Merge branch 'topic/midi20' into for-linus
[linux-block.git] / drivers / net / ethernet / broadcom / genet / bcmgenet.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Broadcom GENET (Gigabit Ethernet) controller driver
4  *
5  * Copyright (c) 2014-2020 Broadcom
6  */
7
8 #define pr_fmt(fmt)                             "bcmgenet: " fmt
9
10 #include <linux/acpi.h>
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/sched.h>
14 #include <linux/types.h>
15 #include <linux/fcntl.h>
16 #include <linux/interrupt.h>
17 #include <linux/string.h>
18 #include <linux/if_ether.h>
19 #include <linux/init.h>
20 #include <linux/errno.h>
21 #include <linux/delay.h>
22 #include <linux/platform_device.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/pm.h>
25 #include <linux/clk.h>
26 #include <net/arp.h>
27
28 #include <linux/mii.h>
29 #include <linux/ethtool.h>
30 #include <linux/netdevice.h>
31 #include <linux/inetdevice.h>
32 #include <linux/etherdevice.h>
33 #include <linux/skbuff.h>
34 #include <linux/in.h>
35 #include <linux/ip.h>
36 #include <linux/ipv6.h>
37 #include <linux/phy.h>
38 #include <linux/platform_data/bcmgenet.h>
39
40 #include <asm/unaligned.h>
41
42 #include "bcmgenet.h"
43
44 /* Maximum number of hardware queues, downsized if needed */
45 #define GENET_MAX_MQ_CNT        4
46
47 /* Default highest priority queue for multi queue support */
48 #define GENET_Q0_PRIORITY       0
49
50 #define GENET_Q16_RX_BD_CNT     \
51         (TOTAL_DESC - priv->hw_params->rx_queues * priv->hw_params->rx_bds_per_q)
52 #define GENET_Q16_TX_BD_CNT     \
53         (TOTAL_DESC - priv->hw_params->tx_queues * priv->hw_params->tx_bds_per_q)
54
55 #define RX_BUF_LENGTH           2048
56 #define SKB_ALIGNMENT           32
57
58 /* Tx/Rx DMA register offset, skip 256 descriptors */
59 #define WORDS_PER_BD(p)         (p->hw_params->words_per_bd)
60 #define DMA_DESC_SIZE           (WORDS_PER_BD(priv) * sizeof(u32))
61
62 #define GENET_TDMA_REG_OFF      (priv->hw_params->tdma_offset + \
63                                 TOTAL_DESC * DMA_DESC_SIZE)
64
65 #define GENET_RDMA_REG_OFF      (priv->hw_params->rdma_offset + \
66                                 TOTAL_DESC * DMA_DESC_SIZE)
67
68 /* Forward declarations */
69 static void bcmgenet_set_rx_mode(struct net_device *dev);
70
71 static inline void bcmgenet_writel(u32 value, void __iomem *offset)
72 {
73         /* MIPS chips strapped for BE will automagically configure the
74          * peripheral registers for CPU-native byte order.
75          */
76         if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
77                 __raw_writel(value, offset);
78         else
79                 writel_relaxed(value, offset);
80 }
81
82 static inline u32 bcmgenet_readl(void __iomem *offset)
83 {
84         if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
85                 return __raw_readl(offset);
86         else
87                 return readl_relaxed(offset);
88 }
89
90 static inline void dmadesc_set_length_status(struct bcmgenet_priv *priv,
91                                              void __iomem *d, u32 value)
92 {
93         bcmgenet_writel(value, d + DMA_DESC_LENGTH_STATUS);
94 }
95
96 static inline void dmadesc_set_addr(struct bcmgenet_priv *priv,
97                                     void __iomem *d,
98                                     dma_addr_t addr)
99 {
100         bcmgenet_writel(lower_32_bits(addr), d + DMA_DESC_ADDRESS_LO);
101
102         /* Register writes to GISB bus can take couple hundred nanoseconds
103          * and are done for each packet, save these expensive writes unless
104          * the platform is explicitly configured for 64-bits/LPAE.
105          */
106 #ifdef CONFIG_PHYS_ADDR_T_64BIT
107         if (priv->hw_params->flags & GENET_HAS_40BITS)
108                 bcmgenet_writel(upper_32_bits(addr), d + DMA_DESC_ADDRESS_HI);
109 #endif
110 }
111
112 /* Combined address + length/status setter */
113 static inline void dmadesc_set(struct bcmgenet_priv *priv,
114                                void __iomem *d, dma_addr_t addr, u32 val)
115 {
116         dmadesc_set_addr(priv, d, addr);
117         dmadesc_set_length_status(priv, d, val);
118 }
119
120 #define GENET_VER_FMT   "%1d.%1d EPHY: 0x%04x"
121
122 #define GENET_MSG_DEFAULT       (NETIF_MSG_DRV | NETIF_MSG_PROBE | \
123                                 NETIF_MSG_LINK)
124
125 static inline u32 bcmgenet_rbuf_ctrl_get(struct bcmgenet_priv *priv)
126 {
127         if (GENET_IS_V1(priv))
128                 return bcmgenet_rbuf_readl(priv, RBUF_FLUSH_CTRL_V1);
129         else
130                 return bcmgenet_sys_readl(priv, SYS_RBUF_FLUSH_CTRL);
131 }
132
133 static inline void bcmgenet_rbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
134 {
135         if (GENET_IS_V1(priv))
136                 bcmgenet_rbuf_writel(priv, val, RBUF_FLUSH_CTRL_V1);
137         else
138                 bcmgenet_sys_writel(priv, val, SYS_RBUF_FLUSH_CTRL);
139 }
140
141 /* These macros are defined to deal with register map change
142  * between GENET1.1 and GENET2. Only those currently being used
143  * by driver are defined.
144  */
145 static inline u32 bcmgenet_tbuf_ctrl_get(struct bcmgenet_priv *priv)
146 {
147         if (GENET_IS_V1(priv))
148                 return bcmgenet_rbuf_readl(priv, TBUF_CTRL_V1);
149         else
150                 return bcmgenet_readl(priv->base +
151                                       priv->hw_params->tbuf_offset + TBUF_CTRL);
152 }
153
154 static inline void bcmgenet_tbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
155 {
156         if (GENET_IS_V1(priv))
157                 bcmgenet_rbuf_writel(priv, val, TBUF_CTRL_V1);
158         else
159                 bcmgenet_writel(val, priv->base +
160                                 priv->hw_params->tbuf_offset + TBUF_CTRL);
161 }
162
163 static inline u32 bcmgenet_bp_mc_get(struct bcmgenet_priv *priv)
164 {
165         if (GENET_IS_V1(priv))
166                 return bcmgenet_rbuf_readl(priv, TBUF_BP_MC_V1);
167         else
168                 return bcmgenet_readl(priv->base +
169                                       priv->hw_params->tbuf_offset + TBUF_BP_MC);
170 }
171
172 static inline void bcmgenet_bp_mc_set(struct bcmgenet_priv *priv, u32 val)
173 {
174         if (GENET_IS_V1(priv))
175                 bcmgenet_rbuf_writel(priv, val, TBUF_BP_MC_V1);
176         else
177                 bcmgenet_writel(val, priv->base +
178                                 priv->hw_params->tbuf_offset + TBUF_BP_MC);
179 }
180
181 /* RX/TX DMA register accessors */
182 enum dma_reg {
183         DMA_RING_CFG = 0,
184         DMA_CTRL,
185         DMA_STATUS,
186         DMA_SCB_BURST_SIZE,
187         DMA_ARB_CTRL,
188         DMA_PRIORITY_0,
189         DMA_PRIORITY_1,
190         DMA_PRIORITY_2,
191         DMA_INDEX2RING_0,
192         DMA_INDEX2RING_1,
193         DMA_INDEX2RING_2,
194         DMA_INDEX2RING_3,
195         DMA_INDEX2RING_4,
196         DMA_INDEX2RING_5,
197         DMA_INDEX2RING_6,
198         DMA_INDEX2RING_7,
199         DMA_RING0_TIMEOUT,
200         DMA_RING1_TIMEOUT,
201         DMA_RING2_TIMEOUT,
202         DMA_RING3_TIMEOUT,
203         DMA_RING4_TIMEOUT,
204         DMA_RING5_TIMEOUT,
205         DMA_RING6_TIMEOUT,
206         DMA_RING7_TIMEOUT,
207         DMA_RING8_TIMEOUT,
208         DMA_RING9_TIMEOUT,
209         DMA_RING10_TIMEOUT,
210         DMA_RING11_TIMEOUT,
211         DMA_RING12_TIMEOUT,
212         DMA_RING13_TIMEOUT,
213         DMA_RING14_TIMEOUT,
214         DMA_RING15_TIMEOUT,
215         DMA_RING16_TIMEOUT,
216 };
217
218 static const u8 bcmgenet_dma_regs_v3plus[] = {
219         [DMA_RING_CFG]          = 0x00,
220         [DMA_CTRL]              = 0x04,
221         [DMA_STATUS]            = 0x08,
222         [DMA_SCB_BURST_SIZE]    = 0x0C,
223         [DMA_ARB_CTRL]          = 0x2C,
224         [DMA_PRIORITY_0]        = 0x30,
225         [DMA_PRIORITY_1]        = 0x34,
226         [DMA_PRIORITY_2]        = 0x38,
227         [DMA_RING0_TIMEOUT]     = 0x2C,
228         [DMA_RING1_TIMEOUT]     = 0x30,
229         [DMA_RING2_TIMEOUT]     = 0x34,
230         [DMA_RING3_TIMEOUT]     = 0x38,
231         [DMA_RING4_TIMEOUT]     = 0x3c,
232         [DMA_RING5_TIMEOUT]     = 0x40,
233         [DMA_RING6_TIMEOUT]     = 0x44,
234         [DMA_RING7_TIMEOUT]     = 0x48,
235         [DMA_RING8_TIMEOUT]     = 0x4c,
236         [DMA_RING9_TIMEOUT]     = 0x50,
237         [DMA_RING10_TIMEOUT]    = 0x54,
238         [DMA_RING11_TIMEOUT]    = 0x58,
239         [DMA_RING12_TIMEOUT]    = 0x5c,
240         [DMA_RING13_TIMEOUT]    = 0x60,
241         [DMA_RING14_TIMEOUT]    = 0x64,
242         [DMA_RING15_TIMEOUT]    = 0x68,
243         [DMA_RING16_TIMEOUT]    = 0x6C,
244         [DMA_INDEX2RING_0]      = 0x70,
245         [DMA_INDEX2RING_1]      = 0x74,
246         [DMA_INDEX2RING_2]      = 0x78,
247         [DMA_INDEX2RING_3]      = 0x7C,
248         [DMA_INDEX2RING_4]      = 0x80,
249         [DMA_INDEX2RING_5]      = 0x84,
250         [DMA_INDEX2RING_6]      = 0x88,
251         [DMA_INDEX2RING_7]      = 0x8C,
252 };
253
254 static const u8 bcmgenet_dma_regs_v2[] = {
255         [DMA_RING_CFG]          = 0x00,
256         [DMA_CTRL]              = 0x04,
257         [DMA_STATUS]            = 0x08,
258         [DMA_SCB_BURST_SIZE]    = 0x0C,
259         [DMA_ARB_CTRL]          = 0x30,
260         [DMA_PRIORITY_0]        = 0x34,
261         [DMA_PRIORITY_1]        = 0x38,
262         [DMA_PRIORITY_2]        = 0x3C,
263         [DMA_RING0_TIMEOUT]     = 0x2C,
264         [DMA_RING1_TIMEOUT]     = 0x30,
265         [DMA_RING2_TIMEOUT]     = 0x34,
266         [DMA_RING3_TIMEOUT]     = 0x38,
267         [DMA_RING4_TIMEOUT]     = 0x3c,
268         [DMA_RING5_TIMEOUT]     = 0x40,
269         [DMA_RING6_TIMEOUT]     = 0x44,
270         [DMA_RING7_TIMEOUT]     = 0x48,
271         [DMA_RING8_TIMEOUT]     = 0x4c,
272         [DMA_RING9_TIMEOUT]     = 0x50,
273         [DMA_RING10_TIMEOUT]    = 0x54,
274         [DMA_RING11_TIMEOUT]    = 0x58,
275         [DMA_RING12_TIMEOUT]    = 0x5c,
276         [DMA_RING13_TIMEOUT]    = 0x60,
277         [DMA_RING14_TIMEOUT]    = 0x64,
278         [DMA_RING15_TIMEOUT]    = 0x68,
279         [DMA_RING16_TIMEOUT]    = 0x6C,
280 };
281
282 static const u8 bcmgenet_dma_regs_v1[] = {
283         [DMA_CTRL]              = 0x00,
284         [DMA_STATUS]            = 0x04,
285         [DMA_SCB_BURST_SIZE]    = 0x0C,
286         [DMA_ARB_CTRL]          = 0x30,
287         [DMA_PRIORITY_0]        = 0x34,
288         [DMA_PRIORITY_1]        = 0x38,
289         [DMA_PRIORITY_2]        = 0x3C,
290         [DMA_RING0_TIMEOUT]     = 0x2C,
291         [DMA_RING1_TIMEOUT]     = 0x30,
292         [DMA_RING2_TIMEOUT]     = 0x34,
293         [DMA_RING3_TIMEOUT]     = 0x38,
294         [DMA_RING4_TIMEOUT]     = 0x3c,
295         [DMA_RING5_TIMEOUT]     = 0x40,
296         [DMA_RING6_TIMEOUT]     = 0x44,
297         [DMA_RING7_TIMEOUT]     = 0x48,
298         [DMA_RING8_TIMEOUT]     = 0x4c,
299         [DMA_RING9_TIMEOUT]     = 0x50,
300         [DMA_RING10_TIMEOUT]    = 0x54,
301         [DMA_RING11_TIMEOUT]    = 0x58,
302         [DMA_RING12_TIMEOUT]    = 0x5c,
303         [DMA_RING13_TIMEOUT]    = 0x60,
304         [DMA_RING14_TIMEOUT]    = 0x64,
305         [DMA_RING15_TIMEOUT]    = 0x68,
306         [DMA_RING16_TIMEOUT]    = 0x6C,
307 };
308
309 /* Set at runtime once bcmgenet version is known */
310 static const u8 *bcmgenet_dma_regs;
311
312 static inline struct bcmgenet_priv *dev_to_priv(struct device *dev)
313 {
314         return netdev_priv(dev_get_drvdata(dev));
315 }
316
317 static inline u32 bcmgenet_tdma_readl(struct bcmgenet_priv *priv,
318                                       enum dma_reg r)
319 {
320         return bcmgenet_readl(priv->base + GENET_TDMA_REG_OFF +
321                               DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
322 }
323
324 static inline void bcmgenet_tdma_writel(struct bcmgenet_priv *priv,
325                                         u32 val, enum dma_reg r)
326 {
327         bcmgenet_writel(val, priv->base + GENET_TDMA_REG_OFF +
328                         DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
329 }
330
331 static inline u32 bcmgenet_rdma_readl(struct bcmgenet_priv *priv,
332                                       enum dma_reg r)
333 {
334         return bcmgenet_readl(priv->base + GENET_RDMA_REG_OFF +
335                               DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
336 }
337
338 static inline void bcmgenet_rdma_writel(struct bcmgenet_priv *priv,
339                                         u32 val, enum dma_reg r)
340 {
341         bcmgenet_writel(val, priv->base + GENET_RDMA_REG_OFF +
342                         DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
343 }
344
345 /* RDMA/TDMA ring registers and accessors
346  * we merge the common fields and just prefix with T/D the registers
347  * having different meaning depending on the direction
348  */
349 enum dma_ring_reg {
350         TDMA_READ_PTR = 0,
351         RDMA_WRITE_PTR = TDMA_READ_PTR,
352         TDMA_READ_PTR_HI,
353         RDMA_WRITE_PTR_HI = TDMA_READ_PTR_HI,
354         TDMA_CONS_INDEX,
355         RDMA_PROD_INDEX = TDMA_CONS_INDEX,
356         TDMA_PROD_INDEX,
357         RDMA_CONS_INDEX = TDMA_PROD_INDEX,
358         DMA_RING_BUF_SIZE,
359         DMA_START_ADDR,
360         DMA_START_ADDR_HI,
361         DMA_END_ADDR,
362         DMA_END_ADDR_HI,
363         DMA_MBUF_DONE_THRESH,
364         TDMA_FLOW_PERIOD,
365         RDMA_XON_XOFF_THRESH = TDMA_FLOW_PERIOD,
366         TDMA_WRITE_PTR,
367         RDMA_READ_PTR = TDMA_WRITE_PTR,
368         TDMA_WRITE_PTR_HI,
369         RDMA_READ_PTR_HI = TDMA_WRITE_PTR_HI
370 };
371
372 /* GENET v4 supports 40-bits pointer addressing
373  * for obvious reasons the LO and HI word parts
374  * are contiguous, but this offsets the other
375  * registers.
376  */
377 static const u8 genet_dma_ring_regs_v4[] = {
378         [TDMA_READ_PTR]                 = 0x00,
379         [TDMA_READ_PTR_HI]              = 0x04,
380         [TDMA_CONS_INDEX]               = 0x08,
381         [TDMA_PROD_INDEX]               = 0x0C,
382         [DMA_RING_BUF_SIZE]             = 0x10,
383         [DMA_START_ADDR]                = 0x14,
384         [DMA_START_ADDR_HI]             = 0x18,
385         [DMA_END_ADDR]                  = 0x1C,
386         [DMA_END_ADDR_HI]               = 0x20,
387         [DMA_MBUF_DONE_THRESH]          = 0x24,
388         [TDMA_FLOW_PERIOD]              = 0x28,
389         [TDMA_WRITE_PTR]                = 0x2C,
390         [TDMA_WRITE_PTR_HI]             = 0x30,
391 };
392
393 static const u8 genet_dma_ring_regs_v123[] = {
394         [TDMA_READ_PTR]                 = 0x00,
395         [TDMA_CONS_INDEX]               = 0x04,
396         [TDMA_PROD_INDEX]               = 0x08,
397         [DMA_RING_BUF_SIZE]             = 0x0C,
398         [DMA_START_ADDR]                = 0x10,
399         [DMA_END_ADDR]                  = 0x14,
400         [DMA_MBUF_DONE_THRESH]          = 0x18,
401         [TDMA_FLOW_PERIOD]              = 0x1C,
402         [TDMA_WRITE_PTR]                = 0x20,
403 };
404
405 /* Set at runtime once GENET version is known */
406 static const u8 *genet_dma_ring_regs;
407
408 static inline u32 bcmgenet_tdma_ring_readl(struct bcmgenet_priv *priv,
409                                            unsigned int ring,
410                                            enum dma_ring_reg r)
411 {
412         return bcmgenet_readl(priv->base + GENET_TDMA_REG_OFF +
413                               (DMA_RING_SIZE * ring) +
414                               genet_dma_ring_regs[r]);
415 }
416
417 static inline void bcmgenet_tdma_ring_writel(struct bcmgenet_priv *priv,
418                                              unsigned int ring, u32 val,
419                                              enum dma_ring_reg r)
420 {
421         bcmgenet_writel(val, priv->base + GENET_TDMA_REG_OFF +
422                         (DMA_RING_SIZE * ring) +
423                         genet_dma_ring_regs[r]);
424 }
425
426 static inline u32 bcmgenet_rdma_ring_readl(struct bcmgenet_priv *priv,
427                                            unsigned int ring,
428                                            enum dma_ring_reg r)
429 {
430         return bcmgenet_readl(priv->base + GENET_RDMA_REG_OFF +
431                               (DMA_RING_SIZE * ring) +
432                               genet_dma_ring_regs[r]);
433 }
434
435 static inline void bcmgenet_rdma_ring_writel(struct bcmgenet_priv *priv,
436                                              unsigned int ring, u32 val,
437                                              enum dma_ring_reg r)
438 {
439         bcmgenet_writel(val, priv->base + GENET_RDMA_REG_OFF +
440                         (DMA_RING_SIZE * ring) +
441                         genet_dma_ring_regs[r]);
442 }
443
444 static void bcmgenet_hfb_enable_filter(struct bcmgenet_priv *priv, u32 f_index)
445 {
446         u32 offset;
447         u32 reg;
448
449         offset = HFB_FLT_ENABLE_V3PLUS + (f_index < 32) * sizeof(u32);
450         reg = bcmgenet_hfb_reg_readl(priv, offset);
451         reg |= (1 << (f_index % 32));
452         bcmgenet_hfb_reg_writel(priv, reg, offset);
453         reg = bcmgenet_hfb_reg_readl(priv, HFB_CTRL);
454         reg |= RBUF_HFB_EN;
455         bcmgenet_hfb_reg_writel(priv, reg, HFB_CTRL);
456 }
457
458 static void bcmgenet_hfb_disable_filter(struct bcmgenet_priv *priv, u32 f_index)
459 {
460         u32 offset, reg, reg1;
461
462         offset = HFB_FLT_ENABLE_V3PLUS;
463         reg = bcmgenet_hfb_reg_readl(priv, offset);
464         reg1 = bcmgenet_hfb_reg_readl(priv, offset + sizeof(u32));
465         if  (f_index < 32) {
466                 reg1 &= ~(1 << (f_index % 32));
467                 bcmgenet_hfb_reg_writel(priv, reg1, offset + sizeof(u32));
468         } else {
469                 reg &= ~(1 << (f_index % 32));
470                 bcmgenet_hfb_reg_writel(priv, reg, offset);
471         }
472         if (!reg && !reg1) {
473                 reg = bcmgenet_hfb_reg_readl(priv, HFB_CTRL);
474                 reg &= ~RBUF_HFB_EN;
475                 bcmgenet_hfb_reg_writel(priv, reg, HFB_CTRL);
476         }
477 }
478
479 static void bcmgenet_hfb_set_filter_rx_queue_mapping(struct bcmgenet_priv *priv,
480                                                      u32 f_index, u32 rx_queue)
481 {
482         u32 offset;
483         u32 reg;
484
485         offset = f_index / 8;
486         reg = bcmgenet_rdma_readl(priv, DMA_INDEX2RING_0 + offset);
487         reg &= ~(0xF << (4 * (f_index % 8)));
488         reg |= ((rx_queue & 0xF) << (4 * (f_index % 8)));
489         bcmgenet_rdma_writel(priv, reg, DMA_INDEX2RING_0 + offset);
490 }
491
492 static void bcmgenet_hfb_set_filter_length(struct bcmgenet_priv *priv,
493                                            u32 f_index, u32 f_length)
494 {
495         u32 offset;
496         u32 reg;
497
498         offset = HFB_FLT_LEN_V3PLUS +
499                  ((priv->hw_params->hfb_filter_cnt - 1 - f_index) / 4) *
500                  sizeof(u32);
501         reg = bcmgenet_hfb_reg_readl(priv, offset);
502         reg &= ~(0xFF << (8 * (f_index % 4)));
503         reg |= ((f_length & 0xFF) << (8 * (f_index % 4)));
504         bcmgenet_hfb_reg_writel(priv, reg, offset);
505 }
506
507 static int bcmgenet_hfb_validate_mask(void *mask, size_t size)
508 {
509         while (size) {
510                 switch (*(unsigned char *)mask++) {
511                 case 0x00:
512                 case 0x0f:
513                 case 0xf0:
514                 case 0xff:
515                         size--;
516                         continue;
517                 default:
518                         return -EINVAL;
519                 }
520         }
521
522         return 0;
523 }
524
525 #define VALIDATE_MASK(x) \
526         bcmgenet_hfb_validate_mask(&(x), sizeof(x))
527
528 static int bcmgenet_hfb_insert_data(struct bcmgenet_priv *priv, u32 f_index,
529                                     u32 offset, void *val, void *mask,
530                                     size_t size)
531 {
532         u32 index, tmp;
533
534         index = f_index * priv->hw_params->hfb_filter_size + offset / 2;
535         tmp = bcmgenet_hfb_readl(priv, index * sizeof(u32));
536
537         while (size--) {
538                 if (offset++ & 1) {
539                         tmp &= ~0x300FF;
540                         tmp |= (*(unsigned char *)val++);
541                         switch ((*(unsigned char *)mask++)) {
542                         case 0xFF:
543                                 tmp |= 0x30000;
544                                 break;
545                         case 0xF0:
546                                 tmp |= 0x20000;
547                                 break;
548                         case 0x0F:
549                                 tmp |= 0x10000;
550                                 break;
551                         }
552                         bcmgenet_hfb_writel(priv, tmp, index++ * sizeof(u32));
553                         if (size)
554                                 tmp = bcmgenet_hfb_readl(priv,
555                                                          index * sizeof(u32));
556                 } else {
557                         tmp &= ~0xCFF00;
558                         tmp |= (*(unsigned char *)val++) << 8;
559                         switch ((*(unsigned char *)mask++)) {
560                         case 0xFF:
561                                 tmp |= 0xC0000;
562                                 break;
563                         case 0xF0:
564                                 tmp |= 0x80000;
565                                 break;
566                         case 0x0F:
567                                 tmp |= 0x40000;
568                                 break;
569                         }
570                         if (!size)
571                                 bcmgenet_hfb_writel(priv, tmp, index * sizeof(u32));
572                 }
573         }
574
575         return 0;
576 }
577
578 static void bcmgenet_hfb_create_rxnfc_filter(struct bcmgenet_priv *priv,
579                                              struct bcmgenet_rxnfc_rule *rule)
580 {
581         struct ethtool_rx_flow_spec *fs = &rule->fs;
582         u32 offset = 0, f_length = 0, f;
583         u8 val_8, mask_8;
584         __be16 val_16;
585         u16 mask_16;
586         size_t size;
587
588         f = fs->location;
589         if (fs->flow_type & FLOW_MAC_EXT) {
590                 bcmgenet_hfb_insert_data(priv, f, 0,
591                                          &fs->h_ext.h_dest, &fs->m_ext.h_dest,
592                                          sizeof(fs->h_ext.h_dest));
593         }
594
595         if (fs->flow_type & FLOW_EXT) {
596                 if (fs->m_ext.vlan_etype ||
597                     fs->m_ext.vlan_tci) {
598                         bcmgenet_hfb_insert_data(priv, f, 12,
599                                                  &fs->h_ext.vlan_etype,
600                                                  &fs->m_ext.vlan_etype,
601                                                  sizeof(fs->h_ext.vlan_etype));
602                         bcmgenet_hfb_insert_data(priv, f, 14,
603                                                  &fs->h_ext.vlan_tci,
604                                                  &fs->m_ext.vlan_tci,
605                                                  sizeof(fs->h_ext.vlan_tci));
606                         offset += VLAN_HLEN;
607                         f_length += DIV_ROUND_UP(VLAN_HLEN, 2);
608                 }
609         }
610
611         switch (fs->flow_type & ~(FLOW_EXT | FLOW_MAC_EXT)) {
612         case ETHER_FLOW:
613                 f_length += DIV_ROUND_UP(ETH_HLEN, 2);
614                 bcmgenet_hfb_insert_data(priv, f, 0,
615                                          &fs->h_u.ether_spec.h_dest,
616                                          &fs->m_u.ether_spec.h_dest,
617                                          sizeof(fs->h_u.ether_spec.h_dest));
618                 bcmgenet_hfb_insert_data(priv, f, ETH_ALEN,
619                                          &fs->h_u.ether_spec.h_source,
620                                          &fs->m_u.ether_spec.h_source,
621                                          sizeof(fs->h_u.ether_spec.h_source));
622                 bcmgenet_hfb_insert_data(priv, f, (2 * ETH_ALEN) + offset,
623                                          &fs->h_u.ether_spec.h_proto,
624                                          &fs->m_u.ether_spec.h_proto,
625                                          sizeof(fs->h_u.ether_spec.h_proto));
626                 break;
627         case IP_USER_FLOW:
628                 f_length += DIV_ROUND_UP(ETH_HLEN + 20, 2);
629                 /* Specify IP Ether Type */
630                 val_16 = htons(ETH_P_IP);
631                 mask_16 = 0xFFFF;
632                 bcmgenet_hfb_insert_data(priv, f, (2 * ETH_ALEN) + offset,
633                                          &val_16, &mask_16, sizeof(val_16));
634                 bcmgenet_hfb_insert_data(priv, f, 15 + offset,
635                                          &fs->h_u.usr_ip4_spec.tos,
636                                          &fs->m_u.usr_ip4_spec.tos,
637                                          sizeof(fs->h_u.usr_ip4_spec.tos));
638                 bcmgenet_hfb_insert_data(priv, f, 23 + offset,
639                                          &fs->h_u.usr_ip4_spec.proto,
640                                          &fs->m_u.usr_ip4_spec.proto,
641                                          sizeof(fs->h_u.usr_ip4_spec.proto));
642                 bcmgenet_hfb_insert_data(priv, f, 26 + offset,
643                                          &fs->h_u.usr_ip4_spec.ip4src,
644                                          &fs->m_u.usr_ip4_spec.ip4src,
645                                          sizeof(fs->h_u.usr_ip4_spec.ip4src));
646                 bcmgenet_hfb_insert_data(priv, f, 30 + offset,
647                                          &fs->h_u.usr_ip4_spec.ip4dst,
648                                          &fs->m_u.usr_ip4_spec.ip4dst,
649                                          sizeof(fs->h_u.usr_ip4_spec.ip4dst));
650                 if (!fs->m_u.usr_ip4_spec.l4_4_bytes)
651                         break;
652
653                 /* Only supports 20 byte IPv4 header */
654                 val_8 = 0x45;
655                 mask_8 = 0xFF;
656                 bcmgenet_hfb_insert_data(priv, f, ETH_HLEN + offset,
657                                          &val_8, &mask_8,
658                                          sizeof(val_8));
659                 size = sizeof(fs->h_u.usr_ip4_spec.l4_4_bytes);
660                 bcmgenet_hfb_insert_data(priv, f,
661                                          ETH_HLEN + 20 + offset,
662                                          &fs->h_u.usr_ip4_spec.l4_4_bytes,
663                                          &fs->m_u.usr_ip4_spec.l4_4_bytes,
664                                          size);
665                 f_length += DIV_ROUND_UP(size, 2);
666                 break;
667         }
668
669         bcmgenet_hfb_set_filter_length(priv, f, 2 * f_length);
670         if (!fs->ring_cookie || fs->ring_cookie == RX_CLS_FLOW_WAKE) {
671                 /* Ring 0 flows can be handled by the default Descriptor Ring
672                  * We'll map them to ring 0, but don't enable the filter
673                  */
674                 bcmgenet_hfb_set_filter_rx_queue_mapping(priv, f, 0);
675                 rule->state = BCMGENET_RXNFC_STATE_DISABLED;
676         } else {
677                 /* Other Rx rings are direct mapped here */
678                 bcmgenet_hfb_set_filter_rx_queue_mapping(priv, f,
679                                                          fs->ring_cookie);
680                 bcmgenet_hfb_enable_filter(priv, f);
681                 rule->state = BCMGENET_RXNFC_STATE_ENABLED;
682         }
683 }
684
685 /* bcmgenet_hfb_clear
686  *
687  * Clear Hardware Filter Block and disable all filtering.
688  */
689 static void bcmgenet_hfb_clear_filter(struct bcmgenet_priv *priv, u32 f_index)
690 {
691         u32 base, i;
692
693         base = f_index * priv->hw_params->hfb_filter_size;
694         for (i = 0; i < priv->hw_params->hfb_filter_size; i++)
695                 bcmgenet_hfb_writel(priv, 0x0, (base + i) * sizeof(u32));
696 }
697
698 static void bcmgenet_hfb_clear(struct bcmgenet_priv *priv)
699 {
700         u32 i;
701
702         if (GENET_IS_V1(priv) || GENET_IS_V2(priv))
703                 return;
704
705         bcmgenet_hfb_reg_writel(priv, 0x0, HFB_CTRL);
706         bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS);
707         bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS + 4);
708
709         for (i = DMA_INDEX2RING_0; i <= DMA_INDEX2RING_7; i++)
710                 bcmgenet_rdma_writel(priv, 0x0, i);
711
712         for (i = 0; i < (priv->hw_params->hfb_filter_cnt / 4); i++)
713                 bcmgenet_hfb_reg_writel(priv, 0x0,
714                                         HFB_FLT_LEN_V3PLUS + i * sizeof(u32));
715
716         for (i = 0; i < priv->hw_params->hfb_filter_cnt; i++)
717                 bcmgenet_hfb_clear_filter(priv, i);
718 }
719
720 static void bcmgenet_hfb_init(struct bcmgenet_priv *priv)
721 {
722         int i;
723
724         INIT_LIST_HEAD(&priv->rxnfc_list);
725         if (GENET_IS_V1(priv) || GENET_IS_V2(priv))
726                 return;
727
728         for (i = 0; i < MAX_NUM_OF_FS_RULES; i++) {
729                 INIT_LIST_HEAD(&priv->rxnfc_rules[i].list);
730                 priv->rxnfc_rules[i].state = BCMGENET_RXNFC_STATE_UNUSED;
731         }
732
733         bcmgenet_hfb_clear(priv);
734 }
735
736 static int bcmgenet_begin(struct net_device *dev)
737 {
738         struct bcmgenet_priv *priv = netdev_priv(dev);
739
740         /* Turn on the clock */
741         return clk_prepare_enable(priv->clk);
742 }
743
744 static void bcmgenet_complete(struct net_device *dev)
745 {
746         struct bcmgenet_priv *priv = netdev_priv(dev);
747
748         /* Turn off the clock */
749         clk_disable_unprepare(priv->clk);
750 }
751
752 static int bcmgenet_get_link_ksettings(struct net_device *dev,
753                                        struct ethtool_link_ksettings *cmd)
754 {
755         if (!netif_running(dev))
756                 return -EINVAL;
757
758         if (!dev->phydev)
759                 return -ENODEV;
760
761         phy_ethtool_ksettings_get(dev->phydev, cmd);
762
763         return 0;
764 }
765
766 static int bcmgenet_set_link_ksettings(struct net_device *dev,
767                                        const struct ethtool_link_ksettings *cmd)
768 {
769         if (!netif_running(dev))
770                 return -EINVAL;
771
772         if (!dev->phydev)
773                 return -ENODEV;
774
775         return phy_ethtool_ksettings_set(dev->phydev, cmd);
776 }
777
778 static int bcmgenet_set_features(struct net_device *dev,
779                                  netdev_features_t features)
780 {
781         struct bcmgenet_priv *priv = netdev_priv(dev);
782         u32 reg;
783         int ret;
784
785         ret = clk_prepare_enable(priv->clk);
786         if (ret)
787                 return ret;
788
789         /* Make sure we reflect the value of CRC_CMD_FWD */
790         reg = bcmgenet_umac_readl(priv, UMAC_CMD);
791         priv->crc_fwd_en = !!(reg & CMD_CRC_FWD);
792
793         clk_disable_unprepare(priv->clk);
794
795         return ret;
796 }
797
798 static u32 bcmgenet_get_msglevel(struct net_device *dev)
799 {
800         struct bcmgenet_priv *priv = netdev_priv(dev);
801
802         return priv->msg_enable;
803 }
804
805 static void bcmgenet_set_msglevel(struct net_device *dev, u32 level)
806 {
807         struct bcmgenet_priv *priv = netdev_priv(dev);
808
809         priv->msg_enable = level;
810 }
811
812 static int bcmgenet_get_coalesce(struct net_device *dev,
813                                  struct ethtool_coalesce *ec,
814                                  struct kernel_ethtool_coalesce *kernel_coal,
815                                  struct netlink_ext_ack *extack)
816 {
817         struct bcmgenet_priv *priv = netdev_priv(dev);
818         struct bcmgenet_rx_ring *ring;
819         unsigned int i;
820
821         ec->tx_max_coalesced_frames =
822                 bcmgenet_tdma_ring_readl(priv, DESC_INDEX,
823                                          DMA_MBUF_DONE_THRESH);
824         ec->rx_max_coalesced_frames =
825                 bcmgenet_rdma_ring_readl(priv, DESC_INDEX,
826                                          DMA_MBUF_DONE_THRESH);
827         ec->rx_coalesce_usecs =
828                 bcmgenet_rdma_readl(priv, DMA_RING16_TIMEOUT) * 8192 / 1000;
829
830         for (i = 0; i < priv->hw_params->rx_queues; i++) {
831                 ring = &priv->rx_rings[i];
832                 ec->use_adaptive_rx_coalesce |= ring->dim.use_dim;
833         }
834         ring = &priv->rx_rings[DESC_INDEX];
835         ec->use_adaptive_rx_coalesce |= ring->dim.use_dim;
836
837         return 0;
838 }
839
840 static void bcmgenet_set_rx_coalesce(struct bcmgenet_rx_ring *ring,
841                                      u32 usecs, u32 pkts)
842 {
843         struct bcmgenet_priv *priv = ring->priv;
844         unsigned int i = ring->index;
845         u32 reg;
846
847         bcmgenet_rdma_ring_writel(priv, i, pkts, DMA_MBUF_DONE_THRESH);
848
849         reg = bcmgenet_rdma_readl(priv, DMA_RING0_TIMEOUT + i);
850         reg &= ~DMA_TIMEOUT_MASK;
851         reg |= DIV_ROUND_UP(usecs * 1000, 8192);
852         bcmgenet_rdma_writel(priv, reg, DMA_RING0_TIMEOUT + i);
853 }
854
855 static void bcmgenet_set_ring_rx_coalesce(struct bcmgenet_rx_ring *ring,
856                                           struct ethtool_coalesce *ec)
857 {
858         struct dim_cq_moder moder;
859         u32 usecs, pkts;
860
861         ring->rx_coalesce_usecs = ec->rx_coalesce_usecs;
862         ring->rx_max_coalesced_frames = ec->rx_max_coalesced_frames;
863         usecs = ring->rx_coalesce_usecs;
864         pkts = ring->rx_max_coalesced_frames;
865
866         if (ec->use_adaptive_rx_coalesce && !ring->dim.use_dim) {
867                 moder = net_dim_get_def_rx_moderation(ring->dim.dim.mode);
868                 usecs = moder.usec;
869                 pkts = moder.pkts;
870         }
871
872         ring->dim.use_dim = ec->use_adaptive_rx_coalesce;
873         bcmgenet_set_rx_coalesce(ring, usecs, pkts);
874 }
875
876 static int bcmgenet_set_coalesce(struct net_device *dev,
877                                  struct ethtool_coalesce *ec,
878                                  struct kernel_ethtool_coalesce *kernel_coal,
879                                  struct netlink_ext_ack *extack)
880 {
881         struct bcmgenet_priv *priv = netdev_priv(dev);
882         unsigned int i;
883
884         /* Base system clock is 125Mhz, DMA timeout is this reference clock
885          * divided by 1024, which yields roughly 8.192us, our maximum value
886          * has to fit in the DMA_TIMEOUT_MASK (16 bits)
887          */
888         if (ec->tx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
889             ec->tx_max_coalesced_frames == 0 ||
890             ec->rx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
891             ec->rx_coalesce_usecs > (DMA_TIMEOUT_MASK * 8) + 1)
892                 return -EINVAL;
893
894         if (ec->rx_coalesce_usecs == 0 && ec->rx_max_coalesced_frames == 0)
895                 return -EINVAL;
896
897         /* GENET TDMA hardware does not support a configurable timeout, but will
898          * always generate an interrupt either after MBDONE packets have been
899          * transmitted, or when the ring is empty.
900          */
901
902         /* Program all TX queues with the same values, as there is no
903          * ethtool knob to do coalescing on a per-queue basis
904          */
905         for (i = 0; i < priv->hw_params->tx_queues; i++)
906                 bcmgenet_tdma_ring_writel(priv, i,
907                                           ec->tx_max_coalesced_frames,
908                                           DMA_MBUF_DONE_THRESH);
909         bcmgenet_tdma_ring_writel(priv, DESC_INDEX,
910                                   ec->tx_max_coalesced_frames,
911                                   DMA_MBUF_DONE_THRESH);
912
913         for (i = 0; i < priv->hw_params->rx_queues; i++)
914                 bcmgenet_set_ring_rx_coalesce(&priv->rx_rings[i], ec);
915         bcmgenet_set_ring_rx_coalesce(&priv->rx_rings[DESC_INDEX], ec);
916
917         return 0;
918 }
919
920 static void bcmgenet_get_pauseparam(struct net_device *dev,
921                                     struct ethtool_pauseparam *epause)
922 {
923         struct bcmgenet_priv *priv;
924         u32 umac_cmd;
925
926         priv = netdev_priv(dev);
927
928         epause->autoneg = priv->autoneg_pause;
929
930         if (netif_carrier_ok(dev)) {
931                 /* report active state when link is up */
932                 umac_cmd = bcmgenet_umac_readl(priv, UMAC_CMD);
933                 epause->tx_pause = !(umac_cmd & CMD_TX_PAUSE_IGNORE);
934                 epause->rx_pause = !(umac_cmd & CMD_RX_PAUSE_IGNORE);
935         } else {
936                 /* otherwise report stored settings */
937                 epause->tx_pause = priv->tx_pause;
938                 epause->rx_pause = priv->rx_pause;
939         }
940 }
941
942 static int bcmgenet_set_pauseparam(struct net_device *dev,
943                                    struct ethtool_pauseparam *epause)
944 {
945         struct bcmgenet_priv *priv = netdev_priv(dev);
946
947         if (!dev->phydev)
948                 return -ENODEV;
949
950         if (!phy_validate_pause(dev->phydev, epause))
951                 return -EINVAL;
952
953         priv->autoneg_pause = !!epause->autoneg;
954         priv->tx_pause = !!epause->tx_pause;
955         priv->rx_pause = !!epause->rx_pause;
956
957         bcmgenet_phy_pause_set(dev, priv->rx_pause, priv->tx_pause);
958
959         return 0;
960 }
961
962 /* standard ethtool support functions. */
963 enum bcmgenet_stat_type {
964         BCMGENET_STAT_NETDEV = -1,
965         BCMGENET_STAT_MIB_RX,
966         BCMGENET_STAT_MIB_TX,
967         BCMGENET_STAT_RUNT,
968         BCMGENET_STAT_MISC,
969         BCMGENET_STAT_SOFT,
970 };
971
972 struct bcmgenet_stats {
973         char stat_string[ETH_GSTRING_LEN];
974         int stat_sizeof;
975         int stat_offset;
976         enum bcmgenet_stat_type type;
977         /* reg offset from UMAC base for misc counters */
978         u16 reg_offset;
979 };
980
981 #define STAT_NETDEV(m) { \
982         .stat_string = __stringify(m), \
983         .stat_sizeof = sizeof(((struct net_device_stats *)0)->m), \
984         .stat_offset = offsetof(struct net_device_stats, m), \
985         .type = BCMGENET_STAT_NETDEV, \
986 }
987
988 #define STAT_GENET_MIB(str, m, _type) { \
989         .stat_string = str, \
990         .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
991         .stat_offset = offsetof(struct bcmgenet_priv, m), \
992         .type = _type, \
993 }
994
995 #define STAT_GENET_MIB_RX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_RX)
996 #define STAT_GENET_MIB_TX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_TX)
997 #define STAT_GENET_RUNT(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_RUNT)
998 #define STAT_GENET_SOFT_MIB(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_SOFT)
999
1000 #define STAT_GENET_MISC(str, m, offset) { \
1001         .stat_string = str, \
1002         .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
1003         .stat_offset = offsetof(struct bcmgenet_priv, m), \
1004         .type = BCMGENET_STAT_MISC, \
1005         .reg_offset = offset, \
1006 }
1007
1008 #define STAT_GENET_Q(num) \
1009         STAT_GENET_SOFT_MIB("txq" __stringify(num) "_packets", \
1010                         tx_rings[num].packets), \
1011         STAT_GENET_SOFT_MIB("txq" __stringify(num) "_bytes", \
1012                         tx_rings[num].bytes), \
1013         STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_bytes", \
1014                         rx_rings[num].bytes),    \
1015         STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_packets", \
1016                         rx_rings[num].packets), \
1017         STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_errors", \
1018                         rx_rings[num].errors), \
1019         STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_dropped", \
1020                         rx_rings[num].dropped)
1021
1022 /* There is a 0xC gap between the end of RX and beginning of TX stats and then
1023  * between the end of TX stats and the beginning of the RX RUNT
1024  */
1025 #define BCMGENET_STAT_OFFSET    0xc
1026
1027 /* Hardware counters must be kept in sync because the order/offset
1028  * is important here (order in structure declaration = order in hardware)
1029  */
1030 static const struct bcmgenet_stats bcmgenet_gstrings_stats[] = {
1031         /* general stats */
1032         STAT_NETDEV(rx_packets),
1033         STAT_NETDEV(tx_packets),
1034         STAT_NETDEV(rx_bytes),
1035         STAT_NETDEV(tx_bytes),
1036         STAT_NETDEV(rx_errors),
1037         STAT_NETDEV(tx_errors),
1038         STAT_NETDEV(rx_dropped),
1039         STAT_NETDEV(tx_dropped),
1040         STAT_NETDEV(multicast),
1041         /* UniMAC RSV counters */
1042         STAT_GENET_MIB_RX("rx_64_octets", mib.rx.pkt_cnt.cnt_64),
1043         STAT_GENET_MIB_RX("rx_65_127_oct", mib.rx.pkt_cnt.cnt_127),
1044         STAT_GENET_MIB_RX("rx_128_255_oct", mib.rx.pkt_cnt.cnt_255),
1045         STAT_GENET_MIB_RX("rx_256_511_oct", mib.rx.pkt_cnt.cnt_511),
1046         STAT_GENET_MIB_RX("rx_512_1023_oct", mib.rx.pkt_cnt.cnt_1023),
1047         STAT_GENET_MIB_RX("rx_1024_1518_oct", mib.rx.pkt_cnt.cnt_1518),
1048         STAT_GENET_MIB_RX("rx_vlan_1519_1522_oct", mib.rx.pkt_cnt.cnt_mgv),
1049         STAT_GENET_MIB_RX("rx_1522_2047_oct", mib.rx.pkt_cnt.cnt_2047),
1050         STAT_GENET_MIB_RX("rx_2048_4095_oct", mib.rx.pkt_cnt.cnt_4095),
1051         STAT_GENET_MIB_RX("rx_4096_9216_oct", mib.rx.pkt_cnt.cnt_9216),
1052         STAT_GENET_MIB_RX("rx_pkts", mib.rx.pkt),
1053         STAT_GENET_MIB_RX("rx_bytes", mib.rx.bytes),
1054         STAT_GENET_MIB_RX("rx_multicast", mib.rx.mca),
1055         STAT_GENET_MIB_RX("rx_broadcast", mib.rx.bca),
1056         STAT_GENET_MIB_RX("rx_fcs", mib.rx.fcs),
1057         STAT_GENET_MIB_RX("rx_control", mib.rx.cf),
1058         STAT_GENET_MIB_RX("rx_pause", mib.rx.pf),
1059         STAT_GENET_MIB_RX("rx_unknown", mib.rx.uo),
1060         STAT_GENET_MIB_RX("rx_align", mib.rx.aln),
1061         STAT_GENET_MIB_RX("rx_outrange", mib.rx.flr),
1062         STAT_GENET_MIB_RX("rx_code", mib.rx.cde),
1063         STAT_GENET_MIB_RX("rx_carrier", mib.rx.fcr),
1064         STAT_GENET_MIB_RX("rx_oversize", mib.rx.ovr),
1065         STAT_GENET_MIB_RX("rx_jabber", mib.rx.jbr),
1066         STAT_GENET_MIB_RX("rx_mtu_err", mib.rx.mtue),
1067         STAT_GENET_MIB_RX("rx_good_pkts", mib.rx.pok),
1068         STAT_GENET_MIB_RX("rx_unicast", mib.rx.uc),
1069         STAT_GENET_MIB_RX("rx_ppp", mib.rx.ppp),
1070         STAT_GENET_MIB_RX("rx_crc", mib.rx.rcrc),
1071         /* UniMAC TSV counters */
1072         STAT_GENET_MIB_TX("tx_64_octets", mib.tx.pkt_cnt.cnt_64),
1073         STAT_GENET_MIB_TX("tx_65_127_oct", mib.tx.pkt_cnt.cnt_127),
1074         STAT_GENET_MIB_TX("tx_128_255_oct", mib.tx.pkt_cnt.cnt_255),
1075         STAT_GENET_MIB_TX("tx_256_511_oct", mib.tx.pkt_cnt.cnt_511),
1076         STAT_GENET_MIB_TX("tx_512_1023_oct", mib.tx.pkt_cnt.cnt_1023),
1077         STAT_GENET_MIB_TX("tx_1024_1518_oct", mib.tx.pkt_cnt.cnt_1518),
1078         STAT_GENET_MIB_TX("tx_vlan_1519_1522_oct", mib.tx.pkt_cnt.cnt_mgv),
1079         STAT_GENET_MIB_TX("tx_1522_2047_oct", mib.tx.pkt_cnt.cnt_2047),
1080         STAT_GENET_MIB_TX("tx_2048_4095_oct", mib.tx.pkt_cnt.cnt_4095),
1081         STAT_GENET_MIB_TX("tx_4096_9216_oct", mib.tx.pkt_cnt.cnt_9216),
1082         STAT_GENET_MIB_TX("tx_pkts", mib.tx.pkts),
1083         STAT_GENET_MIB_TX("tx_multicast", mib.tx.mca),
1084         STAT_GENET_MIB_TX("tx_broadcast", mib.tx.bca),
1085         STAT_GENET_MIB_TX("tx_pause", mib.tx.pf),
1086         STAT_GENET_MIB_TX("tx_control", mib.tx.cf),
1087         STAT_GENET_MIB_TX("tx_fcs_err", mib.tx.fcs),
1088         STAT_GENET_MIB_TX("tx_oversize", mib.tx.ovr),
1089         STAT_GENET_MIB_TX("tx_defer", mib.tx.drf),
1090         STAT_GENET_MIB_TX("tx_excess_defer", mib.tx.edf),
1091         STAT_GENET_MIB_TX("tx_single_col", mib.tx.scl),
1092         STAT_GENET_MIB_TX("tx_multi_col", mib.tx.mcl),
1093         STAT_GENET_MIB_TX("tx_late_col", mib.tx.lcl),
1094         STAT_GENET_MIB_TX("tx_excess_col", mib.tx.ecl),
1095         STAT_GENET_MIB_TX("tx_frags", mib.tx.frg),
1096         STAT_GENET_MIB_TX("tx_total_col", mib.tx.ncl),
1097         STAT_GENET_MIB_TX("tx_jabber", mib.tx.jbr),
1098         STAT_GENET_MIB_TX("tx_bytes", mib.tx.bytes),
1099         STAT_GENET_MIB_TX("tx_good_pkts", mib.tx.pok),
1100         STAT_GENET_MIB_TX("tx_unicast", mib.tx.uc),
1101         /* UniMAC RUNT counters */
1102         STAT_GENET_RUNT("rx_runt_pkts", mib.rx_runt_cnt),
1103         STAT_GENET_RUNT("rx_runt_valid_fcs", mib.rx_runt_fcs),
1104         STAT_GENET_RUNT("rx_runt_inval_fcs_align", mib.rx_runt_fcs_align),
1105         STAT_GENET_RUNT("rx_runt_bytes", mib.rx_runt_bytes),
1106         /* Misc UniMAC counters */
1107         STAT_GENET_MISC("rbuf_ovflow_cnt", mib.rbuf_ovflow_cnt,
1108                         UMAC_RBUF_OVFL_CNT_V1),
1109         STAT_GENET_MISC("rbuf_err_cnt", mib.rbuf_err_cnt,
1110                         UMAC_RBUF_ERR_CNT_V1),
1111         STAT_GENET_MISC("mdf_err_cnt", mib.mdf_err_cnt, UMAC_MDF_ERR_CNT),
1112         STAT_GENET_SOFT_MIB("alloc_rx_buff_failed", mib.alloc_rx_buff_failed),
1113         STAT_GENET_SOFT_MIB("rx_dma_failed", mib.rx_dma_failed),
1114         STAT_GENET_SOFT_MIB("tx_dma_failed", mib.tx_dma_failed),
1115         STAT_GENET_SOFT_MIB("tx_realloc_tsb", mib.tx_realloc_tsb),
1116         STAT_GENET_SOFT_MIB("tx_realloc_tsb_failed",
1117                             mib.tx_realloc_tsb_failed),
1118         /* Per TX queues */
1119         STAT_GENET_Q(0),
1120         STAT_GENET_Q(1),
1121         STAT_GENET_Q(2),
1122         STAT_GENET_Q(3),
1123         STAT_GENET_Q(16),
1124 };
1125
1126 #define BCMGENET_STATS_LEN      ARRAY_SIZE(bcmgenet_gstrings_stats)
1127
1128 static void bcmgenet_get_drvinfo(struct net_device *dev,
1129                                  struct ethtool_drvinfo *info)
1130 {
1131         strscpy(info->driver, "bcmgenet", sizeof(info->driver));
1132 }
1133
1134 static int bcmgenet_get_sset_count(struct net_device *dev, int string_set)
1135 {
1136         switch (string_set) {
1137         case ETH_SS_STATS:
1138                 return BCMGENET_STATS_LEN;
1139         default:
1140                 return -EOPNOTSUPP;
1141         }
1142 }
1143
1144 static void bcmgenet_get_strings(struct net_device *dev, u32 stringset,
1145                                  u8 *data)
1146 {
1147         int i;
1148
1149         switch (stringset) {
1150         case ETH_SS_STATS:
1151                 for (i = 0; i < BCMGENET_STATS_LEN; i++) {
1152                         memcpy(data + i * ETH_GSTRING_LEN,
1153                                bcmgenet_gstrings_stats[i].stat_string,
1154                                ETH_GSTRING_LEN);
1155                 }
1156                 break;
1157         }
1158 }
1159
1160 static u32 bcmgenet_update_stat_misc(struct bcmgenet_priv *priv, u16 offset)
1161 {
1162         u16 new_offset;
1163         u32 val;
1164
1165         switch (offset) {
1166         case UMAC_RBUF_OVFL_CNT_V1:
1167                 if (GENET_IS_V2(priv))
1168                         new_offset = RBUF_OVFL_CNT_V2;
1169                 else
1170                         new_offset = RBUF_OVFL_CNT_V3PLUS;
1171
1172                 val = bcmgenet_rbuf_readl(priv, new_offset);
1173                 /* clear if overflowed */
1174                 if (val == ~0)
1175                         bcmgenet_rbuf_writel(priv, 0, new_offset);
1176                 break;
1177         case UMAC_RBUF_ERR_CNT_V1:
1178                 if (GENET_IS_V2(priv))
1179                         new_offset = RBUF_ERR_CNT_V2;
1180                 else
1181                         new_offset = RBUF_ERR_CNT_V3PLUS;
1182
1183                 val = bcmgenet_rbuf_readl(priv, new_offset);
1184                 /* clear if overflowed */
1185                 if (val == ~0)
1186                         bcmgenet_rbuf_writel(priv, 0, new_offset);
1187                 break;
1188         default:
1189                 val = bcmgenet_umac_readl(priv, offset);
1190                 /* clear if overflowed */
1191                 if (val == ~0)
1192                         bcmgenet_umac_writel(priv, 0, offset);
1193                 break;
1194         }
1195
1196         return val;
1197 }
1198
1199 static void bcmgenet_update_mib_counters(struct bcmgenet_priv *priv)
1200 {
1201         int i, j = 0;
1202
1203         for (i = 0; i < BCMGENET_STATS_LEN; i++) {
1204                 const struct bcmgenet_stats *s;
1205                 u8 offset = 0;
1206                 u32 val = 0;
1207                 char *p;
1208
1209                 s = &bcmgenet_gstrings_stats[i];
1210                 switch (s->type) {
1211                 case BCMGENET_STAT_NETDEV:
1212                 case BCMGENET_STAT_SOFT:
1213                         continue;
1214                 case BCMGENET_STAT_RUNT:
1215                         offset += BCMGENET_STAT_OFFSET;
1216                         fallthrough;
1217                 case BCMGENET_STAT_MIB_TX:
1218                         offset += BCMGENET_STAT_OFFSET;
1219                         fallthrough;
1220                 case BCMGENET_STAT_MIB_RX:
1221                         val = bcmgenet_umac_readl(priv,
1222                                                   UMAC_MIB_START + j + offset);
1223                         offset = 0;     /* Reset Offset */
1224                         break;
1225                 case BCMGENET_STAT_MISC:
1226                         if (GENET_IS_V1(priv)) {
1227                                 val = bcmgenet_umac_readl(priv, s->reg_offset);
1228                                 /* clear if overflowed */
1229                                 if (val == ~0)
1230                                         bcmgenet_umac_writel(priv, 0,
1231                                                              s->reg_offset);
1232                         } else {
1233                                 val = bcmgenet_update_stat_misc(priv,
1234                                                                 s->reg_offset);
1235                         }
1236                         break;
1237                 }
1238
1239                 j += s->stat_sizeof;
1240                 p = (char *)priv + s->stat_offset;
1241                 *(u32 *)p = val;
1242         }
1243 }
1244
1245 static void bcmgenet_get_ethtool_stats(struct net_device *dev,
1246                                        struct ethtool_stats *stats,
1247                                        u64 *data)
1248 {
1249         struct bcmgenet_priv *priv = netdev_priv(dev);
1250         int i;
1251
1252         if (netif_running(dev))
1253                 bcmgenet_update_mib_counters(priv);
1254
1255         dev->netdev_ops->ndo_get_stats(dev);
1256
1257         for (i = 0; i < BCMGENET_STATS_LEN; i++) {
1258                 const struct bcmgenet_stats *s;
1259                 char *p;
1260
1261                 s = &bcmgenet_gstrings_stats[i];
1262                 if (s->type == BCMGENET_STAT_NETDEV)
1263                         p = (char *)&dev->stats;
1264                 else
1265                         p = (char *)priv;
1266                 p += s->stat_offset;
1267                 if (sizeof(unsigned long) != sizeof(u32) &&
1268                     s->stat_sizeof == sizeof(unsigned long))
1269                         data[i] = *(unsigned long *)p;
1270                 else
1271                         data[i] = *(u32 *)p;
1272         }
1273 }
1274
1275 static void bcmgenet_eee_enable_set(struct net_device *dev, bool enable)
1276 {
1277         struct bcmgenet_priv *priv = netdev_priv(dev);
1278         u32 off = priv->hw_params->tbuf_offset + TBUF_ENERGY_CTRL;
1279         u32 reg;
1280
1281         if (enable && !priv->clk_eee_enabled) {
1282                 clk_prepare_enable(priv->clk_eee);
1283                 priv->clk_eee_enabled = true;
1284         }
1285
1286         reg = bcmgenet_umac_readl(priv, UMAC_EEE_CTRL);
1287         if (enable)
1288                 reg |= EEE_EN;
1289         else
1290                 reg &= ~EEE_EN;
1291         bcmgenet_umac_writel(priv, reg, UMAC_EEE_CTRL);
1292
1293         /* Enable EEE and switch to a 27Mhz clock automatically */
1294         reg = bcmgenet_readl(priv->base + off);
1295         if (enable)
1296                 reg |= TBUF_EEE_EN | TBUF_PM_EN;
1297         else
1298                 reg &= ~(TBUF_EEE_EN | TBUF_PM_EN);
1299         bcmgenet_writel(reg, priv->base + off);
1300
1301         /* Do the same for thing for RBUF */
1302         reg = bcmgenet_rbuf_readl(priv, RBUF_ENERGY_CTRL);
1303         if (enable)
1304                 reg |= RBUF_EEE_EN | RBUF_PM_EN;
1305         else
1306                 reg &= ~(RBUF_EEE_EN | RBUF_PM_EN);
1307         bcmgenet_rbuf_writel(priv, reg, RBUF_ENERGY_CTRL);
1308
1309         if (!enable && priv->clk_eee_enabled) {
1310                 clk_disable_unprepare(priv->clk_eee);
1311                 priv->clk_eee_enabled = false;
1312         }
1313
1314         priv->eee.eee_enabled = enable;
1315         priv->eee.eee_active = enable;
1316 }
1317
1318 static int bcmgenet_get_eee(struct net_device *dev, struct ethtool_eee *e)
1319 {
1320         struct bcmgenet_priv *priv = netdev_priv(dev);
1321         struct ethtool_eee *p = &priv->eee;
1322
1323         if (GENET_IS_V1(priv))
1324                 return -EOPNOTSUPP;
1325
1326         if (!dev->phydev)
1327                 return -ENODEV;
1328
1329         e->eee_enabled = p->eee_enabled;
1330         e->eee_active = p->eee_active;
1331         e->tx_lpi_timer = bcmgenet_umac_readl(priv, UMAC_EEE_LPI_TIMER);
1332
1333         return phy_ethtool_get_eee(dev->phydev, e);
1334 }
1335
1336 static int bcmgenet_set_eee(struct net_device *dev, struct ethtool_eee *e)
1337 {
1338         struct bcmgenet_priv *priv = netdev_priv(dev);
1339         struct ethtool_eee *p = &priv->eee;
1340         int ret = 0;
1341
1342         if (GENET_IS_V1(priv))
1343                 return -EOPNOTSUPP;
1344
1345         if (!dev->phydev)
1346                 return -ENODEV;
1347
1348         p->eee_enabled = e->eee_enabled;
1349
1350         if (!p->eee_enabled) {
1351                 bcmgenet_eee_enable_set(dev, false);
1352         } else {
1353                 ret = phy_init_eee(dev->phydev, false);
1354                 if (ret) {
1355                         netif_err(priv, hw, dev, "EEE initialization failed\n");
1356                         return ret;
1357                 }
1358
1359                 bcmgenet_umac_writel(priv, e->tx_lpi_timer, UMAC_EEE_LPI_TIMER);
1360                 bcmgenet_eee_enable_set(dev, true);
1361         }
1362
1363         return phy_ethtool_set_eee(dev->phydev, e);
1364 }
1365
1366 static int bcmgenet_validate_flow(struct net_device *dev,
1367                                   struct ethtool_rxnfc *cmd)
1368 {
1369         struct ethtool_usrip4_spec *l4_mask;
1370         struct ethhdr *eth_mask;
1371
1372         if (cmd->fs.location >= MAX_NUM_OF_FS_RULES &&
1373             cmd->fs.location != RX_CLS_LOC_ANY) {
1374                 netdev_err(dev, "rxnfc: Invalid location (%d)\n",
1375                            cmd->fs.location);
1376                 return -EINVAL;
1377         }
1378
1379         switch (cmd->fs.flow_type & ~(FLOW_EXT | FLOW_MAC_EXT)) {
1380         case IP_USER_FLOW:
1381                 l4_mask = &cmd->fs.m_u.usr_ip4_spec;
1382                 /* don't allow mask which isn't valid */
1383                 if (VALIDATE_MASK(l4_mask->ip4src) ||
1384                     VALIDATE_MASK(l4_mask->ip4dst) ||
1385                     VALIDATE_MASK(l4_mask->l4_4_bytes) ||
1386                     VALIDATE_MASK(l4_mask->proto) ||
1387                     VALIDATE_MASK(l4_mask->ip_ver) ||
1388                     VALIDATE_MASK(l4_mask->tos)) {
1389                         netdev_err(dev, "rxnfc: Unsupported mask\n");
1390                         return -EINVAL;
1391                 }
1392                 break;
1393         case ETHER_FLOW:
1394                 eth_mask = &cmd->fs.m_u.ether_spec;
1395                 /* don't allow mask which isn't valid */
1396                 if (VALIDATE_MASK(eth_mask->h_dest) ||
1397                     VALIDATE_MASK(eth_mask->h_source) ||
1398                     VALIDATE_MASK(eth_mask->h_proto)) {
1399                         netdev_err(dev, "rxnfc: Unsupported mask\n");
1400                         return -EINVAL;
1401                 }
1402                 break;
1403         default:
1404                 netdev_err(dev, "rxnfc: Unsupported flow type (0x%x)\n",
1405                            cmd->fs.flow_type);
1406                 return -EINVAL;
1407         }
1408
1409         if ((cmd->fs.flow_type & FLOW_EXT)) {
1410                 /* don't allow mask which isn't valid */
1411                 if (VALIDATE_MASK(cmd->fs.m_ext.vlan_etype) ||
1412                     VALIDATE_MASK(cmd->fs.m_ext.vlan_tci)) {
1413                         netdev_err(dev, "rxnfc: Unsupported mask\n");
1414                         return -EINVAL;
1415                 }
1416                 if (cmd->fs.m_ext.data[0] || cmd->fs.m_ext.data[1]) {
1417                         netdev_err(dev, "rxnfc: user-def not supported\n");
1418                         return -EINVAL;
1419                 }
1420         }
1421
1422         if ((cmd->fs.flow_type & FLOW_MAC_EXT)) {
1423                 /* don't allow mask which isn't valid */
1424                 if (VALIDATE_MASK(cmd->fs.m_ext.h_dest)) {
1425                         netdev_err(dev, "rxnfc: Unsupported mask\n");
1426                         return -EINVAL;
1427                 }
1428         }
1429
1430         return 0;
1431 }
1432
1433 static int bcmgenet_insert_flow(struct net_device *dev,
1434                                 struct ethtool_rxnfc *cmd)
1435 {
1436         struct bcmgenet_priv *priv = netdev_priv(dev);
1437         struct bcmgenet_rxnfc_rule *loc_rule;
1438         int err, i;
1439
1440         if (priv->hw_params->hfb_filter_size < 128) {
1441                 netdev_err(dev, "rxnfc: Not supported by this device\n");
1442                 return -EINVAL;
1443         }
1444
1445         if (cmd->fs.ring_cookie > priv->hw_params->rx_queues &&
1446             cmd->fs.ring_cookie != RX_CLS_FLOW_WAKE) {
1447                 netdev_err(dev, "rxnfc: Unsupported action (%llu)\n",
1448                            cmd->fs.ring_cookie);
1449                 return -EINVAL;
1450         }
1451
1452         err = bcmgenet_validate_flow(dev, cmd);
1453         if (err)
1454                 return err;
1455
1456         if (cmd->fs.location == RX_CLS_LOC_ANY) {
1457                 list_for_each_entry(loc_rule, &priv->rxnfc_list, list) {
1458                         cmd->fs.location = loc_rule->fs.location;
1459                         err = memcmp(&loc_rule->fs, &cmd->fs,
1460                                      sizeof(struct ethtool_rx_flow_spec));
1461                         if (!err)
1462                                 /* rule exists so return current location */
1463                                 return 0;
1464                 }
1465                 for (i = 0; i < MAX_NUM_OF_FS_RULES; i++) {
1466                         loc_rule = &priv->rxnfc_rules[i];
1467                         if (loc_rule->state == BCMGENET_RXNFC_STATE_UNUSED) {
1468                                 cmd->fs.location = i;
1469                                 break;
1470                         }
1471                 }
1472                 if (i == MAX_NUM_OF_FS_RULES) {
1473                         cmd->fs.location = RX_CLS_LOC_ANY;
1474                         return -ENOSPC;
1475                 }
1476         } else {
1477                 loc_rule = &priv->rxnfc_rules[cmd->fs.location];
1478         }
1479         if (loc_rule->state == BCMGENET_RXNFC_STATE_ENABLED)
1480                 bcmgenet_hfb_disable_filter(priv, cmd->fs.location);
1481         if (loc_rule->state != BCMGENET_RXNFC_STATE_UNUSED) {
1482                 list_del(&loc_rule->list);
1483                 bcmgenet_hfb_clear_filter(priv, cmd->fs.location);
1484         }
1485         loc_rule->state = BCMGENET_RXNFC_STATE_UNUSED;
1486         memcpy(&loc_rule->fs, &cmd->fs,
1487                sizeof(struct ethtool_rx_flow_spec));
1488
1489         bcmgenet_hfb_create_rxnfc_filter(priv, loc_rule);
1490
1491         list_add_tail(&loc_rule->list, &priv->rxnfc_list);
1492
1493         return 0;
1494 }
1495
1496 static int bcmgenet_delete_flow(struct net_device *dev,
1497                                 struct ethtool_rxnfc *cmd)
1498 {
1499         struct bcmgenet_priv *priv = netdev_priv(dev);
1500         struct bcmgenet_rxnfc_rule *rule;
1501         int err = 0;
1502
1503         if (cmd->fs.location >= MAX_NUM_OF_FS_RULES)
1504                 return -EINVAL;
1505
1506         rule = &priv->rxnfc_rules[cmd->fs.location];
1507         if (rule->state == BCMGENET_RXNFC_STATE_UNUSED) {
1508                 err =  -ENOENT;
1509                 goto out;
1510         }
1511
1512         if (rule->state == BCMGENET_RXNFC_STATE_ENABLED)
1513                 bcmgenet_hfb_disable_filter(priv, cmd->fs.location);
1514         if (rule->state != BCMGENET_RXNFC_STATE_UNUSED) {
1515                 list_del(&rule->list);
1516                 bcmgenet_hfb_clear_filter(priv, cmd->fs.location);
1517         }
1518         rule->state = BCMGENET_RXNFC_STATE_UNUSED;
1519         memset(&rule->fs, 0, sizeof(struct ethtool_rx_flow_spec));
1520
1521 out:
1522         return err;
1523 }
1524
1525 static int bcmgenet_set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd)
1526 {
1527         struct bcmgenet_priv *priv = netdev_priv(dev);
1528         int err = 0;
1529
1530         switch (cmd->cmd) {
1531         case ETHTOOL_SRXCLSRLINS:
1532                 err = bcmgenet_insert_flow(dev, cmd);
1533                 break;
1534         case ETHTOOL_SRXCLSRLDEL:
1535                 err = bcmgenet_delete_flow(dev, cmd);
1536                 break;
1537         default:
1538                 netdev_warn(priv->dev, "Unsupported ethtool command. (%d)\n",
1539                             cmd->cmd);
1540                 return -EINVAL;
1541         }
1542
1543         return err;
1544 }
1545
1546 static int bcmgenet_get_flow(struct net_device *dev, struct ethtool_rxnfc *cmd,
1547                              int loc)
1548 {
1549         struct bcmgenet_priv *priv = netdev_priv(dev);
1550         struct bcmgenet_rxnfc_rule *rule;
1551         int err = 0;
1552
1553         if (loc < 0 || loc >= MAX_NUM_OF_FS_RULES)
1554                 return -EINVAL;
1555
1556         rule = &priv->rxnfc_rules[loc];
1557         if (rule->state == BCMGENET_RXNFC_STATE_UNUSED)
1558                 err = -ENOENT;
1559         else
1560                 memcpy(&cmd->fs, &rule->fs,
1561                        sizeof(struct ethtool_rx_flow_spec));
1562
1563         return err;
1564 }
1565
1566 static int bcmgenet_get_num_flows(struct bcmgenet_priv *priv)
1567 {
1568         struct list_head *pos;
1569         int res = 0;
1570
1571         list_for_each(pos, &priv->rxnfc_list)
1572                 res++;
1573
1574         return res;
1575 }
1576
1577 static int bcmgenet_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd,
1578                               u32 *rule_locs)
1579 {
1580         struct bcmgenet_priv *priv = netdev_priv(dev);
1581         struct bcmgenet_rxnfc_rule *rule;
1582         int err = 0;
1583         int i = 0;
1584
1585         switch (cmd->cmd) {
1586         case ETHTOOL_GRXRINGS:
1587                 cmd->data = priv->hw_params->rx_queues ?: 1;
1588                 break;
1589         case ETHTOOL_GRXCLSRLCNT:
1590                 cmd->rule_cnt = bcmgenet_get_num_flows(priv);
1591                 cmd->data = MAX_NUM_OF_FS_RULES | RX_CLS_LOC_SPECIAL;
1592                 break;
1593         case ETHTOOL_GRXCLSRULE:
1594                 err = bcmgenet_get_flow(dev, cmd, cmd->fs.location);
1595                 break;
1596         case ETHTOOL_GRXCLSRLALL:
1597                 list_for_each_entry(rule, &priv->rxnfc_list, list)
1598                         if (i < cmd->rule_cnt)
1599                                 rule_locs[i++] = rule->fs.location;
1600                 cmd->rule_cnt = i;
1601                 cmd->data = MAX_NUM_OF_FS_RULES;
1602                 break;
1603         default:
1604                 err = -EOPNOTSUPP;
1605                 break;
1606         }
1607
1608         return err;
1609 }
1610
1611 /* standard ethtool support functions. */
1612 static const struct ethtool_ops bcmgenet_ethtool_ops = {
1613         .supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS |
1614                                      ETHTOOL_COALESCE_MAX_FRAMES |
1615                                      ETHTOOL_COALESCE_USE_ADAPTIVE_RX,
1616         .begin                  = bcmgenet_begin,
1617         .complete               = bcmgenet_complete,
1618         .get_strings            = bcmgenet_get_strings,
1619         .get_sset_count         = bcmgenet_get_sset_count,
1620         .get_ethtool_stats      = bcmgenet_get_ethtool_stats,
1621         .get_drvinfo            = bcmgenet_get_drvinfo,
1622         .get_link               = ethtool_op_get_link,
1623         .get_msglevel           = bcmgenet_get_msglevel,
1624         .set_msglevel           = bcmgenet_set_msglevel,
1625         .get_wol                = bcmgenet_get_wol,
1626         .set_wol                = bcmgenet_set_wol,
1627         .get_eee                = bcmgenet_get_eee,
1628         .set_eee                = bcmgenet_set_eee,
1629         .nway_reset             = phy_ethtool_nway_reset,
1630         .get_coalesce           = bcmgenet_get_coalesce,
1631         .set_coalesce           = bcmgenet_set_coalesce,
1632         .get_link_ksettings     = bcmgenet_get_link_ksettings,
1633         .set_link_ksettings     = bcmgenet_set_link_ksettings,
1634         .get_ts_info            = ethtool_op_get_ts_info,
1635         .get_rxnfc              = bcmgenet_get_rxnfc,
1636         .set_rxnfc              = bcmgenet_set_rxnfc,
1637         .get_pauseparam         = bcmgenet_get_pauseparam,
1638         .set_pauseparam         = bcmgenet_set_pauseparam,
1639 };
1640
1641 /* Power down the unimac, based on mode. */
1642 static int bcmgenet_power_down(struct bcmgenet_priv *priv,
1643                                 enum bcmgenet_power_mode mode)
1644 {
1645         int ret = 0;
1646         u32 reg;
1647
1648         switch (mode) {
1649         case GENET_POWER_CABLE_SENSE:
1650                 phy_detach(priv->dev->phydev);
1651                 break;
1652
1653         case GENET_POWER_WOL_MAGIC:
1654                 ret = bcmgenet_wol_power_down_cfg(priv, mode);
1655                 break;
1656
1657         case GENET_POWER_PASSIVE:
1658                 /* Power down LED */
1659                 if (priv->hw_params->flags & GENET_HAS_EXT) {
1660                         reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1661                         if (GENET_IS_V5(priv) && !priv->ephy_16nm)
1662                                 reg |= EXT_PWR_DOWN_PHY_EN |
1663                                        EXT_PWR_DOWN_PHY_RD |
1664                                        EXT_PWR_DOWN_PHY_SD |
1665                                        EXT_PWR_DOWN_PHY_RX |
1666                                        EXT_PWR_DOWN_PHY_TX |
1667                                        EXT_IDDQ_GLBL_PWR;
1668                         else
1669                                 reg |= EXT_PWR_DOWN_PHY;
1670
1671                         reg |= (EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
1672                         bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1673
1674                         bcmgenet_phy_power_set(priv->dev, false);
1675                 }
1676                 break;
1677         default:
1678                 break;
1679         }
1680
1681         return ret;
1682 }
1683
1684 static void bcmgenet_power_up(struct bcmgenet_priv *priv,
1685                               enum bcmgenet_power_mode mode)
1686 {
1687         u32 reg;
1688
1689         if (!(priv->hw_params->flags & GENET_HAS_EXT))
1690                 return;
1691
1692         reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1693
1694         switch (mode) {
1695         case GENET_POWER_PASSIVE:
1696                 reg &= ~(EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS |
1697                          EXT_ENERGY_DET_MASK);
1698                 if (GENET_IS_V5(priv) && !priv->ephy_16nm) {
1699                         reg &= ~(EXT_PWR_DOWN_PHY_EN |
1700                                  EXT_PWR_DOWN_PHY_RD |
1701                                  EXT_PWR_DOWN_PHY_SD |
1702                                  EXT_PWR_DOWN_PHY_RX |
1703                                  EXT_PWR_DOWN_PHY_TX |
1704                                  EXT_IDDQ_GLBL_PWR);
1705                         reg |=   EXT_PHY_RESET;
1706                         bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1707                         mdelay(1);
1708
1709                         reg &=  ~EXT_PHY_RESET;
1710                 } else {
1711                         reg &= ~EXT_PWR_DOWN_PHY;
1712                         reg |= EXT_PWR_DN_EN_LD;
1713                 }
1714                 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1715                 bcmgenet_phy_power_set(priv->dev, true);
1716                 break;
1717
1718         case GENET_POWER_CABLE_SENSE:
1719                 /* enable APD */
1720                 if (!GENET_IS_V5(priv)) {
1721                         reg |= EXT_PWR_DN_EN_LD;
1722                         bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1723                 }
1724                 break;
1725         case GENET_POWER_WOL_MAGIC:
1726                 bcmgenet_wol_power_up_cfg(priv, mode);
1727                 return;
1728         default:
1729                 break;
1730         }
1731 }
1732
1733 static struct enet_cb *bcmgenet_get_txcb(struct bcmgenet_priv *priv,
1734                                          struct bcmgenet_tx_ring *ring)
1735 {
1736         struct enet_cb *tx_cb_ptr;
1737
1738         tx_cb_ptr = ring->cbs;
1739         tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1740
1741         /* Advancing local write pointer */
1742         if (ring->write_ptr == ring->end_ptr)
1743                 ring->write_ptr = ring->cb_ptr;
1744         else
1745                 ring->write_ptr++;
1746
1747         return tx_cb_ptr;
1748 }
1749
1750 static struct enet_cb *bcmgenet_put_txcb(struct bcmgenet_priv *priv,
1751                                          struct bcmgenet_tx_ring *ring)
1752 {
1753         struct enet_cb *tx_cb_ptr;
1754
1755         tx_cb_ptr = ring->cbs;
1756         tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1757
1758         /* Rewinding local write pointer */
1759         if (ring->write_ptr == ring->cb_ptr)
1760                 ring->write_ptr = ring->end_ptr;
1761         else
1762                 ring->write_ptr--;
1763
1764         return tx_cb_ptr;
1765 }
1766
1767 static inline void bcmgenet_rx_ring16_int_disable(struct bcmgenet_rx_ring *ring)
1768 {
1769         bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1770                                  INTRL2_CPU_MASK_SET);
1771 }
1772
1773 static inline void bcmgenet_rx_ring16_int_enable(struct bcmgenet_rx_ring *ring)
1774 {
1775         bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1776                                  INTRL2_CPU_MASK_CLEAR);
1777 }
1778
1779 static inline void bcmgenet_rx_ring_int_disable(struct bcmgenet_rx_ring *ring)
1780 {
1781         bcmgenet_intrl2_1_writel(ring->priv,
1782                                  1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1783                                  INTRL2_CPU_MASK_SET);
1784 }
1785
1786 static inline void bcmgenet_rx_ring_int_enable(struct bcmgenet_rx_ring *ring)
1787 {
1788         bcmgenet_intrl2_1_writel(ring->priv,
1789                                  1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1790                                  INTRL2_CPU_MASK_CLEAR);
1791 }
1792
1793 static inline void bcmgenet_tx_ring16_int_disable(struct bcmgenet_tx_ring *ring)
1794 {
1795         bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1796                                  INTRL2_CPU_MASK_SET);
1797 }
1798
1799 static inline void bcmgenet_tx_ring16_int_enable(struct bcmgenet_tx_ring *ring)
1800 {
1801         bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1802                                  INTRL2_CPU_MASK_CLEAR);
1803 }
1804
1805 static inline void bcmgenet_tx_ring_int_enable(struct bcmgenet_tx_ring *ring)
1806 {
1807         bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1808                                  INTRL2_CPU_MASK_CLEAR);
1809 }
1810
1811 static inline void bcmgenet_tx_ring_int_disable(struct bcmgenet_tx_ring *ring)
1812 {
1813         bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1814                                  INTRL2_CPU_MASK_SET);
1815 }
1816
1817 /* Simple helper to free a transmit control block's resources
1818  * Returns an skb when the last transmit control block associated with the
1819  * skb is freed.  The skb should be freed by the caller if necessary.
1820  */
1821 static struct sk_buff *bcmgenet_free_tx_cb(struct device *dev,
1822                                            struct enet_cb *cb)
1823 {
1824         struct sk_buff *skb;
1825
1826         skb = cb->skb;
1827
1828         if (skb) {
1829                 cb->skb = NULL;
1830                 if (cb == GENET_CB(skb)->first_cb)
1831                         dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr),
1832                                          dma_unmap_len(cb, dma_len),
1833                                          DMA_TO_DEVICE);
1834                 else
1835                         dma_unmap_page(dev, dma_unmap_addr(cb, dma_addr),
1836                                        dma_unmap_len(cb, dma_len),
1837                                        DMA_TO_DEVICE);
1838                 dma_unmap_addr_set(cb, dma_addr, 0);
1839
1840                 if (cb == GENET_CB(skb)->last_cb)
1841                         return skb;
1842
1843         } else if (dma_unmap_addr(cb, dma_addr)) {
1844                 dma_unmap_page(dev,
1845                                dma_unmap_addr(cb, dma_addr),
1846                                dma_unmap_len(cb, dma_len),
1847                                DMA_TO_DEVICE);
1848                 dma_unmap_addr_set(cb, dma_addr, 0);
1849         }
1850
1851         return NULL;
1852 }
1853
1854 /* Simple helper to free a receive control block's resources */
1855 static struct sk_buff *bcmgenet_free_rx_cb(struct device *dev,
1856                                            struct enet_cb *cb)
1857 {
1858         struct sk_buff *skb;
1859
1860         skb = cb->skb;
1861         cb->skb = NULL;
1862
1863         if (dma_unmap_addr(cb, dma_addr)) {
1864                 dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr),
1865                                  dma_unmap_len(cb, dma_len), DMA_FROM_DEVICE);
1866                 dma_unmap_addr_set(cb, dma_addr, 0);
1867         }
1868
1869         return skb;
1870 }
1871
1872 /* Unlocked version of the reclaim routine */
1873 static unsigned int __bcmgenet_tx_reclaim(struct net_device *dev,
1874                                           struct bcmgenet_tx_ring *ring)
1875 {
1876         struct bcmgenet_priv *priv = netdev_priv(dev);
1877         unsigned int txbds_processed = 0;
1878         unsigned int bytes_compl = 0;
1879         unsigned int pkts_compl = 0;
1880         unsigned int txbds_ready;
1881         unsigned int c_index;
1882         struct sk_buff *skb;
1883
1884         /* Clear status before servicing to reduce spurious interrupts */
1885         if (ring->index == DESC_INDEX)
1886                 bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_TXDMA_DONE,
1887                                          INTRL2_CPU_CLEAR);
1888         else
1889                 bcmgenet_intrl2_1_writel(priv, (1 << ring->index),
1890                                          INTRL2_CPU_CLEAR);
1891
1892         /* Compute how many buffers are transmitted since last xmit call */
1893         c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX)
1894                 & DMA_C_INDEX_MASK;
1895         txbds_ready = (c_index - ring->c_index) & DMA_C_INDEX_MASK;
1896
1897         netif_dbg(priv, tx_done, dev,
1898                   "%s ring=%d old_c_index=%u c_index=%u txbds_ready=%u\n",
1899                   __func__, ring->index, ring->c_index, c_index, txbds_ready);
1900
1901         /* Reclaim transmitted buffers */
1902         while (txbds_processed < txbds_ready) {
1903                 skb = bcmgenet_free_tx_cb(&priv->pdev->dev,
1904                                           &priv->tx_cbs[ring->clean_ptr]);
1905                 if (skb) {
1906                         pkts_compl++;
1907                         bytes_compl += GENET_CB(skb)->bytes_sent;
1908                         dev_consume_skb_any(skb);
1909                 }
1910
1911                 txbds_processed++;
1912                 if (likely(ring->clean_ptr < ring->end_ptr))
1913                         ring->clean_ptr++;
1914                 else
1915                         ring->clean_ptr = ring->cb_ptr;
1916         }
1917
1918         ring->free_bds += txbds_processed;
1919         ring->c_index = c_index;
1920
1921         ring->packets += pkts_compl;
1922         ring->bytes += bytes_compl;
1923
1924         netdev_tx_completed_queue(netdev_get_tx_queue(dev, ring->queue),
1925                                   pkts_compl, bytes_compl);
1926
1927         return txbds_processed;
1928 }
1929
1930 static unsigned int bcmgenet_tx_reclaim(struct net_device *dev,
1931                                 struct bcmgenet_tx_ring *ring)
1932 {
1933         unsigned int released;
1934
1935         spin_lock_bh(&ring->lock);
1936         released = __bcmgenet_tx_reclaim(dev, ring);
1937         spin_unlock_bh(&ring->lock);
1938
1939         return released;
1940 }
1941
1942 static int bcmgenet_tx_poll(struct napi_struct *napi, int budget)
1943 {
1944         struct bcmgenet_tx_ring *ring =
1945                 container_of(napi, struct bcmgenet_tx_ring, napi);
1946         unsigned int work_done = 0;
1947         struct netdev_queue *txq;
1948
1949         spin_lock(&ring->lock);
1950         work_done = __bcmgenet_tx_reclaim(ring->priv->dev, ring);
1951         if (ring->free_bds > (MAX_SKB_FRAGS + 1)) {
1952                 txq = netdev_get_tx_queue(ring->priv->dev, ring->queue);
1953                 netif_tx_wake_queue(txq);
1954         }
1955         spin_unlock(&ring->lock);
1956
1957         if (work_done == 0) {
1958                 napi_complete(napi);
1959                 ring->int_enable(ring);
1960
1961                 return 0;
1962         }
1963
1964         return budget;
1965 }
1966
1967 static void bcmgenet_tx_reclaim_all(struct net_device *dev)
1968 {
1969         struct bcmgenet_priv *priv = netdev_priv(dev);
1970         int i;
1971
1972         if (netif_is_multiqueue(dev)) {
1973                 for (i = 0; i < priv->hw_params->tx_queues; i++)
1974                         bcmgenet_tx_reclaim(dev, &priv->tx_rings[i]);
1975         }
1976
1977         bcmgenet_tx_reclaim(dev, &priv->tx_rings[DESC_INDEX]);
1978 }
1979
1980 /* Reallocate the SKB to put enough headroom in front of it and insert
1981  * the transmit checksum offsets in the descriptors
1982  */
1983 static struct sk_buff *bcmgenet_add_tsb(struct net_device *dev,
1984                                         struct sk_buff *skb)
1985 {
1986         struct bcmgenet_priv *priv = netdev_priv(dev);
1987         struct status_64 *status = NULL;
1988         struct sk_buff *new_skb;
1989         u16 offset;
1990         u8 ip_proto;
1991         __be16 ip_ver;
1992         u32 tx_csum_info;
1993
1994         if (unlikely(skb_headroom(skb) < sizeof(*status))) {
1995                 /* If 64 byte status block enabled, must make sure skb has
1996                  * enough headroom for us to insert 64B status block.
1997                  */
1998                 new_skb = skb_realloc_headroom(skb, sizeof(*status));
1999                 if (!new_skb) {
2000                         dev_kfree_skb_any(skb);
2001                         priv->mib.tx_realloc_tsb_failed++;
2002                         dev->stats.tx_dropped++;
2003                         return NULL;
2004                 }
2005                 dev_consume_skb_any(skb);
2006                 skb = new_skb;
2007                 priv->mib.tx_realloc_tsb++;
2008         }
2009
2010         skb_push(skb, sizeof(*status));
2011         status = (struct status_64 *)skb->data;
2012
2013         if (skb->ip_summed  == CHECKSUM_PARTIAL) {
2014                 ip_ver = skb->protocol;
2015                 switch (ip_ver) {
2016                 case htons(ETH_P_IP):
2017                         ip_proto = ip_hdr(skb)->protocol;
2018                         break;
2019                 case htons(ETH_P_IPV6):
2020                         ip_proto = ipv6_hdr(skb)->nexthdr;
2021                         break;
2022                 default:
2023                         /* don't use UDP flag */
2024                         ip_proto = 0;
2025                         break;
2026                 }
2027
2028                 offset = skb_checksum_start_offset(skb) - sizeof(*status);
2029                 tx_csum_info = (offset << STATUS_TX_CSUM_START_SHIFT) |
2030                                 (offset + skb->csum_offset) |
2031                                 STATUS_TX_CSUM_LV;
2032
2033                 /* Set the special UDP flag for UDP */
2034                 if (ip_proto == IPPROTO_UDP)
2035                         tx_csum_info |= STATUS_TX_CSUM_PROTO_UDP;
2036
2037                 status->tx_csum_info = tx_csum_info;
2038         }
2039
2040         return skb;
2041 }
2042
2043 static void bcmgenet_hide_tsb(struct sk_buff *skb)
2044 {
2045         __skb_pull(skb, sizeof(struct status_64));
2046 }
2047
2048 static netdev_tx_t bcmgenet_xmit(struct sk_buff *skb, struct net_device *dev)
2049 {
2050         struct bcmgenet_priv *priv = netdev_priv(dev);
2051         struct device *kdev = &priv->pdev->dev;
2052         struct bcmgenet_tx_ring *ring = NULL;
2053         struct enet_cb *tx_cb_ptr;
2054         struct netdev_queue *txq;
2055         int nr_frags, index;
2056         dma_addr_t mapping;
2057         unsigned int size;
2058         skb_frag_t *frag;
2059         u32 len_stat;
2060         int ret;
2061         int i;
2062
2063         index = skb_get_queue_mapping(skb);
2064         /* Mapping strategy:
2065          * queue_mapping = 0, unclassified, packet xmited through ring16
2066          * queue_mapping = 1, goes to ring 0. (highest priority queue
2067          * queue_mapping = 2, goes to ring 1.
2068          * queue_mapping = 3, goes to ring 2.
2069          * queue_mapping = 4, goes to ring 3.
2070          */
2071         if (index == 0)
2072                 index = DESC_INDEX;
2073         else
2074                 index -= 1;
2075
2076         ring = &priv->tx_rings[index];
2077         txq = netdev_get_tx_queue(dev, ring->queue);
2078
2079         nr_frags = skb_shinfo(skb)->nr_frags;
2080
2081         spin_lock(&ring->lock);
2082         if (ring->free_bds <= (nr_frags + 1)) {
2083                 if (!netif_tx_queue_stopped(txq)) {
2084                         netif_tx_stop_queue(txq);
2085                         netdev_err(dev,
2086                                    "%s: tx ring %d full when queue %d awake\n",
2087                                    __func__, index, ring->queue);
2088                 }
2089                 ret = NETDEV_TX_BUSY;
2090                 goto out;
2091         }
2092
2093         /* Retain how many bytes will be sent on the wire, without TSB inserted
2094          * by transmit checksum offload
2095          */
2096         GENET_CB(skb)->bytes_sent = skb->len;
2097
2098         /* add the Transmit Status Block */
2099         skb = bcmgenet_add_tsb(dev, skb);
2100         if (!skb) {
2101                 ret = NETDEV_TX_OK;
2102                 goto out;
2103         }
2104
2105         for (i = 0; i <= nr_frags; i++) {
2106                 tx_cb_ptr = bcmgenet_get_txcb(priv, ring);
2107
2108                 BUG_ON(!tx_cb_ptr);
2109
2110                 if (!i) {
2111                         /* Transmit single SKB or head of fragment list */
2112                         GENET_CB(skb)->first_cb = tx_cb_ptr;
2113                         size = skb_headlen(skb);
2114                         mapping = dma_map_single(kdev, skb->data, size,
2115                                                  DMA_TO_DEVICE);
2116                 } else {
2117                         /* xmit fragment */
2118                         frag = &skb_shinfo(skb)->frags[i - 1];
2119                         size = skb_frag_size(frag);
2120                         mapping = skb_frag_dma_map(kdev, frag, 0, size,
2121                                                    DMA_TO_DEVICE);
2122                 }
2123
2124                 ret = dma_mapping_error(kdev, mapping);
2125                 if (ret) {
2126                         priv->mib.tx_dma_failed++;
2127                         netif_err(priv, tx_err, dev, "Tx DMA map failed\n");
2128                         ret = NETDEV_TX_OK;
2129                         goto out_unmap_frags;
2130                 }
2131                 dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
2132                 dma_unmap_len_set(tx_cb_ptr, dma_len, size);
2133
2134                 tx_cb_ptr->skb = skb;
2135
2136                 len_stat = (size << DMA_BUFLENGTH_SHIFT) |
2137                            (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT);
2138
2139                 /* Note: if we ever change from DMA_TX_APPEND_CRC below we
2140                  * will need to restore software padding of "runt" packets
2141                  */
2142                 if (!i) {
2143                         len_stat |= DMA_TX_APPEND_CRC | DMA_SOP;
2144                         if (skb->ip_summed == CHECKSUM_PARTIAL)
2145                                 len_stat |= DMA_TX_DO_CSUM;
2146                 }
2147                 if (i == nr_frags)
2148                         len_stat |= DMA_EOP;
2149
2150                 dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping, len_stat);
2151         }
2152
2153         GENET_CB(skb)->last_cb = tx_cb_ptr;
2154
2155         bcmgenet_hide_tsb(skb);
2156         skb_tx_timestamp(skb);
2157
2158         /* Decrement total BD count and advance our write pointer */
2159         ring->free_bds -= nr_frags + 1;
2160         ring->prod_index += nr_frags + 1;
2161         ring->prod_index &= DMA_P_INDEX_MASK;
2162
2163         netdev_tx_sent_queue(txq, GENET_CB(skb)->bytes_sent);
2164
2165         if (ring->free_bds <= (MAX_SKB_FRAGS + 1))
2166                 netif_tx_stop_queue(txq);
2167
2168         if (!netdev_xmit_more() || netif_xmit_stopped(txq))
2169                 /* Packets are ready, update producer index */
2170                 bcmgenet_tdma_ring_writel(priv, ring->index,
2171                                           ring->prod_index, TDMA_PROD_INDEX);
2172 out:
2173         spin_unlock(&ring->lock);
2174
2175         return ret;
2176
2177 out_unmap_frags:
2178         /* Back up for failed control block mapping */
2179         bcmgenet_put_txcb(priv, ring);
2180
2181         /* Unmap successfully mapped control blocks */
2182         while (i-- > 0) {
2183                 tx_cb_ptr = bcmgenet_put_txcb(priv, ring);
2184                 bcmgenet_free_tx_cb(kdev, tx_cb_ptr);
2185         }
2186
2187         dev_kfree_skb(skb);
2188         goto out;
2189 }
2190
2191 static struct sk_buff *bcmgenet_rx_refill(struct bcmgenet_priv *priv,
2192                                           struct enet_cb *cb)
2193 {
2194         struct device *kdev = &priv->pdev->dev;
2195         struct sk_buff *skb;
2196         struct sk_buff *rx_skb;
2197         dma_addr_t mapping;
2198
2199         /* Allocate a new Rx skb */
2200         skb = __netdev_alloc_skb(priv->dev, priv->rx_buf_len + SKB_ALIGNMENT,
2201                                  GFP_ATOMIC | __GFP_NOWARN);
2202         if (!skb) {
2203                 priv->mib.alloc_rx_buff_failed++;
2204                 netif_err(priv, rx_err, priv->dev,
2205                           "%s: Rx skb allocation failed\n", __func__);
2206                 return NULL;
2207         }
2208
2209         /* DMA-map the new Rx skb */
2210         mapping = dma_map_single(kdev, skb->data, priv->rx_buf_len,
2211                                  DMA_FROM_DEVICE);
2212         if (dma_mapping_error(kdev, mapping)) {
2213                 priv->mib.rx_dma_failed++;
2214                 dev_kfree_skb_any(skb);
2215                 netif_err(priv, rx_err, priv->dev,
2216                           "%s: Rx skb DMA mapping failed\n", __func__);
2217                 return NULL;
2218         }
2219
2220         /* Grab the current Rx skb from the ring and DMA-unmap it */
2221         rx_skb = bcmgenet_free_rx_cb(kdev, cb);
2222
2223         /* Put the new Rx skb on the ring */
2224         cb->skb = skb;
2225         dma_unmap_addr_set(cb, dma_addr, mapping);
2226         dma_unmap_len_set(cb, dma_len, priv->rx_buf_len);
2227         dmadesc_set_addr(priv, cb->bd_addr, mapping);
2228
2229         /* Return the current Rx skb to caller */
2230         return rx_skb;
2231 }
2232
2233 /* bcmgenet_desc_rx - descriptor based rx process.
2234  * this could be called from bottom half, or from NAPI polling method.
2235  */
2236 static unsigned int bcmgenet_desc_rx(struct bcmgenet_rx_ring *ring,
2237                                      unsigned int budget)
2238 {
2239         struct bcmgenet_priv *priv = ring->priv;
2240         struct net_device *dev = priv->dev;
2241         struct enet_cb *cb;
2242         struct sk_buff *skb;
2243         u32 dma_length_status;
2244         unsigned long dma_flag;
2245         int len;
2246         unsigned int rxpktprocessed = 0, rxpkttoprocess;
2247         unsigned int bytes_processed = 0;
2248         unsigned int p_index, mask;
2249         unsigned int discards;
2250
2251         /* Clear status before servicing to reduce spurious interrupts */
2252         if (ring->index == DESC_INDEX) {
2253                 bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_RXDMA_DONE,
2254                                          INTRL2_CPU_CLEAR);
2255         } else {
2256                 mask = 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index);
2257                 bcmgenet_intrl2_1_writel(priv,
2258                                          mask,
2259                                          INTRL2_CPU_CLEAR);
2260         }
2261
2262         p_index = bcmgenet_rdma_ring_readl(priv, ring->index, RDMA_PROD_INDEX);
2263
2264         discards = (p_index >> DMA_P_INDEX_DISCARD_CNT_SHIFT) &
2265                    DMA_P_INDEX_DISCARD_CNT_MASK;
2266         if (discards > ring->old_discards) {
2267                 discards = discards - ring->old_discards;
2268                 ring->errors += discards;
2269                 ring->old_discards += discards;
2270
2271                 /* Clear HW register when we reach 75% of maximum 0xFFFF */
2272                 if (ring->old_discards >= 0xC000) {
2273                         ring->old_discards = 0;
2274                         bcmgenet_rdma_ring_writel(priv, ring->index, 0,
2275                                                   RDMA_PROD_INDEX);
2276                 }
2277         }
2278
2279         p_index &= DMA_P_INDEX_MASK;
2280         rxpkttoprocess = (p_index - ring->c_index) & DMA_C_INDEX_MASK;
2281
2282         netif_dbg(priv, rx_status, dev,
2283                   "RDMA: rxpkttoprocess=%d\n", rxpkttoprocess);
2284
2285         while ((rxpktprocessed < rxpkttoprocess) &&
2286                (rxpktprocessed < budget)) {
2287                 struct status_64 *status;
2288                 __be16 rx_csum;
2289
2290                 cb = &priv->rx_cbs[ring->read_ptr];
2291                 skb = bcmgenet_rx_refill(priv, cb);
2292
2293                 if (unlikely(!skb)) {
2294                         ring->dropped++;
2295                         goto next;
2296                 }
2297
2298                 status = (struct status_64 *)skb->data;
2299                 dma_length_status = status->length_status;
2300                 if (dev->features & NETIF_F_RXCSUM) {
2301                         rx_csum = (__force __be16)(status->rx_csum & 0xffff);
2302                         if (rx_csum) {
2303                                 skb->csum = (__force __wsum)ntohs(rx_csum);
2304                                 skb->ip_summed = CHECKSUM_COMPLETE;
2305                         }
2306                 }
2307
2308                 /* DMA flags and length are still valid no matter how
2309                  * we got the Receive Status Vector (64B RSB or register)
2310                  */
2311                 dma_flag = dma_length_status & 0xffff;
2312                 len = dma_length_status >> DMA_BUFLENGTH_SHIFT;
2313
2314                 netif_dbg(priv, rx_status, dev,
2315                           "%s:p_ind=%d c_ind=%d read_ptr=%d len_stat=0x%08x\n",
2316                           __func__, p_index, ring->c_index,
2317                           ring->read_ptr, dma_length_status);
2318
2319                 if (unlikely(len > RX_BUF_LENGTH)) {
2320                         netif_err(priv, rx_status, dev, "oversized packet\n");
2321                         dev->stats.rx_length_errors++;
2322                         dev->stats.rx_errors++;
2323                         dev_kfree_skb_any(skb);
2324                         goto next;
2325                 }
2326
2327                 if (unlikely(!(dma_flag & DMA_EOP) || !(dma_flag & DMA_SOP))) {
2328                         netif_err(priv, rx_status, dev,
2329                                   "dropping fragmented packet!\n");
2330                         ring->errors++;
2331                         dev_kfree_skb_any(skb);
2332                         goto next;
2333                 }
2334
2335                 /* report errors */
2336                 if (unlikely(dma_flag & (DMA_RX_CRC_ERROR |
2337                                                 DMA_RX_OV |
2338                                                 DMA_RX_NO |
2339                                                 DMA_RX_LG |
2340                                                 DMA_RX_RXER))) {
2341                         netif_err(priv, rx_status, dev, "dma_flag=0x%x\n",
2342                                   (unsigned int)dma_flag);
2343                         if (dma_flag & DMA_RX_CRC_ERROR)
2344                                 dev->stats.rx_crc_errors++;
2345                         if (dma_flag & DMA_RX_OV)
2346                                 dev->stats.rx_over_errors++;
2347                         if (dma_flag & DMA_RX_NO)
2348                                 dev->stats.rx_frame_errors++;
2349                         if (dma_flag & DMA_RX_LG)
2350                                 dev->stats.rx_length_errors++;
2351                         dev->stats.rx_errors++;
2352                         dev_kfree_skb_any(skb);
2353                         goto next;
2354                 } /* error packet */
2355
2356                 skb_put(skb, len);
2357
2358                 /* remove RSB and hardware 2bytes added for IP alignment */
2359                 skb_pull(skb, 66);
2360                 len -= 66;
2361
2362                 if (priv->crc_fwd_en) {
2363                         skb_trim(skb, len - ETH_FCS_LEN);
2364                         len -= ETH_FCS_LEN;
2365                 }
2366
2367                 bytes_processed += len;
2368
2369                 /*Finish setting up the received SKB and send it to the kernel*/
2370                 skb->protocol = eth_type_trans(skb, priv->dev);
2371                 ring->packets++;
2372                 ring->bytes += len;
2373                 if (dma_flag & DMA_RX_MULT)
2374                         dev->stats.multicast++;
2375
2376                 /* Notify kernel */
2377                 napi_gro_receive(&ring->napi, skb);
2378                 netif_dbg(priv, rx_status, dev, "pushed up to kernel\n");
2379
2380 next:
2381                 rxpktprocessed++;
2382                 if (likely(ring->read_ptr < ring->end_ptr))
2383                         ring->read_ptr++;
2384                 else
2385                         ring->read_ptr = ring->cb_ptr;
2386
2387                 ring->c_index = (ring->c_index + 1) & DMA_C_INDEX_MASK;
2388                 bcmgenet_rdma_ring_writel(priv, ring->index, ring->c_index, RDMA_CONS_INDEX);
2389         }
2390
2391         ring->dim.bytes = bytes_processed;
2392         ring->dim.packets = rxpktprocessed;
2393
2394         return rxpktprocessed;
2395 }
2396
2397 /* Rx NAPI polling method */
2398 static int bcmgenet_rx_poll(struct napi_struct *napi, int budget)
2399 {
2400         struct bcmgenet_rx_ring *ring = container_of(napi,
2401                         struct bcmgenet_rx_ring, napi);
2402         struct dim_sample dim_sample = {};
2403         unsigned int work_done;
2404
2405         work_done = bcmgenet_desc_rx(ring, budget);
2406
2407         if (work_done < budget) {
2408                 napi_complete_done(napi, work_done);
2409                 ring->int_enable(ring);
2410         }
2411
2412         if (ring->dim.use_dim) {
2413                 dim_update_sample(ring->dim.event_ctr, ring->dim.packets,
2414                                   ring->dim.bytes, &dim_sample);
2415                 net_dim(&ring->dim.dim, dim_sample);
2416         }
2417
2418         return work_done;
2419 }
2420
2421 static void bcmgenet_dim_work(struct work_struct *work)
2422 {
2423         struct dim *dim = container_of(work, struct dim, work);
2424         struct bcmgenet_net_dim *ndim =
2425                         container_of(dim, struct bcmgenet_net_dim, dim);
2426         struct bcmgenet_rx_ring *ring =
2427                         container_of(ndim, struct bcmgenet_rx_ring, dim);
2428         struct dim_cq_moder cur_profile =
2429                         net_dim_get_rx_moderation(dim->mode, dim->profile_ix);
2430
2431         bcmgenet_set_rx_coalesce(ring, cur_profile.usec, cur_profile.pkts);
2432         dim->state = DIM_START_MEASURE;
2433 }
2434
2435 /* Assign skb to RX DMA descriptor. */
2436 static int bcmgenet_alloc_rx_buffers(struct bcmgenet_priv *priv,
2437                                      struct bcmgenet_rx_ring *ring)
2438 {
2439         struct enet_cb *cb;
2440         struct sk_buff *skb;
2441         int i;
2442
2443         netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
2444
2445         /* loop here for each buffer needing assign */
2446         for (i = 0; i < ring->size; i++) {
2447                 cb = ring->cbs + i;
2448                 skb = bcmgenet_rx_refill(priv, cb);
2449                 if (skb)
2450                         dev_consume_skb_any(skb);
2451                 if (!cb->skb)
2452                         return -ENOMEM;
2453         }
2454
2455         return 0;
2456 }
2457
2458 static void bcmgenet_free_rx_buffers(struct bcmgenet_priv *priv)
2459 {
2460         struct sk_buff *skb;
2461         struct enet_cb *cb;
2462         int i;
2463
2464         for (i = 0; i < priv->num_rx_bds; i++) {
2465                 cb = &priv->rx_cbs[i];
2466
2467                 skb = bcmgenet_free_rx_cb(&priv->pdev->dev, cb);
2468                 if (skb)
2469                         dev_consume_skb_any(skb);
2470         }
2471 }
2472
2473 static void umac_enable_set(struct bcmgenet_priv *priv, u32 mask, bool enable)
2474 {
2475         u32 reg;
2476
2477         reg = bcmgenet_umac_readl(priv, UMAC_CMD);
2478         if (reg & CMD_SW_RESET)
2479                 return;
2480         if (enable)
2481                 reg |= mask;
2482         else
2483                 reg &= ~mask;
2484         bcmgenet_umac_writel(priv, reg, UMAC_CMD);
2485
2486         /* UniMAC stops on a packet boundary, wait for a full-size packet
2487          * to be processed
2488          */
2489         if (enable == 0)
2490                 usleep_range(1000, 2000);
2491 }
2492
2493 static void reset_umac(struct bcmgenet_priv *priv)
2494 {
2495         /* 7358a0/7552a0: bad default in RBUF_FLUSH_CTRL.umac_sw_rst */
2496         bcmgenet_rbuf_ctrl_set(priv, 0);
2497         udelay(10);
2498
2499         /* issue soft reset and disable MAC while updating its registers */
2500         bcmgenet_umac_writel(priv, CMD_SW_RESET, UMAC_CMD);
2501         udelay(2);
2502 }
2503
2504 static void bcmgenet_intr_disable(struct bcmgenet_priv *priv)
2505 {
2506         /* Mask all interrupts.*/
2507         bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
2508         bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
2509         bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
2510         bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
2511 }
2512
2513 static void bcmgenet_link_intr_enable(struct bcmgenet_priv *priv)
2514 {
2515         u32 int0_enable = 0;
2516
2517         /* Monitor cable plug/unplugged event for internal PHY, external PHY
2518          * and MoCA PHY
2519          */
2520         if (priv->internal_phy) {
2521                 int0_enable |= UMAC_IRQ_LINK_EVENT;
2522                 if (GENET_IS_V1(priv) || GENET_IS_V2(priv) || GENET_IS_V3(priv))
2523                         int0_enable |= UMAC_IRQ_PHY_DET_R;
2524         } else if (priv->ext_phy) {
2525                 int0_enable |= UMAC_IRQ_LINK_EVENT;
2526         } else if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
2527                 if (priv->hw_params->flags & GENET_HAS_MOCA_LINK_DET)
2528                         int0_enable |= UMAC_IRQ_LINK_EVENT;
2529         }
2530         bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2531 }
2532
2533 static void init_umac(struct bcmgenet_priv *priv)
2534 {
2535         struct device *kdev = &priv->pdev->dev;
2536         u32 reg;
2537         u32 int0_enable = 0;
2538
2539         dev_dbg(&priv->pdev->dev, "bcmgenet: init_umac\n");
2540
2541         reset_umac(priv);
2542
2543         /* clear tx/rx counter */
2544         bcmgenet_umac_writel(priv,
2545                              MIB_RESET_RX | MIB_RESET_TX | MIB_RESET_RUNT,
2546                              UMAC_MIB_CTRL);
2547         bcmgenet_umac_writel(priv, 0, UMAC_MIB_CTRL);
2548
2549         bcmgenet_umac_writel(priv, ENET_MAX_MTU_SIZE, UMAC_MAX_FRAME_LEN);
2550
2551         /* init tx registers, enable TSB */
2552         reg = bcmgenet_tbuf_ctrl_get(priv);
2553         reg |= TBUF_64B_EN;
2554         bcmgenet_tbuf_ctrl_set(priv, reg);
2555
2556         /* init rx registers, enable ip header optimization and RSB */
2557         reg = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
2558         reg |= RBUF_ALIGN_2B | RBUF_64B_EN;
2559         bcmgenet_rbuf_writel(priv, reg, RBUF_CTRL);
2560
2561         /* enable rx checksumming */
2562         reg = bcmgenet_rbuf_readl(priv, RBUF_CHK_CTRL);
2563         reg |= RBUF_RXCHK_EN | RBUF_L3_PARSE_DIS;
2564         /* If UniMAC forwards CRC, we need to skip over it to get
2565          * a valid CHK bit to be set in the per-packet status word
2566          */
2567         if (priv->crc_fwd_en)
2568                 reg |= RBUF_SKIP_FCS;
2569         else
2570                 reg &= ~RBUF_SKIP_FCS;
2571         bcmgenet_rbuf_writel(priv, reg, RBUF_CHK_CTRL);
2572
2573         if (!GENET_IS_V1(priv) && !GENET_IS_V2(priv))
2574                 bcmgenet_rbuf_writel(priv, 1, RBUF_TBUF_SIZE_CTRL);
2575
2576         bcmgenet_intr_disable(priv);
2577
2578         /* Configure backpressure vectors for MoCA */
2579         if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
2580                 reg = bcmgenet_bp_mc_get(priv);
2581                 reg |= BIT(priv->hw_params->bp_in_en_shift);
2582
2583                 /* bp_mask: back pressure mask */
2584                 if (netif_is_multiqueue(priv->dev))
2585                         reg |= priv->hw_params->bp_in_mask;
2586                 else
2587                         reg &= ~priv->hw_params->bp_in_mask;
2588                 bcmgenet_bp_mc_set(priv, reg);
2589         }
2590
2591         /* Enable MDIO interrupts on GENET v3+ */
2592         if (priv->hw_params->flags & GENET_HAS_MDIO_INTR)
2593                 int0_enable |= (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR);
2594
2595         bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2596
2597         dev_dbg(kdev, "done init umac\n");
2598 }
2599
2600 static void bcmgenet_init_dim(struct bcmgenet_rx_ring *ring,
2601                               void (*cb)(struct work_struct *work))
2602 {
2603         struct bcmgenet_net_dim *dim = &ring->dim;
2604
2605         INIT_WORK(&dim->dim.work, cb);
2606         dim->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
2607         dim->event_ctr = 0;
2608         dim->packets = 0;
2609         dim->bytes = 0;
2610 }
2611
2612 static void bcmgenet_init_rx_coalesce(struct bcmgenet_rx_ring *ring)
2613 {
2614         struct bcmgenet_net_dim *dim = &ring->dim;
2615         struct dim_cq_moder moder;
2616         u32 usecs, pkts;
2617
2618         usecs = ring->rx_coalesce_usecs;
2619         pkts = ring->rx_max_coalesced_frames;
2620
2621         /* If DIM was enabled, re-apply default parameters */
2622         if (dim->use_dim) {
2623                 moder = net_dim_get_def_rx_moderation(dim->dim.mode);
2624                 usecs = moder.usec;
2625                 pkts = moder.pkts;
2626         }
2627
2628         bcmgenet_set_rx_coalesce(ring, usecs, pkts);
2629 }
2630
2631 /* Initialize a Tx ring along with corresponding hardware registers */
2632 static void bcmgenet_init_tx_ring(struct bcmgenet_priv *priv,
2633                                   unsigned int index, unsigned int size,
2634                                   unsigned int start_ptr, unsigned int end_ptr)
2635 {
2636         struct bcmgenet_tx_ring *ring = &priv->tx_rings[index];
2637         u32 words_per_bd = WORDS_PER_BD(priv);
2638         u32 flow_period_val = 0;
2639
2640         spin_lock_init(&ring->lock);
2641         ring->priv = priv;
2642         ring->index = index;
2643         if (index == DESC_INDEX) {
2644                 ring->queue = 0;
2645                 ring->int_enable = bcmgenet_tx_ring16_int_enable;
2646                 ring->int_disable = bcmgenet_tx_ring16_int_disable;
2647         } else {
2648                 ring->queue = index + 1;
2649                 ring->int_enable = bcmgenet_tx_ring_int_enable;
2650                 ring->int_disable = bcmgenet_tx_ring_int_disable;
2651         }
2652         ring->cbs = priv->tx_cbs + start_ptr;
2653         ring->size = size;
2654         ring->clean_ptr = start_ptr;
2655         ring->c_index = 0;
2656         ring->free_bds = size;
2657         ring->write_ptr = start_ptr;
2658         ring->cb_ptr = start_ptr;
2659         ring->end_ptr = end_ptr - 1;
2660         ring->prod_index = 0;
2661
2662         /* Set flow period for ring != 16 */
2663         if (index != DESC_INDEX)
2664                 flow_period_val = ENET_MAX_MTU_SIZE << 16;
2665
2666         bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_PROD_INDEX);
2667         bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_CONS_INDEX);
2668         bcmgenet_tdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
2669         /* Disable rate control for now */
2670         bcmgenet_tdma_ring_writel(priv, index, flow_period_val,
2671                                   TDMA_FLOW_PERIOD);
2672         bcmgenet_tdma_ring_writel(priv, index,
2673                                   ((size << DMA_RING_SIZE_SHIFT) |
2674                                    RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2675
2676         /* Set start and end address, read and write pointers */
2677         bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2678                                   DMA_START_ADDR);
2679         bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2680                                   TDMA_READ_PTR);
2681         bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2682                                   TDMA_WRITE_PTR);
2683         bcmgenet_tdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2684                                   DMA_END_ADDR);
2685
2686         /* Initialize Tx NAPI */
2687         netif_napi_add_tx(priv->dev, &ring->napi, bcmgenet_tx_poll);
2688 }
2689
2690 /* Initialize a RDMA ring */
2691 static int bcmgenet_init_rx_ring(struct bcmgenet_priv *priv,
2692                                  unsigned int index, unsigned int size,
2693                                  unsigned int start_ptr, unsigned int end_ptr)
2694 {
2695         struct bcmgenet_rx_ring *ring = &priv->rx_rings[index];
2696         u32 words_per_bd = WORDS_PER_BD(priv);
2697         int ret;
2698
2699         ring->priv = priv;
2700         ring->index = index;
2701         if (index == DESC_INDEX) {
2702                 ring->int_enable = bcmgenet_rx_ring16_int_enable;
2703                 ring->int_disable = bcmgenet_rx_ring16_int_disable;
2704         } else {
2705                 ring->int_enable = bcmgenet_rx_ring_int_enable;
2706                 ring->int_disable = bcmgenet_rx_ring_int_disable;
2707         }
2708         ring->cbs = priv->rx_cbs + start_ptr;
2709         ring->size = size;
2710         ring->c_index = 0;
2711         ring->read_ptr = start_ptr;
2712         ring->cb_ptr = start_ptr;
2713         ring->end_ptr = end_ptr - 1;
2714
2715         ret = bcmgenet_alloc_rx_buffers(priv, ring);
2716         if (ret)
2717                 return ret;
2718
2719         bcmgenet_init_dim(ring, bcmgenet_dim_work);
2720         bcmgenet_init_rx_coalesce(ring);
2721
2722         /* Initialize Rx NAPI */
2723         netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll);
2724
2725         bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_PROD_INDEX);
2726         bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_CONS_INDEX);
2727         bcmgenet_rdma_ring_writel(priv, index,
2728                                   ((size << DMA_RING_SIZE_SHIFT) |
2729                                    RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2730         bcmgenet_rdma_ring_writel(priv, index,
2731                                   (DMA_FC_THRESH_LO <<
2732                                    DMA_XOFF_THRESHOLD_SHIFT) |
2733                                    DMA_FC_THRESH_HI, RDMA_XON_XOFF_THRESH);
2734
2735         /* Set start and end address, read and write pointers */
2736         bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2737                                   DMA_START_ADDR);
2738         bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2739                                   RDMA_READ_PTR);
2740         bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2741                                   RDMA_WRITE_PTR);
2742         bcmgenet_rdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2743                                   DMA_END_ADDR);
2744
2745         return ret;
2746 }
2747
2748 static void bcmgenet_enable_tx_napi(struct bcmgenet_priv *priv)
2749 {
2750         unsigned int i;
2751         struct bcmgenet_tx_ring *ring;
2752
2753         for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2754                 ring = &priv->tx_rings[i];
2755                 napi_enable(&ring->napi);
2756                 ring->int_enable(ring);
2757         }
2758
2759         ring = &priv->tx_rings[DESC_INDEX];
2760         napi_enable(&ring->napi);
2761         ring->int_enable(ring);
2762 }
2763
2764 static void bcmgenet_disable_tx_napi(struct bcmgenet_priv *priv)
2765 {
2766         unsigned int i;
2767         struct bcmgenet_tx_ring *ring;
2768
2769         for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2770                 ring = &priv->tx_rings[i];
2771                 napi_disable(&ring->napi);
2772         }
2773
2774         ring = &priv->tx_rings[DESC_INDEX];
2775         napi_disable(&ring->napi);
2776 }
2777
2778 static void bcmgenet_fini_tx_napi(struct bcmgenet_priv *priv)
2779 {
2780         unsigned int i;
2781         struct bcmgenet_tx_ring *ring;
2782
2783         for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2784                 ring = &priv->tx_rings[i];
2785                 netif_napi_del(&ring->napi);
2786         }
2787
2788         ring = &priv->tx_rings[DESC_INDEX];
2789         netif_napi_del(&ring->napi);
2790 }
2791
2792 /* Initialize Tx queues
2793  *
2794  * Queues 0-3 are priority-based, each one has 32 descriptors,
2795  * with queue 0 being the highest priority queue.
2796  *
2797  * Queue 16 is the default Tx queue with
2798  * GENET_Q16_TX_BD_CNT = 256 - 4 * 32 = 128 descriptors.
2799  *
2800  * The transmit control block pool is then partitioned as follows:
2801  * - Tx queue 0 uses tx_cbs[0..31]
2802  * - Tx queue 1 uses tx_cbs[32..63]
2803  * - Tx queue 2 uses tx_cbs[64..95]
2804  * - Tx queue 3 uses tx_cbs[96..127]
2805  * - Tx queue 16 uses tx_cbs[128..255]
2806  */
2807 static void bcmgenet_init_tx_queues(struct net_device *dev)
2808 {
2809         struct bcmgenet_priv *priv = netdev_priv(dev);
2810         u32 i, dma_enable;
2811         u32 dma_ctrl, ring_cfg;
2812         u32 dma_priority[3] = {0, 0, 0};
2813
2814         dma_ctrl = bcmgenet_tdma_readl(priv, DMA_CTRL);
2815         dma_enable = dma_ctrl & DMA_EN;
2816         dma_ctrl &= ~DMA_EN;
2817         bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2818
2819         dma_ctrl = 0;
2820         ring_cfg = 0;
2821
2822         /* Enable strict priority arbiter mode */
2823         bcmgenet_tdma_writel(priv, DMA_ARBITER_SP, DMA_ARB_CTRL);
2824
2825         /* Initialize Tx priority queues */
2826         for (i = 0; i < priv->hw_params->tx_queues; i++) {
2827                 bcmgenet_init_tx_ring(priv, i, priv->hw_params->tx_bds_per_q,
2828                                       i * priv->hw_params->tx_bds_per_q,
2829                                       (i + 1) * priv->hw_params->tx_bds_per_q);
2830                 ring_cfg |= (1 << i);
2831                 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2832                 dma_priority[DMA_PRIO_REG_INDEX(i)] |=
2833                         ((GENET_Q0_PRIORITY + i) << DMA_PRIO_REG_SHIFT(i));
2834         }
2835
2836         /* Initialize Tx default queue 16 */
2837         bcmgenet_init_tx_ring(priv, DESC_INDEX, GENET_Q16_TX_BD_CNT,
2838                               priv->hw_params->tx_queues *
2839                               priv->hw_params->tx_bds_per_q,
2840                               TOTAL_DESC);
2841         ring_cfg |= (1 << DESC_INDEX);
2842         dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2843         dma_priority[DMA_PRIO_REG_INDEX(DESC_INDEX)] |=
2844                 ((GENET_Q0_PRIORITY + priv->hw_params->tx_queues) <<
2845                  DMA_PRIO_REG_SHIFT(DESC_INDEX));
2846
2847         /* Set Tx queue priorities */
2848         bcmgenet_tdma_writel(priv, dma_priority[0], DMA_PRIORITY_0);
2849         bcmgenet_tdma_writel(priv, dma_priority[1], DMA_PRIORITY_1);
2850         bcmgenet_tdma_writel(priv, dma_priority[2], DMA_PRIORITY_2);
2851
2852         /* Enable Tx queues */
2853         bcmgenet_tdma_writel(priv, ring_cfg, DMA_RING_CFG);
2854
2855         /* Enable Tx DMA */
2856         if (dma_enable)
2857                 dma_ctrl |= DMA_EN;
2858         bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2859 }
2860
2861 static void bcmgenet_enable_rx_napi(struct bcmgenet_priv *priv)
2862 {
2863         unsigned int i;
2864         struct bcmgenet_rx_ring *ring;
2865
2866         for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2867                 ring = &priv->rx_rings[i];
2868                 napi_enable(&ring->napi);
2869                 ring->int_enable(ring);
2870         }
2871
2872         ring = &priv->rx_rings[DESC_INDEX];
2873         napi_enable(&ring->napi);
2874         ring->int_enable(ring);
2875 }
2876
2877 static void bcmgenet_disable_rx_napi(struct bcmgenet_priv *priv)
2878 {
2879         unsigned int i;
2880         struct bcmgenet_rx_ring *ring;
2881
2882         for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2883                 ring = &priv->rx_rings[i];
2884                 napi_disable(&ring->napi);
2885                 cancel_work_sync(&ring->dim.dim.work);
2886         }
2887
2888         ring = &priv->rx_rings[DESC_INDEX];
2889         napi_disable(&ring->napi);
2890         cancel_work_sync(&ring->dim.dim.work);
2891 }
2892
2893 static void bcmgenet_fini_rx_napi(struct bcmgenet_priv *priv)
2894 {
2895         unsigned int i;
2896         struct bcmgenet_rx_ring *ring;
2897
2898         for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2899                 ring = &priv->rx_rings[i];
2900                 netif_napi_del(&ring->napi);
2901         }
2902
2903         ring = &priv->rx_rings[DESC_INDEX];
2904         netif_napi_del(&ring->napi);
2905 }
2906
2907 /* Initialize Rx queues
2908  *
2909  * Queues 0-15 are priority queues. Hardware Filtering Block (HFB) can be
2910  * used to direct traffic to these queues.
2911  *
2912  * Queue 16 is the default Rx queue with GENET_Q16_RX_BD_CNT descriptors.
2913  */
2914 static int bcmgenet_init_rx_queues(struct net_device *dev)
2915 {
2916         struct bcmgenet_priv *priv = netdev_priv(dev);
2917         u32 i;
2918         u32 dma_enable;
2919         u32 dma_ctrl;
2920         u32 ring_cfg;
2921         int ret;
2922
2923         dma_ctrl = bcmgenet_rdma_readl(priv, DMA_CTRL);
2924         dma_enable = dma_ctrl & DMA_EN;
2925         dma_ctrl &= ~DMA_EN;
2926         bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2927
2928         dma_ctrl = 0;
2929         ring_cfg = 0;
2930
2931         /* Initialize Rx priority queues */
2932         for (i = 0; i < priv->hw_params->rx_queues; i++) {
2933                 ret = bcmgenet_init_rx_ring(priv, i,
2934                                             priv->hw_params->rx_bds_per_q,
2935                                             i * priv->hw_params->rx_bds_per_q,
2936                                             (i + 1) *
2937                                             priv->hw_params->rx_bds_per_q);
2938                 if (ret)
2939                         return ret;
2940
2941                 ring_cfg |= (1 << i);
2942                 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2943         }
2944
2945         /* Initialize Rx default queue 16 */
2946         ret = bcmgenet_init_rx_ring(priv, DESC_INDEX, GENET_Q16_RX_BD_CNT,
2947                                     priv->hw_params->rx_queues *
2948                                     priv->hw_params->rx_bds_per_q,
2949                                     TOTAL_DESC);
2950         if (ret)
2951                 return ret;
2952
2953         ring_cfg |= (1 << DESC_INDEX);
2954         dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2955
2956         /* Enable rings */
2957         bcmgenet_rdma_writel(priv, ring_cfg, DMA_RING_CFG);
2958
2959         /* Configure ring as descriptor ring and re-enable DMA if enabled */
2960         if (dma_enable)
2961                 dma_ctrl |= DMA_EN;
2962         bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2963
2964         return 0;
2965 }
2966
2967 static int bcmgenet_dma_teardown(struct bcmgenet_priv *priv)
2968 {
2969         int ret = 0;
2970         int timeout = 0;
2971         u32 reg;
2972         u32 dma_ctrl;
2973         int i;
2974
2975         /* Disable TDMA to stop add more frames in TX DMA */
2976         reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2977         reg &= ~DMA_EN;
2978         bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2979
2980         /* Check TDMA status register to confirm TDMA is disabled */
2981         while (timeout++ < DMA_TIMEOUT_VAL) {
2982                 reg = bcmgenet_tdma_readl(priv, DMA_STATUS);
2983                 if (reg & DMA_DISABLED)
2984                         break;
2985
2986                 udelay(1);
2987         }
2988
2989         if (timeout == DMA_TIMEOUT_VAL) {
2990                 netdev_warn(priv->dev, "Timed out while disabling TX DMA\n");
2991                 ret = -ETIMEDOUT;
2992         }
2993
2994         /* Wait 10ms for packet drain in both tx and rx dma */
2995         usleep_range(10000, 20000);
2996
2997         /* Disable RDMA */
2998         reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2999         reg &= ~DMA_EN;
3000         bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
3001
3002         timeout = 0;
3003         /* Check RDMA status register to confirm RDMA is disabled */
3004         while (timeout++ < DMA_TIMEOUT_VAL) {
3005                 reg = bcmgenet_rdma_readl(priv, DMA_STATUS);
3006                 if (reg & DMA_DISABLED)
3007                         break;
3008
3009                 udelay(1);
3010         }
3011
3012         if (timeout == DMA_TIMEOUT_VAL) {
3013                 netdev_warn(priv->dev, "Timed out while disabling RX DMA\n");
3014                 ret = -ETIMEDOUT;
3015         }
3016
3017         dma_ctrl = 0;
3018         for (i = 0; i < priv->hw_params->rx_queues; i++)
3019                 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
3020         reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
3021         reg &= ~dma_ctrl;
3022         bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
3023
3024         dma_ctrl = 0;
3025         for (i = 0; i < priv->hw_params->tx_queues; i++)
3026                 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
3027         reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
3028         reg &= ~dma_ctrl;
3029         bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
3030
3031         return ret;
3032 }
3033
3034 static void bcmgenet_fini_dma(struct bcmgenet_priv *priv)
3035 {
3036         struct netdev_queue *txq;
3037         int i;
3038
3039         bcmgenet_fini_rx_napi(priv);
3040         bcmgenet_fini_tx_napi(priv);
3041
3042         for (i = 0; i < priv->num_tx_bds; i++)
3043                 dev_kfree_skb(bcmgenet_free_tx_cb(&priv->pdev->dev,
3044                                                   priv->tx_cbs + i));
3045
3046         for (i = 0; i < priv->hw_params->tx_queues; i++) {
3047                 txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[i].queue);
3048                 netdev_tx_reset_queue(txq);
3049         }
3050
3051         txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[DESC_INDEX].queue);
3052         netdev_tx_reset_queue(txq);
3053
3054         bcmgenet_free_rx_buffers(priv);
3055         kfree(priv->rx_cbs);
3056         kfree(priv->tx_cbs);
3057 }
3058
3059 /* init_edma: Initialize DMA control register */
3060 static int bcmgenet_init_dma(struct bcmgenet_priv *priv)
3061 {
3062         int ret;
3063         unsigned int i;
3064         struct enet_cb *cb;
3065
3066         netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
3067
3068         /* Initialize common Rx ring structures */
3069         priv->rx_bds = priv->base + priv->hw_params->rdma_offset;
3070         priv->num_rx_bds = TOTAL_DESC;
3071         priv->rx_cbs = kcalloc(priv->num_rx_bds, sizeof(struct enet_cb),
3072                                GFP_KERNEL);
3073         if (!priv->rx_cbs)
3074                 return -ENOMEM;
3075
3076         for (i = 0; i < priv->num_rx_bds; i++) {
3077                 cb = priv->rx_cbs + i;
3078                 cb->bd_addr = priv->rx_bds + i * DMA_DESC_SIZE;
3079         }
3080
3081         /* Initialize common TX ring structures */
3082         priv->tx_bds = priv->base + priv->hw_params->tdma_offset;
3083         priv->num_tx_bds = TOTAL_DESC;
3084         priv->tx_cbs = kcalloc(priv->num_tx_bds, sizeof(struct enet_cb),
3085                                GFP_KERNEL);
3086         if (!priv->tx_cbs) {
3087                 kfree(priv->rx_cbs);
3088                 return -ENOMEM;
3089         }
3090
3091         for (i = 0; i < priv->num_tx_bds; i++) {
3092                 cb = priv->tx_cbs + i;
3093                 cb->bd_addr = priv->tx_bds + i * DMA_DESC_SIZE;
3094         }
3095
3096         /* Init rDma */
3097         bcmgenet_rdma_writel(priv, priv->dma_max_burst_length,
3098                              DMA_SCB_BURST_SIZE);
3099
3100         /* Initialize Rx queues */
3101         ret = bcmgenet_init_rx_queues(priv->dev);
3102         if (ret) {
3103                 netdev_err(priv->dev, "failed to initialize Rx queues\n");
3104                 bcmgenet_free_rx_buffers(priv);
3105                 kfree(priv->rx_cbs);
3106                 kfree(priv->tx_cbs);
3107                 return ret;
3108         }
3109
3110         /* Init tDma */
3111         bcmgenet_tdma_writel(priv, priv->dma_max_burst_length,
3112                              DMA_SCB_BURST_SIZE);
3113
3114         /* Initialize Tx queues */
3115         bcmgenet_init_tx_queues(priv->dev);
3116
3117         return 0;
3118 }
3119
3120 /* Interrupt bottom half */
3121 static void bcmgenet_irq_task(struct work_struct *work)
3122 {
3123         unsigned int status;
3124         struct bcmgenet_priv *priv = container_of(
3125                         work, struct bcmgenet_priv, bcmgenet_irq_work);
3126
3127         netif_dbg(priv, intr, priv->dev, "%s\n", __func__);
3128
3129         spin_lock_irq(&priv->lock);
3130         status = priv->irq0_stat;
3131         priv->irq0_stat = 0;
3132         spin_unlock_irq(&priv->lock);
3133
3134         if (status & UMAC_IRQ_PHY_DET_R &&
3135             priv->dev->phydev->autoneg != AUTONEG_ENABLE) {
3136                 phy_init_hw(priv->dev->phydev);
3137                 genphy_config_aneg(priv->dev->phydev);
3138         }
3139
3140         /* Link UP/DOWN event */
3141         if (status & UMAC_IRQ_LINK_EVENT)
3142                 phy_mac_interrupt(priv->dev->phydev);
3143
3144 }
3145
3146 /* bcmgenet_isr1: handle Rx and Tx priority queues */
3147 static irqreturn_t bcmgenet_isr1(int irq, void *dev_id)
3148 {
3149         struct bcmgenet_priv *priv = dev_id;
3150         struct bcmgenet_rx_ring *rx_ring;
3151         struct bcmgenet_tx_ring *tx_ring;
3152         unsigned int index, status;
3153
3154         /* Read irq status */
3155         status = bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_STAT) &
3156                 ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
3157
3158         /* clear interrupts */
3159         bcmgenet_intrl2_1_writel(priv, status, INTRL2_CPU_CLEAR);
3160
3161         netif_dbg(priv, intr, priv->dev,
3162                   "%s: IRQ=0x%x\n", __func__, status);
3163
3164         /* Check Rx priority queue interrupts */
3165         for (index = 0; index < priv->hw_params->rx_queues; index++) {
3166                 if (!(status & BIT(UMAC_IRQ1_RX_INTR_SHIFT + index)))
3167                         continue;
3168
3169                 rx_ring = &priv->rx_rings[index];
3170                 rx_ring->dim.event_ctr++;
3171
3172                 if (likely(napi_schedule_prep(&rx_ring->napi))) {
3173                         rx_ring->int_disable(rx_ring);
3174                         __napi_schedule_irqoff(&rx_ring->napi);
3175                 }
3176         }
3177
3178         /* Check Tx priority queue interrupts */
3179         for (index = 0; index < priv->hw_params->tx_queues; index++) {
3180                 if (!(status & BIT(index)))
3181                         continue;
3182
3183                 tx_ring = &priv->tx_rings[index];
3184
3185                 if (likely(napi_schedule_prep(&tx_ring->napi))) {
3186                         tx_ring->int_disable(tx_ring);
3187                         __napi_schedule_irqoff(&tx_ring->napi);
3188                 }
3189         }
3190
3191         return IRQ_HANDLED;
3192 }
3193
3194 /* bcmgenet_isr0: handle Rx and Tx default queues + other stuff */
3195 static irqreturn_t bcmgenet_isr0(int irq, void *dev_id)
3196 {
3197         struct bcmgenet_priv *priv = dev_id;
3198         struct bcmgenet_rx_ring *rx_ring;
3199         struct bcmgenet_tx_ring *tx_ring;
3200         unsigned int status;
3201         unsigned long flags;
3202
3203         /* Read irq status */
3204         status = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT) &
3205                 ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
3206
3207         /* clear interrupts */
3208         bcmgenet_intrl2_0_writel(priv, status, INTRL2_CPU_CLEAR);
3209
3210         netif_dbg(priv, intr, priv->dev,
3211                   "IRQ=0x%x\n", status);
3212
3213         if (status & UMAC_IRQ_RXDMA_DONE) {
3214                 rx_ring = &priv->rx_rings[DESC_INDEX];
3215                 rx_ring->dim.event_ctr++;
3216
3217                 if (likely(napi_schedule_prep(&rx_ring->napi))) {
3218                         rx_ring->int_disable(rx_ring);
3219                         __napi_schedule_irqoff(&rx_ring->napi);
3220                 }
3221         }
3222
3223         if (status & UMAC_IRQ_TXDMA_DONE) {
3224                 tx_ring = &priv->tx_rings[DESC_INDEX];
3225
3226                 if (likely(napi_schedule_prep(&tx_ring->napi))) {
3227                         tx_ring->int_disable(tx_ring);
3228                         __napi_schedule_irqoff(&tx_ring->napi);
3229                 }
3230         }
3231
3232         if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) &&
3233                 status & (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR)) {
3234                 wake_up(&priv->wq);
3235         }
3236
3237         /* all other interested interrupts handled in bottom half */
3238         status &= (UMAC_IRQ_LINK_EVENT | UMAC_IRQ_PHY_DET_R);
3239         if (status) {
3240                 /* Save irq status for bottom-half processing. */
3241                 spin_lock_irqsave(&priv->lock, flags);
3242                 priv->irq0_stat |= status;
3243                 spin_unlock_irqrestore(&priv->lock, flags);
3244
3245                 schedule_work(&priv->bcmgenet_irq_work);
3246         }
3247
3248         return IRQ_HANDLED;
3249 }
3250
3251 static irqreturn_t bcmgenet_wol_isr(int irq, void *dev_id)
3252 {
3253         /* Acknowledge the interrupt */
3254         return IRQ_HANDLED;
3255 }
3256
3257 #ifdef CONFIG_NET_POLL_CONTROLLER
3258 static void bcmgenet_poll_controller(struct net_device *dev)
3259 {
3260         struct bcmgenet_priv *priv = netdev_priv(dev);
3261
3262         /* Invoke the main RX/TX interrupt handler */
3263         disable_irq(priv->irq0);
3264         bcmgenet_isr0(priv->irq0, priv);
3265         enable_irq(priv->irq0);
3266
3267         /* And the interrupt handler for RX/TX priority queues */
3268         disable_irq(priv->irq1);
3269         bcmgenet_isr1(priv->irq1, priv);
3270         enable_irq(priv->irq1);
3271 }
3272 #endif
3273
3274 static void bcmgenet_umac_reset(struct bcmgenet_priv *priv)
3275 {
3276         u32 reg;
3277
3278         reg = bcmgenet_rbuf_ctrl_get(priv);
3279         reg |= BIT(1);
3280         bcmgenet_rbuf_ctrl_set(priv, reg);
3281         udelay(10);
3282
3283         reg &= ~BIT(1);
3284         bcmgenet_rbuf_ctrl_set(priv, reg);
3285         udelay(10);
3286 }
3287
3288 static void bcmgenet_set_hw_addr(struct bcmgenet_priv *priv,
3289                                  const unsigned char *addr)
3290 {
3291         bcmgenet_umac_writel(priv, get_unaligned_be32(&addr[0]), UMAC_MAC0);
3292         bcmgenet_umac_writel(priv, get_unaligned_be16(&addr[4]), UMAC_MAC1);
3293 }
3294
3295 static void bcmgenet_get_hw_addr(struct bcmgenet_priv *priv,
3296                                  unsigned char *addr)
3297 {
3298         u32 addr_tmp;
3299
3300         addr_tmp = bcmgenet_umac_readl(priv, UMAC_MAC0);
3301         put_unaligned_be32(addr_tmp, &addr[0]);
3302         addr_tmp = bcmgenet_umac_readl(priv, UMAC_MAC1);
3303         put_unaligned_be16(addr_tmp, &addr[4]);
3304 }
3305
3306 /* Returns a reusable dma control register value */
3307 static u32 bcmgenet_dma_disable(struct bcmgenet_priv *priv)
3308 {
3309         unsigned int i;
3310         u32 reg;
3311         u32 dma_ctrl;
3312
3313         /* disable DMA */
3314         dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN;
3315         for (i = 0; i < priv->hw_params->tx_queues; i++)
3316                 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
3317         reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
3318         reg &= ~dma_ctrl;
3319         bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
3320
3321         dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN;
3322         for (i = 0; i < priv->hw_params->rx_queues; i++)
3323                 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
3324         reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
3325         reg &= ~dma_ctrl;
3326         bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
3327
3328         bcmgenet_umac_writel(priv, 1, UMAC_TX_FLUSH);
3329         udelay(10);
3330         bcmgenet_umac_writel(priv, 0, UMAC_TX_FLUSH);
3331
3332         return dma_ctrl;
3333 }
3334
3335 static void bcmgenet_enable_dma(struct bcmgenet_priv *priv, u32 dma_ctrl)
3336 {
3337         u32 reg;
3338
3339         reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
3340         reg |= dma_ctrl;
3341         bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
3342
3343         reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
3344         reg |= dma_ctrl;
3345         bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
3346 }
3347
3348 static void bcmgenet_netif_start(struct net_device *dev)
3349 {
3350         struct bcmgenet_priv *priv = netdev_priv(dev);
3351
3352         /* Start the network engine */
3353         bcmgenet_set_rx_mode(dev);
3354         bcmgenet_enable_rx_napi(priv);
3355
3356         umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, true);
3357
3358         bcmgenet_enable_tx_napi(priv);
3359
3360         /* Monitor link interrupts now */
3361         bcmgenet_link_intr_enable(priv);
3362
3363         phy_start(dev->phydev);
3364 }
3365
3366 static int bcmgenet_open(struct net_device *dev)
3367 {
3368         struct bcmgenet_priv *priv = netdev_priv(dev);
3369         unsigned long dma_ctrl;
3370         int ret;
3371
3372         netif_dbg(priv, ifup, dev, "bcmgenet_open\n");
3373
3374         /* Turn on the clock */
3375         clk_prepare_enable(priv->clk);
3376
3377         /* If this is an internal GPHY, power it back on now, before UniMAC is
3378          * brought out of reset as absolutely no UniMAC activity is allowed
3379          */
3380         if (priv->internal_phy)
3381                 bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
3382
3383         /* take MAC out of reset */
3384         bcmgenet_umac_reset(priv);
3385
3386         init_umac(priv);
3387
3388         /* Apply features again in case we changed them while interface was
3389          * down
3390          */
3391         bcmgenet_set_features(dev, dev->features);
3392
3393         bcmgenet_set_hw_addr(priv, dev->dev_addr);
3394
3395         /* Disable RX/TX DMA and flush TX queues */
3396         dma_ctrl = bcmgenet_dma_disable(priv);
3397
3398         /* Reinitialize TDMA and RDMA and SW housekeeping */
3399         ret = bcmgenet_init_dma(priv);
3400         if (ret) {
3401                 netdev_err(dev, "failed to initialize DMA\n");
3402                 goto err_clk_disable;
3403         }
3404
3405         /* Always enable ring 16 - descriptor ring */
3406         bcmgenet_enable_dma(priv, dma_ctrl);
3407
3408         /* HFB init */
3409         bcmgenet_hfb_init(priv);
3410
3411         ret = request_irq(priv->irq0, bcmgenet_isr0, IRQF_SHARED,
3412                           dev->name, priv);
3413         if (ret < 0) {
3414                 netdev_err(dev, "can't request IRQ %d\n", priv->irq0);
3415                 goto err_fini_dma;
3416         }
3417
3418         ret = request_irq(priv->irq1, bcmgenet_isr1, IRQF_SHARED,
3419                           dev->name, priv);
3420         if (ret < 0) {
3421                 netdev_err(dev, "can't request IRQ %d\n", priv->irq1);
3422                 goto err_irq0;
3423         }
3424
3425         ret = bcmgenet_mii_probe(dev);
3426         if (ret) {
3427                 netdev_err(dev, "failed to connect to PHY\n");
3428                 goto err_irq1;
3429         }
3430
3431         bcmgenet_phy_pause_set(dev, priv->rx_pause, priv->tx_pause);
3432
3433         bcmgenet_netif_start(dev);
3434
3435         netif_tx_start_all_queues(dev);
3436
3437         return 0;
3438
3439 err_irq1:
3440         free_irq(priv->irq1, priv);
3441 err_irq0:
3442         free_irq(priv->irq0, priv);
3443 err_fini_dma:
3444         bcmgenet_dma_teardown(priv);
3445         bcmgenet_fini_dma(priv);
3446 err_clk_disable:
3447         if (priv->internal_phy)
3448                 bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3449         clk_disable_unprepare(priv->clk);
3450         return ret;
3451 }
3452
3453 static void bcmgenet_netif_stop(struct net_device *dev, bool stop_phy)
3454 {
3455         struct bcmgenet_priv *priv = netdev_priv(dev);
3456
3457         bcmgenet_disable_tx_napi(priv);
3458         netif_tx_disable(dev);
3459
3460         /* Disable MAC receive */
3461         umac_enable_set(priv, CMD_RX_EN, false);
3462
3463         bcmgenet_dma_teardown(priv);
3464
3465         /* Disable MAC transmit. TX DMA disabled must be done before this */
3466         umac_enable_set(priv, CMD_TX_EN, false);
3467
3468         if (stop_phy)
3469                 phy_stop(dev->phydev);
3470         bcmgenet_disable_rx_napi(priv);
3471         bcmgenet_intr_disable(priv);
3472
3473         /* Wait for pending work items to complete. Since interrupts are
3474          * disabled no new work will be scheduled.
3475          */
3476         cancel_work_sync(&priv->bcmgenet_irq_work);
3477
3478         /* tx reclaim */
3479         bcmgenet_tx_reclaim_all(dev);
3480         bcmgenet_fini_dma(priv);
3481 }
3482
3483 static int bcmgenet_close(struct net_device *dev)
3484 {
3485         struct bcmgenet_priv *priv = netdev_priv(dev);
3486         int ret = 0;
3487
3488         netif_dbg(priv, ifdown, dev, "bcmgenet_close\n");
3489
3490         bcmgenet_netif_stop(dev, false);
3491
3492         /* Really kill the PHY state machine and disconnect from it */
3493         phy_disconnect(dev->phydev);
3494
3495         free_irq(priv->irq0, priv);
3496         free_irq(priv->irq1, priv);
3497
3498         if (priv->internal_phy)
3499                 ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3500
3501         clk_disable_unprepare(priv->clk);
3502
3503         return ret;
3504 }
3505
3506 static void bcmgenet_dump_tx_queue(struct bcmgenet_tx_ring *ring)
3507 {
3508         struct bcmgenet_priv *priv = ring->priv;
3509         u32 p_index, c_index, intsts, intmsk;
3510         struct netdev_queue *txq;
3511         unsigned int free_bds;
3512         bool txq_stopped;
3513
3514         if (!netif_msg_tx_err(priv))
3515                 return;
3516
3517         txq = netdev_get_tx_queue(priv->dev, ring->queue);
3518
3519         spin_lock(&ring->lock);
3520         if (ring->index == DESC_INDEX) {
3521                 intsts = ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
3522                 intmsk = UMAC_IRQ_TXDMA_DONE | UMAC_IRQ_TXDMA_MBDONE;
3523         } else {
3524                 intsts = ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
3525                 intmsk = 1 << ring->index;
3526         }
3527         c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX);
3528         p_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_PROD_INDEX);
3529         txq_stopped = netif_tx_queue_stopped(txq);
3530         free_bds = ring->free_bds;
3531         spin_unlock(&ring->lock);
3532
3533         netif_err(priv, tx_err, priv->dev, "Ring %d queue %d status summary\n"
3534                   "TX queue status: %s, interrupts: %s\n"
3535                   "(sw)free_bds: %d (sw)size: %d\n"
3536                   "(sw)p_index: %d (hw)p_index: %d\n"
3537                   "(sw)c_index: %d (hw)c_index: %d\n"
3538                   "(sw)clean_p: %d (sw)write_p: %d\n"
3539                   "(sw)cb_ptr: %d (sw)end_ptr: %d\n",
3540                   ring->index, ring->queue,
3541                   txq_stopped ? "stopped" : "active",
3542                   intsts & intmsk ? "enabled" : "disabled",
3543                   free_bds, ring->size,
3544                   ring->prod_index, p_index & DMA_P_INDEX_MASK,
3545                   ring->c_index, c_index & DMA_C_INDEX_MASK,
3546                   ring->clean_ptr, ring->write_ptr,
3547                   ring->cb_ptr, ring->end_ptr);
3548 }
3549
3550 static void bcmgenet_timeout(struct net_device *dev, unsigned int txqueue)
3551 {
3552         struct bcmgenet_priv *priv = netdev_priv(dev);
3553         u32 int0_enable = 0;
3554         u32 int1_enable = 0;
3555         unsigned int q;
3556
3557         netif_dbg(priv, tx_err, dev, "bcmgenet_timeout\n");
3558
3559         for (q = 0; q < priv->hw_params->tx_queues; q++)
3560                 bcmgenet_dump_tx_queue(&priv->tx_rings[q]);
3561         bcmgenet_dump_tx_queue(&priv->tx_rings[DESC_INDEX]);
3562
3563         bcmgenet_tx_reclaim_all(dev);
3564
3565         for (q = 0; q < priv->hw_params->tx_queues; q++)
3566                 int1_enable |= (1 << q);
3567
3568         int0_enable = UMAC_IRQ_TXDMA_DONE;
3569
3570         /* Re-enable TX interrupts if disabled */
3571         bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
3572         bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);
3573
3574         netif_trans_update(dev);
3575
3576         dev->stats.tx_errors++;
3577
3578         netif_tx_wake_all_queues(dev);
3579 }
3580
3581 #define MAX_MDF_FILTER  17
3582
3583 static inline void bcmgenet_set_mdf_addr(struct bcmgenet_priv *priv,
3584                                          const unsigned char *addr,
3585                                          int *i)
3586 {
3587         bcmgenet_umac_writel(priv, addr[0] << 8 | addr[1],
3588                              UMAC_MDF_ADDR + (*i * 4));
3589         bcmgenet_umac_writel(priv, addr[2] << 24 | addr[3] << 16 |
3590                              addr[4] << 8 | addr[5],
3591                              UMAC_MDF_ADDR + ((*i + 1) * 4));
3592         *i += 2;
3593 }
3594
3595 static void bcmgenet_set_rx_mode(struct net_device *dev)
3596 {
3597         struct bcmgenet_priv *priv = netdev_priv(dev);
3598         struct netdev_hw_addr *ha;
3599         int i, nfilter;
3600         u32 reg;
3601
3602         netif_dbg(priv, hw, dev, "%s: %08X\n", __func__, dev->flags);
3603
3604         /* Number of filters needed */
3605         nfilter = netdev_uc_count(dev) + netdev_mc_count(dev) + 2;
3606
3607         /*
3608          * Turn on promicuous mode for three scenarios
3609          * 1. IFF_PROMISC flag is set
3610          * 2. IFF_ALLMULTI flag is set
3611          * 3. The number of filters needed exceeds the number filters
3612          *    supported by the hardware.
3613         */
3614         reg = bcmgenet_umac_readl(priv, UMAC_CMD);
3615         if ((dev->flags & (IFF_PROMISC | IFF_ALLMULTI)) ||
3616             (nfilter > MAX_MDF_FILTER)) {
3617                 reg |= CMD_PROMISC;
3618                 bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3619                 bcmgenet_umac_writel(priv, 0, UMAC_MDF_CTRL);
3620                 return;
3621         } else {
3622                 reg &= ~CMD_PROMISC;
3623                 bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3624         }
3625
3626         /* update MDF filter */
3627         i = 0;
3628         /* Broadcast */
3629         bcmgenet_set_mdf_addr(priv, dev->broadcast, &i);
3630         /* my own address.*/
3631         bcmgenet_set_mdf_addr(priv, dev->dev_addr, &i);
3632
3633         /* Unicast */
3634         netdev_for_each_uc_addr(ha, dev)
3635                 bcmgenet_set_mdf_addr(priv, ha->addr, &i);
3636
3637         /* Multicast */
3638         netdev_for_each_mc_addr(ha, dev)
3639                 bcmgenet_set_mdf_addr(priv, ha->addr, &i);
3640
3641         /* Enable filters */
3642         reg = GENMASK(MAX_MDF_FILTER - 1, MAX_MDF_FILTER - nfilter);
3643         bcmgenet_umac_writel(priv, reg, UMAC_MDF_CTRL);
3644 }
3645
3646 /* Set the hardware MAC address. */
3647 static int bcmgenet_set_mac_addr(struct net_device *dev, void *p)
3648 {
3649         struct sockaddr *addr = p;
3650
3651         /* Setting the MAC address at the hardware level is not possible
3652          * without disabling the UniMAC RX/TX enable bits.
3653          */
3654         if (netif_running(dev))
3655                 return -EBUSY;
3656
3657         eth_hw_addr_set(dev, addr->sa_data);
3658
3659         return 0;
3660 }
3661
3662 static struct net_device_stats *bcmgenet_get_stats(struct net_device *dev)
3663 {
3664         struct bcmgenet_priv *priv = netdev_priv(dev);
3665         unsigned long tx_bytes = 0, tx_packets = 0;
3666         unsigned long rx_bytes = 0, rx_packets = 0;
3667         unsigned long rx_errors = 0, rx_dropped = 0;
3668         struct bcmgenet_tx_ring *tx_ring;
3669         struct bcmgenet_rx_ring *rx_ring;
3670         unsigned int q;
3671
3672         for (q = 0; q < priv->hw_params->tx_queues; q++) {
3673                 tx_ring = &priv->tx_rings[q];
3674                 tx_bytes += tx_ring->bytes;
3675                 tx_packets += tx_ring->packets;
3676         }
3677         tx_ring = &priv->tx_rings[DESC_INDEX];
3678         tx_bytes += tx_ring->bytes;
3679         tx_packets += tx_ring->packets;
3680
3681         for (q = 0; q < priv->hw_params->rx_queues; q++) {
3682                 rx_ring = &priv->rx_rings[q];
3683
3684                 rx_bytes += rx_ring->bytes;
3685                 rx_packets += rx_ring->packets;
3686                 rx_errors += rx_ring->errors;
3687                 rx_dropped += rx_ring->dropped;
3688         }
3689         rx_ring = &priv->rx_rings[DESC_INDEX];
3690         rx_bytes += rx_ring->bytes;
3691         rx_packets += rx_ring->packets;
3692         rx_errors += rx_ring->errors;
3693         rx_dropped += rx_ring->dropped;
3694
3695         dev->stats.tx_bytes = tx_bytes;
3696         dev->stats.tx_packets = tx_packets;
3697         dev->stats.rx_bytes = rx_bytes;
3698         dev->stats.rx_packets = rx_packets;
3699         dev->stats.rx_errors = rx_errors;
3700         dev->stats.rx_missed_errors = rx_errors;
3701         dev->stats.rx_dropped = rx_dropped;
3702         return &dev->stats;
3703 }
3704
3705 static int bcmgenet_change_carrier(struct net_device *dev, bool new_carrier)
3706 {
3707         struct bcmgenet_priv *priv = netdev_priv(dev);
3708
3709         if (!dev->phydev || !phy_is_pseudo_fixed_link(dev->phydev) ||
3710             priv->phy_interface != PHY_INTERFACE_MODE_MOCA)
3711                 return -EOPNOTSUPP;
3712
3713         if (new_carrier)
3714                 netif_carrier_on(dev);
3715         else
3716                 netif_carrier_off(dev);
3717
3718         return 0;
3719 }
3720
3721 static const struct net_device_ops bcmgenet_netdev_ops = {
3722         .ndo_open               = bcmgenet_open,
3723         .ndo_stop               = bcmgenet_close,
3724         .ndo_start_xmit         = bcmgenet_xmit,
3725         .ndo_tx_timeout         = bcmgenet_timeout,
3726         .ndo_set_rx_mode        = bcmgenet_set_rx_mode,
3727         .ndo_set_mac_address    = bcmgenet_set_mac_addr,
3728         .ndo_eth_ioctl          = phy_do_ioctl_running,
3729         .ndo_set_features       = bcmgenet_set_features,
3730 #ifdef CONFIG_NET_POLL_CONTROLLER
3731         .ndo_poll_controller    = bcmgenet_poll_controller,
3732 #endif
3733         .ndo_get_stats          = bcmgenet_get_stats,
3734         .ndo_change_carrier     = bcmgenet_change_carrier,
3735 };
3736
3737 /* Array of GENET hardware parameters/characteristics */
3738 static struct bcmgenet_hw_params bcmgenet_hw_params[] = {
3739         [GENET_V1] = {
3740                 .tx_queues = 0,
3741                 .tx_bds_per_q = 0,
3742                 .rx_queues = 0,
3743                 .rx_bds_per_q = 0,
3744                 .bp_in_en_shift = 16,
3745                 .bp_in_mask = 0xffff,
3746                 .hfb_filter_cnt = 16,
3747                 .qtag_mask = 0x1F,
3748                 .hfb_offset = 0x1000,
3749                 .rdma_offset = 0x2000,
3750                 .tdma_offset = 0x3000,
3751                 .words_per_bd = 2,
3752         },
3753         [GENET_V2] = {
3754                 .tx_queues = 4,
3755                 .tx_bds_per_q = 32,
3756                 .rx_queues = 0,
3757                 .rx_bds_per_q = 0,
3758                 .bp_in_en_shift = 16,
3759                 .bp_in_mask = 0xffff,
3760                 .hfb_filter_cnt = 16,
3761                 .qtag_mask = 0x1F,
3762                 .tbuf_offset = 0x0600,
3763                 .hfb_offset = 0x1000,
3764                 .hfb_reg_offset = 0x2000,
3765                 .rdma_offset = 0x3000,
3766                 .tdma_offset = 0x4000,
3767                 .words_per_bd = 2,
3768                 .flags = GENET_HAS_EXT,
3769         },
3770         [GENET_V3] = {
3771                 .tx_queues = 4,
3772                 .tx_bds_per_q = 32,
3773                 .rx_queues = 0,
3774                 .rx_bds_per_q = 0,
3775                 .bp_in_en_shift = 17,
3776                 .bp_in_mask = 0x1ffff,
3777                 .hfb_filter_cnt = 48,
3778                 .hfb_filter_size = 128,
3779                 .qtag_mask = 0x3F,
3780                 .tbuf_offset = 0x0600,
3781                 .hfb_offset = 0x8000,
3782                 .hfb_reg_offset = 0xfc00,
3783                 .rdma_offset = 0x10000,
3784                 .tdma_offset = 0x11000,
3785                 .words_per_bd = 2,
3786                 .flags = GENET_HAS_EXT | GENET_HAS_MDIO_INTR |
3787                          GENET_HAS_MOCA_LINK_DET,
3788         },
3789         [GENET_V4] = {
3790                 .tx_queues = 4,
3791                 .tx_bds_per_q = 32,
3792                 .rx_queues = 0,
3793                 .rx_bds_per_q = 0,
3794                 .bp_in_en_shift = 17,
3795                 .bp_in_mask = 0x1ffff,
3796                 .hfb_filter_cnt = 48,
3797                 .hfb_filter_size = 128,
3798                 .qtag_mask = 0x3F,
3799                 .tbuf_offset = 0x0600,
3800                 .hfb_offset = 0x8000,
3801                 .hfb_reg_offset = 0xfc00,
3802                 .rdma_offset = 0x2000,
3803                 .tdma_offset = 0x4000,
3804                 .words_per_bd = 3,
3805                 .flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3806                          GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3807         },
3808         [GENET_V5] = {
3809                 .tx_queues = 4,
3810                 .tx_bds_per_q = 32,
3811                 .rx_queues = 0,
3812                 .rx_bds_per_q = 0,
3813                 .bp_in_en_shift = 17,
3814                 .bp_in_mask = 0x1ffff,
3815                 .hfb_filter_cnt = 48,
3816                 .hfb_filter_size = 128,
3817                 .qtag_mask = 0x3F,
3818                 .tbuf_offset = 0x0600,
3819                 .hfb_offset = 0x8000,
3820                 .hfb_reg_offset = 0xfc00,
3821                 .rdma_offset = 0x2000,
3822                 .tdma_offset = 0x4000,
3823                 .words_per_bd = 3,
3824                 .flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3825                          GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3826         },
3827 };
3828
3829 /* Infer hardware parameters from the detected GENET version */
3830 static void bcmgenet_set_hw_params(struct bcmgenet_priv *priv)
3831 {
3832         struct bcmgenet_hw_params *params;
3833         u32 reg;
3834         u8 major;
3835         u16 gphy_rev;
3836
3837         if (GENET_IS_V5(priv) || GENET_IS_V4(priv)) {
3838                 bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3839                 genet_dma_ring_regs = genet_dma_ring_regs_v4;
3840         } else if (GENET_IS_V3(priv)) {
3841                 bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3842                 genet_dma_ring_regs = genet_dma_ring_regs_v123;
3843         } else if (GENET_IS_V2(priv)) {
3844                 bcmgenet_dma_regs = bcmgenet_dma_regs_v2;
3845                 genet_dma_ring_regs = genet_dma_ring_regs_v123;
3846         } else if (GENET_IS_V1(priv)) {
3847                 bcmgenet_dma_regs = bcmgenet_dma_regs_v1;
3848                 genet_dma_ring_regs = genet_dma_ring_regs_v123;
3849         }
3850
3851         /* enum genet_version starts at 1 */
3852         priv->hw_params = &bcmgenet_hw_params[priv->version];
3853         params = priv->hw_params;
3854
3855         /* Read GENET HW version */
3856         reg = bcmgenet_sys_readl(priv, SYS_REV_CTRL);
3857         major = (reg >> 24 & 0x0f);
3858         if (major == 6)
3859                 major = 5;
3860         else if (major == 5)
3861                 major = 4;
3862         else if (major == 0)
3863                 major = 1;
3864         if (major != priv->version) {
3865                 dev_err(&priv->pdev->dev,
3866                         "GENET version mismatch, got: %d, configured for: %d\n",
3867                         major, priv->version);
3868         }
3869
3870         /* Print the GENET core version */
3871         dev_info(&priv->pdev->dev, "GENET " GENET_VER_FMT,
3872                  major, (reg >> 16) & 0x0f, reg & 0xffff);
3873
3874         /* Store the integrated PHY revision for the MDIO probing function
3875          * to pass this information to the PHY driver. The PHY driver expects
3876          * to find the PHY major revision in bits 15:8 while the GENET register
3877          * stores that information in bits 7:0, account for that.
3878          *
3879          * On newer chips, starting with PHY revision G0, a new scheme is
3880          * deployed similar to the Starfighter 2 switch with GPHY major
3881          * revision in bits 15:8 and patch level in bits 7:0. Major revision 0
3882          * is reserved as well as special value 0x01ff, we have a small
3883          * heuristic to check for the new GPHY revision and re-arrange things
3884          * so the GPHY driver is happy.
3885          */
3886         gphy_rev = reg & 0xffff;
3887
3888         if (GENET_IS_V5(priv)) {
3889                 /* The EPHY revision should come from the MDIO registers of
3890                  * the PHY not from GENET.
3891                  */
3892                 if (gphy_rev != 0) {
3893                         pr_warn("GENET is reporting EPHY revision: 0x%04x\n",
3894                                 gphy_rev);
3895                 }
3896         /* This is reserved so should require special treatment */
3897         } else if (gphy_rev == 0 || gphy_rev == 0x01ff) {
3898                 pr_warn("Invalid GPHY revision detected: 0x%04x\n", gphy_rev);
3899                 return;
3900         /* This is the good old scheme, just GPHY major, no minor nor patch */
3901         } else if ((gphy_rev & 0xf0) != 0) {
3902                 priv->gphy_rev = gphy_rev << 8;
3903         /* This is the new scheme, GPHY major rolls over with 0x10 = rev G0 */
3904         } else if ((gphy_rev & 0xff00) != 0) {
3905                 priv->gphy_rev = gphy_rev;
3906         }
3907
3908 #ifdef CONFIG_PHYS_ADDR_T_64BIT
3909         if (!(params->flags & GENET_HAS_40BITS))
3910                 pr_warn("GENET does not support 40-bits PA\n");
3911 #endif
3912
3913         pr_debug("Configuration for version: %d\n"
3914                 "TXq: %1d, TXqBDs: %1d, RXq: %1d, RXqBDs: %1d\n"
3915                 "BP << en: %2d, BP msk: 0x%05x\n"
3916                 "HFB count: %2d, QTAQ msk: 0x%05x\n"
3917                 "TBUF: 0x%04x, HFB: 0x%04x, HFBreg: 0x%04x\n"
3918                 "RDMA: 0x%05x, TDMA: 0x%05x\n"
3919                 "Words/BD: %d\n",
3920                 priv->version,
3921                 params->tx_queues, params->tx_bds_per_q,
3922                 params->rx_queues, params->rx_bds_per_q,
3923                 params->bp_in_en_shift, params->bp_in_mask,
3924                 params->hfb_filter_cnt, params->qtag_mask,
3925                 params->tbuf_offset, params->hfb_offset,
3926                 params->hfb_reg_offset,
3927                 params->rdma_offset, params->tdma_offset,
3928                 params->words_per_bd);
3929 }
3930
3931 struct bcmgenet_plat_data {
3932         enum bcmgenet_version version;
3933         u32 dma_max_burst_length;
3934         bool ephy_16nm;
3935 };
3936
3937 static const struct bcmgenet_plat_data v1_plat_data = {
3938         .version = GENET_V1,
3939         .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3940 };
3941
3942 static const struct bcmgenet_plat_data v2_plat_data = {
3943         .version = GENET_V2,
3944         .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3945 };
3946
3947 static const struct bcmgenet_plat_data v3_plat_data = {
3948         .version = GENET_V3,
3949         .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3950 };
3951
3952 static const struct bcmgenet_plat_data v4_plat_data = {
3953         .version = GENET_V4,
3954         .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3955 };
3956
3957 static const struct bcmgenet_plat_data v5_plat_data = {
3958         .version = GENET_V5,
3959         .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3960 };
3961
3962 static const struct bcmgenet_plat_data bcm2711_plat_data = {
3963         .version = GENET_V5,
3964         .dma_max_burst_length = 0x08,
3965 };
3966
3967 static const struct bcmgenet_plat_data bcm7712_plat_data = {
3968         .version = GENET_V5,
3969         .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3970         .ephy_16nm = true,
3971 };
3972
3973 static const struct of_device_id bcmgenet_match[] = {
3974         { .compatible = "brcm,genet-v1", .data = &v1_plat_data },
3975         { .compatible = "brcm,genet-v2", .data = &v2_plat_data },
3976         { .compatible = "brcm,genet-v3", .data = &v3_plat_data },
3977         { .compatible = "brcm,genet-v4", .data = &v4_plat_data },
3978         { .compatible = "brcm,genet-v5", .data = &v5_plat_data },
3979         { .compatible = "brcm,bcm2711-genet-v5", .data = &bcm2711_plat_data },
3980         { .compatible = "brcm,bcm7712-genet-v5", .data = &bcm7712_plat_data },
3981         { },
3982 };
3983 MODULE_DEVICE_TABLE(of, bcmgenet_match);
3984
3985 static int bcmgenet_probe(struct platform_device *pdev)
3986 {
3987         struct bcmgenet_platform_data *pd = pdev->dev.platform_data;
3988         const struct bcmgenet_plat_data *pdata;
3989         struct bcmgenet_priv *priv;
3990         struct net_device *dev;
3991         unsigned int i;
3992         int err = -EIO;
3993
3994         /* Up to GENET_MAX_MQ_CNT + 1 TX queues and RX queues */
3995         dev = alloc_etherdev_mqs(sizeof(*priv), GENET_MAX_MQ_CNT + 1,
3996                                  GENET_MAX_MQ_CNT + 1);
3997         if (!dev) {
3998                 dev_err(&pdev->dev, "can't allocate net device\n");
3999                 return -ENOMEM;
4000         }
4001
4002         priv = netdev_priv(dev);
4003         priv->irq0 = platform_get_irq(pdev, 0);
4004         if (priv->irq0 < 0) {
4005                 err = priv->irq0;
4006                 goto err;
4007         }
4008         priv->irq1 = platform_get_irq(pdev, 1);
4009         if (priv->irq1 < 0) {
4010                 err = priv->irq1;
4011                 goto err;
4012         }
4013         priv->wol_irq = platform_get_irq_optional(pdev, 2);
4014         if (priv->wol_irq == -EPROBE_DEFER) {
4015                 err = priv->wol_irq;
4016                 goto err;
4017         }
4018
4019         priv->base = devm_platform_ioremap_resource(pdev, 0);
4020         if (IS_ERR(priv->base)) {
4021                 err = PTR_ERR(priv->base);
4022                 goto err;
4023         }
4024
4025         spin_lock_init(&priv->lock);
4026
4027         /* Set default pause parameters */
4028         priv->autoneg_pause = 1;
4029         priv->tx_pause = 1;
4030         priv->rx_pause = 1;
4031
4032         SET_NETDEV_DEV(dev, &pdev->dev);
4033         dev_set_drvdata(&pdev->dev, dev);
4034         dev->watchdog_timeo = 2 * HZ;
4035         dev->ethtool_ops = &bcmgenet_ethtool_ops;
4036         dev->netdev_ops = &bcmgenet_netdev_ops;
4037
4038         priv->msg_enable = netif_msg_init(-1, GENET_MSG_DEFAULT);
4039
4040         /* Set default features */
4041         dev->features |= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_HW_CSUM |
4042                          NETIF_F_RXCSUM;
4043         dev->hw_features |= dev->features;
4044         dev->vlan_features |= dev->features;
4045
4046         /* Request the WOL interrupt and advertise suspend if available */
4047         priv->wol_irq_disabled = true;
4048         if (priv->wol_irq > 0) {
4049                 err = devm_request_irq(&pdev->dev, priv->wol_irq,
4050                                        bcmgenet_wol_isr, 0, dev->name, priv);
4051                 if (!err)
4052                         device_set_wakeup_capable(&pdev->dev, 1);
4053         }
4054
4055         /* Set the needed headroom to account for any possible
4056          * features enabling/disabling at runtime
4057          */
4058         dev->needed_headroom += 64;
4059
4060         priv->dev = dev;
4061         priv->pdev = pdev;
4062
4063         pdata = device_get_match_data(&pdev->dev);
4064         if (pdata) {
4065                 priv->version = pdata->version;
4066                 priv->dma_max_burst_length = pdata->dma_max_burst_length;
4067                 priv->ephy_16nm = pdata->ephy_16nm;
4068         } else {
4069                 priv->version = pd->genet_version;
4070                 priv->dma_max_burst_length = DMA_MAX_BURST_LENGTH;
4071         }
4072
4073         priv->clk = devm_clk_get_optional(&priv->pdev->dev, "enet");
4074         if (IS_ERR(priv->clk)) {
4075                 dev_dbg(&priv->pdev->dev, "failed to get enet clock\n");
4076                 err = PTR_ERR(priv->clk);
4077                 goto err;
4078         }
4079
4080         err = clk_prepare_enable(priv->clk);
4081         if (err)
4082                 goto err;
4083
4084         bcmgenet_set_hw_params(priv);
4085
4086         err = -EIO;
4087         if (priv->hw_params->flags & GENET_HAS_40BITS)
4088                 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(40));
4089         if (err)
4090                 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
4091         if (err)
4092                 goto err_clk_disable;
4093
4094         /* Mii wait queue */
4095         init_waitqueue_head(&priv->wq);
4096         /* Always use RX_BUF_LENGTH (2KB) buffer for all chips */
4097         priv->rx_buf_len = RX_BUF_LENGTH;
4098         INIT_WORK(&priv->bcmgenet_irq_work, bcmgenet_irq_task);
4099
4100         priv->clk_wol = devm_clk_get_optional(&priv->pdev->dev, "enet-wol");
4101         if (IS_ERR(priv->clk_wol)) {
4102                 dev_dbg(&priv->pdev->dev, "failed to get enet-wol clock\n");
4103                 err = PTR_ERR(priv->clk_wol);
4104                 goto err_clk_disable;
4105         }
4106
4107         priv->clk_eee = devm_clk_get_optional(&priv->pdev->dev, "enet-eee");
4108         if (IS_ERR(priv->clk_eee)) {
4109                 dev_dbg(&priv->pdev->dev, "failed to get enet-eee clock\n");
4110                 err = PTR_ERR(priv->clk_eee);
4111                 goto err_clk_disable;
4112         }
4113
4114         /* If this is an internal GPHY, power it on now, before UniMAC is
4115          * brought out of reset as absolutely no UniMAC activity is allowed
4116          */
4117         if (device_get_phy_mode(&pdev->dev) == PHY_INTERFACE_MODE_INTERNAL)
4118                 bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
4119
4120         if (pd && !IS_ERR_OR_NULL(pd->mac_address))
4121                 eth_hw_addr_set(dev, pd->mac_address);
4122         else
4123                 if (device_get_ethdev_address(&pdev->dev, dev))
4124                         if (has_acpi_companion(&pdev->dev)) {
4125                                 u8 addr[ETH_ALEN];
4126
4127                                 bcmgenet_get_hw_addr(priv, addr);
4128                                 eth_hw_addr_set(dev, addr);
4129                         }
4130
4131         if (!is_valid_ether_addr(dev->dev_addr)) {
4132                 dev_warn(&pdev->dev, "using random Ethernet MAC\n");
4133                 eth_hw_addr_random(dev);
4134         }
4135
4136         reset_umac(priv);
4137
4138         err = bcmgenet_mii_init(dev);
4139         if (err)
4140                 goto err_clk_disable;
4141
4142         /* setup number of real queues  + 1 (GENET_V1 has 0 hardware queues
4143          * just the ring 16 descriptor based TX
4144          */
4145         netif_set_real_num_tx_queues(priv->dev, priv->hw_params->tx_queues + 1);
4146         netif_set_real_num_rx_queues(priv->dev, priv->hw_params->rx_queues + 1);
4147
4148         /* Set default coalescing parameters */
4149         for (i = 0; i < priv->hw_params->rx_queues; i++)
4150                 priv->rx_rings[i].rx_max_coalesced_frames = 1;
4151         priv->rx_rings[DESC_INDEX].rx_max_coalesced_frames = 1;
4152
4153         /* libphy will determine the link state */
4154         netif_carrier_off(dev);
4155
4156         /* Turn off the main clock, WOL clock is handled separately */
4157         clk_disable_unprepare(priv->clk);
4158
4159         err = register_netdev(dev);
4160         if (err) {
4161                 bcmgenet_mii_exit(dev);
4162                 goto err;
4163         }
4164
4165         return err;
4166
4167 err_clk_disable:
4168         clk_disable_unprepare(priv->clk);
4169 err:
4170         free_netdev(dev);
4171         return err;
4172 }
4173
4174 static int bcmgenet_remove(struct platform_device *pdev)
4175 {
4176         struct bcmgenet_priv *priv = dev_to_priv(&pdev->dev);
4177
4178         dev_set_drvdata(&pdev->dev, NULL);
4179         unregister_netdev(priv->dev);
4180         bcmgenet_mii_exit(priv->dev);
4181         free_netdev(priv->dev);
4182
4183         return 0;
4184 }
4185
4186 static void bcmgenet_shutdown(struct platform_device *pdev)
4187 {
4188         bcmgenet_remove(pdev);
4189 }
4190
4191 #ifdef CONFIG_PM_SLEEP
4192 static int bcmgenet_resume_noirq(struct device *d)
4193 {
4194         struct net_device *dev = dev_get_drvdata(d);
4195         struct bcmgenet_priv *priv = netdev_priv(dev);
4196         int ret;
4197         u32 reg;
4198
4199         if (!netif_running(dev))
4200                 return 0;
4201
4202         /* Turn on the clock */
4203         ret = clk_prepare_enable(priv->clk);
4204         if (ret)
4205                 return ret;
4206
4207         if (device_may_wakeup(d) && priv->wolopts) {
4208                 /* Account for Wake-on-LAN events and clear those events
4209                  * (Some devices need more time between enabling the clocks
4210                  *  and the interrupt register reflecting the wake event so
4211                  *  read the register twice)
4212                  */
4213                 reg = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT);
4214                 reg = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT);
4215                 if (reg & UMAC_IRQ_WAKE_EVENT)
4216                         pm_wakeup_event(&priv->pdev->dev, 0);
4217         }
4218
4219         bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_WAKE_EVENT, INTRL2_CPU_CLEAR);
4220
4221         return 0;
4222 }
4223
4224 static int bcmgenet_resume(struct device *d)
4225 {
4226         struct net_device *dev = dev_get_drvdata(d);
4227         struct bcmgenet_priv *priv = netdev_priv(dev);
4228         struct bcmgenet_rxnfc_rule *rule;
4229         unsigned long dma_ctrl;
4230         int ret;
4231
4232         if (!netif_running(dev))
4233                 return 0;
4234
4235         /* From WOL-enabled suspend, switch to regular clock */
4236         if (device_may_wakeup(d) && priv->wolopts)
4237                 bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
4238
4239         /* If this is an internal GPHY, power it back on now, before UniMAC is
4240          * brought out of reset as absolutely no UniMAC activity is allowed
4241          */
4242         if (priv->internal_phy)
4243                 bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
4244
4245         bcmgenet_umac_reset(priv);
4246
4247         init_umac(priv);
4248
4249         phy_init_hw(dev->phydev);
4250
4251         /* Speed settings must be restored */
4252         genphy_config_aneg(dev->phydev);
4253         bcmgenet_mii_config(priv->dev, false);
4254
4255         /* Restore enabled features */
4256         bcmgenet_set_features(dev, dev->features);
4257
4258         bcmgenet_set_hw_addr(priv, dev->dev_addr);
4259
4260         /* Restore hardware filters */
4261         bcmgenet_hfb_clear(priv);
4262         list_for_each_entry(rule, &priv->rxnfc_list, list)
4263                 if (rule->state != BCMGENET_RXNFC_STATE_UNUSED)
4264                         bcmgenet_hfb_create_rxnfc_filter(priv, rule);
4265
4266         /* Disable RX/TX DMA and flush TX queues */
4267         dma_ctrl = bcmgenet_dma_disable(priv);
4268
4269         /* Reinitialize TDMA and RDMA and SW housekeeping */
4270         ret = bcmgenet_init_dma(priv);
4271         if (ret) {
4272                 netdev_err(dev, "failed to initialize DMA\n");
4273                 goto out_clk_disable;
4274         }
4275
4276         /* Always enable ring 16 - descriptor ring */
4277         bcmgenet_enable_dma(priv, dma_ctrl);
4278
4279         if (!device_may_wakeup(d))
4280                 phy_resume(dev->phydev);
4281
4282         if (priv->eee.eee_enabled)
4283                 bcmgenet_eee_enable_set(dev, true);
4284
4285         bcmgenet_netif_start(dev);
4286
4287         netif_device_attach(dev);
4288
4289         return 0;
4290
4291 out_clk_disable:
4292         if (priv->internal_phy)
4293                 bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
4294         clk_disable_unprepare(priv->clk);
4295         return ret;
4296 }
4297
4298 static int bcmgenet_suspend(struct device *d)
4299 {
4300         struct net_device *dev = dev_get_drvdata(d);
4301         struct bcmgenet_priv *priv = netdev_priv(dev);
4302
4303         if (!netif_running(dev))
4304                 return 0;
4305
4306         netif_device_detach(dev);
4307
4308         bcmgenet_netif_stop(dev, true);
4309
4310         if (!device_may_wakeup(d))
4311                 phy_suspend(dev->phydev);
4312
4313         /* Disable filtering */
4314         bcmgenet_hfb_reg_writel(priv, 0, HFB_CTRL);
4315
4316         return 0;
4317 }
4318
4319 static int bcmgenet_suspend_noirq(struct device *d)
4320 {
4321         struct net_device *dev = dev_get_drvdata(d);
4322         struct bcmgenet_priv *priv = netdev_priv(dev);
4323         int ret = 0;
4324
4325         if (!netif_running(dev))
4326                 return 0;
4327
4328         /* Prepare the device for Wake-on-LAN and switch to the slow clock */
4329         if (device_may_wakeup(d) && priv->wolopts)
4330                 ret = bcmgenet_power_down(priv, GENET_POWER_WOL_MAGIC);
4331         else if (priv->internal_phy)
4332                 ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
4333
4334         /* Let the framework handle resumption and leave the clocks on */
4335         if (ret)
4336                 return ret;
4337
4338         /* Turn off the clocks */
4339         clk_disable_unprepare(priv->clk);
4340
4341         return 0;
4342 }
4343 #else
4344 #define bcmgenet_suspend        NULL
4345 #define bcmgenet_suspend_noirq  NULL
4346 #define bcmgenet_resume         NULL
4347 #define bcmgenet_resume_noirq   NULL
4348 #endif /* CONFIG_PM_SLEEP */
4349
4350 static const struct dev_pm_ops bcmgenet_pm_ops = {
4351         .suspend        = bcmgenet_suspend,
4352         .suspend_noirq  = bcmgenet_suspend_noirq,
4353         .resume         = bcmgenet_resume,
4354         .resume_noirq   = bcmgenet_resume_noirq,
4355 };
4356
4357 static const struct acpi_device_id genet_acpi_match[] = {
4358         { "BCM6E4E", (kernel_ulong_t)&bcm2711_plat_data },
4359         { },
4360 };
4361 MODULE_DEVICE_TABLE(acpi, genet_acpi_match);
4362
4363 static struct platform_driver bcmgenet_driver = {
4364         .probe  = bcmgenet_probe,
4365         .remove = bcmgenet_remove,
4366         .shutdown = bcmgenet_shutdown,
4367         .driver = {
4368                 .name   = "bcmgenet",
4369                 .of_match_table = bcmgenet_match,
4370                 .pm     = &bcmgenet_pm_ops,
4371                 .acpi_match_table = genet_acpi_match,
4372         },
4373 };
4374 module_platform_driver(bcmgenet_driver);
4375
4376 MODULE_AUTHOR("Broadcom Corporation");
4377 MODULE_DESCRIPTION("Broadcom GENET Ethernet controller driver");
4378 MODULE_ALIAS("platform:bcmgenet");
4379 MODULE_LICENSE("GPL");
4380 MODULE_SOFTDEP("pre: mdio-bcm-unimac");