Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next
[linux-2.6-block.git] / drivers / net / ethernet / cavium / liquidio / lio_main.c
1 /**********************************************************************
2 * Author: Cavium, Inc.
3 *
4 * Contact: support@cavium.com
5 *          Please include "LiquidIO" in the subject.
6 *
7 * Copyright (c) 2003-2015 Cavium, Inc.
8 *
9 * This file is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License, Version 2, as
11 * published by the Free Software Foundation.
12 *
13 * This file is distributed in the hope that it will be useful, but
14 * AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty
15 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or
16 * NONINFRINGEMENT.  See the GNU General Public License for more
17 * details.
18 *
19 * This file may also be available under a different license from Cavium.
20 * Contact Cavium, Inc. for more information
21 **********************************************************************/
22 #include <linux/version.h>
23 #include <linux/pci.h>
24 #include <linux/firmware.h>
25 #include <linux/ptp_clock_kernel.h>
26 #include <net/vxlan.h>
27 #include <linux/kthread.h>
28 #include "liquidio_common.h"
29 #include "octeon_droq.h"
30 #include "octeon_iq.h"
31 #include "response_manager.h"
32 #include "octeon_device.h"
33 #include "octeon_nic.h"
34 #include "octeon_main.h"
35 #include "octeon_network.h"
36 #include "cn66xx_regs.h"
37 #include "cn66xx_device.h"
38 #include "cn68xx_device.h"
39 #include "cn23xx_pf_device.h"
40 #include "liquidio_image.h"
41
42 MODULE_AUTHOR("Cavium Networks, <support@cavium.com>");
43 MODULE_DESCRIPTION("Cavium LiquidIO Intelligent Server Adapter Driver");
44 MODULE_LICENSE("GPL");
45 MODULE_VERSION(LIQUIDIO_VERSION);
46 MODULE_FIRMWARE(LIO_FW_DIR LIO_FW_BASE_NAME LIO_210SV_NAME LIO_FW_NAME_SUFFIX);
47 MODULE_FIRMWARE(LIO_FW_DIR LIO_FW_BASE_NAME LIO_210NV_NAME LIO_FW_NAME_SUFFIX);
48 MODULE_FIRMWARE(LIO_FW_DIR LIO_FW_BASE_NAME LIO_410NV_NAME LIO_FW_NAME_SUFFIX);
49
50 static int ddr_timeout = 10000;
51 module_param(ddr_timeout, int, 0644);
52 MODULE_PARM_DESC(ddr_timeout,
53                  "Number of milliseconds to wait for DDR initialization. 0 waits for ddr_timeout to be set to non-zero value before starting to check");
54
55 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
56
57 #define INCR_INSTRQUEUE_PKT_COUNT(octeon_dev_ptr, iq_no, field, count)  \
58         (octeon_dev_ptr->instr_queue[iq_no]->stats.field += count)
59
60 static int debug = -1;
61 module_param(debug, int, 0644);
62 MODULE_PARM_DESC(debug, "NETIF_MSG debug bits");
63
64 static char fw_type[LIO_MAX_FW_TYPE_LEN];
65 module_param_string(fw_type, fw_type, sizeof(fw_type), 0000);
66 MODULE_PARM_DESC(fw_type, "Type of firmware to be loaded. Default \"nic\"");
67
68 static int conf_type;
69 module_param(conf_type, int, 0);
70 MODULE_PARM_DESC(conf_type, "select octeon configuration 0 default 1 ovs");
71
72 static int ptp_enable = 1;
73
74 /* Bit mask values for lio->ifstate */
75 #define   LIO_IFSTATE_DROQ_OPS             0x01
76 #define   LIO_IFSTATE_REGISTERED           0x02
77 #define   LIO_IFSTATE_RUNNING              0x04
78 #define   LIO_IFSTATE_RX_TIMESTAMP_ENABLED 0x08
79
80 /* Polling interval for determining when NIC application is alive */
81 #define LIQUIDIO_STARTER_POLL_INTERVAL_MS 100
82
83 /* runtime link query interval */
84 #define LIQUIDIO_LINK_QUERY_INTERVAL_MS         1000
85
86 struct liquidio_if_cfg_context {
87         int octeon_id;
88
89         wait_queue_head_t wc;
90
91         int cond;
92 };
93
94 struct liquidio_if_cfg_resp {
95         u64 rh;
96         struct liquidio_if_cfg_info cfg_info;
97         u64 status;
98 };
99
100 struct liquidio_rx_ctl_context {
101         int octeon_id;
102
103         wait_queue_head_t wc;
104
105         int cond;
106 };
107
108 struct oct_link_status_resp {
109         u64 rh;
110         struct oct_link_info link_info;
111         u64 status;
112 };
113
114 struct oct_timestamp_resp {
115         u64 rh;
116         u64 timestamp;
117         u64 status;
118 };
119
120 #define OCT_TIMESTAMP_RESP_SIZE (sizeof(struct oct_timestamp_resp))
121
122 union tx_info {
123         u64 u64;
124         struct {
125 #ifdef __BIG_ENDIAN_BITFIELD
126                 u16 gso_size;
127                 u16 gso_segs;
128                 u32 reserved;
129 #else
130                 u32 reserved;
131                 u16 gso_segs;
132                 u16 gso_size;
133 #endif
134         } s;
135 };
136
137 /** Octeon device properties to be used by the NIC module.
138  * Each octeon device in the system will be represented
139  * by this structure in the NIC module.
140  */
141
142 #define OCTNIC_MAX_SG  (MAX_SKB_FRAGS)
143
144 #define OCTNIC_GSO_MAX_HEADER_SIZE 128
145 #define OCTNIC_GSO_MAX_SIZE                                                    \
146         (CN23XX_DEFAULT_INPUT_JABBER - OCTNIC_GSO_MAX_HEADER_SIZE)
147
148 /** Structure of a node in list of gather components maintained by
149  * NIC driver for each network device.
150  */
151 struct octnic_gather {
152         /** List manipulation. Next and prev pointers. */
153         struct list_head list;
154
155         /** Size of the gather component at sg in bytes. */
156         int sg_size;
157
158         /** Number of bytes that sg was adjusted to make it 8B-aligned. */
159         int adjust;
160
161         /** Gather component that can accommodate max sized fragment list
162          *  received from the IP layer.
163          */
164         struct octeon_sg_entry *sg;
165
166         u64 sg_dma_ptr;
167 };
168
169 struct handshake {
170         struct completion init;
171         struct completion started;
172         struct pci_dev *pci_dev;
173         int init_ok;
174         int started_ok;
175 };
176
177 struct octeon_device_priv {
178         /** Tasklet structures for this device. */
179         struct tasklet_struct droq_tasklet;
180         unsigned long napi_mask;
181 };
182
183 static int octeon_device_init(struct octeon_device *);
184 static int liquidio_stop(struct net_device *netdev);
185 static void liquidio_remove(struct pci_dev *pdev);
186 static int liquidio_probe(struct pci_dev *pdev,
187                           const struct pci_device_id *ent);
188
189 static struct handshake handshake[MAX_OCTEON_DEVICES];
190 static struct completion first_stage;
191
192 static void octeon_droq_bh(unsigned long pdev)
193 {
194         int q_no;
195         int reschedule = 0;
196         struct octeon_device *oct = (struct octeon_device *)pdev;
197         struct octeon_device_priv *oct_priv =
198                 (struct octeon_device_priv *)oct->priv;
199
200         /* for (q_no = 0; q_no < oct->num_oqs; q_no++) { */
201         for (q_no = 0; q_no < MAX_OCTEON_OUTPUT_QUEUES(oct); q_no++) {
202                 if (!(oct->io_qmask.oq & (1ULL << q_no)))
203                         continue;
204                 reschedule |= octeon_droq_process_packets(oct, oct->droq[q_no],
205                                                           MAX_PACKET_BUDGET);
206                 lio_enable_irq(oct->droq[q_no], NULL);
207
208                 if (OCTEON_CN23XX_PF(oct) && oct->msix_on) {
209                         /* set time and cnt interrupt thresholds for this DROQ
210                          * for NAPI
211                          */
212                         int adjusted_q_no = q_no + oct->sriov_info.pf_srn;
213
214                         octeon_write_csr64(
215                             oct, CN23XX_SLI_OQ_PKT_INT_LEVELS(adjusted_q_no),
216                             0x5700000040ULL);
217                         octeon_write_csr64(
218                             oct, CN23XX_SLI_OQ_PKTS_SENT(adjusted_q_no), 0);
219                 }
220         }
221
222         if (reschedule)
223                 tasklet_schedule(&oct_priv->droq_tasklet);
224 }
225
226 static int lio_wait_for_oq_pkts(struct octeon_device *oct)
227 {
228         struct octeon_device_priv *oct_priv =
229                 (struct octeon_device_priv *)oct->priv;
230         int retry = 100, pkt_cnt = 0, pending_pkts = 0;
231         int i;
232
233         do {
234                 pending_pkts = 0;
235
236                 for (i = 0; i < MAX_OCTEON_OUTPUT_QUEUES(oct); i++) {
237                         if (!(oct->io_qmask.oq & (1ULL << i)))
238                                 continue;
239                         pkt_cnt += octeon_droq_check_hw_for_pkts(oct->droq[i]);
240                 }
241                 if (pkt_cnt > 0) {
242                         pending_pkts += pkt_cnt;
243                         tasklet_schedule(&oct_priv->droq_tasklet);
244                 }
245                 pkt_cnt = 0;
246                 schedule_timeout_uninterruptible(1);
247
248         } while (retry-- && pending_pkts);
249
250         return pkt_cnt;
251 }
252
253 /**
254  * \brief Forces all IO queues off on a given device
255  * @param oct Pointer to Octeon device
256  */
257 static void force_io_queues_off(struct octeon_device *oct)
258 {
259         if ((oct->chip_id == OCTEON_CN66XX) ||
260             (oct->chip_id == OCTEON_CN68XX)) {
261                 /* Reset the Enable bits for Input Queues. */
262                 octeon_write_csr(oct, CN6XXX_SLI_PKT_INSTR_ENB, 0);
263
264                 /* Reset the Enable bits for Output Queues. */
265                 octeon_write_csr(oct, CN6XXX_SLI_PKT_OUT_ENB, 0);
266         }
267 }
268
269 /**
270  * \brief wait for all pending requests to complete
271  * @param oct Pointer to Octeon device
272  *
273  * Called during shutdown sequence
274  */
275 static int wait_for_pending_requests(struct octeon_device *oct)
276 {
277         int i, pcount = 0;
278
279         for (i = 0; i < 100; i++) {
280                 pcount =
281                         atomic_read(&oct->response_list
282                                 [OCTEON_ORDERED_SC_LIST].pending_req_count);
283                 if (pcount)
284                         schedule_timeout_uninterruptible(HZ / 10);
285                 else
286                         break;
287         }
288
289         if (pcount)
290                 return 1;
291
292         return 0;
293 }
294
295 /**
296  * \brief Cause device to go quiet so it can be safely removed/reset/etc
297  * @param oct Pointer to Octeon device
298  */
299 static inline void pcierror_quiesce_device(struct octeon_device *oct)
300 {
301         int i;
302
303         /* Disable the input and output queues now. No more packets will
304          * arrive from Octeon, but we should wait for all packet processing
305          * to finish.
306          */
307         force_io_queues_off(oct);
308
309         /* To allow for in-flight requests */
310         schedule_timeout_uninterruptible(100);
311
312         if (wait_for_pending_requests(oct))
313                 dev_err(&oct->pci_dev->dev, "There were pending requests\n");
314
315         /* Force all requests waiting to be fetched by OCTEON to complete. */
316         for (i = 0; i < MAX_OCTEON_INSTR_QUEUES(oct); i++) {
317                 struct octeon_instr_queue *iq;
318
319                 if (!(oct->io_qmask.iq & (1ULL << i)))
320                         continue;
321                 iq = oct->instr_queue[i];
322
323                 if (atomic_read(&iq->instr_pending)) {
324                         spin_lock_bh(&iq->lock);
325                         iq->fill_cnt = 0;
326                         iq->octeon_read_index = iq->host_write_index;
327                         iq->stats.instr_processed +=
328                                 atomic_read(&iq->instr_pending);
329                         lio_process_iq_request_list(oct, iq, 0);
330                         spin_unlock_bh(&iq->lock);
331                 }
332         }
333
334         /* Force all pending ordered list requests to time out. */
335         lio_process_ordered_list(oct, 1);
336
337         /* We do not need to wait for output queue packets to be processed. */
338 }
339
340 /**
341  * \brief Cleanup PCI AER uncorrectable error status
342  * @param dev Pointer to PCI device
343  */
344 static void cleanup_aer_uncorrect_error_status(struct pci_dev *dev)
345 {
346         int pos = 0x100;
347         u32 status, mask;
348
349         pr_info("%s :\n", __func__);
350
351         pci_read_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS, &status);
352         pci_read_config_dword(dev, pos + PCI_ERR_UNCOR_SEVER, &mask);
353         if (dev->error_state == pci_channel_io_normal)
354                 status &= ~mask;        /* Clear corresponding nonfatal bits */
355         else
356                 status &= mask;         /* Clear corresponding fatal bits */
357         pci_write_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS, status);
358 }
359
360 /**
361  * \brief Stop all PCI IO to a given device
362  * @param dev Pointer to Octeon device
363  */
364 static void stop_pci_io(struct octeon_device *oct)
365 {
366         /* No more instructions will be forwarded. */
367         atomic_set(&oct->status, OCT_DEV_IN_RESET);
368
369         pci_disable_device(oct->pci_dev);
370
371         /* Disable interrupts  */
372         oct->fn_list.disable_interrupt(oct, OCTEON_ALL_INTR);
373
374         pcierror_quiesce_device(oct);
375
376         /* Release the interrupt line */
377         free_irq(oct->pci_dev->irq, oct);
378
379         if (oct->flags & LIO_FLAG_MSI_ENABLED)
380                 pci_disable_msi(oct->pci_dev);
381
382         dev_dbg(&oct->pci_dev->dev, "Device state is now %s\n",
383                 lio_get_state_string(&oct->status));
384
385         /* cn63xx_cleanup_aer_uncorrect_error_status(oct->pci_dev); */
386         /* making it a common function for all OCTEON models */
387         cleanup_aer_uncorrect_error_status(oct->pci_dev);
388 }
389
390 /**
391  * \brief called when PCI error is detected
392  * @param pdev Pointer to PCI device
393  * @param state The current pci connection state
394  *
395  * This function is called after a PCI bus error affecting
396  * this device has been detected.
397  */
398 static pci_ers_result_t liquidio_pcie_error_detected(struct pci_dev *pdev,
399                                                      pci_channel_state_t state)
400 {
401         struct octeon_device *oct = pci_get_drvdata(pdev);
402
403         /* Non-correctable Non-fatal errors */
404         if (state == pci_channel_io_normal) {
405                 dev_err(&oct->pci_dev->dev, "Non-correctable non-fatal error reported:\n");
406                 cleanup_aer_uncorrect_error_status(oct->pci_dev);
407                 return PCI_ERS_RESULT_CAN_RECOVER;
408         }
409
410         /* Non-correctable Fatal errors */
411         dev_err(&oct->pci_dev->dev, "Non-correctable FATAL reported by PCI AER driver\n");
412         stop_pci_io(oct);
413
414         /* Always return a DISCONNECT. There is no support for recovery but only
415          * for a clean shutdown.
416          */
417         return PCI_ERS_RESULT_DISCONNECT;
418 }
419
420 /**
421  * \brief mmio handler
422  * @param pdev Pointer to PCI device
423  */
424 static pci_ers_result_t liquidio_pcie_mmio_enabled(
425                                 struct pci_dev *pdev __attribute__((unused)))
426 {
427         /* We should never hit this since we never ask for a reset for a Fatal
428          * Error. We always return DISCONNECT in io_error above.
429          * But play safe and return RECOVERED for now.
430          */
431         return PCI_ERS_RESULT_RECOVERED;
432 }
433
434 /**
435  * \brief called after the pci bus has been reset.
436  * @param pdev Pointer to PCI device
437  *
438  * Restart the card from scratch, as if from a cold-boot. Implementation
439  * resembles the first-half of the octeon_resume routine.
440  */
441 static pci_ers_result_t liquidio_pcie_slot_reset(
442                                 struct pci_dev *pdev __attribute__((unused)))
443 {
444         /* We should never hit this since we never ask for a reset for a Fatal
445          * Error. We always return DISCONNECT in io_error above.
446          * But play safe and return RECOVERED for now.
447          */
448         return PCI_ERS_RESULT_RECOVERED;
449 }
450
451 /**
452  * \brief called when traffic can start flowing again.
453  * @param pdev Pointer to PCI device
454  *
455  * This callback is called when the error recovery driver tells us that
456  * its OK to resume normal operation. Implementation resembles the
457  * second-half of the octeon_resume routine.
458  */
459 static void liquidio_pcie_resume(struct pci_dev *pdev __attribute__((unused)))
460 {
461         /* Nothing to be done here. */
462 }
463
464 #ifdef CONFIG_PM
465 /**
466  * \brief called when suspending
467  * @param pdev Pointer to PCI device
468  * @param state state to suspend to
469  */
470 static int liquidio_suspend(struct pci_dev *pdev __attribute__((unused)),
471                             pm_message_t state __attribute__((unused)))
472 {
473         return 0;
474 }
475
476 /**
477  * \brief called when resuming
478  * @param pdev Pointer to PCI device
479  */
480 static int liquidio_resume(struct pci_dev *pdev __attribute__((unused)))
481 {
482         return 0;
483 }
484 #endif
485
486 /* For PCI-E Advanced Error Recovery (AER) Interface */
487 static const struct pci_error_handlers liquidio_err_handler = {
488         .error_detected = liquidio_pcie_error_detected,
489         .mmio_enabled   = liquidio_pcie_mmio_enabled,
490         .slot_reset     = liquidio_pcie_slot_reset,
491         .resume         = liquidio_pcie_resume,
492 };
493
494 static const struct pci_device_id liquidio_pci_tbl[] = {
495         {       /* 68xx */
496                 PCI_VENDOR_ID_CAVIUM, 0x91, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0
497         },
498         {       /* 66xx */
499                 PCI_VENDOR_ID_CAVIUM, 0x92, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0
500         },
501         {       /* 23xx pf */
502                 PCI_VENDOR_ID_CAVIUM, 0x9702, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0
503         },
504         {
505                 0, 0, 0, 0, 0, 0, 0
506         }
507 };
508 MODULE_DEVICE_TABLE(pci, liquidio_pci_tbl);
509
510 static struct pci_driver liquidio_pci_driver = {
511         .name           = "LiquidIO",
512         .id_table       = liquidio_pci_tbl,
513         .probe          = liquidio_probe,
514         .remove         = liquidio_remove,
515         .err_handler    = &liquidio_err_handler,    /* For AER */
516
517 #ifdef CONFIG_PM
518         .suspend        = liquidio_suspend,
519         .resume         = liquidio_resume,
520 #endif
521 };
522
523 /**
524  * \brief register PCI driver
525  */
526 static int liquidio_init_pci(void)
527 {
528         return pci_register_driver(&liquidio_pci_driver);
529 }
530
531 /**
532  * \brief unregister PCI driver
533  */
534 static void liquidio_deinit_pci(void)
535 {
536         pci_unregister_driver(&liquidio_pci_driver);
537 }
538
539 /**
540  * \brief check interface state
541  * @param lio per-network private data
542  * @param state_flag flag state to check
543  */
544 static inline int ifstate_check(struct lio *lio, int state_flag)
545 {
546         return atomic_read(&lio->ifstate) & state_flag;
547 }
548
549 /**
550  * \brief set interface state
551  * @param lio per-network private data
552  * @param state_flag flag state to set
553  */
554 static inline void ifstate_set(struct lio *lio, int state_flag)
555 {
556         atomic_set(&lio->ifstate, (atomic_read(&lio->ifstate) | state_flag));
557 }
558
559 /**
560  * \brief clear interface state
561  * @param lio per-network private data
562  * @param state_flag flag state to clear
563  */
564 static inline void ifstate_reset(struct lio *lio, int state_flag)
565 {
566         atomic_set(&lio->ifstate, (atomic_read(&lio->ifstate) & ~(state_flag)));
567 }
568
569 /**
570  * \brief Stop Tx queues
571  * @param netdev network device
572  */
573 static inline void txqs_stop(struct net_device *netdev)
574 {
575         if (netif_is_multiqueue(netdev)) {
576                 int i;
577
578                 for (i = 0; i < netdev->num_tx_queues; i++)
579                         netif_stop_subqueue(netdev, i);
580         } else {
581                 netif_stop_queue(netdev);
582         }
583 }
584
585 /**
586  * \brief Start Tx queues
587  * @param netdev network device
588  */
589 static inline void txqs_start(struct net_device *netdev)
590 {
591         if (netif_is_multiqueue(netdev)) {
592                 int i;
593
594                 for (i = 0; i < netdev->num_tx_queues; i++)
595                         netif_start_subqueue(netdev, i);
596         } else {
597                 netif_start_queue(netdev);
598         }
599 }
600
601 /**
602  * \brief Wake Tx queues
603  * @param netdev network device
604  */
605 static inline void txqs_wake(struct net_device *netdev)
606 {
607         struct lio *lio = GET_LIO(netdev);
608
609         if (netif_is_multiqueue(netdev)) {
610                 int i;
611
612                 for (i = 0; i < netdev->num_tx_queues; i++) {
613                         int qno = lio->linfo.txpciq[i %
614                                 (lio->linfo.num_txpciq)].s.q_no;
615
616                         if (__netif_subqueue_stopped(netdev, i)) {
617                                 INCR_INSTRQUEUE_PKT_COUNT(lio->oct_dev, qno,
618                                                           tx_restart, 1);
619                                 netif_wake_subqueue(netdev, i);
620                         }
621                 }
622         } else {
623                 INCR_INSTRQUEUE_PKT_COUNT(lio->oct_dev, lio->txq,
624                                           tx_restart, 1);
625                 netif_wake_queue(netdev);
626         }
627 }
628
629 /**
630  * \brief Stop Tx queue
631  * @param netdev network device
632  */
633 static void stop_txq(struct net_device *netdev)
634 {
635         txqs_stop(netdev);
636 }
637
638 /**
639  * \brief Start Tx queue
640  * @param netdev network device
641  */
642 static void start_txq(struct net_device *netdev)
643 {
644         struct lio *lio = GET_LIO(netdev);
645
646         if (lio->linfo.link.s.link_up) {
647                 txqs_start(netdev);
648                 return;
649         }
650 }
651
652 /**
653  * \brief Wake a queue
654  * @param netdev network device
655  * @param q which queue to wake
656  */
657 static inline void wake_q(struct net_device *netdev, int q)
658 {
659         if (netif_is_multiqueue(netdev))
660                 netif_wake_subqueue(netdev, q);
661         else
662                 netif_wake_queue(netdev);
663 }
664
665 /**
666  * \brief Stop a queue
667  * @param netdev network device
668  * @param q which queue to stop
669  */
670 static inline void stop_q(struct net_device *netdev, int q)
671 {
672         if (netif_is_multiqueue(netdev))
673                 netif_stop_subqueue(netdev, q);
674         else
675                 netif_stop_queue(netdev);
676 }
677
678 /**
679  * \brief Check Tx queue status, and take appropriate action
680  * @param lio per-network private data
681  * @returns 0 if full, number of queues woken up otherwise
682  */
683 static inline int check_txq_status(struct lio *lio)
684 {
685         int ret_val = 0;
686
687         if (netif_is_multiqueue(lio->netdev)) {
688                 int numqs = lio->netdev->num_tx_queues;
689                 int q, iq = 0;
690
691                 /* check each sub-queue state */
692                 for (q = 0; q < numqs; q++) {
693                         iq = lio->linfo.txpciq[q %
694                                 (lio->linfo.num_txpciq)].s.q_no;
695                         if (octnet_iq_is_full(lio->oct_dev, iq))
696                                 continue;
697                         if (__netif_subqueue_stopped(lio->netdev, q)) {
698                                 wake_q(lio->netdev, q);
699                                 INCR_INSTRQUEUE_PKT_COUNT(lio->oct_dev, iq,
700                                                           tx_restart, 1);
701                                 ret_val++;
702                         }
703                 }
704         } else {
705                 if (octnet_iq_is_full(lio->oct_dev, lio->txq))
706                         return 0;
707                 wake_q(lio->netdev, lio->txq);
708                 INCR_INSTRQUEUE_PKT_COUNT(lio->oct_dev, lio->txq,
709                                           tx_restart, 1);
710                 ret_val = 1;
711         }
712         return ret_val;
713 }
714
715 /**
716  * Remove the node at the head of the list. The list would be empty at
717  * the end of this call if there are no more nodes in the list.
718  */
719 static inline struct list_head *list_delete_head(struct list_head *root)
720 {
721         struct list_head *node;
722
723         if ((root->prev == root) && (root->next == root))
724                 node = NULL;
725         else
726                 node = root->next;
727
728         if (node)
729                 list_del(node);
730
731         return node;
732 }
733
734 /**
735  * \brief Delete gather lists
736  * @param lio per-network private data
737  */
738 static void delete_glists(struct lio *lio)
739 {
740         struct octnic_gather *g;
741         int i;
742
743         if (!lio->glist)
744                 return;
745
746         for (i = 0; i < lio->linfo.num_txpciq; i++) {
747                 do {
748                         g = (struct octnic_gather *)
749                                 list_delete_head(&lio->glist[i]);
750                         if (g) {
751                                 if (g->sg) {
752                                         dma_unmap_single(&lio->oct_dev->
753                                                          pci_dev->dev,
754                                                          g->sg_dma_ptr,
755                                                          g->sg_size,
756                                                          DMA_TO_DEVICE);
757                                         kfree((void *)((unsigned long)g->sg -
758                                                        g->adjust));
759                                 }
760                                 kfree(g);
761                         }
762                 } while (g);
763         }
764
765         kfree((void *)lio->glist);
766 }
767
768 /**
769  * \brief Setup gather lists
770  * @param lio per-network private data
771  */
772 static int setup_glists(struct octeon_device *oct, struct lio *lio, int num_iqs)
773 {
774         int i, j;
775         struct octnic_gather *g;
776
777         lio->glist_lock = kcalloc(num_iqs, sizeof(*lio->glist_lock),
778                                   GFP_KERNEL);
779         if (!lio->glist_lock)
780                 return 1;
781
782         lio->glist = kcalloc(num_iqs, sizeof(*lio->glist),
783                              GFP_KERNEL);
784         if (!lio->glist) {
785                 kfree((void *)lio->glist_lock);
786                 return 1;
787         }
788
789         for (i = 0; i < num_iqs; i++) {
790                 int numa_node = cpu_to_node(i % num_online_cpus());
791
792                 spin_lock_init(&lio->glist_lock[i]);
793
794                 INIT_LIST_HEAD(&lio->glist[i]);
795
796                 for (j = 0; j < lio->tx_qsize; j++) {
797                         g = kzalloc_node(sizeof(*g), GFP_KERNEL,
798                                          numa_node);
799                         if (!g)
800                                 g = kzalloc(sizeof(*g), GFP_KERNEL);
801                         if (!g)
802                                 break;
803
804                         g->sg_size = ((ROUNDUP4(OCTNIC_MAX_SG) >> 2) *
805                                       OCT_SG_ENTRY_SIZE);
806
807                         g->sg = kmalloc_node(g->sg_size + 8,
808                                              GFP_KERNEL, numa_node);
809                         if (!g->sg)
810                                 g->sg = kmalloc(g->sg_size + 8, GFP_KERNEL);
811                         if (!g->sg) {
812                                 kfree(g);
813                                 break;
814                         }
815
816                         /* The gather component should be aligned on 64-bit
817                          * boundary
818                          */
819                         if (((unsigned long)g->sg) & 7) {
820                                 g->adjust = 8 - (((unsigned long)g->sg) & 7);
821                                 g->sg = (struct octeon_sg_entry *)
822                                         ((unsigned long)g->sg + g->adjust);
823                         }
824                         g->sg_dma_ptr = dma_map_single(&oct->pci_dev->dev,
825                                                        g->sg, g->sg_size,
826                                                        DMA_TO_DEVICE);
827                         if (dma_mapping_error(&oct->pci_dev->dev,
828                                               g->sg_dma_ptr)) {
829                                 kfree((void *)((unsigned long)g->sg -
830                                                g->adjust));
831                                 kfree(g);
832                                 break;
833                         }
834
835                         list_add_tail(&g->list, &lio->glist[i]);
836                 }
837
838                 if (j != lio->tx_qsize) {
839                         delete_glists(lio);
840                         return 1;
841                 }
842         }
843
844         return 0;
845 }
846
847 /**
848  * \brief Print link information
849  * @param netdev network device
850  */
851 static void print_link_info(struct net_device *netdev)
852 {
853         struct lio *lio = GET_LIO(netdev);
854
855         if (atomic_read(&lio->ifstate) & LIO_IFSTATE_REGISTERED) {
856                 struct oct_link_info *linfo = &lio->linfo;
857
858                 if (linfo->link.s.link_up) {
859                         netif_info(lio, link, lio->netdev, "%d Mbps %s Duplex UP\n",
860                                    linfo->link.s.speed,
861                                    (linfo->link.s.duplex) ? "Full" : "Half");
862                 } else {
863                         netif_info(lio, link, lio->netdev, "Link Down\n");
864                 }
865         }
866 }
867
868 /**
869  * \brief Routine to notify MTU change
870  * @param work work_struct data structure
871  */
872 static void octnet_link_status_change(struct work_struct *work)
873 {
874         struct cavium_wk *wk = (struct cavium_wk *)work;
875         struct lio *lio = (struct lio *)wk->ctxptr;
876
877         rtnl_lock();
878         call_netdevice_notifiers(NETDEV_CHANGEMTU, lio->netdev);
879         rtnl_unlock();
880 }
881
882 /**
883  * \brief Sets up the mtu status change work
884  * @param netdev network device
885  */
886 static inline int setup_link_status_change_wq(struct net_device *netdev)
887 {
888         struct lio *lio = GET_LIO(netdev);
889         struct octeon_device *oct = lio->oct_dev;
890
891         lio->link_status_wq.wq = alloc_workqueue("link-status",
892                                                  WQ_MEM_RECLAIM, 0);
893         if (!lio->link_status_wq.wq) {
894                 dev_err(&oct->pci_dev->dev, "unable to create cavium link status wq\n");
895                 return -1;
896         }
897         INIT_DELAYED_WORK(&lio->link_status_wq.wk.work,
898                           octnet_link_status_change);
899         lio->link_status_wq.wk.ctxptr = lio;
900
901         return 0;
902 }
903
904 static inline void cleanup_link_status_change_wq(struct net_device *netdev)
905 {
906         struct lio *lio = GET_LIO(netdev);
907
908         if (lio->link_status_wq.wq) {
909                 cancel_delayed_work_sync(&lio->link_status_wq.wk.work);
910                 destroy_workqueue(lio->link_status_wq.wq);
911         }
912 }
913
914 /**
915  * \brief Update link status
916  * @param netdev network device
917  * @param ls link status structure
918  *
919  * Called on receipt of a link status response from the core application to
920  * update each interface's link status.
921  */
922 static inline void update_link_status(struct net_device *netdev,
923                                       union oct_link_status *ls)
924 {
925         struct lio *lio = GET_LIO(netdev);
926         int changed = (lio->linfo.link.u64 != ls->u64);
927
928         lio->linfo.link.u64 = ls->u64;
929
930         if ((lio->intf_open) && (changed)) {
931                 print_link_info(netdev);
932                 lio->link_changes++;
933
934                 if (lio->linfo.link.s.link_up) {
935                         netif_carrier_on(netdev);
936                         /* start_txq(netdev); */
937                         txqs_wake(netdev);
938                 } else {
939                         netif_carrier_off(netdev);
940                         stop_txq(netdev);
941                 }
942         }
943 }
944
945 /* Runs in interrupt context. */
946 static void update_txq_status(struct octeon_device *oct, int iq_num)
947 {
948         struct net_device *netdev;
949         struct lio *lio;
950         struct octeon_instr_queue *iq = oct->instr_queue[iq_num];
951
952         netdev = oct->props[iq->ifidx].netdev;
953
954         /* This is needed because the first IQ does not have
955          * a netdev associated with it.
956          */
957         if (!netdev)
958                 return;
959
960         lio = GET_LIO(netdev);
961         if (netif_is_multiqueue(netdev)) {
962                 if (__netif_subqueue_stopped(netdev, iq->q_index) &&
963                     lio->linfo.link.s.link_up &&
964                     (!octnet_iq_is_full(oct, iq_num))) {
965                         INCR_INSTRQUEUE_PKT_COUNT(lio->oct_dev, iq_num,
966                                                   tx_restart, 1);
967                         netif_wake_subqueue(netdev, iq->q_index);
968                 } else {
969                         if (!octnet_iq_is_full(oct, lio->txq)) {
970                                 INCR_INSTRQUEUE_PKT_COUNT(lio->oct_dev,
971                                                           lio->txq,
972                                                           tx_restart, 1);
973                                 wake_q(netdev, lio->txq);
974                         }
975                 }
976         }
977 }
978
979 static
980 int liquidio_schedule_msix_droq_pkt_handler(struct octeon_droq *droq, u64 ret)
981 {
982         struct octeon_device *oct = droq->oct_dev;
983         struct octeon_device_priv *oct_priv =
984             (struct octeon_device_priv *)oct->priv;
985
986         if (droq->ops.poll_mode) {
987                 droq->ops.napi_fn(droq);
988         } else {
989                 if (ret & MSIX_PO_INT) {
990                         tasklet_schedule(&oct_priv->droq_tasklet);
991                         return 1;
992                 }
993                 /* this will be flushed periodically by check iq db */
994                 if (ret & MSIX_PI_INT)
995                         return 0;
996         }
997         return 0;
998 }
999
1000 /**
1001  * \brief Droq packet processor sceduler
1002  * @param oct octeon device
1003  */
1004 static void liquidio_schedule_droq_pkt_handlers(struct octeon_device *oct)
1005 {
1006         struct octeon_device_priv *oct_priv =
1007                 (struct octeon_device_priv *)oct->priv;
1008         u64 oq_no;
1009         struct octeon_droq *droq;
1010
1011         if (oct->int_status & OCT_DEV_INTR_PKT_DATA) {
1012                 for (oq_no = 0; oq_no < MAX_OCTEON_OUTPUT_QUEUES(oct);
1013                      oq_no++) {
1014                         if (!(oct->droq_intr & (1ULL << oq_no)))
1015                                 continue;
1016
1017                         droq = oct->droq[oq_no];
1018
1019                         if (droq->ops.poll_mode) {
1020                                 droq->ops.napi_fn(droq);
1021                                 oct_priv->napi_mask |= (1 << oq_no);
1022                         } else {
1023                                 tasklet_schedule(&oct_priv->droq_tasklet);
1024                         }
1025                 }
1026         }
1027 }
1028
1029 static irqreturn_t
1030 liquidio_msix_intr_handler(int irq __attribute__((unused)), void *dev)
1031 {
1032         u64 ret;
1033         struct octeon_ioq_vector *ioq_vector = (struct octeon_ioq_vector *)dev;
1034         struct octeon_device *oct = ioq_vector->oct_dev;
1035         struct octeon_droq *droq = oct->droq[ioq_vector->droq_index];
1036
1037         ret = oct->fn_list.msix_interrupt_handler(ioq_vector);
1038
1039         if ((ret & MSIX_PO_INT) || (ret & MSIX_PI_INT))
1040                 liquidio_schedule_msix_droq_pkt_handler(droq, ret);
1041
1042         return IRQ_HANDLED;
1043 }
1044
1045 /**
1046  * \brief Interrupt handler for octeon
1047  * @param irq unused
1048  * @param dev octeon device
1049  */
1050 static
1051 irqreturn_t liquidio_legacy_intr_handler(int irq __attribute__((unused)),
1052                                          void *dev)
1053 {
1054         struct octeon_device *oct = (struct octeon_device *)dev;
1055         irqreturn_t ret;
1056
1057         /* Disable our interrupts for the duration of ISR */
1058         oct->fn_list.disable_interrupt(oct, OCTEON_ALL_INTR);
1059
1060         ret = oct->fn_list.process_interrupt_regs(oct);
1061
1062         if (ret == IRQ_HANDLED)
1063                 liquidio_schedule_droq_pkt_handlers(oct);
1064
1065         /* Re-enable our interrupts  */
1066         if (!(atomic_read(&oct->status) == OCT_DEV_IN_RESET))
1067                 oct->fn_list.enable_interrupt(oct, OCTEON_ALL_INTR);
1068
1069         return ret;
1070 }
1071
1072 /**
1073  * \brief Setup interrupt for octeon device
1074  * @param oct octeon device
1075  *
1076  *  Enable interrupt in Octeon device as given in the PCI interrupt mask.
1077  */
1078 static int octeon_setup_interrupt(struct octeon_device *oct)
1079 {
1080         int irqret, err;
1081         struct msix_entry *msix_entries;
1082         int i;
1083         int num_ioq_vectors;
1084         int num_alloc_ioq_vectors;
1085
1086         if (OCTEON_CN23XX_PF(oct) && oct->msix_on) {
1087                 oct->num_msix_irqs = oct->sriov_info.num_pf_rings;
1088                 /* one non ioq interrupt for handling sli_mac_pf_int_sum */
1089                 oct->num_msix_irqs += 1;
1090
1091                 oct->msix_entries = kcalloc(
1092                     oct->num_msix_irqs, sizeof(struct msix_entry), GFP_KERNEL);
1093                 if (!oct->msix_entries)
1094                         return 1;
1095
1096                 msix_entries = (struct msix_entry *)oct->msix_entries;
1097                 /*Assumption is that pf msix vectors start from pf srn to pf to
1098                  * trs and not from 0. if not change this code
1099                  */
1100                 for (i = 0; i < oct->num_msix_irqs - 1; i++)
1101                         msix_entries[i].entry = oct->sriov_info.pf_srn + i;
1102                 msix_entries[oct->num_msix_irqs - 1].entry =
1103                     oct->sriov_info.trs;
1104                 num_alloc_ioq_vectors = pci_enable_msix_range(
1105                                                 oct->pci_dev, msix_entries,
1106                                                 oct->num_msix_irqs,
1107                                                 oct->num_msix_irqs);
1108                 if (num_alloc_ioq_vectors < 0) {
1109                         dev_err(&oct->pci_dev->dev, "unable to Allocate MSI-X interrupts\n");
1110                         kfree(oct->msix_entries);
1111                         oct->msix_entries = NULL;
1112                         return 1;
1113                 }
1114                 dev_dbg(&oct->pci_dev->dev, "OCTEON: Enough MSI-X interrupts are allocated...\n");
1115
1116                 num_ioq_vectors = oct->num_msix_irqs;
1117
1118                 /** For PF, there is one non-ioq interrupt handler */
1119                 num_ioq_vectors -= 1;
1120                 irqret = request_irq(msix_entries[num_ioq_vectors].vector,
1121                                      liquidio_legacy_intr_handler, 0, "octeon",
1122                                      oct);
1123                 if (irqret) {
1124                         dev_err(&oct->pci_dev->dev,
1125                                 "OCTEON: Request_irq failed for MSIX interrupt Error: %d\n",
1126                                 irqret);
1127                         pci_disable_msix(oct->pci_dev);
1128                         kfree(oct->msix_entries);
1129                         oct->msix_entries = NULL;
1130                         return 1;
1131                 }
1132
1133                 for (i = 0; i < num_ioq_vectors; i++) {
1134                         irqret = request_irq(msix_entries[i].vector,
1135                                              liquidio_msix_intr_handler, 0,
1136                                              "octeon", &oct->ioq_vector[i]);
1137                         if (irqret) {
1138                                 dev_err(&oct->pci_dev->dev,
1139                                         "OCTEON: Request_irq failed for MSIX interrupt Error: %d\n",
1140                                         irqret);
1141                                 /** Freeing the non-ioq irq vector here . */
1142                                 free_irq(msix_entries[num_ioq_vectors].vector,
1143                                          oct);
1144
1145                                 while (i) {
1146                                         i--;
1147                                         /** clearing affinity mask. */
1148                                         irq_set_affinity_hint(
1149                                                 msix_entries[i].vector, NULL);
1150                                         free_irq(msix_entries[i].vector,
1151                                                  &oct->ioq_vector[i]);
1152                                 }
1153                                 pci_disable_msix(oct->pci_dev);
1154                                 kfree(oct->msix_entries);
1155                                 oct->msix_entries = NULL;
1156                                 return 1;
1157                         }
1158                         oct->ioq_vector[i].vector = msix_entries[i].vector;
1159                         /* assign the cpu mask for this msix interrupt vector */
1160                         irq_set_affinity_hint(
1161                                         msix_entries[i].vector,
1162                                         (&oct->ioq_vector[i].affinity_mask));
1163                 }
1164                 dev_dbg(&oct->pci_dev->dev, "OCTEON[%d]: MSI-X enabled\n",
1165                         oct->octeon_id);
1166         } else {
1167                 err = pci_enable_msi(oct->pci_dev);
1168                 if (err)
1169                         dev_warn(&oct->pci_dev->dev, "Reverting to legacy interrupts. Error: %d\n",
1170                                  err);
1171                 else
1172                         oct->flags |= LIO_FLAG_MSI_ENABLED;
1173
1174                 irqret = request_irq(oct->pci_dev->irq,
1175                                      liquidio_legacy_intr_handler, IRQF_SHARED,
1176                                      "octeon", oct);
1177                 if (irqret) {
1178                         if (oct->flags & LIO_FLAG_MSI_ENABLED)
1179                                 pci_disable_msi(oct->pci_dev);
1180                         dev_err(&oct->pci_dev->dev, "Request IRQ failed with code: %d\n",
1181                                 irqret);
1182                         return 1;
1183                 }
1184         }
1185         return 0;
1186 }
1187
1188 static int liquidio_watchdog(void *param)
1189 {
1190         u64 wdog;
1191         u16 mask_of_stuck_cores = 0;
1192         u16 mask_of_crashed_cores = 0;
1193         int core_num;
1194         u8 core_is_stuck[LIO_MAX_CORES];
1195         u8 core_crashed[LIO_MAX_CORES];
1196         struct octeon_device *oct = param;
1197
1198         memset(core_is_stuck, 0, sizeof(core_is_stuck));
1199         memset(core_crashed, 0, sizeof(core_crashed));
1200
1201         while (!kthread_should_stop()) {
1202                 mask_of_crashed_cores =
1203                     (u16)octeon_read_csr64(oct, CN23XX_SLI_SCRATCH2);
1204
1205                 for (core_num = 0; core_num < LIO_MAX_CORES; core_num++) {
1206                         if (!core_is_stuck[core_num]) {
1207                                 wdog = lio_pci_readq(oct, CIU3_WDOG(core_num));
1208
1209                                 /* look at watchdog state field */
1210                                 wdog &= CIU3_WDOG_MASK;
1211                                 if (wdog) {
1212                                         /* this watchdog timer has expired */
1213                                         core_is_stuck[core_num] =
1214                                                 LIO_MONITOR_WDOG_EXPIRE;
1215                                         mask_of_stuck_cores |= (1 << core_num);
1216                                 }
1217                         }
1218
1219                         if (!core_crashed[core_num])
1220                                 core_crashed[core_num] =
1221                                     (mask_of_crashed_cores >> core_num) & 1;
1222                 }
1223
1224                 if (mask_of_stuck_cores) {
1225                         for (core_num = 0; core_num < LIO_MAX_CORES;
1226                              core_num++) {
1227                                 if (core_is_stuck[core_num] == 1) {
1228                                         dev_err(&oct->pci_dev->dev,
1229                                                 "ERROR: Octeon core %d is stuck!\n",
1230                                                 core_num);
1231                                         /* 2 means we have printk'd  an error
1232                                          * so no need to repeat the same printk
1233                                          */
1234                                         core_is_stuck[core_num] =
1235                                                 LIO_MONITOR_CORE_STUCK_MSGD;
1236                                 }
1237                         }
1238                 }
1239
1240                 if (mask_of_crashed_cores) {
1241                         for (core_num = 0; core_num < LIO_MAX_CORES;
1242                              core_num++) {
1243                                 if (core_crashed[core_num] == 1) {
1244                                         dev_err(&oct->pci_dev->dev,
1245                                                 "ERROR: Octeon core %d crashed!  See oct-fwdump for details.\n",
1246                                                 core_num);
1247                                         /* 2 means we have printk'd  an error
1248                                          * so no need to repeat the same printk
1249                                          */
1250                                         core_crashed[core_num] =
1251                                                 LIO_MONITOR_CORE_STUCK_MSGD;
1252                                 }
1253                         }
1254                 }
1255 #ifdef CONFIG_MODULE_UNLOAD
1256                 if (mask_of_stuck_cores || mask_of_crashed_cores) {
1257                         /* make module refcount=0 so that rmmod will work */
1258                         long refcount;
1259
1260                         refcount = module_refcount(THIS_MODULE);
1261
1262                         while (refcount > 0) {
1263                                 module_put(THIS_MODULE);
1264                                 refcount = module_refcount(THIS_MODULE);
1265                         }
1266
1267                         /* compensate for and withstand an unlikely (but still
1268                          * possible) race condition
1269                          */
1270                         while (refcount < 0) {
1271                                 try_module_get(THIS_MODULE);
1272                                 refcount = module_refcount(THIS_MODULE);
1273                         }
1274                 }
1275 #endif
1276                 /* sleep for two seconds */
1277                 set_current_state(TASK_INTERRUPTIBLE);
1278                 schedule_timeout(2 * HZ);
1279         }
1280
1281         return 0;
1282 }
1283
1284 /**
1285  * \brief PCI probe handler
1286  * @param pdev PCI device structure
1287  * @param ent unused
1288  */
1289 static int
1290 liquidio_probe(struct pci_dev *pdev,
1291                const struct pci_device_id *ent __attribute__((unused)))
1292 {
1293         struct octeon_device *oct_dev = NULL;
1294         struct handshake *hs;
1295
1296         oct_dev = octeon_allocate_device(pdev->device,
1297                                          sizeof(struct octeon_device_priv));
1298         if (!oct_dev) {
1299                 dev_err(&pdev->dev, "Unable to allocate device\n");
1300                 return -ENOMEM;
1301         }
1302
1303         if (pdev->device == OCTEON_CN23XX_PF_VID)
1304                 oct_dev->msix_on = LIO_FLAG_MSIX_ENABLED;
1305
1306         dev_info(&pdev->dev, "Initializing device %x:%x.\n",
1307                  (u32)pdev->vendor, (u32)pdev->device);
1308
1309         /* Assign octeon_device for this device to the private data area. */
1310         pci_set_drvdata(pdev, oct_dev);
1311
1312         /* set linux specific device pointer */
1313         oct_dev->pci_dev = (void *)pdev;
1314
1315         hs = &handshake[oct_dev->octeon_id];
1316         init_completion(&hs->init);
1317         init_completion(&hs->started);
1318         hs->pci_dev = pdev;
1319
1320         if (oct_dev->octeon_id == 0)
1321                 /* first LiquidIO NIC is detected */
1322                 complete(&first_stage);
1323
1324         if (octeon_device_init(oct_dev)) {
1325                 liquidio_remove(pdev);
1326                 return -ENOMEM;
1327         }
1328
1329         if (OCTEON_CN23XX_PF(oct_dev)) {
1330                 u64 scratch1;
1331                 u8 bus, device, function;
1332
1333                 scratch1 = octeon_read_csr64(oct_dev, CN23XX_SLI_SCRATCH1);
1334                 if (!(scratch1 & 4ULL)) {
1335                         /* Bit 2 of SLI_SCRATCH_1 is a flag that indicates that
1336                          * the lio watchdog kernel thread is running for this
1337                          * NIC.  Each NIC gets one watchdog kernel thread.
1338                          */
1339                         scratch1 |= 4ULL;
1340                         octeon_write_csr64(oct_dev, CN23XX_SLI_SCRATCH1,
1341                                            scratch1);
1342
1343                         bus = pdev->bus->number;
1344                         device = PCI_SLOT(pdev->devfn);
1345                         function = PCI_FUNC(pdev->devfn);
1346                         oct_dev->watchdog_task = kthread_create(
1347                             liquidio_watchdog, oct_dev,
1348                             "liowd/%02hhx:%02hhx.%hhx", bus, device, function);
1349                         wake_up_process(oct_dev->watchdog_task);
1350                 }
1351         }
1352
1353         oct_dev->rx_pause = 1;
1354         oct_dev->tx_pause = 1;
1355
1356         dev_dbg(&oct_dev->pci_dev->dev, "Device is ready\n");
1357
1358         return 0;
1359 }
1360
1361 /**
1362  *\brief Destroy resources associated with octeon device
1363  * @param pdev PCI device structure
1364  * @param ent unused
1365  */
1366 static void octeon_destroy_resources(struct octeon_device *oct)
1367 {
1368         int i;
1369         struct msix_entry *msix_entries;
1370         struct octeon_device_priv *oct_priv =
1371                 (struct octeon_device_priv *)oct->priv;
1372
1373         struct handshake *hs;
1374
1375         switch (atomic_read(&oct->status)) {
1376         case OCT_DEV_RUNNING:
1377         case OCT_DEV_CORE_OK:
1378
1379                 /* No more instructions will be forwarded. */
1380                 atomic_set(&oct->status, OCT_DEV_IN_RESET);
1381
1382                 oct->app_mode = CVM_DRV_INVALID_APP;
1383                 dev_dbg(&oct->pci_dev->dev, "Device state is now %s\n",
1384                         lio_get_state_string(&oct->status));
1385
1386                 schedule_timeout_uninterruptible(HZ / 10);
1387
1388                 /* fallthrough */
1389         case OCT_DEV_HOST_OK:
1390
1391                 /* fallthrough */
1392         case OCT_DEV_CONSOLE_INIT_DONE:
1393                 /* Remove any consoles */
1394                 octeon_remove_consoles(oct);
1395
1396                 /* fallthrough */
1397         case OCT_DEV_IO_QUEUES_DONE:
1398                 if (wait_for_pending_requests(oct))
1399                         dev_err(&oct->pci_dev->dev, "There were pending requests\n");
1400
1401                 if (lio_wait_for_instr_fetch(oct))
1402                         dev_err(&oct->pci_dev->dev, "IQ had pending instructions\n");
1403
1404                 /* Disable the input and output queues now. No more packets will
1405                  * arrive from Octeon, but we should wait for all packet
1406                  * processing to finish.
1407                  */
1408                 oct->fn_list.disable_io_queues(oct);
1409
1410                 if (lio_wait_for_oq_pkts(oct))
1411                         dev_err(&oct->pci_dev->dev, "OQ had pending packets\n");
1412
1413                 /* Disable interrupts  */
1414                 oct->fn_list.disable_interrupt(oct, OCTEON_ALL_INTR);
1415
1416                 if (oct->msix_on) {
1417                         msix_entries = (struct msix_entry *)oct->msix_entries;
1418                         for (i = 0; i < oct->num_msix_irqs - 1; i++) {
1419                                 /* clear the affinity_cpumask */
1420                                 irq_set_affinity_hint(msix_entries[i].vector,
1421                                                       NULL);
1422                                 free_irq(msix_entries[i].vector,
1423                                          &oct->ioq_vector[i]);
1424                         }
1425                         /* non-iov vector's argument is oct struct */
1426                         free_irq(msix_entries[i].vector, oct);
1427
1428                         pci_disable_msix(oct->pci_dev);
1429                         kfree(oct->msix_entries);
1430                         oct->msix_entries = NULL;
1431                 } else {
1432                         /* Release the interrupt line */
1433                         free_irq(oct->pci_dev->irq, oct);
1434
1435                         if (oct->flags & LIO_FLAG_MSI_ENABLED)
1436                                 pci_disable_msi(oct->pci_dev);
1437                 }
1438
1439                 if (OCTEON_CN23XX_PF(oct))
1440                         octeon_free_ioq_vector(oct);
1441         /* fallthrough */
1442         case OCT_DEV_IN_RESET:
1443         case OCT_DEV_DROQ_INIT_DONE:
1444                 /*atomic_set(&oct->status, OCT_DEV_DROQ_INIT_DONE);*/
1445                 mdelay(100);
1446                 for (i = 0; i < MAX_OCTEON_OUTPUT_QUEUES(oct); i++) {
1447                         if (!(oct->io_qmask.oq & BIT_ULL(i)))
1448                                 continue;
1449                         octeon_delete_droq(oct, i);
1450                 }
1451
1452                 /* Force any pending handshakes to complete */
1453                 for (i = 0; i < MAX_OCTEON_DEVICES; i++) {
1454                         hs = &handshake[i];
1455
1456                         if (hs->pci_dev) {
1457                                 handshake[oct->octeon_id].init_ok = 0;
1458                                 complete(&handshake[oct->octeon_id].init);
1459                                 handshake[oct->octeon_id].started_ok = 0;
1460                                 complete(&handshake[oct->octeon_id].started);
1461                         }
1462                 }
1463
1464                 /* fallthrough */
1465         case OCT_DEV_RESP_LIST_INIT_DONE:
1466                 octeon_delete_response_list(oct);
1467
1468                 /* fallthrough */
1469         case OCT_DEV_INSTR_QUEUE_INIT_DONE:
1470                 for (i = 0; i < MAX_OCTEON_INSTR_QUEUES(oct); i++) {
1471                         if (!(oct->io_qmask.iq & BIT_ULL(i)))
1472                                 continue;
1473                         octeon_delete_instr_queue(oct, i);
1474                 }
1475                 /* fallthrough */
1476         case OCT_DEV_SC_BUFF_POOL_INIT_DONE:
1477                 octeon_free_sc_buffer_pool(oct);
1478
1479                 /* fallthrough */
1480         case OCT_DEV_DISPATCH_INIT_DONE:
1481                 octeon_delete_dispatch_list(oct);
1482                 cancel_delayed_work_sync(&oct->nic_poll_work.work);
1483
1484                 /* fallthrough */
1485         case OCT_DEV_PCI_MAP_DONE:
1486                 /* Soft reset the octeon device before exiting */
1487                 if ((!OCTEON_CN23XX_PF(oct)) || !oct->octeon_id)
1488                         oct->fn_list.soft_reset(oct);
1489
1490                 octeon_unmap_pci_barx(oct, 0);
1491                 octeon_unmap_pci_barx(oct, 1);
1492
1493                 /* fallthrough */
1494         case OCT_DEV_BEGIN_STATE:
1495                 /* Disable the device, releasing the PCI INT */
1496                 pci_disable_device(oct->pci_dev);
1497
1498                 /* Nothing to be done here either */
1499                 break;
1500         }                       /* end switch (oct->status) */
1501
1502         tasklet_kill(&oct_priv->droq_tasklet);
1503 }
1504
1505 /**
1506  * \brief Callback for rx ctrl
1507  * @param status status of request
1508  * @param buf pointer to resp structure
1509  */
1510 static void rx_ctl_callback(struct octeon_device *oct,
1511                             u32 status,
1512                             void *buf)
1513 {
1514         struct octeon_soft_command *sc = (struct octeon_soft_command *)buf;
1515         struct liquidio_rx_ctl_context *ctx;
1516
1517         ctx  = (struct liquidio_rx_ctl_context *)sc->ctxptr;
1518
1519         oct = lio_get_device(ctx->octeon_id);
1520         if (status)
1521                 dev_err(&oct->pci_dev->dev, "rx ctl instruction failed. Status: %llx\n",
1522                         CVM_CAST64(status));
1523         WRITE_ONCE(ctx->cond, 1);
1524
1525         /* This barrier is required to be sure that the response has been
1526          * written fully before waking up the handler
1527          */
1528         wmb();
1529
1530         wake_up_interruptible(&ctx->wc);
1531 }
1532
1533 /**
1534  * \brief Send Rx control command
1535  * @param lio per-network private data
1536  * @param start_stop whether to start or stop
1537  */
1538 static void send_rx_ctrl_cmd(struct lio *lio, int start_stop)
1539 {
1540         struct octeon_soft_command *sc;
1541         struct liquidio_rx_ctl_context *ctx;
1542         union octnet_cmd *ncmd;
1543         int ctx_size = sizeof(struct liquidio_rx_ctl_context);
1544         struct octeon_device *oct = (struct octeon_device *)lio->oct_dev;
1545         int retval;
1546
1547         if (oct->props[lio->ifidx].rx_on == start_stop)
1548                 return;
1549
1550         sc = (struct octeon_soft_command *)
1551                 octeon_alloc_soft_command(oct, OCTNET_CMD_SIZE,
1552                                           16, ctx_size);
1553
1554         ncmd = (union octnet_cmd *)sc->virtdptr;
1555         ctx  = (struct liquidio_rx_ctl_context *)sc->ctxptr;
1556
1557         WRITE_ONCE(ctx->cond, 0);
1558         ctx->octeon_id = lio_get_device_id(oct);
1559         init_waitqueue_head(&ctx->wc);
1560
1561         ncmd->u64 = 0;
1562         ncmd->s.cmd = OCTNET_CMD_RX_CTL;
1563         ncmd->s.param1 = start_stop;
1564
1565         octeon_swap_8B_data((u64 *)ncmd, (OCTNET_CMD_SIZE >> 3));
1566
1567         sc->iq_no = lio->linfo.txpciq[0].s.q_no;
1568
1569         octeon_prepare_soft_command(oct, sc, OPCODE_NIC,
1570                                     OPCODE_NIC_CMD, 0, 0, 0);
1571
1572         sc->callback = rx_ctl_callback;
1573         sc->callback_arg = sc;
1574         sc->wait_time = 5000;
1575
1576         retval = octeon_send_soft_command(oct, sc);
1577         if (retval == IQ_SEND_FAILED) {
1578                 netif_info(lio, rx_err, lio->netdev, "Failed to send RX Control message\n");
1579         } else {
1580                 /* Sleep on a wait queue till the cond flag indicates that the
1581                  * response arrived or timed-out.
1582                  */
1583                 if (sleep_cond(&ctx->wc, &ctx->cond) == -EINTR)
1584                         return;
1585                 oct->props[lio->ifidx].rx_on = start_stop;
1586         }
1587
1588         octeon_free_soft_command(oct, sc);
1589 }
1590
1591 /**
1592  * \brief Destroy NIC device interface
1593  * @param oct octeon device
1594  * @param ifidx which interface to destroy
1595  *
1596  * Cleanup associated with each interface for an Octeon device  when NIC
1597  * module is being unloaded or if initialization fails during load.
1598  */
1599 static void liquidio_destroy_nic_device(struct octeon_device *oct, int ifidx)
1600 {
1601         struct net_device *netdev = oct->props[ifidx].netdev;
1602         struct lio *lio;
1603         struct napi_struct *napi, *n;
1604
1605         if (!netdev) {
1606                 dev_err(&oct->pci_dev->dev, "%s No netdevice ptr for index %d\n",
1607                         __func__, ifidx);
1608                 return;
1609         }
1610
1611         lio = GET_LIO(netdev);
1612
1613         dev_dbg(&oct->pci_dev->dev, "NIC device cleanup\n");
1614
1615         if (atomic_read(&lio->ifstate) & LIO_IFSTATE_RUNNING)
1616                 liquidio_stop(netdev);
1617
1618         if (oct->props[lio->ifidx].napi_enabled == 1) {
1619                 list_for_each_entry_safe(napi, n, &netdev->napi_list, dev_list)
1620                         napi_disable(napi);
1621
1622                 oct->props[lio->ifidx].napi_enabled = 0;
1623
1624                 if (OCTEON_CN23XX_PF(oct))
1625                         oct->droq[0]->ops.poll_mode = 0;
1626         }
1627
1628         if (atomic_read(&lio->ifstate) & LIO_IFSTATE_REGISTERED)
1629                 unregister_netdev(netdev);
1630
1631         cleanup_link_status_change_wq(netdev);
1632
1633         delete_glists(lio);
1634
1635         free_netdev(netdev);
1636
1637         oct->props[ifidx].gmxport = -1;
1638
1639         oct->props[ifidx].netdev = NULL;
1640 }
1641
1642 /**
1643  * \brief Stop complete NIC functionality
1644  * @param oct octeon device
1645  */
1646 static int liquidio_stop_nic_module(struct octeon_device *oct)
1647 {
1648         int i, j;
1649         struct lio *lio;
1650
1651         dev_dbg(&oct->pci_dev->dev, "Stopping network interfaces\n");
1652         if (!oct->ifcount) {
1653                 dev_err(&oct->pci_dev->dev, "Init for Octeon was not completed\n");
1654                 return 1;
1655         }
1656
1657         spin_lock_bh(&oct->cmd_resp_wqlock);
1658         oct->cmd_resp_state = OCT_DRV_OFFLINE;
1659         spin_unlock_bh(&oct->cmd_resp_wqlock);
1660
1661         for (i = 0; i < oct->ifcount; i++) {
1662                 lio = GET_LIO(oct->props[i].netdev);
1663                 for (j = 0; j < lio->linfo.num_rxpciq; j++)
1664                         octeon_unregister_droq_ops(oct,
1665                                                    lio->linfo.rxpciq[j].s.q_no);
1666         }
1667
1668         for (i = 0; i < oct->ifcount; i++)
1669                 liquidio_destroy_nic_device(oct, i);
1670
1671         dev_dbg(&oct->pci_dev->dev, "Network interfaces stopped\n");
1672         return 0;
1673 }
1674
1675 /**
1676  * \brief Cleans up resources at unload time
1677  * @param pdev PCI device structure
1678  */
1679 static void liquidio_remove(struct pci_dev *pdev)
1680 {
1681         struct octeon_device *oct_dev = pci_get_drvdata(pdev);
1682
1683         dev_dbg(&oct_dev->pci_dev->dev, "Stopping device\n");
1684
1685         if (oct_dev->watchdog_task)
1686                 kthread_stop(oct_dev->watchdog_task);
1687
1688         if (oct_dev->app_mode && (oct_dev->app_mode == CVM_DRV_NIC_APP))
1689                 liquidio_stop_nic_module(oct_dev);
1690
1691         /* Reset the octeon device and cleanup all memory allocated for
1692          * the octeon device by driver.
1693          */
1694         octeon_destroy_resources(oct_dev);
1695
1696         dev_info(&oct_dev->pci_dev->dev, "Device removed\n");
1697
1698         /* This octeon device has been removed. Update the global
1699          * data structure to reflect this. Free the device structure.
1700          */
1701         octeon_free_device_mem(oct_dev);
1702 }
1703
1704 /**
1705  * \brief Identify the Octeon device and to map the BAR address space
1706  * @param oct octeon device
1707  */
1708 static int octeon_chip_specific_setup(struct octeon_device *oct)
1709 {
1710         u32 dev_id, rev_id;
1711         int ret = 1;
1712         char *s;
1713
1714         pci_read_config_dword(oct->pci_dev, 0, &dev_id);
1715         pci_read_config_dword(oct->pci_dev, 8, &rev_id);
1716         oct->rev_id = rev_id & 0xff;
1717
1718         switch (dev_id) {
1719         case OCTEON_CN68XX_PCIID:
1720                 oct->chip_id = OCTEON_CN68XX;
1721                 ret = lio_setup_cn68xx_octeon_device(oct);
1722                 s = "CN68XX";
1723                 break;
1724
1725         case OCTEON_CN66XX_PCIID:
1726                 oct->chip_id = OCTEON_CN66XX;
1727                 ret = lio_setup_cn66xx_octeon_device(oct);
1728                 s = "CN66XX";
1729                 break;
1730
1731         case OCTEON_CN23XX_PCIID_PF:
1732                 oct->chip_id = OCTEON_CN23XX_PF_VID;
1733                 ret = setup_cn23xx_octeon_pf_device(oct);
1734                 s = "CN23XX";
1735                 break;
1736
1737         default:
1738                 s = "?";
1739                 dev_err(&oct->pci_dev->dev, "Unknown device found (dev_id: %x)\n",
1740                         dev_id);
1741         }
1742
1743         if (!ret)
1744                 dev_info(&oct->pci_dev->dev, "%s PASS%d.%d %s Version: %s\n", s,
1745                          OCTEON_MAJOR_REV(oct),
1746                          OCTEON_MINOR_REV(oct),
1747                          octeon_get_conf(oct)->card_name,
1748                          LIQUIDIO_VERSION);
1749
1750         return ret;
1751 }
1752
1753 /**
1754  * \brief PCI initialization for each Octeon device.
1755  * @param oct octeon device
1756  */
1757 static int octeon_pci_os_setup(struct octeon_device *oct)
1758 {
1759         /* setup PCI stuff first */
1760         if (pci_enable_device(oct->pci_dev)) {
1761                 dev_err(&oct->pci_dev->dev, "pci_enable_device failed\n");
1762                 return 1;
1763         }
1764
1765         if (dma_set_mask_and_coherent(&oct->pci_dev->dev, DMA_BIT_MASK(64))) {
1766                 dev_err(&oct->pci_dev->dev, "Unexpected DMA device capability\n");
1767                 return 1;
1768         }
1769
1770         /* Enable PCI DMA Master. */
1771         pci_set_master(oct->pci_dev);
1772
1773         return 0;
1774 }
1775
1776 static inline int skb_iq(struct lio *lio, struct sk_buff *skb)
1777 {
1778         int q = 0;
1779
1780         if (netif_is_multiqueue(lio->netdev))
1781                 q = skb->queue_mapping % lio->linfo.num_txpciq;
1782
1783         return q;
1784 }
1785
1786 /**
1787  * \brief Check Tx queue state for a given network buffer
1788  * @param lio per-network private data
1789  * @param skb network buffer
1790  */
1791 static inline int check_txq_state(struct lio *lio, struct sk_buff *skb)
1792 {
1793         int q = 0, iq = 0;
1794
1795         if (netif_is_multiqueue(lio->netdev)) {
1796                 q = skb->queue_mapping;
1797                 iq = lio->linfo.txpciq[(q % (lio->linfo.num_txpciq))].s.q_no;
1798         } else {
1799                 iq = lio->txq;
1800                 q = iq;
1801         }
1802
1803         if (octnet_iq_is_full(lio->oct_dev, iq))
1804                 return 0;
1805
1806         if (__netif_subqueue_stopped(lio->netdev, q)) {
1807                 INCR_INSTRQUEUE_PKT_COUNT(lio->oct_dev, iq, tx_restart, 1);
1808                 wake_q(lio->netdev, q);
1809         }
1810         return 1;
1811 }
1812
1813 /**
1814  * \brief Unmap and free network buffer
1815  * @param buf buffer
1816  */
1817 static void free_netbuf(void *buf)
1818 {
1819         struct sk_buff *skb;
1820         struct octnet_buf_free_info *finfo;
1821         struct lio *lio;
1822
1823         finfo = (struct octnet_buf_free_info *)buf;
1824         skb = finfo->skb;
1825         lio = finfo->lio;
1826
1827         dma_unmap_single(&lio->oct_dev->pci_dev->dev, finfo->dptr, skb->len,
1828                          DMA_TO_DEVICE);
1829
1830         check_txq_state(lio, skb);
1831
1832         tx_buffer_free(skb);
1833 }
1834
1835 /**
1836  * \brief Unmap and free gather buffer
1837  * @param buf buffer
1838  */
1839 static void free_netsgbuf(void *buf)
1840 {
1841         struct octnet_buf_free_info *finfo;
1842         struct sk_buff *skb;
1843         struct lio *lio;
1844         struct octnic_gather *g;
1845         int i, frags, iq;
1846
1847         finfo = (struct octnet_buf_free_info *)buf;
1848         skb = finfo->skb;
1849         lio = finfo->lio;
1850         g = finfo->g;
1851         frags = skb_shinfo(skb)->nr_frags;
1852
1853         dma_unmap_single(&lio->oct_dev->pci_dev->dev,
1854                          g->sg[0].ptr[0], (skb->len - skb->data_len),
1855                          DMA_TO_DEVICE);
1856
1857         i = 1;
1858         while (frags--) {
1859                 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1860
1861                 pci_unmap_page((lio->oct_dev)->pci_dev,
1862                                g->sg[(i >> 2)].ptr[(i & 3)],
1863                                frag->size, DMA_TO_DEVICE);
1864                 i++;
1865         }
1866
1867         dma_sync_single_for_cpu(&lio->oct_dev->pci_dev->dev,
1868                                 g->sg_dma_ptr, g->sg_size, DMA_TO_DEVICE);
1869
1870         iq = skb_iq(lio, skb);
1871         spin_lock(&lio->glist_lock[iq]);
1872         list_add_tail(&g->list, &lio->glist[iq]);
1873         spin_unlock(&lio->glist_lock[iq]);
1874
1875         check_txq_state(lio, skb);     /* mq support: sub-queue state check */
1876
1877         tx_buffer_free(skb);
1878 }
1879
1880 /**
1881  * \brief Unmap and free gather buffer with response
1882  * @param buf buffer
1883  */
1884 static void free_netsgbuf_with_resp(void *buf)
1885 {
1886         struct octeon_soft_command *sc;
1887         struct octnet_buf_free_info *finfo;
1888         struct sk_buff *skb;
1889         struct lio *lio;
1890         struct octnic_gather *g;
1891         int i, frags, iq;
1892
1893         sc = (struct octeon_soft_command *)buf;
1894         skb = (struct sk_buff *)sc->callback_arg;
1895         finfo = (struct octnet_buf_free_info *)&skb->cb;
1896
1897         lio = finfo->lio;
1898         g = finfo->g;
1899         frags = skb_shinfo(skb)->nr_frags;
1900
1901         dma_unmap_single(&lio->oct_dev->pci_dev->dev,
1902                          g->sg[0].ptr[0], (skb->len - skb->data_len),
1903                          DMA_TO_DEVICE);
1904
1905         i = 1;
1906         while (frags--) {
1907                 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1908
1909                 pci_unmap_page((lio->oct_dev)->pci_dev,
1910                                g->sg[(i >> 2)].ptr[(i & 3)],
1911                                frag->size, DMA_TO_DEVICE);
1912                 i++;
1913         }
1914
1915         dma_sync_single_for_cpu(&lio->oct_dev->pci_dev->dev,
1916                                 g->sg_dma_ptr, g->sg_size, DMA_TO_DEVICE);
1917
1918         iq = skb_iq(lio, skb);
1919
1920         spin_lock(&lio->glist_lock[iq]);
1921         list_add_tail(&g->list, &lio->glist[iq]);
1922         spin_unlock(&lio->glist_lock[iq]);
1923
1924         /* Don't free the skb yet */
1925
1926         check_txq_state(lio, skb);
1927 }
1928
1929 /**
1930  * \brief Adjust ptp frequency
1931  * @param ptp PTP clock info
1932  * @param ppb how much to adjust by, in parts-per-billion
1933  */
1934 static int liquidio_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
1935 {
1936         struct lio *lio = container_of(ptp, struct lio, ptp_info);
1937         struct octeon_device *oct = (struct octeon_device *)lio->oct_dev;
1938         u64 comp, delta;
1939         unsigned long flags;
1940         bool neg_adj = false;
1941
1942         if (ppb < 0) {
1943                 neg_adj = true;
1944                 ppb = -ppb;
1945         }
1946
1947         /* The hardware adds the clock compensation value to the
1948          * PTP clock on every coprocessor clock cycle, so we
1949          * compute the delta in terms of coprocessor clocks.
1950          */
1951         delta = (u64)ppb << 32;
1952         do_div(delta, oct->coproc_clock_rate);
1953
1954         spin_lock_irqsave(&lio->ptp_lock, flags);
1955         comp = lio_pci_readq(oct, CN6XXX_MIO_PTP_CLOCK_COMP);
1956         if (neg_adj)
1957                 comp -= delta;
1958         else
1959                 comp += delta;
1960         lio_pci_writeq(oct, comp, CN6XXX_MIO_PTP_CLOCK_COMP);
1961         spin_unlock_irqrestore(&lio->ptp_lock, flags);
1962
1963         return 0;
1964 }
1965
1966 /**
1967  * \brief Adjust ptp time
1968  * @param ptp PTP clock info
1969  * @param delta how much to adjust by, in nanosecs
1970  */
1971 static int liquidio_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
1972 {
1973         unsigned long flags;
1974         struct lio *lio = container_of(ptp, struct lio, ptp_info);
1975
1976         spin_lock_irqsave(&lio->ptp_lock, flags);
1977         lio->ptp_adjust += delta;
1978         spin_unlock_irqrestore(&lio->ptp_lock, flags);
1979
1980         return 0;
1981 }
1982
1983 /**
1984  * \brief Get hardware clock time, including any adjustment
1985  * @param ptp PTP clock info
1986  * @param ts timespec
1987  */
1988 static int liquidio_ptp_gettime(struct ptp_clock_info *ptp,
1989                                 struct timespec64 *ts)
1990 {
1991         u64 ns;
1992         unsigned long flags;
1993         struct lio *lio = container_of(ptp, struct lio, ptp_info);
1994         struct octeon_device *oct = (struct octeon_device *)lio->oct_dev;
1995
1996         spin_lock_irqsave(&lio->ptp_lock, flags);
1997         ns = lio_pci_readq(oct, CN6XXX_MIO_PTP_CLOCK_HI);
1998         ns += lio->ptp_adjust;
1999         spin_unlock_irqrestore(&lio->ptp_lock, flags);
2000
2001         *ts = ns_to_timespec64(ns);
2002
2003         return 0;
2004 }
2005
2006 /**
2007  * \brief Set hardware clock time. Reset adjustment
2008  * @param ptp PTP clock info
2009  * @param ts timespec
2010  */
2011 static int liquidio_ptp_settime(struct ptp_clock_info *ptp,
2012                                 const struct timespec64 *ts)
2013 {
2014         u64 ns;
2015         unsigned long flags;
2016         struct lio *lio = container_of(ptp, struct lio, ptp_info);
2017         struct octeon_device *oct = (struct octeon_device *)lio->oct_dev;
2018
2019         ns = timespec_to_ns(ts);
2020
2021         spin_lock_irqsave(&lio->ptp_lock, flags);
2022         lio_pci_writeq(oct, ns, CN6XXX_MIO_PTP_CLOCK_HI);
2023         lio->ptp_adjust = 0;
2024         spin_unlock_irqrestore(&lio->ptp_lock, flags);
2025
2026         return 0;
2027 }
2028
2029 /**
2030  * \brief Check if PTP is enabled
2031  * @param ptp PTP clock info
2032  * @param rq request
2033  * @param on is it on
2034  */
2035 static int
2036 liquidio_ptp_enable(struct ptp_clock_info *ptp __attribute__((unused)),
2037                     struct ptp_clock_request *rq __attribute__((unused)),
2038                     int on __attribute__((unused)))
2039 {
2040         return -EOPNOTSUPP;
2041 }
2042
2043 /**
2044  * \brief Open PTP clock source
2045  * @param netdev network device
2046  */
2047 static void oct_ptp_open(struct net_device *netdev)
2048 {
2049         struct lio *lio = GET_LIO(netdev);
2050         struct octeon_device *oct = (struct octeon_device *)lio->oct_dev;
2051
2052         spin_lock_init(&lio->ptp_lock);
2053
2054         snprintf(lio->ptp_info.name, 16, "%s", netdev->name);
2055         lio->ptp_info.owner = THIS_MODULE;
2056         lio->ptp_info.max_adj = 250000000;
2057         lio->ptp_info.n_alarm = 0;
2058         lio->ptp_info.n_ext_ts = 0;
2059         lio->ptp_info.n_per_out = 0;
2060         lio->ptp_info.pps = 0;
2061         lio->ptp_info.adjfreq = liquidio_ptp_adjfreq;
2062         lio->ptp_info.adjtime = liquidio_ptp_adjtime;
2063         lio->ptp_info.gettime64 = liquidio_ptp_gettime;
2064         lio->ptp_info.settime64 = liquidio_ptp_settime;
2065         lio->ptp_info.enable = liquidio_ptp_enable;
2066
2067         lio->ptp_adjust = 0;
2068
2069         lio->ptp_clock = ptp_clock_register(&lio->ptp_info,
2070                                              &oct->pci_dev->dev);
2071
2072         if (IS_ERR(lio->ptp_clock))
2073                 lio->ptp_clock = NULL;
2074 }
2075
2076 /**
2077  * \brief Init PTP clock
2078  * @param oct octeon device
2079  */
2080 static void liquidio_ptp_init(struct octeon_device *oct)
2081 {
2082         u64 clock_comp, cfg;
2083
2084         clock_comp = (u64)NSEC_PER_SEC << 32;
2085         do_div(clock_comp, oct->coproc_clock_rate);
2086         lio_pci_writeq(oct, clock_comp, CN6XXX_MIO_PTP_CLOCK_COMP);
2087
2088         /* Enable */
2089         cfg = lio_pci_readq(oct, CN6XXX_MIO_PTP_CLOCK_CFG);
2090         lio_pci_writeq(oct, cfg | 0x01, CN6XXX_MIO_PTP_CLOCK_CFG);
2091 }
2092
2093 /**
2094  * \brief Load firmware to device
2095  * @param oct octeon device
2096  *
2097  * Maps device to firmware filename, requests firmware, and downloads it
2098  */
2099 static int load_firmware(struct octeon_device *oct)
2100 {
2101         int ret = 0;
2102         const struct firmware *fw;
2103         char fw_name[LIO_MAX_FW_FILENAME_LEN];
2104         char *tmp_fw_type;
2105
2106         if (strncmp(fw_type, LIO_FW_NAME_TYPE_NONE,
2107                     sizeof(LIO_FW_NAME_TYPE_NONE)) == 0) {
2108                 dev_info(&oct->pci_dev->dev, "Skipping firmware load\n");
2109                 return ret;
2110         }
2111
2112         if (fw_type[0] == '\0')
2113                 tmp_fw_type = LIO_FW_NAME_TYPE_NIC;
2114         else
2115                 tmp_fw_type = fw_type;
2116
2117         sprintf(fw_name, "%s%s%s_%s%s", LIO_FW_DIR, LIO_FW_BASE_NAME,
2118                 octeon_get_conf(oct)->card_name, tmp_fw_type,
2119                 LIO_FW_NAME_SUFFIX);
2120
2121         ret = request_firmware(&fw, fw_name, &oct->pci_dev->dev);
2122         if (ret) {
2123                 dev_err(&oct->pci_dev->dev, "Request firmware failed. Could not find file %s.\n.",
2124                         fw_name);
2125                 release_firmware(fw);
2126                 return ret;
2127         }
2128
2129         ret = octeon_download_firmware(oct, fw->data, fw->size);
2130
2131         release_firmware(fw);
2132
2133         return ret;
2134 }
2135
2136 /**
2137  * \brief Setup output queue
2138  * @param oct octeon device
2139  * @param q_no which queue
2140  * @param num_descs how many descriptors
2141  * @param desc_size size of each descriptor
2142  * @param app_ctx application context
2143  */
2144 static int octeon_setup_droq(struct octeon_device *oct, int q_no, int num_descs,
2145                              int desc_size, void *app_ctx)
2146 {
2147         int ret_val = 0;
2148
2149         dev_dbg(&oct->pci_dev->dev, "Creating Droq: %d\n", q_no);
2150         /* droq creation and local register settings. */
2151         ret_val = octeon_create_droq(oct, q_no, num_descs, desc_size, app_ctx);
2152         if (ret_val < 0)
2153                 return ret_val;
2154
2155         if (ret_val == 1) {
2156                 dev_dbg(&oct->pci_dev->dev, "Using default droq %d\n", q_no);
2157                 return 0;
2158         }
2159         /* tasklet creation for the droq */
2160
2161         /* Enable the droq queues */
2162         octeon_set_droq_pkt_op(oct, q_no, 1);
2163
2164         /* Send Credit for Octeon Output queues. Credits are always
2165          * sent after the output queue is enabled.
2166          */
2167         writel(oct->droq[q_no]->max_count,
2168                oct->droq[q_no]->pkts_credit_reg);
2169
2170         return ret_val;
2171 }
2172
2173 /**
2174  * \brief Callback for getting interface configuration
2175  * @param status status of request
2176  * @param buf pointer to resp structure
2177  */
2178 static void if_cfg_callback(struct octeon_device *oct,
2179                             u32 status __attribute__((unused)),
2180                             void *buf)
2181 {
2182         struct octeon_soft_command *sc = (struct octeon_soft_command *)buf;
2183         struct liquidio_if_cfg_resp *resp;
2184         struct liquidio_if_cfg_context *ctx;
2185
2186         resp = (struct liquidio_if_cfg_resp *)sc->virtrptr;
2187         ctx = (struct liquidio_if_cfg_context *)sc->ctxptr;
2188
2189         oct = lio_get_device(ctx->octeon_id);
2190         if (resp->status)
2191                 dev_err(&oct->pci_dev->dev, "nic if cfg instruction failed. Status: %llx\n",
2192                         CVM_CAST64(resp->status));
2193         WRITE_ONCE(ctx->cond, 1);
2194
2195         snprintf(oct->fw_info.liquidio_firmware_version, 32, "%s",
2196                  resp->cfg_info.liquidio_firmware_version);
2197
2198         /* This barrier is required to be sure that the response has been
2199          * written fully before waking up the handler
2200          */
2201         wmb();
2202
2203         wake_up_interruptible(&ctx->wc);
2204 }
2205
2206 /**
2207  * \brief Select queue based on hash
2208  * @param dev Net device
2209  * @param skb sk_buff structure
2210  * @returns selected queue number
2211  */
2212 static u16 select_q(struct net_device *dev, struct sk_buff *skb,
2213                     void *accel_priv __attribute__((unused)),
2214                     select_queue_fallback_t fallback __attribute__((unused)))
2215 {
2216         u32 qindex = 0;
2217         struct lio *lio;
2218
2219         lio = GET_LIO(dev);
2220         qindex = skb_tx_hash(dev, skb);
2221
2222         return (u16)(qindex % (lio->linfo.num_txpciq));
2223 }
2224
2225 /** Routine to push packets arriving on Octeon interface upto network layer.
2226  * @param oct_id   - octeon device id.
2227  * @param skbuff   - skbuff struct to be passed to network layer.
2228  * @param len      - size of total data received.
2229  * @param rh       - Control header associated with the packet
2230  * @param param    - additional control data with the packet
2231  * @param arg      - farg registered in droq_ops
2232  */
2233 static void
2234 liquidio_push_packet(u32 octeon_id __attribute__((unused)),
2235                      void *skbuff,
2236                      u32 len,
2237                      union octeon_rh *rh,
2238                      void *param,
2239                      void *arg)
2240 {
2241         struct napi_struct *napi = param;
2242         struct sk_buff *skb = (struct sk_buff *)skbuff;
2243         struct skb_shared_hwtstamps *shhwtstamps;
2244         u64 ns;
2245         u16 vtag = 0;
2246         struct net_device *netdev = (struct net_device *)arg;
2247         struct octeon_droq *droq = container_of(param, struct octeon_droq,
2248                                                 napi);
2249         if (netdev) {
2250                 int packet_was_received;
2251                 struct lio *lio = GET_LIO(netdev);
2252                 struct octeon_device *oct = lio->oct_dev;
2253
2254                 /* Do not proceed if the interface is not in RUNNING state. */
2255                 if (!ifstate_check(lio, LIO_IFSTATE_RUNNING)) {
2256                         recv_buffer_free(skb);
2257                         droq->stats.rx_dropped++;
2258                         return;
2259                 }
2260
2261                 skb->dev = netdev;
2262
2263                 skb_record_rx_queue(skb, droq->q_no);
2264                 if (likely(len > MIN_SKB_SIZE)) {
2265                         struct octeon_skb_page_info *pg_info;
2266                         unsigned char *va;
2267
2268                         pg_info = ((struct octeon_skb_page_info *)(skb->cb));
2269                         if (pg_info->page) {
2270                                 /* For Paged allocation use the frags */
2271                                 va = page_address(pg_info->page) +
2272                                         pg_info->page_offset;
2273                                 memcpy(skb->data, va, MIN_SKB_SIZE);
2274                                 skb_put(skb, MIN_SKB_SIZE);
2275                                 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
2276                                                 pg_info->page,
2277                                                 pg_info->page_offset +
2278                                                 MIN_SKB_SIZE,
2279                                                 len - MIN_SKB_SIZE,
2280                                                 LIO_RXBUFFER_SZ);
2281                         }
2282                 } else {
2283                         struct octeon_skb_page_info *pg_info =
2284                                 ((struct octeon_skb_page_info *)(skb->cb));
2285                         skb_copy_to_linear_data(skb, page_address(pg_info->page)
2286                                                 + pg_info->page_offset, len);
2287                         skb_put(skb, len);
2288                         put_page(pg_info->page);
2289                 }
2290
2291                 if (((oct->chip_id == OCTEON_CN66XX) ||
2292                      (oct->chip_id == OCTEON_CN68XX)) &&
2293                     ptp_enable) {
2294                         if (rh->r_dh.has_hwtstamp) {
2295                                 /* timestamp is included from the hardware at
2296                                  * the beginning of the packet.
2297                                  */
2298                                 if (ifstate_check
2299                                     (lio, LIO_IFSTATE_RX_TIMESTAMP_ENABLED)) {
2300                                         /* Nanoseconds are in the first 64-bits
2301                                          * of the packet.
2302                                          */
2303                                         memcpy(&ns, (skb->data), sizeof(ns));
2304                                         shhwtstamps = skb_hwtstamps(skb);
2305                                         shhwtstamps->hwtstamp =
2306                                                 ns_to_ktime(ns +
2307                                                             lio->ptp_adjust);
2308                                 }
2309                                 skb_pull(skb, sizeof(ns));
2310                         }
2311                 }
2312
2313                 skb->protocol = eth_type_trans(skb, skb->dev);
2314                 if ((netdev->features & NETIF_F_RXCSUM) &&
2315                     (((rh->r_dh.encap_on) &&
2316                       (rh->r_dh.csum_verified & CNNIC_TUN_CSUM_VERIFIED)) ||
2317                      (!(rh->r_dh.encap_on) &&
2318                       (rh->r_dh.csum_verified & CNNIC_CSUM_VERIFIED))))
2319                         /* checksum has already been verified */
2320                         skb->ip_summed = CHECKSUM_UNNECESSARY;
2321                 else
2322                         skb->ip_summed = CHECKSUM_NONE;
2323
2324                 /* Setting Encapsulation field on basis of status received
2325                  * from the firmware
2326                  */
2327                 if (rh->r_dh.encap_on) {
2328                         skb->encapsulation = 1;
2329                         skb->csum_level = 1;
2330                         droq->stats.rx_vxlan++;
2331                 }
2332
2333                 /* inbound VLAN tag */
2334                 if ((netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
2335                     (rh->r_dh.vlan != 0)) {
2336                         u16 vid = rh->r_dh.vlan;
2337                         u16 priority = rh->r_dh.priority;
2338
2339                         vtag = priority << 13 | vid;
2340                         __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vtag);
2341                 }
2342
2343                 packet_was_received = napi_gro_receive(napi, skb) != GRO_DROP;
2344
2345                 if (packet_was_received) {
2346                         droq->stats.rx_bytes_received += len;
2347                         droq->stats.rx_pkts_received++;
2348                         netdev->last_rx = jiffies;
2349                 } else {
2350                         droq->stats.rx_dropped++;
2351                         netif_info(lio, rx_err, lio->netdev,
2352                                    "droq:%d  error rx_dropped:%llu\n",
2353                                    droq->q_no, droq->stats.rx_dropped);
2354                 }
2355
2356         } else {
2357                 recv_buffer_free(skb);
2358         }
2359 }
2360
2361 /**
2362  * \brief wrapper for calling napi_schedule
2363  * @param param parameters to pass to napi_schedule
2364  *
2365  * Used when scheduling on different CPUs
2366  */
2367 static void napi_schedule_wrapper(void *param)
2368 {
2369         struct napi_struct *napi = param;
2370
2371         napi_schedule(napi);
2372 }
2373
2374 /**
2375  * \brief callback when receive interrupt occurs and we are in NAPI mode
2376  * @param arg pointer to octeon output queue
2377  */
2378 static void liquidio_napi_drv_callback(void *arg)
2379 {
2380         struct octeon_device *oct;
2381         struct octeon_droq *droq = arg;
2382         int this_cpu = smp_processor_id();
2383
2384         oct = droq->oct_dev;
2385
2386         if (OCTEON_CN23XX_PF(oct) || droq->cpu_id == this_cpu) {
2387                 napi_schedule_irqoff(&droq->napi);
2388         } else {
2389                 struct call_single_data *csd = &droq->csd;
2390
2391                 csd->func = napi_schedule_wrapper;
2392                 csd->info = &droq->napi;
2393                 csd->flags = 0;
2394
2395                 smp_call_function_single_async(droq->cpu_id, csd);
2396         }
2397 }
2398
2399 /**
2400  * \brief Entry point for NAPI polling
2401  * @param napi NAPI structure
2402  * @param budget maximum number of items to process
2403  */
2404 static int liquidio_napi_poll(struct napi_struct *napi, int budget)
2405 {
2406         struct octeon_droq *droq;
2407         int work_done;
2408         int tx_done = 0, iq_no;
2409         struct octeon_instr_queue *iq;
2410         struct octeon_device *oct;
2411
2412         droq = container_of(napi, struct octeon_droq, napi);
2413         oct = droq->oct_dev;
2414         iq_no = droq->q_no;
2415         /* Handle Droq descriptors */
2416         work_done = octeon_process_droq_poll_cmd(oct, droq->q_no,
2417                                                  POLL_EVENT_PROCESS_PKTS,
2418                                                  budget);
2419
2420         /* Flush the instruction queue */
2421         iq = oct->instr_queue[iq_no];
2422         if (iq) {
2423                 /* Process iq buffers with in the budget limits */
2424                 tx_done = octeon_flush_iq(oct, iq, 1, budget);
2425                 /* Update iq read-index rather than waiting for next interrupt.
2426                  * Return back if tx_done is false.
2427                  */
2428                 update_txq_status(oct, iq_no);
2429                 /*tx_done = (iq->flush_index == iq->octeon_read_index);*/
2430         } else {
2431                 dev_err(&oct->pci_dev->dev, "%s:  iq (%d) num invalid\n",
2432                         __func__, iq_no);
2433         }
2434
2435         if ((work_done < budget) && (tx_done)) {
2436                 napi_complete(napi);
2437                 octeon_process_droq_poll_cmd(droq->oct_dev, droq->q_no,
2438                                              POLL_EVENT_ENABLE_INTR, 0);
2439                 return 0;
2440         }
2441
2442         return (!tx_done) ? (budget) : (work_done);
2443 }
2444
2445 /**
2446  * \brief Setup input and output queues
2447  * @param octeon_dev octeon device
2448  * @param ifidx  Interface Index
2449  *
2450  * Note: Queues are with respect to the octeon device. Thus
2451  * an input queue is for egress packets, and output queues
2452  * are for ingress packets.
2453  */
2454 static inline int setup_io_queues(struct octeon_device *octeon_dev,
2455                                   int ifidx)
2456 {
2457         struct octeon_droq_ops droq_ops;
2458         struct net_device *netdev;
2459         static int cpu_id;
2460         static int cpu_id_modulus;
2461         struct octeon_droq *droq;
2462         struct napi_struct *napi;
2463         int q, q_no, retval = 0;
2464         struct lio *lio;
2465         int num_tx_descs;
2466
2467         netdev = octeon_dev->props[ifidx].netdev;
2468
2469         lio = GET_LIO(netdev);
2470
2471         memset(&droq_ops, 0, sizeof(struct octeon_droq_ops));
2472
2473         droq_ops.fptr = liquidio_push_packet;
2474         droq_ops.farg = (void *)netdev;
2475
2476         droq_ops.poll_mode = 1;
2477         droq_ops.napi_fn = liquidio_napi_drv_callback;
2478         cpu_id = 0;
2479         cpu_id_modulus = num_present_cpus();
2480
2481         /* set up DROQs. */
2482         for (q = 0; q < lio->linfo.num_rxpciq; q++) {
2483                 q_no = lio->linfo.rxpciq[q].s.q_no;
2484                 dev_dbg(&octeon_dev->pci_dev->dev,
2485                         "setup_io_queues index:%d linfo.rxpciq.s.q_no:%d\n",
2486                         q, q_no);
2487                 retval = octeon_setup_droq(octeon_dev, q_no,
2488                                            CFG_GET_NUM_RX_DESCS_NIC_IF
2489                                                    (octeon_get_conf(octeon_dev),
2490                                                    lio->ifidx),
2491                                            CFG_GET_NUM_RX_BUF_SIZE_NIC_IF
2492                                                    (octeon_get_conf(octeon_dev),
2493                                                    lio->ifidx), NULL);
2494                 if (retval) {
2495                         dev_err(&octeon_dev->pci_dev->dev,
2496                                 "%s : Runtime DROQ(RxQ) creation failed.\n",
2497                                 __func__);
2498                         return 1;
2499                 }
2500
2501                 droq = octeon_dev->droq[q_no];
2502                 napi = &droq->napi;
2503                 dev_dbg(&octeon_dev->pci_dev->dev, "netif_napi_add netdev:%llx oct:%llx pf_num:%d\n",
2504                         (u64)netdev, (u64)octeon_dev, octeon_dev->pf_num);
2505                 netif_napi_add(netdev, napi, liquidio_napi_poll, 64);
2506
2507                 /* designate a CPU for this droq */
2508                 droq->cpu_id = cpu_id;
2509                 cpu_id++;
2510                 if (cpu_id >= cpu_id_modulus)
2511                         cpu_id = 0;
2512
2513                 octeon_register_droq_ops(octeon_dev, q_no, &droq_ops);
2514         }
2515
2516         if (OCTEON_CN23XX_PF(octeon_dev)) {
2517                 /* 23XX PF can receive control messages (via the first PF-owned
2518                  * droq) from the firmware even if the ethX interface is down,
2519                  * so that's why poll_mode must be off for the first droq.
2520                  */
2521                 octeon_dev->droq[0]->ops.poll_mode = 0;
2522         }
2523
2524         /* set up IQs. */
2525         for (q = 0; q < lio->linfo.num_txpciq; q++) {
2526                 num_tx_descs = CFG_GET_NUM_TX_DESCS_NIC_IF(octeon_get_conf
2527                                                            (octeon_dev),
2528                                                            lio->ifidx);
2529                 retval = octeon_setup_iq(octeon_dev, ifidx, q,
2530                                          lio->linfo.txpciq[q], num_tx_descs,
2531                                          netdev_get_tx_queue(netdev, q));
2532                 if (retval) {
2533                         dev_err(&octeon_dev->pci_dev->dev,
2534                                 " %s : Runtime IQ(TxQ) creation failed.\n",
2535                                 __func__);
2536                         return 1;
2537                 }
2538         }
2539
2540         return 0;
2541 }
2542
2543 /**
2544  * \brief Poll routine for checking transmit queue status
2545  * @param work work_struct data structure
2546  */
2547 static void octnet_poll_check_txq_status(struct work_struct *work)
2548 {
2549         struct cavium_wk *wk = (struct cavium_wk *)work;
2550         struct lio *lio = (struct lio *)wk->ctxptr;
2551
2552         if (!ifstate_check(lio, LIO_IFSTATE_RUNNING))
2553                 return;
2554
2555         check_txq_status(lio);
2556         queue_delayed_work(lio->txq_status_wq.wq,
2557                            &lio->txq_status_wq.wk.work, msecs_to_jiffies(1));
2558 }
2559
2560 /**
2561  * \brief Sets up the txq poll check
2562  * @param netdev network device
2563  */
2564 static inline int setup_tx_poll_fn(struct net_device *netdev)
2565 {
2566         struct lio *lio = GET_LIO(netdev);
2567         struct octeon_device *oct = lio->oct_dev;
2568
2569         lio->txq_status_wq.wq = alloc_workqueue("txq-status",
2570                                                 WQ_MEM_RECLAIM, 0);
2571         if (!lio->txq_status_wq.wq) {
2572                 dev_err(&oct->pci_dev->dev, "unable to create cavium txq status wq\n");
2573                 return -1;
2574         }
2575         INIT_DELAYED_WORK(&lio->txq_status_wq.wk.work,
2576                           octnet_poll_check_txq_status);
2577         lio->txq_status_wq.wk.ctxptr = lio;
2578         queue_delayed_work(lio->txq_status_wq.wq,
2579                            &lio->txq_status_wq.wk.work, msecs_to_jiffies(1));
2580         return 0;
2581 }
2582
2583 static inline void cleanup_tx_poll_fn(struct net_device *netdev)
2584 {
2585         struct lio *lio = GET_LIO(netdev);
2586
2587         if (lio->txq_status_wq.wq) {
2588                 cancel_delayed_work_sync(&lio->txq_status_wq.wk.work);
2589                 destroy_workqueue(lio->txq_status_wq.wq);
2590         }
2591 }
2592
2593 /**
2594  * \brief Net device open for LiquidIO
2595  * @param netdev network device
2596  */
2597 static int liquidio_open(struct net_device *netdev)
2598 {
2599         struct lio *lio = GET_LIO(netdev);
2600         struct octeon_device *oct = lio->oct_dev;
2601         struct napi_struct *napi, *n;
2602
2603         if (oct->props[lio->ifidx].napi_enabled == 0) {
2604                 list_for_each_entry_safe(napi, n, &netdev->napi_list, dev_list)
2605                         napi_enable(napi);
2606
2607                 oct->props[lio->ifidx].napi_enabled = 1;
2608
2609                 if (OCTEON_CN23XX_PF(oct))
2610                         oct->droq[0]->ops.poll_mode = 1;
2611         }
2612
2613         oct_ptp_open(netdev);
2614
2615         ifstate_set(lio, LIO_IFSTATE_RUNNING);
2616
2617         /* Ready for link status updates */
2618         lio->intf_open = 1;
2619
2620         netif_info(lio, ifup, lio->netdev, "Interface Open, ready for traffic\n");
2621
2622         if (OCTEON_CN23XX_PF(oct)) {
2623                 if (!oct->msix_on)
2624                         if (setup_tx_poll_fn(netdev))
2625                                 return -1;
2626         } else {
2627                 if (setup_tx_poll_fn(netdev))
2628                         return -1;
2629         }
2630
2631         start_txq(netdev);
2632
2633         /* tell Octeon to start forwarding packets to host */
2634         send_rx_ctrl_cmd(lio, 1);
2635
2636         dev_info(&oct->pci_dev->dev, "%s interface is opened\n",
2637                  netdev->name);
2638
2639         return 0;
2640 }
2641
2642 /**
2643  * \brief Net device stop for LiquidIO
2644  * @param netdev network device
2645  */
2646 static int liquidio_stop(struct net_device *netdev)
2647 {
2648         struct lio *lio = GET_LIO(netdev);
2649         struct octeon_device *oct = lio->oct_dev;
2650
2651         ifstate_reset(lio, LIO_IFSTATE_RUNNING);
2652
2653         netif_tx_disable(netdev);
2654
2655         /* Inform that netif carrier is down */
2656         netif_carrier_off(netdev);
2657         lio->intf_open = 0;
2658         lio->linfo.link.s.link_up = 0;
2659         lio->link_changes++;
2660
2661         /* Pause for a moment and wait for Octeon to flush out (to the wire) any
2662          * egress packets that are in-flight.
2663          */
2664         set_current_state(TASK_INTERRUPTIBLE);
2665         schedule_timeout(msecs_to_jiffies(100));
2666
2667         /* Now it should be safe to tell Octeon that nic interface is down. */
2668         send_rx_ctrl_cmd(lio, 0);
2669
2670         if (OCTEON_CN23XX_PF(oct)) {
2671                 if (!oct->msix_on)
2672                         cleanup_tx_poll_fn(netdev);
2673         } else {
2674                 cleanup_tx_poll_fn(netdev);
2675         }
2676
2677         if (lio->ptp_clock) {
2678                 ptp_clock_unregister(lio->ptp_clock);
2679                 lio->ptp_clock = NULL;
2680         }
2681
2682         dev_info(&oct->pci_dev->dev, "%s interface is stopped\n", netdev->name);
2683
2684         return 0;
2685 }
2686
2687 /**
2688  * \brief Converts a mask based on net device flags
2689  * @param netdev network device
2690  *
2691  * This routine generates a octnet_ifflags mask from the net device flags
2692  * received from the OS.
2693  */
2694 static inline enum octnet_ifflags get_new_flags(struct net_device *netdev)
2695 {
2696         enum octnet_ifflags f = OCTNET_IFFLAG_UNICAST;
2697
2698         if (netdev->flags & IFF_PROMISC)
2699                 f |= OCTNET_IFFLAG_PROMISC;
2700
2701         if (netdev->flags & IFF_ALLMULTI)
2702                 f |= OCTNET_IFFLAG_ALLMULTI;
2703
2704         if (netdev->flags & IFF_MULTICAST) {
2705                 f |= OCTNET_IFFLAG_MULTICAST;
2706
2707                 /* Accept all multicast addresses if there are more than we
2708                  * can handle
2709                  */
2710                 if (netdev_mc_count(netdev) > MAX_OCTEON_MULTICAST_ADDR)
2711                         f |= OCTNET_IFFLAG_ALLMULTI;
2712         }
2713
2714         if (netdev->flags & IFF_BROADCAST)
2715                 f |= OCTNET_IFFLAG_BROADCAST;
2716
2717         return f;
2718 }
2719
2720 /**
2721  * \brief Net device set_multicast_list
2722  * @param netdev network device
2723  */
2724 static void liquidio_set_mcast_list(struct net_device *netdev)
2725 {
2726         struct lio *lio = GET_LIO(netdev);
2727         struct octeon_device *oct = lio->oct_dev;
2728         struct octnic_ctrl_pkt nctrl;
2729         struct netdev_hw_addr *ha;
2730         u64 *mc;
2731         int ret;
2732         int mc_count = min(netdev_mc_count(netdev), MAX_OCTEON_MULTICAST_ADDR);
2733
2734         memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt));
2735
2736         /* Create a ctrl pkt command to be sent to core app. */
2737         nctrl.ncmd.u64 = 0;
2738         nctrl.ncmd.s.cmd = OCTNET_CMD_SET_MULTI_LIST;
2739         nctrl.ncmd.s.param1 = get_new_flags(netdev);
2740         nctrl.ncmd.s.param2 = mc_count;
2741         nctrl.ncmd.s.more = mc_count;
2742         nctrl.iq_no = lio->linfo.txpciq[0].s.q_no;
2743         nctrl.netpndev = (u64)netdev;
2744         nctrl.cb_fn = liquidio_link_ctrl_cmd_completion;
2745
2746         /* copy all the addresses into the udd */
2747         mc = &nctrl.udd[0];
2748         netdev_for_each_mc_addr(ha, netdev) {
2749                 *mc = 0;
2750                 memcpy(((u8 *)mc) + 2, ha->addr, ETH_ALEN);
2751                 /* no need to swap bytes */
2752
2753                 if (++mc > &nctrl.udd[mc_count])
2754                         break;
2755         }
2756
2757         /* Apparently, any activity in this call from the kernel has to
2758          * be atomic. So we won't wait for response.
2759          */
2760         nctrl.wait_time = 0;
2761
2762         ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl);
2763         if (ret < 0) {
2764                 dev_err(&oct->pci_dev->dev, "DEVFLAGS change failed in core (ret: 0x%x)\n",
2765                         ret);
2766         }
2767 }
2768
2769 /**
2770  * \brief Net device set_mac_address
2771  * @param netdev network device
2772  */
2773 static int liquidio_set_mac(struct net_device *netdev, void *p)
2774 {
2775         int ret = 0;
2776         struct lio *lio = GET_LIO(netdev);
2777         struct octeon_device *oct = lio->oct_dev;
2778         struct sockaddr *addr = (struct sockaddr *)p;
2779         struct octnic_ctrl_pkt nctrl;
2780
2781         if (!is_valid_ether_addr(addr->sa_data))
2782                 return -EADDRNOTAVAIL;
2783
2784         memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt));
2785
2786         nctrl.ncmd.u64 = 0;
2787         nctrl.ncmd.s.cmd = OCTNET_CMD_CHANGE_MACADDR;
2788         nctrl.ncmd.s.param1 = 0;
2789         nctrl.ncmd.s.more = 1;
2790         nctrl.iq_no = lio->linfo.txpciq[0].s.q_no;
2791         nctrl.netpndev = (u64)netdev;
2792         nctrl.cb_fn = liquidio_link_ctrl_cmd_completion;
2793         nctrl.wait_time = 100;
2794
2795         nctrl.udd[0] = 0;
2796         /* The MAC Address is presented in network byte order. */
2797         memcpy((u8 *)&nctrl.udd[0] + 2, addr->sa_data, ETH_ALEN);
2798
2799         ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl);
2800         if (ret < 0) {
2801                 dev_err(&oct->pci_dev->dev, "MAC Address change failed\n");
2802                 return -ENOMEM;
2803         }
2804         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2805         memcpy(((u8 *)&lio->linfo.hw_addr) + 2, addr->sa_data, ETH_ALEN);
2806
2807         return 0;
2808 }
2809
2810 /**
2811  * \brief Net device get_stats
2812  * @param netdev network device
2813  */
2814 static struct net_device_stats *liquidio_get_stats(struct net_device *netdev)
2815 {
2816         struct lio *lio = GET_LIO(netdev);
2817         struct net_device_stats *stats = &netdev->stats;
2818         struct octeon_device *oct;
2819         u64 pkts = 0, drop = 0, bytes = 0;
2820         struct oct_droq_stats *oq_stats;
2821         struct oct_iq_stats *iq_stats;
2822         int i, iq_no, oq_no;
2823
2824         oct = lio->oct_dev;
2825
2826         for (i = 0; i < lio->linfo.num_txpciq; i++) {
2827                 iq_no = lio->linfo.txpciq[i].s.q_no;
2828                 iq_stats = &oct->instr_queue[iq_no]->stats;
2829                 pkts += iq_stats->tx_done;
2830                 drop += iq_stats->tx_dropped;
2831                 bytes += iq_stats->tx_tot_bytes;
2832         }
2833
2834         stats->tx_packets = pkts;
2835         stats->tx_bytes = bytes;
2836         stats->tx_dropped = drop;
2837
2838         pkts = 0;
2839         drop = 0;
2840         bytes = 0;
2841
2842         for (i = 0; i < lio->linfo.num_rxpciq; i++) {
2843                 oq_no = lio->linfo.rxpciq[i].s.q_no;
2844                 oq_stats = &oct->droq[oq_no]->stats;
2845                 pkts += oq_stats->rx_pkts_received;
2846                 drop += (oq_stats->rx_dropped +
2847                          oq_stats->dropped_nodispatch +
2848                          oq_stats->dropped_toomany +
2849                          oq_stats->dropped_nomem);
2850                 bytes += oq_stats->rx_bytes_received;
2851         }
2852
2853         stats->rx_bytes = bytes;
2854         stats->rx_packets = pkts;
2855         stats->rx_dropped = drop;
2856
2857         return stats;
2858 }
2859
2860 /**
2861  * \brief Net device change_mtu
2862  * @param netdev network device
2863  */
2864 static int liquidio_change_mtu(struct net_device *netdev, int new_mtu)
2865 {
2866         struct lio *lio = GET_LIO(netdev);
2867         struct octeon_device *oct = lio->oct_dev;
2868         struct octnic_ctrl_pkt nctrl;
2869         int ret = 0;
2870
2871         /* Limit the MTU to make sure the ethernet packets are between 68 bytes
2872          * and 16000 bytes
2873          */
2874         if ((new_mtu < LIO_MIN_MTU_SIZE) ||
2875             (new_mtu > LIO_MAX_MTU_SIZE)) {
2876                 dev_err(&oct->pci_dev->dev, "Invalid MTU: %d\n", new_mtu);
2877                 dev_err(&oct->pci_dev->dev, "Valid range %d and %d\n",
2878                         LIO_MIN_MTU_SIZE, LIO_MAX_MTU_SIZE);
2879                 return -EINVAL;
2880         }
2881
2882         memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt));
2883
2884         nctrl.ncmd.u64 = 0;
2885         nctrl.ncmd.s.cmd = OCTNET_CMD_CHANGE_MTU;
2886         nctrl.ncmd.s.param1 = new_mtu;
2887         nctrl.iq_no = lio->linfo.txpciq[0].s.q_no;
2888         nctrl.wait_time = 100;
2889         nctrl.netpndev = (u64)netdev;
2890         nctrl.cb_fn = liquidio_link_ctrl_cmd_completion;
2891
2892         ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl);
2893         if (ret < 0) {
2894                 dev_err(&oct->pci_dev->dev, "Failed to set MTU\n");
2895                 return -1;
2896         }
2897
2898         lio->mtu = new_mtu;
2899
2900         return 0;
2901 }
2902
2903 /**
2904  * \brief Handler for SIOCSHWTSTAMP ioctl
2905  * @param netdev network device
2906  * @param ifr interface request
2907  * @param cmd command
2908  */
2909 static int hwtstamp_ioctl(struct net_device *netdev, struct ifreq *ifr)
2910 {
2911         struct hwtstamp_config conf;
2912         struct lio *lio = GET_LIO(netdev);
2913
2914         if (copy_from_user(&conf, ifr->ifr_data, sizeof(conf)))
2915                 return -EFAULT;
2916
2917         if (conf.flags)
2918                 return -EINVAL;
2919
2920         switch (conf.tx_type) {
2921         case HWTSTAMP_TX_ON:
2922         case HWTSTAMP_TX_OFF:
2923                 break;
2924         default:
2925                 return -ERANGE;
2926         }
2927
2928         switch (conf.rx_filter) {
2929         case HWTSTAMP_FILTER_NONE:
2930                 break;
2931         case HWTSTAMP_FILTER_ALL:
2932         case HWTSTAMP_FILTER_SOME:
2933         case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
2934         case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
2935         case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
2936         case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
2937         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
2938         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
2939         case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
2940         case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
2941         case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
2942         case HWTSTAMP_FILTER_PTP_V2_EVENT:
2943         case HWTSTAMP_FILTER_PTP_V2_SYNC:
2944         case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
2945                 conf.rx_filter = HWTSTAMP_FILTER_ALL;
2946                 break;
2947         default:
2948                 return -ERANGE;
2949         }
2950
2951         if (conf.rx_filter == HWTSTAMP_FILTER_ALL)
2952                 ifstate_set(lio, LIO_IFSTATE_RX_TIMESTAMP_ENABLED);
2953
2954         else
2955                 ifstate_reset(lio, LIO_IFSTATE_RX_TIMESTAMP_ENABLED);
2956
2957         return copy_to_user(ifr->ifr_data, &conf, sizeof(conf)) ? -EFAULT : 0;
2958 }
2959
2960 /**
2961  * \brief ioctl handler
2962  * @param netdev network device
2963  * @param ifr interface request
2964  * @param cmd command
2965  */
2966 static int liquidio_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2967 {
2968         switch (cmd) {
2969         case SIOCSHWTSTAMP:
2970                 return hwtstamp_ioctl(netdev, ifr);
2971         default:
2972                 return -EOPNOTSUPP;
2973         }
2974 }
2975
2976 /**
2977  * \brief handle a Tx timestamp response
2978  * @param status response status
2979  * @param buf pointer to skb
2980  */
2981 static void handle_timestamp(struct octeon_device *oct,
2982                              u32 status,
2983                              void *buf)
2984 {
2985         struct octnet_buf_free_info *finfo;
2986         struct octeon_soft_command *sc;
2987         struct oct_timestamp_resp *resp;
2988         struct lio *lio;
2989         struct sk_buff *skb = (struct sk_buff *)buf;
2990
2991         finfo = (struct octnet_buf_free_info *)skb->cb;
2992         lio = finfo->lio;
2993         sc = finfo->sc;
2994         oct = lio->oct_dev;
2995         resp = (struct oct_timestamp_resp *)sc->virtrptr;
2996
2997         if (status != OCTEON_REQUEST_DONE) {
2998                 dev_err(&oct->pci_dev->dev, "Tx timestamp instruction failed. Status: %llx\n",
2999                         CVM_CAST64(status));
3000                 resp->timestamp = 0;
3001         }
3002
3003         octeon_swap_8B_data(&resp->timestamp, 1);
3004
3005         if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) != 0)) {
3006                 struct skb_shared_hwtstamps ts;
3007                 u64 ns = resp->timestamp;
3008
3009                 netif_info(lio, tx_done, lio->netdev,
3010                            "Got resulting SKBTX_HW_TSTAMP skb=%p ns=%016llu\n",
3011                            skb, (unsigned long long)ns);
3012                 ts.hwtstamp = ns_to_ktime(ns + lio->ptp_adjust);
3013                 skb_tstamp_tx(skb, &ts);
3014         }
3015
3016         octeon_free_soft_command(oct, sc);
3017         tx_buffer_free(skb);
3018 }
3019
3020 /* \brief Send a data packet that will be timestamped
3021  * @param oct octeon device
3022  * @param ndata pointer to network data
3023  * @param finfo pointer to private network data
3024  */
3025 static inline int send_nic_timestamp_pkt(struct octeon_device *oct,
3026                                          struct octnic_data_pkt *ndata,
3027                                          struct octnet_buf_free_info *finfo)
3028 {
3029         int retval;
3030         struct octeon_soft_command *sc;
3031         struct lio *lio;
3032         int ring_doorbell;
3033         u32 len;
3034
3035         lio = finfo->lio;
3036
3037         sc = octeon_alloc_soft_command_resp(oct, &ndata->cmd,
3038                                             sizeof(struct oct_timestamp_resp));
3039         finfo->sc = sc;
3040
3041         if (!sc) {
3042                 dev_err(&oct->pci_dev->dev, "No memory for timestamped data packet\n");
3043                 return IQ_SEND_FAILED;
3044         }
3045
3046         if (ndata->reqtype == REQTYPE_NORESP_NET)
3047                 ndata->reqtype = REQTYPE_RESP_NET;
3048         else if (ndata->reqtype == REQTYPE_NORESP_NET_SG)
3049                 ndata->reqtype = REQTYPE_RESP_NET_SG;
3050
3051         sc->callback = handle_timestamp;
3052         sc->callback_arg = finfo->skb;
3053         sc->iq_no = ndata->q_no;
3054
3055         if (OCTEON_CN23XX_PF(oct))
3056                 len = (u32)((struct octeon_instr_ih3 *)
3057                             (&sc->cmd.cmd3.ih3))->dlengsz;
3058         else
3059                 len = (u32)((struct octeon_instr_ih2 *)
3060                             (&sc->cmd.cmd2.ih2))->dlengsz;
3061
3062         ring_doorbell = 1;
3063
3064         retval = octeon_send_command(oct, sc->iq_no, ring_doorbell, &sc->cmd,
3065                                      sc, len, ndata->reqtype);
3066
3067         if (retval == IQ_SEND_FAILED) {
3068                 dev_err(&oct->pci_dev->dev, "timestamp data packet failed status: %x\n",
3069                         retval);
3070                 octeon_free_soft_command(oct, sc);
3071         } else {
3072                 netif_info(lio, tx_queued, lio->netdev, "Queued timestamp packet\n");
3073         }
3074
3075         return retval;
3076 }
3077
3078 /** \brief Transmit networks packets to the Octeon interface
3079  * @param skbuff   skbuff struct to be passed to network layer.
3080  * @param netdev    pointer to network device
3081  * @returns whether the packet was transmitted to the device okay or not
3082  *             (NETDEV_TX_OK or NETDEV_TX_BUSY)
3083  */
3084 static int liquidio_xmit(struct sk_buff *skb, struct net_device *netdev)
3085 {
3086         struct lio *lio;
3087         struct octnet_buf_free_info *finfo;
3088         union octnic_cmd_setup cmdsetup;
3089         struct octnic_data_pkt ndata;
3090         struct octeon_device *oct;
3091         struct oct_iq_stats *stats;
3092         struct octeon_instr_irh *irh;
3093         union tx_info *tx_info;
3094         int status = 0;
3095         int q_idx = 0, iq_no = 0;
3096         int j;
3097         u64 dptr = 0;
3098         u32 tag = 0;
3099
3100         lio = GET_LIO(netdev);
3101         oct = lio->oct_dev;
3102
3103         if (netif_is_multiqueue(netdev)) {
3104                 q_idx = skb->queue_mapping;
3105                 q_idx = (q_idx % (lio->linfo.num_txpciq));
3106                 tag = q_idx;
3107                 iq_no = lio->linfo.txpciq[q_idx].s.q_no;
3108         } else {
3109                 iq_no = lio->txq;
3110         }
3111
3112         stats = &oct->instr_queue[iq_no]->stats;
3113
3114         /* Check for all conditions in which the current packet cannot be
3115          * transmitted.
3116          */
3117         if (!(atomic_read(&lio->ifstate) & LIO_IFSTATE_RUNNING) ||
3118             (!lio->linfo.link.s.link_up) ||
3119             (skb->len <= 0)) {
3120                 netif_info(lio, tx_err, lio->netdev,
3121                            "Transmit failed link_status : %d\n",
3122                            lio->linfo.link.s.link_up);
3123                 goto lio_xmit_failed;
3124         }
3125
3126         /* Use space in skb->cb to store info used to unmap and
3127          * free the buffers.
3128          */
3129         finfo = (struct octnet_buf_free_info *)skb->cb;
3130         finfo->lio = lio;
3131         finfo->skb = skb;
3132         finfo->sc = NULL;
3133
3134         /* Prepare the attributes for the data to be passed to OSI. */
3135         memset(&ndata, 0, sizeof(struct octnic_data_pkt));
3136
3137         ndata.buf = (void *)finfo;
3138
3139         ndata.q_no = iq_no;
3140
3141         if (netif_is_multiqueue(netdev)) {
3142                 if (octnet_iq_is_full(oct, ndata.q_no)) {
3143                         /* defer sending if queue is full */
3144                         netif_info(lio, tx_err, lio->netdev, "Transmit failed iq:%d full\n",
3145                                    ndata.q_no);
3146                         stats->tx_iq_busy++;
3147                         return NETDEV_TX_BUSY;
3148                 }
3149         } else {
3150                 if (octnet_iq_is_full(oct, lio->txq)) {
3151                         /* defer sending if queue is full */
3152                         stats->tx_iq_busy++;
3153                         netif_info(lio, tx_err, lio->netdev, "Transmit failed iq:%d full\n",
3154                                    lio->txq);
3155                         return NETDEV_TX_BUSY;
3156                 }
3157         }
3158         /* pr_info(" XMIT - valid Qs: %d, 1st Q no: %d, cpu:  %d, q_no:%d\n",
3159          *      lio->linfo.num_txpciq, lio->txq, cpu, ndata.q_no);
3160          */
3161
3162         ndata.datasize = skb->len;
3163
3164         cmdsetup.u64 = 0;
3165         cmdsetup.s.iq_no = iq_no;
3166
3167         if (skb->ip_summed == CHECKSUM_PARTIAL) {
3168                 if (skb->encapsulation) {
3169                         cmdsetup.s.tnl_csum = 1;
3170                         stats->tx_vxlan++;
3171                 } else {
3172                         cmdsetup.s.transport_csum = 1;
3173                 }
3174         }
3175         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
3176                 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3177                 cmdsetup.s.timestamp = 1;
3178         }
3179
3180         if (skb_shinfo(skb)->nr_frags == 0) {
3181                 cmdsetup.s.u.datasize = skb->len;
3182                 octnet_prepare_pci_cmd(oct, &ndata.cmd, &cmdsetup, tag);
3183
3184                 /* Offload checksum calculation for TCP/UDP packets */
3185                 dptr = dma_map_single(&oct->pci_dev->dev,
3186                                       skb->data,
3187                                       skb->len,
3188                                       DMA_TO_DEVICE);
3189                 if (dma_mapping_error(&oct->pci_dev->dev, dptr)) {
3190                         dev_err(&oct->pci_dev->dev, "%s DMA mapping error 1\n",
3191                                 __func__);
3192                         return NETDEV_TX_BUSY;
3193                 }
3194
3195                 if (OCTEON_CN23XX_PF(oct))
3196                         ndata.cmd.cmd3.dptr = dptr;
3197                 else
3198                         ndata.cmd.cmd2.dptr = dptr;
3199                 finfo->dptr = dptr;
3200                 ndata.reqtype = REQTYPE_NORESP_NET;
3201
3202         } else {
3203                 int i, frags;
3204                 struct skb_frag_struct *frag;
3205                 struct octnic_gather *g;
3206
3207                 spin_lock(&lio->glist_lock[q_idx]);
3208                 g = (struct octnic_gather *)
3209                         list_delete_head(&lio->glist[q_idx]);
3210                 spin_unlock(&lio->glist_lock[q_idx]);
3211
3212                 if (!g) {
3213                         netif_info(lio, tx_err, lio->netdev,
3214                                    "Transmit scatter gather: glist null!\n");
3215                         goto lio_xmit_failed;
3216                 }
3217
3218                 cmdsetup.s.gather = 1;
3219                 cmdsetup.s.u.gatherptrs = (skb_shinfo(skb)->nr_frags + 1);
3220                 octnet_prepare_pci_cmd(oct, &ndata.cmd, &cmdsetup, tag);
3221
3222                 memset(g->sg, 0, g->sg_size);
3223
3224                 g->sg[0].ptr[0] = dma_map_single(&oct->pci_dev->dev,
3225                                                  skb->data,
3226                                                  (skb->len - skb->data_len),
3227                                                  DMA_TO_DEVICE);
3228                 if (dma_mapping_error(&oct->pci_dev->dev, g->sg[0].ptr[0])) {
3229                         dev_err(&oct->pci_dev->dev, "%s DMA mapping error 2\n",
3230                                 __func__);
3231                         return NETDEV_TX_BUSY;
3232                 }
3233                 add_sg_size(&g->sg[0], (skb->len - skb->data_len), 0);
3234
3235                 frags = skb_shinfo(skb)->nr_frags;
3236                 i = 1;
3237                 while (frags--) {
3238                         frag = &skb_shinfo(skb)->frags[i - 1];
3239
3240                         g->sg[(i >> 2)].ptr[(i & 3)] =
3241                                 dma_map_page(&oct->pci_dev->dev,
3242                                              frag->page.p,
3243                                              frag->page_offset,
3244                                              frag->size,
3245                                              DMA_TO_DEVICE);
3246
3247                         if (dma_mapping_error(&oct->pci_dev->dev,
3248                                               g->sg[i >> 2].ptr[i & 3])) {
3249                                 dma_unmap_single(&oct->pci_dev->dev,
3250                                                  g->sg[0].ptr[0],
3251                                                  skb->len - skb->data_len,
3252                                                  DMA_TO_DEVICE);
3253                                 for (j = 1; j < i; j++) {
3254                                         frag = &skb_shinfo(skb)->frags[j - 1];
3255                                         dma_unmap_page(&oct->pci_dev->dev,
3256                                                        g->sg[j >> 2].ptr[j & 3],
3257                                                        frag->size,
3258                                                        DMA_TO_DEVICE);
3259                                 }
3260                                 dev_err(&oct->pci_dev->dev, "%s DMA mapping error 3\n",
3261                                         __func__);
3262                                 return NETDEV_TX_BUSY;
3263                         }
3264
3265                         add_sg_size(&g->sg[(i >> 2)], frag->size, (i & 3));
3266                         i++;
3267                 }
3268
3269                 dma_sync_single_for_device(&oct->pci_dev->dev, g->sg_dma_ptr,
3270                                            g->sg_size, DMA_TO_DEVICE);
3271                 dptr = g->sg_dma_ptr;
3272
3273                 if (OCTEON_CN23XX_PF(oct))
3274                         ndata.cmd.cmd3.dptr = dptr;
3275                 else
3276                         ndata.cmd.cmd2.dptr = dptr;
3277                 finfo->dptr = dptr;
3278                 finfo->g = g;
3279
3280                 ndata.reqtype = REQTYPE_NORESP_NET_SG;
3281         }
3282
3283         if (OCTEON_CN23XX_PF(oct)) {
3284                 irh = (struct octeon_instr_irh *)&ndata.cmd.cmd3.irh;
3285                 tx_info = (union tx_info *)&ndata.cmd.cmd3.ossp[0];
3286         } else {
3287                 irh = (struct octeon_instr_irh *)&ndata.cmd.cmd2.irh;
3288                 tx_info = (union tx_info *)&ndata.cmd.cmd2.ossp[0];
3289         }
3290
3291         if (skb_shinfo(skb)->gso_size) {
3292                 tx_info->s.gso_size = skb_shinfo(skb)->gso_size;
3293                 tx_info->s.gso_segs = skb_shinfo(skb)->gso_segs;
3294                 stats->tx_gso++;
3295         }
3296
3297         /* HW insert VLAN tag */
3298         if (skb_vlan_tag_present(skb)) {
3299                 irh->priority = skb_vlan_tag_get(skb) >> 13;
3300                 irh->vlan = skb_vlan_tag_get(skb) & 0xfff;
3301         }
3302
3303         if (unlikely(cmdsetup.s.timestamp))
3304                 status = send_nic_timestamp_pkt(oct, &ndata, finfo);
3305         else
3306                 status = octnet_send_nic_data_pkt(oct, &ndata);
3307         if (status == IQ_SEND_FAILED)
3308                 goto lio_xmit_failed;
3309
3310         netif_info(lio, tx_queued, lio->netdev, "Transmit queued successfully\n");
3311
3312         if (status == IQ_SEND_STOP)
3313                 stop_q(lio->netdev, q_idx);
3314
3315         netif_trans_update(netdev);
3316
3317         if (skb_shinfo(skb)->gso_size)
3318                 stats->tx_done += skb_shinfo(skb)->gso_segs;
3319         else
3320                 stats->tx_done++;
3321         stats->tx_tot_bytes += skb->len;
3322
3323         return NETDEV_TX_OK;
3324
3325 lio_xmit_failed:
3326         stats->tx_dropped++;
3327         netif_info(lio, tx_err, lio->netdev, "IQ%d Transmit dropped:%llu\n",
3328                    iq_no, stats->tx_dropped);
3329         if (dptr)
3330                 dma_unmap_single(&oct->pci_dev->dev, dptr,
3331                                  ndata.datasize, DMA_TO_DEVICE);
3332         tx_buffer_free(skb);
3333         return NETDEV_TX_OK;
3334 }
3335
3336 /** \brief Network device Tx timeout
3337  * @param netdev    pointer to network device
3338  */
3339 static void liquidio_tx_timeout(struct net_device *netdev)
3340 {
3341         struct lio *lio;
3342
3343         lio = GET_LIO(netdev);
3344
3345         netif_info(lio, tx_err, lio->netdev,
3346                    "Transmit timeout tx_dropped:%ld, waking up queues now!!\n",
3347                    netdev->stats.tx_dropped);
3348         netif_trans_update(netdev);
3349         txqs_wake(netdev);
3350 }
3351
3352 static int liquidio_vlan_rx_add_vid(struct net_device *netdev,
3353                                     __be16 proto __attribute__((unused)),
3354                                     u16 vid)
3355 {
3356         struct lio *lio = GET_LIO(netdev);
3357         struct octeon_device *oct = lio->oct_dev;
3358         struct octnic_ctrl_pkt nctrl;
3359         int ret = 0;
3360
3361         memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt));
3362
3363         nctrl.ncmd.u64 = 0;
3364         nctrl.ncmd.s.cmd = OCTNET_CMD_ADD_VLAN_FILTER;
3365         nctrl.ncmd.s.param1 = vid;
3366         nctrl.iq_no = lio->linfo.txpciq[0].s.q_no;
3367         nctrl.wait_time = 100;
3368         nctrl.netpndev = (u64)netdev;
3369         nctrl.cb_fn = liquidio_link_ctrl_cmd_completion;
3370
3371         ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl);
3372         if (ret < 0) {
3373                 dev_err(&oct->pci_dev->dev, "Add VLAN filter failed in core (ret: 0x%x)\n",
3374                         ret);
3375         }
3376
3377         return ret;
3378 }
3379
3380 static int liquidio_vlan_rx_kill_vid(struct net_device *netdev,
3381                                      __be16 proto __attribute__((unused)),
3382                                      u16 vid)
3383 {
3384         struct lio *lio = GET_LIO(netdev);
3385         struct octeon_device *oct = lio->oct_dev;
3386         struct octnic_ctrl_pkt nctrl;
3387         int ret = 0;
3388
3389         memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt));
3390
3391         nctrl.ncmd.u64 = 0;
3392         nctrl.ncmd.s.cmd = OCTNET_CMD_DEL_VLAN_FILTER;
3393         nctrl.ncmd.s.param1 = vid;
3394         nctrl.iq_no = lio->linfo.txpciq[0].s.q_no;
3395         nctrl.wait_time = 100;
3396         nctrl.netpndev = (u64)netdev;
3397         nctrl.cb_fn = liquidio_link_ctrl_cmd_completion;
3398
3399         ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl);
3400         if (ret < 0) {
3401                 dev_err(&oct->pci_dev->dev, "Add VLAN filter failed in core (ret: 0x%x)\n",
3402                         ret);
3403         }
3404         return ret;
3405 }
3406
3407 /** Sending command to enable/disable RX checksum offload
3408  * @param netdev                pointer to network device
3409  * @param command               OCTNET_CMD_TNL_RX_CSUM_CTL
3410  * @param rx_cmd_bit            OCTNET_CMD_RXCSUM_ENABLE/
3411  *                              OCTNET_CMD_RXCSUM_DISABLE
3412  * @returns                     SUCCESS or FAILURE
3413  */
3414 static int liquidio_set_rxcsum_command(struct net_device *netdev, int command,
3415                                        u8 rx_cmd)
3416 {
3417         struct lio *lio = GET_LIO(netdev);
3418         struct octeon_device *oct = lio->oct_dev;
3419         struct octnic_ctrl_pkt nctrl;
3420         int ret = 0;
3421
3422         nctrl.ncmd.u64 = 0;
3423         nctrl.ncmd.s.cmd = command;
3424         nctrl.ncmd.s.param1 = rx_cmd;
3425         nctrl.iq_no = lio->linfo.txpciq[0].s.q_no;
3426         nctrl.wait_time = 100;
3427         nctrl.netpndev = (u64)netdev;
3428         nctrl.cb_fn = liquidio_link_ctrl_cmd_completion;
3429
3430         ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl);
3431         if (ret < 0) {
3432                 dev_err(&oct->pci_dev->dev,
3433                         "DEVFLAGS RXCSUM change failed in core(ret:0x%x)\n",
3434                         ret);
3435         }
3436         return ret;
3437 }
3438
3439 /** Sending command to add/delete VxLAN UDP port to firmware
3440  * @param netdev                pointer to network device
3441  * @param command               OCTNET_CMD_VXLAN_PORT_CONFIG
3442  * @param vxlan_port            VxLAN port to be added or deleted
3443  * @param vxlan_cmd_bit         OCTNET_CMD_VXLAN_PORT_ADD,
3444  *                              OCTNET_CMD_VXLAN_PORT_DEL
3445  * @returns                     SUCCESS or FAILURE
3446  */
3447 static int liquidio_vxlan_port_command(struct net_device *netdev, int command,
3448                                        u16 vxlan_port, u8 vxlan_cmd_bit)
3449 {
3450         struct lio *lio = GET_LIO(netdev);
3451         struct octeon_device *oct = lio->oct_dev;
3452         struct octnic_ctrl_pkt nctrl;
3453         int ret = 0;
3454
3455         nctrl.ncmd.u64 = 0;
3456         nctrl.ncmd.s.cmd = command;
3457         nctrl.ncmd.s.more = vxlan_cmd_bit;
3458         nctrl.ncmd.s.param1 = vxlan_port;
3459         nctrl.iq_no = lio->linfo.txpciq[0].s.q_no;
3460         nctrl.wait_time = 100;
3461         nctrl.netpndev = (u64)netdev;
3462         nctrl.cb_fn = liquidio_link_ctrl_cmd_completion;
3463
3464         ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl);
3465         if (ret < 0) {
3466                 dev_err(&oct->pci_dev->dev,
3467                         "VxLAN port add/delete failed in core (ret:0x%x)\n",
3468                         ret);
3469         }
3470         return ret;
3471 }
3472
3473 /** \brief Net device fix features
3474  * @param netdev  pointer to network device
3475  * @param request features requested
3476  * @returns updated features list
3477  */
3478 static netdev_features_t liquidio_fix_features(struct net_device *netdev,
3479                                                netdev_features_t request)
3480 {
3481         struct lio *lio = netdev_priv(netdev);
3482
3483         if ((request & NETIF_F_RXCSUM) &&
3484             !(lio->dev_capability & NETIF_F_RXCSUM))
3485                 request &= ~NETIF_F_RXCSUM;
3486
3487         if ((request & NETIF_F_HW_CSUM) &&
3488             !(lio->dev_capability & NETIF_F_HW_CSUM))
3489                 request &= ~NETIF_F_HW_CSUM;
3490
3491         if ((request & NETIF_F_TSO) && !(lio->dev_capability & NETIF_F_TSO))
3492                 request &= ~NETIF_F_TSO;
3493
3494         if ((request & NETIF_F_TSO6) && !(lio->dev_capability & NETIF_F_TSO6))
3495                 request &= ~NETIF_F_TSO6;
3496
3497         if ((request & NETIF_F_LRO) && !(lio->dev_capability & NETIF_F_LRO))
3498                 request &= ~NETIF_F_LRO;
3499
3500         /*Disable LRO if RXCSUM is off */
3501         if (!(request & NETIF_F_RXCSUM) && (netdev->features & NETIF_F_LRO) &&
3502             (lio->dev_capability & NETIF_F_LRO))
3503                 request &= ~NETIF_F_LRO;
3504
3505         return request;
3506 }
3507
3508 /** \brief Net device set features
3509  * @param netdev  pointer to network device
3510  * @param features features to enable/disable
3511  */
3512 static int liquidio_set_features(struct net_device *netdev,
3513                                  netdev_features_t features)
3514 {
3515         struct lio *lio = netdev_priv(netdev);
3516
3517         if (!((netdev->features ^ features) & NETIF_F_LRO))
3518                 return 0;
3519
3520         if ((features & NETIF_F_LRO) && (lio->dev_capability & NETIF_F_LRO))
3521                 liquidio_set_feature(netdev, OCTNET_CMD_LRO_ENABLE,
3522                                      OCTNIC_LROIPV4 | OCTNIC_LROIPV6);
3523         else if (!(features & NETIF_F_LRO) &&
3524                  (lio->dev_capability & NETIF_F_LRO))
3525                 liquidio_set_feature(netdev, OCTNET_CMD_LRO_DISABLE,
3526                                      OCTNIC_LROIPV4 | OCTNIC_LROIPV6);
3527
3528         /* Sending command to firmware to enable/disable RX checksum
3529          * offload settings using ethtool
3530          */
3531         if (!(netdev->features & NETIF_F_RXCSUM) &&
3532             (lio->enc_dev_capability & NETIF_F_RXCSUM) &&
3533             (features & NETIF_F_RXCSUM))
3534                 liquidio_set_rxcsum_command(netdev,
3535                                             OCTNET_CMD_TNL_RX_CSUM_CTL,
3536                                             OCTNET_CMD_RXCSUM_ENABLE);
3537         else if ((netdev->features & NETIF_F_RXCSUM) &&
3538                  (lio->enc_dev_capability & NETIF_F_RXCSUM) &&
3539                  !(features & NETIF_F_RXCSUM))
3540                 liquidio_set_rxcsum_command(netdev, OCTNET_CMD_TNL_RX_CSUM_CTL,
3541                                             OCTNET_CMD_RXCSUM_DISABLE);
3542
3543         return 0;
3544 }
3545
3546 static void liquidio_add_vxlan_port(struct net_device *netdev,
3547                                     struct udp_tunnel_info *ti)
3548 {
3549         if (ti->type != UDP_TUNNEL_TYPE_VXLAN)
3550                 return;
3551
3552         liquidio_vxlan_port_command(netdev,
3553                                     OCTNET_CMD_VXLAN_PORT_CONFIG,
3554                                     htons(ti->port),
3555                                     OCTNET_CMD_VXLAN_PORT_ADD);
3556 }
3557
3558 static void liquidio_del_vxlan_port(struct net_device *netdev,
3559                                     struct udp_tunnel_info *ti)
3560 {
3561         if (ti->type != UDP_TUNNEL_TYPE_VXLAN)
3562                 return;
3563
3564         liquidio_vxlan_port_command(netdev,
3565                                     OCTNET_CMD_VXLAN_PORT_CONFIG,
3566                                     htons(ti->port),
3567                                     OCTNET_CMD_VXLAN_PORT_DEL);
3568 }
3569
3570 static struct net_device_ops lionetdevops = {
3571         .ndo_open               = liquidio_open,
3572         .ndo_stop               = liquidio_stop,
3573         .ndo_start_xmit         = liquidio_xmit,
3574         .ndo_get_stats          = liquidio_get_stats,
3575         .ndo_set_mac_address    = liquidio_set_mac,
3576         .ndo_set_rx_mode        = liquidio_set_mcast_list,
3577         .ndo_tx_timeout         = liquidio_tx_timeout,
3578
3579         .ndo_vlan_rx_add_vid    = liquidio_vlan_rx_add_vid,
3580         .ndo_vlan_rx_kill_vid   = liquidio_vlan_rx_kill_vid,
3581         .ndo_change_mtu         = liquidio_change_mtu,
3582         .ndo_do_ioctl           = liquidio_ioctl,
3583         .ndo_fix_features       = liquidio_fix_features,
3584         .ndo_set_features       = liquidio_set_features,
3585         .ndo_udp_tunnel_add     = liquidio_add_vxlan_port,
3586         .ndo_udp_tunnel_del     = liquidio_del_vxlan_port,
3587 };
3588
3589 /** \brief Entry point for the liquidio module
3590  */
3591 static int __init liquidio_init(void)
3592 {
3593         int i;
3594         struct handshake *hs;
3595
3596         init_completion(&first_stage);
3597
3598         octeon_init_device_list(conf_type);
3599
3600         if (liquidio_init_pci())
3601                 return -EINVAL;
3602
3603         wait_for_completion_timeout(&first_stage, msecs_to_jiffies(1000));
3604
3605         for (i = 0; i < MAX_OCTEON_DEVICES; i++) {
3606                 hs = &handshake[i];
3607                 if (hs->pci_dev) {
3608                         wait_for_completion(&hs->init);
3609                         if (!hs->init_ok) {
3610                                 /* init handshake failed */
3611                                 dev_err(&hs->pci_dev->dev,
3612                                         "Failed to init device\n");
3613                                 liquidio_deinit_pci();
3614                                 return -EIO;
3615                         }
3616                 }
3617         }
3618
3619         for (i = 0; i < MAX_OCTEON_DEVICES; i++) {
3620                 hs = &handshake[i];
3621                 if (hs->pci_dev) {
3622                         wait_for_completion_timeout(&hs->started,
3623                                                     msecs_to_jiffies(30000));
3624                         if (!hs->started_ok) {
3625                                 /* starter handshake failed */
3626                                 dev_err(&hs->pci_dev->dev,
3627                                         "Firmware failed to start\n");
3628                                 liquidio_deinit_pci();
3629                                 return -EIO;
3630                         }
3631                 }
3632         }
3633
3634         return 0;
3635 }
3636
3637 static int lio_nic_info(struct octeon_recv_info *recv_info, void *buf)
3638 {
3639         struct octeon_device *oct = (struct octeon_device *)buf;
3640         struct octeon_recv_pkt *recv_pkt = recv_info->recv_pkt;
3641         int gmxport = 0;
3642         union oct_link_status *ls;
3643         int i;
3644
3645         if (recv_pkt->buffer_size[0] != sizeof(*ls)) {
3646                 dev_err(&oct->pci_dev->dev, "Malformed NIC_INFO, len=%d, ifidx=%d\n",
3647                         recv_pkt->buffer_size[0],
3648                         recv_pkt->rh.r_nic_info.gmxport);
3649                 goto nic_info_err;
3650         }
3651
3652         gmxport = recv_pkt->rh.r_nic_info.gmxport;
3653         ls = (union oct_link_status *)get_rbd(recv_pkt->buffer_ptr[0]);
3654
3655         octeon_swap_8B_data((u64 *)ls, (sizeof(union oct_link_status)) >> 3);
3656         for (i = 0; i < oct->ifcount; i++) {
3657                 if (oct->props[i].gmxport == gmxport) {
3658                         update_link_status(oct->props[i].netdev, ls);
3659                         break;
3660                 }
3661         }
3662
3663 nic_info_err:
3664         for (i = 0; i < recv_pkt->buffer_count; i++)
3665                 recv_buffer_free(recv_pkt->buffer_ptr[i]);
3666         octeon_free_recv_info(recv_info);
3667         return 0;
3668 }
3669
3670 /**
3671  * \brief Setup network interfaces
3672  * @param octeon_dev  octeon device
3673  *
3674  * Called during init time for each device. It assumes the NIC
3675  * is already up and running.  The link information for each
3676  * interface is passed in link_info.
3677  */
3678 static int setup_nic_devices(struct octeon_device *octeon_dev)
3679 {
3680         struct lio *lio = NULL;
3681         struct net_device *netdev;
3682         u8 mac[6], i, j;
3683         struct octeon_soft_command *sc;
3684         struct liquidio_if_cfg_context *ctx;
3685         struct liquidio_if_cfg_resp *resp;
3686         struct octdev_props *props;
3687         int retval, num_iqueues, num_oqueues;
3688         union oct_nic_if_cfg if_cfg;
3689         unsigned int base_queue;
3690         unsigned int gmx_port_id;
3691         u32 resp_size, ctx_size, data_size;
3692         u32 ifidx_or_pfnum;
3693         struct lio_version *vdata;
3694
3695         /* This is to handle link status changes */
3696         octeon_register_dispatch_fn(octeon_dev, OPCODE_NIC,
3697                                     OPCODE_NIC_INFO,
3698                                     lio_nic_info, octeon_dev);
3699
3700         /* REQTYPE_RESP_NET and REQTYPE_SOFT_COMMAND do not have free functions.
3701          * They are handled directly.
3702          */
3703         octeon_register_reqtype_free_fn(octeon_dev, REQTYPE_NORESP_NET,
3704                                         free_netbuf);
3705
3706         octeon_register_reqtype_free_fn(octeon_dev, REQTYPE_NORESP_NET_SG,
3707                                         free_netsgbuf);
3708
3709         octeon_register_reqtype_free_fn(octeon_dev, REQTYPE_RESP_NET_SG,
3710                                         free_netsgbuf_with_resp);
3711
3712         for (i = 0; i < octeon_dev->ifcount; i++) {
3713                 resp_size = sizeof(struct liquidio_if_cfg_resp);
3714                 ctx_size = sizeof(struct liquidio_if_cfg_context);
3715                 data_size = sizeof(struct lio_version);
3716                 sc = (struct octeon_soft_command *)
3717                         octeon_alloc_soft_command(octeon_dev, data_size,
3718                                                   resp_size, ctx_size);
3719                 resp = (struct liquidio_if_cfg_resp *)sc->virtrptr;
3720                 ctx  = (struct liquidio_if_cfg_context *)sc->ctxptr;
3721                 vdata = (struct lio_version *)sc->virtdptr;
3722
3723                 *((u64 *)vdata) = 0;
3724                 vdata->major = cpu_to_be16(LIQUIDIO_BASE_MAJOR_VERSION);
3725                 vdata->minor = cpu_to_be16(LIQUIDIO_BASE_MINOR_VERSION);
3726                 vdata->micro = cpu_to_be16(LIQUIDIO_BASE_MICRO_VERSION);
3727
3728                 if (OCTEON_CN23XX_PF(octeon_dev)) {
3729                         num_iqueues = octeon_dev->sriov_info.num_pf_rings;
3730                         num_oqueues = octeon_dev->sriov_info.num_pf_rings;
3731                         base_queue = octeon_dev->sriov_info.pf_srn;
3732
3733                         gmx_port_id = octeon_dev->pf_num;
3734                         ifidx_or_pfnum = octeon_dev->pf_num;
3735                 } else {
3736                         num_iqueues = CFG_GET_NUM_TXQS_NIC_IF(
3737                                                 octeon_get_conf(octeon_dev), i);
3738                         num_oqueues = CFG_GET_NUM_RXQS_NIC_IF(
3739                                                 octeon_get_conf(octeon_dev), i);
3740                         base_queue = CFG_GET_BASE_QUE_NIC_IF(
3741                                                 octeon_get_conf(octeon_dev), i);
3742                         gmx_port_id = CFG_GET_GMXID_NIC_IF(
3743                                                 octeon_get_conf(octeon_dev), i);
3744                         ifidx_or_pfnum = i;
3745                 }
3746
3747                 dev_dbg(&octeon_dev->pci_dev->dev,
3748                         "requesting config for interface %d, iqs %d, oqs %d\n",
3749                         ifidx_or_pfnum, num_iqueues, num_oqueues);
3750                 WRITE_ONCE(ctx->cond, 0);
3751                 ctx->octeon_id = lio_get_device_id(octeon_dev);
3752                 init_waitqueue_head(&ctx->wc);
3753
3754                 if_cfg.u64 = 0;
3755                 if_cfg.s.num_iqueues = num_iqueues;
3756                 if_cfg.s.num_oqueues = num_oqueues;
3757                 if_cfg.s.base_queue = base_queue;
3758                 if_cfg.s.gmx_port_id = gmx_port_id;
3759
3760                 sc->iq_no = 0;
3761
3762                 octeon_prepare_soft_command(octeon_dev, sc, OPCODE_NIC,
3763                                             OPCODE_NIC_IF_CFG, 0,
3764                                             if_cfg.u64, 0);
3765
3766                 sc->callback = if_cfg_callback;
3767                 sc->callback_arg = sc;
3768                 sc->wait_time = 3000;
3769
3770                 retval = octeon_send_soft_command(octeon_dev, sc);
3771                 if (retval == IQ_SEND_FAILED) {
3772                         dev_err(&octeon_dev->pci_dev->dev,
3773                                 "iq/oq config failed status: %x\n",
3774                                 retval);
3775                         /* Soft instr is freed by driver in case of failure. */
3776                         goto setup_nic_dev_fail;
3777                 }
3778
3779                 /* Sleep on a wait queue till the cond flag indicates that the
3780                  * response arrived or timed-out.
3781                  */
3782                 if (sleep_cond(&ctx->wc, &ctx->cond) == -EINTR) {
3783                         dev_err(&octeon_dev->pci_dev->dev, "Wait interrupted\n");
3784                         goto setup_nic_wait_intr;
3785                 }
3786
3787                 retval = resp->status;
3788                 if (retval) {
3789                         dev_err(&octeon_dev->pci_dev->dev, "iq/oq config failed\n");
3790                         goto setup_nic_dev_fail;
3791                 }
3792
3793                 octeon_swap_8B_data((u64 *)(&resp->cfg_info),
3794                                     (sizeof(struct liquidio_if_cfg_info)) >> 3);
3795
3796                 num_iqueues = hweight64(resp->cfg_info.iqmask);
3797                 num_oqueues = hweight64(resp->cfg_info.oqmask);
3798
3799                 if (!(num_iqueues) || !(num_oqueues)) {
3800                         dev_err(&octeon_dev->pci_dev->dev,
3801                                 "Got bad iqueues (%016llx) or oqueues (%016llx) from firmware.\n",
3802                                 resp->cfg_info.iqmask,
3803                                 resp->cfg_info.oqmask);
3804                         goto setup_nic_dev_fail;
3805                 }
3806                 dev_dbg(&octeon_dev->pci_dev->dev,
3807                         "interface %d, iqmask %016llx, oqmask %016llx, numiqueues %d, numoqueues %d\n",
3808                         i, resp->cfg_info.iqmask, resp->cfg_info.oqmask,
3809                         num_iqueues, num_oqueues);
3810                 netdev = alloc_etherdev_mq(LIO_SIZE, num_iqueues);
3811
3812                 if (!netdev) {
3813                         dev_err(&octeon_dev->pci_dev->dev, "Device allocation failed\n");
3814                         goto setup_nic_dev_fail;
3815                 }
3816
3817                 SET_NETDEV_DEV(netdev, &octeon_dev->pci_dev->dev);
3818
3819                 if (num_iqueues > 1)
3820                         lionetdevops.ndo_select_queue = select_q;
3821
3822                 /* Associate the routines that will handle different
3823                  * netdev tasks.
3824                  */
3825                 netdev->netdev_ops = &lionetdevops;
3826
3827                 lio = GET_LIO(netdev);
3828
3829                 memset(lio, 0, sizeof(struct lio));
3830
3831                 lio->ifidx = ifidx_or_pfnum;
3832
3833                 props = &octeon_dev->props[i];
3834                 props->gmxport = resp->cfg_info.linfo.gmxport;
3835                 props->netdev = netdev;
3836
3837                 lio->linfo.num_rxpciq = num_oqueues;
3838                 lio->linfo.num_txpciq = num_iqueues;
3839                 for (j = 0; j < num_oqueues; j++) {
3840                         lio->linfo.rxpciq[j].u64 =
3841                                 resp->cfg_info.linfo.rxpciq[j].u64;
3842                 }
3843                 for (j = 0; j < num_iqueues; j++) {
3844                         lio->linfo.txpciq[j].u64 =
3845                                 resp->cfg_info.linfo.txpciq[j].u64;
3846                 }
3847                 lio->linfo.hw_addr = resp->cfg_info.linfo.hw_addr;
3848                 lio->linfo.gmxport = resp->cfg_info.linfo.gmxport;
3849                 lio->linfo.link.u64 = resp->cfg_info.linfo.link.u64;
3850
3851                 lio->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
3852
3853                 if (OCTEON_CN23XX_PF(octeon_dev) ||
3854                     OCTEON_CN6XXX(octeon_dev)) {
3855                         lio->dev_capability = NETIF_F_HIGHDMA
3856                                               | NETIF_F_IP_CSUM
3857                                               | NETIF_F_IPV6_CSUM
3858                                               | NETIF_F_SG | NETIF_F_RXCSUM
3859                                               | NETIF_F_GRO
3860                                               | NETIF_F_TSO | NETIF_F_TSO6
3861                                               | NETIF_F_LRO;
3862                 }
3863                 netif_set_gso_max_size(netdev, OCTNIC_GSO_MAX_SIZE);
3864
3865                 /*  Copy of transmit encapsulation capabilities:
3866                  *  TSO, TSO6, Checksums for this device
3867                  */
3868                 lio->enc_dev_capability = NETIF_F_IP_CSUM
3869                                           | NETIF_F_IPV6_CSUM
3870                                           | NETIF_F_GSO_UDP_TUNNEL
3871                                           | NETIF_F_HW_CSUM | NETIF_F_SG
3872                                           | NETIF_F_RXCSUM
3873                                           | NETIF_F_TSO | NETIF_F_TSO6
3874                                           | NETIF_F_LRO;
3875
3876                 netdev->hw_enc_features = (lio->enc_dev_capability &
3877                                            ~NETIF_F_LRO);
3878
3879                 lio->dev_capability |= NETIF_F_GSO_UDP_TUNNEL;
3880
3881                 netdev->vlan_features = lio->dev_capability;
3882                 /* Add any unchangeable hw features */
3883                 lio->dev_capability |=  NETIF_F_HW_VLAN_CTAG_FILTER |
3884                                         NETIF_F_HW_VLAN_CTAG_RX |
3885                                         NETIF_F_HW_VLAN_CTAG_TX;
3886
3887                 netdev->features = (lio->dev_capability & ~NETIF_F_LRO);
3888
3889                 netdev->hw_features = lio->dev_capability;
3890                 /*HW_VLAN_RX and HW_VLAN_FILTER is always on*/
3891                 netdev->hw_features = netdev->hw_features &
3892                         ~NETIF_F_HW_VLAN_CTAG_RX;
3893
3894                 /* Point to the  properties for octeon device to which this
3895                  * interface belongs.
3896                  */
3897                 lio->oct_dev = octeon_dev;
3898                 lio->octprops = props;
3899                 lio->netdev = netdev;
3900
3901                 dev_dbg(&octeon_dev->pci_dev->dev,
3902                         "if%d gmx: %d hw_addr: 0x%llx\n", i,
3903                         lio->linfo.gmxport, CVM_CAST64(lio->linfo.hw_addr));
3904
3905                 /* 64-bit swap required on LE machines */
3906                 octeon_swap_8B_data(&lio->linfo.hw_addr, 1);
3907                 for (j = 0; j < 6; j++)
3908                         mac[j] = *((u8 *)(((u8 *)&lio->linfo.hw_addr) + 2 + j));
3909
3910                 /* Copy MAC Address to OS network device structure */
3911
3912                 ether_addr_copy(netdev->dev_addr, mac);
3913
3914                 /* By default all interfaces on a single Octeon uses the same
3915                  * tx and rx queues
3916                  */
3917                 lio->txq = lio->linfo.txpciq[0].s.q_no;
3918                 lio->rxq = lio->linfo.rxpciq[0].s.q_no;
3919                 if (setup_io_queues(octeon_dev, i)) {
3920                         dev_err(&octeon_dev->pci_dev->dev, "I/O queues creation failed\n");
3921                         goto setup_nic_dev_fail;
3922                 }
3923
3924                 ifstate_set(lio, LIO_IFSTATE_DROQ_OPS);
3925
3926                 lio->tx_qsize = octeon_get_tx_qsize(octeon_dev, lio->txq);
3927                 lio->rx_qsize = octeon_get_rx_qsize(octeon_dev, lio->rxq);
3928
3929                 if (setup_glists(octeon_dev, lio, num_iqueues)) {
3930                         dev_err(&octeon_dev->pci_dev->dev,
3931                                 "Gather list allocation failed\n");
3932                         goto setup_nic_dev_fail;
3933                 }
3934
3935                 /* Register ethtool support */
3936                 liquidio_set_ethtool_ops(netdev);
3937                 if (lio->oct_dev->chip_id == OCTEON_CN23XX_PF_VID)
3938                         octeon_dev->priv_flags = OCT_PRIV_FLAG_DEFAULT;
3939                 else
3940                         octeon_dev->priv_flags = 0x0;
3941
3942                 if (netdev->features & NETIF_F_LRO)
3943                         liquidio_set_feature(netdev, OCTNET_CMD_LRO_ENABLE,
3944                                              OCTNIC_LROIPV4 | OCTNIC_LROIPV6);
3945
3946                 liquidio_set_feature(netdev, OCTNET_CMD_ENABLE_VLAN_FILTER, 0);
3947
3948                 if ((debug != -1) && (debug & NETIF_MSG_HW))
3949                         liquidio_set_feature(netdev,
3950                                              OCTNET_CMD_VERBOSE_ENABLE, 0);
3951
3952                 if (setup_link_status_change_wq(netdev))
3953                         goto setup_nic_dev_fail;
3954
3955                 /* Register the network device with the OS */
3956                 if (register_netdev(netdev)) {
3957                         dev_err(&octeon_dev->pci_dev->dev, "Device registration failed\n");
3958                         goto setup_nic_dev_fail;
3959                 }
3960
3961                 dev_dbg(&octeon_dev->pci_dev->dev,
3962                         "Setup NIC ifidx:%d mac:%02x%02x%02x%02x%02x%02x\n",
3963                         i, mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
3964                 netif_carrier_off(netdev);
3965                 lio->link_changes++;
3966
3967                 ifstate_set(lio, LIO_IFSTATE_REGISTERED);
3968
3969                 /* Sending command to firmware to enable Rx checksum offload
3970                  * by default at the time of setup of Liquidio driver for
3971                  * this device
3972                  */
3973                 liquidio_set_rxcsum_command(netdev, OCTNET_CMD_TNL_RX_CSUM_CTL,
3974                                             OCTNET_CMD_RXCSUM_ENABLE);
3975                 liquidio_set_feature(netdev, OCTNET_CMD_TNL_TX_CSUM_CTL,
3976                                      OCTNET_CMD_TXCSUM_ENABLE);
3977
3978                 dev_dbg(&octeon_dev->pci_dev->dev,
3979                         "NIC ifidx:%d Setup successful\n", i);
3980
3981                 octeon_free_soft_command(octeon_dev, sc);
3982         }
3983
3984         return 0;
3985
3986 setup_nic_dev_fail:
3987
3988         octeon_free_soft_command(octeon_dev, sc);
3989
3990 setup_nic_wait_intr:
3991
3992         while (i--) {
3993                 dev_err(&octeon_dev->pci_dev->dev,
3994                         "NIC ifidx:%d Setup failed\n", i);
3995                 liquidio_destroy_nic_device(octeon_dev, i);
3996         }
3997         return -ENODEV;
3998 }
3999
4000 /**
4001  * \brief initialize the NIC
4002  * @param oct octeon device
4003  *
4004  * This initialization routine is called once the Octeon device application is
4005  * up and running
4006  */
4007 static int liquidio_init_nic_module(struct octeon_device *oct)
4008 {
4009         struct oct_intrmod_cfg *intrmod_cfg;
4010         int i, retval = 0;
4011         int num_nic_ports = CFG_GET_NUM_NIC_PORTS(octeon_get_conf(oct));
4012
4013         dev_dbg(&oct->pci_dev->dev, "Initializing network interfaces\n");
4014
4015         /* only default iq and oq were initialized
4016          * initialize the rest as well
4017          */
4018         /* run port_config command for each port */
4019         oct->ifcount = num_nic_ports;
4020
4021         memset(oct->props, 0, sizeof(struct octdev_props) * num_nic_ports);
4022
4023         for (i = 0; i < MAX_OCTEON_LINKS; i++)
4024                 oct->props[i].gmxport = -1;
4025
4026         retval = setup_nic_devices(oct);
4027         if (retval) {
4028                 dev_err(&oct->pci_dev->dev, "Setup NIC devices failed\n");
4029                 goto octnet_init_failure;
4030         }
4031
4032         liquidio_ptp_init(oct);
4033
4034         /* Initialize interrupt moderation params */
4035         intrmod_cfg = &((struct octeon_device *)oct)->intrmod;
4036         intrmod_cfg->rx_enable = 1;
4037         intrmod_cfg->check_intrvl = LIO_INTRMOD_CHECK_INTERVAL;
4038         intrmod_cfg->maxpkt_ratethr = LIO_INTRMOD_MAXPKT_RATETHR;
4039         intrmod_cfg->minpkt_ratethr = LIO_INTRMOD_MINPKT_RATETHR;
4040         intrmod_cfg->rx_maxcnt_trigger = LIO_INTRMOD_RXMAXCNT_TRIGGER;
4041         intrmod_cfg->rx_maxtmr_trigger = LIO_INTRMOD_RXMAXTMR_TRIGGER;
4042         intrmod_cfg->rx_mintmr_trigger = LIO_INTRMOD_RXMINTMR_TRIGGER;
4043         intrmod_cfg->rx_mincnt_trigger = LIO_INTRMOD_RXMINCNT_TRIGGER;
4044         intrmod_cfg->tx_enable = 1;
4045         intrmod_cfg->tx_maxcnt_trigger = LIO_INTRMOD_TXMAXCNT_TRIGGER;
4046         intrmod_cfg->tx_mincnt_trigger = LIO_INTRMOD_TXMINCNT_TRIGGER;
4047         intrmod_cfg->rx_frames = CFG_GET_OQ_INTR_PKT(octeon_get_conf(oct));
4048         intrmod_cfg->rx_usecs = CFG_GET_OQ_INTR_TIME(octeon_get_conf(oct));
4049         intrmod_cfg->tx_frames = CFG_GET_IQ_INTR_PKT(octeon_get_conf(oct));
4050         dev_dbg(&oct->pci_dev->dev, "Network interfaces ready\n");
4051
4052         return retval;
4053
4054 octnet_init_failure:
4055
4056         oct->ifcount = 0;
4057
4058         return retval;
4059 }
4060
4061 /**
4062  * \brief starter callback that invokes the remaining initialization work after
4063  * the NIC is up and running.
4064  * @param octptr  work struct work_struct
4065  */
4066 static void nic_starter(struct work_struct *work)
4067 {
4068         struct octeon_device *oct;
4069         struct cavium_wk *wk = (struct cavium_wk *)work;
4070
4071         oct = (struct octeon_device *)wk->ctxptr;
4072
4073         if (atomic_read(&oct->status) == OCT_DEV_RUNNING)
4074                 return;
4075
4076         /* If the status of the device is CORE_OK, the core
4077          * application has reported its application type. Call
4078          * any registered handlers now and move to the RUNNING
4079          * state.
4080          */
4081         if (atomic_read(&oct->status) != OCT_DEV_CORE_OK) {
4082                 schedule_delayed_work(&oct->nic_poll_work.work,
4083                                       LIQUIDIO_STARTER_POLL_INTERVAL_MS);
4084                 return;
4085         }
4086
4087         atomic_set(&oct->status, OCT_DEV_RUNNING);
4088
4089         if (oct->app_mode && oct->app_mode == CVM_DRV_NIC_APP) {
4090                 dev_dbg(&oct->pci_dev->dev, "Starting NIC module\n");
4091
4092                 if (liquidio_init_nic_module(oct))
4093                         dev_err(&oct->pci_dev->dev, "NIC initialization failed\n");
4094                 else
4095                         handshake[oct->octeon_id].started_ok = 1;
4096         } else {
4097                 dev_err(&oct->pci_dev->dev,
4098                         "Unexpected application running on NIC (%d). Check firmware.\n",
4099                         oct->app_mode);
4100         }
4101
4102         complete(&handshake[oct->octeon_id].started);
4103 }
4104
4105 /**
4106  * \brief Device initialization for each Octeon device that is probed
4107  * @param octeon_dev  octeon device
4108  */
4109 static int octeon_device_init(struct octeon_device *octeon_dev)
4110 {
4111         int j, ret;
4112         int fw_loaded = 0;
4113         char bootcmd[] = "\n";
4114         struct octeon_device_priv *oct_priv =
4115                 (struct octeon_device_priv *)octeon_dev->priv;
4116         atomic_set(&octeon_dev->status, OCT_DEV_BEGIN_STATE);
4117
4118         /* Enable access to the octeon device and make its DMA capability
4119          * known to the OS.
4120          */
4121         if (octeon_pci_os_setup(octeon_dev))
4122                 return 1;
4123
4124         /* Identify the Octeon type and map the BAR address space. */
4125         if (octeon_chip_specific_setup(octeon_dev)) {
4126                 dev_err(&octeon_dev->pci_dev->dev, "Chip specific setup failed\n");
4127                 return 1;
4128         }
4129
4130         atomic_set(&octeon_dev->status, OCT_DEV_PCI_MAP_DONE);
4131
4132         octeon_dev->app_mode = CVM_DRV_INVALID_APP;
4133
4134         if (OCTEON_CN23XX_PF(octeon_dev)) {
4135                 if (!cn23xx_fw_loaded(octeon_dev)) {
4136                         fw_loaded = 0;
4137                         /* Do a soft reset of the Octeon device. */
4138                         if (octeon_dev->fn_list.soft_reset(octeon_dev))
4139                                 return 1;
4140                         /* things might have changed */
4141                         if (!cn23xx_fw_loaded(octeon_dev))
4142                                 fw_loaded = 0;
4143                         else
4144                                 fw_loaded = 1;
4145                 } else {
4146                         fw_loaded = 1;
4147                 }
4148         } else if (octeon_dev->fn_list.soft_reset(octeon_dev)) {
4149                 return 1;
4150         }
4151
4152         /* Initialize the dispatch mechanism used to push packets arriving on
4153          * Octeon Output queues.
4154          */
4155         if (octeon_init_dispatch_list(octeon_dev))
4156                 return 1;
4157
4158         octeon_register_dispatch_fn(octeon_dev, OPCODE_NIC,
4159                                     OPCODE_NIC_CORE_DRV_ACTIVE,
4160                                     octeon_core_drv_init,
4161                                     octeon_dev);
4162
4163         INIT_DELAYED_WORK(&octeon_dev->nic_poll_work.work, nic_starter);
4164         octeon_dev->nic_poll_work.ctxptr = (void *)octeon_dev;
4165         schedule_delayed_work(&octeon_dev->nic_poll_work.work,
4166                               LIQUIDIO_STARTER_POLL_INTERVAL_MS);
4167
4168         atomic_set(&octeon_dev->status, OCT_DEV_DISPATCH_INIT_DONE);
4169
4170         octeon_set_io_queues_off(octeon_dev);
4171
4172         if (OCTEON_CN23XX_PF(octeon_dev)) {
4173                 ret = octeon_dev->fn_list.setup_device_regs(octeon_dev);
4174                 if (ret) {
4175                         dev_err(&octeon_dev->pci_dev->dev, "OCTEON: Failed to configure device registers\n");
4176                         return ret;
4177                 }
4178         }
4179
4180         /* Initialize soft command buffer pool
4181          */
4182         if (octeon_setup_sc_buffer_pool(octeon_dev)) {
4183                 dev_err(&octeon_dev->pci_dev->dev, "sc buffer pool allocation failed\n");
4184                 return 1;
4185         }
4186         atomic_set(&octeon_dev->status, OCT_DEV_SC_BUFF_POOL_INIT_DONE);
4187
4188         /*  Setup the data structures that manage this Octeon's Input queues. */
4189         if (octeon_setup_instr_queues(octeon_dev)) {
4190                 dev_err(&octeon_dev->pci_dev->dev,
4191                         "instruction queue initialization failed\n");
4192                 /* On error, release any previously allocated queues */
4193                 for (j = 0; j < octeon_dev->num_iqs; j++)
4194                         octeon_delete_instr_queue(octeon_dev, j);
4195                 return 1;
4196         }
4197         atomic_set(&octeon_dev->status, OCT_DEV_INSTR_QUEUE_INIT_DONE);
4198
4199         /* Initialize lists to manage the requests of different types that
4200          * arrive from user & kernel applications for this octeon device.
4201          */
4202         if (octeon_setup_response_list(octeon_dev)) {
4203                 dev_err(&octeon_dev->pci_dev->dev, "Response list allocation failed\n");
4204                 return 1;
4205         }
4206         atomic_set(&octeon_dev->status, OCT_DEV_RESP_LIST_INIT_DONE);
4207
4208         if (octeon_setup_output_queues(octeon_dev)) {
4209                 dev_err(&octeon_dev->pci_dev->dev, "Output queue initialization failed\n");
4210                 /* Release any previously allocated queues */
4211                 for (j = 0; j < octeon_dev->num_oqs; j++)
4212                         octeon_delete_droq(octeon_dev, j);
4213                 return 1;
4214         }
4215
4216         atomic_set(&octeon_dev->status, OCT_DEV_DROQ_INIT_DONE);
4217
4218         if (OCTEON_CN23XX_PF(octeon_dev)) {
4219                 if (octeon_allocate_ioq_vector(octeon_dev)) {
4220                         dev_err(&octeon_dev->pci_dev->dev, "OCTEON: ioq vector allocation failed\n");
4221                         return 1;
4222                 }
4223
4224         } else {
4225                 /* The input and output queue registers were setup earlier (the
4226                  * queues were not enabled). Any additional registers
4227                  * that need to be programmed should be done now.
4228                  */
4229                 ret = octeon_dev->fn_list.setup_device_regs(octeon_dev);
4230                 if (ret) {
4231                         dev_err(&octeon_dev->pci_dev->dev,
4232                                 "Failed to configure device registers\n");
4233                         return ret;
4234                 }
4235         }
4236
4237         /* Initialize the tasklet that handles output queue packet processing.*/
4238         dev_dbg(&octeon_dev->pci_dev->dev, "Initializing droq tasklet\n");
4239         tasklet_init(&oct_priv->droq_tasklet, octeon_droq_bh,
4240                      (unsigned long)octeon_dev);
4241
4242         /* Setup the interrupt handler and record the INT SUM register address
4243          */
4244         if (octeon_setup_interrupt(octeon_dev))
4245                 return 1;
4246
4247         /* Enable Octeon device interrupts */
4248         octeon_dev->fn_list.enable_interrupt(octeon_dev, OCTEON_ALL_INTR);
4249
4250         /* Enable the input and output queues for this Octeon device */
4251         ret = octeon_dev->fn_list.enable_io_queues(octeon_dev);
4252         if (ret) {
4253                 dev_err(&octeon_dev->pci_dev->dev, "Failed to enable input/output queues");
4254                 return ret;
4255         }
4256
4257         atomic_set(&octeon_dev->status, OCT_DEV_IO_QUEUES_DONE);
4258
4259         if ((!OCTEON_CN23XX_PF(octeon_dev)) || !fw_loaded) {
4260                 dev_dbg(&octeon_dev->pci_dev->dev, "Waiting for DDR initialization...\n");
4261                 if (!ddr_timeout) {
4262                         dev_info(&octeon_dev->pci_dev->dev,
4263                                  "WAITING. Set ddr_timeout to non-zero value to proceed with initialization.\n");
4264                 }
4265
4266                 schedule_timeout_uninterruptible(HZ * LIO_RESET_SECS);
4267
4268                 /* Wait for the octeon to initialize DDR after the soft-reset.*/
4269                 while (!ddr_timeout) {
4270                         set_current_state(TASK_INTERRUPTIBLE);
4271                         if (schedule_timeout(HZ / 10)) {
4272                                 /* user probably pressed Control-C */
4273                                 return 1;
4274                         }
4275                 }
4276                 ret = octeon_wait_for_ddr_init(octeon_dev, &ddr_timeout);
4277                 if (ret) {
4278                         dev_err(&octeon_dev->pci_dev->dev,
4279                                 "DDR not initialized. Please confirm that board is configured to boot from Flash, ret: %d\n",
4280                                 ret);
4281                         return 1;
4282                 }
4283
4284                 if (octeon_wait_for_bootloader(octeon_dev, 1000)) {
4285                         dev_err(&octeon_dev->pci_dev->dev, "Board not responding\n");
4286                         return 1;
4287                 }
4288
4289                 /* Divert uboot to take commands from host instead. */
4290                 ret = octeon_console_send_cmd(octeon_dev, bootcmd, 50);
4291
4292                 dev_dbg(&octeon_dev->pci_dev->dev, "Initializing consoles\n");
4293                 ret = octeon_init_consoles(octeon_dev);
4294                 if (ret) {
4295                         dev_err(&octeon_dev->pci_dev->dev, "Could not access board consoles\n");
4296                         return 1;
4297                 }
4298                 ret = octeon_add_console(octeon_dev, 0);
4299                 if (ret) {
4300                         dev_err(&octeon_dev->pci_dev->dev, "Could not access board console\n");
4301                         return 1;
4302                 }
4303
4304                 atomic_set(&octeon_dev->status, OCT_DEV_CONSOLE_INIT_DONE);
4305
4306                 dev_dbg(&octeon_dev->pci_dev->dev, "Loading firmware\n");
4307                 ret = load_firmware(octeon_dev);
4308                 if (ret) {
4309                         dev_err(&octeon_dev->pci_dev->dev, "Could not load firmware to board\n");
4310                         return 1;
4311                 }
4312                 /* set bit 1 of SLI_SCRATCH_1 to indicate that firmware is
4313                  * loaded
4314                  */
4315                 if (OCTEON_CN23XX_PF(octeon_dev))
4316                         octeon_write_csr64(octeon_dev, CN23XX_SLI_SCRATCH1,
4317                                            2ULL);
4318         }
4319
4320         handshake[octeon_dev->octeon_id].init_ok = 1;
4321         complete(&handshake[octeon_dev->octeon_id].init);
4322
4323         atomic_set(&octeon_dev->status, OCT_DEV_HOST_OK);
4324
4325         /* Send Credit for Octeon Output queues. Credits are always sent after
4326          * the output queue is enabled.
4327          */
4328         for (j = 0; j < octeon_dev->num_oqs; j++)
4329                 writel(octeon_dev->droq[j]->max_count,
4330                        octeon_dev->droq[j]->pkts_credit_reg);
4331
4332         /* Packets can start arriving on the output queues from this point. */
4333         return 0;
4334 }
4335
4336 /**
4337  * \brief Exits the module
4338  */
4339 static void __exit liquidio_exit(void)
4340 {
4341         liquidio_deinit_pci();
4342
4343         pr_info("LiquidIO network module is now unloaded\n");
4344 }
4345
4346 module_init(liquidio_init);
4347 module_exit(liquidio_exit);