apparmor: fix bad debug check in apparmor_secid_to_secctx()
[linux-2.6-block.git] / drivers / net / ethernet / broadcom / bnxt / bnxt.c
1 /* Broadcom NetXtreme-C/E network driver.
2  *
3  * Copyright (c) 2014-2016 Broadcom Corporation
4  * Copyright (c) 2016-2018 Broadcom Limited
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation.
9  */
10
11 #include <linux/module.h>
12
13 #include <linux/stringify.h>
14 #include <linux/kernel.h>
15 #include <linux/timer.h>
16 #include <linux/errno.h>
17 #include <linux/ioport.h>
18 #include <linux/slab.h>
19 #include <linux/vmalloc.h>
20 #include <linux/interrupt.h>
21 #include <linux/pci.h>
22 #include <linux/netdevice.h>
23 #include <linux/etherdevice.h>
24 #include <linux/skbuff.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/bitops.h>
27 #include <linux/io.h>
28 #include <linux/irq.h>
29 #include <linux/delay.h>
30 #include <asm/byteorder.h>
31 #include <asm/page.h>
32 #include <linux/time.h>
33 #include <linux/mii.h>
34 #include <linux/if.h>
35 #include <linux/if_vlan.h>
36 #include <linux/if_bridge.h>
37 #include <linux/rtc.h>
38 #include <linux/bpf.h>
39 #include <net/ip.h>
40 #include <net/tcp.h>
41 #include <net/udp.h>
42 #include <net/checksum.h>
43 #include <net/ip6_checksum.h>
44 #include <net/udp_tunnel.h>
45 #include <linux/workqueue.h>
46 #include <linux/prefetch.h>
47 #include <linux/cache.h>
48 #include <linux/log2.h>
49 #include <linux/aer.h>
50 #include <linux/bitmap.h>
51 #include <linux/cpu_rmap.h>
52 #include <linux/cpumask.h>
53 #include <net/pkt_cls.h>
54 #include <linux/hwmon.h>
55 #include <linux/hwmon-sysfs.h>
56
57 #include "bnxt_hsi.h"
58 #include "bnxt.h"
59 #include "bnxt_ulp.h"
60 #include "bnxt_sriov.h"
61 #include "bnxt_ethtool.h"
62 #include "bnxt_dcb.h"
63 #include "bnxt_xdp.h"
64 #include "bnxt_vfr.h"
65 #include "bnxt_tc.h"
66 #include "bnxt_devlink.h"
67 #include "bnxt_debugfs.h"
68
69 #define BNXT_TX_TIMEOUT         (5 * HZ)
70
71 static const char version[] =
72         "Broadcom NetXtreme-C/E driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION "\n";
73
74 MODULE_LICENSE("GPL");
75 MODULE_DESCRIPTION("Broadcom BCM573xx network driver");
76 MODULE_VERSION(DRV_MODULE_VERSION);
77
78 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN)
79 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD
80 #define BNXT_RX_COPY_THRESH 256
81
82 #define BNXT_TX_PUSH_THRESH 164
83
84 enum board_idx {
85         BCM57301,
86         BCM57302,
87         BCM57304,
88         BCM57417_NPAR,
89         BCM58700,
90         BCM57311,
91         BCM57312,
92         BCM57402,
93         BCM57404,
94         BCM57406,
95         BCM57402_NPAR,
96         BCM57407,
97         BCM57412,
98         BCM57414,
99         BCM57416,
100         BCM57417,
101         BCM57412_NPAR,
102         BCM57314,
103         BCM57417_SFP,
104         BCM57416_SFP,
105         BCM57404_NPAR,
106         BCM57406_NPAR,
107         BCM57407_SFP,
108         BCM57407_NPAR,
109         BCM57414_NPAR,
110         BCM57416_NPAR,
111         BCM57452,
112         BCM57454,
113         BCM5745x_NPAR,
114         BCM58802,
115         BCM58804,
116         BCM58808,
117         NETXTREME_E_VF,
118         NETXTREME_C_VF,
119         NETXTREME_S_VF,
120 };
121
122 /* indexed by enum above */
123 static const struct {
124         char *name;
125 } board_info[] = {
126         [BCM57301] = { "Broadcom BCM57301 NetXtreme-C 10Gb Ethernet" },
127         [BCM57302] = { "Broadcom BCM57302 NetXtreme-C 10Gb/25Gb Ethernet" },
128         [BCM57304] = { "Broadcom BCM57304 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
129         [BCM57417_NPAR] = { "Broadcom BCM57417 NetXtreme-E Ethernet Partition" },
130         [BCM58700] = { "Broadcom BCM58700 Nitro 1Gb/2.5Gb/10Gb Ethernet" },
131         [BCM57311] = { "Broadcom BCM57311 NetXtreme-C 10Gb Ethernet" },
132         [BCM57312] = { "Broadcom BCM57312 NetXtreme-C 10Gb/25Gb Ethernet" },
133         [BCM57402] = { "Broadcom BCM57402 NetXtreme-E 10Gb Ethernet" },
134         [BCM57404] = { "Broadcom BCM57404 NetXtreme-E 10Gb/25Gb Ethernet" },
135         [BCM57406] = { "Broadcom BCM57406 NetXtreme-E 10GBase-T Ethernet" },
136         [BCM57402_NPAR] = { "Broadcom BCM57402 NetXtreme-E Ethernet Partition" },
137         [BCM57407] = { "Broadcom BCM57407 NetXtreme-E 10GBase-T Ethernet" },
138         [BCM57412] = { "Broadcom BCM57412 NetXtreme-E 10Gb Ethernet" },
139         [BCM57414] = { "Broadcom BCM57414 NetXtreme-E 10Gb/25Gb Ethernet" },
140         [BCM57416] = { "Broadcom BCM57416 NetXtreme-E 10GBase-T Ethernet" },
141         [BCM57417] = { "Broadcom BCM57417 NetXtreme-E 10GBase-T Ethernet" },
142         [BCM57412_NPAR] = { "Broadcom BCM57412 NetXtreme-E Ethernet Partition" },
143         [BCM57314] = { "Broadcom BCM57314 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
144         [BCM57417_SFP] = { "Broadcom BCM57417 NetXtreme-E 10Gb/25Gb Ethernet" },
145         [BCM57416_SFP] = { "Broadcom BCM57416 NetXtreme-E 10Gb Ethernet" },
146         [BCM57404_NPAR] = { "Broadcom BCM57404 NetXtreme-E Ethernet Partition" },
147         [BCM57406_NPAR] = { "Broadcom BCM57406 NetXtreme-E Ethernet Partition" },
148         [BCM57407_SFP] = { "Broadcom BCM57407 NetXtreme-E 25Gb Ethernet" },
149         [BCM57407_NPAR] = { "Broadcom BCM57407 NetXtreme-E Ethernet Partition" },
150         [BCM57414_NPAR] = { "Broadcom BCM57414 NetXtreme-E Ethernet Partition" },
151         [BCM57416_NPAR] = { "Broadcom BCM57416 NetXtreme-E Ethernet Partition" },
152         [BCM57452] = { "Broadcom BCM57452 NetXtreme-E 10Gb/25Gb/40Gb/50Gb Ethernet" },
153         [BCM57454] = { "Broadcom BCM57454 NetXtreme-E 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
154         [BCM5745x_NPAR] = { "Broadcom BCM5745x NetXtreme-E Ethernet Partition" },
155         [BCM58802] = { "Broadcom BCM58802 NetXtreme-S 10Gb/25Gb/40Gb/50Gb Ethernet" },
156         [BCM58804] = { "Broadcom BCM58804 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
157         [BCM58808] = { "Broadcom BCM58808 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
158         [NETXTREME_E_VF] = { "Broadcom NetXtreme-E Ethernet Virtual Function" },
159         [NETXTREME_C_VF] = { "Broadcom NetXtreme-C Ethernet Virtual Function" },
160         [NETXTREME_S_VF] = { "Broadcom NetXtreme-S Ethernet Virtual Function" },
161 };
162
163 static const struct pci_device_id bnxt_pci_tbl[] = {
164         { PCI_VDEVICE(BROADCOM, 0x1604), .driver_data = BCM5745x_NPAR },
165         { PCI_VDEVICE(BROADCOM, 0x1605), .driver_data = BCM5745x_NPAR },
166         { PCI_VDEVICE(BROADCOM, 0x1614), .driver_data = BCM57454 },
167         { PCI_VDEVICE(BROADCOM, 0x16c0), .driver_data = BCM57417_NPAR },
168         { PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 },
169         { PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 },
170         { PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 },
171         { PCI_VDEVICE(BROADCOM, 0x16cc), .driver_data = BCM57417_NPAR },
172         { PCI_VDEVICE(BROADCOM, 0x16cd), .driver_data = BCM58700 },
173         { PCI_VDEVICE(BROADCOM, 0x16ce), .driver_data = BCM57311 },
174         { PCI_VDEVICE(BROADCOM, 0x16cf), .driver_data = BCM57312 },
175         { PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 },
176         { PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 },
177         { PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 },
178         { PCI_VDEVICE(BROADCOM, 0x16d4), .driver_data = BCM57402_NPAR },
179         { PCI_VDEVICE(BROADCOM, 0x16d5), .driver_data = BCM57407 },
180         { PCI_VDEVICE(BROADCOM, 0x16d6), .driver_data = BCM57412 },
181         { PCI_VDEVICE(BROADCOM, 0x16d7), .driver_data = BCM57414 },
182         { PCI_VDEVICE(BROADCOM, 0x16d8), .driver_data = BCM57416 },
183         { PCI_VDEVICE(BROADCOM, 0x16d9), .driver_data = BCM57417 },
184         { PCI_VDEVICE(BROADCOM, 0x16de), .driver_data = BCM57412_NPAR },
185         { PCI_VDEVICE(BROADCOM, 0x16df), .driver_data = BCM57314 },
186         { PCI_VDEVICE(BROADCOM, 0x16e2), .driver_data = BCM57417_SFP },
187         { PCI_VDEVICE(BROADCOM, 0x16e3), .driver_data = BCM57416_SFP },
188         { PCI_VDEVICE(BROADCOM, 0x16e7), .driver_data = BCM57404_NPAR },
189         { PCI_VDEVICE(BROADCOM, 0x16e8), .driver_data = BCM57406_NPAR },
190         { PCI_VDEVICE(BROADCOM, 0x16e9), .driver_data = BCM57407_SFP },
191         { PCI_VDEVICE(BROADCOM, 0x16ea), .driver_data = BCM57407_NPAR },
192         { PCI_VDEVICE(BROADCOM, 0x16eb), .driver_data = BCM57412_NPAR },
193         { PCI_VDEVICE(BROADCOM, 0x16ec), .driver_data = BCM57414_NPAR },
194         { PCI_VDEVICE(BROADCOM, 0x16ed), .driver_data = BCM57414_NPAR },
195         { PCI_VDEVICE(BROADCOM, 0x16ee), .driver_data = BCM57416_NPAR },
196         { PCI_VDEVICE(BROADCOM, 0x16ef), .driver_data = BCM57416_NPAR },
197         { PCI_VDEVICE(BROADCOM, 0x16f0), .driver_data = BCM58808 },
198         { PCI_VDEVICE(BROADCOM, 0x16f1), .driver_data = BCM57452 },
199         { PCI_VDEVICE(BROADCOM, 0xd802), .driver_data = BCM58802 },
200         { PCI_VDEVICE(BROADCOM, 0xd804), .driver_data = BCM58804 },
201 #ifdef CONFIG_BNXT_SRIOV
202         { PCI_VDEVICE(BROADCOM, 0x1606), .driver_data = NETXTREME_E_VF },
203         { PCI_VDEVICE(BROADCOM, 0x1609), .driver_data = NETXTREME_E_VF },
204         { PCI_VDEVICE(BROADCOM, 0x16c1), .driver_data = NETXTREME_E_VF },
205         { PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = NETXTREME_C_VF },
206         { PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = NETXTREME_E_VF },
207         { PCI_VDEVICE(BROADCOM, 0x16dc), .driver_data = NETXTREME_E_VF },
208         { PCI_VDEVICE(BROADCOM, 0x16e1), .driver_data = NETXTREME_C_VF },
209         { PCI_VDEVICE(BROADCOM, 0x16e5), .driver_data = NETXTREME_C_VF },
210         { PCI_VDEVICE(BROADCOM, 0xd800), .driver_data = NETXTREME_S_VF },
211 #endif
212         { 0 }
213 };
214
215 MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl);
216
217 static const u16 bnxt_vf_req_snif[] = {
218         HWRM_FUNC_CFG,
219         HWRM_FUNC_VF_CFG,
220         HWRM_PORT_PHY_QCFG,
221         HWRM_CFA_L2_FILTER_ALLOC,
222 };
223
224 static const u16 bnxt_async_events_arr[] = {
225         ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE,
226         ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD,
227         ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED,
228         ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE,
229         ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE,
230 };
231
232 static struct workqueue_struct *bnxt_pf_wq;
233
234 static bool bnxt_vf_pciid(enum board_idx idx)
235 {
236         return (idx == NETXTREME_C_VF || idx == NETXTREME_E_VF ||
237                 idx == NETXTREME_S_VF);
238 }
239
240 #define DB_CP_REARM_FLAGS       (DB_KEY_CP | DB_IDX_VALID)
241 #define DB_CP_FLAGS             (DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS)
242 #define DB_CP_IRQ_DIS_FLAGS     (DB_KEY_CP | DB_IRQ_DIS)
243
244 #define BNXT_CP_DB_REARM(db, raw_cons)                                  \
245                 writel(DB_CP_REARM_FLAGS | RING_CMP(raw_cons), db)
246
247 #define BNXT_CP_DB(db, raw_cons)                                        \
248                 writel(DB_CP_FLAGS | RING_CMP(raw_cons), db)
249
250 #define BNXT_CP_DB_IRQ_DIS(db)                                          \
251                 writel(DB_CP_IRQ_DIS_FLAGS, db)
252
253 const u16 bnxt_lhint_arr[] = {
254         TX_BD_FLAGS_LHINT_512_AND_SMALLER,
255         TX_BD_FLAGS_LHINT_512_TO_1023,
256         TX_BD_FLAGS_LHINT_1024_TO_2047,
257         TX_BD_FLAGS_LHINT_1024_TO_2047,
258         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
259         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
260         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
261         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
262         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
263         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
264         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
265         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
266         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
267         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
268         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
269         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
270         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
271         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
272         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
273 };
274
275 static u16 bnxt_xmit_get_cfa_action(struct sk_buff *skb)
276 {
277         struct metadata_dst *md_dst = skb_metadata_dst(skb);
278
279         if (!md_dst || md_dst->type != METADATA_HW_PORT_MUX)
280                 return 0;
281
282         return md_dst->u.port_info.port_id;
283 }
284
285 static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev)
286 {
287         struct bnxt *bp = netdev_priv(dev);
288         struct tx_bd *txbd;
289         struct tx_bd_ext *txbd1;
290         struct netdev_queue *txq;
291         int i;
292         dma_addr_t mapping;
293         unsigned int length, pad = 0;
294         u32 len, free_size, vlan_tag_flags, cfa_action, flags;
295         u16 prod, last_frag;
296         struct pci_dev *pdev = bp->pdev;
297         struct bnxt_tx_ring_info *txr;
298         struct bnxt_sw_tx_bd *tx_buf;
299
300         i = skb_get_queue_mapping(skb);
301         if (unlikely(i >= bp->tx_nr_rings)) {
302                 dev_kfree_skb_any(skb);
303                 return NETDEV_TX_OK;
304         }
305
306         txq = netdev_get_tx_queue(dev, i);
307         txr = &bp->tx_ring[bp->tx_ring_map[i]];
308         prod = txr->tx_prod;
309
310         free_size = bnxt_tx_avail(bp, txr);
311         if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) {
312                 netif_tx_stop_queue(txq);
313                 return NETDEV_TX_BUSY;
314         }
315
316         length = skb->len;
317         len = skb_headlen(skb);
318         last_frag = skb_shinfo(skb)->nr_frags;
319
320         txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
321
322         txbd->tx_bd_opaque = prod;
323
324         tx_buf = &txr->tx_buf_ring[prod];
325         tx_buf->skb = skb;
326         tx_buf->nr_frags = last_frag;
327
328         vlan_tag_flags = 0;
329         cfa_action = bnxt_xmit_get_cfa_action(skb);
330         if (skb_vlan_tag_present(skb)) {
331                 vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN |
332                                  skb_vlan_tag_get(skb);
333                 /* Currently supports 8021Q, 8021AD vlan offloads
334                  * QINQ1, QINQ2, QINQ3 vlan headers are deprecated
335                  */
336                 if (skb->vlan_proto == htons(ETH_P_8021Q))
337                         vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT;
338         }
339
340         if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh) {
341                 struct tx_push_buffer *tx_push_buf = txr->tx_push;
342                 struct tx_push_bd *tx_push = &tx_push_buf->push_bd;
343                 struct tx_bd_ext *tx_push1 = &tx_push->txbd2;
344                 void *pdata = tx_push_buf->data;
345                 u64 *end;
346                 int j, push_len;
347
348                 /* Set COAL_NOW to be ready quickly for the next push */
349                 tx_push->tx_bd_len_flags_type =
350                         cpu_to_le32((length << TX_BD_LEN_SHIFT) |
351                                         TX_BD_TYPE_LONG_TX_BD |
352                                         TX_BD_FLAGS_LHINT_512_AND_SMALLER |
353                                         TX_BD_FLAGS_COAL_NOW |
354                                         TX_BD_FLAGS_PACKET_END |
355                                         (2 << TX_BD_FLAGS_BD_CNT_SHIFT));
356
357                 if (skb->ip_summed == CHECKSUM_PARTIAL)
358                         tx_push1->tx_bd_hsize_lflags =
359                                         cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
360                 else
361                         tx_push1->tx_bd_hsize_lflags = 0;
362
363                 tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
364                 tx_push1->tx_bd_cfa_action =
365                         cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
366
367                 end = pdata + length;
368                 end = PTR_ALIGN(end, 8) - 1;
369                 *end = 0;
370
371                 skb_copy_from_linear_data(skb, pdata, len);
372                 pdata += len;
373                 for (j = 0; j < last_frag; j++) {
374                         skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
375                         void *fptr;
376
377                         fptr = skb_frag_address_safe(frag);
378                         if (!fptr)
379                                 goto normal_tx;
380
381                         memcpy(pdata, fptr, skb_frag_size(frag));
382                         pdata += skb_frag_size(frag);
383                 }
384
385                 txbd->tx_bd_len_flags_type = tx_push->tx_bd_len_flags_type;
386                 txbd->tx_bd_haddr = txr->data_mapping;
387                 prod = NEXT_TX(prod);
388                 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
389                 memcpy(txbd, tx_push1, sizeof(*txbd));
390                 prod = NEXT_TX(prod);
391                 tx_push->doorbell =
392                         cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH | prod);
393                 txr->tx_prod = prod;
394
395                 tx_buf->is_push = 1;
396                 netdev_tx_sent_queue(txq, skb->len);
397                 wmb();  /* Sync is_push and byte queue before pushing data */
398
399                 push_len = (length + sizeof(*tx_push) + 7) / 8;
400                 if (push_len > 16) {
401                         __iowrite64_copy(txr->tx_doorbell, tx_push_buf, 16);
402                         __iowrite32_copy(txr->tx_doorbell + 4, tx_push_buf + 1,
403                                          (push_len - 16) << 1);
404                 } else {
405                         __iowrite64_copy(txr->tx_doorbell, tx_push_buf,
406                                          push_len);
407                 }
408
409                 goto tx_done;
410         }
411
412 normal_tx:
413         if (length < BNXT_MIN_PKT_SIZE) {
414                 pad = BNXT_MIN_PKT_SIZE - length;
415                 if (skb_pad(skb, pad)) {
416                         /* SKB already freed. */
417                         tx_buf->skb = NULL;
418                         return NETDEV_TX_OK;
419                 }
420                 length = BNXT_MIN_PKT_SIZE;
421         }
422
423         mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE);
424
425         if (unlikely(dma_mapping_error(&pdev->dev, mapping))) {
426                 dev_kfree_skb_any(skb);
427                 tx_buf->skb = NULL;
428                 return NETDEV_TX_OK;
429         }
430
431         dma_unmap_addr_set(tx_buf, mapping, mapping);
432         flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD |
433                 ((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT);
434
435         txbd->tx_bd_haddr = cpu_to_le64(mapping);
436
437         prod = NEXT_TX(prod);
438         txbd1 = (struct tx_bd_ext *)
439                 &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
440
441         txbd1->tx_bd_hsize_lflags = 0;
442         if (skb_is_gso(skb)) {
443                 u32 hdr_len;
444
445                 if (skb->encapsulation)
446                         hdr_len = skb_inner_network_offset(skb) +
447                                 skb_inner_network_header_len(skb) +
448                                 inner_tcp_hdrlen(skb);
449                 else
450                         hdr_len = skb_transport_offset(skb) +
451                                 tcp_hdrlen(skb);
452
453                 txbd1->tx_bd_hsize_lflags = cpu_to_le32(TX_BD_FLAGS_LSO |
454                                         TX_BD_FLAGS_T_IPID |
455                                         (hdr_len << (TX_BD_HSIZE_SHIFT - 1)));
456                 length = skb_shinfo(skb)->gso_size;
457                 txbd1->tx_bd_mss = cpu_to_le32(length);
458                 length += hdr_len;
459         } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
460                 txbd1->tx_bd_hsize_lflags =
461                         cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
462                 txbd1->tx_bd_mss = 0;
463         }
464
465         length >>= 9;
466         flags |= bnxt_lhint_arr[length];
467         txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
468
469         txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
470         txbd1->tx_bd_cfa_action =
471                         cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
472         for (i = 0; i < last_frag; i++) {
473                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
474
475                 prod = NEXT_TX(prod);
476                 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
477
478                 len = skb_frag_size(frag);
479                 mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len,
480                                            DMA_TO_DEVICE);
481
482                 if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
483                         goto tx_dma_error;
484
485                 tx_buf = &txr->tx_buf_ring[prod];
486                 dma_unmap_addr_set(tx_buf, mapping, mapping);
487
488                 txbd->tx_bd_haddr = cpu_to_le64(mapping);
489
490                 flags = len << TX_BD_LEN_SHIFT;
491                 txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
492         }
493
494         flags &= ~TX_BD_LEN;
495         txbd->tx_bd_len_flags_type =
496                 cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags |
497                             TX_BD_FLAGS_PACKET_END);
498
499         netdev_tx_sent_queue(txq, skb->len);
500
501         /* Sync BD data before updating doorbell */
502         wmb();
503
504         prod = NEXT_TX(prod);
505         txr->tx_prod = prod;
506
507         if (!skb->xmit_more || netif_xmit_stopped(txq))
508                 bnxt_db_write(bp, txr->tx_doorbell, DB_KEY_TX | prod);
509
510 tx_done:
511
512         mmiowb();
513
514         if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) {
515                 if (skb->xmit_more && !tx_buf->is_push)
516                         bnxt_db_write(bp, txr->tx_doorbell, DB_KEY_TX | prod);
517
518                 netif_tx_stop_queue(txq);
519
520                 /* netif_tx_stop_queue() must be done before checking
521                  * tx index in bnxt_tx_avail() below, because in
522                  * bnxt_tx_int(), we update tx index before checking for
523                  * netif_tx_queue_stopped().
524                  */
525                 smp_mb();
526                 if (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)
527                         netif_tx_wake_queue(txq);
528         }
529         return NETDEV_TX_OK;
530
531 tx_dma_error:
532         last_frag = i;
533
534         /* start back at beginning and unmap skb */
535         prod = txr->tx_prod;
536         tx_buf = &txr->tx_buf_ring[prod];
537         tx_buf->skb = NULL;
538         dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
539                          skb_headlen(skb), PCI_DMA_TODEVICE);
540         prod = NEXT_TX(prod);
541
542         /* unmap remaining mapped pages */
543         for (i = 0; i < last_frag; i++) {
544                 prod = NEXT_TX(prod);
545                 tx_buf = &txr->tx_buf_ring[prod];
546                 dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
547                                skb_frag_size(&skb_shinfo(skb)->frags[i]),
548                                PCI_DMA_TODEVICE);
549         }
550
551         dev_kfree_skb_any(skb);
552         return NETDEV_TX_OK;
553 }
554
555 static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int nr_pkts)
556 {
557         struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
558         struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, txr->txq_index);
559         u16 cons = txr->tx_cons;
560         struct pci_dev *pdev = bp->pdev;
561         int i;
562         unsigned int tx_bytes = 0;
563
564         for (i = 0; i < nr_pkts; i++) {
565                 struct bnxt_sw_tx_bd *tx_buf;
566                 struct sk_buff *skb;
567                 int j, last;
568
569                 tx_buf = &txr->tx_buf_ring[cons];
570                 cons = NEXT_TX(cons);
571                 skb = tx_buf->skb;
572                 tx_buf->skb = NULL;
573
574                 if (tx_buf->is_push) {
575                         tx_buf->is_push = 0;
576                         goto next_tx_int;
577                 }
578
579                 dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
580                                  skb_headlen(skb), PCI_DMA_TODEVICE);
581                 last = tx_buf->nr_frags;
582
583                 for (j = 0; j < last; j++) {
584                         cons = NEXT_TX(cons);
585                         tx_buf = &txr->tx_buf_ring[cons];
586                         dma_unmap_page(
587                                 &pdev->dev,
588                                 dma_unmap_addr(tx_buf, mapping),
589                                 skb_frag_size(&skb_shinfo(skb)->frags[j]),
590                                 PCI_DMA_TODEVICE);
591                 }
592
593 next_tx_int:
594                 cons = NEXT_TX(cons);
595
596                 tx_bytes += skb->len;
597                 dev_kfree_skb_any(skb);
598         }
599
600         netdev_tx_completed_queue(txq, nr_pkts, tx_bytes);
601         txr->tx_cons = cons;
602
603         /* Need to make the tx_cons update visible to bnxt_start_xmit()
604          * before checking for netif_tx_queue_stopped().  Without the
605          * memory barrier, there is a small possibility that bnxt_start_xmit()
606          * will miss it and cause the queue to be stopped forever.
607          */
608         smp_mb();
609
610         if (unlikely(netif_tx_queue_stopped(txq)) &&
611             (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)) {
612                 __netif_tx_lock(txq, smp_processor_id());
613                 if (netif_tx_queue_stopped(txq) &&
614                     bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh &&
615                     txr->dev_state != BNXT_DEV_STATE_CLOSING)
616                         netif_tx_wake_queue(txq);
617                 __netif_tx_unlock(txq);
618         }
619 }
620
621 static struct page *__bnxt_alloc_rx_page(struct bnxt *bp, dma_addr_t *mapping,
622                                          gfp_t gfp)
623 {
624         struct device *dev = &bp->pdev->dev;
625         struct page *page;
626
627         page = alloc_page(gfp);
628         if (!page)
629                 return NULL;
630
631         *mapping = dma_map_page_attrs(dev, page, 0, PAGE_SIZE, bp->rx_dir,
632                                       DMA_ATTR_WEAK_ORDERING);
633         if (dma_mapping_error(dev, *mapping)) {
634                 __free_page(page);
635                 return NULL;
636         }
637         *mapping += bp->rx_dma_offset;
638         return page;
639 }
640
641 static inline u8 *__bnxt_alloc_rx_data(struct bnxt *bp, dma_addr_t *mapping,
642                                        gfp_t gfp)
643 {
644         u8 *data;
645         struct pci_dev *pdev = bp->pdev;
646
647         data = kmalloc(bp->rx_buf_size, gfp);
648         if (!data)
649                 return NULL;
650
651         *mapping = dma_map_single_attrs(&pdev->dev, data + bp->rx_dma_offset,
652                                         bp->rx_buf_use_size, bp->rx_dir,
653                                         DMA_ATTR_WEAK_ORDERING);
654
655         if (dma_mapping_error(&pdev->dev, *mapping)) {
656                 kfree(data);
657                 data = NULL;
658         }
659         return data;
660 }
661
662 int bnxt_alloc_rx_data(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
663                        u16 prod, gfp_t gfp)
664 {
665         struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
666         struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[prod];
667         dma_addr_t mapping;
668
669         if (BNXT_RX_PAGE_MODE(bp)) {
670                 struct page *page = __bnxt_alloc_rx_page(bp, &mapping, gfp);
671
672                 if (!page)
673                         return -ENOMEM;
674
675                 rx_buf->data = page;
676                 rx_buf->data_ptr = page_address(page) + bp->rx_offset;
677         } else {
678                 u8 *data = __bnxt_alloc_rx_data(bp, &mapping, gfp);
679
680                 if (!data)
681                         return -ENOMEM;
682
683                 rx_buf->data = data;
684                 rx_buf->data_ptr = data + bp->rx_offset;
685         }
686         rx_buf->mapping = mapping;
687
688         rxbd->rx_bd_haddr = cpu_to_le64(mapping);
689         return 0;
690 }
691
692 void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons, void *data)
693 {
694         u16 prod = rxr->rx_prod;
695         struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
696         struct rx_bd *cons_bd, *prod_bd;
697
698         prod_rx_buf = &rxr->rx_buf_ring[prod];
699         cons_rx_buf = &rxr->rx_buf_ring[cons];
700
701         prod_rx_buf->data = data;
702         prod_rx_buf->data_ptr = cons_rx_buf->data_ptr;
703
704         prod_rx_buf->mapping = cons_rx_buf->mapping;
705
706         prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
707         cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
708
709         prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr;
710 }
711
712 static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
713 {
714         u16 next, max = rxr->rx_agg_bmap_size;
715
716         next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx);
717         if (next >= max)
718                 next = find_first_zero_bit(rxr->rx_agg_bmap, max);
719         return next;
720 }
721
722 static inline int bnxt_alloc_rx_page(struct bnxt *bp,
723                                      struct bnxt_rx_ring_info *rxr,
724                                      u16 prod, gfp_t gfp)
725 {
726         struct rx_bd *rxbd =
727                 &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
728         struct bnxt_sw_rx_agg_bd *rx_agg_buf;
729         struct pci_dev *pdev = bp->pdev;
730         struct page *page;
731         dma_addr_t mapping;
732         u16 sw_prod = rxr->rx_sw_agg_prod;
733         unsigned int offset = 0;
734
735         if (PAGE_SIZE > BNXT_RX_PAGE_SIZE) {
736                 page = rxr->rx_page;
737                 if (!page) {
738                         page = alloc_page(gfp);
739                         if (!page)
740                                 return -ENOMEM;
741                         rxr->rx_page = page;
742                         rxr->rx_page_offset = 0;
743                 }
744                 offset = rxr->rx_page_offset;
745                 rxr->rx_page_offset += BNXT_RX_PAGE_SIZE;
746                 if (rxr->rx_page_offset == PAGE_SIZE)
747                         rxr->rx_page = NULL;
748                 else
749                         get_page(page);
750         } else {
751                 page = alloc_page(gfp);
752                 if (!page)
753                         return -ENOMEM;
754         }
755
756         mapping = dma_map_page_attrs(&pdev->dev, page, offset,
757                                      BNXT_RX_PAGE_SIZE, PCI_DMA_FROMDEVICE,
758                                      DMA_ATTR_WEAK_ORDERING);
759         if (dma_mapping_error(&pdev->dev, mapping)) {
760                 __free_page(page);
761                 return -EIO;
762         }
763
764         if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
765                 sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
766
767         __set_bit(sw_prod, rxr->rx_agg_bmap);
768         rx_agg_buf = &rxr->rx_agg_ring[sw_prod];
769         rxr->rx_sw_agg_prod = NEXT_RX_AGG(sw_prod);
770
771         rx_agg_buf->page = page;
772         rx_agg_buf->offset = offset;
773         rx_agg_buf->mapping = mapping;
774         rxbd->rx_bd_haddr = cpu_to_le64(mapping);
775         rxbd->rx_bd_opaque = sw_prod;
776         return 0;
777 }
778
779 static void bnxt_reuse_rx_agg_bufs(struct bnxt_napi *bnapi, u16 cp_cons,
780                                    u32 agg_bufs)
781 {
782         struct bnxt *bp = bnapi->bp;
783         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
784         struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
785         u16 prod = rxr->rx_agg_prod;
786         u16 sw_prod = rxr->rx_sw_agg_prod;
787         u32 i;
788
789         for (i = 0; i < agg_bufs; i++) {
790                 u16 cons;
791                 struct rx_agg_cmp *agg;
792                 struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf;
793                 struct rx_bd *prod_bd;
794                 struct page *page;
795
796                 agg = (struct rx_agg_cmp *)
797                         &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
798                 cons = agg->rx_agg_cmp_opaque;
799                 __clear_bit(cons, rxr->rx_agg_bmap);
800
801                 if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
802                         sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
803
804                 __set_bit(sw_prod, rxr->rx_agg_bmap);
805                 prod_rx_buf = &rxr->rx_agg_ring[sw_prod];
806                 cons_rx_buf = &rxr->rx_agg_ring[cons];
807
808                 /* It is possible for sw_prod to be equal to cons, so
809                  * set cons_rx_buf->page to NULL first.
810                  */
811                 page = cons_rx_buf->page;
812                 cons_rx_buf->page = NULL;
813                 prod_rx_buf->page = page;
814                 prod_rx_buf->offset = cons_rx_buf->offset;
815
816                 prod_rx_buf->mapping = cons_rx_buf->mapping;
817
818                 prod_bd = &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
819
820                 prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping);
821                 prod_bd->rx_bd_opaque = sw_prod;
822
823                 prod = NEXT_RX_AGG(prod);
824                 sw_prod = NEXT_RX_AGG(sw_prod);
825                 cp_cons = NEXT_CMP(cp_cons);
826         }
827         rxr->rx_agg_prod = prod;
828         rxr->rx_sw_agg_prod = sw_prod;
829 }
830
831 static struct sk_buff *bnxt_rx_page_skb(struct bnxt *bp,
832                                         struct bnxt_rx_ring_info *rxr,
833                                         u16 cons, void *data, u8 *data_ptr,
834                                         dma_addr_t dma_addr,
835                                         unsigned int offset_and_len)
836 {
837         unsigned int payload = offset_and_len >> 16;
838         unsigned int len = offset_and_len & 0xffff;
839         struct skb_frag_struct *frag;
840         struct page *page = data;
841         u16 prod = rxr->rx_prod;
842         struct sk_buff *skb;
843         int off, err;
844
845         err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
846         if (unlikely(err)) {
847                 bnxt_reuse_rx_data(rxr, cons, data);
848                 return NULL;
849         }
850         dma_addr -= bp->rx_dma_offset;
851         dma_unmap_page_attrs(&bp->pdev->dev, dma_addr, PAGE_SIZE, bp->rx_dir,
852                              DMA_ATTR_WEAK_ORDERING);
853
854         if (unlikely(!payload))
855                 payload = eth_get_headlen(data_ptr, len);
856
857         skb = napi_alloc_skb(&rxr->bnapi->napi, payload);
858         if (!skb) {
859                 __free_page(page);
860                 return NULL;
861         }
862
863         off = (void *)data_ptr - page_address(page);
864         skb_add_rx_frag(skb, 0, page, off, len, PAGE_SIZE);
865         memcpy(skb->data - NET_IP_ALIGN, data_ptr - NET_IP_ALIGN,
866                payload + NET_IP_ALIGN);
867
868         frag = &skb_shinfo(skb)->frags[0];
869         skb_frag_size_sub(frag, payload);
870         frag->page_offset += payload;
871         skb->data_len -= payload;
872         skb->tail += payload;
873
874         return skb;
875 }
876
877 static struct sk_buff *bnxt_rx_skb(struct bnxt *bp,
878                                    struct bnxt_rx_ring_info *rxr, u16 cons,
879                                    void *data, u8 *data_ptr,
880                                    dma_addr_t dma_addr,
881                                    unsigned int offset_and_len)
882 {
883         u16 prod = rxr->rx_prod;
884         struct sk_buff *skb;
885         int err;
886
887         err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
888         if (unlikely(err)) {
889                 bnxt_reuse_rx_data(rxr, cons, data);
890                 return NULL;
891         }
892
893         skb = build_skb(data, 0);
894         dma_unmap_single_attrs(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size,
895                                bp->rx_dir, DMA_ATTR_WEAK_ORDERING);
896         if (!skb) {
897                 kfree(data);
898                 return NULL;
899         }
900
901         skb_reserve(skb, bp->rx_offset);
902         skb_put(skb, offset_and_len & 0xffff);
903         return skb;
904 }
905
906 static struct sk_buff *bnxt_rx_pages(struct bnxt *bp, struct bnxt_napi *bnapi,
907                                      struct sk_buff *skb, u16 cp_cons,
908                                      u32 agg_bufs)
909 {
910         struct pci_dev *pdev = bp->pdev;
911         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
912         struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
913         u16 prod = rxr->rx_agg_prod;
914         u32 i;
915
916         for (i = 0; i < agg_bufs; i++) {
917                 u16 cons, frag_len;
918                 struct rx_agg_cmp *agg;
919                 struct bnxt_sw_rx_agg_bd *cons_rx_buf;
920                 struct page *page;
921                 dma_addr_t mapping;
922
923                 agg = (struct rx_agg_cmp *)
924                         &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
925                 cons = agg->rx_agg_cmp_opaque;
926                 frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) &
927                             RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT;
928
929                 cons_rx_buf = &rxr->rx_agg_ring[cons];
930                 skb_fill_page_desc(skb, i, cons_rx_buf->page,
931                                    cons_rx_buf->offset, frag_len);
932                 __clear_bit(cons, rxr->rx_agg_bmap);
933
934                 /* It is possible for bnxt_alloc_rx_page() to allocate
935                  * a sw_prod index that equals the cons index, so we
936                  * need to clear the cons entry now.
937                  */
938                 mapping = cons_rx_buf->mapping;
939                 page = cons_rx_buf->page;
940                 cons_rx_buf->page = NULL;
941
942                 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) {
943                         struct skb_shared_info *shinfo;
944                         unsigned int nr_frags;
945
946                         shinfo = skb_shinfo(skb);
947                         nr_frags = --shinfo->nr_frags;
948                         __skb_frag_set_page(&shinfo->frags[nr_frags], NULL);
949
950                         dev_kfree_skb(skb);
951
952                         cons_rx_buf->page = page;
953
954                         /* Update prod since possibly some pages have been
955                          * allocated already.
956                          */
957                         rxr->rx_agg_prod = prod;
958                         bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs - i);
959                         return NULL;
960                 }
961
962                 dma_unmap_page_attrs(&pdev->dev, mapping, BNXT_RX_PAGE_SIZE,
963                                      PCI_DMA_FROMDEVICE,
964                                      DMA_ATTR_WEAK_ORDERING);
965
966                 skb->data_len += frag_len;
967                 skb->len += frag_len;
968                 skb->truesize += PAGE_SIZE;
969
970                 prod = NEXT_RX_AGG(prod);
971                 cp_cons = NEXT_CMP(cp_cons);
972         }
973         rxr->rx_agg_prod = prod;
974         return skb;
975 }
976
977 static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
978                                u8 agg_bufs, u32 *raw_cons)
979 {
980         u16 last;
981         struct rx_agg_cmp *agg;
982
983         *raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs);
984         last = RING_CMP(*raw_cons);
985         agg = (struct rx_agg_cmp *)
986                 &cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)];
987         return RX_AGG_CMP_VALID(agg, *raw_cons);
988 }
989
990 static inline struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data,
991                                             unsigned int len,
992                                             dma_addr_t mapping)
993 {
994         struct bnxt *bp = bnapi->bp;
995         struct pci_dev *pdev = bp->pdev;
996         struct sk_buff *skb;
997
998         skb = napi_alloc_skb(&bnapi->napi, len);
999         if (!skb)
1000                 return NULL;
1001
1002         dma_sync_single_for_cpu(&pdev->dev, mapping, bp->rx_copy_thresh,
1003                                 bp->rx_dir);
1004
1005         memcpy(skb->data - NET_IP_ALIGN, data - NET_IP_ALIGN,
1006                len + NET_IP_ALIGN);
1007
1008         dma_sync_single_for_device(&pdev->dev, mapping, bp->rx_copy_thresh,
1009                                    bp->rx_dir);
1010
1011         skb_put(skb, len);
1012         return skb;
1013 }
1014
1015 static int bnxt_discard_rx(struct bnxt *bp, struct bnxt_napi *bnapi,
1016                            u32 *raw_cons, void *cmp)
1017 {
1018         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1019         struct rx_cmp *rxcmp = cmp;
1020         u32 tmp_raw_cons = *raw_cons;
1021         u8 cmp_type, agg_bufs = 0;
1022
1023         cmp_type = RX_CMP_TYPE(rxcmp);
1024
1025         if (cmp_type == CMP_TYPE_RX_L2_CMP) {
1026                 agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) &
1027                             RX_CMP_AGG_BUFS) >>
1028                            RX_CMP_AGG_BUFS_SHIFT;
1029         } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1030                 struct rx_tpa_end_cmp *tpa_end = cmp;
1031
1032                 agg_bufs = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
1033                             RX_TPA_END_CMP_AGG_BUFS) >>
1034                            RX_TPA_END_CMP_AGG_BUFS_SHIFT;
1035         }
1036
1037         if (agg_bufs) {
1038                 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1039                         return -EBUSY;
1040         }
1041         *raw_cons = tmp_raw_cons;
1042         return 0;
1043 }
1044
1045 static void bnxt_queue_sp_work(struct bnxt *bp)
1046 {
1047         if (BNXT_PF(bp))
1048                 queue_work(bnxt_pf_wq, &bp->sp_task);
1049         else
1050                 schedule_work(&bp->sp_task);
1051 }
1052
1053 static void bnxt_cancel_sp_work(struct bnxt *bp)
1054 {
1055         if (BNXT_PF(bp))
1056                 flush_workqueue(bnxt_pf_wq);
1057         else
1058                 cancel_work_sync(&bp->sp_task);
1059 }
1060
1061 static void bnxt_sched_reset(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
1062 {
1063         if (!rxr->bnapi->in_reset) {
1064                 rxr->bnapi->in_reset = true;
1065                 set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
1066                 bnxt_queue_sp_work(bp);
1067         }
1068         rxr->rx_next_cons = 0xffff;
1069 }
1070
1071 static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
1072                            struct rx_tpa_start_cmp *tpa_start,
1073                            struct rx_tpa_start_cmp_ext *tpa_start1)
1074 {
1075         u8 agg_id = TPA_START_AGG_ID(tpa_start);
1076         u16 cons, prod;
1077         struct bnxt_tpa_info *tpa_info;
1078         struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
1079         struct rx_bd *prod_bd;
1080         dma_addr_t mapping;
1081
1082         cons = tpa_start->rx_tpa_start_cmp_opaque;
1083         prod = rxr->rx_prod;
1084         cons_rx_buf = &rxr->rx_buf_ring[cons];
1085         prod_rx_buf = &rxr->rx_buf_ring[prod];
1086         tpa_info = &rxr->rx_tpa[agg_id];
1087
1088         if (unlikely(cons != rxr->rx_next_cons)) {
1089                 bnxt_sched_reset(bp, rxr);
1090                 return;
1091         }
1092         /* Store cfa_code in tpa_info to use in tpa_end
1093          * completion processing.
1094          */
1095         tpa_info->cfa_code = TPA_START_CFA_CODE(tpa_start1);
1096         prod_rx_buf->data = tpa_info->data;
1097         prod_rx_buf->data_ptr = tpa_info->data_ptr;
1098
1099         mapping = tpa_info->mapping;
1100         prod_rx_buf->mapping = mapping;
1101
1102         prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
1103
1104         prod_bd->rx_bd_haddr = cpu_to_le64(mapping);
1105
1106         tpa_info->data = cons_rx_buf->data;
1107         tpa_info->data_ptr = cons_rx_buf->data_ptr;
1108         cons_rx_buf->data = NULL;
1109         tpa_info->mapping = cons_rx_buf->mapping;
1110
1111         tpa_info->len =
1112                 le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >>
1113                                 RX_TPA_START_CMP_LEN_SHIFT;
1114         if (likely(TPA_START_HASH_VALID(tpa_start))) {
1115                 u32 hash_type = TPA_START_HASH_TYPE(tpa_start);
1116
1117                 tpa_info->hash_type = PKT_HASH_TYPE_L4;
1118                 tpa_info->gso_type = SKB_GSO_TCPV4;
1119                 /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1120                 if (hash_type == 3 || TPA_START_IS_IPV6(tpa_start1))
1121                         tpa_info->gso_type = SKB_GSO_TCPV6;
1122                 tpa_info->rss_hash =
1123                         le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash);
1124         } else {
1125                 tpa_info->hash_type = PKT_HASH_TYPE_NONE;
1126                 tpa_info->gso_type = 0;
1127                 if (netif_msg_rx_err(bp))
1128                         netdev_warn(bp->dev, "TPA packet without valid hash\n");
1129         }
1130         tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2);
1131         tpa_info->metadata = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata);
1132         tpa_info->hdr_info = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_hdr_info);
1133
1134         rxr->rx_prod = NEXT_RX(prod);
1135         cons = NEXT_RX(cons);
1136         rxr->rx_next_cons = NEXT_RX(cons);
1137         cons_rx_buf = &rxr->rx_buf_ring[cons];
1138
1139         bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data);
1140         rxr->rx_prod = NEXT_RX(rxr->rx_prod);
1141         cons_rx_buf->data = NULL;
1142 }
1143
1144 static void bnxt_abort_tpa(struct bnxt *bp, struct bnxt_napi *bnapi,
1145                            u16 cp_cons, u32 agg_bufs)
1146 {
1147         if (agg_bufs)
1148                 bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs);
1149 }
1150
1151 static struct sk_buff *bnxt_gro_func_5731x(struct bnxt_tpa_info *tpa_info,
1152                                            int payload_off, int tcp_ts,
1153                                            struct sk_buff *skb)
1154 {
1155 #ifdef CONFIG_INET
1156         struct tcphdr *th;
1157         int len, nw_off;
1158         u16 outer_ip_off, inner_ip_off, inner_mac_off;
1159         u32 hdr_info = tpa_info->hdr_info;
1160         bool loopback = false;
1161
1162         inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info);
1163         inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info);
1164         outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info);
1165
1166         /* If the packet is an internal loopback packet, the offsets will
1167          * have an extra 4 bytes.
1168          */
1169         if (inner_mac_off == 4) {
1170                 loopback = true;
1171         } else if (inner_mac_off > 4) {
1172                 __be16 proto = *((__be16 *)(skb->data + inner_ip_off -
1173                                             ETH_HLEN - 2));
1174
1175                 /* We only support inner iPv4/ipv6.  If we don't see the
1176                  * correct protocol ID, it must be a loopback packet where
1177                  * the offsets are off by 4.
1178                  */
1179                 if (proto != htons(ETH_P_IP) && proto != htons(ETH_P_IPV6))
1180                         loopback = true;
1181         }
1182         if (loopback) {
1183                 /* internal loopback packet, subtract all offsets by 4 */
1184                 inner_ip_off -= 4;
1185                 inner_mac_off -= 4;
1186                 outer_ip_off -= 4;
1187         }
1188
1189         nw_off = inner_ip_off - ETH_HLEN;
1190         skb_set_network_header(skb, nw_off);
1191         if (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) {
1192                 struct ipv6hdr *iph = ipv6_hdr(skb);
1193
1194                 skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1195                 len = skb->len - skb_transport_offset(skb);
1196                 th = tcp_hdr(skb);
1197                 th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1198         } else {
1199                 struct iphdr *iph = ip_hdr(skb);
1200
1201                 skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1202                 len = skb->len - skb_transport_offset(skb);
1203                 th = tcp_hdr(skb);
1204                 th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1205         }
1206
1207         if (inner_mac_off) { /* tunnel */
1208                 struct udphdr *uh = NULL;
1209                 __be16 proto = *((__be16 *)(skb->data + outer_ip_off -
1210                                             ETH_HLEN - 2));
1211
1212                 if (proto == htons(ETH_P_IP)) {
1213                         struct iphdr *iph = (struct iphdr *)skb->data;
1214
1215                         if (iph->protocol == IPPROTO_UDP)
1216                                 uh = (struct udphdr *)(iph + 1);
1217                 } else {
1218                         struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
1219
1220                         if (iph->nexthdr == IPPROTO_UDP)
1221                                 uh = (struct udphdr *)(iph + 1);
1222                 }
1223                 if (uh) {
1224                         if (uh->check)
1225                                 skb_shinfo(skb)->gso_type |=
1226                                         SKB_GSO_UDP_TUNNEL_CSUM;
1227                         else
1228                                 skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
1229                 }
1230         }
1231 #endif
1232         return skb;
1233 }
1234
1235 #define BNXT_IPV4_HDR_SIZE      (sizeof(struct iphdr) + sizeof(struct tcphdr))
1236 #define BNXT_IPV6_HDR_SIZE      (sizeof(struct ipv6hdr) + sizeof(struct tcphdr))
1237
1238 static struct sk_buff *bnxt_gro_func_5730x(struct bnxt_tpa_info *tpa_info,
1239                                            int payload_off, int tcp_ts,
1240                                            struct sk_buff *skb)
1241 {
1242 #ifdef CONFIG_INET
1243         struct tcphdr *th;
1244         int len, nw_off, tcp_opt_len = 0;
1245
1246         if (tcp_ts)
1247                 tcp_opt_len = 12;
1248
1249         if (tpa_info->gso_type == SKB_GSO_TCPV4) {
1250                 struct iphdr *iph;
1251
1252                 nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len -
1253                          ETH_HLEN;
1254                 skb_set_network_header(skb, nw_off);
1255                 iph = ip_hdr(skb);
1256                 skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1257                 len = skb->len - skb_transport_offset(skb);
1258                 th = tcp_hdr(skb);
1259                 th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1260         } else if (tpa_info->gso_type == SKB_GSO_TCPV6) {
1261                 struct ipv6hdr *iph;
1262
1263                 nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len -
1264                          ETH_HLEN;
1265                 skb_set_network_header(skb, nw_off);
1266                 iph = ipv6_hdr(skb);
1267                 skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1268                 len = skb->len - skb_transport_offset(skb);
1269                 th = tcp_hdr(skb);
1270                 th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1271         } else {
1272                 dev_kfree_skb_any(skb);
1273                 return NULL;
1274         }
1275
1276         if (nw_off) { /* tunnel */
1277                 struct udphdr *uh = NULL;
1278
1279                 if (skb->protocol == htons(ETH_P_IP)) {
1280                         struct iphdr *iph = (struct iphdr *)skb->data;
1281
1282                         if (iph->protocol == IPPROTO_UDP)
1283                                 uh = (struct udphdr *)(iph + 1);
1284                 } else {
1285                         struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
1286
1287                         if (iph->nexthdr == IPPROTO_UDP)
1288                                 uh = (struct udphdr *)(iph + 1);
1289                 }
1290                 if (uh) {
1291                         if (uh->check)
1292                                 skb_shinfo(skb)->gso_type |=
1293                                         SKB_GSO_UDP_TUNNEL_CSUM;
1294                         else
1295                                 skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
1296                 }
1297         }
1298 #endif
1299         return skb;
1300 }
1301
1302 static inline struct sk_buff *bnxt_gro_skb(struct bnxt *bp,
1303                                            struct bnxt_tpa_info *tpa_info,
1304                                            struct rx_tpa_end_cmp *tpa_end,
1305                                            struct rx_tpa_end_cmp_ext *tpa_end1,
1306                                            struct sk_buff *skb)
1307 {
1308 #ifdef CONFIG_INET
1309         int payload_off;
1310         u16 segs;
1311
1312         segs = TPA_END_TPA_SEGS(tpa_end);
1313         if (segs == 1)
1314                 return skb;
1315
1316         NAPI_GRO_CB(skb)->count = segs;
1317         skb_shinfo(skb)->gso_size =
1318                 le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len);
1319         skb_shinfo(skb)->gso_type = tpa_info->gso_type;
1320         payload_off = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
1321                        RX_TPA_END_CMP_PAYLOAD_OFFSET) >>
1322                       RX_TPA_END_CMP_PAYLOAD_OFFSET_SHIFT;
1323         skb = bp->gro_func(tpa_info, payload_off, TPA_END_GRO_TS(tpa_end), skb);
1324         if (likely(skb))
1325                 tcp_gro_complete(skb);
1326 #endif
1327         return skb;
1328 }
1329
1330 /* Given the cfa_code of a received packet determine which
1331  * netdev (vf-rep or PF) the packet is destined to.
1332  */
1333 static struct net_device *bnxt_get_pkt_dev(struct bnxt *bp, u16 cfa_code)
1334 {
1335         struct net_device *dev = bnxt_get_vf_rep(bp, cfa_code);
1336
1337         /* if vf-rep dev is NULL, the must belongs to the PF */
1338         return dev ? dev : bp->dev;
1339 }
1340
1341 static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp,
1342                                            struct bnxt_napi *bnapi,
1343                                            u32 *raw_cons,
1344                                            struct rx_tpa_end_cmp *tpa_end,
1345                                            struct rx_tpa_end_cmp_ext *tpa_end1,
1346                                            u8 *event)
1347 {
1348         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1349         struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1350         u8 agg_id = TPA_END_AGG_ID(tpa_end);
1351         u8 *data_ptr, agg_bufs;
1352         u16 cp_cons = RING_CMP(*raw_cons);
1353         unsigned int len;
1354         struct bnxt_tpa_info *tpa_info;
1355         dma_addr_t mapping;
1356         struct sk_buff *skb;
1357         void *data;
1358
1359         if (unlikely(bnapi->in_reset)) {
1360                 int rc = bnxt_discard_rx(bp, bnapi, raw_cons, tpa_end);
1361
1362                 if (rc < 0)
1363                         return ERR_PTR(-EBUSY);
1364                 return NULL;
1365         }
1366
1367         tpa_info = &rxr->rx_tpa[agg_id];
1368         data = tpa_info->data;
1369         data_ptr = tpa_info->data_ptr;
1370         prefetch(data_ptr);
1371         len = tpa_info->len;
1372         mapping = tpa_info->mapping;
1373
1374         agg_bufs = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
1375                     RX_TPA_END_CMP_AGG_BUFS) >> RX_TPA_END_CMP_AGG_BUFS_SHIFT;
1376
1377         if (agg_bufs) {
1378                 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons))
1379                         return ERR_PTR(-EBUSY);
1380
1381                 *event |= BNXT_AGG_EVENT;
1382                 cp_cons = NEXT_CMP(cp_cons);
1383         }
1384
1385         if (unlikely(agg_bufs > MAX_SKB_FRAGS || TPA_END_ERRORS(tpa_end1))) {
1386                 bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1387                 if (agg_bufs > MAX_SKB_FRAGS)
1388                         netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n",
1389                                     agg_bufs, (int)MAX_SKB_FRAGS);
1390                 return NULL;
1391         }
1392
1393         if (len <= bp->rx_copy_thresh) {
1394                 skb = bnxt_copy_skb(bnapi, data_ptr, len, mapping);
1395                 if (!skb) {
1396                         bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1397                         return NULL;
1398                 }
1399         } else {
1400                 u8 *new_data;
1401                 dma_addr_t new_mapping;
1402
1403                 new_data = __bnxt_alloc_rx_data(bp, &new_mapping, GFP_ATOMIC);
1404                 if (!new_data) {
1405                         bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1406                         return NULL;
1407                 }
1408
1409                 tpa_info->data = new_data;
1410                 tpa_info->data_ptr = new_data + bp->rx_offset;
1411                 tpa_info->mapping = new_mapping;
1412
1413                 skb = build_skb(data, 0);
1414                 dma_unmap_single_attrs(&bp->pdev->dev, mapping,
1415                                        bp->rx_buf_use_size, bp->rx_dir,
1416                                        DMA_ATTR_WEAK_ORDERING);
1417
1418                 if (!skb) {
1419                         kfree(data);
1420                         bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1421                         return NULL;
1422                 }
1423                 skb_reserve(skb, bp->rx_offset);
1424                 skb_put(skb, len);
1425         }
1426
1427         if (agg_bufs) {
1428                 skb = bnxt_rx_pages(bp, bnapi, skb, cp_cons, agg_bufs);
1429                 if (!skb) {
1430                         /* Page reuse already handled by bnxt_rx_pages(). */
1431                         return NULL;
1432                 }
1433         }
1434
1435         skb->protocol =
1436                 eth_type_trans(skb, bnxt_get_pkt_dev(bp, tpa_info->cfa_code));
1437
1438         if (tpa_info->hash_type != PKT_HASH_TYPE_NONE)
1439                 skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type);
1440
1441         if ((tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) &&
1442             (skb->dev->features & NETIF_F_HW_VLAN_CTAG_RX)) {
1443                 u16 vlan_proto = tpa_info->metadata >>
1444                         RX_CMP_FLAGS2_METADATA_TPID_SFT;
1445                 u16 vtag = tpa_info->metadata & RX_CMP_FLAGS2_METADATA_TCI_MASK;
1446
1447                 __vlan_hwaccel_put_tag(skb, htons(vlan_proto), vtag);
1448         }
1449
1450         skb_checksum_none_assert(skb);
1451         if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) {
1452                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1453                 skb->csum_level =
1454                         (tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3;
1455         }
1456
1457         if (TPA_END_GRO(tpa_end))
1458                 skb = bnxt_gro_skb(bp, tpa_info, tpa_end, tpa_end1, skb);
1459
1460         return skb;
1461 }
1462
1463 static void bnxt_deliver_skb(struct bnxt *bp, struct bnxt_napi *bnapi,
1464                              struct sk_buff *skb)
1465 {
1466         if (skb->dev != bp->dev) {
1467                 /* this packet belongs to a vf-rep */
1468                 bnxt_vf_rep_rx(bp, skb);
1469                 return;
1470         }
1471         skb_record_rx_queue(skb, bnapi->index);
1472         napi_gro_receive(&bnapi->napi, skb);
1473 }
1474
1475 /* returns the following:
1476  * 1       - 1 packet successfully received
1477  * 0       - successful TPA_START, packet not completed yet
1478  * -EBUSY  - completion ring does not have all the agg buffers yet
1479  * -ENOMEM - packet aborted due to out of memory
1480  * -EIO    - packet aborted due to hw error indicated in BD
1481  */
1482 static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_napi *bnapi, u32 *raw_cons,
1483                        u8 *event)
1484 {
1485         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1486         struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1487         struct net_device *dev = bp->dev;
1488         struct rx_cmp *rxcmp;
1489         struct rx_cmp_ext *rxcmp1;
1490         u32 tmp_raw_cons = *raw_cons;
1491         u16 cfa_code, cons, prod, cp_cons = RING_CMP(tmp_raw_cons);
1492         struct bnxt_sw_rx_bd *rx_buf;
1493         unsigned int len;
1494         u8 *data_ptr, agg_bufs, cmp_type;
1495         dma_addr_t dma_addr;
1496         struct sk_buff *skb;
1497         void *data;
1498         int rc = 0;
1499         u32 misc;
1500
1501         rxcmp = (struct rx_cmp *)
1502                         &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1503
1504         tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
1505         cp_cons = RING_CMP(tmp_raw_cons);
1506         rxcmp1 = (struct rx_cmp_ext *)
1507                         &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1508
1509         if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1510                 return -EBUSY;
1511
1512         cmp_type = RX_CMP_TYPE(rxcmp);
1513
1514         prod = rxr->rx_prod;
1515
1516         if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP) {
1517                 bnxt_tpa_start(bp, rxr, (struct rx_tpa_start_cmp *)rxcmp,
1518                                (struct rx_tpa_start_cmp_ext *)rxcmp1);
1519
1520                 *event |= BNXT_RX_EVENT;
1521                 goto next_rx_no_prod_no_len;
1522
1523         } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1524                 skb = bnxt_tpa_end(bp, bnapi, &tmp_raw_cons,
1525                                    (struct rx_tpa_end_cmp *)rxcmp,
1526                                    (struct rx_tpa_end_cmp_ext *)rxcmp1, event);
1527
1528                 if (IS_ERR(skb))
1529                         return -EBUSY;
1530
1531                 rc = -ENOMEM;
1532                 if (likely(skb)) {
1533                         bnxt_deliver_skb(bp, bnapi, skb);
1534                         rc = 1;
1535                 }
1536                 *event |= BNXT_RX_EVENT;
1537                 goto next_rx_no_prod_no_len;
1538         }
1539
1540         cons = rxcmp->rx_cmp_opaque;
1541         rx_buf = &rxr->rx_buf_ring[cons];
1542         data = rx_buf->data;
1543         data_ptr = rx_buf->data_ptr;
1544         if (unlikely(cons != rxr->rx_next_cons)) {
1545                 int rc1 = bnxt_discard_rx(bp, bnapi, raw_cons, rxcmp);
1546
1547                 bnxt_sched_reset(bp, rxr);
1548                 return rc1;
1549         }
1550         prefetch(data_ptr);
1551
1552         misc = le32_to_cpu(rxcmp->rx_cmp_misc_v1);
1553         agg_bufs = (misc & RX_CMP_AGG_BUFS) >> RX_CMP_AGG_BUFS_SHIFT;
1554
1555         if (agg_bufs) {
1556                 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1557                         return -EBUSY;
1558
1559                 cp_cons = NEXT_CMP(cp_cons);
1560                 *event |= BNXT_AGG_EVENT;
1561         }
1562         *event |= BNXT_RX_EVENT;
1563
1564         rx_buf->data = NULL;
1565         if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) {
1566                 bnxt_reuse_rx_data(rxr, cons, data);
1567                 if (agg_bufs)
1568                         bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs);
1569
1570                 rc = -EIO;
1571                 goto next_rx;
1572         }
1573
1574         len = le32_to_cpu(rxcmp->rx_cmp_len_flags_type) >> RX_CMP_LEN_SHIFT;
1575         dma_addr = rx_buf->mapping;
1576
1577         if (bnxt_rx_xdp(bp, rxr, cons, data, &data_ptr, &len, event)) {
1578                 rc = 1;
1579                 goto next_rx;
1580         }
1581
1582         if (len <= bp->rx_copy_thresh) {
1583                 skb = bnxt_copy_skb(bnapi, data_ptr, len, dma_addr);
1584                 bnxt_reuse_rx_data(rxr, cons, data);
1585                 if (!skb) {
1586                         rc = -ENOMEM;
1587                         goto next_rx;
1588                 }
1589         } else {
1590                 u32 payload;
1591
1592                 if (rx_buf->data_ptr == data_ptr)
1593                         payload = misc & RX_CMP_PAYLOAD_OFFSET;
1594                 else
1595                         payload = 0;
1596                 skb = bp->rx_skb_func(bp, rxr, cons, data, data_ptr, dma_addr,
1597                                       payload | len);
1598                 if (!skb) {
1599                         rc = -ENOMEM;
1600                         goto next_rx;
1601                 }
1602         }
1603
1604         if (agg_bufs) {
1605                 skb = bnxt_rx_pages(bp, bnapi, skb, cp_cons, agg_bufs);
1606                 if (!skb) {
1607                         rc = -ENOMEM;
1608                         goto next_rx;
1609                 }
1610         }
1611
1612         if (RX_CMP_HASH_VALID(rxcmp)) {
1613                 u32 hash_type = RX_CMP_HASH_TYPE(rxcmp);
1614                 enum pkt_hash_types type = PKT_HASH_TYPE_L4;
1615
1616                 /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1617                 if (hash_type != 1 && hash_type != 3)
1618                         type = PKT_HASH_TYPE_L3;
1619                 skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type);
1620         }
1621
1622         cfa_code = RX_CMP_CFA_CODE(rxcmp1);
1623         skb->protocol = eth_type_trans(skb, bnxt_get_pkt_dev(bp, cfa_code));
1624
1625         if ((rxcmp1->rx_cmp_flags2 &
1626              cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN)) &&
1627             (skb->dev->features & NETIF_F_HW_VLAN_CTAG_RX)) {
1628                 u32 meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data);
1629                 u16 vtag = meta_data & RX_CMP_FLAGS2_METADATA_TCI_MASK;
1630                 u16 vlan_proto = meta_data >> RX_CMP_FLAGS2_METADATA_TPID_SFT;
1631
1632                 __vlan_hwaccel_put_tag(skb, htons(vlan_proto), vtag);
1633         }
1634
1635         skb_checksum_none_assert(skb);
1636         if (RX_CMP_L4_CS_OK(rxcmp1)) {
1637                 if (dev->features & NETIF_F_RXCSUM) {
1638                         skb->ip_summed = CHECKSUM_UNNECESSARY;
1639                         skb->csum_level = RX_CMP_ENCAP(rxcmp1);
1640                 }
1641         } else {
1642                 if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) {
1643                         if (dev->features & NETIF_F_RXCSUM)
1644                                 cpr->rx_l4_csum_errors++;
1645                 }
1646         }
1647
1648         bnxt_deliver_skb(bp, bnapi, skb);
1649         rc = 1;
1650
1651 next_rx:
1652         rxr->rx_prod = NEXT_RX(prod);
1653         rxr->rx_next_cons = NEXT_RX(cons);
1654
1655         cpr->rx_packets += 1;
1656         cpr->rx_bytes += len;
1657
1658 next_rx_no_prod_no_len:
1659         *raw_cons = tmp_raw_cons;
1660
1661         return rc;
1662 }
1663
1664 /* In netpoll mode, if we are using a combined completion ring, we need to
1665  * discard the rx packets and recycle the buffers.
1666  */
1667 static int bnxt_force_rx_discard(struct bnxt *bp, struct bnxt_napi *bnapi,
1668                                  u32 *raw_cons, u8 *event)
1669 {
1670         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1671         u32 tmp_raw_cons = *raw_cons;
1672         struct rx_cmp_ext *rxcmp1;
1673         struct rx_cmp *rxcmp;
1674         u16 cp_cons;
1675         u8 cmp_type;
1676
1677         cp_cons = RING_CMP(tmp_raw_cons);
1678         rxcmp = (struct rx_cmp *)
1679                         &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1680
1681         tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
1682         cp_cons = RING_CMP(tmp_raw_cons);
1683         rxcmp1 = (struct rx_cmp_ext *)
1684                         &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1685
1686         if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1687                 return -EBUSY;
1688
1689         cmp_type = RX_CMP_TYPE(rxcmp);
1690         if (cmp_type == CMP_TYPE_RX_L2_CMP) {
1691                 rxcmp1->rx_cmp_cfa_code_errors_v2 |=
1692                         cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
1693         } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1694                 struct rx_tpa_end_cmp_ext *tpa_end1;
1695
1696                 tpa_end1 = (struct rx_tpa_end_cmp_ext *)rxcmp1;
1697                 tpa_end1->rx_tpa_end_cmp_errors_v2 |=
1698                         cpu_to_le32(RX_TPA_END_CMP_ERRORS);
1699         }
1700         return bnxt_rx_pkt(bp, bnapi, raw_cons, event);
1701 }
1702
1703 #define BNXT_GET_EVENT_PORT(data)       \
1704         ((data) &                       \
1705          ASYNC_EVENT_CMPL_PORT_CONN_NOT_ALLOWED_EVENT_DATA1_PORT_ID_MASK)
1706
1707 static int bnxt_async_event_process(struct bnxt *bp,
1708                                     struct hwrm_async_event_cmpl *cmpl)
1709 {
1710         u16 event_id = le16_to_cpu(cmpl->event_id);
1711
1712         /* TODO CHIMP_FW: Define event id's for link change, error etc */
1713         switch (event_id) {
1714         case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE: {
1715                 u32 data1 = le32_to_cpu(cmpl->event_data1);
1716                 struct bnxt_link_info *link_info = &bp->link_info;
1717
1718                 if (BNXT_VF(bp))
1719                         goto async_event_process_exit;
1720
1721                 /* print unsupported speed warning in forced speed mode only */
1722                 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED) &&
1723                     (data1 & 0x20000)) {
1724                         u16 fw_speed = link_info->force_link_speed;
1725                         u32 speed = bnxt_fw_to_ethtool_speed(fw_speed);
1726
1727                         if (speed != SPEED_UNKNOWN)
1728                                 netdev_warn(bp->dev, "Link speed %d no longer supported\n",
1729                                             speed);
1730                 }
1731                 set_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, &bp->sp_event);
1732         }
1733         /* fall through */
1734         case ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE:
1735                 set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event);
1736                 break;
1737         case ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD:
1738                 set_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event);
1739                 break;
1740         case ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED: {
1741                 u32 data1 = le32_to_cpu(cmpl->event_data1);
1742                 u16 port_id = BNXT_GET_EVENT_PORT(data1);
1743
1744                 if (BNXT_VF(bp))
1745                         break;
1746
1747                 if (bp->pf.port_id != port_id)
1748                         break;
1749
1750                 set_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event);
1751                 break;
1752         }
1753         case ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE:
1754                 if (BNXT_PF(bp))
1755                         goto async_event_process_exit;
1756                 set_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event);
1757                 break;
1758         default:
1759                 goto async_event_process_exit;
1760         }
1761         bnxt_queue_sp_work(bp);
1762 async_event_process_exit:
1763         bnxt_ulp_async_events(bp, cmpl);
1764         return 0;
1765 }
1766
1767 static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp)
1768 {
1769         u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id;
1770         struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp;
1771         struct hwrm_fwd_req_cmpl *fwd_req_cmpl =
1772                                 (struct hwrm_fwd_req_cmpl *)txcmp;
1773
1774         switch (cmpl_type) {
1775         case CMPL_BASE_TYPE_HWRM_DONE:
1776                 seq_id = le16_to_cpu(h_cmpl->sequence_id);
1777                 if (seq_id == bp->hwrm_intr_seq_id)
1778                         bp->hwrm_intr_seq_id = HWRM_SEQ_ID_INVALID;
1779                 else
1780                         netdev_err(bp->dev, "Invalid hwrm seq id %d\n", seq_id);
1781                 break;
1782
1783         case CMPL_BASE_TYPE_HWRM_FWD_REQ:
1784                 vf_id = le16_to_cpu(fwd_req_cmpl->source_id);
1785
1786                 if ((vf_id < bp->pf.first_vf_id) ||
1787                     (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) {
1788                         netdev_err(bp->dev, "Msg contains invalid VF id %x\n",
1789                                    vf_id);
1790                         return -EINVAL;
1791                 }
1792
1793                 set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap);
1794                 set_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event);
1795                 bnxt_queue_sp_work(bp);
1796                 break;
1797
1798         case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT:
1799                 bnxt_async_event_process(bp,
1800                                          (struct hwrm_async_event_cmpl *)txcmp);
1801
1802         default:
1803                 break;
1804         }
1805
1806         return 0;
1807 }
1808
1809 static irqreturn_t bnxt_msix(int irq, void *dev_instance)
1810 {
1811         struct bnxt_napi *bnapi = dev_instance;
1812         struct bnxt *bp = bnapi->bp;
1813         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1814         u32 cons = RING_CMP(cpr->cp_raw_cons);
1815
1816         cpr->event_ctr++;
1817         prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
1818         napi_schedule(&bnapi->napi);
1819         return IRQ_HANDLED;
1820 }
1821
1822 static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr)
1823 {
1824         u32 raw_cons = cpr->cp_raw_cons;
1825         u16 cons = RING_CMP(raw_cons);
1826         struct tx_cmp *txcmp;
1827
1828         txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
1829
1830         return TX_CMP_VALID(txcmp, raw_cons);
1831 }
1832
1833 static irqreturn_t bnxt_inta(int irq, void *dev_instance)
1834 {
1835         struct bnxt_napi *bnapi = dev_instance;
1836         struct bnxt *bp = bnapi->bp;
1837         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1838         u32 cons = RING_CMP(cpr->cp_raw_cons);
1839         u32 int_status;
1840
1841         prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
1842
1843         if (!bnxt_has_work(bp, cpr)) {
1844                 int_status = readl(bp->bar0 + BNXT_CAG_REG_LEGACY_INT_STATUS);
1845                 /* return if erroneous interrupt */
1846                 if (!(int_status & (0x10000 << cpr->cp_ring_struct.fw_ring_id)))
1847                         return IRQ_NONE;
1848         }
1849
1850         /* disable ring IRQ */
1851         BNXT_CP_DB_IRQ_DIS(cpr->cp_doorbell);
1852
1853         /* Return here if interrupt is shared and is disabled. */
1854         if (unlikely(atomic_read(&bp->intr_sem) != 0))
1855                 return IRQ_HANDLED;
1856
1857         napi_schedule(&bnapi->napi);
1858         return IRQ_HANDLED;
1859 }
1860
1861 static int bnxt_poll_work(struct bnxt *bp, struct bnxt_napi *bnapi, int budget)
1862 {
1863         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1864         u32 raw_cons = cpr->cp_raw_cons;
1865         u32 cons;
1866         int tx_pkts = 0;
1867         int rx_pkts = 0;
1868         u8 event = 0;
1869         struct tx_cmp *txcmp;
1870
1871         while (1) {
1872                 int rc;
1873
1874                 cons = RING_CMP(raw_cons);
1875                 txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
1876
1877                 if (!TX_CMP_VALID(txcmp, raw_cons))
1878                         break;
1879
1880                 /* The valid test of the entry must be done first before
1881                  * reading any further.
1882                  */
1883                 dma_rmb();
1884                 if (TX_CMP_TYPE(txcmp) == CMP_TYPE_TX_L2_CMP) {
1885                         tx_pkts++;
1886                         /* return full budget so NAPI will complete. */
1887                         if (unlikely(tx_pkts > bp->tx_wake_thresh))
1888                                 rx_pkts = budget;
1889                 } else if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
1890                         if (likely(budget))
1891                                 rc = bnxt_rx_pkt(bp, bnapi, &raw_cons, &event);
1892                         else
1893                                 rc = bnxt_force_rx_discard(bp, bnapi, &raw_cons,
1894                                                            &event);
1895                         if (likely(rc >= 0))
1896                                 rx_pkts += rc;
1897                         /* Increment rx_pkts when rc is -ENOMEM to count towards
1898                          * the NAPI budget.  Otherwise, we may potentially loop
1899                          * here forever if we consistently cannot allocate
1900                          * buffers.
1901                          */
1902                         else if (rc == -ENOMEM && budget)
1903                                 rx_pkts++;
1904                         else if (rc == -EBUSY)  /* partial completion */
1905                                 break;
1906                 } else if (unlikely((TX_CMP_TYPE(txcmp) ==
1907                                      CMPL_BASE_TYPE_HWRM_DONE) ||
1908                                     (TX_CMP_TYPE(txcmp) ==
1909                                      CMPL_BASE_TYPE_HWRM_FWD_REQ) ||
1910                                     (TX_CMP_TYPE(txcmp) ==
1911                                      CMPL_BASE_TYPE_HWRM_ASYNC_EVENT))) {
1912                         bnxt_hwrm_handler(bp, txcmp);
1913                 }
1914                 raw_cons = NEXT_RAW_CMP(raw_cons);
1915
1916                 if (rx_pkts == budget)
1917                         break;
1918         }
1919
1920         if (event & BNXT_TX_EVENT) {
1921                 struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
1922                 void __iomem *db = txr->tx_doorbell;
1923                 u16 prod = txr->tx_prod;
1924
1925                 /* Sync BD data before updating doorbell */
1926                 wmb();
1927
1928                 bnxt_db_write_relaxed(bp, db, DB_KEY_TX | prod);
1929         }
1930
1931         cpr->cp_raw_cons = raw_cons;
1932         /* ACK completion ring before freeing tx ring and producing new
1933          * buffers in rx/agg rings to prevent overflowing the completion
1934          * ring.
1935          */
1936         BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
1937
1938         if (tx_pkts)
1939                 bnapi->tx_int(bp, bnapi, tx_pkts);
1940
1941         if (event & BNXT_RX_EVENT) {
1942                 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1943
1944                 bnxt_db_write(bp, rxr->rx_doorbell, DB_KEY_RX | rxr->rx_prod);
1945                 if (event & BNXT_AGG_EVENT)
1946                         bnxt_db_write(bp, rxr->rx_agg_doorbell,
1947                                       DB_KEY_RX | rxr->rx_agg_prod);
1948         }
1949         return rx_pkts;
1950 }
1951
1952 static int bnxt_poll_nitroa0(struct napi_struct *napi, int budget)
1953 {
1954         struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
1955         struct bnxt *bp = bnapi->bp;
1956         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1957         struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1958         struct tx_cmp *txcmp;
1959         struct rx_cmp_ext *rxcmp1;
1960         u32 cp_cons, tmp_raw_cons;
1961         u32 raw_cons = cpr->cp_raw_cons;
1962         u32 rx_pkts = 0;
1963         u8 event = 0;
1964
1965         while (1) {
1966                 int rc;
1967
1968                 cp_cons = RING_CMP(raw_cons);
1969                 txcmp = &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1970
1971                 if (!TX_CMP_VALID(txcmp, raw_cons))
1972                         break;
1973
1974                 if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
1975                         tmp_raw_cons = NEXT_RAW_CMP(raw_cons);
1976                         cp_cons = RING_CMP(tmp_raw_cons);
1977                         rxcmp1 = (struct rx_cmp_ext *)
1978                           &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1979
1980                         if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1981                                 break;
1982
1983                         /* force an error to recycle the buffer */
1984                         rxcmp1->rx_cmp_cfa_code_errors_v2 |=
1985                                 cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
1986
1987                         rc = bnxt_rx_pkt(bp, bnapi, &raw_cons, &event);
1988                         if (likely(rc == -EIO) && budget)
1989                                 rx_pkts++;
1990                         else if (rc == -EBUSY)  /* partial completion */
1991                                 break;
1992                 } else if (unlikely(TX_CMP_TYPE(txcmp) ==
1993                                     CMPL_BASE_TYPE_HWRM_DONE)) {
1994                         bnxt_hwrm_handler(bp, txcmp);
1995                 } else {
1996                         netdev_err(bp->dev,
1997                                    "Invalid completion received on special ring\n");
1998                 }
1999                 raw_cons = NEXT_RAW_CMP(raw_cons);
2000
2001                 if (rx_pkts == budget)
2002                         break;
2003         }
2004
2005         cpr->cp_raw_cons = raw_cons;
2006         BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
2007         bnxt_db_write(bp, rxr->rx_doorbell, DB_KEY_RX | rxr->rx_prod);
2008
2009         if (event & BNXT_AGG_EVENT)
2010                 bnxt_db_write(bp, rxr->rx_agg_doorbell,
2011                               DB_KEY_RX | rxr->rx_agg_prod);
2012
2013         if (!bnxt_has_work(bp, cpr) && rx_pkts < budget) {
2014                 napi_complete_done(napi, rx_pkts);
2015                 BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons);
2016         }
2017         return rx_pkts;
2018 }
2019
2020 static int bnxt_poll(struct napi_struct *napi, int budget)
2021 {
2022         struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2023         struct bnxt *bp = bnapi->bp;
2024         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2025         int work_done = 0;
2026
2027         while (1) {
2028                 work_done += bnxt_poll_work(bp, bnapi, budget - work_done);
2029
2030                 if (work_done >= budget)
2031                         break;
2032
2033                 if (!bnxt_has_work(bp, cpr)) {
2034                         if (napi_complete_done(napi, work_done))
2035                                 BNXT_CP_DB_REARM(cpr->cp_doorbell,
2036                                                  cpr->cp_raw_cons);
2037                         break;
2038                 }
2039         }
2040         if (bp->flags & BNXT_FLAG_DIM) {
2041                 struct net_dim_sample dim_sample;
2042
2043                 net_dim_sample(cpr->event_ctr,
2044                                cpr->rx_packets,
2045                                cpr->rx_bytes,
2046                                &dim_sample);
2047                 net_dim(&cpr->dim, dim_sample);
2048         }
2049         mmiowb();
2050         return work_done;
2051 }
2052
2053 static void bnxt_free_tx_skbs(struct bnxt *bp)
2054 {
2055         int i, max_idx;
2056         struct pci_dev *pdev = bp->pdev;
2057
2058         if (!bp->tx_ring)
2059                 return;
2060
2061         max_idx = bp->tx_nr_pages * TX_DESC_CNT;
2062         for (i = 0; i < bp->tx_nr_rings; i++) {
2063                 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2064                 int j;
2065
2066                 for (j = 0; j < max_idx;) {
2067                         struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
2068                         struct sk_buff *skb = tx_buf->skb;
2069                         int k, last;
2070
2071                         if (!skb) {
2072                                 j++;
2073                                 continue;
2074                         }
2075
2076                         tx_buf->skb = NULL;
2077
2078                         if (tx_buf->is_push) {
2079                                 dev_kfree_skb(skb);
2080                                 j += 2;
2081                                 continue;
2082                         }
2083
2084                         dma_unmap_single(&pdev->dev,
2085                                          dma_unmap_addr(tx_buf, mapping),
2086                                          skb_headlen(skb),
2087                                          PCI_DMA_TODEVICE);
2088
2089                         last = tx_buf->nr_frags;
2090                         j += 2;
2091                         for (k = 0; k < last; k++, j++) {
2092                                 int ring_idx = j & bp->tx_ring_mask;
2093                                 skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2094
2095                                 tx_buf = &txr->tx_buf_ring[ring_idx];
2096                                 dma_unmap_page(
2097                                         &pdev->dev,
2098                                         dma_unmap_addr(tx_buf, mapping),
2099                                         skb_frag_size(frag), PCI_DMA_TODEVICE);
2100                         }
2101                         dev_kfree_skb(skb);
2102                 }
2103                 netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i));
2104         }
2105 }
2106
2107 static void bnxt_free_rx_skbs(struct bnxt *bp)
2108 {
2109         int i, max_idx, max_agg_idx;
2110         struct pci_dev *pdev = bp->pdev;
2111
2112         if (!bp->rx_ring)
2113                 return;
2114
2115         max_idx = bp->rx_nr_pages * RX_DESC_CNT;
2116         max_agg_idx = bp->rx_agg_nr_pages * RX_DESC_CNT;
2117         for (i = 0; i < bp->rx_nr_rings; i++) {
2118                 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2119                 int j;
2120
2121                 if (rxr->rx_tpa) {
2122                         for (j = 0; j < MAX_TPA; j++) {
2123                                 struct bnxt_tpa_info *tpa_info =
2124                                                         &rxr->rx_tpa[j];
2125                                 u8 *data = tpa_info->data;
2126
2127                                 if (!data)
2128                                         continue;
2129
2130                                 dma_unmap_single_attrs(&pdev->dev,
2131                                                        tpa_info->mapping,
2132                                                        bp->rx_buf_use_size,
2133                                                        bp->rx_dir,
2134                                                        DMA_ATTR_WEAK_ORDERING);
2135
2136                                 tpa_info->data = NULL;
2137
2138                                 kfree(data);
2139                         }
2140                 }
2141
2142                 for (j = 0; j < max_idx; j++) {
2143                         struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[j];
2144                         dma_addr_t mapping = rx_buf->mapping;
2145                         void *data = rx_buf->data;
2146
2147                         if (!data)
2148                                 continue;
2149
2150                         rx_buf->data = NULL;
2151
2152                         if (BNXT_RX_PAGE_MODE(bp)) {
2153                                 mapping -= bp->rx_dma_offset;
2154                                 dma_unmap_page_attrs(&pdev->dev, mapping,
2155                                                      PAGE_SIZE, bp->rx_dir,
2156                                                      DMA_ATTR_WEAK_ORDERING);
2157                                 __free_page(data);
2158                         } else {
2159                                 dma_unmap_single_attrs(&pdev->dev, mapping,
2160                                                        bp->rx_buf_use_size,
2161                                                        bp->rx_dir,
2162                                                        DMA_ATTR_WEAK_ORDERING);
2163                                 kfree(data);
2164                         }
2165                 }
2166
2167                 for (j = 0; j < max_agg_idx; j++) {
2168                         struct bnxt_sw_rx_agg_bd *rx_agg_buf =
2169                                 &rxr->rx_agg_ring[j];
2170                         struct page *page = rx_agg_buf->page;
2171
2172                         if (!page)
2173                                 continue;
2174
2175                         dma_unmap_page_attrs(&pdev->dev, rx_agg_buf->mapping,
2176                                              BNXT_RX_PAGE_SIZE,
2177                                              PCI_DMA_FROMDEVICE,
2178                                              DMA_ATTR_WEAK_ORDERING);
2179
2180                         rx_agg_buf->page = NULL;
2181                         __clear_bit(j, rxr->rx_agg_bmap);
2182
2183                         __free_page(page);
2184                 }
2185                 if (rxr->rx_page) {
2186                         __free_page(rxr->rx_page);
2187                         rxr->rx_page = NULL;
2188                 }
2189         }
2190 }
2191
2192 static void bnxt_free_skbs(struct bnxt *bp)
2193 {
2194         bnxt_free_tx_skbs(bp);
2195         bnxt_free_rx_skbs(bp);
2196 }
2197
2198 static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_struct *ring)
2199 {
2200         struct pci_dev *pdev = bp->pdev;
2201         int i;
2202
2203         for (i = 0; i < ring->nr_pages; i++) {
2204                 if (!ring->pg_arr[i])
2205                         continue;
2206
2207                 dma_free_coherent(&pdev->dev, ring->page_size,
2208                                   ring->pg_arr[i], ring->dma_arr[i]);
2209
2210                 ring->pg_arr[i] = NULL;
2211         }
2212         if (ring->pg_tbl) {
2213                 dma_free_coherent(&pdev->dev, ring->nr_pages * 8,
2214                                   ring->pg_tbl, ring->pg_tbl_map);
2215                 ring->pg_tbl = NULL;
2216         }
2217         if (ring->vmem_size && *ring->vmem) {
2218                 vfree(*ring->vmem);
2219                 *ring->vmem = NULL;
2220         }
2221 }
2222
2223 static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_struct *ring)
2224 {
2225         int i;
2226         struct pci_dev *pdev = bp->pdev;
2227
2228         if (ring->nr_pages > 1) {
2229                 ring->pg_tbl = dma_alloc_coherent(&pdev->dev,
2230                                                   ring->nr_pages * 8,
2231                                                   &ring->pg_tbl_map,
2232                                                   GFP_KERNEL);
2233                 if (!ring->pg_tbl)
2234                         return -ENOMEM;
2235         }
2236
2237         for (i = 0; i < ring->nr_pages; i++) {
2238                 ring->pg_arr[i] = dma_alloc_coherent(&pdev->dev,
2239                                                      ring->page_size,
2240                                                      &ring->dma_arr[i],
2241                                                      GFP_KERNEL);
2242                 if (!ring->pg_arr[i])
2243                         return -ENOMEM;
2244
2245                 if (ring->nr_pages > 1)
2246                         ring->pg_tbl[i] = cpu_to_le64(ring->dma_arr[i]);
2247         }
2248
2249         if (ring->vmem_size) {
2250                 *ring->vmem = vzalloc(ring->vmem_size);
2251                 if (!(*ring->vmem))
2252                         return -ENOMEM;
2253         }
2254         return 0;
2255 }
2256
2257 static void bnxt_free_rx_rings(struct bnxt *bp)
2258 {
2259         int i;
2260
2261         if (!bp->rx_ring)
2262                 return;
2263
2264         for (i = 0; i < bp->rx_nr_rings; i++) {
2265                 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2266                 struct bnxt_ring_struct *ring;
2267
2268                 if (rxr->xdp_prog)
2269                         bpf_prog_put(rxr->xdp_prog);
2270
2271                 if (xdp_rxq_info_is_reg(&rxr->xdp_rxq))
2272                         xdp_rxq_info_unreg(&rxr->xdp_rxq);
2273
2274                 kfree(rxr->rx_tpa);
2275                 rxr->rx_tpa = NULL;
2276
2277                 kfree(rxr->rx_agg_bmap);
2278                 rxr->rx_agg_bmap = NULL;
2279
2280                 ring = &rxr->rx_ring_struct;
2281                 bnxt_free_ring(bp, ring);
2282
2283                 ring = &rxr->rx_agg_ring_struct;
2284                 bnxt_free_ring(bp, ring);
2285         }
2286 }
2287
2288 static int bnxt_alloc_rx_rings(struct bnxt *bp)
2289 {
2290         int i, rc, agg_rings = 0, tpa_rings = 0;
2291
2292         if (!bp->rx_ring)
2293                 return -ENOMEM;
2294
2295         if (bp->flags & BNXT_FLAG_AGG_RINGS)
2296                 agg_rings = 1;
2297
2298         if (bp->flags & BNXT_FLAG_TPA)
2299                 tpa_rings = 1;
2300
2301         for (i = 0; i < bp->rx_nr_rings; i++) {
2302                 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2303                 struct bnxt_ring_struct *ring;
2304
2305                 ring = &rxr->rx_ring_struct;
2306
2307                 rc = xdp_rxq_info_reg(&rxr->xdp_rxq, bp->dev, i);
2308                 if (rc < 0)
2309                         return rc;
2310
2311                 rc = bnxt_alloc_ring(bp, ring);
2312                 if (rc)
2313                         return rc;
2314
2315                 if (agg_rings) {
2316                         u16 mem_size;
2317
2318                         ring = &rxr->rx_agg_ring_struct;
2319                         rc = bnxt_alloc_ring(bp, ring);
2320                         if (rc)
2321                                 return rc;
2322
2323                         ring->grp_idx = i;
2324                         rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1;
2325                         mem_size = rxr->rx_agg_bmap_size / 8;
2326                         rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL);
2327                         if (!rxr->rx_agg_bmap)
2328                                 return -ENOMEM;
2329
2330                         if (tpa_rings) {
2331                                 rxr->rx_tpa = kcalloc(MAX_TPA,
2332                                                 sizeof(struct bnxt_tpa_info),
2333                                                 GFP_KERNEL);
2334                                 if (!rxr->rx_tpa)
2335                                         return -ENOMEM;
2336                         }
2337                 }
2338         }
2339         return 0;
2340 }
2341
2342 static void bnxt_free_tx_rings(struct bnxt *bp)
2343 {
2344         int i;
2345         struct pci_dev *pdev = bp->pdev;
2346
2347         if (!bp->tx_ring)
2348                 return;
2349
2350         for (i = 0; i < bp->tx_nr_rings; i++) {
2351                 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2352                 struct bnxt_ring_struct *ring;
2353
2354                 if (txr->tx_push) {
2355                         dma_free_coherent(&pdev->dev, bp->tx_push_size,
2356                                           txr->tx_push, txr->tx_push_mapping);
2357                         txr->tx_push = NULL;
2358                 }
2359
2360                 ring = &txr->tx_ring_struct;
2361
2362                 bnxt_free_ring(bp, ring);
2363         }
2364 }
2365
2366 static int bnxt_alloc_tx_rings(struct bnxt *bp)
2367 {
2368         int i, j, rc;
2369         struct pci_dev *pdev = bp->pdev;
2370
2371         bp->tx_push_size = 0;
2372         if (bp->tx_push_thresh) {
2373                 int push_size;
2374
2375                 push_size  = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) +
2376                                         bp->tx_push_thresh);
2377
2378                 if (push_size > 256) {
2379                         push_size = 0;
2380                         bp->tx_push_thresh = 0;
2381                 }
2382
2383                 bp->tx_push_size = push_size;
2384         }
2385
2386         for (i = 0, j = 0; i < bp->tx_nr_rings; i++) {
2387                 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2388                 struct bnxt_ring_struct *ring;
2389                 u8 qidx;
2390
2391                 ring = &txr->tx_ring_struct;
2392
2393                 rc = bnxt_alloc_ring(bp, ring);
2394                 if (rc)
2395                         return rc;
2396
2397                 ring->grp_idx = txr->bnapi->index;
2398                 if (bp->tx_push_size) {
2399                         dma_addr_t mapping;
2400
2401                         /* One pre-allocated DMA buffer to backup
2402                          * TX push operation
2403                          */
2404                         txr->tx_push = dma_alloc_coherent(&pdev->dev,
2405                                                 bp->tx_push_size,
2406                                                 &txr->tx_push_mapping,
2407                                                 GFP_KERNEL);
2408
2409                         if (!txr->tx_push)
2410                                 return -ENOMEM;
2411
2412                         mapping = txr->tx_push_mapping +
2413                                 sizeof(struct tx_push_bd);
2414                         txr->data_mapping = cpu_to_le64(mapping);
2415
2416                         memset(txr->tx_push, 0, sizeof(struct tx_push_bd));
2417                 }
2418                 qidx = bp->tc_to_qidx[j];
2419                 ring->queue_id = bp->q_info[qidx].queue_id;
2420                 if (i < bp->tx_nr_rings_xdp)
2421                         continue;
2422                 if (i % bp->tx_nr_rings_per_tc == (bp->tx_nr_rings_per_tc - 1))
2423                         j++;
2424         }
2425         return 0;
2426 }
2427
2428 static void bnxt_free_cp_rings(struct bnxt *bp)
2429 {
2430         int i;
2431
2432         if (!bp->bnapi)
2433                 return;
2434
2435         for (i = 0; i < bp->cp_nr_rings; i++) {
2436                 struct bnxt_napi *bnapi = bp->bnapi[i];
2437                 struct bnxt_cp_ring_info *cpr;
2438                 struct bnxt_ring_struct *ring;
2439
2440                 if (!bnapi)
2441                         continue;
2442
2443                 cpr = &bnapi->cp_ring;
2444                 ring = &cpr->cp_ring_struct;
2445
2446                 bnxt_free_ring(bp, ring);
2447         }
2448 }
2449
2450 static int bnxt_alloc_cp_rings(struct bnxt *bp)
2451 {
2452         int i, rc, ulp_base_vec, ulp_msix;
2453
2454         ulp_msix = bnxt_get_ulp_msix_num(bp);
2455         ulp_base_vec = bnxt_get_ulp_msix_base(bp);
2456         for (i = 0; i < bp->cp_nr_rings; i++) {
2457                 struct bnxt_napi *bnapi = bp->bnapi[i];
2458                 struct bnxt_cp_ring_info *cpr;
2459                 struct bnxt_ring_struct *ring;
2460
2461                 if (!bnapi)
2462                         continue;
2463
2464                 cpr = &bnapi->cp_ring;
2465                 ring = &cpr->cp_ring_struct;
2466
2467                 rc = bnxt_alloc_ring(bp, ring);
2468                 if (rc)
2469                         return rc;
2470
2471                 if (ulp_msix && i >= ulp_base_vec)
2472                         ring->map_idx = i + ulp_msix;
2473                 else
2474                         ring->map_idx = i;
2475         }
2476         return 0;
2477 }
2478
2479 static void bnxt_init_ring_struct(struct bnxt *bp)
2480 {
2481         int i;
2482
2483         for (i = 0; i < bp->cp_nr_rings; i++) {
2484                 struct bnxt_napi *bnapi = bp->bnapi[i];
2485                 struct bnxt_cp_ring_info *cpr;
2486                 struct bnxt_rx_ring_info *rxr;
2487                 struct bnxt_tx_ring_info *txr;
2488                 struct bnxt_ring_struct *ring;
2489
2490                 if (!bnapi)
2491                         continue;
2492
2493                 cpr = &bnapi->cp_ring;
2494                 ring = &cpr->cp_ring_struct;
2495                 ring->nr_pages = bp->cp_nr_pages;
2496                 ring->page_size = HW_CMPD_RING_SIZE;
2497                 ring->pg_arr = (void **)cpr->cp_desc_ring;
2498                 ring->dma_arr = cpr->cp_desc_mapping;
2499                 ring->vmem_size = 0;
2500
2501                 rxr = bnapi->rx_ring;
2502                 if (!rxr)
2503                         goto skip_rx;
2504
2505                 ring = &rxr->rx_ring_struct;
2506                 ring->nr_pages = bp->rx_nr_pages;
2507                 ring->page_size = HW_RXBD_RING_SIZE;
2508                 ring->pg_arr = (void **)rxr->rx_desc_ring;
2509                 ring->dma_arr = rxr->rx_desc_mapping;
2510                 ring->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages;
2511                 ring->vmem = (void **)&rxr->rx_buf_ring;
2512
2513                 ring = &rxr->rx_agg_ring_struct;
2514                 ring->nr_pages = bp->rx_agg_nr_pages;
2515                 ring->page_size = HW_RXBD_RING_SIZE;
2516                 ring->pg_arr = (void **)rxr->rx_agg_desc_ring;
2517                 ring->dma_arr = rxr->rx_agg_desc_mapping;
2518                 ring->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages;
2519                 ring->vmem = (void **)&rxr->rx_agg_ring;
2520
2521 skip_rx:
2522                 txr = bnapi->tx_ring;
2523                 if (!txr)
2524                         continue;
2525
2526                 ring = &txr->tx_ring_struct;
2527                 ring->nr_pages = bp->tx_nr_pages;
2528                 ring->page_size = HW_RXBD_RING_SIZE;
2529                 ring->pg_arr = (void **)txr->tx_desc_ring;
2530                 ring->dma_arr = txr->tx_desc_mapping;
2531                 ring->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages;
2532                 ring->vmem = (void **)&txr->tx_buf_ring;
2533         }
2534 }
2535
2536 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type)
2537 {
2538         int i;
2539         u32 prod;
2540         struct rx_bd **rx_buf_ring;
2541
2542         rx_buf_ring = (struct rx_bd **)ring->pg_arr;
2543         for (i = 0, prod = 0; i < ring->nr_pages; i++) {
2544                 int j;
2545                 struct rx_bd *rxbd;
2546
2547                 rxbd = rx_buf_ring[i];
2548                 if (!rxbd)
2549                         continue;
2550
2551                 for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) {
2552                         rxbd->rx_bd_len_flags_type = cpu_to_le32(type);
2553                         rxbd->rx_bd_opaque = prod;
2554                 }
2555         }
2556 }
2557
2558 static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr)
2559 {
2560         struct net_device *dev = bp->dev;
2561         struct bnxt_rx_ring_info *rxr;
2562         struct bnxt_ring_struct *ring;
2563         u32 prod, type;
2564         int i;
2565
2566         type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) |
2567                 RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP;
2568
2569         if (NET_IP_ALIGN == 2)
2570                 type |= RX_BD_FLAGS_SOP;
2571
2572         rxr = &bp->rx_ring[ring_nr];
2573         ring = &rxr->rx_ring_struct;
2574         bnxt_init_rxbd_pages(ring, type);
2575
2576         if (BNXT_RX_PAGE_MODE(bp) && bp->xdp_prog) {
2577                 rxr->xdp_prog = bpf_prog_add(bp->xdp_prog, 1);
2578                 if (IS_ERR(rxr->xdp_prog)) {
2579                         int rc = PTR_ERR(rxr->xdp_prog);
2580
2581                         rxr->xdp_prog = NULL;
2582                         return rc;
2583                 }
2584         }
2585         prod = rxr->rx_prod;
2586         for (i = 0; i < bp->rx_ring_size; i++) {
2587                 if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL) != 0) {
2588                         netdev_warn(dev, "init'ed rx ring %d with %d/%d skbs only\n",
2589                                     ring_nr, i, bp->rx_ring_size);
2590                         break;
2591                 }
2592                 prod = NEXT_RX(prod);
2593         }
2594         rxr->rx_prod = prod;
2595         ring->fw_ring_id = INVALID_HW_RING_ID;
2596
2597         ring = &rxr->rx_agg_ring_struct;
2598         ring->fw_ring_id = INVALID_HW_RING_ID;
2599
2600         if (!(bp->flags & BNXT_FLAG_AGG_RINGS))
2601                 return 0;
2602
2603         type = ((u32)BNXT_RX_PAGE_SIZE << RX_BD_LEN_SHIFT) |
2604                 RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP;
2605
2606         bnxt_init_rxbd_pages(ring, type);
2607
2608         prod = rxr->rx_agg_prod;
2609         for (i = 0; i < bp->rx_agg_ring_size; i++) {
2610                 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL) != 0) {
2611                         netdev_warn(dev, "init'ed rx ring %d with %d/%d pages only\n",
2612                                     ring_nr, i, bp->rx_ring_size);
2613                         break;
2614                 }
2615                 prod = NEXT_RX_AGG(prod);
2616         }
2617         rxr->rx_agg_prod = prod;
2618
2619         if (bp->flags & BNXT_FLAG_TPA) {
2620                 if (rxr->rx_tpa) {
2621                         u8 *data;
2622                         dma_addr_t mapping;
2623
2624                         for (i = 0; i < MAX_TPA; i++) {
2625                                 data = __bnxt_alloc_rx_data(bp, &mapping,
2626                                                             GFP_KERNEL);
2627                                 if (!data)
2628                                         return -ENOMEM;
2629
2630                                 rxr->rx_tpa[i].data = data;
2631                                 rxr->rx_tpa[i].data_ptr = data + bp->rx_offset;
2632                                 rxr->rx_tpa[i].mapping = mapping;
2633                         }
2634                 } else {
2635                         netdev_err(bp->dev, "No resource allocated for LRO/GRO\n");
2636                         return -ENOMEM;
2637                 }
2638         }
2639
2640         return 0;
2641 }
2642
2643 static void bnxt_init_cp_rings(struct bnxt *bp)
2644 {
2645         int i;
2646
2647         for (i = 0; i < bp->cp_nr_rings; i++) {
2648                 struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
2649                 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
2650
2651                 ring->fw_ring_id = INVALID_HW_RING_ID;
2652                 cpr->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks;
2653                 cpr->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs;
2654         }
2655 }
2656
2657 static int bnxt_init_rx_rings(struct bnxt *bp)
2658 {
2659         int i, rc = 0;
2660
2661         if (BNXT_RX_PAGE_MODE(bp)) {
2662                 bp->rx_offset = NET_IP_ALIGN + XDP_PACKET_HEADROOM;
2663                 bp->rx_dma_offset = XDP_PACKET_HEADROOM;
2664         } else {
2665                 bp->rx_offset = BNXT_RX_OFFSET;
2666                 bp->rx_dma_offset = BNXT_RX_DMA_OFFSET;
2667         }
2668
2669         for (i = 0; i < bp->rx_nr_rings; i++) {
2670                 rc = bnxt_init_one_rx_ring(bp, i);
2671                 if (rc)
2672                         break;
2673         }
2674
2675         return rc;
2676 }
2677
2678 static int bnxt_init_tx_rings(struct bnxt *bp)
2679 {
2680         u16 i;
2681
2682         bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2,
2683                                    MAX_SKB_FRAGS + 1);
2684
2685         for (i = 0; i < bp->tx_nr_rings; i++) {
2686                 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2687                 struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
2688
2689                 ring->fw_ring_id = INVALID_HW_RING_ID;
2690         }
2691
2692         return 0;
2693 }
2694
2695 static void bnxt_free_ring_grps(struct bnxt *bp)
2696 {
2697         kfree(bp->grp_info);
2698         bp->grp_info = NULL;
2699 }
2700
2701 static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init)
2702 {
2703         int i;
2704
2705         if (irq_re_init) {
2706                 bp->grp_info = kcalloc(bp->cp_nr_rings,
2707                                        sizeof(struct bnxt_ring_grp_info),
2708                                        GFP_KERNEL);
2709                 if (!bp->grp_info)
2710                         return -ENOMEM;
2711         }
2712         for (i = 0; i < bp->cp_nr_rings; i++) {
2713                 if (irq_re_init)
2714                         bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID;
2715                 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
2716                 bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID;
2717                 bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID;
2718                 bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
2719         }
2720         return 0;
2721 }
2722
2723 static void bnxt_free_vnics(struct bnxt *bp)
2724 {
2725         kfree(bp->vnic_info);
2726         bp->vnic_info = NULL;
2727         bp->nr_vnics = 0;
2728 }
2729
2730 static int bnxt_alloc_vnics(struct bnxt *bp)
2731 {
2732         int num_vnics = 1;
2733
2734 #ifdef CONFIG_RFS_ACCEL
2735         if (bp->flags & BNXT_FLAG_RFS)
2736                 num_vnics += bp->rx_nr_rings;
2737 #endif
2738
2739         if (BNXT_CHIP_TYPE_NITRO_A0(bp))
2740                 num_vnics++;
2741
2742         bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info),
2743                                 GFP_KERNEL);
2744         if (!bp->vnic_info)
2745                 return -ENOMEM;
2746
2747         bp->nr_vnics = num_vnics;
2748         return 0;
2749 }
2750
2751 static void bnxt_init_vnics(struct bnxt *bp)
2752 {
2753         int i;
2754
2755         for (i = 0; i < bp->nr_vnics; i++) {
2756                 struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
2757
2758                 vnic->fw_vnic_id = INVALID_HW_RING_ID;
2759                 vnic->fw_rss_cos_lb_ctx[0] = INVALID_HW_RING_ID;
2760                 vnic->fw_rss_cos_lb_ctx[1] = INVALID_HW_RING_ID;
2761                 vnic->fw_l2_ctx_id = INVALID_HW_RING_ID;
2762
2763                 if (bp->vnic_info[i].rss_hash_key) {
2764                         if (i == 0)
2765                                 prandom_bytes(vnic->rss_hash_key,
2766                                               HW_HASH_KEY_SIZE);
2767                         else
2768                                 memcpy(vnic->rss_hash_key,
2769                                        bp->vnic_info[0].rss_hash_key,
2770                                        HW_HASH_KEY_SIZE);
2771                 }
2772         }
2773 }
2774
2775 static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg)
2776 {
2777         int pages;
2778
2779         pages = ring_size / desc_per_pg;
2780
2781         if (!pages)
2782                 return 1;
2783
2784         pages++;
2785
2786         while (pages & (pages - 1))
2787                 pages++;
2788
2789         return pages;
2790 }
2791
2792 void bnxt_set_tpa_flags(struct bnxt *bp)
2793 {
2794         bp->flags &= ~BNXT_FLAG_TPA;
2795         if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
2796                 return;
2797         if (bp->dev->features & NETIF_F_LRO)
2798                 bp->flags |= BNXT_FLAG_LRO;
2799         else if (bp->dev->features & NETIF_F_GRO_HW)
2800                 bp->flags |= BNXT_FLAG_GRO;
2801 }
2802
2803 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must
2804  * be set on entry.
2805  */
2806 void bnxt_set_ring_params(struct bnxt *bp)
2807 {
2808         u32 ring_size, rx_size, rx_space;
2809         u32 agg_factor = 0, agg_ring_size = 0;
2810
2811         /* 8 for CRC and VLAN */
2812         rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8);
2813
2814         rx_space = rx_size + NET_SKB_PAD +
2815                 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2816
2817         bp->rx_copy_thresh = BNXT_RX_COPY_THRESH;
2818         ring_size = bp->rx_ring_size;
2819         bp->rx_agg_ring_size = 0;
2820         bp->rx_agg_nr_pages = 0;
2821
2822         if (bp->flags & BNXT_FLAG_TPA)
2823                 agg_factor = min_t(u32, 4, 65536 / BNXT_RX_PAGE_SIZE);
2824
2825         bp->flags &= ~BNXT_FLAG_JUMBO;
2826         if (rx_space > PAGE_SIZE && !(bp->flags & BNXT_FLAG_NO_AGG_RINGS)) {
2827                 u32 jumbo_factor;
2828
2829                 bp->flags |= BNXT_FLAG_JUMBO;
2830                 jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
2831                 if (jumbo_factor > agg_factor)
2832                         agg_factor = jumbo_factor;
2833         }
2834         agg_ring_size = ring_size * agg_factor;
2835
2836         if (agg_ring_size) {
2837                 bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size,
2838                                                         RX_DESC_CNT);
2839                 if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) {
2840                         u32 tmp = agg_ring_size;
2841
2842                         bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES;
2843                         agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1;
2844                         netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n",
2845                                     tmp, agg_ring_size);
2846                 }
2847                 bp->rx_agg_ring_size = agg_ring_size;
2848                 bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1;
2849                 rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN);
2850                 rx_space = rx_size + NET_SKB_PAD +
2851                         SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2852         }
2853
2854         bp->rx_buf_use_size = rx_size;
2855         bp->rx_buf_size = rx_space;
2856
2857         bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT);
2858         bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1;
2859
2860         ring_size = bp->tx_ring_size;
2861         bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT);
2862         bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1;
2863
2864         ring_size = bp->rx_ring_size * (2 + agg_factor) + bp->tx_ring_size;
2865         bp->cp_ring_size = ring_size;
2866
2867         bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT);
2868         if (bp->cp_nr_pages > MAX_CP_PAGES) {
2869                 bp->cp_nr_pages = MAX_CP_PAGES;
2870                 bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1;
2871                 netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n",
2872                             ring_size, bp->cp_ring_size);
2873         }
2874         bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT;
2875         bp->cp_ring_mask = bp->cp_bit - 1;
2876 }
2877
2878 /* Changing allocation mode of RX rings.
2879  * TODO: Update when extending xdp_rxq_info to support allocation modes.
2880  */
2881 int bnxt_set_rx_skb_mode(struct bnxt *bp, bool page_mode)
2882 {
2883         if (page_mode) {
2884                 if (bp->dev->mtu > BNXT_MAX_PAGE_MODE_MTU)
2885                         return -EOPNOTSUPP;
2886                 bp->dev->max_mtu =
2887                         min_t(u16, bp->max_mtu, BNXT_MAX_PAGE_MODE_MTU);
2888                 bp->flags &= ~BNXT_FLAG_AGG_RINGS;
2889                 bp->flags |= BNXT_FLAG_NO_AGG_RINGS | BNXT_FLAG_RX_PAGE_MODE;
2890                 bp->rx_dir = DMA_BIDIRECTIONAL;
2891                 bp->rx_skb_func = bnxt_rx_page_skb;
2892                 /* Disable LRO or GRO_HW */
2893                 netdev_update_features(bp->dev);
2894         } else {
2895                 bp->dev->max_mtu = bp->max_mtu;
2896                 bp->flags &= ~BNXT_FLAG_RX_PAGE_MODE;
2897                 bp->rx_dir = DMA_FROM_DEVICE;
2898                 bp->rx_skb_func = bnxt_rx_skb;
2899         }
2900         return 0;
2901 }
2902
2903 static void bnxt_free_vnic_attributes(struct bnxt *bp)
2904 {
2905         int i;
2906         struct bnxt_vnic_info *vnic;
2907         struct pci_dev *pdev = bp->pdev;
2908
2909         if (!bp->vnic_info)
2910                 return;
2911
2912         for (i = 0; i < bp->nr_vnics; i++) {
2913                 vnic = &bp->vnic_info[i];
2914
2915                 kfree(vnic->fw_grp_ids);
2916                 vnic->fw_grp_ids = NULL;
2917
2918                 kfree(vnic->uc_list);
2919                 vnic->uc_list = NULL;
2920
2921                 if (vnic->mc_list) {
2922                         dma_free_coherent(&pdev->dev, vnic->mc_list_size,
2923                                           vnic->mc_list, vnic->mc_list_mapping);
2924                         vnic->mc_list = NULL;
2925                 }
2926
2927                 if (vnic->rss_table) {
2928                         dma_free_coherent(&pdev->dev, PAGE_SIZE,
2929                                           vnic->rss_table,
2930                                           vnic->rss_table_dma_addr);
2931                         vnic->rss_table = NULL;
2932                 }
2933
2934                 vnic->rss_hash_key = NULL;
2935                 vnic->flags = 0;
2936         }
2937 }
2938
2939 static int bnxt_alloc_vnic_attributes(struct bnxt *bp)
2940 {
2941         int i, rc = 0, size;
2942         struct bnxt_vnic_info *vnic;
2943         struct pci_dev *pdev = bp->pdev;
2944         int max_rings;
2945
2946         for (i = 0; i < bp->nr_vnics; i++) {
2947                 vnic = &bp->vnic_info[i];
2948
2949                 if (vnic->flags & BNXT_VNIC_UCAST_FLAG) {
2950                         int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN;
2951
2952                         if (mem_size > 0) {
2953                                 vnic->uc_list = kmalloc(mem_size, GFP_KERNEL);
2954                                 if (!vnic->uc_list) {
2955                                         rc = -ENOMEM;
2956                                         goto out;
2957                                 }
2958                         }
2959                 }
2960
2961                 if (vnic->flags & BNXT_VNIC_MCAST_FLAG) {
2962                         vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN;
2963                         vnic->mc_list =
2964                                 dma_alloc_coherent(&pdev->dev,
2965                                                    vnic->mc_list_size,
2966                                                    &vnic->mc_list_mapping,
2967                                                    GFP_KERNEL);
2968                         if (!vnic->mc_list) {
2969                                 rc = -ENOMEM;
2970                                 goto out;
2971                         }
2972                 }
2973
2974                 if (vnic->flags & BNXT_VNIC_RSS_FLAG)
2975                         max_rings = bp->rx_nr_rings;
2976                 else
2977                         max_rings = 1;
2978
2979                 vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL);
2980                 if (!vnic->fw_grp_ids) {
2981                         rc = -ENOMEM;
2982                         goto out;
2983                 }
2984
2985                 if ((bp->flags & BNXT_FLAG_NEW_RSS_CAP) &&
2986                     !(vnic->flags & BNXT_VNIC_RSS_FLAG))
2987                         continue;
2988
2989                 /* Allocate rss table and hash key */
2990                 vnic->rss_table = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
2991                                                      &vnic->rss_table_dma_addr,
2992                                                      GFP_KERNEL);
2993                 if (!vnic->rss_table) {
2994                         rc = -ENOMEM;
2995                         goto out;
2996                 }
2997
2998                 size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16));
2999
3000                 vnic->rss_hash_key = ((void *)vnic->rss_table) + size;
3001                 vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size;
3002         }
3003         return 0;
3004
3005 out:
3006         return rc;
3007 }
3008
3009 static void bnxt_free_hwrm_resources(struct bnxt *bp)
3010 {
3011         struct pci_dev *pdev = bp->pdev;
3012
3013         dma_free_coherent(&pdev->dev, PAGE_SIZE, bp->hwrm_cmd_resp_addr,
3014                           bp->hwrm_cmd_resp_dma_addr);
3015
3016         bp->hwrm_cmd_resp_addr = NULL;
3017 }
3018
3019 static int bnxt_alloc_hwrm_resources(struct bnxt *bp)
3020 {
3021         struct pci_dev *pdev = bp->pdev;
3022
3023         bp->hwrm_cmd_resp_addr = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
3024                                                    &bp->hwrm_cmd_resp_dma_addr,
3025                                                    GFP_KERNEL);
3026         if (!bp->hwrm_cmd_resp_addr)
3027                 return -ENOMEM;
3028
3029         return 0;
3030 }
3031
3032 static void bnxt_free_hwrm_short_cmd_req(struct bnxt *bp)
3033 {
3034         if (bp->hwrm_short_cmd_req_addr) {
3035                 struct pci_dev *pdev = bp->pdev;
3036
3037                 dma_free_coherent(&pdev->dev, BNXT_HWRM_MAX_REQ_LEN,
3038                                   bp->hwrm_short_cmd_req_addr,
3039                                   bp->hwrm_short_cmd_req_dma_addr);
3040                 bp->hwrm_short_cmd_req_addr = NULL;
3041         }
3042 }
3043
3044 static int bnxt_alloc_hwrm_short_cmd_req(struct bnxt *bp)
3045 {
3046         struct pci_dev *pdev = bp->pdev;
3047
3048         bp->hwrm_short_cmd_req_addr =
3049                 dma_alloc_coherent(&pdev->dev, BNXT_HWRM_MAX_REQ_LEN,
3050                                    &bp->hwrm_short_cmd_req_dma_addr,
3051                                    GFP_KERNEL);
3052         if (!bp->hwrm_short_cmd_req_addr)
3053                 return -ENOMEM;
3054
3055         return 0;
3056 }
3057
3058 static void bnxt_free_stats(struct bnxt *bp)
3059 {
3060         u32 size, i;
3061         struct pci_dev *pdev = bp->pdev;
3062
3063         bp->flags &= ~BNXT_FLAG_PORT_STATS;
3064         bp->flags &= ~BNXT_FLAG_PORT_STATS_EXT;
3065
3066         if (bp->hw_rx_port_stats) {
3067                 dma_free_coherent(&pdev->dev, bp->hw_port_stats_size,
3068                                   bp->hw_rx_port_stats,
3069                                   bp->hw_rx_port_stats_map);
3070                 bp->hw_rx_port_stats = NULL;
3071         }
3072
3073         if (bp->hw_rx_port_stats_ext) {
3074                 dma_free_coherent(&pdev->dev, sizeof(struct rx_port_stats_ext),
3075                                   bp->hw_rx_port_stats_ext,
3076                                   bp->hw_rx_port_stats_ext_map);
3077                 bp->hw_rx_port_stats_ext = NULL;
3078         }
3079
3080         if (!bp->bnapi)
3081                 return;
3082
3083         size = sizeof(struct ctx_hw_stats);
3084
3085         for (i = 0; i < bp->cp_nr_rings; i++) {
3086                 struct bnxt_napi *bnapi = bp->bnapi[i];
3087                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3088
3089                 if (cpr->hw_stats) {
3090                         dma_free_coherent(&pdev->dev, size, cpr->hw_stats,
3091                                           cpr->hw_stats_map);
3092                         cpr->hw_stats = NULL;
3093                 }
3094         }
3095 }
3096
3097 static int bnxt_alloc_stats(struct bnxt *bp)
3098 {
3099         u32 size, i;
3100         struct pci_dev *pdev = bp->pdev;
3101
3102         size = sizeof(struct ctx_hw_stats);
3103
3104         for (i = 0; i < bp->cp_nr_rings; i++) {
3105                 struct bnxt_napi *bnapi = bp->bnapi[i];
3106                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3107
3108                 cpr->hw_stats = dma_alloc_coherent(&pdev->dev, size,
3109                                                    &cpr->hw_stats_map,
3110                                                    GFP_KERNEL);
3111                 if (!cpr->hw_stats)
3112                         return -ENOMEM;
3113
3114                 cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
3115         }
3116
3117         if (BNXT_PF(bp) && bp->chip_num != CHIP_NUM_58700) {
3118                 bp->hw_port_stats_size = sizeof(struct rx_port_stats) +
3119                                          sizeof(struct tx_port_stats) + 1024;
3120
3121                 bp->hw_rx_port_stats =
3122                         dma_alloc_coherent(&pdev->dev, bp->hw_port_stats_size,
3123                                            &bp->hw_rx_port_stats_map,
3124                                            GFP_KERNEL);
3125                 if (!bp->hw_rx_port_stats)
3126                         return -ENOMEM;
3127
3128                 bp->hw_tx_port_stats = (void *)(bp->hw_rx_port_stats + 1) +
3129                                        512;
3130                 bp->hw_tx_port_stats_map = bp->hw_rx_port_stats_map +
3131                                            sizeof(struct rx_port_stats) + 512;
3132                 bp->flags |= BNXT_FLAG_PORT_STATS;
3133
3134                 /* Display extended statistics only if FW supports it */
3135                 if (bp->hwrm_spec_code < 0x10804 ||
3136                     bp->hwrm_spec_code == 0x10900)
3137                         return 0;
3138
3139                 bp->hw_rx_port_stats_ext =
3140                         dma_zalloc_coherent(&pdev->dev,
3141                                             sizeof(struct rx_port_stats_ext),
3142                                             &bp->hw_rx_port_stats_ext_map,
3143                                             GFP_KERNEL);
3144                 if (!bp->hw_rx_port_stats_ext)
3145                         return 0;
3146
3147                 bp->flags |= BNXT_FLAG_PORT_STATS_EXT;
3148         }
3149         return 0;
3150 }
3151
3152 static void bnxt_clear_ring_indices(struct bnxt *bp)
3153 {
3154         int i;
3155
3156         if (!bp->bnapi)
3157                 return;
3158
3159         for (i = 0; i < bp->cp_nr_rings; i++) {
3160                 struct bnxt_napi *bnapi = bp->bnapi[i];
3161                 struct bnxt_cp_ring_info *cpr;
3162                 struct bnxt_rx_ring_info *rxr;
3163                 struct bnxt_tx_ring_info *txr;
3164
3165                 if (!bnapi)
3166                         continue;
3167
3168                 cpr = &bnapi->cp_ring;
3169                 cpr->cp_raw_cons = 0;
3170
3171                 txr = bnapi->tx_ring;
3172                 if (txr) {
3173                         txr->tx_prod = 0;
3174                         txr->tx_cons = 0;
3175                 }
3176
3177                 rxr = bnapi->rx_ring;
3178                 if (rxr) {
3179                         rxr->rx_prod = 0;
3180                         rxr->rx_agg_prod = 0;
3181                         rxr->rx_sw_agg_prod = 0;
3182                         rxr->rx_next_cons = 0;
3183                 }
3184         }
3185 }
3186
3187 static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool irq_reinit)
3188 {
3189 #ifdef CONFIG_RFS_ACCEL
3190         int i;
3191
3192         /* Under rtnl_lock and all our NAPIs have been disabled.  It's
3193          * safe to delete the hash table.
3194          */
3195         for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
3196                 struct hlist_head *head;
3197                 struct hlist_node *tmp;
3198                 struct bnxt_ntuple_filter *fltr;
3199
3200                 head = &bp->ntp_fltr_hash_tbl[i];
3201                 hlist_for_each_entry_safe(fltr, tmp, head, hash) {
3202                         hlist_del(&fltr->hash);
3203                         kfree(fltr);
3204                 }
3205         }
3206         if (irq_reinit) {
3207                 kfree(bp->ntp_fltr_bmap);
3208                 bp->ntp_fltr_bmap = NULL;
3209         }
3210         bp->ntp_fltr_count = 0;
3211 #endif
3212 }
3213
3214 static int bnxt_alloc_ntp_fltrs(struct bnxt *bp)
3215 {
3216 #ifdef CONFIG_RFS_ACCEL
3217         int i, rc = 0;
3218
3219         if (!(bp->flags & BNXT_FLAG_RFS))
3220                 return 0;
3221
3222         for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++)
3223                 INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]);
3224
3225         bp->ntp_fltr_count = 0;
3226         bp->ntp_fltr_bmap = kcalloc(BITS_TO_LONGS(BNXT_NTP_FLTR_MAX_FLTR),
3227                                     sizeof(long),
3228                                     GFP_KERNEL);
3229
3230         if (!bp->ntp_fltr_bmap)
3231                 rc = -ENOMEM;
3232
3233         return rc;
3234 #else
3235         return 0;
3236 #endif
3237 }
3238
3239 static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init)
3240 {
3241         bnxt_free_vnic_attributes(bp);
3242         bnxt_free_tx_rings(bp);
3243         bnxt_free_rx_rings(bp);
3244         bnxt_free_cp_rings(bp);
3245         bnxt_free_ntp_fltrs(bp, irq_re_init);
3246         if (irq_re_init) {
3247                 bnxt_free_stats(bp);
3248                 bnxt_free_ring_grps(bp);
3249                 bnxt_free_vnics(bp);
3250                 kfree(bp->tx_ring_map);
3251                 bp->tx_ring_map = NULL;
3252                 kfree(bp->tx_ring);
3253                 bp->tx_ring = NULL;
3254                 kfree(bp->rx_ring);
3255                 bp->rx_ring = NULL;
3256                 kfree(bp->bnapi);
3257                 bp->bnapi = NULL;
3258         } else {
3259                 bnxt_clear_ring_indices(bp);
3260         }
3261 }
3262
3263 static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init)
3264 {
3265         int i, j, rc, size, arr_size;
3266         void *bnapi;
3267
3268         if (irq_re_init) {
3269                 /* Allocate bnapi mem pointer array and mem block for
3270                  * all queues
3271                  */
3272                 arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) *
3273                                 bp->cp_nr_rings);
3274                 size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi));
3275                 bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL);
3276                 if (!bnapi)
3277                         return -ENOMEM;
3278
3279                 bp->bnapi = bnapi;
3280                 bnapi += arr_size;
3281                 for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) {
3282                         bp->bnapi[i] = bnapi;
3283                         bp->bnapi[i]->index = i;
3284                         bp->bnapi[i]->bp = bp;
3285                 }
3286
3287                 bp->rx_ring = kcalloc(bp->rx_nr_rings,
3288                                       sizeof(struct bnxt_rx_ring_info),
3289                                       GFP_KERNEL);
3290                 if (!bp->rx_ring)
3291                         return -ENOMEM;
3292
3293                 for (i = 0; i < bp->rx_nr_rings; i++) {
3294                         bp->rx_ring[i].bnapi = bp->bnapi[i];
3295                         bp->bnapi[i]->rx_ring = &bp->rx_ring[i];
3296                 }
3297
3298                 bp->tx_ring = kcalloc(bp->tx_nr_rings,
3299                                       sizeof(struct bnxt_tx_ring_info),
3300                                       GFP_KERNEL);
3301                 if (!bp->tx_ring)
3302                         return -ENOMEM;
3303
3304                 bp->tx_ring_map = kcalloc(bp->tx_nr_rings, sizeof(u16),
3305                                           GFP_KERNEL);
3306
3307                 if (!bp->tx_ring_map)
3308                         return -ENOMEM;
3309
3310                 if (bp->flags & BNXT_FLAG_SHARED_RINGS)
3311                         j = 0;
3312                 else
3313                         j = bp->rx_nr_rings;
3314
3315                 for (i = 0; i < bp->tx_nr_rings; i++, j++) {
3316                         bp->tx_ring[i].bnapi = bp->bnapi[j];
3317                         bp->bnapi[j]->tx_ring = &bp->tx_ring[i];
3318                         bp->tx_ring_map[i] = bp->tx_nr_rings_xdp + i;
3319                         if (i >= bp->tx_nr_rings_xdp) {
3320                                 bp->tx_ring[i].txq_index = i -
3321                                         bp->tx_nr_rings_xdp;
3322                                 bp->bnapi[j]->tx_int = bnxt_tx_int;
3323                         } else {
3324                                 bp->bnapi[j]->flags |= BNXT_NAPI_FLAG_XDP;
3325                                 bp->bnapi[j]->tx_int = bnxt_tx_int_xdp;
3326                         }
3327                 }
3328
3329                 rc = bnxt_alloc_stats(bp);
3330                 if (rc)
3331                         goto alloc_mem_err;
3332
3333                 rc = bnxt_alloc_ntp_fltrs(bp);
3334                 if (rc)
3335                         goto alloc_mem_err;
3336
3337                 rc = bnxt_alloc_vnics(bp);
3338                 if (rc)
3339                         goto alloc_mem_err;
3340         }
3341
3342         bnxt_init_ring_struct(bp);
3343
3344         rc = bnxt_alloc_rx_rings(bp);
3345         if (rc)
3346                 goto alloc_mem_err;
3347
3348         rc = bnxt_alloc_tx_rings(bp);
3349         if (rc)
3350                 goto alloc_mem_err;
3351
3352         rc = bnxt_alloc_cp_rings(bp);
3353         if (rc)
3354                 goto alloc_mem_err;
3355
3356         bp->vnic_info[0].flags |= BNXT_VNIC_RSS_FLAG | BNXT_VNIC_MCAST_FLAG |
3357                                   BNXT_VNIC_UCAST_FLAG;
3358         rc = bnxt_alloc_vnic_attributes(bp);
3359         if (rc)
3360                 goto alloc_mem_err;
3361         return 0;
3362
3363 alloc_mem_err:
3364         bnxt_free_mem(bp, true);
3365         return rc;
3366 }
3367
3368 static void bnxt_disable_int(struct bnxt *bp)
3369 {
3370         int i;
3371
3372         if (!bp->bnapi)
3373                 return;
3374
3375         for (i = 0; i < bp->cp_nr_rings; i++) {
3376                 struct bnxt_napi *bnapi = bp->bnapi[i];
3377                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3378                 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3379
3380                 if (ring->fw_ring_id != INVALID_HW_RING_ID)
3381                         BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
3382         }
3383 }
3384
3385 static int bnxt_cp_num_to_irq_num(struct bnxt *bp, int n)
3386 {
3387         struct bnxt_napi *bnapi = bp->bnapi[n];
3388         struct bnxt_cp_ring_info *cpr;
3389
3390         cpr = &bnapi->cp_ring;
3391         return cpr->cp_ring_struct.map_idx;
3392 }
3393
3394 static void bnxt_disable_int_sync(struct bnxt *bp)
3395 {
3396         int i;
3397
3398         atomic_inc(&bp->intr_sem);
3399
3400         bnxt_disable_int(bp);
3401         for (i = 0; i < bp->cp_nr_rings; i++) {
3402                 int map_idx = bnxt_cp_num_to_irq_num(bp, i);
3403
3404                 synchronize_irq(bp->irq_tbl[map_idx].vector);
3405         }
3406 }
3407
3408 static void bnxt_enable_int(struct bnxt *bp)
3409 {
3410         int i;
3411
3412         atomic_set(&bp->intr_sem, 0);
3413         for (i = 0; i < bp->cp_nr_rings; i++) {
3414                 struct bnxt_napi *bnapi = bp->bnapi[i];
3415                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3416
3417                 BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons);
3418         }
3419 }
3420
3421 void bnxt_hwrm_cmd_hdr_init(struct bnxt *bp, void *request, u16 req_type,
3422                             u16 cmpl_ring, u16 target_id)
3423 {
3424         struct input *req = request;
3425
3426         req->req_type = cpu_to_le16(req_type);
3427         req->cmpl_ring = cpu_to_le16(cmpl_ring);
3428         req->target_id = cpu_to_le16(target_id);
3429         req->resp_addr = cpu_to_le64(bp->hwrm_cmd_resp_dma_addr);
3430 }
3431
3432 static int bnxt_hwrm_do_send_msg(struct bnxt *bp, void *msg, u32 msg_len,
3433                                  int timeout, bool silent)
3434 {
3435         int i, intr_process, rc, tmo_count;
3436         struct input *req = msg;
3437         u32 *data = msg;
3438         __le32 *resp_len;
3439         u8 *valid;
3440         u16 cp_ring_id, len = 0;
3441         struct hwrm_err_output *resp = bp->hwrm_cmd_resp_addr;
3442         u16 max_req_len = BNXT_HWRM_MAX_REQ_LEN;
3443         struct hwrm_short_input short_input = {0};
3444
3445         req->seq_id = cpu_to_le16(bp->hwrm_cmd_seq++);
3446         memset(resp, 0, PAGE_SIZE);
3447         cp_ring_id = le16_to_cpu(req->cmpl_ring);
3448         intr_process = (cp_ring_id == INVALID_HW_RING_ID) ? 0 : 1;
3449
3450         if (bp->fw_cap & BNXT_FW_CAP_SHORT_CMD) {
3451                 void *short_cmd_req = bp->hwrm_short_cmd_req_addr;
3452
3453                 memcpy(short_cmd_req, req, msg_len);
3454                 memset(short_cmd_req + msg_len, 0, BNXT_HWRM_MAX_REQ_LEN -
3455                                                    msg_len);
3456
3457                 short_input.req_type = req->req_type;
3458                 short_input.signature =
3459                                 cpu_to_le16(SHORT_REQ_SIGNATURE_SHORT_CMD);
3460                 short_input.size = cpu_to_le16(msg_len);
3461                 short_input.req_addr =
3462                         cpu_to_le64(bp->hwrm_short_cmd_req_dma_addr);
3463
3464                 data = (u32 *)&short_input;
3465                 msg_len = sizeof(short_input);
3466
3467                 /* Sync memory write before updating doorbell */
3468                 wmb();
3469
3470                 max_req_len = BNXT_HWRM_SHORT_REQ_LEN;
3471         }
3472
3473         /* Write request msg to hwrm channel */
3474         __iowrite32_copy(bp->bar0, data, msg_len / 4);
3475
3476         for (i = msg_len; i < max_req_len; i += 4)
3477                 writel(0, bp->bar0 + i);
3478
3479         /* currently supports only one outstanding message */
3480         if (intr_process)
3481                 bp->hwrm_intr_seq_id = le16_to_cpu(req->seq_id);
3482
3483         /* Ring channel doorbell */
3484         writel(1, bp->bar0 + 0x100);
3485
3486         if (!timeout)
3487                 timeout = DFLT_HWRM_CMD_TIMEOUT;
3488         /* convert timeout to usec */
3489         timeout *= 1000;
3490
3491         i = 0;
3492         /* Short timeout for the first few iterations:
3493          * number of loops = number of loops for short timeout +
3494          * number of loops for standard timeout.
3495          */
3496         tmo_count = HWRM_SHORT_TIMEOUT_COUNTER;
3497         timeout = timeout - HWRM_SHORT_MIN_TIMEOUT * HWRM_SHORT_TIMEOUT_COUNTER;
3498         tmo_count += DIV_ROUND_UP(timeout, HWRM_MIN_TIMEOUT);
3499         resp_len = bp->hwrm_cmd_resp_addr + HWRM_RESP_LEN_OFFSET;
3500         if (intr_process) {
3501                 /* Wait until hwrm response cmpl interrupt is processed */
3502                 while (bp->hwrm_intr_seq_id != HWRM_SEQ_ID_INVALID &&
3503                        i++ < tmo_count) {
3504                         /* on first few passes, just barely sleep */
3505                         if (i < HWRM_SHORT_TIMEOUT_COUNTER)
3506                                 usleep_range(HWRM_SHORT_MIN_TIMEOUT,
3507                                              HWRM_SHORT_MAX_TIMEOUT);
3508                         else
3509                                 usleep_range(HWRM_MIN_TIMEOUT,
3510                                              HWRM_MAX_TIMEOUT);
3511                 }
3512
3513                 if (bp->hwrm_intr_seq_id != HWRM_SEQ_ID_INVALID) {
3514                         netdev_err(bp->dev, "Resp cmpl intr err msg: 0x%x\n",
3515                                    le16_to_cpu(req->req_type));
3516                         return -1;
3517                 }
3518                 len = (le32_to_cpu(*resp_len) & HWRM_RESP_LEN_MASK) >>
3519                       HWRM_RESP_LEN_SFT;
3520                 valid = bp->hwrm_cmd_resp_addr + len - 1;
3521         } else {
3522                 int j;
3523
3524                 /* Check if response len is updated */
3525                 for (i = 0; i < tmo_count; i++) {
3526                         len = (le32_to_cpu(*resp_len) & HWRM_RESP_LEN_MASK) >>
3527                               HWRM_RESP_LEN_SFT;
3528                         if (len)
3529                                 break;
3530                         /* on first few passes, just barely sleep */
3531                         if (i < DFLT_HWRM_CMD_TIMEOUT)
3532                                 usleep_range(HWRM_SHORT_MIN_TIMEOUT,
3533                                              HWRM_SHORT_MAX_TIMEOUT);
3534                         else
3535                                 usleep_range(HWRM_MIN_TIMEOUT,
3536                                              HWRM_MAX_TIMEOUT);
3537                 }
3538
3539                 if (i >= tmo_count) {
3540                         netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d\n",
3541                                    HWRM_TOTAL_TIMEOUT(i),
3542                                    le16_to_cpu(req->req_type),
3543                                    le16_to_cpu(req->seq_id), len);
3544                         return -1;
3545                 }
3546
3547                 /* Last byte of resp contains valid bit */
3548                 valid = bp->hwrm_cmd_resp_addr + len - 1;
3549                 for (j = 0; j < HWRM_VALID_BIT_DELAY_USEC; j++) {
3550                         /* make sure we read from updated DMA memory */
3551                         dma_rmb();
3552                         if (*valid)
3553                                 break;
3554                         udelay(1);
3555                 }
3556
3557                 if (j >= HWRM_VALID_BIT_DELAY_USEC) {
3558                         netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d v:%d\n",
3559                                    HWRM_TOTAL_TIMEOUT(i),
3560                                    le16_to_cpu(req->req_type),
3561                                    le16_to_cpu(req->seq_id), len, *valid);
3562                         return -1;
3563                 }
3564         }
3565
3566         /* Zero valid bit for compatibility.  Valid bit in an older spec
3567          * may become a new field in a newer spec.  We must make sure that
3568          * a new field not implemented by old spec will read zero.
3569          */
3570         *valid = 0;
3571         rc = le16_to_cpu(resp->error_code);
3572         if (rc && !silent)
3573                 netdev_err(bp->dev, "hwrm req_type 0x%x seq id 0x%x error 0x%x\n",
3574                            le16_to_cpu(resp->req_type),
3575                            le16_to_cpu(resp->seq_id), rc);
3576         return rc;
3577 }
3578
3579 int _hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
3580 {
3581         return bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, false);
3582 }
3583
3584 int _hwrm_send_message_silent(struct bnxt *bp, void *msg, u32 msg_len,
3585                               int timeout)
3586 {
3587         return bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, true);
3588 }
3589
3590 int hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
3591 {
3592         int rc;
3593
3594         mutex_lock(&bp->hwrm_cmd_lock);
3595         rc = _hwrm_send_message(bp, msg, msg_len, timeout);
3596         mutex_unlock(&bp->hwrm_cmd_lock);
3597         return rc;
3598 }
3599
3600 int hwrm_send_message_silent(struct bnxt *bp, void *msg, u32 msg_len,
3601                              int timeout)
3602 {
3603         int rc;
3604
3605         mutex_lock(&bp->hwrm_cmd_lock);
3606         rc = bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, true);
3607         mutex_unlock(&bp->hwrm_cmd_lock);
3608         return rc;
3609 }
3610
3611 int bnxt_hwrm_func_rgtr_async_events(struct bnxt *bp, unsigned long *bmap,
3612                                      int bmap_size)
3613 {
3614         struct hwrm_func_drv_rgtr_input req = {0};
3615         DECLARE_BITMAP(async_events_bmap, 256);
3616         u32 *events = (u32 *)async_events_bmap;
3617         int i;
3618
3619         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_RGTR, -1, -1);
3620
3621         req.enables =
3622                 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
3623
3624         memset(async_events_bmap, 0, sizeof(async_events_bmap));
3625         for (i = 0; i < ARRAY_SIZE(bnxt_async_events_arr); i++)
3626                 __set_bit(bnxt_async_events_arr[i], async_events_bmap);
3627
3628         if (bmap && bmap_size) {
3629                 for (i = 0; i < bmap_size; i++) {
3630                         if (test_bit(i, bmap))
3631                                 __set_bit(i, async_events_bmap);
3632                 }
3633         }
3634
3635         for (i = 0; i < 8; i++)
3636                 req.async_event_fwd[i] |= cpu_to_le32(events[i]);
3637
3638         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3639 }
3640
3641 static int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp)
3642 {
3643         struct hwrm_func_drv_rgtr_output *resp = bp->hwrm_cmd_resp_addr;
3644         struct hwrm_func_drv_rgtr_input req = {0};
3645         int rc;
3646
3647         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_RGTR, -1, -1);
3648
3649         req.enables =
3650                 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE |
3651                             FUNC_DRV_RGTR_REQ_ENABLES_VER);
3652
3653         req.os_type = cpu_to_le16(FUNC_DRV_RGTR_REQ_OS_TYPE_LINUX);
3654         req.flags = cpu_to_le32(FUNC_DRV_RGTR_REQ_FLAGS_16BIT_VER_MODE);
3655         req.ver_maj_8b = DRV_VER_MAJ;
3656         req.ver_min_8b = DRV_VER_MIN;
3657         req.ver_upd_8b = DRV_VER_UPD;
3658         req.ver_maj = cpu_to_le16(DRV_VER_MAJ);
3659         req.ver_min = cpu_to_le16(DRV_VER_MIN);
3660         req.ver_upd = cpu_to_le16(DRV_VER_UPD);
3661
3662         if (BNXT_PF(bp)) {
3663                 u32 data[8];
3664                 int i;
3665
3666                 memset(data, 0, sizeof(data));
3667                 for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++) {
3668                         u16 cmd = bnxt_vf_req_snif[i];
3669                         unsigned int bit, idx;
3670
3671                         idx = cmd / 32;
3672                         bit = cmd % 32;
3673                         data[idx] |= 1 << bit;
3674                 }
3675
3676                 for (i = 0; i < 8; i++)
3677                         req.vf_req_fwd[i] = cpu_to_le32(data[i]);
3678
3679                 req.enables |=
3680                         cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD);
3681         }
3682
3683         mutex_lock(&bp->hwrm_cmd_lock);
3684         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3685         if (rc)
3686                 rc = -EIO;
3687         else if (resp->flags &
3688                  cpu_to_le32(FUNC_DRV_RGTR_RESP_FLAGS_IF_CHANGE_SUPPORTED))
3689                 bp->fw_cap |= BNXT_FW_CAP_IF_CHANGE;
3690         mutex_unlock(&bp->hwrm_cmd_lock);
3691         return rc;
3692 }
3693
3694 static int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp)
3695 {
3696         struct hwrm_func_drv_unrgtr_input req = {0};
3697
3698         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_UNRGTR, -1, -1);
3699         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3700 }
3701
3702 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type)
3703 {
3704         u32 rc = 0;
3705         struct hwrm_tunnel_dst_port_free_input req = {0};
3706
3707         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_FREE, -1, -1);
3708         req.tunnel_type = tunnel_type;
3709
3710         switch (tunnel_type) {
3711         case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN:
3712                 req.tunnel_dst_port_id = bp->vxlan_fw_dst_port_id;
3713                 break;
3714         case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE:
3715                 req.tunnel_dst_port_id = bp->nge_fw_dst_port_id;
3716                 break;
3717         default:
3718                 break;
3719         }
3720
3721         rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3722         if (rc)
3723                 netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n",
3724                            rc);
3725         return rc;
3726 }
3727
3728 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port,
3729                                            u8 tunnel_type)
3730 {
3731         u32 rc = 0;
3732         struct hwrm_tunnel_dst_port_alloc_input req = {0};
3733         struct hwrm_tunnel_dst_port_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3734
3735         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_ALLOC, -1, -1);
3736
3737         req.tunnel_type = tunnel_type;
3738         req.tunnel_dst_port_val = port;
3739
3740         mutex_lock(&bp->hwrm_cmd_lock);
3741         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3742         if (rc) {
3743                 netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n",
3744                            rc);
3745                 goto err_out;
3746         }
3747
3748         switch (tunnel_type) {
3749         case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN:
3750                 bp->vxlan_fw_dst_port_id = resp->tunnel_dst_port_id;
3751                 break;
3752         case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE:
3753                 bp->nge_fw_dst_port_id = resp->tunnel_dst_port_id;
3754                 break;
3755         default:
3756                 break;
3757         }
3758
3759 err_out:
3760         mutex_unlock(&bp->hwrm_cmd_lock);
3761         return rc;
3762 }
3763
3764 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id)
3765 {
3766         struct hwrm_cfa_l2_set_rx_mask_input req = {0};
3767         struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3768
3769         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_SET_RX_MASK, -1, -1);
3770         req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
3771
3772         req.num_mc_entries = cpu_to_le32(vnic->mc_list_count);
3773         req.mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping);
3774         req.mask = cpu_to_le32(vnic->rx_mask);
3775         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3776 }
3777
3778 #ifdef CONFIG_RFS_ACCEL
3779 static int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp,
3780                                             struct bnxt_ntuple_filter *fltr)
3781 {
3782         struct hwrm_cfa_ntuple_filter_free_input req = {0};
3783
3784         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_FREE, -1, -1);
3785         req.ntuple_filter_id = fltr->filter_id;
3786         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3787 }
3788
3789 #define BNXT_NTP_FLTR_FLAGS                                     \
3790         (CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID |     \
3791          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE |        \
3792          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_MACADDR |      \
3793          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE |      \
3794          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR |       \
3795          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK |  \
3796          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR |       \
3797          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK |  \
3798          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL |      \
3799          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT |         \
3800          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK |    \
3801          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT |         \
3802          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK |    \
3803          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID)
3804
3805 #define BNXT_NTP_TUNNEL_FLTR_FLAG                               \
3806                 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_TUNNEL_TYPE
3807
3808 static int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp,
3809                                              struct bnxt_ntuple_filter *fltr)
3810 {
3811         int rc = 0;
3812         struct hwrm_cfa_ntuple_filter_alloc_input req = {0};
3813         struct hwrm_cfa_ntuple_filter_alloc_output *resp =
3814                 bp->hwrm_cmd_resp_addr;
3815         struct flow_keys *keys = &fltr->fkeys;
3816         struct bnxt_vnic_info *vnic = &bp->vnic_info[fltr->rxq + 1];
3817
3818         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_ALLOC, -1, -1);
3819         req.l2_filter_id = bp->vnic_info[0].fw_l2_filter_id[fltr->l2_fltr_idx];
3820
3821         req.enables = cpu_to_le32(BNXT_NTP_FLTR_FLAGS);
3822
3823         req.ethertype = htons(ETH_P_IP);
3824         memcpy(req.src_macaddr, fltr->src_mac_addr, ETH_ALEN);
3825         req.ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4;
3826         req.ip_protocol = keys->basic.ip_proto;
3827
3828         if (keys->basic.n_proto == htons(ETH_P_IPV6)) {
3829                 int i;
3830
3831                 req.ethertype = htons(ETH_P_IPV6);
3832                 req.ip_addr_type =
3833                         CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV6;
3834                 *(struct in6_addr *)&req.src_ipaddr[0] =
3835                         keys->addrs.v6addrs.src;
3836                 *(struct in6_addr *)&req.dst_ipaddr[0] =
3837                         keys->addrs.v6addrs.dst;
3838                 for (i = 0; i < 4; i++) {
3839                         req.src_ipaddr_mask[i] = cpu_to_be32(0xffffffff);
3840                         req.dst_ipaddr_mask[i] = cpu_to_be32(0xffffffff);
3841                 }
3842         } else {
3843                 req.src_ipaddr[0] = keys->addrs.v4addrs.src;
3844                 req.src_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
3845                 req.dst_ipaddr[0] = keys->addrs.v4addrs.dst;
3846                 req.dst_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
3847         }
3848         if (keys->control.flags & FLOW_DIS_ENCAPSULATION) {
3849                 req.enables |= cpu_to_le32(BNXT_NTP_TUNNEL_FLTR_FLAG);
3850                 req.tunnel_type =
3851                         CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_ANYTUNNEL;
3852         }
3853
3854         req.src_port = keys->ports.src;
3855         req.src_port_mask = cpu_to_be16(0xffff);
3856         req.dst_port = keys->ports.dst;
3857         req.dst_port_mask = cpu_to_be16(0xffff);
3858
3859         req.dst_id = cpu_to_le16(vnic->fw_vnic_id);
3860         mutex_lock(&bp->hwrm_cmd_lock);
3861         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3862         if (!rc)
3863                 fltr->filter_id = resp->ntuple_filter_id;
3864         mutex_unlock(&bp->hwrm_cmd_lock);
3865         return rc;
3866 }
3867 #endif
3868
3869 static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx,
3870                                      u8 *mac_addr)
3871 {
3872         u32 rc = 0;
3873         struct hwrm_cfa_l2_filter_alloc_input req = {0};
3874         struct hwrm_cfa_l2_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3875
3876         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_ALLOC, -1, -1);
3877         req.flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX);
3878         if (!BNXT_CHIP_TYPE_NITRO_A0(bp))
3879                 req.flags |=
3880                         cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST);
3881         req.dst_id = cpu_to_le16(bp->vnic_info[vnic_id].fw_vnic_id);
3882         req.enables =
3883                 cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR |
3884                             CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID |
3885                             CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK);
3886         memcpy(req.l2_addr, mac_addr, ETH_ALEN);
3887         req.l2_addr_mask[0] = 0xff;
3888         req.l2_addr_mask[1] = 0xff;
3889         req.l2_addr_mask[2] = 0xff;
3890         req.l2_addr_mask[3] = 0xff;
3891         req.l2_addr_mask[4] = 0xff;
3892         req.l2_addr_mask[5] = 0xff;
3893
3894         mutex_lock(&bp->hwrm_cmd_lock);
3895         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3896         if (!rc)
3897                 bp->vnic_info[vnic_id].fw_l2_filter_id[idx] =
3898                                                         resp->l2_filter_id;
3899         mutex_unlock(&bp->hwrm_cmd_lock);
3900         return rc;
3901 }
3902
3903 static int bnxt_hwrm_clear_vnic_filter(struct bnxt *bp)
3904 {
3905         u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */
3906         int rc = 0;
3907
3908         /* Any associated ntuple filters will also be cleared by firmware. */
3909         mutex_lock(&bp->hwrm_cmd_lock);
3910         for (i = 0; i < num_of_vnics; i++) {
3911                 struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
3912
3913                 for (j = 0; j < vnic->uc_filter_count; j++) {
3914                         struct hwrm_cfa_l2_filter_free_input req = {0};
3915
3916                         bnxt_hwrm_cmd_hdr_init(bp, &req,
3917                                                HWRM_CFA_L2_FILTER_FREE, -1, -1);
3918
3919                         req.l2_filter_id = vnic->fw_l2_filter_id[j];
3920
3921                         rc = _hwrm_send_message(bp, &req, sizeof(req),
3922                                                 HWRM_CMD_TIMEOUT);
3923                 }
3924                 vnic->uc_filter_count = 0;
3925         }
3926         mutex_unlock(&bp->hwrm_cmd_lock);
3927
3928         return rc;
3929 }
3930
3931 static int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, u16 vnic_id, u32 tpa_flags)
3932 {
3933         struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3934         struct hwrm_vnic_tpa_cfg_input req = {0};
3935
3936         if (vnic->fw_vnic_id == INVALID_HW_RING_ID)
3937                 return 0;
3938
3939         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_TPA_CFG, -1, -1);
3940
3941         if (tpa_flags) {
3942                 u16 mss = bp->dev->mtu - 40;
3943                 u32 nsegs, n, segs = 0, flags;
3944
3945                 flags = VNIC_TPA_CFG_REQ_FLAGS_TPA |
3946                         VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA |
3947                         VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE |
3948                         VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN |
3949                         VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ;
3950                 if (tpa_flags & BNXT_FLAG_GRO)
3951                         flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO;
3952
3953                 req.flags = cpu_to_le32(flags);
3954
3955                 req.enables =
3956                         cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS |
3957                                     VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS |
3958                                     VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN);
3959
3960                 /* Number of segs are log2 units, and first packet is not
3961                  * included as part of this units.
3962                  */
3963                 if (mss <= BNXT_RX_PAGE_SIZE) {
3964                         n = BNXT_RX_PAGE_SIZE / mss;
3965                         nsegs = (MAX_SKB_FRAGS - 1) * n;
3966                 } else {
3967                         n = mss / BNXT_RX_PAGE_SIZE;
3968                         if (mss & (BNXT_RX_PAGE_SIZE - 1))
3969                                 n++;
3970                         nsegs = (MAX_SKB_FRAGS - n) / n;
3971                 }
3972
3973                 segs = ilog2(nsegs);
3974                 req.max_agg_segs = cpu_to_le16(segs);
3975                 req.max_aggs = cpu_to_le16(VNIC_TPA_CFG_REQ_MAX_AGGS_MAX);
3976
3977                 req.min_agg_len = cpu_to_le32(512);
3978         }
3979         req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
3980
3981         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3982 }
3983
3984 static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, u16 vnic_id, bool set_rss)
3985 {
3986         u32 i, j, max_rings;
3987         struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3988         struct hwrm_vnic_rss_cfg_input req = {0};
3989
3990         if (vnic->fw_rss_cos_lb_ctx[0] == INVALID_HW_RING_ID)
3991                 return 0;
3992
3993         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_CFG, -1, -1);
3994         if (set_rss) {
3995                 req.hash_type = cpu_to_le32(bp->rss_hash_cfg);
3996                 req.hash_mode_flags = VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT;
3997                 if (vnic->flags & BNXT_VNIC_RSS_FLAG) {
3998                         if (BNXT_CHIP_TYPE_NITRO_A0(bp))
3999                                 max_rings = bp->rx_nr_rings - 1;
4000                         else
4001                                 max_rings = bp->rx_nr_rings;
4002                 } else {
4003                         max_rings = 1;
4004                 }
4005
4006                 /* Fill the RSS indirection table with ring group ids */
4007                 for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++, j++) {
4008                         if (j == max_rings)
4009                                 j = 0;
4010                         vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]);
4011                 }
4012
4013                 req.ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr);
4014                 req.hash_key_tbl_addr =
4015                         cpu_to_le64(vnic->rss_hash_key_dma_addr);
4016         }
4017         req.rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
4018         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4019 }
4020
4021 static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, u16 vnic_id)
4022 {
4023         struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
4024         struct hwrm_vnic_plcmodes_cfg_input req = {0};
4025
4026         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_PLCMODES_CFG, -1, -1);
4027         req.flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT |
4028                                 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 |
4029                                 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6);
4030         req.enables =
4031                 cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID |
4032                             VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID);
4033         /* thresholds not implemented in firmware yet */
4034         req.jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh);
4035         req.hds_threshold = cpu_to_le16(bp->rx_copy_thresh);
4036         req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
4037         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4038 }
4039
4040 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, u16 vnic_id,
4041                                         u16 ctx_idx)
4042 {
4043         struct hwrm_vnic_rss_cos_lb_ctx_free_input req = {0};
4044
4045         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_FREE, -1, -1);
4046         req.rss_cos_lb_ctx_id =
4047                 cpu_to_le16(bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx]);
4048
4049         hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4050         bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] = INVALID_HW_RING_ID;
4051 }
4052
4053 static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp)
4054 {
4055         int i, j;
4056
4057         for (i = 0; i < bp->nr_vnics; i++) {
4058                 struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
4059
4060                 for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) {
4061                         if (vnic->fw_rss_cos_lb_ctx[j] != INVALID_HW_RING_ID)
4062                                 bnxt_hwrm_vnic_ctx_free_one(bp, i, j);
4063                 }
4064         }
4065         bp->rsscos_nr_ctxs = 0;
4066 }
4067
4068 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, u16 vnic_id, u16 ctx_idx)
4069 {
4070         int rc;
4071         struct hwrm_vnic_rss_cos_lb_ctx_alloc_input req = {0};
4072         struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp =
4073                                                 bp->hwrm_cmd_resp_addr;
4074
4075         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC, -1,
4076                                -1);
4077
4078         mutex_lock(&bp->hwrm_cmd_lock);
4079         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4080         if (!rc)
4081                 bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] =
4082                         le16_to_cpu(resp->rss_cos_lb_ctx_id);
4083         mutex_unlock(&bp->hwrm_cmd_lock);
4084
4085         return rc;
4086 }
4087
4088 static u32 bnxt_get_roce_vnic_mode(struct bnxt *bp)
4089 {
4090         if (bp->flags & BNXT_FLAG_ROCE_MIRROR_CAP)
4091                 return VNIC_CFG_REQ_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_MODE;
4092         return VNIC_CFG_REQ_FLAGS_ROCE_DUAL_VNIC_MODE;
4093 }
4094
4095 int bnxt_hwrm_vnic_cfg(struct bnxt *bp, u16 vnic_id)
4096 {
4097         unsigned int ring = 0, grp_idx;
4098         struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
4099         struct hwrm_vnic_cfg_input req = {0};
4100         u16 def_vlan = 0;
4101
4102         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_CFG, -1, -1);
4103
4104         req.enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP);
4105         /* Only RSS support for now TBD: COS & LB */
4106         if (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID) {
4107                 req.rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
4108                 req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
4109                                            VNIC_CFG_REQ_ENABLES_MRU);
4110         } else if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) {
4111                 req.rss_rule =
4112                         cpu_to_le16(bp->vnic_info[0].fw_rss_cos_lb_ctx[0]);
4113                 req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
4114                                            VNIC_CFG_REQ_ENABLES_MRU);
4115                 req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_RSS_DFLT_CR_MODE);
4116         } else {
4117                 req.rss_rule = cpu_to_le16(0xffff);
4118         }
4119
4120         if (BNXT_CHIP_TYPE_NITRO_A0(bp) &&
4121             (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID)) {
4122                 req.cos_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[1]);
4123                 req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_COS_RULE);
4124         } else {
4125                 req.cos_rule = cpu_to_le16(0xffff);
4126         }
4127
4128         if (vnic->flags & BNXT_VNIC_RSS_FLAG)
4129                 ring = 0;
4130         else if (vnic->flags & BNXT_VNIC_RFS_FLAG)
4131                 ring = vnic_id - 1;
4132         else if ((vnic_id == 1) && BNXT_CHIP_TYPE_NITRO_A0(bp))
4133                 ring = bp->rx_nr_rings - 1;
4134
4135         grp_idx = bp->rx_ring[ring].bnapi->index;
4136         req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
4137         req.dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id);
4138
4139         req.lb_rule = cpu_to_le16(0xffff);
4140         req.mru = cpu_to_le16(bp->dev->mtu + ETH_HLEN + ETH_FCS_LEN +
4141                               VLAN_HLEN);
4142
4143 #ifdef CONFIG_BNXT_SRIOV
4144         if (BNXT_VF(bp))
4145                 def_vlan = bp->vf.vlan;
4146 #endif
4147         if ((bp->flags & BNXT_FLAG_STRIP_VLAN) || def_vlan)
4148                 req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE);
4149         if (!vnic_id && bnxt_ulp_registered(bp->edev, BNXT_ROCE_ULP))
4150                 req.flags |= cpu_to_le32(bnxt_get_roce_vnic_mode(bp));
4151
4152         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4153 }
4154
4155 static int bnxt_hwrm_vnic_free_one(struct bnxt *bp, u16 vnic_id)
4156 {
4157         u32 rc = 0;
4158
4159         if (bp->vnic_info[vnic_id].fw_vnic_id != INVALID_HW_RING_ID) {
4160                 struct hwrm_vnic_free_input req = {0};
4161
4162                 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_FREE, -1, -1);
4163                 req.vnic_id =
4164                         cpu_to_le32(bp->vnic_info[vnic_id].fw_vnic_id);
4165
4166                 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4167                 if (rc)
4168                         return rc;
4169                 bp->vnic_info[vnic_id].fw_vnic_id = INVALID_HW_RING_ID;
4170         }
4171         return rc;
4172 }
4173
4174 static void bnxt_hwrm_vnic_free(struct bnxt *bp)
4175 {
4176         u16 i;
4177
4178         for (i = 0; i < bp->nr_vnics; i++)
4179                 bnxt_hwrm_vnic_free_one(bp, i);
4180 }
4181
4182 static int bnxt_hwrm_vnic_alloc(struct bnxt *bp, u16 vnic_id,
4183                                 unsigned int start_rx_ring_idx,
4184                                 unsigned int nr_rings)
4185 {
4186         int rc = 0;
4187         unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings;
4188         struct hwrm_vnic_alloc_input req = {0};
4189         struct hwrm_vnic_alloc_output *resp = bp->hwrm_cmd_resp_addr;
4190
4191         /* map ring groups to this vnic */
4192         for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) {
4193                 grp_idx = bp->rx_ring[i].bnapi->index;
4194                 if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) {
4195                         netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n",
4196                                    j, nr_rings);
4197                         break;
4198                 }
4199                 bp->vnic_info[vnic_id].fw_grp_ids[j] =
4200                                         bp->grp_info[grp_idx].fw_grp_id;
4201         }
4202
4203         bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[0] = INVALID_HW_RING_ID;
4204         bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[1] = INVALID_HW_RING_ID;
4205         if (vnic_id == 0)
4206                 req.flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT);
4207
4208         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_ALLOC, -1, -1);
4209
4210         mutex_lock(&bp->hwrm_cmd_lock);
4211         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4212         if (!rc)
4213                 bp->vnic_info[vnic_id].fw_vnic_id = le32_to_cpu(resp->vnic_id);
4214         mutex_unlock(&bp->hwrm_cmd_lock);
4215         return rc;
4216 }
4217
4218 static int bnxt_hwrm_vnic_qcaps(struct bnxt *bp)
4219 {
4220         struct hwrm_vnic_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
4221         struct hwrm_vnic_qcaps_input req = {0};
4222         int rc;
4223
4224         if (bp->hwrm_spec_code < 0x10600)
4225                 return 0;
4226
4227         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_QCAPS, -1, -1);
4228         mutex_lock(&bp->hwrm_cmd_lock);
4229         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4230         if (!rc) {
4231                 u32 flags = le32_to_cpu(resp->flags);
4232
4233                 if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_DFLT_CR_CAP)
4234                         bp->flags |= BNXT_FLAG_NEW_RSS_CAP;
4235                 if (flags &
4236                     VNIC_QCAPS_RESP_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_CAP)
4237                         bp->flags |= BNXT_FLAG_ROCE_MIRROR_CAP;
4238         }
4239         mutex_unlock(&bp->hwrm_cmd_lock);
4240         return rc;
4241 }
4242
4243 static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp)
4244 {
4245         u16 i;
4246         u32 rc = 0;
4247
4248         mutex_lock(&bp->hwrm_cmd_lock);
4249         for (i = 0; i < bp->rx_nr_rings; i++) {
4250                 struct hwrm_ring_grp_alloc_input req = {0};
4251                 struct hwrm_ring_grp_alloc_output *resp =
4252                                         bp->hwrm_cmd_resp_addr;
4253                 unsigned int grp_idx = bp->rx_ring[i].bnapi->index;
4254
4255                 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_ALLOC, -1, -1);
4256
4257                 req.cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id);
4258                 req.rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id);
4259                 req.ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id);
4260                 req.sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx);
4261
4262                 rc = _hwrm_send_message(bp, &req, sizeof(req),
4263                                         HWRM_CMD_TIMEOUT);
4264                 if (rc)
4265                         break;
4266
4267                 bp->grp_info[grp_idx].fw_grp_id =
4268                         le32_to_cpu(resp->ring_group_id);
4269         }
4270         mutex_unlock(&bp->hwrm_cmd_lock);
4271         return rc;
4272 }
4273
4274 static int bnxt_hwrm_ring_grp_free(struct bnxt *bp)
4275 {
4276         u16 i;
4277         u32 rc = 0;
4278         struct hwrm_ring_grp_free_input req = {0};
4279
4280         if (!bp->grp_info)
4281                 return 0;
4282
4283         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_FREE, -1, -1);
4284
4285         mutex_lock(&bp->hwrm_cmd_lock);
4286         for (i = 0; i < bp->cp_nr_rings; i++) {
4287                 if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID)
4288                         continue;
4289                 req.ring_group_id =
4290                         cpu_to_le32(bp->grp_info[i].fw_grp_id);
4291
4292                 rc = _hwrm_send_message(bp, &req, sizeof(req),
4293                                         HWRM_CMD_TIMEOUT);
4294                 if (rc)
4295                         break;
4296                 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
4297         }
4298         mutex_unlock(&bp->hwrm_cmd_lock);
4299         return rc;
4300 }
4301
4302 static int hwrm_ring_alloc_send_msg(struct bnxt *bp,
4303                                     struct bnxt_ring_struct *ring,
4304                                     u32 ring_type, u32 map_index)
4305 {
4306         int rc = 0, err = 0;
4307         struct hwrm_ring_alloc_input req = {0};
4308         struct hwrm_ring_alloc_output *resp = bp->hwrm_cmd_resp_addr;
4309         struct bnxt_ring_grp_info *grp_info;
4310         u16 ring_id;
4311
4312         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_ALLOC, -1, -1);
4313
4314         req.enables = 0;
4315         if (ring->nr_pages > 1) {
4316                 req.page_tbl_addr = cpu_to_le64(ring->pg_tbl_map);
4317                 /* Page size is in log2 units */
4318                 req.page_size = BNXT_PAGE_SHIFT;
4319                 req.page_tbl_depth = 1;
4320         } else {
4321                 req.page_tbl_addr =  cpu_to_le64(ring->dma_arr[0]);
4322         }
4323         req.fbo = 0;
4324         /* Association of ring index with doorbell index and MSIX number */
4325         req.logical_id = cpu_to_le16(map_index);
4326
4327         switch (ring_type) {
4328         case HWRM_RING_ALLOC_TX:
4329                 req.ring_type = RING_ALLOC_REQ_RING_TYPE_TX;
4330                 /* Association of transmit ring with completion ring */
4331                 grp_info = &bp->grp_info[ring->grp_idx];
4332                 req.cmpl_ring_id = cpu_to_le16(grp_info->cp_fw_ring_id);
4333                 req.length = cpu_to_le32(bp->tx_ring_mask + 1);
4334                 req.stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
4335                 req.queue_id = cpu_to_le16(ring->queue_id);
4336                 break;
4337         case HWRM_RING_ALLOC_RX:
4338                 req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
4339                 req.length = cpu_to_le32(bp->rx_ring_mask + 1);
4340                 break;
4341         case HWRM_RING_ALLOC_AGG:
4342                 req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
4343                 req.length = cpu_to_le32(bp->rx_agg_ring_mask + 1);
4344                 break;
4345         case HWRM_RING_ALLOC_CMPL:
4346                 req.ring_type = RING_ALLOC_REQ_RING_TYPE_L2_CMPL;
4347                 req.length = cpu_to_le32(bp->cp_ring_mask + 1);
4348                 if (bp->flags & BNXT_FLAG_USING_MSIX)
4349                         req.int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
4350                 break;
4351         default:
4352                 netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n",
4353                            ring_type);
4354                 return -1;
4355         }
4356
4357         mutex_lock(&bp->hwrm_cmd_lock);
4358         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4359         err = le16_to_cpu(resp->error_code);
4360         ring_id = le16_to_cpu(resp->ring_id);
4361         mutex_unlock(&bp->hwrm_cmd_lock);
4362
4363         if (rc || err) {
4364                 netdev_err(bp->dev, "hwrm_ring_alloc type %d failed. rc:%x err:%x\n",
4365                            ring_type, rc, err);
4366                 return -EIO;
4367         }
4368         ring->fw_ring_id = ring_id;
4369         return rc;
4370 }
4371
4372 static int bnxt_hwrm_set_async_event_cr(struct bnxt *bp, int idx)
4373 {
4374         int rc;
4375
4376         if (BNXT_PF(bp)) {
4377                 struct hwrm_func_cfg_input req = {0};
4378
4379                 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
4380                 req.fid = cpu_to_le16(0xffff);
4381                 req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
4382                 req.async_event_cr = cpu_to_le16(idx);
4383                 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4384         } else {
4385                 struct hwrm_func_vf_cfg_input req = {0};
4386
4387                 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_VF_CFG, -1, -1);
4388                 req.enables =
4389                         cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
4390                 req.async_event_cr = cpu_to_le16(idx);
4391                 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4392         }
4393         return rc;
4394 }
4395
4396 static int bnxt_hwrm_ring_alloc(struct bnxt *bp)
4397 {
4398         int i, rc = 0;
4399
4400         for (i = 0; i < bp->cp_nr_rings; i++) {
4401                 struct bnxt_napi *bnapi = bp->bnapi[i];
4402                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4403                 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
4404                 u32 map_idx = ring->map_idx;
4405
4406                 cpr->cp_doorbell = bp->bar1 + map_idx * 0x80;
4407                 rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_CMPL,
4408                                               map_idx);
4409                 if (rc)
4410                         goto err_out;
4411                 BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
4412                 bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id;
4413
4414                 if (!i) {
4415                         rc = bnxt_hwrm_set_async_event_cr(bp, ring->fw_ring_id);
4416                         if (rc)
4417                                 netdev_warn(bp->dev, "Failed to set async event completion ring.\n");
4418                 }
4419         }
4420
4421         for (i = 0; i < bp->tx_nr_rings; i++) {
4422                 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
4423                 struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
4424                 u32 map_idx = i;
4425
4426                 rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_TX,
4427                                               map_idx);
4428                 if (rc)
4429                         goto err_out;
4430                 txr->tx_doorbell = bp->bar1 + map_idx * 0x80;
4431         }
4432
4433         for (i = 0; i < bp->rx_nr_rings; i++) {
4434                 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
4435                 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
4436                 u32 map_idx = rxr->bnapi->index;
4437
4438                 rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_RX,
4439                                               map_idx);
4440                 if (rc)
4441                         goto err_out;
4442                 rxr->rx_doorbell = bp->bar1 + map_idx * 0x80;
4443                 writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
4444                 bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id;
4445         }
4446
4447         if (bp->flags & BNXT_FLAG_AGG_RINGS) {
4448                 for (i = 0; i < bp->rx_nr_rings; i++) {
4449                         struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
4450                         struct bnxt_ring_struct *ring =
4451                                                 &rxr->rx_agg_ring_struct;
4452                         u32 grp_idx = ring->grp_idx;
4453                         u32 map_idx = grp_idx + bp->rx_nr_rings;
4454
4455                         rc = hwrm_ring_alloc_send_msg(bp, ring,
4456                                                       HWRM_RING_ALLOC_AGG,
4457                                                       map_idx);
4458                         if (rc)
4459                                 goto err_out;
4460
4461                         rxr->rx_agg_doorbell = bp->bar1 + map_idx * 0x80;
4462                         writel(DB_KEY_RX | rxr->rx_agg_prod,
4463                                rxr->rx_agg_doorbell);
4464                         bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id;
4465                 }
4466         }
4467 err_out:
4468         return rc;
4469 }
4470
4471 static int hwrm_ring_free_send_msg(struct bnxt *bp,
4472                                    struct bnxt_ring_struct *ring,
4473                                    u32 ring_type, int cmpl_ring_id)
4474 {
4475         int rc;
4476         struct hwrm_ring_free_input req = {0};
4477         struct hwrm_ring_free_output *resp = bp->hwrm_cmd_resp_addr;
4478         u16 error_code;
4479
4480         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_FREE, cmpl_ring_id, -1);
4481         req.ring_type = ring_type;
4482         req.ring_id = cpu_to_le16(ring->fw_ring_id);
4483
4484         mutex_lock(&bp->hwrm_cmd_lock);
4485         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4486         error_code = le16_to_cpu(resp->error_code);
4487         mutex_unlock(&bp->hwrm_cmd_lock);
4488
4489         if (rc || error_code) {
4490                 netdev_err(bp->dev, "hwrm_ring_free type %d failed. rc:%x err:%x\n",
4491                            ring_type, rc, error_code);
4492                 return -EIO;
4493         }
4494         return 0;
4495 }
4496
4497 static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path)
4498 {
4499         int i;
4500
4501         if (!bp->bnapi)
4502                 return;
4503
4504         for (i = 0; i < bp->tx_nr_rings; i++) {
4505                 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
4506                 struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
4507                 u32 grp_idx = txr->bnapi->index;
4508                 u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
4509
4510                 if (ring->fw_ring_id != INVALID_HW_RING_ID) {
4511                         hwrm_ring_free_send_msg(bp, ring,
4512                                                 RING_FREE_REQ_RING_TYPE_TX,
4513                                                 close_path ? cmpl_ring_id :
4514                                                 INVALID_HW_RING_ID);
4515                         ring->fw_ring_id = INVALID_HW_RING_ID;
4516                 }
4517         }
4518
4519         for (i = 0; i < bp->rx_nr_rings; i++) {
4520                 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
4521                 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
4522                 u32 grp_idx = rxr->bnapi->index;
4523                 u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
4524
4525                 if (ring->fw_ring_id != INVALID_HW_RING_ID) {
4526                         hwrm_ring_free_send_msg(bp, ring,
4527                                                 RING_FREE_REQ_RING_TYPE_RX,
4528                                                 close_path ? cmpl_ring_id :
4529                                                 INVALID_HW_RING_ID);
4530                         ring->fw_ring_id = INVALID_HW_RING_ID;
4531                         bp->grp_info[grp_idx].rx_fw_ring_id =
4532                                 INVALID_HW_RING_ID;
4533                 }
4534         }
4535
4536         for (i = 0; i < bp->rx_nr_rings; i++) {
4537                 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
4538                 struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct;
4539                 u32 grp_idx = rxr->bnapi->index;
4540                 u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
4541
4542                 if (ring->fw_ring_id != INVALID_HW_RING_ID) {
4543                         hwrm_ring_free_send_msg(bp, ring,
4544                                                 RING_FREE_REQ_RING_TYPE_RX,
4545                                                 close_path ? cmpl_ring_id :
4546                                                 INVALID_HW_RING_ID);
4547                         ring->fw_ring_id = INVALID_HW_RING_ID;
4548                         bp->grp_info[grp_idx].agg_fw_ring_id =
4549                                 INVALID_HW_RING_ID;
4550                 }
4551         }
4552
4553         /* The completion rings are about to be freed.  After that the
4554          * IRQ doorbell will not work anymore.  So we need to disable
4555          * IRQ here.
4556          */
4557         bnxt_disable_int_sync(bp);
4558
4559         for (i = 0; i < bp->cp_nr_rings; i++) {
4560                 struct bnxt_napi *bnapi = bp->bnapi[i];
4561                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4562                 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
4563
4564                 if (ring->fw_ring_id != INVALID_HW_RING_ID) {
4565                         hwrm_ring_free_send_msg(bp, ring,
4566                                                 RING_FREE_REQ_RING_TYPE_L2_CMPL,
4567                                                 INVALID_HW_RING_ID);
4568                         ring->fw_ring_id = INVALID_HW_RING_ID;
4569                         bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
4570                 }
4571         }
4572 }
4573
4574 static int bnxt_hwrm_get_rings(struct bnxt *bp)
4575 {
4576         struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
4577         struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
4578         struct hwrm_func_qcfg_input req = {0};
4579         int rc;
4580
4581         if (bp->hwrm_spec_code < 0x10601)
4582                 return 0;
4583
4584         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1);
4585         req.fid = cpu_to_le16(0xffff);
4586         mutex_lock(&bp->hwrm_cmd_lock);
4587         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4588         if (rc) {
4589                 mutex_unlock(&bp->hwrm_cmd_lock);
4590                 return -EIO;
4591         }
4592
4593         hw_resc->resv_tx_rings = le16_to_cpu(resp->alloc_tx_rings);
4594         if (BNXT_NEW_RM(bp)) {
4595                 u16 cp, stats;
4596
4597                 hw_resc->resv_rx_rings = le16_to_cpu(resp->alloc_rx_rings);
4598                 hw_resc->resv_hw_ring_grps =
4599                         le32_to_cpu(resp->alloc_hw_ring_grps);
4600                 hw_resc->resv_vnics = le16_to_cpu(resp->alloc_vnics);
4601                 cp = le16_to_cpu(resp->alloc_cmpl_rings);
4602                 stats = le16_to_cpu(resp->alloc_stat_ctx);
4603                 cp = min_t(u16, cp, stats);
4604                 hw_resc->resv_cp_rings = cp;
4605         }
4606         mutex_unlock(&bp->hwrm_cmd_lock);
4607         return 0;
4608 }
4609
4610 /* Caller must hold bp->hwrm_cmd_lock */
4611 int __bnxt_hwrm_get_tx_rings(struct bnxt *bp, u16 fid, int *tx_rings)
4612 {
4613         struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
4614         struct hwrm_func_qcfg_input req = {0};
4615         int rc;
4616
4617         if (bp->hwrm_spec_code < 0x10601)
4618                 return 0;
4619
4620         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1);
4621         req.fid = cpu_to_le16(fid);
4622         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4623         if (!rc)
4624                 *tx_rings = le16_to_cpu(resp->alloc_tx_rings);
4625
4626         return rc;
4627 }
4628
4629 static void
4630 __bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, struct hwrm_func_cfg_input *req,
4631                              int tx_rings, int rx_rings, int ring_grps,
4632                              int cp_rings, int vnics)
4633 {
4634         u32 enables = 0;
4635
4636         bnxt_hwrm_cmd_hdr_init(bp, req, HWRM_FUNC_CFG, -1, -1);
4637         req->fid = cpu_to_le16(0xffff);
4638         enables |= tx_rings ? FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS : 0;
4639         req->num_tx_rings = cpu_to_le16(tx_rings);
4640         if (BNXT_NEW_RM(bp)) {
4641                 enables |= rx_rings ? FUNC_CFG_REQ_ENABLES_NUM_RX_RINGS : 0;
4642                 enables |= cp_rings ? FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS |
4643                                       FUNC_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0;
4644                 enables |= ring_grps ?
4645                            FUNC_CFG_REQ_ENABLES_NUM_HW_RING_GRPS : 0;
4646                 enables |= vnics ? FUNC_VF_CFG_REQ_ENABLES_NUM_VNICS : 0;
4647
4648                 req->num_rx_rings = cpu_to_le16(rx_rings);
4649                 req->num_hw_ring_grps = cpu_to_le16(ring_grps);
4650                 req->num_cmpl_rings = cpu_to_le16(cp_rings);
4651                 req->num_stat_ctxs = req->num_cmpl_rings;
4652                 req->num_vnics = cpu_to_le16(vnics);
4653         }
4654         req->enables = cpu_to_le32(enables);
4655 }
4656
4657 static void
4658 __bnxt_hwrm_reserve_vf_rings(struct bnxt *bp,
4659                              struct hwrm_func_vf_cfg_input *req, int tx_rings,
4660                              int rx_rings, int ring_grps, int cp_rings,
4661                              int vnics)
4662 {
4663         u32 enables = 0;
4664
4665         bnxt_hwrm_cmd_hdr_init(bp, req, HWRM_FUNC_VF_CFG, -1, -1);
4666         enables |= tx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_TX_RINGS : 0;
4667         enables |= rx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_RX_RINGS : 0;
4668         enables |= cp_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS |
4669                               FUNC_VF_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0;
4670         enables |= ring_grps ? FUNC_VF_CFG_REQ_ENABLES_NUM_HW_RING_GRPS : 0;
4671         enables |= vnics ? FUNC_VF_CFG_REQ_ENABLES_NUM_VNICS : 0;
4672
4673         req->num_tx_rings = cpu_to_le16(tx_rings);
4674         req->num_rx_rings = cpu_to_le16(rx_rings);
4675         req->num_hw_ring_grps = cpu_to_le16(ring_grps);
4676         req->num_cmpl_rings = cpu_to_le16(cp_rings);
4677         req->num_stat_ctxs = req->num_cmpl_rings;
4678         req->num_vnics = cpu_to_le16(vnics);
4679
4680         req->enables = cpu_to_le32(enables);
4681 }
4682
4683 static int
4684 bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
4685                            int ring_grps, int cp_rings, int vnics)
4686 {
4687         struct hwrm_func_cfg_input req = {0};
4688         int rc;
4689
4690         __bnxt_hwrm_reserve_pf_rings(bp, &req, tx_rings, rx_rings, ring_grps,
4691                                      cp_rings, vnics);
4692         if (!req.enables)
4693                 return 0;
4694
4695         rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4696         if (rc)
4697                 return -ENOMEM;
4698
4699         if (bp->hwrm_spec_code < 0x10601)
4700                 bp->hw_resc.resv_tx_rings = tx_rings;
4701
4702         rc = bnxt_hwrm_get_rings(bp);
4703         return rc;
4704 }
4705
4706 static int
4707 bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
4708                            int ring_grps, int cp_rings, int vnics)
4709 {
4710         struct hwrm_func_vf_cfg_input req = {0};
4711         int rc;
4712
4713         if (!BNXT_NEW_RM(bp)) {
4714                 bp->hw_resc.resv_tx_rings = tx_rings;
4715                 return 0;
4716         }
4717
4718         __bnxt_hwrm_reserve_vf_rings(bp, &req, tx_rings, rx_rings, ring_grps,
4719                                      cp_rings, vnics);
4720         req.enables |= cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS |
4721                                    FUNC_VF_CFG_REQ_ENABLES_NUM_L2_CTXS);
4722         req.num_rsscos_ctxs = cpu_to_le16(BNXT_VF_MAX_RSS_CTX);
4723         req.num_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX);
4724         rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4725         if (rc)
4726                 return -ENOMEM;
4727
4728         rc = bnxt_hwrm_get_rings(bp);
4729         return rc;
4730 }
4731
4732 static int bnxt_hwrm_reserve_rings(struct bnxt *bp, int tx, int rx, int grp,
4733                                    int cp, int vnic)
4734 {
4735         if (BNXT_PF(bp))
4736                 return bnxt_hwrm_reserve_pf_rings(bp, tx, rx, grp, cp, vnic);
4737         else
4738                 return bnxt_hwrm_reserve_vf_rings(bp, tx, rx, grp, cp, vnic);
4739 }
4740
4741 static int bnxt_cp_rings_in_use(struct bnxt *bp)
4742 {
4743         int cp = bp->cp_nr_rings;
4744         int ulp_msix, ulp_base;
4745
4746         ulp_msix = bnxt_get_ulp_msix_num(bp);
4747         if (ulp_msix) {
4748                 ulp_base = bnxt_get_ulp_msix_base(bp);
4749                 cp += ulp_msix;
4750                 if ((ulp_base + ulp_msix) > cp)
4751                         cp = ulp_base + ulp_msix;
4752         }
4753         return cp;
4754 }
4755
4756 static bool bnxt_need_reserve_rings(struct bnxt *bp)
4757 {
4758         struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
4759         int cp = bnxt_cp_rings_in_use(bp);
4760         int rx = bp->rx_nr_rings;
4761         int vnic = 1, grp = rx;
4762
4763         if (bp->hwrm_spec_code < 0x10601)
4764                 return false;
4765
4766         if (hw_resc->resv_tx_rings != bp->tx_nr_rings)
4767                 return true;
4768
4769         if (bp->flags & BNXT_FLAG_RFS)
4770                 vnic = rx + 1;
4771         if (bp->flags & BNXT_FLAG_AGG_RINGS)
4772                 rx <<= 1;
4773         if (BNXT_NEW_RM(bp) &&
4774             (hw_resc->resv_rx_rings != rx || hw_resc->resv_cp_rings != cp ||
4775              hw_resc->resv_hw_ring_grps != grp || hw_resc->resv_vnics != vnic))
4776                 return true;
4777         return false;
4778 }
4779
4780 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
4781                            bool shared);
4782
4783 static int __bnxt_reserve_rings(struct bnxt *bp)
4784 {
4785         struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
4786         int cp = bnxt_cp_rings_in_use(bp);
4787         int tx = bp->tx_nr_rings;
4788         int rx = bp->rx_nr_rings;
4789         int grp, rx_rings, rc;
4790         bool sh = false;
4791         int vnic = 1;
4792
4793         if (!bnxt_need_reserve_rings(bp))
4794                 return 0;
4795
4796         if (bp->flags & BNXT_FLAG_SHARED_RINGS)
4797                 sh = true;
4798         if (bp->flags & BNXT_FLAG_RFS)
4799                 vnic = rx + 1;
4800         if (bp->flags & BNXT_FLAG_AGG_RINGS)
4801                 rx <<= 1;
4802         grp = bp->rx_nr_rings;
4803
4804         rc = bnxt_hwrm_reserve_rings(bp, tx, rx, grp, cp, vnic);
4805         if (rc)
4806                 return rc;
4807
4808         tx = hw_resc->resv_tx_rings;
4809         if (BNXT_NEW_RM(bp)) {
4810                 rx = hw_resc->resv_rx_rings;
4811                 cp = hw_resc->resv_cp_rings;
4812                 grp = hw_resc->resv_hw_ring_grps;
4813                 vnic = hw_resc->resv_vnics;
4814         }
4815
4816         rx_rings = rx;
4817         if (bp->flags & BNXT_FLAG_AGG_RINGS) {
4818                 if (rx >= 2) {
4819                         rx_rings = rx >> 1;
4820                 } else {
4821                         if (netif_running(bp->dev))
4822                                 return -ENOMEM;
4823
4824                         bp->flags &= ~BNXT_FLAG_AGG_RINGS;
4825                         bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
4826                         bp->dev->hw_features &= ~NETIF_F_LRO;
4827                         bp->dev->features &= ~NETIF_F_LRO;
4828                         bnxt_set_ring_params(bp);
4829                 }
4830         }
4831         rx_rings = min_t(int, rx_rings, grp);
4832         rc = bnxt_trim_rings(bp, &rx_rings, &tx, cp, sh);
4833         if (bp->flags & BNXT_FLAG_AGG_RINGS)
4834                 rx = rx_rings << 1;
4835         cp = sh ? max_t(int, tx, rx_rings) : tx + rx_rings;
4836         bp->tx_nr_rings = tx;
4837         bp->rx_nr_rings = rx_rings;
4838         bp->cp_nr_rings = cp;
4839
4840         if (!tx || !rx || !cp || !grp || !vnic)
4841                 return -ENOMEM;
4842
4843         return rc;
4844 }
4845
4846 static int bnxt_hwrm_check_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
4847                                     int ring_grps, int cp_rings, int vnics)
4848 {
4849         struct hwrm_func_vf_cfg_input req = {0};
4850         u32 flags;
4851         int rc;
4852
4853         if (!BNXT_NEW_RM(bp))
4854                 return 0;
4855
4856         __bnxt_hwrm_reserve_vf_rings(bp, &req, tx_rings, rx_rings, ring_grps,
4857                                      cp_rings, vnics);
4858         flags = FUNC_VF_CFG_REQ_FLAGS_TX_ASSETS_TEST |
4859                 FUNC_VF_CFG_REQ_FLAGS_RX_ASSETS_TEST |
4860                 FUNC_VF_CFG_REQ_FLAGS_CMPL_ASSETS_TEST |
4861                 FUNC_VF_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST |
4862                 FUNC_VF_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST |
4863                 FUNC_VF_CFG_REQ_FLAGS_VNIC_ASSETS_TEST;
4864
4865         req.flags = cpu_to_le32(flags);
4866         rc = hwrm_send_message_silent(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4867         if (rc)
4868                 return -ENOMEM;
4869         return 0;
4870 }
4871
4872 static int bnxt_hwrm_check_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
4873                                     int ring_grps, int cp_rings, int vnics)
4874 {
4875         struct hwrm_func_cfg_input req = {0};
4876         u32 flags;
4877         int rc;
4878
4879         __bnxt_hwrm_reserve_pf_rings(bp, &req, tx_rings, rx_rings, ring_grps,
4880                                      cp_rings, vnics);
4881         flags = FUNC_CFG_REQ_FLAGS_TX_ASSETS_TEST;
4882         if (BNXT_NEW_RM(bp))
4883                 flags |= FUNC_CFG_REQ_FLAGS_RX_ASSETS_TEST |
4884                          FUNC_CFG_REQ_FLAGS_CMPL_ASSETS_TEST |
4885                          FUNC_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST |
4886                          FUNC_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST |
4887                          FUNC_CFG_REQ_FLAGS_VNIC_ASSETS_TEST;
4888
4889         req.flags = cpu_to_le32(flags);
4890         rc = hwrm_send_message_silent(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4891         if (rc)
4892                 return -ENOMEM;
4893         return 0;
4894 }
4895
4896 static int bnxt_hwrm_check_rings(struct bnxt *bp, int tx_rings, int rx_rings,
4897                                  int ring_grps, int cp_rings, int vnics)
4898 {
4899         if (bp->hwrm_spec_code < 0x10801)
4900                 return 0;
4901
4902         if (BNXT_PF(bp))
4903                 return bnxt_hwrm_check_pf_rings(bp, tx_rings, rx_rings,
4904                                                 ring_grps, cp_rings, vnics);
4905
4906         return bnxt_hwrm_check_vf_rings(bp, tx_rings, rx_rings, ring_grps,
4907                                         cp_rings, vnics);
4908 }
4909
4910 static void bnxt_hwrm_set_coal_params(struct bnxt_coal *hw_coal,
4911         struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req)
4912 {
4913         u16 val, tmr, max, flags;
4914
4915         max = hw_coal->bufs_per_record * 128;
4916         if (hw_coal->budget)
4917                 max = hw_coal->bufs_per_record * hw_coal->budget;
4918
4919         val = clamp_t(u16, hw_coal->coal_bufs, 1, max);
4920         req->num_cmpl_aggr_int = cpu_to_le16(val);
4921
4922         /* This is a 6-bit value and must not be 0, or we'll get non stop IRQ */
4923         val = min_t(u16, val, 63);
4924         req->num_cmpl_dma_aggr = cpu_to_le16(val);
4925
4926         /* This is a 6-bit value and must not be 0, or we'll get non stop IRQ */
4927         val = clamp_t(u16, hw_coal->coal_bufs_irq, 1, 63);
4928         req->num_cmpl_dma_aggr_during_int = cpu_to_le16(val);
4929
4930         tmr = BNXT_USEC_TO_COAL_TIMER(hw_coal->coal_ticks);
4931         tmr = max_t(u16, tmr, 1);
4932         req->int_lat_tmr_max = cpu_to_le16(tmr);
4933
4934         /* min timer set to 1/2 of interrupt timer */
4935         val = tmr / 2;
4936         req->int_lat_tmr_min = cpu_to_le16(val);
4937
4938         /* buf timer set to 1/4 of interrupt timer */
4939         val = max_t(u16, tmr / 4, 1);
4940         req->cmpl_aggr_dma_tmr = cpu_to_le16(val);
4941
4942         tmr = BNXT_USEC_TO_COAL_TIMER(hw_coal->coal_ticks_irq);
4943         tmr = max_t(u16, tmr, 1);
4944         req->cmpl_aggr_dma_tmr_during_int = cpu_to_le16(tmr);
4945
4946         flags = RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET;
4947         if (hw_coal->idle_thresh && hw_coal->coal_ticks < hw_coal->idle_thresh)
4948                 flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE;
4949         req->flags = cpu_to_le16(flags);
4950 }
4951
4952 int bnxt_hwrm_set_ring_coal(struct bnxt *bp, struct bnxt_napi *bnapi)
4953 {
4954         struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req_rx = {0};
4955         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4956         struct bnxt_coal coal;
4957         unsigned int grp_idx;
4958
4959         /* Tick values in micro seconds.
4960          * 1 coal_buf x bufs_per_record = 1 completion record.
4961          */
4962         memcpy(&coal, &bp->rx_coal, sizeof(struct bnxt_coal));
4963
4964         coal.coal_ticks = cpr->rx_ring_coal.coal_ticks;
4965         coal.coal_bufs = cpr->rx_ring_coal.coal_bufs;
4966
4967         if (!bnapi->rx_ring)
4968                 return -ENODEV;
4969
4970         bnxt_hwrm_cmd_hdr_init(bp, &req_rx,
4971                                HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
4972
4973         bnxt_hwrm_set_coal_params(&coal, &req_rx);
4974
4975         grp_idx = bnapi->index;
4976         req_rx.ring_id = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id);
4977
4978         return hwrm_send_message(bp, &req_rx, sizeof(req_rx),
4979                                  HWRM_CMD_TIMEOUT);
4980 }
4981
4982 int bnxt_hwrm_set_coal(struct bnxt *bp)
4983 {
4984         int i, rc = 0;
4985         struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req_rx = {0},
4986                                                            req_tx = {0}, *req;
4987
4988         bnxt_hwrm_cmd_hdr_init(bp, &req_rx,
4989                                HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
4990         bnxt_hwrm_cmd_hdr_init(bp, &req_tx,
4991                                HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
4992
4993         bnxt_hwrm_set_coal_params(&bp->rx_coal, &req_rx);
4994         bnxt_hwrm_set_coal_params(&bp->tx_coal, &req_tx);
4995
4996         mutex_lock(&bp->hwrm_cmd_lock);
4997         for (i = 0; i < bp->cp_nr_rings; i++) {
4998                 struct bnxt_napi *bnapi = bp->bnapi[i];
4999
5000                 req = &req_rx;
5001                 if (!bnapi->rx_ring)
5002                         req = &req_tx;
5003                 req->ring_id = cpu_to_le16(bp->grp_info[i].cp_fw_ring_id);
5004
5005                 rc = _hwrm_send_message(bp, req, sizeof(*req),
5006                                         HWRM_CMD_TIMEOUT);
5007                 if (rc)
5008                         break;
5009         }
5010         mutex_unlock(&bp->hwrm_cmd_lock);
5011         return rc;
5012 }
5013
5014 static int bnxt_hwrm_stat_ctx_free(struct bnxt *bp)
5015 {
5016         int rc = 0, i;
5017         struct hwrm_stat_ctx_free_input req = {0};
5018
5019         if (!bp->bnapi)
5020                 return 0;
5021
5022         if (BNXT_CHIP_TYPE_NITRO_A0(bp))
5023                 return 0;
5024
5025         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_FREE, -1, -1);
5026
5027         mutex_lock(&bp->hwrm_cmd_lock);
5028         for (i = 0; i < bp->cp_nr_rings; i++) {
5029                 struct bnxt_napi *bnapi = bp->bnapi[i];
5030                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5031
5032                 if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) {
5033                         req.stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id);
5034
5035                         rc = _hwrm_send_message(bp, &req, sizeof(req),
5036                                                 HWRM_CMD_TIMEOUT);
5037                         if (rc)
5038                                 break;
5039
5040                         cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
5041                 }
5042         }
5043         mutex_unlock(&bp->hwrm_cmd_lock);
5044         return rc;
5045 }
5046
5047 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp)
5048 {
5049         int rc = 0, i;
5050         struct hwrm_stat_ctx_alloc_input req = {0};
5051         struct hwrm_stat_ctx_alloc_output *resp = bp->hwrm_cmd_resp_addr;
5052
5053         if (BNXT_CHIP_TYPE_NITRO_A0(bp))
5054                 return 0;
5055
5056         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_ALLOC, -1, -1);
5057
5058         req.update_period_ms = cpu_to_le32(bp->stats_coal_ticks / 1000);
5059
5060         mutex_lock(&bp->hwrm_cmd_lock);
5061         for (i = 0; i < bp->cp_nr_rings; i++) {
5062                 struct bnxt_napi *bnapi = bp->bnapi[i];
5063                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5064
5065                 req.stats_dma_addr = cpu_to_le64(cpr->hw_stats_map);
5066
5067                 rc = _hwrm_send_message(bp, &req, sizeof(req),
5068                                         HWRM_CMD_TIMEOUT);
5069                 if (rc)
5070                         break;
5071
5072                 cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id);
5073
5074                 bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id;
5075         }
5076         mutex_unlock(&bp->hwrm_cmd_lock);
5077         return rc;
5078 }
5079
5080 static int bnxt_hwrm_func_qcfg(struct bnxt *bp)
5081 {
5082         struct hwrm_func_qcfg_input req = {0};
5083         struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
5084         u16 flags;
5085         int rc;
5086
5087         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1);
5088         req.fid = cpu_to_le16(0xffff);
5089         mutex_lock(&bp->hwrm_cmd_lock);
5090         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5091         if (rc)
5092                 goto func_qcfg_exit;
5093
5094 #ifdef CONFIG_BNXT_SRIOV
5095         if (BNXT_VF(bp)) {
5096                 struct bnxt_vf_info *vf = &bp->vf;
5097
5098                 vf->vlan = le16_to_cpu(resp->vlan) & VLAN_VID_MASK;
5099         }
5100 #endif
5101         flags = le16_to_cpu(resp->flags);
5102         if (flags & (FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED |
5103                      FUNC_QCFG_RESP_FLAGS_FW_LLDP_AGENT_ENABLED)) {
5104                 bp->fw_cap |= BNXT_FW_CAP_LLDP_AGENT;
5105                 if (flags & FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED)
5106                         bp->fw_cap |= BNXT_FW_CAP_DCBX_AGENT;
5107         }
5108         if (BNXT_PF(bp) && (flags & FUNC_QCFG_RESP_FLAGS_MULTI_HOST))
5109                 bp->flags |= BNXT_FLAG_MULTI_HOST;
5110
5111         switch (resp->port_partition_type) {
5112         case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_0:
5113         case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_5:
5114         case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR2_0:
5115                 bp->port_partition_type = resp->port_partition_type;
5116                 break;
5117         }
5118         if (bp->hwrm_spec_code < 0x10707 ||
5119             resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEB)
5120                 bp->br_mode = BRIDGE_MODE_VEB;
5121         else if (resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEPA)
5122                 bp->br_mode = BRIDGE_MODE_VEPA;
5123         else
5124                 bp->br_mode = BRIDGE_MODE_UNDEF;
5125
5126         bp->max_mtu = le16_to_cpu(resp->max_mtu_configured);
5127         if (!bp->max_mtu)
5128                 bp->max_mtu = BNXT_MAX_MTU;
5129
5130 func_qcfg_exit:
5131         mutex_unlock(&bp->hwrm_cmd_lock);
5132         return rc;
5133 }
5134
5135 int bnxt_hwrm_func_resc_qcaps(struct bnxt *bp, bool all)
5136 {
5137         struct hwrm_func_resource_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
5138         struct hwrm_func_resource_qcaps_input req = {0};
5139         struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
5140         int rc;
5141
5142         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_RESOURCE_QCAPS, -1, -1);
5143         req.fid = cpu_to_le16(0xffff);
5144
5145         mutex_lock(&bp->hwrm_cmd_lock);
5146         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5147         if (rc) {
5148                 rc = -EIO;
5149                 goto hwrm_func_resc_qcaps_exit;
5150         }
5151
5152         hw_resc->max_tx_sch_inputs = le16_to_cpu(resp->max_tx_scheduler_inputs);
5153         if (!all)
5154                 goto hwrm_func_resc_qcaps_exit;
5155
5156         hw_resc->min_rsscos_ctxs = le16_to_cpu(resp->min_rsscos_ctx);
5157         hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
5158         hw_resc->min_cp_rings = le16_to_cpu(resp->min_cmpl_rings);
5159         hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
5160         hw_resc->min_tx_rings = le16_to_cpu(resp->min_tx_rings);
5161         hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
5162         hw_resc->min_rx_rings = le16_to_cpu(resp->min_rx_rings);
5163         hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
5164         hw_resc->min_hw_ring_grps = le16_to_cpu(resp->min_hw_ring_grps);
5165         hw_resc->max_hw_ring_grps = le16_to_cpu(resp->max_hw_ring_grps);
5166         hw_resc->min_l2_ctxs = le16_to_cpu(resp->min_l2_ctxs);
5167         hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
5168         hw_resc->min_vnics = le16_to_cpu(resp->min_vnics);
5169         hw_resc->max_vnics = le16_to_cpu(resp->max_vnics);
5170         hw_resc->min_stat_ctxs = le16_to_cpu(resp->min_stat_ctx);
5171         hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
5172
5173         if (BNXT_PF(bp)) {
5174                 struct bnxt_pf_info *pf = &bp->pf;
5175
5176                 pf->vf_resv_strategy =
5177                         le16_to_cpu(resp->vf_reservation_strategy);
5178                 if (pf->vf_resv_strategy > BNXT_VF_RESV_STRATEGY_MINIMAL_STATIC)
5179                         pf->vf_resv_strategy = BNXT_VF_RESV_STRATEGY_MAXIMAL;
5180         }
5181 hwrm_func_resc_qcaps_exit:
5182         mutex_unlock(&bp->hwrm_cmd_lock);
5183         return rc;
5184 }
5185
5186 static int __bnxt_hwrm_func_qcaps(struct bnxt *bp)
5187 {
5188         int rc = 0;
5189         struct hwrm_func_qcaps_input req = {0};
5190         struct hwrm_func_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
5191         struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
5192         u32 flags;
5193
5194         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCAPS, -1, -1);
5195         req.fid = cpu_to_le16(0xffff);
5196
5197         mutex_lock(&bp->hwrm_cmd_lock);
5198         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5199         if (rc)
5200                 goto hwrm_func_qcaps_exit;
5201
5202         flags = le32_to_cpu(resp->flags);
5203         if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V1_SUPPORTED)
5204                 bp->flags |= BNXT_FLAG_ROCEV1_CAP;
5205         if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V2_SUPPORTED)
5206                 bp->flags |= BNXT_FLAG_ROCEV2_CAP;
5207
5208         bp->tx_push_thresh = 0;
5209         if (flags & FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED)
5210                 bp->tx_push_thresh = BNXT_TX_PUSH_THRESH;
5211
5212         hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
5213         hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
5214         hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
5215         hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
5216         hw_resc->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps);
5217         if (!hw_resc->max_hw_ring_grps)
5218                 hw_resc->max_hw_ring_grps = hw_resc->max_tx_rings;
5219         hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
5220         hw_resc->max_vnics = le16_to_cpu(resp->max_vnics);
5221         hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
5222
5223         if (BNXT_PF(bp)) {
5224                 struct bnxt_pf_info *pf = &bp->pf;
5225
5226                 pf->fw_fid = le16_to_cpu(resp->fid);
5227                 pf->port_id = le16_to_cpu(resp->port_id);
5228                 bp->dev->dev_port = pf->port_id;
5229                 memcpy(pf->mac_addr, resp->mac_address, ETH_ALEN);
5230                 pf->first_vf_id = le16_to_cpu(resp->first_vf_id);
5231                 pf->max_vfs = le16_to_cpu(resp->max_vfs);
5232                 pf->max_encap_records = le32_to_cpu(resp->max_encap_records);
5233                 pf->max_decap_records = le32_to_cpu(resp->max_decap_records);
5234                 pf->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows);
5235                 pf->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows);
5236                 pf->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows);
5237                 pf->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows);
5238                 if (flags & FUNC_QCAPS_RESP_FLAGS_WOL_MAGICPKT_SUPPORTED)
5239                         bp->flags |= BNXT_FLAG_WOL_CAP;
5240         } else {
5241 #ifdef CONFIG_BNXT_SRIOV
5242                 struct bnxt_vf_info *vf = &bp->vf;
5243
5244                 vf->fw_fid = le16_to_cpu(resp->fid);
5245                 memcpy(vf->mac_addr, resp->mac_address, ETH_ALEN);
5246 #endif
5247         }
5248
5249 hwrm_func_qcaps_exit:
5250         mutex_unlock(&bp->hwrm_cmd_lock);
5251         return rc;
5252 }
5253
5254 static int bnxt_hwrm_func_qcaps(struct bnxt *bp)
5255 {
5256         int rc;
5257
5258         rc = __bnxt_hwrm_func_qcaps(bp);
5259         if (rc)
5260                 return rc;
5261         if (bp->hwrm_spec_code >= 0x10803) {
5262                 rc = bnxt_hwrm_func_resc_qcaps(bp, true);
5263                 if (!rc)
5264                         bp->fw_cap |= BNXT_FW_CAP_NEW_RM;
5265         }
5266         return 0;
5267 }
5268
5269 static int bnxt_hwrm_func_reset(struct bnxt *bp)
5270 {
5271         struct hwrm_func_reset_input req = {0};
5272
5273         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_RESET, -1, -1);
5274         req.enables = 0;
5275
5276         return hwrm_send_message(bp, &req, sizeof(req), HWRM_RESET_TIMEOUT);
5277 }
5278
5279 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp)
5280 {
5281         int rc = 0;
5282         struct hwrm_queue_qportcfg_input req = {0};
5283         struct hwrm_queue_qportcfg_output *resp = bp->hwrm_cmd_resp_addr;
5284         u8 i, j, *qptr;
5285         bool no_rdma;
5286
5287         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_QUEUE_QPORTCFG, -1, -1);
5288
5289         mutex_lock(&bp->hwrm_cmd_lock);
5290         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5291         if (rc)
5292                 goto qportcfg_exit;
5293
5294         if (!resp->max_configurable_queues) {
5295                 rc = -EINVAL;
5296                 goto qportcfg_exit;
5297         }
5298         bp->max_tc = resp->max_configurable_queues;
5299         bp->max_lltc = resp->max_configurable_lossless_queues;
5300         if (bp->max_tc > BNXT_MAX_QUEUE)
5301                 bp->max_tc = BNXT_MAX_QUEUE;
5302
5303         no_rdma = !(bp->flags & BNXT_FLAG_ROCE_CAP);
5304         qptr = &resp->queue_id0;
5305         for (i = 0, j = 0; i < bp->max_tc; i++) {
5306                 bp->q_info[j].queue_id = *qptr++;
5307                 bp->q_info[j].queue_profile = *qptr++;
5308                 bp->tc_to_qidx[j] = j;
5309                 if (!BNXT_CNPQ(bp->q_info[j].queue_profile) ||
5310                     (no_rdma && BNXT_PF(bp)))
5311                         j++;
5312         }
5313         bp->max_tc = max_t(u8, j, 1);
5314
5315         if (resp->queue_cfg_info & QUEUE_QPORTCFG_RESP_QUEUE_CFG_INFO_ASYM_CFG)
5316                 bp->max_tc = 1;
5317
5318         if (bp->max_lltc > bp->max_tc)
5319                 bp->max_lltc = bp->max_tc;
5320
5321 qportcfg_exit:
5322         mutex_unlock(&bp->hwrm_cmd_lock);
5323         return rc;
5324 }
5325
5326 static int bnxt_hwrm_ver_get(struct bnxt *bp)
5327 {
5328         int rc;
5329         struct hwrm_ver_get_input req = {0};
5330         struct hwrm_ver_get_output *resp = bp->hwrm_cmd_resp_addr;
5331         u32 dev_caps_cfg;
5332
5333         bp->hwrm_max_req_len = HWRM_MAX_REQ_LEN;
5334         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VER_GET, -1, -1);
5335         req.hwrm_intf_maj = HWRM_VERSION_MAJOR;
5336         req.hwrm_intf_min = HWRM_VERSION_MINOR;
5337         req.hwrm_intf_upd = HWRM_VERSION_UPDATE;
5338         mutex_lock(&bp->hwrm_cmd_lock);
5339         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5340         if (rc)
5341                 goto hwrm_ver_get_exit;
5342
5343         memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output));
5344
5345         bp->hwrm_spec_code = resp->hwrm_intf_maj_8b << 16 |
5346                              resp->hwrm_intf_min_8b << 8 |
5347                              resp->hwrm_intf_upd_8b;
5348         if (resp->hwrm_intf_maj_8b < 1) {
5349                 netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n",
5350                             resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b,
5351                             resp->hwrm_intf_upd_8b);
5352                 netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n");
5353         }
5354         snprintf(bp->fw_ver_str, BC_HWRM_STR_LEN, "%d.%d.%d.%d",
5355                  resp->hwrm_fw_maj_8b, resp->hwrm_fw_min_8b,
5356                  resp->hwrm_fw_bld_8b, resp->hwrm_fw_rsvd_8b);
5357
5358         bp->hwrm_cmd_timeout = le16_to_cpu(resp->def_req_timeout);
5359         if (!bp->hwrm_cmd_timeout)
5360                 bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT;
5361
5362         if (resp->hwrm_intf_maj_8b >= 1)
5363                 bp->hwrm_max_req_len = le16_to_cpu(resp->max_req_win_len);
5364
5365         bp->chip_num = le16_to_cpu(resp->chip_num);
5366         if (bp->chip_num == CHIP_NUM_58700 && !resp->chip_rev &&
5367             !resp->chip_metal)
5368                 bp->flags |= BNXT_FLAG_CHIP_NITRO_A0;
5369
5370         dev_caps_cfg = le32_to_cpu(resp->dev_caps_cfg);
5371         if ((dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_SUPPORTED) &&
5372             (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_REQUIRED))
5373                 bp->fw_cap |= BNXT_FW_CAP_SHORT_CMD;
5374
5375 hwrm_ver_get_exit:
5376         mutex_unlock(&bp->hwrm_cmd_lock);
5377         return rc;
5378 }
5379
5380 int bnxt_hwrm_fw_set_time(struct bnxt *bp)
5381 {
5382         struct hwrm_fw_set_time_input req = {0};
5383         struct tm tm;
5384         time64_t now = ktime_get_real_seconds();
5385
5386         if ((BNXT_VF(bp) && bp->hwrm_spec_code < 0x10901) ||
5387             bp->hwrm_spec_code < 0x10400)
5388                 return -EOPNOTSUPP;
5389
5390         time64_to_tm(now, 0, &tm);
5391         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FW_SET_TIME, -1, -1);
5392         req.year = cpu_to_le16(1900 + tm.tm_year);
5393         req.month = 1 + tm.tm_mon;
5394         req.day = tm.tm_mday;
5395         req.hour = tm.tm_hour;
5396         req.minute = tm.tm_min;
5397         req.second = tm.tm_sec;
5398         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5399 }
5400
5401 static int bnxt_hwrm_port_qstats(struct bnxt *bp)
5402 {
5403         int rc;
5404         struct bnxt_pf_info *pf = &bp->pf;
5405         struct hwrm_port_qstats_input req = {0};
5406
5407         if (!(bp->flags & BNXT_FLAG_PORT_STATS))
5408                 return 0;
5409
5410         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_QSTATS, -1, -1);
5411         req.port_id = cpu_to_le16(pf->port_id);
5412         req.tx_stat_host_addr = cpu_to_le64(bp->hw_tx_port_stats_map);
5413         req.rx_stat_host_addr = cpu_to_le64(bp->hw_rx_port_stats_map);
5414         rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5415         return rc;
5416 }
5417
5418 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp)
5419 {
5420         struct hwrm_port_qstats_ext_input req = {0};
5421         struct bnxt_pf_info *pf = &bp->pf;
5422
5423         if (!(bp->flags & BNXT_FLAG_PORT_STATS_EXT))
5424                 return 0;
5425
5426         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_QSTATS_EXT, -1, -1);
5427         req.port_id = cpu_to_le16(pf->port_id);
5428         req.rx_stat_size = cpu_to_le16(sizeof(struct rx_port_stats_ext));
5429         req.rx_stat_host_addr = cpu_to_le64(bp->hw_rx_port_stats_ext_map);
5430         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5431 }
5432
5433 static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp)
5434 {
5435         if (bp->vxlan_port_cnt) {
5436                 bnxt_hwrm_tunnel_dst_port_free(
5437                         bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
5438         }
5439         bp->vxlan_port_cnt = 0;
5440         if (bp->nge_port_cnt) {
5441                 bnxt_hwrm_tunnel_dst_port_free(
5442                         bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
5443         }
5444         bp->nge_port_cnt = 0;
5445 }
5446
5447 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa)
5448 {
5449         int rc, i;
5450         u32 tpa_flags = 0;
5451
5452         if (set_tpa)
5453                 tpa_flags = bp->flags & BNXT_FLAG_TPA;
5454         for (i = 0; i < bp->nr_vnics; i++) {
5455                 rc = bnxt_hwrm_vnic_set_tpa(bp, i, tpa_flags);
5456                 if (rc) {
5457                         netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n",
5458                                    i, rc);
5459                         return rc;
5460                 }
5461         }
5462         return 0;
5463 }
5464
5465 static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp)
5466 {
5467         int i;
5468
5469         for (i = 0; i < bp->nr_vnics; i++)
5470                 bnxt_hwrm_vnic_set_rss(bp, i, false);
5471 }
5472
5473 static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path,
5474                                     bool irq_re_init)
5475 {
5476         if (bp->vnic_info) {
5477                 bnxt_hwrm_clear_vnic_filter(bp);
5478                 /* clear all RSS setting before free vnic ctx */
5479                 bnxt_hwrm_clear_vnic_rss(bp);
5480                 bnxt_hwrm_vnic_ctx_free(bp);
5481                 /* before free the vnic, undo the vnic tpa settings */
5482                 if (bp->flags & BNXT_FLAG_TPA)
5483                         bnxt_set_tpa(bp, false);
5484                 bnxt_hwrm_vnic_free(bp);
5485         }
5486         bnxt_hwrm_ring_free(bp, close_path);
5487         bnxt_hwrm_ring_grp_free(bp);
5488         if (irq_re_init) {
5489                 bnxt_hwrm_stat_ctx_free(bp);
5490                 bnxt_hwrm_free_tunnel_ports(bp);
5491         }
5492 }
5493
5494 static int bnxt_hwrm_set_br_mode(struct bnxt *bp, u16 br_mode)
5495 {
5496         struct hwrm_func_cfg_input req = {0};
5497         int rc;
5498
5499         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
5500         req.fid = cpu_to_le16(0xffff);
5501         req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_EVB_MODE);
5502         if (br_mode == BRIDGE_MODE_VEB)
5503                 req.evb_mode = FUNC_CFG_REQ_EVB_MODE_VEB;
5504         else if (br_mode == BRIDGE_MODE_VEPA)
5505                 req.evb_mode = FUNC_CFG_REQ_EVB_MODE_VEPA;
5506         else
5507                 return -EINVAL;
5508         rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5509         if (rc)
5510                 rc = -EIO;
5511         return rc;
5512 }
5513
5514 static int bnxt_hwrm_set_cache_line_size(struct bnxt *bp, int size)
5515 {
5516         struct hwrm_func_cfg_input req = {0};
5517         int rc;
5518
5519         if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10803)
5520                 return 0;
5521
5522         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
5523         req.fid = cpu_to_le16(0xffff);
5524         req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_CACHE_LINESIZE);
5525         req.options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_64;
5526         if (size == 128)
5527                 req.options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_128;
5528
5529         rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5530         if (rc)
5531                 rc = -EIO;
5532         return rc;
5533 }
5534
5535 static int bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
5536 {
5537         struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5538         int rc;
5539
5540         if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG)
5541                 goto skip_rss_ctx;
5542
5543         /* allocate context for vnic */
5544         rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 0);
5545         if (rc) {
5546                 netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
5547                            vnic_id, rc);
5548                 goto vnic_setup_err;
5549         }
5550         bp->rsscos_nr_ctxs++;
5551
5552         if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
5553                 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 1);
5554                 if (rc) {
5555                         netdev_err(bp->dev, "hwrm vnic %d cos ctx alloc failure rc: %x\n",
5556                                    vnic_id, rc);
5557                         goto vnic_setup_err;
5558                 }
5559                 bp->rsscos_nr_ctxs++;
5560         }
5561
5562 skip_rss_ctx:
5563         /* configure default vnic, ring grp */
5564         rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
5565         if (rc) {
5566                 netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
5567                            vnic_id, rc);
5568                 goto vnic_setup_err;
5569         }
5570
5571         /* Enable RSS hashing on vnic */
5572         rc = bnxt_hwrm_vnic_set_rss(bp, vnic_id, true);
5573         if (rc) {
5574                 netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n",
5575                            vnic_id, rc);
5576                 goto vnic_setup_err;
5577         }
5578
5579         if (bp->flags & BNXT_FLAG_AGG_RINGS) {
5580                 rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
5581                 if (rc) {
5582                         netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
5583                                    vnic_id, rc);
5584                 }
5585         }
5586
5587 vnic_setup_err:
5588         return rc;
5589 }
5590
5591 static int bnxt_alloc_rfs_vnics(struct bnxt *bp)
5592 {
5593 #ifdef CONFIG_RFS_ACCEL
5594         int i, rc = 0;
5595
5596         for (i = 0; i < bp->rx_nr_rings; i++) {
5597                 struct bnxt_vnic_info *vnic;
5598                 u16 vnic_id = i + 1;
5599                 u16 ring_id = i;
5600
5601                 if (vnic_id >= bp->nr_vnics)
5602                         break;
5603
5604                 vnic = &bp->vnic_info[vnic_id];
5605                 vnic->flags |= BNXT_VNIC_RFS_FLAG;
5606                 if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
5607                         vnic->flags |= BNXT_VNIC_RFS_NEW_RSS_FLAG;
5608                 rc = bnxt_hwrm_vnic_alloc(bp, vnic_id, ring_id, 1);
5609                 if (rc) {
5610                         netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
5611                                    vnic_id, rc);
5612                         break;
5613                 }
5614                 rc = bnxt_setup_vnic(bp, vnic_id);
5615                 if (rc)
5616                         break;
5617         }
5618         return rc;
5619 #else
5620         return 0;
5621 #endif
5622 }
5623
5624 /* Allow PF and VF with default VLAN to be in promiscuous mode */
5625 static bool bnxt_promisc_ok(struct bnxt *bp)
5626 {
5627 #ifdef CONFIG_BNXT_SRIOV
5628         if (BNXT_VF(bp) && !bp->vf.vlan)
5629                 return false;
5630 #endif
5631         return true;
5632 }
5633
5634 static int bnxt_setup_nitroa0_vnic(struct bnxt *bp)
5635 {
5636         unsigned int rc = 0;
5637
5638         rc = bnxt_hwrm_vnic_alloc(bp, 1, bp->rx_nr_rings - 1, 1);
5639         if (rc) {
5640                 netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
5641                            rc);
5642                 return rc;
5643         }
5644
5645         rc = bnxt_hwrm_vnic_cfg(bp, 1);
5646         if (rc) {
5647                 netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
5648                            rc);
5649                 return rc;
5650         }
5651         return rc;
5652 }
5653
5654 static int bnxt_cfg_rx_mode(struct bnxt *);
5655 static bool bnxt_mc_list_updated(struct bnxt *, u32 *);
5656
5657 static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init)
5658 {
5659         struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
5660         int rc = 0;
5661         unsigned int rx_nr_rings = bp->rx_nr_rings;
5662
5663         if (irq_re_init) {
5664                 rc = bnxt_hwrm_stat_ctx_alloc(bp);
5665                 if (rc) {
5666                         netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n",
5667                                    rc);
5668                         goto err_out;
5669                 }
5670         }
5671
5672         rc = bnxt_hwrm_ring_alloc(bp);
5673         if (rc) {
5674                 netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc);
5675                 goto err_out;
5676         }
5677
5678         rc = bnxt_hwrm_ring_grp_alloc(bp);
5679         if (rc) {
5680                 netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc);
5681                 goto err_out;
5682         }
5683
5684         if (BNXT_CHIP_TYPE_NITRO_A0(bp))
5685                 rx_nr_rings--;
5686
5687         /* default vnic 0 */
5688         rc = bnxt_hwrm_vnic_alloc(bp, 0, 0, rx_nr_rings);
5689         if (rc) {
5690                 netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc);
5691                 goto err_out;
5692         }
5693
5694         rc = bnxt_setup_vnic(bp, 0);
5695         if (rc)
5696                 goto err_out;
5697
5698         if (bp->flags & BNXT_FLAG_RFS) {
5699                 rc = bnxt_alloc_rfs_vnics(bp);
5700                 if (rc)
5701                         goto err_out;
5702         }
5703
5704         if (bp->flags & BNXT_FLAG_TPA) {
5705                 rc = bnxt_set_tpa(bp, true);
5706                 if (rc)
5707                         goto err_out;
5708         }
5709
5710         if (BNXT_VF(bp))
5711                 bnxt_update_vf_mac(bp);
5712
5713         /* Filter for default vnic 0 */
5714         rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr);
5715         if (rc) {
5716                 netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc);
5717                 goto err_out;
5718         }
5719         vnic->uc_filter_count = 1;
5720
5721         vnic->rx_mask = 0;
5722         if (bp->dev->flags & IFF_BROADCAST)
5723                 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
5724
5725         if ((bp->dev->flags & IFF_PROMISC) && bnxt_promisc_ok(bp))
5726                 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
5727
5728         if (bp->dev->flags & IFF_ALLMULTI) {
5729                 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
5730                 vnic->mc_list_count = 0;
5731         } else {
5732                 u32 mask = 0;
5733
5734                 bnxt_mc_list_updated(bp, &mask);
5735                 vnic->rx_mask |= mask;
5736         }
5737
5738         rc = bnxt_cfg_rx_mode(bp);
5739         if (rc)
5740                 goto err_out;
5741
5742         rc = bnxt_hwrm_set_coal(bp);
5743         if (rc)
5744                 netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n",
5745                                 rc);
5746
5747         if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
5748                 rc = bnxt_setup_nitroa0_vnic(bp);
5749                 if (rc)
5750                         netdev_err(bp->dev, "Special vnic setup failure for NS2 A0 rc: %x\n",
5751                                    rc);
5752         }
5753
5754         if (BNXT_VF(bp)) {
5755                 bnxt_hwrm_func_qcfg(bp);
5756                 netdev_update_features(bp->dev);
5757         }
5758
5759         return 0;
5760
5761 err_out:
5762         bnxt_hwrm_resource_free(bp, 0, true);
5763
5764         return rc;
5765 }
5766
5767 static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init)
5768 {
5769         bnxt_hwrm_resource_free(bp, 1, irq_re_init);
5770         return 0;
5771 }
5772
5773 static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init)
5774 {
5775         bnxt_init_cp_rings(bp);
5776         bnxt_init_rx_rings(bp);
5777         bnxt_init_tx_rings(bp);
5778         bnxt_init_ring_grps(bp, irq_re_init);
5779         bnxt_init_vnics(bp);
5780
5781         return bnxt_init_chip(bp, irq_re_init);
5782 }
5783
5784 static int bnxt_set_real_num_queues(struct bnxt *bp)
5785 {
5786         int rc;
5787         struct net_device *dev = bp->dev;
5788
5789         rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings -
5790                                           bp->tx_nr_rings_xdp);
5791         if (rc)
5792                 return rc;
5793
5794         rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings);
5795         if (rc)
5796                 return rc;
5797
5798 #ifdef CONFIG_RFS_ACCEL
5799         if (bp->flags & BNXT_FLAG_RFS)
5800                 dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings);
5801 #endif
5802
5803         return rc;
5804 }
5805
5806 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
5807                            bool shared)
5808 {
5809         int _rx = *rx, _tx = *tx;
5810
5811         if (shared) {
5812                 *rx = min_t(int, _rx, max);
5813                 *tx = min_t(int, _tx, max);
5814         } else {
5815                 if (max < 2)
5816                         return -ENOMEM;
5817
5818                 while (_rx + _tx > max) {
5819                         if (_rx > _tx && _rx > 1)
5820                                 _rx--;
5821                         else if (_tx > 1)
5822                                 _tx--;
5823                 }
5824                 *rx = _rx;
5825                 *tx = _tx;
5826         }
5827         return 0;
5828 }
5829
5830 static void bnxt_setup_msix(struct bnxt *bp)
5831 {
5832         const int len = sizeof(bp->irq_tbl[0].name);
5833         struct net_device *dev = bp->dev;
5834         int tcs, i;
5835
5836         tcs = netdev_get_num_tc(dev);
5837         if (tcs > 1) {
5838                 int i, off, count;
5839
5840                 for (i = 0; i < tcs; i++) {
5841                         count = bp->tx_nr_rings_per_tc;
5842                         off = i * count;
5843                         netdev_set_tc_queue(dev, i, count, off);
5844                 }
5845         }
5846
5847         for (i = 0; i < bp->cp_nr_rings; i++) {
5848                 int map_idx = bnxt_cp_num_to_irq_num(bp, i);
5849                 char *attr;
5850
5851                 if (bp->flags & BNXT_FLAG_SHARED_RINGS)
5852                         attr = "TxRx";
5853                 else if (i < bp->rx_nr_rings)
5854                         attr = "rx";
5855                 else
5856                         attr = "tx";
5857
5858                 snprintf(bp->irq_tbl[map_idx].name, len, "%s-%s-%d", dev->name,
5859                          attr, i);
5860                 bp->irq_tbl[map_idx].handler = bnxt_msix;
5861         }
5862 }
5863
5864 static void bnxt_setup_inta(struct bnxt *bp)
5865 {
5866         const int len = sizeof(bp->irq_tbl[0].name);
5867
5868         if (netdev_get_num_tc(bp->dev))
5869                 netdev_reset_tc(bp->dev);
5870
5871         snprintf(bp->irq_tbl[0].name, len, "%s-%s-%d", bp->dev->name, "TxRx",
5872                  0);
5873         bp->irq_tbl[0].handler = bnxt_inta;
5874 }
5875
5876 static int bnxt_setup_int_mode(struct bnxt *bp)
5877 {
5878         int rc;
5879
5880         if (bp->flags & BNXT_FLAG_USING_MSIX)
5881                 bnxt_setup_msix(bp);
5882         else
5883                 bnxt_setup_inta(bp);
5884
5885         rc = bnxt_set_real_num_queues(bp);
5886         return rc;
5887 }
5888
5889 #ifdef CONFIG_RFS_ACCEL
5890 static unsigned int bnxt_get_max_func_rss_ctxs(struct bnxt *bp)
5891 {
5892         return bp->hw_resc.max_rsscos_ctxs;
5893 }
5894
5895 static unsigned int bnxt_get_max_func_vnics(struct bnxt *bp)
5896 {
5897         return bp->hw_resc.max_vnics;
5898 }
5899 #endif
5900
5901 unsigned int bnxt_get_max_func_stat_ctxs(struct bnxt *bp)
5902 {
5903         return bp->hw_resc.max_stat_ctxs;
5904 }
5905
5906 void bnxt_set_max_func_stat_ctxs(struct bnxt *bp, unsigned int max)
5907 {
5908         bp->hw_resc.max_stat_ctxs = max;
5909 }
5910
5911 unsigned int bnxt_get_max_func_cp_rings(struct bnxt *bp)
5912 {
5913         return bp->hw_resc.max_cp_rings;
5914 }
5915
5916 void bnxt_set_max_func_cp_rings(struct bnxt *bp, unsigned int max)
5917 {
5918         bp->hw_resc.max_cp_rings = max;
5919 }
5920
5921 unsigned int bnxt_get_max_func_irqs(struct bnxt *bp)
5922 {
5923         struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
5924
5925         return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_cp_rings);
5926 }
5927
5928 static void bnxt_set_max_func_irqs(struct bnxt *bp, unsigned int max_irqs)
5929 {
5930         bp->hw_resc.max_irqs = max_irqs;
5931 }
5932
5933 int bnxt_get_avail_msix(struct bnxt *bp, int num)
5934 {
5935         int max_cp = bnxt_get_max_func_cp_rings(bp);
5936         int max_irq = bnxt_get_max_func_irqs(bp);
5937         int total_req = bp->cp_nr_rings + num;
5938         int max_idx, avail_msix;
5939
5940         max_idx = min_t(int, bp->total_irqs, max_cp);
5941         avail_msix = max_idx - bp->cp_nr_rings;
5942         if (!BNXT_NEW_RM(bp) || avail_msix >= num)
5943                 return avail_msix;
5944
5945         if (max_irq < total_req) {
5946                 num = max_irq - bp->cp_nr_rings;
5947                 if (num <= 0)
5948                         return 0;
5949         }
5950         return num;
5951 }
5952
5953 static int bnxt_get_num_msix(struct bnxt *bp)
5954 {
5955         if (!BNXT_NEW_RM(bp))
5956                 return bnxt_get_max_func_irqs(bp);
5957
5958         return bnxt_cp_rings_in_use(bp);
5959 }
5960
5961 static int bnxt_init_msix(struct bnxt *bp)
5962 {
5963         int i, total_vecs, max, rc = 0, min = 1, ulp_msix;
5964         struct msix_entry *msix_ent;
5965
5966         total_vecs = bnxt_get_num_msix(bp);
5967         max = bnxt_get_max_func_irqs(bp);
5968         if (total_vecs > max)
5969                 total_vecs = max;
5970
5971         if (!total_vecs)
5972                 return 0;
5973
5974         msix_ent = kcalloc(total_vecs, sizeof(struct msix_entry), GFP_KERNEL);
5975         if (!msix_ent)
5976                 return -ENOMEM;
5977
5978         for (i = 0; i < total_vecs; i++) {
5979                 msix_ent[i].entry = i;
5980                 msix_ent[i].vector = 0;
5981         }
5982
5983         if (!(bp->flags & BNXT_FLAG_SHARED_RINGS))
5984                 min = 2;
5985
5986         total_vecs = pci_enable_msix_range(bp->pdev, msix_ent, min, total_vecs);
5987         ulp_msix = bnxt_get_ulp_msix_num(bp);
5988         if (total_vecs < 0 || total_vecs < ulp_msix) {
5989                 rc = -ENODEV;
5990                 goto msix_setup_exit;
5991         }
5992
5993         bp->irq_tbl = kcalloc(total_vecs, sizeof(struct bnxt_irq), GFP_KERNEL);
5994         if (bp->irq_tbl) {
5995                 for (i = 0; i < total_vecs; i++)
5996                         bp->irq_tbl[i].vector = msix_ent[i].vector;
5997
5998                 bp->total_irqs = total_vecs;
5999                 /* Trim rings based upon num of vectors allocated */
6000                 rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings,
6001                                      total_vecs - ulp_msix, min == 1);
6002                 if (rc)
6003                         goto msix_setup_exit;
6004
6005                 bp->cp_nr_rings = (min == 1) ?
6006                                   max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
6007                                   bp->tx_nr_rings + bp->rx_nr_rings;
6008
6009         } else {
6010                 rc = -ENOMEM;
6011                 goto msix_setup_exit;
6012         }
6013         bp->flags |= BNXT_FLAG_USING_MSIX;
6014         kfree(msix_ent);
6015         return 0;
6016
6017 msix_setup_exit:
6018         netdev_err(bp->dev, "bnxt_init_msix err: %x\n", rc);
6019         kfree(bp->irq_tbl);
6020         bp->irq_tbl = NULL;
6021         pci_disable_msix(bp->pdev);
6022         kfree(msix_ent);
6023         return rc;
6024 }
6025
6026 static int bnxt_init_inta(struct bnxt *bp)
6027 {
6028         bp->irq_tbl = kcalloc(1, sizeof(struct bnxt_irq), GFP_KERNEL);
6029         if (!bp->irq_tbl)
6030                 return -ENOMEM;
6031
6032         bp->total_irqs = 1;
6033         bp->rx_nr_rings = 1;
6034         bp->tx_nr_rings = 1;
6035         bp->cp_nr_rings = 1;
6036         bp->flags |= BNXT_FLAG_SHARED_RINGS;
6037         bp->irq_tbl[0].vector = bp->pdev->irq;
6038         return 0;
6039 }
6040
6041 static int bnxt_init_int_mode(struct bnxt *bp)
6042 {
6043         int rc = 0;
6044
6045         if (bp->flags & BNXT_FLAG_MSIX_CAP)
6046                 rc = bnxt_init_msix(bp);
6047
6048         if (!(bp->flags & BNXT_FLAG_USING_MSIX) && BNXT_PF(bp)) {
6049                 /* fallback to INTA */
6050                 rc = bnxt_init_inta(bp);
6051         }
6052         return rc;
6053 }
6054
6055 static void bnxt_clear_int_mode(struct bnxt *bp)
6056 {
6057         if (bp->flags & BNXT_FLAG_USING_MSIX)
6058                 pci_disable_msix(bp->pdev);
6059
6060         kfree(bp->irq_tbl);
6061         bp->irq_tbl = NULL;
6062         bp->flags &= ~BNXT_FLAG_USING_MSIX;
6063 }
6064
6065 int bnxt_reserve_rings(struct bnxt *bp)
6066 {
6067         int tcs = netdev_get_num_tc(bp->dev);
6068         int rc;
6069
6070         if (!bnxt_need_reserve_rings(bp))
6071                 return 0;
6072
6073         rc = __bnxt_reserve_rings(bp);
6074         if (rc) {
6075                 netdev_err(bp->dev, "ring reservation failure rc: %d\n", rc);
6076                 return rc;
6077         }
6078         if (BNXT_NEW_RM(bp) && (bnxt_get_num_msix(bp) != bp->total_irqs)) {
6079                 bnxt_ulp_irq_stop(bp);
6080                 bnxt_clear_int_mode(bp);
6081                 rc = bnxt_init_int_mode(bp);
6082                 bnxt_ulp_irq_restart(bp, rc);
6083                 if (rc)
6084                         return rc;
6085         }
6086         if (tcs && (bp->tx_nr_rings_per_tc * tcs != bp->tx_nr_rings)) {
6087                 netdev_err(bp->dev, "tx ring reservation failure\n");
6088                 netdev_reset_tc(bp->dev);
6089                 bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
6090                 return -ENOMEM;
6091         }
6092         bp->num_stat_ctxs = bp->cp_nr_rings;
6093         return 0;
6094 }
6095
6096 static void bnxt_free_irq(struct bnxt *bp)
6097 {
6098         struct bnxt_irq *irq;
6099         int i;
6100
6101 #ifdef CONFIG_RFS_ACCEL
6102         free_irq_cpu_rmap(bp->dev->rx_cpu_rmap);
6103         bp->dev->rx_cpu_rmap = NULL;
6104 #endif
6105         if (!bp->irq_tbl || !bp->bnapi)
6106                 return;
6107
6108         for (i = 0; i < bp->cp_nr_rings; i++) {
6109                 int map_idx = bnxt_cp_num_to_irq_num(bp, i);
6110
6111                 irq = &bp->irq_tbl[map_idx];
6112                 if (irq->requested) {
6113                         if (irq->have_cpumask) {
6114                                 irq_set_affinity_hint(irq->vector, NULL);
6115                                 free_cpumask_var(irq->cpu_mask);
6116                                 irq->have_cpumask = 0;
6117                         }
6118                         free_irq(irq->vector, bp->bnapi[i]);
6119                 }
6120
6121                 irq->requested = 0;
6122         }
6123 }
6124
6125 static int bnxt_request_irq(struct bnxt *bp)
6126 {
6127         int i, j, rc = 0;
6128         unsigned long flags = 0;
6129 #ifdef CONFIG_RFS_ACCEL
6130         struct cpu_rmap *rmap;
6131 #endif
6132
6133         rc = bnxt_setup_int_mode(bp);
6134         if (rc) {
6135                 netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n",
6136                            rc);
6137                 return rc;
6138         }
6139 #ifdef CONFIG_RFS_ACCEL
6140         rmap = bp->dev->rx_cpu_rmap;
6141 #endif
6142         if (!(bp->flags & BNXT_FLAG_USING_MSIX))
6143                 flags = IRQF_SHARED;
6144
6145         for (i = 0, j = 0; i < bp->cp_nr_rings; i++) {
6146                 int map_idx = bnxt_cp_num_to_irq_num(bp, i);
6147                 struct bnxt_irq *irq = &bp->irq_tbl[map_idx];
6148
6149 #ifdef CONFIG_RFS_ACCEL
6150                 if (rmap && bp->bnapi[i]->rx_ring) {
6151                         rc = irq_cpu_rmap_add(rmap, irq->vector);
6152                         if (rc)
6153                                 netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n",
6154                                             j);
6155                         j++;
6156                 }
6157 #endif
6158                 rc = request_irq(irq->vector, irq->handler, flags, irq->name,
6159                                  bp->bnapi[i]);
6160                 if (rc)
6161                         break;
6162
6163                 irq->requested = 1;
6164
6165                 if (zalloc_cpumask_var(&irq->cpu_mask, GFP_KERNEL)) {
6166                         int numa_node = dev_to_node(&bp->pdev->dev);
6167
6168                         irq->have_cpumask = 1;
6169                         cpumask_set_cpu(cpumask_local_spread(i, numa_node),
6170                                         irq->cpu_mask);
6171                         rc = irq_set_affinity_hint(irq->vector, irq->cpu_mask);
6172                         if (rc) {
6173                                 netdev_warn(bp->dev,
6174                                             "Set affinity failed, IRQ = %d\n",
6175                                             irq->vector);
6176                                 break;
6177                         }
6178                 }
6179         }
6180         return rc;
6181 }
6182
6183 static void bnxt_del_napi(struct bnxt *bp)
6184 {
6185         int i;
6186
6187         if (!bp->bnapi)
6188                 return;
6189
6190         for (i = 0; i < bp->cp_nr_rings; i++) {
6191                 struct bnxt_napi *bnapi = bp->bnapi[i];
6192
6193                 napi_hash_del(&bnapi->napi);
6194                 netif_napi_del(&bnapi->napi);
6195         }
6196         /* We called napi_hash_del() before netif_napi_del(), we need
6197          * to respect an RCU grace period before freeing napi structures.
6198          */
6199         synchronize_net();
6200 }
6201
6202 static void bnxt_init_napi(struct bnxt *bp)
6203 {
6204         int i;
6205         unsigned int cp_nr_rings = bp->cp_nr_rings;
6206         struct bnxt_napi *bnapi;
6207
6208         if (bp->flags & BNXT_FLAG_USING_MSIX) {
6209                 if (BNXT_CHIP_TYPE_NITRO_A0(bp))
6210                         cp_nr_rings--;
6211                 for (i = 0; i < cp_nr_rings; i++) {
6212                         bnapi = bp->bnapi[i];
6213                         netif_napi_add(bp->dev, &bnapi->napi,
6214                                        bnxt_poll, 64);
6215                 }
6216                 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
6217                         bnapi = bp->bnapi[cp_nr_rings];
6218                         netif_napi_add(bp->dev, &bnapi->napi,
6219                                        bnxt_poll_nitroa0, 64);
6220                 }
6221         } else {
6222                 bnapi = bp->bnapi[0];
6223                 netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll, 64);
6224         }
6225 }
6226
6227 static void bnxt_disable_napi(struct bnxt *bp)
6228 {
6229         int i;
6230
6231         if (!bp->bnapi)
6232                 return;
6233
6234         for (i = 0; i < bp->cp_nr_rings; i++) {
6235                 struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
6236
6237                 if (bp->bnapi[i]->rx_ring)
6238                         cancel_work_sync(&cpr->dim.work);
6239
6240                 napi_disable(&bp->bnapi[i]->napi);
6241         }
6242 }
6243
6244 static void bnxt_enable_napi(struct bnxt *bp)
6245 {
6246         int i;
6247
6248         for (i = 0; i < bp->cp_nr_rings; i++) {
6249                 struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
6250                 bp->bnapi[i]->in_reset = false;
6251
6252                 if (bp->bnapi[i]->rx_ring) {
6253                         INIT_WORK(&cpr->dim.work, bnxt_dim_work);
6254                         cpr->dim.mode = NET_DIM_CQ_PERIOD_MODE_START_FROM_EQE;
6255                 }
6256                 napi_enable(&bp->bnapi[i]->napi);
6257         }
6258 }
6259
6260 void bnxt_tx_disable(struct bnxt *bp)
6261 {
6262         int i;
6263         struct bnxt_tx_ring_info *txr;
6264
6265         if (bp->tx_ring) {
6266                 for (i = 0; i < bp->tx_nr_rings; i++) {
6267                         txr = &bp->tx_ring[i];
6268                         txr->dev_state = BNXT_DEV_STATE_CLOSING;
6269                 }
6270         }
6271         /* Stop all TX queues */
6272         netif_tx_disable(bp->dev);
6273         netif_carrier_off(bp->dev);
6274 }
6275
6276 void bnxt_tx_enable(struct bnxt *bp)
6277 {
6278         int i;
6279         struct bnxt_tx_ring_info *txr;
6280
6281         for (i = 0; i < bp->tx_nr_rings; i++) {
6282                 txr = &bp->tx_ring[i];
6283                 txr->dev_state = 0;
6284         }
6285         netif_tx_wake_all_queues(bp->dev);
6286         if (bp->link_info.link_up)
6287                 netif_carrier_on(bp->dev);
6288 }
6289
6290 static void bnxt_report_link(struct bnxt *bp)
6291 {
6292         if (bp->link_info.link_up) {
6293                 const char *duplex;
6294                 const char *flow_ctrl;
6295                 u32 speed;
6296                 u16 fec;
6297
6298                 netif_carrier_on(bp->dev);
6299                 if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL)
6300                         duplex = "full";
6301                 else
6302                         duplex = "half";
6303                 if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH)
6304                         flow_ctrl = "ON - receive & transmit";
6305                 else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX)
6306                         flow_ctrl = "ON - transmit";
6307                 else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX)
6308                         flow_ctrl = "ON - receive";
6309                 else
6310                         flow_ctrl = "none";
6311                 speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed);
6312                 netdev_info(bp->dev, "NIC Link is Up, %u Mbps %s duplex, Flow control: %s\n",
6313                             speed, duplex, flow_ctrl);
6314                 if (bp->flags & BNXT_FLAG_EEE_CAP)
6315                         netdev_info(bp->dev, "EEE is %s\n",
6316                                     bp->eee.eee_active ? "active" :
6317                                                          "not active");
6318                 fec = bp->link_info.fec_cfg;
6319                 if (!(fec & PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED))
6320                         netdev_info(bp->dev, "FEC autoneg %s encodings: %s\n",
6321                                     (fec & BNXT_FEC_AUTONEG) ? "on" : "off",
6322                                     (fec & BNXT_FEC_ENC_BASE_R) ? "BaseR" :
6323                                      (fec & BNXT_FEC_ENC_RS) ? "RS" : "None");
6324         } else {
6325                 netif_carrier_off(bp->dev);
6326                 netdev_err(bp->dev, "NIC Link is Down\n");
6327         }
6328 }
6329
6330 static int bnxt_hwrm_phy_qcaps(struct bnxt *bp)
6331 {
6332         int rc = 0;
6333         struct hwrm_port_phy_qcaps_input req = {0};
6334         struct hwrm_port_phy_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
6335         struct bnxt_link_info *link_info = &bp->link_info;
6336
6337         if (bp->hwrm_spec_code < 0x10201)
6338                 return 0;
6339
6340         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCAPS, -1, -1);
6341
6342         mutex_lock(&bp->hwrm_cmd_lock);
6343         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6344         if (rc)
6345                 goto hwrm_phy_qcaps_exit;
6346
6347         if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_EEE_SUPPORTED) {
6348                 struct ethtool_eee *eee = &bp->eee;
6349                 u16 fw_speeds = le16_to_cpu(resp->supported_speeds_eee_mode);
6350
6351                 bp->flags |= BNXT_FLAG_EEE_CAP;
6352                 eee->supported = _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
6353                 bp->lpi_tmr_lo = le32_to_cpu(resp->tx_lpi_timer_low) &
6354                                  PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_LOW_MASK;
6355                 bp->lpi_tmr_hi = le32_to_cpu(resp->valid_tx_lpi_timer_high) &
6356                                  PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_HIGH_MASK;
6357         }
6358         if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_EXTERNAL_LPBK_SUPPORTED) {
6359                 if (bp->test_info)
6360                         bp->test_info->flags |= BNXT_TEST_FL_EXT_LPBK;
6361         }
6362         if (resp->supported_speeds_auto_mode)
6363                 link_info->support_auto_speeds =
6364                         le16_to_cpu(resp->supported_speeds_auto_mode);
6365
6366         bp->port_count = resp->port_cnt;
6367
6368 hwrm_phy_qcaps_exit:
6369         mutex_unlock(&bp->hwrm_cmd_lock);
6370         return rc;
6371 }
6372
6373 static int bnxt_update_link(struct bnxt *bp, bool chng_link_state)
6374 {
6375         int rc = 0;
6376         struct bnxt_link_info *link_info = &bp->link_info;
6377         struct hwrm_port_phy_qcfg_input req = {0};
6378         struct hwrm_port_phy_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
6379         u8 link_up = link_info->link_up;
6380         u16 diff;
6381
6382         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCFG, -1, -1);
6383
6384         mutex_lock(&bp->hwrm_cmd_lock);
6385         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6386         if (rc) {
6387                 mutex_unlock(&bp->hwrm_cmd_lock);
6388                 return rc;
6389         }
6390
6391         memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp));
6392         link_info->phy_link_status = resp->link;
6393         link_info->duplex = resp->duplex_cfg;
6394         if (bp->hwrm_spec_code >= 0x10800)
6395                 link_info->duplex = resp->duplex_state;
6396         link_info->pause = resp->pause;
6397         link_info->auto_mode = resp->auto_mode;
6398         link_info->auto_pause_setting = resp->auto_pause;
6399         link_info->lp_pause = resp->link_partner_adv_pause;
6400         link_info->force_pause_setting = resp->force_pause;
6401         link_info->duplex_setting = resp->duplex_cfg;
6402         if (link_info->phy_link_status == BNXT_LINK_LINK)
6403                 link_info->link_speed = le16_to_cpu(resp->link_speed);
6404         else
6405                 link_info->link_speed = 0;
6406         link_info->force_link_speed = le16_to_cpu(resp->force_link_speed);
6407         link_info->support_speeds = le16_to_cpu(resp->support_speeds);
6408         link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask);
6409         link_info->lp_auto_link_speeds =
6410                 le16_to_cpu(resp->link_partner_adv_speeds);
6411         link_info->preemphasis = le32_to_cpu(resp->preemphasis);
6412         link_info->phy_ver[0] = resp->phy_maj;
6413         link_info->phy_ver[1] = resp->phy_min;
6414         link_info->phy_ver[2] = resp->phy_bld;
6415         link_info->media_type = resp->media_type;
6416         link_info->phy_type = resp->phy_type;
6417         link_info->transceiver = resp->xcvr_pkg_type;
6418         link_info->phy_addr = resp->eee_config_phy_addr &
6419                               PORT_PHY_QCFG_RESP_PHY_ADDR_MASK;
6420         link_info->module_status = resp->module_status;
6421
6422         if (bp->flags & BNXT_FLAG_EEE_CAP) {
6423                 struct ethtool_eee *eee = &bp->eee;
6424                 u16 fw_speeds;
6425
6426                 eee->eee_active = 0;
6427                 if (resp->eee_config_phy_addr &
6428                     PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ACTIVE) {
6429                         eee->eee_active = 1;
6430                         fw_speeds = le16_to_cpu(
6431                                 resp->link_partner_adv_eee_link_speed_mask);
6432                         eee->lp_advertised =
6433                                 _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
6434                 }
6435
6436                 /* Pull initial EEE config */
6437                 if (!chng_link_state) {
6438                         if (resp->eee_config_phy_addr &
6439                             PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ENABLED)
6440                                 eee->eee_enabled = 1;
6441
6442                         fw_speeds = le16_to_cpu(resp->adv_eee_link_speed_mask);
6443                         eee->advertised =
6444                                 _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
6445
6446                         if (resp->eee_config_phy_addr &
6447                             PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_TX_LPI) {
6448                                 __le32 tmr;
6449
6450                                 eee->tx_lpi_enabled = 1;
6451                                 tmr = resp->xcvr_identifier_type_tx_lpi_timer;
6452                                 eee->tx_lpi_timer = le32_to_cpu(tmr) &
6453                                         PORT_PHY_QCFG_RESP_TX_LPI_TIMER_MASK;
6454                         }
6455                 }
6456         }
6457
6458         link_info->fec_cfg = PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED;
6459         if (bp->hwrm_spec_code >= 0x10504)
6460                 link_info->fec_cfg = le16_to_cpu(resp->fec_cfg);
6461
6462         /* TODO: need to add more logic to report VF link */
6463         if (chng_link_state) {
6464                 if (link_info->phy_link_status == BNXT_LINK_LINK)
6465                         link_info->link_up = 1;
6466                 else
6467                         link_info->link_up = 0;
6468                 if (link_up != link_info->link_up)
6469                         bnxt_report_link(bp);
6470         } else {
6471                 /* alwasy link down if not require to update link state */
6472                 link_info->link_up = 0;
6473         }
6474         mutex_unlock(&bp->hwrm_cmd_lock);
6475
6476         if (!BNXT_SINGLE_PF(bp))
6477                 return 0;
6478
6479         diff = link_info->support_auto_speeds ^ link_info->advertising;
6480         if ((link_info->support_auto_speeds | diff) !=
6481             link_info->support_auto_speeds) {
6482                 /* An advertised speed is no longer supported, so we need to
6483                  * update the advertisement settings.  Caller holds RTNL
6484                  * so we can modify link settings.
6485                  */
6486                 link_info->advertising = link_info->support_auto_speeds;
6487                 if (link_info->autoneg & BNXT_AUTONEG_SPEED)
6488                         bnxt_hwrm_set_link_setting(bp, true, false);
6489         }
6490         return 0;
6491 }
6492
6493 static void bnxt_get_port_module_status(struct bnxt *bp)
6494 {
6495         struct bnxt_link_info *link_info = &bp->link_info;
6496         struct hwrm_port_phy_qcfg_output *resp = &link_info->phy_qcfg_resp;
6497         u8 module_status;
6498
6499         if (bnxt_update_link(bp, true))
6500                 return;
6501
6502         module_status = link_info->module_status;
6503         switch (module_status) {
6504         case PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX:
6505         case PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN:
6506         case PORT_PHY_QCFG_RESP_MODULE_STATUS_WARNINGMSG:
6507                 netdev_warn(bp->dev, "Unqualified SFP+ module detected on port %d\n",
6508                             bp->pf.port_id);
6509                 if (bp->hwrm_spec_code >= 0x10201) {
6510                         netdev_warn(bp->dev, "Module part number %s\n",
6511                                     resp->phy_vendor_partnumber);
6512                 }
6513                 if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX)
6514                         netdev_warn(bp->dev, "TX is disabled\n");
6515                 if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN)
6516                         netdev_warn(bp->dev, "SFP+ module is shutdown\n");
6517         }
6518 }
6519
6520 static void
6521 bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
6522 {
6523         if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) {
6524                 if (bp->hwrm_spec_code >= 0x10201)
6525                         req->auto_pause =
6526                                 PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE;
6527                 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
6528                         req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX;
6529                 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
6530                         req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_TX;
6531                 req->enables |=
6532                         cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
6533         } else {
6534                 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
6535                         req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX;
6536                 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
6537                         req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX;
6538                 req->enables |=
6539                         cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE);
6540                 if (bp->hwrm_spec_code >= 0x10201) {
6541                         req->auto_pause = req->force_pause;
6542                         req->enables |= cpu_to_le32(
6543                                 PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
6544                 }
6545         }
6546 }
6547
6548 static void bnxt_hwrm_set_link_common(struct bnxt *bp,
6549                                       struct hwrm_port_phy_cfg_input *req)
6550 {
6551         u8 autoneg = bp->link_info.autoneg;
6552         u16 fw_link_speed = bp->link_info.req_link_speed;
6553         u16 advertising = bp->link_info.advertising;
6554
6555         if (autoneg & BNXT_AUTONEG_SPEED) {
6556                 req->auto_mode |=
6557                         PORT_PHY_CFG_REQ_AUTO_MODE_SPEED_MASK;
6558
6559                 req->enables |= cpu_to_le32(
6560                         PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK);
6561                 req->auto_link_speed_mask = cpu_to_le16(advertising);
6562
6563                 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE);
6564                 req->flags |=
6565                         cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG);
6566         } else {
6567                 req->force_link_speed = cpu_to_le16(fw_link_speed);
6568                 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE);
6569         }
6570
6571         /* tell chimp that the setting takes effect immediately */
6572         req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY);
6573 }
6574
6575 int bnxt_hwrm_set_pause(struct bnxt *bp)
6576 {
6577         struct hwrm_port_phy_cfg_input req = {0};
6578         int rc;
6579
6580         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
6581         bnxt_hwrm_set_pause_common(bp, &req);
6582
6583         if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) ||
6584             bp->link_info.force_link_chng)
6585                 bnxt_hwrm_set_link_common(bp, &req);
6586
6587         mutex_lock(&bp->hwrm_cmd_lock);
6588         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6589         if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) {
6590                 /* since changing of pause setting doesn't trigger any link
6591                  * change event, the driver needs to update the current pause
6592                  * result upon successfully return of the phy_cfg command
6593                  */
6594                 bp->link_info.pause =
6595                 bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl;
6596                 bp->link_info.auto_pause_setting = 0;
6597                 if (!bp->link_info.force_link_chng)
6598                         bnxt_report_link(bp);
6599         }
6600         bp->link_info.force_link_chng = false;
6601         mutex_unlock(&bp->hwrm_cmd_lock);
6602         return rc;
6603 }
6604
6605 static void bnxt_hwrm_set_eee(struct bnxt *bp,
6606                               struct hwrm_port_phy_cfg_input *req)
6607 {
6608         struct ethtool_eee *eee = &bp->eee;
6609
6610         if (eee->eee_enabled) {
6611                 u16 eee_speeds;
6612                 u32 flags = PORT_PHY_CFG_REQ_FLAGS_EEE_ENABLE;
6613
6614                 if (eee->tx_lpi_enabled)
6615                         flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_ENABLE;
6616                 else
6617                         flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_DISABLE;
6618
6619                 req->flags |= cpu_to_le32(flags);
6620                 eee_speeds = bnxt_get_fw_auto_link_speeds(eee->advertised);
6621                 req->eee_link_speed_mask = cpu_to_le16(eee_speeds);
6622                 req->tx_lpi_timer = cpu_to_le32(eee->tx_lpi_timer);
6623         } else {
6624                 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_EEE_DISABLE);
6625         }
6626 }
6627
6628 int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause, bool set_eee)
6629 {
6630         struct hwrm_port_phy_cfg_input req = {0};
6631
6632         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
6633         if (set_pause)
6634                 bnxt_hwrm_set_pause_common(bp, &req);
6635
6636         bnxt_hwrm_set_link_common(bp, &req);
6637
6638         if (set_eee)
6639                 bnxt_hwrm_set_eee(bp, &req);
6640         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6641 }
6642
6643 static int bnxt_hwrm_shutdown_link(struct bnxt *bp)
6644 {
6645         struct hwrm_port_phy_cfg_input req = {0};
6646
6647         if (!BNXT_SINGLE_PF(bp))
6648                 return 0;
6649
6650         if (pci_num_vf(bp->pdev))
6651                 return 0;
6652
6653         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
6654         req.flags = cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE_LINK_DWN);
6655         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6656 }
6657
6658 static int bnxt_hwrm_if_change(struct bnxt *bp, bool up)
6659 {
6660         struct hwrm_func_drv_if_change_output *resp = bp->hwrm_cmd_resp_addr;
6661         struct hwrm_func_drv_if_change_input req = {0};
6662         bool resc_reinit = false;
6663         int rc;
6664
6665         if (!(bp->fw_cap & BNXT_FW_CAP_IF_CHANGE))
6666                 return 0;
6667
6668         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_IF_CHANGE, -1, -1);
6669         if (up)
6670                 req.flags = cpu_to_le32(FUNC_DRV_IF_CHANGE_REQ_FLAGS_UP);
6671         mutex_lock(&bp->hwrm_cmd_lock);
6672         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6673         if (!rc && (resp->flags &
6674                     cpu_to_le32(FUNC_DRV_IF_CHANGE_RESP_FLAGS_RESC_CHANGE)))
6675                 resc_reinit = true;
6676         mutex_unlock(&bp->hwrm_cmd_lock);
6677
6678         if (up && resc_reinit && BNXT_NEW_RM(bp)) {
6679                 struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
6680
6681                 rc = bnxt_hwrm_func_resc_qcaps(bp, true);
6682                 hw_resc->resv_cp_rings = 0;
6683                 hw_resc->resv_tx_rings = 0;
6684                 hw_resc->resv_rx_rings = 0;
6685                 hw_resc->resv_hw_ring_grps = 0;
6686                 hw_resc->resv_vnics = 0;
6687         }
6688         return rc;
6689 }
6690
6691 static int bnxt_hwrm_port_led_qcaps(struct bnxt *bp)
6692 {
6693         struct hwrm_port_led_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
6694         struct hwrm_port_led_qcaps_input req = {0};
6695         struct bnxt_pf_info *pf = &bp->pf;
6696         int rc;
6697
6698         if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10601)
6699                 return 0;
6700
6701         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_LED_QCAPS, -1, -1);
6702         req.port_id = cpu_to_le16(pf->port_id);
6703         mutex_lock(&bp->hwrm_cmd_lock);
6704         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6705         if (rc) {
6706                 mutex_unlock(&bp->hwrm_cmd_lock);
6707                 return rc;
6708         }
6709         if (resp->num_leds > 0 && resp->num_leds < BNXT_MAX_LED) {
6710                 int i;
6711
6712                 bp->num_leds = resp->num_leds;
6713                 memcpy(bp->leds, &resp->led0_id, sizeof(bp->leds[0]) *
6714                                                  bp->num_leds);
6715                 for (i = 0; i < bp->num_leds; i++) {
6716                         struct bnxt_led_info *led = &bp->leds[i];
6717                         __le16 caps = led->led_state_caps;
6718
6719                         if (!led->led_group_id ||
6720                             !BNXT_LED_ALT_BLINK_CAP(caps)) {
6721                                 bp->num_leds = 0;
6722                                 break;
6723                         }
6724                 }
6725         }
6726         mutex_unlock(&bp->hwrm_cmd_lock);
6727         return 0;
6728 }
6729
6730 int bnxt_hwrm_alloc_wol_fltr(struct bnxt *bp)
6731 {
6732         struct hwrm_wol_filter_alloc_input req = {0};
6733         struct hwrm_wol_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr;
6734         int rc;
6735
6736         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_ALLOC, -1, -1);
6737         req.port_id = cpu_to_le16(bp->pf.port_id);
6738         req.wol_type = WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT;
6739         req.enables = cpu_to_le32(WOL_FILTER_ALLOC_REQ_ENABLES_MAC_ADDRESS);
6740         memcpy(req.mac_address, bp->dev->dev_addr, ETH_ALEN);
6741         mutex_lock(&bp->hwrm_cmd_lock);
6742         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6743         if (!rc)
6744                 bp->wol_filter_id = resp->wol_filter_id;
6745         mutex_unlock(&bp->hwrm_cmd_lock);
6746         return rc;
6747 }
6748
6749 int bnxt_hwrm_free_wol_fltr(struct bnxt *bp)
6750 {
6751         struct hwrm_wol_filter_free_input req = {0};
6752         int rc;
6753
6754         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_FREE, -1, -1);
6755         req.port_id = cpu_to_le16(bp->pf.port_id);
6756         req.enables = cpu_to_le32(WOL_FILTER_FREE_REQ_ENABLES_WOL_FILTER_ID);
6757         req.wol_filter_id = bp->wol_filter_id;
6758         rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6759         return rc;
6760 }
6761
6762 static u16 bnxt_hwrm_get_wol_fltrs(struct bnxt *bp, u16 handle)
6763 {
6764         struct hwrm_wol_filter_qcfg_input req = {0};
6765         struct hwrm_wol_filter_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
6766         u16 next_handle = 0;
6767         int rc;
6768
6769         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_QCFG, -1, -1);
6770         req.port_id = cpu_to_le16(bp->pf.port_id);
6771         req.handle = cpu_to_le16(handle);
6772         mutex_lock(&bp->hwrm_cmd_lock);
6773         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6774         if (!rc) {
6775                 next_handle = le16_to_cpu(resp->next_handle);
6776                 if (next_handle != 0) {
6777                         if (resp->wol_type ==
6778                             WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT) {
6779                                 bp->wol = 1;
6780                                 bp->wol_filter_id = resp->wol_filter_id;
6781                         }
6782                 }
6783         }
6784         mutex_unlock(&bp->hwrm_cmd_lock);
6785         return next_handle;
6786 }
6787
6788 static void bnxt_get_wol_settings(struct bnxt *bp)
6789 {
6790         u16 handle = 0;
6791
6792         if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_WOL_CAP))
6793                 return;
6794
6795         do {
6796                 handle = bnxt_hwrm_get_wol_fltrs(bp, handle);
6797         } while (handle && handle != 0xffff);
6798 }
6799
6800 #ifdef CONFIG_BNXT_HWMON
6801 static ssize_t bnxt_show_temp(struct device *dev,
6802                               struct device_attribute *devattr, char *buf)
6803 {
6804         struct hwrm_temp_monitor_query_input req = {0};
6805         struct hwrm_temp_monitor_query_output *resp;
6806         struct bnxt *bp = dev_get_drvdata(dev);
6807         u32 temp = 0;
6808
6809         resp = bp->hwrm_cmd_resp_addr;
6810         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TEMP_MONITOR_QUERY, -1, -1);
6811         mutex_lock(&bp->hwrm_cmd_lock);
6812         if (!_hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT))
6813                 temp = resp->temp * 1000; /* display millidegree */
6814         mutex_unlock(&bp->hwrm_cmd_lock);
6815
6816         return sprintf(buf, "%u\n", temp);
6817 }
6818 static SENSOR_DEVICE_ATTR(temp1_input, 0444, bnxt_show_temp, NULL, 0);
6819
6820 static struct attribute *bnxt_attrs[] = {
6821         &sensor_dev_attr_temp1_input.dev_attr.attr,
6822         NULL
6823 };
6824 ATTRIBUTE_GROUPS(bnxt);
6825
6826 static void bnxt_hwmon_close(struct bnxt *bp)
6827 {
6828         if (bp->hwmon_dev) {
6829                 hwmon_device_unregister(bp->hwmon_dev);
6830                 bp->hwmon_dev = NULL;
6831         }
6832 }
6833
6834 static void bnxt_hwmon_open(struct bnxt *bp)
6835 {
6836         struct pci_dev *pdev = bp->pdev;
6837
6838         bp->hwmon_dev = hwmon_device_register_with_groups(&pdev->dev,
6839                                                           DRV_MODULE_NAME, bp,
6840                                                           bnxt_groups);
6841         if (IS_ERR(bp->hwmon_dev)) {
6842                 bp->hwmon_dev = NULL;
6843                 dev_warn(&pdev->dev, "Cannot register hwmon device\n");
6844         }
6845 }
6846 #else
6847 static void bnxt_hwmon_close(struct bnxt *bp)
6848 {
6849 }
6850
6851 static void bnxt_hwmon_open(struct bnxt *bp)
6852 {
6853 }
6854 #endif
6855
6856 static bool bnxt_eee_config_ok(struct bnxt *bp)
6857 {
6858         struct ethtool_eee *eee = &bp->eee;
6859         struct bnxt_link_info *link_info = &bp->link_info;
6860
6861         if (!(bp->flags & BNXT_FLAG_EEE_CAP))
6862                 return true;
6863
6864         if (eee->eee_enabled) {
6865                 u32 advertising =
6866                         _bnxt_fw_to_ethtool_adv_spds(link_info->advertising, 0);
6867
6868                 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
6869                         eee->eee_enabled = 0;
6870                         return false;
6871                 }
6872                 if (eee->advertised & ~advertising) {
6873                         eee->advertised = advertising & eee->supported;
6874                         return false;
6875                 }
6876         }
6877         return true;
6878 }
6879
6880 static int bnxt_update_phy_setting(struct bnxt *bp)
6881 {
6882         int rc;
6883         bool update_link = false;
6884         bool update_pause = false;
6885         bool update_eee = false;
6886         struct bnxt_link_info *link_info = &bp->link_info;
6887
6888         rc = bnxt_update_link(bp, true);
6889         if (rc) {
6890                 netdev_err(bp->dev, "failed to update link (rc: %x)\n",
6891                            rc);
6892                 return rc;
6893         }
6894         if (!BNXT_SINGLE_PF(bp))
6895                 return 0;
6896
6897         if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
6898             (link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH) !=
6899             link_info->req_flow_ctrl)
6900                 update_pause = true;
6901         if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
6902             link_info->force_pause_setting != link_info->req_flow_ctrl)
6903                 update_pause = true;
6904         if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
6905                 if (BNXT_AUTO_MODE(link_info->auto_mode))
6906                         update_link = true;
6907                 if (link_info->req_link_speed != link_info->force_link_speed)
6908                         update_link = true;
6909                 if (link_info->req_duplex != link_info->duplex_setting)
6910                         update_link = true;
6911         } else {
6912                 if (link_info->auto_mode == BNXT_LINK_AUTO_NONE)
6913                         update_link = true;
6914                 if (link_info->advertising != link_info->auto_link_speeds)
6915                         update_link = true;
6916         }
6917
6918         /* The last close may have shutdown the link, so need to call
6919          * PHY_CFG to bring it back up.
6920          */
6921         if (!netif_carrier_ok(bp->dev))
6922                 update_link = true;
6923
6924         if (!bnxt_eee_config_ok(bp))
6925                 update_eee = true;
6926
6927         if (update_link)
6928                 rc = bnxt_hwrm_set_link_setting(bp, update_pause, update_eee);
6929         else if (update_pause)
6930                 rc = bnxt_hwrm_set_pause(bp);
6931         if (rc) {
6932                 netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n",
6933                            rc);
6934                 return rc;
6935         }
6936
6937         return rc;
6938 }
6939
6940 /* Common routine to pre-map certain register block to different GRC window.
6941  * A PF has 16 4K windows and a VF has 4 4K windows. However, only 15 windows
6942  * in PF and 3 windows in VF that can be customized to map in different
6943  * register blocks.
6944  */
6945 static void bnxt_preset_reg_win(struct bnxt *bp)
6946 {
6947         if (BNXT_PF(bp)) {
6948                 /* CAG registers map to GRC window #4 */
6949                 writel(BNXT_CAG_REG_BASE,
6950                        bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 12);
6951         }
6952 }
6953
6954 static int bnxt_init_dflt_ring_mode(struct bnxt *bp);
6955
6956 static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
6957 {
6958         int rc = 0;
6959
6960         bnxt_preset_reg_win(bp);
6961         netif_carrier_off(bp->dev);
6962         if (irq_re_init) {
6963                 /* Reserve rings now if none were reserved at driver probe. */
6964                 rc = bnxt_init_dflt_ring_mode(bp);
6965                 if (rc) {
6966                         netdev_err(bp->dev, "Failed to reserve default rings at open\n");
6967                         return rc;
6968                 }
6969                 rc = bnxt_reserve_rings(bp);
6970                 if (rc)
6971                         return rc;
6972         }
6973         if ((bp->flags & BNXT_FLAG_RFS) &&
6974             !(bp->flags & BNXT_FLAG_USING_MSIX)) {
6975                 /* disable RFS if falling back to INTA */
6976                 bp->dev->hw_features &= ~NETIF_F_NTUPLE;
6977                 bp->flags &= ~BNXT_FLAG_RFS;
6978         }
6979
6980         rc = bnxt_alloc_mem(bp, irq_re_init);
6981         if (rc) {
6982                 netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
6983                 goto open_err_free_mem;
6984         }
6985
6986         if (irq_re_init) {
6987                 bnxt_init_napi(bp);
6988                 rc = bnxt_request_irq(bp);
6989                 if (rc) {
6990                         netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc);
6991                         goto open_err_irq;
6992                 }
6993         }
6994
6995         bnxt_enable_napi(bp);
6996         bnxt_debug_dev_init(bp);
6997
6998         rc = bnxt_init_nic(bp, irq_re_init);
6999         if (rc) {
7000                 netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
7001                 goto open_err;
7002         }
7003
7004         if (link_re_init) {
7005                 mutex_lock(&bp->link_lock);
7006                 rc = bnxt_update_phy_setting(bp);
7007                 mutex_unlock(&bp->link_lock);
7008                 if (rc) {
7009                         netdev_warn(bp->dev, "failed to update phy settings\n");
7010                         if (BNXT_SINGLE_PF(bp)) {
7011                                 bp->link_info.phy_retry = true;
7012                                 bp->link_info.phy_retry_expires =
7013                                         jiffies + 5 * HZ;
7014                         }
7015                 }
7016         }
7017
7018         if (irq_re_init)
7019                 udp_tunnel_get_rx_info(bp->dev);
7020
7021         set_bit(BNXT_STATE_OPEN, &bp->state);
7022         bnxt_enable_int(bp);
7023         /* Enable TX queues */
7024         bnxt_tx_enable(bp);
7025         mod_timer(&bp->timer, jiffies + bp->current_interval);
7026         /* Poll link status and check for SFP+ module status */
7027         bnxt_get_port_module_status(bp);
7028
7029         /* VF-reps may need to be re-opened after the PF is re-opened */
7030         if (BNXT_PF(bp))
7031                 bnxt_vf_reps_open(bp);
7032         return 0;
7033
7034 open_err:
7035         bnxt_debug_dev_exit(bp);
7036         bnxt_disable_napi(bp);
7037
7038 open_err_irq:
7039         bnxt_del_napi(bp);
7040
7041 open_err_free_mem:
7042         bnxt_free_skbs(bp);
7043         bnxt_free_irq(bp);
7044         bnxt_free_mem(bp, true);
7045         return rc;
7046 }
7047
7048 /* rtnl_lock held */
7049 int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
7050 {
7051         int rc = 0;
7052
7053         rc = __bnxt_open_nic(bp, irq_re_init, link_re_init);
7054         if (rc) {
7055                 netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc);
7056                 dev_close(bp->dev);
7057         }
7058         return rc;
7059 }
7060
7061 /* rtnl_lock held, open the NIC half way by allocating all resources, but
7062  * NAPI, IRQ, and TX are not enabled.  This is mainly used for offline
7063  * self tests.
7064  */
7065 int bnxt_half_open_nic(struct bnxt *bp)
7066 {
7067         int rc = 0;
7068
7069         rc = bnxt_alloc_mem(bp, false);
7070         if (rc) {
7071                 netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
7072                 goto half_open_err;
7073         }
7074         rc = bnxt_init_nic(bp, false);
7075         if (rc) {
7076                 netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
7077                 goto half_open_err;
7078         }
7079         return 0;
7080
7081 half_open_err:
7082         bnxt_free_skbs(bp);
7083         bnxt_free_mem(bp, false);
7084         dev_close(bp->dev);
7085         return rc;
7086 }
7087
7088 /* rtnl_lock held, this call can only be made after a previous successful
7089  * call to bnxt_half_open_nic().
7090  */
7091 void bnxt_half_close_nic(struct bnxt *bp)
7092 {
7093         bnxt_hwrm_resource_free(bp, false, false);
7094         bnxt_free_skbs(bp);
7095         bnxt_free_mem(bp, false);
7096 }
7097
7098 static int bnxt_open(struct net_device *dev)
7099 {
7100         struct bnxt *bp = netdev_priv(dev);
7101         int rc;
7102
7103         bnxt_hwrm_if_change(bp, true);
7104         rc = __bnxt_open_nic(bp, true, true);
7105         if (rc)
7106                 bnxt_hwrm_if_change(bp, false);
7107
7108         bnxt_hwmon_open(bp);
7109
7110         return rc;
7111 }
7112
7113 static bool bnxt_drv_busy(struct bnxt *bp)
7114 {
7115         return (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state) ||
7116                 test_bit(BNXT_STATE_READ_STATS, &bp->state));
7117 }
7118
7119 static void __bnxt_close_nic(struct bnxt *bp, bool irq_re_init,
7120                              bool link_re_init)
7121 {
7122         /* Close the VF-reps before closing PF */
7123         if (BNXT_PF(bp))
7124                 bnxt_vf_reps_close(bp);
7125
7126         /* Change device state to avoid TX queue wake up's */
7127         bnxt_tx_disable(bp);
7128
7129         clear_bit(BNXT_STATE_OPEN, &bp->state);
7130         smp_mb__after_atomic();
7131         while (bnxt_drv_busy(bp))
7132                 msleep(20);
7133
7134         /* Flush rings and and disable interrupts */
7135         bnxt_shutdown_nic(bp, irq_re_init);
7136
7137         /* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */
7138
7139         bnxt_debug_dev_exit(bp);
7140         bnxt_disable_napi(bp);
7141         del_timer_sync(&bp->timer);
7142         bnxt_free_skbs(bp);
7143
7144         if (irq_re_init) {
7145                 bnxt_free_irq(bp);
7146                 bnxt_del_napi(bp);
7147         }
7148         bnxt_free_mem(bp, irq_re_init);
7149 }
7150
7151 int bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
7152 {
7153         int rc = 0;
7154
7155 #ifdef CONFIG_BNXT_SRIOV
7156         if (bp->sriov_cfg) {
7157                 rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait,
7158                                                       !bp->sriov_cfg,
7159                                                       BNXT_SRIOV_CFG_WAIT_TMO);
7160                 if (rc)
7161                         netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete!\n");
7162         }
7163 #endif
7164         __bnxt_close_nic(bp, irq_re_init, link_re_init);
7165         return rc;
7166 }
7167
7168 static int bnxt_close(struct net_device *dev)
7169 {
7170         struct bnxt *bp = netdev_priv(dev);
7171
7172         bnxt_hwmon_close(bp);
7173         bnxt_close_nic(bp, true, true);
7174         bnxt_hwrm_shutdown_link(bp);
7175         bnxt_hwrm_if_change(bp, false);
7176         return 0;
7177 }
7178
7179 /* rtnl_lock held */
7180 static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
7181 {
7182         switch (cmd) {
7183         case SIOCGMIIPHY:
7184                 /* fallthru */
7185         case SIOCGMIIREG: {
7186                 if (!netif_running(dev))
7187                         return -EAGAIN;
7188
7189                 return 0;
7190         }
7191
7192         case SIOCSMIIREG:
7193                 if (!netif_running(dev))
7194                         return -EAGAIN;
7195
7196                 return 0;
7197
7198         default:
7199                 /* do nothing */
7200                 break;
7201         }
7202         return -EOPNOTSUPP;
7203 }
7204
7205 static void
7206 bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
7207 {
7208         u32 i;
7209         struct bnxt *bp = netdev_priv(dev);
7210
7211         set_bit(BNXT_STATE_READ_STATS, &bp->state);
7212         /* Make sure bnxt_close_nic() sees that we are reading stats before
7213          * we check the BNXT_STATE_OPEN flag.
7214          */
7215         smp_mb__after_atomic();
7216         if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
7217                 clear_bit(BNXT_STATE_READ_STATS, &bp->state);
7218                 return;
7219         }
7220
7221         /* TODO check if we need to synchronize with bnxt_close path */
7222         for (i = 0; i < bp->cp_nr_rings; i++) {
7223                 struct bnxt_napi *bnapi = bp->bnapi[i];
7224                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
7225                 struct ctx_hw_stats *hw_stats = cpr->hw_stats;
7226
7227                 stats->rx_packets += le64_to_cpu(hw_stats->rx_ucast_pkts);
7228                 stats->rx_packets += le64_to_cpu(hw_stats->rx_mcast_pkts);
7229                 stats->rx_packets += le64_to_cpu(hw_stats->rx_bcast_pkts);
7230
7231                 stats->tx_packets += le64_to_cpu(hw_stats->tx_ucast_pkts);
7232                 stats->tx_packets += le64_to_cpu(hw_stats->tx_mcast_pkts);
7233                 stats->tx_packets += le64_to_cpu(hw_stats->tx_bcast_pkts);
7234
7235                 stats->rx_bytes += le64_to_cpu(hw_stats->rx_ucast_bytes);
7236                 stats->rx_bytes += le64_to_cpu(hw_stats->rx_mcast_bytes);
7237                 stats->rx_bytes += le64_to_cpu(hw_stats->rx_bcast_bytes);
7238
7239                 stats->tx_bytes += le64_to_cpu(hw_stats->tx_ucast_bytes);
7240                 stats->tx_bytes += le64_to_cpu(hw_stats->tx_mcast_bytes);
7241                 stats->tx_bytes += le64_to_cpu(hw_stats->tx_bcast_bytes);
7242
7243                 stats->rx_missed_errors +=
7244                         le64_to_cpu(hw_stats->rx_discard_pkts);
7245
7246                 stats->multicast += le64_to_cpu(hw_stats->rx_mcast_pkts);
7247
7248                 stats->tx_dropped += le64_to_cpu(hw_stats->tx_drop_pkts);
7249         }
7250
7251         if (bp->flags & BNXT_FLAG_PORT_STATS) {
7252                 struct rx_port_stats *rx = bp->hw_rx_port_stats;
7253                 struct tx_port_stats *tx = bp->hw_tx_port_stats;
7254
7255                 stats->rx_crc_errors = le64_to_cpu(rx->rx_fcs_err_frames);
7256                 stats->rx_frame_errors = le64_to_cpu(rx->rx_align_err_frames);
7257                 stats->rx_length_errors = le64_to_cpu(rx->rx_undrsz_frames) +
7258                                           le64_to_cpu(rx->rx_ovrsz_frames) +
7259                                           le64_to_cpu(rx->rx_runt_frames);
7260                 stats->rx_errors = le64_to_cpu(rx->rx_false_carrier_frames) +
7261                                    le64_to_cpu(rx->rx_jbr_frames);
7262                 stats->collisions = le64_to_cpu(tx->tx_total_collisions);
7263                 stats->tx_fifo_errors = le64_to_cpu(tx->tx_fifo_underruns);
7264                 stats->tx_errors = le64_to_cpu(tx->tx_err);
7265         }
7266         clear_bit(BNXT_STATE_READ_STATS, &bp->state);
7267 }
7268
7269 static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask)
7270 {
7271         struct net_device *dev = bp->dev;
7272         struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
7273         struct netdev_hw_addr *ha;
7274         u8 *haddr;
7275         int mc_count = 0;
7276         bool update = false;
7277         int off = 0;
7278
7279         netdev_for_each_mc_addr(ha, dev) {
7280                 if (mc_count >= BNXT_MAX_MC_ADDRS) {
7281                         *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
7282                         vnic->mc_list_count = 0;
7283                         return false;
7284                 }
7285                 haddr = ha->addr;
7286                 if (!ether_addr_equal(haddr, vnic->mc_list + off)) {
7287                         memcpy(vnic->mc_list + off, haddr, ETH_ALEN);
7288                         update = true;
7289                 }
7290                 off += ETH_ALEN;
7291                 mc_count++;
7292         }
7293         if (mc_count)
7294                 *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST;
7295
7296         if (mc_count != vnic->mc_list_count) {
7297                 vnic->mc_list_count = mc_count;
7298                 update = true;
7299         }
7300         return update;
7301 }
7302
7303 static bool bnxt_uc_list_updated(struct bnxt *bp)
7304 {
7305         struct net_device *dev = bp->dev;
7306         struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
7307         struct netdev_hw_addr *ha;
7308         int off = 0;
7309
7310         if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1))
7311                 return true;
7312
7313         netdev_for_each_uc_addr(ha, dev) {
7314                 if (!ether_addr_equal(ha->addr, vnic->uc_list + off))
7315                         return true;
7316
7317                 off += ETH_ALEN;
7318         }
7319         return false;
7320 }
7321
7322 static void bnxt_set_rx_mode(struct net_device *dev)
7323 {
7324         struct bnxt *bp = netdev_priv(dev);
7325         struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
7326         u32 mask = vnic->rx_mask;
7327         bool mc_update = false;
7328         bool uc_update;
7329
7330         if (!netif_running(dev))
7331                 return;
7332
7333         mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS |
7334                   CFA_L2_SET_RX_MASK_REQ_MASK_MCAST |
7335                   CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST |
7336                   CFA_L2_SET_RX_MASK_REQ_MASK_BCAST);
7337
7338         if ((dev->flags & IFF_PROMISC) && bnxt_promisc_ok(bp))
7339                 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
7340
7341         uc_update = bnxt_uc_list_updated(bp);
7342
7343         if (dev->flags & IFF_BROADCAST)
7344                 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
7345         if (dev->flags & IFF_ALLMULTI) {
7346                 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
7347                 vnic->mc_list_count = 0;
7348         } else {
7349                 mc_update = bnxt_mc_list_updated(bp, &mask);
7350         }
7351
7352         if (mask != vnic->rx_mask || uc_update || mc_update) {
7353                 vnic->rx_mask = mask;
7354
7355                 set_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event);
7356                 bnxt_queue_sp_work(bp);
7357         }
7358 }
7359
7360 static int bnxt_cfg_rx_mode(struct bnxt *bp)
7361 {
7362         struct net_device *dev = bp->dev;
7363         struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
7364         struct netdev_hw_addr *ha;
7365         int i, off = 0, rc;
7366         bool uc_update;
7367
7368         netif_addr_lock_bh(dev);
7369         uc_update = bnxt_uc_list_updated(bp);
7370         netif_addr_unlock_bh(dev);
7371
7372         if (!uc_update)
7373                 goto skip_uc;
7374
7375         mutex_lock(&bp->hwrm_cmd_lock);
7376         for (i = 1; i < vnic->uc_filter_count; i++) {
7377                 struct hwrm_cfa_l2_filter_free_input req = {0};
7378
7379                 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_FREE, -1,
7380                                        -1);
7381
7382                 req.l2_filter_id = vnic->fw_l2_filter_id[i];
7383
7384                 rc = _hwrm_send_message(bp, &req, sizeof(req),
7385                                         HWRM_CMD_TIMEOUT);
7386         }
7387         mutex_unlock(&bp->hwrm_cmd_lock);
7388
7389         vnic->uc_filter_count = 1;
7390
7391         netif_addr_lock_bh(dev);
7392         if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) {
7393                 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
7394         } else {
7395                 netdev_for_each_uc_addr(ha, dev) {
7396                         memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN);
7397                         off += ETH_ALEN;
7398                         vnic->uc_filter_count++;
7399                 }
7400         }
7401         netif_addr_unlock_bh(dev);
7402
7403         for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) {
7404                 rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off);
7405                 if (rc) {
7406                         netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n",
7407                                    rc);
7408                         vnic->uc_filter_count = i;
7409                         return rc;
7410                 }
7411         }
7412
7413 skip_uc:
7414         rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
7415         if (rc)
7416                 netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %x\n",
7417                            rc);
7418
7419         return rc;
7420 }
7421
7422 static bool bnxt_can_reserve_rings(struct bnxt *bp)
7423 {
7424 #ifdef CONFIG_BNXT_SRIOV
7425         if (BNXT_NEW_RM(bp) && BNXT_VF(bp)) {
7426                 struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
7427
7428                 /* No minimum rings were provisioned by the PF.  Don't
7429                  * reserve rings by default when device is down.
7430                  */
7431                 if (hw_resc->min_tx_rings || hw_resc->resv_tx_rings)
7432                         return true;
7433
7434                 if (!netif_running(bp->dev))
7435                         return false;
7436         }
7437 #endif
7438         return true;
7439 }
7440
7441 /* If the chip and firmware supports RFS */
7442 static bool bnxt_rfs_supported(struct bnxt *bp)
7443 {
7444         if (BNXT_PF(bp) && !BNXT_CHIP_TYPE_NITRO_A0(bp))
7445                 return true;
7446         if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
7447                 return true;
7448         return false;
7449 }
7450
7451 /* If runtime conditions support RFS */
7452 static bool bnxt_rfs_capable(struct bnxt *bp)
7453 {
7454 #ifdef CONFIG_RFS_ACCEL
7455         int vnics, max_vnics, max_rss_ctxs;
7456
7457         if (!(bp->flags & BNXT_FLAG_MSIX_CAP) || !bnxt_can_reserve_rings(bp))
7458                 return false;
7459
7460         vnics = 1 + bp->rx_nr_rings;
7461         max_vnics = bnxt_get_max_func_vnics(bp);
7462         max_rss_ctxs = bnxt_get_max_func_rss_ctxs(bp);
7463
7464         /* RSS contexts not a limiting factor */
7465         if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
7466                 max_rss_ctxs = max_vnics;
7467         if (vnics > max_vnics || vnics > max_rss_ctxs) {
7468                 if (bp->rx_nr_rings > 1)
7469                         netdev_warn(bp->dev,
7470                                     "Not enough resources to support NTUPLE filters, enough resources for up to %d rx rings\n",
7471                                     min(max_rss_ctxs - 1, max_vnics - 1));
7472                 return false;
7473         }
7474
7475         if (!BNXT_NEW_RM(bp))
7476                 return true;
7477
7478         if (vnics == bp->hw_resc.resv_vnics)
7479                 return true;
7480
7481         bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, vnics);
7482         if (vnics <= bp->hw_resc.resv_vnics)
7483                 return true;
7484
7485         netdev_warn(bp->dev, "Unable to reserve resources to support NTUPLE filters.\n");
7486         bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 1);
7487         return false;
7488 #else
7489         return false;
7490 #endif
7491 }
7492
7493 static netdev_features_t bnxt_fix_features(struct net_device *dev,
7494                                            netdev_features_t features)
7495 {
7496         struct bnxt *bp = netdev_priv(dev);
7497
7498         if ((features & NETIF_F_NTUPLE) && !bnxt_rfs_capable(bp))
7499                 features &= ~NETIF_F_NTUPLE;
7500
7501         if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
7502                 features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
7503
7504         if (!(features & NETIF_F_GRO))
7505                 features &= ~NETIF_F_GRO_HW;
7506
7507         if (features & NETIF_F_GRO_HW)
7508                 features &= ~NETIF_F_LRO;
7509
7510         /* Both CTAG and STAG VLAN accelaration on the RX side have to be
7511          * turned on or off together.
7512          */
7513         if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX)) !=
7514             (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX)) {
7515                 if (dev->features & NETIF_F_HW_VLAN_CTAG_RX)
7516                         features &= ~(NETIF_F_HW_VLAN_CTAG_RX |
7517                                       NETIF_F_HW_VLAN_STAG_RX);
7518                 else
7519                         features |= NETIF_F_HW_VLAN_CTAG_RX |
7520                                     NETIF_F_HW_VLAN_STAG_RX;
7521         }
7522 #ifdef CONFIG_BNXT_SRIOV
7523         if (BNXT_VF(bp)) {
7524                 if (bp->vf.vlan) {
7525                         features &= ~(NETIF_F_HW_VLAN_CTAG_RX |
7526                                       NETIF_F_HW_VLAN_STAG_RX);
7527                 }
7528         }
7529 #endif
7530         return features;
7531 }
7532
7533 static int bnxt_set_features(struct net_device *dev, netdev_features_t features)
7534 {
7535         struct bnxt *bp = netdev_priv(dev);
7536         u32 flags = bp->flags;
7537         u32 changes;
7538         int rc = 0;
7539         bool re_init = false;
7540         bool update_tpa = false;
7541
7542         flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS;
7543         if (features & NETIF_F_GRO_HW)
7544                 flags |= BNXT_FLAG_GRO;
7545         else if (features & NETIF_F_LRO)
7546                 flags |= BNXT_FLAG_LRO;
7547
7548         if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
7549                 flags &= ~BNXT_FLAG_TPA;
7550
7551         if (features & NETIF_F_HW_VLAN_CTAG_RX)
7552                 flags |= BNXT_FLAG_STRIP_VLAN;
7553
7554         if (features & NETIF_F_NTUPLE)
7555                 flags |= BNXT_FLAG_RFS;
7556
7557         changes = flags ^ bp->flags;
7558         if (changes & BNXT_FLAG_TPA) {
7559                 update_tpa = true;
7560                 if ((bp->flags & BNXT_FLAG_TPA) == 0 ||
7561                     (flags & BNXT_FLAG_TPA) == 0)
7562                         re_init = true;
7563         }
7564
7565         if (changes & ~BNXT_FLAG_TPA)
7566                 re_init = true;
7567
7568         if (flags != bp->flags) {
7569                 u32 old_flags = bp->flags;
7570
7571                 bp->flags = flags;
7572
7573                 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
7574                         if (update_tpa)
7575                                 bnxt_set_ring_params(bp);
7576                         return rc;
7577                 }
7578
7579                 if (re_init) {
7580                         bnxt_close_nic(bp, false, false);
7581                         if (update_tpa)
7582                                 bnxt_set_ring_params(bp);
7583
7584                         return bnxt_open_nic(bp, false, false);
7585                 }
7586                 if (update_tpa) {
7587                         rc = bnxt_set_tpa(bp,
7588                                           (flags & BNXT_FLAG_TPA) ?
7589                                           true : false);
7590                         if (rc)
7591                                 bp->flags = old_flags;
7592                 }
7593         }
7594         return rc;
7595 }
7596
7597 static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi)
7598 {
7599         struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
7600         int i = bnapi->index;
7601
7602         if (!txr)
7603                 return;
7604
7605         netdev_info(bnapi->bp->dev, "[%d]: tx{fw_ring: %d prod: %x cons: %x}\n",
7606                     i, txr->tx_ring_struct.fw_ring_id, txr->tx_prod,
7607                     txr->tx_cons);
7608 }
7609
7610 static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi)
7611 {
7612         struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
7613         int i = bnapi->index;
7614
7615         if (!rxr)
7616                 return;
7617
7618         netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n",
7619                     i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod,
7620                     rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod,
7621                     rxr->rx_sw_agg_prod);
7622 }
7623
7624 static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi)
7625 {
7626         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
7627         int i = bnapi->index;
7628
7629         netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n",
7630                     i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons);
7631 }
7632
7633 static void bnxt_dbg_dump_states(struct bnxt *bp)
7634 {
7635         int i;
7636         struct bnxt_napi *bnapi;
7637
7638         for (i = 0; i < bp->cp_nr_rings; i++) {
7639                 bnapi = bp->bnapi[i];
7640                 if (netif_msg_drv(bp)) {
7641                         bnxt_dump_tx_sw_state(bnapi);
7642                         bnxt_dump_rx_sw_state(bnapi);
7643                         bnxt_dump_cp_sw_state(bnapi);
7644                 }
7645         }
7646 }
7647
7648 static void bnxt_reset_task(struct bnxt *bp, bool silent)
7649 {
7650         if (!silent)
7651                 bnxt_dbg_dump_states(bp);
7652         if (netif_running(bp->dev)) {
7653                 int rc;
7654
7655                 if (!silent)
7656                         bnxt_ulp_stop(bp);
7657                 bnxt_close_nic(bp, false, false);
7658                 rc = bnxt_open_nic(bp, false, false);
7659                 if (!silent && !rc)
7660                         bnxt_ulp_start(bp);
7661         }
7662 }
7663
7664 static void bnxt_tx_timeout(struct net_device *dev)
7665 {
7666         struct bnxt *bp = netdev_priv(dev);
7667
7668         netdev_err(bp->dev,  "TX timeout detected, starting reset task!\n");
7669         set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
7670         bnxt_queue_sp_work(bp);
7671 }
7672
7673 #ifdef CONFIG_NET_POLL_CONTROLLER
7674 static void bnxt_poll_controller(struct net_device *dev)
7675 {
7676         struct bnxt *bp = netdev_priv(dev);
7677         int i;
7678
7679         /* Only process tx rings/combined rings in netpoll mode. */
7680         for (i = 0; i < bp->tx_nr_rings; i++) {
7681                 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
7682
7683                 napi_schedule(&txr->bnapi->napi);
7684         }
7685 }
7686 #endif
7687
7688 static void bnxt_timer(struct timer_list *t)
7689 {
7690         struct bnxt *bp = from_timer(bp, t, timer);
7691         struct net_device *dev = bp->dev;
7692
7693         if (!netif_running(dev))
7694                 return;
7695
7696         if (atomic_read(&bp->intr_sem) != 0)
7697                 goto bnxt_restart_timer;
7698
7699         if (bp->link_info.link_up && (bp->flags & BNXT_FLAG_PORT_STATS) &&
7700             bp->stats_coal_ticks) {
7701                 set_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event);
7702                 bnxt_queue_sp_work(bp);
7703         }
7704
7705         if (bnxt_tc_flower_enabled(bp)) {
7706                 set_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event);
7707                 bnxt_queue_sp_work(bp);
7708         }
7709
7710         if (bp->link_info.phy_retry) {
7711                 if (time_after(jiffies, bp->link_info.phy_retry_expires)) {
7712                         bp->link_info.phy_retry = 0;
7713                         netdev_warn(bp->dev, "failed to update phy settings after maximum retries.\n");
7714                 } else {
7715                         set_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event);
7716                         bnxt_queue_sp_work(bp);
7717                 }
7718         }
7719 bnxt_restart_timer:
7720         mod_timer(&bp->timer, jiffies + bp->current_interval);
7721 }
7722
7723 static void bnxt_rtnl_lock_sp(struct bnxt *bp)
7724 {
7725         /* We are called from bnxt_sp_task which has BNXT_STATE_IN_SP_TASK
7726          * set.  If the device is being closed, bnxt_close() may be holding
7727          * rtnl() and waiting for BNXT_STATE_IN_SP_TASK to clear.  So we
7728          * must clear BNXT_STATE_IN_SP_TASK before holding rtnl().
7729          */
7730         clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
7731         rtnl_lock();
7732 }
7733
7734 static void bnxt_rtnl_unlock_sp(struct bnxt *bp)
7735 {
7736         set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
7737         rtnl_unlock();
7738 }
7739
7740 /* Only called from bnxt_sp_task() */
7741 static void bnxt_reset(struct bnxt *bp, bool silent)
7742 {
7743         bnxt_rtnl_lock_sp(bp);
7744         if (test_bit(BNXT_STATE_OPEN, &bp->state))
7745                 bnxt_reset_task(bp, silent);
7746         bnxt_rtnl_unlock_sp(bp);
7747 }
7748
7749 static void bnxt_cfg_ntp_filters(struct bnxt *);
7750
7751 static void bnxt_sp_task(struct work_struct *work)
7752 {
7753         struct bnxt *bp = container_of(work, struct bnxt, sp_task);
7754
7755         set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
7756         smp_mb__after_atomic();
7757         if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
7758                 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
7759                 return;
7760         }
7761
7762         if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event))
7763                 bnxt_cfg_rx_mode(bp);
7764
7765         if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event))
7766                 bnxt_cfg_ntp_filters(bp);
7767         if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event))
7768                 bnxt_hwrm_exec_fwd_req(bp);
7769         if (test_and_clear_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event)) {
7770                 bnxt_hwrm_tunnel_dst_port_alloc(
7771                         bp, bp->vxlan_port,
7772                         TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
7773         }
7774         if (test_and_clear_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event)) {
7775                 bnxt_hwrm_tunnel_dst_port_free(
7776                         bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
7777         }
7778         if (test_and_clear_bit(BNXT_GENEVE_ADD_PORT_SP_EVENT, &bp->sp_event)) {
7779                 bnxt_hwrm_tunnel_dst_port_alloc(
7780                         bp, bp->nge_port,
7781                         TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
7782         }
7783         if (test_and_clear_bit(BNXT_GENEVE_DEL_PORT_SP_EVENT, &bp->sp_event)) {
7784                 bnxt_hwrm_tunnel_dst_port_free(
7785                         bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
7786         }
7787         if (test_and_clear_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event)) {
7788                 bnxt_hwrm_port_qstats(bp);
7789                 bnxt_hwrm_port_qstats_ext(bp);
7790         }
7791
7792         if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) {
7793                 int rc;
7794
7795                 mutex_lock(&bp->link_lock);
7796                 if (test_and_clear_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT,
7797                                        &bp->sp_event))
7798                         bnxt_hwrm_phy_qcaps(bp);
7799
7800                 rc = bnxt_update_link(bp, true);
7801                 mutex_unlock(&bp->link_lock);
7802                 if (rc)
7803                         netdev_err(bp->dev, "SP task can't update link (rc: %x)\n",
7804                                    rc);
7805         }
7806         if (test_and_clear_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event)) {
7807                 int rc;
7808
7809                 mutex_lock(&bp->link_lock);
7810                 rc = bnxt_update_phy_setting(bp);
7811                 mutex_unlock(&bp->link_lock);
7812                 if (rc) {
7813                         netdev_warn(bp->dev, "update phy settings retry failed\n");
7814                 } else {
7815                         bp->link_info.phy_retry = false;
7816                         netdev_info(bp->dev, "update phy settings retry succeeded\n");
7817                 }
7818         }
7819         if (test_and_clear_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event)) {
7820                 mutex_lock(&bp->link_lock);
7821                 bnxt_get_port_module_status(bp);
7822                 mutex_unlock(&bp->link_lock);
7823         }
7824
7825         if (test_and_clear_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event))
7826                 bnxt_tc_flow_stats_work(bp);
7827
7828         /* These functions below will clear BNXT_STATE_IN_SP_TASK.  They
7829          * must be the last functions to be called before exiting.
7830          */
7831         if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event))
7832                 bnxt_reset(bp, false);
7833
7834         if (test_and_clear_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event))
7835                 bnxt_reset(bp, true);
7836
7837         smp_mb__before_atomic();
7838         clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
7839 }
7840
7841 /* Under rtnl_lock */
7842 int bnxt_check_rings(struct bnxt *bp, int tx, int rx, bool sh, int tcs,
7843                      int tx_xdp)
7844 {
7845         int max_rx, max_tx, tx_sets = 1;
7846         int tx_rings_needed;
7847         int rx_rings = rx;
7848         int cp, vnics, rc;
7849
7850         if (tcs)
7851                 tx_sets = tcs;
7852
7853         rc = bnxt_get_max_rings(bp, &max_rx, &max_tx, sh);
7854         if (rc)
7855                 return rc;
7856
7857         if (max_rx < rx)
7858                 return -ENOMEM;
7859
7860         tx_rings_needed = tx * tx_sets + tx_xdp;
7861         if (max_tx < tx_rings_needed)
7862                 return -ENOMEM;
7863
7864         vnics = 1;
7865         if (bp->flags & BNXT_FLAG_RFS)
7866                 vnics += rx_rings;
7867
7868         if (bp->flags & BNXT_FLAG_AGG_RINGS)
7869                 rx_rings <<= 1;
7870         cp = sh ? max_t(int, tx_rings_needed, rx) : tx_rings_needed + rx;
7871         if (BNXT_NEW_RM(bp))
7872                 cp += bnxt_get_ulp_msix_num(bp);
7873         return bnxt_hwrm_check_rings(bp, tx_rings_needed, rx_rings, rx, cp,
7874                                      vnics);
7875 }
7876
7877 static void bnxt_unmap_bars(struct bnxt *bp, struct pci_dev *pdev)
7878 {
7879         if (bp->bar2) {
7880                 pci_iounmap(pdev, bp->bar2);
7881                 bp->bar2 = NULL;
7882         }
7883
7884         if (bp->bar1) {
7885                 pci_iounmap(pdev, bp->bar1);
7886                 bp->bar1 = NULL;
7887         }
7888
7889         if (bp->bar0) {
7890                 pci_iounmap(pdev, bp->bar0);
7891                 bp->bar0 = NULL;
7892         }
7893 }
7894
7895 static void bnxt_cleanup_pci(struct bnxt *bp)
7896 {
7897         bnxt_unmap_bars(bp, bp->pdev);
7898         pci_release_regions(bp->pdev);
7899         pci_disable_device(bp->pdev);
7900 }
7901
7902 static void bnxt_init_dflt_coal(struct bnxt *bp)
7903 {
7904         struct bnxt_coal *coal;
7905
7906         /* Tick values in micro seconds.
7907          * 1 coal_buf x bufs_per_record = 1 completion record.
7908          */
7909         coal = &bp->rx_coal;
7910         coal->coal_ticks = 14;
7911         coal->coal_bufs = 30;
7912         coal->coal_ticks_irq = 1;
7913         coal->coal_bufs_irq = 2;
7914         coal->idle_thresh = 50;
7915         coal->bufs_per_record = 2;
7916         coal->budget = 64;              /* NAPI budget */
7917
7918         coal = &bp->tx_coal;
7919         coal->coal_ticks = 28;
7920         coal->coal_bufs = 30;
7921         coal->coal_ticks_irq = 2;
7922         coal->coal_bufs_irq = 2;
7923         coal->bufs_per_record = 1;
7924
7925         bp->stats_coal_ticks = BNXT_DEF_STATS_COAL_TICKS;
7926 }
7927
7928 static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev)
7929 {
7930         int rc;
7931         struct bnxt *bp = netdev_priv(dev);
7932
7933         SET_NETDEV_DEV(dev, &pdev->dev);
7934
7935         /* enable device (incl. PCI PM wakeup), and bus-mastering */
7936         rc = pci_enable_device(pdev);
7937         if (rc) {
7938                 dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
7939                 goto init_err;
7940         }
7941
7942         if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
7943                 dev_err(&pdev->dev,
7944                         "Cannot find PCI device base address, aborting\n");
7945                 rc = -ENODEV;
7946                 goto init_err_disable;
7947         }
7948
7949         rc = pci_request_regions(pdev, DRV_MODULE_NAME);
7950         if (rc) {
7951                 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
7952                 goto init_err_disable;
7953         }
7954
7955         if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 &&
7956             dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) {
7957                 dev_err(&pdev->dev, "System does not support DMA, aborting\n");
7958                 goto init_err_disable;
7959         }
7960
7961         pci_set_master(pdev);
7962
7963         bp->dev = dev;
7964         bp->pdev = pdev;
7965
7966         bp->bar0 = pci_ioremap_bar(pdev, 0);
7967         if (!bp->bar0) {
7968                 dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
7969                 rc = -ENOMEM;
7970                 goto init_err_release;
7971         }
7972
7973         bp->bar1 = pci_ioremap_bar(pdev, 2);
7974         if (!bp->bar1) {
7975                 dev_err(&pdev->dev, "Cannot map doorbell registers, aborting\n");
7976                 rc = -ENOMEM;
7977                 goto init_err_release;
7978         }
7979
7980         bp->bar2 = pci_ioremap_bar(pdev, 4);
7981         if (!bp->bar2) {
7982                 dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n");
7983                 rc = -ENOMEM;
7984                 goto init_err_release;
7985         }
7986
7987         pci_enable_pcie_error_reporting(pdev);
7988
7989         INIT_WORK(&bp->sp_task, bnxt_sp_task);
7990
7991         spin_lock_init(&bp->ntp_fltr_lock);
7992
7993         bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE;
7994         bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE;
7995
7996         bnxt_init_dflt_coal(bp);
7997
7998         timer_setup(&bp->timer, bnxt_timer, 0);
7999         bp->current_interval = BNXT_TIMER_INTERVAL;
8000
8001         clear_bit(BNXT_STATE_OPEN, &bp->state);
8002         return 0;
8003
8004 init_err_release:
8005         bnxt_unmap_bars(bp, pdev);
8006         pci_release_regions(pdev);
8007
8008 init_err_disable:
8009         pci_disable_device(pdev);
8010
8011 init_err:
8012         return rc;
8013 }
8014
8015 /* rtnl_lock held */
8016 static int bnxt_change_mac_addr(struct net_device *dev, void *p)
8017 {
8018         struct sockaddr *addr = p;
8019         struct bnxt *bp = netdev_priv(dev);
8020         int rc = 0;
8021
8022         if (!is_valid_ether_addr(addr->sa_data))
8023                 return -EADDRNOTAVAIL;
8024
8025         if (ether_addr_equal(addr->sa_data, dev->dev_addr))
8026                 return 0;
8027
8028         rc = bnxt_approve_mac(bp, addr->sa_data);
8029         if (rc)
8030                 return rc;
8031
8032         memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
8033         if (netif_running(dev)) {
8034                 bnxt_close_nic(bp, false, false);
8035                 rc = bnxt_open_nic(bp, false, false);
8036         }
8037
8038         return rc;
8039 }
8040
8041 /* rtnl_lock held */
8042 static int bnxt_change_mtu(struct net_device *dev, int new_mtu)
8043 {
8044         struct bnxt *bp = netdev_priv(dev);
8045
8046         if (netif_running(dev))
8047                 bnxt_close_nic(bp, false, false);
8048
8049         dev->mtu = new_mtu;
8050         bnxt_set_ring_params(bp);
8051
8052         if (netif_running(dev))
8053                 return bnxt_open_nic(bp, false, false);
8054
8055         return 0;
8056 }
8057
8058 int bnxt_setup_mq_tc(struct net_device *dev, u8 tc)
8059 {
8060         struct bnxt *bp = netdev_priv(dev);
8061         bool sh = false;
8062         int rc;
8063
8064         if (tc > bp->max_tc) {
8065                 netdev_err(dev, "Too many traffic classes requested: %d. Max supported is %d.\n",
8066                            tc, bp->max_tc);
8067                 return -EINVAL;
8068         }
8069
8070         if (netdev_get_num_tc(dev) == tc)
8071                 return 0;
8072
8073         if (bp->flags & BNXT_FLAG_SHARED_RINGS)
8074                 sh = true;
8075
8076         rc = bnxt_check_rings(bp, bp->tx_nr_rings_per_tc, bp->rx_nr_rings,
8077                               sh, tc, bp->tx_nr_rings_xdp);
8078         if (rc)
8079                 return rc;
8080
8081         /* Needs to close the device and do hw resource re-allocations */
8082         if (netif_running(bp->dev))
8083                 bnxt_close_nic(bp, true, false);
8084
8085         if (tc) {
8086                 bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc;
8087                 netdev_set_num_tc(dev, tc);
8088         } else {
8089                 bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
8090                 netdev_reset_tc(dev);
8091         }
8092         bp->tx_nr_rings += bp->tx_nr_rings_xdp;
8093         bp->cp_nr_rings = sh ? max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
8094                                bp->tx_nr_rings + bp->rx_nr_rings;
8095         bp->num_stat_ctxs = bp->cp_nr_rings;
8096
8097         if (netif_running(bp->dev))
8098                 return bnxt_open_nic(bp, true, false);
8099
8100         return 0;
8101 }
8102
8103 static int bnxt_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
8104                                   void *cb_priv)
8105 {
8106         struct bnxt *bp = cb_priv;
8107
8108         if (!bnxt_tc_flower_enabled(bp) ||
8109             !tc_cls_can_offload_and_chain0(bp->dev, type_data))
8110                 return -EOPNOTSUPP;
8111
8112         switch (type) {
8113         case TC_SETUP_CLSFLOWER:
8114                 return bnxt_tc_setup_flower(bp, bp->pf.fw_fid, type_data);
8115         default:
8116                 return -EOPNOTSUPP;
8117         }
8118 }
8119
8120 static int bnxt_setup_tc_block(struct net_device *dev,
8121                                struct tc_block_offload *f)
8122 {
8123         struct bnxt *bp = netdev_priv(dev);
8124
8125         if (f->binder_type != TCF_BLOCK_BINDER_TYPE_CLSACT_INGRESS)
8126                 return -EOPNOTSUPP;
8127
8128         switch (f->command) {
8129         case TC_BLOCK_BIND:
8130                 return tcf_block_cb_register(f->block, bnxt_setup_tc_block_cb,
8131                                              bp, bp, f->extack);
8132         case TC_BLOCK_UNBIND:
8133                 tcf_block_cb_unregister(f->block, bnxt_setup_tc_block_cb, bp);
8134                 return 0;
8135         default:
8136                 return -EOPNOTSUPP;
8137         }
8138 }
8139
8140 static int bnxt_setup_tc(struct net_device *dev, enum tc_setup_type type,
8141                          void *type_data)
8142 {
8143         switch (type) {
8144         case TC_SETUP_BLOCK:
8145                 return bnxt_setup_tc_block(dev, type_data);
8146         case TC_SETUP_QDISC_MQPRIO: {
8147                 struct tc_mqprio_qopt *mqprio = type_data;
8148
8149                 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
8150
8151                 return bnxt_setup_mq_tc(dev, mqprio->num_tc);
8152         }
8153         default:
8154                 return -EOPNOTSUPP;
8155         }
8156 }
8157
8158 #ifdef CONFIG_RFS_ACCEL
8159 static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1,
8160                             struct bnxt_ntuple_filter *f2)
8161 {
8162         struct flow_keys *keys1 = &f1->fkeys;
8163         struct flow_keys *keys2 = &f2->fkeys;
8164
8165         if (keys1->addrs.v4addrs.src == keys2->addrs.v4addrs.src &&
8166             keys1->addrs.v4addrs.dst == keys2->addrs.v4addrs.dst &&
8167             keys1->ports.ports == keys2->ports.ports &&
8168             keys1->basic.ip_proto == keys2->basic.ip_proto &&
8169             keys1->basic.n_proto == keys2->basic.n_proto &&
8170             keys1->control.flags == keys2->control.flags &&
8171             ether_addr_equal(f1->src_mac_addr, f2->src_mac_addr) &&
8172             ether_addr_equal(f1->dst_mac_addr, f2->dst_mac_addr))
8173                 return true;
8174
8175         return false;
8176 }
8177
8178 static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
8179                               u16 rxq_index, u32 flow_id)
8180 {
8181         struct bnxt *bp = netdev_priv(dev);
8182         struct bnxt_ntuple_filter *fltr, *new_fltr;
8183         struct flow_keys *fkeys;
8184         struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb);
8185         int rc = 0, idx, bit_id, l2_idx = 0;
8186         struct hlist_head *head;
8187
8188         if (!ether_addr_equal(dev->dev_addr, eth->h_dest)) {
8189                 struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
8190                 int off = 0, j;
8191
8192                 netif_addr_lock_bh(dev);
8193                 for (j = 0; j < vnic->uc_filter_count; j++, off += ETH_ALEN) {
8194                         if (ether_addr_equal(eth->h_dest,
8195                                              vnic->uc_list + off)) {
8196                                 l2_idx = j + 1;
8197                                 break;
8198                         }
8199                 }
8200                 netif_addr_unlock_bh(dev);
8201                 if (!l2_idx)
8202                         return -EINVAL;
8203         }
8204         new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC);
8205         if (!new_fltr)
8206                 return -ENOMEM;
8207
8208         fkeys = &new_fltr->fkeys;
8209         if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) {
8210                 rc = -EPROTONOSUPPORT;
8211                 goto err_free;
8212         }
8213
8214         if ((fkeys->basic.n_proto != htons(ETH_P_IP) &&
8215              fkeys->basic.n_proto != htons(ETH_P_IPV6)) ||
8216             ((fkeys->basic.ip_proto != IPPROTO_TCP) &&
8217              (fkeys->basic.ip_proto != IPPROTO_UDP))) {
8218                 rc = -EPROTONOSUPPORT;
8219                 goto err_free;
8220         }
8221         if (fkeys->basic.n_proto == htons(ETH_P_IPV6) &&
8222             bp->hwrm_spec_code < 0x10601) {
8223                 rc = -EPROTONOSUPPORT;
8224                 goto err_free;
8225         }
8226         if ((fkeys->control.flags & FLOW_DIS_ENCAPSULATION) &&
8227             bp->hwrm_spec_code < 0x10601) {
8228                 rc = -EPROTONOSUPPORT;
8229                 goto err_free;
8230         }
8231
8232         memcpy(new_fltr->dst_mac_addr, eth->h_dest, ETH_ALEN);
8233         memcpy(new_fltr->src_mac_addr, eth->h_source, ETH_ALEN);
8234
8235         idx = skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK;
8236         head = &bp->ntp_fltr_hash_tbl[idx];
8237         rcu_read_lock();
8238         hlist_for_each_entry_rcu(fltr, head, hash) {
8239                 if (bnxt_fltr_match(fltr, new_fltr)) {
8240                         rcu_read_unlock();
8241                         rc = 0;
8242                         goto err_free;
8243                 }
8244         }
8245         rcu_read_unlock();
8246
8247         spin_lock_bh(&bp->ntp_fltr_lock);
8248         bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap,
8249                                          BNXT_NTP_FLTR_MAX_FLTR, 0);
8250         if (bit_id < 0) {
8251                 spin_unlock_bh(&bp->ntp_fltr_lock);
8252                 rc = -ENOMEM;
8253                 goto err_free;
8254         }
8255
8256         new_fltr->sw_id = (u16)bit_id;
8257         new_fltr->flow_id = flow_id;
8258         new_fltr->l2_fltr_idx = l2_idx;
8259         new_fltr->rxq = rxq_index;
8260         hlist_add_head_rcu(&new_fltr->hash, head);
8261         bp->ntp_fltr_count++;
8262         spin_unlock_bh(&bp->ntp_fltr_lock);
8263
8264         set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event);
8265         bnxt_queue_sp_work(bp);
8266
8267         return new_fltr->sw_id;
8268
8269 err_free:
8270         kfree(new_fltr);
8271         return rc;
8272 }
8273
8274 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
8275 {
8276         int i;
8277
8278         for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
8279                 struct hlist_head *head;
8280                 struct hlist_node *tmp;
8281                 struct bnxt_ntuple_filter *fltr;
8282                 int rc;
8283
8284                 head = &bp->ntp_fltr_hash_tbl[i];
8285                 hlist_for_each_entry_safe(fltr, tmp, head, hash) {
8286                         bool del = false;
8287
8288                         if (test_bit(BNXT_FLTR_VALID, &fltr->state)) {
8289                                 if (rps_may_expire_flow(bp->dev, fltr->rxq,
8290                                                         fltr->flow_id,
8291                                                         fltr->sw_id)) {
8292                                         bnxt_hwrm_cfa_ntuple_filter_free(bp,
8293                                                                          fltr);
8294                                         del = true;
8295                                 }
8296                         } else {
8297                                 rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp,
8298                                                                        fltr);
8299                                 if (rc)
8300                                         del = true;
8301                                 else
8302                                         set_bit(BNXT_FLTR_VALID, &fltr->state);
8303                         }
8304
8305                         if (del) {
8306                                 spin_lock_bh(&bp->ntp_fltr_lock);
8307                                 hlist_del_rcu(&fltr->hash);
8308                                 bp->ntp_fltr_count--;
8309                                 spin_unlock_bh(&bp->ntp_fltr_lock);
8310                                 synchronize_rcu();
8311                                 clear_bit(fltr->sw_id, bp->ntp_fltr_bmap);
8312                                 kfree(fltr);
8313                         }
8314                 }
8315         }
8316         if (test_and_clear_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event))
8317                 netdev_info(bp->dev, "Receive PF driver unload event!");
8318 }
8319
8320 #else
8321
8322 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
8323 {
8324 }
8325
8326 #endif /* CONFIG_RFS_ACCEL */
8327
8328 static void bnxt_udp_tunnel_add(struct net_device *dev,
8329                                 struct udp_tunnel_info *ti)
8330 {
8331         struct bnxt *bp = netdev_priv(dev);
8332
8333         if (ti->sa_family != AF_INET6 && ti->sa_family != AF_INET)
8334                 return;
8335
8336         if (!netif_running(dev))
8337                 return;
8338
8339         switch (ti->type) {
8340         case UDP_TUNNEL_TYPE_VXLAN:
8341                 if (bp->vxlan_port_cnt && bp->vxlan_port != ti->port)
8342                         return;
8343
8344                 bp->vxlan_port_cnt++;
8345                 if (bp->vxlan_port_cnt == 1) {
8346                         bp->vxlan_port = ti->port;
8347                         set_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event);
8348                         bnxt_queue_sp_work(bp);
8349                 }
8350                 break;
8351         case UDP_TUNNEL_TYPE_GENEVE:
8352                 if (bp->nge_port_cnt && bp->nge_port != ti->port)
8353                         return;
8354
8355                 bp->nge_port_cnt++;
8356                 if (bp->nge_port_cnt == 1) {
8357                         bp->nge_port = ti->port;
8358                         set_bit(BNXT_GENEVE_ADD_PORT_SP_EVENT, &bp->sp_event);
8359                 }
8360                 break;
8361         default:
8362                 return;
8363         }
8364
8365         bnxt_queue_sp_work(bp);
8366 }
8367
8368 static void bnxt_udp_tunnel_del(struct net_device *dev,
8369                                 struct udp_tunnel_info *ti)
8370 {
8371         struct bnxt *bp = netdev_priv(dev);
8372
8373         if (ti->sa_family != AF_INET6 && ti->sa_family != AF_INET)
8374                 return;
8375
8376         if (!netif_running(dev))
8377                 return;
8378
8379         switch (ti->type) {
8380         case UDP_TUNNEL_TYPE_VXLAN:
8381                 if (!bp->vxlan_port_cnt || bp->vxlan_port != ti->port)
8382                         return;
8383                 bp->vxlan_port_cnt--;
8384
8385                 if (bp->vxlan_port_cnt != 0)
8386                         return;
8387
8388                 set_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event);
8389                 break;
8390         case UDP_TUNNEL_TYPE_GENEVE:
8391                 if (!bp->nge_port_cnt || bp->nge_port != ti->port)
8392                         return;
8393                 bp->nge_port_cnt--;
8394
8395                 if (bp->nge_port_cnt != 0)
8396                         return;
8397
8398                 set_bit(BNXT_GENEVE_DEL_PORT_SP_EVENT, &bp->sp_event);
8399                 break;
8400         default:
8401                 return;
8402         }
8403
8404         bnxt_queue_sp_work(bp);
8405 }
8406
8407 static int bnxt_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
8408                                struct net_device *dev, u32 filter_mask,
8409                                int nlflags)
8410 {
8411         struct bnxt *bp = netdev_priv(dev);
8412
8413         return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bp->br_mode, 0, 0,
8414                                        nlflags, filter_mask, NULL);
8415 }
8416
8417 static int bnxt_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
8418                                u16 flags)
8419 {
8420         struct bnxt *bp = netdev_priv(dev);
8421         struct nlattr *attr, *br_spec;
8422         int rem, rc = 0;
8423
8424         if (bp->hwrm_spec_code < 0x10708 || !BNXT_SINGLE_PF(bp))
8425                 return -EOPNOTSUPP;
8426
8427         br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
8428         if (!br_spec)
8429                 return -EINVAL;
8430
8431         nla_for_each_nested(attr, br_spec, rem) {
8432                 u16 mode;
8433
8434                 if (nla_type(attr) != IFLA_BRIDGE_MODE)
8435                         continue;
8436
8437                 if (nla_len(attr) < sizeof(mode))
8438                         return -EINVAL;
8439
8440                 mode = nla_get_u16(attr);
8441                 if (mode == bp->br_mode)
8442                         break;
8443
8444                 rc = bnxt_hwrm_set_br_mode(bp, mode);
8445                 if (!rc)
8446                         bp->br_mode = mode;
8447                 break;
8448         }
8449         return rc;
8450 }
8451
8452 static int bnxt_get_phys_port_name(struct net_device *dev, char *buf,
8453                                    size_t len)
8454 {
8455         struct bnxt *bp = netdev_priv(dev);
8456         int rc;
8457
8458         /* The PF and it's VF-reps only support the switchdev framework */
8459         if (!BNXT_PF(bp))
8460                 return -EOPNOTSUPP;
8461
8462         rc = snprintf(buf, len, "p%d", bp->pf.port_id);
8463
8464         if (rc >= len)
8465                 return -EOPNOTSUPP;
8466         return 0;
8467 }
8468
8469 int bnxt_port_attr_get(struct bnxt *bp, struct switchdev_attr *attr)
8470 {
8471         if (bp->eswitch_mode != DEVLINK_ESWITCH_MODE_SWITCHDEV)
8472                 return -EOPNOTSUPP;
8473
8474         /* The PF and it's VF-reps only support the switchdev framework */
8475         if (!BNXT_PF(bp))
8476                 return -EOPNOTSUPP;
8477
8478         switch (attr->id) {
8479         case SWITCHDEV_ATTR_ID_PORT_PARENT_ID:
8480                 attr->u.ppid.id_len = sizeof(bp->switch_id);
8481                 memcpy(attr->u.ppid.id, bp->switch_id, attr->u.ppid.id_len);
8482                 break;
8483         default:
8484                 return -EOPNOTSUPP;
8485         }
8486         return 0;
8487 }
8488
8489 static int bnxt_swdev_port_attr_get(struct net_device *dev,
8490                                     struct switchdev_attr *attr)
8491 {
8492         return bnxt_port_attr_get(netdev_priv(dev), attr);
8493 }
8494
8495 static const struct switchdev_ops bnxt_switchdev_ops = {
8496         .switchdev_port_attr_get        = bnxt_swdev_port_attr_get
8497 };
8498
8499 static const struct net_device_ops bnxt_netdev_ops = {
8500         .ndo_open               = bnxt_open,
8501         .ndo_start_xmit         = bnxt_start_xmit,
8502         .ndo_stop               = bnxt_close,
8503         .ndo_get_stats64        = bnxt_get_stats64,
8504         .ndo_set_rx_mode        = bnxt_set_rx_mode,
8505         .ndo_do_ioctl           = bnxt_ioctl,
8506         .ndo_validate_addr      = eth_validate_addr,
8507         .ndo_set_mac_address    = bnxt_change_mac_addr,
8508         .ndo_change_mtu         = bnxt_change_mtu,
8509         .ndo_fix_features       = bnxt_fix_features,
8510         .ndo_set_features       = bnxt_set_features,
8511         .ndo_tx_timeout         = bnxt_tx_timeout,
8512 #ifdef CONFIG_BNXT_SRIOV
8513         .ndo_get_vf_config      = bnxt_get_vf_config,
8514         .ndo_set_vf_mac         = bnxt_set_vf_mac,
8515         .ndo_set_vf_vlan        = bnxt_set_vf_vlan,
8516         .ndo_set_vf_rate        = bnxt_set_vf_bw,
8517         .ndo_set_vf_link_state  = bnxt_set_vf_link_state,
8518         .ndo_set_vf_spoofchk    = bnxt_set_vf_spoofchk,
8519         .ndo_set_vf_trust       = bnxt_set_vf_trust,
8520 #endif
8521 #ifdef CONFIG_NET_POLL_CONTROLLER
8522         .ndo_poll_controller    = bnxt_poll_controller,
8523 #endif
8524         .ndo_setup_tc           = bnxt_setup_tc,
8525 #ifdef CONFIG_RFS_ACCEL
8526         .ndo_rx_flow_steer      = bnxt_rx_flow_steer,
8527 #endif
8528         .ndo_udp_tunnel_add     = bnxt_udp_tunnel_add,
8529         .ndo_udp_tunnel_del     = bnxt_udp_tunnel_del,
8530         .ndo_bpf                = bnxt_xdp,
8531         .ndo_bridge_getlink     = bnxt_bridge_getlink,
8532         .ndo_bridge_setlink     = bnxt_bridge_setlink,
8533         .ndo_get_phys_port_name = bnxt_get_phys_port_name
8534 };
8535
8536 static void bnxt_remove_one(struct pci_dev *pdev)
8537 {
8538         struct net_device *dev = pci_get_drvdata(pdev);
8539         struct bnxt *bp = netdev_priv(dev);
8540
8541         if (BNXT_PF(bp)) {
8542                 bnxt_sriov_disable(bp);
8543                 bnxt_dl_unregister(bp);
8544         }
8545
8546         pci_disable_pcie_error_reporting(pdev);
8547         unregister_netdev(dev);
8548         bnxt_shutdown_tc(bp);
8549         bnxt_cancel_sp_work(bp);
8550         bp->sp_event = 0;
8551
8552         bnxt_clear_int_mode(bp);
8553         bnxt_hwrm_func_drv_unrgtr(bp);
8554         bnxt_free_hwrm_resources(bp);
8555         bnxt_free_hwrm_short_cmd_req(bp);
8556         bnxt_ethtool_free(bp);
8557         bnxt_dcb_free(bp);
8558         kfree(bp->edev);
8559         bp->edev = NULL;
8560         bnxt_cleanup_pci(bp);
8561         free_netdev(dev);
8562 }
8563
8564 static int bnxt_probe_phy(struct bnxt *bp)
8565 {
8566         int rc = 0;
8567         struct bnxt_link_info *link_info = &bp->link_info;
8568
8569         rc = bnxt_hwrm_phy_qcaps(bp);
8570         if (rc) {
8571                 netdev_err(bp->dev, "Probe phy can't get phy capabilities (rc: %x)\n",
8572                            rc);
8573                 return rc;
8574         }
8575         mutex_init(&bp->link_lock);
8576
8577         rc = bnxt_update_link(bp, false);
8578         if (rc) {
8579                 netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n",
8580                            rc);
8581                 return rc;
8582         }
8583
8584         /* Older firmware does not have supported_auto_speeds, so assume
8585          * that all supported speeds can be autonegotiated.
8586          */
8587         if (link_info->auto_link_speeds && !link_info->support_auto_speeds)
8588                 link_info->support_auto_speeds = link_info->support_speeds;
8589
8590         /*initialize the ethool setting copy with NVM settings */
8591         if (BNXT_AUTO_MODE(link_info->auto_mode)) {
8592                 link_info->autoneg = BNXT_AUTONEG_SPEED;
8593                 if (bp->hwrm_spec_code >= 0x10201) {
8594                         if (link_info->auto_pause_setting &
8595                             PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE)
8596                                 link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
8597                 } else {
8598                         link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
8599                 }
8600                 link_info->advertising = link_info->auto_link_speeds;
8601         } else {
8602                 link_info->req_link_speed = link_info->force_link_speed;
8603                 link_info->req_duplex = link_info->duplex_setting;
8604         }
8605         if (link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL)
8606                 link_info->req_flow_ctrl =
8607                         link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH;
8608         else
8609                 link_info->req_flow_ctrl = link_info->force_pause_setting;
8610         return rc;
8611 }
8612
8613 static int bnxt_get_max_irq(struct pci_dev *pdev)
8614 {
8615         u16 ctrl;
8616
8617         if (!pdev->msix_cap)
8618                 return 1;
8619
8620         pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl);
8621         return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1;
8622 }
8623
8624 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx,
8625                                 int *max_cp)
8626 {
8627         struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
8628         int max_ring_grps = 0;
8629
8630         *max_tx = hw_resc->max_tx_rings;
8631         *max_rx = hw_resc->max_rx_rings;
8632         *max_cp = min_t(int, hw_resc->max_irqs, hw_resc->max_cp_rings);
8633         *max_cp = min_t(int, *max_cp, hw_resc->max_stat_ctxs);
8634         max_ring_grps = hw_resc->max_hw_ring_grps;
8635         if (BNXT_CHIP_TYPE_NITRO_A0(bp) && BNXT_PF(bp)) {
8636                 *max_cp -= 1;
8637                 *max_rx -= 2;
8638         }
8639         if (bp->flags & BNXT_FLAG_AGG_RINGS)
8640                 *max_rx >>= 1;
8641         *max_rx = min_t(int, *max_rx, max_ring_grps);
8642 }
8643
8644 int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared)
8645 {
8646         int rx, tx, cp;
8647
8648         _bnxt_get_max_rings(bp, &rx, &tx, &cp);
8649         *max_rx = rx;
8650         *max_tx = tx;
8651         if (!rx || !tx || !cp)
8652                 return -ENOMEM;
8653
8654         return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared);
8655 }
8656
8657 static int bnxt_get_dflt_rings(struct bnxt *bp, int *max_rx, int *max_tx,
8658                                bool shared)
8659 {
8660         int rc;
8661
8662         rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
8663         if (rc && (bp->flags & BNXT_FLAG_AGG_RINGS)) {
8664                 /* Not enough rings, try disabling agg rings. */
8665                 bp->flags &= ~BNXT_FLAG_AGG_RINGS;
8666                 rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
8667                 if (rc) {
8668                         /* set BNXT_FLAG_AGG_RINGS back for consistency */
8669                         bp->flags |= BNXT_FLAG_AGG_RINGS;
8670                         return rc;
8671                 }
8672                 bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
8673                 bp->dev->hw_features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
8674                 bp->dev->features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
8675                 bnxt_set_ring_params(bp);
8676         }
8677
8678         if (bp->flags & BNXT_FLAG_ROCE_CAP) {
8679                 int max_cp, max_stat, max_irq;
8680
8681                 /* Reserve minimum resources for RoCE */
8682                 max_cp = bnxt_get_max_func_cp_rings(bp);
8683                 max_stat = bnxt_get_max_func_stat_ctxs(bp);
8684                 max_irq = bnxt_get_max_func_irqs(bp);
8685                 if (max_cp <= BNXT_MIN_ROCE_CP_RINGS ||
8686                     max_irq <= BNXT_MIN_ROCE_CP_RINGS ||
8687                     max_stat <= BNXT_MIN_ROCE_STAT_CTXS)
8688                         return 0;
8689
8690                 max_cp -= BNXT_MIN_ROCE_CP_RINGS;
8691                 max_irq -= BNXT_MIN_ROCE_CP_RINGS;
8692                 max_stat -= BNXT_MIN_ROCE_STAT_CTXS;
8693                 max_cp = min_t(int, max_cp, max_irq);
8694                 max_cp = min_t(int, max_cp, max_stat);
8695                 rc = bnxt_trim_rings(bp, max_rx, max_tx, max_cp, shared);
8696                 if (rc)
8697                         rc = 0;
8698         }
8699         return rc;
8700 }
8701
8702 /* In initial default shared ring setting, each shared ring must have a
8703  * RX/TX ring pair.
8704  */
8705 static void bnxt_trim_dflt_sh_rings(struct bnxt *bp)
8706 {
8707         bp->cp_nr_rings = min_t(int, bp->tx_nr_rings_per_tc, bp->rx_nr_rings);
8708         bp->rx_nr_rings = bp->cp_nr_rings;
8709         bp->tx_nr_rings_per_tc = bp->cp_nr_rings;
8710         bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
8711 }
8712
8713 static int bnxt_set_dflt_rings(struct bnxt *bp, bool sh)
8714 {
8715         int dflt_rings, max_rx_rings, max_tx_rings, rc;
8716
8717         if (!bnxt_can_reserve_rings(bp))
8718                 return 0;
8719
8720         if (sh)
8721                 bp->flags |= BNXT_FLAG_SHARED_RINGS;
8722         dflt_rings = netif_get_num_default_rss_queues();
8723         /* Reduce default rings on multi-port cards so that total default
8724          * rings do not exceed CPU count.
8725          */
8726         if (bp->port_count > 1) {
8727                 int max_rings =
8728                         max_t(int, num_online_cpus() / bp->port_count, 1);
8729
8730                 dflt_rings = min_t(int, dflt_rings, max_rings);
8731         }
8732         rc = bnxt_get_dflt_rings(bp, &max_rx_rings, &max_tx_rings, sh);
8733         if (rc)
8734                 return rc;
8735         bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings);
8736         bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings);
8737         if (sh)
8738                 bnxt_trim_dflt_sh_rings(bp);
8739         else
8740                 bp->cp_nr_rings = bp->tx_nr_rings_per_tc + bp->rx_nr_rings;
8741         bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
8742
8743         rc = __bnxt_reserve_rings(bp);
8744         if (rc)
8745                 netdev_warn(bp->dev, "Unable to reserve tx rings\n");
8746         bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
8747         if (sh)
8748                 bnxt_trim_dflt_sh_rings(bp);
8749
8750         /* Rings may have been trimmed, re-reserve the trimmed rings. */
8751         if (bnxt_need_reserve_rings(bp)) {
8752                 rc = __bnxt_reserve_rings(bp);
8753                 if (rc)
8754                         netdev_warn(bp->dev, "2nd rings reservation failed.\n");
8755                 bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
8756         }
8757         bp->num_stat_ctxs = bp->cp_nr_rings;
8758         if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
8759                 bp->rx_nr_rings++;
8760                 bp->cp_nr_rings++;
8761         }
8762         return rc;
8763 }
8764
8765 static int bnxt_init_dflt_ring_mode(struct bnxt *bp)
8766 {
8767         int rc;
8768
8769         if (bp->tx_nr_rings)
8770                 return 0;
8771
8772         rc = bnxt_set_dflt_rings(bp, true);
8773         if (rc) {
8774                 netdev_err(bp->dev, "Not enough rings available.\n");
8775                 return rc;
8776         }
8777         rc = bnxt_init_int_mode(bp);
8778         if (rc)
8779                 return rc;
8780         bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
8781         if (bnxt_rfs_supported(bp) && bnxt_rfs_capable(bp)) {
8782                 bp->flags |= BNXT_FLAG_RFS;
8783                 bp->dev->features |= NETIF_F_NTUPLE;
8784         }
8785         return 0;
8786 }
8787
8788 int bnxt_restore_pf_fw_resources(struct bnxt *bp)
8789 {
8790         int rc;
8791
8792         ASSERT_RTNL();
8793         bnxt_hwrm_func_qcaps(bp);
8794
8795         if (netif_running(bp->dev))
8796                 __bnxt_close_nic(bp, true, false);
8797
8798         bnxt_ulp_irq_stop(bp);
8799         bnxt_clear_int_mode(bp);
8800         rc = bnxt_init_int_mode(bp);
8801         bnxt_ulp_irq_restart(bp, rc);
8802
8803         if (netif_running(bp->dev)) {
8804                 if (rc)
8805                         dev_close(bp->dev);
8806                 else
8807                         rc = bnxt_open_nic(bp, true, false);
8808         }
8809
8810         return rc;
8811 }
8812
8813 static int bnxt_init_mac_addr(struct bnxt *bp)
8814 {
8815         int rc = 0;
8816
8817         if (BNXT_PF(bp)) {
8818                 memcpy(bp->dev->dev_addr, bp->pf.mac_addr, ETH_ALEN);
8819         } else {
8820 #ifdef CONFIG_BNXT_SRIOV
8821                 struct bnxt_vf_info *vf = &bp->vf;
8822
8823                 if (is_valid_ether_addr(vf->mac_addr)) {
8824                         /* overwrite netdev dev_addr with admin VF MAC */
8825                         memcpy(bp->dev->dev_addr, vf->mac_addr, ETH_ALEN);
8826                 } else {
8827                         eth_hw_addr_random(bp->dev);
8828                 }
8829                 rc = bnxt_approve_mac(bp, bp->dev->dev_addr);
8830 #endif
8831         }
8832         return rc;
8833 }
8834
8835 static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8836 {
8837         static int version_printed;
8838         struct net_device *dev;
8839         struct bnxt *bp;
8840         int rc, max_irqs;
8841
8842         if (pci_is_bridge(pdev))
8843                 return -ENODEV;
8844
8845         if (version_printed++ == 0)
8846                 pr_info("%s", version);
8847
8848         max_irqs = bnxt_get_max_irq(pdev);
8849         dev = alloc_etherdev_mq(sizeof(*bp), max_irqs);
8850         if (!dev)
8851                 return -ENOMEM;
8852
8853         bp = netdev_priv(dev);
8854
8855         if (bnxt_vf_pciid(ent->driver_data))
8856                 bp->flags |= BNXT_FLAG_VF;
8857
8858         if (pdev->msix_cap)
8859                 bp->flags |= BNXT_FLAG_MSIX_CAP;
8860
8861         rc = bnxt_init_board(pdev, dev);
8862         if (rc < 0)
8863                 goto init_err_free;
8864
8865         dev->netdev_ops = &bnxt_netdev_ops;
8866         dev->watchdog_timeo = BNXT_TX_TIMEOUT;
8867         dev->ethtool_ops = &bnxt_ethtool_ops;
8868         SWITCHDEV_SET_OPS(dev, &bnxt_switchdev_ops);
8869         pci_set_drvdata(pdev, dev);
8870
8871         rc = bnxt_alloc_hwrm_resources(bp);
8872         if (rc)
8873                 goto init_err_pci_clean;
8874
8875         mutex_init(&bp->hwrm_cmd_lock);
8876         rc = bnxt_hwrm_ver_get(bp);
8877         if (rc)
8878                 goto init_err_pci_clean;
8879
8880         if (bp->fw_cap & BNXT_FW_CAP_SHORT_CMD) {
8881                 rc = bnxt_alloc_hwrm_short_cmd_req(bp);
8882                 if (rc)
8883                         goto init_err_pci_clean;
8884         }
8885
8886         rc = bnxt_hwrm_func_reset(bp);
8887         if (rc)
8888                 goto init_err_pci_clean;
8889
8890         bnxt_hwrm_fw_set_time(bp);
8891
8892         dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
8893                            NETIF_F_TSO | NETIF_F_TSO6 |
8894                            NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
8895                            NETIF_F_GSO_IPXIP4 |
8896                            NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
8897                            NETIF_F_GSO_PARTIAL | NETIF_F_RXHASH |
8898                            NETIF_F_RXCSUM | NETIF_F_GRO;
8899
8900         if (!BNXT_CHIP_TYPE_NITRO_A0(bp))
8901                 dev->hw_features |= NETIF_F_LRO;
8902
8903         dev->hw_enc_features =
8904                         NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
8905                         NETIF_F_TSO | NETIF_F_TSO6 |
8906                         NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
8907                         NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
8908                         NETIF_F_GSO_IPXIP4 | NETIF_F_GSO_PARTIAL;
8909         dev->gso_partial_features = NETIF_F_GSO_UDP_TUNNEL_CSUM |
8910                                     NETIF_F_GSO_GRE_CSUM;
8911         dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA;
8912         dev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
8913                             NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX;
8914         if (!BNXT_CHIP_TYPE_NITRO_A0(bp))
8915                 dev->hw_features |= NETIF_F_GRO_HW;
8916         dev->features |= dev->hw_features | NETIF_F_HIGHDMA;
8917         if (dev->features & NETIF_F_GRO_HW)
8918                 dev->features &= ~NETIF_F_LRO;
8919         dev->priv_flags |= IFF_UNICAST_FLT;
8920
8921 #ifdef CONFIG_BNXT_SRIOV
8922         init_waitqueue_head(&bp->sriov_cfg_wait);
8923         mutex_init(&bp->sriov_lock);
8924 #endif
8925         bp->gro_func = bnxt_gro_func_5730x;
8926         if (BNXT_CHIP_P4_PLUS(bp))
8927                 bp->gro_func = bnxt_gro_func_5731x;
8928         else
8929                 bp->flags |= BNXT_FLAG_DOUBLE_DB;
8930
8931         rc = bnxt_hwrm_func_drv_rgtr(bp);
8932         if (rc)
8933                 goto init_err_pci_clean;
8934
8935         rc = bnxt_hwrm_func_rgtr_async_events(bp, NULL, 0);
8936         if (rc)
8937                 goto init_err_pci_clean;
8938
8939         bp->ulp_probe = bnxt_ulp_probe;
8940
8941         /* Get the MAX capabilities for this function */
8942         rc = bnxt_hwrm_func_qcaps(bp);
8943         if (rc) {
8944                 netdev_err(bp->dev, "hwrm query capability failure rc: %x\n",
8945                            rc);
8946                 rc = -1;
8947                 goto init_err_pci_clean;
8948         }
8949         rc = bnxt_init_mac_addr(bp);
8950         if (rc) {
8951                 dev_err(&pdev->dev, "Unable to initialize mac address.\n");
8952                 rc = -EADDRNOTAVAIL;
8953                 goto init_err_pci_clean;
8954         }
8955         rc = bnxt_hwrm_queue_qportcfg(bp);
8956         if (rc) {
8957                 netdev_err(bp->dev, "hwrm query qportcfg failure rc: %x\n",
8958                            rc);
8959                 rc = -1;
8960                 goto init_err_pci_clean;
8961         }
8962
8963         bnxt_hwrm_func_qcfg(bp);
8964         bnxt_hwrm_port_led_qcaps(bp);
8965         bnxt_ethtool_init(bp);
8966         bnxt_dcb_init(bp);
8967
8968         /* MTU range: 60 - FW defined max */
8969         dev->min_mtu = ETH_ZLEN;
8970         dev->max_mtu = bp->max_mtu;
8971
8972         rc = bnxt_probe_phy(bp);
8973         if (rc)
8974                 goto init_err_pci_clean;
8975
8976         bnxt_set_rx_skb_mode(bp, false);
8977         bnxt_set_tpa_flags(bp);
8978         bnxt_set_ring_params(bp);
8979         bnxt_set_max_func_irqs(bp, max_irqs);
8980         rc = bnxt_set_dflt_rings(bp, true);
8981         if (rc) {
8982                 netdev_err(bp->dev, "Not enough rings available.\n");
8983                 rc = -ENOMEM;
8984                 goto init_err_pci_clean;
8985         }
8986
8987         /* Default RSS hash cfg. */
8988         bp->rss_hash_cfg = VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4 |
8989                            VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4 |
8990                            VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6 |
8991                            VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6;
8992         if (BNXT_CHIP_P4_PLUS(bp) && bp->hwrm_spec_code >= 0x10501) {
8993                 bp->flags |= BNXT_FLAG_UDP_RSS_CAP;
8994                 bp->rss_hash_cfg |= VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4 |
8995                                     VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6;
8996         }
8997
8998         bnxt_hwrm_vnic_qcaps(bp);
8999         if (bnxt_rfs_supported(bp)) {
9000                 dev->hw_features |= NETIF_F_NTUPLE;
9001                 if (bnxt_rfs_capable(bp)) {
9002                         bp->flags |= BNXT_FLAG_RFS;
9003                         dev->features |= NETIF_F_NTUPLE;
9004                 }
9005         }
9006
9007         if (dev->hw_features & NETIF_F_HW_VLAN_CTAG_RX)
9008                 bp->flags |= BNXT_FLAG_STRIP_VLAN;
9009
9010         rc = bnxt_init_int_mode(bp);
9011         if (rc)
9012                 goto init_err_pci_clean;
9013
9014         /* No TC has been set yet and rings may have been trimmed due to
9015          * limited MSIX, so we re-initialize the TX rings per TC.
9016          */
9017         bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
9018
9019         bnxt_get_wol_settings(bp);
9020         if (bp->flags & BNXT_FLAG_WOL_CAP)
9021                 device_set_wakeup_enable(&pdev->dev, bp->wol);
9022         else
9023                 device_set_wakeup_capable(&pdev->dev, false);
9024
9025         bnxt_hwrm_set_cache_line_size(bp, cache_line_size());
9026
9027         if (BNXT_PF(bp)) {
9028                 if (!bnxt_pf_wq) {
9029                         bnxt_pf_wq =
9030                                 create_singlethread_workqueue("bnxt_pf_wq");
9031                         if (!bnxt_pf_wq) {
9032                                 dev_err(&pdev->dev, "Unable to create workqueue.\n");
9033                                 goto init_err_pci_clean;
9034                         }
9035                 }
9036                 bnxt_init_tc(bp);
9037         }
9038
9039         rc = register_netdev(dev);
9040         if (rc)
9041                 goto init_err_cleanup_tc;
9042
9043         if (BNXT_PF(bp))
9044                 bnxt_dl_register(bp);
9045
9046         netdev_info(dev, "%s found at mem %lx, node addr %pM\n",
9047                     board_info[ent->driver_data].name,
9048                     (long)pci_resource_start(pdev, 0), dev->dev_addr);
9049         pcie_print_link_status(pdev);
9050
9051         return 0;
9052
9053 init_err_cleanup_tc:
9054         bnxt_shutdown_tc(bp);
9055         bnxt_clear_int_mode(bp);
9056
9057 init_err_pci_clean:
9058         bnxt_cleanup_pci(bp);
9059
9060 init_err_free:
9061         free_netdev(dev);
9062         return rc;
9063 }
9064
9065 static void bnxt_shutdown(struct pci_dev *pdev)
9066 {
9067         struct net_device *dev = pci_get_drvdata(pdev);
9068         struct bnxt *bp;
9069
9070         if (!dev)
9071                 return;
9072
9073         rtnl_lock();
9074         bp = netdev_priv(dev);
9075         if (!bp)
9076                 goto shutdown_exit;
9077
9078         if (netif_running(dev))
9079                 dev_close(dev);
9080
9081         bnxt_ulp_shutdown(bp);
9082
9083         if (system_state == SYSTEM_POWER_OFF) {
9084                 bnxt_clear_int_mode(bp);
9085                 pci_wake_from_d3(pdev, bp->wol);
9086                 pci_set_power_state(pdev, PCI_D3hot);
9087         }
9088
9089 shutdown_exit:
9090         rtnl_unlock();
9091 }
9092
9093 #ifdef CONFIG_PM_SLEEP
9094 static int bnxt_suspend(struct device *device)
9095 {
9096         struct pci_dev *pdev = to_pci_dev(device);
9097         struct net_device *dev = pci_get_drvdata(pdev);
9098         struct bnxt *bp = netdev_priv(dev);
9099         int rc = 0;
9100
9101         rtnl_lock();
9102         if (netif_running(dev)) {
9103                 netif_device_detach(dev);
9104                 rc = bnxt_close(dev);
9105         }
9106         bnxt_hwrm_func_drv_unrgtr(bp);
9107         rtnl_unlock();
9108         return rc;
9109 }
9110
9111 static int bnxt_resume(struct device *device)
9112 {
9113         struct pci_dev *pdev = to_pci_dev(device);
9114         struct net_device *dev = pci_get_drvdata(pdev);
9115         struct bnxt *bp = netdev_priv(dev);
9116         int rc = 0;
9117
9118         rtnl_lock();
9119         if (bnxt_hwrm_ver_get(bp) || bnxt_hwrm_func_drv_rgtr(bp)) {
9120                 rc = -ENODEV;
9121                 goto resume_exit;
9122         }
9123         rc = bnxt_hwrm_func_reset(bp);
9124         if (rc) {
9125                 rc = -EBUSY;
9126                 goto resume_exit;
9127         }
9128         bnxt_get_wol_settings(bp);
9129         if (netif_running(dev)) {
9130                 rc = bnxt_open(dev);
9131                 if (!rc)
9132                         netif_device_attach(dev);
9133         }
9134
9135 resume_exit:
9136         rtnl_unlock();
9137         return rc;
9138 }
9139
9140 static SIMPLE_DEV_PM_OPS(bnxt_pm_ops, bnxt_suspend, bnxt_resume);
9141 #define BNXT_PM_OPS (&bnxt_pm_ops)
9142
9143 #else
9144
9145 #define BNXT_PM_OPS NULL
9146
9147 #endif /* CONFIG_PM_SLEEP */
9148
9149 /**
9150  * bnxt_io_error_detected - called when PCI error is detected
9151  * @pdev: Pointer to PCI device
9152  * @state: The current pci connection state
9153  *
9154  * This function is called after a PCI bus error affecting
9155  * this device has been detected.
9156  */
9157 static pci_ers_result_t bnxt_io_error_detected(struct pci_dev *pdev,
9158                                                pci_channel_state_t state)
9159 {
9160         struct net_device *netdev = pci_get_drvdata(pdev);
9161         struct bnxt *bp = netdev_priv(netdev);
9162
9163         netdev_info(netdev, "PCI I/O error detected\n");
9164
9165         rtnl_lock();
9166         netif_device_detach(netdev);
9167
9168         bnxt_ulp_stop(bp);
9169
9170         if (state == pci_channel_io_perm_failure) {
9171                 rtnl_unlock();
9172                 return PCI_ERS_RESULT_DISCONNECT;
9173         }
9174
9175         if (netif_running(netdev))
9176                 bnxt_close(netdev);
9177
9178         pci_disable_device(pdev);
9179         rtnl_unlock();
9180
9181         /* Request a slot slot reset. */
9182         return PCI_ERS_RESULT_NEED_RESET;
9183 }
9184
9185 /**
9186  * bnxt_io_slot_reset - called after the pci bus has been reset.
9187  * @pdev: Pointer to PCI device
9188  *
9189  * Restart the card from scratch, as if from a cold-boot.
9190  * At this point, the card has exprienced a hard reset,
9191  * followed by fixups by BIOS, and has its config space
9192  * set up identically to what it was at cold boot.
9193  */
9194 static pci_ers_result_t bnxt_io_slot_reset(struct pci_dev *pdev)
9195 {
9196         struct net_device *netdev = pci_get_drvdata(pdev);
9197         struct bnxt *bp = netdev_priv(netdev);
9198         int err = 0;
9199         pci_ers_result_t result = PCI_ERS_RESULT_DISCONNECT;
9200
9201         netdev_info(bp->dev, "PCI Slot Reset\n");
9202
9203         rtnl_lock();
9204
9205         if (pci_enable_device(pdev)) {
9206                 dev_err(&pdev->dev,
9207                         "Cannot re-enable PCI device after reset.\n");
9208         } else {
9209                 pci_set_master(pdev);
9210
9211                 err = bnxt_hwrm_func_reset(bp);
9212                 if (!err && netif_running(netdev))
9213                         err = bnxt_open(netdev);
9214
9215                 if (!err) {
9216                         result = PCI_ERS_RESULT_RECOVERED;
9217                         bnxt_ulp_start(bp);
9218                 }
9219         }
9220
9221         if (result != PCI_ERS_RESULT_RECOVERED && netif_running(netdev))
9222                 dev_close(netdev);
9223
9224         rtnl_unlock();
9225
9226         err = pci_cleanup_aer_uncorrect_error_status(pdev);
9227         if (err) {
9228                 dev_err(&pdev->dev,
9229                         "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
9230                          err); /* non-fatal, continue */
9231         }
9232
9233         return PCI_ERS_RESULT_RECOVERED;
9234 }
9235
9236 /**
9237  * bnxt_io_resume - called when traffic can start flowing again.
9238  * @pdev: Pointer to PCI device
9239  *
9240  * This callback is called when the error recovery driver tells
9241  * us that its OK to resume normal operation.
9242  */
9243 static void bnxt_io_resume(struct pci_dev *pdev)
9244 {
9245         struct net_device *netdev = pci_get_drvdata(pdev);
9246
9247         rtnl_lock();
9248
9249         netif_device_attach(netdev);
9250
9251         rtnl_unlock();
9252 }
9253
9254 static const struct pci_error_handlers bnxt_err_handler = {
9255         .error_detected = bnxt_io_error_detected,
9256         .slot_reset     = bnxt_io_slot_reset,
9257         .resume         = bnxt_io_resume
9258 };
9259
9260 static struct pci_driver bnxt_pci_driver = {
9261         .name           = DRV_MODULE_NAME,
9262         .id_table       = bnxt_pci_tbl,
9263         .probe          = bnxt_init_one,
9264         .remove         = bnxt_remove_one,
9265         .shutdown       = bnxt_shutdown,
9266         .driver.pm      = BNXT_PM_OPS,
9267         .err_handler    = &bnxt_err_handler,
9268 #if defined(CONFIG_BNXT_SRIOV)
9269         .sriov_configure = bnxt_sriov_configure,
9270 #endif
9271 };
9272
9273 static int __init bnxt_init(void)
9274 {
9275         bnxt_debug_init();
9276         return pci_register_driver(&bnxt_pci_driver);
9277 }
9278
9279 static void __exit bnxt_exit(void)
9280 {
9281         pci_unregister_driver(&bnxt_pci_driver);
9282         if (bnxt_pf_wq)
9283                 destroy_workqueue(bnxt_pf_wq);
9284         bnxt_debug_exit();
9285 }
9286
9287 module_init(bnxt_init);
9288 module_exit(bnxt_exit);