmode(dev);
6154                 }
6155                 netif_device_attach(dev);
6156         }
6157         rtnl_unlock();
6158 }
6159
6160 static const struct pci_error_handlers cxgb4_eeh = {
6161         .error_detected = eeh_err_detected,
6162         .slot_reset     = eeh_slot_reset,
6163         .resume         = eeh_resume,
6164 };
6165
6166 static inline bool is_x_10g_port(const struct link_config *lc)
6167 {
6168         return (lc->supported & FW_PORT_CAP_SPEED_10G) != 0 ||
6169                (lc->supported & FW_PORT_CAP_SPEED_40G) != 0;
6170 }
6171
6172 static inline void init_rspq(struct adapter *adap, struct sge_rspq *q,
6173                              unsigned int us, unsigned int cnt,
6174                              unsigned int size, unsigned int iqe_size)
6175 {
6176         q->adap = adap;
6177         set_rspq_intr_params(q, us, cnt);
6178         q->iqe_len = iqe_size;
6179         q->size = size;
6180 }
6181
6182 /*
6183  * Perform default configuration of DMA queues depending on the number and type
6184  * of ports we found and the number of available CPUs.  Most settings can be
6185  * modified by the admin prior to actual use.
6186  */
6187 static void cfg_queues(struct adapter *adap)
6188 {
6189         struct sge *s = &adap->sge;
6190         int i, n10g = 0, qidx = 0;
6191 #ifndef CONFIG_CHELSIO_T4_DCB
6192         int q10g = 0;
6193 #endif
6194         int ciq_size;
6195
6196         for_each_port(adap, i)
6197                 n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg);
6198 #ifdef CONFIG_CHELSIO_T4_DCB
6199         /* For Data Center Bridging support we need to be able to support up
6200          * to 8 Traffic Priorities; each of which will be assigned to its
6201          * own TX Queue in order to prevent Head-Of-Line Blocking.
6202          */
6203         if (adap->params.nports * 8 > MAX_ETH_QSETS) {
6204                 dev_err(adap->pdev_dev, "MAX_ETH_QSETS=%d < %d!\n",
6205                         MAX_ETH_QSETS, adap->params.nports * 8);
6206                 BUG_ON(1);
6207         }
6208
6209         for_each_port(adap, i) {
6210                 struct port_info *pi = adap2pinfo(adap, i);
6211
6212                 pi->first_qset = qidx;
6213                 pi->nqsets = 8;
6214                 qidx += pi->nqsets;
6215         }
6216 #else /* !CONFIG_CHELSIO_T4_DCB */
6217         /*
6218          * We default to 1 queue per non-10G port and up to # of cores queues
6219          * per 10G port.
6220          */
6221         if (n10g)
6222                 q10g = (MAX_ETH_QSETS - (adap->params.nports - n10g)) / n10g;
6223         if (q10g > netif_get_num_default_rss_queues())
6224                 q10g = netif_get_num_default_rss_queues();
6225
6226         for_each_port(adap, i) {
6227                 struct port_info *pi = adap2pinfo(adap, i);
6228
6229                 pi->first_qset = qidx;
6230                 pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1;
6231                 qidx += pi->nqsets;
6232         }
6233 #endif /* !CONFIG_CHELSIO_T4_DCB */
6234
6235         s->ethqsets = qidx;
6236         s->max_ethqsets = qidx;   /* MSI-X may lower it later */
6237
6238         if (is_offload(adap)) {
6239                 /*
6240                  * For offload we use 1 queue/channel if all ports are up to 1G,
6241                  * otherwise we divide all available queues amongst the channels
6242                  * capped by the number of available cores.
6243                  */
6244                 if (n10g) {
6245                         i = min_t(int, ARRAY_SIZE(s->ofldrxq),
6246                                   num_online_cpus());
6247                         s->ofldqsets = roundup(i, adap->params.nports);
6248                 } else
6249                         s->ofldqsets = adap->params.nports;
6250                 /* For RDMA one Rx queue per channel suffices */
6251                 s->rdmaqs = adap->params.nports;
6252                 s->rdmaciqs = adap->params.nports;
6253         }
6254
6255         for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
6256                 struct sge_eth_rxq *r = &s->ethrxq[i];
6257
6258                 init_rspq(adap, &r->rspq, 5, 10, 1024, 64);
6259                 r->fl.size = 72;
6260         }
6261
6262         for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
6263                 s->ethtxq[i].q.size = 1024;
6264
6265         for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
6266                 s->ctrlq[i].q.size = 512;
6267
6268         for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++)
6269                 s->ofldtxq[i].q.size = 1024;
6270
6271         for (i = 0; i < ARRAY_SIZE(s->ofldrxq); i++) {
6272                 struct sge_ofld_rxq *r = &s->ofldrxq[i];
6273
6274                 init_rspq(adap, &r->rspq, 5, 1, 1024, 64);
6275                 r->rspq.uld = CXGB4_ULD_ISCSI;
6276                 r->fl.size = 72;
6277         }
6278
6279         for (i = 0; i < ARRAY_SIZE(s->rdmarxq); i++) {
6280                 struct sge_ofld_rxq *r = &s->rdmarxq[i];
6281
6282                 init_rspq(adap, &r->rspq, 5, 1, 511, 64);
6283                 r->rspq.uld = CXGB4_ULD_RDMA;
6284                 r->fl.size = 72;
6285         }
6286
6287         ciq_size = 64 + adap->vres.cq.size + adap->tids.nftids;
6288         if (ciq_size > SGE_MAX_IQ_SIZE) {
6289                 CH_WARN(adap, "CIQ size too small for available IQs\n");
6290                 ciq_size = SGE_MAX_IQ_SIZE;
6291         }
6292
6293         for (i = 0; i < ARRAY_SIZE(s->rdmaciq); i++) {
6294                 struct sge_ofld_rxq *r = &s->rdmaciq[i];
6295
6296                 init_rspq(adap, &r->rspq, 5, 1, ciq_size, 64);
6297                 r->rspq.uld = CXGB4_ULD_RDMA;
6298         }
6299
6300         init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64);
6301         init_rspq(adap, &s->intrq, 0, 1, 2 * MAX_INGQ, 64);
6302 }
6303
6304 /*
6305  * Reduce the number of Ethernet queues across all ports to at most n.
6306  * n provides at least one queue per port.
6307  */
6308 static void reduce_ethqs(struct adapter *adap, int n)
6309 {
6310         int i;
6311         struct port_info *pi;
6312
6313         while (n < adap->sge.ethqsets)
6314                 for_each_port(adap, i) {
6315                         pi = adap2pinfo(adap, i);
6316                         if (pi->nqsets > 1) {
6317                                 pi->nqsets--;
6318                                 adap->sge.ethqsets--;
6319                                 if (adap->sge.ethqsets <= n)
6320                                         break;
6321                         }
6322                 }
6323
6324         n = 0;
6325         for_each_port(adap, i) {
6326                 pi = adap2pinfo(adap, i);
6327                 pi->first_qset = n;
6328                 n += pi->nqsets;
6329         }
6330 }
6331
6332 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
6333 #define EXTRA_VECS 2
6334
6335 static int enable_msix(struct adapter *adap)
6336 {
6337         int ofld_need = 0;
6338         int i, want, need;
6339         struct sge *s = &adap->sge;
6340         unsigned int nchan = adap->params.nports;
6341         struct msix_entry entries[MAX_INGQ + 1];
6342
6343         for (i = 0; i < ARRAY_SIZE(entries); ++i)
6344                 entries[i].entry = i;
6345
6346         want = s->max_ethqsets + EXTRA_VECS;
6347         if (is_offload(adap)) {
6348                 want += s->rdmaqs + s->rdmaciqs + s->ofldqsets;
6349                 /* need nchan for each possible ULD */
6350                 ofld_need = 3 * nchan;
6351         }
6352 #ifdef CONFIG_CHELSIO_T4_DCB
6353         /* For Data Center Bridging we need 8 Ethernet TX Priority Queues for
6354          * each port.
6355          */
6356         need = 8 * adap->params.nports + EXTRA_VECS + ofld_need;
6357 #else
6358         need = adap->params.nports + EXTRA_VECS + ofld_need;
6359 #endif
6360         want = pci_enable_msix_range(adap->pdev, entries, need, want);
6361         if (want < 0)
6362                 return want;
6363
6364         /*
6365          * Distribute available vectors to the various queue groups.
6366          * Every group gets its minimum requirement and NIC gets top
6367          * priority for leftovers.
6368          */
6369         i = want - EXTRA_VECS - ofld_need;
6370         if (i < s->max_ethqsets) {
6371                 s->max_ethqsets = i;
6372                 if (i < s->ethqsets)
6373                         reduce_ethqs(adap, i);
6374         }
6375         if (is_offload(adap)) {
6376                 i = want - EXTRA_VECS - s->max_ethqsets;
6377                 i -= ofld_need - nchan;
6378                 s->ofldqsets = (i / nchan) * nchan;  /* round down */
6379         }
6380         for (i = 0; i < want; ++i)
6381                 adap->msix_info[i].vec = entries[i].vector;
6382
6383         return 0;
6384 }
6385
6386 #undef EXTRA_VECS
6387
6388 static int init_rss(struct adapter *adap)
6389 {
6390         unsigned int i, j;
6391
6392         for_each_port(adap, i) {
6393                 struct port_info *pi = adap2pinfo(adap, i);
6394
6395                 pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
6396                 if (!pi->rss)
6397                         return -ENOMEM;
6398                 for (j = 0; j < pi->rss_size; j++)
6399                         pi->rss[j] = ethtool_rxfh_indir_default(j, pi->nqsets);
6400         }
6401         return 0;
6402 }
6403
6404 static void print_port_info(const struct net_device *dev)
6405 {
6406         char buf[80];
6407         char *bufp = buf;
6408         const char *spd = "";
6409         const struct port_info *pi = netdev_priv(dev);
6410         const struct adapter *adap = pi->adapter;
6411
6412         if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_2_5GB)
6413                 spd = " 2.5 GT/s";
6414         else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_5_0GB)
6415                 spd = " 5 GT/s";
6416         else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_8_0GB)
6417                 spd = " 8 GT/s";
6418
6419         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100M)
6420                 bufp += sprintf(bufp, "100/");
6421         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_1G)
6422                 bufp += sprintf(bufp, "1000/");
6423         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_10G)
6424                 bufp += sprintf(bufp, "10G/");
6425         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_40G)
6426                 bufp += sprintf(bufp, "40G/");
6427         if (bufp != buf)
6428                 --bufp;
6429         sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type));
6430
6431         netdev_info(dev, "Chelsio %s rev %d %s %sNIC PCIe x%d%s%s\n",
6432                     adap->params.vpd.id,
6433                     CHELSIO_CHIP_RELEASE(adap->params.chip), buf,
6434                     is_offload(adap) ? "R" : "", adap->params.pci.width, spd,
6435                     (adap->flags & USING_MSIX) ? " MSI-X" :
6436                     (adap->flags & USING_MSI) ? " MSI" : "");
6437         netdev_info(dev, "S/N: %s, P/N: %s\n",
6438                     adap->params.vpd.sn, adap->params.vpd.pn);
6439 }
6440
6441 static void enable_pcie_relaxed_ordering(struct pci_dev *dev)
6442 {
6443         pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_RELAX_EN);
6444 }
6445
6446 /*
6447  * Free the following resources:
6448  * - memory used for tables
6449  * - MSI/MSI-X
6450  * - net devices
6451  * - resources FW is holding for us
6452  */
6453 static void free_some_resources(struct adapter *adapter)
6454 {
6455         unsigned int i;
6456
6457         t4_free_mem(adapter->l2t);
6458         t4_free_mem(adapter->tids.tid_tab);
6459         disable_msi(adapter);
6460
6461         for_each_port(adapter, i)
6462                 if (adapter->port[i]) {
6463                         kfree(adap2pinfo(adapter, i)->rss);
6464                         free_netdev(adapter->port[i]);
6465                 }
6466         if (adapter->flags & FW_OK)
6467                 t4_fw_bye(adapter, adapter->fn);
6468 }
6469
6470 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
6471 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
6472                    NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
6473 #define SEGMENT_SIZE 128
6474
6475 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
6476 {
6477         int func, i, err, s_qpp, qpp, num_seg;
6478         struct port_info *pi;
6479         bool highdma = false;
6480         struct adapter *adapter = NULL;
6481         void __iomem *regs;
6482
6483         printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
6484
6485         err = pci_request_regions(pdev, KBUILD_MODNAME);
6486         if (err) {
6487                 /* Just info, some other driver may have claimed the device. */
6488                 dev_info(&pdev->dev, "cannot obtain PCI resources\n");
6489                 return err;
6490         }
6491
6492         err = pci_enable_device(pdev);
6493         if (err) {
6494                 dev_err(&pdev->dev, "cannot enable PCI device\n");
6495                 goto out_release_regions;
6496         }
6497
6498         regs = pci_ioremap_bar(pdev, 0);
6499         if (!regs) {
6500                 dev_err(&pdev->dev, "cannot map device registers\n");
6501                 err = -ENOMEM;
6502                 goto out_disable_device;
6503         }
6504
6505         /* We control everything through one PF */
6506         func = SOURCEPF_GET(readl(regs + PL_WHOAMI));
6507         if (func != ent->driver_data) {
6508                 iounmap(regs);
6509                 pci_disable_device(pdev);
6510                 pci_save_state(pdev);        /* to restore SR-IOV later */
6511                 goto sriov;
6512         }
6513
6514         if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
6515                 highdma = true;
6516                 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
6517                 if (err) {
6518                         dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
6519                                 "coherent allocations\n");
6520                         goto out_unmap_bar0;
6521                 }
6522         } else {
6523                 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
6524                 if (err) {
6525                         dev_err(&pdev->dev, "no usable DMA configuration\n");
6526                         goto out_unmap_bar0;
6527                 }
6528         }
6529
6530         pci_enable_pcie_error_reporting(pdev);
6531         enable_pcie_relaxed_ordering(pdev);
6532         pci_set_master(pdev);
6533         pci_save_state(pdev);
6534
6535         adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
6536         if (!adapter) {
6537                 err = -ENOMEM;
6538                 goto out_unmap_bar0;
6539         }
6540
6541         adapter->workq = create_singlethread_workqueue("cxgb4");
6542         if (!adapter->workq) {
6543                 err = -ENOMEM;
6544                 goto out_free_adapter;
6545         }
6546
6547         /* PCI device has been enabled */
6548         adapter->flags |= DEV_ENABLED;
6549
6550         adapter->regs = regs;
6551         adapter->pdev = pdev;
6552         adapter->pdev_dev = &pdev->dev;
6553         adapter->mbox = func;
6554         adapter->fn = func;
6555         adapter->msg_enable = dflt_msg_enable;
6556         memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));
6557
6558         spin_lock_init(&adapter->stats_lock);
6559         spin_lock_init(&adapter->tid_release_lock);
6560
6561         INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
6562         INIT_WORK(&adapter->db_full_task, process_db_full);
6563         INIT_WORK(&adapter->db_drop_task, process_db_drop);
6564
6565         err = t4_prep_adapter(adapter);
6566         if (err)
6567                 goto out_free_adapter;
6568
6569
6570         if (!is_t4(adapter->params.chip)) {
6571                 s_qpp = QUEUESPERPAGEPF1 * adapter->fn;
6572                 qpp = 1 << QUEUESPERPAGEPF0_GET(t4_read_reg(adapter,
6573                       SGE_EGRESS_QUEUES_PER_PAGE_PF) >> s_qpp);
6574                 num_seg = PAGE_SIZE / SEGMENT_SIZE;
6575
6576                 /* Each segment size is 128B. Write coalescing is enabled only
6577                  * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the
6578                  * queue is less no of segments that can be accommodated in
6579                  * a page size.
6580                  */
6581                 if (qpp > num_seg) {
6582                         dev_err(&pdev->dev,
6583                                 "Incorrect number of egress queues per page\n");
6584                         err = -EINVAL;
6585                         goto out_free_adapter;
6586                 }
6587                 adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
6588                 pci_resource_len(pdev, 2));
6589                 if (!adapter->bar2) {
6590                         dev_err(&pdev->dev, "cannot map device bar2 region\n");
6591                         err = -ENOMEM;
6592                         goto out_free_adapter;
6593                 }
6594         }
6595
6596         setup_memwin(adapter);
6597         err = adap_init0(adapter);
6598         setup_memwin_rdma(adapter);
6599         if (err)
6600                 goto out_unmap_bar;
6601
6602         for_each_port(adapter, i) {
6603                 struct net_device *netdev;
6604
6605                 netdev = alloc_etherdev_mq(sizeof(struct port_info),
6606                                            MAX_ETH_QSETS);
6607                 if (!netdev) {
6608                         err = -ENOMEM;
6609                         goto out_free_dev;
6610                 }
6611
6612                 SET_NETDEV_DEV(netdev, &pdev->dev);
6613
6614                 adapter->port[i] = netdev;
6615                 pi = netdev_priv(netdev);
6616                 pi->adapter = adapter;
6617                 pi->xact_addr_filt = -1;
6618                 pi->port_id = i;
6619                 netdev->irq = pdev->irq;
6620
6621                 netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
6622                         NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
6623                         NETIF_F_RXCSUM | NETIF_F_RXHASH |
6624                         NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
6625                 if (highdma)
6626                         netdev->hw_features |= NETIF_F_HIGHDMA;
6627                 netdev->features |= netdev->hw_features;
6628                 netdev->vlan_features = netdev->features & VLAN_FEAT;
6629
6630                 netdev->priv_flags |= IFF_UNICAST_FLT;
6631
6632                 netdev->netdev_ops = &cxgb4_netdev_ops;
6633 #ifdef CONFIG_CHELSIO_T4_DCB
6634                 netdev->dcbnl_ops = &cxgb4_dcb_ops;
6635                 cxgb4_dcb_state_init(netdev);
6636 #endif
6637                 netdev->ethtool_ops = &cxgb_ethtool_ops;
6638         }
6639
6640         pci_set_drvdata(pdev, adapter);
6641
6642         if (adapter->flags & FW_OK) {
6643                 err = t4_port_init(adapter, func, func, 0);
6644                 if (err)
6645                         goto out_free_dev;
6646         }
6647
6648         /*
6649          * Configure queues and allocate tables now, they can be needed as
6650          * soon as the first register_netdev completes.
6651          */
6652         cfg_queues(adapter);
6653
6654         adapter->l2t = t4_init_l2t();
6655         if (!adapter->l2t) {
6656                 /* We tolerate a lack of L2T, giving up some functionality */
6657                 dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
6658                 adapter->params.offload = 0;
6659         }
6660
6661         if (is_offload(adapter) && tid_init(&adapter->tids) < 0) {
6662                 dev_warn(&pdev->dev, "could not allocate TID table, "
6663                          "continuing\n");
6664                 adapter->params.offload = 0;
6665         }
6666
6667         /* See what interrupts we'll be using */
6668         if (msi > 1 && enable_msix(adapter) == 0)
6669                 adapter->flags |= USING_MSIX;
6670         else if (msi > 0 && pci_enable_msi(pdev) == 0)
6671                 adapter->flags |= USING_MSI;
6672
6673         err = init_rss(adapter);
6674         if (err)
6675                 goto out_free_dev;
6676
6677         /*
6678          * The card is now ready to go.  If any errors occur during device
6679          * registration we do not fail the whole card but rather proceed only
6680          * with the ports we manage to register successfully.  However we must
6681          * register at least one net device.
6682          */
6683         for_each_port(adapter, i) {
6684                 pi = adap2pinfo(adapter, i);
6685                 netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
6686                 netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);
6687
6688                 err = register_netdev(adapter->port[i]);
6689                 if (err)
6690                         break;
6691                 adapter->chan_map[pi->tx_chan] = i;
6692                 print_port_info(adapter->port[i]);
6693         }
6694         if (i == 0) {
6695                 dev_err(&pdev->dev, "could not register any net devices\n");
6696                 goto out_free_dev;
6697         }
6698         if (err) {
6699                 dev_warn(&pdev->dev, "only %d net devices registered\n", i);
6700                 err = 0;
6701         }
6702
6703         if (cxgb4_debugfs_root) {
6704                 adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
6705                                                            cxgb4_debugfs_root);
6706                 setup_debugfs(adapter);
6707         }
6708
6709         /* PCIe EEH recovery on powerpc platforms needs fundamental reset */
6710         pdev->needs_freset = 1;
6711
6712         if (is_offload(adapter))
6713                 attach_ulds(adapter);
6714
6715 sriov:
6716 #ifdef CONFIG_PCI_IOV
6717         if (func < ARRAY_SIZE(num_vf) && num_vf[func] > 0)
6718                 if (pci_enable_sriov(pdev, num_vf[func]) == 0)
6719                         dev_info(&pdev->dev,
6720                                  "instantiated %u virtual functions\n",
6721                                  num_vf[func]);
6722 #endif
6723         return 0;
6724
6725  out_free_dev:
6726         free_some_resources(adapter);
6727  out_unmap_bar:
6728         if (!is_t4(adapter->params.chip))
6729                 iounmap(adapter->bar2);
6730  out_free_adapter:
6731         if (adapter->workq)
6732                 destroy_workqueue(adapter->workq);
6733
6734         kfree(adapter);
6735  out_unmap_bar0:
6736         iounmap(regs);
6737  out_disable_device:
6738         pci_disable_pcie_error_reporting(pdev);
6739         pci_disable_device(pdev);
6740  out_release_regions:
6741         pci_release_regions(pdev);
6742         return err;
6743 }
6744
6745 static void remove_one(struct pci_dev *pdev)
6746 {
6747         struct adapter *adapter = pci_get_drvdata(pdev);
6748
6749 #ifdef CONFIG_PCI_IOV
6750         pci_disable_sriov(pdev);
6751
6752 #endif
6753
6754         if (adapter) {
6755                 int i;
6756
6757                 /* Tear down per-adapter Work Queue first since it can contain
6758                  * references to our adapter data structure.
6759                  */
6760                 destroy_workqueue(adapter->workq);
6761
6762                 if (is_offload(adapter))
6763                         detach_ulds(adapter);
6764
6765                 for_each_port(adapter, i)
6766                         if (adapter->port[i]->reg_state == NETREG_REGISTERED)
6767                                 unregister_netdev(adapter->port[i]);
6768
6769                 debugfs_remove_recursive(adapter->debugfs_root);
6770
6771                 /* If we allocated filters, free up state associated with any
6772                  * valid filters ...
6773                  */
6774                 if (adapter->tids.ftid_tab) {
6775                         struct filter_entry *f = &adapter->tids.ftid_tab[0];
6776                         for (i = 0; i < (adapter->tids.nftids +
6777                                         adapter->tids.nsftids); i++, f++)
6778                                 if (f->valid)
6779                                         clear_filter(adapter, f);
6780                 }
6781
6782                 if (adapter->flags & FULL_INIT_DONE)
6783                         cxgb_down(adapter);
6784
6785                 free_some_resources(adapter);
6786                 iounmap(adapter->regs);
6787                 if (!is_t4(adapter->params.chip))
6788                         iounmap(adapter->bar2);
6789                 pci_disable_pcie_error_reporting(pdev);
6790                 if ((adapter->flags & DEV_ENABLED)) {
6791                         pci_disable_device(pdev);
6792                         adapter->flags &= ~DEV_ENABLED;
6793                 }
6794                 pci_release_regions(pdev);
6795                 synchronize_rcu();
6796                 kfree(adapter);
6797         } else
6798                 pci_release_regions(pdev);
6799 }
6800
6801 static struct pci_driver cxgb4_driver = {
6802         .name     = KBUILD_MODNAME,
6803         .id_table = cxgb4_pci_tbl,
6804         .probe    = init_one,
6805         .remove   = remove_one,
6806         .shutdown = remove_one,
6807         .err_handler = &cxgb4_eeh,
6808 };
6809
6810 static int __init cxgb4_init_module(void)
6811 {
6812         int ret;
6813
6814         /* Debugfs support is optional, just warn if this fails */
6815         cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
6816         if (!cxgb4_debugfs_root)
6817                 pr_warn("could not create debugfs entry, continuing\n");
6818
6819         ret = pci_register_driver(&cxgb4_driver);
6820         if (ret < 0)
6821                 debugfs_remove(cxgb4_debugfs_root);
6822
6823         register_inet6addr_notifier(&cxgb4_inet6addr_notifier);
6824
6825         return ret;
6826 }
6827
6828 static void __exit cxgb4_cleanup_module(void)
6829 {
6830         unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier);
6831         pci_unregister_driver(&cxgb4_driver);
6832         debugfs_remove(cxgb4_debugfs_root);  /* NULL ok */
6833 }
6834
6835 module_init(cxgb4_init_module);
6836 module_exit(cxgb4_cleanup_module);