Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[linux-2.6-block.git] / drivers / net / ethernet / cavium / liquidio / lio_main.c
1 /**********************************************************************
2  * Author: Cavium, Inc.
3  *
4  * Contact: support@cavium.com
5  *          Please include "LiquidIO" in the subject.
6  *
7  * Copyright (c) 2003-2016 Cavium, Inc.
8  *
9  * This file is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License, Version 2, as
11  * published by the Free Software Foundation.
12  *
13  * This file is distributed in the hope that it will be useful, but
14  * AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty
15  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or
16  * NONINFRINGEMENT.  See the GNU General Public License for more details.
17  ***********************************************************************/
18 #include <linux/module.h>
19 #include <linux/pci.h>
20 #include <linux/firmware.h>
21 #include <net/vxlan.h>
22 #include <linux/kthread.h>
23 #include "liquidio_common.h"
24 #include "octeon_droq.h"
25 #include "octeon_iq.h"
26 #include "response_manager.h"
27 #include "octeon_device.h"
28 #include "octeon_nic.h"
29 #include "octeon_main.h"
30 #include "octeon_network.h"
31 #include "cn66xx_regs.h"
32 #include "cn66xx_device.h"
33 #include "cn68xx_device.h"
34 #include "cn23xx_pf_device.h"
35 #include "liquidio_image.h"
36
37 MODULE_AUTHOR("Cavium Networks, <support@cavium.com>");
38 MODULE_DESCRIPTION("Cavium LiquidIO Intelligent Server Adapter Driver");
39 MODULE_LICENSE("GPL");
40 MODULE_VERSION(LIQUIDIO_VERSION);
41 MODULE_FIRMWARE(LIO_FW_DIR LIO_FW_BASE_NAME LIO_210SV_NAME LIO_FW_NAME_SUFFIX);
42 MODULE_FIRMWARE(LIO_FW_DIR LIO_FW_BASE_NAME LIO_210NV_NAME LIO_FW_NAME_SUFFIX);
43 MODULE_FIRMWARE(LIO_FW_DIR LIO_FW_BASE_NAME LIO_410NV_NAME LIO_FW_NAME_SUFFIX);
44 MODULE_FIRMWARE(LIO_FW_DIR LIO_FW_BASE_NAME LIO_23XX_NAME LIO_FW_NAME_SUFFIX);
45
46 static int ddr_timeout = 10000;
47 module_param(ddr_timeout, int, 0644);
48 MODULE_PARM_DESC(ddr_timeout,
49                  "Number of milliseconds to wait for DDR initialization. 0 waits for ddr_timeout to be set to non-zero value before starting to check");
50
51 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
52
53 static int debug = -1;
54 module_param(debug, int, 0644);
55 MODULE_PARM_DESC(debug, "NETIF_MSG debug bits");
56
57 static char fw_type[LIO_MAX_FW_TYPE_LEN];
58 module_param_string(fw_type, fw_type, sizeof(fw_type), 0000);
59 MODULE_PARM_DESC(fw_type, "Type of firmware to be loaded. Default \"nic\"");
60
61 static int ptp_enable = 1;
62
63 /* Bit mask values for lio->ifstate */
64 #define   LIO_IFSTATE_DROQ_OPS             0x01
65 #define   LIO_IFSTATE_REGISTERED           0x02
66 #define   LIO_IFSTATE_RUNNING              0x04
67 #define   LIO_IFSTATE_RX_TIMESTAMP_ENABLED 0x08
68
69 /* Polling interval for determining when NIC application is alive */
70 #define LIQUIDIO_STARTER_POLL_INTERVAL_MS 100
71
72 /* runtime link query interval */
73 #define LIQUIDIO_LINK_QUERY_INTERVAL_MS         1000
74
75 struct liquidio_if_cfg_context {
76         int octeon_id;
77
78         wait_queue_head_t wc;
79
80         int cond;
81 };
82
83 struct liquidio_if_cfg_resp {
84         u64 rh;
85         struct liquidio_if_cfg_info cfg_info;
86         u64 status;
87 };
88
89 struct liquidio_rx_ctl_context {
90         int octeon_id;
91
92         wait_queue_head_t wc;
93
94         int cond;
95 };
96
97 struct oct_link_status_resp {
98         u64 rh;
99         struct oct_link_info link_info;
100         u64 status;
101 };
102
103 struct oct_timestamp_resp {
104         u64 rh;
105         u64 timestamp;
106         u64 status;
107 };
108
109 #define OCT_TIMESTAMP_RESP_SIZE (sizeof(struct oct_timestamp_resp))
110
111 union tx_info {
112         u64 u64;
113         struct {
114 #ifdef __BIG_ENDIAN_BITFIELD
115                 u16 gso_size;
116                 u16 gso_segs;
117                 u32 reserved;
118 #else
119                 u32 reserved;
120                 u16 gso_segs;
121                 u16 gso_size;
122 #endif
123         } s;
124 };
125
126 /** Octeon device properties to be used by the NIC module.
127  * Each octeon device in the system will be represented
128  * by this structure in the NIC module.
129  */
130
131 #define OCTNIC_MAX_SG  (MAX_SKB_FRAGS)
132
133 #define OCTNIC_GSO_MAX_HEADER_SIZE 128
134 #define OCTNIC_GSO_MAX_SIZE                                                    \
135         (CN23XX_DEFAULT_INPUT_JABBER - OCTNIC_GSO_MAX_HEADER_SIZE)
136
137 /** Structure of a node in list of gather components maintained by
138  * NIC driver for each network device.
139  */
140 struct octnic_gather {
141         /** List manipulation. Next and prev pointers. */
142         struct list_head list;
143
144         /** Size of the gather component at sg in bytes. */
145         int sg_size;
146
147         /** Number of bytes that sg was adjusted to make it 8B-aligned. */
148         int adjust;
149
150         /** Gather component that can accommodate max sized fragment list
151          *  received from the IP layer.
152          */
153         struct octeon_sg_entry *sg;
154
155         dma_addr_t sg_dma_ptr;
156 };
157
158 struct handshake {
159         struct completion init;
160         struct completion started;
161         struct pci_dev *pci_dev;
162         int init_ok;
163         int started_ok;
164 };
165
166 struct octeon_device_priv {
167         /** Tasklet structures for this device. */
168         struct tasklet_struct droq_tasklet;
169         unsigned long napi_mask;
170 };
171
172 #ifdef CONFIG_PCI_IOV
173 static int liquidio_enable_sriov(struct pci_dev *dev, int num_vfs);
174 #endif
175
176 static int octeon_device_init(struct octeon_device *);
177 static int liquidio_stop(struct net_device *netdev);
178 static void liquidio_remove(struct pci_dev *pdev);
179 static int liquidio_probe(struct pci_dev *pdev,
180                           const struct pci_device_id *ent);
181
182 static struct handshake handshake[MAX_OCTEON_DEVICES];
183 static struct completion first_stage;
184
185 static void octeon_droq_bh(unsigned long pdev)
186 {
187         int q_no;
188         int reschedule = 0;
189         struct octeon_device *oct = (struct octeon_device *)pdev;
190         struct octeon_device_priv *oct_priv =
191                 (struct octeon_device_priv *)oct->priv;
192
193         for (q_no = 0; q_no < MAX_OCTEON_OUTPUT_QUEUES(oct); q_no++) {
194                 if (!(oct->io_qmask.oq & BIT_ULL(q_no)))
195                         continue;
196                 reschedule |= octeon_droq_process_packets(oct, oct->droq[q_no],
197                                                           MAX_PACKET_BUDGET);
198                 lio_enable_irq(oct->droq[q_no], NULL);
199
200                 if (OCTEON_CN23XX_PF(oct) && oct->msix_on) {
201                         /* set time and cnt interrupt thresholds for this DROQ
202                          * for NAPI
203                          */
204                         int adjusted_q_no = q_no + oct->sriov_info.pf_srn;
205
206                         octeon_write_csr64(
207                             oct, CN23XX_SLI_OQ_PKT_INT_LEVELS(adjusted_q_no),
208                             0x5700000040ULL);
209                         octeon_write_csr64(
210                             oct, CN23XX_SLI_OQ_PKTS_SENT(adjusted_q_no), 0);
211                 }
212         }
213
214         if (reschedule)
215                 tasklet_schedule(&oct_priv->droq_tasklet);
216 }
217
218 static int lio_wait_for_oq_pkts(struct octeon_device *oct)
219 {
220         struct octeon_device_priv *oct_priv =
221                 (struct octeon_device_priv *)oct->priv;
222         int retry = 100, pkt_cnt = 0, pending_pkts = 0;
223         int i;
224
225         do {
226                 pending_pkts = 0;
227
228                 for (i = 0; i < MAX_OCTEON_OUTPUT_QUEUES(oct); i++) {
229                         if (!(oct->io_qmask.oq & BIT_ULL(i)))
230                                 continue;
231                         pkt_cnt += octeon_droq_check_hw_for_pkts(oct->droq[i]);
232                 }
233                 if (pkt_cnt > 0) {
234                         pending_pkts += pkt_cnt;
235                         tasklet_schedule(&oct_priv->droq_tasklet);
236                 }
237                 pkt_cnt = 0;
238                 schedule_timeout_uninterruptible(1);
239
240         } while (retry-- && pending_pkts);
241
242         return pkt_cnt;
243 }
244
245 /**
246  * \brief Forces all IO queues off on a given device
247  * @param oct Pointer to Octeon device
248  */
249 static void force_io_queues_off(struct octeon_device *oct)
250 {
251         if ((oct->chip_id == OCTEON_CN66XX) ||
252             (oct->chip_id == OCTEON_CN68XX)) {
253                 /* Reset the Enable bits for Input Queues. */
254                 octeon_write_csr(oct, CN6XXX_SLI_PKT_INSTR_ENB, 0);
255
256                 /* Reset the Enable bits for Output Queues. */
257                 octeon_write_csr(oct, CN6XXX_SLI_PKT_OUT_ENB, 0);
258         }
259 }
260
261 /**
262  * \brief wait for all pending requests to complete
263  * @param oct Pointer to Octeon device
264  *
265  * Called during shutdown sequence
266  */
267 static int wait_for_pending_requests(struct octeon_device *oct)
268 {
269         int i, pcount = 0;
270
271         for (i = 0; i < 100; i++) {
272                 pcount =
273                         atomic_read(&oct->response_list
274                                 [OCTEON_ORDERED_SC_LIST].pending_req_count);
275                 if (pcount)
276                         schedule_timeout_uninterruptible(HZ / 10);
277                 else
278                         break;
279         }
280
281         if (pcount)
282                 return 1;
283
284         return 0;
285 }
286
287 /**
288  * \brief Cause device to go quiet so it can be safely removed/reset/etc
289  * @param oct Pointer to Octeon device
290  */
291 static inline void pcierror_quiesce_device(struct octeon_device *oct)
292 {
293         int i;
294
295         /* Disable the input and output queues now. No more packets will
296          * arrive from Octeon, but we should wait for all packet processing
297          * to finish.
298          */
299         force_io_queues_off(oct);
300
301         /* To allow for in-flight requests */
302         schedule_timeout_uninterruptible(100);
303
304         if (wait_for_pending_requests(oct))
305                 dev_err(&oct->pci_dev->dev, "There were pending requests\n");
306
307         /* Force all requests waiting to be fetched by OCTEON to complete. */
308         for (i = 0; i < MAX_OCTEON_INSTR_QUEUES(oct); i++) {
309                 struct octeon_instr_queue *iq;
310
311                 if (!(oct->io_qmask.iq & BIT_ULL(i)))
312                         continue;
313                 iq = oct->instr_queue[i];
314
315                 if (atomic_read(&iq->instr_pending)) {
316                         spin_lock_bh(&iq->lock);
317                         iq->fill_cnt = 0;
318                         iq->octeon_read_index = iq->host_write_index;
319                         iq->stats.instr_processed +=
320                                 atomic_read(&iq->instr_pending);
321                         lio_process_iq_request_list(oct, iq, 0);
322                         spin_unlock_bh(&iq->lock);
323                 }
324         }
325
326         /* Force all pending ordered list requests to time out. */
327         lio_process_ordered_list(oct, 1);
328
329         /* We do not need to wait for output queue packets to be processed. */
330 }
331
332 /**
333  * \brief Cleanup PCI AER uncorrectable error status
334  * @param dev Pointer to PCI device
335  */
336 static void cleanup_aer_uncorrect_error_status(struct pci_dev *dev)
337 {
338         int pos = 0x100;
339         u32 status, mask;
340
341         pr_info("%s :\n", __func__);
342
343         pci_read_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS, &status);
344         pci_read_config_dword(dev, pos + PCI_ERR_UNCOR_SEVER, &mask);
345         if (dev->error_state == pci_channel_io_normal)
346                 status &= ~mask;        /* Clear corresponding nonfatal bits */
347         else
348                 status &= mask;         /* Clear corresponding fatal bits */
349         pci_write_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS, status);
350 }
351
352 /**
353  * \brief Stop all PCI IO to a given device
354  * @param dev Pointer to Octeon device
355  */
356 static void stop_pci_io(struct octeon_device *oct)
357 {
358         /* No more instructions will be forwarded. */
359         atomic_set(&oct->status, OCT_DEV_IN_RESET);
360
361         pci_disable_device(oct->pci_dev);
362
363         /* Disable interrupts  */
364         oct->fn_list.disable_interrupt(oct, OCTEON_ALL_INTR);
365
366         pcierror_quiesce_device(oct);
367
368         /* Release the interrupt line */
369         free_irq(oct->pci_dev->irq, oct);
370
371         if (oct->flags & LIO_FLAG_MSI_ENABLED)
372                 pci_disable_msi(oct->pci_dev);
373
374         dev_dbg(&oct->pci_dev->dev, "Device state is now %s\n",
375                 lio_get_state_string(&oct->status));
376
377         /* making it a common function for all OCTEON models */
378         cleanup_aer_uncorrect_error_status(oct->pci_dev);
379 }
380
381 /**
382  * \brief called when PCI error is detected
383  * @param pdev Pointer to PCI device
384  * @param state The current pci connection state
385  *
386  * This function is called after a PCI bus error affecting
387  * this device has been detected.
388  */
389 static pci_ers_result_t liquidio_pcie_error_detected(struct pci_dev *pdev,
390                                                      pci_channel_state_t state)
391 {
392         struct octeon_device *oct = pci_get_drvdata(pdev);
393
394         /* Non-correctable Non-fatal errors */
395         if (state == pci_channel_io_normal) {
396                 dev_err(&oct->pci_dev->dev, "Non-correctable non-fatal error reported:\n");
397                 cleanup_aer_uncorrect_error_status(oct->pci_dev);
398                 return PCI_ERS_RESULT_CAN_RECOVER;
399         }
400
401         /* Non-correctable Fatal errors */
402         dev_err(&oct->pci_dev->dev, "Non-correctable FATAL reported by PCI AER driver\n");
403         stop_pci_io(oct);
404
405         /* Always return a DISCONNECT. There is no support for recovery but only
406          * for a clean shutdown.
407          */
408         return PCI_ERS_RESULT_DISCONNECT;
409 }
410
411 /**
412  * \brief mmio handler
413  * @param pdev Pointer to PCI device
414  */
415 static pci_ers_result_t liquidio_pcie_mmio_enabled(
416                                 struct pci_dev *pdev __attribute__((unused)))
417 {
418         /* We should never hit this since we never ask for a reset for a Fatal
419          * Error. We always return DISCONNECT in io_error above.
420          * But play safe and return RECOVERED for now.
421          */
422         return PCI_ERS_RESULT_RECOVERED;
423 }
424
425 /**
426  * \brief called after the pci bus has been reset.
427  * @param pdev Pointer to PCI device
428  *
429  * Restart the card from scratch, as if from a cold-boot. Implementation
430  * resembles the first-half of the octeon_resume routine.
431  */
432 static pci_ers_result_t liquidio_pcie_slot_reset(
433                                 struct pci_dev *pdev __attribute__((unused)))
434 {
435         /* We should never hit this since we never ask for a reset for a Fatal
436          * Error. We always return DISCONNECT in io_error above.
437          * But play safe and return RECOVERED for now.
438          */
439         return PCI_ERS_RESULT_RECOVERED;
440 }
441
442 /**
443  * \brief called when traffic can start flowing again.
444  * @param pdev Pointer to PCI device
445  *
446  * This callback is called when the error recovery driver tells us that
447  * its OK to resume normal operation. Implementation resembles the
448  * second-half of the octeon_resume routine.
449  */
450 static void liquidio_pcie_resume(struct pci_dev *pdev __attribute__((unused)))
451 {
452         /* Nothing to be done here. */
453 }
454
455 #ifdef CONFIG_PM
456 /**
457  * \brief called when suspending
458  * @param pdev Pointer to PCI device
459  * @param state state to suspend to
460  */
461 static int liquidio_suspend(struct pci_dev *pdev __attribute__((unused)),
462                             pm_message_t state __attribute__((unused)))
463 {
464         return 0;
465 }
466
467 /**
468  * \brief called when resuming
469  * @param pdev Pointer to PCI device
470  */
471 static int liquidio_resume(struct pci_dev *pdev __attribute__((unused)))
472 {
473         return 0;
474 }
475 #endif
476
477 /* For PCI-E Advanced Error Recovery (AER) Interface */
478 static const struct pci_error_handlers liquidio_err_handler = {
479         .error_detected = liquidio_pcie_error_detected,
480         .mmio_enabled   = liquidio_pcie_mmio_enabled,
481         .slot_reset     = liquidio_pcie_slot_reset,
482         .resume         = liquidio_pcie_resume,
483 };
484
485 static const struct pci_device_id liquidio_pci_tbl[] = {
486         {       /* 68xx */
487                 PCI_VENDOR_ID_CAVIUM, 0x91, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0
488         },
489         {       /* 66xx */
490                 PCI_VENDOR_ID_CAVIUM, 0x92, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0
491         },
492         {       /* 23xx pf */
493                 PCI_VENDOR_ID_CAVIUM, 0x9702, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0
494         },
495         {
496                 0, 0, 0, 0, 0, 0, 0
497         }
498 };
499 MODULE_DEVICE_TABLE(pci, liquidio_pci_tbl);
500
501 static struct pci_driver liquidio_pci_driver = {
502         .name           = "LiquidIO",
503         .id_table       = liquidio_pci_tbl,
504         .probe          = liquidio_probe,
505         .remove         = liquidio_remove,
506         .err_handler    = &liquidio_err_handler,    /* For AER */
507
508 #ifdef CONFIG_PM
509         .suspend        = liquidio_suspend,
510         .resume         = liquidio_resume,
511 #endif
512 #ifdef CONFIG_PCI_IOV
513         .sriov_configure = liquidio_enable_sriov,
514 #endif
515 };
516
517 /**
518  * \brief register PCI driver
519  */
520 static int liquidio_init_pci(void)
521 {
522         return pci_register_driver(&liquidio_pci_driver);
523 }
524
525 /**
526  * \brief unregister PCI driver
527  */
528 static void liquidio_deinit_pci(void)
529 {
530         pci_unregister_driver(&liquidio_pci_driver);
531 }
532
533 /**
534  * \brief check interface state
535  * @param lio per-network private data
536  * @param state_flag flag state to check
537  */
538 static inline int ifstate_check(struct lio *lio, int state_flag)
539 {
540         return atomic_read(&lio->ifstate) & state_flag;
541 }
542
543 /**
544  * \brief set interface state
545  * @param lio per-network private data
546  * @param state_flag flag state to set
547  */
548 static inline void ifstate_set(struct lio *lio, int state_flag)
549 {
550         atomic_set(&lio->ifstate, (atomic_read(&lio->ifstate) | state_flag));
551 }
552
553 /**
554  * \brief clear interface state
555  * @param lio per-network private data
556  * @param state_flag flag state to clear
557  */
558 static inline void ifstate_reset(struct lio *lio, int state_flag)
559 {
560         atomic_set(&lio->ifstate, (atomic_read(&lio->ifstate) & ~(state_flag)));
561 }
562
563 /**
564  * \brief Stop Tx queues
565  * @param netdev network device
566  */
567 static inline void txqs_stop(struct net_device *netdev)
568 {
569         if (netif_is_multiqueue(netdev)) {
570                 int i;
571
572                 for (i = 0; i < netdev->num_tx_queues; i++)
573                         netif_stop_subqueue(netdev, i);
574         } else {
575                 netif_stop_queue(netdev);
576         }
577 }
578
579 /**
580  * \brief Start Tx queues
581  * @param netdev network device
582  */
583 static inline void txqs_start(struct net_device *netdev)
584 {
585         if (netif_is_multiqueue(netdev)) {
586                 int i;
587
588                 for (i = 0; i < netdev->num_tx_queues; i++)
589                         netif_start_subqueue(netdev, i);
590         } else {
591                 netif_start_queue(netdev);
592         }
593 }
594
595 /**
596  * \brief Wake Tx queues
597  * @param netdev network device
598  */
599 static inline void txqs_wake(struct net_device *netdev)
600 {
601         struct lio *lio = GET_LIO(netdev);
602
603         if (netif_is_multiqueue(netdev)) {
604                 int i;
605
606                 for (i = 0; i < netdev->num_tx_queues; i++) {
607                         int qno = lio->linfo.txpciq[i %
608                                 (lio->linfo.num_txpciq)].s.q_no;
609
610                         if (__netif_subqueue_stopped(netdev, i)) {
611                                 INCR_INSTRQUEUE_PKT_COUNT(lio->oct_dev, qno,
612                                                           tx_restart, 1);
613                                 netif_wake_subqueue(netdev, i);
614                         }
615                 }
616         } else {
617                 INCR_INSTRQUEUE_PKT_COUNT(lio->oct_dev, lio->txq,
618                                           tx_restart, 1);
619                 netif_wake_queue(netdev);
620         }
621 }
622
623 /**
624  * \brief Stop Tx queue
625  * @param netdev network device
626  */
627 static void stop_txq(struct net_device *netdev)
628 {
629         txqs_stop(netdev);
630 }
631
632 /**
633  * \brief Start Tx queue
634  * @param netdev network device
635  */
636 static void start_txq(struct net_device *netdev)
637 {
638         struct lio *lio = GET_LIO(netdev);
639
640         if (lio->linfo.link.s.link_up) {
641                 txqs_start(netdev);
642                 return;
643         }
644 }
645
646 /**
647  * \brief Wake a queue
648  * @param netdev network device
649  * @param q which queue to wake
650  */
651 static inline void wake_q(struct net_device *netdev, int q)
652 {
653         if (netif_is_multiqueue(netdev))
654                 netif_wake_subqueue(netdev, q);
655         else
656                 netif_wake_queue(netdev);
657 }
658
659 /**
660  * \brief Stop a queue
661  * @param netdev network device
662  * @param q which queue to stop
663  */
664 static inline void stop_q(struct net_device *netdev, int q)
665 {
666         if (netif_is_multiqueue(netdev))
667                 netif_stop_subqueue(netdev, q);
668         else
669                 netif_stop_queue(netdev);
670 }
671
672 /**
673  * \brief Check Tx queue status, and take appropriate action
674  * @param lio per-network private data
675  * @returns 0 if full, number of queues woken up otherwise
676  */
677 static inline int check_txq_status(struct lio *lio)
678 {
679         int ret_val = 0;
680
681         if (netif_is_multiqueue(lio->netdev)) {
682                 int numqs = lio->netdev->num_tx_queues;
683                 int q, iq = 0;
684
685                 /* check each sub-queue state */
686                 for (q = 0; q < numqs; q++) {
687                         iq = lio->linfo.txpciq[q %
688                                 (lio->linfo.num_txpciq)].s.q_no;
689                         if (octnet_iq_is_full(lio->oct_dev, iq))
690                                 continue;
691                         if (__netif_subqueue_stopped(lio->netdev, q)) {
692                                 wake_q(lio->netdev, q);
693                                 INCR_INSTRQUEUE_PKT_COUNT(lio->oct_dev, iq,
694                                                           tx_restart, 1);
695                                 ret_val++;
696                         }
697                 }
698         } else {
699                 if (octnet_iq_is_full(lio->oct_dev, lio->txq))
700                         return 0;
701                 wake_q(lio->netdev, lio->txq);
702                 INCR_INSTRQUEUE_PKT_COUNT(lio->oct_dev, lio->txq,
703                                           tx_restart, 1);
704                 ret_val = 1;
705         }
706         return ret_val;
707 }
708
709 /**
710  * Remove the node at the head of the list. The list would be empty at
711  * the end of this call if there are no more nodes in the list.
712  */
713 static inline struct list_head *list_delete_head(struct list_head *root)
714 {
715         struct list_head *node;
716
717         if ((root->prev == root) && (root->next == root))
718                 node = NULL;
719         else
720                 node = root->next;
721
722         if (node)
723                 list_del(node);
724
725         return node;
726 }
727
728 /**
729  * \brief Delete gather lists
730  * @param lio per-network private data
731  */
732 static void delete_glists(struct lio *lio)
733 {
734         struct octnic_gather *g;
735         int i;
736
737         kfree(lio->glist_lock);
738         lio->glist_lock = NULL;
739
740         if (!lio->glist)
741                 return;
742
743         for (i = 0; i < lio->linfo.num_txpciq; i++) {
744                 do {
745                         g = (struct octnic_gather *)
746                                 list_delete_head(&lio->glist[i]);
747                         if (g)
748                                 kfree(g);
749                 } while (g);
750
751                 if (lio->glists_virt_base && lio->glists_virt_base[i]) {
752                         lio_dma_free(lio->oct_dev,
753                                      lio->glist_entry_size * lio->tx_qsize,
754                                      lio->glists_virt_base[i],
755                                      lio->glists_dma_base[i]);
756                 }
757         }
758
759         kfree(lio->glists_virt_base);
760         lio->glists_virt_base = NULL;
761
762         kfree(lio->glists_dma_base);
763         lio->glists_dma_base = NULL;
764
765         kfree(lio->glist);
766         lio->glist = NULL;
767 }
768
769 /**
770  * \brief Setup gather lists
771  * @param lio per-network private data
772  */
773 static int setup_glists(struct octeon_device *oct, struct lio *lio, int num_iqs)
774 {
775         int i, j;
776         struct octnic_gather *g;
777
778         lio->glist_lock = kcalloc(num_iqs, sizeof(*lio->glist_lock),
779                                   GFP_KERNEL);
780         if (!lio->glist_lock)
781                 return -ENOMEM;
782
783         lio->glist = kcalloc(num_iqs, sizeof(*lio->glist),
784                              GFP_KERNEL);
785         if (!lio->glist) {
786                 kfree(lio->glist_lock);
787                 lio->glist_lock = NULL;
788                 return -ENOMEM;
789         }
790
791         lio->glist_entry_size =
792                 ROUNDUP8((ROUNDUP4(OCTNIC_MAX_SG) >> 2) * OCT_SG_ENTRY_SIZE);
793
794         /* allocate memory to store virtual and dma base address of
795          * per glist consistent memory
796          */
797         lio->glists_virt_base = kcalloc(num_iqs, sizeof(*lio->glists_virt_base),
798                                         GFP_KERNEL);
799         lio->glists_dma_base = kcalloc(num_iqs, sizeof(*lio->glists_dma_base),
800                                        GFP_KERNEL);
801
802         if (!lio->glists_virt_base || !lio->glists_dma_base) {
803                 delete_glists(lio);
804                 return -ENOMEM;
805         }
806
807         for (i = 0; i < num_iqs; i++) {
808                 int numa_node = dev_to_node(&oct->pci_dev->dev);
809
810                 spin_lock_init(&lio->glist_lock[i]);
811
812                 INIT_LIST_HEAD(&lio->glist[i]);
813
814                 lio->glists_virt_base[i] =
815                         lio_dma_alloc(oct,
816                                       lio->glist_entry_size * lio->tx_qsize,
817                                       &lio->glists_dma_base[i]);
818
819                 if (!lio->glists_virt_base[i]) {
820                         delete_glists(lio);
821                         return -ENOMEM;
822                 }
823
824                 for (j = 0; j < lio->tx_qsize; j++) {
825                         g = kzalloc_node(sizeof(*g), GFP_KERNEL,
826                                          numa_node);
827                         if (!g)
828                                 g = kzalloc(sizeof(*g), GFP_KERNEL);
829                         if (!g)
830                                 break;
831
832                         g->sg = lio->glists_virt_base[i] +
833                                 (j * lio->glist_entry_size);
834
835                         g->sg_dma_ptr = lio->glists_dma_base[i] +
836                                         (j * lio->glist_entry_size);
837
838                         list_add_tail(&g->list, &lio->glist[i]);
839                 }
840
841                 if (j != lio->tx_qsize) {
842                         delete_glists(lio);
843                         return -ENOMEM;
844                 }
845         }
846
847         return 0;
848 }
849
850 /**
851  * \brief Print link information
852  * @param netdev network device
853  */
854 static void print_link_info(struct net_device *netdev)
855 {
856         struct lio *lio = GET_LIO(netdev);
857
858         if (atomic_read(&lio->ifstate) & LIO_IFSTATE_REGISTERED) {
859                 struct oct_link_info *linfo = &lio->linfo;
860
861                 if (linfo->link.s.link_up) {
862                         netif_info(lio, link, lio->netdev, "%d Mbps %s Duplex UP\n",
863                                    linfo->link.s.speed,
864                                    (linfo->link.s.duplex) ? "Full" : "Half");
865                 } else {
866                         netif_info(lio, link, lio->netdev, "Link Down\n");
867                 }
868         }
869 }
870
871 /**
872  * \brief Routine to notify MTU change
873  * @param work work_struct data structure
874  */
875 static void octnet_link_status_change(struct work_struct *work)
876 {
877         struct cavium_wk *wk = (struct cavium_wk *)work;
878         struct lio *lio = (struct lio *)wk->ctxptr;
879
880         rtnl_lock();
881         call_netdevice_notifiers(NETDEV_CHANGEMTU, lio->netdev);
882         rtnl_unlock();
883 }
884
885 /**
886  * \brief Sets up the mtu status change work
887  * @param netdev network device
888  */
889 static inline int setup_link_status_change_wq(struct net_device *netdev)
890 {
891         struct lio *lio = GET_LIO(netdev);
892         struct octeon_device *oct = lio->oct_dev;
893
894         lio->link_status_wq.wq = alloc_workqueue("link-status",
895                                                  WQ_MEM_RECLAIM, 0);
896         if (!lio->link_status_wq.wq) {
897                 dev_err(&oct->pci_dev->dev, "unable to create cavium link status wq\n");
898                 return -1;
899         }
900         INIT_DELAYED_WORK(&lio->link_status_wq.wk.work,
901                           octnet_link_status_change);
902         lio->link_status_wq.wk.ctxptr = lio;
903
904         return 0;
905 }
906
907 static inline void cleanup_link_status_change_wq(struct net_device *netdev)
908 {
909         struct lio *lio = GET_LIO(netdev);
910
911         if (lio->link_status_wq.wq) {
912                 cancel_delayed_work_sync(&lio->link_status_wq.wk.work);
913                 destroy_workqueue(lio->link_status_wq.wq);
914         }
915 }
916
917 /**
918  * \brief Update link status
919  * @param netdev network device
920  * @param ls link status structure
921  *
922  * Called on receipt of a link status response from the core application to
923  * update each interface's link status.
924  */
925 static inline void update_link_status(struct net_device *netdev,
926                                       union oct_link_status *ls)
927 {
928         struct lio *lio = GET_LIO(netdev);
929         int changed = (lio->linfo.link.u64 != ls->u64);
930
931         lio->linfo.link.u64 = ls->u64;
932
933         if ((lio->intf_open) && (changed)) {
934                 print_link_info(netdev);
935                 lio->link_changes++;
936
937                 if (lio->linfo.link.s.link_up) {
938                         netif_carrier_on(netdev);
939                         txqs_wake(netdev);
940                 } else {
941                         netif_carrier_off(netdev);
942                         stop_txq(netdev);
943                 }
944         }
945 }
946
947 /* Runs in interrupt context. */
948 static void update_txq_status(struct octeon_device *oct, int iq_num)
949 {
950         struct net_device *netdev;
951         struct lio *lio;
952         struct octeon_instr_queue *iq = oct->instr_queue[iq_num];
953
954         netdev = oct->props[iq->ifidx].netdev;
955
956         /* This is needed because the first IQ does not have
957          * a netdev associated with it.
958          */
959         if (!netdev)
960                 return;
961
962         lio = GET_LIO(netdev);
963         if (netif_is_multiqueue(netdev)) {
964                 if (__netif_subqueue_stopped(netdev, iq->q_index) &&
965                     lio->linfo.link.s.link_up &&
966                     (!octnet_iq_is_full(oct, iq_num))) {
967                         INCR_INSTRQUEUE_PKT_COUNT(lio->oct_dev, iq_num,
968                                                   tx_restart, 1);
969                         netif_wake_subqueue(netdev, iq->q_index);
970                 } else {
971                         if (!octnet_iq_is_full(oct, lio->txq)) {
972                                 INCR_INSTRQUEUE_PKT_COUNT(lio->oct_dev,
973                                                           lio->txq,
974                                                           tx_restart, 1);
975                                 wake_q(netdev, lio->txq);
976                         }
977                 }
978         }
979 }
980
981 static
982 int liquidio_schedule_msix_droq_pkt_handler(struct octeon_droq *droq, u64 ret)
983 {
984         struct octeon_device *oct = droq->oct_dev;
985         struct octeon_device_priv *oct_priv =
986             (struct octeon_device_priv *)oct->priv;
987
988         if (droq->ops.poll_mode) {
989                 droq->ops.napi_fn(droq);
990         } else {
991                 if (ret & MSIX_PO_INT) {
992                         tasklet_schedule(&oct_priv->droq_tasklet);
993                         return 1;
994                 }
995                 /* this will be flushed periodically by check iq db */
996                 if (ret & MSIX_PI_INT)
997                         return 0;
998         }
999         return 0;
1000 }
1001
1002 /**
1003  * \brief Droq packet processor sceduler
1004  * @param oct octeon device
1005  */
1006 static void liquidio_schedule_droq_pkt_handlers(struct octeon_device *oct)
1007 {
1008         struct octeon_device_priv *oct_priv =
1009                 (struct octeon_device_priv *)oct->priv;
1010         u64 oq_no;
1011         struct octeon_droq *droq;
1012
1013         if (oct->int_status & OCT_DEV_INTR_PKT_DATA) {
1014                 for (oq_no = 0; oq_no < MAX_OCTEON_OUTPUT_QUEUES(oct);
1015                      oq_no++) {
1016                         if (!(oct->droq_intr & BIT_ULL(oq_no)))
1017                                 continue;
1018
1019                         droq = oct->droq[oq_no];
1020
1021                         if (droq->ops.poll_mode) {
1022                                 droq->ops.napi_fn(droq);
1023                                 oct_priv->napi_mask |= (1 << oq_no);
1024                         } else {
1025                                 tasklet_schedule(&oct_priv->droq_tasklet);
1026                         }
1027                 }
1028         }
1029 }
1030
1031 static irqreturn_t
1032 liquidio_msix_intr_handler(int irq __attribute__((unused)), void *dev)
1033 {
1034         u64 ret;
1035         struct octeon_ioq_vector *ioq_vector = (struct octeon_ioq_vector *)dev;
1036         struct octeon_device *oct = ioq_vector->oct_dev;
1037         struct octeon_droq *droq = oct->droq[ioq_vector->droq_index];
1038
1039         ret = oct->fn_list.msix_interrupt_handler(ioq_vector);
1040
1041         if ((ret & MSIX_PO_INT) || (ret & MSIX_PI_INT))
1042                 liquidio_schedule_msix_droq_pkt_handler(droq, ret);
1043
1044         return IRQ_HANDLED;
1045 }
1046
1047 /**
1048  * \brief Interrupt handler for octeon
1049  * @param irq unused
1050  * @param dev octeon device
1051  */
1052 static
1053 irqreturn_t liquidio_legacy_intr_handler(int irq __attribute__((unused)),
1054                                          void *dev)
1055 {
1056         struct octeon_device *oct = (struct octeon_device *)dev;
1057         irqreturn_t ret;
1058
1059         /* Disable our interrupts for the duration of ISR */
1060         oct->fn_list.disable_interrupt(oct, OCTEON_ALL_INTR);
1061
1062         ret = oct->fn_list.process_interrupt_regs(oct);
1063
1064         if (ret == IRQ_HANDLED)
1065                 liquidio_schedule_droq_pkt_handlers(oct);
1066
1067         /* Re-enable our interrupts  */
1068         if (!(atomic_read(&oct->status) == OCT_DEV_IN_RESET))
1069                 oct->fn_list.enable_interrupt(oct, OCTEON_ALL_INTR);
1070
1071         return ret;
1072 }
1073
1074 /**
1075  * \brief Setup interrupt for octeon device
1076  * @param oct octeon device
1077  *
1078  *  Enable interrupt in Octeon device as given in the PCI interrupt mask.
1079  */
1080 static int octeon_setup_interrupt(struct octeon_device *oct)
1081 {
1082         int irqret, err;
1083         struct msix_entry *msix_entries;
1084         int i;
1085         int num_ioq_vectors;
1086         int num_alloc_ioq_vectors;
1087
1088         if (OCTEON_CN23XX_PF(oct) && oct->msix_on) {
1089                 oct->num_msix_irqs = oct->sriov_info.num_pf_rings;
1090                 /* one non ioq interrupt for handling sli_mac_pf_int_sum */
1091                 oct->num_msix_irqs += 1;
1092
1093                 oct->msix_entries = kcalloc(
1094                     oct->num_msix_irqs, sizeof(struct msix_entry), GFP_KERNEL);
1095                 if (!oct->msix_entries)
1096                         return 1;
1097
1098                 msix_entries = (struct msix_entry *)oct->msix_entries;
1099                 /*Assumption is that pf msix vectors start from pf srn to pf to
1100                  * trs and not from 0. if not change this code
1101                  */
1102                 for (i = 0; i < oct->num_msix_irqs - 1; i++)
1103                         msix_entries[i].entry = oct->sriov_info.pf_srn + i;
1104                 msix_entries[oct->num_msix_irqs - 1].entry =
1105                     oct->sriov_info.trs;
1106                 num_alloc_ioq_vectors = pci_enable_msix_range(
1107                                                 oct->pci_dev, msix_entries,
1108                                                 oct->num_msix_irqs,
1109                                                 oct->num_msix_irqs);
1110                 if (num_alloc_ioq_vectors < 0) {
1111                         dev_err(&oct->pci_dev->dev, "unable to Allocate MSI-X interrupts\n");
1112                         kfree(oct->msix_entries);
1113                         oct->msix_entries = NULL;
1114                         return 1;
1115                 }
1116                 dev_dbg(&oct->pci_dev->dev, "OCTEON: Enough MSI-X interrupts are allocated...\n");
1117
1118                 num_ioq_vectors = oct->num_msix_irqs;
1119
1120                 /** For PF, there is one non-ioq interrupt handler */
1121                 num_ioq_vectors -= 1;
1122                 irqret = request_irq(msix_entries[num_ioq_vectors].vector,
1123                                      liquidio_legacy_intr_handler, 0, "octeon",
1124                                      oct);
1125                 if (irqret) {
1126                         dev_err(&oct->pci_dev->dev,
1127                                 "OCTEON: Request_irq failed for MSIX interrupt Error: %d\n",
1128                                 irqret);
1129                         pci_disable_msix(oct->pci_dev);
1130                         kfree(oct->msix_entries);
1131                         oct->msix_entries = NULL;
1132                         return 1;
1133                 }
1134
1135                 for (i = 0; i < num_ioq_vectors; i++) {
1136                         irqret = request_irq(msix_entries[i].vector,
1137                                              liquidio_msix_intr_handler, 0,
1138                                              "octeon", &oct->ioq_vector[i]);
1139                         if (irqret) {
1140                                 dev_err(&oct->pci_dev->dev,
1141                                         "OCTEON: Request_irq failed for MSIX interrupt Error: %d\n",
1142                                         irqret);
1143                                 /** Freeing the non-ioq irq vector here . */
1144                                 free_irq(msix_entries[num_ioq_vectors].vector,
1145                                          oct);
1146
1147                                 while (i) {
1148                                         i--;
1149                                         /** clearing affinity mask. */
1150                                         irq_set_affinity_hint(
1151                                                 msix_entries[i].vector, NULL);
1152                                         free_irq(msix_entries[i].vector,
1153                                                  &oct->ioq_vector[i]);
1154                                 }
1155                                 pci_disable_msix(oct->pci_dev);
1156                                 kfree(oct->msix_entries);
1157                                 oct->msix_entries = NULL;
1158                                 return 1;
1159                         }
1160                         oct->ioq_vector[i].vector = msix_entries[i].vector;
1161                         /* assign the cpu mask for this msix interrupt vector */
1162                         irq_set_affinity_hint(
1163                                         msix_entries[i].vector,
1164                                         (&oct->ioq_vector[i].affinity_mask));
1165                 }
1166                 dev_dbg(&oct->pci_dev->dev, "OCTEON[%d]: MSI-X enabled\n",
1167                         oct->octeon_id);
1168         } else {
1169                 err = pci_enable_msi(oct->pci_dev);
1170                 if (err)
1171                         dev_warn(&oct->pci_dev->dev, "Reverting to legacy interrupts. Error: %d\n",
1172                                  err);
1173                 else
1174                         oct->flags |= LIO_FLAG_MSI_ENABLED;
1175
1176                 irqret = request_irq(oct->pci_dev->irq,
1177                                      liquidio_legacy_intr_handler, IRQF_SHARED,
1178                                      "octeon", oct);
1179                 if (irqret) {
1180                         if (oct->flags & LIO_FLAG_MSI_ENABLED)
1181                                 pci_disable_msi(oct->pci_dev);
1182                         dev_err(&oct->pci_dev->dev, "Request IRQ failed with code: %d\n",
1183                                 irqret);
1184                         return 1;
1185                 }
1186         }
1187         return 0;
1188 }
1189
1190 static int liquidio_watchdog(void *param)
1191 {
1192         u64 wdog;
1193         u16 mask_of_stuck_cores = 0;
1194         u16 mask_of_crashed_cores = 0;
1195         int core_num;
1196         u8 core_is_stuck[LIO_MAX_CORES];
1197         u8 core_crashed[LIO_MAX_CORES];
1198         struct octeon_device *oct = param;
1199
1200         memset(core_is_stuck, 0, sizeof(core_is_stuck));
1201         memset(core_crashed, 0, sizeof(core_crashed));
1202
1203         while (!kthread_should_stop()) {
1204                 mask_of_crashed_cores =
1205                     (u16)octeon_read_csr64(oct, CN23XX_SLI_SCRATCH2);
1206
1207                 for (core_num = 0; core_num < LIO_MAX_CORES; core_num++) {
1208                         if (!core_is_stuck[core_num]) {
1209                                 wdog = lio_pci_readq(oct, CIU3_WDOG(core_num));
1210
1211                                 /* look at watchdog state field */
1212                                 wdog &= CIU3_WDOG_MASK;
1213                                 if (wdog) {
1214                                         /* this watchdog timer has expired */
1215                                         core_is_stuck[core_num] =
1216                                                 LIO_MONITOR_WDOG_EXPIRE;
1217                                         mask_of_stuck_cores |= (1 << core_num);
1218                                 }
1219                         }
1220
1221                         if (!core_crashed[core_num])
1222                                 core_crashed[core_num] =
1223                                     (mask_of_crashed_cores >> core_num) & 1;
1224                 }
1225
1226                 if (mask_of_stuck_cores) {
1227                         for (core_num = 0; core_num < LIO_MAX_CORES;
1228                              core_num++) {
1229                                 if (core_is_stuck[core_num] == 1) {
1230                                         dev_err(&oct->pci_dev->dev,
1231                                                 "ERROR: Octeon core %d is stuck!\n",
1232                                                 core_num);
1233                                         /* 2 means we have printk'd  an error
1234                                          * so no need to repeat the same printk
1235                                          */
1236                                         core_is_stuck[core_num] =
1237                                                 LIO_MONITOR_CORE_STUCK_MSGD;
1238                                 }
1239                         }
1240                 }
1241
1242                 if (mask_of_crashed_cores) {
1243                         for (core_num = 0; core_num < LIO_MAX_CORES;
1244                              core_num++) {
1245                                 if (core_crashed[core_num] == 1) {
1246                                         dev_err(&oct->pci_dev->dev,
1247                                                 "ERROR: Octeon core %d crashed!  See oct-fwdump for details.\n",
1248                                                 core_num);
1249                                         /* 2 means we have printk'd  an error
1250                                          * so no need to repeat the same printk
1251                                          */
1252                                         core_crashed[core_num] =
1253                                                 LIO_MONITOR_CORE_STUCK_MSGD;
1254                                 }
1255                         }
1256                 }
1257 #ifdef CONFIG_MODULE_UNLOAD
1258                 if (mask_of_stuck_cores || mask_of_crashed_cores) {
1259                         /* make module refcount=0 so that rmmod will work */
1260                         long refcount;
1261
1262                         refcount = module_refcount(THIS_MODULE);
1263
1264                         while (refcount > 0) {
1265                                 module_put(THIS_MODULE);
1266                                 refcount = module_refcount(THIS_MODULE);
1267                         }
1268
1269                         /* compensate for and withstand an unlikely (but still
1270                          * possible) race condition
1271                          */
1272                         while (refcount < 0) {
1273                                 try_module_get(THIS_MODULE);
1274                                 refcount = module_refcount(THIS_MODULE);
1275                         }
1276                 }
1277 #endif
1278                 /* sleep for two seconds */
1279                 set_current_state(TASK_INTERRUPTIBLE);
1280                 schedule_timeout(2 * HZ);
1281         }
1282
1283         return 0;
1284 }
1285
1286 /**
1287  * \brief PCI probe handler
1288  * @param pdev PCI device structure
1289  * @param ent unused
1290  */
1291 static int
1292 liquidio_probe(struct pci_dev *pdev,
1293                const struct pci_device_id *ent __attribute__((unused)))
1294 {
1295         struct octeon_device *oct_dev = NULL;
1296         struct handshake *hs;
1297
1298         oct_dev = octeon_allocate_device(pdev->device,
1299                                          sizeof(struct octeon_device_priv));
1300         if (!oct_dev) {
1301                 dev_err(&pdev->dev, "Unable to allocate device\n");
1302                 return -ENOMEM;
1303         }
1304
1305         if (pdev->device == OCTEON_CN23XX_PF_VID)
1306                 oct_dev->msix_on = LIO_FLAG_MSIX_ENABLED;
1307
1308         dev_info(&pdev->dev, "Initializing device %x:%x.\n",
1309                  (u32)pdev->vendor, (u32)pdev->device);
1310
1311         /* Assign octeon_device for this device to the private data area. */
1312         pci_set_drvdata(pdev, oct_dev);
1313
1314         /* set linux specific device pointer */
1315         oct_dev->pci_dev = (void *)pdev;
1316
1317         hs = &handshake[oct_dev->octeon_id];
1318         init_completion(&hs->init);
1319         init_completion(&hs->started);
1320         hs->pci_dev = pdev;
1321
1322         if (oct_dev->octeon_id == 0)
1323                 /* first LiquidIO NIC is detected */
1324                 complete(&first_stage);
1325
1326         if (octeon_device_init(oct_dev)) {
1327                 complete(&hs->init);
1328                 liquidio_remove(pdev);
1329                 return -ENOMEM;
1330         }
1331
1332         if (OCTEON_CN23XX_PF(oct_dev)) {
1333                 u64 scratch1;
1334                 u8 bus, device, function;
1335
1336                 scratch1 = octeon_read_csr64(oct_dev, CN23XX_SLI_SCRATCH1);
1337                 if (!(scratch1 & 4ULL)) {
1338                         /* Bit 2 of SLI_SCRATCH_1 is a flag that indicates that
1339                          * the lio watchdog kernel thread is running for this
1340                          * NIC.  Each NIC gets one watchdog kernel thread.
1341                          */
1342                         scratch1 |= 4ULL;
1343                         octeon_write_csr64(oct_dev, CN23XX_SLI_SCRATCH1,
1344                                            scratch1);
1345
1346                         bus = pdev->bus->number;
1347                         device = PCI_SLOT(pdev->devfn);
1348                         function = PCI_FUNC(pdev->devfn);
1349                         oct_dev->watchdog_task = kthread_create(
1350                             liquidio_watchdog, oct_dev,
1351                             "liowd/%02hhx:%02hhx.%hhx", bus, device, function);
1352                         if (!IS_ERR(oct_dev->watchdog_task)) {
1353                                 wake_up_process(oct_dev->watchdog_task);
1354                         } else {
1355                                 oct_dev->watchdog_task = NULL;
1356                                 dev_err(&oct_dev->pci_dev->dev,
1357                                         "failed to create kernel_thread\n");
1358                                 liquidio_remove(pdev);
1359                                 return -1;
1360                         }
1361                 }
1362         }
1363
1364         oct_dev->rx_pause = 1;
1365         oct_dev->tx_pause = 1;
1366
1367         dev_dbg(&oct_dev->pci_dev->dev, "Device is ready\n");
1368
1369         return 0;
1370 }
1371
1372 /**
1373  *\brief Destroy resources associated with octeon device
1374  * @param pdev PCI device structure
1375  * @param ent unused
1376  */
1377 static void octeon_destroy_resources(struct octeon_device *oct)
1378 {
1379         int i;
1380         struct msix_entry *msix_entries;
1381         struct octeon_device_priv *oct_priv =
1382                 (struct octeon_device_priv *)oct->priv;
1383
1384         struct handshake *hs;
1385
1386         switch (atomic_read(&oct->status)) {
1387         case OCT_DEV_RUNNING:
1388         case OCT_DEV_CORE_OK:
1389
1390                 /* No more instructions will be forwarded. */
1391                 atomic_set(&oct->status, OCT_DEV_IN_RESET);
1392
1393                 oct->app_mode = CVM_DRV_INVALID_APP;
1394                 dev_dbg(&oct->pci_dev->dev, "Device state is now %s\n",
1395                         lio_get_state_string(&oct->status));
1396
1397                 schedule_timeout_uninterruptible(HZ / 10);
1398
1399                 /* fallthrough */
1400         case OCT_DEV_HOST_OK:
1401
1402                 /* fallthrough */
1403         case OCT_DEV_CONSOLE_INIT_DONE:
1404                 /* Remove any consoles */
1405                 octeon_remove_consoles(oct);
1406
1407                 /* fallthrough */
1408         case OCT_DEV_IO_QUEUES_DONE:
1409                 if (wait_for_pending_requests(oct))
1410                         dev_err(&oct->pci_dev->dev, "There were pending requests\n");
1411
1412                 if (lio_wait_for_instr_fetch(oct))
1413                         dev_err(&oct->pci_dev->dev, "IQ had pending instructions\n");
1414
1415                 /* Disable the input and output queues now. No more packets will
1416                  * arrive from Octeon, but we should wait for all packet
1417                  * processing to finish.
1418                  */
1419                 oct->fn_list.disable_io_queues(oct);
1420
1421                 if (lio_wait_for_oq_pkts(oct))
1422                         dev_err(&oct->pci_dev->dev, "OQ had pending packets\n");
1423
1424         /* fallthrough */
1425         case OCT_DEV_INTR_SET_DONE:
1426                 /* Disable interrupts  */
1427                 oct->fn_list.disable_interrupt(oct, OCTEON_ALL_INTR);
1428
1429                 if (oct->msix_on) {
1430                         msix_entries = (struct msix_entry *)oct->msix_entries;
1431                         for (i = 0; i < oct->num_msix_irqs - 1; i++) {
1432                                 /* clear the affinity_cpumask */
1433                                 irq_set_affinity_hint(msix_entries[i].vector,
1434                                                       NULL);
1435                                 free_irq(msix_entries[i].vector,
1436                                          &oct->ioq_vector[i]);
1437                         }
1438                         /* non-iov vector's argument is oct struct */
1439                         free_irq(msix_entries[i].vector, oct);
1440
1441                         pci_disable_msix(oct->pci_dev);
1442                         kfree(oct->msix_entries);
1443                         oct->msix_entries = NULL;
1444                 } else {
1445                         /* Release the interrupt line */
1446                         free_irq(oct->pci_dev->irq, oct);
1447
1448                         if (oct->flags & LIO_FLAG_MSI_ENABLED)
1449                                 pci_disable_msi(oct->pci_dev);
1450                 }
1451
1452         /* fallthrough */
1453         case OCT_DEV_MSIX_ALLOC_VECTOR_DONE:
1454                 if (OCTEON_CN23XX_PF(oct))
1455                         octeon_free_ioq_vector(oct);
1456
1457         /* fallthrough */
1458         case OCT_DEV_MBOX_SETUP_DONE:
1459                 if (OCTEON_CN23XX_PF(oct))
1460                         oct->fn_list.free_mbox(oct);
1461
1462         /* fallthrough */
1463         case OCT_DEV_IN_RESET:
1464         case OCT_DEV_DROQ_INIT_DONE:
1465                 /* Wait for any pending operations */
1466                 mdelay(100);
1467                 for (i = 0; i < MAX_OCTEON_OUTPUT_QUEUES(oct); i++) {
1468                         if (!(oct->io_qmask.oq & BIT_ULL(i)))
1469                                 continue;
1470                         octeon_delete_droq(oct, i);
1471                 }
1472
1473                 /* Force any pending handshakes to complete */
1474                 for (i = 0; i < MAX_OCTEON_DEVICES; i++) {
1475                         hs = &handshake[i];
1476
1477                         if (hs->pci_dev) {
1478                                 handshake[oct->octeon_id].init_ok = 0;
1479                                 complete(&handshake[oct->octeon_id].init);
1480                                 handshake[oct->octeon_id].started_ok = 0;
1481                                 complete(&handshake[oct->octeon_id].started);
1482                         }
1483                 }
1484
1485                 /* fallthrough */
1486         case OCT_DEV_RESP_LIST_INIT_DONE:
1487                 octeon_delete_response_list(oct);
1488
1489                 /* fallthrough */
1490         case OCT_DEV_INSTR_QUEUE_INIT_DONE:
1491                 for (i = 0; i < MAX_OCTEON_INSTR_QUEUES(oct); i++) {
1492                         if (!(oct->io_qmask.iq & BIT_ULL(i)))
1493                                 continue;
1494                         octeon_delete_instr_queue(oct, i);
1495                 }
1496 #ifdef CONFIG_PCI_IOV
1497                 if (oct->sriov_info.sriov_enabled)
1498                         pci_disable_sriov(oct->pci_dev);
1499 #endif
1500                 /* fallthrough */
1501         case OCT_DEV_SC_BUFF_POOL_INIT_DONE:
1502                 octeon_free_sc_buffer_pool(oct);
1503
1504                 /* fallthrough */
1505         case OCT_DEV_DISPATCH_INIT_DONE:
1506                 octeon_delete_dispatch_list(oct);
1507                 cancel_delayed_work_sync(&oct->nic_poll_work.work);
1508
1509                 /* fallthrough */
1510         case OCT_DEV_PCI_MAP_DONE:
1511                 /* Soft reset the octeon device before exiting */
1512                 if ((!OCTEON_CN23XX_PF(oct)) || !oct->octeon_id)
1513                         oct->fn_list.soft_reset(oct);
1514
1515                 octeon_unmap_pci_barx(oct, 0);
1516                 octeon_unmap_pci_barx(oct, 1);
1517
1518                 /* fallthrough */
1519         case OCT_DEV_PCI_ENABLE_DONE:
1520                 pci_clear_master(oct->pci_dev);
1521                 /* Disable the device, releasing the PCI INT */
1522                 pci_disable_device(oct->pci_dev);
1523
1524                 /* fallthrough */
1525         case OCT_DEV_BEGIN_STATE:
1526                 /* Nothing to be done here either */
1527                 break;
1528         }                       /* end switch (oct->status) */
1529
1530         tasklet_kill(&oct_priv->droq_tasklet);
1531 }
1532
1533 /**
1534  * \brief Callback for rx ctrl
1535  * @param status status of request
1536  * @param buf pointer to resp structure
1537  */
1538 static void rx_ctl_callback(struct octeon_device *oct,
1539                             u32 status,
1540                             void *buf)
1541 {
1542         struct octeon_soft_command *sc = (struct octeon_soft_command *)buf;
1543         struct liquidio_rx_ctl_context *ctx;
1544
1545         ctx  = (struct liquidio_rx_ctl_context *)sc->ctxptr;
1546
1547         oct = lio_get_device(ctx->octeon_id);
1548         if (status)
1549                 dev_err(&oct->pci_dev->dev, "rx ctl instruction failed. Status: %llx\n",
1550                         CVM_CAST64(status));
1551         WRITE_ONCE(ctx->cond, 1);
1552
1553         /* This barrier is required to be sure that the response has been
1554          * written fully before waking up the handler
1555          */
1556         wmb();
1557
1558         wake_up_interruptible(&ctx->wc);
1559 }
1560
1561 /**
1562  * \brief Send Rx control command
1563  * @param lio per-network private data
1564  * @param start_stop whether to start or stop
1565  */
1566 static void send_rx_ctrl_cmd(struct lio *lio, int start_stop)
1567 {
1568         struct octeon_soft_command *sc;
1569         struct liquidio_rx_ctl_context *ctx;
1570         union octnet_cmd *ncmd;
1571         int ctx_size = sizeof(struct liquidio_rx_ctl_context);
1572         struct octeon_device *oct = (struct octeon_device *)lio->oct_dev;
1573         int retval;
1574
1575         if (oct->props[lio->ifidx].rx_on == start_stop)
1576                 return;
1577
1578         sc = (struct octeon_soft_command *)
1579                 octeon_alloc_soft_command(oct, OCTNET_CMD_SIZE,
1580                                           16, ctx_size);
1581
1582         ncmd = (union octnet_cmd *)sc->virtdptr;
1583         ctx  = (struct liquidio_rx_ctl_context *)sc->ctxptr;
1584
1585         WRITE_ONCE(ctx->cond, 0);
1586         ctx->octeon_id = lio_get_device_id(oct);
1587         init_waitqueue_head(&ctx->wc);
1588
1589         ncmd->u64 = 0;
1590         ncmd->s.cmd = OCTNET_CMD_RX_CTL;
1591         ncmd->s.param1 = start_stop;
1592
1593         octeon_swap_8B_data((u64 *)ncmd, (OCTNET_CMD_SIZE >> 3));
1594
1595         sc->iq_no = lio->linfo.txpciq[0].s.q_no;
1596
1597         octeon_prepare_soft_command(oct, sc, OPCODE_NIC,
1598                                     OPCODE_NIC_CMD, 0, 0, 0);
1599
1600         sc->callback = rx_ctl_callback;
1601         sc->callback_arg = sc;
1602         sc->wait_time = 5000;
1603
1604         retval = octeon_send_soft_command(oct, sc);
1605         if (retval == IQ_SEND_FAILED) {
1606                 netif_info(lio, rx_err, lio->netdev, "Failed to send RX Control message\n");
1607         } else {
1608                 /* Sleep on a wait queue till the cond flag indicates that the
1609                  * response arrived or timed-out.
1610                  */
1611                 if (sleep_cond(&ctx->wc, &ctx->cond) == -EINTR)
1612                         return;
1613                 oct->props[lio->ifidx].rx_on = start_stop;
1614         }
1615
1616         octeon_free_soft_command(oct, sc);
1617 }
1618
1619 /**
1620  * \brief Destroy NIC device interface
1621  * @param oct octeon device
1622  * @param ifidx which interface to destroy
1623  *
1624  * Cleanup associated with each interface for an Octeon device  when NIC
1625  * module is being unloaded or if initialization fails during load.
1626  */
1627 static void liquidio_destroy_nic_device(struct octeon_device *oct, int ifidx)
1628 {
1629         struct net_device *netdev = oct->props[ifidx].netdev;
1630         struct lio *lio;
1631         struct napi_struct *napi, *n;
1632
1633         if (!netdev) {
1634                 dev_err(&oct->pci_dev->dev, "%s No netdevice ptr for index %d\n",
1635                         __func__, ifidx);
1636                 return;
1637         }
1638
1639         lio = GET_LIO(netdev);
1640
1641         dev_dbg(&oct->pci_dev->dev, "NIC device cleanup\n");
1642
1643         if (atomic_read(&lio->ifstate) & LIO_IFSTATE_RUNNING)
1644                 liquidio_stop(netdev);
1645
1646         if (oct->props[lio->ifidx].napi_enabled == 1) {
1647                 list_for_each_entry_safe(napi, n, &netdev->napi_list, dev_list)
1648                         napi_disable(napi);
1649
1650                 oct->props[lio->ifidx].napi_enabled = 0;
1651
1652                 if (OCTEON_CN23XX_PF(oct))
1653                         oct->droq[0]->ops.poll_mode = 0;
1654         }
1655
1656         if (atomic_read(&lio->ifstate) & LIO_IFSTATE_REGISTERED)
1657                 unregister_netdev(netdev);
1658
1659         cleanup_link_status_change_wq(netdev);
1660
1661         delete_glists(lio);
1662
1663         free_netdev(netdev);
1664
1665         oct->props[ifidx].gmxport = -1;
1666
1667         oct->props[ifidx].netdev = NULL;
1668 }
1669
1670 /**
1671  * \brief Stop complete NIC functionality
1672  * @param oct octeon device
1673  */
1674 static int liquidio_stop_nic_module(struct octeon_device *oct)
1675 {
1676         int i, j;
1677         struct lio *lio;
1678
1679         dev_dbg(&oct->pci_dev->dev, "Stopping network interfaces\n");
1680         if (!oct->ifcount) {
1681                 dev_err(&oct->pci_dev->dev, "Init for Octeon was not completed\n");
1682                 return 1;
1683         }
1684
1685         spin_lock_bh(&oct->cmd_resp_wqlock);
1686         oct->cmd_resp_state = OCT_DRV_OFFLINE;
1687         spin_unlock_bh(&oct->cmd_resp_wqlock);
1688
1689         for (i = 0; i < oct->ifcount; i++) {
1690                 lio = GET_LIO(oct->props[i].netdev);
1691                 for (j = 0; j < lio->linfo.num_rxpciq; j++)
1692                         octeon_unregister_droq_ops(oct,
1693                                                    lio->linfo.rxpciq[j].s.q_no);
1694         }
1695
1696         for (i = 0; i < oct->ifcount; i++)
1697                 liquidio_destroy_nic_device(oct, i);
1698
1699         dev_dbg(&oct->pci_dev->dev, "Network interfaces stopped\n");
1700         return 0;
1701 }
1702
1703 /**
1704  * \brief Cleans up resources at unload time
1705  * @param pdev PCI device structure
1706  */
1707 static void liquidio_remove(struct pci_dev *pdev)
1708 {
1709         struct octeon_device *oct_dev = pci_get_drvdata(pdev);
1710
1711         dev_dbg(&oct_dev->pci_dev->dev, "Stopping device\n");
1712
1713         if (oct_dev->watchdog_task)
1714                 kthread_stop(oct_dev->watchdog_task);
1715
1716         if (oct_dev->app_mode && (oct_dev->app_mode == CVM_DRV_NIC_APP))
1717                 liquidio_stop_nic_module(oct_dev);
1718
1719         /* Reset the octeon device and cleanup all memory allocated for
1720          * the octeon device by driver.
1721          */
1722         octeon_destroy_resources(oct_dev);
1723
1724         dev_info(&oct_dev->pci_dev->dev, "Device removed\n");
1725
1726         /* This octeon device has been removed. Update the global
1727          * data structure to reflect this. Free the device structure.
1728          */
1729         octeon_free_device_mem(oct_dev);
1730 }
1731
1732 /**
1733  * \brief Identify the Octeon device and to map the BAR address space
1734  * @param oct octeon device
1735  */
1736 static int octeon_chip_specific_setup(struct octeon_device *oct)
1737 {
1738         u32 dev_id, rev_id;
1739         int ret = 1;
1740         char *s;
1741
1742         pci_read_config_dword(oct->pci_dev, 0, &dev_id);
1743         pci_read_config_dword(oct->pci_dev, 8, &rev_id);
1744         oct->rev_id = rev_id & 0xff;
1745
1746         switch (dev_id) {
1747         case OCTEON_CN68XX_PCIID:
1748                 oct->chip_id = OCTEON_CN68XX;
1749                 ret = lio_setup_cn68xx_octeon_device(oct);
1750                 s = "CN68XX";
1751                 break;
1752
1753         case OCTEON_CN66XX_PCIID:
1754                 oct->chip_id = OCTEON_CN66XX;
1755                 ret = lio_setup_cn66xx_octeon_device(oct);
1756                 s = "CN66XX";
1757                 break;
1758
1759         case OCTEON_CN23XX_PCIID_PF:
1760                 oct->chip_id = OCTEON_CN23XX_PF_VID;
1761                 ret = setup_cn23xx_octeon_pf_device(oct);
1762                 s = "CN23XX";
1763                 break;
1764
1765         default:
1766                 s = "?";
1767                 dev_err(&oct->pci_dev->dev, "Unknown device found (dev_id: %x)\n",
1768                         dev_id);
1769         }
1770
1771         if (!ret)
1772                 dev_info(&oct->pci_dev->dev, "%s PASS%d.%d %s Version: %s\n", s,
1773                          OCTEON_MAJOR_REV(oct),
1774                          OCTEON_MINOR_REV(oct),
1775                          octeon_get_conf(oct)->card_name,
1776                          LIQUIDIO_VERSION);
1777
1778         return ret;
1779 }
1780
1781 /**
1782  * \brief PCI initialization for each Octeon device.
1783  * @param oct octeon device
1784  */
1785 static int octeon_pci_os_setup(struct octeon_device *oct)
1786 {
1787         /* setup PCI stuff first */
1788         if (pci_enable_device(oct->pci_dev)) {
1789                 dev_err(&oct->pci_dev->dev, "pci_enable_device failed\n");
1790                 return 1;
1791         }
1792
1793         if (dma_set_mask_and_coherent(&oct->pci_dev->dev, DMA_BIT_MASK(64))) {
1794                 dev_err(&oct->pci_dev->dev, "Unexpected DMA device capability\n");
1795                 pci_disable_device(oct->pci_dev);
1796                 return 1;
1797         }
1798
1799         /* Enable PCI DMA Master. */
1800         pci_set_master(oct->pci_dev);
1801
1802         return 0;
1803 }
1804
1805 static inline int skb_iq(struct lio *lio, struct sk_buff *skb)
1806 {
1807         int q = 0;
1808
1809         if (netif_is_multiqueue(lio->netdev))
1810                 q = skb->queue_mapping % lio->linfo.num_txpciq;
1811
1812         return q;
1813 }
1814
1815 /**
1816  * \brief Check Tx queue state for a given network buffer
1817  * @param lio per-network private data
1818  * @param skb network buffer
1819  */
1820 static inline int check_txq_state(struct lio *lio, struct sk_buff *skb)
1821 {
1822         int q = 0, iq = 0;
1823
1824         if (netif_is_multiqueue(lio->netdev)) {
1825                 q = skb->queue_mapping;
1826                 iq = lio->linfo.txpciq[(q % (lio->linfo.num_txpciq))].s.q_no;
1827         } else {
1828                 iq = lio->txq;
1829                 q = iq;
1830         }
1831
1832         if (octnet_iq_is_full(lio->oct_dev, iq))
1833                 return 0;
1834
1835         if (__netif_subqueue_stopped(lio->netdev, q)) {
1836                 INCR_INSTRQUEUE_PKT_COUNT(lio->oct_dev, iq, tx_restart, 1);
1837                 wake_q(lio->netdev, q);
1838         }
1839         return 1;
1840 }
1841
1842 /**
1843  * \brief Unmap and free network buffer
1844  * @param buf buffer
1845  */
1846 static void free_netbuf(void *buf)
1847 {
1848         struct sk_buff *skb;
1849         struct octnet_buf_free_info *finfo;
1850         struct lio *lio;
1851
1852         finfo = (struct octnet_buf_free_info *)buf;
1853         skb = finfo->skb;
1854         lio = finfo->lio;
1855
1856         dma_unmap_single(&lio->oct_dev->pci_dev->dev, finfo->dptr, skb->len,
1857                          DMA_TO_DEVICE);
1858
1859         check_txq_state(lio, skb);
1860
1861         tx_buffer_free(skb);
1862 }
1863
1864 /**
1865  * \brief Unmap and free gather buffer
1866  * @param buf buffer
1867  */
1868 static void free_netsgbuf(void *buf)
1869 {
1870         struct octnet_buf_free_info *finfo;
1871         struct sk_buff *skb;
1872         struct lio *lio;
1873         struct octnic_gather *g;
1874         int i, frags, iq;
1875
1876         finfo = (struct octnet_buf_free_info *)buf;
1877         skb = finfo->skb;
1878         lio = finfo->lio;
1879         g = finfo->g;
1880         frags = skb_shinfo(skb)->nr_frags;
1881
1882         dma_unmap_single(&lio->oct_dev->pci_dev->dev,
1883                          g->sg[0].ptr[0], (skb->len - skb->data_len),
1884                          DMA_TO_DEVICE);
1885
1886         i = 1;
1887         while (frags--) {
1888                 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1889
1890                 pci_unmap_page((lio->oct_dev)->pci_dev,
1891                                g->sg[(i >> 2)].ptr[(i & 3)],
1892                                frag->size, DMA_TO_DEVICE);
1893                 i++;
1894         }
1895
1896         iq = skb_iq(lio, skb);
1897         spin_lock(&lio->glist_lock[iq]);
1898         list_add_tail(&g->list, &lio->glist[iq]);
1899         spin_unlock(&lio->glist_lock[iq]);
1900
1901         check_txq_state(lio, skb);     /* mq support: sub-queue state check */
1902
1903         tx_buffer_free(skb);
1904 }
1905
1906 /**
1907  * \brief Unmap and free gather buffer with response
1908  * @param buf buffer
1909  */
1910 static void free_netsgbuf_with_resp(void *buf)
1911 {
1912         struct octeon_soft_command *sc;
1913         struct octnet_buf_free_info *finfo;
1914         struct sk_buff *skb;
1915         struct lio *lio;
1916         struct octnic_gather *g;
1917         int i, frags, iq;
1918
1919         sc = (struct octeon_soft_command *)buf;
1920         skb = (struct sk_buff *)sc->callback_arg;
1921         finfo = (struct octnet_buf_free_info *)&skb->cb;
1922
1923         lio = finfo->lio;
1924         g = finfo->g;
1925         frags = skb_shinfo(skb)->nr_frags;
1926
1927         dma_unmap_single(&lio->oct_dev->pci_dev->dev,
1928                          g->sg[0].ptr[0], (skb->len - skb->data_len),
1929                          DMA_TO_DEVICE);
1930
1931         i = 1;
1932         while (frags--) {
1933                 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1934
1935                 pci_unmap_page((lio->oct_dev)->pci_dev,
1936                                g->sg[(i >> 2)].ptr[(i & 3)],
1937                                frag->size, DMA_TO_DEVICE);
1938                 i++;
1939         }
1940
1941         iq = skb_iq(lio, skb);
1942
1943         spin_lock(&lio->glist_lock[iq]);
1944         list_add_tail(&g->list, &lio->glist[iq]);
1945         spin_unlock(&lio->glist_lock[iq]);
1946
1947         /* Don't free the skb yet */
1948
1949         check_txq_state(lio, skb);
1950 }
1951
1952 /**
1953  * \brief Adjust ptp frequency
1954  * @param ptp PTP clock info
1955  * @param ppb how much to adjust by, in parts-per-billion
1956  */
1957 static int liquidio_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
1958 {
1959         struct lio *lio = container_of(ptp, struct lio, ptp_info);
1960         struct octeon_device *oct = (struct octeon_device *)lio->oct_dev;
1961         u64 comp, delta;
1962         unsigned long flags;
1963         bool neg_adj = false;
1964
1965         if (ppb < 0) {
1966                 neg_adj = true;
1967                 ppb = -ppb;
1968         }
1969
1970         /* The hardware adds the clock compensation value to the
1971          * PTP clock on every coprocessor clock cycle, so we
1972          * compute the delta in terms of coprocessor clocks.
1973          */
1974         delta = (u64)ppb << 32;
1975         do_div(delta, oct->coproc_clock_rate);
1976
1977         spin_lock_irqsave(&lio->ptp_lock, flags);
1978         comp = lio_pci_readq(oct, CN6XXX_MIO_PTP_CLOCK_COMP);
1979         if (neg_adj)
1980                 comp -= delta;
1981         else
1982                 comp += delta;
1983         lio_pci_writeq(oct, comp, CN6XXX_MIO_PTP_CLOCK_COMP);
1984         spin_unlock_irqrestore(&lio->ptp_lock, flags);
1985
1986         return 0;
1987 }
1988
1989 /**
1990  * \brief Adjust ptp time
1991  * @param ptp PTP clock info
1992  * @param delta how much to adjust by, in nanosecs
1993  */
1994 static int liquidio_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
1995 {
1996         unsigned long flags;
1997         struct lio *lio = container_of(ptp, struct lio, ptp_info);
1998
1999         spin_lock_irqsave(&lio->ptp_lock, flags);
2000         lio->ptp_adjust += delta;
2001         spin_unlock_irqrestore(&lio->ptp_lock, flags);
2002
2003         return 0;
2004 }
2005
2006 /**
2007  * \brief Get hardware clock time, including any adjustment
2008  * @param ptp PTP clock info
2009  * @param ts timespec
2010  */
2011 static int liquidio_ptp_gettime(struct ptp_clock_info *ptp,
2012                                 struct timespec64 *ts)
2013 {
2014         u64 ns;
2015         unsigned long flags;
2016         struct lio *lio = container_of(ptp, struct lio, ptp_info);
2017         struct octeon_device *oct = (struct octeon_device *)lio->oct_dev;
2018
2019         spin_lock_irqsave(&lio->ptp_lock, flags);
2020         ns = lio_pci_readq(oct, CN6XXX_MIO_PTP_CLOCK_HI);
2021         ns += lio->ptp_adjust;
2022         spin_unlock_irqrestore(&lio->ptp_lock, flags);
2023
2024         *ts = ns_to_timespec64(ns);
2025
2026         return 0;
2027 }
2028
2029 /**
2030  * \brief Set hardware clock time. Reset adjustment
2031  * @param ptp PTP clock info
2032  * @param ts timespec
2033  */
2034 static int liquidio_ptp_settime(struct ptp_clock_info *ptp,
2035                                 const struct timespec64 *ts)
2036 {
2037         u64 ns;
2038         unsigned long flags;
2039         struct lio *lio = container_of(ptp, struct lio, ptp_info);
2040         struct octeon_device *oct = (struct octeon_device *)lio->oct_dev;
2041
2042         ns = timespec_to_ns(ts);
2043
2044         spin_lock_irqsave(&lio->ptp_lock, flags);
2045         lio_pci_writeq(oct, ns, CN6XXX_MIO_PTP_CLOCK_HI);
2046         lio->ptp_adjust = 0;
2047         spin_unlock_irqrestore(&lio->ptp_lock, flags);
2048
2049         return 0;
2050 }
2051
2052 /**
2053  * \brief Check if PTP is enabled
2054  * @param ptp PTP clock info
2055  * @param rq request
2056  * @param on is it on
2057  */
2058 static int
2059 liquidio_ptp_enable(struct ptp_clock_info *ptp __attribute__((unused)),
2060                     struct ptp_clock_request *rq __attribute__((unused)),
2061                     int on __attribute__((unused)))
2062 {
2063         return -EOPNOTSUPP;
2064 }
2065
2066 /**
2067  * \brief Open PTP clock source
2068  * @param netdev network device
2069  */
2070 static void oct_ptp_open(struct net_device *netdev)
2071 {
2072         struct lio *lio = GET_LIO(netdev);
2073         struct octeon_device *oct = (struct octeon_device *)lio->oct_dev;
2074
2075         spin_lock_init(&lio->ptp_lock);
2076
2077         snprintf(lio->ptp_info.name, 16, "%s", netdev->name);
2078         lio->ptp_info.owner = THIS_MODULE;
2079         lio->ptp_info.max_adj = 250000000;
2080         lio->ptp_info.n_alarm = 0;
2081         lio->ptp_info.n_ext_ts = 0;
2082         lio->ptp_info.n_per_out = 0;
2083         lio->ptp_info.pps = 0;
2084         lio->ptp_info.adjfreq = liquidio_ptp_adjfreq;
2085         lio->ptp_info.adjtime = liquidio_ptp_adjtime;
2086         lio->ptp_info.gettime64 = liquidio_ptp_gettime;
2087         lio->ptp_info.settime64 = liquidio_ptp_settime;
2088         lio->ptp_info.enable = liquidio_ptp_enable;
2089
2090         lio->ptp_adjust = 0;
2091
2092         lio->ptp_clock = ptp_clock_register(&lio->ptp_info,
2093                                              &oct->pci_dev->dev);
2094
2095         if (IS_ERR(lio->ptp_clock))
2096                 lio->ptp_clock = NULL;
2097 }
2098
2099 /**
2100  * \brief Init PTP clock
2101  * @param oct octeon device
2102  */
2103 static void liquidio_ptp_init(struct octeon_device *oct)
2104 {
2105         u64 clock_comp, cfg;
2106
2107         clock_comp = (u64)NSEC_PER_SEC << 32;
2108         do_div(clock_comp, oct->coproc_clock_rate);
2109         lio_pci_writeq(oct, clock_comp, CN6XXX_MIO_PTP_CLOCK_COMP);
2110
2111         /* Enable */
2112         cfg = lio_pci_readq(oct, CN6XXX_MIO_PTP_CLOCK_CFG);
2113         lio_pci_writeq(oct, cfg | 0x01, CN6XXX_MIO_PTP_CLOCK_CFG);
2114 }
2115
2116 /**
2117  * \brief Load firmware to device
2118  * @param oct octeon device
2119  *
2120  * Maps device to firmware filename, requests firmware, and downloads it
2121  */
2122 static int load_firmware(struct octeon_device *oct)
2123 {
2124         int ret = 0;
2125         const struct firmware *fw;
2126         char fw_name[LIO_MAX_FW_FILENAME_LEN];
2127         char *tmp_fw_type;
2128
2129         if (strncmp(fw_type, LIO_FW_NAME_TYPE_NONE,
2130                     sizeof(LIO_FW_NAME_TYPE_NONE)) == 0) {
2131                 dev_info(&oct->pci_dev->dev, "Skipping firmware load\n");
2132                 return ret;
2133         }
2134
2135         if (fw_type[0] == '\0')
2136                 tmp_fw_type = LIO_FW_NAME_TYPE_NIC;
2137         else
2138                 tmp_fw_type = fw_type;
2139
2140         sprintf(fw_name, "%s%s%s_%s%s", LIO_FW_DIR, LIO_FW_BASE_NAME,
2141                 octeon_get_conf(oct)->card_name, tmp_fw_type,
2142                 LIO_FW_NAME_SUFFIX);
2143
2144         ret = request_firmware(&fw, fw_name, &oct->pci_dev->dev);
2145         if (ret) {
2146                 dev_err(&oct->pci_dev->dev, "Request firmware failed. Could not find file %s.\n.",
2147                         fw_name);
2148                 release_firmware(fw);
2149                 return ret;
2150         }
2151
2152         ret = octeon_download_firmware(oct, fw->data, fw->size);
2153
2154         release_firmware(fw);
2155
2156         return ret;
2157 }
2158
2159 /**
2160  * \brief Setup output queue
2161  * @param oct octeon device
2162  * @param q_no which queue
2163  * @param num_descs how many descriptors
2164  * @param desc_size size of each descriptor
2165  * @param app_ctx application context
2166  */
2167 static int octeon_setup_droq(struct octeon_device *oct, int q_no, int num_descs,
2168                              int desc_size, void *app_ctx)
2169 {
2170         int ret_val = 0;
2171
2172         dev_dbg(&oct->pci_dev->dev, "Creating Droq: %d\n", q_no);
2173         /* droq creation and local register settings. */
2174         ret_val = octeon_create_droq(oct, q_no, num_descs, desc_size, app_ctx);
2175         if (ret_val < 0)
2176                 return ret_val;
2177
2178         if (ret_val == 1) {
2179                 dev_dbg(&oct->pci_dev->dev, "Using default droq %d\n", q_no);
2180                 return 0;
2181         }
2182         /* tasklet creation for the droq */
2183
2184         /* Enable the droq queues */
2185         octeon_set_droq_pkt_op(oct, q_no, 1);
2186
2187         /* Send Credit for Octeon Output queues. Credits are always
2188          * sent after the output queue is enabled.
2189          */
2190         writel(oct->droq[q_no]->max_count,
2191                oct->droq[q_no]->pkts_credit_reg);
2192
2193         return ret_val;
2194 }
2195
2196 /**
2197  * \brief Callback for getting interface configuration
2198  * @param status status of request
2199  * @param buf pointer to resp structure
2200  */
2201 static void if_cfg_callback(struct octeon_device *oct,
2202                             u32 status __attribute__((unused)),
2203                             void *buf)
2204 {
2205         struct octeon_soft_command *sc = (struct octeon_soft_command *)buf;
2206         struct liquidio_if_cfg_resp *resp;
2207         struct liquidio_if_cfg_context *ctx;
2208
2209         resp = (struct liquidio_if_cfg_resp *)sc->virtrptr;
2210         ctx = (struct liquidio_if_cfg_context *)sc->ctxptr;
2211
2212         oct = lio_get_device(ctx->octeon_id);
2213         if (resp->status)
2214                 dev_err(&oct->pci_dev->dev, "nic if cfg instruction failed. Status: %llx\n",
2215                         CVM_CAST64(resp->status));
2216         WRITE_ONCE(ctx->cond, 1);
2217
2218         snprintf(oct->fw_info.liquidio_firmware_version, 32, "%s",
2219                  resp->cfg_info.liquidio_firmware_version);
2220
2221         /* This barrier is required to be sure that the response has been
2222          * written fully before waking up the handler
2223          */
2224         wmb();
2225
2226         wake_up_interruptible(&ctx->wc);
2227 }
2228
2229 /** Routine to push packets arriving on Octeon interface upto network layer.
2230  * @param oct_id   - octeon device id.
2231  * @param skbuff   - skbuff struct to be passed to network layer.
2232  * @param len      - size of total data received.
2233  * @param rh       - Control header associated with the packet
2234  * @param param    - additional control data with the packet
2235  * @param arg      - farg registered in droq_ops
2236  */
2237 static void
2238 liquidio_push_packet(u32 octeon_id __attribute__((unused)),
2239                      void *skbuff,
2240                      u32 len,
2241                      union octeon_rh *rh,
2242                      void *param,
2243                      void *arg)
2244 {
2245         struct napi_struct *napi = param;
2246         struct sk_buff *skb = (struct sk_buff *)skbuff;
2247         struct skb_shared_hwtstamps *shhwtstamps;
2248         u64 ns;
2249         u16 vtag = 0;
2250         u32 r_dh_off;
2251         struct net_device *netdev = (struct net_device *)arg;
2252         struct octeon_droq *droq = container_of(param, struct octeon_droq,
2253                                                 napi);
2254         if (netdev) {
2255                 int packet_was_received;
2256                 struct lio *lio = GET_LIO(netdev);
2257                 struct octeon_device *oct = lio->oct_dev;
2258
2259                 /* Do not proceed if the interface is not in RUNNING state. */
2260                 if (!ifstate_check(lio, LIO_IFSTATE_RUNNING)) {
2261                         recv_buffer_free(skb);
2262                         droq->stats.rx_dropped++;
2263                         return;
2264                 }
2265
2266                 skb->dev = netdev;
2267
2268                 skb_record_rx_queue(skb, droq->q_no);
2269                 if (likely(len > MIN_SKB_SIZE)) {
2270                         struct octeon_skb_page_info *pg_info;
2271                         unsigned char *va;
2272
2273                         pg_info = ((struct octeon_skb_page_info *)(skb->cb));
2274                         if (pg_info->page) {
2275                                 /* For Paged allocation use the frags */
2276                                 va = page_address(pg_info->page) +
2277                                         pg_info->page_offset;
2278                                 memcpy(skb->data, va, MIN_SKB_SIZE);
2279                                 skb_put(skb, MIN_SKB_SIZE);
2280                                 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
2281                                                 pg_info->page,
2282                                                 pg_info->page_offset +
2283                                                 MIN_SKB_SIZE,
2284                                                 len - MIN_SKB_SIZE,
2285                                                 LIO_RXBUFFER_SZ);
2286                         }
2287                 } else {
2288                         struct octeon_skb_page_info *pg_info =
2289                                 ((struct octeon_skb_page_info *)(skb->cb));
2290                         skb_copy_to_linear_data(skb, page_address(pg_info->page)
2291                                                 + pg_info->page_offset, len);
2292                         skb_put(skb, len);
2293                         put_page(pg_info->page);
2294                 }
2295
2296                 r_dh_off = (rh->r_dh.len - 1) * BYTES_PER_DHLEN_UNIT;
2297
2298                 if (((oct->chip_id == OCTEON_CN66XX) ||
2299                      (oct->chip_id == OCTEON_CN68XX)) &&
2300                     ptp_enable) {
2301                         if (rh->r_dh.has_hwtstamp) {
2302                                 /* timestamp is included from the hardware at
2303                                  * the beginning of the packet.
2304                                  */
2305                                 if (ifstate_check
2306                                     (lio, LIO_IFSTATE_RX_TIMESTAMP_ENABLED)) {
2307                                         /* Nanoseconds are in the first 64-bits
2308                                          * of the packet.
2309                                          */
2310                                         memcpy(&ns, (skb->data + r_dh_off),
2311                                                sizeof(ns));
2312                                         r_dh_off -= BYTES_PER_DHLEN_UNIT;
2313                                         shhwtstamps = skb_hwtstamps(skb);
2314                                         shhwtstamps->hwtstamp =
2315                                                 ns_to_ktime(ns +
2316                                                             lio->ptp_adjust);
2317                                 }
2318                         }
2319                 }
2320
2321                 if (rh->r_dh.has_hash) {
2322                         __be32 *hash_be = (__be32 *)(skb->data + r_dh_off);
2323                         u32 hash = be32_to_cpu(*hash_be);
2324
2325                         skb_set_hash(skb, hash, PKT_HASH_TYPE_L4);
2326                         r_dh_off -= BYTES_PER_DHLEN_UNIT;
2327                 }
2328
2329                 skb_pull(skb, rh->r_dh.len * BYTES_PER_DHLEN_UNIT);
2330
2331                 skb->protocol = eth_type_trans(skb, skb->dev);
2332                 if ((netdev->features & NETIF_F_RXCSUM) &&
2333                     (((rh->r_dh.encap_on) &&
2334                       (rh->r_dh.csum_verified & CNNIC_TUN_CSUM_VERIFIED)) ||
2335                      (!(rh->r_dh.encap_on) &&
2336                       (rh->r_dh.csum_verified & CNNIC_CSUM_VERIFIED))))
2337                         /* checksum has already been verified */
2338                         skb->ip_summed = CHECKSUM_UNNECESSARY;
2339                 else
2340                         skb->ip_summed = CHECKSUM_NONE;
2341
2342                 /* Setting Encapsulation field on basis of status received
2343                  * from the firmware
2344                  */
2345                 if (rh->r_dh.encap_on) {
2346                         skb->encapsulation = 1;
2347                         skb->csum_level = 1;
2348                         droq->stats.rx_vxlan++;
2349                 }
2350
2351                 /* inbound VLAN tag */
2352                 if ((netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
2353                     (rh->r_dh.vlan != 0)) {
2354                         u16 vid = rh->r_dh.vlan;
2355                         u16 priority = rh->r_dh.priority;
2356
2357                         vtag = priority << 13 | vid;
2358                         __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vtag);
2359                 }
2360
2361                 packet_was_received = napi_gro_receive(napi, skb) != GRO_DROP;
2362
2363                 if (packet_was_received) {
2364                         droq->stats.rx_bytes_received += len;
2365                         droq->stats.rx_pkts_received++;
2366                 } else {
2367                         droq->stats.rx_dropped++;
2368                         netif_info(lio, rx_err, lio->netdev,
2369                                    "droq:%d  error rx_dropped:%llu\n",
2370                                    droq->q_no, droq->stats.rx_dropped);
2371                 }
2372
2373         } else {
2374                 recv_buffer_free(skb);
2375         }
2376 }
2377
2378 /**
2379  * \brief wrapper for calling napi_schedule
2380  * @param param parameters to pass to napi_schedule
2381  *
2382  * Used when scheduling on different CPUs
2383  */
2384 static void napi_schedule_wrapper(void *param)
2385 {
2386         struct napi_struct *napi = param;
2387
2388         napi_schedule(napi);
2389 }
2390
2391 /**
2392  * \brief callback when receive interrupt occurs and we are in NAPI mode
2393  * @param arg pointer to octeon output queue
2394  */
2395 static void liquidio_napi_drv_callback(void *arg)
2396 {
2397         struct octeon_device *oct;
2398         struct octeon_droq *droq = arg;
2399         int this_cpu = smp_processor_id();
2400
2401         oct = droq->oct_dev;
2402
2403         if (OCTEON_CN23XX_PF(oct) || droq->cpu_id == this_cpu) {
2404                 napi_schedule_irqoff(&droq->napi);
2405         } else {
2406                 struct call_single_data *csd = &droq->csd;
2407
2408                 csd->func = napi_schedule_wrapper;
2409                 csd->info = &droq->napi;
2410                 csd->flags = 0;
2411
2412                 smp_call_function_single_async(droq->cpu_id, csd);
2413         }
2414 }
2415
2416 /**
2417  * \brief Entry point for NAPI polling
2418  * @param napi NAPI structure
2419  * @param budget maximum number of items to process
2420  */
2421 static int liquidio_napi_poll(struct napi_struct *napi, int budget)
2422 {
2423         struct octeon_droq *droq;
2424         int work_done;
2425         int tx_done = 0, iq_no;
2426         struct octeon_instr_queue *iq;
2427         struct octeon_device *oct;
2428
2429         droq = container_of(napi, struct octeon_droq, napi);
2430         oct = droq->oct_dev;
2431         iq_no = droq->q_no;
2432         /* Handle Droq descriptors */
2433         work_done = octeon_process_droq_poll_cmd(oct, droq->q_no,
2434                                                  POLL_EVENT_PROCESS_PKTS,
2435                                                  budget);
2436
2437         /* Flush the instruction queue */
2438         iq = oct->instr_queue[iq_no];
2439         if (iq) {
2440                 /* Process iq buffers with in the budget limits */
2441                 tx_done = octeon_flush_iq(oct, iq, budget);
2442                 /* Update iq read-index rather than waiting for next interrupt.
2443                  * Return back if tx_done is false.
2444                  */
2445                 update_txq_status(oct, iq_no);
2446         } else {
2447                 dev_err(&oct->pci_dev->dev, "%s:  iq (%d) num invalid\n",
2448                         __func__, iq_no);
2449         }
2450
2451         /* force enable interrupt if reg cnts are high to avoid wraparound */
2452         if ((work_done < budget && tx_done) ||
2453             (iq && iq->pkt_in_done >= MAX_REG_CNT) ||
2454             (droq->pkt_count >= MAX_REG_CNT)) {
2455                 tx_done = 1;
2456                 napi_complete_done(napi, work_done);
2457                 octeon_process_droq_poll_cmd(droq->oct_dev, droq->q_no,
2458                                              POLL_EVENT_ENABLE_INTR, 0);
2459                 return 0;
2460         }
2461
2462         return (!tx_done) ? (budget) : (work_done);
2463 }
2464
2465 /**
2466  * \brief Setup input and output queues
2467  * @param octeon_dev octeon device
2468  * @param ifidx  Interface Index
2469  *
2470  * Note: Queues are with respect to the octeon device. Thus
2471  * an input queue is for egress packets, and output queues
2472  * are for ingress packets.
2473  */
2474 static inline int setup_io_queues(struct octeon_device *octeon_dev,
2475                                   int ifidx)
2476 {
2477         struct octeon_droq_ops droq_ops;
2478         struct net_device *netdev;
2479         static int cpu_id;
2480         static int cpu_id_modulus;
2481         struct octeon_droq *droq;
2482         struct napi_struct *napi;
2483         int q, q_no, retval = 0;
2484         struct lio *lio;
2485         int num_tx_descs;
2486
2487         netdev = octeon_dev->props[ifidx].netdev;
2488
2489         lio = GET_LIO(netdev);
2490
2491         memset(&droq_ops, 0, sizeof(struct octeon_droq_ops));
2492
2493         droq_ops.fptr = liquidio_push_packet;
2494         droq_ops.farg = (void *)netdev;
2495
2496         droq_ops.poll_mode = 1;
2497         droq_ops.napi_fn = liquidio_napi_drv_callback;
2498         cpu_id = 0;
2499         cpu_id_modulus = num_present_cpus();
2500
2501         /* set up DROQs. */
2502         for (q = 0; q < lio->linfo.num_rxpciq; q++) {
2503                 q_no = lio->linfo.rxpciq[q].s.q_no;
2504                 dev_dbg(&octeon_dev->pci_dev->dev,
2505                         "setup_io_queues index:%d linfo.rxpciq.s.q_no:%d\n",
2506                         q, q_no);
2507                 retval = octeon_setup_droq(octeon_dev, q_no,
2508                                            CFG_GET_NUM_RX_DESCS_NIC_IF
2509                                                    (octeon_get_conf(octeon_dev),
2510                                                    lio->ifidx),
2511                                            CFG_GET_NUM_RX_BUF_SIZE_NIC_IF
2512                                                    (octeon_get_conf(octeon_dev),
2513                                                    lio->ifidx), NULL);
2514                 if (retval) {
2515                         dev_err(&octeon_dev->pci_dev->dev,
2516                                 "%s : Runtime DROQ(RxQ) creation failed.\n",
2517                                 __func__);
2518                         return 1;
2519                 }
2520
2521                 droq = octeon_dev->droq[q_no];
2522                 napi = &droq->napi;
2523                 dev_dbg(&octeon_dev->pci_dev->dev, "netif_napi_add netdev:%llx oct:%llx pf_num:%d\n",
2524                         (u64)netdev, (u64)octeon_dev, octeon_dev->pf_num);
2525                 netif_napi_add(netdev, napi, liquidio_napi_poll, 64);
2526
2527                 /* designate a CPU for this droq */
2528                 droq->cpu_id = cpu_id;
2529                 cpu_id++;
2530                 if (cpu_id >= cpu_id_modulus)
2531                         cpu_id = 0;
2532
2533                 octeon_register_droq_ops(octeon_dev, q_no, &droq_ops);
2534         }
2535
2536         if (OCTEON_CN23XX_PF(octeon_dev)) {
2537                 /* 23XX PF can receive control messages (via the first PF-owned
2538                  * droq) from the firmware even if the ethX interface is down,
2539                  * so that's why poll_mode must be off for the first droq.
2540                  */
2541                 octeon_dev->droq[0]->ops.poll_mode = 0;
2542         }
2543
2544         /* set up IQs. */
2545         for (q = 0; q < lio->linfo.num_txpciq; q++) {
2546                 num_tx_descs = CFG_GET_NUM_TX_DESCS_NIC_IF(octeon_get_conf
2547                                                            (octeon_dev),
2548                                                            lio->ifidx);
2549                 retval = octeon_setup_iq(octeon_dev, ifidx, q,
2550                                          lio->linfo.txpciq[q], num_tx_descs,
2551                                          netdev_get_tx_queue(netdev, q));
2552                 if (retval) {
2553                         dev_err(&octeon_dev->pci_dev->dev,
2554                                 " %s : Runtime IQ(TxQ) creation failed.\n",
2555                                 __func__);
2556                         return 1;
2557                 }
2558
2559                 if (octeon_dev->ioq_vector) {
2560                         struct octeon_ioq_vector *ioq_vector;
2561
2562                         ioq_vector = &octeon_dev->ioq_vector[q];
2563                         netif_set_xps_queue(netdev,
2564                                             &ioq_vector->affinity_mask,
2565                                             ioq_vector->iq_index);
2566                 }
2567         }
2568
2569         return 0;
2570 }
2571
2572 /**
2573  * \brief Poll routine for checking transmit queue status
2574  * @param work work_struct data structure
2575  */
2576 static void octnet_poll_check_txq_status(struct work_struct *work)
2577 {
2578         struct cavium_wk *wk = (struct cavium_wk *)work;
2579         struct lio *lio = (struct lio *)wk->ctxptr;
2580
2581         if (!ifstate_check(lio, LIO_IFSTATE_RUNNING))
2582                 return;
2583
2584         check_txq_status(lio);
2585         queue_delayed_work(lio->txq_status_wq.wq,
2586                            &lio->txq_status_wq.wk.work, msecs_to_jiffies(1));
2587 }
2588
2589 /**
2590  * \brief Sets up the txq poll check
2591  * @param netdev network device
2592  */
2593 static inline int setup_tx_poll_fn(struct net_device *netdev)
2594 {
2595         struct lio *lio = GET_LIO(netdev);
2596         struct octeon_device *oct = lio->oct_dev;
2597
2598         lio->txq_status_wq.wq = alloc_workqueue("txq-status",
2599                                                 WQ_MEM_RECLAIM, 0);
2600         if (!lio->txq_status_wq.wq) {
2601                 dev_err(&oct->pci_dev->dev, "unable to create cavium txq status wq\n");
2602                 return -1;
2603         }
2604         INIT_DELAYED_WORK(&lio->txq_status_wq.wk.work,
2605                           octnet_poll_check_txq_status);
2606         lio->txq_status_wq.wk.ctxptr = lio;
2607         queue_delayed_work(lio->txq_status_wq.wq,
2608                            &lio->txq_status_wq.wk.work, msecs_to_jiffies(1));
2609         return 0;
2610 }
2611
2612 static inline void cleanup_tx_poll_fn(struct net_device *netdev)
2613 {
2614         struct lio *lio = GET_LIO(netdev);
2615
2616         if (lio->txq_status_wq.wq) {
2617                 cancel_delayed_work_sync(&lio->txq_status_wq.wk.work);
2618                 destroy_workqueue(lio->txq_status_wq.wq);
2619         }
2620 }
2621
2622 /**
2623  * \brief Net device open for LiquidIO
2624  * @param netdev network device
2625  */
2626 static int liquidio_open(struct net_device *netdev)
2627 {
2628         struct lio *lio = GET_LIO(netdev);
2629         struct octeon_device *oct = lio->oct_dev;
2630         struct napi_struct *napi, *n;
2631
2632         if (oct->props[lio->ifidx].napi_enabled == 0) {
2633                 list_for_each_entry_safe(napi, n, &netdev->napi_list, dev_list)
2634                         napi_enable(napi);
2635
2636                 oct->props[lio->ifidx].napi_enabled = 1;
2637
2638                 if (OCTEON_CN23XX_PF(oct))
2639                         oct->droq[0]->ops.poll_mode = 1;
2640         }
2641
2642         if ((oct->chip_id == OCTEON_CN66XX || oct->chip_id == OCTEON_CN68XX) &&
2643             ptp_enable)
2644                 oct_ptp_open(netdev);
2645
2646         ifstate_set(lio, LIO_IFSTATE_RUNNING);
2647
2648         /* Ready for link status updates */
2649         lio->intf_open = 1;
2650
2651         netif_info(lio, ifup, lio->netdev, "Interface Open, ready for traffic\n");
2652
2653         if (OCTEON_CN23XX_PF(oct)) {
2654                 if (!oct->msix_on)
2655                         if (setup_tx_poll_fn(netdev))
2656                                 return -1;
2657         } else {
2658                 if (setup_tx_poll_fn(netdev))
2659                         return -1;
2660         }
2661
2662         start_txq(netdev);
2663
2664         /* tell Octeon to start forwarding packets to host */
2665         send_rx_ctrl_cmd(lio, 1);
2666
2667         dev_info(&oct->pci_dev->dev, "%s interface is opened\n",
2668                  netdev->name);
2669
2670         return 0;
2671 }
2672
2673 /**
2674  * \brief Net device stop for LiquidIO
2675  * @param netdev network device
2676  */
2677 static int liquidio_stop(struct net_device *netdev)
2678 {
2679         struct lio *lio = GET_LIO(netdev);
2680         struct octeon_device *oct = lio->oct_dev;
2681
2682         ifstate_reset(lio, LIO_IFSTATE_RUNNING);
2683
2684         netif_tx_disable(netdev);
2685
2686         /* Inform that netif carrier is down */
2687         netif_carrier_off(netdev);
2688         lio->intf_open = 0;
2689         lio->linfo.link.s.link_up = 0;
2690         lio->link_changes++;
2691
2692         /* Tell Octeon that nic interface is down. */
2693         send_rx_ctrl_cmd(lio, 0);
2694
2695         if (OCTEON_CN23XX_PF(oct)) {
2696                 if (!oct->msix_on)
2697                         cleanup_tx_poll_fn(netdev);
2698         } else {
2699                 cleanup_tx_poll_fn(netdev);
2700         }
2701
2702         if (lio->ptp_clock) {
2703                 ptp_clock_unregister(lio->ptp_clock);
2704                 lio->ptp_clock = NULL;
2705         }
2706
2707         dev_info(&oct->pci_dev->dev, "%s interface is stopped\n", netdev->name);
2708
2709         return 0;
2710 }
2711
2712 /**
2713  * \brief Converts a mask based on net device flags
2714  * @param netdev network device
2715  *
2716  * This routine generates a octnet_ifflags mask from the net device flags
2717  * received from the OS.
2718  */
2719 static inline enum octnet_ifflags get_new_flags(struct net_device *netdev)
2720 {
2721         enum octnet_ifflags f = OCTNET_IFFLAG_UNICAST;
2722
2723         if (netdev->flags & IFF_PROMISC)
2724                 f |= OCTNET_IFFLAG_PROMISC;
2725
2726         if (netdev->flags & IFF_ALLMULTI)
2727                 f |= OCTNET_IFFLAG_ALLMULTI;
2728
2729         if (netdev->flags & IFF_MULTICAST) {
2730                 f |= OCTNET_IFFLAG_MULTICAST;
2731
2732                 /* Accept all multicast addresses if there are more than we
2733                  * can handle
2734                  */
2735                 if (netdev_mc_count(netdev) > MAX_OCTEON_MULTICAST_ADDR)
2736                         f |= OCTNET_IFFLAG_ALLMULTI;
2737         }
2738
2739         if (netdev->flags & IFF_BROADCAST)
2740                 f |= OCTNET_IFFLAG_BROADCAST;
2741
2742         return f;
2743 }
2744
2745 /**
2746  * \brief Net device set_multicast_list
2747  * @param netdev network device
2748  */
2749 static void liquidio_set_mcast_list(struct net_device *netdev)
2750 {
2751         struct lio *lio = GET_LIO(netdev);
2752         struct octeon_device *oct = lio->oct_dev;
2753         struct octnic_ctrl_pkt nctrl;
2754         struct netdev_hw_addr *ha;
2755         u64 *mc;
2756         int ret;
2757         int mc_count = min(netdev_mc_count(netdev), MAX_OCTEON_MULTICAST_ADDR);
2758
2759         memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt));
2760
2761         /* Create a ctrl pkt command to be sent to core app. */
2762         nctrl.ncmd.u64 = 0;
2763         nctrl.ncmd.s.cmd = OCTNET_CMD_SET_MULTI_LIST;
2764         nctrl.ncmd.s.param1 = get_new_flags(netdev);
2765         nctrl.ncmd.s.param2 = mc_count;
2766         nctrl.ncmd.s.more = mc_count;
2767         nctrl.iq_no = lio->linfo.txpciq[0].s.q_no;
2768         nctrl.netpndev = (u64)netdev;
2769         nctrl.cb_fn = liquidio_link_ctrl_cmd_completion;
2770
2771         /* copy all the addresses into the udd */
2772         mc = &nctrl.udd[0];
2773         netdev_for_each_mc_addr(ha, netdev) {
2774                 *mc = 0;
2775                 memcpy(((u8 *)mc) + 2, ha->addr, ETH_ALEN);
2776                 /* no need to swap bytes */
2777
2778                 if (++mc > &nctrl.udd[mc_count])
2779                         break;
2780         }
2781
2782         /* Apparently, any activity in this call from the kernel has to
2783          * be atomic. So we won't wait for response.
2784          */
2785         nctrl.wait_time = 0;
2786
2787         ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl);
2788         if (ret < 0) {
2789                 dev_err(&oct->pci_dev->dev, "DEVFLAGS change failed in core (ret: 0x%x)\n",
2790                         ret);
2791         }
2792 }
2793
2794 /**
2795  * \brief Net device set_mac_address
2796  * @param netdev network device
2797  */
2798 static int liquidio_set_mac(struct net_device *netdev, void *p)
2799 {
2800         int ret = 0;
2801         struct lio *lio = GET_LIO(netdev);
2802         struct octeon_device *oct = lio->oct_dev;
2803         struct sockaddr *addr = (struct sockaddr *)p;
2804         struct octnic_ctrl_pkt nctrl;
2805
2806         if (!is_valid_ether_addr(addr->sa_data))
2807                 return -EADDRNOTAVAIL;
2808
2809         memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt));
2810
2811         nctrl.ncmd.u64 = 0;
2812         nctrl.ncmd.s.cmd = OCTNET_CMD_CHANGE_MACADDR;
2813         nctrl.ncmd.s.param1 = 0;
2814         nctrl.ncmd.s.more = 1;
2815         nctrl.iq_no = lio->linfo.txpciq[0].s.q_no;
2816         nctrl.netpndev = (u64)netdev;
2817         nctrl.cb_fn = liquidio_link_ctrl_cmd_completion;
2818         nctrl.wait_time = 100;
2819
2820         nctrl.udd[0] = 0;
2821         /* The MAC Address is presented in network byte order. */
2822         memcpy((u8 *)&nctrl.udd[0] + 2, addr->sa_data, ETH_ALEN);
2823
2824         ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl);
2825         if (ret < 0) {
2826                 dev_err(&oct->pci_dev->dev, "MAC Address change failed\n");
2827                 return -ENOMEM;
2828         }
2829         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2830         memcpy(((u8 *)&lio->linfo.hw_addr) + 2, addr->sa_data, ETH_ALEN);
2831
2832         return 0;
2833 }
2834
2835 /**
2836  * \brief Net device get_stats
2837  * @param netdev network device
2838  */
2839 static struct net_device_stats *liquidio_get_stats(struct net_device *netdev)
2840 {
2841         struct lio *lio = GET_LIO(netdev);
2842         struct net_device_stats *stats = &netdev->stats;
2843         struct octeon_device *oct;
2844         u64 pkts = 0, drop = 0, bytes = 0;
2845         struct oct_droq_stats *oq_stats;
2846         struct oct_iq_stats *iq_stats;
2847         int i, iq_no, oq_no;
2848
2849         oct = lio->oct_dev;
2850
2851         for (i = 0; i < lio->linfo.num_txpciq; i++) {
2852                 iq_no = lio->linfo.txpciq[i].s.q_no;
2853                 iq_stats = &oct->instr_queue[iq_no]->stats;
2854                 pkts += iq_stats->tx_done;
2855                 drop += iq_stats->tx_dropped;
2856                 bytes += iq_stats->tx_tot_bytes;
2857         }
2858
2859         stats->tx_packets = pkts;
2860         stats->tx_bytes = bytes;
2861         stats->tx_dropped = drop;
2862
2863         pkts = 0;
2864         drop = 0;
2865         bytes = 0;
2866
2867         for (i = 0; i < lio->linfo.num_rxpciq; i++) {
2868                 oq_no = lio->linfo.rxpciq[i].s.q_no;
2869                 oq_stats = &oct->droq[oq_no]->stats;
2870                 pkts += oq_stats->rx_pkts_received;
2871                 drop += (oq_stats->rx_dropped +
2872                          oq_stats->dropped_nodispatch +
2873                          oq_stats->dropped_toomany +
2874                          oq_stats->dropped_nomem);
2875                 bytes += oq_stats->rx_bytes_received;
2876         }
2877
2878         stats->rx_bytes = bytes;
2879         stats->rx_packets = pkts;
2880         stats->rx_dropped = drop;
2881
2882         return stats;
2883 }
2884
2885 /**
2886  * \brief Net device change_mtu
2887  * @param netdev network device
2888  */
2889 static int liquidio_change_mtu(struct net_device *netdev, int new_mtu)
2890 {
2891         struct lio *lio = GET_LIO(netdev);
2892         struct octeon_device *oct = lio->oct_dev;
2893         struct octnic_ctrl_pkt nctrl;
2894         int ret = 0;
2895
2896         memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt));
2897
2898         nctrl.ncmd.u64 = 0;
2899         nctrl.ncmd.s.cmd = OCTNET_CMD_CHANGE_MTU;
2900         nctrl.ncmd.s.param1 = new_mtu;
2901         nctrl.iq_no = lio->linfo.txpciq[0].s.q_no;
2902         nctrl.wait_time = 100;
2903         nctrl.netpndev = (u64)netdev;
2904         nctrl.cb_fn = liquidio_link_ctrl_cmd_completion;
2905
2906         ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl);
2907         if (ret < 0) {
2908                 dev_err(&oct->pci_dev->dev, "Failed to set MTU\n");
2909                 return -1;
2910         }
2911
2912         lio->mtu = new_mtu;
2913
2914         return 0;
2915 }
2916
2917 /**
2918  * \brief Handler for SIOCSHWTSTAMP ioctl
2919  * @param netdev network device
2920  * @param ifr interface request
2921  * @param cmd command
2922  */
2923 static int hwtstamp_ioctl(struct net_device *netdev, struct ifreq *ifr)
2924 {
2925         struct hwtstamp_config conf;
2926         struct lio *lio = GET_LIO(netdev);
2927
2928         if (copy_from_user(&conf, ifr->ifr_data, sizeof(conf)))
2929                 return -EFAULT;
2930
2931         if (conf.flags)
2932                 return -EINVAL;
2933
2934         switch (conf.tx_type) {
2935         case HWTSTAMP_TX_ON:
2936         case HWTSTAMP_TX_OFF:
2937                 break;
2938         default:
2939                 return -ERANGE;
2940         }
2941
2942         switch (conf.rx_filter) {
2943         case HWTSTAMP_FILTER_NONE:
2944                 break;
2945         case HWTSTAMP_FILTER_ALL:
2946         case HWTSTAMP_FILTER_SOME:
2947         case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
2948         case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
2949         case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
2950         case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
2951         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
2952         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
2953         case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
2954         case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
2955         case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
2956         case HWTSTAMP_FILTER_PTP_V2_EVENT:
2957         case HWTSTAMP_FILTER_PTP_V2_SYNC:
2958         case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
2959                 conf.rx_filter = HWTSTAMP_FILTER_ALL;
2960                 break;
2961         default:
2962                 return -ERANGE;
2963         }
2964
2965         if (conf.rx_filter == HWTSTAMP_FILTER_ALL)
2966                 ifstate_set(lio, LIO_IFSTATE_RX_TIMESTAMP_ENABLED);
2967
2968         else
2969                 ifstate_reset(lio, LIO_IFSTATE_RX_TIMESTAMP_ENABLED);
2970
2971         return copy_to_user(ifr->ifr_data, &conf, sizeof(conf)) ? -EFAULT : 0;
2972 }
2973
2974 /**
2975  * \brief ioctl handler
2976  * @param netdev network device
2977  * @param ifr interface request
2978  * @param cmd command
2979  */
2980 static int liquidio_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2981 {
2982         struct lio *lio = GET_LIO(netdev);
2983
2984         switch (cmd) {
2985         case SIOCSHWTSTAMP:
2986                 if ((lio->oct_dev->chip_id == OCTEON_CN66XX ||
2987                      lio->oct_dev->chip_id == OCTEON_CN68XX) && ptp_enable)
2988                         return hwtstamp_ioctl(netdev, ifr);
2989         default:
2990                 return -EOPNOTSUPP;
2991         }
2992 }
2993
2994 /**
2995  * \brief handle a Tx timestamp response
2996  * @param status response status
2997  * @param buf pointer to skb
2998  */
2999 static void handle_timestamp(struct octeon_device *oct,
3000                              u32 status,
3001                              void *buf)
3002 {
3003         struct octnet_buf_free_info *finfo;
3004         struct octeon_soft_command *sc;
3005         struct oct_timestamp_resp *resp;
3006         struct lio *lio;
3007         struct sk_buff *skb = (struct sk_buff *)buf;
3008
3009         finfo = (struct octnet_buf_free_info *)skb->cb;
3010         lio = finfo->lio;
3011         sc = finfo->sc;
3012         oct = lio->oct_dev;
3013         resp = (struct oct_timestamp_resp *)sc->virtrptr;
3014
3015         if (status != OCTEON_REQUEST_DONE) {
3016                 dev_err(&oct->pci_dev->dev, "Tx timestamp instruction failed. Status: %llx\n",
3017                         CVM_CAST64(status));
3018                 resp->timestamp = 0;
3019         }
3020
3021         octeon_swap_8B_data(&resp->timestamp, 1);
3022
3023         if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) != 0)) {
3024                 struct skb_shared_hwtstamps ts;
3025                 u64 ns = resp->timestamp;
3026
3027                 netif_info(lio, tx_done, lio->netdev,
3028                            "Got resulting SKBTX_HW_TSTAMP skb=%p ns=%016llu\n",
3029                            skb, (unsigned long long)ns);
3030                 ts.hwtstamp = ns_to_ktime(ns + lio->ptp_adjust);
3031                 skb_tstamp_tx(skb, &ts);
3032         }
3033
3034         octeon_free_soft_command(oct, sc);
3035         tx_buffer_free(skb);
3036 }
3037
3038 /* \brief Send a data packet that will be timestamped
3039  * @param oct octeon device
3040  * @param ndata pointer to network data
3041  * @param finfo pointer to private network data
3042  */
3043 static inline int send_nic_timestamp_pkt(struct octeon_device *oct,
3044                                          struct octnic_data_pkt *ndata,
3045                                          struct octnet_buf_free_info *finfo)
3046 {
3047         int retval;
3048         struct octeon_soft_command *sc;
3049         struct lio *lio;
3050         int ring_doorbell;
3051         u32 len;
3052
3053         lio = finfo->lio;
3054
3055         sc = octeon_alloc_soft_command_resp(oct, &ndata->cmd,
3056                                             sizeof(struct oct_timestamp_resp));
3057         finfo->sc = sc;
3058
3059         if (!sc) {
3060                 dev_err(&oct->pci_dev->dev, "No memory for timestamped data packet\n");
3061                 return IQ_SEND_FAILED;
3062         }
3063
3064         if (ndata->reqtype == REQTYPE_NORESP_NET)
3065                 ndata->reqtype = REQTYPE_RESP_NET;
3066         else if (ndata->reqtype == REQTYPE_NORESP_NET_SG)
3067                 ndata->reqtype = REQTYPE_RESP_NET_SG;
3068
3069         sc->callback = handle_timestamp;
3070         sc->callback_arg = finfo->skb;
3071         sc->iq_no = ndata->q_no;
3072
3073         if (OCTEON_CN23XX_PF(oct))
3074                 len = (u32)((struct octeon_instr_ih3 *)
3075                             (&sc->cmd.cmd3.ih3))->dlengsz;
3076         else
3077                 len = (u32)((struct octeon_instr_ih2 *)
3078                             (&sc->cmd.cmd2.ih2))->dlengsz;
3079
3080         ring_doorbell = 1;
3081
3082         retval = octeon_send_command(oct, sc->iq_no, ring_doorbell, &sc->cmd,
3083                                      sc, len, ndata->reqtype);
3084
3085         if (retval == IQ_SEND_FAILED) {
3086                 dev_err(&oct->pci_dev->dev, "timestamp data packet failed status: %x\n",
3087                         retval);
3088                 octeon_free_soft_command(oct, sc);
3089         } else {
3090                 netif_info(lio, tx_queued, lio->netdev, "Queued timestamp packet\n");
3091         }
3092
3093         return retval;
3094 }
3095
3096 /** \brief Transmit networks packets to the Octeon interface
3097  * @param skbuff   skbuff struct to be passed to network layer.
3098  * @param netdev    pointer to network device
3099  * @returns whether the packet was transmitted to the device okay or not
3100  *             (NETDEV_TX_OK or NETDEV_TX_BUSY)
3101  */
3102 static int liquidio_xmit(struct sk_buff *skb, struct net_device *netdev)
3103 {
3104         struct lio *lio;
3105         struct octnet_buf_free_info *finfo;
3106         union octnic_cmd_setup cmdsetup;
3107         struct octnic_data_pkt ndata;
3108         struct octeon_device *oct;
3109         struct oct_iq_stats *stats;
3110         struct octeon_instr_irh *irh;
3111         union tx_info *tx_info;
3112         int status = 0;
3113         int q_idx = 0, iq_no = 0;
3114         int j;
3115         u64 dptr = 0;
3116         u32 tag = 0;
3117
3118         lio = GET_LIO(netdev);
3119         oct = lio->oct_dev;
3120
3121         if (netif_is_multiqueue(netdev)) {
3122                 q_idx = skb->queue_mapping;
3123                 q_idx = (q_idx % (lio->linfo.num_txpciq));
3124                 tag = q_idx;
3125                 iq_no = lio->linfo.txpciq[q_idx].s.q_no;
3126         } else {
3127                 iq_no = lio->txq;
3128         }
3129
3130         stats = &oct->instr_queue[iq_no]->stats;
3131
3132         /* Check for all conditions in which the current packet cannot be
3133          * transmitted.
3134          */
3135         if (!(atomic_read(&lio->ifstate) & LIO_IFSTATE_RUNNING) ||
3136             (!lio->linfo.link.s.link_up) ||
3137             (skb->len <= 0)) {
3138                 netif_info(lio, tx_err, lio->netdev,
3139                            "Transmit failed link_status : %d\n",
3140                            lio->linfo.link.s.link_up);
3141                 goto lio_xmit_failed;
3142         }
3143
3144         /* Use space in skb->cb to store info used to unmap and
3145          * free the buffers.
3146          */
3147         finfo = (struct octnet_buf_free_info *)skb->cb;
3148         finfo->lio = lio;
3149         finfo->skb = skb;
3150         finfo->sc = NULL;
3151
3152         /* Prepare the attributes for the data to be passed to OSI. */
3153         memset(&ndata, 0, sizeof(struct octnic_data_pkt));
3154
3155         ndata.buf = (void *)finfo;
3156
3157         ndata.q_no = iq_no;
3158
3159         if (netif_is_multiqueue(netdev)) {
3160                 if (octnet_iq_is_full(oct, ndata.q_no)) {
3161                         /* defer sending if queue is full */
3162                         netif_info(lio, tx_err, lio->netdev, "Transmit failed iq:%d full\n",
3163                                    ndata.q_no);
3164                         stats->tx_iq_busy++;
3165                         return NETDEV_TX_BUSY;
3166                 }
3167         } else {
3168                 if (octnet_iq_is_full(oct, lio->txq)) {
3169                         /* defer sending if queue is full */
3170                         stats->tx_iq_busy++;
3171                         netif_info(lio, tx_err, lio->netdev, "Transmit failed iq:%d full\n",
3172                                    lio->txq);
3173                         return NETDEV_TX_BUSY;
3174                 }
3175         }
3176         /* pr_info(" XMIT - valid Qs: %d, 1st Q no: %d, cpu:  %d, q_no:%d\n",
3177          *      lio->linfo.num_txpciq, lio->txq, cpu, ndata.q_no);
3178          */
3179
3180         ndata.datasize = skb->len;
3181
3182         cmdsetup.u64 = 0;
3183         cmdsetup.s.iq_no = iq_no;
3184
3185         if (skb->ip_summed == CHECKSUM_PARTIAL) {
3186                 if (skb->encapsulation) {
3187                         cmdsetup.s.tnl_csum = 1;
3188                         stats->tx_vxlan++;
3189                 } else {
3190                         cmdsetup.s.transport_csum = 1;
3191                 }
3192         }
3193         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
3194                 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3195                 cmdsetup.s.timestamp = 1;
3196         }
3197
3198         if (skb_shinfo(skb)->nr_frags == 0) {
3199                 cmdsetup.s.u.datasize = skb->len;
3200                 octnet_prepare_pci_cmd(oct, &ndata.cmd, &cmdsetup, tag);
3201
3202                 /* Offload checksum calculation for TCP/UDP packets */
3203                 dptr = dma_map_single(&oct->pci_dev->dev,
3204                                       skb->data,
3205                                       skb->len,
3206                                       DMA_TO_DEVICE);
3207                 if (dma_mapping_error(&oct->pci_dev->dev, dptr)) {
3208                         dev_err(&oct->pci_dev->dev, "%s DMA mapping error 1\n",
3209                                 __func__);
3210                         return NETDEV_TX_BUSY;
3211                 }
3212
3213                 if (OCTEON_CN23XX_PF(oct))
3214                         ndata.cmd.cmd3.dptr = dptr;
3215                 else
3216                         ndata.cmd.cmd2.dptr = dptr;
3217                 finfo->dptr = dptr;
3218                 ndata.reqtype = REQTYPE_NORESP_NET;
3219
3220         } else {
3221                 int i, frags;
3222                 struct skb_frag_struct *frag;
3223                 struct octnic_gather *g;
3224
3225                 spin_lock(&lio->glist_lock[q_idx]);
3226                 g = (struct octnic_gather *)
3227                         list_delete_head(&lio->glist[q_idx]);
3228                 spin_unlock(&lio->glist_lock[q_idx]);
3229
3230                 if (!g) {
3231                         netif_info(lio, tx_err, lio->netdev,
3232                                    "Transmit scatter gather: glist null!\n");
3233                         goto lio_xmit_failed;
3234                 }
3235
3236                 cmdsetup.s.gather = 1;
3237                 cmdsetup.s.u.gatherptrs = (skb_shinfo(skb)->nr_frags + 1);
3238                 octnet_prepare_pci_cmd(oct, &ndata.cmd, &cmdsetup, tag);
3239
3240                 memset(g->sg, 0, g->sg_size);
3241
3242                 g->sg[0].ptr[0] = dma_map_single(&oct->pci_dev->dev,
3243                                                  skb->data,
3244                                                  (skb->len - skb->data_len),
3245                                                  DMA_TO_DEVICE);
3246                 if (dma_mapping_error(&oct->pci_dev->dev, g->sg[0].ptr[0])) {
3247                         dev_err(&oct->pci_dev->dev, "%s DMA mapping error 2\n",
3248                                 __func__);
3249                         return NETDEV_TX_BUSY;
3250                 }
3251                 add_sg_size(&g->sg[0], (skb->len - skb->data_len), 0);
3252
3253                 frags = skb_shinfo(skb)->nr_frags;
3254                 i = 1;
3255                 while (frags--) {
3256                         frag = &skb_shinfo(skb)->frags[i - 1];
3257
3258                         g->sg[(i >> 2)].ptr[(i & 3)] =
3259                                 dma_map_page(&oct->pci_dev->dev,
3260                                              frag->page.p,
3261                                              frag->page_offset,
3262                                              frag->size,
3263                                              DMA_TO_DEVICE);
3264
3265                         if (dma_mapping_error(&oct->pci_dev->dev,
3266                                               g->sg[i >> 2].ptr[i & 3])) {
3267                                 dma_unmap_single(&oct->pci_dev->dev,
3268                                                  g->sg[0].ptr[0],
3269                                                  skb->len - skb->data_len,
3270                                                  DMA_TO_DEVICE);
3271                                 for (j = 1; j < i; j++) {
3272                                         frag = &skb_shinfo(skb)->frags[j - 1];
3273                                         dma_unmap_page(&oct->pci_dev->dev,
3274                                                        g->sg[j >> 2].ptr[j & 3],
3275                                                        frag->size,
3276                                                        DMA_TO_DEVICE);
3277                                 }
3278                                 dev_err(&oct->pci_dev->dev, "%s DMA mapping error 3\n",
3279                                         __func__);
3280                                 return NETDEV_TX_BUSY;
3281                         }
3282
3283                         add_sg_size(&g->sg[(i >> 2)], frag->size, (i & 3));
3284                         i++;
3285                 }
3286
3287                 dptr = g->sg_dma_ptr;
3288
3289                 if (OCTEON_CN23XX_PF(oct))
3290                         ndata.cmd.cmd3.dptr = dptr;
3291                 else
3292                         ndata.cmd.cmd2.dptr = dptr;
3293                 finfo->dptr = dptr;
3294                 finfo->g = g;
3295
3296                 ndata.reqtype = REQTYPE_NORESP_NET_SG;
3297         }
3298
3299         if (OCTEON_CN23XX_PF(oct)) {
3300                 irh = (struct octeon_instr_irh *)&ndata.cmd.cmd3.irh;
3301                 tx_info = (union tx_info *)&ndata.cmd.cmd3.ossp[0];
3302         } else {
3303                 irh = (struct octeon_instr_irh *)&ndata.cmd.cmd2.irh;
3304                 tx_info = (union tx_info *)&ndata.cmd.cmd2.ossp[0];
3305         }
3306
3307         if (skb_shinfo(skb)->gso_size) {
3308                 tx_info->s.gso_size = skb_shinfo(skb)->gso_size;
3309                 tx_info->s.gso_segs = skb_shinfo(skb)->gso_segs;
3310                 stats->tx_gso++;
3311         }
3312
3313         /* HW insert VLAN tag */
3314         if (skb_vlan_tag_present(skb)) {
3315                 irh->priority = skb_vlan_tag_get(skb) >> 13;
3316                 irh->vlan = skb_vlan_tag_get(skb) & 0xfff;
3317         }
3318
3319         if (unlikely(cmdsetup.s.timestamp))
3320                 status = send_nic_timestamp_pkt(oct, &ndata, finfo);
3321         else
3322                 status = octnet_send_nic_data_pkt(oct, &ndata);
3323         if (status == IQ_SEND_FAILED)
3324                 goto lio_xmit_failed;
3325
3326         netif_info(lio, tx_queued, lio->netdev, "Transmit queued successfully\n");
3327
3328         if (status == IQ_SEND_STOP)
3329                 stop_q(lio->netdev, q_idx);
3330
3331         netif_trans_update(netdev);
3332
3333         if (tx_info->s.gso_segs)
3334                 stats->tx_done += tx_info->s.gso_segs;
3335         else
3336                 stats->tx_done++;
3337         stats->tx_tot_bytes += ndata.datasize;
3338
3339         return NETDEV_TX_OK;
3340
3341 lio_xmit_failed:
3342         stats->tx_dropped++;
3343         netif_info(lio, tx_err, lio->netdev, "IQ%d Transmit dropped:%llu\n",
3344                    iq_no, stats->tx_dropped);
3345         if (dptr)
3346                 dma_unmap_single(&oct->pci_dev->dev, dptr,
3347                                  ndata.datasize, DMA_TO_DEVICE);
3348         tx_buffer_free(skb);
3349         return NETDEV_TX_OK;
3350 }
3351
3352 /** \brief Network device Tx timeout
3353  * @param netdev    pointer to network device
3354  */
3355 static void liquidio_tx_timeout(struct net_device *netdev)
3356 {
3357         struct lio *lio;
3358
3359         lio = GET_LIO(netdev);
3360
3361         netif_info(lio, tx_err, lio->netdev,
3362                    "Transmit timeout tx_dropped:%ld, waking up queues now!!\n",
3363                    netdev->stats.tx_dropped);
3364         netif_trans_update(netdev);
3365         txqs_wake(netdev);
3366 }
3367
3368 static int liquidio_vlan_rx_add_vid(struct net_device *netdev,
3369                                     __be16 proto __attribute__((unused)),
3370                                     u16 vid)
3371 {
3372         struct lio *lio = GET_LIO(netdev);
3373         struct octeon_device *oct = lio->oct_dev;
3374         struct octnic_ctrl_pkt nctrl;
3375         int ret = 0;
3376
3377         memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt));
3378
3379         nctrl.ncmd.u64 = 0;
3380         nctrl.ncmd.s.cmd = OCTNET_CMD_ADD_VLAN_FILTER;
3381         nctrl.ncmd.s.param1 = vid;
3382         nctrl.iq_no = lio->linfo.txpciq[0].s.q_no;
3383         nctrl.wait_time = 100;
3384         nctrl.netpndev = (u64)netdev;
3385         nctrl.cb_fn = liquidio_link_ctrl_cmd_completion;
3386
3387         ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl);
3388         if (ret < 0) {
3389                 dev_err(&oct->pci_dev->dev, "Add VLAN filter failed in core (ret: 0x%x)\n",
3390                         ret);
3391         }
3392
3393         return ret;
3394 }
3395
3396 static int liquidio_vlan_rx_kill_vid(struct net_device *netdev,
3397                                      __be16 proto __attribute__((unused)),
3398                                      u16 vid)
3399 {
3400         struct lio *lio = GET_LIO(netdev);
3401         struct octeon_device *oct = lio->oct_dev;
3402         struct octnic_ctrl_pkt nctrl;
3403         int ret = 0;
3404
3405         memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt));
3406
3407         nctrl.ncmd.u64 = 0;
3408         nctrl.ncmd.s.cmd = OCTNET_CMD_DEL_VLAN_FILTER;
3409         nctrl.ncmd.s.param1 = vid;
3410         nctrl.iq_no = lio->linfo.txpciq[0].s.q_no;
3411         nctrl.wait_time = 100;
3412         nctrl.netpndev = (u64)netdev;
3413         nctrl.cb_fn = liquidio_link_ctrl_cmd_completion;
3414
3415         ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl);
3416         if (ret < 0) {
3417                 dev_err(&oct->pci_dev->dev, "Add VLAN filter failed in core (ret: 0x%x)\n",
3418                         ret);
3419         }
3420         return ret;
3421 }
3422
3423 /** Sending command to enable/disable RX checksum offload
3424  * @param netdev                pointer to network device
3425  * @param command               OCTNET_CMD_TNL_RX_CSUM_CTL
3426  * @param rx_cmd_bit            OCTNET_CMD_RXCSUM_ENABLE/
3427  *                              OCTNET_CMD_RXCSUM_DISABLE
3428  * @returns                     SUCCESS or FAILURE
3429  */
3430 static int liquidio_set_rxcsum_command(struct net_device *netdev, int command,
3431                                        u8 rx_cmd)
3432 {
3433         struct lio *lio = GET_LIO(netdev);
3434         struct octeon_device *oct = lio->oct_dev;
3435         struct octnic_ctrl_pkt nctrl;
3436         int ret = 0;
3437
3438         nctrl.ncmd.u64 = 0;
3439         nctrl.ncmd.s.cmd = command;
3440         nctrl.ncmd.s.param1 = rx_cmd;
3441         nctrl.iq_no = lio->linfo.txpciq[0].s.q_no;
3442         nctrl.wait_time = 100;
3443         nctrl.netpndev = (u64)netdev;
3444         nctrl.cb_fn = liquidio_link_ctrl_cmd_completion;
3445
3446         ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl);
3447         if (ret < 0) {
3448                 dev_err(&oct->pci_dev->dev,
3449                         "DEVFLAGS RXCSUM change failed in core(ret:0x%x)\n",
3450                         ret);
3451         }
3452         return ret;
3453 }
3454
3455 /** Sending command to add/delete VxLAN UDP port to firmware
3456  * @param netdev                pointer to network device
3457  * @param command               OCTNET_CMD_VXLAN_PORT_CONFIG
3458  * @param vxlan_port            VxLAN port to be added or deleted
3459  * @param vxlan_cmd_bit         OCTNET_CMD_VXLAN_PORT_ADD,
3460  *                              OCTNET_CMD_VXLAN_PORT_DEL
3461  * @returns                     SUCCESS or FAILURE
3462  */
3463 static int liquidio_vxlan_port_command(struct net_device *netdev, int command,
3464                                        u16 vxlan_port, u8 vxlan_cmd_bit)
3465 {
3466         struct lio *lio = GET_LIO(netdev);
3467         struct octeon_device *oct = lio->oct_dev;
3468         struct octnic_ctrl_pkt nctrl;
3469         int ret = 0;
3470
3471         nctrl.ncmd.u64 = 0;
3472         nctrl.ncmd.s.cmd = command;
3473         nctrl.ncmd.s.more = vxlan_cmd_bit;
3474         nctrl.ncmd.s.param1 = vxlan_port;
3475         nctrl.iq_no = lio->linfo.txpciq[0].s.q_no;
3476         nctrl.wait_time = 100;
3477         nctrl.netpndev = (u64)netdev;
3478         nctrl.cb_fn = liquidio_link_ctrl_cmd_completion;
3479
3480         ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl);
3481         if (ret < 0) {
3482                 dev_err(&oct->pci_dev->dev,
3483                         "VxLAN port add/delete failed in core (ret:0x%x)\n",
3484                         ret);
3485         }
3486         return ret;
3487 }
3488
3489 /** \brief Net device fix features
3490  * @param netdev  pointer to network device
3491  * @param request features requested
3492  * @returns updated features list
3493  */
3494 static netdev_features_t liquidio_fix_features(struct net_device *netdev,
3495                                                netdev_features_t request)
3496 {
3497         struct lio *lio = netdev_priv(netdev);
3498
3499         if ((request & NETIF_F_RXCSUM) &&
3500             !(lio->dev_capability & NETIF_F_RXCSUM))
3501                 request &= ~NETIF_F_RXCSUM;
3502
3503         if ((request & NETIF_F_HW_CSUM) &&
3504             !(lio->dev_capability & NETIF_F_HW_CSUM))
3505                 request &= ~NETIF_F_HW_CSUM;
3506
3507         if ((request & NETIF_F_TSO) && !(lio->dev_capability & NETIF_F_TSO))
3508                 request &= ~NETIF_F_TSO;
3509
3510         if ((request & NETIF_F_TSO6) && !(lio->dev_capability & NETIF_F_TSO6))
3511                 request &= ~NETIF_F_TSO6;
3512
3513         if ((request & NETIF_F_LRO) && !(lio->dev_capability & NETIF_F_LRO))
3514                 request &= ~NETIF_F_LRO;
3515
3516         /*Disable LRO if RXCSUM is off */
3517         if (!(request & NETIF_F_RXCSUM) && (netdev->features & NETIF_F_LRO) &&
3518             (lio->dev_capability & NETIF_F_LRO))
3519                 request &= ~NETIF_F_LRO;
3520
3521         return request;
3522 }
3523
3524 /** \brief Net device set features
3525  * @param netdev  pointer to network device
3526  * @param features features to enable/disable
3527  */
3528 static int liquidio_set_features(struct net_device *netdev,
3529                                  netdev_features_t features)
3530 {
3531         struct lio *lio = netdev_priv(netdev);
3532
3533         if (!((netdev->features ^ features) & NETIF_F_LRO))
3534                 return 0;
3535
3536         if ((features & NETIF_F_LRO) && (lio->dev_capability & NETIF_F_LRO))
3537                 liquidio_set_feature(netdev, OCTNET_CMD_LRO_ENABLE,
3538                                      OCTNIC_LROIPV4 | OCTNIC_LROIPV6);
3539         else if (!(features & NETIF_F_LRO) &&
3540                  (lio->dev_capability & NETIF_F_LRO))
3541                 liquidio_set_feature(netdev, OCTNET_CMD_LRO_DISABLE,
3542                                      OCTNIC_LROIPV4 | OCTNIC_LROIPV6);
3543
3544         /* Sending command to firmware to enable/disable RX checksum
3545          * offload settings using ethtool
3546          */
3547         if (!(netdev->features & NETIF_F_RXCSUM) &&
3548             (lio->enc_dev_capability & NETIF_F_RXCSUM) &&
3549             (features & NETIF_F_RXCSUM))
3550                 liquidio_set_rxcsum_command(netdev,
3551                                             OCTNET_CMD_TNL_RX_CSUM_CTL,
3552                                             OCTNET_CMD_RXCSUM_ENABLE);
3553         else if ((netdev->features & NETIF_F_RXCSUM) &&
3554                  (lio->enc_dev_capability & NETIF_F_RXCSUM) &&
3555                  !(features & NETIF_F_RXCSUM))
3556                 liquidio_set_rxcsum_command(netdev, OCTNET_CMD_TNL_RX_CSUM_CTL,
3557                                             OCTNET_CMD_RXCSUM_DISABLE);
3558
3559         return 0;
3560 }
3561
3562 static void liquidio_add_vxlan_port(struct net_device *netdev,
3563                                     struct udp_tunnel_info *ti)
3564 {
3565         if (ti->type != UDP_TUNNEL_TYPE_VXLAN)
3566                 return;
3567
3568         liquidio_vxlan_port_command(netdev,
3569                                     OCTNET_CMD_VXLAN_PORT_CONFIG,
3570                                     htons(ti->port),
3571                                     OCTNET_CMD_VXLAN_PORT_ADD);
3572 }
3573
3574 static void liquidio_del_vxlan_port(struct net_device *netdev,
3575                                     struct udp_tunnel_info *ti)
3576 {
3577         if (ti->type != UDP_TUNNEL_TYPE_VXLAN)
3578                 return;
3579
3580         liquidio_vxlan_port_command(netdev,
3581                                     OCTNET_CMD_VXLAN_PORT_CONFIG,
3582                                     htons(ti->port),
3583                                     OCTNET_CMD_VXLAN_PORT_DEL);
3584 }
3585
3586 static int __liquidio_set_vf_mac(struct net_device *netdev, int vfidx,
3587                                  u8 *mac, bool is_admin_assigned)
3588 {
3589         struct lio *lio = GET_LIO(netdev);
3590         struct octeon_device *oct = lio->oct_dev;
3591         struct octnic_ctrl_pkt nctrl;
3592
3593         if (!is_valid_ether_addr(mac))
3594                 return -EINVAL;
3595
3596         if (vfidx < 0 || vfidx >= oct->sriov_info.max_vfs)
3597                 return -EINVAL;
3598
3599         memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt));
3600
3601         nctrl.ncmd.u64 = 0;
3602         nctrl.ncmd.s.cmd = OCTNET_CMD_CHANGE_MACADDR;
3603         /* vfidx is 0 based, but vf_num (param1) is 1 based */
3604         nctrl.ncmd.s.param1 = vfidx + 1;
3605         nctrl.ncmd.s.param2 = (is_admin_assigned ? 1 : 0);
3606         nctrl.ncmd.s.more = 1;
3607         nctrl.iq_no = lio->linfo.txpciq[0].s.q_no;
3608         nctrl.cb_fn = 0;
3609         nctrl.wait_time = LIO_CMD_WAIT_TM;
3610
3611         nctrl.udd[0] = 0;
3612         /* The MAC Address is presented in network byte order. */
3613         ether_addr_copy((u8 *)&nctrl.udd[0] + 2, mac);
3614
3615         oct->sriov_info.vf_macaddr[vfidx] = nctrl.udd[0];
3616
3617         octnet_send_nic_ctrl_pkt(oct, &nctrl);
3618
3619         return 0;
3620 }
3621
3622 static int liquidio_set_vf_mac(struct net_device *netdev, int vfidx, u8 *mac)
3623 {
3624         struct lio *lio = GET_LIO(netdev);
3625         struct octeon_device *oct = lio->oct_dev;
3626         int retval;
3627
3628         retval = __liquidio_set_vf_mac(netdev, vfidx, mac, true);
3629         if (!retval)
3630                 cn23xx_tell_vf_its_macaddr_changed(oct, vfidx, mac);
3631
3632         return retval;
3633 }
3634
3635 static int liquidio_set_vf_vlan(struct net_device *netdev, int vfidx,
3636                                 u16 vlan, u8 qos, __be16 vlan_proto)
3637 {
3638         struct lio *lio = GET_LIO(netdev);
3639         struct octeon_device *oct = lio->oct_dev;
3640         struct octnic_ctrl_pkt nctrl;
3641         u16 vlantci;
3642
3643         if (vfidx < 0 || vfidx >= oct->sriov_info.num_vfs_alloced)
3644                 return -EINVAL;
3645
3646         if (vlan_proto != htons(ETH_P_8021Q))
3647                 return -EPROTONOSUPPORT;
3648
3649         if (vlan >= VLAN_N_VID || qos > 7)
3650                 return -EINVAL;
3651
3652         if (vlan)
3653                 vlantci = vlan | (u16)qos << VLAN_PRIO_SHIFT;
3654         else
3655                 vlantci = 0;
3656
3657         if (oct->sriov_info.vf_vlantci[vfidx] == vlantci)
3658                 return 0;
3659
3660         memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt));
3661
3662         if (vlan)
3663                 nctrl.ncmd.s.cmd = OCTNET_CMD_ADD_VLAN_FILTER;
3664         else
3665                 nctrl.ncmd.s.cmd = OCTNET_CMD_DEL_VLAN_FILTER;
3666
3667         nctrl.ncmd.s.param1 = vlantci;
3668         nctrl.ncmd.s.param2 =
3669             vfidx + 1; /* vfidx is 0 based, but vf_num (param2) is 1 based */
3670         nctrl.ncmd.s.more = 0;
3671         nctrl.iq_no = lio->linfo.txpciq[0].s.q_no;
3672         nctrl.cb_fn = 0;
3673         nctrl.wait_time = LIO_CMD_WAIT_TM;
3674
3675         octnet_send_nic_ctrl_pkt(oct, &nctrl);
3676
3677         oct->sriov_info.vf_vlantci[vfidx] = vlantci;
3678
3679         return 0;
3680 }
3681
3682 static int liquidio_get_vf_config(struct net_device *netdev, int vfidx,
3683                                   struct ifla_vf_info *ivi)
3684 {
3685         struct lio *lio = GET_LIO(netdev);
3686         struct octeon_device *oct = lio->oct_dev;
3687         u8 *macaddr;
3688
3689         if (vfidx < 0 || vfidx >= oct->sriov_info.num_vfs_alloced)
3690                 return -EINVAL;
3691
3692         ivi->vf = vfidx;
3693         macaddr = 2 + (u8 *)&oct->sriov_info.vf_macaddr[vfidx];
3694         ether_addr_copy(&ivi->mac[0], macaddr);
3695         ivi->vlan = oct->sriov_info.vf_vlantci[vfidx] & VLAN_VID_MASK;
3696         ivi->qos = oct->sriov_info.vf_vlantci[vfidx] >> VLAN_PRIO_SHIFT;
3697         ivi->linkstate = oct->sriov_info.vf_linkstate[vfidx];
3698         return 0;
3699 }
3700
3701 static int liquidio_set_vf_link_state(struct net_device *netdev, int vfidx,
3702                                       int linkstate)
3703 {
3704         struct lio *lio = GET_LIO(netdev);
3705         struct octeon_device *oct = lio->oct_dev;
3706         struct octnic_ctrl_pkt nctrl;
3707
3708         if (vfidx < 0 || vfidx >= oct->sriov_info.num_vfs_alloced)
3709                 return -EINVAL;
3710
3711         if (oct->sriov_info.vf_linkstate[vfidx] == linkstate)
3712                 return 0;
3713
3714         memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt));
3715         nctrl.ncmd.s.cmd = OCTNET_CMD_SET_VF_LINKSTATE;
3716         nctrl.ncmd.s.param1 =
3717             vfidx + 1; /* vfidx is 0 based, but vf_num (param1) is 1 based */
3718         nctrl.ncmd.s.param2 = linkstate;
3719         nctrl.ncmd.s.more = 0;
3720         nctrl.iq_no = lio->linfo.txpciq[0].s.q_no;
3721         nctrl.cb_fn = 0;
3722         nctrl.wait_time = LIO_CMD_WAIT_TM;
3723
3724         octnet_send_nic_ctrl_pkt(oct, &nctrl);
3725
3726         oct->sriov_info.vf_linkstate[vfidx] = linkstate;
3727
3728         return 0;
3729 }
3730
3731 static const struct net_device_ops lionetdevops = {
3732         .ndo_open               = liquidio_open,
3733         .ndo_stop               = liquidio_stop,
3734         .ndo_start_xmit         = liquidio_xmit,
3735         .ndo_get_stats          = liquidio_get_stats,
3736         .ndo_set_mac_address    = liquidio_set_mac,
3737         .ndo_set_rx_mode        = liquidio_set_mcast_list,
3738         .ndo_tx_timeout         = liquidio_tx_timeout,
3739
3740         .ndo_vlan_rx_add_vid    = liquidio_vlan_rx_add_vid,
3741         .ndo_vlan_rx_kill_vid   = liquidio_vlan_rx_kill_vid,
3742         .ndo_change_mtu         = liquidio_change_mtu,
3743         .ndo_do_ioctl           = liquidio_ioctl,
3744         .ndo_fix_features       = liquidio_fix_features,
3745         .ndo_set_features       = liquidio_set_features,
3746         .ndo_udp_tunnel_add     = liquidio_add_vxlan_port,
3747         .ndo_udp_tunnel_del     = liquidio_del_vxlan_port,
3748         .ndo_set_vf_mac         = liquidio_set_vf_mac,
3749         .ndo_set_vf_vlan        = liquidio_set_vf_vlan,
3750         .ndo_get_vf_config      = liquidio_get_vf_config,
3751         .ndo_set_vf_link_state  = liquidio_set_vf_link_state,
3752 };
3753
3754 /** \brief Entry point for the liquidio module
3755  */
3756 static int __init liquidio_init(void)
3757 {
3758         int i;
3759         struct handshake *hs;
3760
3761         init_completion(&first_stage);
3762
3763         octeon_init_device_list(OCTEON_CONFIG_TYPE_DEFAULT);
3764
3765         if (liquidio_init_pci())
3766                 return -EINVAL;
3767
3768         wait_for_completion_timeout(&first_stage, msecs_to_jiffies(1000));
3769
3770         for (i = 0; i < MAX_OCTEON_DEVICES; i++) {
3771                 hs = &handshake[i];
3772                 if (hs->pci_dev) {
3773                         wait_for_completion(&hs->init);
3774                         if (!hs->init_ok) {
3775                                 /* init handshake failed */
3776                                 dev_err(&hs->pci_dev->dev,
3777                                         "Failed to init device\n");
3778                                 liquidio_deinit_pci();
3779                                 return -EIO;
3780                         }
3781                 }
3782         }
3783
3784         for (i = 0; i < MAX_OCTEON_DEVICES; i++) {
3785                 hs = &handshake[i];
3786                 if (hs->pci_dev) {
3787                         wait_for_completion_timeout(&hs->started,
3788                                                     msecs_to_jiffies(30000));
3789                         if (!hs->started_ok) {
3790                                 /* starter handshake failed */
3791                                 dev_err(&hs->pci_dev->dev,
3792                                         "Firmware failed to start\n");
3793                                 liquidio_deinit_pci();
3794                                 return -EIO;
3795                         }
3796                 }
3797         }
3798
3799         return 0;
3800 }
3801
3802 static int lio_nic_info(struct octeon_recv_info *recv_info, void *buf)
3803 {
3804         struct octeon_device *oct = (struct octeon_device *)buf;
3805         struct octeon_recv_pkt *recv_pkt = recv_info->recv_pkt;
3806         int gmxport = 0;
3807         union oct_link_status *ls;
3808         int i;
3809
3810         if (recv_pkt->buffer_size[0] != sizeof(*ls)) {
3811                 dev_err(&oct->pci_dev->dev, "Malformed NIC_INFO, len=%d, ifidx=%d\n",
3812                         recv_pkt->buffer_size[0],
3813                         recv_pkt->rh.r_nic_info.gmxport);
3814                 goto nic_info_err;
3815         }
3816
3817         gmxport = recv_pkt->rh.r_nic_info.gmxport;
3818         ls = (union oct_link_status *)get_rbd(recv_pkt->buffer_ptr[0]);
3819
3820         octeon_swap_8B_data((u64 *)ls, (sizeof(union oct_link_status)) >> 3);
3821         for (i = 0; i < oct->ifcount; i++) {
3822                 if (oct->props[i].gmxport == gmxport) {
3823                         update_link_status(oct->props[i].netdev, ls);
3824                         break;
3825                 }
3826         }
3827
3828 nic_info_err:
3829         for (i = 0; i < recv_pkt->buffer_count; i++)
3830                 recv_buffer_free(recv_pkt->buffer_ptr[i]);
3831         octeon_free_recv_info(recv_info);
3832         return 0;
3833 }
3834
3835 /**
3836  * \brief Setup network interfaces
3837  * @param octeon_dev  octeon device
3838  *
3839  * Called during init time for each device. It assumes the NIC
3840  * is already up and running.  The link information for each
3841  * interface is passed in link_info.
3842  */
3843 static int setup_nic_devices(struct octeon_device *octeon_dev)
3844 {
3845         struct lio *lio = NULL;
3846         struct net_device *netdev;
3847         u8 mac[6], i, j;
3848         struct octeon_soft_command *sc;
3849         struct liquidio_if_cfg_context *ctx;
3850         struct liquidio_if_cfg_resp *resp;
3851         struct octdev_props *props;
3852         int retval, num_iqueues, num_oqueues;
3853         union oct_nic_if_cfg if_cfg;
3854         unsigned int base_queue;
3855         unsigned int gmx_port_id;
3856         u32 resp_size, ctx_size, data_size;
3857         u32 ifidx_or_pfnum;
3858         struct lio_version *vdata;
3859
3860         /* This is to handle link status changes */
3861         octeon_register_dispatch_fn(octeon_dev, OPCODE_NIC,
3862                                     OPCODE_NIC_INFO,
3863                                     lio_nic_info, octeon_dev);
3864
3865         /* REQTYPE_RESP_NET and REQTYPE_SOFT_COMMAND do not have free functions.
3866          * They are handled directly.
3867          */
3868         octeon_register_reqtype_free_fn(octeon_dev, REQTYPE_NORESP_NET,
3869                                         free_netbuf);
3870
3871         octeon_register_reqtype_free_fn(octeon_dev, REQTYPE_NORESP_NET_SG,
3872                                         free_netsgbuf);
3873
3874         octeon_register_reqtype_free_fn(octeon_dev, REQTYPE_RESP_NET_SG,
3875                                         free_netsgbuf_with_resp);
3876
3877         for (i = 0; i < octeon_dev->ifcount; i++) {
3878                 resp_size = sizeof(struct liquidio_if_cfg_resp);
3879                 ctx_size = sizeof(struct liquidio_if_cfg_context);
3880                 data_size = sizeof(struct lio_version);
3881                 sc = (struct octeon_soft_command *)
3882                         octeon_alloc_soft_command(octeon_dev, data_size,
3883                                                   resp_size, ctx_size);
3884                 resp = (struct liquidio_if_cfg_resp *)sc->virtrptr;
3885                 ctx  = (struct liquidio_if_cfg_context *)sc->ctxptr;
3886                 vdata = (struct lio_version *)sc->virtdptr;
3887
3888                 *((u64 *)vdata) = 0;
3889                 vdata->major = cpu_to_be16(LIQUIDIO_BASE_MAJOR_VERSION);
3890                 vdata->minor = cpu_to_be16(LIQUIDIO_BASE_MINOR_VERSION);
3891                 vdata->micro = cpu_to_be16(LIQUIDIO_BASE_MICRO_VERSION);
3892
3893                 if (OCTEON_CN23XX_PF(octeon_dev)) {
3894                         num_iqueues = octeon_dev->sriov_info.num_pf_rings;
3895                         num_oqueues = octeon_dev->sriov_info.num_pf_rings;
3896                         base_queue = octeon_dev->sriov_info.pf_srn;
3897
3898                         gmx_port_id = octeon_dev->pf_num;
3899                         ifidx_or_pfnum = octeon_dev->pf_num;
3900                 } else {
3901                         num_iqueues = CFG_GET_NUM_TXQS_NIC_IF(
3902                                                 octeon_get_conf(octeon_dev), i);
3903                         num_oqueues = CFG_GET_NUM_RXQS_NIC_IF(
3904                                                 octeon_get_conf(octeon_dev), i);
3905                         base_queue = CFG_GET_BASE_QUE_NIC_IF(
3906                                                 octeon_get_conf(octeon_dev), i);
3907                         gmx_port_id = CFG_GET_GMXID_NIC_IF(
3908                                                 octeon_get_conf(octeon_dev), i);
3909                         ifidx_or_pfnum = i;
3910                 }
3911
3912                 dev_dbg(&octeon_dev->pci_dev->dev,
3913                         "requesting config for interface %d, iqs %d, oqs %d\n",
3914                         ifidx_or_pfnum, num_iqueues, num_oqueues);
3915                 WRITE_ONCE(ctx->cond, 0);
3916                 ctx->octeon_id = lio_get_device_id(octeon_dev);
3917                 init_waitqueue_head(&ctx->wc);
3918
3919                 if_cfg.u64 = 0;
3920                 if_cfg.s.num_iqueues = num_iqueues;
3921                 if_cfg.s.num_oqueues = num_oqueues;
3922                 if_cfg.s.base_queue = base_queue;
3923                 if_cfg.s.gmx_port_id = gmx_port_id;
3924
3925                 sc->iq_no = 0;
3926
3927                 octeon_prepare_soft_command(octeon_dev, sc, OPCODE_NIC,
3928                                             OPCODE_NIC_IF_CFG, 0,
3929                                             if_cfg.u64, 0);
3930
3931                 sc->callback = if_cfg_callback;
3932                 sc->callback_arg = sc;
3933                 sc->wait_time = 3000;
3934
3935                 retval = octeon_send_soft_command(octeon_dev, sc);
3936                 if (retval == IQ_SEND_FAILED) {
3937                         dev_err(&octeon_dev->pci_dev->dev,
3938                                 "iq/oq config failed status: %x\n",
3939                                 retval);
3940                         /* Soft instr is freed by driver in case of failure. */
3941                         goto setup_nic_dev_fail;
3942                 }
3943
3944                 /* Sleep on a wait queue till the cond flag indicates that the
3945                  * response arrived or timed-out.
3946                  */
3947                 if (sleep_cond(&ctx->wc, &ctx->cond) == -EINTR) {
3948                         dev_err(&octeon_dev->pci_dev->dev, "Wait interrupted\n");
3949                         goto setup_nic_wait_intr;
3950                 }
3951
3952                 retval = resp->status;
3953                 if (retval) {
3954                         dev_err(&octeon_dev->pci_dev->dev, "iq/oq config failed\n");
3955                         goto setup_nic_dev_fail;
3956                 }
3957
3958                 octeon_swap_8B_data((u64 *)(&resp->cfg_info),
3959                                     (sizeof(struct liquidio_if_cfg_info)) >> 3);
3960
3961                 num_iqueues = hweight64(resp->cfg_info.iqmask);
3962                 num_oqueues = hweight64(resp->cfg_info.oqmask);
3963
3964                 if (!(num_iqueues) || !(num_oqueues)) {
3965                         dev_err(&octeon_dev->pci_dev->dev,
3966                                 "Got bad iqueues (%016llx) or oqueues (%016llx) from firmware.\n",
3967                                 resp->cfg_info.iqmask,
3968                                 resp->cfg_info.oqmask);
3969                         goto setup_nic_dev_fail;
3970                 }
3971                 dev_dbg(&octeon_dev->pci_dev->dev,
3972                         "interface %d, iqmask %016llx, oqmask %016llx, numiqueues %d, numoqueues %d\n",
3973                         i, resp->cfg_info.iqmask, resp->cfg_info.oqmask,
3974                         num_iqueues, num_oqueues);
3975                 netdev = alloc_etherdev_mq(LIO_SIZE, num_iqueues);
3976
3977                 if (!netdev) {
3978                         dev_err(&octeon_dev->pci_dev->dev, "Device allocation failed\n");
3979                         goto setup_nic_dev_fail;
3980                 }
3981
3982                 SET_NETDEV_DEV(netdev, &octeon_dev->pci_dev->dev);
3983
3984                 /* Associate the routines that will handle different
3985                  * netdev tasks.
3986                  */
3987                 netdev->netdev_ops = &lionetdevops;
3988
3989                 lio = GET_LIO(netdev);
3990
3991                 memset(lio, 0, sizeof(struct lio));
3992
3993                 lio->ifidx = ifidx_or_pfnum;
3994
3995                 props = &octeon_dev->props[i];
3996                 props->gmxport = resp->cfg_info.linfo.gmxport;
3997                 props->netdev = netdev;
3998
3999                 lio->linfo.num_rxpciq = num_oqueues;
4000                 lio->linfo.num_txpciq = num_iqueues;
4001                 for (j = 0; j < num_oqueues; j++) {
4002                         lio->linfo.rxpciq[j].u64 =
4003                                 resp->cfg_info.linfo.rxpciq[j].u64;
4004                 }
4005                 for (j = 0; j < num_iqueues; j++) {
4006                         lio->linfo.txpciq[j].u64 =
4007                                 resp->cfg_info.linfo.txpciq[j].u64;
4008                 }
4009                 lio->linfo.hw_addr = resp->cfg_info.linfo.hw_addr;
4010                 lio->linfo.gmxport = resp->cfg_info.linfo.gmxport;
4011                 lio->linfo.link.u64 = resp->cfg_info.linfo.link.u64;
4012
4013                 lio->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
4014
4015                 if (OCTEON_CN23XX_PF(octeon_dev) ||
4016                     OCTEON_CN6XXX(octeon_dev)) {
4017                         lio->dev_capability = NETIF_F_HIGHDMA
4018                                               | NETIF_F_IP_CSUM
4019                                               | NETIF_F_IPV6_CSUM
4020                                               | NETIF_F_SG | NETIF_F_RXCSUM
4021                                               | NETIF_F_GRO
4022                                               | NETIF_F_TSO | NETIF_F_TSO6
4023                                               | NETIF_F_LRO;
4024                 }
4025                 netif_set_gso_max_size(netdev, OCTNIC_GSO_MAX_SIZE);
4026
4027                 /*  Copy of transmit encapsulation capabilities:
4028                  *  TSO, TSO6, Checksums for this device
4029                  */
4030                 lio->enc_dev_capability = NETIF_F_IP_CSUM
4031                                           | NETIF_F_IPV6_CSUM
4032                                           | NETIF_F_GSO_UDP_TUNNEL
4033                                           | NETIF_F_HW_CSUM | NETIF_F_SG
4034                                           | NETIF_F_RXCSUM
4035                                           | NETIF_F_TSO | NETIF_F_TSO6
4036                                           | NETIF_F_LRO;
4037
4038                 netdev->hw_enc_features = (lio->enc_dev_capability &
4039                                            ~NETIF_F_LRO);
4040
4041                 lio->dev_capability |= NETIF_F_GSO_UDP_TUNNEL;
4042
4043                 netdev->vlan_features = lio->dev_capability;
4044                 /* Add any unchangeable hw features */
4045                 lio->dev_capability |=  NETIF_F_HW_VLAN_CTAG_FILTER |
4046                                         NETIF_F_HW_VLAN_CTAG_RX |
4047                                         NETIF_F_HW_VLAN_CTAG_TX;
4048
4049                 netdev->features = (lio->dev_capability & ~NETIF_F_LRO);
4050
4051                 netdev->hw_features = lio->dev_capability;
4052                 /*HW_VLAN_RX and HW_VLAN_FILTER is always on*/
4053                 netdev->hw_features = netdev->hw_features &
4054                         ~NETIF_F_HW_VLAN_CTAG_RX;
4055
4056                 /* MTU range: 68 - 16000 */
4057                 netdev->min_mtu = LIO_MIN_MTU_SIZE;
4058                 netdev->max_mtu = LIO_MAX_MTU_SIZE;
4059
4060                 /* Point to the  properties for octeon device to which this
4061                  * interface belongs.
4062                  */
4063                 lio->oct_dev = octeon_dev;
4064                 lio->octprops = props;
4065                 lio->netdev = netdev;
4066
4067                 dev_dbg(&octeon_dev->pci_dev->dev,
4068                         "if%d gmx: %d hw_addr: 0x%llx\n", i,
4069                         lio->linfo.gmxport, CVM_CAST64(lio->linfo.hw_addr));
4070
4071                 for (j = 0; j < octeon_dev->sriov_info.max_vfs; j++) {
4072                         u8 vfmac[ETH_ALEN];
4073
4074                         random_ether_addr(&vfmac[0]);
4075                         if (__liquidio_set_vf_mac(netdev, j,
4076                                                   &vfmac[0], false)) {
4077                                 dev_err(&octeon_dev->pci_dev->dev,
4078                                         "Error setting VF%d MAC address\n",
4079                                         j);
4080                                 goto setup_nic_dev_fail;
4081                         }
4082                 }
4083
4084                 /* 64-bit swap required on LE machines */
4085                 octeon_swap_8B_data(&lio->linfo.hw_addr, 1);
4086                 for (j = 0; j < 6; j++)
4087                         mac[j] = *((u8 *)(((u8 *)&lio->linfo.hw_addr) + 2 + j));
4088
4089                 /* Copy MAC Address to OS network device structure */
4090
4091                 ether_addr_copy(netdev->dev_addr, mac);
4092
4093                 /* By default all interfaces on a single Octeon uses the same
4094                  * tx and rx queues
4095                  */
4096                 lio->txq = lio->linfo.txpciq[0].s.q_no;
4097                 lio->rxq = lio->linfo.rxpciq[0].s.q_no;
4098                 if (setup_io_queues(octeon_dev, i)) {
4099                         dev_err(&octeon_dev->pci_dev->dev, "I/O queues creation failed\n");
4100                         goto setup_nic_dev_fail;
4101                 }
4102
4103                 ifstate_set(lio, LIO_IFSTATE_DROQ_OPS);
4104
4105                 lio->tx_qsize = octeon_get_tx_qsize(octeon_dev, lio->txq);
4106                 lio->rx_qsize = octeon_get_rx_qsize(octeon_dev, lio->rxq);
4107
4108                 if (setup_glists(octeon_dev, lio, num_iqueues)) {
4109                         dev_err(&octeon_dev->pci_dev->dev,
4110                                 "Gather list allocation failed\n");
4111                         goto setup_nic_dev_fail;
4112                 }
4113
4114                 /* Register ethtool support */
4115                 liquidio_set_ethtool_ops(netdev);
4116                 if (lio->oct_dev->chip_id == OCTEON_CN23XX_PF_VID)
4117                         octeon_dev->priv_flags = OCT_PRIV_FLAG_DEFAULT;
4118                 else
4119                         octeon_dev->priv_flags = 0x0;
4120
4121                 if (netdev->features & NETIF_F_LRO)
4122                         liquidio_set_feature(netdev, OCTNET_CMD_LRO_ENABLE,
4123                                              OCTNIC_LROIPV4 | OCTNIC_LROIPV6);
4124
4125                 liquidio_set_feature(netdev, OCTNET_CMD_ENABLE_VLAN_FILTER, 0);
4126
4127                 if ((debug != -1) && (debug & NETIF_MSG_HW))
4128                         liquidio_set_feature(netdev,
4129                                              OCTNET_CMD_VERBOSE_ENABLE, 0);
4130
4131                 if (setup_link_status_change_wq(netdev))
4132                         goto setup_nic_dev_fail;
4133
4134                 /* Register the network device with the OS */
4135                 if (register_netdev(netdev)) {
4136                         dev_err(&octeon_dev->pci_dev->dev, "Device registration failed\n");
4137                         goto setup_nic_dev_fail;
4138                 }
4139
4140                 dev_dbg(&octeon_dev->pci_dev->dev,
4141                         "Setup NIC ifidx:%d mac:%02x%02x%02x%02x%02x%02x\n",
4142                         i, mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
4143                 netif_carrier_off(netdev);
4144                 lio->link_changes++;
4145
4146                 ifstate_set(lio, LIO_IFSTATE_REGISTERED);
4147
4148                 /* Sending command to firmware to enable Rx checksum offload
4149                  * by default at the time of setup of Liquidio driver for
4150                  * this device
4151                  */
4152                 liquidio_set_rxcsum_command(netdev, OCTNET_CMD_TNL_RX_CSUM_CTL,
4153                                             OCTNET_CMD_RXCSUM_ENABLE);
4154                 liquidio_set_feature(netdev, OCTNET_CMD_TNL_TX_CSUM_CTL,
4155                                      OCTNET_CMD_TXCSUM_ENABLE);
4156
4157                 dev_dbg(&octeon_dev->pci_dev->dev,
4158                         "NIC ifidx:%d Setup successful\n", i);
4159
4160                 octeon_free_soft_command(octeon_dev, sc);
4161         }
4162
4163         return 0;
4164
4165 setup_nic_dev_fail:
4166
4167         octeon_free_soft_command(octeon_dev, sc);
4168
4169 setup_nic_wait_intr:
4170
4171         while (i--) {
4172                 dev_err(&octeon_dev->pci_dev->dev,
4173                         "NIC ifidx:%d Setup failed\n", i);
4174                 liquidio_destroy_nic_device(octeon_dev, i);
4175         }
4176         return -ENODEV;
4177 }
4178
4179 #ifdef CONFIG_PCI_IOV
4180 static int octeon_enable_sriov(struct octeon_device *oct)
4181 {
4182         unsigned int num_vfs_alloced = oct->sriov_info.num_vfs_alloced;
4183         struct pci_dev *vfdev;
4184         int err;
4185         u32 u;
4186
4187         if (OCTEON_CN23XX_PF(oct) && num_vfs_alloced) {
4188                 err = pci_enable_sriov(oct->pci_dev,
4189                                        oct->sriov_info.num_vfs_alloced);
4190                 if (err) {
4191                         dev_err(&oct->pci_dev->dev,
4192                                 "OCTEON: Failed to enable PCI sriov: %d\n",
4193                                 err);
4194                         oct->sriov_info.num_vfs_alloced = 0;
4195                         return err;
4196                 }
4197                 oct->sriov_info.sriov_enabled = 1;
4198
4199                 /* init lookup table that maps DPI ring number to VF pci_dev
4200                  * struct pointer
4201                  */
4202                 u = 0;
4203                 vfdev = pci_get_device(PCI_VENDOR_ID_CAVIUM,
4204                                        OCTEON_CN23XX_VF_VID, NULL);
4205                 while (vfdev) {
4206                         if (vfdev->is_virtfn &&
4207                             (vfdev->physfn == oct->pci_dev)) {
4208                                 oct->sriov_info.dpiring_to_vfpcidev_lut[u] =
4209                                         vfdev;
4210                                 u += oct->sriov_info.rings_per_vf;
4211                         }
4212                         vfdev = pci_get_device(PCI_VENDOR_ID_CAVIUM,
4213                                                OCTEON_CN23XX_VF_VID, vfdev);
4214                 }
4215         }
4216
4217         return num_vfs_alloced;
4218 }
4219
4220 static int lio_pci_sriov_disable(struct octeon_device *oct)
4221 {
4222         int u;
4223
4224         if (pci_vfs_assigned(oct->pci_dev)) {
4225                 dev_err(&oct->pci_dev->dev, "VFs are still assigned to VMs.\n");
4226                 return -EPERM;
4227         }
4228
4229         pci_disable_sriov(oct->pci_dev);
4230
4231         u = 0;
4232         while (u < MAX_POSSIBLE_VFS) {
4233                 oct->sriov_info.dpiring_to_vfpcidev_lut[u] = NULL;
4234                 u += oct->sriov_info.rings_per_vf;
4235         }
4236
4237         oct->sriov_info.num_vfs_alloced = 0;
4238         dev_info(&oct->pci_dev->dev, "oct->pf_num:%d disabled VFs\n",
4239                  oct->pf_num);
4240
4241         return 0;
4242 }
4243
4244 static int liquidio_enable_sriov(struct pci_dev *dev, int num_vfs)
4245 {
4246         struct octeon_device *oct = pci_get_drvdata(dev);
4247         int ret = 0;
4248
4249         if ((num_vfs == oct->sriov_info.num_vfs_alloced) &&
4250             (oct->sriov_info.sriov_enabled)) {
4251                 dev_info(&oct->pci_dev->dev, "oct->pf_num:%d already enabled num_vfs:%d\n",
4252                          oct->pf_num, num_vfs);
4253                 return 0;
4254         }
4255
4256         if (!num_vfs) {
4257                 ret = lio_pci_sriov_disable(oct);
4258         } else if (num_vfs > oct->sriov_info.max_vfs) {
4259                 dev_err(&oct->pci_dev->dev,
4260                         "OCTEON: Max allowed VFs:%d user requested:%d",
4261                         oct->sriov_info.max_vfs, num_vfs);
4262                 ret = -EPERM;
4263         } else {
4264                 oct->sriov_info.num_vfs_alloced = num_vfs;
4265                 ret = octeon_enable_sriov(oct);
4266                 dev_info(&oct->pci_dev->dev, "oct->pf_num:%d num_vfs:%d\n",
4267                          oct->pf_num, num_vfs);
4268         }
4269
4270         return ret;
4271 }
4272 #endif
4273
4274 /**
4275  * \brief initialize the NIC
4276  * @param oct octeon device
4277  *
4278  * This initialization routine is called once the Octeon device application is
4279  * up and running
4280  */
4281 static int liquidio_init_nic_module(struct octeon_device *oct)
4282 {
4283         struct oct_intrmod_cfg *intrmod_cfg;
4284         int i, retval = 0;
4285         int num_nic_ports = CFG_GET_NUM_NIC_PORTS(octeon_get_conf(oct));
4286
4287         dev_dbg(&oct->pci_dev->dev, "Initializing network interfaces\n");
4288
4289         /* only default iq and oq were initialized
4290          * initialize the rest as well
4291          */
4292         /* run port_config command for each port */
4293         oct->ifcount = num_nic_ports;
4294
4295         memset(oct->props, 0, sizeof(struct octdev_props) * num_nic_ports);
4296
4297         for (i = 0; i < MAX_OCTEON_LINKS; i++)
4298                 oct->props[i].gmxport = -1;
4299
4300         retval = setup_nic_devices(oct);
4301         if (retval) {
4302                 dev_err(&oct->pci_dev->dev, "Setup NIC devices failed\n");
4303                 goto octnet_init_failure;
4304         }
4305
4306         liquidio_ptp_init(oct);
4307
4308         /* Initialize interrupt moderation params */
4309         intrmod_cfg = &((struct octeon_device *)oct)->intrmod;
4310         intrmod_cfg->rx_enable = 1;
4311         intrmod_cfg->check_intrvl = LIO_INTRMOD_CHECK_INTERVAL;
4312         intrmod_cfg->maxpkt_ratethr = LIO_INTRMOD_MAXPKT_RATETHR;
4313         intrmod_cfg->minpkt_ratethr = LIO_INTRMOD_MINPKT_RATETHR;
4314         intrmod_cfg->rx_maxcnt_trigger = LIO_INTRMOD_RXMAXCNT_TRIGGER;
4315         intrmod_cfg->rx_maxtmr_trigger = LIO_INTRMOD_RXMAXTMR_TRIGGER;
4316         intrmod_cfg->rx_mintmr_trigger = LIO_INTRMOD_RXMINTMR_TRIGGER;
4317         intrmod_cfg->rx_mincnt_trigger = LIO_INTRMOD_RXMINCNT_TRIGGER;
4318         intrmod_cfg->tx_enable = 1;
4319         intrmod_cfg->tx_maxcnt_trigger = LIO_INTRMOD_TXMAXCNT_TRIGGER;
4320         intrmod_cfg->tx_mincnt_trigger = LIO_INTRMOD_TXMINCNT_TRIGGER;
4321         intrmod_cfg->rx_frames = CFG_GET_OQ_INTR_PKT(octeon_get_conf(oct));
4322         intrmod_cfg->rx_usecs = CFG_GET_OQ_INTR_TIME(octeon_get_conf(oct));
4323         intrmod_cfg->tx_frames = CFG_GET_IQ_INTR_PKT(octeon_get_conf(oct));
4324         dev_dbg(&oct->pci_dev->dev, "Network interfaces ready\n");
4325
4326         return retval;
4327
4328 octnet_init_failure:
4329
4330         oct->ifcount = 0;
4331
4332         return retval;
4333 }
4334
4335 /**
4336  * \brief starter callback that invokes the remaining initialization work after
4337  * the NIC is up and running.
4338  * @param octptr  work struct work_struct
4339  */
4340 static void nic_starter(struct work_struct *work)
4341 {
4342         struct octeon_device *oct;
4343         struct cavium_wk *wk = (struct cavium_wk *)work;
4344
4345         oct = (struct octeon_device *)wk->ctxptr;
4346
4347         if (atomic_read(&oct->status) == OCT_DEV_RUNNING)
4348                 return;
4349
4350         /* If the status of the device is CORE_OK, the core
4351          * application has reported its application type. Call
4352          * any registered handlers now and move to the RUNNING
4353          * state.
4354          */
4355         if (atomic_read(&oct->status) != OCT_DEV_CORE_OK) {
4356                 schedule_delayed_work(&oct->nic_poll_work.work,
4357                                       LIQUIDIO_STARTER_POLL_INTERVAL_MS);
4358                 return;
4359         }
4360
4361         atomic_set(&oct->status, OCT_DEV_RUNNING);
4362
4363         if (oct->app_mode && oct->app_mode == CVM_DRV_NIC_APP) {
4364                 dev_dbg(&oct->pci_dev->dev, "Starting NIC module\n");
4365
4366                 if (liquidio_init_nic_module(oct))
4367                         dev_err(&oct->pci_dev->dev, "NIC initialization failed\n");
4368                 else
4369                         handshake[oct->octeon_id].started_ok = 1;
4370         } else {
4371                 dev_err(&oct->pci_dev->dev,
4372                         "Unexpected application running on NIC (%d). Check firmware.\n",
4373                         oct->app_mode);
4374         }
4375
4376         complete(&handshake[oct->octeon_id].started);
4377 }
4378
4379 static int
4380 octeon_recv_vf_drv_notice(struct octeon_recv_info *recv_info, void *buf)
4381 {
4382         struct octeon_device *oct = (struct octeon_device *)buf;
4383         struct octeon_recv_pkt *recv_pkt = recv_info->recv_pkt;
4384         int i, notice, vf_idx;
4385         u64 *data, vf_num;
4386
4387         notice = recv_pkt->rh.r.ossp;
4388         data = (u64 *)get_rbd(recv_pkt->buffer_ptr[0]);
4389
4390         /* the first 64-bit word of data is the vf_num */
4391         vf_num = data[0];
4392         octeon_swap_8B_data(&vf_num, 1);
4393         vf_idx = (int)vf_num - 1;
4394
4395         if (notice == VF_DRV_LOADED) {
4396                 if (!(oct->sriov_info.vf_drv_loaded_mask & BIT_ULL(vf_idx))) {
4397                         oct->sriov_info.vf_drv_loaded_mask |= BIT_ULL(vf_idx);
4398                         dev_info(&oct->pci_dev->dev,
4399                                  "driver for VF%d was loaded\n", vf_idx);
4400                         try_module_get(THIS_MODULE);
4401                 }
4402         } else if (notice == VF_DRV_REMOVED) {
4403                 if (oct->sriov_info.vf_drv_loaded_mask & BIT_ULL(vf_idx)) {
4404                         oct->sriov_info.vf_drv_loaded_mask &= ~BIT_ULL(vf_idx);
4405                         dev_info(&oct->pci_dev->dev,
4406                                  "driver for VF%d was removed\n", vf_idx);
4407                         module_put(THIS_MODULE);
4408                 }
4409         } else if (notice == VF_DRV_MACADDR_CHANGED) {
4410                 u8 *b = (u8 *)&data[1];
4411
4412                 oct->sriov_info.vf_macaddr[vf_idx] = data[1];
4413                 dev_info(&oct->pci_dev->dev,
4414                          "VF driver changed VF%d's MAC address to %pM\n",
4415                          vf_idx, b + 2);
4416         }
4417
4418         for (i = 0; i < recv_pkt->buffer_count; i++)
4419                 recv_buffer_free(recv_pkt->buffer_ptr[i]);
4420         octeon_free_recv_info(recv_info);
4421
4422         return 0;
4423 }
4424
4425 /**
4426  * \brief Device initialization for each Octeon device that is probed
4427  * @param octeon_dev  octeon device
4428  */
4429 static int octeon_device_init(struct octeon_device *octeon_dev)
4430 {
4431         int j, ret;
4432         int fw_loaded = 0;
4433         char bootcmd[] = "\n";
4434         struct octeon_device_priv *oct_priv =
4435                 (struct octeon_device_priv *)octeon_dev->priv;
4436         atomic_set(&octeon_dev->status, OCT_DEV_BEGIN_STATE);
4437
4438         /* Enable access to the octeon device and make its DMA capability
4439          * known to the OS.
4440          */
4441         if (octeon_pci_os_setup(octeon_dev))
4442                 return 1;
4443
4444         atomic_set(&octeon_dev->status, OCT_DEV_PCI_ENABLE_DONE);
4445
4446         /* Identify the Octeon type and map the BAR address space. */
4447         if (octeon_chip_specific_setup(octeon_dev)) {
4448                 dev_err(&octeon_dev->pci_dev->dev, "Chip specific setup failed\n");
4449                 return 1;
4450         }
4451
4452         atomic_set(&octeon_dev->status, OCT_DEV_PCI_MAP_DONE);
4453
4454         octeon_dev->app_mode = CVM_DRV_INVALID_APP;
4455
4456         if (OCTEON_CN23XX_PF(octeon_dev)) {
4457                 if (!cn23xx_fw_loaded(octeon_dev)) {
4458                         fw_loaded = 0;
4459                         /* Do a soft reset of the Octeon device. */
4460                         if (octeon_dev->fn_list.soft_reset(octeon_dev))
4461                                 return 1;
4462                         /* things might have changed */
4463                         if (!cn23xx_fw_loaded(octeon_dev))
4464                                 fw_loaded = 0;
4465                         else
4466                                 fw_loaded = 1;
4467                 } else {
4468                         fw_loaded = 1;
4469                 }
4470         } else if (octeon_dev->fn_list.soft_reset(octeon_dev)) {
4471                 return 1;
4472         }
4473
4474         /* Initialize the dispatch mechanism used to push packets arriving on
4475          * Octeon Output queues.
4476          */
4477         if (octeon_init_dispatch_list(octeon_dev))
4478                 return 1;
4479
4480         octeon_register_dispatch_fn(octeon_dev, OPCODE_NIC,
4481                                     OPCODE_NIC_CORE_DRV_ACTIVE,
4482                                     octeon_core_drv_init,
4483                                     octeon_dev);
4484
4485         octeon_register_dispatch_fn(octeon_dev, OPCODE_NIC,
4486                                     OPCODE_NIC_VF_DRV_NOTICE,
4487                                     octeon_recv_vf_drv_notice, octeon_dev);
4488         INIT_DELAYED_WORK(&octeon_dev->nic_poll_work.work, nic_starter);
4489         octeon_dev->nic_poll_work.ctxptr = (void *)octeon_dev;
4490         schedule_delayed_work(&octeon_dev->nic_poll_work.work,
4491                               LIQUIDIO_STARTER_POLL_INTERVAL_MS);
4492
4493         atomic_set(&octeon_dev->status, OCT_DEV_DISPATCH_INIT_DONE);
4494
4495         if (octeon_set_io_queues_off(octeon_dev)) {
4496                 dev_err(&octeon_dev->pci_dev->dev, "setting io queues off failed\n");
4497                 return 1;
4498         }
4499
4500         if (OCTEON_CN23XX_PF(octeon_dev)) {
4501                 ret = octeon_dev->fn_list.setup_device_regs(octeon_dev);
4502                 if (ret) {
4503                         dev_err(&octeon_dev->pci_dev->dev, "OCTEON: Failed to configure device registers\n");
4504                         return ret;
4505                 }
4506         }
4507
4508         /* Initialize soft command buffer pool
4509          */
4510         if (octeon_setup_sc_buffer_pool(octeon_dev)) {
4511                 dev_err(&octeon_dev->pci_dev->dev, "sc buffer pool allocation failed\n");
4512                 return 1;
4513         }
4514         atomic_set(&octeon_dev->status, OCT_DEV_SC_BUFF_POOL_INIT_DONE);
4515
4516         /*  Setup the data structures that manage this Octeon's Input queues. */
4517         if (octeon_setup_instr_queues(octeon_dev)) {
4518                 dev_err(&octeon_dev->pci_dev->dev,
4519                         "instruction queue initialization failed\n");
4520                 return 1;
4521         }
4522         atomic_set(&octeon_dev->status, OCT_DEV_INSTR_QUEUE_INIT_DONE);
4523
4524         /* Initialize lists to manage the requests of different types that
4525          * arrive from user & kernel applications for this octeon device.
4526          */
4527         if (octeon_setup_response_list(octeon_dev)) {
4528                 dev_err(&octeon_dev->pci_dev->dev, "Response list allocation failed\n");
4529                 return 1;
4530         }
4531         atomic_set(&octeon_dev->status, OCT_DEV_RESP_LIST_INIT_DONE);
4532
4533         if (octeon_setup_output_queues(octeon_dev)) {
4534                 dev_err(&octeon_dev->pci_dev->dev, "Output queue initialization failed\n");
4535                 return 1;
4536         }
4537
4538         atomic_set(&octeon_dev->status, OCT_DEV_DROQ_INIT_DONE);
4539
4540         if (OCTEON_CN23XX_PF(octeon_dev)) {
4541                 if (octeon_dev->fn_list.setup_mbox(octeon_dev)) {
4542                         dev_err(&octeon_dev->pci_dev->dev, "OCTEON: Mailbox setup failed\n");
4543                         return 1;
4544                 }
4545                 atomic_set(&octeon_dev->status, OCT_DEV_MBOX_SETUP_DONE);
4546
4547                 if (octeon_allocate_ioq_vector(octeon_dev)) {
4548                         dev_err(&octeon_dev->pci_dev->dev, "OCTEON: ioq vector allocation failed\n");
4549                         return 1;
4550                 }
4551                 atomic_set(&octeon_dev->status, OCT_DEV_MSIX_ALLOC_VECTOR_DONE);
4552
4553         } else {
4554                 /* The input and output queue registers were setup earlier (the
4555                  * queues were not enabled). Any additional registers
4556                  * that need to be programmed should be done now.
4557                  */
4558                 ret = octeon_dev->fn_list.setup_device_regs(octeon_dev);
4559                 if (ret) {
4560                         dev_err(&octeon_dev->pci_dev->dev,
4561                                 "Failed to configure device registers\n");
4562                         return ret;
4563                 }
4564         }
4565
4566         /* Initialize the tasklet that handles output queue packet processing.*/
4567         dev_dbg(&octeon_dev->pci_dev->dev, "Initializing droq tasklet\n");
4568         tasklet_init(&oct_priv->droq_tasklet, octeon_droq_bh,
4569                      (unsigned long)octeon_dev);
4570
4571         /* Setup the interrupt handler and record the INT SUM register address
4572          */
4573         if (octeon_setup_interrupt(octeon_dev))
4574                 return 1;
4575
4576         /* Enable Octeon device interrupts */
4577         octeon_dev->fn_list.enable_interrupt(octeon_dev, OCTEON_ALL_INTR);
4578
4579         atomic_set(&octeon_dev->status, OCT_DEV_INTR_SET_DONE);
4580
4581         /* Enable the input and output queues for this Octeon device */
4582         ret = octeon_dev->fn_list.enable_io_queues(octeon_dev);
4583         if (ret) {
4584                 dev_err(&octeon_dev->pci_dev->dev, "Failed to enable input/output queues");
4585                 return ret;
4586         }
4587
4588         atomic_set(&octeon_dev->status, OCT_DEV_IO_QUEUES_DONE);
4589
4590         if ((!OCTEON_CN23XX_PF(octeon_dev)) || !fw_loaded) {
4591                 dev_dbg(&octeon_dev->pci_dev->dev, "Waiting for DDR initialization...\n");
4592                 if (!ddr_timeout) {
4593                         dev_info(&octeon_dev->pci_dev->dev,
4594                                  "WAITING. Set ddr_timeout to non-zero value to proceed with initialization.\n");
4595                 }
4596
4597                 schedule_timeout_uninterruptible(HZ * LIO_RESET_SECS);
4598
4599                 /* Wait for the octeon to initialize DDR after the soft-reset.*/
4600                 while (!ddr_timeout) {
4601                         set_current_state(TASK_INTERRUPTIBLE);
4602                         if (schedule_timeout(HZ / 10)) {
4603                                 /* user probably pressed Control-C */
4604                                 return 1;
4605                         }
4606                 }
4607                 ret = octeon_wait_for_ddr_init(octeon_dev, &ddr_timeout);
4608                 if (ret) {
4609                         dev_err(&octeon_dev->pci_dev->dev,
4610                                 "DDR not initialized. Please confirm that board is configured to boot from Flash, ret: %d\n",
4611                                 ret);
4612                         return 1;
4613                 }
4614
4615                 if (octeon_wait_for_bootloader(octeon_dev, 1000)) {
4616                         dev_err(&octeon_dev->pci_dev->dev, "Board not responding\n");
4617                         return 1;
4618                 }
4619
4620                 /* Divert uboot to take commands from host instead. */
4621                 ret = octeon_console_send_cmd(octeon_dev, bootcmd, 50);
4622
4623                 dev_dbg(&octeon_dev->pci_dev->dev, "Initializing consoles\n");
4624                 ret = octeon_init_consoles(octeon_dev);
4625                 if (ret) {
4626                         dev_err(&octeon_dev->pci_dev->dev, "Could not access board consoles\n");
4627                         return 1;
4628                 }
4629                 ret = octeon_add_console(octeon_dev, 0);
4630                 if (ret) {
4631                         dev_err(&octeon_dev->pci_dev->dev, "Could not access board console\n");
4632                         return 1;
4633                 }
4634
4635                 atomic_set(&octeon_dev->status, OCT_DEV_CONSOLE_INIT_DONE);
4636
4637                 dev_dbg(&octeon_dev->pci_dev->dev, "Loading firmware\n");
4638                 ret = load_firmware(octeon_dev);
4639                 if (ret) {
4640                         dev_err(&octeon_dev->pci_dev->dev, "Could not load firmware to board\n");
4641                         return 1;
4642                 }
4643                 /* set bit 1 of SLI_SCRATCH_1 to indicate that firmware is
4644                  * loaded
4645                  */
4646                 if (OCTEON_CN23XX_PF(octeon_dev))
4647                         octeon_write_csr64(octeon_dev, CN23XX_SLI_SCRATCH1,
4648                                            2ULL);
4649         }
4650
4651         handshake[octeon_dev->octeon_id].init_ok = 1;
4652         complete(&handshake[octeon_dev->octeon_id].init);
4653
4654         atomic_set(&octeon_dev->status, OCT_DEV_HOST_OK);
4655
4656         /* Send Credit for Octeon Output queues. Credits are always sent after
4657          * the output queue is enabled.
4658          */
4659         for (j = 0; j < octeon_dev->num_oqs; j++)
4660                 writel(octeon_dev->droq[j]->max_count,
4661                        octeon_dev->droq[j]->pkts_credit_reg);
4662
4663         /* Packets can start arriving on the output queues from this point. */
4664         return 0;
4665 }
4666
4667 /**
4668  * \brief Exits the module
4669  */
4670 static void __exit liquidio_exit(void)
4671 {
4672         liquidio_deinit_pci();
4673
4674         pr_info("LiquidIO network module is now unloaded\n");
4675 }
4676
4677 module_init(liquidio_init);
4678 module_exit(liquidio_exit);