7b2224ae72f238bed5325325bc965726474f7e70
[linux-2.6-block.git] / drivers / net / ethernet / chelsio / cxgb3 / cxgb3_main.c
1 /*
2  * Copyright (c) 2003-2008 Chelsio, Inc. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32
33 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
34
35 #include <linux/module.h>
36 #include <linux/moduleparam.h>
37 #include <linux/init.h>
38 #include <linux/pci.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/netdevice.h>
41 #include <linux/etherdevice.h>
42 #include <linux/if_vlan.h>
43 #include <linux/mdio.h>
44 #include <linux/sockios.h>
45 #include <linux/workqueue.h>
46 #include <linux/proc_fs.h>
47 #include <linux/rtnetlink.h>
48 #include <linux/firmware.h>
49 #include <linux/log2.h>
50 #include <linux/stringify.h>
51 #include <linux/sched.h>
52 #include <linux/slab.h>
53 #include <asm/uaccess.h>
54
55 #include "common.h"
56 #include "cxgb3_ioctl.h"
57 #include "regs.h"
58 #include "cxgb3_offload.h"
59 #include "version.h"
60
61 #include "cxgb3_ctl_defs.h"
62 #include "t3_cpl.h"
63 #include "firmware_exports.h"
64
65 enum {
66         MAX_TXQ_ENTRIES = 16384,
67         MAX_CTRL_TXQ_ENTRIES = 1024,
68         MAX_RSPQ_ENTRIES = 16384,
69         MAX_RX_BUFFERS = 16384,
70         MAX_RX_JUMBO_BUFFERS = 16384,
71         MIN_TXQ_ENTRIES = 4,
72         MIN_CTRL_TXQ_ENTRIES = 4,
73         MIN_RSPQ_ENTRIES = 32,
74         MIN_FL_ENTRIES = 32
75 };
76
77 #define PORT_MASK ((1 << MAX_NPORTS) - 1)
78
79 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
80                          NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
81                          NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
82
83 #define EEPROM_MAGIC 0x38E2F10C
84
85 #define CH_DEVICE(devid, idx) \
86         { PCI_VENDOR_ID_CHELSIO, devid, PCI_ANY_ID, PCI_ANY_ID, 0, 0, idx }
87
88 static const struct pci_device_id cxgb3_pci_tbl[] = {
89         CH_DEVICE(0x20, 0),     /* PE9000 */
90         CH_DEVICE(0x21, 1),     /* T302E */
91         CH_DEVICE(0x22, 2),     /* T310E */
92         CH_DEVICE(0x23, 3),     /* T320X */
93         CH_DEVICE(0x24, 1),     /* T302X */
94         CH_DEVICE(0x25, 3),     /* T320E */
95         CH_DEVICE(0x26, 2),     /* T310X */
96         CH_DEVICE(0x30, 2),     /* T3B10 */
97         CH_DEVICE(0x31, 3),     /* T3B20 */
98         CH_DEVICE(0x32, 1),     /* T3B02 */
99         CH_DEVICE(0x35, 6),     /* T3C20-derived T3C10 */
100         CH_DEVICE(0x36, 3),     /* S320E-CR */
101         CH_DEVICE(0x37, 7),     /* N320E-G2 */
102         {0,}
103 };
104
105 MODULE_DESCRIPTION(DRV_DESC);
106 MODULE_AUTHOR("Chelsio Communications");
107 MODULE_LICENSE("Dual BSD/GPL");
108 MODULE_VERSION(DRV_VERSION);
109 MODULE_DEVICE_TABLE(pci, cxgb3_pci_tbl);
110
111 static int dflt_msg_enable = DFLT_MSG_ENABLE;
112
113 module_param(dflt_msg_enable, int, 0644);
114 MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T3 default message enable bitmap");
115
116 /*
117  * The driver uses the best interrupt scheme available on a platform in the
118  * order MSI-X, MSI, legacy pin interrupts.  This parameter determines which
119  * of these schemes the driver may consider as follows:
120  *
121  * msi = 2: choose from among all three options
122  * msi = 1: only consider MSI and pin interrupts
123  * msi = 0: force pin interrupts
124  */
125 static int msi = 2;
126
127 module_param(msi, int, 0644);
128 MODULE_PARM_DESC(msi, "whether to use MSI or MSI-X");
129
130 /*
131  * The driver enables offload as a default.
132  * To disable it, use ofld_disable = 1.
133  */
134
135 static int ofld_disable = 0;
136
137 module_param(ofld_disable, int, 0644);
138 MODULE_PARM_DESC(ofld_disable, "whether to enable offload at init time or not");
139
140 /*
141  * We have work elements that we need to cancel when an interface is taken
142  * down.  Normally the work elements would be executed by keventd but that
143  * can deadlock because of linkwatch.  If our close method takes the rtnl
144  * lock and linkwatch is ahead of our work elements in keventd, linkwatch
145  * will block keventd as it needs the rtnl lock, and we'll deadlock waiting
146  * for our work to complete.  Get our own work queue to solve this.
147  */
148 struct workqueue_struct *cxgb3_wq;
149
150 /**
151  *      link_report - show link status and link speed/duplex
152  *      @p: the port whose settings are to be reported
153  *
154  *      Shows the link status, speed, and duplex of a port.
155  */
156 static void link_report(struct net_device *dev)
157 {
158         if (!netif_carrier_ok(dev))
159                 netdev_info(dev, "link down\n");
160         else {
161                 const char *s = "10Mbps";
162                 const struct port_info *p = netdev_priv(dev);
163
164                 switch (p->link_config.speed) {
165                 case SPEED_10000:
166                         s = "10Gbps";
167                         break;
168                 case SPEED_1000:
169                         s = "1000Mbps";
170                         break;
171                 case SPEED_100:
172                         s = "100Mbps";
173                         break;
174                 }
175
176                 netdev_info(dev, "link up, %s, %s-duplex\n",
177                             s, p->link_config.duplex == DUPLEX_FULL
178                             ? "full" : "half");
179         }
180 }
181
182 static void enable_tx_fifo_drain(struct adapter *adapter,
183                                  struct port_info *pi)
184 {
185         t3_set_reg_field(adapter, A_XGM_TXFIFO_CFG + pi->mac.offset, 0,
186                          F_ENDROPPKT);
187         t3_write_reg(adapter, A_XGM_RX_CTRL + pi->mac.offset, 0);
188         t3_write_reg(adapter, A_XGM_TX_CTRL + pi->mac.offset, F_TXEN);
189         t3_write_reg(adapter, A_XGM_RX_CTRL + pi->mac.offset, F_RXEN);
190 }
191
192 static void disable_tx_fifo_drain(struct adapter *adapter,
193                                   struct port_info *pi)
194 {
195         t3_set_reg_field(adapter, A_XGM_TXFIFO_CFG + pi->mac.offset,
196                          F_ENDROPPKT, 0);
197 }
198
199 void t3_os_link_fault(struct adapter *adap, int port_id, int state)
200 {
201         struct net_device *dev = adap->port[port_id];
202         struct port_info *pi = netdev_priv(dev);
203
204         if (state == netif_carrier_ok(dev))
205                 return;
206
207         if (state) {
208                 struct cmac *mac = &pi->mac;
209
210                 netif_carrier_on(dev);
211
212                 disable_tx_fifo_drain(adap, pi);
213
214                 /* Clear local faults */
215                 t3_xgm_intr_disable(adap, pi->port_id);
216                 t3_read_reg(adap, A_XGM_INT_STATUS +
217                                     pi->mac.offset);
218                 t3_write_reg(adap,
219                              A_XGM_INT_CAUSE + pi->mac.offset,
220                              F_XGM_INT);
221
222                 t3_set_reg_field(adap,
223                                  A_XGM_INT_ENABLE +
224                                  pi->mac.offset,
225                                  F_XGM_INT, F_XGM_INT);
226                 t3_xgm_intr_enable(adap, pi->port_id);
227
228                 t3_mac_enable(mac, MAC_DIRECTION_TX);
229         } else {
230                 netif_carrier_off(dev);
231
232                 /* Flush TX FIFO */
233                 enable_tx_fifo_drain(adap, pi);
234         }
235         link_report(dev);
236 }
237
238 /**
239  *      t3_os_link_changed - handle link status changes
240  *      @adapter: the adapter associated with the link change
241  *      @port_id: the port index whose limk status has changed
242  *      @link_stat: the new status of the link
243  *      @speed: the new speed setting
244  *      @duplex: the new duplex setting
245  *      @pause: the new flow-control setting
246  *
247  *      This is the OS-dependent handler for link status changes.  The OS
248  *      neutral handler takes care of most of the processing for these events,
249  *      then calls this handler for any OS-specific processing.
250  */
251 void t3_os_link_changed(struct adapter *adapter, int port_id, int link_stat,
252                         int speed, int duplex, int pause)
253 {
254         struct net_device *dev = adapter->port[port_id];
255         struct port_info *pi = netdev_priv(dev);
256         struct cmac *mac = &pi->mac;
257
258         /* Skip changes from disabled ports. */
259         if (!netif_running(dev))
260                 return;
261
262         if (link_stat != netif_carrier_ok(dev)) {
263                 if (link_stat) {
264                         disable_tx_fifo_drain(adapter, pi);
265
266                         t3_mac_enable(mac, MAC_DIRECTION_RX);
267
268                         /* Clear local faults */
269                         t3_xgm_intr_disable(adapter, pi->port_id);
270                         t3_read_reg(adapter, A_XGM_INT_STATUS +
271                                     pi->mac.offset);
272                         t3_write_reg(adapter,
273                                      A_XGM_INT_CAUSE + pi->mac.offset,
274                                      F_XGM_INT);
275
276                         t3_set_reg_field(adapter,
277                                          A_XGM_INT_ENABLE + pi->mac.offset,
278                                          F_XGM_INT, F_XGM_INT);
279                         t3_xgm_intr_enable(adapter, pi->port_id);
280
281                         netif_carrier_on(dev);
282                 } else {
283                         netif_carrier_off(dev);
284
285                         t3_xgm_intr_disable(adapter, pi->port_id);
286                         t3_read_reg(adapter, A_XGM_INT_STATUS + pi->mac.offset);
287                         t3_set_reg_field(adapter,
288                                          A_XGM_INT_ENABLE + pi->mac.offset,
289                                          F_XGM_INT, 0);
290
291                         if (is_10G(adapter))
292                                 pi->phy.ops->power_down(&pi->phy, 1);
293
294                         t3_read_reg(adapter, A_XGM_INT_STATUS + pi->mac.offset);
295                         t3_mac_disable(mac, MAC_DIRECTION_RX);
296                         t3_link_start(&pi->phy, mac, &pi->link_config);
297
298                         /* Flush TX FIFO */
299                         enable_tx_fifo_drain(adapter, pi);
300                 }
301
302                 link_report(dev);
303         }
304 }
305
306 /**
307  *      t3_os_phymod_changed - handle PHY module changes
308  *      @phy: the PHY reporting the module change
309  *      @mod_type: new module type
310  *
311  *      This is the OS-dependent handler for PHY module changes.  It is
312  *      invoked when a PHY module is removed or inserted for any OS-specific
313  *      processing.
314  */
315 void t3_os_phymod_changed(struct adapter *adap, int port_id)
316 {
317         static const char *mod_str[] = {
318                 NULL, "SR", "LR", "LRM", "TWINAX", "TWINAX", "unknown"
319         };
320
321         const struct net_device *dev = adap->port[port_id];
322         const struct port_info *pi = netdev_priv(dev);
323
324         if (pi->phy.modtype == phy_modtype_none)
325                 netdev_info(dev, "PHY module unplugged\n");
326         else
327                 netdev_info(dev, "%s PHY module inserted\n",
328                             mod_str[pi->phy.modtype]);
329 }
330
331 static void cxgb_set_rxmode(struct net_device *dev)
332 {
333         struct port_info *pi = netdev_priv(dev);
334
335         t3_mac_set_rx_mode(&pi->mac, dev);
336 }
337
338 /**
339  *      link_start - enable a port
340  *      @dev: the device to enable
341  *
342  *      Performs the MAC and PHY actions needed to enable a port.
343  */
344 static void link_start(struct net_device *dev)
345 {
346         struct port_info *pi = netdev_priv(dev);
347         struct cmac *mac = &pi->mac;
348
349         t3_mac_reset(mac);
350         t3_mac_set_num_ucast(mac, MAX_MAC_IDX);
351         t3_mac_set_mtu(mac, dev->mtu);
352         t3_mac_set_address(mac, LAN_MAC_IDX, dev->dev_addr);
353         t3_mac_set_address(mac, SAN_MAC_IDX, pi->iscsic.mac_addr);
354         t3_mac_set_rx_mode(mac, dev);
355         t3_link_start(&pi->phy, mac, &pi->link_config);
356         t3_mac_enable(mac, MAC_DIRECTION_RX | MAC_DIRECTION_TX);
357 }
358
359 static inline void cxgb_disable_msi(struct adapter *adapter)
360 {
361         if (adapter->flags & USING_MSIX) {
362                 pci_disable_msix(adapter->pdev);
363                 adapter->flags &= ~USING_MSIX;
364         } else if (adapter->flags & USING_MSI) {
365                 pci_disable_msi(adapter->pdev);
366                 adapter->flags &= ~USING_MSI;
367         }
368 }
369
370 /*
371  * Interrupt handler for asynchronous events used with MSI-X.
372  */
373 static irqreturn_t t3_async_intr_handler(int irq, void *cookie)
374 {
375         t3_slow_intr_handler(cookie);
376         return IRQ_HANDLED;
377 }
378
379 /*
380  * Name the MSI-X interrupts.
381  */
382 static void name_msix_vecs(struct adapter *adap)
383 {
384         int i, j, msi_idx = 1, n = sizeof(adap->msix_info[0].desc) - 1;
385
386         snprintf(adap->msix_info[0].desc, n, "%s", adap->name);
387         adap->msix_info[0].desc[n] = 0;
388
389         for_each_port(adap, j) {
390                 struct net_device *d = adap->port[j];
391                 const struct port_info *pi = netdev_priv(d);
392
393                 for (i = 0; i < pi->nqsets; i++, msi_idx++) {
394                         snprintf(adap->msix_info[msi_idx].desc, n,
395                                  "%s-%d", d->name, pi->first_qset + i);
396                         adap->msix_info[msi_idx].desc[n] = 0;
397                 }
398         }
399 }
400
401 static int request_msix_data_irqs(struct adapter *adap)
402 {
403         int i, j, err, qidx = 0;
404
405         for_each_port(adap, i) {
406                 int nqsets = adap2pinfo(adap, i)->nqsets;
407
408                 for (j = 0; j < nqsets; ++j) {
409                         err = request_irq(adap->msix_info[qidx + 1].vec,
410                                           t3_intr_handler(adap,
411                                                           adap->sge.qs[qidx].
412                                                           rspq.polling), 0,
413                                           adap->msix_info[qidx + 1].desc,
414                                           &adap->sge.qs[qidx]);
415                         if (err) {
416                                 while (--qidx >= 0)
417                                         free_irq(adap->msix_info[qidx + 1].vec,
418                                                  &adap->sge.qs[qidx]);
419                                 return err;
420                         }
421                         qidx++;
422                 }
423         }
424         return 0;
425 }
426
427 static void free_irq_resources(struct adapter *adapter)
428 {
429         if (adapter->flags & USING_MSIX) {
430                 int i, n = 0;
431
432                 free_irq(adapter->msix_info[0].vec, adapter);
433                 for_each_port(adapter, i)
434                         n += adap2pinfo(adapter, i)->nqsets;
435
436                 for (i = 0; i < n; ++i)
437                         free_irq(adapter->msix_info[i + 1].vec,
438                                  &adapter->sge.qs[i]);
439         } else
440                 free_irq(adapter->pdev->irq, adapter);
441 }
442
443 static int await_mgmt_replies(struct adapter *adap, unsigned long init_cnt,
444                               unsigned long n)
445 {
446         int attempts = 10;
447
448         while (adap->sge.qs[0].rspq.offload_pkts < init_cnt + n) {
449                 if (!--attempts)
450                         return -ETIMEDOUT;
451                 msleep(10);
452         }
453         return 0;
454 }
455
456 static int init_tp_parity(struct adapter *adap)
457 {
458         int i;
459         struct sk_buff *skb;
460         struct cpl_set_tcb_field *greq;
461         unsigned long cnt = adap->sge.qs[0].rspq.offload_pkts;
462
463         t3_tp_set_offload_mode(adap, 1);
464
465         for (i = 0; i < 16; i++) {
466                 struct cpl_smt_write_req *req;
467
468                 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
469                 if (!skb)
470                         skb = adap->nofail_skb;
471                 if (!skb)
472                         goto alloc_skb_fail;
473
474                 req = (struct cpl_smt_write_req *)__skb_put(skb, sizeof(*req));
475                 memset(req, 0, sizeof(*req));
476                 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
477                 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SMT_WRITE_REQ, i));
478                 req->mtu_idx = NMTUS - 1;
479                 req->iff = i;
480                 t3_mgmt_tx(adap, skb);
481                 if (skb == adap->nofail_skb) {
482                         await_mgmt_replies(adap, cnt, i + 1);
483                         adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
484                         if (!adap->nofail_skb)
485                                 goto alloc_skb_fail;
486                 }
487         }
488
489         for (i = 0; i < 2048; i++) {
490                 struct cpl_l2t_write_req *req;
491
492                 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
493                 if (!skb)
494                         skb = adap->nofail_skb;
495                 if (!skb)
496                         goto alloc_skb_fail;
497
498                 req = (struct cpl_l2t_write_req *)__skb_put(skb, sizeof(*req));
499                 memset(req, 0, sizeof(*req));
500                 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
501                 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_L2T_WRITE_REQ, i));
502                 req->params = htonl(V_L2T_W_IDX(i));
503                 t3_mgmt_tx(adap, skb);
504                 if (skb == adap->nofail_skb) {
505                         await_mgmt_replies(adap, cnt, 16 + i + 1);
506                         adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
507                         if (!adap->nofail_skb)
508                                 goto alloc_skb_fail;
509                 }
510         }
511
512         for (i = 0; i < 2048; i++) {
513                 struct cpl_rte_write_req *req;
514
515                 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
516                 if (!skb)
517                         skb = adap->nofail_skb;
518                 if (!skb)
519                         goto alloc_skb_fail;
520
521                 req = (struct cpl_rte_write_req *)__skb_put(skb, sizeof(*req));
522                 memset(req, 0, sizeof(*req));
523                 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
524                 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_RTE_WRITE_REQ, i));
525                 req->l2t_idx = htonl(V_L2T_W_IDX(i));
526                 t3_mgmt_tx(adap, skb);
527                 if (skb == adap->nofail_skb) {
528                         await_mgmt_replies(adap, cnt, 16 + 2048 + i + 1);
529                         adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
530                         if (!adap->nofail_skb)
531                                 goto alloc_skb_fail;
532                 }
533         }
534
535         skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
536         if (!skb)
537                 skb = adap->nofail_skb;
538         if (!skb)
539                 goto alloc_skb_fail;
540
541         greq = (struct cpl_set_tcb_field *)__skb_put(skb, sizeof(*greq));
542         memset(greq, 0, sizeof(*greq));
543         greq->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
544         OPCODE_TID(greq) = htonl(MK_OPCODE_TID(CPL_SET_TCB_FIELD, 0));
545         greq->mask = cpu_to_be64(1);
546         t3_mgmt_tx(adap, skb);
547
548         i = await_mgmt_replies(adap, cnt, 16 + 2048 + 2048 + 1);
549         if (skb == adap->nofail_skb) {
550                 i = await_mgmt_replies(adap, cnt, 16 + 2048 + 2048 + 1);
551                 adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
552         }
553
554         t3_tp_set_offload_mode(adap, 0);
555         return i;
556
557 alloc_skb_fail:
558         t3_tp_set_offload_mode(adap, 0);
559         return -ENOMEM;
560 }
561
562 /**
563  *      setup_rss - configure RSS
564  *      @adap: the adapter
565  *
566  *      Sets up RSS to distribute packets to multiple receive queues.  We
567  *      configure the RSS CPU lookup table to distribute to the number of HW
568  *      receive queues, and the response queue lookup table to narrow that
569  *      down to the response queues actually configured for each port.
570  *      We always configure the RSS mapping for two ports since the mapping
571  *      table has plenty of entries.
572  */
573 static void setup_rss(struct adapter *adap)
574 {
575         int i;
576         unsigned int nq0 = adap2pinfo(adap, 0)->nqsets;
577         unsigned int nq1 = adap->port[1] ? adap2pinfo(adap, 1)->nqsets : 1;
578         u8 cpus[SGE_QSETS + 1];
579         u16 rspq_map[RSS_TABLE_SIZE + 1];
580
581         for (i = 0; i < SGE_QSETS; ++i)
582                 cpus[i] = i;
583         cpus[SGE_QSETS] = 0xff; /* terminator */
584
585         for (i = 0; i < RSS_TABLE_SIZE / 2; ++i) {
586                 rspq_map[i] = i % nq0;
587                 rspq_map[i + RSS_TABLE_SIZE / 2] = (i % nq1) + nq0;
588         }
589         rspq_map[RSS_TABLE_SIZE] = 0xffff; /* terminator */
590
591         t3_config_rss(adap, F_RQFEEDBACKENABLE | F_TNLLKPEN | F_TNLMAPEN |
592                       F_TNLPRTEN | F_TNL2TUPEN | F_TNL4TUPEN |
593                       V_RRCPLCPUSIZE(6) | F_HASHTOEPLITZ, cpus, rspq_map);
594 }
595
596 static void ring_dbs(struct adapter *adap)
597 {
598         int i, j;
599
600         for (i = 0; i < SGE_QSETS; i++) {
601                 struct sge_qset *qs = &adap->sge.qs[i];
602
603                 if (qs->adap)
604                         for (j = 0; j < SGE_TXQ_PER_SET; j++)
605                                 t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX | V_EGRCNTX(qs->txq[j].cntxt_id));
606         }
607 }
608
609 static void init_napi(struct adapter *adap)
610 {
611         int i;
612
613         for (i = 0; i < SGE_QSETS; i++) {
614                 struct sge_qset *qs = &adap->sge.qs[i];
615
616                 if (qs->adap)
617                         netif_napi_add(qs->netdev, &qs->napi, qs->napi.poll,
618                                        64);
619         }
620
621         /*
622          * netif_napi_add() can be called only once per napi_struct because it
623          * adds each new napi_struct to a list.  Be careful not to call it a
624          * second time, e.g., during EEH recovery, by making a note of it.
625          */
626         adap->flags |= NAPI_INIT;
627 }
628
629 /*
630  * Wait until all NAPI handlers are descheduled.  This includes the handlers of
631  * both netdevices representing interfaces and the dummy ones for the extra
632  * queues.
633  */
634 static void quiesce_rx(struct adapter *adap)
635 {
636         int i;
637
638         for (i = 0; i < SGE_QSETS; i++)
639                 if (adap->sge.qs[i].adap)
640                         napi_disable(&adap->sge.qs[i].napi);
641 }
642
643 static void enable_all_napi(struct adapter *adap)
644 {
645         int i;
646         for (i = 0; i < SGE_QSETS; i++)
647                 if (adap->sge.qs[i].adap)
648                         napi_enable(&adap->sge.qs[i].napi);
649 }
650
651 /**
652  *      setup_sge_qsets - configure SGE Tx/Rx/response queues
653  *      @adap: the adapter
654  *
655  *      Determines how many sets of SGE queues to use and initializes them.
656  *      We support multiple queue sets per port if we have MSI-X, otherwise
657  *      just one queue set per port.
658  */
659 static int setup_sge_qsets(struct adapter *adap)
660 {
661         int i, j, err, irq_idx = 0, qset_idx = 0;
662         unsigned int ntxq = SGE_TXQ_PER_SET;
663
664         if (adap->params.rev > 0 && !(adap->flags & USING_MSI))
665                 irq_idx = -1;
666
667         for_each_port(adap, i) {
668                 struct net_device *dev = adap->port[i];
669                 struct port_info *pi = netdev_priv(dev);
670
671                 pi->qs = &adap->sge.qs[pi->first_qset];
672                 for (j = 0; j < pi->nqsets; ++j, ++qset_idx) {
673                         err = t3_sge_alloc_qset(adap, qset_idx, 1,
674                                 (adap->flags & USING_MSIX) ? qset_idx + 1 :
675                                                              irq_idx,
676                                 &adap->params.sge.qset[qset_idx], ntxq, dev,
677                                 netdev_get_tx_queue(dev, j));
678                         if (err) {
679                                 t3_free_sge_resources(adap);
680                                 return err;
681                         }
682                 }
683         }
684
685         return 0;
686 }
687
688 static ssize_t attr_show(struct device *d, char *buf,
689                          ssize_t(*format) (struct net_device *, char *))
690 {
691         ssize_t len;
692
693         /* Synchronize with ioctls that may shut down the device */
694         rtnl_lock();
695         len = (*format) (to_net_dev(d), buf);
696         rtnl_unlock();
697         return len;
698 }
699
700 static ssize_t attr_store(struct device *d,
701                           const char *buf, size_t len,
702                           ssize_t(*set) (struct net_device *, unsigned int),
703                           unsigned int min_val, unsigned int max_val)
704 {
705         ssize_t ret;
706         unsigned int val;
707
708         if (!capable(CAP_NET_ADMIN))
709                 return -EPERM;
710
711         ret = kstrtouint(buf, 0, &val);
712         if (ret)
713                 return ret;
714         if (val < min_val || val > max_val)
715                 return -EINVAL;
716
717         rtnl_lock();
718         ret = (*set) (to_net_dev(d), val);
719         if (!ret)
720                 ret = len;
721         rtnl_unlock();
722         return ret;
723 }
724
725 #define CXGB3_SHOW(name, val_expr) \
726 static ssize_t format_##name(struct net_device *dev, char *buf) \
727 { \
728         struct port_info *pi = netdev_priv(dev); \
729         struct adapter *adap = pi->adapter; \
730         return sprintf(buf, "%u\n", val_expr); \
731 } \
732 static ssize_t show_##name(struct device *d, struct device_attribute *attr, \
733                            char *buf) \
734 { \
735         return attr_show(d, buf, format_##name); \
736 }
737
738 static ssize_t set_nfilters(struct net_device *dev, unsigned int val)
739 {
740         struct port_info *pi = netdev_priv(dev);
741         struct adapter *adap = pi->adapter;
742         int min_tids = is_offload(adap) ? MC5_MIN_TIDS : 0;
743
744         if (adap->flags & FULL_INIT_DONE)
745                 return -EBUSY;
746         if (val && adap->params.rev == 0)
747                 return -EINVAL;
748         if (val > t3_mc5_size(&adap->mc5) - adap->params.mc5.nservers -
749             min_tids)
750                 return -EINVAL;
751         adap->params.mc5.nfilters = val;
752         return 0;
753 }
754
755 static ssize_t store_nfilters(struct device *d, struct device_attribute *attr,
756                               const char *buf, size_t len)
757 {
758         return attr_store(d, buf, len, set_nfilters, 0, ~0);
759 }
760
761 static ssize_t set_nservers(struct net_device *dev, unsigned int val)
762 {
763         struct port_info *pi = netdev_priv(dev);
764         struct adapter *adap = pi->adapter;
765
766         if (adap->flags & FULL_INIT_DONE)
767                 return -EBUSY;
768         if (val > t3_mc5_size(&adap->mc5) - adap->params.mc5.nfilters -
769             MC5_MIN_TIDS)
770                 return -EINVAL;
771         adap->params.mc5.nservers = val;
772         return 0;
773 }
774
775 static ssize_t store_nservers(struct device *d, struct device_attribute *attr,
776                               const char *buf, size_t len)
777 {
778         return attr_store(d, buf, len, set_nservers, 0, ~0);
779 }
780
781 #define CXGB3_ATTR_R(name, val_expr) \
782 CXGB3_SHOW(name, val_expr) \
783 static DEVICE_ATTR(name, S_IRUGO, show_##name, NULL)
784
785 #define CXGB3_ATTR_RW(name, val_expr, store_method) \
786 CXGB3_SHOW(name, val_expr) \
787 static DEVICE_ATTR(name, S_IRUGO | S_IWUSR, show_##name, store_method)
788
789 CXGB3_ATTR_R(cam_size, t3_mc5_size(&adap->mc5));
790 CXGB3_ATTR_RW(nfilters, adap->params.mc5.nfilters, store_nfilters);
791 CXGB3_ATTR_RW(nservers, adap->params.mc5.nservers, store_nservers);
792
793 static struct attribute *cxgb3_attrs[] = {
794         &dev_attr_cam_size.attr,
795         &dev_attr_nfilters.attr,
796         &dev_attr_nservers.attr,
797         NULL
798 };
799
800 static struct attribute_group cxgb3_attr_group = {.attrs = cxgb3_attrs };
801
802 static ssize_t tm_attr_show(struct device *d,
803                             char *buf, int sched)
804 {
805         struct port_info *pi = netdev_priv(to_net_dev(d));
806         struct adapter *adap = pi->adapter;
807         unsigned int v, addr, bpt, cpt;
808         ssize_t len;
809
810         addr = A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2;
811         rtnl_lock();
812         t3_write_reg(adap, A_TP_TM_PIO_ADDR, addr);
813         v = t3_read_reg(adap, A_TP_TM_PIO_DATA);
814         if (sched & 1)
815                 v >>= 16;
816         bpt = (v >> 8) & 0xff;
817         cpt = v & 0xff;
818         if (!cpt)
819                 len = sprintf(buf, "disabled\n");
820         else {
821                 v = (adap->params.vpd.cclk * 1000) / cpt;
822                 len = sprintf(buf, "%u Kbps\n", (v * bpt) / 125);
823         }
824         rtnl_unlock();
825         return len;
826 }
827
828 static ssize_t tm_attr_store(struct device *d,
829                              const char *buf, size_t len, int sched)
830 {
831         struct port_info *pi = netdev_priv(to_net_dev(d));
832         struct adapter *adap = pi->adapter;
833         unsigned int val;
834         ssize_t ret;
835
836         if (!capable(CAP_NET_ADMIN))
837                 return -EPERM;
838
839         ret = kstrtouint(buf, 0, &val);
840         if (ret)
841                 return ret;
842         if (val > 10000000)
843                 return -EINVAL;
844
845         rtnl_lock();
846         ret = t3_config_sched(adap, val, sched);
847         if (!ret)
848                 ret = len;
849         rtnl_unlock();
850         return ret;
851 }
852
853 #define TM_ATTR(name, sched) \
854 static ssize_t show_##name(struct device *d, struct device_attribute *attr, \
855                            char *buf) \
856 { \
857         return tm_attr_show(d, buf, sched); \
858 } \
859 static ssize_t store_##name(struct device *d, struct device_attribute *attr, \
860                             const char *buf, size_t len) \
861 { \
862         return tm_attr_store(d, buf, len, sched); \
863 } \
864 static DEVICE_ATTR(name, S_IRUGO | S_IWUSR, show_##name, store_##name)
865
866 TM_ATTR(sched0, 0);
867 TM_ATTR(sched1, 1);
868 TM_ATTR(sched2, 2);
869 TM_ATTR(sched3, 3);
870 TM_ATTR(sched4, 4);
871 TM_ATTR(sched5, 5);
872 TM_ATTR(sched6, 6);
873 TM_ATTR(sched7, 7);
874
875 static struct attribute *offload_attrs[] = {
876         &dev_attr_sched0.attr,
877         &dev_attr_sched1.attr,
878         &dev_attr_sched2.attr,
879         &dev_attr_sched3.attr,
880         &dev_attr_sched4.attr,
881         &dev_attr_sched5.attr,
882         &dev_attr_sched6.attr,
883         &dev_attr_sched7.attr,
884         NULL
885 };
886
887 static struct attribute_group offload_attr_group = {.attrs = offload_attrs };
888
889 /*
890  * Sends an sk_buff to an offload queue driver
891  * after dealing with any active network taps.
892  */
893 static inline int offload_tx(struct t3cdev *tdev, struct sk_buff *skb)
894 {
895         int ret;
896
897         local_bh_disable();
898         ret = t3_offload_tx(tdev, skb);
899         local_bh_enable();
900         return ret;
901 }
902
903 static int write_smt_entry(struct adapter *adapter, int idx)
904 {
905         struct cpl_smt_write_req *req;
906         struct port_info *pi = netdev_priv(adapter->port[idx]);
907         struct sk_buff *skb = alloc_skb(sizeof(*req), GFP_KERNEL);
908
909         if (!skb)
910                 return -ENOMEM;
911
912         req = (struct cpl_smt_write_req *)__skb_put(skb, sizeof(*req));
913         req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
914         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SMT_WRITE_REQ, idx));
915         req->mtu_idx = NMTUS - 1;       /* should be 0 but there's a T3 bug */
916         req->iff = idx;
917         memcpy(req->src_mac0, adapter->port[idx]->dev_addr, ETH_ALEN);
918         memcpy(req->src_mac1, pi->iscsic.mac_addr, ETH_ALEN);
919         skb->priority = 1;
920         offload_tx(&adapter->tdev, skb);
921         return 0;
922 }
923
924 static int init_smt(struct adapter *adapter)
925 {
926         int i;
927
928         for_each_port(adapter, i)
929             write_smt_entry(adapter, i);
930         return 0;
931 }
932
933 static void init_port_mtus(struct adapter *adapter)
934 {
935         unsigned int mtus = adapter->port[0]->mtu;
936
937         if (adapter->port[1])
938                 mtus |= adapter->port[1]->mtu << 16;
939         t3_write_reg(adapter, A_TP_MTU_PORT_TABLE, mtus);
940 }
941
942 static int send_pktsched_cmd(struct adapter *adap, int sched, int qidx, int lo,
943                               int hi, int port)
944 {
945         struct sk_buff *skb;
946         struct mngt_pktsched_wr *req;
947         int ret;
948
949         skb = alloc_skb(sizeof(*req), GFP_KERNEL);
950         if (!skb)
951                 skb = adap->nofail_skb;
952         if (!skb)
953                 return -ENOMEM;
954
955         req = (struct mngt_pktsched_wr *)skb_put(skb, sizeof(*req));
956         req->wr_hi = htonl(V_WR_OP(FW_WROPCODE_MNGT));
957         req->mngt_opcode = FW_MNGTOPCODE_PKTSCHED_SET;
958         req->sched = sched;
959         req->idx = qidx;
960         req->min = lo;
961         req->max = hi;
962         req->binding = port;
963         ret = t3_mgmt_tx(adap, skb);
964         if (skb == adap->nofail_skb) {
965                 adap->nofail_skb = alloc_skb(sizeof(struct cpl_set_tcb_field),
966                                              GFP_KERNEL);
967                 if (!adap->nofail_skb)
968                         ret = -ENOMEM;
969         }
970
971         return ret;
972 }
973
974 static int bind_qsets(struct adapter *adap)
975 {
976         int i, j, err = 0;
977
978         for_each_port(adap, i) {
979                 const struct port_info *pi = adap2pinfo(adap, i);
980
981                 for (j = 0; j < pi->nqsets; ++j) {
982                         int ret = send_pktsched_cmd(adap, 1,
983                                                     pi->first_qset + j, -1,
984                                                     -1, i);
985                         if (ret)
986                                 err = ret;
987                 }
988         }
989
990         return err;
991 }
992
993 #define FW_VERSION __stringify(FW_VERSION_MAJOR) "."                    \
994         __stringify(FW_VERSION_MINOR) "." __stringify(FW_VERSION_MICRO)
995 #define FW_FNAME "cxgb3/t3fw-" FW_VERSION ".bin"
996 #define TPSRAM_VERSION __stringify(TP_VERSION_MAJOR) "."                \
997         __stringify(TP_VERSION_MINOR) "." __stringify(TP_VERSION_MICRO)
998 #define TPSRAM_NAME "cxgb3/t3%c_psram-" TPSRAM_VERSION ".bin"
999 #define AEL2005_OPT_EDC_NAME "cxgb3/ael2005_opt_edc.bin"
1000 #define AEL2005_TWX_EDC_NAME "cxgb3/ael2005_twx_edc.bin"
1001 #define AEL2020_TWX_EDC_NAME "cxgb3/ael2020_twx_edc.bin"
1002 MODULE_FIRMWARE(FW_FNAME);
1003 MODULE_FIRMWARE("cxgb3/t3b_psram-" TPSRAM_VERSION ".bin");
1004 MODULE_FIRMWARE("cxgb3/t3c_psram-" TPSRAM_VERSION ".bin");
1005 MODULE_FIRMWARE(AEL2005_OPT_EDC_NAME);
1006 MODULE_FIRMWARE(AEL2005_TWX_EDC_NAME);
1007 MODULE_FIRMWARE(AEL2020_TWX_EDC_NAME);
1008
1009 static inline const char *get_edc_fw_name(int edc_idx)
1010 {
1011         const char *fw_name = NULL;
1012
1013         switch (edc_idx) {
1014         case EDC_OPT_AEL2005:
1015                 fw_name = AEL2005_OPT_EDC_NAME;
1016                 break;
1017         case EDC_TWX_AEL2005:
1018                 fw_name = AEL2005_TWX_EDC_NAME;
1019                 break;
1020         case EDC_TWX_AEL2020:
1021                 fw_name = AEL2020_TWX_EDC_NAME;
1022                 break;
1023         }
1024         return fw_name;
1025 }
1026
1027 int t3_get_edc_fw(struct cphy *phy, int edc_idx, int size)
1028 {
1029         struct adapter *adapter = phy->adapter;
1030         const struct firmware *fw;
1031         const char *fw_name;
1032         u32 csum;
1033         const __be32 *p;
1034         u16 *cache = phy->phy_cache;
1035         int i, ret = -EINVAL;
1036
1037         fw_name = get_edc_fw_name(edc_idx);
1038         if (fw_name)
1039                 ret = request_firmware(&fw, fw_name, &adapter->pdev->dev);
1040         if (ret < 0) {
1041                 dev_err(&adapter->pdev->dev,
1042                         "could not upgrade firmware: unable to load %s\n",
1043                         fw_name);
1044                 return ret;
1045         }
1046
1047         /* check size, take checksum in account */
1048         if (fw->size > size + 4) {
1049                 CH_ERR(adapter, "firmware image too large %u, expected %d\n",
1050                        (unsigned int)fw->size, size + 4);
1051                 ret = -EINVAL;
1052         }
1053
1054         /* compute checksum */
1055         p = (const __be32 *)fw->data;
1056         for (csum = 0, i = 0; i < fw->size / sizeof(csum); i++)
1057                 csum += ntohl(p[i]);
1058
1059         if (csum != 0xffffffff) {
1060                 CH_ERR(adapter, "corrupted firmware image, checksum %u\n",
1061                        csum);
1062                 ret = -EINVAL;
1063         }
1064
1065         for (i = 0; i < size / 4 ; i++) {
1066                 *cache++ = (be32_to_cpu(p[i]) & 0xffff0000) >> 16;
1067                 *cache++ = be32_to_cpu(p[i]) & 0xffff;
1068         }
1069
1070         release_firmware(fw);
1071
1072         return ret;
1073 }
1074
1075 static int upgrade_fw(struct adapter *adap)
1076 {
1077         int ret;
1078         const struct firmware *fw;
1079         struct device *dev = &adap->pdev->dev;
1080
1081         ret = request_firmware(&fw, FW_FNAME, dev);
1082         if (ret < 0) {
1083                 dev_err(dev, "could not upgrade firmware: unable to load %s\n",
1084                         FW_FNAME);
1085                 return ret;
1086         }
1087         ret = t3_load_fw(adap, fw->data, fw->size);
1088         release_firmware(fw);
1089
1090         if (ret == 0)
1091                 dev_info(dev, "successful upgrade to firmware %d.%d.%d\n",
1092                          FW_VERSION_MAJOR, FW_VERSION_MINOR, FW_VERSION_MICRO);
1093         else
1094                 dev_err(dev, "failed to upgrade to firmware %d.%d.%d\n",
1095                         FW_VERSION_MAJOR, FW_VERSION_MINOR, FW_VERSION_MICRO);
1096
1097         return ret;
1098 }
1099
1100 static inline char t3rev2char(struct adapter *adapter)
1101 {
1102         char rev = 0;
1103
1104         switch(adapter->params.rev) {
1105         case T3_REV_B:
1106         case T3_REV_B2:
1107                 rev = 'b';
1108                 break;
1109         case T3_REV_C:
1110                 rev = 'c';
1111                 break;
1112         }
1113         return rev;
1114 }
1115
1116 static int update_tpsram(struct adapter *adap)
1117 {
1118         const struct firmware *tpsram;
1119         char buf[64];
1120         struct device *dev = &adap->pdev->dev;
1121         int ret;
1122         char rev;
1123
1124         rev = t3rev2char(adap);
1125         if (!rev)
1126                 return 0;
1127
1128         snprintf(buf, sizeof(buf), TPSRAM_NAME, rev);
1129
1130         ret = request_firmware(&tpsram, buf, dev);
1131         if (ret < 0) {
1132                 dev_err(dev, "could not load TP SRAM: unable to load %s\n",
1133                         buf);
1134                 return ret;
1135         }
1136
1137         ret = t3_check_tpsram(adap, tpsram->data, tpsram->size);
1138         if (ret)
1139                 goto release_tpsram;
1140
1141         ret = t3_set_proto_sram(adap, tpsram->data);
1142         if (ret == 0)
1143                 dev_info(dev,
1144                          "successful update of protocol engine "
1145                          "to %d.%d.%d\n",
1146                          TP_VERSION_MAJOR, TP_VERSION_MINOR, TP_VERSION_MICRO);
1147         else
1148                 dev_err(dev, "failed to update of protocol engine %d.%d.%d\n",
1149                         TP_VERSION_MAJOR, TP_VERSION_MINOR, TP_VERSION_MICRO);
1150         if (ret)
1151                 dev_err(dev, "loading protocol SRAM failed\n");
1152
1153 release_tpsram:
1154         release_firmware(tpsram);
1155
1156         return ret;
1157 }
1158
1159 /**
1160  * t3_synchronize_rx - wait for current Rx processing on a port to complete
1161  * @adap: the adapter
1162  * @p: the port
1163  *
1164  * Ensures that current Rx processing on any of the queues associated with
1165  * the given port completes before returning.  We do this by acquiring and
1166  * releasing the locks of the response queues associated with the port.
1167  */
1168 static void t3_synchronize_rx(struct adapter *adap, const struct port_info *p)
1169 {
1170         int i;
1171
1172         for (i = p->first_qset; i < p->first_qset + p->nqsets; i++) {
1173                 struct sge_rspq *q = &adap->sge.qs[i].rspq;
1174
1175                 spin_lock_irq(&q->lock);
1176                 spin_unlock_irq(&q->lock);
1177         }
1178 }
1179
1180 static void cxgb_vlan_mode(struct net_device *dev, netdev_features_t features)
1181 {
1182         struct port_info *pi = netdev_priv(dev);
1183         struct adapter *adapter = pi->adapter;
1184
1185         if (adapter->params.rev > 0) {
1186                 t3_set_vlan_accel(adapter, 1 << pi->port_id,
1187                                   features & NETIF_F_HW_VLAN_CTAG_RX);
1188         } else {
1189                 /* single control for all ports */
1190                 unsigned int i, have_vlans = features & NETIF_F_HW_VLAN_CTAG_RX;
1191
1192                 for_each_port(adapter, i)
1193                         have_vlans |=
1194                                 adapter->port[i]->features &
1195                                 NETIF_F_HW_VLAN_CTAG_RX;
1196
1197                 t3_set_vlan_accel(adapter, 1, have_vlans);
1198         }
1199         t3_synchronize_rx(adapter, pi);
1200 }
1201
1202 /**
1203  *      cxgb_up - enable the adapter
1204  *      @adapter: adapter being enabled
1205  *
1206  *      Called when the first port is enabled, this function performs the
1207  *      actions necessary to make an adapter operational, such as completing
1208  *      the initialization of HW modules, and enabling interrupts.
1209  *
1210  *      Must be called with the rtnl lock held.
1211  */
1212 static int cxgb_up(struct adapter *adap)
1213 {
1214         int i, err;
1215
1216         if (!(adap->flags & FULL_INIT_DONE)) {
1217                 err = t3_check_fw_version(adap);
1218                 if (err == -EINVAL) {
1219                         err = upgrade_fw(adap);
1220                         CH_WARN(adap, "FW upgrade to %d.%d.%d %s\n",
1221                                 FW_VERSION_MAJOR, FW_VERSION_MINOR,
1222                                 FW_VERSION_MICRO, err ? "failed" : "succeeded");
1223                 }
1224
1225                 err = t3_check_tpsram_version(adap);
1226                 if (err == -EINVAL) {
1227                         err = update_tpsram(adap);
1228                         CH_WARN(adap, "TP upgrade to %d.%d.%d %s\n",
1229                                 TP_VERSION_MAJOR, TP_VERSION_MINOR,
1230                                 TP_VERSION_MICRO, err ? "failed" : "succeeded");
1231                 }
1232
1233                 /*
1234                  * Clear interrupts now to catch errors if t3_init_hw fails.
1235                  * We clear them again later as initialization may trigger
1236                  * conditions that can interrupt.
1237                  */
1238                 t3_intr_clear(adap);
1239
1240                 err = t3_init_hw(adap, 0);
1241                 if (err)
1242                         goto out;
1243
1244                 t3_set_reg_field(adap, A_TP_PARA_REG5, 0, F_RXDDPOFFINIT);
1245                 t3_write_reg(adap, A_ULPRX_TDDP_PSZ, V_HPZ0(PAGE_SHIFT - 12));
1246
1247                 err = setup_sge_qsets(adap);
1248                 if (err)
1249                         goto out;
1250
1251                 for_each_port(adap, i)
1252                         cxgb_vlan_mode(adap->port[i], adap->port[i]->features);
1253
1254                 setup_rss(adap);
1255                 if (!(adap->flags & NAPI_INIT))
1256                         init_napi(adap);
1257
1258                 t3_start_sge_timers(adap);
1259                 adap->flags |= FULL_INIT_DONE;
1260         }
1261
1262         t3_intr_clear(adap);
1263
1264         if (adap->flags & USING_MSIX) {
1265                 name_msix_vecs(adap);
1266                 err = request_irq(adap->msix_info[0].vec,
1267                                   t3_async_intr_handler, 0,
1268                                   adap->msix_info[0].desc, adap);
1269                 if (err)
1270                         goto irq_err;
1271
1272                 err = request_msix_data_irqs(adap);
1273                 if (err) {
1274                         free_irq(adap->msix_info[0].vec, adap);
1275                         goto irq_err;
1276                 }
1277         } else if ((err = request_irq(adap->pdev->irq,
1278                                       t3_intr_handler(adap,
1279                                                       adap->sge.qs[0].rspq.
1280                                                       polling),
1281                                       (adap->flags & USING_MSI) ?
1282                                        0 : IRQF_SHARED,
1283                                       adap->name, adap)))
1284                 goto irq_err;
1285
1286         enable_all_napi(adap);
1287         t3_sge_start(adap);
1288         t3_intr_enable(adap);
1289
1290         if (adap->params.rev >= T3_REV_C && !(adap->flags & TP_PARITY_INIT) &&
1291             is_offload(adap) && init_tp_parity(adap) == 0)
1292                 adap->flags |= TP_PARITY_INIT;
1293
1294         if (adap->flags & TP_PARITY_INIT) {
1295                 t3_write_reg(adap, A_TP_INT_CAUSE,
1296                              F_CMCACHEPERR | F_ARPLUTPERR);
1297                 t3_write_reg(adap, A_TP_INT_ENABLE, 0x7fbfffff);
1298         }
1299
1300         if (!(adap->flags & QUEUES_BOUND)) {
1301                 int ret = bind_qsets(adap);
1302
1303                 if (ret < 0) {
1304                         CH_ERR(adap, "failed to bind qsets, err %d\n", ret);
1305                         t3_intr_disable(adap);
1306                         free_irq_resources(adap);
1307                         err = ret;
1308                         goto out;
1309                 }
1310                 adap->flags |= QUEUES_BOUND;
1311         }
1312
1313 out:
1314         return err;
1315 irq_err:
1316         CH_ERR(adap, "request_irq failed, err %d\n", err);
1317         goto out;
1318 }
1319
1320 /*
1321  * Release resources when all the ports and offloading have been stopped.
1322  */
1323 static void cxgb_down(struct adapter *adapter, int on_wq)
1324 {
1325         t3_sge_stop(adapter);
1326         spin_lock_irq(&adapter->work_lock);     /* sync with PHY intr task */
1327         t3_intr_disable(adapter);
1328         spin_unlock_irq(&adapter->work_lock);
1329
1330         free_irq_resources(adapter);
1331         quiesce_rx(adapter);
1332         t3_sge_stop(adapter);
1333         if (!on_wq)
1334                 flush_workqueue(cxgb3_wq);/* wait for external IRQ handler */
1335 }
1336
1337 static void schedule_chk_task(struct adapter *adap)
1338 {
1339         unsigned int timeo;
1340
1341         timeo = adap->params.linkpoll_period ?
1342             (HZ * adap->params.linkpoll_period) / 10 :
1343             adap->params.stats_update_period * HZ;
1344         if (timeo)
1345                 queue_delayed_work(cxgb3_wq, &adap->adap_check_task, timeo);
1346 }
1347
1348 static int offload_open(struct net_device *dev)
1349 {
1350         struct port_info *pi = netdev_priv(dev);
1351         struct adapter *adapter = pi->adapter;
1352         struct t3cdev *tdev = dev2t3cdev(dev);
1353         int adap_up = adapter->open_device_map & PORT_MASK;
1354         int err;
1355
1356         if (test_and_set_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map))
1357                 return 0;
1358
1359         if (!adap_up && (err = cxgb_up(adapter)) < 0)
1360                 goto out;
1361
1362         t3_tp_set_offload_mode(adapter, 1);
1363         tdev->lldev = adapter->port[0];
1364         err = cxgb3_offload_activate(adapter);
1365         if (err)
1366                 goto out;
1367
1368         init_port_mtus(adapter);
1369         t3_load_mtus(adapter, adapter->params.mtus, adapter->params.a_wnd,
1370                      adapter->params.b_wnd,
1371                      adapter->params.rev == 0 ?
1372                      adapter->port[0]->mtu : 0xffff);
1373         init_smt(adapter);
1374
1375         if (sysfs_create_group(&tdev->lldev->dev.kobj, &offload_attr_group))
1376                 dev_dbg(&dev->dev, "cannot create sysfs group\n");
1377
1378         /* Call back all registered clients */
1379         cxgb3_add_clients(tdev);
1380
1381 out:
1382         /* restore them in case the offload module has changed them */
1383         if (err) {
1384                 t3_tp_set_offload_mode(adapter, 0);
1385                 clear_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map);
1386                 cxgb3_set_dummy_ops(tdev);
1387         }
1388         return err;
1389 }
1390
1391 static int offload_close(struct t3cdev *tdev)
1392 {
1393         struct adapter *adapter = tdev2adap(tdev);
1394         struct t3c_data *td = T3C_DATA(tdev);
1395
1396         if (!test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map))
1397                 return 0;
1398
1399         /* Call back all registered clients */
1400         cxgb3_remove_clients(tdev);
1401
1402         sysfs_remove_group(&tdev->lldev->dev.kobj, &offload_attr_group);
1403
1404         /* Flush work scheduled while releasing TIDs */
1405         flush_work(&td->tid_release_task);
1406
1407         tdev->lldev = NULL;
1408         cxgb3_set_dummy_ops(tdev);
1409         t3_tp_set_offload_mode(adapter, 0);
1410         clear_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map);
1411
1412         if (!adapter->open_device_map)
1413                 cxgb_down(adapter, 0);
1414
1415         cxgb3_offload_deactivate(adapter);
1416         return 0;
1417 }
1418
1419 static int cxgb_open(struct net_device *dev)
1420 {
1421         struct port_info *pi = netdev_priv(dev);
1422         struct adapter *adapter = pi->adapter;
1423         int other_ports = adapter->open_device_map & PORT_MASK;
1424         int err;
1425
1426         if (!adapter->open_device_map && (err = cxgb_up(adapter)) < 0)
1427                 return err;
1428
1429         set_bit(pi->port_id, &adapter->open_device_map);
1430         if (is_offload(adapter) && !ofld_disable) {
1431                 err = offload_open(dev);
1432                 if (err)
1433                         pr_warn("Could not initialize offload capabilities\n");
1434         }
1435
1436         netif_set_real_num_tx_queues(dev, pi->nqsets);
1437         err = netif_set_real_num_rx_queues(dev, pi->nqsets);
1438         if (err)
1439                 return err;
1440         link_start(dev);
1441         t3_port_intr_enable(adapter, pi->port_id);
1442         netif_tx_start_all_queues(dev);
1443         if (!other_ports)
1444                 schedule_chk_task(adapter);
1445
1446         cxgb3_event_notify(&adapter->tdev, OFFLOAD_PORT_UP, pi->port_id);
1447         return 0;
1448 }
1449
1450 static int __cxgb_close(struct net_device *dev, int on_wq)
1451 {
1452         struct port_info *pi = netdev_priv(dev);
1453         struct adapter *adapter = pi->adapter;
1454
1455         
1456         if (!adapter->open_device_map)
1457                 return 0;
1458
1459         /* Stop link fault interrupts */
1460         t3_xgm_intr_disable(adapter, pi->port_id);
1461         t3_read_reg(adapter, A_XGM_INT_STATUS + pi->mac.offset);
1462
1463         t3_port_intr_disable(adapter, pi->port_id);
1464         netif_tx_stop_all_queues(dev);
1465         pi->phy.ops->power_down(&pi->phy, 1);
1466         netif_carrier_off(dev);
1467         t3_mac_disable(&pi->mac, MAC_DIRECTION_TX | MAC_DIRECTION_RX);
1468
1469         spin_lock_irq(&adapter->work_lock);     /* sync with update task */
1470         clear_bit(pi->port_id, &adapter->open_device_map);
1471         spin_unlock_irq(&adapter->work_lock);
1472
1473         if (!(adapter->open_device_map & PORT_MASK))
1474                 cancel_delayed_work_sync(&adapter->adap_check_task);
1475
1476         if (!adapter->open_device_map)
1477                 cxgb_down(adapter, on_wq);
1478
1479         cxgb3_event_notify(&adapter->tdev, OFFLOAD_PORT_DOWN, pi->port_id);
1480         return 0;
1481 }
1482
1483 static int cxgb_close(struct net_device *dev)
1484 {
1485         return __cxgb_close(dev, 0);
1486 }
1487
1488 static struct net_device_stats *cxgb_get_stats(struct net_device *dev)
1489 {
1490         struct port_info *pi = netdev_priv(dev);
1491         struct adapter *adapter = pi->adapter;
1492         struct net_device_stats *ns = &pi->netstats;
1493         const struct mac_stats *pstats;
1494
1495         spin_lock(&adapter->stats_lock);
1496         pstats = t3_mac_update_stats(&pi->mac);
1497         spin_unlock(&adapter->stats_lock);
1498
1499         ns->tx_bytes = pstats->tx_octets;
1500         ns->tx_packets = pstats->tx_frames;
1501         ns->rx_bytes = pstats->rx_octets;
1502         ns->rx_packets = pstats->rx_frames;
1503         ns->multicast = pstats->rx_mcast_frames;
1504
1505         ns->tx_errors = pstats->tx_underrun;
1506         ns->rx_errors = pstats->rx_symbol_errs + pstats->rx_fcs_errs +
1507             pstats->rx_too_long + pstats->rx_jabber + pstats->rx_short +
1508             pstats->rx_fifo_ovfl;
1509
1510         /* detailed rx_errors */
1511         ns->rx_length_errors = pstats->rx_jabber + pstats->rx_too_long;
1512         ns->rx_over_errors = 0;
1513         ns->rx_crc_errors = pstats->rx_fcs_errs;
1514         ns->rx_frame_errors = pstats->rx_symbol_errs;
1515         ns->rx_fifo_errors = pstats->rx_fifo_ovfl;
1516         ns->rx_missed_errors = pstats->rx_cong_drops;
1517
1518         /* detailed tx_errors */
1519         ns->tx_aborted_errors = 0;
1520         ns->tx_carrier_errors = 0;
1521         ns->tx_fifo_errors = pstats->tx_underrun;
1522         ns->tx_heartbeat_errors = 0;
1523         ns->tx_window_errors = 0;
1524         return ns;
1525 }
1526
1527 static u32 get_msglevel(struct net_device *dev)
1528 {
1529         struct port_info *pi = netdev_priv(dev);
1530         struct adapter *adapter = pi->adapter;
1531
1532         return adapter->msg_enable;
1533 }
1534
1535 static void set_msglevel(struct net_device *dev, u32 val)
1536 {
1537         struct port_info *pi = netdev_priv(dev);
1538         struct adapter *adapter = pi->adapter;
1539
1540         adapter->msg_enable = val;
1541 }
1542
1543 static const char stats_strings[][ETH_GSTRING_LEN] = {
1544         "TxOctetsOK         ",
1545         "TxFramesOK         ",
1546         "TxMulticastFramesOK",
1547         "TxBroadcastFramesOK",
1548         "TxPauseFrames      ",
1549         "TxUnderrun         ",
1550         "TxExtUnderrun      ",
1551
1552         "TxFrames64         ",
1553         "TxFrames65To127    ",
1554         "TxFrames128To255   ",
1555         "TxFrames256To511   ",
1556         "TxFrames512To1023  ",
1557         "TxFrames1024To1518 ",
1558         "TxFrames1519ToMax  ",
1559
1560         "RxOctetsOK         ",
1561         "RxFramesOK         ",
1562         "RxMulticastFramesOK",
1563         "RxBroadcastFramesOK",
1564         "RxPauseFrames      ",
1565         "RxFCSErrors        ",
1566         "RxSymbolErrors     ",
1567         "RxShortErrors      ",
1568         "RxJabberErrors     ",
1569         "RxLengthErrors     ",
1570         "RxFIFOoverflow     ",
1571
1572         "RxFrames64         ",
1573         "RxFrames65To127    ",
1574         "RxFrames128To255   ",
1575         "RxFrames256To511   ",
1576         "RxFrames512To1023  ",
1577         "RxFrames1024To1518 ",
1578         "RxFrames1519ToMax  ",
1579
1580         "PhyFIFOErrors      ",
1581         "TSO                ",
1582         "VLANextractions    ",
1583         "VLANinsertions     ",
1584         "TxCsumOffload      ",
1585         "RxCsumGood         ",
1586         "LroAggregated      ",
1587         "LroFlushed         ",
1588         "LroNoDesc          ",
1589         "RxDrops            ",
1590
1591         "CheckTXEnToggled   ",
1592         "CheckResets        ",
1593
1594         "LinkFaults         ",
1595 };
1596
1597 static int get_sset_count(struct net_device *dev, int sset)
1598 {
1599         switch (sset) {
1600         case ETH_SS_STATS:
1601                 return ARRAY_SIZE(stats_strings);
1602         default:
1603                 return -EOPNOTSUPP;
1604         }
1605 }
1606
1607 #define T3_REGMAP_SIZE (3 * 1024)
1608
1609 static int get_regs_len(struct net_device *dev)
1610 {
1611         return T3_REGMAP_SIZE;
1612 }
1613
1614 static int get_eeprom_len(struct net_device *dev)
1615 {
1616         return EEPROMSIZE;
1617 }
1618
1619 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1620 {
1621         struct port_info *pi = netdev_priv(dev);
1622         struct adapter *adapter = pi->adapter;
1623         u32 fw_vers = 0;
1624         u32 tp_vers = 0;
1625
1626         spin_lock(&adapter->stats_lock);
1627         t3_get_fw_version(adapter, &fw_vers);
1628         t3_get_tp_version(adapter, &tp_vers);
1629         spin_unlock(&adapter->stats_lock);
1630
1631         strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1632         strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1633         strlcpy(info->bus_info, pci_name(adapter->pdev),
1634                 sizeof(info->bus_info));
1635         if (fw_vers)
1636                 snprintf(info->fw_version, sizeof(info->fw_version),
1637                          "%s %u.%u.%u TP %u.%u.%u",
1638                          G_FW_VERSION_TYPE(fw_vers) ? "T" : "N",
1639                          G_FW_VERSION_MAJOR(fw_vers),
1640                          G_FW_VERSION_MINOR(fw_vers),
1641                          G_FW_VERSION_MICRO(fw_vers),
1642                          G_TP_VERSION_MAJOR(tp_vers),
1643                          G_TP_VERSION_MINOR(tp_vers),
1644                          G_TP_VERSION_MICRO(tp_vers));
1645 }
1646
1647 static void get_strings(struct net_device *dev, u32 stringset, u8 * data)
1648 {
1649         if (stringset == ETH_SS_STATS)
1650                 memcpy(data, stats_strings, sizeof(stats_strings));
1651 }
1652
1653 static unsigned long collect_sge_port_stats(struct adapter *adapter,
1654                                             struct port_info *p, int idx)
1655 {
1656         int i;
1657         unsigned long tot = 0;
1658
1659         for (i = p->first_qset; i < p->first_qset + p->nqsets; ++i)
1660                 tot += adapter->sge.qs[i].port_stats[idx];
1661         return tot;
1662 }
1663
1664 static void get_stats(struct net_device *dev, struct ethtool_stats *stats,
1665                       u64 *data)
1666 {
1667         struct port_info *pi = netdev_priv(dev);
1668         struct adapter *adapter = pi->adapter;
1669         const struct mac_stats *s;
1670
1671         spin_lock(&adapter->stats_lock);
1672         s = t3_mac_update_stats(&pi->mac);
1673         spin_unlock(&adapter->stats_lock);
1674
1675         *data++ = s->tx_octets;
1676         *data++ = s->tx_frames;
1677         *data++ = s->tx_mcast_frames;
1678         *data++ = s->tx_bcast_frames;
1679         *data++ = s->tx_pause;
1680         *data++ = s->tx_underrun;
1681         *data++ = s->tx_fifo_urun;
1682
1683         *data++ = s->tx_frames_64;
1684         *data++ = s->tx_frames_65_127;
1685         *data++ = s->tx_frames_128_255;
1686         *data++ = s->tx_frames_256_511;
1687         *data++ = s->tx_frames_512_1023;
1688         *data++ = s->tx_frames_1024_1518;
1689         *data++ = s->tx_frames_1519_max;
1690
1691         *data++ = s->rx_octets;
1692         *data++ = s->rx_frames;
1693         *data++ = s->rx_mcast_frames;
1694         *data++ = s->rx_bcast_frames;
1695         *data++ = s->rx_pause;
1696         *data++ = s->rx_fcs_errs;
1697         *data++ = s->rx_symbol_errs;
1698         *data++ = s->rx_short;
1699         *data++ = s->rx_jabber;
1700         *data++ = s->rx_too_long;
1701         *data++ = s->rx_fifo_ovfl;
1702
1703         *data++ = s->rx_frames_64;
1704         *data++ = s->rx_frames_65_127;
1705         *data++ = s->rx_frames_128_255;
1706         *data++ = s->rx_frames_256_511;
1707         *data++ = s->rx_frames_512_1023;
1708         *data++ = s->rx_frames_1024_1518;
1709         *data++ = s->rx_frames_1519_max;
1710
1711         *data++ = pi->phy.fifo_errors;
1712
1713         *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_TSO);
1714         *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_VLANEX);
1715         *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_VLANINS);
1716         *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_TX_CSUM);
1717         *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_RX_CSUM_GOOD);
1718         *data++ = 0;
1719         *data++ = 0;
1720         *data++ = 0;
1721         *data++ = s->rx_cong_drops;
1722
1723         *data++ = s->num_toggled;
1724         *data++ = s->num_resets;
1725
1726         *data++ = s->link_faults;
1727 }
1728
1729 static inline void reg_block_dump(struct adapter *ap, void *buf,
1730                                   unsigned int start, unsigned int end)
1731 {
1732         u32 *p = buf + start;
1733
1734         for (; start <= end; start += sizeof(u32))
1735                 *p++ = t3_read_reg(ap, start);
1736 }
1737
1738 static void get_regs(struct net_device *dev, struct ethtool_regs *regs,
1739                      void *buf)
1740 {
1741         struct port_info *pi = netdev_priv(dev);
1742         struct adapter *ap = pi->adapter;
1743
1744         /*
1745          * Version scheme:
1746          * bits 0..9: chip version
1747          * bits 10..15: chip revision
1748          * bit 31: set for PCIe cards
1749          */
1750         regs->version = 3 | (ap->params.rev << 10) | (is_pcie(ap) << 31);
1751
1752         /*
1753          * We skip the MAC statistics registers because they are clear-on-read.
1754          * Also reading multi-register stats would need to synchronize with the
1755          * periodic mac stats accumulation.  Hard to justify the complexity.
1756          */
1757         memset(buf, 0, T3_REGMAP_SIZE);
1758         reg_block_dump(ap, buf, 0, A_SG_RSPQ_CREDIT_RETURN);
1759         reg_block_dump(ap, buf, A_SG_HI_DRB_HI_THRSH, A_ULPRX_PBL_ULIMIT);
1760         reg_block_dump(ap, buf, A_ULPTX_CONFIG, A_MPS_INT_CAUSE);
1761         reg_block_dump(ap, buf, A_CPL_SWITCH_CNTRL, A_CPL_MAP_TBL_DATA);
1762         reg_block_dump(ap, buf, A_SMB_GLOBAL_TIME_CFG, A_XGM_SERDES_STAT3);
1763         reg_block_dump(ap, buf, A_XGM_SERDES_STATUS0,
1764                        XGM_REG(A_XGM_SERDES_STAT3, 1));
1765         reg_block_dump(ap, buf, XGM_REG(A_XGM_SERDES_STATUS0, 1),
1766                        XGM_REG(A_XGM_RX_SPI4_SOP_EOP_CNT, 1));
1767 }
1768
1769 static int restart_autoneg(struct net_device *dev)
1770 {
1771         struct port_info *p = netdev_priv(dev);
1772
1773         if (!netif_running(dev))
1774                 return -EAGAIN;
1775         if (p->link_config.autoneg != AUTONEG_ENABLE)
1776                 return -EINVAL;
1777         p->phy.ops->autoneg_restart(&p->phy);
1778         return 0;
1779 }
1780
1781 static int set_phys_id(struct net_device *dev,
1782                        enum ethtool_phys_id_state state)
1783 {
1784         struct port_info *pi = netdev_priv(dev);
1785         struct adapter *adapter = pi->adapter;
1786
1787         switch (state) {
1788         case ETHTOOL_ID_ACTIVE:
1789                 return 1;       /* cycle on/off once per second */
1790
1791         case ETHTOOL_ID_OFF:
1792                 t3_set_reg_field(adapter, A_T3DBG_GPIO_EN, F_GPIO0_OUT_VAL, 0);
1793                 break;
1794
1795         case ETHTOOL_ID_ON:
1796         case ETHTOOL_ID_INACTIVE:
1797                 t3_set_reg_field(adapter, A_T3DBG_GPIO_EN, F_GPIO0_OUT_VAL,
1798                          F_GPIO0_OUT_VAL);
1799         }
1800
1801         return 0;
1802 }
1803
1804 static int get_link_ksettings(struct net_device *dev,
1805                               struct ethtool_link_ksettings *cmd)
1806 {
1807         struct port_info *p = netdev_priv(dev);
1808         u32 supported;
1809
1810         ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
1811                                                 p->link_config.supported);
1812         ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
1813                                                 p->link_config.advertising);
1814
1815         if (netif_carrier_ok(dev)) {
1816                 cmd->base.speed = p->link_config.speed;
1817                 cmd->base.duplex = p->link_config.duplex;
1818         } else {
1819                 cmd->base.speed = SPEED_UNKNOWN;
1820                 cmd->base.duplex = DUPLEX_UNKNOWN;
1821         }
1822
1823         ethtool_convert_link_mode_to_legacy_u32(&supported,
1824                                                 cmd->link_modes.supported);
1825
1826         cmd->base.port = (supported & SUPPORTED_TP) ? PORT_TP : PORT_FIBRE;
1827         cmd->base.phy_address = p->phy.mdio.prtad;
1828         cmd->base.autoneg = p->link_config.autoneg;
1829         return 0;
1830 }
1831
1832 static int speed_duplex_to_caps(int speed, int duplex)
1833 {
1834         int cap = 0;
1835
1836         switch (speed) {
1837         case SPEED_10:
1838                 if (duplex == DUPLEX_FULL)
1839                         cap = SUPPORTED_10baseT_Full;
1840                 else
1841                         cap = SUPPORTED_10baseT_Half;
1842                 break;
1843         case SPEED_100:
1844                 if (duplex == DUPLEX_FULL)
1845                         cap = SUPPORTED_100baseT_Full;
1846                 else
1847                         cap = SUPPORTED_100baseT_Half;
1848                 break;
1849         case SPEED_1000:
1850                 if (duplex == DUPLEX_FULL)
1851                         cap = SUPPORTED_1000baseT_Full;
1852                 else
1853                         cap = SUPPORTED_1000baseT_Half;
1854                 break;
1855         case SPEED_10000:
1856                 if (duplex == DUPLEX_FULL)
1857                         cap = SUPPORTED_10000baseT_Full;
1858         }
1859         return cap;
1860 }
1861
1862 #define ADVERTISED_MASK (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
1863                       ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
1864                       ADVERTISED_1000baseT_Half | ADVERTISED_1000baseT_Full | \
1865                       ADVERTISED_10000baseT_Full)
1866
1867 static int set_link_ksettings(struct net_device *dev,
1868                               const struct ethtool_link_ksettings *cmd)
1869 {
1870         struct port_info *p = netdev_priv(dev);
1871         struct link_config *lc = &p->link_config;
1872         u32 advertising;
1873
1874         ethtool_convert_link_mode_to_legacy_u32(&advertising,
1875                                                 cmd->link_modes.advertising);
1876
1877         if (!(lc->supported & SUPPORTED_Autoneg)) {
1878                 /*
1879                  * PHY offers a single speed/duplex.  See if that's what's
1880                  * being requested.
1881                  */
1882                 if (cmd->base.autoneg == AUTONEG_DISABLE) {
1883                         u32 speed = cmd->base.speed;
1884                         int cap = speed_duplex_to_caps(speed, cmd->base.duplex);
1885                         if (lc->supported & cap)
1886                                 return 0;
1887                 }
1888                 return -EINVAL;
1889         }
1890
1891         if (cmd->base.autoneg == AUTONEG_DISABLE) {
1892                 u32 speed = cmd->base.speed;
1893                 int cap = speed_duplex_to_caps(speed, cmd->base.duplex);
1894
1895                 if (!(lc->supported & cap) || (speed == SPEED_1000))
1896                         return -EINVAL;
1897                 lc->requested_speed = speed;
1898                 lc->requested_duplex = cmd->base.duplex;
1899                 lc->advertising = 0;
1900         } else {
1901                 advertising &= ADVERTISED_MASK;
1902                 advertising &= lc->supported;
1903                 if (!advertising)
1904                         return -EINVAL;
1905                 lc->requested_speed = SPEED_INVALID;
1906                 lc->requested_duplex = DUPLEX_INVALID;
1907                 lc->advertising = advertising | ADVERTISED_Autoneg;
1908         }
1909         lc->autoneg = cmd->base.autoneg;
1910         if (netif_running(dev))
1911                 t3_link_start(&p->phy, &p->mac, lc);
1912         return 0;
1913 }
1914
1915 static void get_pauseparam(struct net_device *dev,
1916                            struct ethtool_pauseparam *epause)
1917 {
1918         struct port_info *p = netdev_priv(dev);
1919
1920         epause->autoneg = (p->link_config.requested_fc & PAUSE_AUTONEG) != 0;
1921         epause->rx_pause = (p->link_config.fc & PAUSE_RX) != 0;
1922         epause->tx_pause = (p->link_config.fc & PAUSE_TX) != 0;
1923 }
1924
1925 static int set_pauseparam(struct net_device *dev,
1926                           struct ethtool_pauseparam *epause)
1927 {
1928         struct port_info *p = netdev_priv(dev);
1929         struct link_config *lc = &p->link_config;
1930
1931         if (epause->autoneg == AUTONEG_DISABLE)
1932                 lc->requested_fc = 0;
1933         else if (lc->supported & SUPPORTED_Autoneg)
1934                 lc->requested_fc = PAUSE_AUTONEG;
1935         else
1936                 return -EINVAL;
1937
1938         if (epause->rx_pause)
1939                 lc->requested_fc |= PAUSE_RX;
1940         if (epause->tx_pause)
1941                 lc->requested_fc |= PAUSE_TX;
1942         if (lc->autoneg == AUTONEG_ENABLE) {
1943                 if (netif_running(dev))
1944                         t3_link_start(&p->phy, &p->mac, lc);
1945         } else {
1946                 lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
1947                 if (netif_running(dev))
1948                         t3_mac_set_speed_duplex_fc(&p->mac, -1, -1, lc->fc);
1949         }
1950         return 0;
1951 }
1952
1953 static void get_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
1954 {
1955         struct port_info *pi = netdev_priv(dev);
1956         struct adapter *adapter = pi->adapter;
1957         const struct qset_params *q = &adapter->params.sge.qset[pi->first_qset];
1958
1959         e->rx_max_pending = MAX_RX_BUFFERS;
1960         e->rx_jumbo_max_pending = MAX_RX_JUMBO_BUFFERS;
1961         e->tx_max_pending = MAX_TXQ_ENTRIES;
1962
1963         e->rx_pending = q->fl_size;
1964         e->rx_mini_pending = q->rspq_size;
1965         e->rx_jumbo_pending = q->jumbo_size;
1966         e->tx_pending = q->txq_size[0];
1967 }
1968
1969 static int set_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
1970 {
1971         struct port_info *pi = netdev_priv(dev);
1972         struct adapter *adapter = pi->adapter;
1973         struct qset_params *q;
1974         int i;
1975
1976         if (e->rx_pending > MAX_RX_BUFFERS ||
1977             e->rx_jumbo_pending > MAX_RX_JUMBO_BUFFERS ||
1978             e->tx_pending > MAX_TXQ_ENTRIES ||
1979             e->rx_mini_pending > MAX_RSPQ_ENTRIES ||
1980             e->rx_mini_pending < MIN_RSPQ_ENTRIES ||
1981             e->rx_pending < MIN_FL_ENTRIES ||
1982             e->rx_jumbo_pending < MIN_FL_ENTRIES ||
1983             e->tx_pending < adapter->params.nports * MIN_TXQ_ENTRIES)
1984                 return -EINVAL;
1985
1986         if (adapter->flags & FULL_INIT_DONE)
1987                 return -EBUSY;
1988
1989         q = &adapter->params.sge.qset[pi->first_qset];
1990         for (i = 0; i < pi->nqsets; ++i, ++q) {
1991                 q->rspq_size = e->rx_mini_pending;
1992                 q->fl_size = e->rx_pending;
1993                 q->jumbo_size = e->rx_jumbo_pending;
1994                 q->txq_size[0] = e->tx_pending;
1995                 q->txq_size[1] = e->tx_pending;
1996                 q->txq_size[2] = e->tx_pending;
1997         }
1998         return 0;
1999 }
2000
2001 static int set_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
2002 {
2003         struct port_info *pi = netdev_priv(dev);
2004         struct adapter *adapter = pi->adapter;
2005         struct qset_params *qsp;
2006         struct sge_qset *qs;
2007         int i;
2008
2009         if (c->rx_coalesce_usecs * 10 > M_NEWTIMER)
2010                 return -EINVAL;
2011
2012         for (i = 0; i < pi->nqsets; i++) {
2013                 qsp = &adapter->params.sge.qset[i];
2014                 qs = &adapter->sge.qs[i];
2015                 qsp->coalesce_usecs = c->rx_coalesce_usecs;
2016                 t3_update_qset_coalesce(qs, qsp);
2017         }
2018
2019         return 0;
2020 }
2021
2022 static int get_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
2023 {
2024         struct port_info *pi = netdev_priv(dev);
2025         struct adapter *adapter = pi->adapter;
2026         struct qset_params *q = adapter->params.sge.qset;
2027
2028         c->rx_coalesce_usecs = q->coalesce_usecs;
2029         return 0;
2030 }
2031
2032 static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *e,
2033                       u8 * data)
2034 {
2035         struct port_info *pi = netdev_priv(dev);
2036         struct adapter *adapter = pi->adapter;
2037         int i, err = 0;
2038
2039         u8 *buf = kmalloc(EEPROMSIZE, GFP_KERNEL);
2040         if (!buf)
2041                 return -ENOMEM;
2042
2043         e->magic = EEPROM_MAGIC;
2044         for (i = e->offset & ~3; !err && i < e->offset + e->len; i += 4)
2045                 err = t3_seeprom_read(adapter, i, (__le32 *) & buf[i]);
2046
2047         if (!err)
2048                 memcpy(data, buf + e->offset, e->len);
2049         kfree(buf);
2050         return err;
2051 }
2052
2053 static int set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
2054                       u8 * data)
2055 {
2056         struct port_info *pi = netdev_priv(dev);
2057         struct adapter *adapter = pi->adapter;
2058         u32 aligned_offset, aligned_len;
2059         __le32 *p;
2060         u8 *buf;
2061         int err;
2062
2063         if (eeprom->magic != EEPROM_MAGIC)
2064                 return -EINVAL;
2065
2066         aligned_offset = eeprom->offset & ~3;
2067         aligned_len = (eeprom->len + (eeprom->offset & 3) + 3) & ~3;
2068
2069         if (aligned_offset != eeprom->offset || aligned_len != eeprom->len) {
2070                 buf = kmalloc(aligned_len, GFP_KERNEL);
2071                 if (!buf)
2072                         return -ENOMEM;
2073                 err = t3_seeprom_read(adapter, aligned_offset, (__le32 *) buf);
2074                 if (!err && aligned_len > 4)
2075                         err = t3_seeprom_read(adapter,
2076                                               aligned_offset + aligned_len - 4,
2077                                               (__le32 *) & buf[aligned_len - 4]);
2078                 if (err)
2079                         goto out;
2080                 memcpy(buf + (eeprom->offset & 3), data, eeprom->len);
2081         } else
2082                 buf = data;
2083
2084         err = t3_seeprom_wp(adapter, 0);
2085         if (err)
2086                 goto out;
2087
2088         for (p = (__le32 *) buf; !err && aligned_len; aligned_len -= 4, p++) {
2089                 err = t3_seeprom_write(adapter, aligned_offset, *p);
2090                 aligned_offset += 4;
2091         }
2092
2093         if (!err)
2094                 err = t3_seeprom_wp(adapter, 1);
2095 out:
2096         if (buf != data)
2097                 kfree(buf);
2098         return err;
2099 }
2100
2101 static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2102 {
2103         wol->supported = 0;
2104         wol->wolopts = 0;
2105         memset(&wol->sopass, 0, sizeof(wol->sopass));
2106 }
2107
2108 static const struct ethtool_ops cxgb_ethtool_ops = {
2109         .get_drvinfo = get_drvinfo,
2110         .get_msglevel = get_msglevel,
2111         .set_msglevel = set_msglevel,
2112         .get_ringparam = get_sge_param,
2113         .set_ringparam = set_sge_param,
2114         .get_coalesce = get_coalesce,
2115         .set_coalesce = set_coalesce,
2116         .get_eeprom_len = get_eeprom_len,
2117         .get_eeprom = get_eeprom,
2118         .set_eeprom = set_eeprom,
2119         .get_pauseparam = get_pauseparam,
2120         .set_pauseparam = set_pauseparam,
2121         .get_link = ethtool_op_get_link,
2122         .get_strings = get_strings,
2123         .set_phys_id = set_phys_id,
2124         .nway_reset = restart_autoneg,
2125         .get_sset_count = get_sset_count,
2126         .get_ethtool_stats = get_stats,
2127         .get_regs_len = get_regs_len,
2128         .get_regs = get_regs,
2129         .get_wol = get_wol,
2130         .get_link_ksettings = get_link_ksettings,
2131         .set_link_ksettings = set_link_ksettings,
2132 };
2133
2134 static int in_range(int val, int lo, int hi)
2135 {
2136         return val < 0 || (val <= hi && val >= lo);
2137 }
2138
2139 static int cxgb_extension_ioctl(struct net_device *dev, void __user *useraddr)
2140 {
2141         struct port_info *pi = netdev_priv(dev);
2142         struct adapter *adapter = pi->adapter;
2143         u32 cmd;
2144         int ret;
2145
2146         if (copy_from_user(&cmd, useraddr, sizeof(cmd)))
2147                 return -EFAULT;
2148
2149         switch (cmd) {
2150         case CHELSIO_SET_QSET_PARAMS:{
2151                 int i;
2152                 struct qset_params *q;
2153                 struct ch_qset_params t;
2154                 int q1 = pi->first_qset;
2155                 int nqsets = pi->nqsets;
2156
2157                 if (!capable(CAP_NET_ADMIN))
2158                         return -EPERM;
2159                 if (copy_from_user(&t, useraddr, sizeof(t)))
2160                         return -EFAULT;
2161                 if (t.qset_idx >= SGE_QSETS)
2162                         return -EINVAL;
2163                 if (!in_range(t.intr_lat, 0, M_NEWTIMER) ||
2164                     !in_range(t.cong_thres, 0, 255) ||
2165                     !in_range(t.txq_size[0], MIN_TXQ_ENTRIES,
2166                               MAX_TXQ_ENTRIES) ||
2167                     !in_range(t.txq_size[1], MIN_TXQ_ENTRIES,
2168                               MAX_TXQ_ENTRIES) ||
2169                     !in_range(t.txq_size[2], MIN_CTRL_TXQ_ENTRIES,
2170                               MAX_CTRL_TXQ_ENTRIES) ||
2171                     !in_range(t.fl_size[0], MIN_FL_ENTRIES,
2172                               MAX_RX_BUFFERS) ||
2173                     !in_range(t.fl_size[1], MIN_FL_ENTRIES,
2174                               MAX_RX_JUMBO_BUFFERS) ||
2175                     !in_range(t.rspq_size, MIN_RSPQ_ENTRIES,
2176                               MAX_RSPQ_ENTRIES))
2177                         return -EINVAL;
2178
2179                 if ((adapter->flags & FULL_INIT_DONE) &&
2180                         (t.rspq_size >= 0 || t.fl_size[0] >= 0 ||
2181                         t.fl_size[1] >= 0 || t.txq_size[0] >= 0 ||
2182                         t.txq_size[1] >= 0 || t.txq_size[2] >= 0 ||
2183                         t.polling >= 0 || t.cong_thres >= 0))
2184                         return -EBUSY;
2185
2186                 /* Allow setting of any available qset when offload enabled */
2187                 if (test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) {
2188                         q1 = 0;
2189                         for_each_port(adapter, i) {
2190                                 pi = adap2pinfo(adapter, i);
2191                                 nqsets += pi->first_qset + pi->nqsets;
2192                         }
2193                 }
2194
2195                 if (t.qset_idx < q1)
2196                         return -EINVAL;
2197                 if (t.qset_idx > q1 + nqsets - 1)
2198                         return -EINVAL;
2199
2200                 q = &adapter->params.sge.qset[t.qset_idx];
2201
2202                 if (t.rspq_size >= 0)
2203                         q->rspq_size = t.rspq_size;
2204                 if (t.fl_size[0] >= 0)
2205                         q->fl_size = t.fl_size[0];
2206                 if (t.fl_size[1] >= 0)
2207                         q->jumbo_size = t.fl_size[1];
2208                 if (t.txq_size[0] >= 0)
2209                         q->txq_size[0] = t.txq_size[0];
2210                 if (t.txq_size[1] >= 0)
2211                         q->txq_size[1] = t.txq_size[1];
2212                 if (t.txq_size[2] >= 0)
2213                         q->txq_size[2] = t.txq_size[2];
2214                 if (t.cong_thres >= 0)
2215                         q->cong_thres = t.cong_thres;
2216                 if (t.intr_lat >= 0) {
2217                         struct sge_qset *qs =
2218                                 &adapter->sge.qs[t.qset_idx];
2219
2220                         q->coalesce_usecs = t.intr_lat;
2221                         t3_update_qset_coalesce(qs, q);
2222                 }
2223                 if (t.polling >= 0) {
2224                         if (adapter->flags & USING_MSIX)
2225                                 q->polling = t.polling;
2226                         else {
2227                                 /* No polling with INTx for T3A */
2228                                 if (adapter->params.rev == 0 &&
2229                                         !(adapter->flags & USING_MSI))
2230                                         t.polling = 0;
2231
2232                                 for (i = 0; i < SGE_QSETS; i++) {
2233                                         q = &adapter->params.sge.
2234                                                 qset[i];
2235                                         q->polling = t.polling;
2236                                 }
2237                         }
2238                 }
2239
2240                 if (t.lro >= 0) {
2241                         if (t.lro)
2242                                 dev->wanted_features |= NETIF_F_GRO;
2243                         else
2244                                 dev->wanted_features &= ~NETIF_F_GRO;
2245                         netdev_update_features(dev);
2246                 }
2247
2248                 break;
2249         }
2250         case CHELSIO_GET_QSET_PARAMS:{
2251                 struct qset_params *q;
2252                 struct ch_qset_params t;
2253                 int q1 = pi->first_qset;
2254                 int nqsets = pi->nqsets;
2255                 int i;
2256
2257                 if (copy_from_user(&t, useraddr, sizeof(t)))
2258                         return -EFAULT;
2259
2260                 /* Display qsets for all ports when offload enabled */
2261                 if (test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) {
2262                         q1 = 0;
2263                         for_each_port(adapter, i) {
2264                                 pi = adap2pinfo(adapter, i);
2265                                 nqsets = pi->first_qset + pi->nqsets;
2266                         }
2267                 }
2268
2269                 if (t.qset_idx >= nqsets)
2270                         return -EINVAL;
2271
2272                 q = &adapter->params.sge.qset[q1 + t.qset_idx];
2273                 t.rspq_size = q->rspq_size;
2274                 t.txq_size[0] = q->txq_size[0];
2275                 t.txq_size[1] = q->txq_size[1];
2276                 t.txq_size[2] = q->txq_size[2];
2277                 t.fl_size[0] = q->fl_size;
2278                 t.fl_size[1] = q->jumbo_size;
2279                 t.polling = q->polling;
2280                 t.lro = !!(dev->features & NETIF_F_GRO);
2281                 t.intr_lat = q->coalesce_usecs;
2282                 t.cong_thres = q->cong_thres;
2283                 t.qnum = q1;
2284
2285                 if (adapter->flags & USING_MSIX)
2286                         t.vector = adapter->msix_info[q1 + t.qset_idx + 1].vec;
2287                 else
2288                         t.vector = adapter->pdev->irq;
2289
2290                 if (copy_to_user(useraddr, &t, sizeof(t)))
2291                         return -EFAULT;
2292                 break;
2293         }
2294         case CHELSIO_SET_QSET_NUM:{
2295                 struct ch_reg edata;
2296                 unsigned int i, first_qset = 0, other_qsets = 0;
2297
2298                 if (!capable(CAP_NET_ADMIN))
2299                         return -EPERM;
2300                 if (adapter->flags & FULL_INIT_DONE)
2301                         return -EBUSY;
2302                 if (copy_from_user(&edata, useraddr, sizeof(edata)))
2303                         return -EFAULT;
2304                 if (edata.val < 1 ||
2305                         (edata.val > 1 && !(adapter->flags & USING_MSIX)))
2306                         return -EINVAL;
2307
2308                 for_each_port(adapter, i)
2309                         if (adapter->port[i] && adapter->port[i] != dev)
2310                                 other_qsets += adap2pinfo(adapter, i)->nqsets;
2311
2312                 if (edata.val + other_qsets > SGE_QSETS)
2313                         return -EINVAL;
2314
2315                 pi->nqsets = edata.val;
2316
2317                 for_each_port(adapter, i)
2318                         if (adapter->port[i]) {
2319                                 pi = adap2pinfo(adapter, i);
2320                                 pi->first_qset = first_qset;
2321                                 first_qset += pi->nqsets;
2322                         }
2323                 break;
2324         }
2325         case CHELSIO_GET_QSET_NUM:{
2326                 struct ch_reg edata;
2327
2328                 memset(&edata, 0, sizeof(struct ch_reg));
2329
2330                 edata.cmd = CHELSIO_GET_QSET_NUM;
2331                 edata.val = pi->nqsets;
2332                 if (copy_to_user(useraddr, &edata, sizeof(edata)))
2333                         return -EFAULT;
2334                 break;
2335         }
2336         case CHELSIO_LOAD_FW:{
2337                 u8 *fw_data;
2338                 struct ch_mem_range t;
2339
2340                 if (!capable(CAP_SYS_RAWIO))
2341                         return -EPERM;
2342                 if (copy_from_user(&t, useraddr, sizeof(t)))
2343                         return -EFAULT;
2344                 /* Check t.len sanity ? */
2345                 fw_data = memdup_user(useraddr + sizeof(t), t.len);
2346                 if (IS_ERR(fw_data))
2347                         return PTR_ERR(fw_data);
2348
2349                 ret = t3_load_fw(adapter, fw_data, t.len);
2350                 kfree(fw_data);
2351                 if (ret)
2352                         return ret;
2353                 break;
2354         }
2355         case CHELSIO_SETMTUTAB:{
2356                 struct ch_mtus m;
2357                 int i;
2358
2359                 if (!is_offload(adapter))
2360                         return -EOPNOTSUPP;
2361                 if (!capable(CAP_NET_ADMIN))
2362                         return -EPERM;
2363                 if (offload_running(adapter))
2364                         return -EBUSY;
2365                 if (copy_from_user(&m, useraddr, sizeof(m)))
2366                         return -EFAULT;
2367                 if (m.nmtus != NMTUS)
2368                         return -EINVAL;
2369                 if (m.mtus[0] < 81)     /* accommodate SACK */
2370                         return -EINVAL;
2371
2372                 /* MTUs must be in ascending order */
2373                 for (i = 1; i < NMTUS; ++i)
2374                         if (m.mtus[i] < m.mtus[i - 1])
2375                                 return -EINVAL;
2376
2377                 memcpy(adapter->params.mtus, m.mtus,
2378                         sizeof(adapter->params.mtus));
2379                 break;
2380         }
2381         case CHELSIO_GET_PM:{
2382                 struct tp_params *p = &adapter->params.tp;
2383                 struct ch_pm m = {.cmd = CHELSIO_GET_PM };
2384
2385                 if (!is_offload(adapter))
2386                         return -EOPNOTSUPP;
2387                 m.tx_pg_sz = p->tx_pg_size;
2388                 m.tx_num_pg = p->tx_num_pgs;
2389                 m.rx_pg_sz = p->rx_pg_size;
2390                 m.rx_num_pg = p->rx_num_pgs;
2391                 m.pm_total = p->pmtx_size + p->chan_rx_size * p->nchan;
2392                 if (copy_to_user(useraddr, &m, sizeof(m)))
2393                         return -EFAULT;
2394                 break;
2395         }
2396         case CHELSIO_SET_PM:{
2397                 struct ch_pm m;
2398                 struct tp_params *p = &adapter->params.tp;
2399
2400                 if (!is_offload(adapter))
2401                         return -EOPNOTSUPP;
2402                 if (!capable(CAP_NET_ADMIN))
2403                         return -EPERM;
2404                 if (adapter->flags & FULL_INIT_DONE)
2405                         return -EBUSY;
2406                 if (copy_from_user(&m, useraddr, sizeof(m)))
2407                         return -EFAULT;
2408                 if (!is_power_of_2(m.rx_pg_sz) ||
2409                         !is_power_of_2(m.tx_pg_sz))
2410                         return -EINVAL; /* not power of 2 */
2411                 if (!(m.rx_pg_sz & 0x14000))
2412                         return -EINVAL; /* not 16KB or 64KB */
2413                 if (!(m.tx_pg_sz & 0x1554000))
2414                         return -EINVAL;
2415                 if (m.tx_num_pg == -1)
2416                         m.tx_num_pg = p->tx_num_pgs;
2417                 if (m.rx_num_pg == -1)
2418                         m.rx_num_pg = p->rx_num_pgs;
2419                 if (m.tx_num_pg % 24 || m.rx_num_pg % 24)
2420                         return -EINVAL;
2421                 if (m.rx_num_pg * m.rx_pg_sz > p->chan_rx_size ||
2422                         m.tx_num_pg * m.tx_pg_sz > p->chan_tx_size)
2423                         return -EINVAL;
2424                 p->rx_pg_size = m.rx_pg_sz;
2425                 p->tx_pg_size = m.tx_pg_sz;
2426                 p->rx_num_pgs = m.rx_num_pg;
2427                 p->tx_num_pgs = m.tx_num_pg;
2428                 break;
2429         }
2430         case CHELSIO_GET_MEM:{
2431                 struct ch_mem_range t;
2432                 struct mc7 *mem;
2433                 u64 buf[32];
2434
2435                 if (!is_offload(adapter))
2436                         return -EOPNOTSUPP;
2437                 if (!(adapter->flags & FULL_INIT_DONE))
2438                         return -EIO;    /* need the memory controllers */
2439                 if (copy_from_user(&t, useraddr, sizeof(t)))
2440                         return -EFAULT;
2441                 if ((t.addr & 7) || (t.len & 7))
2442                         return -EINVAL;
2443                 if (t.mem_id == MEM_CM)
2444                         mem = &adapter->cm;
2445                 else if (t.mem_id == MEM_PMRX)
2446                         mem = &adapter->pmrx;
2447                 else if (t.mem_id == MEM_PMTX)
2448                         mem = &adapter->pmtx;
2449                 else
2450                         return -EINVAL;
2451
2452                 /*
2453                  * Version scheme:
2454                  * bits 0..9: chip version
2455                  * bits 10..15: chip revision
2456                  */
2457                 t.version = 3 | (adapter->params.rev << 10);
2458                 if (copy_to_user(useraddr, &t, sizeof(t)))
2459                         return -EFAULT;
2460
2461                 /*
2462                  * Read 256 bytes at a time as len can be large and we don't
2463                  * want to use huge intermediate buffers.
2464                  */
2465                 useraddr += sizeof(t);  /* advance to start of buffer */
2466                 while (t.len) {
2467                         unsigned int chunk =
2468                                 min_t(unsigned int, t.len, sizeof(buf));
2469
2470                         ret =
2471                                 t3_mc7_bd_read(mem, t.addr / 8, chunk / 8,
2472                                                 buf);
2473                         if (ret)
2474                                 return ret;
2475                         if (copy_to_user(useraddr, buf, chunk))
2476                                 return -EFAULT;
2477                         useraddr += chunk;
2478                         t.addr += chunk;
2479                         t.len -= chunk;
2480                 }
2481                 break;
2482         }
2483         case CHELSIO_SET_TRACE_FILTER:{
2484                 struct ch_trace t;
2485                 const struct trace_params *tp;
2486
2487                 if (!capable(CAP_NET_ADMIN))
2488                         return -EPERM;
2489                 if (!offload_running(adapter))
2490                         return -EAGAIN;
2491                 if (copy_from_user(&t, useraddr, sizeof(t)))
2492                         return -EFAULT;
2493
2494                 tp = (const struct trace_params *)&t.sip;
2495                 if (t.config_tx)
2496                         t3_config_trace_filter(adapter, tp, 0,
2497                                                 t.invert_match,
2498                                                 t.trace_tx);
2499                 if (t.config_rx)
2500                         t3_config_trace_filter(adapter, tp, 1,
2501                                                 t.invert_match,
2502                                                 t.trace_rx);
2503                 break;
2504         }
2505         default:
2506                 return -EOPNOTSUPP;
2507         }
2508         return 0;
2509 }
2510
2511 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
2512 {
2513         struct mii_ioctl_data *data = if_mii(req);
2514         struct port_info *pi = netdev_priv(dev);
2515         struct adapter *adapter = pi->adapter;
2516
2517         switch (cmd) {
2518         case SIOCGMIIREG:
2519         case SIOCSMIIREG:
2520                 /* Convert phy_id from older PRTAD/DEVAD format */
2521                 if (is_10G(adapter) &&
2522                     !mdio_phy_id_is_c45(data->phy_id) &&
2523                     (data->phy_id & 0x1f00) &&
2524                     !(data->phy_id & 0xe0e0))
2525                         data->phy_id = mdio_phy_id_c45(data->phy_id >> 8,
2526                                                        data->phy_id & 0x1f);
2527                 /* FALLTHRU */
2528         case SIOCGMIIPHY:
2529                 return mdio_mii_ioctl(&pi->phy.mdio, data, cmd);
2530         case SIOCCHIOCTL:
2531                 return cxgb_extension_ioctl(dev, req->ifr_data);
2532         default:
2533                 return -EOPNOTSUPP;
2534         }
2535 }
2536
2537 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
2538 {
2539         struct port_info *pi = netdev_priv(dev);
2540         struct adapter *adapter = pi->adapter;
2541         int ret;
2542
2543         if ((ret = t3_mac_set_mtu(&pi->mac, new_mtu)))
2544                 return ret;
2545         dev->mtu = new_mtu;
2546         init_port_mtus(adapter);
2547         if (adapter->params.rev == 0 && offload_running(adapter))
2548                 t3_load_mtus(adapter, adapter->params.mtus,
2549                              adapter->params.a_wnd, adapter->params.b_wnd,
2550                              adapter->port[0]->mtu);
2551         return 0;
2552 }
2553
2554 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
2555 {
2556         struct port_info *pi = netdev_priv(dev);
2557         struct adapter *adapter = pi->adapter;
2558         struct sockaddr *addr = p;
2559
2560         if (!is_valid_ether_addr(addr->sa_data))
2561                 return -EADDRNOTAVAIL;
2562
2563         memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
2564         t3_mac_set_address(&pi->mac, LAN_MAC_IDX, dev->dev_addr);
2565         if (offload_running(adapter))
2566                 write_smt_entry(adapter, pi->port_id);
2567         return 0;
2568 }
2569
2570 static netdev_features_t cxgb_fix_features(struct net_device *dev,
2571         netdev_features_t features)
2572 {
2573         /*
2574          * Since there is no support for separate rx/tx vlan accel
2575          * enable/disable make sure tx flag is always in same state as rx.
2576          */
2577         if (features & NETIF_F_HW_VLAN_CTAG_RX)
2578                 features |= NETIF_F_HW_VLAN_CTAG_TX;
2579         else
2580                 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2581
2582         return features;
2583 }
2584
2585 static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
2586 {
2587         netdev_features_t changed = dev->features ^ features;
2588
2589         if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2590                 cxgb_vlan_mode(dev, features);
2591
2592         return 0;
2593 }
2594
2595 #ifdef CONFIG_NET_POLL_CONTROLLER
2596 static void cxgb_netpoll(struct net_device *dev)
2597 {
2598         struct port_info *pi = netdev_priv(dev);
2599         struct adapter *adapter = pi->adapter;
2600         int qidx;
2601
2602         for (qidx = pi->first_qset; qidx < pi->first_qset + pi->nqsets; qidx++) {
2603                 struct sge_qset *qs = &adapter->sge.qs[qidx];
2604                 void *source;
2605
2606                 if (adapter->flags & USING_MSIX)
2607                         source = qs;
2608                 else
2609                         source = adapter;
2610
2611                 t3_intr_handler(adapter, qs->rspq.polling) (0, source);
2612         }
2613 }
2614 #endif
2615
2616 /*
2617  * Periodic accumulation of MAC statistics.
2618  */
2619 static void mac_stats_update(struct adapter *adapter)
2620 {
2621         int i;
2622
2623         for_each_port(adapter, i) {
2624                 struct net_device *dev = adapter->port[i];
2625                 struct port_info *p = netdev_priv(dev);
2626
2627                 if (netif_running(dev)) {
2628                         spin_lock(&adapter->stats_lock);
2629                         t3_mac_update_stats(&p->mac);
2630                         spin_unlock(&adapter->stats_lock);
2631                 }
2632         }
2633 }
2634
2635 static void check_link_status(struct adapter *adapter)
2636 {
2637         int i;
2638
2639         for_each_port(adapter, i) {
2640                 struct net_device *dev = adapter->port[i];
2641                 struct port_info *p = netdev_priv(dev);
2642                 int link_fault;
2643
2644                 spin_lock_irq(&adapter->work_lock);
2645                 link_fault = p->link_fault;
2646                 spin_unlock_irq(&adapter->work_lock);
2647
2648                 if (link_fault) {
2649                         t3_link_fault(adapter, i);
2650                         continue;
2651                 }
2652
2653                 if (!(p->phy.caps & SUPPORTED_IRQ) && netif_running(dev)) {
2654                         t3_xgm_intr_disable(adapter, i);
2655                         t3_read_reg(adapter, A_XGM_INT_STATUS + p->mac.offset);
2656
2657                         t3_link_changed(adapter, i);
2658                         t3_xgm_intr_enable(adapter, i);
2659                 }
2660         }
2661 }
2662
2663 static void check_t3b2_mac(struct adapter *adapter)
2664 {
2665         int i;
2666
2667         if (!rtnl_trylock())    /* synchronize with ifdown */
2668                 return;
2669
2670         for_each_port(adapter, i) {
2671                 struct net_device *dev = adapter->port[i];
2672                 struct port_info *p = netdev_priv(dev);
2673                 int status;
2674
2675                 if (!netif_running(dev))
2676                         continue;
2677
2678                 status = 0;
2679                 if (netif_running(dev) && netif_carrier_ok(dev))
2680                         status = t3b2_mac_watchdog_task(&p->mac);
2681                 if (status == 1)
2682                         p->mac.stats.num_toggled++;
2683                 else if (status == 2) {
2684                         struct cmac *mac = &p->mac;
2685
2686                         t3_mac_set_mtu(mac, dev->mtu);
2687                         t3_mac_set_address(mac, LAN_MAC_IDX, dev->dev_addr);
2688                         cxgb_set_rxmode(dev);
2689                         t3_link_start(&p->phy, mac, &p->link_config);
2690                         t3_mac_enable(mac, MAC_DIRECTION_RX | MAC_DIRECTION_TX);
2691                         t3_port_intr_enable(adapter, p->port_id);
2692                         p->mac.stats.num_resets++;
2693                 }
2694         }
2695         rtnl_unlock();
2696 }
2697
2698
2699 static void t3_adap_check_task(struct work_struct *work)
2700 {
2701         struct adapter *adapter = container_of(work, struct adapter,
2702                                                adap_check_task.work);
2703         const struct adapter_params *p = &adapter->params;
2704         int port;
2705         unsigned int v, status, reset;
2706
2707         adapter->check_task_cnt++;
2708
2709         check_link_status(adapter);
2710
2711         /* Accumulate MAC stats if needed */
2712         if (!p->linkpoll_period ||
2713             (adapter->check_task_cnt * p->linkpoll_period) / 10 >=
2714             p->stats_update_period) {
2715                 mac_stats_update(adapter);
2716                 adapter->check_task_cnt = 0;
2717         }
2718
2719         if (p->rev == T3_REV_B2)
2720                 check_t3b2_mac(adapter);
2721
2722         /*
2723          * Scan the XGMAC's to check for various conditions which we want to
2724          * monitor in a periodic polling manner rather than via an interrupt
2725          * condition.  This is used for conditions which would otherwise flood
2726          * the system with interrupts and we only really need to know that the
2727          * conditions are "happening" ...  For each condition we count the
2728          * detection of the condition and reset it for the next polling loop.
2729          */
2730         for_each_port(adapter, port) {
2731                 struct cmac *mac =  &adap2pinfo(adapter, port)->mac;
2732                 u32 cause;
2733
2734                 cause = t3_read_reg(adapter, A_XGM_INT_CAUSE + mac->offset);
2735                 reset = 0;
2736                 if (cause & F_RXFIFO_OVERFLOW) {
2737                         mac->stats.rx_fifo_ovfl++;
2738                         reset |= F_RXFIFO_OVERFLOW;
2739                 }
2740
2741                 t3_write_reg(adapter, A_XGM_INT_CAUSE + mac->offset, reset);
2742         }
2743
2744         /*
2745          * We do the same as above for FL_EMPTY interrupts.
2746          */
2747         status = t3_read_reg(adapter, A_SG_INT_CAUSE);
2748         reset = 0;
2749
2750         if (status & F_FLEMPTY) {
2751                 struct sge_qset *qs = &adapter->sge.qs[0];
2752                 int i = 0;
2753
2754                 reset |= F_FLEMPTY;
2755
2756                 v = (t3_read_reg(adapter, A_SG_RSPQ_FL_STATUS) >> S_FL0EMPTY) &
2757                     0xffff;
2758
2759                 while (v) {
2760                         qs->fl[i].empty += (v & 1);
2761                         if (i)
2762                                 qs++;
2763                         i ^= 1;
2764                         v >>= 1;
2765                 }
2766         }
2767
2768         t3_write_reg(adapter, A_SG_INT_CAUSE, reset);
2769
2770         /* Schedule the next check update if any port is active. */
2771         spin_lock_irq(&adapter->work_lock);
2772         if (adapter->open_device_map & PORT_MASK)
2773                 schedule_chk_task(adapter);
2774         spin_unlock_irq(&adapter->work_lock);
2775 }
2776
2777 static void db_full_task(struct work_struct *work)
2778 {
2779         struct adapter *adapter = container_of(work, struct adapter,
2780                                                db_full_task);
2781
2782         cxgb3_event_notify(&adapter->tdev, OFFLOAD_DB_FULL, 0);
2783 }
2784
2785 static void db_empty_task(struct work_struct *work)
2786 {
2787         struct adapter *adapter = container_of(work, struct adapter,
2788                                                db_empty_task);
2789
2790         cxgb3_event_notify(&adapter->tdev, OFFLOAD_DB_EMPTY, 0);
2791 }
2792
2793 static void db_drop_task(struct work_struct *work)
2794 {
2795         struct adapter *adapter = container_of(work, struct adapter,
2796                                                db_drop_task);
2797         unsigned long delay = 1000;
2798         unsigned short r;
2799
2800         cxgb3_event_notify(&adapter->tdev, OFFLOAD_DB_DROP, 0);
2801
2802         /*
2803          * Sleep a while before ringing the driver qset dbs.
2804          * The delay is between 1000-2023 usecs.
2805          */
2806         get_random_bytes(&r, 2);
2807         delay += r & 1023;
2808         set_current_state(TASK_UNINTERRUPTIBLE);
2809         schedule_timeout(usecs_to_jiffies(delay));
2810         ring_dbs(adapter);
2811 }
2812
2813 /*
2814  * Processes external (PHY) interrupts in process context.
2815  */
2816 static void ext_intr_task(struct work_struct *work)
2817 {
2818         struct adapter *adapter = container_of(work, struct adapter,
2819                                                ext_intr_handler_task);
2820         int i;
2821
2822         /* Disable link fault interrupts */
2823         for_each_port(adapter, i) {
2824                 struct net_device *dev = adapter->port[i];
2825                 struct port_info *p = netdev_priv(dev);
2826
2827                 t3_xgm_intr_disable(adapter, i);
2828                 t3_read_reg(adapter, A_XGM_INT_STATUS + p->mac.offset);
2829         }
2830
2831         /* Re-enable link fault interrupts */
2832         t3_phy_intr_handler(adapter);
2833
2834         for_each_port(adapter, i)
2835                 t3_xgm_intr_enable(adapter, i);
2836
2837         /* Now reenable external interrupts */
2838         spin_lock_irq(&adapter->work_lock);
2839         if (adapter->slow_intr_mask) {
2840                 adapter->slow_intr_mask |= F_T3DBG;
2841                 t3_write_reg(adapter, A_PL_INT_CAUSE0, F_T3DBG);
2842                 t3_write_reg(adapter, A_PL_INT_ENABLE0,
2843                              adapter->slow_intr_mask);
2844         }
2845         spin_unlock_irq(&adapter->work_lock);
2846 }
2847
2848 /*
2849  * Interrupt-context handler for external (PHY) interrupts.
2850  */
2851 void t3_os_ext_intr_handler(struct adapter *adapter)
2852 {
2853         /*
2854          * Schedule a task to handle external interrupts as they may be slow
2855          * and we use a mutex to protect MDIO registers.  We disable PHY
2856          * interrupts in the meantime and let the task reenable them when
2857          * it's done.
2858          */
2859         spin_lock(&adapter->work_lock);
2860         if (adapter->slow_intr_mask) {
2861                 adapter->slow_intr_mask &= ~F_T3DBG;
2862                 t3_write_reg(adapter, A_PL_INT_ENABLE0,
2863                              adapter->slow_intr_mask);
2864                 queue_work(cxgb3_wq, &adapter->ext_intr_handler_task);
2865         }
2866         spin_unlock(&adapter->work_lock);
2867 }
2868
2869 void t3_os_link_fault_handler(struct adapter *adapter, int port_id)
2870 {
2871         struct net_device *netdev = adapter->port[port_id];
2872         struct port_info *pi = netdev_priv(netdev);
2873
2874         spin_lock(&adapter->work_lock);
2875         pi->link_fault = 1;
2876         spin_unlock(&adapter->work_lock);
2877 }
2878
2879 static int t3_adapter_error(struct adapter *adapter, int reset, int on_wq)
2880 {
2881         int i, ret = 0;
2882
2883         if (is_offload(adapter) &&
2884             test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) {
2885                 cxgb3_event_notify(&adapter->tdev, OFFLOAD_STATUS_DOWN, 0);
2886                 offload_close(&adapter->tdev);
2887         }
2888
2889         /* Stop all ports */
2890         for_each_port(adapter, i) {
2891                 struct net_device *netdev = adapter->port[i];
2892
2893                 if (netif_running(netdev))
2894                         __cxgb_close(netdev, on_wq);
2895         }
2896
2897         /* Stop SGE timers */
2898         t3_stop_sge_timers(adapter);
2899
2900         adapter->flags &= ~FULL_INIT_DONE;
2901
2902         if (reset)
2903                 ret = t3_reset_adapter(adapter);
2904
2905         pci_disable_device(adapter->pdev);
2906
2907         return ret;
2908 }
2909
2910 static int t3_reenable_adapter(struct adapter *adapter)
2911 {
2912         if (pci_enable_device(adapter->pdev)) {
2913                 dev_err(&adapter->pdev->dev,
2914                         "Cannot re-enable PCI device after reset.\n");
2915                 goto err;
2916         }
2917         pci_set_master(adapter->pdev);
2918         pci_restore_state(adapter->pdev);
2919         pci_save_state(adapter->pdev);
2920
2921         /* Free sge resources */
2922         t3_free_sge_resources(adapter);
2923
2924         if (t3_replay_prep_adapter(adapter))
2925                 goto err;
2926
2927         return 0;
2928 err:
2929         return -1;
2930 }
2931
2932 static void t3_resume_ports(struct adapter *adapter)
2933 {
2934         int i;
2935
2936         /* Restart the ports */
2937         for_each_port(adapter, i) {
2938                 struct net_device *netdev = adapter->port[i];
2939
2940                 if (netif_running(netdev)) {
2941                         if (cxgb_open(netdev)) {
2942                                 dev_err(&adapter->pdev->dev,
2943                                         "can't bring device back up"
2944                                         " after reset\n");
2945                                 continue;
2946                         }
2947                 }
2948         }
2949
2950         if (is_offload(adapter) && !ofld_disable)
2951                 cxgb3_event_notify(&adapter->tdev, OFFLOAD_STATUS_UP, 0);
2952 }
2953
2954 /*
2955  * processes a fatal error.
2956  * Bring the ports down, reset the chip, bring the ports back up.
2957  */
2958 static void fatal_error_task(struct work_struct *work)
2959 {
2960         struct adapter *adapter = container_of(work, struct adapter,
2961                                                fatal_error_handler_task);
2962         int err = 0;
2963
2964         rtnl_lock();
2965         err = t3_adapter_error(adapter, 1, 1);
2966         if (!err)
2967                 err = t3_reenable_adapter(adapter);
2968         if (!err)
2969                 t3_resume_ports(adapter);
2970
2971         CH_ALERT(adapter, "adapter reset %s\n", err ? "failed" : "succeeded");
2972         rtnl_unlock();
2973 }
2974
2975 void t3_fatal_err(struct adapter *adapter)
2976 {
2977         unsigned int fw_status[4];
2978
2979         if (adapter->flags & FULL_INIT_DONE) {
2980                 t3_sge_stop(adapter);
2981                 t3_write_reg(adapter, A_XGM_TX_CTRL, 0);
2982                 t3_write_reg(adapter, A_XGM_RX_CTRL, 0);
2983                 t3_write_reg(adapter, XGM_REG(A_XGM_TX_CTRL, 1), 0);
2984                 t3_write_reg(adapter, XGM_REG(A_XGM_RX_CTRL, 1), 0);
2985
2986                 spin_lock(&adapter->work_lock);
2987                 t3_intr_disable(adapter);
2988                 queue_work(cxgb3_wq, &adapter->fatal_error_handler_task);
2989                 spin_unlock(&adapter->work_lock);
2990         }
2991         CH_ALERT(adapter, "encountered fatal error, operation suspended\n");
2992         if (!t3_cim_ctl_blk_read(adapter, 0xa0, 4, fw_status))
2993                 CH_ALERT(adapter, "FW status: 0x%x, 0x%x, 0x%x, 0x%x\n",
2994                          fw_status[0], fw_status[1],
2995                          fw_status[2], fw_status[3]);
2996 }
2997
2998 /**
2999  * t3_io_error_detected - called when PCI error is detected
3000  * @pdev: Pointer to PCI device
3001  * @state: The current pci connection state
3002  *
3003  * This function is called after a PCI bus error affecting
3004  * this device has been detected.
3005  */
3006 static pci_ers_result_t t3_io_error_detected(struct pci_dev *pdev,
3007                                              pci_channel_state_t state)
3008 {
3009         struct adapter *adapter = pci_get_drvdata(pdev);
3010
3011         if (state == pci_channel_io_perm_failure)
3012                 return PCI_ERS_RESULT_DISCONNECT;
3013
3014         t3_adapter_error(adapter, 0, 0);
3015
3016         /* Request a slot reset. */
3017         return PCI_ERS_RESULT_NEED_RESET;
3018 }
3019
3020 /**
3021  * t3_io_slot_reset - called after the pci bus has been reset.
3022  * @pdev: Pointer to PCI device
3023  *
3024  * Restart the card from scratch, as if from a cold-boot.
3025  */
3026 static pci_ers_result_t t3_io_slot_reset(struct pci_dev *pdev)
3027 {
3028         struct adapter *adapter = pci_get_drvdata(pdev);
3029
3030         if (!t3_reenable_adapter(adapter))
3031                 return PCI_ERS_RESULT_RECOVERED;
3032
3033         return PCI_ERS_RESULT_DISCONNECT;
3034 }
3035
3036 /**
3037  * t3_io_resume - called when traffic can start flowing again.
3038  * @pdev: Pointer to PCI device
3039  *
3040  * This callback is called when the error recovery driver tells us that
3041  * its OK to resume normal operation.
3042  */
3043 static void t3_io_resume(struct pci_dev *pdev)
3044 {
3045         struct adapter *adapter = pci_get_drvdata(pdev);
3046
3047         CH_ALERT(adapter, "adapter recovering, PEX ERR 0x%x\n",
3048                  t3_read_reg(adapter, A_PCIE_PEX_ERR));
3049
3050         rtnl_lock();
3051         t3_resume_ports(adapter);
3052         rtnl_unlock();
3053 }
3054
3055 static const struct pci_error_handlers t3_err_handler = {
3056         .error_detected = t3_io_error_detected,
3057         .slot_reset = t3_io_slot_reset,
3058         .resume = t3_io_resume,
3059 };
3060
3061 /*
3062  * Set the number of qsets based on the number of CPUs and the number of ports,
3063  * not to exceed the number of available qsets, assuming there are enough qsets
3064  * per port in HW.
3065  */
3066 static void set_nqsets(struct adapter *adap)
3067 {
3068         int i, j = 0;
3069         int num_cpus = netif_get_num_default_rss_queues();
3070         int hwports = adap->params.nports;
3071         int nqsets = adap->msix_nvectors - 1;
3072
3073         if (adap->params.rev > 0 && adap->flags & USING_MSIX) {
3074                 if (hwports == 2 &&
3075                     (hwports * nqsets > SGE_QSETS ||
3076                      num_cpus >= nqsets / hwports))
3077                         nqsets /= hwports;
3078                 if (nqsets > num_cpus)
3079                         nqsets = num_cpus;
3080                 if (nqsets < 1 || hwports == 4)
3081                         nqsets = 1;
3082         } else
3083                 nqsets = 1;
3084
3085         for_each_port(adap, i) {
3086                 struct port_info *pi = adap2pinfo(adap, i);
3087
3088                 pi->first_qset = j;
3089                 pi->nqsets = nqsets;
3090                 j = pi->first_qset + nqsets;
3091
3092                 dev_info(&adap->pdev->dev,
3093                          "Port %d using %d queue sets.\n", i, nqsets);
3094         }
3095 }
3096
3097 static int cxgb_enable_msix(struct adapter *adap)
3098 {
3099         struct msix_entry entries[SGE_QSETS + 1];
3100         int vectors;
3101         int i;
3102
3103         vectors = ARRAY_SIZE(entries);
3104         for (i = 0; i < vectors; ++i)
3105                 entries[i].entry = i;
3106
3107         vectors = pci_enable_msix_range(adap->pdev, entries,
3108                                         adap->params.nports + 1, vectors);
3109         if (vectors < 0)
3110                 return vectors;
3111
3112         for (i = 0; i < vectors; ++i)
3113                 adap->msix_info[i].vec = entries[i].vector;
3114         adap->msix_nvectors = vectors;
3115
3116         return 0;
3117 }
3118
3119 static void print_port_info(struct adapter *adap, const struct adapter_info *ai)
3120 {
3121         static const char *pci_variant[] = {
3122                 "PCI", "PCI-X", "PCI-X ECC", "PCI-X 266", "PCI Express"
3123         };
3124
3125         int i;
3126         char buf[80];
3127
3128         if (is_pcie(adap))
3129                 snprintf(buf, sizeof(buf), "%s x%d",
3130                          pci_variant[adap->params.pci.variant],
3131                          adap->params.pci.width);
3132         else
3133                 snprintf(buf, sizeof(buf), "%s %dMHz/%d-bit",
3134                          pci_variant[adap->params.pci.variant],
3135                          adap->params.pci.speed, adap->params.pci.width);
3136
3137         for_each_port(adap, i) {
3138                 struct net_device *dev = adap->port[i];
3139                 const struct port_info *pi = netdev_priv(dev);
3140
3141                 if (!test_bit(i, &adap->registered_device_map))
3142                         continue;
3143                 netdev_info(dev, "%s %s %sNIC (rev %d) %s%s\n",
3144                             ai->desc, pi->phy.desc,
3145                             is_offload(adap) ? "R" : "", adap->params.rev, buf,
3146                             (adap->flags & USING_MSIX) ? " MSI-X" :
3147                             (adap->flags & USING_MSI) ? " MSI" : "");
3148                 if (adap->name == dev->name && adap->params.vpd.mclk)
3149                         pr_info("%s: %uMB CM, %uMB PMTX, %uMB PMRX, S/N: %s\n",
3150                                adap->name, t3_mc7_size(&adap->cm) >> 20,
3151                                t3_mc7_size(&adap->pmtx) >> 20,
3152                                t3_mc7_size(&adap->pmrx) >> 20,
3153                                adap->params.vpd.sn);
3154         }
3155 }
3156
3157 static const struct net_device_ops cxgb_netdev_ops = {
3158         .ndo_open               = cxgb_open,
3159         .ndo_stop               = cxgb_close,
3160         .ndo_start_xmit         = t3_eth_xmit,
3161         .ndo_get_stats          = cxgb_get_stats,
3162         .ndo_validate_addr      = eth_validate_addr,
3163         .ndo_set_rx_mode        = cxgb_set_rxmode,
3164         .ndo_do_ioctl           = cxgb_ioctl,
3165         .ndo_change_mtu         = cxgb_change_mtu,
3166         .ndo_set_mac_address    = cxgb_set_mac_addr,
3167         .ndo_fix_features       = cxgb_fix_features,
3168         .ndo_set_features       = cxgb_set_features,
3169 #ifdef CONFIG_NET_POLL_CONTROLLER
3170         .ndo_poll_controller    = cxgb_netpoll,
3171 #endif
3172 };
3173
3174 static void cxgb3_init_iscsi_mac(struct net_device *dev)
3175 {
3176         struct port_info *pi = netdev_priv(dev);
3177
3178         memcpy(pi->iscsic.mac_addr, dev->dev_addr, ETH_ALEN);
3179         pi->iscsic.mac_addr[3] |= 0x80;
3180 }
3181
3182 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
3183 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
3184                         NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
3185 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
3186 {
3187         int i, err, pci_using_dac = 0;
3188         resource_size_t mmio_start, mmio_len;
3189         const struct adapter_info *ai;
3190         struct adapter *adapter = NULL;
3191         struct port_info *pi;
3192
3193         pr_info_once("%s - version %s\n", DRV_DESC, DRV_VERSION);
3194
3195         if (!cxgb3_wq) {
3196                 cxgb3_wq = create_singlethread_workqueue(DRV_NAME);
3197                 if (!cxgb3_wq) {
3198                         pr_err("cannot initialize work queue\n");
3199                         return -ENOMEM;
3200                 }
3201         }
3202
3203         err = pci_enable_device(pdev);
3204         if (err) {
3205                 dev_err(&pdev->dev, "cannot enable PCI device\n");
3206                 goto out;
3207         }
3208
3209         err = pci_request_regions(pdev, DRV_NAME);
3210         if (err) {
3211                 /* Just info, some other driver may have claimed the device. */
3212                 dev_info(&pdev->dev, "cannot obtain PCI resources\n");
3213                 goto out_disable_device;
3214         }
3215
3216         if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
3217                 pci_using_dac = 1;
3218                 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
3219                 if (err) {
3220                         dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
3221                                "coherent allocations\n");
3222                         goto out_release_regions;
3223                 }
3224         } else if ((err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) != 0) {
3225                 dev_err(&pdev->dev, "no usable DMA configuration\n");
3226                 goto out_release_regions;
3227         }
3228
3229         pci_set_master(pdev);
3230         pci_save_state(pdev);
3231
3232         mmio_start = pci_resource_start(pdev, 0);
3233         mmio_len = pci_resource_len(pdev, 0);
3234         ai = t3_get_adapter_info(ent->driver_data);
3235
3236         adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
3237         if (!adapter) {
3238                 err = -ENOMEM;
3239                 goto out_release_regions;
3240         }
3241
3242         adapter->nofail_skb =
3243                 alloc_skb(sizeof(struct cpl_set_tcb_field), GFP_KERNEL);
3244         if (!adapter->nofail_skb) {
3245                 dev_err(&pdev->dev, "cannot allocate nofail buffer\n");
3246                 err = -ENOMEM;
3247                 goto out_free_adapter;
3248         }
3249
3250         adapter->regs = ioremap_nocache(mmio_start, mmio_len);
3251         if (!adapter->regs) {
3252                 dev_err(&pdev->dev, "cannot map device registers\n");
3253                 err = -ENOMEM;
3254                 goto out_free_adapter;
3255         }
3256
3257         adapter->pdev = pdev;
3258         adapter->name = pci_name(pdev);
3259         adapter->msg_enable = dflt_msg_enable;
3260         adapter->mmio_len = mmio_len;
3261
3262         mutex_init(&adapter->mdio_lock);
3263         spin_lock_init(&adapter->work_lock);
3264         spin_lock_init(&adapter->stats_lock);
3265
3266         INIT_LIST_HEAD(&adapter->adapter_list);
3267         INIT_WORK(&adapter->ext_intr_handler_task, ext_intr_task);
3268         INIT_WORK(&adapter->fatal_error_handler_task, fatal_error_task);
3269
3270         INIT_WORK(&adapter->db_full_task, db_full_task);
3271         INIT_WORK(&adapter->db_empty_task, db_empty_task);
3272         INIT_WORK(&adapter->db_drop_task, db_drop_task);
3273
3274         INIT_DELAYED_WORK(&adapter->adap_check_task, t3_adap_check_task);
3275
3276         for (i = 0; i < ai->nports0 + ai->nports1; ++i) {
3277                 struct net_device *netdev;
3278
3279                 netdev = alloc_etherdev_mq(sizeof(struct port_info), SGE_QSETS);
3280                 if (!netdev) {
3281                         err = -ENOMEM;
3282                         goto out_free_dev;
3283                 }
3284
3285                 SET_NETDEV_DEV(netdev, &pdev->dev);
3286
3287                 adapter->port[i] = netdev;
3288                 pi = netdev_priv(netdev);
3289                 pi->adapter = adapter;
3290                 pi->port_id = i;
3291                 netif_carrier_off(netdev);
3292                 netdev->irq = pdev->irq;
3293                 netdev->mem_start = mmio_start;
3294                 netdev->mem_end = mmio_start + mmio_len - 1;
3295                 netdev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM |
3296                         NETIF_F_TSO | NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_RX;
3297                 netdev->features |= netdev->hw_features |
3298                                     NETIF_F_HW_VLAN_CTAG_TX;
3299                 netdev->vlan_features |= netdev->features & VLAN_FEAT;
3300                 if (pci_using_dac)
3301                         netdev->features |= NETIF_F_HIGHDMA;
3302
3303                 netdev->netdev_ops = &cxgb_netdev_ops;
3304                 netdev->ethtool_ops = &cxgb_ethtool_ops;
3305                 netdev->min_mtu = 81;
3306                 netdev->max_mtu = ETH_MAX_MTU;
3307         }
3308
3309         pci_set_drvdata(pdev, adapter);
3310         if (t3_prep_adapter(adapter, ai, 1) < 0) {
3311                 err = -ENODEV;
3312                 goto out_free_dev;
3313         }
3314
3315         /*
3316          * The card is now ready to go.  If any errors occur during device
3317          * registration we do not fail the whole card but rather proceed only
3318          * with the ports we manage to register successfully.  However we must
3319          * register at least one net device.
3320          */
3321         for_each_port(adapter, i) {
3322                 err = register_netdev(adapter->port[i]);
3323                 if (err)
3324                         dev_warn(&pdev->dev,
3325                                  "cannot register net device %s, skipping\n",
3326                                  adapter->port[i]->name);
3327                 else {
3328                         /*
3329                          * Change the name we use for messages to the name of
3330                          * the first successfully registered interface.
3331                          */
3332                         if (!adapter->registered_device_map)
3333                                 adapter->name = adapter->port[i]->name;
3334
3335                         __set_bit(i, &adapter->registered_device_map);
3336                 }
3337         }
3338         if (!adapter->registered_device_map) {
3339                 dev_err(&pdev->dev, "could not register any net devices\n");
3340                 goto out_free_dev;
3341         }
3342
3343         for_each_port(adapter, i)
3344                 cxgb3_init_iscsi_mac(adapter->port[i]);
3345
3346         /* Driver's ready. Reflect it on LEDs */
3347         t3_led_ready(adapter);
3348
3349         if (is_offload(adapter)) {
3350                 __set_bit(OFFLOAD_DEVMAP_BIT, &adapter->registered_device_map);
3351                 cxgb3_adapter_ofld(adapter);
3352         }
3353
3354         /* See what interrupts we'll be using */
3355         if (msi > 1 && cxgb_enable_msix(adapter) == 0)
3356                 adapter->flags |= USING_MSIX;
3357         else if (msi > 0 && pci_enable_msi(pdev) == 0)
3358                 adapter->flags |= USING_MSI;
3359
3360         set_nqsets(adapter);
3361
3362         err = sysfs_create_group(&adapter->port[0]->dev.kobj,
3363                                  &cxgb3_attr_group);
3364
3365         print_port_info(adapter, ai);
3366         return 0;
3367
3368 out_free_dev:
3369         iounmap(adapter->regs);
3370         for (i = ai->nports0 + ai->nports1 - 1; i >= 0; --i)
3371                 if (adapter->port[i])
3372                         free_netdev(adapter->port[i]);
3373
3374 out_free_adapter:
3375         kfree(adapter);
3376
3377 out_release_regions:
3378         pci_release_regions(pdev);
3379 out_disable_device:
3380         pci_disable_device(pdev);
3381 out:
3382         return err;
3383 }
3384
3385 static void remove_one(struct pci_dev *pdev)
3386 {
3387         struct adapter *adapter = pci_get_drvdata(pdev);
3388
3389         if (adapter) {
3390                 int i;
3391
3392                 t3_sge_stop(adapter);
3393                 sysfs_remove_group(&adapter->port[0]->dev.kobj,
3394                                    &cxgb3_attr_group);
3395
3396                 if (is_offload(adapter)) {
3397                         cxgb3_adapter_unofld(adapter);
3398                         if (test_bit(OFFLOAD_DEVMAP_BIT,
3399                                      &adapter->open_device_map))
3400                                 offload_close(&adapter->tdev);
3401                 }
3402
3403                 for_each_port(adapter, i)
3404                     if (test_bit(i, &adapter->registered_device_map))
3405                         unregister_netdev(adapter->port[i]);
3406
3407                 t3_stop_sge_timers(adapter);
3408                 t3_free_sge_resources(adapter);
3409                 cxgb_disable_msi(adapter);
3410
3411                 for_each_port(adapter, i)
3412                         if (adapter->port[i])
3413                                 free_netdev(adapter->port[i]);
3414
3415                 iounmap(adapter->regs);
3416                 if (adapter->nofail_skb)
3417                         kfree_skb(adapter->nofail_skb);
3418                 kfree(adapter);
3419                 pci_release_regions(pdev);
3420                 pci_disable_device(pdev);
3421         }
3422 }
3423
3424 static struct pci_driver driver = {
3425         .name = DRV_NAME,
3426         .id_table = cxgb3_pci_tbl,
3427         .probe = init_one,
3428         .remove = remove_one,
3429         .err_handler = &t3_err_handler,
3430 };
3431
3432 static int __init cxgb3_init_module(void)
3433 {
3434         int ret;
3435
3436         cxgb3_offload_init();
3437
3438         ret = pci_register_driver(&driver);
3439         return ret;
3440 }
3441
3442 static void __exit cxgb3_cleanup_module(void)
3443 {
3444         pci_unregister_driver(&driver);
3445         if (cxgb3_wq)
3446                 destroy_workqueue(cxgb3_wq);
3447 }
3448
3449 module_init(cxgb3_init_module);
3450 module_exit(cxgb3_cleanup_module);