Merge tag 'mfd-next-6.5' of git://git.kernel.org/pub/scm/linux/kernel/git/lee/mfd
[linux-block.git] / drivers / net / ethernet / broadcom / genet / bcmgenet.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Broadcom GENET (Gigabit Ethernet) controller driver
4  *
5  * Copyright (c) 2014-2020 Broadcom
6  */
7
8 #define pr_fmt(fmt)                             "bcmgenet: " fmt
9
10 #include <linux/acpi.h>
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/sched.h>
14 #include <linux/types.h>
15 #include <linux/fcntl.h>
16 #include <linux/interrupt.h>
17 #include <linux/string.h>
18 #include <linux/if_ether.h>
19 #include <linux/init.h>
20 #include <linux/errno.h>
21 #include <linux/delay.h>
22 #include <linux/platform_device.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/pm.h>
25 #include <linux/clk.h>
26 #include <net/arp.h>
27
28 #include <linux/mii.h>
29 #include <linux/ethtool.h>
30 #include <linux/netdevice.h>
31 #include <linux/inetdevice.h>
32 #include <linux/etherdevice.h>
33 #include <linux/skbuff.h>
34 #include <linux/in.h>
35 #include <linux/ip.h>
36 #include <linux/ipv6.h>
37 #include <linux/phy.h>
38 #include <linux/platform_data/bcmgenet.h>
39
40 #include <asm/unaligned.h>
41
42 #include "bcmgenet.h"
43
44 /* Maximum number of hardware queues, downsized if needed */
45 #define GENET_MAX_MQ_CNT        4
46
47 /* Default highest priority queue for multi queue support */
48 #define GENET_Q0_PRIORITY       0
49
50 #define GENET_Q16_RX_BD_CNT     \
51         (TOTAL_DESC - priv->hw_params->rx_queues * priv->hw_params->rx_bds_per_q)
52 #define GENET_Q16_TX_BD_CNT     \
53         (TOTAL_DESC - priv->hw_params->tx_queues * priv->hw_params->tx_bds_per_q)
54
55 #define RX_BUF_LENGTH           2048
56 #define SKB_ALIGNMENT           32
57
58 /* Tx/Rx DMA register offset, skip 256 descriptors */
59 #define WORDS_PER_BD(p)         (p->hw_params->words_per_bd)
60 #define DMA_DESC_SIZE           (WORDS_PER_BD(priv) * sizeof(u32))
61
62 #define GENET_TDMA_REG_OFF      (priv->hw_params->tdma_offset + \
63                                 TOTAL_DESC * DMA_DESC_SIZE)
64
65 #define GENET_RDMA_REG_OFF      (priv->hw_params->rdma_offset + \
66                                 TOTAL_DESC * DMA_DESC_SIZE)
67
68 /* Forward declarations */
69 static void bcmgenet_set_rx_mode(struct net_device *dev);
70
71 static inline void bcmgenet_writel(u32 value, void __iomem *offset)
72 {
73         /* MIPS chips strapped for BE will automagically configure the
74          * peripheral registers for CPU-native byte order.
75          */
76         if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
77                 __raw_writel(value, offset);
78         else
79                 writel_relaxed(value, offset);
80 }
81
82 static inline u32 bcmgenet_readl(void __iomem *offset)
83 {
84         if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
85                 return __raw_readl(offset);
86         else
87                 return readl_relaxed(offset);
88 }
89
90 static inline void dmadesc_set_length_status(struct bcmgenet_priv *priv,
91                                              void __iomem *d, u32 value)
92 {
93         bcmgenet_writel(value, d + DMA_DESC_LENGTH_STATUS);
94 }
95
96 static inline void dmadesc_set_addr(struct bcmgenet_priv *priv,
97                                     void __iomem *d,
98                                     dma_addr_t addr)
99 {
100         bcmgenet_writel(lower_32_bits(addr), d + DMA_DESC_ADDRESS_LO);
101
102         /* Register writes to GISB bus can take couple hundred nanoseconds
103          * and are done for each packet, save these expensive writes unless
104          * the platform is explicitly configured for 64-bits/LPAE.
105          */
106 #ifdef CONFIG_PHYS_ADDR_T_64BIT
107         if (priv->hw_params->flags & GENET_HAS_40BITS)
108                 bcmgenet_writel(upper_32_bits(addr), d + DMA_DESC_ADDRESS_HI);
109 #endif
110 }
111
112 /* Combined address + length/status setter */
113 static inline void dmadesc_set(struct bcmgenet_priv *priv,
114                                void __iomem *d, dma_addr_t addr, u32 val)
115 {
116         dmadesc_set_addr(priv, d, addr);
117         dmadesc_set_length_status(priv, d, val);
118 }
119
120 #define GENET_VER_FMT   "%1d.%1d EPHY: 0x%04x"
121
122 #define GENET_MSG_DEFAULT       (NETIF_MSG_DRV | NETIF_MSG_PROBE | \
123                                 NETIF_MSG_LINK)
124
125 static inline u32 bcmgenet_rbuf_ctrl_get(struct bcmgenet_priv *priv)
126 {
127         if (GENET_IS_V1(priv))
128                 return bcmgenet_rbuf_readl(priv, RBUF_FLUSH_CTRL_V1);
129         else
130                 return bcmgenet_sys_readl(priv, SYS_RBUF_FLUSH_CTRL);
131 }
132
133 static inline void bcmgenet_rbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
134 {
135         if (GENET_IS_V1(priv))
136                 bcmgenet_rbuf_writel(priv, val, RBUF_FLUSH_CTRL_V1);
137         else
138                 bcmgenet_sys_writel(priv, val, SYS_RBUF_FLUSH_CTRL);
139 }
140
141 /* These macros are defined to deal with register map change
142  * between GENET1.1 and GENET2. Only those currently being used
143  * by driver are defined.
144  */
145 static inline u32 bcmgenet_tbuf_ctrl_get(struct bcmgenet_priv *priv)
146 {
147         if (GENET_IS_V1(priv))
148                 return bcmgenet_rbuf_readl(priv, TBUF_CTRL_V1);
149         else
150                 return bcmgenet_readl(priv->base +
151                                       priv->hw_params->tbuf_offset + TBUF_CTRL);
152 }
153
154 static inline void bcmgenet_tbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
155 {
156         if (GENET_IS_V1(priv))
157                 bcmgenet_rbuf_writel(priv, val, TBUF_CTRL_V1);
158         else
159                 bcmgenet_writel(val, priv->base +
160                                 priv->hw_params->tbuf_offset + TBUF_CTRL);
161 }
162
163 static inline u32 bcmgenet_bp_mc_get(struct bcmgenet_priv *priv)
164 {
165         if (GENET_IS_V1(priv))
166                 return bcmgenet_rbuf_readl(priv, TBUF_BP_MC_V1);
167         else
168                 return bcmgenet_readl(priv->base +
169                                       priv->hw_params->tbuf_offset + TBUF_BP_MC);
170 }
171
172 static inline void bcmgenet_bp_mc_set(struct bcmgenet_priv *priv, u32 val)
173 {
174         if (GENET_IS_V1(priv))
175                 bcmgenet_rbuf_writel(priv, val, TBUF_BP_MC_V1);
176         else
177                 bcmgenet_writel(val, priv->base +
178                                 priv->hw_params->tbuf_offset + TBUF_BP_MC);
179 }
180
181 /* RX/TX DMA register accessors */
182 enum dma_reg {
183         DMA_RING_CFG = 0,
184         DMA_CTRL,
185         DMA_STATUS,
186         DMA_SCB_BURST_SIZE,
187         DMA_ARB_CTRL,
188         DMA_PRIORITY_0,
189         DMA_PRIORITY_1,
190         DMA_PRIORITY_2,
191         DMA_INDEX2RING_0,
192         DMA_INDEX2RING_1,
193         DMA_INDEX2RING_2,
194         DMA_INDEX2RING_3,
195         DMA_INDEX2RING_4,
196         DMA_INDEX2RING_5,
197         DMA_INDEX2RING_6,
198         DMA_INDEX2RING_7,
199         DMA_RING0_TIMEOUT,
200         DMA_RING1_TIMEOUT,
201         DMA_RING2_TIMEOUT,
202         DMA_RING3_TIMEOUT,
203         DMA_RING4_TIMEOUT,
204         DMA_RING5_TIMEOUT,
205         DMA_RING6_TIMEOUT,
206         DMA_RING7_TIMEOUT,
207         DMA_RING8_TIMEOUT,
208         DMA_RING9_TIMEOUT,
209         DMA_RING10_TIMEOUT,
210         DMA_RING11_TIMEOUT,
211         DMA_RING12_TIMEOUT,
212         DMA_RING13_TIMEOUT,
213         DMA_RING14_TIMEOUT,
214         DMA_RING15_TIMEOUT,
215         DMA_RING16_TIMEOUT,
216 };
217
218 static const u8 bcmgenet_dma_regs_v3plus[] = {
219         [DMA_RING_CFG]          = 0x00,
220         [DMA_CTRL]              = 0x04,
221         [DMA_STATUS]            = 0x08,
222         [DMA_SCB_BURST_SIZE]    = 0x0C,
223         [DMA_ARB_CTRL]          = 0x2C,
224         [DMA_PRIORITY_0]        = 0x30,
225         [DMA_PRIORITY_1]        = 0x34,
226         [DMA_PRIORITY_2]        = 0x38,
227         [DMA_RING0_TIMEOUT]     = 0x2C,
228         [DMA_RING1_TIMEOUT]     = 0x30,
229         [DMA_RING2_TIMEOUT]     = 0x34,
230         [DMA_RING3_TIMEOUT]     = 0x38,
231         [DMA_RING4_TIMEOUT]     = 0x3c,
232         [DMA_RING5_TIMEOUT]     = 0x40,
233         [DMA_RING6_TIMEOUT]     = 0x44,
234         [DMA_RING7_TIMEOUT]     = 0x48,
235         [DMA_RING8_TIMEOUT]     = 0x4c,
236         [DMA_RING9_TIMEOUT]     = 0x50,
237         [DMA_RING10_TIMEOUT]    = 0x54,
238         [DMA_RING11_TIMEOUT]    = 0x58,
239         [DMA_RING12_TIMEOUT]    = 0x5c,
240         [DMA_RING13_TIMEOUT]    = 0x60,
241         [DMA_RING14_TIMEOUT]    = 0x64,
242         [DMA_RING15_TIMEOUT]    = 0x68,
243         [DMA_RING16_TIMEOUT]    = 0x6C,
244         [DMA_INDEX2RING_0]      = 0x70,
245         [DMA_INDEX2RING_1]      = 0x74,
246         [DMA_INDEX2RING_2]      = 0x78,
247         [DMA_INDEX2RING_3]      = 0x7C,
248         [DMA_INDEX2RING_4]      = 0x80,
249         [DMA_INDEX2RING_5]      = 0x84,
250         [DMA_INDEX2RING_6]      = 0x88,
251         [DMA_INDEX2RING_7]      = 0x8C,
252 };
253
254 static const u8 bcmgenet_dma_regs_v2[] = {
255         [DMA_RING_CFG]          = 0x00,
256         [DMA_CTRL]              = 0x04,
257         [DMA_STATUS]            = 0x08,
258         [DMA_SCB_BURST_SIZE]    = 0x0C,
259         [DMA_ARB_CTRL]          = 0x30,
260         [DMA_PRIORITY_0]        = 0x34,
261         [DMA_PRIORITY_1]        = 0x38,
262         [DMA_PRIORITY_2]        = 0x3C,
263         [DMA_RING0_TIMEOUT]     = 0x2C,
264         [DMA_RING1_TIMEOUT]     = 0x30,
265         [DMA_RING2_TIMEOUT]     = 0x34,
266         [DMA_RING3_TIMEOUT]     = 0x38,
267         [DMA_RING4_TIMEOUT]     = 0x3c,
268         [DMA_RING5_TIMEOUT]     = 0x40,
269         [DMA_RING6_TIMEOUT]     = 0x44,
270         [DMA_RING7_TIMEOUT]     = 0x48,
271         [DMA_RING8_TIMEOUT]     = 0x4c,
272         [DMA_RING9_TIMEOUT]     = 0x50,
273         [DMA_RING10_TIMEOUT]    = 0x54,
274         [DMA_RING11_TIMEOUT]    = 0x58,
275         [DMA_RING12_TIMEOUT]    = 0x5c,
276         [DMA_RING13_TIMEOUT]    = 0x60,
277         [DMA_RING14_TIMEOUT]    = 0x64,
278         [DMA_RING15_TIMEOUT]    = 0x68,
279         [DMA_RING16_TIMEOUT]    = 0x6C,
280 };
281
282 static const u8 bcmgenet_dma_regs_v1[] = {
283         [DMA_CTRL]              = 0x00,
284         [DMA_STATUS]            = 0x04,
285         [DMA_SCB_BURST_SIZE]    = 0x0C,
286         [DMA_ARB_CTRL]          = 0x30,
287         [DMA_PRIORITY_0]        = 0x34,
288         [DMA_PRIORITY_1]        = 0x38,
289         [DMA_PRIORITY_2]        = 0x3C,
290         [DMA_RING0_TIMEOUT]     = 0x2C,
291         [DMA_RING1_TIMEOUT]     = 0x30,
292         [DMA_RING2_TIMEOUT]     = 0x34,
293         [DMA_RING3_TIMEOUT]     = 0x38,
294         [DMA_RING4_TIMEOUT]     = 0x3c,
295         [DMA_RING5_TIMEOUT]     = 0x40,
296         [DMA_RING6_TIMEOUT]     = 0x44,
297         [DMA_RING7_TIMEOUT]     = 0x48,
298         [DMA_RING8_TIMEOUT]     = 0x4c,
299         [DMA_RING9_TIMEOUT]     = 0x50,
300         [DMA_RING10_TIMEOUT]    = 0x54,
301         [DMA_RING11_TIMEOUT]    = 0x58,
302         [DMA_RING12_TIMEOUT]    = 0x5c,
303         [DMA_RING13_TIMEOUT]    = 0x60,
304         [DMA_RING14_TIMEOUT]    = 0x64,
305         [DMA_RING15_TIMEOUT]    = 0x68,
306         [DMA_RING16_TIMEOUT]    = 0x6C,
307 };
308
309 /* Set at runtime once bcmgenet version is known */
310 static const u8 *bcmgenet_dma_regs;
311
312 static inline struct bcmgenet_priv *dev_to_priv(struct device *dev)
313 {
314         return netdev_priv(dev_get_drvdata(dev));
315 }
316
317 static inline u32 bcmgenet_tdma_readl(struct bcmgenet_priv *priv,
318                                       enum dma_reg r)
319 {
320         return bcmgenet_readl(priv->base + GENET_TDMA_REG_OFF +
321                               DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
322 }
323
324 static inline void bcmgenet_tdma_writel(struct bcmgenet_priv *priv,
325                                         u32 val, enum dma_reg r)
326 {
327         bcmgenet_writel(val, priv->base + GENET_TDMA_REG_OFF +
328                         DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
329 }
330
331 static inline u32 bcmgenet_rdma_readl(struct bcmgenet_priv *priv,
332                                       enum dma_reg r)
333 {
334         return bcmgenet_readl(priv->base + GENET_RDMA_REG_OFF +
335                               DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
336 }
337
338 static inline void bcmgenet_rdma_writel(struct bcmgenet_priv *priv,
339                                         u32 val, enum dma_reg r)
340 {
341         bcmgenet_writel(val, priv->base + GENET_RDMA_REG_OFF +
342                         DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
343 }
344
345 /* RDMA/TDMA ring registers and accessors
346  * we merge the common fields and just prefix with T/D the registers
347  * having different meaning depending on the direction
348  */
349 enum dma_ring_reg {
350         TDMA_READ_PTR = 0,
351         RDMA_WRITE_PTR = TDMA_READ_PTR,
352         TDMA_READ_PTR_HI,
353         RDMA_WRITE_PTR_HI = TDMA_READ_PTR_HI,
354         TDMA_CONS_INDEX,
355         RDMA_PROD_INDEX = TDMA_CONS_INDEX,
356         TDMA_PROD_INDEX,
357         RDMA_CONS_INDEX = TDMA_PROD_INDEX,
358         DMA_RING_BUF_SIZE,
359         DMA_START_ADDR,
360         DMA_START_ADDR_HI,
361         DMA_END_ADDR,
362         DMA_END_ADDR_HI,
363         DMA_MBUF_DONE_THRESH,
364         TDMA_FLOW_PERIOD,
365         RDMA_XON_XOFF_THRESH = TDMA_FLOW_PERIOD,
366         TDMA_WRITE_PTR,
367         RDMA_READ_PTR = TDMA_WRITE_PTR,
368         TDMA_WRITE_PTR_HI,
369         RDMA_READ_PTR_HI = TDMA_WRITE_PTR_HI
370 };
371
372 /* GENET v4 supports 40-bits pointer addressing
373  * for obvious reasons the LO and HI word parts
374  * are contiguous, but this offsets the other
375  * registers.
376  */
377 static const u8 genet_dma_ring_regs_v4[] = {
378         [TDMA_READ_PTR]                 = 0x00,
379         [TDMA_READ_PTR_HI]              = 0x04,
380         [TDMA_CONS_INDEX]               = 0x08,
381         [TDMA_PROD_INDEX]               = 0x0C,
382         [DMA_RING_BUF_SIZE]             = 0x10,
383         [DMA_START_ADDR]                = 0x14,
384         [DMA_START_ADDR_HI]             = 0x18,
385         [DMA_END_ADDR]                  = 0x1C,
386         [DMA_END_ADDR_HI]               = 0x20,
387         [DMA_MBUF_DONE_THRESH]          = 0x24,
388         [TDMA_FLOW_PERIOD]              = 0x28,
389         [TDMA_WRITE_PTR]                = 0x2C,
390         [TDMA_WRITE_PTR_HI]             = 0x30,
391 };
392
393 static const u8 genet_dma_ring_regs_v123[] = {
394         [TDMA_READ_PTR]                 = 0x00,
395         [TDMA_CONS_INDEX]               = 0x04,
396         [TDMA_PROD_INDEX]               = 0x08,
397         [DMA_RING_BUF_SIZE]             = 0x0C,
398         [DMA_START_ADDR]                = 0x10,
399         [DMA_END_ADDR]                  = 0x14,
400         [DMA_MBUF_DONE_THRESH]          = 0x18,
401         [TDMA_FLOW_PERIOD]              = 0x1C,
402         [TDMA_WRITE_PTR]                = 0x20,
403 };
404
405 /* Set at runtime once GENET version is known */
406 static const u8 *genet_dma_ring_regs;
407
408 static inline u32 bcmgenet_tdma_ring_readl(struct bcmgenet_priv *priv,
409                                            unsigned int ring,
410                                            enum dma_ring_reg r)
411 {
412         return bcmgenet_readl(priv->base + GENET_TDMA_REG_OFF +
413                               (DMA_RING_SIZE * ring) +
414                               genet_dma_ring_regs[r]);
415 }
416
417 static inline void bcmgenet_tdma_ring_writel(struct bcmgenet_priv *priv,
418                                              unsigned int ring, u32 val,
419                                              enum dma_ring_reg r)
420 {
421         bcmgenet_writel(val, priv->base + GENET_TDMA_REG_OFF +
422                         (DMA_RING_SIZE * ring) +
423                         genet_dma_ring_regs[r]);
424 }
425
426 static inline u32 bcmgenet_rdma_ring_readl(struct bcmgenet_priv *priv,
427                                            unsigned int ring,
428                                            enum dma_ring_reg r)
429 {
430         return bcmgenet_readl(priv->base + GENET_RDMA_REG_OFF +
431                               (DMA_RING_SIZE * ring) +
432                               genet_dma_ring_regs[r]);
433 }
434
435 static inline void bcmgenet_rdma_ring_writel(struct bcmgenet_priv *priv,
436                                              unsigned int ring, u32 val,
437                                              enum dma_ring_reg r)
438 {
439         bcmgenet_writel(val, priv->base + GENET_RDMA_REG_OFF +
440                         (DMA_RING_SIZE * ring) +
441                         genet_dma_ring_regs[r]);
442 }
443
444 static void bcmgenet_hfb_enable_filter(struct bcmgenet_priv *priv, u32 f_index)
445 {
446         u32 offset;
447         u32 reg;
448
449         offset = HFB_FLT_ENABLE_V3PLUS + (f_index < 32) * sizeof(u32);
450         reg = bcmgenet_hfb_reg_readl(priv, offset);
451         reg |= (1 << (f_index % 32));
452         bcmgenet_hfb_reg_writel(priv, reg, offset);
453         reg = bcmgenet_hfb_reg_readl(priv, HFB_CTRL);
454         reg |= RBUF_HFB_EN;
455         bcmgenet_hfb_reg_writel(priv, reg, HFB_CTRL);
456 }
457
458 static void bcmgenet_hfb_disable_filter(struct bcmgenet_priv *priv, u32 f_index)
459 {
460         u32 offset, reg, reg1;
461
462         offset = HFB_FLT_ENABLE_V3PLUS;
463         reg = bcmgenet_hfb_reg_readl(priv, offset);
464         reg1 = bcmgenet_hfb_reg_readl(priv, offset + sizeof(u32));
465         if  (f_index < 32) {
466                 reg1 &= ~(1 << (f_index % 32));
467                 bcmgenet_hfb_reg_writel(priv, reg1, offset + sizeof(u32));
468         } else {
469                 reg &= ~(1 << (f_index % 32));
470                 bcmgenet_hfb_reg_writel(priv, reg, offset);
471         }
472         if (!reg && !reg1) {
473                 reg = bcmgenet_hfb_reg_readl(priv, HFB_CTRL);
474                 reg &= ~RBUF_HFB_EN;
475                 bcmgenet_hfb_reg_writel(priv, reg, HFB_CTRL);
476         }
477 }
478
479 static void bcmgenet_hfb_set_filter_rx_queue_mapping(struct bcmgenet_priv *priv,
480                                                      u32 f_index, u32 rx_queue)
481 {
482         u32 offset;
483         u32 reg;
484
485         offset = f_index / 8;
486         reg = bcmgenet_rdma_readl(priv, DMA_INDEX2RING_0 + offset);
487         reg &= ~(0xF << (4 * (f_index % 8)));
488         reg |= ((rx_queue & 0xF) << (4 * (f_index % 8)));
489         bcmgenet_rdma_writel(priv, reg, DMA_INDEX2RING_0 + offset);
490 }
491
492 static void bcmgenet_hfb_set_filter_length(struct bcmgenet_priv *priv,
493                                            u32 f_index, u32 f_length)
494 {
495         u32 offset;
496         u32 reg;
497
498         offset = HFB_FLT_LEN_V3PLUS +
499                  ((priv->hw_params->hfb_filter_cnt - 1 - f_index) / 4) *
500                  sizeof(u32);
501         reg = bcmgenet_hfb_reg_readl(priv, offset);
502         reg &= ~(0xFF << (8 * (f_index % 4)));
503         reg |= ((f_length & 0xFF) << (8 * (f_index % 4)));
504         bcmgenet_hfb_reg_writel(priv, reg, offset);
505 }
506
507 static int bcmgenet_hfb_validate_mask(void *mask, size_t size)
508 {
509         while (size) {
510                 switch (*(unsigned char *)mask++) {
511                 case 0x00:
512                 case 0x0f:
513                 case 0xf0:
514                 case 0xff:
515                         size--;
516                         continue;
517                 default:
518                         return -EINVAL;
519                 }
520         }
521
522         return 0;
523 }
524
525 #define VALIDATE_MASK(x) \
526         bcmgenet_hfb_validate_mask(&(x), sizeof(x))
527
528 static int bcmgenet_hfb_insert_data(struct bcmgenet_priv *priv, u32 f_index,
529                                     u32 offset, void *val, void *mask,
530                                     size_t size)
531 {
532         u32 index, tmp;
533
534         index = f_index * priv->hw_params->hfb_filter_size + offset / 2;
535         tmp = bcmgenet_hfb_readl(priv, index * sizeof(u32));
536
537         while (size--) {
538                 if (offset++ & 1) {
539                         tmp &= ~0x300FF;
540                         tmp |= (*(unsigned char *)val++);
541                         switch ((*(unsigned char *)mask++)) {
542                         case 0xFF:
543                                 tmp |= 0x30000;
544                                 break;
545                         case 0xF0:
546                                 tmp |= 0x20000;
547                                 break;
548                         case 0x0F:
549                                 tmp |= 0x10000;
550                                 break;
551                         }
552                         bcmgenet_hfb_writel(priv, tmp, index++ * sizeof(u32));
553                         if (size)
554                                 tmp = bcmgenet_hfb_readl(priv,
555                                                          index * sizeof(u32));
556                 } else {
557                         tmp &= ~0xCFF00;
558                         tmp |= (*(unsigned char *)val++) << 8;
559                         switch ((*(unsigned char *)mask++)) {
560                         case 0xFF:
561                                 tmp |= 0xC0000;
562                                 break;
563                         case 0xF0:
564                                 tmp |= 0x80000;
565                                 break;
566                         case 0x0F:
567                                 tmp |= 0x40000;
568                                 break;
569                         }
570                         if (!size)
571                                 bcmgenet_hfb_writel(priv, tmp, index * sizeof(u32));
572                 }
573         }
574
575         return 0;
576 }
577
578 static void bcmgenet_hfb_create_rxnfc_filter(struct bcmgenet_priv *priv,
579                                              struct bcmgenet_rxnfc_rule *rule)
580 {
581         struct ethtool_rx_flow_spec *fs = &rule->fs;
582         u32 offset = 0, f_length = 0, f;
583         u8 val_8, mask_8;
584         __be16 val_16;
585         u16 mask_16;
586         size_t size;
587
588         f = fs->location;
589         if (fs->flow_type & FLOW_MAC_EXT) {
590                 bcmgenet_hfb_insert_data(priv, f, 0,
591                                          &fs->h_ext.h_dest, &fs->m_ext.h_dest,
592                                          sizeof(fs->h_ext.h_dest));
593         }
594
595         if (fs->flow_type & FLOW_EXT) {
596                 if (fs->m_ext.vlan_etype ||
597                     fs->m_ext.vlan_tci) {
598                         bcmgenet_hfb_insert_data(priv, f, 12,
599                                                  &fs->h_ext.vlan_etype,
600                                                  &fs->m_ext.vlan_etype,
601                                                  sizeof(fs->h_ext.vlan_etype));
602                         bcmgenet_hfb_insert_data(priv, f, 14,
603                                                  &fs->h_ext.vlan_tci,
604                                                  &fs->m_ext.vlan_tci,
605                                                  sizeof(fs->h_ext.vlan_tci));
606                         offset += VLAN_HLEN;
607                         f_length += DIV_ROUND_UP(VLAN_HLEN, 2);
608                 }
609         }
610
611         switch (fs->flow_type & ~(FLOW_EXT | FLOW_MAC_EXT)) {
612         case ETHER_FLOW:
613                 f_length += DIV_ROUND_UP(ETH_HLEN, 2);
614                 bcmgenet_hfb_insert_data(priv, f, 0,
615                                          &fs->h_u.ether_spec.h_dest,
616                                          &fs->m_u.ether_spec.h_dest,
617                                          sizeof(fs->h_u.ether_spec.h_dest));
618                 bcmgenet_hfb_insert_data(priv, f, ETH_ALEN,
619                                          &fs->h_u.ether_spec.h_source,
620                                          &fs->m_u.ether_spec.h_source,
621                                          sizeof(fs->h_u.ether_spec.h_source));
622                 bcmgenet_hfb_insert_data(priv, f, (2 * ETH_ALEN) + offset,
623                                          &fs->h_u.ether_spec.h_proto,
624                                          &fs->m_u.ether_spec.h_proto,
625                                          sizeof(fs->h_u.ether_spec.h_proto));
626                 break;
627         case IP_USER_FLOW:
628                 f_length += DIV_ROUND_UP(ETH_HLEN + 20, 2);
629                 /* Specify IP Ether Type */
630                 val_16 = htons(ETH_P_IP);
631                 mask_16 = 0xFFFF;
632                 bcmgenet_hfb_insert_data(priv, f, (2 * ETH_ALEN) + offset,
633                                          &val_16, &mask_16, sizeof(val_16));
634                 bcmgenet_hfb_insert_data(priv, f, 15 + offset,
635                                          &fs->h_u.usr_ip4_spec.tos,
636                                          &fs->m_u.usr_ip4_spec.tos,
637                                          sizeof(fs->h_u.usr_ip4_spec.tos));
638                 bcmgenet_hfb_insert_data(priv, f, 23 + offset,
639                                          &fs->h_u.usr_ip4_spec.proto,
640                                          &fs->m_u.usr_ip4_spec.proto,
641                                          sizeof(fs->h_u.usr_ip4_spec.proto));
642                 bcmgenet_hfb_insert_data(priv, f, 26 + offset,
643                                          &fs->h_u.usr_ip4_spec.ip4src,
644                                          &fs->m_u.usr_ip4_spec.ip4src,
645                                          sizeof(fs->h_u.usr_ip4_spec.ip4src));
646                 bcmgenet_hfb_insert_data(priv, f, 30 + offset,
647                                          &fs->h_u.usr_ip4_spec.ip4dst,
648                                          &fs->m_u.usr_ip4_spec.ip4dst,
649                                          sizeof(fs->h_u.usr_ip4_spec.ip4dst));
650                 if (!fs->m_u.usr_ip4_spec.l4_4_bytes)
651                         break;
652
653                 /* Only supports 20 byte IPv4 header */
654                 val_8 = 0x45;
655                 mask_8 = 0xFF;
656                 bcmgenet_hfb_insert_data(priv, f, ETH_HLEN + offset,
657                                          &val_8, &mask_8,
658                                          sizeof(val_8));
659                 size = sizeof(fs->h_u.usr_ip4_spec.l4_4_bytes);
660                 bcmgenet_hfb_insert_data(priv, f,
661                                          ETH_HLEN + 20 + offset,
662                                          &fs->h_u.usr_ip4_spec.l4_4_bytes,
663                                          &fs->m_u.usr_ip4_spec.l4_4_bytes,
664                                          size);
665                 f_length += DIV_ROUND_UP(size, 2);
666                 break;
667         }
668
669         bcmgenet_hfb_set_filter_length(priv, f, 2 * f_length);
670         if (!fs->ring_cookie || fs->ring_cookie == RX_CLS_FLOW_WAKE) {
671                 /* Ring 0 flows can be handled by the default Descriptor Ring
672                  * We'll map them to ring 0, but don't enable the filter
673                  */
674                 bcmgenet_hfb_set_filter_rx_queue_mapping(priv, f, 0);
675                 rule->state = BCMGENET_RXNFC_STATE_DISABLED;
676         } else {
677                 /* Other Rx rings are direct mapped here */
678                 bcmgenet_hfb_set_filter_rx_queue_mapping(priv, f,
679                                                          fs->ring_cookie);
680                 bcmgenet_hfb_enable_filter(priv, f);
681                 rule->state = BCMGENET_RXNFC_STATE_ENABLED;
682         }
683 }
684
685 /* bcmgenet_hfb_clear
686  *
687  * Clear Hardware Filter Block and disable all filtering.
688  */
689 static void bcmgenet_hfb_clear_filter(struct bcmgenet_priv *priv, u32 f_index)
690 {
691         u32 base, i;
692
693         base = f_index * priv->hw_params->hfb_filter_size;
694         for (i = 0; i < priv->hw_params->hfb_filter_size; i++)
695                 bcmgenet_hfb_writel(priv, 0x0, (base + i) * sizeof(u32));
696 }
697
698 static void bcmgenet_hfb_clear(struct bcmgenet_priv *priv)
699 {
700         u32 i;
701
702         if (GENET_IS_V1(priv) || GENET_IS_V2(priv))
703                 return;
704
705         bcmgenet_hfb_reg_writel(priv, 0x0, HFB_CTRL);
706         bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS);
707         bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS + 4);
708
709         for (i = DMA_INDEX2RING_0; i <= DMA_INDEX2RING_7; i++)
710                 bcmgenet_rdma_writel(priv, 0x0, i);
711
712         for (i = 0; i < (priv->hw_params->hfb_filter_cnt / 4); i++)
713                 bcmgenet_hfb_reg_writel(priv, 0x0,
714                                         HFB_FLT_LEN_V3PLUS + i * sizeof(u32));
715
716         for (i = 0; i < priv->hw_params->hfb_filter_cnt; i++)
717                 bcmgenet_hfb_clear_filter(priv, i);
718 }
719
720 static void bcmgenet_hfb_init(struct bcmgenet_priv *priv)
721 {
722         int i;
723
724         INIT_LIST_HEAD(&priv->rxnfc_list);
725         if (GENET_IS_V1(priv) || GENET_IS_V2(priv))
726                 return;
727
728         for (i = 0; i < MAX_NUM_OF_FS_RULES; i++) {
729                 INIT_LIST_HEAD(&priv->rxnfc_rules[i].list);
730                 priv->rxnfc_rules[i].state = BCMGENET_RXNFC_STATE_UNUSED;
731         }
732
733         bcmgenet_hfb_clear(priv);
734 }
735
736 static int bcmgenet_begin(struct net_device *dev)
737 {
738         struct bcmgenet_priv *priv = netdev_priv(dev);
739
740         /* Turn on the clock */
741         return clk_prepare_enable(priv->clk);
742 }
743
744 static void bcmgenet_complete(struct net_device *dev)
745 {
746         struct bcmgenet_priv *priv = netdev_priv(dev);
747
748         /* Turn off the clock */
749         clk_disable_unprepare(priv->clk);
750 }
751
752 static int bcmgenet_get_link_ksettings(struct net_device *dev,
753                                        struct ethtool_link_ksettings *cmd)
754 {
755         if (!netif_running(dev))
756                 return -EINVAL;
757
758         if (!dev->phydev)
759                 return -ENODEV;
760
761         phy_ethtool_ksettings_get(dev->phydev, cmd);
762
763         return 0;
764 }
765
766 static int bcmgenet_set_link_ksettings(struct net_device *dev,
767                                        const struct ethtool_link_ksettings *cmd)
768 {
769         if (!netif_running(dev))
770                 return -EINVAL;
771
772         if (!dev->phydev)
773                 return -ENODEV;
774
775         return phy_ethtool_ksettings_set(dev->phydev, cmd);
776 }
777
778 static int bcmgenet_set_features(struct net_device *dev,
779                                  netdev_features_t features)
780 {
781         struct bcmgenet_priv *priv = netdev_priv(dev);
782         u32 reg;
783         int ret;
784
785         ret = clk_prepare_enable(priv->clk);
786         if (ret)
787                 return ret;
788
789         /* Make sure we reflect the value of CRC_CMD_FWD */
790         reg = bcmgenet_umac_readl(priv, UMAC_CMD);
791         priv->crc_fwd_en = !!(reg & CMD_CRC_FWD);
792
793         clk_disable_unprepare(priv->clk);
794
795         return ret;
796 }
797
798 static u32 bcmgenet_get_msglevel(struct net_device *dev)
799 {
800         struct bcmgenet_priv *priv = netdev_priv(dev);
801
802         return priv->msg_enable;
803 }
804
805 static void bcmgenet_set_msglevel(struct net_device *dev, u32 level)
806 {
807         struct bcmgenet_priv *priv = netdev_priv(dev);
808
809         priv->msg_enable = level;
810 }
811
812 static int bcmgenet_get_coalesce(struct net_device *dev,
813                                  struct ethtool_coalesce *ec,
814                                  struct kernel_ethtool_coalesce *kernel_coal,
815                                  struct netlink_ext_ack *extack)
816 {
817         struct bcmgenet_priv *priv = netdev_priv(dev);
818         struct bcmgenet_rx_ring *ring;
819         unsigned int i;
820
821         ec->tx_max_coalesced_frames =
822                 bcmgenet_tdma_ring_readl(priv, DESC_INDEX,
823                                          DMA_MBUF_DONE_THRESH);
824         ec->rx_max_coalesced_frames =
825                 bcmgenet_rdma_ring_readl(priv, DESC_INDEX,
826                                          DMA_MBUF_DONE_THRESH);
827         ec->rx_coalesce_usecs =
828                 bcmgenet_rdma_readl(priv, DMA_RING16_TIMEOUT) * 8192 / 1000;
829
830         for (i = 0; i < priv->hw_params->rx_queues; i++) {
831                 ring = &priv->rx_rings[i];
832                 ec->use_adaptive_rx_coalesce |= ring->dim.use_dim;
833         }
834         ring = &priv->rx_rings[DESC_INDEX];
835         ec->use_adaptive_rx_coalesce |= ring->dim.use_dim;
836
837         return 0;
838 }
839
840 static void bcmgenet_set_rx_coalesce(struct bcmgenet_rx_ring *ring,
841                                      u32 usecs, u32 pkts)
842 {
843         struct bcmgenet_priv *priv = ring->priv;
844         unsigned int i = ring->index;
845         u32 reg;
846
847         bcmgenet_rdma_ring_writel(priv, i, pkts, DMA_MBUF_DONE_THRESH);
848
849         reg = bcmgenet_rdma_readl(priv, DMA_RING0_TIMEOUT + i);
850         reg &= ~DMA_TIMEOUT_MASK;
851         reg |= DIV_ROUND_UP(usecs * 1000, 8192);
852         bcmgenet_rdma_writel(priv, reg, DMA_RING0_TIMEOUT + i);
853 }
854
855 static void bcmgenet_set_ring_rx_coalesce(struct bcmgenet_rx_ring *ring,
856                                           struct ethtool_coalesce *ec)
857 {
858         struct dim_cq_moder moder;
859         u32 usecs, pkts;
860
861         ring->rx_coalesce_usecs = ec->rx_coalesce_usecs;
862         ring->rx_max_coalesced_frames = ec->rx_max_coalesced_frames;
863         usecs = ring->rx_coalesce_usecs;
864         pkts = ring->rx_max_coalesced_frames;
865
866         if (ec->use_adaptive_rx_coalesce && !ring->dim.use_dim) {
867                 moder = net_dim_get_def_rx_moderation(ring->dim.dim.mode);
868                 usecs = moder.usec;
869                 pkts = moder.pkts;
870         }
871
872         ring->dim.use_dim = ec->use_adaptive_rx_coalesce;
873         bcmgenet_set_rx_coalesce(ring, usecs, pkts);
874 }
875
876 static int bcmgenet_set_coalesce(struct net_device *dev,
877                                  struct ethtool_coalesce *ec,
878                                  struct kernel_ethtool_coalesce *kernel_coal,
879                                  struct netlink_ext_ack *extack)
880 {
881         struct bcmgenet_priv *priv = netdev_priv(dev);
882         unsigned int i;
883
884         /* Base system clock is 125Mhz, DMA timeout is this reference clock
885          * divided by 1024, which yields roughly 8.192us, our maximum value
886          * has to fit in the DMA_TIMEOUT_MASK (16 bits)
887          */
888         if (ec->tx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
889             ec->tx_max_coalesced_frames == 0 ||
890             ec->rx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
891             ec->rx_coalesce_usecs > (DMA_TIMEOUT_MASK * 8) + 1)
892                 return -EINVAL;
893
894         if (ec->rx_coalesce_usecs == 0 && ec->rx_max_coalesced_frames == 0)
895                 return -EINVAL;
896
897         /* GENET TDMA hardware does not support a configurable timeout, but will
898          * always generate an interrupt either after MBDONE packets have been
899          * transmitted, or when the ring is empty.
900          */
901
902         /* Program all TX queues with the same values, as there is no
903          * ethtool knob to do coalescing on a per-queue basis
904          */
905         for (i = 0; i < priv->hw_params->tx_queues; i++)
906                 bcmgenet_tdma_ring_writel(priv, i,
907                                           ec->tx_max_coalesced_frames,
908                                           DMA_MBUF_DONE_THRESH);
909         bcmgenet_tdma_ring_writel(priv, DESC_INDEX,
910                                   ec->tx_max_coalesced_frames,
911                                   DMA_MBUF_DONE_THRESH);
912
913         for (i = 0; i < priv->hw_params->rx_queues; i++)
914                 bcmgenet_set_ring_rx_coalesce(&priv->rx_rings[i], ec);
915         bcmgenet_set_ring_rx_coalesce(&priv->rx_rings[DESC_INDEX], ec);
916
917         return 0;
918 }
919
920 static void bcmgenet_get_pauseparam(struct net_device *dev,
921                                     struct ethtool_pauseparam *epause)
922 {
923         struct bcmgenet_priv *priv;
924         u32 umac_cmd;
925
926         priv = netdev_priv(dev);
927
928         epause->autoneg = priv->autoneg_pause;
929
930         if (netif_carrier_ok(dev)) {
931                 /* report active state when link is up */
932                 umac_cmd = bcmgenet_umac_readl(priv, UMAC_CMD);
933                 epause->tx_pause = !(umac_cmd & CMD_TX_PAUSE_IGNORE);
934                 epause->rx_pause = !(umac_cmd & CMD_RX_PAUSE_IGNORE);
935         } else {
936                 /* otherwise report stored settings */
937                 epause->tx_pause = priv->tx_pause;
938                 epause->rx_pause = priv->rx_pause;
939         }
940 }
941
942 static int bcmgenet_set_pauseparam(struct net_device *dev,
943                                    struct ethtool_pauseparam *epause)
944 {
945         struct bcmgenet_priv *priv = netdev_priv(dev);
946
947         if (!dev->phydev)
948                 return -ENODEV;
949
950         if (!phy_validate_pause(dev->phydev, epause))
951                 return -EINVAL;
952
953         priv->autoneg_pause = !!epause->autoneg;
954         priv->tx_pause = !!epause->tx_pause;
955         priv->rx_pause = !!epause->rx_pause;
956
957         bcmgenet_phy_pause_set(dev, priv->rx_pause, priv->tx_pause);
958
959         return 0;
960 }
961
962 /* standard ethtool support functions. */
963 enum bcmgenet_stat_type {
964         BCMGENET_STAT_NETDEV = -1,
965         BCMGENET_STAT_MIB_RX,
966         BCMGENET_STAT_MIB_TX,
967         BCMGENET_STAT_RUNT,
968         BCMGENET_STAT_MISC,
969         BCMGENET_STAT_SOFT,
970 };
971
972 struct bcmgenet_stats {
973         char stat_string[ETH_GSTRING_LEN];
974         int stat_sizeof;
975         int stat_offset;
976         enum bcmgenet_stat_type type;
977         /* reg offset from UMAC base for misc counters */
978         u16 reg_offset;
979 };
980
981 #define STAT_NETDEV(m) { \
982         .stat_string = __stringify(m), \
983         .stat_sizeof = sizeof(((struct net_device_stats *)0)->m), \
984         .stat_offset = offsetof(struct net_device_stats, m), \
985         .type = BCMGENET_STAT_NETDEV, \
986 }
987
988 #define STAT_GENET_MIB(str, m, _type) { \
989         .stat_string = str, \
990         .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
991         .stat_offset = offsetof(struct bcmgenet_priv, m), \
992         .type = _type, \
993 }
994
995 #define STAT_GENET_MIB_RX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_RX)
996 #define STAT_GENET_MIB_TX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_TX)
997 #define STAT_GENET_RUNT(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_RUNT)
998 #define STAT_GENET_SOFT_MIB(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_SOFT)
999
1000 #define STAT_GENET_MISC(str, m, offset) { \
1001         .stat_string = str, \
1002         .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
1003         .stat_offset = offsetof(struct bcmgenet_priv, m), \
1004         .type = BCMGENET_STAT_MISC, \
1005         .reg_offset = offset, \
1006 }
1007
1008 #define STAT_GENET_Q(num) \
1009         STAT_GENET_SOFT_MIB("txq" __stringify(num) "_packets", \
1010                         tx_rings[num].packets), \
1011         STAT_GENET_SOFT_MIB("txq" __stringify(num) "_bytes", \
1012                         tx_rings[num].bytes), \
1013         STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_bytes", \
1014                         rx_rings[num].bytes),    \
1015         STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_packets", \
1016                         rx_rings[num].packets), \
1017         STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_errors", \
1018                         rx_rings[num].errors), \
1019         STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_dropped", \
1020                         rx_rings[num].dropped)
1021
1022 /* There is a 0xC gap between the end of RX and beginning of TX stats and then
1023  * between the end of TX stats and the beginning of the RX RUNT
1024  */
1025 #define BCMGENET_STAT_OFFSET    0xc
1026
1027 /* Hardware counters must be kept in sync because the order/offset
1028  * is important here (order in structure declaration = order in hardware)
1029  */
1030 static const struct bcmgenet_stats bcmgenet_gstrings_stats[] = {
1031         /* general stats */
1032         STAT_NETDEV(rx_packets),
1033         STAT_NETDEV(tx_packets),
1034         STAT_NETDEV(rx_bytes),
1035         STAT_NETDEV(tx_bytes),
1036         STAT_NETDEV(rx_errors),
1037         STAT_NETDEV(tx_errors),
1038         STAT_NETDEV(rx_dropped),
1039         STAT_NETDEV(tx_dropped),
1040         STAT_NETDEV(multicast),
1041         /* UniMAC RSV counters */
1042         STAT_GENET_MIB_RX("rx_64_octets", mib.rx.pkt_cnt.cnt_64),
1043         STAT_GENET_MIB_RX("rx_65_127_oct", mib.rx.pkt_cnt.cnt_127),
1044         STAT_GENET_MIB_RX("rx_128_255_oct", mib.rx.pkt_cnt.cnt_255),
1045         STAT_GENET_MIB_RX("rx_256_511_oct", mib.rx.pkt_cnt.cnt_511),
1046         STAT_GENET_MIB_RX("rx_512_1023_oct", mib.rx.pkt_cnt.cnt_1023),
1047         STAT_GENET_MIB_RX("rx_1024_1518_oct", mib.rx.pkt_cnt.cnt_1518),
1048         STAT_GENET_MIB_RX("rx_vlan_1519_1522_oct", mib.rx.pkt_cnt.cnt_mgv),
1049         STAT_GENET_MIB_RX("rx_1522_2047_oct", mib.rx.pkt_cnt.cnt_2047),
1050         STAT_GENET_MIB_RX("rx_2048_4095_oct", mib.rx.pkt_cnt.cnt_4095),
1051         STAT_GENET_MIB_RX("rx_4096_9216_oct", mib.rx.pkt_cnt.cnt_9216),
1052         STAT_GENET_MIB_RX("rx_pkts", mib.rx.pkt),
1053         STAT_GENET_MIB_RX("rx_bytes", mib.rx.bytes),
1054         STAT_GENET_MIB_RX("rx_multicast", mib.rx.mca),
1055         STAT_GENET_MIB_RX("rx_broadcast", mib.rx.bca),
1056         STAT_GENET_MIB_RX("rx_fcs", mib.rx.fcs),
1057         STAT_GENET_MIB_RX("rx_control", mib.rx.cf),
1058         STAT_GENET_MIB_RX("rx_pause", mib.rx.pf),
1059         STAT_GENET_MIB_RX("rx_unknown", mib.rx.uo),
1060         STAT_GENET_MIB_RX("rx_align", mib.rx.aln),
1061         STAT_GENET_MIB_RX("rx_outrange", mib.rx.flr),
1062         STAT_GENET_MIB_RX("rx_code", mib.rx.cde),
1063         STAT_GENET_MIB_RX("rx_carrier", mib.rx.fcr),
1064         STAT_GENET_MIB_RX("rx_oversize", mib.rx.ovr),
1065         STAT_GENET_MIB_RX("rx_jabber", mib.rx.jbr),
1066         STAT_GENET_MIB_RX("rx_mtu_err", mib.rx.mtue),
1067         STAT_GENET_MIB_RX("rx_good_pkts", mib.rx.pok),
1068         STAT_GENET_MIB_RX("rx_unicast", mib.rx.uc),
1069         STAT_GENET_MIB_RX("rx_ppp", mib.rx.ppp),
1070         STAT_GENET_MIB_RX("rx_crc", mib.rx.rcrc),
1071         /* UniMAC TSV counters */
1072         STAT_GENET_MIB_TX("tx_64_octets", mib.tx.pkt_cnt.cnt_64),
1073         STAT_GENET_MIB_TX("tx_65_127_oct", mib.tx.pkt_cnt.cnt_127),
1074         STAT_GENET_MIB_TX("tx_128_255_oct", mib.tx.pkt_cnt.cnt_255),
1075         STAT_GENET_MIB_TX("tx_256_511_oct", mib.tx.pkt_cnt.cnt_511),
1076         STAT_GENET_MIB_TX("tx_512_1023_oct", mib.tx.pkt_cnt.cnt_1023),
1077         STAT_GENET_MIB_TX("tx_1024_1518_oct", mib.tx.pkt_cnt.cnt_1518),
1078         STAT_GENET_MIB_TX("tx_vlan_1519_1522_oct", mib.tx.pkt_cnt.cnt_mgv),
1079         STAT_GENET_MIB_TX("tx_1522_2047_oct", mib.tx.pkt_cnt.cnt_2047),
1080         STAT_GENET_MIB_TX("tx_2048_4095_oct", mib.tx.pkt_cnt.cnt_4095),
1081         STAT_GENET_MIB_TX("tx_4096_9216_oct", mib.tx.pkt_cnt.cnt_9216),
1082         STAT_GENET_MIB_TX("tx_pkts", mib.tx.pkts),
1083         STAT_GENET_MIB_TX("tx_multicast", mib.tx.mca),
1084         STAT_GENET_MIB_TX("tx_broadcast", mib.tx.bca),
1085         STAT_GENET_MIB_TX("tx_pause", mib.tx.pf),
1086         STAT_GENET_MIB_TX("tx_control", mib.tx.cf),
1087         STAT_GENET_MIB_TX("tx_fcs_err", mib.tx.fcs),
1088         STAT_GENET_MIB_TX("tx_oversize", mib.tx.ovr),
1089         STAT_GENET_MIB_TX("tx_defer", mib.tx.drf),
1090         STAT_GENET_MIB_TX("tx_excess_defer", mib.tx.edf),
1091         STAT_GENET_MIB_TX("tx_single_col", mib.tx.scl),
1092         STAT_GENET_MIB_TX("tx_multi_col", mib.tx.mcl),
1093         STAT_GENET_MIB_TX("tx_late_col", mib.tx.lcl),
1094         STAT_GENET_MIB_TX("tx_excess_col", mib.tx.ecl),
1095         STAT_GENET_MIB_TX("tx_frags", mib.tx.frg),
1096         STAT_GENET_MIB_TX("tx_total_col", mib.tx.ncl),
1097         STAT_GENET_MIB_TX("tx_jabber", mib.tx.jbr),
1098         STAT_GENET_MIB_TX("tx_bytes", mib.tx.bytes),
1099         STAT_GENET_MIB_TX("tx_good_pkts", mib.tx.pok),
1100         STAT_GENET_MIB_TX("tx_unicast", mib.tx.uc),
1101         /* UniMAC RUNT counters */
1102         STAT_GENET_RUNT("rx_runt_pkts", mib.rx_runt_cnt),
1103         STAT_GENET_RUNT("rx_runt_valid_fcs", mib.rx_runt_fcs),
1104         STAT_GENET_RUNT("rx_runt_inval_fcs_align", mib.rx_runt_fcs_align),
1105         STAT_GENET_RUNT("rx_runt_bytes", mib.rx_runt_bytes),
1106         /* Misc UniMAC counters */
1107         STAT_GENET_MISC("rbuf_ovflow_cnt", mib.rbuf_ovflow_cnt,
1108                         UMAC_RBUF_OVFL_CNT_V1),
1109         STAT_GENET_MISC("rbuf_err_cnt", mib.rbuf_err_cnt,
1110                         UMAC_RBUF_ERR_CNT_V1),
1111         STAT_GENET_MISC("mdf_err_cnt", mib.mdf_err_cnt, UMAC_MDF_ERR_CNT),
1112         STAT_GENET_SOFT_MIB("alloc_rx_buff_failed", mib.alloc_rx_buff_failed),
1113         STAT_GENET_SOFT_MIB("rx_dma_failed", mib.rx_dma_failed),
1114         STAT_GENET_SOFT_MIB("tx_dma_failed", mib.tx_dma_failed),
1115         STAT_GENET_SOFT_MIB("tx_realloc_tsb", mib.tx_realloc_tsb),
1116         STAT_GENET_SOFT_MIB("tx_realloc_tsb_failed",
1117                             mib.tx_realloc_tsb_failed),
1118         /* Per TX queues */
1119         STAT_GENET_Q(0),
1120         STAT_GENET_Q(1),
1121         STAT_GENET_Q(2),
1122         STAT_GENET_Q(3),
1123         STAT_GENET_Q(16),
1124 };
1125
1126 #define BCMGENET_STATS_LEN      ARRAY_SIZE(bcmgenet_gstrings_stats)
1127
1128 static void bcmgenet_get_drvinfo(struct net_device *dev,
1129                                  struct ethtool_drvinfo *info)
1130 {
1131         strscpy(info->driver, "bcmgenet", sizeof(info->driver));
1132 }
1133
1134 static int bcmgenet_get_sset_count(struct net_device *dev, int string_set)
1135 {
1136         switch (string_set) {
1137         case ETH_SS_STATS:
1138                 return BCMGENET_STATS_LEN;
1139         default:
1140                 return -EOPNOTSUPP;
1141         }
1142 }
1143
1144 static void bcmgenet_get_strings(struct net_device *dev, u32 stringset,
1145                                  u8 *data)
1146 {
1147         int i;
1148
1149         switch (stringset) {
1150         case ETH_SS_STATS:
1151                 for (i = 0; i < BCMGENET_STATS_LEN; i++) {
1152                         memcpy(data + i * ETH_GSTRING_LEN,
1153                                bcmgenet_gstrings_stats[i].stat_string,
1154                                ETH_GSTRING_LEN);
1155                 }
1156                 break;
1157         }
1158 }
1159
1160 static u32 bcmgenet_update_stat_misc(struct bcmgenet_priv *priv, u16 offset)
1161 {
1162         u16 new_offset;
1163         u32 val;
1164
1165         switch (offset) {
1166         case UMAC_RBUF_OVFL_CNT_V1:
1167                 if (GENET_IS_V2(priv))
1168                         new_offset = RBUF_OVFL_CNT_V2;
1169                 else
1170                         new_offset = RBUF_OVFL_CNT_V3PLUS;
1171
1172                 val = bcmgenet_rbuf_readl(priv, new_offset);
1173                 /* clear if overflowed */
1174                 if (val == ~0)
1175                         bcmgenet_rbuf_writel(priv, 0, new_offset);
1176                 break;
1177         case UMAC_RBUF_ERR_CNT_V1:
1178                 if (GENET_IS_V2(priv))
1179                         new_offset = RBUF_ERR_CNT_V2;
1180                 else
1181                         new_offset = RBUF_ERR_CNT_V3PLUS;
1182
1183                 val = bcmgenet_rbuf_readl(priv, new_offset);
1184                 /* clear if overflowed */
1185                 if (val == ~0)
1186                         bcmgenet_rbuf_writel(priv, 0, new_offset);
1187                 break;
1188         default:
1189                 val = bcmgenet_umac_readl(priv, offset);
1190                 /* clear if overflowed */
1191                 if (val == ~0)
1192                         bcmgenet_umac_writel(priv, 0, offset);
1193                 break;
1194         }
1195
1196         return val;
1197 }
1198
1199 static void bcmgenet_update_mib_counters(struct bcmgenet_priv *priv)
1200 {
1201         int i, j = 0;
1202
1203         for (i = 0; i < BCMGENET_STATS_LEN; i++) {
1204                 const struct bcmgenet_stats *s;
1205                 u8 offset = 0;
1206                 u32 val = 0;
1207                 char *p;
1208
1209                 s = &bcmgenet_gstrings_stats[i];
1210                 switch (s->type) {
1211                 case BCMGENET_STAT_NETDEV:
1212                 case BCMGENET_STAT_SOFT:
1213                         continue;
1214                 case BCMGENET_STAT_RUNT:
1215                         offset += BCMGENET_STAT_OFFSET;
1216                         fallthrough;
1217                 case BCMGENET_STAT_MIB_TX:
1218                         offset += BCMGENET_STAT_OFFSET;
1219                         fallthrough;
1220                 case BCMGENET_STAT_MIB_RX:
1221                         val = bcmgenet_umac_readl(priv,
1222                                                   UMAC_MIB_START + j + offset);
1223                         offset = 0;     /* Reset Offset */
1224                         break;
1225                 case BCMGENET_STAT_MISC:
1226                         if (GENET_IS_V1(priv)) {
1227                                 val = bcmgenet_umac_readl(priv, s->reg_offset);
1228                                 /* clear if overflowed */
1229                                 if (val == ~0)
1230                                         bcmgenet_umac_writel(priv, 0,
1231                                                              s->reg_offset);
1232                         } else {
1233                                 val = bcmgenet_update_stat_misc(priv,
1234                                                                 s->reg_offset);
1235                         }
1236                         break;
1237                 }
1238
1239                 j += s->stat_sizeof;
1240                 p = (char *)priv + s->stat_offset;
1241                 *(u32 *)p = val;
1242         }
1243 }
1244
1245 static void bcmgenet_get_ethtool_stats(struct net_device *dev,
1246                                        struct ethtool_stats *stats,
1247                                        u64 *data)
1248 {
1249         struct bcmgenet_priv *priv = netdev_priv(dev);
1250         int i;
1251
1252         if (netif_running(dev))
1253                 bcmgenet_update_mib_counters(priv);
1254
1255         dev->netdev_ops->ndo_get_stats(dev);
1256
1257         for (i = 0; i < BCMGENET_STATS_LEN; i++) {
1258                 const struct bcmgenet_stats *s;
1259                 char *p;
1260
1261                 s = &bcmgenet_gstrings_stats[i];
1262                 if (s->type == BCMGENET_STAT_NETDEV)
1263                         p = (char *)&dev->stats;
1264                 else
1265                         p = (char *)priv;
1266                 p += s->stat_offset;
1267                 if (sizeof(unsigned long) != sizeof(u32) &&
1268                     s->stat_sizeof == sizeof(unsigned long))
1269                         data[i] = *(unsigned long *)p;
1270                 else
1271                         data[i] = *(u32 *)p;
1272         }
1273 }
1274
1275 void bcmgenet_eee_enable_set(struct net_device *dev, bool enable,
1276                              bool tx_lpi_enabled)
1277 {
1278         struct bcmgenet_priv *priv = netdev_priv(dev);
1279         u32 off = priv->hw_params->tbuf_offset + TBUF_ENERGY_CTRL;
1280         u32 reg;
1281
1282         if (enable && !priv->clk_eee_enabled) {
1283                 clk_prepare_enable(priv->clk_eee);
1284                 priv->clk_eee_enabled = true;
1285         }
1286
1287         reg = bcmgenet_umac_readl(priv, UMAC_EEE_CTRL);
1288         if (enable)
1289                 reg |= EEE_EN;
1290         else
1291                 reg &= ~EEE_EN;
1292         bcmgenet_umac_writel(priv, reg, UMAC_EEE_CTRL);
1293
1294         /* Enable EEE and switch to a 27Mhz clock automatically */
1295         reg = bcmgenet_readl(priv->base + off);
1296         if (tx_lpi_enabled)
1297                 reg |= TBUF_EEE_EN | TBUF_PM_EN;
1298         else
1299                 reg &= ~(TBUF_EEE_EN | TBUF_PM_EN);
1300         bcmgenet_writel(reg, priv->base + off);
1301
1302         /* Do the same for thing for RBUF */
1303         reg = bcmgenet_rbuf_readl(priv, RBUF_ENERGY_CTRL);
1304         if (enable)
1305                 reg |= RBUF_EEE_EN | RBUF_PM_EN;
1306         else
1307                 reg &= ~(RBUF_EEE_EN | RBUF_PM_EN);
1308         bcmgenet_rbuf_writel(priv, reg, RBUF_ENERGY_CTRL);
1309
1310         if (!enable && priv->clk_eee_enabled) {
1311                 clk_disable_unprepare(priv->clk_eee);
1312                 priv->clk_eee_enabled = false;
1313         }
1314
1315         priv->eee.eee_enabled = enable;
1316         priv->eee.eee_active = enable;
1317         priv->eee.tx_lpi_enabled = tx_lpi_enabled;
1318 }
1319
1320 static int bcmgenet_get_eee(struct net_device *dev, struct ethtool_eee *e)
1321 {
1322         struct bcmgenet_priv *priv = netdev_priv(dev);
1323         struct ethtool_eee *p = &priv->eee;
1324
1325         if (GENET_IS_V1(priv))
1326                 return -EOPNOTSUPP;
1327
1328         if (!dev->phydev)
1329                 return -ENODEV;
1330
1331         e->eee_enabled = p->eee_enabled;
1332         e->eee_active = p->eee_active;
1333         e->tx_lpi_enabled = p->tx_lpi_enabled;
1334         e->tx_lpi_timer = bcmgenet_umac_readl(priv, UMAC_EEE_LPI_TIMER);
1335
1336         return phy_ethtool_get_eee(dev->phydev, e);
1337 }
1338
1339 static int bcmgenet_set_eee(struct net_device *dev, struct ethtool_eee *e)
1340 {
1341         struct bcmgenet_priv *priv = netdev_priv(dev);
1342         struct ethtool_eee *p = &priv->eee;
1343
1344         if (GENET_IS_V1(priv))
1345                 return -EOPNOTSUPP;
1346
1347         if (!dev->phydev)
1348                 return -ENODEV;
1349
1350         p->eee_enabled = e->eee_enabled;
1351
1352         if (!p->eee_enabled) {
1353                 bcmgenet_eee_enable_set(dev, false, false);
1354         } else {
1355                 p->eee_active = phy_init_eee(dev->phydev, false) >= 0;
1356                 bcmgenet_umac_writel(priv, e->tx_lpi_timer, UMAC_EEE_LPI_TIMER);
1357                 bcmgenet_eee_enable_set(dev, p->eee_active, e->tx_lpi_enabled);
1358         }
1359
1360         return phy_ethtool_set_eee(dev->phydev, e);
1361 }
1362
1363 static int bcmgenet_validate_flow(struct net_device *dev,
1364                                   struct ethtool_rxnfc *cmd)
1365 {
1366         struct ethtool_usrip4_spec *l4_mask;
1367         struct ethhdr *eth_mask;
1368
1369         if (cmd->fs.location >= MAX_NUM_OF_FS_RULES &&
1370             cmd->fs.location != RX_CLS_LOC_ANY) {
1371                 netdev_err(dev, "rxnfc: Invalid location (%d)\n",
1372                            cmd->fs.location);
1373                 return -EINVAL;
1374         }
1375
1376         switch (cmd->fs.flow_type & ~(FLOW_EXT | FLOW_MAC_EXT)) {
1377         case IP_USER_FLOW:
1378                 l4_mask = &cmd->fs.m_u.usr_ip4_spec;
1379                 /* don't allow mask which isn't valid */
1380                 if (VALIDATE_MASK(l4_mask->ip4src) ||
1381                     VALIDATE_MASK(l4_mask->ip4dst) ||
1382                     VALIDATE_MASK(l4_mask->l4_4_bytes) ||
1383                     VALIDATE_MASK(l4_mask->proto) ||
1384                     VALIDATE_MASK(l4_mask->ip_ver) ||
1385                     VALIDATE_MASK(l4_mask->tos)) {
1386                         netdev_err(dev, "rxnfc: Unsupported mask\n");
1387                         return -EINVAL;
1388                 }
1389                 break;
1390         case ETHER_FLOW:
1391                 eth_mask = &cmd->fs.m_u.ether_spec;
1392                 /* don't allow mask which isn't valid */
1393                 if (VALIDATE_MASK(eth_mask->h_dest) ||
1394                     VALIDATE_MASK(eth_mask->h_source) ||
1395                     VALIDATE_MASK(eth_mask->h_proto)) {
1396                         netdev_err(dev, "rxnfc: Unsupported mask\n");
1397                         return -EINVAL;
1398                 }
1399                 break;
1400         default:
1401                 netdev_err(dev, "rxnfc: Unsupported flow type (0x%x)\n",
1402                            cmd->fs.flow_type);
1403                 return -EINVAL;
1404         }
1405
1406         if ((cmd->fs.flow_type & FLOW_EXT)) {
1407                 /* don't allow mask which isn't valid */
1408                 if (VALIDATE_MASK(cmd->fs.m_ext.vlan_etype) ||
1409                     VALIDATE_MASK(cmd->fs.m_ext.vlan_tci)) {
1410                         netdev_err(dev, "rxnfc: Unsupported mask\n");
1411                         return -EINVAL;
1412                 }
1413                 if (cmd->fs.m_ext.data[0] || cmd->fs.m_ext.data[1]) {
1414                         netdev_err(dev, "rxnfc: user-def not supported\n");
1415                         return -EINVAL;
1416                 }
1417         }
1418
1419         if ((cmd->fs.flow_type & FLOW_MAC_EXT)) {
1420                 /* don't allow mask which isn't valid */
1421                 if (VALIDATE_MASK(cmd->fs.m_ext.h_dest)) {
1422                         netdev_err(dev, "rxnfc: Unsupported mask\n");
1423                         return -EINVAL;
1424                 }
1425         }
1426
1427         return 0;
1428 }
1429
1430 static int bcmgenet_insert_flow(struct net_device *dev,
1431                                 struct ethtool_rxnfc *cmd)
1432 {
1433         struct bcmgenet_priv *priv = netdev_priv(dev);
1434         struct bcmgenet_rxnfc_rule *loc_rule;
1435         int err, i;
1436
1437         if (priv->hw_params->hfb_filter_size < 128) {
1438                 netdev_err(dev, "rxnfc: Not supported by this device\n");
1439                 return -EINVAL;
1440         }
1441
1442         if (cmd->fs.ring_cookie > priv->hw_params->rx_queues &&
1443             cmd->fs.ring_cookie != RX_CLS_FLOW_WAKE) {
1444                 netdev_err(dev, "rxnfc: Unsupported action (%llu)\n",
1445                            cmd->fs.ring_cookie);
1446                 return -EINVAL;
1447         }
1448
1449         err = bcmgenet_validate_flow(dev, cmd);
1450         if (err)
1451                 return err;
1452
1453         if (cmd->fs.location == RX_CLS_LOC_ANY) {
1454                 list_for_each_entry(loc_rule, &priv->rxnfc_list, list) {
1455                         cmd->fs.location = loc_rule->fs.location;
1456                         err = memcmp(&loc_rule->fs, &cmd->fs,
1457                                      sizeof(struct ethtool_rx_flow_spec));
1458                         if (!err)
1459                                 /* rule exists so return current location */
1460                                 return 0;
1461                 }
1462                 for (i = 0; i < MAX_NUM_OF_FS_RULES; i++) {
1463                         loc_rule = &priv->rxnfc_rules[i];
1464                         if (loc_rule->state == BCMGENET_RXNFC_STATE_UNUSED) {
1465                                 cmd->fs.location = i;
1466                                 break;
1467                         }
1468                 }
1469                 if (i == MAX_NUM_OF_FS_RULES) {
1470                         cmd->fs.location = RX_CLS_LOC_ANY;
1471                         return -ENOSPC;
1472                 }
1473         } else {
1474                 loc_rule = &priv->rxnfc_rules[cmd->fs.location];
1475         }
1476         if (loc_rule->state == BCMGENET_RXNFC_STATE_ENABLED)
1477                 bcmgenet_hfb_disable_filter(priv, cmd->fs.location);
1478         if (loc_rule->state != BCMGENET_RXNFC_STATE_UNUSED) {
1479                 list_del(&loc_rule->list);
1480                 bcmgenet_hfb_clear_filter(priv, cmd->fs.location);
1481         }
1482         loc_rule->state = BCMGENET_RXNFC_STATE_UNUSED;
1483         memcpy(&loc_rule->fs, &cmd->fs,
1484                sizeof(struct ethtool_rx_flow_spec));
1485
1486         bcmgenet_hfb_create_rxnfc_filter(priv, loc_rule);
1487
1488         list_add_tail(&loc_rule->list, &priv->rxnfc_list);
1489
1490         return 0;
1491 }
1492
1493 static int bcmgenet_delete_flow(struct net_device *dev,
1494                                 struct ethtool_rxnfc *cmd)
1495 {
1496         struct bcmgenet_priv *priv = netdev_priv(dev);
1497         struct bcmgenet_rxnfc_rule *rule;
1498         int err = 0;
1499
1500         if (cmd->fs.location >= MAX_NUM_OF_FS_RULES)
1501                 return -EINVAL;
1502
1503         rule = &priv->rxnfc_rules[cmd->fs.location];
1504         if (rule->state == BCMGENET_RXNFC_STATE_UNUSED) {
1505                 err =  -ENOENT;
1506                 goto out;
1507         }
1508
1509         if (rule->state == BCMGENET_RXNFC_STATE_ENABLED)
1510                 bcmgenet_hfb_disable_filter(priv, cmd->fs.location);
1511         if (rule->state != BCMGENET_RXNFC_STATE_UNUSED) {
1512                 list_del(&rule->list);
1513                 bcmgenet_hfb_clear_filter(priv, cmd->fs.location);
1514         }
1515         rule->state = BCMGENET_RXNFC_STATE_UNUSED;
1516         memset(&rule->fs, 0, sizeof(struct ethtool_rx_flow_spec));
1517
1518 out:
1519         return err;
1520 }
1521
1522 static int bcmgenet_set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd)
1523 {
1524         struct bcmgenet_priv *priv = netdev_priv(dev);
1525         int err = 0;
1526
1527         switch (cmd->cmd) {
1528         case ETHTOOL_SRXCLSRLINS:
1529                 err = bcmgenet_insert_flow(dev, cmd);
1530                 break;
1531         case ETHTOOL_SRXCLSRLDEL:
1532                 err = bcmgenet_delete_flow(dev, cmd);
1533                 break;
1534         default:
1535                 netdev_warn(priv->dev, "Unsupported ethtool command. (%d)\n",
1536                             cmd->cmd);
1537                 return -EINVAL;
1538         }
1539
1540         return err;
1541 }
1542
1543 static int bcmgenet_get_flow(struct net_device *dev, struct ethtool_rxnfc *cmd,
1544                              int loc)
1545 {
1546         struct bcmgenet_priv *priv = netdev_priv(dev);
1547         struct bcmgenet_rxnfc_rule *rule;
1548         int err = 0;
1549
1550         if (loc < 0 || loc >= MAX_NUM_OF_FS_RULES)
1551                 return -EINVAL;
1552
1553         rule = &priv->rxnfc_rules[loc];
1554         if (rule->state == BCMGENET_RXNFC_STATE_UNUSED)
1555                 err = -ENOENT;
1556         else
1557                 memcpy(&cmd->fs, &rule->fs,
1558                        sizeof(struct ethtool_rx_flow_spec));
1559
1560         return err;
1561 }
1562
1563 static int bcmgenet_get_num_flows(struct bcmgenet_priv *priv)
1564 {
1565         struct list_head *pos;
1566         int res = 0;
1567
1568         list_for_each(pos, &priv->rxnfc_list)
1569                 res++;
1570
1571         return res;
1572 }
1573
1574 static int bcmgenet_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd,
1575                               u32 *rule_locs)
1576 {
1577         struct bcmgenet_priv *priv = netdev_priv(dev);
1578         struct bcmgenet_rxnfc_rule *rule;
1579         int err = 0;
1580         int i = 0;
1581
1582         switch (cmd->cmd) {
1583         case ETHTOOL_GRXRINGS:
1584                 cmd->data = priv->hw_params->rx_queues ?: 1;
1585                 break;
1586         case ETHTOOL_GRXCLSRLCNT:
1587                 cmd->rule_cnt = bcmgenet_get_num_flows(priv);
1588                 cmd->data = MAX_NUM_OF_FS_RULES | RX_CLS_LOC_SPECIAL;
1589                 break;
1590         case ETHTOOL_GRXCLSRULE:
1591                 err = bcmgenet_get_flow(dev, cmd, cmd->fs.location);
1592                 break;
1593         case ETHTOOL_GRXCLSRLALL:
1594                 list_for_each_entry(rule, &priv->rxnfc_list, list)
1595                         if (i < cmd->rule_cnt)
1596                                 rule_locs[i++] = rule->fs.location;
1597                 cmd->rule_cnt = i;
1598                 cmd->data = MAX_NUM_OF_FS_RULES;
1599                 break;
1600         default:
1601                 err = -EOPNOTSUPP;
1602                 break;
1603         }
1604
1605         return err;
1606 }
1607
1608 /* standard ethtool support functions. */
1609 static const struct ethtool_ops bcmgenet_ethtool_ops = {
1610         .supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS |
1611                                      ETHTOOL_COALESCE_MAX_FRAMES |
1612                                      ETHTOOL_COALESCE_USE_ADAPTIVE_RX,
1613         .begin                  = bcmgenet_begin,
1614         .complete               = bcmgenet_complete,
1615         .get_strings            = bcmgenet_get_strings,
1616         .get_sset_count         = bcmgenet_get_sset_count,
1617         .get_ethtool_stats      = bcmgenet_get_ethtool_stats,
1618         .get_drvinfo            = bcmgenet_get_drvinfo,
1619         .get_link               = ethtool_op_get_link,
1620         .get_msglevel           = bcmgenet_get_msglevel,
1621         .set_msglevel           = bcmgenet_set_msglevel,
1622         .get_wol                = bcmgenet_get_wol,
1623         .set_wol                = bcmgenet_set_wol,
1624         .get_eee                = bcmgenet_get_eee,
1625         .set_eee                = bcmgenet_set_eee,
1626         .nway_reset             = phy_ethtool_nway_reset,
1627         .get_coalesce           = bcmgenet_get_coalesce,
1628         .set_coalesce           = bcmgenet_set_coalesce,
1629         .get_link_ksettings     = bcmgenet_get_link_ksettings,
1630         .set_link_ksettings     = bcmgenet_set_link_ksettings,
1631         .get_ts_info            = ethtool_op_get_ts_info,
1632         .get_rxnfc              = bcmgenet_get_rxnfc,
1633         .set_rxnfc              = bcmgenet_set_rxnfc,
1634         .get_pauseparam         = bcmgenet_get_pauseparam,
1635         .set_pauseparam         = bcmgenet_set_pauseparam,
1636 };
1637
1638 /* Power down the unimac, based on mode. */
1639 static int bcmgenet_power_down(struct bcmgenet_priv *priv,
1640                                 enum bcmgenet_power_mode mode)
1641 {
1642         int ret = 0;
1643         u32 reg;
1644
1645         switch (mode) {
1646         case GENET_POWER_CABLE_SENSE:
1647                 phy_detach(priv->dev->phydev);
1648                 break;
1649
1650         case GENET_POWER_WOL_MAGIC:
1651                 ret = bcmgenet_wol_power_down_cfg(priv, mode);
1652                 break;
1653
1654         case GENET_POWER_PASSIVE:
1655                 /* Power down LED */
1656                 if (priv->hw_params->flags & GENET_HAS_EXT) {
1657                         reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1658                         if (GENET_IS_V5(priv) && !priv->ephy_16nm)
1659                                 reg |= EXT_PWR_DOWN_PHY_EN |
1660                                        EXT_PWR_DOWN_PHY_RD |
1661                                        EXT_PWR_DOWN_PHY_SD |
1662                                        EXT_PWR_DOWN_PHY_RX |
1663                                        EXT_PWR_DOWN_PHY_TX |
1664                                        EXT_IDDQ_GLBL_PWR;
1665                         else
1666                                 reg |= EXT_PWR_DOWN_PHY;
1667
1668                         reg |= (EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
1669                         bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1670
1671                         bcmgenet_phy_power_set(priv->dev, false);
1672                 }
1673                 break;
1674         default:
1675                 break;
1676         }
1677
1678         return ret;
1679 }
1680
1681 static void bcmgenet_power_up(struct bcmgenet_priv *priv,
1682                               enum bcmgenet_power_mode mode)
1683 {
1684         u32 reg;
1685
1686         if (!(priv->hw_params->flags & GENET_HAS_EXT))
1687                 return;
1688
1689         reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1690
1691         switch (mode) {
1692         case GENET_POWER_PASSIVE:
1693                 reg &= ~(EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS |
1694                          EXT_ENERGY_DET_MASK);
1695                 if (GENET_IS_V5(priv) && !priv->ephy_16nm) {
1696                         reg &= ~(EXT_PWR_DOWN_PHY_EN |
1697                                  EXT_PWR_DOWN_PHY_RD |
1698                                  EXT_PWR_DOWN_PHY_SD |
1699                                  EXT_PWR_DOWN_PHY_RX |
1700                                  EXT_PWR_DOWN_PHY_TX |
1701                                  EXT_IDDQ_GLBL_PWR);
1702                         reg |=   EXT_PHY_RESET;
1703                         bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1704                         mdelay(1);
1705
1706                         reg &=  ~EXT_PHY_RESET;
1707                 } else {
1708                         reg &= ~EXT_PWR_DOWN_PHY;
1709                         reg |= EXT_PWR_DN_EN_LD;
1710                 }
1711                 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1712                 bcmgenet_phy_power_set(priv->dev, true);
1713                 break;
1714
1715         case GENET_POWER_CABLE_SENSE:
1716                 /* enable APD */
1717                 if (!GENET_IS_V5(priv)) {
1718                         reg |= EXT_PWR_DN_EN_LD;
1719                         bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1720                 }
1721                 break;
1722         case GENET_POWER_WOL_MAGIC:
1723                 bcmgenet_wol_power_up_cfg(priv, mode);
1724                 return;
1725         default:
1726                 break;
1727         }
1728 }
1729
1730 static struct enet_cb *bcmgenet_get_txcb(struct bcmgenet_priv *priv,
1731                                          struct bcmgenet_tx_ring *ring)
1732 {
1733         struct enet_cb *tx_cb_ptr;
1734
1735         tx_cb_ptr = ring->cbs;
1736         tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1737
1738         /* Advancing local write pointer */
1739         if (ring->write_ptr == ring->end_ptr)
1740                 ring->write_ptr = ring->cb_ptr;
1741         else
1742                 ring->write_ptr++;
1743
1744         return tx_cb_ptr;
1745 }
1746
1747 static struct enet_cb *bcmgenet_put_txcb(struct bcmgenet_priv *priv,
1748                                          struct bcmgenet_tx_ring *ring)
1749 {
1750         struct enet_cb *tx_cb_ptr;
1751
1752         tx_cb_ptr = ring->cbs;
1753         tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1754
1755         /* Rewinding local write pointer */
1756         if (ring->write_ptr == ring->cb_ptr)
1757                 ring->write_ptr = ring->end_ptr;
1758         else
1759                 ring->write_ptr--;
1760
1761         return tx_cb_ptr;
1762 }
1763
1764 static inline void bcmgenet_rx_ring16_int_disable(struct bcmgenet_rx_ring *ring)
1765 {
1766         bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1767                                  INTRL2_CPU_MASK_SET);
1768 }
1769
1770 static inline void bcmgenet_rx_ring16_int_enable(struct bcmgenet_rx_ring *ring)
1771 {
1772         bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1773                                  INTRL2_CPU_MASK_CLEAR);
1774 }
1775
1776 static inline void bcmgenet_rx_ring_int_disable(struct bcmgenet_rx_ring *ring)
1777 {
1778         bcmgenet_intrl2_1_writel(ring->priv,
1779                                  1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1780                                  INTRL2_CPU_MASK_SET);
1781 }
1782
1783 static inline void bcmgenet_rx_ring_int_enable(struct bcmgenet_rx_ring *ring)
1784 {
1785         bcmgenet_intrl2_1_writel(ring->priv,
1786                                  1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1787                                  INTRL2_CPU_MASK_CLEAR);
1788 }
1789
1790 static inline void bcmgenet_tx_ring16_int_disable(struct bcmgenet_tx_ring *ring)
1791 {
1792         bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1793                                  INTRL2_CPU_MASK_SET);
1794 }
1795
1796 static inline void bcmgenet_tx_ring16_int_enable(struct bcmgenet_tx_ring *ring)
1797 {
1798         bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1799                                  INTRL2_CPU_MASK_CLEAR);
1800 }
1801
1802 static inline void bcmgenet_tx_ring_int_enable(struct bcmgenet_tx_ring *ring)
1803 {
1804         bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1805                                  INTRL2_CPU_MASK_CLEAR);
1806 }
1807
1808 static inline void bcmgenet_tx_ring_int_disable(struct bcmgenet_tx_ring *ring)
1809 {
1810         bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1811                                  INTRL2_CPU_MASK_SET);
1812 }
1813
1814 /* Simple helper to free a transmit control block's resources
1815  * Returns an skb when the last transmit control block associated with the
1816  * skb is freed.  The skb should be freed by the caller if necessary.
1817  */
1818 static struct sk_buff *bcmgenet_free_tx_cb(struct device *dev,
1819                                            struct enet_cb *cb)
1820 {
1821         struct sk_buff *skb;
1822
1823         skb = cb->skb;
1824
1825         if (skb) {
1826                 cb->skb = NULL;
1827                 if (cb == GENET_CB(skb)->first_cb)
1828                         dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr),
1829                                          dma_unmap_len(cb, dma_len),
1830                                          DMA_TO_DEVICE);
1831                 else
1832                         dma_unmap_page(dev, dma_unmap_addr(cb, dma_addr),
1833                                        dma_unmap_len(cb, dma_len),
1834                                        DMA_TO_DEVICE);
1835                 dma_unmap_addr_set(cb, dma_addr, 0);
1836
1837                 if (cb == GENET_CB(skb)->last_cb)
1838                         return skb;
1839
1840         } else if (dma_unmap_addr(cb, dma_addr)) {
1841                 dma_unmap_page(dev,
1842                                dma_unmap_addr(cb, dma_addr),
1843                                dma_unmap_len(cb, dma_len),
1844                                DMA_TO_DEVICE);
1845                 dma_unmap_addr_set(cb, dma_addr, 0);
1846         }
1847
1848         return NULL;
1849 }
1850
1851 /* Simple helper to free a receive control block's resources */
1852 static struct sk_buff *bcmgenet_free_rx_cb(struct device *dev,
1853                                            struct enet_cb *cb)
1854 {
1855         struct sk_buff *skb;
1856
1857         skb = cb->skb;
1858         cb->skb = NULL;
1859
1860         if (dma_unmap_addr(cb, dma_addr)) {
1861                 dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr),
1862                                  dma_unmap_len(cb, dma_len), DMA_FROM_DEVICE);
1863                 dma_unmap_addr_set(cb, dma_addr, 0);
1864         }
1865
1866         return skb;
1867 }
1868
1869 /* Unlocked version of the reclaim routine */
1870 static unsigned int __bcmgenet_tx_reclaim(struct net_device *dev,
1871                                           struct bcmgenet_tx_ring *ring)
1872 {
1873         struct bcmgenet_priv *priv = netdev_priv(dev);
1874         unsigned int txbds_processed = 0;
1875         unsigned int bytes_compl = 0;
1876         unsigned int pkts_compl = 0;
1877         unsigned int txbds_ready;
1878         unsigned int c_index;
1879         struct sk_buff *skb;
1880
1881         /* Clear status before servicing to reduce spurious interrupts */
1882         if (ring->index == DESC_INDEX)
1883                 bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_TXDMA_DONE,
1884                                          INTRL2_CPU_CLEAR);
1885         else
1886                 bcmgenet_intrl2_1_writel(priv, (1 << ring->index),
1887                                          INTRL2_CPU_CLEAR);
1888
1889         /* Compute how many buffers are transmitted since last xmit call */
1890         c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX)
1891                 & DMA_C_INDEX_MASK;
1892         txbds_ready = (c_index - ring->c_index) & DMA_C_INDEX_MASK;
1893
1894         netif_dbg(priv, tx_done, dev,
1895                   "%s ring=%d old_c_index=%u c_index=%u txbds_ready=%u\n",
1896                   __func__, ring->index, ring->c_index, c_index, txbds_ready);
1897
1898         /* Reclaim transmitted buffers */
1899         while (txbds_processed < txbds_ready) {
1900                 skb = bcmgenet_free_tx_cb(&priv->pdev->dev,
1901                                           &priv->tx_cbs[ring->clean_ptr]);
1902                 if (skb) {
1903                         pkts_compl++;
1904                         bytes_compl += GENET_CB(skb)->bytes_sent;
1905                         dev_consume_skb_any(skb);
1906                 }
1907
1908                 txbds_processed++;
1909                 if (likely(ring->clean_ptr < ring->end_ptr))
1910                         ring->clean_ptr++;
1911                 else
1912                         ring->clean_ptr = ring->cb_ptr;
1913         }
1914
1915         ring->free_bds += txbds_processed;
1916         ring->c_index = c_index;
1917
1918         ring->packets += pkts_compl;
1919         ring->bytes += bytes_compl;
1920
1921         netdev_tx_completed_queue(netdev_get_tx_queue(dev, ring->queue),
1922                                   pkts_compl, bytes_compl);
1923
1924         return txbds_processed;
1925 }
1926
1927 static unsigned int bcmgenet_tx_reclaim(struct net_device *dev,
1928                                 struct bcmgenet_tx_ring *ring)
1929 {
1930         unsigned int released;
1931
1932         spin_lock_bh(&ring->lock);
1933         released = __bcmgenet_tx_reclaim(dev, ring);
1934         spin_unlock_bh(&ring->lock);
1935
1936         return released;
1937 }
1938
1939 static int bcmgenet_tx_poll(struct napi_struct *napi, int budget)
1940 {
1941         struct bcmgenet_tx_ring *ring =
1942                 container_of(napi, struct bcmgenet_tx_ring, napi);
1943         unsigned int work_done = 0;
1944         struct netdev_queue *txq;
1945
1946         spin_lock(&ring->lock);
1947         work_done = __bcmgenet_tx_reclaim(ring->priv->dev, ring);
1948         if (ring->free_bds > (MAX_SKB_FRAGS + 1)) {
1949                 txq = netdev_get_tx_queue(ring->priv->dev, ring->queue);
1950                 netif_tx_wake_queue(txq);
1951         }
1952         spin_unlock(&ring->lock);
1953
1954         if (work_done == 0) {
1955                 napi_complete(napi);
1956                 ring->int_enable(ring);
1957
1958                 return 0;
1959         }
1960
1961         return budget;
1962 }
1963
1964 static void bcmgenet_tx_reclaim_all(struct net_device *dev)
1965 {
1966         struct bcmgenet_priv *priv = netdev_priv(dev);
1967         int i;
1968
1969         if (netif_is_multiqueue(dev)) {
1970                 for (i = 0; i < priv->hw_params->tx_queues; i++)
1971                         bcmgenet_tx_reclaim(dev, &priv->tx_rings[i]);
1972         }
1973
1974         bcmgenet_tx_reclaim(dev, &priv->tx_rings[DESC_INDEX]);
1975 }
1976
1977 /* Reallocate the SKB to put enough headroom in front of it and insert
1978  * the transmit checksum offsets in the descriptors
1979  */
1980 static struct sk_buff *bcmgenet_add_tsb(struct net_device *dev,
1981                                         struct sk_buff *skb)
1982 {
1983         struct bcmgenet_priv *priv = netdev_priv(dev);
1984         struct status_64 *status = NULL;
1985         struct sk_buff *new_skb;
1986         u16 offset;
1987         u8 ip_proto;
1988         __be16 ip_ver;
1989         u32 tx_csum_info;
1990
1991         if (unlikely(skb_headroom(skb) < sizeof(*status))) {
1992                 /* If 64 byte status block enabled, must make sure skb has
1993                  * enough headroom for us to insert 64B status block.
1994                  */
1995                 new_skb = skb_realloc_headroom(skb, sizeof(*status));
1996                 if (!new_skb) {
1997                         dev_kfree_skb_any(skb);
1998                         priv->mib.tx_realloc_tsb_failed++;
1999                         dev->stats.tx_dropped++;
2000                         return NULL;
2001                 }
2002                 dev_consume_skb_any(skb);
2003                 skb = new_skb;
2004                 priv->mib.tx_realloc_tsb++;
2005         }
2006
2007         skb_push(skb, sizeof(*status));
2008         status = (struct status_64 *)skb->data;
2009
2010         if (skb->ip_summed  == CHECKSUM_PARTIAL) {
2011                 ip_ver = skb->protocol;
2012                 switch (ip_ver) {
2013                 case htons(ETH_P_IP):
2014                         ip_proto = ip_hdr(skb)->protocol;
2015                         break;
2016                 case htons(ETH_P_IPV6):
2017                         ip_proto = ipv6_hdr(skb)->nexthdr;
2018                         break;
2019                 default:
2020                         /* don't use UDP flag */
2021                         ip_proto = 0;
2022                         break;
2023                 }
2024
2025                 offset = skb_checksum_start_offset(skb) - sizeof(*status);
2026                 tx_csum_info = (offset << STATUS_TX_CSUM_START_SHIFT) |
2027                                 (offset + skb->csum_offset) |
2028                                 STATUS_TX_CSUM_LV;
2029
2030                 /* Set the special UDP flag for UDP */
2031                 if (ip_proto == IPPROTO_UDP)
2032                         tx_csum_info |= STATUS_TX_CSUM_PROTO_UDP;
2033
2034                 status->tx_csum_info = tx_csum_info;
2035         }
2036
2037         return skb;
2038 }
2039
2040 static void bcmgenet_hide_tsb(struct sk_buff *skb)
2041 {
2042         __skb_pull(skb, sizeof(struct status_64));
2043 }
2044
2045 static netdev_tx_t bcmgenet_xmit(struct sk_buff *skb, struct net_device *dev)
2046 {
2047         struct bcmgenet_priv *priv = netdev_priv(dev);
2048         struct device *kdev = &priv->pdev->dev;
2049         struct bcmgenet_tx_ring *ring = NULL;
2050         struct enet_cb *tx_cb_ptr;
2051         struct netdev_queue *txq;
2052         int nr_frags, index;
2053         dma_addr_t mapping;
2054         unsigned int size;
2055         skb_frag_t *frag;
2056         u32 len_stat;
2057         int ret;
2058         int i;
2059
2060         index = skb_get_queue_mapping(skb);
2061         /* Mapping strategy:
2062          * queue_mapping = 0, unclassified, packet xmited through ring16
2063          * queue_mapping = 1, goes to ring 0. (highest priority queue
2064          * queue_mapping = 2, goes to ring 1.
2065          * queue_mapping = 3, goes to ring 2.
2066          * queue_mapping = 4, goes to ring 3.
2067          */
2068         if (index == 0)
2069                 index = DESC_INDEX;
2070         else
2071                 index -= 1;
2072
2073         ring = &priv->tx_rings[index];
2074         txq = netdev_get_tx_queue(dev, ring->queue);
2075
2076         nr_frags = skb_shinfo(skb)->nr_frags;
2077
2078         spin_lock(&ring->lock);
2079         if (ring->free_bds <= (nr_frags + 1)) {
2080                 if (!netif_tx_queue_stopped(txq)) {
2081                         netif_tx_stop_queue(txq);
2082                         netdev_err(dev,
2083                                    "%s: tx ring %d full when queue %d awake\n",
2084                                    __func__, index, ring->queue);
2085                 }
2086                 ret = NETDEV_TX_BUSY;
2087                 goto out;
2088         }
2089
2090         /* Retain how many bytes will be sent on the wire, without TSB inserted
2091          * by transmit checksum offload
2092          */
2093         GENET_CB(skb)->bytes_sent = skb->len;
2094
2095         /* add the Transmit Status Block */
2096         skb = bcmgenet_add_tsb(dev, skb);
2097         if (!skb) {
2098                 ret = NETDEV_TX_OK;
2099                 goto out;
2100         }
2101
2102         for (i = 0; i <= nr_frags; i++) {
2103                 tx_cb_ptr = bcmgenet_get_txcb(priv, ring);
2104
2105                 BUG_ON(!tx_cb_ptr);
2106
2107                 if (!i) {
2108                         /* Transmit single SKB or head of fragment list */
2109                         GENET_CB(skb)->first_cb = tx_cb_ptr;
2110                         size = skb_headlen(skb);
2111                         mapping = dma_map_single(kdev, skb->data, size,
2112                                                  DMA_TO_DEVICE);
2113                 } else {
2114                         /* xmit fragment */
2115                         frag = &skb_shinfo(skb)->frags[i - 1];
2116                         size = skb_frag_size(frag);
2117                         mapping = skb_frag_dma_map(kdev, frag, 0, size,
2118                                                    DMA_TO_DEVICE);
2119                 }
2120
2121                 ret = dma_mapping_error(kdev, mapping);
2122                 if (ret) {
2123                         priv->mib.tx_dma_failed++;
2124                         netif_err(priv, tx_err, dev, "Tx DMA map failed\n");
2125                         ret = NETDEV_TX_OK;
2126                         goto out_unmap_frags;
2127                 }
2128                 dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
2129                 dma_unmap_len_set(tx_cb_ptr, dma_len, size);
2130
2131                 tx_cb_ptr->skb = skb;
2132
2133                 len_stat = (size << DMA_BUFLENGTH_SHIFT) |
2134                            (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT);
2135
2136                 /* Note: if we ever change from DMA_TX_APPEND_CRC below we
2137                  * will need to restore software padding of "runt" packets
2138                  */
2139                 if (!i) {
2140                         len_stat |= DMA_TX_APPEND_CRC | DMA_SOP;
2141                         if (skb->ip_summed == CHECKSUM_PARTIAL)
2142                                 len_stat |= DMA_TX_DO_CSUM;
2143                 }
2144                 if (i == nr_frags)
2145                         len_stat |= DMA_EOP;
2146
2147                 dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping, len_stat);
2148         }
2149
2150         GENET_CB(skb)->last_cb = tx_cb_ptr;
2151
2152         bcmgenet_hide_tsb(skb);
2153         skb_tx_timestamp(skb);
2154
2155         /* Decrement total BD count and advance our write pointer */
2156         ring->free_bds -= nr_frags + 1;
2157         ring->prod_index += nr_frags + 1;
2158         ring->prod_index &= DMA_P_INDEX_MASK;
2159
2160         netdev_tx_sent_queue(txq, GENET_CB(skb)->bytes_sent);
2161
2162         if (ring->free_bds <= (MAX_SKB_FRAGS + 1))
2163                 netif_tx_stop_queue(txq);
2164
2165         if (!netdev_xmit_more() || netif_xmit_stopped(txq))
2166                 /* Packets are ready, update producer index */
2167                 bcmgenet_tdma_ring_writel(priv, ring->index,
2168                                           ring->prod_index, TDMA_PROD_INDEX);
2169 out:
2170         spin_unlock(&ring->lock);
2171
2172         return ret;
2173
2174 out_unmap_frags:
2175         /* Back up for failed control block mapping */
2176         bcmgenet_put_txcb(priv, ring);
2177
2178         /* Unmap successfully mapped control blocks */
2179         while (i-- > 0) {
2180                 tx_cb_ptr = bcmgenet_put_txcb(priv, ring);
2181                 bcmgenet_free_tx_cb(kdev, tx_cb_ptr);
2182         }
2183
2184         dev_kfree_skb(skb);
2185         goto out;
2186 }
2187
2188 static struct sk_buff *bcmgenet_rx_refill(struct bcmgenet_priv *priv,
2189                                           struct enet_cb *cb)
2190 {
2191         struct device *kdev = &priv->pdev->dev;
2192         struct sk_buff *skb;
2193         struct sk_buff *rx_skb;
2194         dma_addr_t mapping;
2195
2196         /* Allocate a new Rx skb */
2197         skb = __netdev_alloc_skb(priv->dev, priv->rx_buf_len + SKB_ALIGNMENT,
2198                                  GFP_ATOMIC | __GFP_NOWARN);
2199         if (!skb) {
2200                 priv->mib.alloc_rx_buff_failed++;
2201                 netif_err(priv, rx_err, priv->dev,
2202                           "%s: Rx skb allocation failed\n", __func__);
2203                 return NULL;
2204         }
2205
2206         /* DMA-map the new Rx skb */
2207         mapping = dma_map_single(kdev, skb->data, priv->rx_buf_len,
2208                                  DMA_FROM_DEVICE);
2209         if (dma_mapping_error(kdev, mapping)) {
2210                 priv->mib.rx_dma_failed++;
2211                 dev_kfree_skb_any(skb);
2212                 netif_err(priv, rx_err, priv->dev,
2213                           "%s: Rx skb DMA mapping failed\n", __func__);
2214                 return NULL;
2215         }
2216
2217         /* Grab the current Rx skb from the ring and DMA-unmap it */
2218         rx_skb = bcmgenet_free_rx_cb(kdev, cb);
2219
2220         /* Put the new Rx skb on the ring */
2221         cb->skb = skb;
2222         dma_unmap_addr_set(cb, dma_addr, mapping);
2223         dma_unmap_len_set(cb, dma_len, priv->rx_buf_len);
2224         dmadesc_set_addr(priv, cb->bd_addr, mapping);
2225
2226         /* Return the current Rx skb to caller */
2227         return rx_skb;
2228 }
2229
2230 /* bcmgenet_desc_rx - descriptor based rx process.
2231  * this could be called from bottom half, or from NAPI polling method.
2232  */
2233 static unsigned int bcmgenet_desc_rx(struct bcmgenet_rx_ring *ring,
2234                                      unsigned int budget)
2235 {
2236         struct bcmgenet_priv *priv = ring->priv;
2237         struct net_device *dev = priv->dev;
2238         struct enet_cb *cb;
2239         struct sk_buff *skb;
2240         u32 dma_length_status;
2241         unsigned long dma_flag;
2242         int len;
2243         unsigned int rxpktprocessed = 0, rxpkttoprocess;
2244         unsigned int bytes_processed = 0;
2245         unsigned int p_index, mask;
2246         unsigned int discards;
2247
2248         /* Clear status before servicing to reduce spurious interrupts */
2249         if (ring->index == DESC_INDEX) {
2250                 bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_RXDMA_DONE,
2251                                          INTRL2_CPU_CLEAR);
2252         } else {
2253                 mask = 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index);
2254                 bcmgenet_intrl2_1_writel(priv,
2255                                          mask,
2256                                          INTRL2_CPU_CLEAR);
2257         }
2258
2259         p_index = bcmgenet_rdma_ring_readl(priv, ring->index, RDMA_PROD_INDEX);
2260
2261         discards = (p_index >> DMA_P_INDEX_DISCARD_CNT_SHIFT) &
2262                    DMA_P_INDEX_DISCARD_CNT_MASK;
2263         if (discards > ring->old_discards) {
2264                 discards = discards - ring->old_discards;
2265                 ring->errors += discards;
2266                 ring->old_discards += discards;
2267
2268                 /* Clear HW register when we reach 75% of maximum 0xFFFF */
2269                 if (ring->old_discards >= 0xC000) {
2270                         ring->old_discards = 0;
2271                         bcmgenet_rdma_ring_writel(priv, ring->index, 0,
2272                                                   RDMA_PROD_INDEX);
2273                 }
2274         }
2275
2276         p_index &= DMA_P_INDEX_MASK;
2277         rxpkttoprocess = (p_index - ring->c_index) & DMA_C_INDEX_MASK;
2278
2279         netif_dbg(priv, rx_status, dev,
2280                   "RDMA: rxpkttoprocess=%d\n", rxpkttoprocess);
2281
2282         while ((rxpktprocessed < rxpkttoprocess) &&
2283                (rxpktprocessed < budget)) {
2284                 struct status_64 *status;
2285                 __be16 rx_csum;
2286
2287                 cb = &priv->rx_cbs[ring->read_ptr];
2288                 skb = bcmgenet_rx_refill(priv, cb);
2289
2290                 if (unlikely(!skb)) {
2291                         ring->dropped++;
2292                         goto next;
2293                 }
2294
2295                 status = (struct status_64 *)skb->data;
2296                 dma_length_status = status->length_status;
2297                 if (dev->features & NETIF_F_RXCSUM) {
2298                         rx_csum = (__force __be16)(status->rx_csum & 0xffff);
2299                         if (rx_csum) {
2300                                 skb->csum = (__force __wsum)ntohs(rx_csum);
2301                                 skb->ip_summed = CHECKSUM_COMPLETE;
2302                         }
2303                 }
2304
2305                 /* DMA flags and length are still valid no matter how
2306                  * we got the Receive Status Vector (64B RSB or register)
2307                  */
2308                 dma_flag = dma_length_status & 0xffff;
2309                 len = dma_length_status >> DMA_BUFLENGTH_SHIFT;
2310
2311                 netif_dbg(priv, rx_status, dev,
2312                           "%s:p_ind=%d c_ind=%d read_ptr=%d len_stat=0x%08x\n",
2313                           __func__, p_index, ring->c_index,
2314                           ring->read_ptr, dma_length_status);
2315
2316                 if (unlikely(len > RX_BUF_LENGTH)) {
2317                         netif_err(priv, rx_status, dev, "oversized packet\n");
2318                         dev->stats.rx_length_errors++;
2319                         dev->stats.rx_errors++;
2320                         dev_kfree_skb_any(skb);
2321                         goto next;
2322                 }
2323
2324                 if (unlikely(!(dma_flag & DMA_EOP) || !(dma_flag & DMA_SOP))) {
2325                         netif_err(priv, rx_status, dev,
2326                                   "dropping fragmented packet!\n");
2327                         ring->errors++;
2328                         dev_kfree_skb_any(skb);
2329                         goto next;
2330                 }
2331
2332                 /* report errors */
2333                 if (unlikely(dma_flag & (DMA_RX_CRC_ERROR |
2334                                                 DMA_RX_OV |
2335                                                 DMA_RX_NO |
2336                                                 DMA_RX_LG |
2337                                                 DMA_RX_RXER))) {
2338                         netif_err(priv, rx_status, dev, "dma_flag=0x%x\n",
2339                                   (unsigned int)dma_flag);
2340                         if (dma_flag & DMA_RX_CRC_ERROR)
2341                                 dev->stats.rx_crc_errors++;
2342                         if (dma_flag & DMA_RX_OV)
2343                                 dev->stats.rx_over_errors++;
2344                         if (dma_flag & DMA_RX_NO)
2345                                 dev->stats.rx_frame_errors++;
2346                         if (dma_flag & DMA_RX_LG)
2347                                 dev->stats.rx_length_errors++;
2348                         dev->stats.rx_errors++;
2349                         dev_kfree_skb_any(skb);
2350                         goto next;
2351                 } /* error packet */
2352
2353                 skb_put(skb, len);
2354
2355                 /* remove RSB and hardware 2bytes added for IP alignment */
2356                 skb_pull(skb, 66);
2357                 len -= 66;
2358
2359                 if (priv->crc_fwd_en) {
2360                         skb_trim(skb, len - ETH_FCS_LEN);
2361                         len -= ETH_FCS_LEN;
2362                 }
2363
2364                 bytes_processed += len;
2365
2366                 /*Finish setting up the received SKB and send it to the kernel*/
2367                 skb->protocol = eth_type_trans(skb, priv->dev);
2368                 ring->packets++;
2369                 ring->bytes += len;
2370                 if (dma_flag & DMA_RX_MULT)
2371                         dev->stats.multicast++;
2372
2373                 /* Notify kernel */
2374                 napi_gro_receive(&ring->napi, skb);
2375                 netif_dbg(priv, rx_status, dev, "pushed up to kernel\n");
2376
2377 next:
2378                 rxpktprocessed++;
2379                 if (likely(ring->read_ptr < ring->end_ptr))
2380                         ring->read_ptr++;
2381                 else
2382                         ring->read_ptr = ring->cb_ptr;
2383
2384                 ring->c_index = (ring->c_index + 1) & DMA_C_INDEX_MASK;
2385                 bcmgenet_rdma_ring_writel(priv, ring->index, ring->c_index, RDMA_CONS_INDEX);
2386         }
2387
2388         ring->dim.bytes = bytes_processed;
2389         ring->dim.packets = rxpktprocessed;
2390
2391         return rxpktprocessed;
2392 }
2393
2394 /* Rx NAPI polling method */
2395 static int bcmgenet_rx_poll(struct napi_struct *napi, int budget)
2396 {
2397         struct bcmgenet_rx_ring *ring = container_of(napi,
2398                         struct bcmgenet_rx_ring, napi);
2399         struct dim_sample dim_sample = {};
2400         unsigned int work_done;
2401
2402         work_done = bcmgenet_desc_rx(ring, budget);
2403
2404         if (work_done < budget) {
2405                 napi_complete_done(napi, work_done);
2406                 ring->int_enable(ring);
2407         }
2408
2409         if (ring->dim.use_dim) {
2410                 dim_update_sample(ring->dim.event_ctr, ring->dim.packets,
2411                                   ring->dim.bytes, &dim_sample);
2412                 net_dim(&ring->dim.dim, dim_sample);
2413         }
2414
2415         return work_done;
2416 }
2417
2418 static void bcmgenet_dim_work(struct work_struct *work)
2419 {
2420         struct dim *dim = container_of(work, struct dim, work);
2421         struct bcmgenet_net_dim *ndim =
2422                         container_of(dim, struct bcmgenet_net_dim, dim);
2423         struct bcmgenet_rx_ring *ring =
2424                         container_of(ndim, struct bcmgenet_rx_ring, dim);
2425         struct dim_cq_moder cur_profile =
2426                         net_dim_get_rx_moderation(dim->mode, dim->profile_ix);
2427
2428         bcmgenet_set_rx_coalesce(ring, cur_profile.usec, cur_profile.pkts);
2429         dim->state = DIM_START_MEASURE;
2430 }
2431
2432 /* Assign skb to RX DMA descriptor. */
2433 static int bcmgenet_alloc_rx_buffers(struct bcmgenet_priv *priv,
2434                                      struct bcmgenet_rx_ring *ring)
2435 {
2436         struct enet_cb *cb;
2437         struct sk_buff *skb;
2438         int i;
2439
2440         netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
2441
2442         /* loop here for each buffer needing assign */
2443         for (i = 0; i < ring->size; i++) {
2444                 cb = ring->cbs + i;
2445                 skb = bcmgenet_rx_refill(priv, cb);
2446                 if (skb)
2447                         dev_consume_skb_any(skb);
2448                 if (!cb->skb)
2449                         return -ENOMEM;
2450         }
2451
2452         return 0;
2453 }
2454
2455 static void bcmgenet_free_rx_buffers(struct bcmgenet_priv *priv)
2456 {
2457         struct sk_buff *skb;
2458         struct enet_cb *cb;
2459         int i;
2460
2461         for (i = 0; i < priv->num_rx_bds; i++) {
2462                 cb = &priv->rx_cbs[i];
2463
2464                 skb = bcmgenet_free_rx_cb(&priv->pdev->dev, cb);
2465                 if (skb)
2466                         dev_consume_skb_any(skb);
2467         }
2468 }
2469
2470 static void umac_enable_set(struct bcmgenet_priv *priv, u32 mask, bool enable)
2471 {
2472         u32 reg;
2473
2474         reg = bcmgenet_umac_readl(priv, UMAC_CMD);
2475         if (reg & CMD_SW_RESET)
2476                 return;
2477         if (enable)
2478                 reg |= mask;
2479         else
2480                 reg &= ~mask;
2481         bcmgenet_umac_writel(priv, reg, UMAC_CMD);
2482
2483         /* UniMAC stops on a packet boundary, wait for a full-size packet
2484          * to be processed
2485          */
2486         if (enable == 0)
2487                 usleep_range(1000, 2000);
2488 }
2489
2490 static void reset_umac(struct bcmgenet_priv *priv)
2491 {
2492         /* 7358a0/7552a0: bad default in RBUF_FLUSH_CTRL.umac_sw_rst */
2493         bcmgenet_rbuf_ctrl_set(priv, 0);
2494         udelay(10);
2495
2496         /* issue soft reset and disable MAC while updating its registers */
2497         bcmgenet_umac_writel(priv, CMD_SW_RESET, UMAC_CMD);
2498         udelay(2);
2499 }
2500
2501 static void bcmgenet_intr_disable(struct bcmgenet_priv *priv)
2502 {
2503         /* Mask all interrupts.*/
2504         bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
2505         bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
2506         bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
2507         bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
2508 }
2509
2510 static void bcmgenet_link_intr_enable(struct bcmgenet_priv *priv)
2511 {
2512         u32 int0_enable = 0;
2513
2514         /* Monitor cable plug/unplugged event for internal PHY, external PHY
2515          * and MoCA PHY
2516          */
2517         if (priv->internal_phy) {
2518                 int0_enable |= UMAC_IRQ_LINK_EVENT;
2519                 if (GENET_IS_V1(priv) || GENET_IS_V2(priv) || GENET_IS_V3(priv))
2520                         int0_enable |= UMAC_IRQ_PHY_DET_R;
2521         } else if (priv->ext_phy) {
2522                 int0_enable |= UMAC_IRQ_LINK_EVENT;
2523         } else if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
2524                 if (priv->hw_params->flags & GENET_HAS_MOCA_LINK_DET)
2525                         int0_enable |= UMAC_IRQ_LINK_EVENT;
2526         }
2527         bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2528 }
2529
2530 static void init_umac(struct bcmgenet_priv *priv)
2531 {
2532         struct device *kdev = &priv->pdev->dev;
2533         u32 reg;
2534         u32 int0_enable = 0;
2535
2536         dev_dbg(&priv->pdev->dev, "bcmgenet: init_umac\n");
2537
2538         reset_umac(priv);
2539
2540         /* clear tx/rx counter */
2541         bcmgenet_umac_writel(priv,
2542                              MIB_RESET_RX | MIB_RESET_TX | MIB_RESET_RUNT,
2543                              UMAC_MIB_CTRL);
2544         bcmgenet_umac_writel(priv, 0, UMAC_MIB_CTRL);
2545
2546         bcmgenet_umac_writel(priv, ENET_MAX_MTU_SIZE, UMAC_MAX_FRAME_LEN);
2547
2548         /* init tx registers, enable TSB */
2549         reg = bcmgenet_tbuf_ctrl_get(priv);
2550         reg |= TBUF_64B_EN;
2551         bcmgenet_tbuf_ctrl_set(priv, reg);
2552
2553         /* init rx registers, enable ip header optimization and RSB */
2554         reg = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
2555         reg |= RBUF_ALIGN_2B | RBUF_64B_EN;
2556         bcmgenet_rbuf_writel(priv, reg, RBUF_CTRL);
2557
2558         /* enable rx checksumming */
2559         reg = bcmgenet_rbuf_readl(priv, RBUF_CHK_CTRL);
2560         reg |= RBUF_RXCHK_EN | RBUF_L3_PARSE_DIS;
2561         /* If UniMAC forwards CRC, we need to skip over it to get
2562          * a valid CHK bit to be set in the per-packet status word
2563          */
2564         if (priv->crc_fwd_en)
2565                 reg |= RBUF_SKIP_FCS;
2566         else
2567                 reg &= ~RBUF_SKIP_FCS;
2568         bcmgenet_rbuf_writel(priv, reg, RBUF_CHK_CTRL);
2569
2570         if (!GENET_IS_V1(priv) && !GENET_IS_V2(priv))
2571                 bcmgenet_rbuf_writel(priv, 1, RBUF_TBUF_SIZE_CTRL);
2572
2573         bcmgenet_intr_disable(priv);
2574
2575         /* Configure backpressure vectors for MoCA */
2576         if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
2577                 reg = bcmgenet_bp_mc_get(priv);
2578                 reg |= BIT(priv->hw_params->bp_in_en_shift);
2579
2580                 /* bp_mask: back pressure mask */
2581                 if (netif_is_multiqueue(priv->dev))
2582                         reg |= priv->hw_params->bp_in_mask;
2583                 else
2584                         reg &= ~priv->hw_params->bp_in_mask;
2585                 bcmgenet_bp_mc_set(priv, reg);
2586         }
2587
2588         /* Enable MDIO interrupts on GENET v3+ */
2589         if (priv->hw_params->flags & GENET_HAS_MDIO_INTR)
2590                 int0_enable |= (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR);
2591
2592         bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2593
2594         dev_dbg(kdev, "done init umac\n");
2595 }
2596
2597 static void bcmgenet_init_dim(struct bcmgenet_rx_ring *ring,
2598                               void (*cb)(struct work_struct *work))
2599 {
2600         struct bcmgenet_net_dim *dim = &ring->dim;
2601
2602         INIT_WORK(&dim->dim.work, cb);
2603         dim->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
2604         dim->event_ctr = 0;
2605         dim->packets = 0;
2606         dim->bytes = 0;
2607 }
2608
2609 static void bcmgenet_init_rx_coalesce(struct bcmgenet_rx_ring *ring)
2610 {
2611         struct bcmgenet_net_dim *dim = &ring->dim;
2612         struct dim_cq_moder moder;
2613         u32 usecs, pkts;
2614
2615         usecs = ring->rx_coalesce_usecs;
2616         pkts = ring->rx_max_coalesced_frames;
2617
2618         /* If DIM was enabled, re-apply default parameters */
2619         if (dim->use_dim) {
2620                 moder = net_dim_get_def_rx_moderation(dim->dim.mode);
2621                 usecs = moder.usec;
2622                 pkts = moder.pkts;
2623         }
2624
2625         bcmgenet_set_rx_coalesce(ring, usecs, pkts);
2626 }
2627
2628 /* Initialize a Tx ring along with corresponding hardware registers */
2629 static void bcmgenet_init_tx_ring(struct bcmgenet_priv *priv,
2630                                   unsigned int index, unsigned int size,
2631                                   unsigned int start_ptr, unsigned int end_ptr)
2632 {
2633         struct bcmgenet_tx_ring *ring = &priv->tx_rings[index];
2634         u32 words_per_bd = WORDS_PER_BD(priv);
2635         u32 flow_period_val = 0;
2636
2637         spin_lock_init(&ring->lock);
2638         ring->priv = priv;
2639         ring->index = index;
2640         if (index == DESC_INDEX) {
2641                 ring->queue = 0;
2642                 ring->int_enable = bcmgenet_tx_ring16_int_enable;
2643                 ring->int_disable = bcmgenet_tx_ring16_int_disable;
2644         } else {
2645                 ring->queue = index + 1;
2646                 ring->int_enable = bcmgenet_tx_ring_int_enable;
2647                 ring->int_disable = bcmgenet_tx_ring_int_disable;
2648         }
2649         ring->cbs = priv->tx_cbs + start_ptr;
2650         ring->size = size;
2651         ring->clean_ptr = start_ptr;
2652         ring->c_index = 0;
2653         ring->free_bds = size;
2654         ring->write_ptr = start_ptr;
2655         ring->cb_ptr = start_ptr;
2656         ring->end_ptr = end_ptr - 1;
2657         ring->prod_index = 0;
2658
2659         /* Set flow period for ring != 16 */
2660         if (index != DESC_INDEX)
2661                 flow_period_val = ENET_MAX_MTU_SIZE << 16;
2662
2663         bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_PROD_INDEX);
2664         bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_CONS_INDEX);
2665         bcmgenet_tdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
2666         /* Disable rate control for now */
2667         bcmgenet_tdma_ring_writel(priv, index, flow_period_val,
2668                                   TDMA_FLOW_PERIOD);
2669         bcmgenet_tdma_ring_writel(priv, index,
2670                                   ((size << DMA_RING_SIZE_SHIFT) |
2671                                    RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2672
2673         /* Set start and end address, read and write pointers */
2674         bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2675                                   DMA_START_ADDR);
2676         bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2677                                   TDMA_READ_PTR);
2678         bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2679                                   TDMA_WRITE_PTR);
2680         bcmgenet_tdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2681                                   DMA_END_ADDR);
2682
2683         /* Initialize Tx NAPI */
2684         netif_napi_add_tx(priv->dev, &ring->napi, bcmgenet_tx_poll);
2685 }
2686
2687 /* Initialize a RDMA ring */
2688 static int bcmgenet_init_rx_ring(struct bcmgenet_priv *priv,
2689                                  unsigned int index, unsigned int size,
2690                                  unsigned int start_ptr, unsigned int end_ptr)
2691 {
2692         struct bcmgenet_rx_ring *ring = &priv->rx_rings[index];
2693         u32 words_per_bd = WORDS_PER_BD(priv);
2694         int ret;
2695
2696         ring->priv = priv;
2697         ring->index = index;
2698         if (index == DESC_INDEX) {
2699                 ring->int_enable = bcmgenet_rx_ring16_int_enable;
2700                 ring->int_disable = bcmgenet_rx_ring16_int_disable;
2701         } else {
2702                 ring->int_enable = bcmgenet_rx_ring_int_enable;
2703                 ring->int_disable = bcmgenet_rx_ring_int_disable;
2704         }
2705         ring->cbs = priv->rx_cbs + start_ptr;
2706         ring->size = size;
2707         ring->c_index = 0;
2708         ring->read_ptr = start_ptr;
2709         ring->cb_ptr = start_ptr;
2710         ring->end_ptr = end_ptr - 1;
2711
2712         ret = bcmgenet_alloc_rx_buffers(priv, ring);
2713         if (ret)
2714                 return ret;
2715
2716         bcmgenet_init_dim(ring, bcmgenet_dim_work);
2717         bcmgenet_init_rx_coalesce(ring);
2718
2719         /* Initialize Rx NAPI */
2720         netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll);
2721
2722         bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_PROD_INDEX);
2723         bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_CONS_INDEX);
2724         bcmgenet_rdma_ring_writel(priv, index,
2725                                   ((size << DMA_RING_SIZE_SHIFT) |
2726                                    RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2727         bcmgenet_rdma_ring_writel(priv, index,
2728                                   (DMA_FC_THRESH_LO <<
2729                                    DMA_XOFF_THRESHOLD_SHIFT) |
2730                                    DMA_FC_THRESH_HI, RDMA_XON_XOFF_THRESH);
2731
2732         /* Set start and end address, read and write pointers */
2733         bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2734                                   DMA_START_ADDR);
2735         bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2736                                   RDMA_READ_PTR);
2737         bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2738                                   RDMA_WRITE_PTR);
2739         bcmgenet_rdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2740                                   DMA_END_ADDR);
2741
2742         return ret;
2743 }
2744
2745 static void bcmgenet_enable_tx_napi(struct bcmgenet_priv *priv)
2746 {
2747         unsigned int i;
2748         struct bcmgenet_tx_ring *ring;
2749
2750         for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2751                 ring = &priv->tx_rings[i];
2752                 napi_enable(&ring->napi);
2753                 ring->int_enable(ring);
2754         }
2755
2756         ring = &priv->tx_rings[DESC_INDEX];
2757         napi_enable(&ring->napi);
2758         ring->int_enable(ring);
2759 }
2760
2761 static void bcmgenet_disable_tx_napi(struct bcmgenet_priv *priv)
2762 {
2763         unsigned int i;
2764         struct bcmgenet_tx_ring *ring;
2765
2766         for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2767                 ring = &priv->tx_rings[i];
2768                 napi_disable(&ring->napi);
2769         }
2770
2771         ring = &priv->tx_rings[DESC_INDEX];
2772         napi_disable(&ring->napi);
2773 }
2774
2775 static void bcmgenet_fini_tx_napi(struct bcmgenet_priv *priv)
2776 {
2777         unsigned int i;
2778         struct bcmgenet_tx_ring *ring;
2779
2780         for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2781                 ring = &priv->tx_rings[i];
2782                 netif_napi_del(&ring->napi);
2783         }
2784
2785         ring = &priv->tx_rings[DESC_INDEX];
2786         netif_napi_del(&ring->napi);
2787 }
2788
2789 /* Initialize Tx queues
2790  *
2791  * Queues 0-3 are priority-based, each one has 32 descriptors,
2792  * with queue 0 being the highest priority queue.
2793  *
2794  * Queue 16 is the default Tx queue with
2795  * GENET_Q16_TX_BD_CNT = 256 - 4 * 32 = 128 descriptors.
2796  *
2797  * The transmit control block pool is then partitioned as follows:
2798  * - Tx queue 0 uses tx_cbs[0..31]
2799  * - Tx queue 1 uses tx_cbs[32..63]
2800  * - Tx queue 2 uses tx_cbs[64..95]
2801  * - Tx queue 3 uses tx_cbs[96..127]
2802  * - Tx queue 16 uses tx_cbs[128..255]
2803  */
2804 static void bcmgenet_init_tx_queues(struct net_device *dev)
2805 {
2806         struct bcmgenet_priv *priv = netdev_priv(dev);
2807         u32 i, dma_enable;
2808         u32 dma_ctrl, ring_cfg;
2809         u32 dma_priority[3] = {0, 0, 0};
2810
2811         dma_ctrl = bcmgenet_tdma_readl(priv, DMA_CTRL);
2812         dma_enable = dma_ctrl & DMA_EN;
2813         dma_ctrl &= ~DMA_EN;
2814         bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2815
2816         dma_ctrl = 0;
2817         ring_cfg = 0;
2818
2819         /* Enable strict priority arbiter mode */
2820         bcmgenet_tdma_writel(priv, DMA_ARBITER_SP, DMA_ARB_CTRL);
2821
2822         /* Initialize Tx priority queues */
2823         for (i = 0; i < priv->hw_params->tx_queues; i++) {
2824                 bcmgenet_init_tx_ring(priv, i, priv->hw_params->tx_bds_per_q,
2825                                       i * priv->hw_params->tx_bds_per_q,
2826                                       (i + 1) * priv->hw_params->tx_bds_per_q);
2827                 ring_cfg |= (1 << i);
2828                 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2829                 dma_priority[DMA_PRIO_REG_INDEX(i)] |=
2830                         ((GENET_Q0_PRIORITY + i) << DMA_PRIO_REG_SHIFT(i));
2831         }
2832
2833         /* Initialize Tx default queue 16 */
2834         bcmgenet_init_tx_ring(priv, DESC_INDEX, GENET_Q16_TX_BD_CNT,
2835                               priv->hw_params->tx_queues *
2836                               priv->hw_params->tx_bds_per_q,
2837                               TOTAL_DESC);
2838         ring_cfg |= (1 << DESC_INDEX);
2839         dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2840         dma_priority[DMA_PRIO_REG_INDEX(DESC_INDEX)] |=
2841                 ((GENET_Q0_PRIORITY + priv->hw_params->tx_queues) <<
2842                  DMA_PRIO_REG_SHIFT(DESC_INDEX));
2843
2844         /* Set Tx queue priorities */
2845         bcmgenet_tdma_writel(priv, dma_priority[0], DMA_PRIORITY_0);
2846         bcmgenet_tdma_writel(priv, dma_priority[1], DMA_PRIORITY_1);
2847         bcmgenet_tdma_writel(priv, dma_priority[2], DMA_PRIORITY_2);
2848
2849         /* Enable Tx queues */
2850         bcmgenet_tdma_writel(priv, ring_cfg, DMA_RING_CFG);
2851
2852         /* Enable Tx DMA */
2853         if (dma_enable)
2854                 dma_ctrl |= DMA_EN;
2855         bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2856 }
2857
2858 static void bcmgenet_enable_rx_napi(struct bcmgenet_priv *priv)
2859 {
2860         unsigned int i;
2861         struct bcmgenet_rx_ring *ring;
2862
2863         for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2864                 ring = &priv->rx_rings[i];
2865                 napi_enable(&ring->napi);
2866                 ring->int_enable(ring);
2867         }
2868
2869         ring = &priv->rx_rings[DESC_INDEX];
2870         napi_enable(&ring->napi);
2871         ring->int_enable(ring);
2872 }
2873
2874 static void bcmgenet_disable_rx_napi(struct bcmgenet_priv *priv)
2875 {
2876         unsigned int i;
2877         struct bcmgenet_rx_ring *ring;
2878
2879         for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2880                 ring = &priv->rx_rings[i];
2881                 napi_disable(&ring->napi);
2882                 cancel_work_sync(&ring->dim.dim.work);
2883         }
2884
2885         ring = &priv->rx_rings[DESC_INDEX];
2886         napi_disable(&ring->napi);
2887         cancel_work_sync(&ring->dim.dim.work);
2888 }
2889
2890 static void bcmgenet_fini_rx_napi(struct bcmgenet_priv *priv)
2891 {
2892         unsigned int i;
2893         struct bcmgenet_rx_ring *ring;
2894
2895         for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2896                 ring = &priv->rx_rings[i];
2897                 netif_napi_del(&ring->napi);
2898         }
2899
2900         ring = &priv->rx_rings[DESC_INDEX];
2901         netif_napi_del(&ring->napi);
2902 }
2903
2904 /* Initialize Rx queues
2905  *
2906  * Queues 0-15 are priority queues. Hardware Filtering Block (HFB) can be
2907  * used to direct traffic to these queues.
2908  *
2909  * Queue 16 is the default Rx queue with GENET_Q16_RX_BD_CNT descriptors.
2910  */
2911 static int bcmgenet_init_rx_queues(struct net_device *dev)
2912 {
2913         struct bcmgenet_priv *priv = netdev_priv(dev);
2914         u32 i;
2915         u32 dma_enable;
2916         u32 dma_ctrl;
2917         u32 ring_cfg;
2918         int ret;
2919
2920         dma_ctrl = bcmgenet_rdma_readl(priv, DMA_CTRL);
2921         dma_enable = dma_ctrl & DMA_EN;
2922         dma_ctrl &= ~DMA_EN;
2923         bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2924
2925         dma_ctrl = 0;
2926         ring_cfg = 0;
2927
2928         /* Initialize Rx priority queues */
2929         for (i = 0; i < priv->hw_params->rx_queues; i++) {
2930                 ret = bcmgenet_init_rx_ring(priv, i,
2931                                             priv->hw_params->rx_bds_per_q,
2932                                             i * priv->hw_params->rx_bds_per_q,
2933                                             (i + 1) *
2934                                             priv->hw_params->rx_bds_per_q);
2935                 if (ret)
2936                         return ret;
2937
2938                 ring_cfg |= (1 << i);
2939                 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2940         }
2941
2942         /* Initialize Rx default queue 16 */
2943         ret = bcmgenet_init_rx_ring(priv, DESC_INDEX, GENET_Q16_RX_BD_CNT,
2944                                     priv->hw_params->rx_queues *
2945                                     priv->hw_params->rx_bds_per_q,
2946                                     TOTAL_DESC);
2947         if (ret)
2948                 return ret;
2949
2950         ring_cfg |= (1 << DESC_INDEX);
2951         dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2952
2953         /* Enable rings */
2954         bcmgenet_rdma_writel(priv, ring_cfg, DMA_RING_CFG);
2955
2956         /* Configure ring as descriptor ring and re-enable DMA if enabled */
2957         if (dma_enable)
2958                 dma_ctrl |= DMA_EN;
2959         bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2960
2961         return 0;
2962 }
2963
2964 static int bcmgenet_dma_teardown(struct bcmgenet_priv *priv)
2965 {
2966         int ret = 0;
2967         int timeout = 0;
2968         u32 reg;
2969         u32 dma_ctrl;
2970         int i;
2971
2972         /* Disable TDMA to stop add more frames in TX DMA */
2973         reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2974         reg &= ~DMA_EN;
2975         bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2976
2977         /* Check TDMA status register to confirm TDMA is disabled */
2978         while (timeout++ < DMA_TIMEOUT_VAL) {
2979                 reg = bcmgenet_tdma_readl(priv, DMA_STATUS);
2980                 if (reg & DMA_DISABLED)
2981                         break;
2982
2983                 udelay(1);
2984         }
2985
2986         if (timeout == DMA_TIMEOUT_VAL) {
2987                 netdev_warn(priv->dev, "Timed out while disabling TX DMA\n");
2988                 ret = -ETIMEDOUT;
2989         }
2990
2991         /* Wait 10ms for packet drain in both tx and rx dma */
2992         usleep_range(10000, 20000);
2993
2994         /* Disable RDMA */
2995         reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2996         reg &= ~DMA_EN;
2997         bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2998
2999         timeout = 0;
3000         /* Check RDMA status register to confirm RDMA is disabled */
3001         while (timeout++ < DMA_TIMEOUT_VAL) {
3002                 reg = bcmgenet_rdma_readl(priv, DMA_STATUS);
3003                 if (reg & DMA_DISABLED)
3004                         break;
3005
3006                 udelay(1);
3007         }
3008
3009         if (timeout == DMA_TIMEOUT_VAL) {
3010                 netdev_warn(priv->dev, "Timed out while disabling RX DMA\n");
3011                 ret = -ETIMEDOUT;
3012         }
3013
3014         dma_ctrl = 0;
3015         for (i = 0; i < priv->hw_params->rx_queues; i++)
3016                 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
3017         reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
3018         reg &= ~dma_ctrl;
3019         bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
3020
3021         dma_ctrl = 0;
3022         for (i = 0; i < priv->hw_params->tx_queues; i++)
3023                 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
3024         reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
3025         reg &= ~dma_ctrl;
3026         bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
3027
3028         return ret;
3029 }
3030
3031 static void bcmgenet_fini_dma(struct bcmgenet_priv *priv)
3032 {
3033         struct netdev_queue *txq;
3034         int i;
3035
3036         bcmgenet_fini_rx_napi(priv);
3037         bcmgenet_fini_tx_napi(priv);
3038
3039         for (i = 0; i < priv->num_tx_bds; i++)
3040                 dev_kfree_skb(bcmgenet_free_tx_cb(&priv->pdev->dev,
3041                                                   priv->tx_cbs + i));
3042
3043         for (i = 0; i < priv->hw_params->tx_queues; i++) {
3044                 txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[i].queue);
3045                 netdev_tx_reset_queue(txq);
3046         }
3047
3048         txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[DESC_INDEX].queue);
3049         netdev_tx_reset_queue(txq);
3050
3051         bcmgenet_free_rx_buffers(priv);
3052         kfree(priv->rx_cbs);
3053         kfree(priv->tx_cbs);
3054 }
3055
3056 /* init_edma: Initialize DMA control register */
3057 static int bcmgenet_init_dma(struct bcmgenet_priv *priv)
3058 {
3059         int ret;
3060         unsigned int i;
3061         struct enet_cb *cb;
3062
3063         netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
3064
3065         /* Initialize common Rx ring structures */
3066         priv->rx_bds = priv->base + priv->hw_params->rdma_offset;
3067         priv->num_rx_bds = TOTAL_DESC;
3068         priv->rx_cbs = kcalloc(priv->num_rx_bds, sizeof(struct enet_cb),
3069                                GFP_KERNEL);
3070         if (!priv->rx_cbs)
3071                 return -ENOMEM;
3072
3073         for (i = 0; i < priv->num_rx_bds; i++) {
3074                 cb = priv->rx_cbs + i;
3075                 cb->bd_addr = priv->rx_bds + i * DMA_DESC_SIZE;
3076         }
3077
3078         /* Initialize common TX ring structures */
3079         priv->tx_bds = priv->base + priv->hw_params->tdma_offset;
3080         priv->num_tx_bds = TOTAL_DESC;
3081         priv->tx_cbs = kcalloc(priv->num_tx_bds, sizeof(struct enet_cb),
3082                                GFP_KERNEL);
3083         if (!priv->tx_cbs) {
3084                 kfree(priv->rx_cbs);
3085                 return -ENOMEM;
3086         }
3087
3088         for (i = 0; i < priv->num_tx_bds; i++) {
3089                 cb = priv->tx_cbs + i;
3090                 cb->bd_addr = priv->tx_bds + i * DMA_DESC_SIZE;
3091         }
3092
3093         /* Init rDma */
3094         bcmgenet_rdma_writel(priv, priv->dma_max_burst_length,
3095                              DMA_SCB_BURST_SIZE);
3096
3097         /* Initialize Rx queues */
3098         ret = bcmgenet_init_rx_queues(priv->dev);
3099         if (ret) {
3100                 netdev_err(priv->dev, "failed to initialize Rx queues\n");
3101                 bcmgenet_free_rx_buffers(priv);
3102                 kfree(priv->rx_cbs);
3103                 kfree(priv->tx_cbs);
3104                 return ret;
3105         }
3106
3107         /* Init tDma */
3108         bcmgenet_tdma_writel(priv, priv->dma_max_burst_length,
3109                              DMA_SCB_BURST_SIZE);
3110
3111         /* Initialize Tx queues */
3112         bcmgenet_init_tx_queues(priv->dev);
3113
3114         return 0;
3115 }
3116
3117 /* Interrupt bottom half */
3118 static void bcmgenet_irq_task(struct work_struct *work)
3119 {
3120         unsigned int status;
3121         struct bcmgenet_priv *priv = container_of(
3122                         work, struct bcmgenet_priv, bcmgenet_irq_work);
3123
3124         netif_dbg(priv, intr, priv->dev, "%s\n", __func__);
3125
3126         spin_lock_irq(&priv->lock);
3127         status = priv->irq0_stat;
3128         priv->irq0_stat = 0;
3129         spin_unlock_irq(&priv->lock);
3130
3131         if (status & UMAC_IRQ_PHY_DET_R &&
3132             priv->dev->phydev->autoneg != AUTONEG_ENABLE) {
3133                 phy_init_hw(priv->dev->phydev);
3134                 genphy_config_aneg(priv->dev->phydev);
3135         }
3136
3137         /* Link UP/DOWN event */
3138         if (status & UMAC_IRQ_LINK_EVENT)
3139                 phy_mac_interrupt(priv->dev->phydev);
3140
3141 }
3142
3143 /* bcmgenet_isr1: handle Rx and Tx priority queues */
3144 static irqreturn_t bcmgenet_isr1(int irq, void *dev_id)
3145 {
3146         struct bcmgenet_priv *priv = dev_id;
3147         struct bcmgenet_rx_ring *rx_ring;
3148         struct bcmgenet_tx_ring *tx_ring;
3149         unsigned int index, status;
3150
3151         /* Read irq status */
3152         status = bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_STAT) &
3153                 ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
3154
3155         /* clear interrupts */
3156         bcmgenet_intrl2_1_writel(priv, status, INTRL2_CPU_CLEAR);
3157
3158         netif_dbg(priv, intr, priv->dev,
3159                   "%s: IRQ=0x%x\n", __func__, status);
3160
3161         /* Check Rx priority queue interrupts */
3162         for (index = 0; index < priv->hw_params->rx_queues; index++) {
3163                 if (!(status & BIT(UMAC_IRQ1_RX_INTR_SHIFT + index)))
3164                         continue;
3165
3166                 rx_ring = &priv->rx_rings[index];
3167                 rx_ring->dim.event_ctr++;
3168
3169                 if (likely(napi_schedule_prep(&rx_ring->napi))) {
3170                         rx_ring->int_disable(rx_ring);
3171                         __napi_schedule_irqoff(&rx_ring->napi);
3172                 }
3173         }
3174
3175         /* Check Tx priority queue interrupts */
3176         for (index = 0; index < priv->hw_params->tx_queues; index++) {
3177                 if (!(status & BIT(index)))
3178                         continue;
3179
3180                 tx_ring = &priv->tx_rings[index];
3181
3182                 if (likely(napi_schedule_prep(&tx_ring->napi))) {
3183                         tx_ring->int_disable(tx_ring);
3184                         __napi_schedule_irqoff(&tx_ring->napi);
3185                 }
3186         }
3187
3188         return IRQ_HANDLED;
3189 }
3190
3191 /* bcmgenet_isr0: handle Rx and Tx default queues + other stuff */
3192 static irqreturn_t bcmgenet_isr0(int irq, void *dev_id)
3193 {
3194         struct bcmgenet_priv *priv = dev_id;
3195         struct bcmgenet_rx_ring *rx_ring;
3196         struct bcmgenet_tx_ring *tx_ring;
3197         unsigned int status;
3198         unsigned long flags;
3199
3200         /* Read irq status */
3201         status = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT) &
3202                 ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
3203
3204         /* clear interrupts */
3205         bcmgenet_intrl2_0_writel(priv, status, INTRL2_CPU_CLEAR);
3206
3207         netif_dbg(priv, intr, priv->dev,
3208                   "IRQ=0x%x\n", status);
3209
3210         if (status & UMAC_IRQ_RXDMA_DONE) {
3211                 rx_ring = &priv->rx_rings[DESC_INDEX];
3212                 rx_ring->dim.event_ctr++;
3213
3214                 if (likely(napi_schedule_prep(&rx_ring->napi))) {
3215                         rx_ring->int_disable(rx_ring);
3216                         __napi_schedule_irqoff(&rx_ring->napi);
3217                 }
3218         }
3219
3220         if (status & UMAC_IRQ_TXDMA_DONE) {
3221                 tx_ring = &priv->tx_rings[DESC_INDEX];
3222
3223                 if (likely(napi_schedule_prep(&tx_ring->napi))) {
3224                         tx_ring->int_disable(tx_ring);
3225                         __napi_schedule_irqoff(&tx_ring->napi);
3226                 }
3227         }
3228
3229         if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) &&
3230                 status & (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR)) {
3231                 wake_up(&priv->wq);
3232         }
3233
3234         /* all other interested interrupts handled in bottom half */
3235         status &= (UMAC_IRQ_LINK_EVENT | UMAC_IRQ_PHY_DET_R);
3236         if (status) {
3237                 /* Save irq status for bottom-half processing. */
3238                 spin_lock_irqsave(&priv->lock, flags);
3239                 priv->irq0_stat |= status;
3240                 spin_unlock_irqrestore(&priv->lock, flags);
3241
3242                 schedule_work(&priv->bcmgenet_irq_work);
3243         }
3244
3245         return IRQ_HANDLED;
3246 }
3247
3248 static irqreturn_t bcmgenet_wol_isr(int irq, void *dev_id)
3249 {
3250         /* Acknowledge the interrupt */
3251         return IRQ_HANDLED;
3252 }
3253
3254 #ifdef CONFIG_NET_POLL_CONTROLLER
3255 static void bcmgenet_poll_controller(struct net_device *dev)
3256 {
3257         struct bcmgenet_priv *priv = netdev_priv(dev);
3258
3259         /* Invoke the main RX/TX interrupt handler */
3260         disable_irq(priv->irq0);
3261         bcmgenet_isr0(priv->irq0, priv);
3262         enable_irq(priv->irq0);
3263
3264         /* And the interrupt handler for RX/TX priority queues */
3265         disable_irq(priv->irq1);
3266         bcmgenet_isr1(priv->irq1, priv);
3267         enable_irq(priv->irq1);
3268 }
3269 #endif
3270
3271 static void bcmgenet_umac_reset(struct bcmgenet_priv *priv)
3272 {
3273         u32 reg;
3274
3275         reg = bcmgenet_rbuf_ctrl_get(priv);
3276         reg |= BIT(1);
3277         bcmgenet_rbuf_ctrl_set(priv, reg);
3278         udelay(10);
3279
3280         reg &= ~BIT(1);
3281         bcmgenet_rbuf_ctrl_set(priv, reg);
3282         udelay(10);
3283 }
3284
3285 static void bcmgenet_set_hw_addr(struct bcmgenet_priv *priv,
3286                                  const unsigned char *addr)
3287 {
3288         bcmgenet_umac_writel(priv, get_unaligned_be32(&addr[0]), UMAC_MAC0);
3289         bcmgenet_umac_writel(priv, get_unaligned_be16(&addr[4]), UMAC_MAC1);
3290 }
3291
3292 static void bcmgenet_get_hw_addr(struct bcmgenet_priv *priv,
3293                                  unsigned char *addr)
3294 {
3295         u32 addr_tmp;
3296
3297         addr_tmp = bcmgenet_umac_readl(priv, UMAC_MAC0);
3298         put_unaligned_be32(addr_tmp, &addr[0]);
3299         addr_tmp = bcmgenet_umac_readl(priv, UMAC_MAC1);
3300         put_unaligned_be16(addr_tmp, &addr[4]);
3301 }
3302
3303 /* Returns a reusable dma control register value */
3304 static u32 bcmgenet_dma_disable(struct bcmgenet_priv *priv)
3305 {
3306         unsigned int i;
3307         u32 reg;
3308         u32 dma_ctrl;
3309
3310         /* disable DMA */
3311         dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN;
3312         for (i = 0; i < priv->hw_params->tx_queues; i++)
3313                 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
3314         reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
3315         reg &= ~dma_ctrl;
3316         bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
3317
3318         dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN;
3319         for (i = 0; i < priv->hw_params->rx_queues; i++)
3320                 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
3321         reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
3322         reg &= ~dma_ctrl;
3323         bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
3324
3325         bcmgenet_umac_writel(priv, 1, UMAC_TX_FLUSH);
3326         udelay(10);
3327         bcmgenet_umac_writel(priv, 0, UMAC_TX_FLUSH);
3328
3329         return dma_ctrl;
3330 }
3331
3332 static void bcmgenet_enable_dma(struct bcmgenet_priv *priv, u32 dma_ctrl)
3333 {
3334         u32 reg;
3335
3336         reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
3337         reg |= dma_ctrl;
3338         bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
3339
3340         reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
3341         reg |= dma_ctrl;
3342         bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
3343 }
3344
3345 static void bcmgenet_netif_start(struct net_device *dev)
3346 {
3347         struct bcmgenet_priv *priv = netdev_priv(dev);
3348
3349         /* Start the network engine */
3350         bcmgenet_set_rx_mode(dev);
3351         bcmgenet_enable_rx_napi(priv);
3352
3353         umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, true);
3354
3355         bcmgenet_enable_tx_napi(priv);
3356
3357         /* Monitor link interrupts now */
3358         bcmgenet_link_intr_enable(priv);
3359
3360         phy_start(dev->phydev);
3361 }
3362
3363 static int bcmgenet_open(struct net_device *dev)
3364 {
3365         struct bcmgenet_priv *priv = netdev_priv(dev);
3366         unsigned long dma_ctrl;
3367         int ret;
3368
3369         netif_dbg(priv, ifup, dev, "bcmgenet_open\n");
3370
3371         /* Turn on the clock */
3372         clk_prepare_enable(priv->clk);
3373
3374         /* If this is an internal GPHY, power it back on now, before UniMAC is
3375          * brought out of reset as absolutely no UniMAC activity is allowed
3376          */
3377         if (priv->internal_phy)
3378                 bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
3379
3380         /* take MAC out of reset */
3381         bcmgenet_umac_reset(priv);
3382
3383         init_umac(priv);
3384
3385         /* Apply features again in case we changed them while interface was
3386          * down
3387          */
3388         bcmgenet_set_features(dev, dev->features);
3389
3390         bcmgenet_set_hw_addr(priv, dev->dev_addr);
3391
3392         /* Disable RX/TX DMA and flush TX queues */
3393         dma_ctrl = bcmgenet_dma_disable(priv);
3394
3395         /* Reinitialize TDMA and RDMA and SW housekeeping */
3396         ret = bcmgenet_init_dma(priv);
3397         if (ret) {
3398                 netdev_err(dev, "failed to initialize DMA\n");
3399                 goto err_clk_disable;
3400         }
3401
3402         /* Always enable ring 16 - descriptor ring */
3403         bcmgenet_enable_dma(priv, dma_ctrl);
3404
3405         /* HFB init */
3406         bcmgenet_hfb_init(priv);
3407
3408         ret = request_irq(priv->irq0, bcmgenet_isr0, IRQF_SHARED,
3409                           dev->name, priv);
3410         if (ret < 0) {
3411                 netdev_err(dev, "can't request IRQ %d\n", priv->irq0);
3412                 goto err_fini_dma;
3413         }
3414
3415         ret = request_irq(priv->irq1, bcmgenet_isr1, IRQF_SHARED,
3416                           dev->name, priv);
3417         if (ret < 0) {
3418                 netdev_err(dev, "can't request IRQ %d\n", priv->irq1);
3419                 goto err_irq0;
3420         }
3421
3422         ret = bcmgenet_mii_probe(dev);
3423         if (ret) {
3424                 netdev_err(dev, "failed to connect to PHY\n");
3425                 goto err_irq1;
3426         }
3427
3428         bcmgenet_phy_pause_set(dev, priv->rx_pause, priv->tx_pause);
3429
3430         bcmgenet_netif_start(dev);
3431
3432         netif_tx_start_all_queues(dev);
3433
3434         return 0;
3435
3436 err_irq1:
3437         free_irq(priv->irq1, priv);
3438 err_irq0:
3439         free_irq(priv->irq0, priv);
3440 err_fini_dma:
3441         bcmgenet_dma_teardown(priv);
3442         bcmgenet_fini_dma(priv);
3443 err_clk_disable:
3444         if (priv->internal_phy)
3445                 bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3446         clk_disable_unprepare(priv->clk);
3447         return ret;
3448 }
3449
3450 static void bcmgenet_netif_stop(struct net_device *dev, bool stop_phy)
3451 {
3452         struct bcmgenet_priv *priv = netdev_priv(dev);
3453
3454         bcmgenet_disable_tx_napi(priv);
3455         netif_tx_disable(dev);
3456
3457         /* Disable MAC receive */
3458         umac_enable_set(priv, CMD_RX_EN, false);
3459
3460         bcmgenet_dma_teardown(priv);
3461
3462         /* Disable MAC transmit. TX DMA disabled must be done before this */
3463         umac_enable_set(priv, CMD_TX_EN, false);
3464
3465         if (stop_phy)
3466                 phy_stop(dev->phydev);
3467         bcmgenet_disable_rx_napi(priv);
3468         bcmgenet_intr_disable(priv);
3469
3470         /* Wait for pending work items to complete. Since interrupts are
3471          * disabled no new work will be scheduled.
3472          */
3473         cancel_work_sync(&priv->bcmgenet_irq_work);
3474
3475         /* tx reclaim */
3476         bcmgenet_tx_reclaim_all(dev);
3477         bcmgenet_fini_dma(priv);
3478 }
3479
3480 static int bcmgenet_close(struct net_device *dev)
3481 {
3482         struct bcmgenet_priv *priv = netdev_priv(dev);
3483         int ret = 0;
3484
3485         netif_dbg(priv, ifdown, dev, "bcmgenet_close\n");
3486
3487         bcmgenet_netif_stop(dev, false);
3488
3489         /* Really kill the PHY state machine and disconnect from it */
3490         phy_disconnect(dev->phydev);
3491
3492         free_irq(priv->irq0, priv);
3493         free_irq(priv->irq1, priv);
3494
3495         if (priv->internal_phy)
3496                 ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3497
3498         clk_disable_unprepare(priv->clk);
3499
3500         return ret;
3501 }
3502
3503 static void bcmgenet_dump_tx_queue(struct bcmgenet_tx_ring *ring)
3504 {
3505         struct bcmgenet_priv *priv = ring->priv;
3506         u32 p_index, c_index, intsts, intmsk;
3507         struct netdev_queue *txq;
3508         unsigned int free_bds;
3509         bool txq_stopped;
3510
3511         if (!netif_msg_tx_err(priv))
3512                 return;
3513
3514         txq = netdev_get_tx_queue(priv->dev, ring->queue);
3515
3516         spin_lock(&ring->lock);
3517         if (ring->index == DESC_INDEX) {
3518                 intsts = ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
3519                 intmsk = UMAC_IRQ_TXDMA_DONE | UMAC_IRQ_TXDMA_MBDONE;
3520         } else {
3521                 intsts = ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
3522                 intmsk = 1 << ring->index;
3523         }
3524         c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX);
3525         p_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_PROD_INDEX);
3526         txq_stopped = netif_tx_queue_stopped(txq);
3527         free_bds = ring->free_bds;
3528         spin_unlock(&ring->lock);
3529
3530         netif_err(priv, tx_err, priv->dev, "Ring %d queue %d status summary\n"
3531                   "TX queue status: %s, interrupts: %s\n"
3532                   "(sw)free_bds: %d (sw)size: %d\n"
3533                   "(sw)p_index: %d (hw)p_index: %d\n"
3534                   "(sw)c_index: %d (hw)c_index: %d\n"
3535                   "(sw)clean_p: %d (sw)write_p: %d\n"
3536                   "(sw)cb_ptr: %d (sw)end_ptr: %d\n",
3537                   ring->index, ring->queue,
3538                   txq_stopped ? "stopped" : "active",
3539                   intsts & intmsk ? "enabled" : "disabled",
3540                   free_bds, ring->size,
3541                   ring->prod_index, p_index & DMA_P_INDEX_MASK,
3542                   ring->c_index, c_index & DMA_C_INDEX_MASK,
3543                   ring->clean_ptr, ring->write_ptr,
3544                   ring->cb_ptr, ring->end_ptr);
3545 }
3546
3547 static void bcmgenet_timeout(struct net_device *dev, unsigned int txqueue)
3548 {
3549         struct bcmgenet_priv *priv = netdev_priv(dev);
3550         u32 int0_enable = 0;
3551         u32 int1_enable = 0;
3552         unsigned int q;
3553
3554         netif_dbg(priv, tx_err, dev, "bcmgenet_timeout\n");
3555
3556         for (q = 0; q < priv->hw_params->tx_queues; q++)
3557                 bcmgenet_dump_tx_queue(&priv->tx_rings[q]);
3558         bcmgenet_dump_tx_queue(&priv->tx_rings[DESC_INDEX]);
3559
3560         bcmgenet_tx_reclaim_all(dev);
3561
3562         for (q = 0; q < priv->hw_params->tx_queues; q++)
3563                 int1_enable |= (1 << q);
3564
3565         int0_enable = UMAC_IRQ_TXDMA_DONE;
3566
3567         /* Re-enable TX interrupts if disabled */
3568         bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
3569         bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);
3570
3571         netif_trans_update(dev);
3572
3573         dev->stats.tx_errors++;
3574
3575         netif_tx_wake_all_queues(dev);
3576 }
3577
3578 #define MAX_MDF_FILTER  17
3579
3580 static inline void bcmgenet_set_mdf_addr(struct bcmgenet_priv *priv,
3581                                          const unsigned char *addr,
3582                                          int *i)
3583 {
3584         bcmgenet_umac_writel(priv, addr[0] << 8 | addr[1],
3585                              UMAC_MDF_ADDR + (*i * 4));
3586         bcmgenet_umac_writel(priv, addr[2] << 24 | addr[3] << 16 |
3587                              addr[4] << 8 | addr[5],
3588                              UMAC_MDF_ADDR + ((*i + 1) * 4));
3589         *i += 2;
3590 }
3591
3592 static void bcmgenet_set_rx_mode(struct net_device *dev)
3593 {
3594         struct bcmgenet_priv *priv = netdev_priv(dev);
3595         struct netdev_hw_addr *ha;
3596         int i, nfilter;
3597         u32 reg;
3598
3599         netif_dbg(priv, hw, dev, "%s: %08X\n", __func__, dev->flags);
3600
3601         /* Number of filters needed */
3602         nfilter = netdev_uc_count(dev) + netdev_mc_count(dev) + 2;
3603
3604         /*
3605          * Turn on promicuous mode for three scenarios
3606          * 1. IFF_PROMISC flag is set
3607          * 2. IFF_ALLMULTI flag is set
3608          * 3. The number of filters needed exceeds the number filters
3609          *    supported by the hardware.
3610         */
3611         reg = bcmgenet_umac_readl(priv, UMAC_CMD);
3612         if ((dev->flags & (IFF_PROMISC | IFF_ALLMULTI)) ||
3613             (nfilter > MAX_MDF_FILTER)) {
3614                 reg |= CMD_PROMISC;
3615                 bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3616                 bcmgenet_umac_writel(priv, 0, UMAC_MDF_CTRL);
3617                 return;
3618         } else {
3619                 reg &= ~CMD_PROMISC;
3620                 bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3621         }
3622
3623         /* update MDF filter */
3624         i = 0;
3625         /* Broadcast */
3626         bcmgenet_set_mdf_addr(priv, dev->broadcast, &i);
3627         /* my own address.*/
3628         bcmgenet_set_mdf_addr(priv, dev->dev_addr, &i);
3629
3630         /* Unicast */
3631         netdev_for_each_uc_addr(ha, dev)
3632                 bcmgenet_set_mdf_addr(priv, ha->addr, &i);
3633
3634         /* Multicast */
3635         netdev_for_each_mc_addr(ha, dev)
3636                 bcmgenet_set_mdf_addr(priv, ha->addr, &i);
3637
3638         /* Enable filters */
3639         reg = GENMASK(MAX_MDF_FILTER - 1, MAX_MDF_FILTER - nfilter);
3640         bcmgenet_umac_writel(priv, reg, UMAC_MDF_CTRL);
3641 }
3642
3643 /* Set the hardware MAC address. */
3644 static int bcmgenet_set_mac_addr(struct net_device *dev, void *p)
3645 {
3646         struct sockaddr *addr = p;
3647
3648         /* Setting the MAC address at the hardware level is not possible
3649          * without disabling the UniMAC RX/TX enable bits.
3650          */
3651         if (netif_running(dev))
3652                 return -EBUSY;
3653
3654         eth_hw_addr_set(dev, addr->sa_data);
3655
3656         return 0;
3657 }
3658
3659 static struct net_device_stats *bcmgenet_get_stats(struct net_device *dev)
3660 {
3661         struct bcmgenet_priv *priv = netdev_priv(dev);
3662         unsigned long tx_bytes = 0, tx_packets = 0;
3663         unsigned long rx_bytes = 0, rx_packets = 0;
3664         unsigned long rx_errors = 0, rx_dropped = 0;
3665         struct bcmgenet_tx_ring *tx_ring;
3666         struct bcmgenet_rx_ring *rx_ring;
3667         unsigned int q;
3668
3669         for (q = 0; q < priv->hw_params->tx_queues; q++) {
3670                 tx_ring = &priv->tx_rings[q];
3671                 tx_bytes += tx_ring->bytes;
3672                 tx_packets += tx_ring->packets;
3673         }
3674         tx_ring = &priv->tx_rings[DESC_INDEX];
3675         tx_bytes += tx_ring->bytes;
3676         tx_packets += tx_ring->packets;
3677
3678         for (q = 0; q < priv->hw_params->rx_queues; q++) {
3679                 rx_ring = &priv->rx_rings[q];
3680
3681                 rx_bytes += rx_ring->bytes;
3682                 rx_packets += rx_ring->packets;
3683                 rx_errors += rx_ring->errors;
3684                 rx_dropped += rx_ring->dropped;
3685         }
3686         rx_ring = &priv->rx_rings[DESC_INDEX];
3687         rx_bytes += rx_ring->bytes;
3688         rx_packets += rx_ring->packets;
3689         rx_errors += rx_ring->errors;
3690         rx_dropped += rx_ring->dropped;
3691
3692         dev->stats.tx_bytes = tx_bytes;
3693         dev->stats.tx_packets = tx_packets;
3694         dev->stats.rx_bytes = rx_bytes;
3695         dev->stats.rx_packets = rx_packets;
3696         dev->stats.rx_errors = rx_errors;
3697         dev->stats.rx_missed_errors = rx_errors;
3698         dev->stats.rx_dropped = rx_dropped;
3699         return &dev->stats;
3700 }
3701
3702 static int bcmgenet_change_carrier(struct net_device *dev, bool new_carrier)
3703 {
3704         struct bcmgenet_priv *priv = netdev_priv(dev);
3705
3706         if (!dev->phydev || !phy_is_pseudo_fixed_link(dev->phydev) ||
3707             priv->phy_interface != PHY_INTERFACE_MODE_MOCA)
3708                 return -EOPNOTSUPP;
3709
3710         if (new_carrier)
3711                 netif_carrier_on(dev);
3712         else
3713                 netif_carrier_off(dev);
3714
3715         return 0;
3716 }
3717
3718 static const struct net_device_ops bcmgenet_netdev_ops = {
3719         .ndo_open               = bcmgenet_open,
3720         .ndo_stop               = bcmgenet_close,
3721         .ndo_start_xmit         = bcmgenet_xmit,
3722         .ndo_tx_timeout         = bcmgenet_timeout,
3723         .ndo_set_rx_mode        = bcmgenet_set_rx_mode,
3724         .ndo_set_mac_address    = bcmgenet_set_mac_addr,
3725         .ndo_eth_ioctl          = phy_do_ioctl_running,
3726         .ndo_set_features       = bcmgenet_set_features,
3727 #ifdef CONFIG_NET_POLL_CONTROLLER
3728         .ndo_poll_controller    = bcmgenet_poll_controller,
3729 #endif
3730         .ndo_get_stats          = bcmgenet_get_stats,
3731         .ndo_change_carrier     = bcmgenet_change_carrier,
3732 };
3733
3734 /* Array of GENET hardware parameters/characteristics */
3735 static struct bcmgenet_hw_params bcmgenet_hw_params[] = {
3736         [GENET_V1] = {
3737                 .tx_queues = 0,
3738                 .tx_bds_per_q = 0,
3739                 .rx_queues = 0,
3740                 .rx_bds_per_q = 0,
3741                 .bp_in_en_shift = 16,
3742                 .bp_in_mask = 0xffff,
3743                 .hfb_filter_cnt = 16,
3744                 .qtag_mask = 0x1F,
3745                 .hfb_offset = 0x1000,
3746                 .rdma_offset = 0x2000,
3747                 .tdma_offset = 0x3000,
3748                 .words_per_bd = 2,
3749         },
3750         [GENET_V2] = {
3751                 .tx_queues = 4,
3752                 .tx_bds_per_q = 32,
3753                 .rx_queues = 0,
3754                 .rx_bds_per_q = 0,
3755                 .bp_in_en_shift = 16,
3756                 .bp_in_mask = 0xffff,
3757                 .hfb_filter_cnt = 16,
3758                 .qtag_mask = 0x1F,
3759                 .tbuf_offset = 0x0600,
3760                 .hfb_offset = 0x1000,
3761                 .hfb_reg_offset = 0x2000,
3762                 .rdma_offset = 0x3000,
3763                 .tdma_offset = 0x4000,
3764                 .words_per_bd = 2,
3765                 .flags = GENET_HAS_EXT,
3766         },
3767         [GENET_V3] = {
3768                 .tx_queues = 4,
3769                 .tx_bds_per_q = 32,
3770                 .rx_queues = 0,
3771                 .rx_bds_per_q = 0,
3772                 .bp_in_en_shift = 17,
3773                 .bp_in_mask = 0x1ffff,
3774                 .hfb_filter_cnt = 48,
3775                 .hfb_filter_size = 128,
3776                 .qtag_mask = 0x3F,
3777                 .tbuf_offset = 0x0600,
3778                 .hfb_offset = 0x8000,
3779                 .hfb_reg_offset = 0xfc00,
3780                 .rdma_offset = 0x10000,
3781                 .tdma_offset = 0x11000,
3782                 .words_per_bd = 2,
3783                 .flags = GENET_HAS_EXT | GENET_HAS_MDIO_INTR |
3784                          GENET_HAS_MOCA_LINK_DET,
3785         },
3786         [GENET_V4] = {
3787                 .tx_queues = 4,
3788                 .tx_bds_per_q = 32,
3789                 .rx_queues = 0,
3790                 .rx_bds_per_q = 0,
3791                 .bp_in_en_shift = 17,
3792                 .bp_in_mask = 0x1ffff,
3793                 .hfb_filter_cnt = 48,
3794                 .hfb_filter_size = 128,
3795                 .qtag_mask = 0x3F,
3796                 .tbuf_offset = 0x0600,
3797                 .hfb_offset = 0x8000,
3798                 .hfb_reg_offset = 0xfc00,
3799                 .rdma_offset = 0x2000,
3800                 .tdma_offset = 0x4000,
3801                 .words_per_bd = 3,
3802                 .flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3803                          GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3804         },
3805         [GENET_V5] = {
3806                 .tx_queues = 4,
3807                 .tx_bds_per_q = 32,
3808                 .rx_queues = 0,
3809                 .rx_bds_per_q = 0,
3810                 .bp_in_en_shift = 17,
3811                 .bp_in_mask = 0x1ffff,
3812                 .hfb_filter_cnt = 48,
3813                 .hfb_filter_size = 128,
3814                 .qtag_mask = 0x3F,
3815                 .tbuf_offset = 0x0600,
3816                 .hfb_offset = 0x8000,
3817                 .hfb_reg_offset = 0xfc00,
3818                 .rdma_offset = 0x2000,
3819                 .tdma_offset = 0x4000,
3820                 .words_per_bd = 3,
3821                 .flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3822                          GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3823         },
3824 };
3825
3826 /* Infer hardware parameters from the detected GENET version */
3827 static void bcmgenet_set_hw_params(struct bcmgenet_priv *priv)
3828 {
3829         struct bcmgenet_hw_params *params;
3830         u32 reg;
3831         u8 major;
3832         u16 gphy_rev;
3833
3834         if (GENET_IS_V5(priv) || GENET_IS_V4(priv)) {
3835                 bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3836                 genet_dma_ring_regs = genet_dma_ring_regs_v4;
3837         } else if (GENET_IS_V3(priv)) {
3838                 bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3839                 genet_dma_ring_regs = genet_dma_ring_regs_v123;
3840         } else if (GENET_IS_V2(priv)) {
3841                 bcmgenet_dma_regs = bcmgenet_dma_regs_v2;
3842                 genet_dma_ring_regs = genet_dma_ring_regs_v123;
3843         } else if (GENET_IS_V1(priv)) {
3844                 bcmgenet_dma_regs = bcmgenet_dma_regs_v1;
3845                 genet_dma_ring_regs = genet_dma_ring_regs_v123;
3846         }
3847
3848         /* enum genet_version starts at 1 */
3849         priv->hw_params = &bcmgenet_hw_params[priv->version];
3850         params = priv->hw_params;
3851
3852         /* Read GENET HW version */
3853         reg = bcmgenet_sys_readl(priv, SYS_REV_CTRL);
3854         major = (reg >> 24 & 0x0f);
3855         if (major == 6)
3856                 major = 5;
3857         else if (major == 5)
3858                 major = 4;
3859         else if (major == 0)
3860                 major = 1;
3861         if (major != priv->version) {
3862                 dev_err(&priv->pdev->dev,
3863                         "GENET version mismatch, got: %d, configured for: %d\n",
3864                         major, priv->version);
3865         }
3866
3867         /* Print the GENET core version */
3868         dev_info(&priv->pdev->dev, "GENET " GENET_VER_FMT,
3869                  major, (reg >> 16) & 0x0f, reg & 0xffff);
3870
3871         /* Store the integrated PHY revision for the MDIO probing function
3872          * to pass this information to the PHY driver. The PHY driver expects
3873          * to find the PHY major revision in bits 15:8 while the GENET register
3874          * stores that information in bits 7:0, account for that.
3875          *
3876          * On newer chips, starting with PHY revision G0, a new scheme is
3877          * deployed similar to the Starfighter 2 switch with GPHY major
3878          * revision in bits 15:8 and patch level in bits 7:0. Major revision 0
3879          * is reserved as well as special value 0x01ff, we have a small
3880          * heuristic to check for the new GPHY revision and re-arrange things
3881          * so the GPHY driver is happy.
3882          */
3883         gphy_rev = reg & 0xffff;
3884
3885         if (GENET_IS_V5(priv)) {
3886                 /* The EPHY revision should come from the MDIO registers of
3887                  * the PHY not from GENET.
3888                  */
3889                 if (gphy_rev != 0) {
3890                         pr_warn("GENET is reporting EPHY revision: 0x%04x\n",
3891                                 gphy_rev);
3892                 }
3893         /* This is reserved so should require special treatment */
3894         } else if (gphy_rev == 0 || gphy_rev == 0x01ff) {
3895                 pr_warn("Invalid GPHY revision detected: 0x%04x\n", gphy_rev);
3896                 return;
3897         /* This is the good old scheme, just GPHY major, no minor nor patch */
3898         } else if ((gphy_rev & 0xf0) != 0) {
3899                 priv->gphy_rev = gphy_rev << 8;
3900         /* This is the new scheme, GPHY major rolls over with 0x10 = rev G0 */
3901         } else if ((gphy_rev & 0xff00) != 0) {
3902                 priv->gphy_rev = gphy_rev;
3903         }
3904
3905 #ifdef CONFIG_PHYS_ADDR_T_64BIT
3906         if (!(params->flags & GENET_HAS_40BITS))
3907                 pr_warn("GENET does not support 40-bits PA\n");
3908 #endif
3909
3910         pr_debug("Configuration for version: %d\n"
3911                 "TXq: %1d, TXqBDs: %1d, RXq: %1d, RXqBDs: %1d\n"
3912                 "BP << en: %2d, BP msk: 0x%05x\n"
3913                 "HFB count: %2d, QTAQ msk: 0x%05x\n"
3914                 "TBUF: 0x%04x, HFB: 0x%04x, HFBreg: 0x%04x\n"
3915                 "RDMA: 0x%05x, TDMA: 0x%05x\n"
3916                 "Words/BD: %d\n",
3917                 priv->version,
3918                 params->tx_queues, params->tx_bds_per_q,
3919                 params->rx_queues, params->rx_bds_per_q,
3920                 params->bp_in_en_shift, params->bp_in_mask,
3921                 params->hfb_filter_cnt, params->qtag_mask,
3922                 params->tbuf_offset, params->hfb_offset,
3923                 params->hfb_reg_offset,
3924                 params->rdma_offset, params->tdma_offset,
3925                 params->words_per_bd);
3926 }
3927
3928 struct bcmgenet_plat_data {
3929         enum bcmgenet_version version;
3930         u32 dma_max_burst_length;
3931         bool ephy_16nm;
3932 };
3933
3934 static const struct bcmgenet_plat_data v1_plat_data = {
3935         .version = GENET_V1,
3936         .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3937 };
3938
3939 static const struct bcmgenet_plat_data v2_plat_data = {
3940         .version = GENET_V2,
3941         .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3942 };
3943
3944 static const struct bcmgenet_plat_data v3_plat_data = {
3945         .version = GENET_V3,
3946         .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3947 };
3948
3949 static const struct bcmgenet_plat_data v4_plat_data = {
3950         .version = GENET_V4,
3951         .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3952 };
3953
3954 static const struct bcmgenet_plat_data v5_plat_data = {
3955         .version = GENET_V5,
3956         .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3957 };
3958
3959 static const struct bcmgenet_plat_data bcm2711_plat_data = {
3960         .version = GENET_V5,
3961         .dma_max_burst_length = 0x08,
3962 };
3963
3964 static const struct bcmgenet_plat_data bcm7712_plat_data = {
3965         .version = GENET_V5,
3966         .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3967         .ephy_16nm = true,
3968 };
3969
3970 static const struct of_device_id bcmgenet_match[] = {
3971         { .compatible = "brcm,genet-v1", .data = &v1_plat_data },
3972         { .compatible = "brcm,genet-v2", .data = &v2_plat_data },
3973         { .compatible = "brcm,genet-v3", .data = &v3_plat_data },
3974         { .compatible = "brcm,genet-v4", .data = &v4_plat_data },
3975         { .compatible = "brcm,genet-v5", .data = &v5_plat_data },
3976         { .compatible = "brcm,bcm2711-genet-v5", .data = &bcm2711_plat_data },
3977         { .compatible = "brcm,bcm7712-genet-v5", .data = &bcm7712_plat_data },
3978         { },
3979 };
3980 MODULE_DEVICE_TABLE(of, bcmgenet_match);
3981
3982 static int bcmgenet_probe(struct platform_device *pdev)
3983 {
3984         struct bcmgenet_platform_data *pd = pdev->dev.platform_data;
3985         const struct bcmgenet_plat_data *pdata;
3986         struct bcmgenet_priv *priv;
3987         struct net_device *dev;
3988         unsigned int i;
3989         int err = -EIO;
3990
3991         /* Up to GENET_MAX_MQ_CNT + 1 TX queues and RX queues */
3992         dev = alloc_etherdev_mqs(sizeof(*priv), GENET_MAX_MQ_CNT + 1,
3993                                  GENET_MAX_MQ_CNT + 1);
3994         if (!dev) {
3995                 dev_err(&pdev->dev, "can't allocate net device\n");
3996                 return -ENOMEM;
3997         }
3998
3999         priv = netdev_priv(dev);
4000         priv->irq0 = platform_get_irq(pdev, 0);
4001         if (priv->irq0 < 0) {
4002                 err = priv->irq0;
4003                 goto err;
4004         }
4005         priv->irq1 = platform_get_irq(pdev, 1);
4006         if (priv->irq1 < 0) {
4007                 err = priv->irq1;
4008                 goto err;
4009         }
4010         priv->wol_irq = platform_get_irq_optional(pdev, 2);
4011         if (priv->wol_irq == -EPROBE_DEFER) {
4012                 err = priv->wol_irq;
4013                 goto err;
4014         }
4015
4016         priv->base = devm_platform_ioremap_resource(pdev, 0);
4017         if (IS_ERR(priv->base)) {
4018                 err = PTR_ERR(priv->base);
4019                 goto err;
4020         }
4021
4022         spin_lock_init(&priv->lock);
4023
4024         /* Set default pause parameters */
4025         priv->autoneg_pause = 1;
4026         priv->tx_pause = 1;
4027         priv->rx_pause = 1;
4028
4029         SET_NETDEV_DEV(dev, &pdev->dev);
4030         dev_set_drvdata(&pdev->dev, dev);
4031         dev->watchdog_timeo = 2 * HZ;
4032         dev->ethtool_ops = &bcmgenet_ethtool_ops;
4033         dev->netdev_ops = &bcmgenet_netdev_ops;
4034
4035         priv->msg_enable = netif_msg_init(-1, GENET_MSG_DEFAULT);
4036
4037         /* Set default features */
4038         dev->features |= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_HW_CSUM |
4039                          NETIF_F_RXCSUM;
4040         dev->hw_features |= dev->features;
4041         dev->vlan_features |= dev->features;
4042
4043         /* Request the WOL interrupt and advertise suspend if available */
4044         priv->wol_irq_disabled = true;
4045         if (priv->wol_irq > 0) {
4046                 err = devm_request_irq(&pdev->dev, priv->wol_irq,
4047                                        bcmgenet_wol_isr, 0, dev->name, priv);
4048                 if (!err)
4049                         device_set_wakeup_capable(&pdev->dev, 1);
4050         }
4051
4052         /* Set the needed headroom to account for any possible
4053          * features enabling/disabling at runtime
4054          */
4055         dev->needed_headroom += 64;
4056
4057         priv->dev = dev;
4058         priv->pdev = pdev;
4059
4060         pdata = device_get_match_data(&pdev->dev);
4061         if (pdata) {
4062                 priv->version = pdata->version;
4063                 priv->dma_max_burst_length = pdata->dma_max_burst_length;
4064                 priv->ephy_16nm = pdata->ephy_16nm;
4065         } else {
4066                 priv->version = pd->genet_version;
4067                 priv->dma_max_burst_length = DMA_MAX_BURST_LENGTH;
4068         }
4069
4070         priv->clk = devm_clk_get_optional(&priv->pdev->dev, "enet");
4071         if (IS_ERR(priv->clk)) {
4072                 dev_dbg(&priv->pdev->dev, "failed to get enet clock\n");
4073                 err = PTR_ERR(priv->clk);
4074                 goto err;
4075         }
4076
4077         err = clk_prepare_enable(priv->clk);
4078         if (err)
4079                 goto err;
4080
4081         bcmgenet_set_hw_params(priv);
4082
4083         err = -EIO;
4084         if (priv->hw_params->flags & GENET_HAS_40BITS)
4085                 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(40));
4086         if (err)
4087                 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
4088         if (err)
4089                 goto err_clk_disable;
4090
4091         /* Mii wait queue */
4092         init_waitqueue_head(&priv->wq);
4093         /* Always use RX_BUF_LENGTH (2KB) buffer for all chips */
4094         priv->rx_buf_len = RX_BUF_LENGTH;
4095         INIT_WORK(&priv->bcmgenet_irq_work, bcmgenet_irq_task);
4096
4097         priv->clk_wol = devm_clk_get_optional(&priv->pdev->dev, "enet-wol");
4098         if (IS_ERR(priv->clk_wol)) {
4099                 dev_dbg(&priv->pdev->dev, "failed to get enet-wol clock\n");
4100                 err = PTR_ERR(priv->clk_wol);
4101                 goto err_clk_disable;
4102         }
4103
4104         priv->clk_eee = devm_clk_get_optional(&priv->pdev->dev, "enet-eee");
4105         if (IS_ERR(priv->clk_eee)) {
4106                 dev_dbg(&priv->pdev->dev, "failed to get enet-eee clock\n");
4107                 err = PTR_ERR(priv->clk_eee);
4108                 goto err_clk_disable;
4109         }
4110
4111         /* If this is an internal GPHY, power it on now, before UniMAC is
4112          * brought out of reset as absolutely no UniMAC activity is allowed
4113          */
4114         if (device_get_phy_mode(&pdev->dev) == PHY_INTERFACE_MODE_INTERNAL)
4115                 bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
4116
4117         if (pd && !IS_ERR_OR_NULL(pd->mac_address))
4118                 eth_hw_addr_set(dev, pd->mac_address);
4119         else
4120                 if (device_get_ethdev_address(&pdev->dev, dev))
4121                         if (has_acpi_companion(&pdev->dev)) {
4122                                 u8 addr[ETH_ALEN];
4123
4124                                 bcmgenet_get_hw_addr(priv, addr);
4125                                 eth_hw_addr_set(dev, addr);
4126                         }
4127
4128         if (!is_valid_ether_addr(dev->dev_addr)) {
4129                 dev_warn(&pdev->dev, "using random Ethernet MAC\n");
4130                 eth_hw_addr_random(dev);
4131         }
4132
4133         reset_umac(priv);
4134
4135         err = bcmgenet_mii_init(dev);
4136         if (err)
4137                 goto err_clk_disable;
4138
4139         /* setup number of real queues  + 1 (GENET_V1 has 0 hardware queues
4140          * just the ring 16 descriptor based TX
4141          */
4142         netif_set_real_num_tx_queues(priv->dev, priv->hw_params->tx_queues + 1);
4143         netif_set_real_num_rx_queues(priv->dev, priv->hw_params->rx_queues + 1);
4144
4145         /* Set default coalescing parameters */
4146         for (i = 0; i < priv->hw_params->rx_queues; i++)
4147                 priv->rx_rings[i].rx_max_coalesced_frames = 1;
4148         priv->rx_rings[DESC_INDEX].rx_max_coalesced_frames = 1;
4149
4150         /* libphy will determine the link state */
4151         netif_carrier_off(dev);
4152
4153         /* Turn off the main clock, WOL clock is handled separately */
4154         clk_disable_unprepare(priv->clk);
4155
4156         err = register_netdev(dev);
4157         if (err) {
4158                 bcmgenet_mii_exit(dev);
4159                 goto err;
4160         }
4161
4162         return err;
4163
4164 err_clk_disable:
4165         clk_disable_unprepare(priv->clk);
4166 err:
4167         free_netdev(dev);
4168         return err;
4169 }
4170
4171 static int bcmgenet_remove(struct platform_device *pdev)
4172 {
4173         struct bcmgenet_priv *priv = dev_to_priv(&pdev->dev);
4174
4175         dev_set_drvdata(&pdev->dev, NULL);
4176         unregister_netdev(priv->dev);
4177         bcmgenet_mii_exit(priv->dev);
4178         free_netdev(priv->dev);
4179
4180         return 0;
4181 }
4182
4183 static void bcmgenet_shutdown(struct platform_device *pdev)
4184 {
4185         bcmgenet_remove(pdev);
4186 }
4187
4188 #ifdef CONFIG_PM_SLEEP
4189 static int bcmgenet_resume_noirq(struct device *d)
4190 {
4191         struct net_device *dev = dev_get_drvdata(d);
4192         struct bcmgenet_priv *priv = netdev_priv(dev);
4193         int ret;
4194         u32 reg;
4195
4196         if (!netif_running(dev))
4197                 return 0;
4198
4199         /* Turn on the clock */
4200         ret = clk_prepare_enable(priv->clk);
4201         if (ret)
4202                 return ret;
4203
4204         if (device_may_wakeup(d) && priv->wolopts) {
4205                 /* Account for Wake-on-LAN events and clear those events
4206                  * (Some devices need more time between enabling the clocks
4207                  *  and the interrupt register reflecting the wake event so
4208                  *  read the register twice)
4209                  */
4210                 reg = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT);
4211                 reg = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT);
4212                 if (reg & UMAC_IRQ_WAKE_EVENT)
4213                         pm_wakeup_event(&priv->pdev->dev, 0);
4214         }
4215
4216         bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_WAKE_EVENT, INTRL2_CPU_CLEAR);
4217
4218         return 0;
4219 }
4220
4221 static int bcmgenet_resume(struct device *d)
4222 {
4223         struct net_device *dev = dev_get_drvdata(d);
4224         struct bcmgenet_priv *priv = netdev_priv(dev);
4225         struct bcmgenet_rxnfc_rule *rule;
4226         unsigned long dma_ctrl;
4227         int ret;
4228
4229         if (!netif_running(dev))
4230                 return 0;
4231
4232         /* From WOL-enabled suspend, switch to regular clock */
4233         if (device_may_wakeup(d) && priv->wolopts)
4234                 bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
4235
4236         /* If this is an internal GPHY, power it back on now, before UniMAC is
4237          * brought out of reset as absolutely no UniMAC activity is allowed
4238          */
4239         if (priv->internal_phy)
4240                 bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
4241
4242         bcmgenet_umac_reset(priv);
4243
4244         init_umac(priv);
4245
4246         phy_init_hw(dev->phydev);
4247
4248         /* Speed settings must be restored */
4249         genphy_config_aneg(dev->phydev);
4250         bcmgenet_mii_config(priv->dev, false);
4251
4252         /* Restore enabled features */
4253         bcmgenet_set_features(dev, dev->features);
4254
4255         bcmgenet_set_hw_addr(priv, dev->dev_addr);
4256
4257         /* Restore hardware filters */
4258         bcmgenet_hfb_clear(priv);
4259         list_for_each_entry(rule, &priv->rxnfc_list, list)
4260                 if (rule->state != BCMGENET_RXNFC_STATE_UNUSED)
4261                         bcmgenet_hfb_create_rxnfc_filter(priv, rule);
4262
4263         /* Disable RX/TX DMA and flush TX queues */
4264         dma_ctrl = bcmgenet_dma_disable(priv);
4265
4266         /* Reinitialize TDMA and RDMA and SW housekeeping */
4267         ret = bcmgenet_init_dma(priv);
4268         if (ret) {
4269                 netdev_err(dev, "failed to initialize DMA\n");
4270                 goto out_clk_disable;
4271         }
4272
4273         /* Always enable ring 16 - descriptor ring */
4274         bcmgenet_enable_dma(priv, dma_ctrl);
4275
4276         if (!device_may_wakeup(d))
4277                 phy_resume(dev->phydev);
4278
4279         bcmgenet_netif_start(dev);
4280
4281         netif_device_attach(dev);
4282
4283         return 0;
4284
4285 out_clk_disable:
4286         if (priv->internal_phy)
4287                 bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
4288         clk_disable_unprepare(priv->clk);
4289         return ret;
4290 }
4291
4292 static int bcmgenet_suspend(struct device *d)
4293 {
4294         struct net_device *dev = dev_get_drvdata(d);
4295         struct bcmgenet_priv *priv = netdev_priv(dev);
4296
4297         if (!netif_running(dev))
4298                 return 0;
4299
4300         netif_device_detach(dev);
4301
4302         bcmgenet_netif_stop(dev, true);
4303
4304         if (!device_may_wakeup(d))
4305                 phy_suspend(dev->phydev);
4306
4307         /* Disable filtering */
4308         bcmgenet_hfb_reg_writel(priv, 0, HFB_CTRL);
4309
4310         return 0;
4311 }
4312
4313 static int bcmgenet_suspend_noirq(struct device *d)
4314 {
4315         struct net_device *dev = dev_get_drvdata(d);
4316         struct bcmgenet_priv *priv = netdev_priv(dev);
4317         int ret = 0;
4318
4319         if (!netif_running(dev))
4320                 return 0;
4321
4322         /* Prepare the device for Wake-on-LAN and switch to the slow clock */
4323         if (device_may_wakeup(d) && priv->wolopts)
4324                 ret = bcmgenet_power_down(priv, GENET_POWER_WOL_MAGIC);
4325         else if (priv->internal_phy)
4326                 ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
4327
4328         /* Let the framework handle resumption and leave the clocks on */
4329         if (ret)
4330                 return ret;
4331
4332         /* Turn off the clocks */
4333         clk_disable_unprepare(priv->clk);
4334
4335         return 0;
4336 }
4337 #else
4338 #define bcmgenet_suspend        NULL
4339 #define bcmgenet_suspend_noirq  NULL
4340 #define bcmgenet_resume         NULL
4341 #define bcmgenet_resume_noirq   NULL
4342 #endif /* CONFIG_PM_SLEEP */
4343
4344 static const struct dev_pm_ops bcmgenet_pm_ops = {
4345         .suspend        = bcmgenet_suspend,
4346         .suspend_noirq  = bcmgenet_suspend_noirq,
4347         .resume         = bcmgenet_resume,
4348         .resume_noirq   = bcmgenet_resume_noirq,
4349 };
4350
4351 static const struct acpi_device_id genet_acpi_match[] = {
4352         { "BCM6E4E", (kernel_ulong_t)&bcm2711_plat_data },
4353         { },
4354 };
4355 MODULE_DEVICE_TABLE(acpi, genet_acpi_match);
4356
4357 static struct platform_driver bcmgenet_driver = {
4358         .probe  = bcmgenet_probe,
4359         .remove = bcmgenet_remove,
4360         .shutdown = bcmgenet_shutdown,
4361         .driver = {
4362                 .name   = "bcmgenet",
4363                 .of_match_table = bcmgenet_match,
4364                 .pm     = &bcmgenet_pm_ops,
4365                 .acpi_match_table = genet_acpi_match,
4366         },
4367 };
4368 module_platform_driver(bcmgenet_driver);
4369
4370 MODULE_AUTHOR("Broadcom Corporation");
4371 MODULE_DESCRIPTION("Broadcom GENET Ethernet controller driver");
4372 MODULE_ALIAS("platform:bcmgenet");
4373 MODULE_LICENSE("GPL");
4374 MODULE_SOFTDEP("pre: mdio-bcm-unimac");