bnx2x: Support ndo_set_rxmode in VF driver
[linux-block.git] / drivers / net / ethernet / broadcom / bnx2x / bnx2x_main.c
1 /* bnx2x_main.c: Broadcom Everest network driver.
2  *
3  * Copyright (c) 2007-2012 Broadcom Corporation
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation.
8  *
9  * Maintained by: Eilon Greenstein <eilong@broadcom.com>
10  * Written by: Eliezer Tamir
11  * Based on code from Michael Chan's bnx2 driver
12  * UDP CSUM errata workaround by Arik Gendelman
13  * Slowpath and fastpath rework by Vladislav Zolotarov
14  * Statistics and Link management by Yitchak Gertner
15  *
16  */
17
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20 #include <linux/module.h>
21 #include <linux/moduleparam.h>
22 #include <linux/kernel.h>
23 #include <linux/device.h>  /* for dev_info() */
24 #include <linux/timer.h>
25 #include <linux/errno.h>
26 #include <linux/ioport.h>
27 #include <linux/slab.h>
28 #include <linux/interrupt.h>
29 #include <linux/pci.h>
30 #include <linux/init.h>
31 #include <linux/netdevice.h>
32 #include <linux/etherdevice.h>
33 #include <linux/skbuff.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/bitops.h>
36 #include <linux/irq.h>
37 #include <linux/delay.h>
38 #include <asm/byteorder.h>
39 #include <linux/time.h>
40 #include <linux/ethtool.h>
41 #include <linux/mii.h>
42 #include <linux/if_vlan.h>
43 #include <net/ip.h>
44 #include <net/ipv6.h>
45 #include <net/tcp.h>
46 #include <net/checksum.h>
47 #include <net/ip6_checksum.h>
48 #include <linux/workqueue.h>
49 #include <linux/crc32.h>
50 #include <linux/crc32c.h>
51 #include <linux/prefetch.h>
52 #include <linux/zlib.h>
53 #include <linux/io.h>
54 #include <linux/semaphore.h>
55 #include <linux/stringify.h>
56 #include <linux/vmalloc.h>
57
58 #include "bnx2x.h"
59 #include "bnx2x_init.h"
60 #include "bnx2x_init_ops.h"
61 #include "bnx2x_cmn.h"
62 #include "bnx2x_vfpf.h"
63 #include "bnx2x_sriov.h"
64 #include "bnx2x_dcb.h"
65 #include "bnx2x_sp.h"
66
67 #include <linux/firmware.h>
68 #include "bnx2x_fw_file_hdr.h"
69 /* FW files */
70 #define FW_FILE_VERSION                                 \
71         __stringify(BCM_5710_FW_MAJOR_VERSION) "."      \
72         __stringify(BCM_5710_FW_MINOR_VERSION) "."      \
73         __stringify(BCM_5710_FW_REVISION_VERSION) "."   \
74         __stringify(BCM_5710_FW_ENGINEERING_VERSION)
75 #define FW_FILE_NAME_E1         "bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw"
76 #define FW_FILE_NAME_E1H        "bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw"
77 #define FW_FILE_NAME_E2         "bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw"
78
79 #define MAC_LEADING_ZERO_CNT (ALIGN(ETH_ALEN, sizeof(u32)) - ETH_ALEN)
80
81 /* Time in jiffies before concluding the transmitter is hung */
82 #define TX_TIMEOUT              (5*HZ)
83
84 static char version[] =
85         "Broadcom NetXtreme II 5771x/578xx 10/20-Gigabit Ethernet Driver "
86         DRV_MODULE_NAME " " DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
87
88 MODULE_AUTHOR("Eliezer Tamir");
89 MODULE_DESCRIPTION("Broadcom NetXtreme II "
90                    "BCM57710/57711/57711E/"
91                    "57712/57712_MF/57800/57800_MF/57810/57810_MF/"
92                    "57840/57840_MF Driver");
93 MODULE_LICENSE("GPL");
94 MODULE_VERSION(DRV_MODULE_VERSION);
95 MODULE_FIRMWARE(FW_FILE_NAME_E1);
96 MODULE_FIRMWARE(FW_FILE_NAME_E1H);
97 MODULE_FIRMWARE(FW_FILE_NAME_E2);
98
99
100 int num_queues;
101 module_param(num_queues, int, 0);
102 MODULE_PARM_DESC(num_queues,
103                  " Set number of queues (default is as a number of CPUs)");
104
105 static int disable_tpa;
106 module_param(disable_tpa, int, 0);
107 MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature");
108
109 #define INT_MODE_INTx                   1
110 #define INT_MODE_MSI                    2
111 int int_mode;
112 module_param(int_mode, int, 0);
113 MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X "
114                                 "(1 INT#x; 2 MSI)");
115
116 static int dropless_fc;
117 module_param(dropless_fc, int, 0);
118 MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring");
119
120 static int mrrs = -1;
121 module_param(mrrs, int, 0);
122 MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)");
123
124 static int debug;
125 module_param(debug, int, 0);
126 MODULE_PARM_DESC(debug, " Default debug msglevel");
127
128
129
130 struct workqueue_struct *bnx2x_wq;
131
132 enum bnx2x_board_type {
133         BCM57710 = 0,
134         BCM57711,
135         BCM57711E,
136         BCM57712,
137         BCM57712_MF,
138         BCM57712_VF,
139         BCM57800,
140         BCM57800_MF,
141         BCM57800_VF,
142         BCM57810,
143         BCM57810_MF,
144         BCM57810_VF,
145         BCM57840_4_10,
146         BCM57840_2_20,
147         BCM57840_MF,
148         BCM57840_VF,
149         BCM57811,
150         BCM57811_MF,
151         BCM57840_O,
152         BCM57840_MFO,
153         BCM57811_VF
154 };
155
156 /* indexed by board_type, above */
157 static struct {
158         char *name;
159 } board_info[] = {
160         [BCM57710]      = { "Broadcom NetXtreme II BCM57710 10 Gigabit PCIe [Everest]" },
161         [BCM57711]      = { "Broadcom NetXtreme II BCM57711 10 Gigabit PCIe" },
162         [BCM57711E]     = { "Broadcom NetXtreme II BCM57711E 10 Gigabit PCIe" },
163         [BCM57712]      = { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet" },
164         [BCM57712_MF]   = { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Multi Function" },
165         [BCM57712_VF]   = { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Virtual Function" },
166         [BCM57800]      = { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet" },
167         [BCM57800_MF]   = { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Multi Function" },
168         [BCM57800_VF]   = { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Virtual Function" },
169         [BCM57810]      = { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet" },
170         [BCM57810_MF]   = { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Multi Function" },
171         [BCM57810_VF]   = { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Virtual Function" },
172         [BCM57840_4_10] = { "Broadcom NetXtreme II BCM57840 10 Gigabit Ethernet" },
173         [BCM57840_2_20] = { "Broadcom NetXtreme II BCM57840 20 Gigabit Ethernet" },
174         [BCM57840_MF]   = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Multi Function" },
175         [BCM57840_VF]   = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Virtual Function" },
176         [BCM57811]      = { "Broadcom NetXtreme II BCM57811 10 Gigabit Ethernet" },
177         [BCM57811_MF]   = { "Broadcom NetXtreme II BCM57811 10 Gigabit Ethernet Multi Function" },
178         [BCM57840_O]    = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet" },
179         [BCM57840_MFO]  = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Multi Function" },
180         [BCM57811_VF]   = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Virtual Function" }
181 };
182
183 #ifndef PCI_DEVICE_ID_NX2_57710
184 #define PCI_DEVICE_ID_NX2_57710         CHIP_NUM_57710
185 #endif
186 #ifndef PCI_DEVICE_ID_NX2_57711
187 #define PCI_DEVICE_ID_NX2_57711         CHIP_NUM_57711
188 #endif
189 #ifndef PCI_DEVICE_ID_NX2_57711E
190 #define PCI_DEVICE_ID_NX2_57711E        CHIP_NUM_57711E
191 #endif
192 #ifndef PCI_DEVICE_ID_NX2_57712
193 #define PCI_DEVICE_ID_NX2_57712         CHIP_NUM_57712
194 #endif
195 #ifndef PCI_DEVICE_ID_NX2_57712_MF
196 #define PCI_DEVICE_ID_NX2_57712_MF      CHIP_NUM_57712_MF
197 #endif
198 #ifndef PCI_DEVICE_ID_NX2_57800
199 #define PCI_DEVICE_ID_NX2_57800         CHIP_NUM_57800
200 #endif
201 #ifndef PCI_DEVICE_ID_NX2_57800_MF
202 #define PCI_DEVICE_ID_NX2_57800_MF      CHIP_NUM_57800_MF
203 #endif
204 #ifndef PCI_DEVICE_ID_NX2_57810
205 #define PCI_DEVICE_ID_NX2_57810         CHIP_NUM_57810
206 #endif
207 #ifndef PCI_DEVICE_ID_NX2_57810_MF
208 #define PCI_DEVICE_ID_NX2_57810_MF      CHIP_NUM_57810_MF
209 #endif
210 #ifndef PCI_DEVICE_ID_NX2_57840_O
211 #define PCI_DEVICE_ID_NX2_57840_O       CHIP_NUM_57840_OBSOLETE
212 #endif
213 #ifndef PCI_DEVICE_ID_NX2_57840_4_10
214 #define PCI_DEVICE_ID_NX2_57840_4_10    CHIP_NUM_57840_4_10
215 #endif
216 #ifndef PCI_DEVICE_ID_NX2_57840_2_20
217 #define PCI_DEVICE_ID_NX2_57840_2_20    CHIP_NUM_57840_2_20
218 #endif
219 #ifndef PCI_DEVICE_ID_NX2_57840_MFO
220 #define PCI_DEVICE_ID_NX2_57840_MFO     CHIP_NUM_57840_MF_OBSOLETE
221 #endif
222 #ifndef PCI_DEVICE_ID_NX2_57840_MF
223 #define PCI_DEVICE_ID_NX2_57840_MF      CHIP_NUM_57840_MF
224 #endif
225 #ifndef PCI_DEVICE_ID_NX2_57811
226 #define PCI_DEVICE_ID_NX2_57811         CHIP_NUM_57811
227 #endif
228 #ifndef PCI_DEVICE_ID_NX2_57811_MF
229 #define PCI_DEVICE_ID_NX2_57811_MF      CHIP_NUM_57811_MF
230 #endif
231 static DEFINE_PCI_DEVICE_TABLE(bnx2x_pci_tbl) = {
232         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 },
233         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 },
234         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E },
235         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 },
236         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF },
237         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 },
238         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF },
239         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 },
240         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF },
241         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_O), BCM57840_O },
242         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
243         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_2_20), BCM57840_2_20 },
244         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MFO), BCM57840_MFO },
245         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
246         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811), BCM57811 },
247         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_MF), BCM57811_MF },
248         { 0 }
249 };
250
251 MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl);
252
253 /* Global resources for unloading a previously loaded device */
254 #define BNX2X_PREV_WAIT_NEEDED 1
255 static DEFINE_SEMAPHORE(bnx2x_prev_sem);
256 static LIST_HEAD(bnx2x_prev_list);
257 /****************************************************************************
258 * General service functions
259 ****************************************************************************/
260
261 static void __storm_memset_dma_mapping(struct bnx2x *bp,
262                                        u32 addr, dma_addr_t mapping)
263 {
264         REG_WR(bp,  addr, U64_LO(mapping));
265         REG_WR(bp,  addr + 4, U64_HI(mapping));
266 }
267
268 static void storm_memset_spq_addr(struct bnx2x *bp,
269                                   dma_addr_t mapping, u16 abs_fid)
270 {
271         u32 addr = XSEM_REG_FAST_MEMORY +
272                         XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid);
273
274         __storm_memset_dma_mapping(bp, addr, mapping);
275 }
276
277 static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
278                                   u16 pf_id)
279 {
280         REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
281                 pf_id);
282         REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
283                 pf_id);
284         REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
285                 pf_id);
286         REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
287                 pf_id);
288 }
289
290 static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
291                                  u8 enable)
292 {
293         REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
294                 enable);
295         REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
296                 enable);
297         REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
298                 enable);
299         REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
300                 enable);
301 }
302
303 static void storm_memset_eq_data(struct bnx2x *bp,
304                                  struct event_ring_data *eq_data,
305                                 u16 pfid)
306 {
307         size_t size = sizeof(struct event_ring_data);
308
309         u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid);
310
311         __storm_memset_struct(bp, addr, size, (u32 *)eq_data);
312 }
313
314 static void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod,
315                                  u16 pfid)
316 {
317         u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid);
318         REG_WR16(bp, addr, eq_prod);
319 }
320
321 /* used only at init
322  * locking is done by mcp
323  */
324 static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val)
325 {
326         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
327         pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val);
328         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
329                                PCICFG_VENDOR_ID_OFFSET);
330 }
331
332 static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr)
333 {
334         u32 val;
335
336         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
337         pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val);
338         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
339                                PCICFG_VENDOR_ID_OFFSET);
340
341         return val;
342 }
343
344 #define DMAE_DP_SRC_GRC         "grc src_addr [%08x]"
345 #define DMAE_DP_SRC_PCI         "pci src_addr [%x:%08x]"
346 #define DMAE_DP_DST_GRC         "grc dst_addr [%08x]"
347 #define DMAE_DP_DST_PCI         "pci dst_addr [%x:%08x]"
348 #define DMAE_DP_DST_NONE        "dst_addr [none]"
349
350
351 /* copy command into DMAE command memory and set DMAE command go */
352 void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx)
353 {
354         u32 cmd_offset;
355         int i;
356
357         cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx);
358         for (i = 0; i < (sizeof(struct dmae_command)/4); i++) {
359                 REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i));
360         }
361         REG_WR(bp, dmae_reg_go_c[idx], 1);
362 }
363
364 u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type)
365 {
366         return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
367                            DMAE_CMD_C_ENABLE);
368 }
369
370 u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode)
371 {
372         return opcode & ~DMAE_CMD_SRC_RESET;
373 }
374
375 u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
376                              bool with_comp, u8 comp_type)
377 {
378         u32 opcode = 0;
379
380         opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
381                    (dst_type << DMAE_COMMAND_DST_SHIFT));
382
383         opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
384
385         opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
386         opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) |
387                    (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT));
388         opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
389
390 #ifdef __BIG_ENDIAN
391         opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
392 #else
393         opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
394 #endif
395         if (with_comp)
396                 opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
397         return opcode;
398 }
399
400 static void bnx2x_prep_dmae_with_comp(struct bnx2x *bp,
401                                       struct dmae_command *dmae,
402                                       u8 src_type, u8 dst_type)
403 {
404         memset(dmae, 0, sizeof(struct dmae_command));
405
406         /* set the opcode */
407         dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type,
408                                          true, DMAE_COMP_PCI);
409
410         /* fill in the completion parameters */
411         dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp));
412         dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp));
413         dmae->comp_val = DMAE_COMP_VAL;
414 }
415
416 /* issue a dmae command over the init-channel and wailt for completion */
417 static int bnx2x_issue_dmae_with_comp(struct bnx2x *bp,
418                                       struct dmae_command *dmae)
419 {
420         u32 *wb_comp = bnx2x_sp(bp, wb_comp);
421         int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000;
422         int rc = 0;
423
424         /*
425          * Lock the dmae channel. Disable BHs to prevent a dead-lock
426          * as long as this code is called both from syscall context and
427          * from ndo_set_rx_mode() flow that may be called from BH.
428          */
429         spin_lock_bh(&bp->dmae_lock);
430
431         /* reset completion */
432         *wb_comp = 0;
433
434         /* post the command on the channel used for initializations */
435         bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp));
436
437         /* wait for completion */
438         udelay(5);
439         while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
440
441                 if (!cnt ||
442                     (bp->recovery_state != BNX2X_RECOVERY_DONE &&
443                      bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
444                         BNX2X_ERR("DMAE timeout!\n");
445                         rc = DMAE_TIMEOUT;
446                         goto unlock;
447                 }
448                 cnt--;
449                 udelay(50);
450         }
451         if (*wb_comp & DMAE_PCI_ERR_FLAG) {
452                 BNX2X_ERR("DMAE PCI error!\n");
453                 rc = DMAE_PCI_ERROR;
454         }
455
456 unlock:
457         spin_unlock_bh(&bp->dmae_lock);
458         return rc;
459 }
460
461 void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
462                       u32 len32)
463 {
464         struct dmae_command dmae;
465
466         if (!bp->dmae_ready) {
467                 u32 *data = bnx2x_sp(bp, wb_data[0]);
468
469                 if (CHIP_IS_E1(bp))
470                         bnx2x_init_ind_wr(bp, dst_addr, data, len32);
471                 else
472                         bnx2x_init_str_wr(bp, dst_addr, data, len32);
473                 return;
474         }
475
476         /* set opcode and fixed command fields */
477         bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
478
479         /* fill in addresses and len */
480         dmae.src_addr_lo = U64_LO(dma_addr);
481         dmae.src_addr_hi = U64_HI(dma_addr);
482         dmae.dst_addr_lo = dst_addr >> 2;
483         dmae.dst_addr_hi = 0;
484         dmae.len = len32;
485
486         /* issue the command and wait for completion */
487         bnx2x_issue_dmae_with_comp(bp, &dmae);
488 }
489
490 void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32)
491 {
492         struct dmae_command dmae;
493
494         if (!bp->dmae_ready) {
495                 u32 *data = bnx2x_sp(bp, wb_data[0]);
496                 int i;
497
498                 if (CHIP_IS_E1(bp))
499                         for (i = 0; i < len32; i++)
500                                 data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4);
501                 else
502                         for (i = 0; i < len32; i++)
503                                 data[i] = REG_RD(bp, src_addr + i*4);
504
505                 return;
506         }
507
508         /* set opcode and fixed command fields */
509         bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
510
511         /* fill in addresses and len */
512         dmae.src_addr_lo = src_addr >> 2;
513         dmae.src_addr_hi = 0;
514         dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data));
515         dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data));
516         dmae.len = len32;
517
518         /* issue the command and wait for completion */
519         bnx2x_issue_dmae_with_comp(bp, &dmae);
520 }
521
522 static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
523                                       u32 addr, u32 len)
524 {
525         int dmae_wr_max = DMAE_LEN32_WR_MAX(bp);
526         int offset = 0;
527
528         while (len > dmae_wr_max) {
529                 bnx2x_write_dmae(bp, phys_addr + offset,
530                                  addr + offset, dmae_wr_max);
531                 offset += dmae_wr_max * 4;
532                 len -= dmae_wr_max;
533         }
534
535         bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len);
536 }
537
538 static int bnx2x_mc_assert(struct bnx2x *bp)
539 {
540         char last_idx;
541         int i, rc = 0;
542         u32 row0, row1, row2, row3;
543
544         /* XSTORM */
545         last_idx = REG_RD8(bp, BAR_XSTRORM_INTMEM +
546                            XSTORM_ASSERT_LIST_INDEX_OFFSET);
547         if (last_idx)
548                 BNX2X_ERR("XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
549
550         /* print the asserts */
551         for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
552
553                 row0 = REG_RD(bp, BAR_XSTRORM_INTMEM +
554                               XSTORM_ASSERT_LIST_OFFSET(i));
555                 row1 = REG_RD(bp, BAR_XSTRORM_INTMEM +
556                               XSTORM_ASSERT_LIST_OFFSET(i) + 4);
557                 row2 = REG_RD(bp, BAR_XSTRORM_INTMEM +
558                               XSTORM_ASSERT_LIST_OFFSET(i) + 8);
559                 row3 = REG_RD(bp, BAR_XSTRORM_INTMEM +
560                               XSTORM_ASSERT_LIST_OFFSET(i) + 12);
561
562                 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
563                         BNX2X_ERR("XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
564                                   i, row3, row2, row1, row0);
565                         rc++;
566                 } else {
567                         break;
568                 }
569         }
570
571         /* TSTORM */
572         last_idx = REG_RD8(bp, BAR_TSTRORM_INTMEM +
573                            TSTORM_ASSERT_LIST_INDEX_OFFSET);
574         if (last_idx)
575                 BNX2X_ERR("TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
576
577         /* print the asserts */
578         for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
579
580                 row0 = REG_RD(bp, BAR_TSTRORM_INTMEM +
581                               TSTORM_ASSERT_LIST_OFFSET(i));
582                 row1 = REG_RD(bp, BAR_TSTRORM_INTMEM +
583                               TSTORM_ASSERT_LIST_OFFSET(i) + 4);
584                 row2 = REG_RD(bp, BAR_TSTRORM_INTMEM +
585                               TSTORM_ASSERT_LIST_OFFSET(i) + 8);
586                 row3 = REG_RD(bp, BAR_TSTRORM_INTMEM +
587                               TSTORM_ASSERT_LIST_OFFSET(i) + 12);
588
589                 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
590                         BNX2X_ERR("TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
591                                   i, row3, row2, row1, row0);
592                         rc++;
593                 } else {
594                         break;
595                 }
596         }
597
598         /* CSTORM */
599         last_idx = REG_RD8(bp, BAR_CSTRORM_INTMEM +
600                            CSTORM_ASSERT_LIST_INDEX_OFFSET);
601         if (last_idx)
602                 BNX2X_ERR("CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
603
604         /* print the asserts */
605         for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
606
607                 row0 = REG_RD(bp, BAR_CSTRORM_INTMEM +
608                               CSTORM_ASSERT_LIST_OFFSET(i));
609                 row1 = REG_RD(bp, BAR_CSTRORM_INTMEM +
610                               CSTORM_ASSERT_LIST_OFFSET(i) + 4);
611                 row2 = REG_RD(bp, BAR_CSTRORM_INTMEM +
612                               CSTORM_ASSERT_LIST_OFFSET(i) + 8);
613                 row3 = REG_RD(bp, BAR_CSTRORM_INTMEM +
614                               CSTORM_ASSERT_LIST_OFFSET(i) + 12);
615
616                 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
617                         BNX2X_ERR("CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
618                                   i, row3, row2, row1, row0);
619                         rc++;
620                 } else {
621                         break;
622                 }
623         }
624
625         /* USTORM */
626         last_idx = REG_RD8(bp, BAR_USTRORM_INTMEM +
627                            USTORM_ASSERT_LIST_INDEX_OFFSET);
628         if (last_idx)
629                 BNX2X_ERR("USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
630
631         /* print the asserts */
632         for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
633
634                 row0 = REG_RD(bp, BAR_USTRORM_INTMEM +
635                               USTORM_ASSERT_LIST_OFFSET(i));
636                 row1 = REG_RD(bp, BAR_USTRORM_INTMEM +
637                               USTORM_ASSERT_LIST_OFFSET(i) + 4);
638                 row2 = REG_RD(bp, BAR_USTRORM_INTMEM +
639                               USTORM_ASSERT_LIST_OFFSET(i) + 8);
640                 row3 = REG_RD(bp, BAR_USTRORM_INTMEM +
641                               USTORM_ASSERT_LIST_OFFSET(i) + 12);
642
643                 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
644                         BNX2X_ERR("USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
645                                   i, row3, row2, row1, row0);
646                         rc++;
647                 } else {
648                         break;
649                 }
650         }
651
652         return rc;
653 }
654
655 void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl)
656 {
657         u32 addr, val;
658         u32 mark, offset;
659         __be32 data[9];
660         int word;
661         u32 trace_shmem_base;
662         if (BP_NOMCP(bp)) {
663                 BNX2X_ERR("NO MCP - can not dump\n");
664                 return;
665         }
666         netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n",
667                 (bp->common.bc_ver & 0xff0000) >> 16,
668                 (bp->common.bc_ver & 0xff00) >> 8,
669                 (bp->common.bc_ver & 0xff));
670
671         val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER);
672         if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER))
673                 BNX2X_ERR("%s" "MCP PC at 0x%x\n", lvl, val);
674
675         if (BP_PATH(bp) == 0)
676                 trace_shmem_base = bp->common.shmem_base;
677         else
678                 trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr);
679         addr = trace_shmem_base - 0x800;
680
681         /* validate TRCB signature */
682         mark = REG_RD(bp, addr);
683         if (mark != MFW_TRACE_SIGNATURE) {
684                 BNX2X_ERR("Trace buffer signature is missing.");
685                 return ;
686         }
687
688         /* read cyclic buffer pointer */
689         addr += 4;
690         mark = REG_RD(bp, addr);
691         mark = (CHIP_IS_E1x(bp) ? MCP_REG_MCPR_SCRATCH : MCP_A_REG_MCPR_SCRATCH)
692                         + ((mark + 0x3) & ~0x3) - 0x08000000;
693         printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark);
694
695         printk("%s", lvl);
696         for (offset = mark; offset <= trace_shmem_base; offset += 0x8*4) {
697                 for (word = 0; word < 8; word++)
698                         data[word] = htonl(REG_RD(bp, offset + 4*word));
699                 data[8] = 0x0;
700                 pr_cont("%s", (char *)data);
701         }
702         for (offset = addr + 4; offset <= mark; offset += 0x8*4) {
703                 for (word = 0; word < 8; word++)
704                         data[word] = htonl(REG_RD(bp, offset + 4*word));
705                 data[8] = 0x0;
706                 pr_cont("%s", (char *)data);
707         }
708         printk("%s" "end of fw dump\n", lvl);
709 }
710
711 static void bnx2x_fw_dump(struct bnx2x *bp)
712 {
713         bnx2x_fw_dump_lvl(bp, KERN_ERR);
714 }
715
716 void bnx2x_panic_dump(struct bnx2x *bp)
717 {
718         int i;
719         u16 j;
720         struct hc_sp_status_block_data sp_sb_data;
721         int func = BP_FUNC(bp);
722 #ifdef BNX2X_STOP_ON_ERROR
723         u16 start = 0, end = 0;
724         u8 cos;
725 #endif
726
727         bp->stats_state = STATS_STATE_DISABLED;
728         bp->eth_stats.unrecoverable_error++;
729         DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n");
730
731         BNX2X_ERR("begin crash dump -----------------\n");
732
733         /* Indices */
734         /* Common */
735         BNX2X_ERR("def_idx(0x%x)  def_att_idx(0x%x)  attn_state(0x%x)  spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n",
736                   bp->def_idx, bp->def_att_idx, bp->attn_state,
737                   bp->spq_prod_idx, bp->stats_counter);
738         BNX2X_ERR("DSB: attn bits(0x%x)  ack(0x%x)  id(0x%x)  idx(0x%x)\n",
739                   bp->def_status_blk->atten_status_block.attn_bits,
740                   bp->def_status_blk->atten_status_block.attn_bits_ack,
741                   bp->def_status_blk->atten_status_block.status_block_id,
742                   bp->def_status_blk->atten_status_block.attn_bits_index);
743         BNX2X_ERR("     def (");
744         for (i = 0; i < HC_SP_SB_MAX_INDICES; i++)
745                 pr_cont("0x%x%s",
746                         bp->def_status_blk->sp_sb.index_values[i],
747                         (i == HC_SP_SB_MAX_INDICES - 1) ? ")  " : " ");
748
749         for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
750                 *((u32 *)&sp_sb_data + i) = REG_RD(bp, BAR_CSTRORM_INTMEM +
751                         CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
752                         i*sizeof(u32));
753
754         pr_cont("igu_sb_id(0x%x)  igu_seg_id(0x%x) pf_id(0x%x)  vnic_id(0x%x)  vf_id(0x%x)  vf_valid (0x%x) state(0x%x)\n",
755                sp_sb_data.igu_sb_id,
756                sp_sb_data.igu_seg_id,
757                sp_sb_data.p_func.pf_id,
758                sp_sb_data.p_func.vnic_id,
759                sp_sb_data.p_func.vf_id,
760                sp_sb_data.p_func.vf_valid,
761                sp_sb_data.state);
762
763
764         for_each_eth_queue(bp, i) {
765                 struct bnx2x_fastpath *fp = &bp->fp[i];
766                 int loop;
767                 struct hc_status_block_data_e2 sb_data_e2;
768                 struct hc_status_block_data_e1x sb_data_e1x;
769                 struct hc_status_block_sm  *hc_sm_p =
770                         CHIP_IS_E1x(bp) ?
771                         sb_data_e1x.common.state_machine :
772                         sb_data_e2.common.state_machine;
773                 struct hc_index_data *hc_index_p =
774                         CHIP_IS_E1x(bp) ?
775                         sb_data_e1x.index_data :
776                         sb_data_e2.index_data;
777                 u8 data_size, cos;
778                 u32 *sb_data_p;
779                 struct bnx2x_fp_txdata txdata;
780
781                 /* Rx */
782                 BNX2X_ERR("fp%d: rx_bd_prod(0x%x)  rx_bd_cons(0x%x)  rx_comp_prod(0x%x)  rx_comp_cons(0x%x)  *rx_cons_sb(0x%x)\n",
783                           i, fp->rx_bd_prod, fp->rx_bd_cons,
784                           fp->rx_comp_prod,
785                           fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb));
786                 BNX2X_ERR("     rx_sge_prod(0x%x)  last_max_sge(0x%x)  fp_hc_idx(0x%x)\n",
787                           fp->rx_sge_prod, fp->last_max_sge,
788                           le16_to_cpu(fp->fp_hc_idx));
789
790                 /* Tx */
791                 for_each_cos_in_tx_queue(fp, cos)
792                 {
793                         txdata = *fp->txdata_ptr[cos];
794                         BNX2X_ERR("fp%d: tx_pkt_prod(0x%x)  tx_pkt_cons(0x%x)  tx_bd_prod(0x%x)  tx_bd_cons(0x%x)  *tx_cons_sb(0x%x)\n",
795                                   i, txdata.tx_pkt_prod,
796                                   txdata.tx_pkt_cons, txdata.tx_bd_prod,
797                                   txdata.tx_bd_cons,
798                                   le16_to_cpu(*txdata.tx_cons_sb));
799                 }
800
801                 loop = CHIP_IS_E1x(bp) ?
802                         HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2;
803
804                 /* host sb data */
805
806                 if (IS_FCOE_FP(fp))
807                         continue;
808
809                 BNX2X_ERR("     run indexes (");
810                 for (j = 0; j < HC_SB_MAX_SM; j++)
811                         pr_cont("0x%x%s",
812                                fp->sb_running_index[j],
813                                (j == HC_SB_MAX_SM - 1) ? ")" : " ");
814
815                 BNX2X_ERR("     indexes (");
816                 for (j = 0; j < loop; j++)
817                         pr_cont("0x%x%s",
818                                fp->sb_index_values[j],
819                                (j == loop - 1) ? ")" : " ");
820                 /* fw sb data */
821                 data_size = CHIP_IS_E1x(bp) ?
822                         sizeof(struct hc_status_block_data_e1x) :
823                         sizeof(struct hc_status_block_data_e2);
824                 data_size /= sizeof(u32);
825                 sb_data_p = CHIP_IS_E1x(bp) ?
826                         (u32 *)&sb_data_e1x :
827                         (u32 *)&sb_data_e2;
828                 /* copy sb data in here */
829                 for (j = 0; j < data_size; j++)
830                         *(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM +
831                                 CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) +
832                                 j * sizeof(u32));
833
834                 if (!CHIP_IS_E1x(bp)) {
835                         pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
836                                 sb_data_e2.common.p_func.pf_id,
837                                 sb_data_e2.common.p_func.vf_id,
838                                 sb_data_e2.common.p_func.vf_valid,
839                                 sb_data_e2.common.p_func.vnic_id,
840                                 sb_data_e2.common.same_igu_sb_1b,
841                                 sb_data_e2.common.state);
842                 } else {
843                         pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
844                                 sb_data_e1x.common.p_func.pf_id,
845                                 sb_data_e1x.common.p_func.vf_id,
846                                 sb_data_e1x.common.p_func.vf_valid,
847                                 sb_data_e1x.common.p_func.vnic_id,
848                                 sb_data_e1x.common.same_igu_sb_1b,
849                                 sb_data_e1x.common.state);
850                 }
851
852                 /* SB_SMs data */
853                 for (j = 0; j < HC_SB_MAX_SM; j++) {
854                         pr_cont("SM[%d] __flags (0x%x) igu_sb_id (0x%x)  igu_seg_id(0x%x) time_to_expire (0x%x) timer_value(0x%x)\n",
855                                 j, hc_sm_p[j].__flags,
856                                 hc_sm_p[j].igu_sb_id,
857                                 hc_sm_p[j].igu_seg_id,
858                                 hc_sm_p[j].time_to_expire,
859                                 hc_sm_p[j].timer_value);
860                 }
861
862                 /* Indecies data */
863                 for (j = 0; j < loop; j++) {
864                         pr_cont("INDEX[%d] flags (0x%x) timeout (0x%x)\n", j,
865                                hc_index_p[j].flags,
866                                hc_index_p[j].timeout);
867                 }
868         }
869
870 #ifdef BNX2X_STOP_ON_ERROR
871         /* Rings */
872         /* Rx */
873         for_each_valid_rx_queue(bp, i) {
874                 struct bnx2x_fastpath *fp = &bp->fp[i];
875
876                 start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10);
877                 end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503);
878                 for (j = start; j != end; j = RX_BD(j + 1)) {
879                         u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j];
880                         struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j];
881
882                         BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x]  sw_bd=[%p]\n",
883                                   i, j, rx_bd[1], rx_bd[0], sw_bd->data);
884                 }
885
886                 start = RX_SGE(fp->rx_sge_prod);
887                 end = RX_SGE(fp->last_max_sge);
888                 for (j = start; j != end; j = RX_SGE(j + 1)) {
889                         u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j];
890                         struct sw_rx_page *sw_page = &fp->rx_page_ring[j];
891
892                         BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x]  sw_page=[%p]\n",
893                                   i, j, rx_sge[1], rx_sge[0], sw_page->page);
894                 }
895
896                 start = RCQ_BD(fp->rx_comp_cons - 10);
897                 end = RCQ_BD(fp->rx_comp_cons + 503);
898                 for (j = start; j != end; j = RCQ_BD(j + 1)) {
899                         u32 *cqe = (u32 *)&fp->rx_comp_ring[j];
900
901                         BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n",
902                                   i, j, cqe[0], cqe[1], cqe[2], cqe[3]);
903                 }
904         }
905
906         /* Tx */
907         for_each_valid_tx_queue(bp, i) {
908                 struct bnx2x_fastpath *fp = &bp->fp[i];
909                 for_each_cos_in_tx_queue(fp, cos) {
910                         struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
911
912                         start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10);
913                         end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245);
914                         for (j = start; j != end; j = TX_BD(j + 1)) {
915                                 struct sw_tx_bd *sw_bd =
916                                         &txdata->tx_buf_ring[j];
917
918                                 BNX2X_ERR("fp%d: txdata %d, packet[%x]=[%p,%x]\n",
919                                           i, cos, j, sw_bd->skb,
920                                           sw_bd->first_bd);
921                         }
922
923                         start = TX_BD(txdata->tx_bd_cons - 10);
924                         end = TX_BD(txdata->tx_bd_cons + 254);
925                         for (j = start; j != end; j = TX_BD(j + 1)) {
926                                 u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j];
927
928                                 BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]=[%x:%x:%x:%x]\n",
929                                           i, cos, j, tx_bd[0], tx_bd[1],
930                                           tx_bd[2], tx_bd[3]);
931                         }
932                 }
933         }
934 #endif
935         bnx2x_fw_dump(bp);
936         bnx2x_mc_assert(bp);
937         BNX2X_ERR("end crash dump -----------------\n");
938 }
939
940 /*
941  * FLR Support for E2
942  *
943  * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW
944  * initialization.
945  */
946 #define FLR_WAIT_USEC           10000   /* 10 miliseconds */
947 #define FLR_WAIT_INTERVAL       50      /* usec */
948 #define FLR_POLL_CNT            (FLR_WAIT_USEC/FLR_WAIT_INTERVAL) /* 200 */
949
950 struct pbf_pN_buf_regs {
951         int pN;
952         u32 init_crd;
953         u32 crd;
954         u32 crd_freed;
955 };
956
957 struct pbf_pN_cmd_regs {
958         int pN;
959         u32 lines_occup;
960         u32 lines_freed;
961 };
962
963 static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp,
964                                      struct pbf_pN_buf_regs *regs,
965                                      u32 poll_count)
966 {
967         u32 init_crd, crd, crd_start, crd_freed, crd_freed_start;
968         u32 cur_cnt = poll_count;
969
970         crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed);
971         crd = crd_start = REG_RD(bp, regs->crd);
972         init_crd = REG_RD(bp, regs->init_crd);
973
974         DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
975         DP(BNX2X_MSG_SP, "CREDIT[%d]      : s:%x\n", regs->pN, crd);
976         DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
977
978         while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) <
979                (init_crd - crd_start))) {
980                 if (cur_cnt--) {
981                         udelay(FLR_WAIT_INTERVAL);
982                         crd = REG_RD(bp, regs->crd);
983                         crd_freed = REG_RD(bp, regs->crd_freed);
984                 } else {
985                         DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n",
986                            regs->pN);
987                         DP(BNX2X_MSG_SP, "CREDIT[%d]      : c:%x\n",
988                            regs->pN, crd);
989                         DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n",
990                            regs->pN, crd_freed);
991                         break;
992                 }
993         }
994         DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n",
995            poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
996 }
997
998 static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp,
999                                      struct pbf_pN_cmd_regs *regs,
1000                                      u32 poll_count)
1001 {
1002         u32 occup, to_free, freed, freed_start;
1003         u32 cur_cnt = poll_count;
1004
1005         occup = to_free = REG_RD(bp, regs->lines_occup);
1006         freed = freed_start = REG_RD(bp, regs->lines_freed);
1007
1008         DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
1009         DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
1010
1011         while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) {
1012                 if (cur_cnt--) {
1013                         udelay(FLR_WAIT_INTERVAL);
1014                         occup = REG_RD(bp, regs->lines_occup);
1015                         freed = REG_RD(bp, regs->lines_freed);
1016                 } else {
1017                         DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n",
1018                            regs->pN);
1019                         DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n",
1020                            regs->pN, occup);
1021                         DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n",
1022                            regs->pN, freed);
1023                         break;
1024                 }
1025         }
1026         DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n",
1027            poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1028 }
1029
1030 static u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg,
1031                                     u32 expected, u32 poll_count)
1032 {
1033         u32 cur_cnt = poll_count;
1034         u32 val;
1035
1036         while ((val = REG_RD(bp, reg)) != expected && cur_cnt--)
1037                 udelay(FLR_WAIT_INTERVAL);
1038
1039         return val;
1040 }
1041
1042 static int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
1043                                            char *msg, u32 poll_cnt)
1044 {
1045         u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt);
1046         if (val != 0) {
1047                 BNX2X_ERR("%s usage count=%d\n", msg, val);
1048                 return 1;
1049         }
1050         return 0;
1051 }
1052
1053 static u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp)
1054 {
1055         /* adjust polling timeout */
1056         if (CHIP_REV_IS_EMUL(bp))
1057                 return FLR_POLL_CNT * 2000;
1058
1059         if (CHIP_REV_IS_FPGA(bp))
1060                 return FLR_POLL_CNT * 120;
1061
1062         return FLR_POLL_CNT;
1063 }
1064
1065 static void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count)
1066 {
1067         struct pbf_pN_cmd_regs cmd_regs[] = {
1068                 {0, (CHIP_IS_E3B0(bp)) ?
1069                         PBF_REG_TQ_OCCUPANCY_Q0 :
1070                         PBF_REG_P0_TQ_OCCUPANCY,
1071                     (CHIP_IS_E3B0(bp)) ?
1072                         PBF_REG_TQ_LINES_FREED_CNT_Q0 :
1073                         PBF_REG_P0_TQ_LINES_FREED_CNT},
1074                 {1, (CHIP_IS_E3B0(bp)) ?
1075                         PBF_REG_TQ_OCCUPANCY_Q1 :
1076                         PBF_REG_P1_TQ_OCCUPANCY,
1077                     (CHIP_IS_E3B0(bp)) ?
1078                         PBF_REG_TQ_LINES_FREED_CNT_Q1 :
1079                         PBF_REG_P1_TQ_LINES_FREED_CNT},
1080                 {4, (CHIP_IS_E3B0(bp)) ?
1081                         PBF_REG_TQ_OCCUPANCY_LB_Q :
1082                         PBF_REG_P4_TQ_OCCUPANCY,
1083                     (CHIP_IS_E3B0(bp)) ?
1084                         PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
1085                         PBF_REG_P4_TQ_LINES_FREED_CNT}
1086         };
1087
1088         struct pbf_pN_buf_regs buf_regs[] = {
1089                 {0, (CHIP_IS_E3B0(bp)) ?
1090                         PBF_REG_INIT_CRD_Q0 :
1091                         PBF_REG_P0_INIT_CRD ,
1092                     (CHIP_IS_E3B0(bp)) ?
1093                         PBF_REG_CREDIT_Q0 :
1094                         PBF_REG_P0_CREDIT,
1095                     (CHIP_IS_E3B0(bp)) ?
1096                         PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
1097                         PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
1098                 {1, (CHIP_IS_E3B0(bp)) ?
1099                         PBF_REG_INIT_CRD_Q1 :
1100                         PBF_REG_P1_INIT_CRD,
1101                     (CHIP_IS_E3B0(bp)) ?
1102                         PBF_REG_CREDIT_Q1 :
1103                         PBF_REG_P1_CREDIT,
1104                     (CHIP_IS_E3B0(bp)) ?
1105                         PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
1106                         PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
1107                 {4, (CHIP_IS_E3B0(bp)) ?
1108                         PBF_REG_INIT_CRD_LB_Q :
1109                         PBF_REG_P4_INIT_CRD,
1110                     (CHIP_IS_E3B0(bp)) ?
1111                         PBF_REG_CREDIT_LB_Q :
1112                         PBF_REG_P4_CREDIT,
1113                     (CHIP_IS_E3B0(bp)) ?
1114                         PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
1115                         PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
1116         };
1117
1118         int i;
1119
1120         /* Verify the command queues are flushed P0, P1, P4 */
1121         for (i = 0; i < ARRAY_SIZE(cmd_regs); i++)
1122                 bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count);
1123
1124
1125         /* Verify the transmission buffers are flushed P0, P1, P4 */
1126         for (i = 0; i < ARRAY_SIZE(buf_regs); i++)
1127                 bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count);
1128 }
1129
1130 #define OP_GEN_PARAM(param) \
1131         (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
1132
1133 #define OP_GEN_TYPE(type) \
1134         (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
1135
1136 #define OP_GEN_AGG_VECT(index) \
1137         (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
1138
1139
1140 static int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func,
1141                                          u32 poll_cnt)
1142 {
1143         struct sdm_op_gen op_gen = {0};
1144
1145         u32 comp_addr = BAR_CSTRORM_INTMEM +
1146                         CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func);
1147         int ret = 0;
1148
1149         if (REG_RD(bp, comp_addr)) {
1150                 BNX2X_ERR("Cleanup complete was not 0 before sending\n");
1151                 return 1;
1152         }
1153
1154         op_gen.command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
1155         op_gen.command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
1156         op_gen.command |= OP_GEN_AGG_VECT(clnup_func);
1157         op_gen.command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
1158
1159         DP(BNX2X_MSG_SP, "sending FW Final cleanup\n");
1160         REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen.command);
1161
1162         if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) {
1163                 BNX2X_ERR("FW final cleanup did not succeed\n");
1164                 DP(BNX2X_MSG_SP, "At timeout completion address contained %x\n",
1165                    (REG_RD(bp, comp_addr)));
1166                 ret = 1;
1167         }
1168         /* Zero completion for nxt FLR */
1169         REG_WR(bp, comp_addr, 0);
1170
1171         return ret;
1172 }
1173
1174 static u8 bnx2x_is_pcie_pending(struct pci_dev *dev)
1175 {
1176         u16 status;
1177
1178         pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
1179         return status & PCI_EXP_DEVSTA_TRPND;
1180 }
1181
1182 /* PF FLR specific routines
1183 */
1184 static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt)
1185 {
1186
1187         /* wait for CFC PF usage-counter to zero (includes all the VFs) */
1188         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1189                         CFC_REG_NUM_LCIDS_INSIDE_PF,
1190                         "CFC PF usage counter timed out",
1191                         poll_cnt))
1192                 return 1;
1193
1194
1195         /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
1196         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1197                         DORQ_REG_PF_USAGE_CNT,
1198                         "DQ PF usage counter timed out",
1199                         poll_cnt))
1200                 return 1;
1201
1202         /* Wait for QM PF usage-counter to zero (until DQ cleanup) */
1203         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1204                         QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp),
1205                         "QM PF usage counter timed out",
1206                         poll_cnt))
1207                 return 1;
1208
1209         /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
1210         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1211                         TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp),
1212                         "Timers VNIC usage counter timed out",
1213                         poll_cnt))
1214                 return 1;
1215         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1216                         TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp),
1217                         "Timers NUM_SCANS usage counter timed out",
1218                         poll_cnt))
1219                 return 1;
1220
1221         /* Wait DMAE PF usage counter to zero */
1222         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1223                         dmae_reg_go_c[INIT_DMAE_C(bp)],
1224                         "DMAE dommand register timed out",
1225                         poll_cnt))
1226                 return 1;
1227
1228         return 0;
1229 }
1230
1231 static void bnx2x_hw_enable_status(struct bnx2x *bp)
1232 {
1233         u32 val;
1234
1235         val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF);
1236         DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
1237
1238         val = REG_RD(bp, PBF_REG_DISABLE_PF);
1239         DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val);
1240
1241         val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN);
1242         DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
1243
1244         val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN);
1245         DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
1246
1247         val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
1248         DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
1249
1250         val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
1251         DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
1252
1253         val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
1254         DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
1255
1256         val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
1257         DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n",
1258            val);
1259 }
1260
1261 static int bnx2x_pf_flr_clnup(struct bnx2x *bp)
1262 {
1263         u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
1264
1265         DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp));
1266
1267         /* Re-enable PF target read access */
1268         REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
1269
1270         /* Poll HW usage counters */
1271         DP(BNX2X_MSG_SP, "Polling usage counters\n");
1272         if (bnx2x_poll_hw_usage_counters(bp, poll_cnt))
1273                 return -EBUSY;
1274
1275         /* Zero the igu 'trailing edge' and 'leading edge' */
1276
1277         /* Send the FW cleanup command */
1278         if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt))
1279                 return -EBUSY;
1280
1281         /* ATC cleanup */
1282
1283         /* Verify TX hw is flushed */
1284         bnx2x_tx_hw_flushed(bp, poll_cnt);
1285
1286         /* Wait 100ms (not adjusted according to platform) */
1287         msleep(100);
1288
1289         /* Verify no pending pci transactions */
1290         if (bnx2x_is_pcie_pending(bp->pdev))
1291                 BNX2X_ERR("PCIE Transactions still pending\n");
1292
1293         /* Debug */
1294         bnx2x_hw_enable_status(bp);
1295
1296         /*
1297          * Master enable - Due to WB DMAE writes performed before this
1298          * register is re-initialized as part of the regular function init
1299          */
1300         REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
1301
1302         return 0;
1303 }
1304
1305 static void bnx2x_hc_int_enable(struct bnx2x *bp)
1306 {
1307         int port = BP_PORT(bp);
1308         u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1309         u32 val = REG_RD(bp, addr);
1310         bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1311         bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1312         bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1313
1314         if (msix) {
1315                 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1316                          HC_CONFIG_0_REG_INT_LINE_EN_0);
1317                 val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1318                         HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1319                 if (single_msix)
1320                         val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
1321         } else if (msi) {
1322                 val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
1323                 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1324                         HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1325                         HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1326         } else {
1327                 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1328                         HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1329                         HC_CONFIG_0_REG_INT_LINE_EN_0 |
1330                         HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1331
1332                 if (!CHIP_IS_E1(bp)) {
1333                         DP(NETIF_MSG_IFUP,
1334                            "write %x to HC %d (addr 0x%x)\n", val, port, addr);
1335
1336                         REG_WR(bp, addr, val);
1337
1338                         val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
1339                 }
1340         }
1341
1342         if (CHIP_IS_E1(bp))
1343                 REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF);
1344
1345         DP(NETIF_MSG_IFUP,
1346            "write %x to HC %d (addr 0x%x) mode %s\n", val, port, addr,
1347            (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1348
1349         REG_WR(bp, addr, val);
1350         /*
1351          * Ensure that HC_CONFIG is written before leading/trailing edge config
1352          */
1353         mmiowb();
1354         barrier();
1355
1356         if (!CHIP_IS_E1(bp)) {
1357                 /* init leading/trailing edge */
1358                 if (IS_MF(bp)) {
1359                         val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1360                         if (bp->port.pmf)
1361                                 /* enable nig and gpio3 attention */
1362                                 val |= 0x1100;
1363                 } else
1364                         val = 0xffff;
1365
1366                 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
1367                 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
1368         }
1369
1370         /* Make sure that interrupts are indeed enabled from here on */
1371         mmiowb();
1372 }
1373
1374 static void bnx2x_igu_int_enable(struct bnx2x *bp)
1375 {
1376         u32 val;
1377         bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1378         bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1379         bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1380
1381         val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1382
1383         if (msix) {
1384                 val &= ~(IGU_PF_CONF_INT_LINE_EN |
1385                          IGU_PF_CONF_SINGLE_ISR_EN);
1386                 val |= (IGU_PF_CONF_FUNC_EN |
1387                         IGU_PF_CONF_MSI_MSIX_EN |
1388                         IGU_PF_CONF_ATTN_BIT_EN);
1389
1390                 if (single_msix)
1391                         val |= IGU_PF_CONF_SINGLE_ISR_EN;
1392         } else if (msi) {
1393                 val &= ~IGU_PF_CONF_INT_LINE_EN;
1394                 val |= (IGU_PF_CONF_FUNC_EN |
1395                         IGU_PF_CONF_MSI_MSIX_EN |
1396                         IGU_PF_CONF_ATTN_BIT_EN |
1397                         IGU_PF_CONF_SINGLE_ISR_EN);
1398         } else {
1399                 val &= ~IGU_PF_CONF_MSI_MSIX_EN;
1400                 val |= (IGU_PF_CONF_FUNC_EN |
1401                         IGU_PF_CONF_INT_LINE_EN |
1402                         IGU_PF_CONF_ATTN_BIT_EN |
1403                         IGU_PF_CONF_SINGLE_ISR_EN);
1404         }
1405
1406         DP(NETIF_MSG_IFUP, "write 0x%x to IGU  mode %s\n",
1407            val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1408
1409         REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1410
1411         if (val & IGU_PF_CONF_INT_LINE_EN)
1412                 pci_intx(bp->pdev, true);
1413
1414         barrier();
1415
1416         /* init leading/trailing edge */
1417         if (IS_MF(bp)) {
1418                 val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1419                 if (bp->port.pmf)
1420                         /* enable nig and gpio3 attention */
1421                         val |= 0x1100;
1422         } else
1423                 val = 0xffff;
1424
1425         REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
1426         REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
1427
1428         /* Make sure that interrupts are indeed enabled from here on */
1429         mmiowb();
1430 }
1431
1432 void bnx2x_int_enable(struct bnx2x *bp)
1433 {
1434         if (bp->common.int_block == INT_BLOCK_HC)
1435                 bnx2x_hc_int_enable(bp);
1436         else
1437                 bnx2x_igu_int_enable(bp);
1438 }
1439
1440 static void bnx2x_hc_int_disable(struct bnx2x *bp)
1441 {
1442         int port = BP_PORT(bp);
1443         u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1444         u32 val = REG_RD(bp, addr);
1445
1446         /*
1447          * in E1 we must use only PCI configuration space to disable
1448          * MSI/MSIX capablility
1449          * It's forbitten to disable IGU_PF_CONF_MSI_MSIX_EN in HC block
1450          */
1451         if (CHIP_IS_E1(bp)) {
1452                 /*  Since IGU_PF_CONF_MSI_MSIX_EN still always on
1453                  *  Use mask register to prevent from HC sending interrupts
1454                  *  after we exit the function
1455                  */
1456                 REG_WR(bp, HC_REG_INT_MASK + port*4, 0);
1457
1458                 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1459                          HC_CONFIG_0_REG_INT_LINE_EN_0 |
1460                          HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1461         } else
1462                 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1463                          HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1464                          HC_CONFIG_0_REG_INT_LINE_EN_0 |
1465                          HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1466
1467         DP(NETIF_MSG_IFDOWN,
1468            "write %x to HC %d (addr 0x%x)\n",
1469            val, port, addr);
1470
1471         /* flush all outstanding writes */
1472         mmiowb();
1473
1474         REG_WR(bp, addr, val);
1475         if (REG_RD(bp, addr) != val)
1476                 BNX2X_ERR("BUG! proper val not read from IGU!\n");
1477 }
1478
1479 static void bnx2x_igu_int_disable(struct bnx2x *bp)
1480 {
1481         u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1482
1483         val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
1484                  IGU_PF_CONF_INT_LINE_EN |
1485                  IGU_PF_CONF_ATTN_BIT_EN);
1486
1487         DP(NETIF_MSG_IFDOWN, "write %x to IGU\n", val);
1488
1489         /* flush all outstanding writes */
1490         mmiowb();
1491
1492         REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1493         if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val)
1494                 BNX2X_ERR("BUG! proper val not read from IGU!\n");
1495 }
1496
1497 static void bnx2x_int_disable(struct bnx2x *bp)
1498 {
1499         if (bp->common.int_block == INT_BLOCK_HC)
1500                 bnx2x_hc_int_disable(bp);
1501         else
1502                 bnx2x_igu_int_disable(bp);
1503 }
1504
1505 void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw)
1506 {
1507         int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1508         int i, offset;
1509
1510         if (disable_hw)
1511                 /* prevent the HW from sending interrupts */
1512                 bnx2x_int_disable(bp);
1513
1514         /* make sure all ISRs are done */
1515         if (msix) {
1516                 synchronize_irq(bp->msix_table[0].vector);
1517                 offset = 1;
1518                 if (CNIC_SUPPORT(bp))
1519                         offset++;
1520                 for_each_eth_queue(bp, i)
1521                         synchronize_irq(bp->msix_table[offset++].vector);
1522         } else
1523                 synchronize_irq(bp->pdev->irq);
1524
1525         /* make sure sp_task is not running */
1526         cancel_delayed_work(&bp->sp_task);
1527         cancel_delayed_work(&bp->period_task);
1528         flush_workqueue(bnx2x_wq);
1529 }
1530
1531 /* fast path */
1532
1533 /*
1534  * General service functions
1535  */
1536
1537 /* Return true if succeeded to acquire the lock */
1538 static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource)
1539 {
1540         u32 lock_status;
1541         u32 resource_bit = (1 << resource);
1542         int func = BP_FUNC(bp);
1543         u32 hw_lock_control_reg;
1544
1545         DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1546            "Trying to take a lock on resource %d\n", resource);
1547
1548         /* Validating that the resource is within range */
1549         if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1550                 DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1551                    "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1552                    resource, HW_LOCK_MAX_RESOURCE_VALUE);
1553                 return false;
1554         }
1555
1556         if (func <= 5)
1557                 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1558         else
1559                 hw_lock_control_reg =
1560                                 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1561
1562         /* Try to acquire the lock */
1563         REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1564         lock_status = REG_RD(bp, hw_lock_control_reg);
1565         if (lock_status & resource_bit)
1566                 return true;
1567
1568         DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1569            "Failed to get a lock on resource %d\n", resource);
1570         return false;
1571 }
1572
1573 /**
1574  * bnx2x_get_leader_lock_resource - get the recovery leader resource id
1575  *
1576  * @bp: driver handle
1577  *
1578  * Returns the recovery leader resource id according to the engine this function
1579  * belongs to. Currently only only 2 engines is supported.
1580  */
1581 static int bnx2x_get_leader_lock_resource(struct bnx2x *bp)
1582 {
1583         if (BP_PATH(bp))
1584                 return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
1585         else
1586                 return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
1587 }
1588
1589 /**
1590  * bnx2x_trylock_leader_lock- try to aquire a leader lock.
1591  *
1592  * @bp: driver handle
1593  *
1594  * Tries to aquire a leader lock for current engine.
1595  */
1596 static bool bnx2x_trylock_leader_lock(struct bnx2x *bp)
1597 {
1598         return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1599 }
1600
1601 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err);
1602
1603
1604 void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe)
1605 {
1606         struct bnx2x *bp = fp->bp;
1607         int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1608         int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1609         enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX;
1610         struct bnx2x_queue_sp_obj *q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
1611
1612         DP(BNX2X_MSG_SP,
1613            "fp %d  cid %d  got ramrod #%d  state is %x  type is %d\n",
1614            fp->index, cid, command, bp->state,
1615            rr_cqe->ramrod_cqe.ramrod_type);
1616
1617         switch (command) {
1618         case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
1619                 DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid);
1620                 drv_cmd = BNX2X_Q_CMD_UPDATE;
1621                 break;
1622
1623         case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
1624                 DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid);
1625                 drv_cmd = BNX2X_Q_CMD_SETUP;
1626                 break;
1627
1628         case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
1629                 DP(BNX2X_MSG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
1630                 drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
1631                 break;
1632
1633         case (RAMROD_CMD_ID_ETH_HALT):
1634                 DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid);
1635                 drv_cmd = BNX2X_Q_CMD_HALT;
1636                 break;
1637
1638         case (RAMROD_CMD_ID_ETH_TERMINATE):
1639                 DP(BNX2X_MSG_SP, "got MULTI[%d] teminate ramrod\n", cid);
1640                 drv_cmd = BNX2X_Q_CMD_TERMINATE;
1641                 break;
1642
1643         case (RAMROD_CMD_ID_ETH_EMPTY):
1644                 DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid);
1645                 drv_cmd = BNX2X_Q_CMD_EMPTY;
1646                 break;
1647
1648         default:
1649                 BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n",
1650                           command, fp->index);
1651                 return;
1652         }
1653
1654         if ((drv_cmd != BNX2X_Q_CMD_MAX) &&
1655             q_obj->complete_cmd(bp, q_obj, drv_cmd))
1656                 /* q_obj->complete_cmd() failure means that this was
1657                  * an unexpected completion.
1658                  *
1659                  * In this case we don't want to increase the bp->spq_left
1660                  * because apparently we haven't sent this command the first
1661                  * place.
1662                  */
1663 #ifdef BNX2X_STOP_ON_ERROR
1664                 bnx2x_panic();
1665 #else
1666                 return;
1667 #endif
1668
1669         smp_mb__before_atomic_inc();
1670         atomic_inc(&bp->cq_spq_left);
1671         /* push the change in bp->spq_left and towards the memory */
1672         smp_mb__after_atomic_inc();
1673
1674         DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left));
1675
1676         if ((drv_cmd == BNX2X_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) &&
1677             (!!test_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state))) {
1678                 /* if Q update ramrod is completed for last Q in AFEX vif set
1679                  * flow, then ACK MCP at the end
1680                  *
1681                  * mark pending ACK to MCP bit.
1682                  * prevent case that both bits are cleared.
1683                  * At the end of load/unload driver checks that
1684                  * sp_state is cleaerd, and this order prevents
1685                  * races
1686                  */
1687                 smp_mb__before_clear_bit();
1688                 set_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, &bp->sp_state);
1689                 wmb();
1690                 clear_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
1691                 smp_mb__after_clear_bit();
1692
1693                 /* schedule workqueue to send ack to MCP */
1694                 queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
1695         }
1696
1697         return;
1698 }
1699
1700 void bnx2x_update_rx_prod(struct bnx2x *bp, struct bnx2x_fastpath *fp,
1701                         u16 bd_prod, u16 rx_comp_prod, u16 rx_sge_prod)
1702 {
1703         u32 start = BAR_USTRORM_INTMEM + fp->ustorm_rx_prods_offset;
1704
1705         bnx2x_update_rx_prod_gen(bp, fp, bd_prod, rx_comp_prod, rx_sge_prod,
1706                                  start);
1707 }
1708
1709 irqreturn_t bnx2x_interrupt(int irq, void *dev_instance)
1710 {
1711         struct bnx2x *bp = netdev_priv(dev_instance);
1712         u16 status = bnx2x_ack_int(bp);
1713         u16 mask;
1714         int i;
1715         u8 cos;
1716
1717         /* Return here if interrupt is shared and it's not for us */
1718         if (unlikely(status == 0)) {
1719                 DP(NETIF_MSG_INTR, "not our interrupt!\n");
1720                 return IRQ_NONE;
1721         }
1722         DP(NETIF_MSG_INTR, "got an interrupt  status 0x%x\n", status);
1723
1724 #ifdef BNX2X_STOP_ON_ERROR
1725         if (unlikely(bp->panic))
1726                 return IRQ_HANDLED;
1727 #endif
1728
1729         for_each_eth_queue(bp, i) {
1730                 struct bnx2x_fastpath *fp = &bp->fp[i];
1731
1732                 mask = 0x2 << (fp->index + CNIC_SUPPORT(bp));
1733                 if (status & mask) {
1734                         /* Handle Rx or Tx according to SB id */
1735                         prefetch(fp->rx_cons_sb);
1736                         for_each_cos_in_tx_queue(fp, cos)
1737                                 prefetch(fp->txdata_ptr[cos]->tx_cons_sb);
1738                         prefetch(&fp->sb_running_index[SM_RX_ID]);
1739                         napi_schedule(&bnx2x_fp(bp, fp->index, napi));
1740                         status &= ~mask;
1741                 }
1742         }
1743
1744         if (CNIC_SUPPORT(bp)) {
1745                 mask = 0x2;
1746                 if (status & (mask | 0x1)) {
1747                         struct cnic_ops *c_ops = NULL;
1748
1749                         if (likely(bp->state == BNX2X_STATE_OPEN)) {
1750                                 rcu_read_lock();
1751                                 c_ops = rcu_dereference(bp->cnic_ops);
1752                                 if (c_ops)
1753                                         c_ops->cnic_handler(bp->cnic_data,
1754                                                             NULL);
1755                                 rcu_read_unlock();
1756                         }
1757
1758                         status &= ~mask;
1759                 }
1760         }
1761
1762         if (unlikely(status & 0x1)) {
1763                 queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
1764
1765                 status &= ~0x1;
1766                 if (!status)
1767                         return IRQ_HANDLED;
1768         }
1769
1770         if (unlikely(status))
1771                 DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
1772                    status);
1773
1774         return IRQ_HANDLED;
1775 }
1776
1777 /* Link */
1778
1779 /*
1780  * General service functions
1781  */
1782
1783 int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource)
1784 {
1785         u32 lock_status;
1786         u32 resource_bit = (1 << resource);
1787         int func = BP_FUNC(bp);
1788         u32 hw_lock_control_reg;
1789         int cnt;
1790
1791         /* Validating that the resource is within range */
1792         if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1793                 BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1794                    resource, HW_LOCK_MAX_RESOURCE_VALUE);
1795                 return -EINVAL;
1796         }
1797
1798         if (func <= 5) {
1799                 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1800         } else {
1801                 hw_lock_control_reg =
1802                                 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1803         }
1804
1805         /* Validating that the resource is not already taken */
1806         lock_status = REG_RD(bp, hw_lock_control_reg);
1807         if (lock_status & resource_bit) {
1808                 BNX2X_ERR("lock_status 0x%x  resource_bit 0x%x\n",
1809                    lock_status, resource_bit);
1810                 return -EEXIST;
1811         }
1812
1813         /* Try for 5 second every 5ms */
1814         for (cnt = 0; cnt < 1000; cnt++) {
1815                 /* Try to acquire the lock */
1816                 REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1817                 lock_status = REG_RD(bp, hw_lock_control_reg);
1818                 if (lock_status & resource_bit)
1819                         return 0;
1820
1821                 msleep(5);
1822         }
1823         BNX2X_ERR("Timeout\n");
1824         return -EAGAIN;
1825 }
1826
1827 int bnx2x_release_leader_lock(struct bnx2x *bp)
1828 {
1829         return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1830 }
1831
1832 int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource)
1833 {
1834         u32 lock_status;
1835         u32 resource_bit = (1 << resource);
1836         int func = BP_FUNC(bp);
1837         u32 hw_lock_control_reg;
1838
1839         /* Validating that the resource is within range */
1840         if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1841                 BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1842                    resource, HW_LOCK_MAX_RESOURCE_VALUE);
1843                 return -EINVAL;
1844         }
1845
1846         if (func <= 5) {
1847                 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1848         } else {
1849                 hw_lock_control_reg =
1850                                 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1851         }
1852
1853         /* Validating that the resource is currently taken */
1854         lock_status = REG_RD(bp, hw_lock_control_reg);
1855         if (!(lock_status & resource_bit)) {
1856                 BNX2X_ERR("lock_status 0x%x resource_bit 0x%x. unlock was called but lock wasn't taken!\n",
1857                    lock_status, resource_bit);
1858                 return -EFAULT;
1859         }
1860
1861         REG_WR(bp, hw_lock_control_reg, resource_bit);
1862         return 0;
1863 }
1864
1865
1866 int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port)
1867 {
1868         /* The GPIO should be swapped if swap register is set and active */
1869         int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
1870                          REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
1871         int gpio_shift = gpio_num +
1872                         (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
1873         u32 gpio_mask = (1 << gpio_shift);
1874         u32 gpio_reg;
1875         int value;
1876
1877         if (gpio_num > MISC_REGISTERS_GPIO_3) {
1878                 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
1879                 return -EINVAL;
1880         }
1881
1882         /* read GPIO value */
1883         gpio_reg = REG_RD(bp, MISC_REG_GPIO);
1884
1885         /* get the requested pin value */
1886         if ((gpio_reg & gpio_mask) == gpio_mask)
1887                 value = 1;
1888         else
1889                 value = 0;
1890
1891         DP(NETIF_MSG_LINK, "pin %d  value 0x%x\n", gpio_num, value);
1892
1893         return value;
1894 }
1895
1896 int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
1897 {
1898         /* The GPIO should be swapped if swap register is set and active */
1899         int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
1900                          REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
1901         int gpio_shift = gpio_num +
1902                         (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
1903         u32 gpio_mask = (1 << gpio_shift);
1904         u32 gpio_reg;
1905
1906         if (gpio_num > MISC_REGISTERS_GPIO_3) {
1907                 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
1908                 return -EINVAL;
1909         }
1910
1911         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
1912         /* read GPIO and mask except the float bits */
1913         gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
1914
1915         switch (mode) {
1916         case MISC_REGISTERS_GPIO_OUTPUT_LOW:
1917                 DP(NETIF_MSG_LINK,
1918                    "Set GPIO %d (shift %d) -> output low\n",
1919                    gpio_num, gpio_shift);
1920                 /* clear FLOAT and set CLR */
1921                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1922                 gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
1923                 break;
1924
1925         case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
1926                 DP(NETIF_MSG_LINK,
1927                    "Set GPIO %d (shift %d) -> output high\n",
1928                    gpio_num, gpio_shift);
1929                 /* clear FLOAT and set SET */
1930                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1931                 gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
1932                 break;
1933
1934         case MISC_REGISTERS_GPIO_INPUT_HI_Z:
1935                 DP(NETIF_MSG_LINK,
1936                    "Set GPIO %d (shift %d) -> input\n",
1937                    gpio_num, gpio_shift);
1938                 /* set FLOAT */
1939                 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1940                 break;
1941
1942         default:
1943                 break;
1944         }
1945
1946         REG_WR(bp, MISC_REG_GPIO, gpio_reg);
1947         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
1948
1949         return 0;
1950 }
1951
1952 int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode)
1953 {
1954         u32 gpio_reg = 0;
1955         int rc = 0;
1956
1957         /* Any port swapping should be handled by caller. */
1958
1959         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
1960         /* read GPIO and mask except the float bits */
1961         gpio_reg = REG_RD(bp, MISC_REG_GPIO);
1962         gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
1963         gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
1964         gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
1965
1966         switch (mode) {
1967         case MISC_REGISTERS_GPIO_OUTPUT_LOW:
1968                 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins);
1969                 /* set CLR */
1970                 gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
1971                 break;
1972
1973         case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
1974                 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins);
1975                 /* set SET */
1976                 gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
1977                 break;
1978
1979         case MISC_REGISTERS_GPIO_INPUT_HI_Z:
1980                 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins);
1981                 /* set FLOAT */
1982                 gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
1983                 break;
1984
1985         default:
1986                 BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode);
1987                 rc = -EINVAL;
1988                 break;
1989         }
1990
1991         if (rc == 0)
1992                 REG_WR(bp, MISC_REG_GPIO, gpio_reg);
1993
1994         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
1995
1996         return rc;
1997 }
1998
1999 int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2000 {
2001         /* The GPIO should be swapped if swap register is set and active */
2002         int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2003                          REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2004         int gpio_shift = gpio_num +
2005                         (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2006         u32 gpio_mask = (1 << gpio_shift);
2007         u32 gpio_reg;
2008
2009         if (gpio_num > MISC_REGISTERS_GPIO_3) {
2010                 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2011                 return -EINVAL;
2012         }
2013
2014         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2015         /* read GPIO int */
2016         gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT);
2017
2018         switch (mode) {
2019         case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2020                 DP(NETIF_MSG_LINK,
2021                    "Clear GPIO INT %d (shift %d) -> output low\n",
2022                    gpio_num, gpio_shift);
2023                 /* clear SET and set CLR */
2024                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2025                 gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2026                 break;
2027
2028         case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2029                 DP(NETIF_MSG_LINK,
2030                    "Set GPIO INT %d (shift %d) -> output high\n",
2031                    gpio_num, gpio_shift);
2032                 /* clear CLR and set SET */
2033                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2034                 gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2035                 break;
2036
2037         default:
2038                 break;
2039         }
2040
2041         REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg);
2042         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2043
2044         return 0;
2045 }
2046
2047 static int bnx2x_set_spio(struct bnx2x *bp, int spio, u32 mode)
2048 {
2049         u32 spio_reg;
2050
2051         /* Only 2 SPIOs are configurable */
2052         if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
2053                 BNX2X_ERR("Invalid SPIO 0x%x\n", spio);
2054                 return -EINVAL;
2055         }
2056
2057         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2058         /* read SPIO and mask except the float bits */
2059         spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
2060
2061         switch (mode) {
2062         case MISC_SPIO_OUTPUT_LOW:
2063                 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output low\n", spio);
2064                 /* clear FLOAT and set CLR */
2065                 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2066                 spio_reg |=  (spio << MISC_SPIO_CLR_POS);
2067                 break;
2068
2069         case MISC_SPIO_OUTPUT_HIGH:
2070                 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output high\n", spio);
2071                 /* clear FLOAT and set SET */
2072                 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2073                 spio_reg |=  (spio << MISC_SPIO_SET_POS);
2074                 break;
2075
2076         case MISC_SPIO_INPUT_HI_Z:
2077                 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> input\n", spio);
2078                 /* set FLOAT */
2079                 spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
2080                 break;
2081
2082         default:
2083                 break;
2084         }
2085
2086         REG_WR(bp, MISC_REG_SPIO, spio_reg);
2087         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2088
2089         return 0;
2090 }
2091
2092 void bnx2x_calc_fc_adv(struct bnx2x *bp)
2093 {
2094         u8 cfg_idx = bnx2x_get_link_cfg_idx(bp);
2095         switch (bp->link_vars.ieee_fc &
2096                 MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
2097         case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE:
2098                 bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2099                                                    ADVERTISED_Pause);
2100                 break;
2101
2102         case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
2103                 bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
2104                                                   ADVERTISED_Pause);
2105                 break;
2106
2107         case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
2108                 bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
2109                 break;
2110
2111         default:
2112                 bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2113                                                    ADVERTISED_Pause);
2114                 break;
2115         }
2116 }
2117
2118 static void bnx2x_set_requested_fc(struct bnx2x *bp)
2119 {
2120         /* Initialize link parameters structure variables
2121          * It is recommended to turn off RX FC for jumbo frames
2122          *  for better performance
2123          */
2124         if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000))
2125                 bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX;
2126         else
2127                 bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH;
2128 }
2129
2130 int bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode)
2131 {
2132         int rc, cfx_idx = bnx2x_get_link_cfg_idx(bp);
2133         u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx];
2134
2135         if (!BP_NOMCP(bp)) {
2136                 bnx2x_set_requested_fc(bp);
2137                 bnx2x_acquire_phy_lock(bp);
2138
2139                 if (load_mode == LOAD_DIAG) {
2140                         struct link_params *lp = &bp->link_params;
2141                         lp->loopback_mode = LOOPBACK_XGXS;
2142                         /* do PHY loopback at 10G speed, if possible */
2143                         if (lp->req_line_speed[cfx_idx] < SPEED_10000) {
2144                                 if (lp->speed_cap_mask[cfx_idx] &
2145                                     PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)
2146                                         lp->req_line_speed[cfx_idx] =
2147                                         SPEED_10000;
2148                                 else
2149                                         lp->req_line_speed[cfx_idx] =
2150                                         SPEED_1000;
2151                         }
2152                 }
2153
2154                 if (load_mode == LOAD_LOOPBACK_EXT) {
2155                         struct link_params *lp = &bp->link_params;
2156                         lp->loopback_mode = LOOPBACK_EXT;
2157                 }
2158
2159                 rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2160
2161                 bnx2x_release_phy_lock(bp);
2162
2163                 bnx2x_calc_fc_adv(bp);
2164
2165                 if (bp->link_vars.link_up) {
2166                         bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2167                         bnx2x_link_report(bp);
2168                 }
2169                 queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2170                 bp->link_params.req_line_speed[cfx_idx] = req_line_speed;
2171                 return rc;
2172         }
2173         BNX2X_ERR("Bootcode is missing - can not initialize link\n");
2174         return -EINVAL;
2175 }
2176
2177 void bnx2x_link_set(struct bnx2x *bp)
2178 {
2179         if (!BP_NOMCP(bp)) {
2180                 bnx2x_acquire_phy_lock(bp);
2181                 bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2182                 bnx2x_release_phy_lock(bp);
2183
2184                 bnx2x_calc_fc_adv(bp);
2185         } else
2186                 BNX2X_ERR("Bootcode is missing - can not set link\n");
2187 }
2188
2189 static void bnx2x__link_reset(struct bnx2x *bp)
2190 {
2191         if (!BP_NOMCP(bp)) {
2192                 bnx2x_acquire_phy_lock(bp);
2193                 bnx2x_lfa_reset(&bp->link_params, &bp->link_vars);
2194                 bnx2x_release_phy_lock(bp);
2195         } else
2196                 BNX2X_ERR("Bootcode is missing - can not reset link\n");
2197 }
2198
2199 void bnx2x_force_link_reset(struct bnx2x *bp)
2200 {
2201         bnx2x_acquire_phy_lock(bp);
2202         bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2203         bnx2x_release_phy_lock(bp);
2204 }
2205
2206 u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes)
2207 {
2208         u8 rc = 0;
2209
2210         if (!BP_NOMCP(bp)) {
2211                 bnx2x_acquire_phy_lock(bp);
2212                 rc = bnx2x_test_link(&bp->link_params, &bp->link_vars,
2213                                      is_serdes);
2214                 bnx2x_release_phy_lock(bp);
2215         } else
2216                 BNX2X_ERR("Bootcode is missing - can not test link\n");
2217
2218         return rc;
2219 }
2220
2221
2222 /* Calculates the sum of vn_min_rates.
2223    It's needed for further normalizing of the min_rates.
2224    Returns:
2225      sum of vn_min_rates.
2226        or
2227      0 - if all the min_rates are 0.
2228      In the later case fainess algorithm should be deactivated.
2229      If not all min_rates are zero then those that are zeroes will be set to 1.
2230  */
2231 static void bnx2x_calc_vn_min(struct bnx2x *bp,
2232                                       struct cmng_init_input *input)
2233 {
2234         int all_zero = 1;
2235         int vn;
2236
2237         for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2238                 u32 vn_cfg = bp->mf_config[vn];
2239                 u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2240                                    FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2241
2242                 /* Skip hidden vns */
2243                 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2244                         vn_min_rate = 0;
2245                 /* If min rate is zero - set it to 1 */
2246                 else if (!vn_min_rate)
2247                         vn_min_rate = DEF_MIN_RATE;
2248                 else
2249                         all_zero = 0;
2250
2251                 input->vnic_min_rate[vn] = vn_min_rate;
2252         }
2253
2254         /* if ETS or all min rates are zeros - disable fairness */
2255         if (BNX2X_IS_ETS_ENABLED(bp)) {
2256                 input->flags.cmng_enables &=
2257                                         ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2258                 DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n");
2259         } else if (all_zero) {
2260                 input->flags.cmng_enables &=
2261                                         ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2262                 DP(NETIF_MSG_IFUP,
2263                    "All MIN values are zeroes fairness will be disabled\n");
2264         } else
2265                 input->flags.cmng_enables |=
2266                                         CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2267 }
2268
2269 static void bnx2x_calc_vn_max(struct bnx2x *bp, int vn,
2270                                     struct cmng_init_input *input)
2271 {
2272         u16 vn_max_rate;
2273         u32 vn_cfg = bp->mf_config[vn];
2274
2275         if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2276                 vn_max_rate = 0;
2277         else {
2278                 u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg);
2279
2280                 if (IS_MF_SI(bp)) {
2281                         /* maxCfg in percents of linkspeed */
2282                         vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100;
2283                 } else /* SD modes */
2284                         /* maxCfg is absolute in 100Mb units */
2285                         vn_max_rate = maxCfg * 100;
2286         }
2287
2288         DP(NETIF_MSG_IFUP, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
2289
2290         input->vnic_max_rate[vn] = vn_max_rate;
2291 }
2292
2293
2294 static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp)
2295 {
2296         if (CHIP_REV_IS_SLOW(bp))
2297                 return CMNG_FNS_NONE;
2298         if (IS_MF(bp))
2299                 return CMNG_FNS_MINMAX;
2300
2301         return CMNG_FNS_NONE;
2302 }
2303
2304 void bnx2x_read_mf_cfg(struct bnx2x *bp)
2305 {
2306         int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1);
2307
2308         if (BP_NOMCP(bp))
2309                 return; /* what should be the default bvalue in this case */
2310
2311         /* For 2 port configuration the absolute function number formula
2312          * is:
2313          *      abs_func = 2 * vn + BP_PORT + BP_PATH
2314          *
2315          *      and there are 4 functions per port
2316          *
2317          * For 4 port configuration it is
2318          *      abs_func = 4 * vn + 2 * BP_PORT + BP_PATH
2319          *
2320          *      and there are 2 functions per port
2321          */
2322         for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2323                 int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp);
2324
2325                 if (func >= E1H_FUNC_MAX)
2326                         break;
2327
2328                 bp->mf_config[vn] =
2329                         MF_CFG_RD(bp, func_mf_config[func].config);
2330         }
2331         if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
2332                 DP(NETIF_MSG_IFUP, "mf_cfg function disabled\n");
2333                 bp->flags |= MF_FUNC_DIS;
2334         } else {
2335                 DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n");
2336                 bp->flags &= ~MF_FUNC_DIS;
2337         }
2338 }
2339
2340 static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type)
2341 {
2342         struct cmng_init_input input;
2343         memset(&input, 0, sizeof(struct cmng_init_input));
2344
2345         input.port_rate = bp->link_vars.line_speed;
2346
2347         if (cmng_type == CMNG_FNS_MINMAX) {
2348                 int vn;
2349
2350                 /* read mf conf from shmem */
2351                 if (read_cfg)
2352                         bnx2x_read_mf_cfg(bp);
2353
2354                 /* vn_weight_sum and enable fairness if not 0 */
2355                 bnx2x_calc_vn_min(bp, &input);
2356
2357                 /* calculate and set min-max rate for each vn */
2358                 if (bp->port.pmf)
2359                         for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++)
2360                                 bnx2x_calc_vn_max(bp, vn, &input);
2361
2362                 /* always enable rate shaping and fairness */
2363                 input.flags.cmng_enables |=
2364                                         CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
2365
2366                 bnx2x_init_cmng(&input, &bp->cmng);
2367                 return;
2368         }
2369
2370         /* rate shaping and fairness are disabled */
2371         DP(NETIF_MSG_IFUP,
2372            "rate shaping and fairness are disabled\n");
2373 }
2374
2375 static void storm_memset_cmng(struct bnx2x *bp,
2376                               struct cmng_init *cmng,
2377                               u8 port)
2378 {
2379         int vn;
2380         size_t size = sizeof(struct cmng_struct_per_port);
2381
2382         u32 addr = BAR_XSTRORM_INTMEM +
2383                         XSTORM_CMNG_PER_PORT_VARS_OFFSET(port);
2384
2385         __storm_memset_struct(bp, addr, size, (u32 *)&cmng->port);
2386
2387         for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2388                 int func = func_by_vn(bp, vn);
2389
2390                 addr = BAR_XSTRORM_INTMEM +
2391                        XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func);
2392                 size = sizeof(struct rate_shaping_vars_per_vn);
2393                 __storm_memset_struct(bp, addr, size,
2394                                       (u32 *)&cmng->vnic.vnic_max_rate[vn]);
2395
2396                 addr = BAR_XSTRORM_INTMEM +
2397                        XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func);
2398                 size = sizeof(struct fairness_vars_per_vn);
2399                 __storm_memset_struct(bp, addr, size,
2400                                       (u32 *)&cmng->vnic.vnic_min_rate[vn]);
2401         }
2402 }
2403
2404 /* This function is called upon link interrupt */
2405 static void bnx2x_link_attn(struct bnx2x *bp)
2406 {
2407         /* Make sure that we are synced with the current statistics */
2408         bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2409
2410         bnx2x_link_update(&bp->link_params, &bp->link_vars);
2411
2412         if (bp->link_vars.link_up) {
2413
2414                 /* dropless flow control */
2415                 if (!CHIP_IS_E1(bp) && bp->dropless_fc) {
2416                         int port = BP_PORT(bp);
2417                         u32 pause_enabled = 0;
2418
2419                         if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
2420                                 pause_enabled = 1;
2421
2422                         REG_WR(bp, BAR_USTRORM_INTMEM +
2423                                USTORM_ETH_PAUSE_ENABLED_OFFSET(port),
2424                                pause_enabled);
2425                 }
2426
2427                 if (bp->link_vars.mac_type != MAC_TYPE_EMAC) {
2428                         struct host_port_stats *pstats;
2429
2430                         pstats = bnx2x_sp(bp, port_stats);
2431                         /* reset old mac stats */
2432                         memset(&(pstats->mac_stx[0]), 0,
2433                                sizeof(struct mac_stx));
2434                 }
2435                 if (bp->state == BNX2X_STATE_OPEN)
2436                         bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2437         }
2438
2439         if (bp->link_vars.link_up && bp->link_vars.line_speed) {
2440                 int cmng_fns = bnx2x_get_cmng_fns_mode(bp);
2441
2442                 if (cmng_fns != CMNG_FNS_NONE) {
2443                         bnx2x_cmng_fns_init(bp, false, cmng_fns);
2444                         storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2445                 } else
2446                         /* rate shaping and fairness are disabled */
2447                         DP(NETIF_MSG_IFUP,
2448                            "single function mode without fairness\n");
2449         }
2450
2451         __bnx2x_link_report(bp);
2452
2453         if (IS_MF(bp))
2454                 bnx2x_link_sync_notify(bp);
2455 }
2456
2457 void bnx2x__link_status_update(struct bnx2x *bp)
2458 {
2459         if (bp->state != BNX2X_STATE_OPEN)
2460                 return;
2461
2462         /* read updated dcb configuration */
2463         if (IS_PF(bp)) {
2464                 bnx2x_dcbx_pmf_update(bp);
2465                 bnx2x_link_status_update(&bp->link_params, &bp->link_vars);
2466                 if (bp->link_vars.link_up)
2467                         bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2468                 else
2469                         bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2470                         /* indicate link status */
2471                 bnx2x_link_report(bp);
2472
2473         } else { /* VF */
2474                 bp->port.supported[0] |= (SUPPORTED_10baseT_Half |
2475                                           SUPPORTED_10baseT_Full |
2476                                           SUPPORTED_100baseT_Half |
2477                                           SUPPORTED_100baseT_Full |
2478                                           SUPPORTED_1000baseT_Full |
2479                                           SUPPORTED_2500baseX_Full |
2480                                           SUPPORTED_10000baseT_Full |
2481                                           SUPPORTED_TP |
2482                                           SUPPORTED_FIBRE |
2483                                           SUPPORTED_Autoneg |
2484                                           SUPPORTED_Pause |
2485                                           SUPPORTED_Asym_Pause);
2486                 bp->port.advertising[0] = bp->port.supported[0];
2487
2488                 bp->link_params.bp = bp;
2489                 bp->link_params.port = BP_PORT(bp);
2490                 bp->link_params.req_duplex[0] = DUPLEX_FULL;
2491                 bp->link_params.req_flow_ctrl[0] = BNX2X_FLOW_CTRL_NONE;
2492                 bp->link_params.req_line_speed[0] = SPEED_10000;
2493                 bp->link_params.speed_cap_mask[0] = 0x7f0000;
2494                 bp->link_params.switch_cfg = SWITCH_CFG_10G;
2495                 bp->link_vars.mac_type = MAC_TYPE_BMAC;
2496                 bp->link_vars.line_speed = SPEED_10000;
2497                 bp->link_vars.link_status =
2498                         (LINK_STATUS_LINK_UP |
2499                          LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
2500                 bp->link_vars.link_up = 1;
2501                 bp->link_vars.duplex = DUPLEX_FULL;
2502                 bp->link_vars.flow_ctrl = BNX2X_FLOW_CTRL_NONE;
2503                 __bnx2x_link_report(bp);
2504                 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2505         }
2506 }
2507
2508 static int bnx2x_afex_func_update(struct bnx2x *bp, u16 vifid,
2509                                   u16 vlan_val, u8 allowed_prio)
2510 {
2511         struct bnx2x_func_state_params func_params = {0};
2512         struct bnx2x_func_afex_update_params *f_update_params =
2513                 &func_params.params.afex_update;
2514
2515         func_params.f_obj = &bp->func_obj;
2516         func_params.cmd = BNX2X_F_CMD_AFEX_UPDATE;
2517
2518         /* no need to wait for RAMROD completion, so don't
2519          * set RAMROD_COMP_WAIT flag
2520          */
2521
2522         f_update_params->vif_id = vifid;
2523         f_update_params->afex_default_vlan = vlan_val;
2524         f_update_params->allowed_priorities = allowed_prio;
2525
2526         /* if ramrod can not be sent, response to MCP immediately */
2527         if (bnx2x_func_state_change(bp, &func_params) < 0)
2528                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
2529
2530         return 0;
2531 }
2532
2533 static int bnx2x_afex_handle_vif_list_cmd(struct bnx2x *bp, u8 cmd_type,
2534                                           u16 vif_index, u8 func_bit_map)
2535 {
2536         struct bnx2x_func_state_params func_params = {0};
2537         struct bnx2x_func_afex_viflists_params *update_params =
2538                 &func_params.params.afex_viflists;
2539         int rc;
2540         u32 drv_msg_code;
2541
2542         /* validate only LIST_SET and LIST_GET are received from switch */
2543         if ((cmd_type != VIF_LIST_RULE_GET) && (cmd_type != VIF_LIST_RULE_SET))
2544                 BNX2X_ERR("BUG! afex_handle_vif_list_cmd invalid type 0x%x\n",
2545                           cmd_type);
2546
2547         func_params.f_obj = &bp->func_obj;
2548         func_params.cmd = BNX2X_F_CMD_AFEX_VIFLISTS;
2549
2550         /* set parameters according to cmd_type */
2551         update_params->afex_vif_list_command = cmd_type;
2552         update_params->vif_list_index = cpu_to_le16(vif_index);
2553         update_params->func_bit_map =
2554                 (cmd_type == VIF_LIST_RULE_GET) ? 0 : func_bit_map;
2555         update_params->func_to_clear = 0;
2556         drv_msg_code =
2557                 (cmd_type == VIF_LIST_RULE_GET) ?
2558                 DRV_MSG_CODE_AFEX_LISTGET_ACK :
2559                 DRV_MSG_CODE_AFEX_LISTSET_ACK;
2560
2561         /* if ramrod can not be sent, respond to MCP immediately for
2562          * SET and GET requests (other are not triggered from MCP)
2563          */
2564         rc = bnx2x_func_state_change(bp, &func_params);
2565         if (rc < 0)
2566                 bnx2x_fw_command(bp, drv_msg_code, 0);
2567
2568         return 0;
2569 }
2570
2571 static void bnx2x_handle_afex_cmd(struct bnx2x *bp, u32 cmd)
2572 {
2573         struct afex_stats afex_stats;
2574         u32 func = BP_ABS_FUNC(bp);
2575         u32 mf_config;
2576         u16 vlan_val;
2577         u32 vlan_prio;
2578         u16 vif_id;
2579         u8 allowed_prio;
2580         u8 vlan_mode;
2581         u32 addr_to_write, vifid, addrs, stats_type, i;
2582
2583         if (cmd & DRV_STATUS_AFEX_LISTGET_REQ) {
2584                 vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2585                 DP(BNX2X_MSG_MCP,
2586                    "afex: got MCP req LISTGET_REQ for vifid 0x%x\n", vifid);
2587                 bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_GET, vifid, 0);
2588         }
2589
2590         if (cmd & DRV_STATUS_AFEX_LISTSET_REQ) {
2591                 vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2592                 addrs = SHMEM2_RD(bp, afex_param2_to_driver[BP_FW_MB_IDX(bp)]);
2593                 DP(BNX2X_MSG_MCP,
2594                    "afex: got MCP req LISTSET_REQ for vifid 0x%x addrs 0x%x\n",
2595                    vifid, addrs);
2596                 bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_SET, vifid,
2597                                                addrs);
2598         }
2599
2600         if (cmd & DRV_STATUS_AFEX_STATSGET_REQ) {
2601                 addr_to_write = SHMEM2_RD(bp,
2602                         afex_scratchpad_addr_to_write[BP_FW_MB_IDX(bp)]);
2603                 stats_type = SHMEM2_RD(bp,
2604                         afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2605
2606                 DP(BNX2X_MSG_MCP,
2607                    "afex: got MCP req STATSGET_REQ, write to addr 0x%x\n",
2608                    addr_to_write);
2609
2610                 bnx2x_afex_collect_stats(bp, (void *)&afex_stats, stats_type);
2611
2612                 /* write response to scratchpad, for MCP */
2613                 for (i = 0; i < (sizeof(struct afex_stats)/sizeof(u32)); i++)
2614                         REG_WR(bp, addr_to_write + i*sizeof(u32),
2615                                *(((u32 *)(&afex_stats))+i));
2616
2617                 /* send ack message to MCP */
2618                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_STATSGET_ACK, 0);
2619         }
2620
2621         if (cmd & DRV_STATUS_AFEX_VIFSET_REQ) {
2622                 mf_config = MF_CFG_RD(bp, func_mf_config[func].config);
2623                 bp->mf_config[BP_VN(bp)] = mf_config;
2624                 DP(BNX2X_MSG_MCP,
2625                    "afex: got MCP req VIFSET_REQ, mf_config 0x%x\n",
2626                    mf_config);
2627
2628                 /* if VIF_SET is "enabled" */
2629                 if (!(mf_config & FUNC_MF_CFG_FUNC_DISABLED)) {
2630                         /* set rate limit directly to internal RAM */
2631                         struct cmng_init_input cmng_input;
2632                         struct rate_shaping_vars_per_vn m_rs_vn;
2633                         size_t size = sizeof(struct rate_shaping_vars_per_vn);
2634                         u32 addr = BAR_XSTRORM_INTMEM +
2635                             XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(BP_FUNC(bp));
2636
2637                         bp->mf_config[BP_VN(bp)] = mf_config;
2638
2639                         bnx2x_calc_vn_max(bp, BP_VN(bp), &cmng_input);
2640                         m_rs_vn.vn_counter.rate =
2641                                 cmng_input.vnic_max_rate[BP_VN(bp)];
2642                         m_rs_vn.vn_counter.quota =
2643                                 (m_rs_vn.vn_counter.rate *
2644                                  RS_PERIODIC_TIMEOUT_USEC) / 8;
2645
2646                         __storm_memset_struct(bp, addr, size, (u32 *)&m_rs_vn);
2647
2648                         /* read relevant values from mf_cfg struct in shmem */
2649                         vif_id =
2650                                 (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2651                                  FUNC_MF_CFG_E1HOV_TAG_MASK) >>
2652                                 FUNC_MF_CFG_E1HOV_TAG_SHIFT;
2653                         vlan_val =
2654                                 (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2655                                  FUNC_MF_CFG_AFEX_VLAN_MASK) >>
2656                                 FUNC_MF_CFG_AFEX_VLAN_SHIFT;
2657                         vlan_prio = (mf_config &
2658                                      FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
2659                                     FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT;
2660                         vlan_val |= (vlan_prio << VLAN_PRIO_SHIFT);
2661                         vlan_mode =
2662                                 (MF_CFG_RD(bp,
2663                                            func_mf_config[func].afex_config) &
2664                                  FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
2665                                 FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT;
2666                         allowed_prio =
2667                                 (MF_CFG_RD(bp,
2668                                            func_mf_config[func].afex_config) &
2669                                  FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
2670                                 FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT;
2671
2672                         /* send ramrod to FW, return in case of failure */
2673                         if (bnx2x_afex_func_update(bp, vif_id, vlan_val,
2674                                                    allowed_prio))
2675                                 return;
2676
2677                         bp->afex_def_vlan_tag = vlan_val;
2678                         bp->afex_vlan_mode = vlan_mode;
2679                 } else {
2680                         /* notify link down because BP->flags is disabled */
2681                         bnx2x_link_report(bp);
2682
2683                         /* send INVALID VIF ramrod to FW */
2684                         bnx2x_afex_func_update(bp, 0xFFFF, 0, 0);
2685
2686                         /* Reset the default afex VLAN */
2687                         bp->afex_def_vlan_tag = -1;
2688                 }
2689         }
2690 }
2691
2692 static void bnx2x_pmf_update(struct bnx2x *bp)
2693 {
2694         int port = BP_PORT(bp);
2695         u32 val;
2696
2697         bp->port.pmf = 1;
2698         DP(BNX2X_MSG_MCP, "pmf %d\n", bp->port.pmf);
2699
2700         /*
2701          * We need the mb() to ensure the ordering between the writing to
2702          * bp->port.pmf here and reading it from the bnx2x_periodic_task().
2703          */
2704         smp_mb();
2705
2706         /* queue a periodic task */
2707         queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2708
2709         bnx2x_dcbx_pmf_update(bp);
2710
2711         /* enable nig attention */
2712         val = (0xff0f | (1 << (BP_VN(bp) + 4)));
2713         if (bp->common.int_block == INT_BLOCK_HC) {
2714                 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
2715                 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
2716         } else if (!CHIP_IS_E1x(bp)) {
2717                 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
2718                 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
2719         }
2720
2721         bnx2x_stats_handle(bp, STATS_EVENT_PMF);
2722 }
2723
2724 /* end of Link */
2725
2726 /* slow path */
2727
2728 /*
2729  * General service functions
2730  */
2731
2732 /* send the MCP a request, block until there is a reply */
2733 u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param)
2734 {
2735         int mb_idx = BP_FW_MB_IDX(bp);
2736         u32 seq;
2737         u32 rc = 0;
2738         u32 cnt = 1;
2739         u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10;
2740
2741         mutex_lock(&bp->fw_mb_mutex);
2742         seq = ++bp->fw_seq;
2743         SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param);
2744         SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq));
2745
2746         DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n",
2747                         (command | seq), param);
2748
2749         do {
2750                 /* let the FW do it's magic ... */
2751                 msleep(delay);
2752
2753                 rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header);
2754
2755                 /* Give the FW up to 5 second (500*10ms) */
2756         } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
2757
2758         DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n",
2759            cnt*delay, rc, seq);
2760
2761         /* is this a reply to our command? */
2762         if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK))
2763                 rc &= FW_MSG_CODE_MASK;
2764         else {
2765                 /* FW BUG! */
2766                 BNX2X_ERR("FW failed to respond!\n");
2767                 bnx2x_fw_dump(bp);
2768                 rc = 0;
2769         }
2770         mutex_unlock(&bp->fw_mb_mutex);
2771
2772         return rc;
2773 }
2774
2775
2776 static void storm_memset_func_cfg(struct bnx2x *bp,
2777                                  struct tstorm_eth_function_common_config *tcfg,
2778                                  u16 abs_fid)
2779 {
2780         size_t size = sizeof(struct tstorm_eth_function_common_config);
2781
2782         u32 addr = BAR_TSTRORM_INTMEM +
2783                         TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid);
2784
2785         __storm_memset_struct(bp, addr, size, (u32 *)tcfg);
2786 }
2787
2788 void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p)
2789 {
2790         if (CHIP_IS_E1x(bp)) {
2791                 struct tstorm_eth_function_common_config tcfg = {0};
2792
2793                 storm_memset_func_cfg(bp, &tcfg, p->func_id);
2794         }
2795
2796         /* Enable the function in the FW */
2797         storm_memset_vf_to_pf(bp, p->func_id, p->pf_id);
2798         storm_memset_func_en(bp, p->func_id, 1);
2799
2800         /* spq */
2801         if (p->func_flgs & FUNC_FLG_SPQ) {
2802                 storm_memset_spq_addr(bp, p->spq_map, p->func_id);
2803                 REG_WR(bp, XSEM_REG_FAST_MEMORY +
2804                        XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod);
2805         }
2806 }
2807
2808 /**
2809  * bnx2x_get_tx_only_flags - Return common flags
2810  *
2811  * @bp          device handle
2812  * @fp          queue handle
2813  * @zero_stats  TRUE if statistics zeroing is needed
2814  *
2815  * Return the flags that are common for the Tx-only and not normal connections.
2816  */
2817 static unsigned long bnx2x_get_common_flags(struct bnx2x *bp,
2818                                             struct bnx2x_fastpath *fp,
2819                                             bool zero_stats)
2820 {
2821         unsigned long flags = 0;
2822
2823         /* PF driver will always initialize the Queue to an ACTIVE state */
2824         __set_bit(BNX2X_Q_FLG_ACTIVE, &flags);
2825
2826         /* tx only connections collect statistics (on the same index as the
2827          *  parent connection). The statistics are zeroed when the parent
2828          *  connection is initialized.
2829          */
2830
2831         __set_bit(BNX2X_Q_FLG_STATS, &flags);
2832         if (zero_stats)
2833                 __set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags);
2834
2835
2836         return flags;
2837 }
2838
2839 static unsigned long bnx2x_get_q_flags(struct bnx2x *bp,
2840                                        struct bnx2x_fastpath *fp,
2841                                        bool leading)
2842 {
2843         unsigned long flags = 0;
2844
2845         /* calculate other queue flags */
2846         if (IS_MF_SD(bp))
2847                 __set_bit(BNX2X_Q_FLG_OV, &flags);
2848
2849         if (IS_FCOE_FP(fp)) {
2850                 __set_bit(BNX2X_Q_FLG_FCOE, &flags);
2851                 /* For FCoE - force usage of default priority (for afex) */
2852                 __set_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI, &flags);
2853         }
2854
2855         if (!fp->disable_tpa) {
2856                 __set_bit(BNX2X_Q_FLG_TPA, &flags);
2857                 __set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags);
2858                 if (fp->mode == TPA_MODE_GRO)
2859                         __set_bit(BNX2X_Q_FLG_TPA_GRO, &flags);
2860         }
2861
2862         if (leading) {
2863                 __set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags);
2864                 __set_bit(BNX2X_Q_FLG_MCAST, &flags);
2865         }
2866
2867         /* Always set HW VLAN stripping */
2868         __set_bit(BNX2X_Q_FLG_VLAN, &flags);
2869
2870         /* configure silent vlan removal */
2871         if (IS_MF_AFEX(bp))
2872                 __set_bit(BNX2X_Q_FLG_SILENT_VLAN_REM, &flags);
2873
2874
2875         return flags | bnx2x_get_common_flags(bp, fp, true);
2876 }
2877
2878 static void bnx2x_pf_q_prep_general(struct bnx2x *bp,
2879         struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init,
2880         u8 cos)
2881 {
2882         gen_init->stat_id = bnx2x_stats_id(fp);
2883         gen_init->spcl_id = fp->cl_id;
2884
2885         /* Always use mini-jumbo MTU for FCoE L2 ring */
2886         if (IS_FCOE_FP(fp))
2887                 gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
2888         else
2889                 gen_init->mtu = bp->dev->mtu;
2890
2891         gen_init->cos = cos;
2892 }
2893
2894 static void bnx2x_pf_rx_q_prep(struct bnx2x *bp,
2895         struct bnx2x_fastpath *fp, struct rxq_pause_params *pause,
2896         struct bnx2x_rxq_setup_params *rxq_init)
2897 {
2898         u8 max_sge = 0;
2899         u16 sge_sz = 0;
2900         u16 tpa_agg_size = 0;
2901
2902         if (!fp->disable_tpa) {
2903                 pause->sge_th_lo = SGE_TH_LO(bp);
2904                 pause->sge_th_hi = SGE_TH_HI(bp);
2905
2906                 /* validate SGE ring has enough to cross high threshold */
2907                 WARN_ON(bp->dropless_fc &&
2908                                 pause->sge_th_hi + FW_PREFETCH_CNT >
2909                                 MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES);
2910
2911                 tpa_agg_size = min_t(u32,
2912                         (min_t(u32, 8, MAX_SKB_FRAGS) *
2913                         SGE_PAGE_SIZE * PAGES_PER_SGE), 0xffff);
2914                 max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >>
2915                         SGE_PAGE_SHIFT;
2916                 max_sge = ((max_sge + PAGES_PER_SGE - 1) &
2917                           (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT;
2918                 sge_sz = (u16)min_t(u32, SGE_PAGE_SIZE * PAGES_PER_SGE,
2919                                     0xffff);
2920         }
2921
2922         /* pause - not for e1 */
2923         if (!CHIP_IS_E1(bp)) {
2924                 pause->bd_th_lo = BD_TH_LO(bp);
2925                 pause->bd_th_hi = BD_TH_HI(bp);
2926
2927                 pause->rcq_th_lo = RCQ_TH_LO(bp);
2928                 pause->rcq_th_hi = RCQ_TH_HI(bp);
2929                 /*
2930                  * validate that rings have enough entries to cross
2931                  * high thresholds
2932                  */
2933                 WARN_ON(bp->dropless_fc &&
2934                                 pause->bd_th_hi + FW_PREFETCH_CNT >
2935                                 bp->rx_ring_size);
2936                 WARN_ON(bp->dropless_fc &&
2937                                 pause->rcq_th_hi + FW_PREFETCH_CNT >
2938                                 NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT);
2939
2940                 pause->pri_map = 1;
2941         }
2942
2943         /* rxq setup */
2944         rxq_init->dscr_map = fp->rx_desc_mapping;
2945         rxq_init->sge_map = fp->rx_sge_mapping;
2946         rxq_init->rcq_map = fp->rx_comp_mapping;
2947         rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE;
2948
2949         /* This should be a maximum number of data bytes that may be
2950          * placed on the BD (not including paddings).
2951          */
2952         rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START -
2953                 BNX2X_FW_RX_ALIGN_END - IP_HEADER_ALIGNMENT_PADDING;
2954
2955         rxq_init->cl_qzone_id = fp->cl_qzone_id;
2956         rxq_init->tpa_agg_sz = tpa_agg_size;
2957         rxq_init->sge_buf_sz = sge_sz;
2958         rxq_init->max_sges_pkt = max_sge;
2959         rxq_init->rss_engine_id = BP_FUNC(bp);
2960         rxq_init->mcast_engine_id = BP_FUNC(bp);
2961
2962         /* Maximum number or simultaneous TPA aggregation for this Queue.
2963          *
2964          * For PF Clients it should be the maximum avaliable number.
2965          * VF driver(s) may want to define it to a smaller value.
2966          */
2967         rxq_init->max_tpa_queues = MAX_AGG_QS(bp);
2968
2969         rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
2970         rxq_init->fw_sb_id = fp->fw_sb_id;
2971
2972         if (IS_FCOE_FP(fp))
2973                 rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS;
2974         else
2975                 rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
2976         /* configure silent vlan removal
2977          * if multi function mode is afex, then mask default vlan
2978          */
2979         if (IS_MF_AFEX(bp)) {
2980                 rxq_init->silent_removal_value = bp->afex_def_vlan_tag;
2981                 rxq_init->silent_removal_mask = VLAN_VID_MASK;
2982         }
2983 }
2984
2985 static void bnx2x_pf_tx_q_prep(struct bnx2x *bp,
2986         struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init,
2987         u8 cos)
2988 {
2989         txq_init->dscr_map = fp->txdata_ptr[cos]->tx_desc_mapping;
2990         txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
2991         txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
2992         txq_init->fw_sb_id = fp->fw_sb_id;
2993
2994         /*
2995          * set the tss leading client id for TX classfication ==
2996          * leading RSS client id
2997          */
2998         txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id);
2999
3000         if (IS_FCOE_FP(fp)) {
3001                 txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS;
3002                 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE;
3003         }
3004 }
3005
3006 static void bnx2x_pf_init(struct bnx2x *bp)
3007 {
3008         struct bnx2x_func_init_params func_init = {0};
3009         struct event_ring_data eq_data = { {0} };
3010         u16 flags;
3011
3012         if (!CHIP_IS_E1x(bp)) {
3013                 /* reset IGU PF statistics: MSIX + ATTN */
3014                 /* PF */
3015                 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3016                            BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3017                            (CHIP_MODE_IS_4_PORT(bp) ?
3018                                 BP_FUNC(bp) : BP_VN(bp))*4, 0);
3019                 /* ATTN */
3020                 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3021                            BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3022                            BNX2X_IGU_STAS_MSG_PF_CNT*4 +
3023                            (CHIP_MODE_IS_4_PORT(bp) ?
3024                                 BP_FUNC(bp) : BP_VN(bp))*4, 0);
3025         }
3026
3027         /* function setup flags */
3028         flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
3029
3030         /* This flag is relevant for E1x only.
3031          * E2 doesn't have a TPA configuration in a function level.
3032          */
3033         flags |= (bp->flags & TPA_ENABLE_FLAG) ? FUNC_FLG_TPA : 0;
3034
3035         func_init.func_flgs = flags;
3036         func_init.pf_id = BP_FUNC(bp);
3037         func_init.func_id = BP_FUNC(bp);
3038         func_init.spq_map = bp->spq_mapping;
3039         func_init.spq_prod = bp->spq_prod_idx;
3040
3041         bnx2x_func_init(bp, &func_init);
3042
3043         memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port));
3044
3045         /*
3046          * Congestion management values depend on the link rate
3047          * There is no active link so initial link rate is set to 10 Gbps.
3048          * When the link comes up The congestion management values are
3049          * re-calculated according to the actual link rate.
3050          */
3051         bp->link_vars.line_speed = SPEED_10000;
3052         bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp));
3053
3054         /* Only the PMF sets the HW */
3055         if (bp->port.pmf)
3056                 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3057
3058         /* init Event Queue */
3059         eq_data.base_addr.hi = U64_HI(bp->eq_mapping);
3060         eq_data.base_addr.lo = U64_LO(bp->eq_mapping);
3061         eq_data.producer = bp->eq_prod;
3062         eq_data.index_id = HC_SP_INDEX_EQ_CONS;
3063         eq_data.sb_id = DEF_SB_ID;
3064         storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp));
3065 }
3066
3067
3068 static void bnx2x_e1h_disable(struct bnx2x *bp)
3069 {
3070         int port = BP_PORT(bp);
3071
3072         bnx2x_tx_disable(bp);
3073
3074         REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
3075 }
3076
3077 static void bnx2x_e1h_enable(struct bnx2x *bp)
3078 {
3079         int port = BP_PORT(bp);
3080
3081         REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
3082
3083         /* Tx queue should be only reenabled */
3084         netif_tx_wake_all_queues(bp->dev);
3085
3086         /*
3087          * Should not call netif_carrier_on since it will be called if the link
3088          * is up when checking for link state
3089          */
3090 }
3091
3092 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
3093
3094 static void bnx2x_drv_info_ether_stat(struct bnx2x *bp)
3095 {
3096         struct eth_stats_info *ether_stat =
3097                 &bp->slowpath->drv_info_to_mcp.ether_stat;
3098
3099         strlcpy(ether_stat->version, DRV_MODULE_VERSION,
3100                 ETH_STAT_INFO_VERSION_LEN);
3101
3102         bp->sp_objs[0].mac_obj.get_n_elements(bp, &bp->sp_objs[0].mac_obj,
3103                                         DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
3104                                         ether_stat->mac_local);
3105
3106         ether_stat->mtu_size = bp->dev->mtu;
3107
3108         if (bp->dev->features & NETIF_F_RXCSUM)
3109                 ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
3110         if (bp->dev->features & NETIF_F_TSO)
3111                 ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
3112         ether_stat->feature_flags |= bp->common.boot_mode;
3113
3114         ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0;
3115
3116         ether_stat->txq_size = bp->tx_ring_size;
3117         ether_stat->rxq_size = bp->rx_ring_size;
3118 }
3119
3120 static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp)
3121 {
3122         struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3123         struct fcoe_stats_info *fcoe_stat =
3124                 &bp->slowpath->drv_info_to_mcp.fcoe_stat;
3125
3126         if (!CNIC_LOADED(bp))
3127                 return;
3128
3129         memcpy(fcoe_stat->mac_local + MAC_LEADING_ZERO_CNT,
3130                bp->fip_mac, ETH_ALEN);
3131
3132         fcoe_stat->qos_priority =
3133                 app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE];
3134
3135         /* insert FCoE stats from ramrod response */
3136         if (!NO_FCOE(bp)) {
3137                 struct tstorm_per_queue_stats *fcoe_q_tstorm_stats =
3138                         &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3139                         tstorm_queue_statistics;
3140
3141                 struct xstorm_per_queue_stats *fcoe_q_xstorm_stats =
3142                         &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3143                         xstorm_queue_statistics;
3144
3145                 struct fcoe_statistics_params *fw_fcoe_stat =
3146                         &bp->fw_stats_data->fcoe;
3147
3148                 ADD_64(fcoe_stat->rx_bytes_hi, 0, fcoe_stat->rx_bytes_lo,
3149                        fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt);
3150
3151                 ADD_64(fcoe_stat->rx_bytes_hi,
3152                        fcoe_q_tstorm_stats->rcv_ucast_bytes.hi,
3153                        fcoe_stat->rx_bytes_lo,
3154                        fcoe_q_tstorm_stats->rcv_ucast_bytes.lo);
3155
3156                 ADD_64(fcoe_stat->rx_bytes_hi,
3157                        fcoe_q_tstorm_stats->rcv_bcast_bytes.hi,
3158                        fcoe_stat->rx_bytes_lo,
3159                        fcoe_q_tstorm_stats->rcv_bcast_bytes.lo);
3160
3161                 ADD_64(fcoe_stat->rx_bytes_hi,
3162                        fcoe_q_tstorm_stats->rcv_mcast_bytes.hi,
3163                        fcoe_stat->rx_bytes_lo,
3164                        fcoe_q_tstorm_stats->rcv_mcast_bytes.lo);
3165
3166                 ADD_64(fcoe_stat->rx_frames_hi, 0, fcoe_stat->rx_frames_lo,
3167                        fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt);
3168
3169                 ADD_64(fcoe_stat->rx_frames_hi, 0, fcoe_stat->rx_frames_lo,
3170                        fcoe_q_tstorm_stats->rcv_ucast_pkts);
3171
3172                 ADD_64(fcoe_stat->rx_frames_hi, 0, fcoe_stat->rx_frames_lo,
3173                        fcoe_q_tstorm_stats->rcv_bcast_pkts);
3174
3175                 ADD_64(fcoe_stat->rx_frames_hi, 0, fcoe_stat->rx_frames_lo,
3176                        fcoe_q_tstorm_stats->rcv_mcast_pkts);
3177
3178                 ADD_64(fcoe_stat->tx_bytes_hi, 0, fcoe_stat->tx_bytes_lo,
3179                        fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt);
3180
3181                 ADD_64(fcoe_stat->tx_bytes_hi,
3182                        fcoe_q_xstorm_stats->ucast_bytes_sent.hi,
3183                        fcoe_stat->tx_bytes_lo,
3184                        fcoe_q_xstorm_stats->ucast_bytes_sent.lo);
3185
3186                 ADD_64(fcoe_stat->tx_bytes_hi,
3187                        fcoe_q_xstorm_stats->bcast_bytes_sent.hi,
3188                        fcoe_stat->tx_bytes_lo,
3189                        fcoe_q_xstorm_stats->bcast_bytes_sent.lo);
3190
3191                 ADD_64(fcoe_stat->tx_bytes_hi,
3192                        fcoe_q_xstorm_stats->mcast_bytes_sent.hi,
3193                        fcoe_stat->tx_bytes_lo,
3194                        fcoe_q_xstorm_stats->mcast_bytes_sent.lo);
3195
3196                 ADD_64(fcoe_stat->tx_frames_hi, 0, fcoe_stat->tx_frames_lo,
3197                        fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt);
3198
3199                 ADD_64(fcoe_stat->tx_frames_hi, 0, fcoe_stat->tx_frames_lo,
3200                        fcoe_q_xstorm_stats->ucast_pkts_sent);
3201
3202                 ADD_64(fcoe_stat->tx_frames_hi, 0, fcoe_stat->tx_frames_lo,
3203                        fcoe_q_xstorm_stats->bcast_pkts_sent);
3204
3205                 ADD_64(fcoe_stat->tx_frames_hi, 0, fcoe_stat->tx_frames_lo,
3206                        fcoe_q_xstorm_stats->mcast_pkts_sent);
3207         }
3208
3209         /* ask L5 driver to add data to the struct */
3210         bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD);
3211 }
3212
3213 static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp)
3214 {
3215         struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3216         struct iscsi_stats_info *iscsi_stat =
3217                 &bp->slowpath->drv_info_to_mcp.iscsi_stat;
3218
3219         if (!CNIC_LOADED(bp))
3220                 return;
3221
3222         memcpy(iscsi_stat->mac_local + MAC_LEADING_ZERO_CNT,
3223                bp->cnic_eth_dev.iscsi_mac, ETH_ALEN);
3224
3225         iscsi_stat->qos_priority =
3226                 app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI];
3227
3228         /* ask L5 driver to add data to the struct */
3229         bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD);
3230 }
3231
3232 /* called due to MCP event (on pmf):
3233  *      reread new bandwidth configuration
3234  *      configure FW
3235  *      notify others function about the change
3236  */
3237 static void bnx2x_config_mf_bw(struct bnx2x *bp)
3238 {
3239         if (bp->link_vars.link_up) {
3240                 bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX);
3241                 bnx2x_link_sync_notify(bp);
3242         }
3243         storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3244 }
3245
3246 static void bnx2x_set_mf_bw(struct bnx2x *bp)
3247 {
3248         bnx2x_config_mf_bw(bp);
3249         bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
3250 }
3251
3252 static void bnx2x_handle_eee_event(struct bnx2x *bp)
3253 {
3254         DP(BNX2X_MSG_MCP, "EEE - LLDP event\n");
3255         bnx2x_fw_command(bp, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
3256 }
3257
3258 static void bnx2x_handle_drv_info_req(struct bnx2x *bp)
3259 {
3260         enum drv_info_opcode op_code;
3261         u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control);
3262
3263         /* if drv_info version supported by MFW doesn't match - send NACK */
3264         if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
3265                 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3266                 return;
3267         }
3268
3269         op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
3270                   DRV_INFO_CONTROL_OP_CODE_SHIFT;
3271
3272         memset(&bp->slowpath->drv_info_to_mcp, 0,
3273                sizeof(union drv_info_to_mcp));
3274
3275         switch (op_code) {
3276         case ETH_STATS_OPCODE:
3277                 bnx2x_drv_info_ether_stat(bp);
3278                 break;
3279         case FCOE_STATS_OPCODE:
3280                 bnx2x_drv_info_fcoe_stat(bp);
3281                 break;
3282         case ISCSI_STATS_OPCODE:
3283                 bnx2x_drv_info_iscsi_stat(bp);
3284                 break;
3285         default:
3286                 /* if op code isn't supported - send NACK */
3287                 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3288                 return;
3289         }
3290
3291         /* if we got drv_info attn from MFW then these fields are defined in
3292          * shmem2 for sure
3293          */
3294         SHMEM2_WR(bp, drv_info_host_addr_lo,
3295                 U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3296         SHMEM2_WR(bp, drv_info_host_addr_hi,
3297                 U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3298
3299         bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0);
3300 }
3301
3302 static void bnx2x_dcc_event(struct bnx2x *bp, u32 dcc_event)
3303 {
3304         DP(BNX2X_MSG_MCP, "dcc_event 0x%x\n", dcc_event);
3305
3306         if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
3307
3308                 /*
3309                  * This is the only place besides the function initialization
3310                  * where the bp->flags can change so it is done without any
3311                  * locks
3312                  */
3313                 if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
3314                         DP(BNX2X_MSG_MCP, "mf_cfg function disabled\n");
3315                         bp->flags |= MF_FUNC_DIS;
3316
3317                         bnx2x_e1h_disable(bp);
3318                 } else {
3319                         DP(BNX2X_MSG_MCP, "mf_cfg function enabled\n");
3320                         bp->flags &= ~MF_FUNC_DIS;
3321
3322                         bnx2x_e1h_enable(bp);
3323                 }
3324                 dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
3325         }
3326         if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
3327                 bnx2x_config_mf_bw(bp);
3328                 dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
3329         }
3330
3331         /* Report results to MCP */
3332         if (dcc_event)
3333                 bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_FAILURE, 0);
3334         else
3335                 bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_OK, 0);
3336 }
3337
3338 /* must be called under the spq lock */
3339 static struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp)
3340 {
3341         struct eth_spe *next_spe = bp->spq_prod_bd;
3342
3343         if (bp->spq_prod_bd == bp->spq_last_bd) {
3344                 bp->spq_prod_bd = bp->spq;
3345                 bp->spq_prod_idx = 0;
3346                 DP(BNX2X_MSG_SP, "end of spq\n");
3347         } else {
3348                 bp->spq_prod_bd++;
3349                 bp->spq_prod_idx++;
3350         }
3351         return next_spe;
3352 }
3353
3354 /* must be called under the spq lock */
3355 static void bnx2x_sp_prod_update(struct bnx2x *bp)
3356 {
3357         int func = BP_FUNC(bp);
3358
3359         /*
3360          * Make sure that BD data is updated before writing the producer:
3361          * BD data is written to the memory, the producer is read from the
3362          * memory, thus we need a full memory barrier to ensure the ordering.
3363          */
3364         mb();
3365
3366         REG_WR16(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func),
3367                  bp->spq_prod_idx);
3368         mmiowb();
3369 }
3370
3371 /**
3372  * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
3373  *
3374  * @cmd:        command to check
3375  * @cmd_type:   command type
3376  */
3377 static bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
3378 {
3379         if ((cmd_type == NONE_CONNECTION_TYPE) ||
3380             (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
3381             (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
3382             (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
3383             (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
3384             (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
3385             (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE))
3386                 return true;
3387         else
3388                 return false;
3389
3390 }
3391
3392
3393 /**
3394  * bnx2x_sp_post - place a single command on an SP ring
3395  *
3396  * @bp:         driver handle
3397  * @command:    command to place (e.g. SETUP, FILTER_RULES, etc.)
3398  * @cid:        SW CID the command is related to
3399  * @data_hi:    command private data address (high 32 bits)
3400  * @data_lo:    command private data address (low 32 bits)
3401  * @cmd_type:   command type (e.g. NONE, ETH)
3402  *
3403  * SP data is handled as if it's always an address pair, thus data fields are
3404  * not swapped to little endian in upper functions. Instead this function swaps
3405  * data as if it's two u32 fields.
3406  */
3407 int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
3408                   u32 data_hi, u32 data_lo, int cmd_type)
3409 {
3410         struct eth_spe *spe;
3411         u16 type;
3412         bool common = bnx2x_is_contextless_ramrod(command, cmd_type);
3413
3414 #ifdef BNX2X_STOP_ON_ERROR
3415         if (unlikely(bp->panic)) {
3416                 BNX2X_ERR("Can't post SP when there is panic\n");
3417                 return -EIO;
3418         }
3419 #endif
3420
3421         spin_lock_bh(&bp->spq_lock);
3422
3423         if (common) {
3424                 if (!atomic_read(&bp->eq_spq_left)) {
3425                         BNX2X_ERR("BUG! EQ ring full!\n");
3426                         spin_unlock_bh(&bp->spq_lock);
3427                         bnx2x_panic();
3428                         return -EBUSY;
3429                 }
3430         } else if (!atomic_read(&bp->cq_spq_left)) {
3431                         BNX2X_ERR("BUG! SPQ ring full!\n");
3432                         spin_unlock_bh(&bp->spq_lock);
3433                         bnx2x_panic();
3434                         return -EBUSY;
3435         }
3436
3437         spe = bnx2x_sp_get_next(bp);
3438
3439         /* CID needs port number to be encoded int it */
3440         spe->hdr.conn_and_cmd_data =
3441                         cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) |
3442                                     HW_CID(bp, cid));
3443
3444         type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) & SPE_HDR_CONN_TYPE;
3445
3446         type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) &
3447                  SPE_HDR_FUNCTION_ID);
3448
3449         spe->hdr.type = cpu_to_le16(type);
3450
3451         spe->data.update_data_addr.hi = cpu_to_le32(data_hi);
3452         spe->data.update_data_addr.lo = cpu_to_le32(data_lo);
3453
3454         /*
3455          * It's ok if the actual decrement is issued towards the memory
3456          * somewhere between the spin_lock and spin_unlock. Thus no
3457          * more explict memory barrier is needed.
3458          */
3459         if (common)
3460                 atomic_dec(&bp->eq_spq_left);
3461         else
3462                 atomic_dec(&bp->cq_spq_left);
3463
3464
3465         DP(BNX2X_MSG_SP,
3466            "SPQE[%x] (%x:%x)  (cmd, common?) (%d,%d)  hw_cid %x  data (%x:%x) type(0x%x) left (CQ, EQ) (%x,%x)\n",
3467            bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping),
3468            (u32)(U64_LO(bp->spq_mapping) +
3469            (void *)bp->spq_prod_bd - (void *)bp->spq), command, common,
3470            HW_CID(bp, cid), data_hi, data_lo, type,
3471            atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left));
3472
3473         bnx2x_sp_prod_update(bp);
3474         spin_unlock_bh(&bp->spq_lock);
3475         return 0;
3476 }
3477
3478 /* acquire split MCP access lock register */
3479 static int bnx2x_acquire_alr(struct bnx2x *bp)
3480 {
3481         u32 j, val;
3482         int rc = 0;
3483
3484         might_sleep();
3485         for (j = 0; j < 1000; j++) {
3486                 val = (1UL << 31);
3487                 REG_WR(bp, GRCBASE_MCP + 0x9c, val);
3488                 val = REG_RD(bp, GRCBASE_MCP + 0x9c);
3489                 if (val & (1L << 31))
3490                         break;
3491
3492                 msleep(5);
3493         }
3494         if (!(val & (1L << 31))) {
3495                 BNX2X_ERR("Cannot acquire MCP access lock register\n");
3496                 rc = -EBUSY;
3497         }
3498
3499         return rc;
3500 }
3501
3502 /* release split MCP access lock register */
3503 static void bnx2x_release_alr(struct bnx2x *bp)
3504 {
3505         REG_WR(bp, GRCBASE_MCP + 0x9c, 0);
3506 }
3507
3508 #define BNX2X_DEF_SB_ATT_IDX    0x0001
3509 #define BNX2X_DEF_SB_IDX        0x0002
3510
3511 static u16 bnx2x_update_dsb_idx(struct bnx2x *bp)
3512 {
3513         struct host_sp_status_block *def_sb = bp->def_status_blk;
3514         u16 rc = 0;
3515
3516         barrier(); /* status block is written to by the chip */
3517         if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
3518                 bp->def_att_idx = def_sb->atten_status_block.attn_bits_index;
3519                 rc |= BNX2X_DEF_SB_ATT_IDX;
3520         }
3521
3522         if (bp->def_idx != def_sb->sp_sb.running_index) {
3523                 bp->def_idx = def_sb->sp_sb.running_index;
3524                 rc |= BNX2X_DEF_SB_IDX;
3525         }
3526
3527         /* Do not reorder: indecies reading should complete before handling */
3528         barrier();
3529         return rc;
3530 }
3531
3532 /*
3533  * slow path service functions
3534  */
3535
3536 static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted)
3537 {
3538         int port = BP_PORT(bp);
3539         u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
3540                               MISC_REG_AEU_MASK_ATTN_FUNC_0;
3541         u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
3542                                        NIG_REG_MASK_INTERRUPT_PORT0;
3543         u32 aeu_mask;
3544         u32 nig_mask = 0;
3545         u32 reg_addr;
3546
3547         if (bp->attn_state & asserted)
3548                 BNX2X_ERR("IGU ERROR\n");
3549
3550         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3551         aeu_mask = REG_RD(bp, aeu_addr);
3552
3553         DP(NETIF_MSG_HW, "aeu_mask %x  newly asserted %x\n",
3554            aeu_mask, asserted);
3555         aeu_mask &= ~(asserted & 0x3ff);
3556         DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
3557
3558         REG_WR(bp, aeu_addr, aeu_mask);
3559         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3560
3561         DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
3562         bp->attn_state |= asserted;
3563         DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
3564
3565         if (asserted & ATTN_HARD_WIRED_MASK) {
3566                 if (asserted & ATTN_NIG_FOR_FUNC) {
3567
3568                         bnx2x_acquire_phy_lock(bp);
3569
3570                         /* save nig interrupt mask */
3571                         nig_mask = REG_RD(bp, nig_int_mask_addr);
3572
3573                         /* If nig_mask is not set, no need to call the update
3574                          * function.
3575                          */
3576                         if (nig_mask) {
3577                                 REG_WR(bp, nig_int_mask_addr, 0);
3578
3579                                 bnx2x_link_attn(bp);
3580                         }
3581
3582                         /* handle unicore attn? */
3583                 }
3584                 if (asserted & ATTN_SW_TIMER_4_FUNC)
3585                         DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n");
3586
3587                 if (asserted & GPIO_2_FUNC)
3588                         DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n");
3589
3590                 if (asserted & GPIO_3_FUNC)
3591                         DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n");
3592
3593                 if (asserted & GPIO_4_FUNC)
3594                         DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n");
3595
3596                 if (port == 0) {
3597                         if (asserted & ATTN_GENERAL_ATTN_1) {
3598                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n");
3599                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
3600                         }
3601                         if (asserted & ATTN_GENERAL_ATTN_2) {
3602                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n");
3603                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
3604                         }
3605                         if (asserted & ATTN_GENERAL_ATTN_3) {
3606                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n");
3607                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
3608                         }
3609                 } else {
3610                         if (asserted & ATTN_GENERAL_ATTN_4) {
3611                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n");
3612                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
3613                         }
3614                         if (asserted & ATTN_GENERAL_ATTN_5) {
3615                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n");
3616                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
3617                         }
3618                         if (asserted & ATTN_GENERAL_ATTN_6) {
3619                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n");
3620                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
3621                         }
3622                 }
3623
3624         } /* if hardwired */
3625
3626         if (bp->common.int_block == INT_BLOCK_HC)
3627                 reg_addr = (HC_REG_COMMAND_REG + port*32 +
3628                             COMMAND_REG_ATTN_BITS_SET);
3629         else
3630                 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
3631
3632         DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted,
3633            (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
3634         REG_WR(bp, reg_addr, asserted);
3635
3636         /* now set back the mask */
3637         if (asserted & ATTN_NIG_FOR_FUNC) {
3638                 /* Verify that IGU ack through BAR was written before restoring
3639                  * NIG mask. This loop should exit after 2-3 iterations max.
3640                  */
3641                 if (bp->common.int_block != INT_BLOCK_HC) {
3642                         u32 cnt = 0, igu_acked;
3643                         do {
3644                                 igu_acked = REG_RD(bp,
3645                                                    IGU_REG_ATTENTION_ACK_BITS);
3646                         } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
3647                                  (++cnt < MAX_IGU_ATTN_ACK_TO));
3648                         if (!igu_acked)
3649                                 DP(NETIF_MSG_HW,
3650                                    "Failed to verify IGU ack on time\n");
3651                         barrier();
3652                 }
3653                 REG_WR(bp, nig_int_mask_addr, nig_mask);
3654                 bnx2x_release_phy_lock(bp);
3655         }
3656 }
3657
3658 static void bnx2x_fan_failure(struct bnx2x *bp)
3659 {
3660         int port = BP_PORT(bp);
3661         u32 ext_phy_config;
3662         /* mark the failure */
3663         ext_phy_config =
3664                 SHMEM_RD(bp,
3665                          dev_info.port_hw_config[port].external_phy_config);
3666
3667         ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
3668         ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
3669         SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config,
3670                  ext_phy_config);
3671
3672         /* log the failure */
3673         netdev_err(bp->dev, "Fan Failure on Network Controller has caused the driver to shutdown the card to prevent permanent damage.\n"
3674                             "Please contact OEM Support for assistance\n");
3675
3676         /*
3677          * Scheudle device reset (unload)
3678          * This is due to some boards consuming sufficient power when driver is
3679          * up to overheat if fan fails.
3680          */
3681         smp_mb__before_clear_bit();
3682         set_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state);
3683         smp_mb__after_clear_bit();
3684         schedule_delayed_work(&bp->sp_rtnl_task, 0);
3685
3686 }
3687
3688 static void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn)
3689 {
3690         int port = BP_PORT(bp);
3691         int reg_offset;
3692         u32 val;
3693
3694         reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
3695                              MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
3696
3697         if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
3698
3699                 val = REG_RD(bp, reg_offset);
3700                 val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
3701                 REG_WR(bp, reg_offset, val);
3702
3703                 BNX2X_ERR("SPIO5 hw attention\n");
3704
3705                 /* Fan failure attention */
3706                 bnx2x_hw_reset_phy(&bp->link_params);
3707                 bnx2x_fan_failure(bp);
3708         }
3709
3710         if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) {
3711                 bnx2x_acquire_phy_lock(bp);
3712                 bnx2x_handle_module_detect_int(&bp->link_params);
3713                 bnx2x_release_phy_lock(bp);
3714         }
3715
3716         if (attn & HW_INTERRUT_ASSERT_SET_0) {
3717
3718                 val = REG_RD(bp, reg_offset);
3719                 val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
3720                 REG_WR(bp, reg_offset, val);
3721
3722                 BNX2X_ERR("FATAL HW block attention set0 0x%x\n",
3723                           (u32)(attn & HW_INTERRUT_ASSERT_SET_0));
3724                 bnx2x_panic();
3725         }
3726 }
3727
3728 static void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn)
3729 {
3730         u32 val;
3731
3732         if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
3733
3734                 val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR);
3735                 BNX2X_ERR("DB hw attention 0x%x\n", val);
3736                 /* DORQ discard attention */
3737                 if (val & 0x2)
3738                         BNX2X_ERR("FATAL error from DORQ\n");
3739         }
3740
3741         if (attn & HW_INTERRUT_ASSERT_SET_1) {
3742
3743                 int port = BP_PORT(bp);
3744                 int reg_offset;
3745
3746                 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
3747                                      MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
3748
3749                 val = REG_RD(bp, reg_offset);
3750                 val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
3751                 REG_WR(bp, reg_offset, val);
3752
3753                 BNX2X_ERR("FATAL HW block attention set1 0x%x\n",
3754                           (u32)(attn & HW_INTERRUT_ASSERT_SET_1));
3755                 bnx2x_panic();
3756         }
3757 }
3758
3759 static void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn)
3760 {
3761         u32 val;
3762
3763         if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
3764
3765                 val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR);
3766                 BNX2X_ERR("CFC hw attention 0x%x\n", val);
3767                 /* CFC error attention */
3768                 if (val & 0x2)
3769                         BNX2X_ERR("FATAL error from CFC\n");
3770         }
3771
3772         if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
3773                 val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0);
3774                 BNX2X_ERR("PXP hw attention-0 0x%x\n", val);
3775                 /* RQ_USDMDP_FIFO_OVERFLOW */
3776                 if (val & 0x18000)
3777                         BNX2X_ERR("FATAL error from PXP\n");
3778
3779                 if (!CHIP_IS_E1x(bp)) {
3780                         val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1);
3781                         BNX2X_ERR("PXP hw attention-1 0x%x\n", val);
3782                 }
3783         }
3784
3785         if (attn & HW_INTERRUT_ASSERT_SET_2) {
3786
3787                 int port = BP_PORT(bp);
3788                 int reg_offset;
3789
3790                 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
3791                                      MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
3792
3793                 val = REG_RD(bp, reg_offset);
3794                 val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
3795                 REG_WR(bp, reg_offset, val);
3796
3797                 BNX2X_ERR("FATAL HW block attention set2 0x%x\n",
3798                           (u32)(attn & HW_INTERRUT_ASSERT_SET_2));
3799                 bnx2x_panic();
3800         }
3801 }
3802
3803 static void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn)
3804 {
3805         u32 val;
3806
3807         if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
3808
3809                 if (attn & BNX2X_PMF_LINK_ASSERT) {
3810                         int func = BP_FUNC(bp);
3811
3812                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
3813                         bnx2x_read_mf_cfg(bp);
3814                         bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp,
3815                                         func_mf_config[BP_ABS_FUNC(bp)].config);
3816                         val = SHMEM_RD(bp,
3817                                        func_mb[BP_FW_MB_IDX(bp)].drv_status);
3818                         if (val & DRV_STATUS_DCC_EVENT_MASK)
3819                                 bnx2x_dcc_event(bp,
3820                                             (val & DRV_STATUS_DCC_EVENT_MASK));
3821
3822                         if (val & DRV_STATUS_SET_MF_BW)
3823                                 bnx2x_set_mf_bw(bp);
3824
3825                         if (val & DRV_STATUS_DRV_INFO_REQ)
3826                                 bnx2x_handle_drv_info_req(bp);
3827                         if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF))
3828                                 bnx2x_pmf_update(bp);
3829
3830                         if (bp->port.pmf &&
3831                             (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
3832                                 bp->dcbx_enabled > 0)
3833                                 /* start dcbx state machine */
3834                                 bnx2x_dcbx_set_params(bp,
3835                                         BNX2X_DCBX_STATE_NEG_RECEIVED);
3836                         if (val & DRV_STATUS_AFEX_EVENT_MASK)
3837                                 bnx2x_handle_afex_cmd(bp,
3838                                         val & DRV_STATUS_AFEX_EVENT_MASK);
3839                         if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
3840                                 bnx2x_handle_eee_event(bp);
3841                         if (bp->link_vars.periodic_flags &
3842                             PERIODIC_FLAGS_LINK_EVENT) {
3843                                 /*  sync with link */
3844                                 bnx2x_acquire_phy_lock(bp);
3845                                 bp->link_vars.periodic_flags &=
3846                                         ~PERIODIC_FLAGS_LINK_EVENT;
3847                                 bnx2x_release_phy_lock(bp);
3848                                 if (IS_MF(bp))
3849                                         bnx2x_link_sync_notify(bp);
3850                                 bnx2x_link_report(bp);
3851                         }
3852                         /* Always call it here: bnx2x_link_report() will
3853                          * prevent the link indication duplication.
3854                          */
3855                         bnx2x__link_status_update(bp);
3856                 } else if (attn & BNX2X_MC_ASSERT_BITS) {
3857
3858                         BNX2X_ERR("MC assert!\n");
3859                         bnx2x_mc_assert(bp);
3860                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0);
3861                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0);
3862                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0);
3863                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0);
3864                         bnx2x_panic();
3865
3866                 } else if (attn & BNX2X_MCP_ASSERT) {
3867
3868                         BNX2X_ERR("MCP assert!\n");
3869                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0);
3870                         bnx2x_fw_dump(bp);
3871
3872                 } else
3873                         BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn);
3874         }
3875
3876         if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
3877                 BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn);
3878                 if (attn & BNX2X_GRC_TIMEOUT) {
3879                         val = CHIP_IS_E1(bp) ? 0 :
3880                                         REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN);
3881                         BNX2X_ERR("GRC time-out 0x%08x\n", val);
3882                 }
3883                 if (attn & BNX2X_GRC_RSV) {
3884                         val = CHIP_IS_E1(bp) ? 0 :
3885                                         REG_RD(bp, MISC_REG_GRC_RSV_ATTN);
3886                         BNX2X_ERR("GRC reserved 0x%08x\n", val);
3887                 }
3888                 REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
3889         }
3890 }
3891
3892 /*
3893  * Bits map:
3894  * 0-7   - Engine0 load counter.
3895  * 8-15  - Engine1 load counter.
3896  * 16    - Engine0 RESET_IN_PROGRESS bit.
3897  * 17    - Engine1 RESET_IN_PROGRESS bit.
3898  * 18    - Engine0 ONE_IS_LOADED. Set when there is at least one active function
3899  *         on the engine
3900  * 19    - Engine1 ONE_IS_LOADED.
3901  * 20    - Chip reset flow bit. When set none-leader must wait for both engines
3902  *         leader to complete (check for both RESET_IN_PROGRESS bits and not for
3903  *         just the one belonging to its engine).
3904  *
3905  */
3906 #define BNX2X_RECOVERY_GLOB_REG         MISC_REG_GENERIC_POR_1
3907
3908 #define BNX2X_PATH0_LOAD_CNT_MASK       0x000000ff
3909 #define BNX2X_PATH0_LOAD_CNT_SHIFT      0
3910 #define BNX2X_PATH1_LOAD_CNT_MASK       0x0000ff00
3911 #define BNX2X_PATH1_LOAD_CNT_SHIFT      8
3912 #define BNX2X_PATH0_RST_IN_PROG_BIT     0x00010000
3913 #define BNX2X_PATH1_RST_IN_PROG_BIT     0x00020000
3914 #define BNX2X_GLOBAL_RESET_BIT          0x00040000
3915
3916 /*
3917  * Set the GLOBAL_RESET bit.
3918  *
3919  * Should be run under rtnl lock
3920  */
3921 void bnx2x_set_reset_global(struct bnx2x *bp)
3922 {
3923         u32 val;
3924         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3925         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3926         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
3927         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3928 }
3929
3930 /*
3931  * Clear the GLOBAL_RESET bit.
3932  *
3933  * Should be run under rtnl lock
3934  */
3935 static void bnx2x_clear_reset_global(struct bnx2x *bp)
3936 {
3937         u32 val;
3938         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3939         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3940         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
3941         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3942 }
3943
3944 /*
3945  * Checks the GLOBAL_RESET bit.
3946  *
3947  * should be run under rtnl lock
3948  */
3949 static bool bnx2x_reset_is_global(struct bnx2x *bp)
3950 {
3951         u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3952
3953         DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val);
3954         return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false;
3955 }
3956
3957 /*
3958  * Clear RESET_IN_PROGRESS bit for the current engine.
3959  *
3960  * Should be run under rtnl lock
3961  */
3962 static void bnx2x_set_reset_done(struct bnx2x *bp)
3963 {
3964         u32 val;
3965         u32 bit = BP_PATH(bp) ?
3966                 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
3967         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3968         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3969
3970         /* Clear the bit */
3971         val &= ~bit;
3972         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
3973
3974         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3975 }
3976
3977 /*
3978  * Set RESET_IN_PROGRESS for the current engine.
3979  *
3980  * should be run under rtnl lock
3981  */
3982 void bnx2x_set_reset_in_progress(struct bnx2x *bp)
3983 {
3984         u32 val;
3985         u32 bit = BP_PATH(bp) ?
3986                 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
3987         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3988         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3989
3990         /* Set the bit */
3991         val |= bit;
3992         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
3993         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3994 }
3995
3996 /*
3997  * Checks the RESET_IN_PROGRESS bit for the given engine.
3998  * should be run under rtnl lock
3999  */
4000 bool bnx2x_reset_is_done(struct bnx2x *bp, int engine)
4001 {
4002         u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4003         u32 bit = engine ?
4004                 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4005
4006         /* return false if bit is set */
4007         return (val & bit) ? false : true;
4008 }
4009
4010 /*
4011  * set pf load for the current pf.
4012  *
4013  * should be run under rtnl lock
4014  */
4015 void bnx2x_set_pf_load(struct bnx2x *bp)
4016 {
4017         u32 val1, val;
4018         u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4019                              BNX2X_PATH0_LOAD_CNT_MASK;
4020         u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4021                              BNX2X_PATH0_LOAD_CNT_SHIFT;
4022
4023         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4024         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4025
4026         DP(NETIF_MSG_IFUP, "Old GEN_REG_VAL=0x%08x\n", val);
4027
4028         /* get the current counter value */
4029         val1 = (val & mask) >> shift;
4030
4031         /* set bit of that PF */
4032         val1 |= (1 << bp->pf_num);
4033
4034         /* clear the old value */
4035         val &= ~mask;
4036
4037         /* set the new one */
4038         val |= ((val1 << shift) & mask);
4039
4040         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4041         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4042 }
4043
4044 /**
4045  * bnx2x_clear_pf_load - clear pf load mark
4046  *
4047  * @bp:         driver handle
4048  *
4049  * Should be run under rtnl lock.
4050  * Decrements the load counter for the current engine. Returns
4051  * whether other functions are still loaded
4052  */
4053 bool bnx2x_clear_pf_load(struct bnx2x *bp)
4054 {
4055         u32 val1, val;
4056         u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4057                              BNX2X_PATH0_LOAD_CNT_MASK;
4058         u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4059                              BNX2X_PATH0_LOAD_CNT_SHIFT;
4060
4061         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4062         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4063         DP(NETIF_MSG_IFDOWN, "Old GEN_REG_VAL=0x%08x\n", val);
4064
4065         /* get the current counter value */
4066         val1 = (val & mask) >> shift;
4067
4068         /* clear bit of that PF */
4069         val1 &= ~(1 << bp->pf_num);
4070
4071         /* clear the old value */
4072         val &= ~mask;
4073
4074         /* set the new one */
4075         val |= ((val1 << shift) & mask);
4076
4077         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4078         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4079         return val1 != 0;
4080 }
4081
4082 /*
4083  * Read the load status for the current engine.
4084  *
4085  * should be run under rtnl lock
4086  */
4087 static bool bnx2x_get_load_status(struct bnx2x *bp, int engine)
4088 {
4089         u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK :
4090                              BNX2X_PATH0_LOAD_CNT_MASK);
4091         u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4092                              BNX2X_PATH0_LOAD_CNT_SHIFT);
4093         u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4094
4095         DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "GLOB_REG=0x%08x\n", val);
4096
4097         val = (val & mask) >> shift;
4098
4099         DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "load mask for engine %d = 0x%x\n",
4100            engine, val);
4101
4102         return val != 0;
4103 }
4104
4105 static void _print_next_block(int idx, const char *blk)
4106 {
4107         pr_cont("%s%s", idx ? ", " : "", blk);
4108 }
4109
4110 static int bnx2x_check_blocks_with_parity0(u32 sig, int par_num,
4111                                            bool print)
4112 {
4113         int i = 0;
4114         u32 cur_bit = 0;
4115         for (i = 0; sig; i++) {
4116                 cur_bit = ((u32)0x1 << i);
4117                 if (sig & cur_bit) {
4118                         switch (cur_bit) {
4119                         case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
4120                                 if (print)
4121                                         _print_next_block(par_num++, "BRB");
4122                                 break;
4123                         case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
4124                                 if (print)
4125                                         _print_next_block(par_num++, "PARSER");
4126                                 break;
4127                         case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
4128                                 if (print)
4129                                         _print_next_block(par_num++, "TSDM");
4130                                 break;
4131                         case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
4132                                 if (print)
4133                                         _print_next_block(par_num++,
4134                                                           "SEARCHER");
4135                                 break;
4136                         case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
4137                                 if (print)
4138                                         _print_next_block(par_num++, "TCM");
4139                                 break;
4140                         case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
4141                                 if (print)
4142                                         _print_next_block(par_num++, "TSEMI");
4143                                 break;
4144                         case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
4145                                 if (print)
4146                                         _print_next_block(par_num++, "XPB");
4147                                 break;
4148                         }
4149
4150                         /* Clear the bit */
4151                         sig &= ~cur_bit;
4152                 }
4153         }
4154
4155         return par_num;
4156 }
4157
4158 static int bnx2x_check_blocks_with_parity1(u32 sig, int par_num,
4159                                            bool *global, bool print)
4160 {
4161         int i = 0;
4162         u32 cur_bit = 0;
4163         for (i = 0; sig; i++) {
4164                 cur_bit = ((u32)0x1 << i);
4165                 if (sig & cur_bit) {
4166                         switch (cur_bit) {
4167                         case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
4168                                 if (print)
4169                                         _print_next_block(par_num++, "PBF");
4170                                 break;
4171                         case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
4172                                 if (print)
4173                                         _print_next_block(par_num++, "QM");
4174                                 break;
4175                         case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
4176                                 if (print)
4177                                         _print_next_block(par_num++, "TM");
4178                                 break;
4179                         case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
4180                                 if (print)
4181                                         _print_next_block(par_num++, "XSDM");
4182                                 break;
4183                         case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
4184                                 if (print)
4185                                         _print_next_block(par_num++, "XCM");
4186                                 break;
4187                         case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
4188                                 if (print)
4189                                         _print_next_block(par_num++, "XSEMI");
4190                                 break;
4191                         case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
4192                                 if (print)
4193                                         _print_next_block(par_num++,
4194                                                           "DOORBELLQ");
4195                                 break;
4196                         case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
4197                                 if (print)
4198                                         _print_next_block(par_num++, "NIG");
4199                                 break;
4200                         case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
4201                                 if (print)
4202                                         _print_next_block(par_num++,
4203                                                           "VAUX PCI CORE");
4204                                 *global = true;
4205                                 break;
4206                         case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
4207                                 if (print)
4208                                         _print_next_block(par_num++, "DEBUG");
4209                                 break;
4210                         case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
4211                                 if (print)
4212                                         _print_next_block(par_num++, "USDM");
4213                                 break;
4214                         case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
4215                                 if (print)
4216                                         _print_next_block(par_num++, "UCM");
4217                                 break;
4218                         case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
4219                                 if (print)
4220                                         _print_next_block(par_num++, "USEMI");
4221                                 break;
4222                         case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
4223                                 if (print)
4224                                         _print_next_block(par_num++, "UPB");
4225                                 break;
4226                         case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
4227                                 if (print)
4228                                         _print_next_block(par_num++, "CSDM");
4229                                 break;
4230                         case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
4231                                 if (print)
4232                                         _print_next_block(par_num++, "CCM");
4233                                 break;
4234                         }
4235
4236                         /* Clear the bit */
4237                         sig &= ~cur_bit;
4238                 }
4239         }
4240
4241         return par_num;
4242 }
4243
4244 static int bnx2x_check_blocks_with_parity2(u32 sig, int par_num,
4245                                            bool print)
4246 {
4247         int i = 0;
4248         u32 cur_bit = 0;
4249         for (i = 0; sig; i++) {
4250                 cur_bit = ((u32)0x1 << i);
4251                 if (sig & cur_bit) {
4252                         switch (cur_bit) {
4253                         case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
4254                                 if (print)
4255                                         _print_next_block(par_num++, "CSEMI");
4256                                 break;
4257                         case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
4258                                 if (print)
4259                                         _print_next_block(par_num++, "PXP");
4260                                 break;
4261                         case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
4262                                 if (print)
4263                                         _print_next_block(par_num++,
4264                                         "PXPPCICLOCKCLIENT");
4265                                 break;
4266                         case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
4267                                 if (print)
4268                                         _print_next_block(par_num++, "CFC");
4269                                 break;
4270                         case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
4271                                 if (print)
4272                                         _print_next_block(par_num++, "CDU");
4273                                 break;
4274                         case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
4275                                 if (print)
4276                                         _print_next_block(par_num++, "DMAE");
4277                                 break;
4278                         case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
4279                                 if (print)
4280                                         _print_next_block(par_num++, "IGU");
4281                                 break;
4282                         case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
4283                                 if (print)
4284                                         _print_next_block(par_num++, "MISC");
4285                                 break;
4286                         }
4287
4288                         /* Clear the bit */
4289                         sig &= ~cur_bit;
4290                 }
4291         }
4292
4293         return par_num;
4294 }
4295
4296 static int bnx2x_check_blocks_with_parity3(u32 sig, int par_num,
4297                                            bool *global, bool print)
4298 {
4299         int i = 0;
4300         u32 cur_bit = 0;
4301         for (i = 0; sig; i++) {
4302                 cur_bit = ((u32)0x1 << i);
4303                 if (sig & cur_bit) {
4304                         switch (cur_bit) {
4305                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
4306                                 if (print)
4307                                         _print_next_block(par_num++, "MCP ROM");
4308                                 *global = true;
4309                                 break;
4310                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
4311                                 if (print)
4312                                         _print_next_block(par_num++,
4313                                                           "MCP UMP RX");
4314                                 *global = true;
4315                                 break;
4316                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
4317                                 if (print)
4318                                         _print_next_block(par_num++,
4319                                                           "MCP UMP TX");
4320                                 *global = true;
4321                                 break;
4322                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
4323                                 if (print)
4324                                         _print_next_block(par_num++,
4325                                                           "MCP SCPAD");
4326                                 *global = true;
4327                                 break;
4328                         }
4329
4330                         /* Clear the bit */
4331                         sig &= ~cur_bit;
4332                 }
4333         }
4334
4335         return par_num;
4336 }
4337
4338 static int bnx2x_check_blocks_with_parity4(u32 sig, int par_num,
4339                                            bool print)
4340 {
4341         int i = 0;
4342         u32 cur_bit = 0;
4343         for (i = 0; sig; i++) {
4344                 cur_bit = ((u32)0x1 << i);
4345                 if (sig & cur_bit) {
4346                         switch (cur_bit) {
4347                         case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
4348                                 if (print)
4349                                         _print_next_block(par_num++, "PGLUE_B");
4350                                 break;
4351                         case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
4352                                 if (print)
4353                                         _print_next_block(par_num++, "ATC");
4354                                 break;
4355                         }
4356
4357                         /* Clear the bit */
4358                         sig &= ~cur_bit;
4359                 }
4360         }
4361
4362         return par_num;
4363 }
4364
4365 static bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print,
4366                               u32 *sig)
4367 {
4368         if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4369             (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4370             (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4371             (sig[3] & HW_PRTY_ASSERT_SET_3) ||
4372             (sig[4] & HW_PRTY_ASSERT_SET_4)) {
4373                 int par_num = 0;
4374                 DP(NETIF_MSG_HW, "Was parity error: HW block parity attention:\n"
4375                                  "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
4376                           sig[0] & HW_PRTY_ASSERT_SET_0,
4377                           sig[1] & HW_PRTY_ASSERT_SET_1,
4378                           sig[2] & HW_PRTY_ASSERT_SET_2,
4379                           sig[3] & HW_PRTY_ASSERT_SET_3,
4380                           sig[4] & HW_PRTY_ASSERT_SET_4);
4381                 if (print)
4382                         netdev_err(bp->dev,
4383                                    "Parity errors detected in blocks: ");
4384                 par_num = bnx2x_check_blocks_with_parity0(
4385                         sig[0] & HW_PRTY_ASSERT_SET_0, par_num, print);
4386                 par_num = bnx2x_check_blocks_with_parity1(
4387                         sig[1] & HW_PRTY_ASSERT_SET_1, par_num, global, print);
4388                 par_num = bnx2x_check_blocks_with_parity2(
4389                         sig[2] & HW_PRTY_ASSERT_SET_2, par_num, print);
4390                 par_num = bnx2x_check_blocks_with_parity3(
4391                         sig[3] & HW_PRTY_ASSERT_SET_3, par_num, global, print);
4392                 par_num = bnx2x_check_blocks_with_parity4(
4393                         sig[4] & HW_PRTY_ASSERT_SET_4, par_num, print);
4394
4395                 if (print)
4396                         pr_cont("\n");
4397
4398                 return true;
4399         } else
4400                 return false;
4401 }
4402
4403 /**
4404  * bnx2x_chk_parity_attn - checks for parity attentions.
4405  *
4406  * @bp:         driver handle
4407  * @global:     true if there was a global attention
4408  * @print:      show parity attention in syslog
4409  */
4410 bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print)
4411 {
4412         struct attn_route attn = { {0} };
4413         int port = BP_PORT(bp);
4414
4415         attn.sig[0] = REG_RD(bp,
4416                 MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
4417                              port*4);
4418         attn.sig[1] = REG_RD(bp,
4419                 MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 +
4420                              port*4);
4421         attn.sig[2] = REG_RD(bp,
4422                 MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 +
4423                              port*4);
4424         attn.sig[3] = REG_RD(bp,
4425                 MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 +
4426                              port*4);
4427
4428         if (!CHIP_IS_E1x(bp))
4429                 attn.sig[4] = REG_RD(bp,
4430                         MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 +
4431                                      port*4);
4432
4433         return bnx2x_parity_attn(bp, global, print, attn.sig);
4434 }
4435
4436
4437 static void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn)
4438 {
4439         u32 val;
4440         if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
4441
4442                 val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
4443                 BNX2X_ERR("PGLUE hw attention 0x%x\n", val);
4444                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
4445                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
4446                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
4447                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
4448                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
4449                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
4450                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
4451                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
4452                 if (val &
4453                     PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
4454                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
4455                 if (val &
4456                     PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
4457                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
4458                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
4459                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
4460                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
4461                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
4462                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
4463                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
4464         }
4465         if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
4466                 val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR);
4467                 BNX2X_ERR("ATC hw attention 0x%x\n", val);
4468                 if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
4469                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
4470                 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
4471                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
4472                 if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
4473                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
4474                 if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
4475                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
4476                 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
4477                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
4478                 if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
4479                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
4480         }
4481
4482         if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
4483                     AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
4484                 BNX2X_ERR("FATAL parity attention set4 0x%x\n",
4485                 (u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
4486                     AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
4487         }
4488
4489 }
4490
4491 static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted)
4492 {
4493         struct attn_route attn, *group_mask;
4494         int port = BP_PORT(bp);
4495         int index;
4496         u32 reg_addr;
4497         u32 val;
4498         u32 aeu_mask;
4499         bool global = false;
4500
4501         /* need to take HW lock because MCP or other port might also
4502            try to handle this event */
4503         bnx2x_acquire_alr(bp);
4504
4505         if (bnx2x_chk_parity_attn(bp, &global, true)) {
4506 #ifndef BNX2X_STOP_ON_ERROR
4507                 bp->recovery_state = BNX2X_RECOVERY_INIT;
4508                 schedule_delayed_work(&bp->sp_rtnl_task, 0);
4509                 /* Disable HW interrupts */
4510                 bnx2x_int_disable(bp);
4511                 /* In case of parity errors don't handle attentions so that
4512                  * other function would "see" parity errors.
4513                  */
4514 #else
4515                 bnx2x_panic();
4516 #endif
4517                 bnx2x_release_alr(bp);
4518                 return;
4519         }
4520
4521         attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
4522         attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
4523         attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
4524         attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
4525         if (!CHIP_IS_E1x(bp))
4526                 attn.sig[4] =
4527                       REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
4528         else
4529                 attn.sig[4] = 0;
4530
4531         DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n",
4532            attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
4533
4534         for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
4535                 if (deasserted & (1 << index)) {
4536                         group_mask = &bp->attn_group[index];
4537
4538                         DP(NETIF_MSG_HW, "group[%d]: %08x %08x %08x %08x %08x\n",
4539                            index,
4540                            group_mask->sig[0], group_mask->sig[1],
4541                            group_mask->sig[2], group_mask->sig[3],
4542                            group_mask->sig[4]);
4543
4544                         bnx2x_attn_int_deasserted4(bp,
4545                                         attn.sig[4] & group_mask->sig[4]);
4546                         bnx2x_attn_int_deasserted3(bp,
4547                                         attn.sig[3] & group_mask->sig[3]);
4548                         bnx2x_attn_int_deasserted1(bp,
4549                                         attn.sig[1] & group_mask->sig[1]);
4550                         bnx2x_attn_int_deasserted2(bp,
4551                                         attn.sig[2] & group_mask->sig[2]);
4552                         bnx2x_attn_int_deasserted0(bp,
4553                                         attn.sig[0] & group_mask->sig[0]);
4554                 }
4555         }
4556
4557         bnx2x_release_alr(bp);
4558
4559         if (bp->common.int_block == INT_BLOCK_HC)
4560                 reg_addr = (HC_REG_COMMAND_REG + port*32 +
4561                             COMMAND_REG_ATTN_BITS_CLR);
4562         else
4563                 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
4564
4565         val = ~deasserted;
4566         DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val,
4567            (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
4568         REG_WR(bp, reg_addr, val);
4569
4570         if (~bp->attn_state & deasserted)
4571                 BNX2X_ERR("IGU ERROR\n");
4572
4573         reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4574                           MISC_REG_AEU_MASK_ATTN_FUNC_0;
4575
4576         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4577         aeu_mask = REG_RD(bp, reg_addr);
4578
4579         DP(NETIF_MSG_HW, "aeu_mask %x  newly deasserted %x\n",
4580            aeu_mask, deasserted);
4581         aeu_mask |= (deasserted & 0x3ff);
4582         DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
4583
4584         REG_WR(bp, reg_addr, aeu_mask);
4585         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4586
4587         DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
4588         bp->attn_state &= ~deasserted;
4589         DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
4590 }
4591
4592 static void bnx2x_attn_int(struct bnx2x *bp)
4593 {
4594         /* read local copy of bits */
4595         u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block.
4596                                                                 attn_bits);
4597         u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block.
4598                                                                 attn_bits_ack);
4599         u32 attn_state = bp->attn_state;
4600
4601         /* look for changed bits */
4602         u32 asserted   =  attn_bits & ~attn_ack & ~attn_state;
4603         u32 deasserted = ~attn_bits &  attn_ack &  attn_state;
4604
4605         DP(NETIF_MSG_HW,
4606            "attn_bits %x  attn_ack %x  asserted %x  deasserted %x\n",
4607            attn_bits, attn_ack, asserted, deasserted);
4608
4609         if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state))
4610                 BNX2X_ERR("BAD attention state\n");
4611
4612         /* handle bits that were raised */
4613         if (asserted)
4614                 bnx2x_attn_int_asserted(bp, asserted);
4615
4616         if (deasserted)
4617                 bnx2x_attn_int_deasserted(bp, deasserted);
4618 }
4619
4620 void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
4621                       u16 index, u8 op, u8 update)
4622 {
4623         u32 igu_addr = BAR_IGU_INTMEM + (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
4624
4625         bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update,
4626                              igu_addr);
4627 }
4628
4629 static void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod)
4630 {
4631         /* No memory barriers */
4632         storm_memset_eq_prod(bp, prod, BP_FUNC(bp));
4633         mmiowb(); /* keep prod updates ordered */
4634 }
4635
4636 static int  bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid,
4637                                       union event_ring_elem *elem)
4638 {
4639         u8 err = elem->message.error;
4640
4641         if (!bp->cnic_eth_dev.starting_cid  ||
4642             (cid < bp->cnic_eth_dev.starting_cid &&
4643             cid != bp->cnic_eth_dev.iscsi_l2_cid))
4644                 return 1;
4645
4646         DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid);
4647
4648         if (unlikely(err)) {
4649
4650                 BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n",
4651                           cid);
4652                 bnx2x_panic_dump(bp);
4653         }
4654         bnx2x_cnic_cfc_comp(bp, cid, err);
4655         return 0;
4656 }
4657
4658 static void bnx2x_handle_mcast_eqe(struct bnx2x *bp)
4659 {
4660         struct bnx2x_mcast_ramrod_params rparam;
4661         int rc;
4662
4663         memset(&rparam, 0, sizeof(rparam));
4664
4665         rparam.mcast_obj = &bp->mcast_obj;
4666
4667         netif_addr_lock_bh(bp->dev);
4668
4669         /* Clear pending state for the last command */
4670         bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw);
4671
4672         /* If there are pending mcast commands - send them */
4673         if (bp->mcast_obj.check_pending(&bp->mcast_obj)) {
4674                 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
4675                 if (rc < 0)
4676                         BNX2X_ERR("Failed to send pending mcast commands: %d\n",
4677                                   rc);
4678         }
4679
4680         netif_addr_unlock_bh(bp->dev);
4681 }
4682
4683 static void bnx2x_handle_classification_eqe(struct bnx2x *bp,
4684                                             union event_ring_elem *elem)
4685 {
4686         unsigned long ramrod_flags = 0;
4687         int rc = 0;
4688         u32 cid = elem->message.data.eth_event.echo & BNX2X_SWCID_MASK;
4689         struct bnx2x_vlan_mac_obj *vlan_mac_obj;
4690
4691         /* Always push next commands out, don't wait here */
4692         __set_bit(RAMROD_CONT, &ramrod_flags);
4693
4694         switch (elem->message.data.eth_event.echo >> BNX2X_SWCID_SHIFT) {
4695         case BNX2X_FILTER_MAC_PENDING:
4696                 DP(BNX2X_MSG_SP, "Got SETUP_MAC completions\n");
4697                 if (CNIC_LOADED(bp) && (cid == BNX2X_ISCSI_ETH_CID(bp)))
4698                         vlan_mac_obj = &bp->iscsi_l2_mac_obj;
4699                 else
4700                         vlan_mac_obj = &bp->sp_objs[cid].mac_obj;
4701
4702                 break;
4703         case BNX2X_FILTER_MCAST_PENDING:
4704                 DP(BNX2X_MSG_SP, "Got SETUP_MCAST completions\n");
4705                 /* This is only relevant for 57710 where multicast MACs are
4706                  * configured as unicast MACs using the same ramrod.
4707                  */
4708                 bnx2x_handle_mcast_eqe(bp);
4709                 return;
4710         default:
4711                 BNX2X_ERR("Unsupported classification command: %d\n",
4712                           elem->message.data.eth_event.echo);
4713                 return;
4714         }
4715
4716         rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags);
4717
4718         if (rc < 0)
4719                 BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
4720         else if (rc > 0)
4721                 DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n");
4722
4723 }
4724
4725 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start);
4726
4727 static void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp)
4728 {
4729         netif_addr_lock_bh(bp->dev);
4730
4731         clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
4732
4733         /* Send rx_mode command again if was requested */
4734         if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state))
4735                 bnx2x_set_storm_rx_mode(bp);
4736         else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED,
4737                                     &bp->sp_state))
4738                 bnx2x_set_iscsi_eth_rx_mode(bp, true);
4739         else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED,
4740                                     &bp->sp_state))
4741                 bnx2x_set_iscsi_eth_rx_mode(bp, false);
4742
4743         netif_addr_unlock_bh(bp->dev);
4744 }
4745
4746 static void bnx2x_after_afex_vif_lists(struct bnx2x *bp,
4747                                               union event_ring_elem *elem)
4748 {
4749         if (elem->message.data.vif_list_event.echo == VIF_LIST_RULE_GET) {
4750                 DP(BNX2X_MSG_SP,
4751                    "afex: ramrod completed VIF LIST_GET, addrs 0x%x\n",
4752                    elem->message.data.vif_list_event.func_bit_map);
4753                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTGET_ACK,
4754                         elem->message.data.vif_list_event.func_bit_map);
4755         } else if (elem->message.data.vif_list_event.echo ==
4756                    VIF_LIST_RULE_SET) {
4757                 DP(BNX2X_MSG_SP, "afex: ramrod completed VIF LIST_SET\n");
4758                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTSET_ACK, 0);
4759         }
4760 }
4761
4762 /* called with rtnl_lock */
4763 static void bnx2x_after_function_update(struct bnx2x *bp)
4764 {
4765         int q, rc;
4766         struct bnx2x_fastpath *fp;
4767         struct bnx2x_queue_state_params queue_params = {NULL};
4768         struct bnx2x_queue_update_params *q_update_params =
4769                 &queue_params.params.update;
4770
4771         /* Send Q update command with afex vlan removal values  for all Qs */
4772         queue_params.cmd = BNX2X_Q_CMD_UPDATE;
4773
4774         /* set silent vlan removal values according to vlan mode */
4775         __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
4776                   &q_update_params->update_flags);
4777         __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
4778                   &q_update_params->update_flags);
4779         __set_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
4780
4781         /* in access mode mark mask and value are 0 to strip all vlans */
4782         if (bp->afex_vlan_mode == FUNC_MF_CFG_AFEX_VLAN_ACCESS_MODE) {
4783                 q_update_params->silent_removal_value = 0;
4784                 q_update_params->silent_removal_mask = 0;
4785         } else {
4786                 q_update_params->silent_removal_value =
4787                         (bp->afex_def_vlan_tag & VLAN_VID_MASK);
4788                 q_update_params->silent_removal_mask = VLAN_VID_MASK;
4789         }
4790
4791         for_each_eth_queue(bp, q) {
4792                 /* Set the appropriate Queue object */
4793                 fp = &bp->fp[q];
4794                 queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
4795
4796                 /* send the ramrod */
4797                 rc = bnx2x_queue_state_change(bp, &queue_params);
4798                 if (rc < 0)
4799                         BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
4800                                   q);
4801         }
4802
4803         if (!NO_FCOE(bp)) {
4804                 fp = &bp->fp[FCOE_IDX(bp)];
4805                 queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
4806
4807                 /* clear pending completion bit */
4808                 __clear_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
4809
4810                 /* mark latest Q bit */
4811                 smp_mb__before_clear_bit();
4812                 set_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
4813                 smp_mb__after_clear_bit();
4814
4815                 /* send Q update ramrod for FCoE Q */
4816                 rc = bnx2x_queue_state_change(bp, &queue_params);
4817                 if (rc < 0)
4818                         BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
4819                                   q);
4820         } else {
4821                 /* If no FCoE ring - ACK MCP now */
4822                 bnx2x_link_report(bp);
4823                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
4824         }
4825 }
4826
4827 static struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj(
4828         struct bnx2x *bp, u32 cid)
4829 {
4830         DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid);
4831
4832         if (CNIC_LOADED(bp) && (cid == BNX2X_FCOE_ETH_CID(bp)))
4833                 return &bnx2x_fcoe_sp_obj(bp, q_obj);
4834         else
4835                 return &bp->sp_objs[CID_TO_FP(cid, bp)].q_obj;
4836 }
4837
4838 static void bnx2x_eq_int(struct bnx2x *bp)
4839 {
4840         u16 hw_cons, sw_cons, sw_prod;
4841         union event_ring_elem *elem;
4842         u8 echo;
4843         u32 cid;
4844         u8 opcode;
4845         int spqe_cnt = 0;
4846         struct bnx2x_queue_sp_obj *q_obj;
4847         struct bnx2x_func_sp_obj *f_obj = &bp->func_obj;
4848         struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw;
4849
4850         hw_cons = le16_to_cpu(*bp->eq_cons_sb);
4851
4852         /* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256.
4853          * when we get the the next-page we nned to adjust so the loop
4854          * condition below will be met. The next element is the size of a
4855          * regular element and hence incrementing by 1
4856          */
4857         if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE)
4858                 hw_cons++;
4859
4860         /* This function may never run in parallel with itself for a
4861          * specific bp, thus there is no need in "paired" read memory
4862          * barrier here.
4863          */
4864         sw_cons = bp->eq_cons;
4865         sw_prod = bp->eq_prod;
4866
4867         DP(BNX2X_MSG_SP, "EQ:  hw_cons %u  sw_cons %u bp->eq_spq_left %x\n",
4868                         hw_cons, sw_cons, atomic_read(&bp->eq_spq_left));
4869
4870         for (; sw_cons != hw_cons;
4871               sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
4872
4873
4874                 elem = &bp->eq_ring[EQ_DESC(sw_cons)];
4875
4876                 cid = SW_CID(elem->message.data.cfc_del_event.cid);
4877                 opcode = elem->message.opcode;
4878
4879
4880                 /* handle eq element */
4881                 switch (opcode) {
4882                 case EVENT_RING_OPCODE_STAT_QUERY:
4883                         DP(BNX2X_MSG_SP | BNX2X_MSG_STATS,
4884                            "got statistics comp event %d\n",
4885                            bp->stats_comp++);
4886                         /* nothing to do with stats comp */
4887                         goto next_spqe;
4888
4889                 case EVENT_RING_OPCODE_CFC_DEL:
4890                         /* handle according to cid range */
4891                         /*
4892                          * we may want to verify here that the bp state is
4893                          * HALTING
4894                          */
4895                         DP(BNX2X_MSG_SP,
4896                            "got delete ramrod for MULTI[%d]\n", cid);
4897
4898                         if (CNIC_LOADED(bp) &&
4899                             !bnx2x_cnic_handle_cfc_del(bp, cid, elem))
4900                                 goto next_spqe;
4901
4902                         q_obj = bnx2x_cid_to_q_obj(bp, cid);
4903
4904                         if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL))
4905                                 break;
4906
4907
4908
4909                         goto next_spqe;
4910
4911                 case EVENT_RING_OPCODE_STOP_TRAFFIC:
4912                         DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got STOP TRAFFIC\n");
4913                         if (f_obj->complete_cmd(bp, f_obj,
4914                                                 BNX2X_F_CMD_TX_STOP))
4915                                 break;
4916                         bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED);
4917                         goto next_spqe;
4918
4919                 case EVENT_RING_OPCODE_START_TRAFFIC:
4920                         DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got START TRAFFIC\n");
4921                         if (f_obj->complete_cmd(bp, f_obj,
4922                                                 BNX2X_F_CMD_TX_START))
4923                                 break;
4924                         bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED);
4925                         goto next_spqe;
4926
4927                 case EVENT_RING_OPCODE_FUNCTION_UPDATE:
4928                         echo = elem->message.data.function_update_event.echo;
4929                         if (echo == SWITCH_UPDATE) {
4930                                 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
4931                                    "got FUNC_SWITCH_UPDATE ramrod\n");
4932                                 if (f_obj->complete_cmd(
4933                                         bp, f_obj, BNX2X_F_CMD_SWITCH_UPDATE))
4934                                         break;
4935
4936                         } else {
4937                                 DP(BNX2X_MSG_SP | BNX2X_MSG_MCP,
4938                                    "AFEX: ramrod completed FUNCTION_UPDATE\n");
4939                                 f_obj->complete_cmd(bp, f_obj,
4940                                                     BNX2X_F_CMD_AFEX_UPDATE);
4941
4942                                 /* We will perform the Queues update from
4943                                  * sp_rtnl task as all Queue SP operations
4944                                  * should run under rtnl_lock.
4945                                  */
4946                                 smp_mb__before_clear_bit();
4947                                 set_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE,
4948                                         &bp->sp_rtnl_state);
4949                                 smp_mb__after_clear_bit();
4950
4951                                 schedule_delayed_work(&bp->sp_rtnl_task, 0);
4952                         }
4953
4954                         goto next_spqe;
4955
4956                 case EVENT_RING_OPCODE_AFEX_VIF_LISTS:
4957                         f_obj->complete_cmd(bp, f_obj,
4958                                             BNX2X_F_CMD_AFEX_VIFLISTS);
4959                         bnx2x_after_afex_vif_lists(bp, elem);
4960                         goto next_spqe;
4961                 case EVENT_RING_OPCODE_FUNCTION_START:
4962                         DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
4963                            "got FUNC_START ramrod\n");
4964                         if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START))
4965                                 break;
4966
4967                         goto next_spqe;
4968
4969                 case EVENT_RING_OPCODE_FUNCTION_STOP:
4970                         DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
4971                            "got FUNC_STOP ramrod\n");
4972                         if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP))
4973                                 break;
4974
4975                         goto next_spqe;
4976                 }
4977
4978                 switch (opcode | bp->state) {
4979                 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
4980                       BNX2X_STATE_OPEN):
4981                 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
4982                       BNX2X_STATE_OPENING_WAIT4_PORT):
4983                         cid = elem->message.data.eth_event.echo &
4984                                 BNX2X_SWCID_MASK;
4985                         DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n",
4986                            cid);
4987                         rss_raw->clear_pending(rss_raw);
4988                         break;
4989
4990                 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
4991                 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
4992                 case (EVENT_RING_OPCODE_SET_MAC |
4993                       BNX2X_STATE_CLOSING_WAIT4_HALT):
4994                 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
4995                       BNX2X_STATE_OPEN):
4996                 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
4997                       BNX2X_STATE_DIAG):
4998                 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
4999                       BNX2X_STATE_CLOSING_WAIT4_HALT):
5000                         DP(BNX2X_MSG_SP, "got (un)set mac ramrod\n");
5001                         bnx2x_handle_classification_eqe(bp, elem);
5002                         break;
5003
5004                 case (EVENT_RING_OPCODE_MULTICAST_RULES |
5005                       BNX2X_STATE_OPEN):
5006                 case (EVENT_RING_OPCODE_MULTICAST_RULES |
5007                       BNX2X_STATE_DIAG):
5008                 case (EVENT_RING_OPCODE_MULTICAST_RULES |
5009                       BNX2X_STATE_CLOSING_WAIT4_HALT):
5010                         DP(BNX2X_MSG_SP, "got mcast ramrod\n");
5011                         bnx2x_handle_mcast_eqe(bp);
5012                         break;
5013
5014                 case (EVENT_RING_OPCODE_FILTERS_RULES |
5015                       BNX2X_STATE_OPEN):
5016                 case (EVENT_RING_OPCODE_FILTERS_RULES |
5017                       BNX2X_STATE_DIAG):
5018                 case (EVENT_RING_OPCODE_FILTERS_RULES |
5019                       BNX2X_STATE_CLOSING_WAIT4_HALT):
5020                         DP(BNX2X_MSG_SP, "got rx_mode ramrod\n");
5021                         bnx2x_handle_rx_mode_eqe(bp);
5022                         break;
5023                 default:
5024                         /* unknown event log error and continue */
5025                         BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n",
5026                                   elem->message.opcode, bp->state);
5027                 }
5028 next_spqe:
5029                 spqe_cnt++;
5030         } /* for */
5031
5032         smp_mb__before_atomic_inc();
5033         atomic_add(spqe_cnt, &bp->eq_spq_left);
5034
5035         bp->eq_cons = sw_cons;
5036         bp->eq_prod = sw_prod;
5037         /* Make sure that above mem writes were issued towards the memory */
5038         smp_wmb();
5039
5040         /* update producer */
5041         bnx2x_update_eq_prod(bp, bp->eq_prod);
5042 }
5043
5044 static void bnx2x_sp_task(struct work_struct *work)
5045 {
5046         struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work);
5047         u16 status;
5048
5049         status = bnx2x_update_dsb_idx(bp);
5050 /*      if (status == 0)                                     */
5051 /*              BNX2X_ERR("spurious slowpath interrupt!\n"); */
5052
5053         DP(BNX2X_MSG_SP, "got a slowpath interrupt (status 0x%x)\n", status);
5054
5055         /* HW attentions */
5056         if (status & BNX2X_DEF_SB_ATT_IDX) {
5057                 bnx2x_attn_int(bp);
5058                 status &= ~BNX2X_DEF_SB_ATT_IDX;
5059         }
5060
5061         /* SP events: STAT_QUERY and others */
5062         if (status & BNX2X_DEF_SB_IDX) {
5063                 struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
5064
5065                 if (FCOE_INIT(bp) &&
5066                     (bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
5067                         /*
5068                          * Prevent local bottom-halves from running as
5069                          * we are going to change the local NAPI list.
5070                          */
5071                         local_bh_disable();
5072                         napi_schedule(&bnx2x_fcoe(bp, napi));
5073                         local_bh_enable();
5074                 }
5075
5076                 /* Handle EQ completions */
5077                 bnx2x_eq_int(bp);
5078
5079                 bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID,
5080                         le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1);
5081
5082                 status &= ~BNX2X_DEF_SB_IDX;
5083         }
5084
5085         if (unlikely(status))
5086                 DP(BNX2X_MSG_SP, "got an unknown interrupt! (status 0x%x)\n",
5087                    status);
5088
5089         bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID,
5090              le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1);
5091
5092         /* afex - poll to check if VIFSET_ACK should be sent to MFW */
5093         if (test_and_clear_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK,
5094                                &bp->sp_state)) {
5095                 bnx2x_link_report(bp);
5096                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5097         }
5098 }
5099
5100 irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance)
5101 {
5102         struct net_device *dev = dev_instance;
5103         struct bnx2x *bp = netdev_priv(dev);
5104
5105         bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0,
5106                      IGU_INT_DISABLE, 0);
5107
5108 #ifdef BNX2X_STOP_ON_ERROR
5109         if (unlikely(bp->panic))
5110                 return IRQ_HANDLED;
5111 #endif
5112
5113         if (CNIC_LOADED(bp)) {
5114                 struct cnic_ops *c_ops;
5115
5116                 rcu_read_lock();
5117                 c_ops = rcu_dereference(bp->cnic_ops);
5118                 if (c_ops)
5119                         c_ops->cnic_handler(bp->cnic_data, NULL);
5120                 rcu_read_unlock();
5121         }
5122
5123         queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
5124
5125         return IRQ_HANDLED;
5126 }
5127
5128 /* end of slow path */
5129
5130
5131 void bnx2x_drv_pulse(struct bnx2x *bp)
5132 {
5133         SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb,
5134                  bp->fw_drv_pulse_wr_seq);
5135 }
5136
5137
5138 static void bnx2x_timer(unsigned long data)
5139 {
5140         struct bnx2x *bp = (struct bnx2x *) data;
5141
5142         if (!netif_running(bp->dev))
5143                 return;
5144
5145         if (!BP_NOMCP(bp)) {
5146                 int mb_idx = BP_FW_MB_IDX(bp);
5147                 u32 drv_pulse;
5148                 u32 mcp_pulse;
5149
5150                 ++bp->fw_drv_pulse_wr_seq;
5151                 bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
5152                 /* TBD - add SYSTEM_TIME */
5153                 drv_pulse = bp->fw_drv_pulse_wr_seq;
5154                 bnx2x_drv_pulse(bp);
5155
5156                 mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) &
5157                              MCP_PULSE_SEQ_MASK);
5158                 /* The delta between driver pulse and mcp response
5159                  * should be 1 (before mcp response) or 0 (after mcp response)
5160                  */
5161                 if ((drv_pulse != mcp_pulse) &&
5162                     (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) {
5163                         /* someone lost a heartbeat... */
5164                         BNX2X_ERR("drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
5165                                   drv_pulse, mcp_pulse);
5166                 }
5167         }
5168
5169         if (bp->state == BNX2X_STATE_OPEN)
5170                 bnx2x_stats_handle(bp, STATS_EVENT_UPDATE);
5171
5172         mod_timer(&bp->timer, jiffies + bp->current_interval);
5173 }
5174
5175 /* end of Statistics */
5176
5177 /* nic init */
5178
5179 /*
5180  * nic init service functions
5181  */
5182
5183 static void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
5184 {
5185         u32 i;
5186         if (!(len%4) && !(addr%4))
5187                 for (i = 0; i < len; i += 4)
5188                         REG_WR(bp, addr + i, fill);
5189         else
5190                 for (i = 0; i < len; i++)
5191                         REG_WR8(bp, addr + i, fill);
5192
5193 }
5194
5195 /* helper: writes FP SP data to FW - data_size in dwords */
5196 static void bnx2x_wr_fp_sb_data(struct bnx2x *bp,
5197                                 int fw_sb_id,
5198                                 u32 *sb_data_p,
5199                                 u32 data_size)
5200 {
5201         int index;
5202         for (index = 0; index < data_size; index++)
5203                 REG_WR(bp, BAR_CSTRORM_INTMEM +
5204                         CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
5205                         sizeof(u32)*index,
5206                         *(sb_data_p + index));
5207 }
5208
5209 static void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id)
5210 {
5211         u32 *sb_data_p;
5212         u32 data_size = 0;
5213         struct hc_status_block_data_e2 sb_data_e2;
5214         struct hc_status_block_data_e1x sb_data_e1x;
5215
5216         /* disable the function first */
5217         if (!CHIP_IS_E1x(bp)) {
5218                 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5219                 sb_data_e2.common.state = SB_DISABLED;
5220                 sb_data_e2.common.p_func.vf_valid = false;
5221                 sb_data_p = (u32 *)&sb_data_e2;
5222                 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5223         } else {
5224                 memset(&sb_data_e1x, 0,
5225                        sizeof(struct hc_status_block_data_e1x));
5226                 sb_data_e1x.common.state = SB_DISABLED;
5227                 sb_data_e1x.common.p_func.vf_valid = false;
5228                 sb_data_p = (u32 *)&sb_data_e1x;
5229                 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5230         }
5231         bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5232
5233         bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5234                         CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0,
5235                         CSTORM_STATUS_BLOCK_SIZE);
5236         bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5237                         CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0,
5238                         CSTORM_SYNC_BLOCK_SIZE);
5239 }
5240
5241 /* helper:  writes SP SB data to FW */
5242 static void bnx2x_wr_sp_sb_data(struct bnx2x *bp,
5243                 struct hc_sp_status_block_data *sp_sb_data)
5244 {
5245         int func = BP_FUNC(bp);
5246         int i;
5247         for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
5248                 REG_WR(bp, BAR_CSTRORM_INTMEM +
5249                         CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
5250                         i*sizeof(u32),
5251                         *((u32 *)sp_sb_data + i));
5252 }
5253
5254 static void bnx2x_zero_sp_sb(struct bnx2x *bp)
5255 {
5256         int func = BP_FUNC(bp);
5257         struct hc_sp_status_block_data sp_sb_data;
5258         memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5259
5260         sp_sb_data.state = SB_DISABLED;
5261         sp_sb_data.p_func.vf_valid = false;
5262
5263         bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5264
5265         bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5266                         CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0,
5267                         CSTORM_SP_STATUS_BLOCK_SIZE);
5268         bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5269                         CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0,
5270                         CSTORM_SP_SYNC_BLOCK_SIZE);
5271
5272 }
5273
5274
5275 static void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
5276                                            int igu_sb_id, int igu_seg_id)
5277 {
5278         hc_sm->igu_sb_id = igu_sb_id;
5279         hc_sm->igu_seg_id = igu_seg_id;
5280         hc_sm->timer_value = 0xFF;
5281         hc_sm->time_to_expire = 0xFFFFFFFF;
5282 }
5283
5284
5285 /* allocates state machine ids. */
5286 static void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
5287 {
5288         /* zero out state machine indices */
5289         /* rx indices */
5290         index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5291
5292         /* tx indices */
5293         index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5294         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
5295         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
5296         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
5297
5298         /* map indices */
5299         /* rx indices */
5300         index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
5301                 SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5302
5303         /* tx indices */
5304         index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
5305                 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5306         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
5307                 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5308         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
5309                 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5310         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
5311                 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5312 }
5313
5314 static void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
5315                           u8 vf_valid, int fw_sb_id, int igu_sb_id)
5316 {
5317         int igu_seg_id;
5318
5319         struct hc_status_block_data_e2 sb_data_e2;
5320         struct hc_status_block_data_e1x sb_data_e1x;
5321         struct hc_status_block_sm  *hc_sm_p;
5322         int data_size;
5323         u32 *sb_data_p;
5324
5325         if (CHIP_INT_MODE_IS_BC(bp))
5326                 igu_seg_id = HC_SEG_ACCESS_NORM;
5327         else
5328                 igu_seg_id = IGU_SEG_ACCESS_NORM;
5329
5330         bnx2x_zero_fp_sb(bp, fw_sb_id);
5331
5332         if (!CHIP_IS_E1x(bp)) {
5333                 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5334                 sb_data_e2.common.state = SB_ENABLED;
5335                 sb_data_e2.common.p_func.pf_id = BP_FUNC(bp);
5336                 sb_data_e2.common.p_func.vf_id = vfid;
5337                 sb_data_e2.common.p_func.vf_valid = vf_valid;
5338                 sb_data_e2.common.p_func.vnic_id = BP_VN(bp);
5339                 sb_data_e2.common.same_igu_sb_1b = true;
5340                 sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping);
5341                 sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping);
5342                 hc_sm_p = sb_data_e2.common.state_machine;
5343                 sb_data_p = (u32 *)&sb_data_e2;
5344                 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5345                 bnx2x_map_sb_state_machines(sb_data_e2.index_data);
5346         } else {
5347                 memset(&sb_data_e1x, 0,
5348                        sizeof(struct hc_status_block_data_e1x));
5349                 sb_data_e1x.common.state = SB_ENABLED;
5350                 sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp);
5351                 sb_data_e1x.common.p_func.vf_id = 0xff;
5352                 sb_data_e1x.common.p_func.vf_valid = false;
5353                 sb_data_e1x.common.p_func.vnic_id = BP_VN(bp);
5354                 sb_data_e1x.common.same_igu_sb_1b = true;
5355                 sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping);
5356                 sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping);
5357                 hc_sm_p = sb_data_e1x.common.state_machine;
5358                 sb_data_p = (u32 *)&sb_data_e1x;
5359                 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5360                 bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
5361         }
5362
5363         bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID],
5364                                        igu_sb_id, igu_seg_id);
5365         bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID],
5366                                        igu_sb_id, igu_seg_id);
5367
5368         DP(NETIF_MSG_IFUP, "Init FW SB %d\n", fw_sb_id);
5369
5370         /* write indecies to HW */
5371         bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5372 }
5373
5374 static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id,
5375                                      u16 tx_usec, u16 rx_usec)
5376 {
5377         bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS,
5378                                     false, rx_usec);
5379         bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5380                                        HC_INDEX_ETH_TX_CQ_CONS_COS0, false,
5381                                        tx_usec);
5382         bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5383                                        HC_INDEX_ETH_TX_CQ_CONS_COS1, false,
5384                                        tx_usec);
5385         bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5386                                        HC_INDEX_ETH_TX_CQ_CONS_COS2, false,
5387                                        tx_usec);
5388 }
5389
5390 static void bnx2x_init_def_sb(struct bnx2x *bp)
5391 {
5392         struct host_sp_status_block *def_sb = bp->def_status_blk;
5393         dma_addr_t mapping = bp->def_status_blk_mapping;
5394         int igu_sp_sb_index;
5395         int igu_seg_id;
5396         int port = BP_PORT(bp);
5397         int func = BP_FUNC(bp);
5398         int reg_offset, reg_offset_en5;
5399         u64 section;
5400         int index;
5401         struct hc_sp_status_block_data sp_sb_data;
5402         memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5403
5404         if (CHIP_INT_MODE_IS_BC(bp)) {
5405                 igu_sp_sb_index = DEF_SB_IGU_ID;
5406                 igu_seg_id = HC_SEG_ACCESS_DEF;
5407         } else {
5408                 igu_sp_sb_index = bp->igu_dsb_id;
5409                 igu_seg_id = IGU_SEG_ACCESS_DEF;
5410         }
5411
5412         /* ATTN */
5413         section = ((u64)mapping) + offsetof(struct host_sp_status_block,
5414                                             atten_status_block);
5415         def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
5416
5417         bp->attn_state = 0;
5418
5419         reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
5420                              MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
5421         reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
5422                                  MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0);
5423         for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
5424                 int sindex;
5425                 /* take care of sig[0]..sig[4] */
5426                 for (sindex = 0; sindex < 4; sindex++)
5427                         bp->attn_group[index].sig[sindex] =
5428                            REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index);
5429
5430                 if (!CHIP_IS_E1x(bp))
5431                         /*
5432                          * enable5 is separate from the rest of the registers,
5433                          * and therefore the address skip is 4
5434                          * and not 16 between the different groups
5435                          */
5436                         bp->attn_group[index].sig[4] = REG_RD(bp,
5437                                         reg_offset_en5 + 0x4*index);
5438                 else
5439                         bp->attn_group[index].sig[4] = 0;
5440         }
5441
5442         if (bp->common.int_block == INT_BLOCK_HC) {
5443                 reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L :
5444                                      HC_REG_ATTN_MSG0_ADDR_L);
5445
5446                 REG_WR(bp, reg_offset, U64_LO(section));
5447                 REG_WR(bp, reg_offset + 4, U64_HI(section));
5448         } else if (!CHIP_IS_E1x(bp)) {
5449                 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
5450                 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
5451         }
5452
5453         section = ((u64)mapping) + offsetof(struct host_sp_status_block,
5454                                             sp_sb);
5455
5456         bnx2x_zero_sp_sb(bp);
5457
5458         sp_sb_data.state                = SB_ENABLED;
5459         sp_sb_data.host_sb_addr.lo      = U64_LO(section);
5460         sp_sb_data.host_sb_addr.hi      = U64_HI(section);
5461         sp_sb_data.igu_sb_id            = igu_sp_sb_index;
5462         sp_sb_data.igu_seg_id           = igu_seg_id;
5463         sp_sb_data.p_func.pf_id         = func;
5464         sp_sb_data.p_func.vnic_id       = BP_VN(bp);
5465         sp_sb_data.p_func.vf_id         = 0xff;
5466
5467         bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5468
5469         bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
5470 }
5471
5472 void bnx2x_update_coalesce(struct bnx2x *bp)
5473 {
5474         int i;
5475
5476         for_each_eth_queue(bp, i)
5477                 bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id,
5478                                          bp->tx_ticks, bp->rx_ticks);
5479 }
5480
5481 static void bnx2x_init_sp_ring(struct bnx2x *bp)
5482 {
5483         spin_lock_init(&bp->spq_lock);
5484         atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING);
5485
5486         bp->spq_prod_idx = 0;
5487         bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX;
5488         bp->spq_prod_bd = bp->spq;
5489         bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT;
5490 }
5491
5492 static void bnx2x_init_eq_ring(struct bnx2x *bp)
5493 {
5494         int i;
5495         for (i = 1; i <= NUM_EQ_PAGES; i++) {
5496                 union event_ring_elem *elem =
5497                         &bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1];
5498
5499                 elem->next_page.addr.hi =
5500                         cpu_to_le32(U64_HI(bp->eq_mapping +
5501                                    BCM_PAGE_SIZE * (i % NUM_EQ_PAGES)));
5502                 elem->next_page.addr.lo =
5503                         cpu_to_le32(U64_LO(bp->eq_mapping +
5504                                    BCM_PAGE_SIZE*(i % NUM_EQ_PAGES)));
5505         }
5506         bp->eq_cons = 0;
5507         bp->eq_prod = NUM_EQ_DESC;
5508         bp->eq_cons_sb = BNX2X_EQ_INDEX;
5509         /* we want a warning message before it gets rought... */
5510         atomic_set(&bp->eq_spq_left,
5511                 min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1);
5512 }
5513
5514
5515 /* called with netif_addr_lock_bh() */
5516 void bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id,
5517                          unsigned long rx_mode_flags,
5518                          unsigned long rx_accept_flags,
5519                          unsigned long tx_accept_flags,
5520                          unsigned long ramrod_flags)
5521 {
5522         struct bnx2x_rx_mode_ramrod_params ramrod_param;
5523         int rc;
5524
5525         memset(&ramrod_param, 0, sizeof(ramrod_param));
5526
5527         /* Prepare ramrod parameters */
5528         ramrod_param.cid = 0;
5529         ramrod_param.cl_id = cl_id;
5530         ramrod_param.rx_mode_obj = &bp->rx_mode_obj;
5531         ramrod_param.func_id = BP_FUNC(bp);
5532
5533         ramrod_param.pstate = &bp->sp_state;
5534         ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING;
5535
5536         ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata);
5537         ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata);
5538
5539         set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
5540
5541         ramrod_param.ramrod_flags = ramrod_flags;
5542         ramrod_param.rx_mode_flags = rx_mode_flags;
5543
5544         ramrod_param.rx_accept_flags = rx_accept_flags;
5545         ramrod_param.tx_accept_flags = tx_accept_flags;
5546
5547         rc = bnx2x_config_rx_mode(bp, &ramrod_param);
5548         if (rc < 0) {
5549                 BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode);
5550                 return;
5551         }
5552 }
5553
5554 /* called with netif_addr_lock_bh() */
5555 void bnx2x_set_storm_rx_mode(struct bnx2x *bp)
5556 {
5557         unsigned long rx_mode_flags = 0, ramrod_flags = 0;
5558         unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
5559
5560         if (!NO_FCOE(bp))
5561
5562                 /* Configure rx_mode of FCoE Queue */
5563                 __set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags);
5564
5565         switch (bp->rx_mode) {
5566         case BNX2X_RX_MODE_NONE:
5567                 /*
5568                  * 'drop all' supersedes any accept flags that may have been
5569                  * passed to the function.
5570                  */
5571                 break;
5572         case BNX2X_RX_MODE_NORMAL:
5573                 __set_bit(BNX2X_ACCEPT_UNICAST, &rx_accept_flags);
5574                 __set_bit(BNX2X_ACCEPT_MULTICAST, &rx_accept_flags);
5575                 __set_bit(BNX2X_ACCEPT_BROADCAST, &rx_accept_flags);
5576
5577                 /* internal switching mode */
5578                 __set_bit(BNX2X_ACCEPT_UNICAST, &tx_accept_flags);
5579                 __set_bit(BNX2X_ACCEPT_MULTICAST, &tx_accept_flags);
5580                 __set_bit(BNX2X_ACCEPT_BROADCAST, &tx_accept_flags);
5581
5582                 break;
5583         case BNX2X_RX_MODE_ALLMULTI:
5584                 __set_bit(BNX2X_ACCEPT_UNICAST, &rx_accept_flags);
5585                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &rx_accept_flags);
5586                 __set_bit(BNX2X_ACCEPT_BROADCAST, &rx_accept_flags);
5587
5588                 /* internal switching mode */
5589                 __set_bit(BNX2X_ACCEPT_UNICAST, &tx_accept_flags);
5590                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &tx_accept_flags);
5591                 __set_bit(BNX2X_ACCEPT_BROADCAST, &tx_accept_flags);
5592
5593                 break;
5594         case BNX2X_RX_MODE_PROMISC:
5595                 /* According to deffinition of SI mode, iface in promisc mode
5596                  * should receive matched and unmatched (in resolution of port)
5597                  * unicast packets.
5598                  */
5599                 __set_bit(BNX2X_ACCEPT_UNMATCHED, &rx_accept_flags);
5600                 __set_bit(BNX2X_ACCEPT_UNICAST, &rx_accept_flags);
5601                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &rx_accept_flags);
5602                 __set_bit(BNX2X_ACCEPT_BROADCAST, &rx_accept_flags);
5603
5604                 /* internal switching mode */
5605                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &tx_accept_flags);
5606                 __set_bit(BNX2X_ACCEPT_BROADCAST, &tx_accept_flags);
5607
5608                 if (IS_MF_SI(bp))
5609                         __set_bit(BNX2X_ACCEPT_ALL_UNICAST, &tx_accept_flags);
5610                 else
5611                         __set_bit(BNX2X_ACCEPT_UNICAST, &tx_accept_flags);
5612
5613                 break;
5614         default:
5615                 BNX2X_ERR("Unknown rx_mode: %d\n", bp->rx_mode);
5616                 return;
5617         }
5618
5619         if (bp->rx_mode != BNX2X_RX_MODE_NONE) {
5620                 __set_bit(BNX2X_ACCEPT_ANY_VLAN, &rx_accept_flags);
5621                 __set_bit(BNX2X_ACCEPT_ANY_VLAN, &tx_accept_flags);
5622         }
5623
5624         __set_bit(RAMROD_RX, &ramrod_flags);
5625         __set_bit(RAMROD_TX, &ramrod_flags);
5626
5627         bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags, rx_accept_flags,
5628                             tx_accept_flags, ramrod_flags);
5629 }
5630
5631 static void bnx2x_init_internal_common(struct bnx2x *bp)
5632 {
5633         int i;
5634
5635         if (IS_MF_SI(bp))
5636                 /*
5637                  * In switch independent mode, the TSTORM needs to accept
5638                  * packets that failed classification, since approximate match
5639                  * mac addresses aren't written to NIG LLH
5640                  */
5641                 REG_WR8(bp, BAR_TSTRORM_INTMEM +
5642                             TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 2);
5643         else if (!CHIP_IS_E1(bp)) /* 57710 doesn't support MF */
5644                 REG_WR8(bp, BAR_TSTRORM_INTMEM +
5645                             TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 0);
5646
5647         /* Zero this manually as its initialization is
5648            currently missing in the initTool */
5649         for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++)
5650                 REG_WR(bp, BAR_USTRORM_INTMEM +
5651                        USTORM_AGG_DATA_OFFSET + i * 4, 0);
5652         if (!CHIP_IS_E1x(bp)) {
5653                 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET,
5654                         CHIP_INT_MODE_IS_BC(bp) ?
5655                         HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
5656         }
5657 }
5658
5659 static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code)
5660 {
5661         switch (load_code) {
5662         case FW_MSG_CODE_DRV_LOAD_COMMON:
5663         case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
5664                 bnx2x_init_internal_common(bp);
5665                 /* no break */
5666
5667         case FW_MSG_CODE_DRV_LOAD_PORT:
5668                 /* nothing to do */
5669                 /* no break */
5670
5671         case FW_MSG_CODE_DRV_LOAD_FUNCTION:
5672                 /* internal memory per function is
5673                    initialized inside bnx2x_pf_init */
5674                 break;
5675
5676         default:
5677                 BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
5678                 break;
5679         }
5680 }
5681
5682 static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp)
5683 {
5684         return fp->bp->igu_base_sb + fp->index + CNIC_SUPPORT(fp->bp);
5685 }
5686
5687 static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp)
5688 {
5689         return fp->bp->base_fw_ndsb + fp->index + CNIC_SUPPORT(fp->bp);
5690 }
5691
5692 static u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp)
5693 {
5694         if (CHIP_IS_E1x(fp->bp))
5695                 return BP_L_ID(fp->bp) + fp->index;
5696         else    /* We want Client ID to be the same as IGU SB ID for 57712 */
5697                 return bnx2x_fp_igu_sb_id(fp);
5698 }
5699
5700 static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx)
5701 {
5702         struct bnx2x_fastpath *fp = &bp->fp[fp_idx];
5703         u8 cos;
5704         unsigned long q_type = 0;
5705         u32 cids[BNX2X_MULTI_TX_COS] = { 0 };
5706         fp->rx_queue = fp_idx;
5707         fp->cid = fp_idx;
5708         fp->cl_id = bnx2x_fp_cl_id(fp);
5709         fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp);
5710         fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp);
5711         /* qZone id equals to FW (per path) client id */
5712         fp->cl_qzone_id  = bnx2x_fp_qzone_id(fp);
5713
5714         /* init shortcut */
5715         fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp);
5716
5717         /* Setup SB indicies */
5718         fp->rx_cons_sb = BNX2X_RX_SB_INDEX;
5719
5720         /* Configure Queue State object */
5721         __set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
5722         __set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
5723
5724         BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS);
5725
5726         /* init tx data */
5727         for_each_cos_in_tx_queue(fp, cos) {
5728                 bnx2x_init_txdata(bp, fp->txdata_ptr[cos],
5729                                   CID_COS_TO_TX_ONLY_CID(fp->cid, cos, bp),
5730                                   FP_COS_TO_TXQ(fp, cos, bp),
5731                                   BNX2X_TX_SB_INDEX_BASE + cos, fp);
5732                 cids[cos] = fp->txdata_ptr[cos]->cid;
5733         }
5734
5735         /* nothing more for vf to do here */
5736         if (IS_VF(bp))
5737                 return;
5738
5739         bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false,
5740                       fp->fw_sb_id, fp->igu_sb_id);
5741         bnx2x_update_fpsb_idx(fp);
5742         bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id, cids,
5743                              fp->max_cos, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
5744                              bnx2x_sp_mapping(bp, q_rdata), q_type);
5745
5746         /**
5747          * Configure classification DBs: Always enable Tx switching
5748          */
5749         bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX);
5750
5751         DP(NETIF_MSG_IFUP,
5752            "queue[%d]:  bnx2x_init_sb(%p,%p)  cl_id %d  fw_sb %d  igu_sb %d\n",
5753            fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
5754            fp->igu_sb_id);
5755 }
5756
5757 static void bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata *txdata)
5758 {
5759         int i;
5760
5761         for (i = 1; i <= NUM_TX_RINGS; i++) {
5762                 struct eth_tx_next_bd *tx_next_bd =
5763                         &txdata->tx_desc_ring[TX_DESC_CNT * i - 1].next_bd;
5764
5765                 tx_next_bd->addr_hi =
5766                         cpu_to_le32(U64_HI(txdata->tx_desc_mapping +
5767                                     BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
5768                 tx_next_bd->addr_lo =
5769                         cpu_to_le32(U64_LO(txdata->tx_desc_mapping +
5770                                     BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
5771         }
5772
5773         SET_FLAG(txdata->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1);
5774         txdata->tx_db.data.zero_fill1 = 0;
5775         txdata->tx_db.data.prod = 0;
5776
5777         txdata->tx_pkt_prod = 0;
5778         txdata->tx_pkt_cons = 0;
5779         txdata->tx_bd_prod = 0;
5780         txdata->tx_bd_cons = 0;
5781         txdata->tx_pkt = 0;
5782 }
5783
5784 static void bnx2x_init_tx_rings_cnic(struct bnx2x *bp)
5785 {
5786         int i;
5787
5788         for_each_tx_queue_cnic(bp, i)
5789                 bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[0]);
5790 }
5791 static void bnx2x_init_tx_rings(struct bnx2x *bp)
5792 {
5793         int i;
5794         u8 cos;
5795
5796         for_each_eth_queue(bp, i)
5797                 for_each_cos_in_tx_queue(&bp->fp[i], cos)
5798                         bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[cos]);
5799 }
5800
5801 void bnx2x_nic_init_cnic(struct bnx2x *bp)
5802 {
5803         if (!NO_FCOE(bp))
5804                 bnx2x_init_fcoe_fp(bp);
5805
5806         bnx2x_init_sb(bp, bp->cnic_sb_mapping,
5807                       BNX2X_VF_ID_INVALID, false,
5808                       bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp));
5809
5810         /* ensure status block indices were read */
5811         rmb();
5812         bnx2x_init_rx_rings_cnic(bp);
5813         bnx2x_init_tx_rings_cnic(bp);
5814
5815         /* flush all */
5816         mb();
5817         mmiowb();
5818 }
5819
5820 void bnx2x_nic_init(struct bnx2x *bp, u32 load_code)
5821 {
5822         int i;
5823
5824         for_each_eth_queue(bp, i)
5825                 bnx2x_init_eth_fp(bp, i);
5826
5827         /* ensure status block indices were read */
5828         rmb();
5829         bnx2x_init_rx_rings(bp);
5830         bnx2x_init_tx_rings(bp);
5831
5832         if (IS_VF(bp))
5833                 return;
5834
5835         /* Initialize MOD_ABS interrupts */
5836         bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id,
5837                                bp->common.shmem_base, bp->common.shmem2_base,
5838                                BP_PORT(bp));
5839
5840         bnx2x_init_def_sb(bp);
5841         bnx2x_update_dsb_idx(bp);
5842         bnx2x_init_sp_ring(bp);
5843         bnx2x_init_eq_ring(bp);
5844         bnx2x_init_internal(bp, load_code);
5845         bnx2x_pf_init(bp);
5846         bnx2x_stats_init(bp);
5847
5848         /* flush all before enabling interrupts */
5849         mb();
5850         mmiowb();
5851
5852         bnx2x_int_enable(bp);
5853
5854         /* Check for SPIO5 */
5855         bnx2x_attn_int_deasserted0(bp,
5856                 REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) &
5857                                    AEU_INPUTS_ATTN_BITS_SPIO5);
5858 }
5859
5860 /* end of nic init */
5861
5862 /*
5863  * gzip service functions
5864  */
5865
5866 static int bnx2x_gunzip_init(struct bnx2x *bp)
5867 {
5868         bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE,
5869                                             &bp->gunzip_mapping, GFP_KERNEL);
5870         if (bp->gunzip_buf  == NULL)
5871                 goto gunzip_nomem1;
5872
5873         bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL);
5874         if (bp->strm  == NULL)
5875                 goto gunzip_nomem2;
5876
5877         bp->strm->workspace = vmalloc(zlib_inflate_workspacesize());
5878         if (bp->strm->workspace == NULL)
5879                 goto gunzip_nomem3;
5880
5881         return 0;
5882
5883 gunzip_nomem3:
5884         kfree(bp->strm);
5885         bp->strm = NULL;
5886
5887 gunzip_nomem2:
5888         dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
5889                           bp->gunzip_mapping);
5890         bp->gunzip_buf = NULL;
5891
5892 gunzip_nomem1:
5893         BNX2X_ERR("Cannot allocate firmware buffer for un-compression\n");
5894         return -ENOMEM;
5895 }
5896
5897 static void bnx2x_gunzip_end(struct bnx2x *bp)
5898 {
5899         if (bp->strm) {
5900                 vfree(bp->strm->workspace);
5901                 kfree(bp->strm);
5902                 bp->strm = NULL;
5903         }
5904
5905         if (bp->gunzip_buf) {
5906                 dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
5907                                   bp->gunzip_mapping);
5908                 bp->gunzip_buf = NULL;
5909         }
5910 }
5911
5912 static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len)
5913 {
5914         int n, rc;
5915
5916         /* check gzip header */
5917         if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) {
5918                 BNX2X_ERR("Bad gzip header\n");
5919                 return -EINVAL;
5920         }
5921
5922         n = 10;
5923
5924 #define FNAME                           0x8
5925
5926         if (zbuf[3] & FNAME)
5927                 while ((zbuf[n++] != 0) && (n < len));
5928
5929         bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n;
5930         bp->strm->avail_in = len - n;
5931         bp->strm->next_out = bp->gunzip_buf;
5932         bp->strm->avail_out = FW_BUF_SIZE;
5933
5934         rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
5935         if (rc != Z_OK)
5936                 return rc;
5937
5938         rc = zlib_inflate(bp->strm, Z_FINISH);
5939         if ((rc != Z_OK) && (rc != Z_STREAM_END))
5940                 netdev_err(bp->dev, "Firmware decompression error: %s\n",
5941                            bp->strm->msg);
5942
5943         bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out);
5944         if (bp->gunzip_outlen & 0x3)
5945                 netdev_err(bp->dev,
5946                            "Firmware decompression error: gunzip_outlen (%d) not aligned\n",
5947                                 bp->gunzip_outlen);
5948         bp->gunzip_outlen >>= 2;
5949
5950         zlib_inflateEnd(bp->strm);
5951
5952         if (rc == Z_STREAM_END)
5953                 return 0;
5954
5955         return rc;
5956 }
5957
5958 /* nic load/unload */
5959
5960 /*
5961  * General service functions
5962  */
5963
5964 /* send a NIG loopback debug packet */
5965 static void bnx2x_lb_pckt(struct bnx2x *bp)
5966 {
5967         u32 wb_write[3];
5968
5969         /* Ethernet source and destination addresses */
5970         wb_write[0] = 0x55555555;
5971         wb_write[1] = 0x55555555;
5972         wb_write[2] = 0x20;             /* SOP */
5973         REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
5974
5975         /* NON-IP protocol */
5976         wb_write[0] = 0x09000000;
5977         wb_write[1] = 0x55555555;
5978         wb_write[2] = 0x10;             /* EOP, eop_bvalid = 0 */
5979         REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
5980 }
5981
5982 /* some of the internal memories
5983  * are not directly readable from the driver
5984  * to test them we send debug packets
5985  */
5986 static int bnx2x_int_mem_test(struct bnx2x *bp)
5987 {
5988         int factor;
5989         int count, i;
5990         u32 val = 0;
5991
5992         if (CHIP_REV_IS_FPGA(bp))
5993                 factor = 120;
5994         else if (CHIP_REV_IS_EMUL(bp))
5995                 factor = 200;
5996         else
5997                 factor = 1;
5998
5999         /* Disable inputs of parser neighbor blocks */
6000         REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6001         REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6002         REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6003         REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6004
6005         /*  Write 0 to parser credits for CFC search request */
6006         REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6007
6008         /* send Ethernet packet */
6009         bnx2x_lb_pckt(bp);
6010
6011         /* TODO do i reset NIG statistic? */
6012         /* Wait until NIG register shows 1 packet of size 0x10 */
6013         count = 1000 * factor;
6014         while (count) {
6015
6016                 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6017                 val = *bnx2x_sp(bp, wb_data[0]);
6018                 if (val == 0x10)
6019                         break;
6020
6021                 msleep(10);
6022                 count--;
6023         }
6024         if (val != 0x10) {
6025                 BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6026                 return -1;
6027         }
6028
6029         /* Wait until PRS register shows 1 packet */
6030         count = 1000 * factor;
6031         while (count) {
6032                 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6033                 if (val == 1)
6034                         break;
6035
6036                 msleep(10);
6037                 count--;
6038         }
6039         if (val != 0x1) {
6040                 BNX2X_ERR("PRS timeout val = 0x%x\n", val);
6041                 return -2;
6042         }
6043
6044         /* Reset and init BRB, PRS */
6045         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6046         msleep(50);
6047         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6048         msleep(50);
6049         bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6050         bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6051
6052         DP(NETIF_MSG_HW, "part2\n");
6053
6054         /* Disable inputs of parser neighbor blocks */
6055         REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6056         REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6057         REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6058         REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6059
6060         /* Write 0 to parser credits for CFC search request */
6061         REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6062
6063         /* send 10 Ethernet packets */
6064         for (i = 0; i < 10; i++)
6065                 bnx2x_lb_pckt(bp);
6066
6067         /* Wait until NIG register shows 10 + 1
6068            packets of size 11*0x10 = 0xb0 */
6069         count = 1000 * factor;
6070         while (count) {
6071
6072                 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6073                 val = *bnx2x_sp(bp, wb_data[0]);
6074                 if (val == 0xb0)
6075                         break;
6076
6077                 msleep(10);
6078                 count--;
6079         }
6080         if (val != 0xb0) {
6081                 BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6082                 return -3;
6083         }
6084
6085         /* Wait until PRS register shows 2 packets */
6086         val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6087         if (val != 2)
6088                 BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6089
6090         /* Write 1 to parser credits for CFC search request */
6091         REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
6092
6093         /* Wait until PRS register shows 3 packets */
6094         msleep(10 * factor);
6095         /* Wait until NIG register shows 1 packet of size 0x10 */
6096         val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6097         if (val != 3)
6098                 BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6099
6100         /* clear NIG EOP FIFO */
6101         for (i = 0; i < 11; i++)
6102                 REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO);
6103         val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY);
6104         if (val != 1) {
6105                 BNX2X_ERR("clear of NIG failed\n");
6106                 return -4;
6107         }
6108
6109         /* Reset and init BRB, PRS, NIG */
6110         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6111         msleep(50);
6112         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6113         msleep(50);
6114         bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6115         bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6116         if (!CNIC_SUPPORT(bp))
6117                 /* set NIC mode */
6118                 REG_WR(bp, PRS_REG_NIC_MODE, 1);
6119
6120         /* Enable inputs of parser neighbor blocks */
6121         REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff);
6122         REG_WR(bp, TCM_REG_PRS_IFEN, 0x1);
6123         REG_WR(bp, CFC_REG_DEBUG0, 0x0);
6124         REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1);
6125
6126         DP(NETIF_MSG_HW, "done\n");
6127
6128         return 0; /* OK */
6129 }
6130
6131 static void bnx2x_enable_blocks_attention(struct bnx2x *bp)
6132 {
6133         u32 val;
6134
6135         REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6136         if (!CHIP_IS_E1x(bp))
6137                 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40);
6138         else
6139                 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0);
6140         REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6141         REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6142         /*
6143          * mask read length error interrupts in brb for parser
6144          * (parsing unit and 'checksum and crc' unit)
6145          * these errors are legal (PU reads fixed length and CAC can cause
6146          * read length error on truncated packets)
6147          */
6148         REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00);
6149         REG_WR(bp, QM_REG_QM_INT_MASK, 0);
6150         REG_WR(bp, TM_REG_TM_INT_MASK, 0);
6151         REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0);
6152         REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0);
6153         REG_WR(bp, XCM_REG_XCM_INT_MASK, 0);
6154 /*      REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */
6155 /*      REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */
6156         REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0);
6157         REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0);
6158         REG_WR(bp, UCM_REG_UCM_INT_MASK, 0);
6159 /*      REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */
6160 /*      REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */
6161         REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
6162         REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0);
6163         REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0);
6164         REG_WR(bp, CCM_REG_CCM_INT_MASK, 0);
6165 /*      REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */
6166 /*      REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */
6167
6168         val = PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT  |
6169                 PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
6170                 PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN;
6171         if (!CHIP_IS_E1x(bp))
6172                 val |= PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
6173                         PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED;
6174         REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, val);
6175
6176         REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0);
6177         REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0);
6178         REG_WR(bp, TCM_REG_TCM_INT_MASK, 0);
6179 /*      REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */
6180
6181         if (!CHIP_IS_E1x(bp))
6182                 /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
6183                 REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
6184
6185         REG_WR(bp, CDU_REG_CDU_INT_MASK, 0);
6186         REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0);
6187 /*      REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */
6188         REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18);         /* bit 3,4 masked */
6189 }
6190
6191 static void bnx2x_reset_common(struct bnx2x *bp)
6192 {
6193         u32 val = 0x1400;
6194
6195         /* reset_common */
6196         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6197                0xd3ffff7f);
6198
6199         if (CHIP_IS_E3(bp)) {
6200                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6201                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6202         }
6203
6204         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val);
6205 }
6206
6207 static void bnx2x_setup_dmae(struct bnx2x *bp)
6208 {
6209         bp->dmae_ready = 0;
6210         spin_lock_init(&bp->dmae_lock);
6211 }
6212
6213 static void bnx2x_init_pxp(struct bnx2x *bp)
6214 {
6215         u16 devctl;
6216         int r_order, w_order;
6217
6218         pcie_capability_read_word(bp->pdev, PCI_EXP_DEVCTL, &devctl);
6219         DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
6220         w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6221         if (bp->mrrs == -1)
6222                 r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
6223         else {
6224                 DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
6225                 r_order = bp->mrrs;
6226         }
6227
6228         bnx2x_init_pxp_arb(bp, r_order, w_order);
6229 }
6230
6231 static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp)
6232 {
6233         int is_required;
6234         u32 val;
6235         int port;
6236
6237         if (BP_NOMCP(bp))
6238                 return;
6239
6240         is_required = 0;
6241         val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) &
6242               SHARED_HW_CFG_FAN_FAILURE_MASK;
6243
6244         if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED)
6245                 is_required = 1;
6246
6247         /*
6248          * The fan failure mechanism is usually related to the PHY type since
6249          * the power consumption of the board is affected by the PHY. Currently,
6250          * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
6251          */
6252         else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE)
6253                 for (port = PORT_0; port < PORT_MAX; port++) {
6254                         is_required |=
6255                                 bnx2x_fan_failure_det_req(
6256                                         bp,
6257                                         bp->common.shmem_base,
6258                                         bp->common.shmem2_base,
6259                                         port);
6260                 }
6261
6262         DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required);
6263
6264         if (is_required == 0)
6265                 return;
6266
6267         /* Fan failure is indicated by SPIO 5 */
6268         bnx2x_set_spio(bp, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
6269
6270         /* set to active low mode */
6271         val = REG_RD(bp, MISC_REG_SPIO_INT);
6272         val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
6273         REG_WR(bp, MISC_REG_SPIO_INT, val);
6274
6275         /* enable interrupt to signal the IGU */
6276         val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
6277         val |= MISC_SPIO_SPIO5;
6278         REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val);
6279 }
6280
6281 static void bnx2x_pretend_func(struct bnx2x *bp, u8 pretend_func_num)
6282 {
6283         u32 offset = 0;
6284
6285         if (CHIP_IS_E1(bp))
6286                 return;
6287         if (CHIP_IS_E1H(bp) && (pretend_func_num >= E1H_FUNC_MAX))
6288                 return;
6289
6290         switch (BP_ABS_FUNC(bp)) {
6291         case 0:
6292                 offset = PXP2_REG_PGL_PRETEND_FUNC_F0;
6293                 break;
6294         case 1:
6295                 offset = PXP2_REG_PGL_PRETEND_FUNC_F1;
6296                 break;
6297         case 2:
6298                 offset = PXP2_REG_PGL_PRETEND_FUNC_F2;
6299                 break;
6300         case 3:
6301                 offset = PXP2_REG_PGL_PRETEND_FUNC_F3;
6302                 break;
6303         case 4:
6304                 offset = PXP2_REG_PGL_PRETEND_FUNC_F4;
6305                 break;
6306         case 5:
6307                 offset = PXP2_REG_PGL_PRETEND_FUNC_F5;
6308                 break;
6309         case 6:
6310                 offset = PXP2_REG_PGL_PRETEND_FUNC_F6;
6311                 break;
6312         case 7:
6313                 offset = PXP2_REG_PGL_PRETEND_FUNC_F7;
6314                 break;
6315         default:
6316                 return;
6317         }
6318
6319         REG_WR(bp, offset, pretend_func_num);
6320         REG_RD(bp, offset);
6321         DP(NETIF_MSG_HW, "Pretending to func %d\n", pretend_func_num);
6322 }
6323
6324 void bnx2x_pf_disable(struct bnx2x *bp)
6325 {
6326         u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
6327         val &= ~IGU_PF_CONF_FUNC_EN;
6328
6329         REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
6330         REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6331         REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0);
6332 }
6333
6334 static void bnx2x__common_init_phy(struct bnx2x *bp)
6335 {
6336         u32 shmem_base[2], shmem2_base[2];
6337         /* Avoid common init in case MFW supports LFA */
6338         if (SHMEM2_RD(bp, size) >
6339             (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
6340                 return;
6341         shmem_base[0] =  bp->common.shmem_base;
6342         shmem2_base[0] = bp->common.shmem2_base;
6343         if (!CHIP_IS_E1x(bp)) {
6344                 shmem_base[1] =
6345                         SHMEM2_RD(bp, other_shmem_base_addr);
6346                 shmem2_base[1] =
6347                         SHMEM2_RD(bp, other_shmem2_base_addr);
6348         }
6349         bnx2x_acquire_phy_lock(bp);
6350         bnx2x_common_init_phy(bp, shmem_base, shmem2_base,
6351                               bp->common.chip_id);
6352         bnx2x_release_phy_lock(bp);
6353 }
6354
6355 /**
6356  * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
6357  *
6358  * @bp:         driver handle
6359  */
6360 static int bnx2x_init_hw_common(struct bnx2x *bp)
6361 {
6362         u32 val;
6363
6364         DP(NETIF_MSG_HW, "starting common init  func %d\n", BP_ABS_FUNC(bp));
6365
6366         /*
6367          * take the UNDI lock to protect undi_unload flow from accessing
6368          * registers while we're resetting the chip
6369          */
6370         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
6371
6372         bnx2x_reset_common(bp);
6373         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff);
6374
6375         val = 0xfffc;
6376         if (CHIP_IS_E3(bp)) {
6377                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6378                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6379         }
6380         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val);
6381
6382         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
6383
6384         bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON);
6385
6386         if (!CHIP_IS_E1x(bp)) {
6387                 u8 abs_func_id;
6388
6389                 /**
6390                  * 4-port mode or 2-port mode we need to turn of master-enable
6391                  * for everyone, after that, turn it back on for self.
6392                  * so, we disregard multi-function or not, and always disable
6393                  * for all functions on the given path, this means 0,2,4,6 for
6394                  * path 0 and 1,3,5,7 for path 1
6395                  */
6396                 for (abs_func_id = BP_PATH(bp);
6397                      abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) {
6398                         if (abs_func_id == BP_ABS_FUNC(bp)) {
6399                                 REG_WR(bp,
6400                                     PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
6401                                     1);
6402                                 continue;
6403                         }
6404
6405                         bnx2x_pretend_func(bp, abs_func_id);
6406                         /* clear pf enable */
6407                         bnx2x_pf_disable(bp);
6408                         bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
6409                 }
6410         }
6411
6412         bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON);
6413         if (CHIP_IS_E1(bp)) {
6414                 /* enable HW interrupt from PXP on USDM overflow
6415                    bit 16 on INT_MASK_0 */
6416                 REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6417         }
6418
6419         bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON);
6420         bnx2x_init_pxp(bp);
6421
6422 #ifdef __BIG_ENDIAN
6423         REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, 1);
6424         REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, 1);
6425         REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, 1);
6426         REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, 1);
6427         REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, 1);
6428         /* make sure this value is 0 */
6429         REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0);
6430
6431 /*      REG_WR(bp, PXP2_REG_RD_PBF_SWAP_MODE, 1); */
6432         REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, 1);
6433         REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, 1);
6434         REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, 1);
6435         REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, 1);
6436 #endif
6437
6438         bnx2x_ilt_init_page_size(bp, INITOP_SET);
6439
6440         if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp))
6441                 REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
6442
6443         /* let the HW do it's magic ... */
6444         msleep(100);
6445         /* finish PXP init */
6446         val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE);
6447         if (val != 1) {
6448                 BNX2X_ERR("PXP2 CFG failed\n");
6449                 return -EBUSY;
6450         }
6451         val = REG_RD(bp, PXP2_REG_RD_INIT_DONE);
6452         if (val != 1) {
6453                 BNX2X_ERR("PXP2 RD_INIT failed\n");
6454                 return -EBUSY;
6455         }
6456
6457         /* Timers bug workaround E2 only. We need to set the entire ILT to
6458          * have entries with value "0" and valid bit on.
6459          * This needs to be done by the first PF that is loaded in a path
6460          * (i.e. common phase)
6461          */
6462         if (!CHIP_IS_E1x(bp)) {
6463 /* In E2 there is a bug in the timers block that can cause function 6 / 7
6464  * (i.e. vnic3) to start even if it is marked as "scan-off".
6465  * This occurs when a different function (func2,3) is being marked
6466  * as "scan-off". Real-life scenario for example: if a driver is being
6467  * load-unloaded while func6,7 are down. This will cause the timer to access
6468  * the ilt, translate to a logical address and send a request to read/write.
6469  * Since the ilt for the function that is down is not valid, this will cause
6470  * a translation error which is unrecoverable.
6471  * The Workaround is intended to make sure that when this happens nothing fatal
6472  * will occur. The workaround:
6473  *      1.  First PF driver which loads on a path will:
6474  *              a.  After taking the chip out of reset, by using pretend,
6475  *                  it will write "0" to the following registers of
6476  *                  the other vnics.
6477  *                  REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6478  *                  REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
6479  *                  REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
6480  *                  And for itself it will write '1' to
6481  *                  PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
6482  *                  dmae-operations (writing to pram for example.)
6483  *                  note: can be done for only function 6,7 but cleaner this
6484  *                        way.
6485  *              b.  Write zero+valid to the entire ILT.
6486  *              c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
6487  *                  VNIC3 (of that port). The range allocated will be the
6488  *                  entire ILT. This is needed to prevent  ILT range error.
6489  *      2.  Any PF driver load flow:
6490  *              a.  ILT update with the physical addresses of the allocated
6491  *                  logical pages.
6492  *              b.  Wait 20msec. - note that this timeout is needed to make
6493  *                  sure there are no requests in one of the PXP internal
6494  *                  queues with "old" ILT addresses.
6495  *              c.  PF enable in the PGLC.
6496  *              d.  Clear the was_error of the PF in the PGLC. (could have
6497  *                  occured while driver was down)
6498  *              e.  PF enable in the CFC (WEAK + STRONG)
6499  *              f.  Timers scan enable
6500  *      3.  PF driver unload flow:
6501  *              a.  Clear the Timers scan_en.
6502  *              b.  Polling for scan_on=0 for that PF.
6503  *              c.  Clear the PF enable bit in the PXP.
6504  *              d.  Clear the PF enable in the CFC (WEAK + STRONG)
6505  *              e.  Write zero+valid to all ILT entries (The valid bit must
6506  *                  stay set)
6507  *              f.  If this is VNIC 3 of a port then also init
6508  *                  first_timers_ilt_entry to zero and last_timers_ilt_entry
6509  *                  to the last enrty in the ILT.
6510  *
6511  *      Notes:
6512  *      Currently the PF error in the PGLC is non recoverable.
6513  *      In the future the there will be a recovery routine for this error.
6514  *      Currently attention is masked.
6515  *      Having an MCP lock on the load/unload process does not guarantee that
6516  *      there is no Timer disable during Func6/7 enable. This is because the
6517  *      Timers scan is currently being cleared by the MCP on FLR.
6518  *      Step 2.d can be done only for PF6/7 and the driver can also check if
6519  *      there is error before clearing it. But the flow above is simpler and
6520  *      more general.
6521  *      All ILT entries are written by zero+valid and not just PF6/7
6522  *      ILT entries since in the future the ILT entries allocation for
6523  *      PF-s might be dynamic.
6524  */
6525                 struct ilt_client_info ilt_cli;
6526                 struct bnx2x_ilt ilt;
6527                 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
6528                 memset(&ilt, 0, sizeof(struct bnx2x_ilt));
6529
6530                 /* initialize dummy TM client */
6531                 ilt_cli.start = 0;
6532                 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
6533                 ilt_cli.client_num = ILT_CLIENT_TM;
6534
6535                 /* Step 1: set zeroes to all ilt page entries with valid bit on
6536                  * Step 2: set the timers first/last ilt entry to point
6537                  * to the entire range to prevent ILT range error for 3rd/4th
6538                  * vnic (this code assumes existance of the vnic)
6539                  *
6540                  * both steps performed by call to bnx2x_ilt_client_init_op()
6541                  * with dummy TM client
6542                  *
6543                  * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
6544                  * and his brother are split registers
6545                  */
6546                 bnx2x_pretend_func(bp, (BP_PATH(bp) + 6));
6547                 bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR);
6548                 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
6549
6550                 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
6551                 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
6552                 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
6553         }
6554
6555
6556         REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0);
6557         REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0);
6558
6559         if (!CHIP_IS_E1x(bp)) {
6560                 int factor = CHIP_REV_IS_EMUL(bp) ? 1000 :
6561                                 (CHIP_REV_IS_FPGA(bp) ? 400 : 0);
6562                 bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON);
6563
6564                 bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON);
6565
6566                 /* let the HW do it's magic ... */
6567                 do {
6568                         msleep(200);
6569                         val = REG_RD(bp, ATC_REG_ATC_INIT_DONE);
6570                 } while (factor-- && (val != 1));
6571
6572                 if (val != 1) {
6573                         BNX2X_ERR("ATC_INIT failed\n");
6574                         return -EBUSY;
6575                 }
6576         }
6577
6578         bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON);
6579
6580         /* clean the DMAE memory */
6581         bp->dmae_ready = 1;
6582         bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1);
6583
6584         bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON);
6585
6586         bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON);
6587
6588         bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON);
6589
6590         bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON);
6591
6592         bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3);
6593         bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3);
6594         bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3);
6595         bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3);
6596
6597         bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON);
6598
6599
6600         /* QM queues pointers table */
6601         bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET);
6602
6603         /* soft reset pulse */
6604         REG_WR(bp, QM_REG_SOFT_RESET, 1);
6605         REG_WR(bp, QM_REG_SOFT_RESET, 0);
6606
6607         if (CNIC_SUPPORT(bp))
6608                 bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON);
6609
6610         bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON);
6611         REG_WR(bp, DORQ_REG_DPM_CID_OFST, BNX2X_DB_SHIFT);
6612         if (!CHIP_REV_IS_SLOW(bp))
6613                 /* enable hw interrupt from doorbell Q */
6614                 REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6615
6616         bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6617
6618         bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6619         REG_WR(bp, PRS_REG_A_PRSU_20, 0xf);
6620
6621         if (!CHIP_IS_E1(bp))
6622                 REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan);
6623
6624         if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp)) {
6625                 if (IS_MF_AFEX(bp)) {
6626                         /* configure that VNTag and VLAN headers must be
6627                          * received in afex mode
6628                          */
6629                         REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, 0xE);
6630                         REG_WR(bp, PRS_REG_MUST_HAVE_HDRS, 0xA);
6631                         REG_WR(bp, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
6632                         REG_WR(bp, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
6633                         REG_WR(bp, PRS_REG_TAG_LEN_0, 0x4);
6634                 } else {
6635                         /* Bit-map indicating which L2 hdrs may appear
6636                          * after the basic Ethernet header
6637                          */
6638                         REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC,
6639                                bp->path_has_ovlan ? 7 : 6);
6640                 }
6641         }
6642
6643         bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON);
6644         bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON);
6645         bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON);
6646         bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON);
6647
6648         if (!CHIP_IS_E1x(bp)) {
6649                 /* reset VFC memories */
6650                 REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
6651                            VFC_MEMORIES_RST_REG_CAM_RST |
6652                            VFC_MEMORIES_RST_REG_RAM_RST);
6653                 REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
6654                            VFC_MEMORIES_RST_REG_CAM_RST |
6655                            VFC_MEMORIES_RST_REG_RAM_RST);
6656
6657                 msleep(20);
6658         }
6659
6660         bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON);
6661         bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON);
6662         bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON);
6663         bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON);
6664
6665         /* sync semi rtc */
6666         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6667                0x80000000);
6668         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
6669                0x80000000);
6670
6671         bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON);
6672         bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON);
6673         bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON);
6674
6675         if (!CHIP_IS_E1x(bp)) {
6676                 if (IS_MF_AFEX(bp)) {
6677                         /* configure that VNTag and VLAN headers must be
6678                          * sent in afex mode
6679                          */
6680                         REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, 0xE);
6681                         REG_WR(bp, PBF_REG_MUST_HAVE_HDRS, 0xA);
6682                         REG_WR(bp, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
6683                         REG_WR(bp, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
6684                         REG_WR(bp, PBF_REG_TAG_LEN_0, 0x4);
6685                 } else {
6686                         REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC,
6687                                bp->path_has_ovlan ? 7 : 6);
6688                 }
6689         }
6690
6691         REG_WR(bp, SRC_REG_SOFT_RST, 1);
6692
6693         bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON);
6694
6695         if (CNIC_SUPPORT(bp)) {
6696                 REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672);
6697                 REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
6698                 REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b);
6699                 REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a);
6700                 REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116);
6701                 REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
6702                 REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf);
6703                 REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
6704                 REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f);
6705                 REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7);
6706         }
6707         REG_WR(bp, SRC_REG_SOFT_RST, 0);
6708
6709         if (sizeof(union cdu_context) != 1024)
6710                 /* we currently assume that a context is 1024 bytes */
6711                 dev_alert(&bp->pdev->dev,
6712                           "please adjust the size of cdu_context(%ld)\n",
6713                           (long)sizeof(union cdu_context));
6714
6715         bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON);
6716         val = (4 << 24) + (0 << 12) + 1024;
6717         REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val);
6718
6719         bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON);
6720         REG_WR(bp, CFC_REG_INIT_REG, 0x7FF);
6721         /* enable context validation interrupt from CFC */
6722         REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6723
6724         /* set the thresholds to prevent CFC/CDU race */
6725         REG_WR(bp, CFC_REG_DEBUG0, 0x20020000);
6726
6727         bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON);
6728
6729         if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp))
6730                 REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36);
6731
6732         bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON);
6733         bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON);
6734
6735         /* Reset PCIE errors for debug */
6736         REG_WR(bp, 0x2814, 0xffffffff);
6737         REG_WR(bp, 0x3820, 0xffffffff);
6738
6739         if (!CHIP_IS_E1x(bp)) {
6740                 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
6741                            (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
6742                                 PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
6743                 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
6744                            (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
6745                                 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
6746                                 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
6747                 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
6748                            (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
6749                                 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
6750                                 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
6751         }
6752
6753         bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON);
6754         if (!CHIP_IS_E1(bp)) {
6755                 /* in E3 this done in per-port section */
6756                 if (!CHIP_IS_E3(bp))
6757                         REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp));
6758         }
6759         if (CHIP_IS_E1H(bp))
6760                 /* not applicable for E2 (and above ...) */
6761                 REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp));
6762
6763         if (CHIP_REV_IS_SLOW(bp))
6764                 msleep(200);
6765
6766         /* finish CFC init */
6767         val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10);
6768         if (val != 1) {
6769                 BNX2X_ERR("CFC LL_INIT failed\n");
6770                 return -EBUSY;
6771         }
6772         val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10);
6773         if (val != 1) {
6774                 BNX2X_ERR("CFC AC_INIT failed\n");
6775                 return -EBUSY;
6776         }
6777         val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
6778         if (val != 1) {
6779                 BNX2X_ERR("CFC CAM_INIT failed\n");
6780                 return -EBUSY;
6781         }
6782         REG_WR(bp, CFC_REG_DEBUG0, 0);
6783
6784         if (CHIP_IS_E1(bp)) {
6785                 /* read NIG statistic
6786                    to see if this is our first up since powerup */
6787                 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6788                 val = *bnx2x_sp(bp, wb_data[0]);
6789
6790                 /* do internal memory self test */
6791                 if ((val == 0) && bnx2x_int_mem_test(bp)) {
6792                         BNX2X_ERR("internal mem self test failed\n");
6793                         return -EBUSY;
6794                 }
6795         }
6796
6797         bnx2x_setup_fan_failure_detection(bp);
6798
6799         /* clear PXP2 attentions */
6800         REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0);
6801
6802         bnx2x_enable_blocks_attention(bp);
6803         bnx2x_enable_blocks_parity(bp);
6804
6805         if (!BP_NOMCP(bp)) {
6806                 if (CHIP_IS_E1x(bp))
6807                         bnx2x__common_init_phy(bp);
6808         } else
6809                 BNX2X_ERR("Bootcode is missing - can not initialize link\n");
6810
6811         return 0;
6812 }
6813
6814 /**
6815  * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
6816  *
6817  * @bp:         driver handle
6818  */
6819 static int bnx2x_init_hw_common_chip(struct bnx2x *bp)
6820 {
6821         int rc = bnx2x_init_hw_common(bp);
6822
6823         if (rc)
6824                 return rc;
6825
6826         /* In E2 2-PORT mode, same ext phy is used for the two paths */
6827         if (!BP_NOMCP(bp))
6828                 bnx2x__common_init_phy(bp);
6829
6830         return 0;
6831 }
6832
6833 static int bnx2x_init_hw_port(struct bnx2x *bp)
6834 {
6835         int port = BP_PORT(bp);
6836         int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
6837         u32 low, high;
6838         u32 val;
6839
6840
6841         DP(NETIF_MSG_HW, "starting port init  port %d\n", port);
6842
6843         REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
6844
6845         bnx2x_init_block(bp, BLOCK_MISC, init_phase);
6846         bnx2x_init_block(bp, BLOCK_PXP, init_phase);
6847         bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
6848
6849         /* Timers bug workaround: disables the pf_master bit in pglue at
6850          * common phase, we need to enable it here before any dmae access are
6851          * attempted. Therefore we manually added the enable-master to the
6852          * port phase (it also happens in the function phase)
6853          */
6854         if (!CHIP_IS_E1x(bp))
6855                 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
6856
6857         bnx2x_init_block(bp, BLOCK_ATC, init_phase);
6858         bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
6859         bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
6860         bnx2x_init_block(bp, BLOCK_QM, init_phase);
6861
6862         bnx2x_init_block(bp, BLOCK_TCM, init_phase);
6863         bnx2x_init_block(bp, BLOCK_UCM, init_phase);
6864         bnx2x_init_block(bp, BLOCK_CCM, init_phase);
6865         bnx2x_init_block(bp, BLOCK_XCM, init_phase);
6866
6867         /* QM cid (connection) count */
6868         bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET);
6869
6870         if (CNIC_SUPPORT(bp)) {
6871                 bnx2x_init_block(bp, BLOCK_TM, init_phase);
6872                 REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20);
6873                 REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
6874         }
6875
6876         bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
6877
6878         bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
6879
6880         if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) {
6881
6882                 if (IS_MF(bp))
6883                         low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246);
6884                 else if (bp->dev->mtu > 4096) {
6885                         if (bp->flags & ONE_PORT_FLAG)
6886                                 low = 160;
6887                         else {
6888                                 val = bp->dev->mtu;
6889                                 /* (24*1024 + val*4)/256 */
6890                                 low = 96 + (val/64) +
6891                                                 ((val % 64) ? 1 : 0);
6892                         }
6893                 } else
6894                         low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160);
6895                 high = low + 56;        /* 14*1024/256 */
6896                 REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
6897                 REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
6898         }
6899
6900         if (CHIP_MODE_IS_4_PORT(bp))
6901                 REG_WR(bp, (BP_PORT(bp) ?
6902                             BRB1_REG_MAC_GUARANTIED_1 :
6903                             BRB1_REG_MAC_GUARANTIED_0), 40);
6904
6905
6906         bnx2x_init_block(bp, BLOCK_PRS, init_phase);
6907         if (CHIP_IS_E3B0(bp)) {
6908                 if (IS_MF_AFEX(bp)) {
6909                         /* configure headers for AFEX mode */
6910                         REG_WR(bp, BP_PORT(bp) ?
6911                                PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
6912                                PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
6913                         REG_WR(bp, BP_PORT(bp) ?
6914                                PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
6915                                PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
6916                         REG_WR(bp, BP_PORT(bp) ?
6917                                PRS_REG_MUST_HAVE_HDRS_PORT_1 :
6918                                PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
6919                 } else {
6920                         /* Ovlan exists only if we are in multi-function +
6921                          * switch-dependent mode, in switch-independent there
6922                          * is no ovlan headers
6923                          */
6924                         REG_WR(bp, BP_PORT(bp) ?
6925                                PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
6926                                PRS_REG_HDRS_AFTER_BASIC_PORT_0,
6927                                (bp->path_has_ovlan ? 7 : 6));
6928                 }
6929         }
6930
6931         bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
6932         bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
6933         bnx2x_init_block(bp, BLOCK_USDM, init_phase);
6934         bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
6935
6936         bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
6937         bnx2x_init_block(bp, BLOCK_USEM, init_phase);
6938         bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
6939         bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
6940
6941         bnx2x_init_block(bp, BLOCK_UPB, init_phase);
6942         bnx2x_init_block(bp, BLOCK_XPB, init_phase);
6943
6944         bnx2x_init_block(bp, BLOCK_PBF, init_phase);
6945
6946         if (CHIP_IS_E1x(bp)) {
6947                 /* configure PBF to work without PAUSE mtu 9000 */
6948                 REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
6949
6950                 /* update threshold */
6951                 REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
6952                 /* update init credit */
6953                 REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
6954
6955                 /* probe changes */
6956                 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1);
6957                 udelay(50);
6958                 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0);
6959         }
6960
6961         if (CNIC_SUPPORT(bp))
6962                 bnx2x_init_block(bp, BLOCK_SRC, init_phase);
6963
6964         bnx2x_init_block(bp, BLOCK_CDU, init_phase);
6965         bnx2x_init_block(bp, BLOCK_CFC, init_phase);
6966
6967         if (CHIP_IS_E1(bp)) {
6968                 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
6969                 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
6970         }
6971         bnx2x_init_block(bp, BLOCK_HC, init_phase);
6972
6973         bnx2x_init_block(bp, BLOCK_IGU, init_phase);
6974
6975         bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
6976         /* init aeu_mask_attn_func_0/1:
6977          *  - SF mode: bits 3-7 are masked. only bits 0-2 are in use
6978          *  - MF mode: bit 3 is masked. bits 0-2 are in use as in SF
6979          *             bits 4-7 are used for "per vn group attention" */
6980         val = IS_MF(bp) ? 0xF7 : 0x7;
6981         /* Enable DCBX attention for all but E1 */
6982         val |= CHIP_IS_E1(bp) ? 0 : 0x10;
6983         REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
6984
6985         bnx2x_init_block(bp, BLOCK_NIG, init_phase);
6986
6987         if (!CHIP_IS_E1x(bp)) {
6988                 /* Bit-map indicating which L2 hdrs may appear after the
6989                  * basic Ethernet header
6990                  */
6991                 if (IS_MF_AFEX(bp))
6992                         REG_WR(bp, BP_PORT(bp) ?
6993                                NIG_REG_P1_HDRS_AFTER_BASIC :
6994                                NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
6995                 else
6996                         REG_WR(bp, BP_PORT(bp) ?
6997                                NIG_REG_P1_HDRS_AFTER_BASIC :
6998                                NIG_REG_P0_HDRS_AFTER_BASIC,
6999                                IS_MF_SD(bp) ? 7 : 6);
7000
7001                 if (CHIP_IS_E3(bp))
7002                         REG_WR(bp, BP_PORT(bp) ?
7003                                    NIG_REG_LLH1_MF_MODE :
7004                                    NIG_REG_LLH_MF_MODE, IS_MF(bp));
7005         }
7006         if (!CHIP_IS_E3(bp))
7007                 REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
7008
7009         if (!CHIP_IS_E1(bp)) {
7010                 /* 0x2 disable mf_ov, 0x1 enable */
7011                 REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
7012                        (IS_MF_SD(bp) ? 0x1 : 0x2));
7013
7014                 if (!CHIP_IS_E1x(bp)) {
7015                         val = 0;
7016                         switch (bp->mf_mode) {
7017                         case MULTI_FUNCTION_SD:
7018                                 val = 1;
7019                                 break;
7020                         case MULTI_FUNCTION_SI:
7021                         case MULTI_FUNCTION_AFEX:
7022                                 val = 2;
7023                                 break;
7024                         }
7025
7026                         REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE :
7027                                                   NIG_REG_LLH0_CLS_TYPE), val);
7028                 }
7029                 {
7030                         REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
7031                         REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
7032                         REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
7033                 }
7034         }
7035
7036
7037         /* If SPIO5 is set to generate interrupts, enable it for this port */
7038         val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
7039         if (val & MISC_SPIO_SPIO5) {
7040                 u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
7041                                        MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
7042                 val = REG_RD(bp, reg_addr);
7043                 val |= AEU_INPUTS_ATTN_BITS_SPIO5;
7044                 REG_WR(bp, reg_addr, val);
7045         }
7046
7047         return 0;
7048 }
7049
7050 static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr)
7051 {
7052         int reg;
7053         u32 wb_write[2];
7054
7055         if (CHIP_IS_E1(bp))
7056                 reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
7057         else
7058                 reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
7059
7060         wb_write[0] = ONCHIP_ADDR1(addr);
7061         wb_write[1] = ONCHIP_ADDR2(addr);
7062         REG_WR_DMAE(bp, reg, wb_write, 2);
7063 }
7064
7065 static void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func,
7066                                    u8 idu_sb_id, bool is_Pf)
7067 {
7068         u32 data, ctl, cnt = 100;
7069         u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
7070         u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
7071         u32 igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
7072         u32 sb_bit =  1 << (idu_sb_id%32);
7073         u32 func_encode = func | (is_Pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
7074         u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
7075
7076         /* Not supported in BC mode */
7077         if (CHIP_INT_MODE_IS_BC(bp))
7078                 return;
7079
7080         data = (IGU_USE_REGISTER_cstorm_type_0_sb_cleanup
7081                         << IGU_REGULAR_CLEANUP_TYPE_SHIFT)      |
7082                 IGU_REGULAR_CLEANUP_SET                         |
7083                 IGU_REGULAR_BCLEANUP;
7084
7085         ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT         |
7086               func_encode << IGU_CTRL_REG_FID_SHIFT             |
7087               IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
7088
7089         DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7090                          data, igu_addr_data);
7091         REG_WR(bp, igu_addr_data, data);
7092         mmiowb();
7093         barrier();
7094         DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7095                           ctl, igu_addr_ctl);
7096         REG_WR(bp, igu_addr_ctl, ctl);
7097         mmiowb();
7098         barrier();
7099
7100         /* wait for clean up to finish */
7101         while (!(REG_RD(bp, igu_addr_ack) & sb_bit) && --cnt)
7102                 msleep(20);
7103
7104
7105         if (!(REG_RD(bp, igu_addr_ack) & sb_bit)) {
7106                 DP(NETIF_MSG_HW,
7107                    "Unable to finish IGU cleanup: idu_sb_id %d offset %d bit %d (cnt %d)\n",
7108                           idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
7109         }
7110 }
7111
7112 static void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id)
7113 {
7114         bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/);
7115 }
7116
7117 static void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func)
7118 {
7119         u32 i, base = FUNC_ILT_BASE(func);
7120         for (i = base; i < base + ILT_PER_FUNC; i++)
7121                 bnx2x_ilt_wr(bp, i, 0);
7122 }
7123
7124
7125 static void bnx2x_init_searcher(struct bnx2x *bp)
7126 {
7127         int port = BP_PORT(bp);
7128         bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM);
7129         /* T1 hash bits value determines the T1 number of entries */
7130         REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
7131 }
7132
7133 static inline int bnx2x_func_switch_update(struct bnx2x *bp, int suspend)
7134 {
7135         int rc;
7136         struct bnx2x_func_state_params func_params = {NULL};
7137         struct bnx2x_func_switch_update_params *switch_update_params =
7138                 &func_params.params.switch_update;
7139
7140         /* Prepare parameters for function state transitions */
7141         __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7142         __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
7143
7144         func_params.f_obj = &bp->func_obj;
7145         func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
7146
7147         /* Function parameters */
7148         switch_update_params->suspend = suspend;
7149
7150         rc = bnx2x_func_state_change(bp, &func_params);
7151
7152         return rc;
7153 }
7154
7155 static int bnx2x_reset_nic_mode(struct bnx2x *bp)
7156 {
7157         int rc, i, port = BP_PORT(bp);
7158         int vlan_en = 0, mac_en[NUM_MACS];
7159
7160
7161         /* Close input from network */
7162         if (bp->mf_mode == SINGLE_FUNCTION) {
7163                 bnx2x_set_rx_filter(&bp->link_params, 0);
7164         } else {
7165                 vlan_en = REG_RD(bp, port ? NIG_REG_LLH1_FUNC_EN :
7166                                    NIG_REG_LLH0_FUNC_EN);
7167                 REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7168                           NIG_REG_LLH0_FUNC_EN, 0);
7169                 for (i = 0; i < NUM_MACS; i++) {
7170                         mac_en[i] = REG_RD(bp, port ?
7171                                              (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7172                                               4 * i) :
7173                                              (NIG_REG_LLH0_FUNC_MEM_ENABLE +
7174                                               4 * i));
7175                         REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7176                                               4 * i) :
7177                                   (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i), 0);
7178                 }
7179         }
7180
7181         /* Close BMC to host */
7182         REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7183                NIG_REG_P1_TX_MNG_HOST_ENABLE, 0);
7184
7185         /* Suspend Tx switching to the PF. Completion of this ramrod
7186          * further guarantees that all the packets of that PF / child
7187          * VFs in BRB were processed by the Parser, so it is safe to
7188          * change the NIC_MODE register.
7189          */
7190         rc = bnx2x_func_switch_update(bp, 1);
7191         if (rc) {
7192                 BNX2X_ERR("Can't suspend tx-switching!\n");
7193                 return rc;
7194         }
7195
7196         /* Change NIC_MODE register */
7197         REG_WR(bp, PRS_REG_NIC_MODE, 0);
7198
7199         /* Open input from network */
7200         if (bp->mf_mode == SINGLE_FUNCTION) {
7201                 bnx2x_set_rx_filter(&bp->link_params, 1);
7202         } else {
7203                 REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7204                           NIG_REG_LLH0_FUNC_EN, vlan_en);
7205                 for (i = 0; i < NUM_MACS; i++) {
7206                         REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7207                                               4 * i) :
7208                                   (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i),
7209                                   mac_en[i]);
7210                 }
7211         }
7212
7213         /* Enable BMC to host */
7214         REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7215                NIG_REG_P1_TX_MNG_HOST_ENABLE, 1);
7216
7217         /* Resume Tx switching to the PF */
7218         rc = bnx2x_func_switch_update(bp, 0);
7219         if (rc) {
7220                 BNX2X_ERR("Can't resume tx-switching!\n");
7221                 return rc;
7222         }
7223
7224         DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7225         return 0;
7226 }
7227
7228 int bnx2x_init_hw_func_cnic(struct bnx2x *bp)
7229 {
7230         int rc;
7231
7232         bnx2x_ilt_init_op_cnic(bp, INITOP_SET);
7233
7234         if (CONFIGURE_NIC_MODE(bp)) {
7235                 /* Configrue searcher as part of function hw init */
7236                 bnx2x_init_searcher(bp);
7237
7238                 /* Reset NIC mode */
7239                 rc = bnx2x_reset_nic_mode(bp);
7240                 if (rc)
7241                         BNX2X_ERR("Can't change NIC mode!\n");
7242                 return rc;
7243         }
7244
7245         return 0;
7246 }
7247
7248 static int bnx2x_init_hw_func(struct bnx2x *bp)
7249 {
7250         int port = BP_PORT(bp);
7251         int func = BP_FUNC(bp);
7252         int init_phase = PHASE_PF0 + func;
7253         struct bnx2x_ilt *ilt = BP_ILT(bp);
7254         u16 cdu_ilt_start;
7255         u32 addr, val;
7256         u32 main_mem_base, main_mem_size, main_mem_prty_clr;
7257         int i, main_mem_width, rc;
7258
7259         DP(NETIF_MSG_HW, "starting func init  func %d\n", func);
7260
7261         /* FLR cleanup - hmmm */
7262         if (!CHIP_IS_E1x(bp)) {
7263                 rc = bnx2x_pf_flr_clnup(bp);
7264                 if (rc)
7265                         return rc;
7266         }
7267
7268         /* set MSI reconfigure capability */
7269         if (bp->common.int_block == INT_BLOCK_HC) {
7270                 addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
7271                 val = REG_RD(bp, addr);
7272                 val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
7273                 REG_WR(bp, addr, val);
7274         }
7275
7276         bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7277         bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7278
7279         ilt = BP_ILT(bp);
7280         cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7281
7282         for (i = 0; i < L2_ILT_LINES(bp); i++) {
7283                 ilt->lines[cdu_ilt_start + i].page = bp->context[i].vcxt;
7284                 ilt->lines[cdu_ilt_start + i].page_mapping =
7285                         bp->context[i].cxt_mapping;
7286                 ilt->lines[cdu_ilt_start + i].size = bp->context[i].size;
7287         }
7288         bnx2x_ilt_init_op(bp, INITOP_SET);
7289
7290         if (!CONFIGURE_NIC_MODE(bp)) {
7291                 bnx2x_init_searcher(bp);
7292                 REG_WR(bp, PRS_REG_NIC_MODE, 0);
7293                 DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7294         } else {
7295                 /* Set NIC mode */
7296                 REG_WR(bp, PRS_REG_NIC_MODE, 1);
7297                 DP(NETIF_MSG_IFUP, "NIC MODE configrued\n");
7298
7299         }
7300
7301         if (!CHIP_IS_E1x(bp)) {
7302                 u32 pf_conf = IGU_PF_CONF_FUNC_EN;
7303
7304                 /* Turn on a single ISR mode in IGU if driver is going to use
7305                  * INT#x or MSI
7306                  */
7307                 if (!(bp->flags & USING_MSIX_FLAG))
7308                         pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
7309                 /*
7310                  * Timers workaround bug: function init part.
7311                  * Need to wait 20msec after initializing ILT,
7312                  * needed to make sure there are no requests in
7313                  * one of the PXP internal queues with "old" ILT addresses
7314                  */
7315                 msleep(20);
7316                 /*
7317                  * Master enable - Due to WB DMAE writes performed before this
7318                  * register is re-initialized as part of the regular function
7319                  * init
7320                  */
7321                 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7322                 /* Enable the function in IGU */
7323                 REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf);
7324         }
7325
7326         bp->dmae_ready = 1;
7327
7328         bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7329
7330         if (!CHIP_IS_E1x(bp))
7331                 REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
7332
7333         bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7334         bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7335         bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7336         bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7337         bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7338         bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7339         bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7340         bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7341         bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7342         bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7343         bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7344         bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7345         bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7346
7347         if (!CHIP_IS_E1x(bp))
7348                 REG_WR(bp, QM_REG_PF_EN, 1);
7349
7350         if (!CHIP_IS_E1x(bp)) {
7351                 REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7352                 REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7353                 REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7354                 REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7355         }
7356         bnx2x_init_block(bp, BLOCK_QM, init_phase);
7357
7358         bnx2x_init_block(bp, BLOCK_TM, init_phase);
7359         bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
7360         bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
7361         bnx2x_init_block(bp, BLOCK_PRS, init_phase);
7362         bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
7363         bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
7364         bnx2x_init_block(bp, BLOCK_USDM, init_phase);
7365         bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
7366         bnx2x_init_block(bp, BLOCK_UPB, init_phase);
7367         bnx2x_init_block(bp, BLOCK_XPB, init_phase);
7368         bnx2x_init_block(bp, BLOCK_PBF, init_phase);
7369         if (!CHIP_IS_E1x(bp))
7370                 REG_WR(bp, PBF_REG_DISABLE_PF, 0);
7371
7372         bnx2x_init_block(bp, BLOCK_CDU, init_phase);
7373
7374         bnx2x_init_block(bp, BLOCK_CFC, init_phase);
7375
7376         if (!CHIP_IS_E1x(bp))
7377                 REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1);
7378
7379         if (IS_MF(bp)) {
7380                 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
7381                 REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, bp->mf_ov);
7382         }
7383
7384         bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
7385
7386         /* HC init per function */
7387         if (bp->common.int_block == INT_BLOCK_HC) {
7388                 if (CHIP_IS_E1H(bp)) {
7389                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
7390
7391                         REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7392                         REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7393                 }
7394                 bnx2x_init_block(bp, BLOCK_HC, init_phase);
7395
7396         } else {
7397                 int num_segs, sb_idx, prod_offset;
7398
7399                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
7400
7401                 if (!CHIP_IS_E1x(bp)) {
7402                         REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
7403                         REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
7404                 }
7405
7406                 bnx2x_init_block(bp, BLOCK_IGU, init_phase);
7407
7408                 if (!CHIP_IS_E1x(bp)) {
7409                         int dsb_idx = 0;
7410                         /**
7411                          * Producer memory:
7412                          * E2 mode: address 0-135 match to the mapping memory;
7413                          * 136 - PF0 default prod; 137 - PF1 default prod;
7414                          * 138 - PF2 default prod; 139 - PF3 default prod;
7415                          * 140 - PF0 attn prod;    141 - PF1 attn prod;
7416                          * 142 - PF2 attn prod;    143 - PF3 attn prod;
7417                          * 144-147 reserved.
7418                          *
7419                          * E1.5 mode - In backward compatible mode;
7420                          * for non default SB; each even line in the memory
7421                          * holds the U producer and each odd line hold
7422                          * the C producer. The first 128 producers are for
7423                          * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
7424                          * producers are for the DSB for each PF.
7425                          * Each PF has five segments: (the order inside each
7426                          * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
7427                          * 132-135 C prods; 136-139 X prods; 140-143 T prods;
7428                          * 144-147 attn prods;
7429                          */
7430                         /* non-default-status-blocks */
7431                         num_segs = CHIP_INT_MODE_IS_BC(bp) ?
7432                                 IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
7433                         for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) {
7434                                 prod_offset = (bp->igu_base_sb + sb_idx) *
7435                                         num_segs;
7436
7437                                 for (i = 0; i < num_segs; i++) {
7438                                         addr = IGU_REG_PROD_CONS_MEMORY +
7439                                                         (prod_offset + i) * 4;
7440                                         REG_WR(bp, addr, 0);
7441                                 }
7442                                 /* send consumer update with value 0 */
7443                                 bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx,
7444                                              USTORM_ID, 0, IGU_INT_NOP, 1);
7445                                 bnx2x_igu_clear_sb(bp,
7446                                                    bp->igu_base_sb + sb_idx);
7447                         }
7448
7449                         /* default-status-blocks */
7450                         num_segs = CHIP_INT_MODE_IS_BC(bp) ?
7451                                 IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
7452
7453                         if (CHIP_MODE_IS_4_PORT(bp))
7454                                 dsb_idx = BP_FUNC(bp);
7455                         else
7456                                 dsb_idx = BP_VN(bp);
7457
7458                         prod_offset = (CHIP_INT_MODE_IS_BC(bp) ?
7459                                        IGU_BC_BASE_DSB_PROD + dsb_idx :
7460                                        IGU_NORM_BASE_DSB_PROD + dsb_idx);
7461
7462                         /*
7463                          * igu prods come in chunks of E1HVN_MAX (4) -
7464                          * does not matters what is the current chip mode
7465                          */
7466                         for (i = 0; i < (num_segs * E1HVN_MAX);
7467                              i += E1HVN_MAX) {
7468                                 addr = IGU_REG_PROD_CONS_MEMORY +
7469                                                         (prod_offset + i)*4;
7470                                 REG_WR(bp, addr, 0);
7471                         }
7472                         /* send consumer update with 0 */
7473                         if (CHIP_INT_MODE_IS_BC(bp)) {
7474                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7475                                              USTORM_ID, 0, IGU_INT_NOP, 1);
7476                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7477                                              CSTORM_ID, 0, IGU_INT_NOP, 1);
7478                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7479                                              XSTORM_ID, 0, IGU_INT_NOP, 1);
7480                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7481                                              TSTORM_ID, 0, IGU_INT_NOP, 1);
7482                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7483                                              ATTENTION_ID, 0, IGU_INT_NOP, 1);
7484                         } else {
7485                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7486                                              USTORM_ID, 0, IGU_INT_NOP, 1);
7487                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7488                                              ATTENTION_ID, 0, IGU_INT_NOP, 1);
7489                         }
7490                         bnx2x_igu_clear_sb(bp, bp->igu_dsb_id);
7491
7492                         /* !!! these should become driver const once
7493                            rf-tool supports split-68 const */
7494                         REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
7495                         REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
7496                         REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
7497                         REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
7498                         REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
7499                         REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
7500                 }
7501         }
7502
7503         /* Reset PCIE errors for debug */
7504         REG_WR(bp, 0x2114, 0xffffffff);
7505         REG_WR(bp, 0x2120, 0xffffffff);
7506
7507         if (CHIP_IS_E1x(bp)) {
7508                 main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
7509                 main_mem_base = HC_REG_MAIN_MEMORY +
7510                                 BP_PORT(bp) * (main_mem_size * 4);
7511                 main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
7512                 main_mem_width = 8;
7513
7514                 val = REG_RD(bp, main_mem_prty_clr);
7515                 if (val)
7516                         DP(NETIF_MSG_HW,
7517                            "Hmmm... Parity errors in HC block during function init (0x%x)!\n",
7518                            val);
7519
7520                 /* Clear "false" parity errors in MSI-X table */
7521                 for (i = main_mem_base;
7522                      i < main_mem_base + main_mem_size * 4;
7523                      i += main_mem_width) {
7524                         bnx2x_read_dmae(bp, i, main_mem_width / 4);
7525                         bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data),
7526                                          i, main_mem_width / 4);
7527                 }
7528                 /* Clear HC parity attention */
7529                 REG_RD(bp, main_mem_prty_clr);
7530         }
7531
7532 #ifdef BNX2X_STOP_ON_ERROR
7533         /* Enable STORMs SP logging */
7534         REG_WR8(bp, BAR_USTRORM_INTMEM +
7535                USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7536         REG_WR8(bp, BAR_TSTRORM_INTMEM +
7537                TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7538         REG_WR8(bp, BAR_CSTRORM_INTMEM +
7539                CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7540         REG_WR8(bp, BAR_XSTRORM_INTMEM +
7541                XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7542 #endif
7543
7544         bnx2x_phy_probe(&bp->link_params);
7545
7546         return 0;
7547 }
7548
7549
7550 void bnx2x_free_mem_cnic(struct bnx2x *bp)
7551 {
7552         bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_FREE);
7553
7554         if (!CHIP_IS_E1x(bp))
7555                 BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping,
7556                                sizeof(struct host_hc_status_block_e2));
7557         else
7558                 BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping,
7559                                sizeof(struct host_hc_status_block_e1x));
7560
7561         BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
7562 }
7563
7564 void bnx2x_free_mem(struct bnx2x *bp)
7565 {
7566         int i;
7567
7568         /* fastpath */
7569         bnx2x_free_fp_mem(bp);
7570         /* end of fastpath */
7571
7572         BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping,
7573                        sizeof(struct host_sp_status_block));
7574
7575         BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
7576                        bp->fw_stats_data_sz + bp->fw_stats_req_sz);
7577
7578         BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping,
7579                        sizeof(struct bnx2x_slowpath));
7580
7581         for (i = 0; i < L2_ILT_LINES(bp); i++)
7582                 BNX2X_PCI_FREE(bp->context[i].vcxt, bp->context[i].cxt_mapping,
7583                                bp->context[i].size);
7584         bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE);
7585
7586         BNX2X_FREE(bp->ilt->lines);
7587
7588         BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE);
7589
7590         BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping,
7591                        BCM_PAGE_SIZE * NUM_EQ_PAGES);
7592 }
7593
7594 static int bnx2x_alloc_fw_stats_mem(struct bnx2x *bp)
7595 {
7596         int num_groups;
7597         int is_fcoe_stats = NO_FCOE(bp) ? 0 : 1;
7598
7599         /* number of queues for statistics is number of eth queues + FCoE */
7600         u8 num_queue_stats = BNX2X_NUM_ETH_QUEUES(bp) + is_fcoe_stats;
7601
7602         /* Total number of FW statistics requests =
7603          * 1 for port stats + 1 for PF stats + potential 1 for FCoE stats +
7604          * num of queues
7605          */
7606         bp->fw_stats_num = 2 + is_fcoe_stats + num_queue_stats;
7607
7608
7609         /* Request is built from stats_query_header and an array of
7610          * stats_query_cmd_group each of which contains
7611          * STATS_QUERY_CMD_COUNT rules. The real number or requests is
7612          * configured in the stats_query_header.
7613          */
7614         num_groups = ((bp->fw_stats_num) / STATS_QUERY_CMD_COUNT) +
7615                      (((bp->fw_stats_num) % STATS_QUERY_CMD_COUNT) ? 1 : 0);
7616
7617         bp->fw_stats_req_sz = sizeof(struct stats_query_header) +
7618                         num_groups * sizeof(struct stats_query_cmd_group);
7619
7620         /* Data for statistics requests + stats_conter
7621          *
7622          * stats_counter holds per-STORM counters that are incremented
7623          * when STORM has finished with the current request.
7624          *
7625          * memory for FCoE offloaded statistics are counted anyway,
7626          * even if they will not be sent.
7627          */
7628         bp->fw_stats_data_sz = sizeof(struct per_port_stats) +
7629                 sizeof(struct per_pf_stats) +
7630                 sizeof(struct fcoe_statistics_params) +
7631                 sizeof(struct per_queue_stats) * num_queue_stats +
7632                 sizeof(struct stats_counter);
7633
7634         BNX2X_PCI_ALLOC(bp->fw_stats, &bp->fw_stats_mapping,
7635                         bp->fw_stats_data_sz + bp->fw_stats_req_sz);
7636
7637         /* Set shortcuts */
7638         bp->fw_stats_req = (struct bnx2x_fw_stats_req *)bp->fw_stats;
7639         bp->fw_stats_req_mapping = bp->fw_stats_mapping;
7640
7641         bp->fw_stats_data = (struct bnx2x_fw_stats_data *)
7642                 ((u8 *)bp->fw_stats + bp->fw_stats_req_sz);
7643
7644         bp->fw_stats_data_mapping = bp->fw_stats_mapping +
7645                                    bp->fw_stats_req_sz;
7646         return 0;
7647
7648 alloc_mem_err:
7649         BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
7650                        bp->fw_stats_data_sz + bp->fw_stats_req_sz);
7651         BNX2X_ERR("Can't allocate memory\n");
7652         return -ENOMEM;
7653 }
7654
7655 int bnx2x_alloc_mem_cnic(struct bnx2x *bp)
7656 {
7657         if (!CHIP_IS_E1x(bp))
7658                 /* size = the status block + ramrod buffers */
7659                 BNX2X_PCI_ALLOC(bp->cnic_sb.e2_sb, &bp->cnic_sb_mapping,
7660                                 sizeof(struct host_hc_status_block_e2));
7661         else
7662                 BNX2X_PCI_ALLOC(bp->cnic_sb.e1x_sb,
7663                                 &bp->cnic_sb_mapping,
7664                                 sizeof(struct
7665                                        host_hc_status_block_e1x));
7666
7667         if (CONFIGURE_NIC_MODE(bp))
7668                 /* allocate searcher T2 table, as it wan't allocated before */
7669                 BNX2X_PCI_ALLOC(bp->t2, &bp->t2_mapping, SRC_T2_SZ);
7670
7671         /* write address to which L5 should insert its values */
7672         bp->cnic_eth_dev.addr_drv_info_to_mcp =
7673                 &bp->slowpath->drv_info_to_mcp;
7674
7675         if (bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_ALLOC))
7676                 goto alloc_mem_err;
7677
7678         return 0;
7679
7680 alloc_mem_err:
7681         bnx2x_free_mem_cnic(bp);
7682         BNX2X_ERR("Can't allocate memory\n");
7683         return -ENOMEM;
7684 }
7685
7686 int bnx2x_alloc_mem(struct bnx2x *bp)
7687 {
7688         int i, allocated, context_size;
7689
7690         if (!CONFIGURE_NIC_MODE(bp))
7691                 /* allocate searcher T2 table */
7692                 BNX2X_PCI_ALLOC(bp->t2, &bp->t2_mapping, SRC_T2_SZ);
7693
7694         BNX2X_PCI_ALLOC(bp->def_status_blk, &bp->def_status_blk_mapping,
7695                         sizeof(struct host_sp_status_block));
7696
7697         BNX2X_PCI_ALLOC(bp->slowpath, &bp->slowpath_mapping,
7698                         sizeof(struct bnx2x_slowpath));
7699
7700         /* Allocated memory for FW statistics  */
7701         if (bnx2x_alloc_fw_stats_mem(bp))
7702                 goto alloc_mem_err;
7703
7704         /* Allocate memory for CDU context:
7705          * This memory is allocated separately and not in the generic ILT
7706          * functions because CDU differs in few aspects:
7707          * 1. There are multiple entities allocating memory for context -
7708          * 'regular' driver, CNIC and SRIOV driver. Each separately controls
7709          * its own ILT lines.
7710          * 2. Since CDU page-size is not a single 4KB page (which is the case
7711          * for the other ILT clients), to be efficient we want to support
7712          * allocation of sub-page-size in the last entry.
7713          * 3. Context pointers are used by the driver to pass to FW / update
7714          * the context (for the other ILT clients the pointers are used just to
7715          * free the memory during unload).
7716          */
7717         context_size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp);
7718
7719         for (i = 0, allocated = 0; allocated < context_size; i++) {
7720                 bp->context[i].size = min(CDU_ILT_PAGE_SZ,
7721                                           (context_size - allocated));
7722                 BNX2X_PCI_ALLOC(bp->context[i].vcxt,
7723                                 &bp->context[i].cxt_mapping,
7724                                 bp->context[i].size);
7725                 allocated += bp->context[i].size;
7726         }
7727         BNX2X_ALLOC(bp->ilt->lines, sizeof(struct ilt_line) * ILT_MAX_LINES);
7728
7729         if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC))
7730                 goto alloc_mem_err;
7731
7732         /* Slow path ring */
7733         BNX2X_PCI_ALLOC(bp->spq, &bp->spq_mapping, BCM_PAGE_SIZE);
7734
7735         /* EQ */
7736         BNX2X_PCI_ALLOC(bp->eq_ring, &bp->eq_mapping,
7737                         BCM_PAGE_SIZE * NUM_EQ_PAGES);
7738
7739
7740         /* fastpath */
7741         /* need to be done at the end, since it's self adjusting to amount
7742          * of memory available for RSS queues
7743          */
7744         if (bnx2x_alloc_fp_mem(bp))
7745                 goto alloc_mem_err;
7746         return 0;
7747
7748 alloc_mem_err:
7749         bnx2x_free_mem(bp);
7750         BNX2X_ERR("Can't allocate memory\n");
7751         return -ENOMEM;
7752 }
7753
7754 /*
7755  * Init service functions
7756  */
7757
7758 int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac,
7759                       struct bnx2x_vlan_mac_obj *obj, bool set,
7760                       int mac_type, unsigned long *ramrod_flags)
7761 {
7762         int rc;
7763         struct bnx2x_vlan_mac_ramrod_params ramrod_param;
7764
7765         memset(&ramrod_param, 0, sizeof(ramrod_param));
7766
7767         /* Fill general parameters */
7768         ramrod_param.vlan_mac_obj = obj;
7769         ramrod_param.ramrod_flags = *ramrod_flags;
7770
7771         /* Fill a user request section if needed */
7772         if (!test_bit(RAMROD_CONT, ramrod_flags)) {
7773                 memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
7774
7775                 __set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
7776
7777                 /* Set the command: ADD or DEL */
7778                 if (set)
7779                         ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
7780                 else
7781                         ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
7782         }
7783
7784         rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
7785
7786         if (rc == -EEXIST) {
7787                 DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
7788                 /* do not treat adding same MAC as error */
7789                 rc = 0;
7790         } else if (rc < 0)
7791                 BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del"));
7792
7793         return rc;
7794 }
7795
7796 int bnx2x_del_all_macs(struct bnx2x *bp,
7797                        struct bnx2x_vlan_mac_obj *mac_obj,
7798                        int mac_type, bool wait_for_comp)
7799 {
7800         int rc;
7801         unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
7802
7803         /* Wait for completion of requested */
7804         if (wait_for_comp)
7805                 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
7806
7807         /* Set the mac type of addresses we want to clear */
7808         __set_bit(mac_type, &vlan_mac_flags);
7809
7810         rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags);
7811         if (rc < 0)
7812                 BNX2X_ERR("Failed to delete MACs: %d\n", rc);
7813
7814         return rc;
7815 }
7816
7817 int bnx2x_set_eth_mac(struct bnx2x *bp, bool set)
7818 {
7819         unsigned long ramrod_flags = 0;
7820
7821         if (is_zero_ether_addr(bp->dev->dev_addr) &&
7822             (IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp))) {
7823                 DP(NETIF_MSG_IFUP | NETIF_MSG_IFDOWN,
7824                    "Ignoring Zero MAC for STORAGE SD mode\n");
7825                 return 0;
7826         }
7827
7828         DP(NETIF_MSG_IFUP, "Adding Eth MAC\n");
7829
7830         __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
7831         /* Eth MAC is set on RSS leading client (fp[0]) */
7832         return bnx2x_set_mac_one(bp, bp->dev->dev_addr, &bp->sp_objs->mac_obj,
7833                                  set, BNX2X_ETH_MAC, &ramrod_flags);
7834 }
7835
7836 int bnx2x_setup_leading(struct bnx2x *bp)
7837 {
7838         return bnx2x_setup_queue(bp, &bp->fp[0], 1);
7839 }
7840
7841 /**
7842  * bnx2x_set_int_mode - configure interrupt mode
7843  *
7844  * @bp:         driver handle
7845  *
7846  * In case of MSI-X it will also try to enable MSI-X.
7847  */
7848 int bnx2x_set_int_mode(struct bnx2x *bp)
7849 {
7850         int rc = 0;
7851
7852         if (IS_VF(bp) && int_mode != BNX2X_INT_MODE_MSIX)
7853                 return -EINVAL;
7854
7855         switch (int_mode) {
7856         case BNX2X_INT_MODE_MSIX:
7857                 /* attempt to enable msix */
7858                 rc = bnx2x_enable_msix(bp);
7859
7860                 /* msix attained */
7861                 if (!rc)
7862                         return 0;
7863
7864                 /* vfs use only msix */
7865                 if (rc && IS_VF(bp))
7866                         return rc;
7867
7868                 /* failed to enable multiple MSI-X */
7869                 BNX2X_DEV_INFO("Failed to enable multiple MSI-X (%d), set number of queues to %d\n",
7870                                bp->num_queues,
7871                                1 + bp->num_cnic_queues);
7872
7873                 /* falling through... */
7874         case BNX2X_INT_MODE_MSI:
7875                 bnx2x_enable_msi(bp);
7876
7877                 /* falling through... */
7878         case BNX2X_INT_MODE_INTX:
7879                 bp->num_ethernet_queues = 1;
7880                 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
7881                 BNX2X_DEV_INFO("set number of queues to 1\n");
7882                 break;
7883         default:
7884                 BNX2X_DEV_INFO("unknown value in int_mode module parameter\n");
7885                 return -EINVAL;
7886         }
7887         return 0;
7888 }
7889
7890 /* must be called prior to any HW initializations */
7891 static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp)
7892 {
7893         return L2_ILT_LINES(bp);
7894 }
7895
7896 void bnx2x_ilt_set_info(struct bnx2x *bp)
7897 {
7898         struct ilt_client_info *ilt_client;
7899         struct bnx2x_ilt *ilt = BP_ILT(bp);
7900         u16 line = 0;
7901
7902         ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp));
7903         DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line);
7904
7905         /* CDU */
7906         ilt_client = &ilt->clients[ILT_CLIENT_CDU];
7907         ilt_client->client_num = ILT_CLIENT_CDU;
7908         ilt_client->page_size = CDU_ILT_PAGE_SZ;
7909         ilt_client->flags = ILT_CLIENT_SKIP_MEM;
7910         ilt_client->start = line;
7911         line += bnx2x_cid_ilt_lines(bp);
7912
7913         if (CNIC_SUPPORT(bp))
7914                 line += CNIC_ILT_LINES;
7915         ilt_client->end = line - 1;
7916
7917         DP(NETIF_MSG_IFUP, "ilt client[CDU]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
7918            ilt_client->start,
7919            ilt_client->end,
7920            ilt_client->page_size,
7921            ilt_client->flags,
7922            ilog2(ilt_client->page_size >> 12));
7923
7924         /* QM */
7925         if (QM_INIT(bp->qm_cid_count)) {
7926                 ilt_client = &ilt->clients[ILT_CLIENT_QM];
7927                 ilt_client->client_num = ILT_CLIENT_QM;
7928                 ilt_client->page_size = QM_ILT_PAGE_SZ;
7929                 ilt_client->flags = 0;
7930                 ilt_client->start = line;
7931
7932                 /* 4 bytes for each cid */
7933                 line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
7934                                                          QM_ILT_PAGE_SZ);
7935
7936                 ilt_client->end = line - 1;
7937
7938                 DP(NETIF_MSG_IFUP,
7939                    "ilt client[QM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
7940                    ilt_client->start,
7941                    ilt_client->end,
7942                    ilt_client->page_size,
7943                    ilt_client->flags,
7944                    ilog2(ilt_client->page_size >> 12));
7945
7946         }
7947
7948         if (CNIC_SUPPORT(bp)) {
7949                 /* SRC */
7950                 ilt_client = &ilt->clients[ILT_CLIENT_SRC];
7951                 ilt_client->client_num = ILT_CLIENT_SRC;
7952                 ilt_client->page_size = SRC_ILT_PAGE_SZ;
7953                 ilt_client->flags = 0;
7954                 ilt_client->start = line;
7955                 line += SRC_ILT_LINES;
7956                 ilt_client->end = line - 1;
7957
7958                 DP(NETIF_MSG_IFUP,
7959                    "ilt client[SRC]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
7960                    ilt_client->start,
7961                    ilt_client->end,
7962                    ilt_client->page_size,
7963                    ilt_client->flags,
7964                    ilog2(ilt_client->page_size >> 12));
7965
7966                 /* TM */
7967                 ilt_client = &ilt->clients[ILT_CLIENT_TM];
7968                 ilt_client->client_num = ILT_CLIENT_TM;
7969                 ilt_client->page_size = TM_ILT_PAGE_SZ;
7970                 ilt_client->flags = 0;
7971                 ilt_client->start = line;
7972                 line += TM_ILT_LINES;
7973                 ilt_client->end = line - 1;
7974
7975                 DP(NETIF_MSG_IFUP,
7976                    "ilt client[TM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
7977                    ilt_client->start,
7978                    ilt_client->end,
7979                    ilt_client->page_size,
7980                    ilt_client->flags,
7981                    ilog2(ilt_client->page_size >> 12));
7982         }
7983
7984         BUG_ON(line > ILT_MAX_LINES);
7985 }
7986
7987 /**
7988  * bnx2x_pf_q_prep_init - prepare INIT transition parameters
7989  *
7990  * @bp:                 driver handle
7991  * @fp:                 pointer to fastpath
7992  * @init_params:        pointer to parameters structure
7993  *
7994  * parameters configured:
7995  *      - HC configuration
7996  *      - Queue's CDU context
7997  */
7998 static void bnx2x_pf_q_prep_init(struct bnx2x *bp,
7999         struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params)
8000 {
8001
8002         u8 cos;
8003         int cxt_index, cxt_offset;
8004
8005         /* FCoE Queue uses Default SB, thus has no HC capabilities */
8006         if (!IS_FCOE_FP(fp)) {
8007                 __set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags);
8008                 __set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags);
8009
8010                 /* If HC is supporterd, enable host coalescing in the transition
8011                  * to INIT state.
8012                  */
8013                 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags);
8014                 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags);
8015
8016                 /* HC rate */
8017                 init_params->rx.hc_rate = bp->rx_ticks ?
8018                         (1000000 / bp->rx_ticks) : 0;
8019                 init_params->tx.hc_rate = bp->tx_ticks ?
8020                         (1000000 / bp->tx_ticks) : 0;
8021
8022                 /* FW SB ID */
8023                 init_params->rx.fw_sb_id = init_params->tx.fw_sb_id =
8024                         fp->fw_sb_id;
8025
8026                 /*
8027                  * CQ index among the SB indices: FCoE clients uses the default
8028                  * SB, therefore it's different.
8029                  */
8030                 init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
8031                 init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
8032         }
8033
8034         /* set maximum number of COSs supported by this queue */
8035         init_params->max_cos = fp->max_cos;
8036
8037         DP(NETIF_MSG_IFUP, "fp: %d setting queue params max cos to: %d\n",
8038             fp->index, init_params->max_cos);
8039
8040         /* set the context pointers queue object */
8041         for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
8042                 cxt_index = fp->txdata_ptr[cos]->cid / ILT_PAGE_CIDS;
8043                 cxt_offset = fp->txdata_ptr[cos]->cid - (cxt_index *
8044                                 ILT_PAGE_CIDS);
8045                 init_params->cxts[cos] =
8046                         &bp->context[cxt_index].vcxt[cxt_offset].eth;
8047         }
8048 }
8049
8050 static int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8051                         struct bnx2x_queue_state_params *q_params,
8052                         struct bnx2x_queue_setup_tx_only_params *tx_only_params,
8053                         int tx_index, bool leading)
8054 {
8055         memset(tx_only_params, 0, sizeof(*tx_only_params));
8056
8057         /* Set the command */
8058         q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
8059
8060         /* Set tx-only QUEUE flags: don't zero statistics */
8061         tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false);
8062
8063         /* choose the index of the cid to send the slow path on */
8064         tx_only_params->cid_index = tx_index;
8065
8066         /* Set general TX_ONLY_SETUP parameters */
8067         bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index);
8068
8069         /* Set Tx TX_ONLY_SETUP parameters */
8070         bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index);
8071
8072         DP(NETIF_MSG_IFUP,
8073            "preparing to send tx-only ramrod for connection: cos %d, primary cid %d, cid %d, client id %d, sp-client id %d, flags %lx\n",
8074            tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX],
8075            q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id,
8076            tx_only_params->gen_params.spcl_id, tx_only_params->flags);
8077
8078         /* send the ramrod */
8079         return bnx2x_queue_state_change(bp, q_params);
8080 }
8081
8082
8083 /**
8084  * bnx2x_setup_queue - setup queue
8085  *
8086  * @bp:         driver handle
8087  * @fp:         pointer to fastpath
8088  * @leading:    is leading
8089  *
8090  * This function performs 2 steps in a Queue state machine
8091  *      actually: 1) RESET->INIT 2) INIT->SETUP
8092  */
8093
8094 int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8095                        bool leading)
8096 {
8097         struct bnx2x_queue_state_params q_params = {NULL};
8098         struct bnx2x_queue_setup_params *setup_params =
8099                                                 &q_params.params.setup;
8100         struct bnx2x_queue_setup_tx_only_params *tx_only_params =
8101                                                 &q_params.params.tx_only;
8102         int rc;
8103         u8 tx_index;
8104
8105         DP(NETIF_MSG_IFUP, "setting up queue %d\n", fp->index);
8106
8107         /* reset IGU state skip FCoE L2 queue */
8108         if (!IS_FCOE_FP(fp))
8109                 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0,
8110                              IGU_INT_ENABLE, 0);
8111
8112         q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8113         /* We want to wait for completion in this context */
8114         __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8115
8116         /* Prepare the INIT parameters */
8117         bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init);
8118
8119         /* Set the command */
8120         q_params.cmd = BNX2X_Q_CMD_INIT;
8121
8122         /* Change the state to INIT */
8123         rc = bnx2x_queue_state_change(bp, &q_params);
8124         if (rc) {
8125                 BNX2X_ERR("Queue(%d) INIT failed\n", fp->index);
8126                 return rc;
8127         }
8128
8129         DP(NETIF_MSG_IFUP, "init complete\n");
8130
8131
8132         /* Now move the Queue to the SETUP state... */
8133         memset(setup_params, 0, sizeof(*setup_params));
8134
8135         /* Set QUEUE flags */
8136         setup_params->flags = bnx2x_get_q_flags(bp, fp, leading);
8137
8138         /* Set general SETUP parameters */
8139         bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params,
8140                                 FIRST_TX_COS_INDEX);
8141
8142         bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params,
8143                             &setup_params->rxq_params);
8144
8145         bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params,
8146                            FIRST_TX_COS_INDEX);
8147
8148         /* Set the command */
8149         q_params.cmd = BNX2X_Q_CMD_SETUP;
8150
8151         if (IS_FCOE_FP(fp))
8152                 bp->fcoe_init = true;
8153
8154         /* Change the state to SETUP */
8155         rc = bnx2x_queue_state_change(bp, &q_params);
8156         if (rc) {
8157                 BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index);
8158                 return rc;
8159         }
8160
8161         /* loop through the relevant tx-only indices */
8162         for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8163               tx_index < fp->max_cos;
8164               tx_index++) {
8165
8166                 /* prepare and send tx-only ramrod*/
8167                 rc = bnx2x_setup_tx_only(bp, fp, &q_params,
8168                                           tx_only_params, tx_index, leading);
8169                 if (rc) {
8170                         BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n",
8171                                   fp->index, tx_index);
8172                         return rc;
8173                 }
8174         }
8175
8176         return rc;
8177 }
8178
8179 static int bnx2x_stop_queue(struct bnx2x *bp, int index)
8180 {
8181         struct bnx2x_fastpath *fp = &bp->fp[index];
8182         struct bnx2x_fp_txdata *txdata;
8183         struct bnx2x_queue_state_params q_params = {NULL};
8184         int rc, tx_index;
8185
8186         DP(NETIF_MSG_IFDOWN, "stopping queue %d cid %d\n", index, fp->cid);
8187
8188         q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8189         /* We want to wait for completion in this context */
8190         __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8191
8192
8193         /* close tx-only connections */
8194         for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8195              tx_index < fp->max_cos;
8196              tx_index++){
8197
8198                 /* ascertain this is a normal queue*/
8199                 txdata = fp->txdata_ptr[tx_index];
8200
8201                 DP(NETIF_MSG_IFDOWN, "stopping tx-only queue %d\n",
8202                                                         txdata->txq_index);
8203
8204                 /* send halt terminate on tx-only connection */
8205                 q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8206                 memset(&q_params.params.terminate, 0,
8207                        sizeof(q_params.params.terminate));
8208                 q_params.params.terminate.cid_index = tx_index;
8209
8210                 rc = bnx2x_queue_state_change(bp, &q_params);
8211                 if (rc)
8212                         return rc;
8213
8214                 /* send halt terminate on tx-only connection */
8215                 q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8216                 memset(&q_params.params.cfc_del, 0,
8217                        sizeof(q_params.params.cfc_del));
8218                 q_params.params.cfc_del.cid_index = tx_index;
8219                 rc = bnx2x_queue_state_change(bp, &q_params);
8220                 if (rc)
8221                         return rc;
8222         }
8223         /* Stop the primary connection: */
8224         /* ...halt the connection */
8225         q_params.cmd = BNX2X_Q_CMD_HALT;
8226         rc = bnx2x_queue_state_change(bp, &q_params);
8227         if (rc)
8228                 return rc;
8229
8230         /* ...terminate the connection */
8231         q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8232         memset(&q_params.params.terminate, 0,
8233                sizeof(q_params.params.terminate));
8234         q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
8235         rc = bnx2x_queue_state_change(bp, &q_params);
8236         if (rc)
8237                 return rc;
8238         /* ...delete cfc entry */
8239         q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8240         memset(&q_params.params.cfc_del, 0,
8241                sizeof(q_params.params.cfc_del));
8242         q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
8243         return bnx2x_queue_state_change(bp, &q_params);
8244 }
8245
8246
8247 static void bnx2x_reset_func(struct bnx2x *bp)
8248 {
8249         int port = BP_PORT(bp);
8250         int func = BP_FUNC(bp);
8251         int i;
8252
8253         /* Disable the function in the FW */
8254         REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
8255         REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
8256         REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
8257         REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
8258
8259         /* FP SBs */
8260         for_each_eth_queue(bp, i) {
8261                 struct bnx2x_fastpath *fp = &bp->fp[i];
8262                 REG_WR8(bp, BAR_CSTRORM_INTMEM +
8263                            CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
8264                            SB_DISABLED);
8265         }
8266
8267         if (CNIC_LOADED(bp))
8268                 /* CNIC SB */
8269                 REG_WR8(bp, BAR_CSTRORM_INTMEM +
8270                         CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET
8271                         (bnx2x_cnic_fw_sb_id(bp)), SB_DISABLED);
8272
8273         /* SP SB */
8274         REG_WR8(bp, BAR_CSTRORM_INTMEM +
8275                    CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
8276                    SB_DISABLED);
8277
8278         for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++)
8279                 REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
8280                        0);
8281
8282         /* Configure IGU */
8283         if (bp->common.int_block == INT_BLOCK_HC) {
8284                 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
8285                 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
8286         } else {
8287                 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
8288                 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
8289         }
8290
8291         if (CNIC_LOADED(bp)) {
8292                 /* Disable Timer scan */
8293                 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
8294                 /*
8295                  * Wait for at least 10ms and up to 2 second for the timers
8296                  * scan to complete
8297                  */
8298                 for (i = 0; i < 200; i++) {
8299                         msleep(10);
8300                         if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4))
8301                                 break;
8302                 }
8303         }
8304         /* Clear ILT */
8305         bnx2x_clear_func_ilt(bp, func);
8306
8307         /* Timers workaround bug for E2: if this is vnic-3,
8308          * we need to set the entire ilt range for this timers.
8309          */
8310         if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) {
8311                 struct ilt_client_info ilt_cli;
8312                 /* use dummy TM client */
8313                 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
8314                 ilt_cli.start = 0;
8315                 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
8316                 ilt_cli.client_num = ILT_CLIENT_TM;
8317
8318                 bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR);
8319         }
8320
8321         /* this assumes that reset_port() called before reset_func()*/
8322         if (!CHIP_IS_E1x(bp))
8323                 bnx2x_pf_disable(bp);
8324
8325         bp->dmae_ready = 0;
8326 }
8327
8328 static void bnx2x_reset_port(struct bnx2x *bp)
8329 {
8330         int port = BP_PORT(bp);
8331         u32 val;
8332
8333         /* Reset physical Link */
8334         bnx2x__link_reset(bp);
8335
8336         REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
8337
8338         /* Do not rcv packets to BRB */
8339         REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
8340         /* Do not direct rcv packets that are not for MCP to the BRB */
8341         REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
8342                            NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
8343
8344         /* Configure AEU */
8345         REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
8346
8347         msleep(100);
8348         /* Check for BRB port occupancy */
8349         val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
8350         if (val)
8351                 DP(NETIF_MSG_IFDOWN,
8352                    "BRB1 is not empty  %d blocks are occupied\n", val);
8353
8354         /* TODO: Close Doorbell port? */
8355 }
8356
8357 static int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code)
8358 {
8359         struct bnx2x_func_state_params func_params = {NULL};
8360
8361         /* Prepare parameters for function state transitions */
8362         __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
8363
8364         func_params.f_obj = &bp->func_obj;
8365         func_params.cmd = BNX2X_F_CMD_HW_RESET;
8366
8367         func_params.params.hw_init.load_phase = load_code;
8368
8369         return bnx2x_func_state_change(bp, &func_params);
8370 }
8371
8372 static int bnx2x_func_stop(struct bnx2x *bp)
8373 {
8374         struct bnx2x_func_state_params func_params = {NULL};
8375         int rc;
8376
8377         /* Prepare parameters for function state transitions */
8378         __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
8379         func_params.f_obj = &bp->func_obj;
8380         func_params.cmd = BNX2X_F_CMD_STOP;
8381
8382         /*
8383          * Try to stop the function the 'good way'. If fails (in case
8384          * of a parity error during bnx2x_chip_cleanup()) and we are
8385          * not in a debug mode, perform a state transaction in order to
8386          * enable further HW_RESET transaction.
8387          */
8388         rc = bnx2x_func_state_change(bp, &func_params);
8389         if (rc) {
8390 #ifdef BNX2X_STOP_ON_ERROR
8391                 return rc;
8392 #else
8393                 BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry transaction\n");
8394                 __set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
8395                 return bnx2x_func_state_change(bp, &func_params);
8396 #endif
8397         }
8398
8399         return 0;
8400 }
8401
8402 /**
8403  * bnx2x_send_unload_req - request unload mode from the MCP.
8404  *
8405  * @bp:                 driver handle
8406  * @unload_mode:        requested function's unload mode
8407  *
8408  * Return unload mode returned by the MCP: COMMON, PORT or FUNC.
8409  */
8410 u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode)
8411 {
8412         u32 reset_code = 0;
8413         int port = BP_PORT(bp);
8414
8415         /* Select the UNLOAD request mode */
8416         if (unload_mode == UNLOAD_NORMAL)
8417                 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
8418
8419         else if (bp->flags & NO_WOL_FLAG)
8420                 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
8421
8422         else if (bp->wol) {
8423                 u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
8424                 u8 *mac_addr = bp->dev->dev_addr;
8425                 u32 val;
8426                 u16 pmc;
8427
8428                 /* The mac address is written to entries 1-4 to
8429                  * preserve entry 0 which is used by the PMF
8430                  */
8431                 u8 entry = (BP_VN(bp) + 1)*8;
8432
8433                 val = (mac_addr[0] << 8) | mac_addr[1];
8434                 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val);
8435
8436                 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
8437                       (mac_addr[4] << 8) | mac_addr[5];
8438                 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
8439
8440                 /* Enable the PME and clear the status */
8441                 pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmc);
8442                 pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS;
8443                 pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, pmc);
8444
8445                 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
8446
8447         } else
8448                 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
8449
8450         /* Send the request to the MCP */
8451         if (!BP_NOMCP(bp))
8452                 reset_code = bnx2x_fw_command(bp, reset_code, 0);
8453         else {
8454                 int path = BP_PATH(bp);
8455
8456                 DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d]      %d, %d, %d\n",
8457                    path, load_count[path][0], load_count[path][1],
8458                    load_count[path][2]);
8459                 load_count[path][0]--;
8460                 load_count[path][1 + port]--;
8461                 DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d]  %d, %d, %d\n",
8462                    path, load_count[path][0], load_count[path][1],
8463                    load_count[path][2]);
8464                 if (load_count[path][0] == 0)
8465                         reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON;
8466                 else if (load_count[path][1 + port] == 0)
8467                         reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT;
8468                 else
8469                         reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
8470         }
8471
8472         return reset_code;
8473 }
8474
8475 /**
8476  * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
8477  *
8478  * @bp:         driver handle
8479  * @keep_link:          true iff link should be kept up
8480  */
8481 void bnx2x_send_unload_done(struct bnx2x *bp, bool keep_link)
8482 {
8483         u32 reset_param = keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
8484
8485         /* Report UNLOAD_DONE to MCP */
8486         if (!BP_NOMCP(bp))
8487                 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
8488 }
8489
8490 static int bnx2x_func_wait_started(struct bnx2x *bp)
8491 {
8492         int tout = 50;
8493         int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
8494
8495         if (!bp->port.pmf)
8496                 return 0;
8497
8498         /*
8499          * (assumption: No Attention from MCP at this stage)
8500          * PMF probably in the middle of TXdisable/enable transaction
8501          * 1. Sync IRS for default SB
8502          * 2. Sync SP queue - this guarantes us that attention handling started
8503          * 3. Wait, that TXdisable/enable transaction completes
8504          *
8505          * 1+2 guranty that if DCBx attention was scheduled it already changed
8506          * pending bit of transaction from STARTED-->TX_STOPPED, if we alredy
8507          * received complettion for the transaction the state is TX_STOPPED.
8508          * State will return to STARTED after completion of TX_STOPPED-->STARTED
8509          * transaction.
8510          */
8511
8512         /* make sure default SB ISR is done */
8513         if (msix)
8514                 synchronize_irq(bp->msix_table[0].vector);
8515         else
8516                 synchronize_irq(bp->pdev->irq);
8517
8518         flush_workqueue(bnx2x_wq);
8519
8520         while (bnx2x_func_get_state(bp, &bp->func_obj) !=
8521                                 BNX2X_F_STATE_STARTED && tout--)
8522                 msleep(20);
8523
8524         if (bnx2x_func_get_state(bp, &bp->func_obj) !=
8525                                                 BNX2X_F_STATE_STARTED) {
8526 #ifdef BNX2X_STOP_ON_ERROR
8527                 BNX2X_ERR("Wrong function state\n");
8528                 return -EBUSY;
8529 #else
8530                 /*
8531                  * Failed to complete the transaction in a "good way"
8532                  * Force both transactions with CLR bit
8533                  */
8534                 struct bnx2x_func_state_params func_params = {NULL};
8535
8536                 DP(NETIF_MSG_IFDOWN,
8537                    "Hmmm... unexpected function state! Forcing STARTED-->TX_ST0PPED-->STARTED\n");
8538
8539                 func_params.f_obj = &bp->func_obj;
8540                 __set_bit(RAMROD_DRV_CLR_ONLY,
8541                                         &func_params.ramrod_flags);
8542
8543                 /* STARTED-->TX_ST0PPED */
8544                 func_params.cmd = BNX2X_F_CMD_TX_STOP;
8545                 bnx2x_func_state_change(bp, &func_params);
8546
8547                 /* TX_ST0PPED-->STARTED */
8548                 func_params.cmd = BNX2X_F_CMD_TX_START;
8549                 return bnx2x_func_state_change(bp, &func_params);
8550 #endif
8551         }
8552
8553         return 0;
8554 }
8555
8556 void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode, bool keep_link)
8557 {
8558         int port = BP_PORT(bp);
8559         int i, rc = 0;
8560         u8 cos;
8561         struct bnx2x_mcast_ramrod_params rparam = {NULL};
8562         u32 reset_code;
8563
8564         /* Wait until tx fastpath tasks complete */
8565         for_each_tx_queue(bp, i) {
8566                 struct bnx2x_fastpath *fp = &bp->fp[i];
8567
8568                 for_each_cos_in_tx_queue(fp, cos)
8569                         rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]);
8570 #ifdef BNX2X_STOP_ON_ERROR
8571                 if (rc)
8572                         return;
8573 #endif
8574         }
8575
8576         /* Give HW time to discard old tx messages */
8577         usleep_range(1000, 1000);
8578
8579         /* Clean all ETH MACs */
8580         rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_ETH_MAC,
8581                                 false);
8582         if (rc < 0)
8583                 BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc);
8584
8585         /* Clean up UC list  */
8586         rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_UC_LIST_MAC,
8587                                 true);
8588         if (rc < 0)
8589                 BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: %d\n",
8590                           rc);
8591
8592         /* Disable LLH */
8593         if (!CHIP_IS_E1(bp))
8594                 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
8595
8596         /* Set "drop all" (stop Rx).
8597          * We need to take a netif_addr_lock() here in order to prevent
8598          * a race between the completion code and this code.
8599          */
8600         netif_addr_lock_bh(bp->dev);
8601         /* Schedule the rx_mode command */
8602         if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
8603                 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
8604         else
8605                 bnx2x_set_storm_rx_mode(bp);
8606
8607         /* Cleanup multicast configuration */
8608         rparam.mcast_obj = &bp->mcast_obj;
8609         rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
8610         if (rc < 0)
8611                 BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc);
8612
8613         netif_addr_unlock_bh(bp->dev);
8614
8615
8616
8617         /*
8618          * Send the UNLOAD_REQUEST to the MCP. This will return if
8619          * this function should perform FUNC, PORT or COMMON HW
8620          * reset.
8621          */
8622         reset_code = bnx2x_send_unload_req(bp, unload_mode);
8623
8624         /*
8625          * (assumption: No Attention from MCP at this stage)
8626          * PMF probably in the middle of TXdisable/enable transaction
8627          */
8628         rc = bnx2x_func_wait_started(bp);
8629         if (rc) {
8630                 BNX2X_ERR("bnx2x_func_wait_started failed\n");
8631 #ifdef BNX2X_STOP_ON_ERROR
8632                 return;
8633 #endif
8634         }
8635
8636         /* Close multi and leading connections
8637          * Completions for ramrods are collected in a synchronous way
8638          */
8639         for_each_eth_queue(bp, i)
8640                 if (bnx2x_stop_queue(bp, i))
8641 #ifdef BNX2X_STOP_ON_ERROR
8642                         return;
8643 #else
8644                         goto unload_error;
8645 #endif
8646
8647         if (CNIC_LOADED(bp)) {
8648                 for_each_cnic_queue(bp, i)
8649                         if (bnx2x_stop_queue(bp, i))
8650 #ifdef BNX2X_STOP_ON_ERROR
8651                                 return;
8652 #else
8653                                 goto unload_error;
8654 #endif
8655         }
8656
8657         /* If SP settings didn't get completed so far - something
8658          * very wrong has happen.
8659          */
8660         if (!bnx2x_wait_sp_comp(bp, ~0x0UL))
8661                 BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n");
8662
8663 #ifndef BNX2X_STOP_ON_ERROR
8664 unload_error:
8665 #endif
8666         rc = bnx2x_func_stop(bp);
8667         if (rc) {
8668                 BNX2X_ERR("Function stop failed!\n");
8669 #ifdef BNX2X_STOP_ON_ERROR
8670                 return;
8671 #endif
8672         }
8673
8674         /* Disable HW interrupts, NAPI */
8675         bnx2x_netif_stop(bp, 1);
8676         /* Delete all NAPI objects */
8677         bnx2x_del_all_napi(bp);
8678         if (CNIC_LOADED(bp))
8679                 bnx2x_del_all_napi_cnic(bp);
8680
8681         /* Release IRQs */
8682         bnx2x_free_irq(bp);
8683
8684         /* Reset the chip */
8685         rc = bnx2x_reset_hw(bp, reset_code);
8686         if (rc)
8687                 BNX2X_ERR("HW_RESET failed\n");
8688
8689
8690         /* Report UNLOAD_DONE to MCP */
8691         bnx2x_send_unload_done(bp, keep_link);
8692 }
8693
8694 void bnx2x_disable_close_the_gate(struct bnx2x *bp)
8695 {
8696         u32 val;
8697
8698         DP(NETIF_MSG_IFDOWN, "Disabling \"close the gates\"\n");
8699
8700         if (CHIP_IS_E1(bp)) {
8701                 int port = BP_PORT(bp);
8702                 u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
8703                         MISC_REG_AEU_MASK_ATTN_FUNC_0;
8704
8705                 val = REG_RD(bp, addr);
8706                 val &= ~(0x300);
8707                 REG_WR(bp, addr, val);
8708         } else {
8709                 val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK);
8710                 val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
8711                          MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
8712                 REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val);
8713         }
8714 }
8715
8716 /* Close gates #2, #3 and #4: */
8717 static void bnx2x_set_234_gates(struct bnx2x *bp, bool close)
8718 {
8719         u32 val;
8720
8721         /* Gates #2 and #4a are closed/opened for "not E1" only */
8722         if (!CHIP_IS_E1(bp)) {
8723                 /* #4 */
8724                 REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
8725                 /* #2 */
8726                 REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
8727         }
8728
8729         /* #3 */
8730         if (CHIP_IS_E1x(bp)) {
8731                 /* Prevent interrupts from HC on both ports */
8732                 val = REG_RD(bp, HC_REG_CONFIG_1);
8733                 REG_WR(bp, HC_REG_CONFIG_1,
8734                        (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
8735                        (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
8736
8737                 val = REG_RD(bp, HC_REG_CONFIG_0);
8738                 REG_WR(bp, HC_REG_CONFIG_0,
8739                        (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
8740                        (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
8741         } else {
8742                 /* Prevent incomming interrupts in IGU */
8743                 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
8744
8745                 REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION,
8746                        (!close) ?
8747                        (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
8748                        (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
8749         }
8750
8751         DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "%s gates #2, #3 and #4\n",
8752                 close ? "closing" : "opening");
8753         mmiowb();
8754 }
8755
8756 #define SHARED_MF_CLP_MAGIC  0x80000000 /* `magic' bit */
8757
8758 static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val)
8759 {
8760         /* Do some magic... */
8761         u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
8762         *magic_val = val & SHARED_MF_CLP_MAGIC;
8763         MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
8764 }
8765
8766 /**
8767  * bnx2x_clp_reset_done - restore the value of the `magic' bit.
8768  *
8769  * @bp:         driver handle
8770  * @magic_val:  old value of the `magic' bit.
8771  */
8772 static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val)
8773 {
8774         /* Restore the `magic' bit value... */
8775         u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
8776         MF_CFG_WR(bp, shared_mf_config.clp_mb,
8777                 (val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
8778 }
8779
8780 /**
8781  * bnx2x_reset_mcp_prep - prepare for MCP reset.
8782  *
8783  * @bp:         driver handle
8784  * @magic_val:  old value of 'magic' bit.
8785  *
8786  * Takes care of CLP configurations.
8787  */
8788 static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val)
8789 {
8790         u32 shmem;
8791         u32 validity_offset;
8792
8793         DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "Starting\n");
8794
8795         /* Set `magic' bit in order to save MF config */
8796         if (!CHIP_IS_E1(bp))
8797                 bnx2x_clp_reset_prep(bp, magic_val);
8798
8799         /* Get shmem offset */
8800         shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
8801         validity_offset =
8802                 offsetof(struct shmem_region, validity_map[BP_PORT(bp)]);
8803
8804         /* Clear validity map flags */
8805         if (shmem > 0)
8806                 REG_WR(bp, shmem + validity_offset, 0);
8807 }
8808
8809 #define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
8810 #define MCP_ONE_TIMEOUT  100    /* 100 ms */
8811
8812 /**
8813  * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT
8814  *
8815  * @bp: driver handle
8816  */
8817 static void bnx2x_mcp_wait_one(struct bnx2x *bp)
8818 {
8819         /* special handling for emulation and FPGA,
8820            wait 10 times longer */
8821         if (CHIP_REV_IS_SLOW(bp))
8822                 msleep(MCP_ONE_TIMEOUT*10);
8823         else
8824                 msleep(MCP_ONE_TIMEOUT);
8825 }
8826
8827 /*
8828  * initializes bp->common.shmem_base and waits for validity signature to appear
8829  */
8830 static int bnx2x_init_shmem(struct bnx2x *bp)
8831 {
8832         int cnt = 0;
8833         u32 val = 0;
8834
8835         do {
8836                 bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
8837                 if (bp->common.shmem_base) {
8838                         val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
8839                         if (val & SHR_MEM_VALIDITY_MB)
8840                                 return 0;
8841                 }
8842
8843                 bnx2x_mcp_wait_one(bp);
8844
8845         } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
8846
8847         BNX2X_ERR("BAD MCP validity signature\n");
8848
8849         return -ENODEV;
8850 }
8851
8852 static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val)
8853 {
8854         int rc = bnx2x_init_shmem(bp);
8855
8856         /* Restore the `magic' bit value */
8857         if (!CHIP_IS_E1(bp))
8858                 bnx2x_clp_reset_done(bp, magic_val);
8859
8860         return rc;
8861 }
8862
8863 static void bnx2x_pxp_prep(struct bnx2x *bp)
8864 {
8865         if (!CHIP_IS_E1(bp)) {
8866                 REG_WR(bp, PXP2_REG_RD_START_INIT, 0);
8867                 REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0);
8868                 mmiowb();
8869         }
8870 }
8871
8872 /*
8873  * Reset the whole chip except for:
8874  *      - PCIE core
8875  *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by
8876  *              one reset bit)
8877  *      - IGU
8878  *      - MISC (including AEU)
8879  *      - GRC
8880  *      - RBCN, RBCP
8881  */
8882 static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global)
8883 {
8884         u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
8885         u32 global_bits2, stay_reset2;
8886
8887         /*
8888          * Bits that have to be set in reset_mask2 if we want to reset 'global'
8889          * (per chip) blocks.
8890          */
8891         global_bits2 =
8892                 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
8893                 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
8894
8895         /* Don't reset the following blocks.
8896          * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
8897          *            reset, as in 4 port device they might still be owned
8898          *            by the MCP (there is only one leader per path).
8899          */
8900         not_reset_mask1 =
8901                 MISC_REGISTERS_RESET_REG_1_RST_HC |
8902                 MISC_REGISTERS_RESET_REG_1_RST_PXPV |
8903                 MISC_REGISTERS_RESET_REG_1_RST_PXP;
8904
8905         not_reset_mask2 =
8906                 MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
8907                 MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
8908                 MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
8909                 MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
8910                 MISC_REGISTERS_RESET_REG_2_RST_RBCN |
8911                 MISC_REGISTERS_RESET_REG_2_RST_GRC  |
8912                 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
8913                 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
8914                 MISC_REGISTERS_RESET_REG_2_RST_ATC |
8915                 MISC_REGISTERS_RESET_REG_2_PGLC |
8916                 MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
8917                 MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
8918                 MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
8919                 MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
8920                 MISC_REGISTERS_RESET_REG_2_UMAC0 |
8921                 MISC_REGISTERS_RESET_REG_2_UMAC1;
8922
8923         /*
8924          * Keep the following blocks in reset:
8925          *  - all xxMACs are handled by the bnx2x_link code.
8926          */
8927         stay_reset2 =
8928                 MISC_REGISTERS_RESET_REG_2_XMAC |
8929                 MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
8930
8931         /* Full reset masks according to the chip */
8932         reset_mask1 = 0xffffffff;
8933
8934         if (CHIP_IS_E1(bp))
8935                 reset_mask2 = 0xffff;
8936         else if (CHIP_IS_E1H(bp))
8937                 reset_mask2 = 0x1ffff;
8938         else if (CHIP_IS_E2(bp))
8939                 reset_mask2 = 0xfffff;
8940         else /* CHIP_IS_E3 */
8941                 reset_mask2 = 0x3ffffff;
8942
8943         /* Don't reset global blocks unless we need to */
8944         if (!global)
8945                 reset_mask2 &= ~global_bits2;
8946
8947         /*
8948          * In case of attention in the QM, we need to reset PXP
8949          * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
8950          * because otherwise QM reset would release 'close the gates' shortly
8951          * before resetting the PXP, then the PSWRQ would send a write
8952          * request to PGLUE. Then when PXP is reset, PGLUE would try to
8953          * read the payload data from PSWWR, but PSWWR would not
8954          * respond. The write queue in PGLUE would stuck, dmae commands
8955          * would not return. Therefore it's important to reset the second
8956          * reset register (containing the
8957          * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
8958          * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
8959          * bit).
8960          */
8961         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
8962                reset_mask2 & (~not_reset_mask2));
8963
8964         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
8965                reset_mask1 & (~not_reset_mask1));
8966
8967         barrier();
8968         mmiowb();
8969
8970         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
8971                reset_mask2 & (~stay_reset2));
8972
8973         barrier();
8974         mmiowb();
8975
8976         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
8977         mmiowb();
8978 }
8979
8980 /**
8981  * bnx2x_er_poll_igu_vq - poll for pending writes bit.
8982  * It should get cleared in no more than 1s.
8983  *
8984  * @bp: driver handle
8985  *
8986  * It should get cleared in no more than 1s. Returns 0 if
8987  * pending writes bit gets cleared.
8988  */
8989 static int bnx2x_er_poll_igu_vq(struct bnx2x *bp)
8990 {
8991         u32 cnt = 1000;
8992         u32 pend_bits = 0;
8993
8994         do {
8995                 pend_bits  = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS);
8996
8997                 if (pend_bits == 0)
8998                         break;
8999
9000                 usleep_range(1000, 1000);
9001         } while (cnt-- > 0);
9002
9003         if (cnt <= 0) {
9004                 BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n",
9005                           pend_bits);
9006                 return -EBUSY;
9007         }
9008
9009         return 0;
9010 }
9011
9012 static int bnx2x_process_kill(struct bnx2x *bp, bool global)
9013 {
9014         int cnt = 1000;
9015         u32 val = 0;
9016         u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
9017                 u32 tags_63_32 = 0;
9018
9019
9020         /* Empty the Tetris buffer, wait for 1s */
9021         do {
9022                 sr_cnt  = REG_RD(bp, PXP2_REG_RD_SR_CNT);
9023                 blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT);
9024                 port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0);
9025                 port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1);
9026                 pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2);
9027                 if (CHIP_IS_E3(bp))
9028                         tags_63_32 = REG_RD(bp, PGLUE_B_REG_TAGS_63_32);
9029
9030                 if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
9031                     ((port_is_idle_0 & 0x1) == 0x1) &&
9032                     ((port_is_idle_1 & 0x1) == 0x1) &&
9033                     (pgl_exp_rom2 == 0xffffffff) &&
9034                     (!CHIP_IS_E3(bp) || (tags_63_32 == 0xffffffff)))
9035                         break;
9036                 usleep_range(1000, 1000);
9037         } while (cnt-- > 0);
9038
9039         if (cnt <= 0) {
9040                 BNX2X_ERR("Tetris buffer didn't get empty or there are still outstanding read requests after 1s!\n");
9041                 BNX2X_ERR("sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
9042                           sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
9043                           pgl_exp_rom2);
9044                 return -EAGAIN;
9045         }
9046
9047         barrier();
9048
9049         /* Close gates #2, #3 and #4 */
9050         bnx2x_set_234_gates(bp, true);
9051
9052         /* Poll for IGU VQs for 57712 and newer chips */
9053         if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp))
9054                 return -EAGAIN;
9055
9056
9057         /* TBD: Indicate that "process kill" is in progress to MCP */
9058
9059         /* Clear "unprepared" bit */
9060         REG_WR(bp, MISC_REG_UNPREPARED, 0);
9061         barrier();
9062
9063         /* Make sure all is written to the chip before the reset */
9064         mmiowb();
9065
9066         /* Wait for 1ms to empty GLUE and PCI-E core queues,
9067          * PSWHST, GRC and PSWRD Tetris buffer.
9068          */
9069         usleep_range(1000, 1000);
9070
9071         /* Prepare to chip reset: */
9072         /* MCP */
9073         if (global)
9074                 bnx2x_reset_mcp_prep(bp, &val);
9075
9076         /* PXP */
9077         bnx2x_pxp_prep(bp);
9078         barrier();
9079
9080         /* reset the chip */
9081         bnx2x_process_kill_chip_reset(bp, global);
9082         barrier();
9083
9084         /* Recover after reset: */
9085         /* MCP */
9086         if (global && bnx2x_reset_mcp_comp(bp, val))
9087                 return -EAGAIN;
9088
9089         /* TBD: Add resetting the NO_MCP mode DB here */
9090
9091         /* Open the gates #2, #3 and #4 */
9092         bnx2x_set_234_gates(bp, false);
9093
9094         /* TBD: IGU/AEU preparation bring back the AEU/IGU to a
9095          * reset state, re-enable attentions. */
9096
9097         return 0;
9098 }
9099
9100 static int bnx2x_leader_reset(struct bnx2x *bp)
9101 {
9102         int rc = 0;
9103         bool global = bnx2x_reset_is_global(bp);
9104         u32 load_code;
9105
9106         /* if not going to reset MCP - load "fake" driver to reset HW while
9107          * driver is owner of the HW
9108          */
9109         if (!global && !BP_NOMCP(bp)) {
9110                 load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ,
9111                                              DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
9112                 if (!load_code) {
9113                         BNX2X_ERR("MCP response failure, aborting\n");
9114                         rc = -EAGAIN;
9115                         goto exit_leader_reset;
9116                 }
9117                 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
9118                     (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
9119                         BNX2X_ERR("MCP unexpected resp, aborting\n");
9120                         rc = -EAGAIN;
9121                         goto exit_leader_reset2;
9122                 }
9123                 load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
9124                 if (!load_code) {
9125                         BNX2X_ERR("MCP response failure, aborting\n");
9126                         rc = -EAGAIN;
9127                         goto exit_leader_reset2;
9128                 }
9129         }
9130
9131         /* Try to recover after the failure */
9132         if (bnx2x_process_kill(bp, global)) {
9133                 BNX2X_ERR("Something bad had happen on engine %d! Aii!\n",
9134                           BP_PATH(bp));
9135                 rc = -EAGAIN;
9136                 goto exit_leader_reset2;
9137         }
9138
9139         /*
9140          * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver
9141          * state.
9142          */
9143         bnx2x_set_reset_done(bp);
9144         if (global)
9145                 bnx2x_clear_reset_global(bp);
9146
9147 exit_leader_reset2:
9148         /* unload "fake driver" if it was loaded */
9149         if (!global && !BP_NOMCP(bp)) {
9150                 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
9151                 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
9152         }
9153 exit_leader_reset:
9154         bp->is_leader = 0;
9155         bnx2x_release_leader_lock(bp);
9156         smp_mb();
9157         return rc;
9158 }
9159
9160 static void bnx2x_recovery_failed(struct bnx2x *bp)
9161 {
9162         netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n");
9163
9164         /* Disconnect this device */
9165         netif_device_detach(bp->dev);
9166
9167         /*
9168          * Block ifup for all function on this engine until "process kill"
9169          * or power cycle.
9170          */
9171         bnx2x_set_reset_in_progress(bp);
9172
9173         /* Shut down the power */
9174         bnx2x_set_power_state(bp, PCI_D3hot);
9175
9176         bp->recovery_state = BNX2X_RECOVERY_FAILED;
9177
9178         smp_mb();
9179 }
9180
9181 /*
9182  * Assumption: runs under rtnl lock. This together with the fact
9183  * that it's called only from bnx2x_sp_rtnl() ensure that it
9184  * will never be called when netif_running(bp->dev) is false.
9185  */
9186 static void bnx2x_parity_recover(struct bnx2x *bp)
9187 {
9188         bool global = false;
9189         u32 error_recovered, error_unrecovered;
9190         bool is_parity;
9191
9192         DP(NETIF_MSG_HW, "Handling parity\n");
9193         while (1) {
9194                 switch (bp->recovery_state) {
9195                 case BNX2X_RECOVERY_INIT:
9196                         DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n");
9197                         is_parity = bnx2x_chk_parity_attn(bp, &global, false);
9198                         WARN_ON(!is_parity);
9199
9200                         /* Try to get a LEADER_LOCK HW lock */
9201                         if (bnx2x_trylock_leader_lock(bp)) {
9202                                 bnx2x_set_reset_in_progress(bp);
9203                                 /*
9204                                  * Check if there is a global attention and if
9205                                  * there was a global attention, set the global
9206                                  * reset bit.
9207                                  */
9208
9209                                 if (global)
9210                                         bnx2x_set_reset_global(bp);
9211
9212                                 bp->is_leader = 1;
9213                         }
9214
9215                         /* Stop the driver */
9216                         /* If interface has been removed - break */
9217                         if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY, false))
9218                                 return;
9219
9220                         bp->recovery_state = BNX2X_RECOVERY_WAIT;
9221
9222                         /* Ensure "is_leader", MCP command sequence and
9223                          * "recovery_state" update values are seen on other
9224                          * CPUs.
9225                          */
9226                         smp_mb();
9227                         break;
9228
9229                 case BNX2X_RECOVERY_WAIT:
9230                         DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n");
9231                         if (bp->is_leader) {
9232                                 int other_engine = BP_PATH(bp) ? 0 : 1;
9233                                 bool other_load_status =
9234                                         bnx2x_get_load_status(bp, other_engine);
9235                                 bool load_status =
9236                                         bnx2x_get_load_status(bp, BP_PATH(bp));
9237                                 global = bnx2x_reset_is_global(bp);
9238
9239                                 /*
9240                                  * In case of a parity in a global block, let
9241                                  * the first leader that performs a
9242                                  * leader_reset() reset the global blocks in
9243                                  * order to clear global attentions. Otherwise
9244                                  * the the gates will remain closed for that
9245                                  * engine.
9246                                  */
9247                                 if (load_status ||
9248                                     (global && other_load_status)) {
9249                                         /* Wait until all other functions get
9250                                          * down.
9251                                          */
9252                                         schedule_delayed_work(&bp->sp_rtnl_task,
9253                                                                 HZ/10);
9254                                         return;
9255                                 } else {
9256                                         /* If all other functions got down -
9257                                          * try to bring the chip back to
9258                                          * normal. In any case it's an exit
9259                                          * point for a leader.
9260                                          */
9261                                         if (bnx2x_leader_reset(bp)) {
9262                                                 bnx2x_recovery_failed(bp);
9263                                                 return;
9264                                         }
9265
9266                                         /* If we are here, means that the
9267                                          * leader has succeeded and doesn't
9268                                          * want to be a leader any more. Try
9269                                          * to continue as a none-leader.
9270                                          */
9271                                         break;
9272                                 }
9273                         } else { /* non-leader */
9274                                 if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) {
9275                                         /* Try to get a LEADER_LOCK HW lock as
9276                                          * long as a former leader may have
9277                                          * been unloaded by the user or
9278                                          * released a leadership by another
9279                                          * reason.
9280                                          */
9281                                         if (bnx2x_trylock_leader_lock(bp)) {
9282                                                 /* I'm a leader now! Restart a
9283                                                  * switch case.
9284                                                  */
9285                                                 bp->is_leader = 1;
9286                                                 break;
9287                                         }
9288
9289                                         schedule_delayed_work(&bp->sp_rtnl_task,
9290                                                                 HZ/10);
9291                                         return;
9292
9293                                 } else {
9294                                         /*
9295                                          * If there was a global attention, wait
9296                                          * for it to be cleared.
9297                                          */
9298                                         if (bnx2x_reset_is_global(bp)) {
9299                                                 schedule_delayed_work(
9300                                                         &bp->sp_rtnl_task,
9301                                                         HZ/10);
9302                                                 return;
9303                                         }
9304
9305                                         error_recovered =
9306                                           bp->eth_stats.recoverable_error;
9307                                         error_unrecovered =
9308                                           bp->eth_stats.unrecoverable_error;
9309                                         bp->recovery_state =
9310                                                 BNX2X_RECOVERY_NIC_LOADING;
9311                                         if (bnx2x_nic_load(bp, LOAD_NORMAL)) {
9312                                                 error_unrecovered++;
9313                                                 netdev_err(bp->dev,
9314                                                            "Recovery failed. Power cycle needed\n");
9315                                                 /* Disconnect this device */
9316                                                 netif_device_detach(bp->dev);
9317                                                 /* Shut down the power */
9318                                                 bnx2x_set_power_state(
9319                                                         bp, PCI_D3hot);
9320                                                 smp_mb();
9321                                         } else {
9322                                                 bp->recovery_state =
9323                                                         BNX2X_RECOVERY_DONE;
9324                                                 error_recovered++;
9325                                                 smp_mb();
9326                                         }
9327                                         bp->eth_stats.recoverable_error =
9328                                                 error_recovered;
9329                                         bp->eth_stats.unrecoverable_error =
9330                                                 error_unrecovered;
9331
9332                                         return;
9333                                 }
9334                         }
9335                 default:
9336                         return;
9337                 }
9338         }
9339 }
9340
9341 static int bnx2x_close(struct net_device *dev);
9342
9343 /* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is
9344  * scheduled on a general queue in order to prevent a dead lock.
9345  */
9346 static void bnx2x_sp_rtnl_task(struct work_struct *work)
9347 {
9348         struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work);
9349
9350         rtnl_lock();
9351
9352         if (!netif_running(bp->dev))
9353                 goto sp_rtnl_exit;
9354
9355         /* if stop on error is defined no recovery flows should be executed */
9356 #ifdef BNX2X_STOP_ON_ERROR
9357         BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
9358                   "you will need to reboot when done\n");
9359         goto sp_rtnl_not_reset;
9360 #endif
9361
9362         if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) {
9363                 /*
9364                  * Clear all pending SP commands as we are going to reset the
9365                  * function anyway.
9366                  */
9367                 bp->sp_rtnl_state = 0;
9368                 smp_mb();
9369
9370                 bnx2x_parity_recover(bp);
9371
9372                 goto sp_rtnl_exit;
9373         }
9374
9375         if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) {
9376                 /*
9377                  * Clear all pending SP commands as we are going to reset the
9378                  * function anyway.
9379                  */
9380                 bp->sp_rtnl_state = 0;
9381                 smp_mb();
9382
9383                 bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
9384                 bnx2x_nic_load(bp, LOAD_NORMAL);
9385
9386                 goto sp_rtnl_exit;
9387         }
9388 #ifdef BNX2X_STOP_ON_ERROR
9389 sp_rtnl_not_reset:
9390 #endif
9391         if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state))
9392                 bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos);
9393         if (test_and_clear_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE, &bp->sp_rtnl_state))
9394                 bnx2x_after_function_update(bp);
9395         /*
9396          * in case of fan failure we need to reset id if the "stop on error"
9397          * debug flag is set, since we trying to prevent permanent overheating
9398          * damage
9399          */
9400         if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) {
9401                 DP(NETIF_MSG_HW, "fan failure detected. Unloading driver\n");
9402                 netif_device_detach(bp->dev);
9403                 bnx2x_close(bp->dev);
9404         }
9405
9406         if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_MCAST, &bp->sp_rtnl_state)) {
9407                 DP(BNX2X_MSG_SP,
9408                    "sending set mcast vf pf channel message from rtnl sp-task\n");
9409                 bnx2x_vfpf_set_mcast(bp->dev);
9410         }
9411
9412         if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_STORM_RX_MODE,
9413                                &bp->sp_rtnl_state)) {
9414                 DP(BNX2X_MSG_SP,
9415                    "sending set storm rx mode vf pf channel message from rtnl sp-task\n");
9416                 bnx2x_vfpf_storm_rx_mode(bp);
9417         }
9418
9419 sp_rtnl_exit:
9420         rtnl_unlock();
9421 }
9422
9423 /* end of nic load/unload */
9424
9425 static void bnx2x_period_task(struct work_struct *work)
9426 {
9427         struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work);
9428
9429         if (!netif_running(bp->dev))
9430                 goto period_task_exit;
9431
9432         if (CHIP_REV_IS_SLOW(bp)) {
9433                 BNX2X_ERR("period task called on emulation, ignoring\n");
9434                 goto period_task_exit;
9435         }
9436
9437         bnx2x_acquire_phy_lock(bp);
9438         /*
9439          * The barrier is needed to ensure the ordering between the writing to
9440          * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
9441          * the reading here.
9442          */
9443         smp_mb();
9444         if (bp->port.pmf) {
9445                 bnx2x_period_func(&bp->link_params, &bp->link_vars);
9446
9447                 /* Re-queue task in 1 sec */
9448                 queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ);
9449         }
9450
9451         bnx2x_release_phy_lock(bp);
9452 period_task_exit:
9453         return;
9454 }
9455
9456 /*
9457  * Init service functions
9458  */
9459
9460 static u32 bnx2x_get_pretend_reg(struct bnx2x *bp)
9461 {
9462         u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0;
9463         u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base;
9464         return base + (BP_ABS_FUNC(bp)) * stride;
9465 }
9466
9467 static void bnx2x_undi_int_disable_e1h(struct bnx2x *bp)
9468 {
9469         u32 reg = bnx2x_get_pretend_reg(bp);
9470
9471         /* Flush all outstanding writes */
9472         mmiowb();
9473
9474         /* Pretend to be function 0 */
9475         REG_WR(bp, reg, 0);
9476         REG_RD(bp, reg);        /* Flush the GRC transaction (in the chip) */
9477
9478         /* From now we are in the "like-E1" mode */
9479         bnx2x_int_disable(bp);
9480
9481         /* Flush all outstanding writes */
9482         mmiowb();
9483
9484         /* Restore the original function */
9485         REG_WR(bp, reg, BP_ABS_FUNC(bp));
9486         REG_RD(bp, reg);
9487 }
9488
9489 static inline void bnx2x_undi_int_disable(struct bnx2x *bp)
9490 {
9491         if (CHIP_IS_E1(bp))
9492                 bnx2x_int_disable(bp);
9493         else
9494                 bnx2x_undi_int_disable_e1h(bp);
9495 }
9496
9497 static void bnx2x_prev_unload_close_mac(struct bnx2x *bp)
9498 {
9499         u32 val, base_addr, offset, mask, reset_reg;
9500         bool mac_stopped = false;
9501         u8 port = BP_PORT(bp);
9502
9503         reset_reg = REG_RD(bp, MISC_REG_RESET_REG_2);
9504
9505         if (!CHIP_IS_E3(bp)) {
9506                 val = REG_RD(bp, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
9507                 mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
9508                 if ((mask & reset_reg) && val) {
9509                         u32 wb_data[2];
9510                         BNX2X_DEV_INFO("Disable bmac Rx\n");
9511                         base_addr = BP_PORT(bp) ? NIG_REG_INGRESS_BMAC1_MEM
9512                                                 : NIG_REG_INGRESS_BMAC0_MEM;
9513                         offset = CHIP_IS_E2(bp) ? BIGMAC2_REGISTER_BMAC_CONTROL
9514                                                 : BIGMAC_REGISTER_BMAC_CONTROL;
9515
9516                         /*
9517                          * use rd/wr since we cannot use dmae. This is safe
9518                          * since MCP won't access the bus due to the request
9519                          * to unload, and no function on the path can be
9520                          * loaded at this time.
9521                          */
9522                         wb_data[0] = REG_RD(bp, base_addr + offset);
9523                         wb_data[1] = REG_RD(bp, base_addr + offset + 0x4);
9524                         wb_data[0] &= ~BMAC_CONTROL_RX_ENABLE;
9525                         REG_WR(bp, base_addr + offset, wb_data[0]);
9526                         REG_WR(bp, base_addr + offset + 0x4, wb_data[1]);
9527
9528                 }
9529                 BNX2X_DEV_INFO("Disable emac Rx\n");
9530                 REG_WR(bp, NIG_REG_NIG_EMAC0_EN + BP_PORT(bp)*4, 0);
9531
9532                 mac_stopped = true;
9533         } else {
9534                 if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
9535                         BNX2X_DEV_INFO("Disable xmac Rx\n");
9536                         base_addr = BP_PORT(bp) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
9537                         val = REG_RD(bp, base_addr + XMAC_REG_PFC_CTRL_HI);
9538                         REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
9539                                val & ~(1 << 1));
9540                         REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
9541                                val | (1 << 1));
9542                         REG_WR(bp, base_addr + XMAC_REG_CTRL, 0);
9543                         mac_stopped = true;
9544                 }
9545                 mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
9546                 if (mask & reset_reg) {
9547                         BNX2X_DEV_INFO("Disable umac Rx\n");
9548                         base_addr = BP_PORT(bp) ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
9549                         REG_WR(bp, base_addr + UMAC_REG_COMMAND_CONFIG, 0);
9550                         mac_stopped = true;
9551                 }
9552         }
9553
9554         if (mac_stopped)
9555                 msleep(20);
9556
9557 }
9558
9559 #define BNX2X_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
9560 #define BNX2X_PREV_UNDI_RCQ(val)        ((val) & 0xffff)
9561 #define BNX2X_PREV_UNDI_BD(val)         ((val) >> 16 & 0xffff)
9562 #define BNX2X_PREV_UNDI_PROD(rcq, bd)   ((bd) << 16 | (rcq))
9563
9564 static void bnx2x_prev_unload_undi_inc(struct bnx2x *bp, u8 port, u8 inc)
9565 {
9566         u16 rcq, bd;
9567         u32 tmp_reg = REG_RD(bp, BNX2X_PREV_UNDI_PROD_ADDR(port));
9568
9569         rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc;
9570         bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc;
9571
9572         tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd);
9573         REG_WR(bp, BNX2X_PREV_UNDI_PROD_ADDR(port), tmp_reg);
9574
9575         BNX2X_DEV_INFO("UNDI producer [%d] rings bd -> 0x%04x, rcq -> 0x%04x\n",
9576                        port, bd, rcq);
9577 }
9578
9579 static int bnx2x_prev_mcp_done(struct bnx2x *bp)
9580 {
9581         u32 rc = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE,
9582                                   DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
9583         if (!rc) {
9584                 BNX2X_ERR("MCP response failure, aborting\n");
9585                 return -EBUSY;
9586         }
9587
9588         return 0;
9589 }
9590
9591 static struct bnx2x_prev_path_list *
9592                 bnx2x_prev_path_get_entry(struct bnx2x *bp)
9593 {
9594         struct bnx2x_prev_path_list *tmp_list;
9595
9596         list_for_each_entry(tmp_list, &bnx2x_prev_list, list)
9597                 if (PCI_SLOT(bp->pdev->devfn) == tmp_list->slot &&
9598                     bp->pdev->bus->number == tmp_list->bus &&
9599                     BP_PATH(bp) == tmp_list->path)
9600                         return tmp_list;
9601
9602         return NULL;
9603 }
9604
9605 static bool bnx2x_prev_is_path_marked(struct bnx2x *bp)
9606 {
9607         struct bnx2x_prev_path_list *tmp_list;
9608         int rc = false;
9609
9610         if (down_trylock(&bnx2x_prev_sem))
9611                 return false;
9612
9613         list_for_each_entry(tmp_list, &bnx2x_prev_list, list) {
9614                 if (PCI_SLOT(bp->pdev->devfn) == tmp_list->slot &&
9615                     bp->pdev->bus->number == tmp_list->bus &&
9616                     BP_PATH(bp) == tmp_list->path) {
9617                         rc = true;
9618                         BNX2X_DEV_INFO("Path %d was already cleaned from previous drivers\n",
9619                                        BP_PATH(bp));
9620                         break;
9621                 }
9622         }
9623
9624         up(&bnx2x_prev_sem);
9625
9626         return rc;
9627 }
9628
9629 static int bnx2x_prev_mark_path(struct bnx2x *bp, bool after_undi)
9630 {
9631         struct bnx2x_prev_path_list *tmp_list;
9632         int rc;
9633
9634         tmp_list = kmalloc(sizeof(struct bnx2x_prev_path_list), GFP_KERNEL);
9635         if (!tmp_list) {
9636                 BNX2X_ERR("Failed to allocate 'bnx2x_prev_path_list'\n");
9637                 return -ENOMEM;
9638         }
9639
9640         tmp_list->bus = bp->pdev->bus->number;
9641         tmp_list->slot = PCI_SLOT(bp->pdev->devfn);
9642         tmp_list->path = BP_PATH(bp);
9643         tmp_list->undi = after_undi ? (1 << BP_PORT(bp)) : 0;
9644
9645         rc = down_interruptible(&bnx2x_prev_sem);
9646         if (rc) {
9647                 BNX2X_ERR("Received %d when tried to take lock\n", rc);
9648                 kfree(tmp_list);
9649         } else {
9650                 BNX2X_DEV_INFO("Marked path [%d] - finished previous unload\n",
9651                                 BP_PATH(bp));
9652                 list_add(&tmp_list->list, &bnx2x_prev_list);
9653                 up(&bnx2x_prev_sem);
9654         }
9655
9656         return rc;
9657 }
9658
9659 static int bnx2x_do_flr(struct bnx2x *bp)
9660 {
9661         int i;
9662         u16 status;
9663         struct pci_dev *dev = bp->pdev;
9664
9665
9666         if (CHIP_IS_E1x(bp)) {
9667                 BNX2X_DEV_INFO("FLR not supported in E1/E1H\n");
9668                 return -EINVAL;
9669         }
9670
9671         /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
9672         if (bp->common.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
9673                 BNX2X_ERR("FLR not supported by BC_VER: 0x%x\n",
9674                           bp->common.bc_ver);
9675                 return -EINVAL;
9676         }
9677
9678         /* Wait for Transaction Pending bit clean */
9679         for (i = 0; i < 4; i++) {
9680                 if (i)
9681                         msleep((1 << (i - 1)) * 100);
9682
9683                 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
9684                 if (!(status & PCI_EXP_DEVSTA_TRPND))
9685                         goto clear;
9686         }
9687
9688         dev_err(&dev->dev,
9689                 "transaction is not cleared; proceeding with reset anyway\n");
9690
9691 clear:
9692
9693         BNX2X_DEV_INFO("Initiating FLR\n");
9694         bnx2x_fw_command(bp, DRV_MSG_CODE_INITIATE_FLR, 0);
9695
9696         return 0;
9697 }
9698
9699 static int bnx2x_prev_unload_uncommon(struct bnx2x *bp)
9700 {
9701         int rc;
9702
9703         BNX2X_DEV_INFO("Uncommon unload Flow\n");
9704
9705         /* Test if previous unload process was already finished for this path */
9706         if (bnx2x_prev_is_path_marked(bp))
9707                 return bnx2x_prev_mcp_done(bp);
9708
9709         /* If function has FLR capabilities, and existing FW version matches
9710          * the one required, then FLR will be sufficient to clean any residue
9711          * left by previous driver
9712          */
9713         rc = bnx2x_nic_load_analyze_req(bp, FW_MSG_CODE_DRV_LOAD_FUNCTION);
9714
9715         if (!rc) {
9716                 /* fw version is good */
9717                 BNX2X_DEV_INFO("FW version matches our own. Attempting FLR\n");
9718                 rc = bnx2x_do_flr(bp);
9719         }
9720
9721         if (!rc) {
9722                 /* FLR was performed */
9723                 BNX2X_DEV_INFO("FLR successful\n");
9724                 return 0;
9725         }
9726
9727         BNX2X_DEV_INFO("Could not FLR\n");
9728
9729         /* Close the MCP request, return failure*/
9730         rc = bnx2x_prev_mcp_done(bp);
9731         if (!rc)
9732                 rc = BNX2X_PREV_WAIT_NEEDED;
9733
9734         return rc;
9735 }
9736
9737 static int bnx2x_prev_unload_common(struct bnx2x *bp)
9738 {
9739         u32 reset_reg, tmp_reg = 0, rc;
9740         bool prev_undi = false;
9741         /* It is possible a previous function received 'common' answer,
9742          * but hasn't loaded yet, therefore creating a scenario of
9743          * multiple functions receiving 'common' on the same path.
9744          */
9745         BNX2X_DEV_INFO("Common unload Flow\n");
9746
9747         if (bnx2x_prev_is_path_marked(bp))
9748                 return bnx2x_prev_mcp_done(bp);
9749
9750         reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1);
9751
9752         /* Reset should be performed after BRB is emptied */
9753         if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
9754                 u32 timer_count = 1000;
9755
9756                 /* Close the MAC Rx to prevent BRB from filling up */
9757                 bnx2x_prev_unload_close_mac(bp);
9758
9759                 /* Check if the UNDI driver was previously loaded
9760                  * UNDI driver initializes CID offset for normal bell to 0x7
9761                  */
9762                 reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1);
9763                 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) {
9764                         tmp_reg = REG_RD(bp, DORQ_REG_NORM_CID_OFST);
9765                         if (tmp_reg == 0x7) {
9766                                 BNX2X_DEV_INFO("UNDI previously loaded\n");
9767                                 prev_undi = true;
9768                                 /* clear the UNDI indication */
9769                                 REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0);
9770                         }
9771                 }
9772                 /* wait until BRB is empty */
9773                 tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
9774                 while (timer_count) {
9775                         u32 prev_brb = tmp_reg;
9776
9777                         tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
9778                         if (!tmp_reg)
9779                                 break;
9780
9781                         BNX2X_DEV_INFO("BRB still has 0x%08x\n", tmp_reg);
9782
9783                         /* reset timer as long as BRB actually gets emptied */
9784                         if (prev_brb > tmp_reg)
9785                                 timer_count = 1000;
9786                         else
9787                                 timer_count--;
9788
9789                         /* If UNDI resides in memory, manually increment it */
9790                         if (prev_undi)
9791                                 bnx2x_prev_unload_undi_inc(bp, BP_PORT(bp), 1);
9792
9793                         udelay(10);
9794                 }
9795
9796                 if (!timer_count)
9797                         BNX2X_ERR("Failed to empty BRB, hope for the best\n");
9798
9799         }
9800
9801         /* No packets are in the pipeline, path is ready for reset */
9802         bnx2x_reset_common(bp);
9803
9804         rc = bnx2x_prev_mark_path(bp, prev_undi);
9805         if (rc) {
9806                 bnx2x_prev_mcp_done(bp);
9807                 return rc;
9808         }
9809
9810         return bnx2x_prev_mcp_done(bp);
9811 }
9812
9813 /* previous driver DMAE transaction may have occurred when pre-boot stage ended
9814  * and boot began, or when kdump kernel was loaded. Either case would invalidate
9815  * the addresses of the transaction, resulting in was-error bit set in the pci
9816  * causing all hw-to-host pcie transactions to timeout. If this happened we want
9817  * to clear the interrupt which detected this from the pglueb and the was done
9818  * bit
9819  */
9820 static void bnx2x_prev_interrupted_dmae(struct bnx2x *bp)
9821 {
9822         if (!CHIP_IS_E1x(bp)) {
9823                 u32 val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS);
9824                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) {
9825                         BNX2X_ERR("was error bit was found to be set in pglueb upon startup. Clearing");
9826                         REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR,
9827                                1 << BP_FUNC(bp));
9828                 }
9829         }
9830 }
9831
9832 static int bnx2x_prev_unload(struct bnx2x *bp)
9833 {
9834         int time_counter = 10;
9835         u32 rc, fw, hw_lock_reg, hw_lock_val;
9836         struct bnx2x_prev_path_list *prev_list;
9837         BNX2X_DEV_INFO("Entering Previous Unload Flow\n");
9838
9839         /* clear hw from errors which may have resulted from an interrupted
9840          * dmae transaction.
9841          */
9842         bnx2x_prev_interrupted_dmae(bp);
9843
9844         /* Release previously held locks */
9845         hw_lock_reg = (BP_FUNC(bp) <= 5) ?
9846                       (MISC_REG_DRIVER_CONTROL_1 + BP_FUNC(bp) * 8) :
9847                       (MISC_REG_DRIVER_CONTROL_7 + (BP_FUNC(bp) - 6) * 8);
9848
9849         hw_lock_val = (REG_RD(bp, hw_lock_reg));
9850         if (hw_lock_val) {
9851                 if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
9852                         BNX2X_DEV_INFO("Release Previously held NVRAM lock\n");
9853                         REG_WR(bp, MCP_REG_MCPR_NVM_SW_ARB,
9854                                (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << BP_PORT(bp)));
9855                 }
9856
9857                 BNX2X_DEV_INFO("Release Previously held hw lock\n");
9858                 REG_WR(bp, hw_lock_reg, 0xffffffff);
9859         } else
9860                 BNX2X_DEV_INFO("No need to release hw/nvram locks\n");
9861
9862         if (MCPR_ACCESS_LOCK_LOCK & REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK)) {
9863                 BNX2X_DEV_INFO("Release previously held alr\n");
9864                 REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, 0);
9865         }
9866
9867
9868         do {
9869                 /* Lock MCP using an unload request */
9870                 fw = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
9871                 if (!fw) {
9872                         BNX2X_ERR("MCP response failure, aborting\n");
9873                         rc = -EBUSY;
9874                         break;
9875                 }
9876
9877                 if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON) {
9878                         rc = bnx2x_prev_unload_common(bp);
9879                         break;
9880                 }
9881
9882                 /* non-common reply from MCP night require looping */
9883                 rc = bnx2x_prev_unload_uncommon(bp);
9884                 if (rc != BNX2X_PREV_WAIT_NEEDED)
9885                         break;
9886
9887                 msleep(20);
9888         } while (--time_counter);
9889
9890         if (!time_counter || rc) {
9891                 BNX2X_ERR("Failed unloading previous driver, aborting\n");
9892                 rc = -EBUSY;
9893         }
9894
9895         /* Mark function if its port was used to boot from SAN */
9896         prev_list = bnx2x_prev_path_get_entry(bp);
9897         if (prev_list && (prev_list->undi & (1 << BP_PORT(bp))))
9898                 bp->link_params.feature_config_flags |=
9899                         FEATURE_CONFIG_BOOT_FROM_SAN;
9900
9901         BNX2X_DEV_INFO("Finished Previous Unload Flow [%d]\n", rc);
9902
9903         return rc;
9904 }
9905
9906 static void bnx2x_get_common_hwinfo(struct bnx2x *bp)
9907 {
9908         u32 val, val2, val3, val4, id, boot_mode;
9909         u16 pmc;
9910
9911         /* Get the chip revision id and number. */
9912         /* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
9913         val = REG_RD(bp, MISC_REG_CHIP_NUM);
9914         id = ((val & 0xffff) << 16);
9915         val = REG_RD(bp, MISC_REG_CHIP_REV);
9916         id |= ((val & 0xf) << 12);
9917         val = REG_RD(bp, MISC_REG_CHIP_METAL);
9918         id |= ((val & 0xff) << 4);
9919         val = REG_RD(bp, MISC_REG_BOND_ID);
9920         id |= (val & 0xf);
9921         bp->common.chip_id = id;
9922
9923         /* force 57811 according to MISC register */
9924         if (REG_RD(bp, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
9925                 if (CHIP_IS_57810(bp))
9926                         bp->common.chip_id = (CHIP_NUM_57811 << 16) |
9927                                 (bp->common.chip_id & 0x0000FFFF);
9928                 else if (CHIP_IS_57810_MF(bp))
9929                         bp->common.chip_id = (CHIP_NUM_57811_MF << 16) |
9930                                 (bp->common.chip_id & 0x0000FFFF);
9931                 bp->common.chip_id |= 0x1;
9932         }
9933
9934         /* Set doorbell size */
9935         bp->db_size = (1 << BNX2X_DB_SHIFT);
9936
9937         if (!CHIP_IS_E1x(bp)) {
9938                 val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR);
9939                 if ((val & 1) == 0)
9940                         val = REG_RD(bp, MISC_REG_PORT4MODE_EN);
9941                 else
9942                         val = (val >> 1) & 1;
9943                 BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" :
9944                                                        "2_PORT_MODE");
9945                 bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE :
9946                                                  CHIP_2_PORT_MODE;
9947
9948                 if (CHIP_MODE_IS_4_PORT(bp))
9949                         bp->pfid = (bp->pf_num >> 1);   /* 0..3 */
9950                 else
9951                         bp->pfid = (bp->pf_num & 0x6);  /* 0, 2, 4, 6 */
9952         } else {
9953                 bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */
9954                 bp->pfid = bp->pf_num;                  /* 0..7 */
9955         }
9956
9957         BNX2X_DEV_INFO("pf_id: %x", bp->pfid);
9958
9959         bp->link_params.chip_id = bp->common.chip_id;
9960         BNX2X_DEV_INFO("chip ID is 0x%x\n", id);
9961
9962         val = (REG_RD(bp, 0x2874) & 0x55);
9963         if ((bp->common.chip_id & 0x1) ||
9964             (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) {
9965                 bp->flags |= ONE_PORT_FLAG;
9966                 BNX2X_DEV_INFO("single port device\n");
9967         }
9968
9969         val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4);
9970         bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE <<
9971                                  (val & MCPR_NVM_CFG4_FLASH_SIZE));
9972         BNX2X_DEV_INFO("flash_size 0x%x (%d)\n",
9973                        bp->common.flash_size, bp->common.flash_size);
9974
9975         bnx2x_init_shmem(bp);
9976
9977
9978
9979         bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ?
9980                                         MISC_REG_GENERIC_CR_1 :
9981                                         MISC_REG_GENERIC_CR_0));
9982
9983         bp->link_params.shmem_base = bp->common.shmem_base;
9984         bp->link_params.shmem2_base = bp->common.shmem2_base;
9985         if (SHMEM2_RD(bp, size) >
9986             (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
9987                 bp->link_params.lfa_base =
9988                 REG_RD(bp, bp->common.shmem2_base +
9989                        (u32)offsetof(struct shmem2_region,
9990                                      lfa_host_addr[BP_PORT(bp)]));
9991         else
9992                 bp->link_params.lfa_base = 0;
9993         BNX2X_DEV_INFO("shmem offset 0x%x  shmem2 offset 0x%x\n",
9994                        bp->common.shmem_base, bp->common.shmem2_base);
9995
9996         if (!bp->common.shmem_base) {
9997                 BNX2X_DEV_INFO("MCP not active\n");
9998                 bp->flags |= NO_MCP_FLAG;
9999                 return;
10000         }
10001
10002         bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config);
10003         BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config);
10004
10005         bp->link_params.hw_led_mode = ((bp->common.hw_config &
10006                                         SHARED_HW_CFG_LED_MODE_MASK) >>
10007                                        SHARED_HW_CFG_LED_MODE_SHIFT);
10008
10009         bp->link_params.feature_config_flags = 0;
10010         val = SHMEM_RD(bp, dev_info.shared_feature_config.config);
10011         if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED)
10012                 bp->link_params.feature_config_flags |=
10013                                 FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
10014         else
10015                 bp->link_params.feature_config_flags &=
10016                                 ~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
10017
10018         val = SHMEM_RD(bp, dev_info.bc_rev) >> 8;
10019         bp->common.bc_ver = val;
10020         BNX2X_DEV_INFO("bc_ver %X\n", val);
10021         if (val < BNX2X_BC_VER) {
10022                 /* for now only warn
10023                  * later we might need to enforce this */
10024                 BNX2X_ERR("This driver needs bc_ver %X but found %X, please upgrade BC\n",
10025                           BNX2X_BC_VER, val);
10026         }
10027         bp->link_params.feature_config_flags |=
10028                                 (val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
10029                                 FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0;
10030
10031         bp->link_params.feature_config_flags |=
10032                 (val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
10033                 FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
10034         bp->link_params.feature_config_flags |=
10035                 (val >= REQ_BC_VER_4_VRFY_AFEX_SUPPORTED) ?
10036                 FEATURE_CONFIG_BC_SUPPORTS_AFEX : 0;
10037         bp->link_params.feature_config_flags |=
10038                 (val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ?
10039                 FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0;
10040
10041         bp->link_params.feature_config_flags |=
10042                 (val >= REQ_BC_VER_4_MT_SUPPORTED) ?
10043                 FEATURE_CONFIG_MT_SUPPORT : 0;
10044
10045         bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ?
10046                         BC_SUPPORTS_PFC_STATS : 0;
10047
10048         bp->flags |= (val >= REQ_BC_VER_4_FCOE_FEATURES) ?
10049                         BC_SUPPORTS_FCOE_FEATURES : 0;
10050
10051         bp->flags |= (val >= REQ_BC_VER_4_DCBX_ADMIN_MSG_NON_PMF) ?
10052                         BC_SUPPORTS_DCBX_MSG_NON_PMF : 0;
10053         boot_mode = SHMEM_RD(bp,
10054                         dev_info.port_feature_config[BP_PORT(bp)].mba_config) &
10055                         PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK;
10056         switch (boot_mode) {
10057         case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE:
10058                 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE;
10059                 break;
10060         case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB:
10061                 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI;
10062                 break;
10063         case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT:
10064                 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE;
10065                 break;
10066         case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE:
10067                 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE;
10068                 break;
10069         }
10070
10071         pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_PMC, &pmc);
10072         bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG;
10073
10074         BNX2X_DEV_INFO("%sWoL capable\n",
10075                        (bp->flags & NO_WOL_FLAG) ? "not " : "");
10076
10077         val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num);
10078         val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]);
10079         val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]);
10080         val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]);
10081
10082         dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n",
10083                  val, val2, val3, val4);
10084 }
10085
10086 #define IGU_FID(val)    GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
10087 #define IGU_VEC(val)    GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
10088
10089 static int bnx2x_get_igu_cam_info(struct bnx2x *bp)
10090 {
10091         int pfid = BP_FUNC(bp);
10092         int igu_sb_id;
10093         u32 val;
10094         u8 fid, igu_sb_cnt = 0;
10095
10096         bp->igu_base_sb = 0xff;
10097         if (CHIP_INT_MODE_IS_BC(bp)) {
10098                 int vn = BP_VN(bp);
10099                 igu_sb_cnt = bp->igu_sb_cnt;
10100                 bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) *
10101                         FP_SB_MAX_E1x;
10102
10103                 bp->igu_dsb_id =  E1HVN_MAX * FP_SB_MAX_E1x +
10104                         (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn);
10105
10106                 return 0;
10107         }
10108
10109         /* IGU in normal mode - read CAM */
10110         for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
10111              igu_sb_id++) {
10112                 val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
10113                 if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
10114                         continue;
10115                 fid = IGU_FID(val);
10116                 if ((fid & IGU_FID_ENCODE_IS_PF)) {
10117                         if ((fid & IGU_FID_PF_NUM_MASK) != pfid)
10118                                 continue;
10119                         if (IGU_VEC(val) == 0)
10120                                 /* default status block */
10121                                 bp->igu_dsb_id = igu_sb_id;
10122                         else {
10123                                 if (bp->igu_base_sb == 0xff)
10124                                         bp->igu_base_sb = igu_sb_id;
10125                                 igu_sb_cnt++;
10126                         }
10127                 }
10128         }
10129
10130 #ifdef CONFIG_PCI_MSI
10131         /* Due to new PF resource allocation by MFW T7.4 and above, it's
10132          * optional that number of CAM entries will not be equal to the value
10133          * advertised in PCI.
10134          * Driver should use the minimal value of both as the actual status
10135          * block count
10136          */
10137         bp->igu_sb_cnt = min_t(int, bp->igu_sb_cnt, igu_sb_cnt);
10138 #endif
10139
10140         if (igu_sb_cnt == 0) {
10141                 BNX2X_ERR("CAM configuration error\n");
10142                 return -EINVAL;
10143         }
10144
10145         return 0;
10146 }
10147
10148 static void bnx2x_link_settings_supported(struct bnx2x *bp, u32 switch_cfg)
10149 {
10150         int cfg_size = 0, idx, port = BP_PORT(bp);
10151
10152         /* Aggregation of supported attributes of all external phys */
10153         bp->port.supported[0] = 0;
10154         bp->port.supported[1] = 0;
10155         switch (bp->link_params.num_phys) {
10156         case 1:
10157                 bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported;
10158                 cfg_size = 1;
10159                 break;
10160         case 2:
10161                 bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported;
10162                 cfg_size = 1;
10163                 break;
10164         case 3:
10165                 if (bp->link_params.multi_phy_config &
10166                     PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
10167                         bp->port.supported[1] =
10168                                 bp->link_params.phy[EXT_PHY1].supported;
10169                         bp->port.supported[0] =
10170                                 bp->link_params.phy[EXT_PHY2].supported;
10171                 } else {
10172                         bp->port.supported[0] =
10173                                 bp->link_params.phy[EXT_PHY1].supported;
10174                         bp->port.supported[1] =
10175                                 bp->link_params.phy[EXT_PHY2].supported;
10176                 }
10177                 cfg_size = 2;
10178                 break;
10179         }
10180
10181         if (!(bp->port.supported[0] || bp->port.supported[1])) {
10182                 BNX2X_ERR("NVRAM config error. BAD phy config. PHY1 config 0x%x, PHY2 config 0x%x\n",
10183                            SHMEM_RD(bp,
10184                            dev_info.port_hw_config[port].external_phy_config),
10185                            SHMEM_RD(bp,
10186                            dev_info.port_hw_config[port].external_phy_config2));
10187                         return;
10188         }
10189
10190         if (CHIP_IS_E3(bp))
10191                 bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR);
10192         else {
10193                 switch (switch_cfg) {
10194                 case SWITCH_CFG_1G:
10195                         bp->port.phy_addr = REG_RD(
10196                                 bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
10197                         break;
10198                 case SWITCH_CFG_10G:
10199                         bp->port.phy_addr = REG_RD(
10200                                 bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
10201                         break;
10202                 default:
10203                         BNX2X_ERR("BAD switch_cfg link_config 0x%x\n",
10204                                   bp->port.link_config[0]);
10205                         return;
10206                 }
10207         }
10208         BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr);
10209         /* mask what we support according to speed_cap_mask per configuration */
10210         for (idx = 0; idx < cfg_size; idx++) {
10211                 if (!(bp->link_params.speed_cap_mask[idx] &
10212                                 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF))
10213                         bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half;
10214
10215                 if (!(bp->link_params.speed_cap_mask[idx] &
10216                                 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL))
10217                         bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full;
10218
10219                 if (!(bp->link_params.speed_cap_mask[idx] &
10220                                 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF))
10221                         bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half;
10222
10223                 if (!(bp->link_params.speed_cap_mask[idx] &
10224                                 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL))
10225                         bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full;
10226
10227                 if (!(bp->link_params.speed_cap_mask[idx] &
10228                                         PORT_HW_CFG_SPEED_CAPABILITY_D0_1G))
10229                         bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half |
10230                                                      SUPPORTED_1000baseT_Full);
10231
10232                 if (!(bp->link_params.speed_cap_mask[idx] &
10233                                         PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G))
10234                         bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full;
10235
10236                 if (!(bp->link_params.speed_cap_mask[idx] &
10237                                         PORT_HW_CFG_SPEED_CAPABILITY_D0_10G))
10238                         bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full;
10239
10240         }
10241
10242         BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0],
10243                        bp->port.supported[1]);
10244 }
10245
10246 static void bnx2x_link_settings_requested(struct bnx2x *bp)
10247 {
10248         u32 link_config, idx, cfg_size = 0;
10249         bp->port.advertising[0] = 0;
10250         bp->port.advertising[1] = 0;
10251         switch (bp->link_params.num_phys) {
10252         case 1:
10253         case 2:
10254                 cfg_size = 1;
10255                 break;
10256         case 3:
10257                 cfg_size = 2;
10258                 break;
10259         }
10260         for (idx = 0; idx < cfg_size; idx++) {
10261                 bp->link_params.req_duplex[idx] = DUPLEX_FULL;
10262                 link_config = bp->port.link_config[idx];
10263                 switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
10264                 case PORT_FEATURE_LINK_SPEED_AUTO:
10265                         if (bp->port.supported[idx] & SUPPORTED_Autoneg) {
10266                                 bp->link_params.req_line_speed[idx] =
10267                                         SPEED_AUTO_NEG;
10268                                 bp->port.advertising[idx] |=
10269                                         bp->port.supported[idx];
10270                                 if (bp->link_params.phy[EXT_PHY1].type ==
10271                                     PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
10272                                         bp->port.advertising[idx] |=
10273                                         (SUPPORTED_100baseT_Half |
10274                                          SUPPORTED_100baseT_Full);
10275                         } else {
10276                                 /* force 10G, no AN */
10277                                 bp->link_params.req_line_speed[idx] =
10278                                         SPEED_10000;
10279                                 bp->port.advertising[idx] |=
10280                                         (ADVERTISED_10000baseT_Full |
10281                                          ADVERTISED_FIBRE);
10282                                 continue;
10283                         }
10284                         break;
10285
10286                 case PORT_FEATURE_LINK_SPEED_10M_FULL:
10287                         if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) {
10288                                 bp->link_params.req_line_speed[idx] =
10289                                         SPEED_10;
10290                                 bp->port.advertising[idx] |=
10291                                         (ADVERTISED_10baseT_Full |
10292                                          ADVERTISED_TP);
10293                         } else {
10294                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10295                                             link_config,
10296                                     bp->link_params.speed_cap_mask[idx]);
10297                                 return;
10298                         }
10299                         break;
10300
10301                 case PORT_FEATURE_LINK_SPEED_10M_HALF:
10302                         if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) {
10303                                 bp->link_params.req_line_speed[idx] =
10304                                         SPEED_10;
10305                                 bp->link_params.req_duplex[idx] =
10306                                         DUPLEX_HALF;
10307                                 bp->port.advertising[idx] |=
10308                                         (ADVERTISED_10baseT_Half |
10309                                          ADVERTISED_TP);
10310                         } else {
10311                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10312                                             link_config,
10313                                           bp->link_params.speed_cap_mask[idx]);
10314                                 return;
10315                         }
10316                         break;
10317
10318                 case PORT_FEATURE_LINK_SPEED_100M_FULL:
10319                         if (bp->port.supported[idx] &
10320                             SUPPORTED_100baseT_Full) {
10321                                 bp->link_params.req_line_speed[idx] =
10322                                         SPEED_100;
10323                                 bp->port.advertising[idx] |=
10324                                         (ADVERTISED_100baseT_Full |
10325                                          ADVERTISED_TP);
10326                         } else {
10327                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10328                                             link_config,
10329                                           bp->link_params.speed_cap_mask[idx]);
10330                                 return;
10331                         }
10332                         break;
10333
10334                 case PORT_FEATURE_LINK_SPEED_100M_HALF:
10335                         if (bp->port.supported[idx] &
10336                             SUPPORTED_100baseT_Half) {
10337                                 bp->link_params.req_line_speed[idx] =
10338                                                                 SPEED_100;
10339                                 bp->link_params.req_duplex[idx] =
10340                                                                 DUPLEX_HALF;
10341                                 bp->port.advertising[idx] |=
10342                                         (ADVERTISED_100baseT_Half |
10343                                          ADVERTISED_TP);
10344                         } else {
10345                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10346                                     link_config,
10347                                     bp->link_params.speed_cap_mask[idx]);
10348                                 return;
10349                         }
10350                         break;
10351
10352                 case PORT_FEATURE_LINK_SPEED_1G:
10353                         if (bp->port.supported[idx] &
10354                             SUPPORTED_1000baseT_Full) {
10355                                 bp->link_params.req_line_speed[idx] =
10356                                         SPEED_1000;
10357                                 bp->port.advertising[idx] |=
10358                                         (ADVERTISED_1000baseT_Full |
10359                                          ADVERTISED_TP);
10360                         } else {
10361                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10362                                     link_config,
10363                                     bp->link_params.speed_cap_mask[idx]);
10364                                 return;
10365                         }
10366                         break;
10367
10368                 case PORT_FEATURE_LINK_SPEED_2_5G:
10369                         if (bp->port.supported[idx] &
10370                             SUPPORTED_2500baseX_Full) {
10371                                 bp->link_params.req_line_speed[idx] =
10372                                         SPEED_2500;
10373                                 bp->port.advertising[idx] |=
10374                                         (ADVERTISED_2500baseX_Full |
10375                                                 ADVERTISED_TP);
10376                         } else {
10377                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10378                                     link_config,
10379                                     bp->link_params.speed_cap_mask[idx]);
10380                                 return;
10381                         }
10382                         break;
10383
10384                 case PORT_FEATURE_LINK_SPEED_10G_CX4:
10385                         if (bp->port.supported[idx] &
10386                             SUPPORTED_10000baseT_Full) {
10387                                 bp->link_params.req_line_speed[idx] =
10388                                         SPEED_10000;
10389                                 bp->port.advertising[idx] |=
10390                                         (ADVERTISED_10000baseT_Full |
10391                                                 ADVERTISED_FIBRE);
10392                         } else {
10393                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10394                                     link_config,
10395                                     bp->link_params.speed_cap_mask[idx]);
10396                                 return;
10397                         }
10398                         break;
10399                 case PORT_FEATURE_LINK_SPEED_20G:
10400                         bp->link_params.req_line_speed[idx] = SPEED_20000;
10401
10402                         break;
10403                 default:
10404                         BNX2X_ERR("NVRAM config error. BAD link speed link_config 0x%x\n",
10405                                   link_config);
10406                                 bp->link_params.req_line_speed[idx] =
10407                                                         SPEED_AUTO_NEG;
10408                                 bp->port.advertising[idx] =
10409                                                 bp->port.supported[idx];
10410                         break;
10411                 }
10412
10413                 bp->link_params.req_flow_ctrl[idx] = (link_config &
10414                                          PORT_FEATURE_FLOW_CONTROL_MASK);
10415                 if (bp->link_params.req_flow_ctrl[idx] ==
10416                     BNX2X_FLOW_CTRL_AUTO) {
10417                         if (!(bp->port.supported[idx] & SUPPORTED_Autoneg))
10418                                 bp->link_params.req_flow_ctrl[idx] =
10419                                                         BNX2X_FLOW_CTRL_NONE;
10420                         else
10421                                 bnx2x_set_requested_fc(bp);
10422                 }
10423
10424                 BNX2X_DEV_INFO("req_line_speed %d  req_duplex %d req_flow_ctrl 0x%x advertising 0x%x\n",
10425                                bp->link_params.req_line_speed[idx],
10426                                bp->link_params.req_duplex[idx],
10427                                bp->link_params.req_flow_ctrl[idx],
10428                                bp->port.advertising[idx]);
10429         }
10430 }
10431
10432 static void bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi)
10433 {
10434         mac_hi = cpu_to_be16(mac_hi);
10435         mac_lo = cpu_to_be32(mac_lo);
10436         memcpy(mac_buf, &mac_hi, sizeof(mac_hi));
10437         memcpy(mac_buf + sizeof(mac_hi), &mac_lo, sizeof(mac_lo));
10438 }
10439
10440 static void bnx2x_get_port_hwinfo(struct bnx2x *bp)
10441 {
10442         int port = BP_PORT(bp);
10443         u32 config;
10444         u32 ext_phy_type, ext_phy_config, eee_mode;
10445
10446         bp->link_params.bp = bp;
10447         bp->link_params.port = port;
10448
10449         bp->link_params.lane_config =
10450                 SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config);
10451
10452         bp->link_params.speed_cap_mask[0] =
10453                 SHMEM_RD(bp,
10454                          dev_info.port_hw_config[port].speed_capability_mask);
10455         bp->link_params.speed_cap_mask[1] =
10456                 SHMEM_RD(bp,
10457                          dev_info.port_hw_config[port].speed_capability_mask2);
10458         bp->port.link_config[0] =
10459                 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config);
10460
10461         bp->port.link_config[1] =
10462                 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2);
10463
10464         bp->link_params.multi_phy_config =
10465                 SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config);
10466         /* If the device is capable of WoL, set the default state according
10467          * to the HW
10468          */
10469         config = SHMEM_RD(bp, dev_info.port_feature_config[port].config);
10470         bp->wol = (!(bp->flags & NO_WOL_FLAG) &&
10471                    (config & PORT_FEATURE_WOL_ENABLED));
10472
10473         BNX2X_DEV_INFO("lane_config 0x%08x  speed_cap_mask0 0x%08x  link_config0 0x%08x\n",
10474                        bp->link_params.lane_config,
10475                        bp->link_params.speed_cap_mask[0],
10476                        bp->port.link_config[0]);
10477
10478         bp->link_params.switch_cfg = (bp->port.link_config[0] &
10479                                       PORT_FEATURE_CONNECTED_SWITCH_MASK);
10480         bnx2x_phy_probe(&bp->link_params);
10481         bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg);
10482
10483         bnx2x_link_settings_requested(bp);
10484
10485         /*
10486          * If connected directly, work with the internal PHY, otherwise, work
10487          * with the external PHY
10488          */
10489         ext_phy_config =
10490                 SHMEM_RD(bp,
10491                          dev_info.port_hw_config[port].external_phy_config);
10492         ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config);
10493         if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
10494                 bp->mdio.prtad = bp->port.phy_addr;
10495
10496         else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
10497                  (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
10498                 bp->mdio.prtad =
10499                         XGXS_EXT_PHY_ADDR(ext_phy_config);
10500
10501         /* Configure link feature according to nvram value */
10502         eee_mode = (((SHMEM_RD(bp, dev_info.
10503                       port_feature_config[port].eee_power_mode)) &
10504                      PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
10505                     PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
10506         if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
10507                 bp->link_params.eee_mode = EEE_MODE_ADV_LPI |
10508                                            EEE_MODE_ENABLE_LPI |
10509                                            EEE_MODE_OUTPUT_TIME;
10510         } else {
10511                 bp->link_params.eee_mode = 0;
10512         }
10513 }
10514
10515 void bnx2x_get_iscsi_info(struct bnx2x *bp)
10516 {
10517         u32 no_flags = NO_ISCSI_FLAG;
10518         int port = BP_PORT(bp);
10519         u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
10520                                 drv_lic_key[port].max_iscsi_conn);
10521
10522         if (!CNIC_SUPPORT(bp)) {
10523                 bp->flags |= no_flags;
10524                 return;
10525         }
10526
10527         /* Get the number of maximum allowed iSCSI connections */
10528         bp->cnic_eth_dev.max_iscsi_conn =
10529                 (max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >>
10530                 BNX2X_MAX_ISCSI_INIT_CONN_SHIFT;
10531
10532         BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n",
10533                        bp->cnic_eth_dev.max_iscsi_conn);
10534
10535         /*
10536          * If maximum allowed number of connections is zero -
10537          * disable the feature.
10538          */
10539         if (!bp->cnic_eth_dev.max_iscsi_conn)
10540                 bp->flags |= no_flags;
10541
10542 }
10543
10544 static void bnx2x_get_ext_wwn_info(struct bnx2x *bp, int func)
10545 {
10546         /* Port info */
10547         bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
10548                 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_upper);
10549         bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
10550                 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_lower);
10551
10552         /* Node info */
10553         bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
10554                 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_upper);
10555         bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
10556                 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_lower);
10557 }
10558 static void bnx2x_get_fcoe_info(struct bnx2x *bp)
10559 {
10560         int port = BP_PORT(bp);
10561         int func = BP_ABS_FUNC(bp);
10562         u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
10563                                 drv_lic_key[port].max_fcoe_conn);
10564
10565         if (!CNIC_SUPPORT(bp)) {
10566                 bp->flags |= NO_FCOE_FLAG;
10567                 return;
10568         }
10569
10570         /* Get the number of maximum allowed FCoE connections */
10571         bp->cnic_eth_dev.max_fcoe_conn =
10572                 (max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >>
10573                 BNX2X_MAX_FCOE_INIT_CONN_SHIFT;
10574
10575         /* Read the WWN: */
10576         if (!IS_MF(bp)) {
10577                 /* Port info */
10578                 bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
10579                         SHMEM_RD(bp,
10580                                 dev_info.port_hw_config[port].
10581                                  fcoe_wwn_port_name_upper);
10582                 bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
10583                         SHMEM_RD(bp,
10584                                 dev_info.port_hw_config[port].
10585                                  fcoe_wwn_port_name_lower);
10586
10587                 /* Node info */
10588                 bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
10589                         SHMEM_RD(bp,
10590                                 dev_info.port_hw_config[port].
10591                                  fcoe_wwn_node_name_upper);
10592                 bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
10593                         SHMEM_RD(bp,
10594                                 dev_info.port_hw_config[port].
10595                                  fcoe_wwn_node_name_lower);
10596         } else if (!IS_MF_SD(bp)) {
10597                 /*
10598                  * Read the WWN info only if the FCoE feature is enabled for
10599                  * this function.
10600                  */
10601                 if (BNX2X_MF_EXT_PROTOCOL_FCOE(bp) && !CHIP_IS_E1x(bp))
10602                         bnx2x_get_ext_wwn_info(bp, func);
10603
10604         } else if (IS_MF_FCOE_SD(bp) && !CHIP_IS_E1x(bp)) {
10605                 bnx2x_get_ext_wwn_info(bp, func);
10606         }
10607
10608         BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn);
10609
10610         /*
10611          * If maximum allowed number of connections is zero -
10612          * disable the feature.
10613          */
10614         if (!bp->cnic_eth_dev.max_fcoe_conn)
10615                 bp->flags |= NO_FCOE_FLAG;
10616 }
10617
10618 static void bnx2x_get_cnic_info(struct bnx2x *bp)
10619 {
10620         /*
10621          * iSCSI may be dynamically disabled but reading
10622          * info here we will decrease memory usage by driver
10623          * if the feature is disabled for good
10624          */
10625         bnx2x_get_iscsi_info(bp);
10626         bnx2x_get_fcoe_info(bp);
10627 }
10628
10629 static void bnx2x_get_cnic_mac_hwinfo(struct bnx2x *bp)
10630 {
10631         u32 val, val2;
10632         int func = BP_ABS_FUNC(bp);
10633         int port = BP_PORT(bp);
10634         u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac;
10635         u8 *fip_mac = bp->fip_mac;
10636
10637         if (IS_MF(bp)) {
10638                 /* iSCSI and FCoE NPAR MACs: if there is no either iSCSI or
10639                  * FCoE MAC then the appropriate feature should be disabled.
10640                  * In non SD mode features configuration comes from struct
10641                  * func_ext_config.
10642                  */
10643                 if (!IS_MF_SD(bp) && !CHIP_IS_E1x(bp)) {
10644                         u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
10645                         if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
10646                                 val2 = MF_CFG_RD(bp, func_ext_config[func].
10647                                                  iscsi_mac_addr_upper);
10648                                 val = MF_CFG_RD(bp, func_ext_config[func].
10649                                                 iscsi_mac_addr_lower);
10650                                 bnx2x_set_mac_buf(iscsi_mac, val, val2);
10651                                 BNX2X_DEV_INFO
10652                                         ("Read iSCSI MAC: %pM\n", iscsi_mac);
10653                         } else {
10654                                 bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
10655                         }
10656
10657                         if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
10658                                 val2 = MF_CFG_RD(bp, func_ext_config[func].
10659                                                  fcoe_mac_addr_upper);
10660                                 val = MF_CFG_RD(bp, func_ext_config[func].
10661                                                 fcoe_mac_addr_lower);
10662                                 bnx2x_set_mac_buf(fip_mac, val, val2);
10663                                 BNX2X_DEV_INFO
10664                                         ("Read FCoE L2 MAC: %pM\n", fip_mac);
10665                         } else {
10666                                 bp->flags |= NO_FCOE_FLAG;
10667                         }
10668
10669                         bp->mf_ext_config = cfg;
10670
10671                 } else { /* SD MODE */
10672                         if (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp)) {
10673                                 /* use primary mac as iscsi mac */
10674                                 memcpy(iscsi_mac, bp->dev->dev_addr, ETH_ALEN);
10675
10676                                 BNX2X_DEV_INFO("SD ISCSI MODE\n");
10677                                 BNX2X_DEV_INFO
10678                                         ("Read iSCSI MAC: %pM\n", iscsi_mac);
10679                         } else if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)) {
10680                                 /* use primary mac as fip mac */
10681                                 memcpy(fip_mac, bp->dev->dev_addr, ETH_ALEN);
10682                                 BNX2X_DEV_INFO("SD FCoE MODE\n");
10683                                 BNX2X_DEV_INFO
10684                                         ("Read FIP MAC: %pM\n", fip_mac);
10685                         }
10686                 }
10687
10688                 if (IS_MF_STORAGE_SD(bp))
10689                         /* Zero primary MAC configuration */
10690                         memset(bp->dev->dev_addr, 0, ETH_ALEN);
10691
10692                 if (IS_MF_FCOE_AFEX(bp))
10693                         /* use FIP MAC as primary MAC */
10694                         memcpy(bp->dev->dev_addr, fip_mac, ETH_ALEN);
10695
10696         } else {
10697                 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
10698                                 iscsi_mac_upper);
10699                 val = SHMEM_RD(bp, dev_info.port_hw_config[port].
10700                                iscsi_mac_lower);
10701                 bnx2x_set_mac_buf(iscsi_mac, val, val2);
10702
10703                 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
10704                                 fcoe_fip_mac_upper);
10705                 val = SHMEM_RD(bp, dev_info.port_hw_config[port].
10706                                fcoe_fip_mac_lower);
10707                 bnx2x_set_mac_buf(fip_mac, val, val2);
10708         }
10709
10710         /* Disable iSCSI OOO if MAC configuration is invalid. */
10711         if (!is_valid_ether_addr(iscsi_mac)) {
10712                 bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
10713                 memset(iscsi_mac, 0, ETH_ALEN);
10714         }
10715
10716         /* Disable FCoE if MAC configuration is invalid. */
10717         if (!is_valid_ether_addr(fip_mac)) {
10718                 bp->flags |= NO_FCOE_FLAG;
10719                 memset(bp->fip_mac, 0, ETH_ALEN);
10720         }
10721 }
10722
10723 static void bnx2x_get_mac_hwinfo(struct bnx2x *bp)
10724 {
10725         u32 val, val2;
10726         int func = BP_ABS_FUNC(bp);
10727         int port = BP_PORT(bp);
10728
10729         /* Zero primary MAC configuration */
10730         memset(bp->dev->dev_addr, 0, ETH_ALEN);
10731
10732         if (BP_NOMCP(bp)) {
10733                 BNX2X_ERROR("warning: random MAC workaround active\n");
10734                 eth_hw_addr_random(bp->dev);
10735         } else if (IS_MF(bp)) {
10736                 val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
10737                 val = MF_CFG_RD(bp, func_mf_config[func].mac_lower);
10738                 if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) &&
10739                     (val != FUNC_MF_CFG_LOWERMAC_DEFAULT))
10740                         bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
10741
10742                 if (CNIC_SUPPORT(bp))
10743                         bnx2x_get_cnic_mac_hwinfo(bp);
10744         } else {
10745                 /* in SF read MACs from port configuration */
10746                 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
10747                 val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
10748                 bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
10749
10750                 if (CNIC_SUPPORT(bp))
10751                         bnx2x_get_cnic_mac_hwinfo(bp);
10752         }
10753
10754         memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN);
10755         memcpy(bp->dev->perm_addr, bp->dev->dev_addr, ETH_ALEN);
10756
10757         if (!bnx2x_is_valid_ether_addr(bp, bp->dev->dev_addr))
10758                 dev_err(&bp->pdev->dev,
10759                         "bad Ethernet MAC address configuration: %pM\n"
10760                         "change it manually before bringing up the appropriate network interface\n",
10761                         bp->dev->dev_addr);
10762 }
10763
10764 static bool bnx2x_get_dropless_info(struct bnx2x *bp)
10765 {
10766         int tmp;
10767         u32 cfg;
10768
10769         if (IS_MF(bp) && !CHIP_IS_E1x(bp)) {
10770                 /* Take function: tmp = func */
10771                 tmp = BP_ABS_FUNC(bp);
10772                 cfg = MF_CFG_RD(bp, func_ext_config[tmp].func_cfg);
10773                 cfg = !!(cfg & MACP_FUNC_CFG_PAUSE_ON_HOST_RING);
10774         } else {
10775                 /* Take port: tmp = port */
10776                 tmp = BP_PORT(bp);
10777                 cfg = SHMEM_RD(bp,
10778                                dev_info.port_hw_config[tmp].generic_features);
10779                 cfg = !!(cfg & PORT_HW_CFG_PAUSE_ON_HOST_RING_ENABLED);
10780         }
10781         return cfg;
10782 }
10783
10784 static int bnx2x_get_hwinfo(struct bnx2x *bp)
10785 {
10786         int /*abs*/func = BP_ABS_FUNC(bp);
10787         int vn;
10788         u32 val = 0;
10789         int rc = 0;
10790
10791         bnx2x_get_common_hwinfo(bp);
10792
10793         /*
10794          * initialize IGU parameters
10795          */
10796         if (CHIP_IS_E1x(bp)) {
10797                 bp->common.int_block = INT_BLOCK_HC;
10798
10799                 bp->igu_dsb_id = DEF_SB_IGU_ID;
10800                 bp->igu_base_sb = 0;
10801         } else {
10802                 bp->common.int_block = INT_BLOCK_IGU;
10803
10804                 /* do not allow device reset during IGU info preocessing */
10805                 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
10806
10807                 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
10808
10809                 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
10810                         int tout = 5000;
10811
10812                         BNX2X_DEV_INFO("FORCING Normal Mode\n");
10813
10814                         val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
10815                         REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val);
10816                         REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f);
10817
10818                         while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
10819                                 tout--;
10820                                 usleep_range(1000, 1000);
10821                         }
10822
10823                         if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
10824                                 dev_err(&bp->pdev->dev,
10825                                         "FORCING Normal Mode failed!!!\n");
10826                                 bnx2x_release_hw_lock(bp,
10827                                                       HW_LOCK_RESOURCE_RESET);
10828                                 return -EPERM;
10829                         }
10830                 }
10831
10832                 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
10833                         BNX2X_DEV_INFO("IGU Backward Compatible Mode\n");
10834                         bp->common.int_block |= INT_BLOCK_MODE_BW_COMP;
10835                 } else
10836                         BNX2X_DEV_INFO("IGU Normal Mode\n");
10837
10838                 rc = bnx2x_get_igu_cam_info(bp);
10839                 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
10840                 if (rc)
10841                         return rc;
10842         }
10843
10844         /*
10845          * set base FW non-default (fast path) status block id, this value is
10846          * used to initialize the fw_sb_id saved on the fp/queue structure to
10847          * determine the id used by the FW.
10848          */
10849         if (CHIP_IS_E1x(bp))
10850                 bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp);
10851         else /*
10852               * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of
10853               * the same queue are indicated on the same IGU SB). So we prefer
10854               * FW and IGU SBs to be the same value.
10855               */
10856                 bp->base_fw_ndsb = bp->igu_base_sb;
10857
10858         BNX2X_DEV_INFO("igu_dsb_id %d  igu_base_sb %d  igu_sb_cnt %d\n"
10859                        "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb,
10860                        bp->igu_sb_cnt, bp->base_fw_ndsb);
10861
10862         /*
10863          * Initialize MF configuration
10864          */
10865
10866         bp->mf_ov = 0;
10867         bp->mf_mode = 0;
10868         vn = BP_VN(bp);
10869
10870         if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) {
10871                 BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n",
10872                                bp->common.shmem2_base, SHMEM2_RD(bp, size),
10873                               (u32)offsetof(struct shmem2_region, mf_cfg_addr));
10874
10875                 if (SHMEM2_HAS(bp, mf_cfg_addr))
10876                         bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr);
10877                 else
10878                         bp->common.mf_cfg_base = bp->common.shmem_base +
10879                                 offsetof(struct shmem_region, func_mb) +
10880                                 E1H_FUNC_MAX * sizeof(struct drv_func_mb);
10881                 /*
10882                  * get mf configuration:
10883                  * 1. existence of MF configuration
10884                  * 2. MAC address must be legal (check only upper bytes)
10885                  *    for  Switch-Independent mode;
10886                  *    OVLAN must be legal for Switch-Dependent mode
10887                  * 3. SF_MODE configures specific MF mode
10888                  */
10889                 if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
10890                         /* get mf configuration */
10891                         val = SHMEM_RD(bp,
10892                                        dev_info.shared_feature_config.config);
10893                         val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK;
10894
10895                         switch (val) {
10896                         case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
10897                                 val = MF_CFG_RD(bp, func_mf_config[func].
10898                                                 mac_upper);
10899                                 /* check for legal mac (upper bytes)*/
10900                                 if (val != 0xffff) {
10901                                         bp->mf_mode = MULTI_FUNCTION_SI;
10902                                         bp->mf_config[vn] = MF_CFG_RD(bp,
10903                                                    func_mf_config[func].config);
10904                                 } else
10905                                         BNX2X_DEV_INFO("illegal MAC address for SI\n");
10906                                 break;
10907                         case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
10908                                 if ((!CHIP_IS_E1x(bp)) &&
10909                                     (MF_CFG_RD(bp, func_mf_config[func].
10910                                                mac_upper) != 0xffff) &&
10911                                     (SHMEM2_HAS(bp,
10912                                                 afex_driver_support))) {
10913                                         bp->mf_mode = MULTI_FUNCTION_AFEX;
10914                                         bp->mf_config[vn] = MF_CFG_RD(bp,
10915                                                 func_mf_config[func].config);
10916                                 } else {
10917                                         BNX2X_DEV_INFO("can not configure afex mode\n");
10918                                 }
10919                                 break;
10920                         case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
10921                                 /* get OV configuration */
10922                                 val = MF_CFG_RD(bp,
10923                                         func_mf_config[FUNC_0].e1hov_tag);
10924                                 val &= FUNC_MF_CFG_E1HOV_TAG_MASK;
10925
10926                                 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
10927                                         bp->mf_mode = MULTI_FUNCTION_SD;
10928                                         bp->mf_config[vn] = MF_CFG_RD(bp,
10929                                                 func_mf_config[func].config);
10930                                 } else
10931                                         BNX2X_DEV_INFO("illegal OV for SD\n");
10932                                 break;
10933                         default:
10934                                 /* Unknown configuration: reset mf_config */
10935                                 bp->mf_config[vn] = 0;
10936                                 BNX2X_DEV_INFO("unknown MF mode 0x%x\n", val);
10937                         }
10938                 }
10939
10940                 BNX2X_DEV_INFO("%s function mode\n",
10941                                IS_MF(bp) ? "multi" : "single");
10942
10943                 switch (bp->mf_mode) {
10944                 case MULTI_FUNCTION_SD:
10945                         val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
10946                               FUNC_MF_CFG_E1HOV_TAG_MASK;
10947                         if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
10948                                 bp->mf_ov = val;
10949                                 bp->path_has_ovlan = true;
10950
10951                                 BNX2X_DEV_INFO("MF OV for func %d is %d (0x%04x)\n",
10952                                                func, bp->mf_ov, bp->mf_ov);
10953                         } else {
10954                                 dev_err(&bp->pdev->dev,
10955                                         "No valid MF OV for func %d, aborting\n",
10956                                         func);
10957                                 return -EPERM;
10958                         }
10959                         break;
10960                 case MULTI_FUNCTION_AFEX:
10961                         BNX2X_DEV_INFO("func %d is in MF afex mode\n", func);
10962                         break;
10963                 case MULTI_FUNCTION_SI:
10964                         BNX2X_DEV_INFO("func %d is in MF switch-independent mode\n",
10965                                        func);
10966                         break;
10967                 default:
10968                         if (vn) {
10969                                 dev_err(&bp->pdev->dev,
10970                                         "VN %d is in a single function mode, aborting\n",
10971                                         vn);
10972                                 return -EPERM;
10973                         }
10974                         break;
10975                 }
10976
10977                 /* check if other port on the path needs ovlan:
10978                  * Since MF configuration is shared between ports
10979                  * Possible mixed modes are only
10980                  * {SF, SI} {SF, SD} {SD, SF} {SI, SF}
10981                  */
10982                 if (CHIP_MODE_IS_4_PORT(bp) &&
10983                     !bp->path_has_ovlan &&
10984                     !IS_MF(bp) &&
10985                     bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
10986                         u8 other_port = !BP_PORT(bp);
10987                         u8 other_func = BP_PATH(bp) + 2*other_port;
10988                         val = MF_CFG_RD(bp,
10989                                         func_mf_config[other_func].e1hov_tag);
10990                         if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT)
10991                                 bp->path_has_ovlan = true;
10992                 }
10993         }
10994
10995         /* adjust igu_sb_cnt to MF for E1x */
10996         if (CHIP_IS_E1x(bp) && IS_MF(bp))
10997                 bp->igu_sb_cnt /= E1HVN_MAX;
10998
10999         /* port info */
11000         bnx2x_get_port_hwinfo(bp);
11001
11002         /* Get MAC addresses */
11003         bnx2x_get_mac_hwinfo(bp);
11004
11005         bnx2x_get_cnic_info(bp);
11006
11007         return rc;
11008 }
11009
11010 static void bnx2x_read_fwinfo(struct bnx2x *bp)
11011 {
11012         int cnt, i, block_end, rodi;
11013         char vpd_start[BNX2X_VPD_LEN+1];
11014         char str_id_reg[VENDOR_ID_LEN+1];
11015         char str_id_cap[VENDOR_ID_LEN+1];
11016         char *vpd_data;
11017         char *vpd_extended_data = NULL;
11018         u8 len;
11019
11020         cnt = pci_read_vpd(bp->pdev, 0, BNX2X_VPD_LEN, vpd_start);
11021         memset(bp->fw_ver, 0, sizeof(bp->fw_ver));
11022
11023         if (cnt < BNX2X_VPD_LEN)
11024                 goto out_not_found;
11025
11026         /* VPD RO tag should be first tag after identifier string, hence
11027          * we should be able to find it in first BNX2X_VPD_LEN chars
11028          */
11029         i = pci_vpd_find_tag(vpd_start, 0, BNX2X_VPD_LEN,
11030                              PCI_VPD_LRDT_RO_DATA);
11031         if (i < 0)
11032                 goto out_not_found;
11033
11034         block_end = i + PCI_VPD_LRDT_TAG_SIZE +
11035                     pci_vpd_lrdt_size(&vpd_start[i]);
11036
11037         i += PCI_VPD_LRDT_TAG_SIZE;
11038
11039         if (block_end > BNX2X_VPD_LEN) {
11040                 vpd_extended_data = kmalloc(block_end, GFP_KERNEL);
11041                 if (vpd_extended_data  == NULL)
11042                         goto out_not_found;
11043
11044                 /* read rest of vpd image into vpd_extended_data */
11045                 memcpy(vpd_extended_data, vpd_start, BNX2X_VPD_LEN);
11046                 cnt = pci_read_vpd(bp->pdev, BNX2X_VPD_LEN,
11047                                    block_end - BNX2X_VPD_LEN,
11048                                    vpd_extended_data + BNX2X_VPD_LEN);
11049                 if (cnt < (block_end - BNX2X_VPD_LEN))
11050                         goto out_not_found;
11051                 vpd_data = vpd_extended_data;
11052         } else
11053                 vpd_data = vpd_start;
11054
11055         /* now vpd_data holds full vpd content in both cases */
11056
11057         rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
11058                                    PCI_VPD_RO_KEYWORD_MFR_ID);
11059         if (rodi < 0)
11060                 goto out_not_found;
11061
11062         len = pci_vpd_info_field_size(&vpd_data[rodi]);
11063
11064         if (len != VENDOR_ID_LEN)
11065                 goto out_not_found;
11066
11067         rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
11068
11069         /* vendor specific info */
11070         snprintf(str_id_reg, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL);
11071         snprintf(str_id_cap, VENDOR_ID_LEN + 1, "%04X", PCI_VENDOR_ID_DELL);
11072         if (!strncmp(str_id_reg, &vpd_data[rodi], VENDOR_ID_LEN) ||
11073             !strncmp(str_id_cap, &vpd_data[rodi], VENDOR_ID_LEN)) {
11074
11075                 rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
11076                                                 PCI_VPD_RO_KEYWORD_VENDOR0);
11077                 if (rodi >= 0) {
11078                         len = pci_vpd_info_field_size(&vpd_data[rodi]);
11079
11080                         rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
11081
11082                         if (len < 32 && (len + rodi) <= BNX2X_VPD_LEN) {
11083                                 memcpy(bp->fw_ver, &vpd_data[rodi], len);
11084                                 bp->fw_ver[len] = ' ';
11085                         }
11086                 }
11087                 kfree(vpd_extended_data);
11088                 return;
11089         }
11090 out_not_found:
11091         kfree(vpd_extended_data);
11092         return;
11093 }
11094
11095 static void bnx2x_set_modes_bitmap(struct bnx2x *bp)
11096 {
11097         u32 flags = 0;
11098
11099         if (CHIP_REV_IS_FPGA(bp))
11100                 SET_FLAGS(flags, MODE_FPGA);
11101         else if (CHIP_REV_IS_EMUL(bp))
11102                 SET_FLAGS(flags, MODE_EMUL);
11103         else
11104                 SET_FLAGS(flags, MODE_ASIC);
11105
11106         if (CHIP_MODE_IS_4_PORT(bp))
11107                 SET_FLAGS(flags, MODE_PORT4);
11108         else
11109                 SET_FLAGS(flags, MODE_PORT2);
11110
11111         if (CHIP_IS_E2(bp))
11112                 SET_FLAGS(flags, MODE_E2);
11113         else if (CHIP_IS_E3(bp)) {
11114                 SET_FLAGS(flags, MODE_E3);
11115                 if (CHIP_REV(bp) == CHIP_REV_Ax)
11116                         SET_FLAGS(flags, MODE_E3_A0);
11117                 else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/
11118                         SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
11119         }
11120
11121         if (IS_MF(bp)) {
11122                 SET_FLAGS(flags, MODE_MF);
11123                 switch (bp->mf_mode) {
11124                 case MULTI_FUNCTION_SD:
11125                         SET_FLAGS(flags, MODE_MF_SD);
11126                         break;
11127                 case MULTI_FUNCTION_SI:
11128                         SET_FLAGS(flags, MODE_MF_SI);
11129                         break;
11130                 case MULTI_FUNCTION_AFEX:
11131                         SET_FLAGS(flags, MODE_MF_AFEX);
11132                         break;
11133                 }
11134         } else
11135                 SET_FLAGS(flags, MODE_SF);
11136
11137 #if defined(__LITTLE_ENDIAN)
11138         SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
11139 #else /*(__BIG_ENDIAN)*/
11140         SET_FLAGS(flags, MODE_BIG_ENDIAN);
11141 #endif
11142         INIT_MODE_FLAGS(bp) = flags;
11143 }
11144
11145 static int bnx2x_init_bp(struct bnx2x *bp)
11146 {
11147         int func;
11148         int rc;
11149
11150         mutex_init(&bp->port.phy_mutex);
11151         mutex_init(&bp->fw_mb_mutex);
11152         spin_lock_init(&bp->stats_lock);
11153
11154
11155         INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task);
11156         INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task);
11157         INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task);
11158         if (IS_PF(bp)) {
11159                 rc = bnx2x_get_hwinfo(bp);
11160                 if (rc)
11161                         return rc;
11162         } else {
11163                 random_ether_addr(bp->dev->dev_addr);
11164         }
11165
11166         bnx2x_set_modes_bitmap(bp);
11167
11168         rc = bnx2x_alloc_mem_bp(bp);
11169         if (rc)
11170                 return rc;
11171
11172         bnx2x_read_fwinfo(bp);
11173
11174         func = BP_FUNC(bp);
11175
11176         /* need to reset chip if undi was active */
11177         if (IS_PF(bp) && !BP_NOMCP(bp)) {
11178                 /* init fw_seq */
11179                 bp->fw_seq =
11180                         SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
11181                                                         DRV_MSG_SEQ_NUMBER_MASK;
11182                 BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
11183
11184                 bnx2x_prev_unload(bp);
11185         }
11186
11187
11188         if (CHIP_REV_IS_FPGA(bp))
11189                 dev_err(&bp->pdev->dev, "FPGA detected\n");
11190
11191         if (BP_NOMCP(bp) && (func == 0))
11192                 dev_err(&bp->pdev->dev, "MCP disabled, must load devices in order!\n");
11193
11194         bp->disable_tpa = disable_tpa;
11195         bp->disable_tpa |= IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp);
11196
11197         /* Set TPA flags */
11198         if (bp->disable_tpa) {
11199                 bp->flags &= ~(TPA_ENABLE_FLAG | GRO_ENABLE_FLAG);
11200                 bp->dev->features &= ~NETIF_F_LRO;
11201         } else {
11202                 bp->flags |= (TPA_ENABLE_FLAG | GRO_ENABLE_FLAG);
11203                 bp->dev->features |= NETIF_F_LRO;
11204         }
11205
11206         if (CHIP_IS_E1(bp))
11207                 bp->dropless_fc = 0;
11208         else
11209                 bp->dropless_fc = dropless_fc | bnx2x_get_dropless_info(bp);
11210
11211         bp->mrrs = mrrs;
11212
11213         bp->tx_ring_size = IS_MF_FCOE_AFEX(bp) ? 0 : MAX_TX_AVAIL;
11214         if (IS_VF(bp))
11215                 bp->rx_ring_size = MAX_RX_AVAIL;
11216
11217         /* make sure that the numbers are in the right granularity */
11218         bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR;
11219         bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR;
11220
11221         bp->current_interval = CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ;
11222
11223         init_timer(&bp->timer);
11224         bp->timer.expires = jiffies + bp->current_interval;
11225         bp->timer.data = (unsigned long) bp;
11226         bp->timer.function = bnx2x_timer;
11227
11228         if (SHMEM2_HAS(bp, dcbx_lldp_params_offset) &&
11229             SHMEM2_HAS(bp, dcbx_lldp_dcbx_stat_offset) &&
11230             SHMEM2_RD(bp, dcbx_lldp_params_offset) &&
11231             SHMEM2_RD(bp, dcbx_lldp_dcbx_stat_offset)) {
11232                 bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON);
11233                 bnx2x_dcbx_init_params(bp);
11234         } else {
11235                 bnx2x_dcbx_set_state(bp, false, BNX2X_DCBX_ENABLED_OFF);
11236         }
11237
11238         if (CHIP_IS_E1x(bp))
11239                 bp->cnic_base_cl_id = FP_SB_MAX_E1x;
11240         else
11241                 bp->cnic_base_cl_id = FP_SB_MAX_E2;
11242
11243         /* multiple tx priority */
11244         if (IS_VF(bp))
11245                 bp->max_cos = 1;
11246         else if (CHIP_IS_E1x(bp))
11247                 bp->max_cos = BNX2X_MULTI_TX_COS_E1X;
11248         else if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp))
11249                 bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0;
11250         else if (CHIP_IS_E3B0(bp))
11251                 bp->max_cos = BNX2X_MULTI_TX_COS_E3B0;
11252         else
11253                 BNX2X_ERR("unknown chip %x revision %x\n",
11254                           CHIP_NUM(bp), CHIP_REV(bp));
11255         BNX2X_DEV_INFO("set bp->max_cos to %d\n", bp->max_cos);
11256
11257         /* We need at least one default status block for slow-path events,
11258          * second status block for the L2 queue, and a third status block for
11259          * CNIC if supproted.
11260          */
11261         if (CNIC_SUPPORT(bp))
11262                 bp->min_msix_vec_cnt = 3;
11263         else
11264                 bp->min_msix_vec_cnt = 2;
11265         BNX2X_DEV_INFO("bp->min_msix_vec_cnt %d", bp->min_msix_vec_cnt);
11266
11267         return rc;
11268 }
11269
11270
11271 /****************************************************************************
11272 * General service functions
11273 ****************************************************************************/
11274
11275 /*
11276  * net_device service functions
11277  */
11278
11279 /* called with rtnl_lock */
11280 static int bnx2x_open(struct net_device *dev)
11281 {
11282         struct bnx2x *bp = netdev_priv(dev);
11283         bool global = false;
11284         int other_engine = BP_PATH(bp) ? 0 : 1;
11285         bool other_load_status, load_status;
11286
11287         bp->stats_init = true;
11288
11289         netif_carrier_off(dev);
11290
11291         bnx2x_set_power_state(bp, PCI_D0);
11292
11293         /* If parity had happen during the unload, then attentions
11294          * and/or RECOVERY_IN_PROGRES may still be set. In this case we
11295          * want the first function loaded on the current engine to
11296          * complete the recovery.
11297          * Parity recovery is only relevant for PF driver.
11298          */
11299         if (IS_PF(bp)) {
11300                 other_load_status = bnx2x_get_load_status(bp, other_engine);
11301                 load_status = bnx2x_get_load_status(bp, BP_PATH(bp));
11302                 if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) ||
11303                     bnx2x_chk_parity_attn(bp, &global, true)) {
11304                         do {
11305                                 /* If there are attentions and they are in a
11306                                  * global blocks, set the GLOBAL_RESET bit
11307                                  * regardless whether it will be this function
11308                                  * that will complete the recovery or not.
11309                                  */
11310                                 if (global)
11311                                         bnx2x_set_reset_global(bp);
11312
11313                                 /* Only the first function on the current
11314                                  * engine should try to recover in open. In case
11315                                  * of attentions in global blocks only the first
11316                                  * in the chip should try to recover.
11317                                  */
11318                                 if ((!load_status &&
11319                                      (!global || !other_load_status)) &&
11320                                       bnx2x_trylock_leader_lock(bp) &&
11321                                       !bnx2x_leader_reset(bp)) {
11322                                         netdev_info(bp->dev,
11323                                                     "Recovered in open\n");
11324                                         break;
11325                                 }
11326
11327                                 /* recovery has failed... */
11328                                 bnx2x_set_power_state(bp, PCI_D3hot);
11329                                 bp->recovery_state = BNX2X_RECOVERY_FAILED;
11330
11331                                 BNX2X_ERR("Recovery flow hasn't been properly completed yet. Try again later.\n"
11332                                           "If you still see this message after a few retries then power cycle is required.\n");
11333
11334                                 return -EAGAIN;
11335                         } while (0);
11336                 }
11337         }
11338
11339         bp->recovery_state = BNX2X_RECOVERY_DONE;
11340         return bnx2x_nic_load(bp, LOAD_OPEN);
11341 }
11342
11343 /* called with rtnl_lock */
11344 static int bnx2x_close(struct net_device *dev)
11345 {
11346         struct bnx2x *bp = netdev_priv(dev);
11347
11348         /* Unload the driver, release IRQs */
11349         bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
11350
11351         /* Power off */
11352         bnx2x_set_power_state(bp, PCI_D3hot);
11353
11354         return 0;
11355 }
11356
11357 static int bnx2x_init_mcast_macs_list(struct bnx2x *bp,
11358                                       struct bnx2x_mcast_ramrod_params *p)
11359 {
11360         int mc_count = netdev_mc_count(bp->dev);
11361         struct bnx2x_mcast_list_elem *mc_mac =
11362                 kzalloc(sizeof(*mc_mac) * mc_count, GFP_ATOMIC);
11363         struct netdev_hw_addr *ha;
11364
11365         if (!mc_mac)
11366                 return -ENOMEM;
11367
11368         INIT_LIST_HEAD(&p->mcast_list);
11369
11370         netdev_for_each_mc_addr(ha, bp->dev) {
11371                 mc_mac->mac = bnx2x_mc_addr(ha);
11372                 list_add_tail(&mc_mac->link, &p->mcast_list);
11373                 mc_mac++;
11374         }
11375
11376         p->mcast_list_len = mc_count;
11377
11378         return 0;
11379 }
11380
11381 static void bnx2x_free_mcast_macs_list(
11382         struct bnx2x_mcast_ramrod_params *p)
11383 {
11384         struct bnx2x_mcast_list_elem *mc_mac =
11385                 list_first_entry(&p->mcast_list, struct bnx2x_mcast_list_elem,
11386                                  link);
11387
11388         WARN_ON(!mc_mac);
11389         kfree(mc_mac);
11390 }
11391
11392 /**
11393  * bnx2x_set_uc_list - configure a new unicast MACs list.
11394  *
11395  * @bp: driver handle
11396  *
11397  * We will use zero (0) as a MAC type for these MACs.
11398  */
11399 static int bnx2x_set_uc_list(struct bnx2x *bp)
11400 {
11401         int rc;
11402         struct net_device *dev = bp->dev;
11403         struct netdev_hw_addr *ha;
11404         struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj;
11405         unsigned long ramrod_flags = 0;
11406
11407         /* First schedule a cleanup up of old configuration */
11408         rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false);
11409         if (rc < 0) {
11410                 BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc);
11411                 return rc;
11412         }
11413
11414         netdev_for_each_uc_addr(ha, dev) {
11415                 rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true,
11416                                        BNX2X_UC_LIST_MAC, &ramrod_flags);
11417                 if (rc == -EEXIST) {
11418                         DP(BNX2X_MSG_SP,
11419                            "Failed to schedule ADD operations: %d\n", rc);
11420                         /* do not treat adding same MAC as error */
11421                         rc = 0;
11422
11423                 } else if (rc < 0) {
11424
11425                         BNX2X_ERR("Failed to schedule ADD operations: %d\n",
11426                                   rc);
11427                         return rc;
11428                 }
11429         }
11430
11431         /* Execute the pending commands */
11432         __set_bit(RAMROD_CONT, &ramrod_flags);
11433         return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */,
11434                                  BNX2X_UC_LIST_MAC, &ramrod_flags);
11435 }
11436
11437 static int bnx2x_set_mc_list(struct bnx2x *bp)
11438 {
11439         struct net_device *dev = bp->dev;
11440         struct bnx2x_mcast_ramrod_params rparam = {NULL};
11441         int rc = 0;
11442
11443         rparam.mcast_obj = &bp->mcast_obj;
11444
11445         /* first, clear all configured multicast MACs */
11446         rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
11447         if (rc < 0) {
11448                 BNX2X_ERR("Failed to clear multicast configuration: %d\n", rc);
11449                 return rc;
11450         }
11451
11452         /* then, configure a new MACs list */
11453         if (netdev_mc_count(dev)) {
11454                 rc = bnx2x_init_mcast_macs_list(bp, &rparam);
11455                 if (rc) {
11456                         BNX2X_ERR("Failed to create multicast MACs list: %d\n",
11457                                   rc);
11458                         return rc;
11459                 }
11460
11461                 /* Now add the new MACs */
11462                 rc = bnx2x_config_mcast(bp, &rparam,
11463                                         BNX2X_MCAST_CMD_ADD);
11464                 if (rc < 0)
11465                         BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
11466                                   rc);
11467
11468                 bnx2x_free_mcast_macs_list(&rparam);
11469         }
11470
11471         return rc;
11472 }
11473
11474
11475 /* If bp->state is OPEN, should be called with netif_addr_lock_bh() */
11476 void bnx2x_set_rx_mode(struct net_device *dev)
11477 {
11478         struct bnx2x *bp = netdev_priv(dev);
11479         u32 rx_mode = BNX2X_RX_MODE_NORMAL;
11480
11481         if (bp->state != BNX2X_STATE_OPEN) {
11482                 DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state);
11483                 return;
11484         }
11485
11486         DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags);
11487
11488         if (dev->flags & IFF_PROMISC)
11489                 rx_mode = BNX2X_RX_MODE_PROMISC;
11490         else if ((dev->flags & IFF_ALLMULTI) ||
11491                  ((netdev_mc_count(dev) > BNX2X_MAX_MULTICAST) &&
11492                   CHIP_IS_E1(bp)))
11493                 rx_mode = BNX2X_RX_MODE_ALLMULTI;
11494         else {
11495                 if (IS_PF(bp)) {
11496                         /* some multicasts */
11497                         if (bnx2x_set_mc_list(bp) < 0)
11498                                 rx_mode = BNX2X_RX_MODE_ALLMULTI;
11499
11500                         if (bnx2x_set_uc_list(bp) < 0)
11501                                 rx_mode = BNX2X_RX_MODE_PROMISC;
11502                 } else {
11503                         /* configuring mcast to a vf involves sleeping (when we
11504                          * wait for the pf's response). Since this function is
11505                          * called from non sleepable context we must schedule
11506                          * a work item for this purpose
11507                          */
11508                         smp_mb__before_clear_bit();
11509                         set_bit(BNX2X_SP_RTNL_VFPF_MCAST,
11510                                 &bp->sp_rtnl_state);
11511                         smp_mb__after_clear_bit();
11512                         schedule_delayed_work(&bp->sp_rtnl_task, 0);
11513                 }
11514         }
11515
11516         bp->rx_mode = rx_mode;
11517         /* handle ISCSI SD mode */
11518         if (IS_MF_ISCSI_SD(bp))
11519                 bp->rx_mode = BNX2X_RX_MODE_NONE;
11520
11521         /* Schedule the rx_mode command */
11522         if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) {
11523                 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
11524                 return;
11525         }
11526
11527         if (IS_PF(bp)) {
11528                 bnx2x_set_storm_rx_mode(bp);
11529         } else {
11530                 /* configuring rx mode to storms in a vf involves sleeping (when
11531                  * we wait for the pf's response). Since this function is
11532                  * called from non sleepable context we must schedule
11533                  * a work item for this purpose
11534                  */
11535                 smp_mb__before_clear_bit();
11536                 set_bit(BNX2X_SP_RTNL_VFPF_STORM_RX_MODE,
11537                         &bp->sp_rtnl_state);
11538                 smp_mb__after_clear_bit();
11539                 schedule_delayed_work(&bp->sp_rtnl_task, 0);
11540         }
11541 }
11542
11543 /* called with rtnl_lock */
11544 static int bnx2x_mdio_read(struct net_device *netdev, int prtad,
11545                            int devad, u16 addr)
11546 {
11547         struct bnx2x *bp = netdev_priv(netdev);
11548         u16 value;
11549         int rc;
11550
11551         DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n",
11552            prtad, devad, addr);
11553
11554         /* The HW expects different devad if CL22 is used */
11555         devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
11556
11557         bnx2x_acquire_phy_lock(bp);
11558         rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value);
11559         bnx2x_release_phy_lock(bp);
11560         DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc);
11561
11562         if (!rc)
11563                 rc = value;
11564         return rc;
11565 }
11566
11567 /* called with rtnl_lock */
11568 static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad,
11569                             u16 addr, u16 value)
11570 {
11571         struct bnx2x *bp = netdev_priv(netdev);
11572         int rc;
11573
11574         DP(NETIF_MSG_LINK,
11575            "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x, value 0x%x\n",
11576            prtad, devad, addr, value);
11577
11578         /* The HW expects different devad if CL22 is used */
11579         devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
11580
11581         bnx2x_acquire_phy_lock(bp);
11582         rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value);
11583         bnx2x_release_phy_lock(bp);
11584         return rc;
11585 }
11586
11587 /* called with rtnl_lock */
11588 static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
11589 {
11590         struct bnx2x *bp = netdev_priv(dev);
11591         struct mii_ioctl_data *mdio = if_mii(ifr);
11592
11593         DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n",
11594            mdio->phy_id, mdio->reg_num, mdio->val_in);
11595
11596         if (!netif_running(dev))
11597                 return -EAGAIN;
11598
11599         return mdio_mii_ioctl(&bp->mdio, mdio, cmd);
11600 }
11601
11602 #ifdef CONFIG_NET_POLL_CONTROLLER
11603 static void poll_bnx2x(struct net_device *dev)
11604 {
11605         struct bnx2x *bp = netdev_priv(dev);
11606         int i;
11607
11608         for_each_eth_queue(bp, i) {
11609                 struct bnx2x_fastpath *fp = &bp->fp[i];
11610                 napi_schedule(&bnx2x_fp(bp, fp->index, napi));
11611         }
11612 }
11613 #endif
11614
11615 static int bnx2x_validate_addr(struct net_device *dev)
11616 {
11617         struct bnx2x *bp = netdev_priv(dev);
11618
11619         if (!bnx2x_is_valid_ether_addr(bp, dev->dev_addr)) {
11620                 BNX2X_ERR("Non-valid Ethernet address\n");
11621                 return -EADDRNOTAVAIL;
11622         }
11623         return 0;
11624 }
11625
11626 static const struct net_device_ops bnx2x_netdev_ops = {
11627         .ndo_open               = bnx2x_open,
11628         .ndo_stop               = bnx2x_close,
11629         .ndo_start_xmit         = bnx2x_start_xmit,
11630         .ndo_select_queue       = bnx2x_select_queue,
11631         .ndo_set_rx_mode        = bnx2x_set_rx_mode,
11632         .ndo_set_mac_address    = bnx2x_change_mac_addr,
11633         .ndo_validate_addr      = bnx2x_validate_addr,
11634         .ndo_do_ioctl           = bnx2x_ioctl,
11635         .ndo_change_mtu         = bnx2x_change_mtu,
11636         .ndo_fix_features       = bnx2x_fix_features,
11637         .ndo_set_features       = bnx2x_set_features,
11638         .ndo_tx_timeout         = bnx2x_tx_timeout,
11639 #ifdef CONFIG_NET_POLL_CONTROLLER
11640         .ndo_poll_controller    = poll_bnx2x,
11641 #endif
11642         .ndo_setup_tc           = bnx2x_setup_tc,
11643
11644 #ifdef NETDEV_FCOE_WWNN
11645         .ndo_fcoe_get_wwn       = bnx2x_fcoe_get_wwn,
11646 #endif
11647 };
11648
11649 static int bnx2x_set_coherency_mask(struct bnx2x *bp)
11650 {
11651         struct device *dev = &bp->pdev->dev;
11652
11653         if (dma_set_mask(dev, DMA_BIT_MASK(64)) == 0) {
11654                 bp->flags |= USING_DAC_FLAG;
11655                 if (dma_set_coherent_mask(dev, DMA_BIT_MASK(64)) != 0) {
11656                         dev_err(dev, "dma_set_coherent_mask failed, aborting\n");
11657                         return -EIO;
11658                 }
11659         } else if (dma_set_mask(dev, DMA_BIT_MASK(32)) != 0) {
11660                 dev_err(dev, "System does not support DMA, aborting\n");
11661                 return -EIO;
11662         }
11663
11664         return 0;
11665 }
11666
11667 static int bnx2x_init_dev(struct bnx2x *bp, struct pci_dev *pdev,
11668                           struct net_device *dev, unsigned long board_type)
11669 {
11670         int rc;
11671         u32 pci_cfg_dword;
11672         bool chip_is_e1x = (board_type == BCM57710 ||
11673                             board_type == BCM57711 ||
11674                             board_type == BCM57711E);
11675
11676         SET_NETDEV_DEV(dev, &pdev->dev);
11677
11678         bp->dev = dev;
11679         bp->pdev = pdev;
11680
11681         rc = pci_enable_device(pdev);
11682         if (rc) {
11683                 dev_err(&bp->pdev->dev,
11684                         "Cannot enable PCI device, aborting\n");
11685                 goto err_out;
11686         }
11687
11688         if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
11689                 dev_err(&bp->pdev->dev,
11690                         "Cannot find PCI device base address, aborting\n");
11691                 rc = -ENODEV;
11692                 goto err_out_disable;
11693         }
11694
11695         if (IS_PF(bp) && !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
11696                 dev_err(&bp->pdev->dev, "Cannot find second PCI device base address, aborting\n");
11697                 rc = -ENODEV;
11698                 goto err_out_disable;
11699         }
11700
11701         pci_read_config_dword(pdev, PCICFG_REVISION_ID_OFFSET, &pci_cfg_dword);
11702         if ((pci_cfg_dword & PCICFG_REVESION_ID_MASK) ==
11703             PCICFG_REVESION_ID_ERROR_VAL) {
11704                 pr_err("PCI device error, probably due to fan failure, aborting\n");
11705                 rc = -ENODEV;
11706                 goto err_out_disable;
11707         }
11708
11709         if (atomic_read(&pdev->enable_cnt) == 1) {
11710                 rc = pci_request_regions(pdev, DRV_MODULE_NAME);
11711                 if (rc) {
11712                         dev_err(&bp->pdev->dev,
11713                                 "Cannot obtain PCI resources, aborting\n");
11714                         goto err_out_disable;
11715                 }
11716
11717                 pci_set_master(pdev);
11718                 pci_save_state(pdev);
11719         }
11720
11721         if (IS_PF(bp)) {
11722                 bp->pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
11723                 if (bp->pm_cap == 0) {
11724                         dev_err(&bp->pdev->dev,
11725                                 "Cannot find power management capability, aborting\n");
11726                         rc = -EIO;
11727                         goto err_out_release;
11728                 }
11729         }
11730
11731         if (!pci_is_pcie(pdev)) {
11732                 dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n");
11733                 rc = -EIO;
11734                 goto err_out_release;
11735         }
11736
11737         rc = bnx2x_set_coherency_mask(bp);
11738         if (rc)
11739                 goto err_out_release;
11740
11741         dev->mem_start = pci_resource_start(pdev, 0);
11742         dev->base_addr = dev->mem_start;
11743         dev->mem_end = pci_resource_end(pdev, 0);
11744
11745         dev->irq = pdev->irq;
11746
11747         bp->regview = pci_ioremap_bar(pdev, 0);
11748         if (!bp->regview) {
11749                 dev_err(&bp->pdev->dev,
11750                         "Cannot map register space, aborting\n");
11751                 rc = -ENOMEM;
11752                 goto err_out_release;
11753         }
11754
11755         /* In E1/E1H use pci device function given by kernel.
11756          * In E2/E3 read physical function from ME register since these chips
11757          * support Physical Device Assignment where kernel BDF maybe arbitrary
11758          * (depending on hypervisor).
11759          */
11760         if (chip_is_e1x)
11761                 bp->pf_num = PCI_FUNC(pdev->devfn);
11762         else {/* chip is E2/3*/
11763                 pci_read_config_dword(bp->pdev,
11764                                       PCICFG_ME_REGISTER, &pci_cfg_dword);
11765                 bp->pf_num = (u8)((pci_cfg_dword & ME_REG_ABS_PF_NUM) >>
11766                     ME_REG_ABS_PF_NUM_SHIFT);
11767         }
11768         BNX2X_DEV_INFO("me reg PF num: %d\n", bp->pf_num);
11769
11770         bnx2x_set_power_state(bp, PCI_D0);
11771
11772         /* clean indirect addresses */
11773         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
11774                                PCICFG_VENDOR_ID_OFFSET);
11775         /*
11776          * Clean the following indirect addresses for all functions since it
11777          * is not used by the driver.
11778          */
11779         if (IS_PF(bp)) {
11780                 REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0);
11781                 REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0);
11782                 REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0);
11783                 REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0);
11784
11785                 if (chip_is_e1x) {
11786                         REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0);
11787                         REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0);
11788                         REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0);
11789                         REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0);
11790                 }
11791
11792                 /* Enable internal target-read (in case we are probed after PF
11793                  * FLR). Must be done prior to any BAR read access. Only for
11794                  * 57712 and up
11795                  */
11796                 if (!chip_is_e1x)
11797                         REG_WR(bp,
11798                                PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
11799         }
11800
11801         dev->watchdog_timeo = TX_TIMEOUT;
11802
11803         dev->netdev_ops = &bnx2x_netdev_ops;
11804         bnx2x_set_ethtool_ops(dev);
11805
11806         dev->priv_flags |= IFF_UNICAST_FLT;
11807
11808         dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
11809                 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
11810                 NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO |
11811                 NETIF_F_RXHASH | NETIF_F_HW_VLAN_TX;
11812
11813         dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
11814                 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA;
11815
11816         dev->features |= dev->hw_features | NETIF_F_HW_VLAN_RX;
11817         if (bp->flags & USING_DAC_FLAG)
11818                 dev->features |= NETIF_F_HIGHDMA;
11819
11820         /* Add Loopback capability to the device */
11821         dev->hw_features |= NETIF_F_LOOPBACK;
11822
11823 #ifdef BCM_DCBNL
11824         dev->dcbnl_ops = &bnx2x_dcbnl_ops;
11825 #endif
11826
11827         /* get_port_hwinfo() will set prtad and mmds properly */
11828         bp->mdio.prtad = MDIO_PRTAD_NONE;
11829         bp->mdio.mmds = 0;
11830         bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
11831         bp->mdio.dev = dev;
11832         bp->mdio.mdio_read = bnx2x_mdio_read;
11833         bp->mdio.mdio_write = bnx2x_mdio_write;
11834
11835         return 0;
11836
11837 err_out_release:
11838         if (atomic_read(&pdev->enable_cnt) == 1)
11839                 pci_release_regions(pdev);
11840
11841 err_out_disable:
11842         pci_disable_device(pdev);
11843         pci_set_drvdata(pdev, NULL);
11844
11845 err_out:
11846         return rc;
11847 }
11848
11849 static void bnx2x_get_pcie_width_speed(struct bnx2x *bp, int *width, int *speed)
11850 {
11851         u32 val = 0;
11852
11853         pci_read_config_dword(bp->pdev, PCICFG_LINK_CONTROL, &val);
11854         *width = (val & PCICFG_LINK_WIDTH) >> PCICFG_LINK_WIDTH_SHIFT;
11855
11856         /* return value of 1=2.5GHz 2=5GHz */
11857         *speed = (val & PCICFG_LINK_SPEED) >> PCICFG_LINK_SPEED_SHIFT;
11858 }
11859
11860 static int bnx2x_check_firmware(struct bnx2x *bp)
11861 {
11862         const struct firmware *firmware = bp->firmware;
11863         struct bnx2x_fw_file_hdr *fw_hdr;
11864         struct bnx2x_fw_file_section *sections;
11865         u32 offset, len, num_ops;
11866         u16 *ops_offsets;
11867         int i;
11868         const u8 *fw_ver;
11869
11870         if (firmware->size < sizeof(struct bnx2x_fw_file_hdr)) {
11871                 BNX2X_ERR("Wrong FW size\n");
11872                 return -EINVAL;
11873         }
11874
11875         fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data;
11876         sections = (struct bnx2x_fw_file_section *)fw_hdr;
11877
11878         /* Make sure none of the offsets and sizes make us read beyond
11879          * the end of the firmware data */
11880         for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) {
11881                 offset = be32_to_cpu(sections[i].offset);
11882                 len = be32_to_cpu(sections[i].len);
11883                 if (offset + len > firmware->size) {
11884                         BNX2X_ERR("Section %d length is out of bounds\n", i);
11885                         return -EINVAL;
11886                 }
11887         }
11888
11889         /* Likewise for the init_ops offsets */
11890         offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset);
11891         ops_offsets = (u16 *)(firmware->data + offset);
11892         num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op);
11893
11894         for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) {
11895                 if (be16_to_cpu(ops_offsets[i]) > num_ops) {
11896                         BNX2X_ERR("Section offset %d is out of bounds\n", i);
11897                         return -EINVAL;
11898                 }
11899         }
11900
11901         /* Check FW version */
11902         offset = be32_to_cpu(fw_hdr->fw_version.offset);
11903         fw_ver = firmware->data + offset;
11904         if ((fw_ver[0] != BCM_5710_FW_MAJOR_VERSION) ||
11905             (fw_ver[1] != BCM_5710_FW_MINOR_VERSION) ||
11906             (fw_ver[2] != BCM_5710_FW_REVISION_VERSION) ||
11907             (fw_ver[3] != BCM_5710_FW_ENGINEERING_VERSION)) {
11908                 BNX2X_ERR("Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n",
11909                        fw_ver[0], fw_ver[1], fw_ver[2], fw_ver[3],
11910                        BCM_5710_FW_MAJOR_VERSION,
11911                        BCM_5710_FW_MINOR_VERSION,
11912                        BCM_5710_FW_REVISION_VERSION,
11913                        BCM_5710_FW_ENGINEERING_VERSION);
11914                 return -EINVAL;
11915         }
11916
11917         return 0;
11918 }
11919
11920 static void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
11921 {
11922         const __be32 *source = (const __be32 *)_source;
11923         u32 *target = (u32 *)_target;
11924         u32 i;
11925
11926         for (i = 0; i < n/4; i++)
11927                 target[i] = be32_to_cpu(source[i]);
11928 }
11929
11930 /*
11931    Ops array is stored in the following format:
11932    {op(8bit), offset(24bit, big endian), data(32bit, big endian)}
11933  */
11934 static void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n)
11935 {
11936         const __be32 *source = (const __be32 *)_source;
11937         struct raw_op *target = (struct raw_op *)_target;
11938         u32 i, j, tmp;
11939
11940         for (i = 0, j = 0; i < n/8; i++, j += 2) {
11941                 tmp = be32_to_cpu(source[j]);
11942                 target[i].op = (tmp >> 24) & 0xff;
11943                 target[i].offset = tmp & 0xffffff;
11944                 target[i].raw_data = be32_to_cpu(source[j + 1]);
11945         }
11946 }
11947
11948 /* IRO array is stored in the following format:
11949  * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) }
11950  */
11951 static void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n)
11952 {
11953         const __be32 *source = (const __be32 *)_source;
11954         struct iro *target = (struct iro *)_target;
11955         u32 i, j, tmp;
11956
11957         for (i = 0, j = 0; i < n/sizeof(struct iro); i++) {
11958                 target[i].base = be32_to_cpu(source[j]);
11959                 j++;
11960                 tmp = be32_to_cpu(source[j]);
11961                 target[i].m1 = (tmp >> 16) & 0xffff;
11962                 target[i].m2 = tmp & 0xffff;
11963                 j++;
11964                 tmp = be32_to_cpu(source[j]);
11965                 target[i].m3 = (tmp >> 16) & 0xffff;
11966                 target[i].size = tmp & 0xffff;
11967                 j++;
11968         }
11969 }
11970
11971 static void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
11972 {
11973         const __be16 *source = (const __be16 *)_source;
11974         u16 *target = (u16 *)_target;
11975         u32 i;
11976
11977         for (i = 0; i < n/2; i++)
11978                 target[i] = be16_to_cpu(source[i]);
11979 }
11980
11981 #define BNX2X_ALLOC_AND_SET(arr, lbl, func)                             \
11982 do {                                                                    \
11983         u32 len = be32_to_cpu(fw_hdr->arr.len);                         \
11984         bp->arr = kmalloc(len, GFP_KERNEL);                             \
11985         if (!bp->arr)                                                   \
11986                 goto lbl;                                               \
11987         func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset),      \
11988              (u8 *)bp->arr, len);                                       \
11989 } while (0)
11990
11991 static int bnx2x_init_firmware(struct bnx2x *bp)
11992 {
11993         const char *fw_file_name;
11994         struct bnx2x_fw_file_hdr *fw_hdr;
11995         int rc;
11996
11997         if (bp->firmware)
11998                 return 0;
11999
12000         if (CHIP_IS_E1(bp))
12001                 fw_file_name = FW_FILE_NAME_E1;
12002         else if (CHIP_IS_E1H(bp))
12003                 fw_file_name = FW_FILE_NAME_E1H;
12004         else if (!CHIP_IS_E1x(bp))
12005                 fw_file_name = FW_FILE_NAME_E2;
12006         else {
12007                 BNX2X_ERR("Unsupported chip revision\n");
12008                 return -EINVAL;
12009         }
12010         BNX2X_DEV_INFO("Loading %s\n", fw_file_name);
12011
12012         rc = request_firmware(&bp->firmware, fw_file_name, &bp->pdev->dev);
12013         if (rc) {
12014                 BNX2X_ERR("Can't load firmware file %s\n",
12015                           fw_file_name);
12016                 goto request_firmware_exit;
12017         }
12018
12019         rc = bnx2x_check_firmware(bp);
12020         if (rc) {
12021                 BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name);
12022                 goto request_firmware_exit;
12023         }
12024
12025         fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data;
12026
12027         /* Initialize the pointers to the init arrays */
12028         /* Blob */
12029         BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n);
12030
12031         /* Opcodes */
12032         BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops);
12033
12034         /* Offsets */
12035         BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err,
12036                             be16_to_cpu_n);
12037
12038         /* STORMs firmware */
12039         INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12040                         be32_to_cpu(fw_hdr->tsem_int_table_data.offset);
12041         INIT_TSEM_PRAM_DATA(bp)      = bp->firmware->data +
12042                         be32_to_cpu(fw_hdr->tsem_pram_data.offset);
12043         INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12044                         be32_to_cpu(fw_hdr->usem_int_table_data.offset);
12045         INIT_USEM_PRAM_DATA(bp)      = bp->firmware->data +
12046                         be32_to_cpu(fw_hdr->usem_pram_data.offset);
12047         INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12048                         be32_to_cpu(fw_hdr->xsem_int_table_data.offset);
12049         INIT_XSEM_PRAM_DATA(bp)      = bp->firmware->data +
12050                         be32_to_cpu(fw_hdr->xsem_pram_data.offset);
12051         INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12052                         be32_to_cpu(fw_hdr->csem_int_table_data.offset);
12053         INIT_CSEM_PRAM_DATA(bp)      = bp->firmware->data +
12054                         be32_to_cpu(fw_hdr->csem_pram_data.offset);
12055         /* IRO */
12056         BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro);
12057
12058         return 0;
12059
12060 iro_alloc_err:
12061         kfree(bp->init_ops_offsets);
12062 init_offsets_alloc_err:
12063         kfree(bp->init_ops);
12064 init_ops_alloc_err:
12065         kfree(bp->init_data);
12066 request_firmware_exit:
12067         release_firmware(bp->firmware);
12068         bp->firmware = NULL;
12069
12070         return rc;
12071 }
12072
12073 static void bnx2x_release_firmware(struct bnx2x *bp)
12074 {
12075         kfree(bp->init_ops_offsets);
12076         kfree(bp->init_ops);
12077         kfree(bp->init_data);
12078         release_firmware(bp->firmware);
12079         bp->firmware = NULL;
12080 }
12081
12082
12083 static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = {
12084         .init_hw_cmn_chip = bnx2x_init_hw_common_chip,
12085         .init_hw_cmn      = bnx2x_init_hw_common,
12086         .init_hw_port     = bnx2x_init_hw_port,
12087         .init_hw_func     = bnx2x_init_hw_func,
12088
12089         .reset_hw_cmn     = bnx2x_reset_common,
12090         .reset_hw_port    = bnx2x_reset_port,
12091         .reset_hw_func    = bnx2x_reset_func,
12092
12093         .gunzip_init      = bnx2x_gunzip_init,
12094         .gunzip_end       = bnx2x_gunzip_end,
12095
12096         .init_fw          = bnx2x_init_firmware,
12097         .release_fw       = bnx2x_release_firmware,
12098 };
12099
12100 void bnx2x__init_func_obj(struct bnx2x *bp)
12101 {
12102         /* Prepare DMAE related driver resources */
12103         bnx2x_setup_dmae(bp);
12104
12105         bnx2x_init_func_obj(bp, &bp->func_obj,
12106                             bnx2x_sp(bp, func_rdata),
12107                             bnx2x_sp_mapping(bp, func_rdata),
12108                             bnx2x_sp(bp, func_afex_rdata),
12109                             bnx2x_sp_mapping(bp, func_afex_rdata),
12110                             &bnx2x_func_sp_drv);
12111 }
12112
12113 /* must be called after sriov-enable */
12114 static int bnx2x_set_qm_cid_count(struct bnx2x *bp)
12115 {
12116         int cid_count = BNX2X_L2_MAX_CID(bp);
12117
12118         if (CNIC_SUPPORT(bp))
12119                 cid_count += CNIC_CID_MAX;
12120         return roundup(cid_count, QM_CID_ROUND);
12121 }
12122
12123 /**
12124  * bnx2x_get_num_none_def_sbs - return the number of none default SBs
12125  *
12126  * @dev:        pci device
12127  *
12128  */
12129 static int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev,
12130                                      int cnic_cnt, bool is_vf)
12131 {
12132         int pos, index;
12133         u16 control = 0;
12134
12135         pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
12136
12137         /*
12138          * If MSI-X is not supported - return number of SBs needed to support
12139          * one fast path queue: one FP queue + SB for CNIC
12140          */
12141         if (!pos) {
12142                 dev_info(&pdev->dev, "no msix capability found\n");
12143                 return 1 + cnic_cnt;
12144         }
12145         dev_info(&pdev->dev, "msix capability found\n");
12146
12147         /*
12148          * The value in the PCI configuration space is the index of the last
12149          * entry, namely one less than the actual size of the table, which is
12150          * exactly what we want to return from this function: number of all SBs
12151          * without the default SB.
12152          * For VFs there is no default SB, then we return (index+1).
12153          */
12154         pci_read_config_word(pdev, pos  + PCI_MSI_FLAGS, &control);
12155
12156         index = control & PCI_MSIX_FLAGS_QSIZE;
12157
12158         return is_vf ? index + 1 : index;
12159 }
12160
12161 static int set_max_cos_est(int chip_id)
12162 {
12163         switch (chip_id) {
12164         case BCM57710:
12165         case BCM57711:
12166         case BCM57711E:
12167                 return BNX2X_MULTI_TX_COS_E1X;
12168         case BCM57712:
12169         case BCM57712_MF:
12170         case BCM57712_VF:
12171                 return BNX2X_MULTI_TX_COS_E2_E3A0;
12172         case BCM57800:
12173         case BCM57800_MF:
12174         case BCM57800_VF:
12175         case BCM57810:
12176         case BCM57810_MF:
12177         case BCM57840_4_10:
12178         case BCM57840_2_20:
12179         case BCM57840_O:
12180         case BCM57840_MFO:
12181         case BCM57810_VF:
12182         case BCM57840_MF:
12183         case BCM57840_VF:
12184         case BCM57811:
12185         case BCM57811_MF:
12186         case BCM57811_VF:
12187                 return BNX2X_MULTI_TX_COS_E3B0;
12188                 return 1;
12189         default:
12190                 pr_err("Unknown board_type (%d), aborting\n", chip_id);
12191                 return -ENODEV;
12192         }
12193 }
12194
12195 static int set_is_vf(int chip_id)
12196 {
12197         switch (chip_id) {
12198         case BCM57712_VF:
12199         case BCM57800_VF:
12200         case BCM57810_VF:
12201         case BCM57840_VF:
12202         case BCM57811_VF:
12203                 return true;
12204         default:
12205                 return false;
12206         }
12207 }
12208
12209 struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev);
12210
12211 static int bnx2x_init_one(struct pci_dev *pdev,
12212                                     const struct pci_device_id *ent)
12213 {
12214         struct net_device *dev = NULL;
12215         struct bnx2x *bp;
12216         int pcie_width, pcie_speed;
12217         int rc, max_non_def_sbs;
12218         int rx_count, tx_count, rss_count, doorbell_size;
12219         int max_cos_est;
12220         bool is_vf;
12221         int cnic_cnt;
12222
12223         /* An estimated maximum supported CoS number according to the chip
12224          * version.
12225          * We will try to roughly estimate the maximum number of CoSes this chip
12226          * may support in order to minimize the memory allocated for Tx
12227          * netdev_queue's. This number will be accurately calculated during the
12228          * initialization of bp->max_cos based on the chip versions AND chip
12229          * revision in the bnx2x_init_bp().
12230          */
12231         max_cos_est = set_max_cos_est(ent->driver_data);
12232         if (max_cos_est < 0)
12233                 return max_cos_est;
12234         is_vf = set_is_vf(ent->driver_data);
12235         cnic_cnt = is_vf ? 0 : 1;
12236
12237         max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev, cnic_cnt, is_vf);
12238
12239         /* Maximum number of RSS queues: one IGU SB goes to CNIC */
12240         rss_count = is_vf ? 1 : max_non_def_sbs - cnic_cnt;
12241
12242         if (rss_count < 1)
12243                 return -EINVAL;
12244
12245         /* Maximum number of netdev Rx queues: RSS + FCoE L2 */
12246         rx_count = rss_count + cnic_cnt;
12247
12248         /* Maximum number of netdev Tx queues:
12249          * Maximum TSS queues * Maximum supported number of CoS  + FCoE L2
12250          */
12251         tx_count = rss_count * max_cos_est + cnic_cnt;
12252
12253         /* dev zeroed in init_etherdev */
12254         dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count);
12255         if (!dev)
12256                 return -ENOMEM;
12257
12258         bp = netdev_priv(dev);
12259
12260         bp->flags = 0;
12261         if (is_vf)
12262                 bp->flags |= IS_VF_FLAG;
12263
12264         bp->igu_sb_cnt = max_non_def_sbs;
12265         bp->igu_base_addr = IS_VF(bp) ? PXP_VF_ADDR_IGU_START : BAR_IGU_INTMEM;
12266         bp->msg_enable = debug;
12267         bp->cnic_support = cnic_cnt;
12268         bp->cnic_probe = bnx2x_cnic_probe;
12269
12270         pci_set_drvdata(pdev, dev);
12271
12272         rc = bnx2x_init_dev(bp, pdev, dev, ent->driver_data);
12273         if (rc < 0) {
12274                 free_netdev(dev);
12275                 return rc;
12276         }
12277
12278         BNX2X_DEV_INFO("This is a %s function\n",
12279                        IS_PF(bp) ? "physical" : "virtual");
12280         BNX2X_DEV_INFO("Cnic support is %s\n", CNIC_SUPPORT(bp) ? "on" : "off");
12281         BNX2X_DEV_INFO("Max num of status blocks %d\n", max_non_def_sbs);
12282         BNX2X_DEV_INFO("Allocated netdev with %d tx and %d rx queues\n",
12283                           tx_count, rx_count);
12284
12285         rc = bnx2x_init_bp(bp);
12286         if (rc)
12287                 goto init_one_exit;
12288
12289         /* Map doorbells here as we need the real value of bp->max_cos which
12290          * is initialized in bnx2x_init_bp() to determine the number of
12291          * l2 connections.
12292          */
12293         if (IS_VF(bp)) {
12294                 /* vf doorbells are embedded within the regview */
12295                 bp->doorbells = bp->regview + PXP_VF_ADDR_DB_START;
12296
12297                 /* allocate vf2pf mailbox for vf to pf channel */
12298                 BNX2X_PCI_ALLOC(bp->vf2pf_mbox, &bp->vf2pf_mbox_mapping,
12299                                 sizeof(struct bnx2x_vf_mbx_msg));
12300         } else {
12301                 doorbell_size = BNX2X_L2_MAX_CID(bp) * (1 << BNX2X_DB_SHIFT);
12302                 if (doorbell_size > pci_resource_len(pdev, 2)) {
12303                         dev_err(&bp->pdev->dev,
12304                                 "Cannot map doorbells, bar size too small, aborting\n");
12305                         rc = -ENOMEM;
12306                         goto init_one_exit;
12307                 }
12308                 bp->doorbells = ioremap_nocache(pci_resource_start(pdev, 2),
12309                                                 doorbell_size);
12310         }
12311         if (!bp->doorbells) {
12312                 dev_err(&bp->pdev->dev,
12313                         "Cannot map doorbell space, aborting\n");
12314                 rc = -ENOMEM;
12315                 goto init_one_exit;
12316         }
12317
12318         if (IS_VF(bp)) {
12319                 rc = bnx2x_vfpf_acquire(bp, tx_count, rx_count);
12320                 if (rc)
12321                         goto init_one_exit;
12322         }
12323
12324         /* calc qm_cid_count */
12325         bp->qm_cid_count = bnx2x_set_qm_cid_count(bp);
12326         BNX2X_DEV_INFO("qm_cid_count %d\n", bp->qm_cid_count);
12327
12328         /* disable FCOE L2 queue for E1x*/
12329         if (CHIP_IS_E1x(bp))
12330                 bp->flags |= NO_FCOE_FLAG;
12331
12332         /* disable FCOE for 57840 device, until FW supports it */
12333         switch (ent->driver_data) {
12334         case BCM57840_O:
12335         case BCM57840_4_10:
12336         case BCM57840_2_20:
12337         case BCM57840_MFO:
12338         case BCM57840_MF:
12339                 bp->flags |= NO_FCOE_FLAG;
12340         }
12341
12342         /* Set bp->num_queues for MSI-X mode*/
12343         bnx2x_set_num_queues(bp);
12344
12345         /* Configure interrupt mode: try to enable MSI-X/MSI if
12346          * needed.
12347          */
12348         rc = bnx2x_set_int_mode(bp);
12349         if (rc) {
12350                 dev_err(&pdev->dev, "Cannot set interrupts\n");
12351                 goto init_one_exit;
12352         }
12353
12354         /* register the net device */
12355         rc = register_netdev(dev);
12356         if (rc) {
12357                 dev_err(&pdev->dev, "Cannot register net device\n");
12358                 goto init_one_exit;
12359         }
12360         BNX2X_DEV_INFO("device name after netdev register %s\n", dev->name);
12361
12362
12363         if (!NO_FCOE(bp)) {
12364                 /* Add storage MAC address */
12365                 rtnl_lock();
12366                 dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
12367                 rtnl_unlock();
12368         }
12369
12370         bnx2x_get_pcie_width_speed(bp, &pcie_width, &pcie_speed);
12371         BNX2X_DEV_INFO("got pcie width %d and speed %d\n",
12372                        pcie_width, pcie_speed);
12373
12374         BNX2X_DEV_INFO(
12375                 "%s (%c%d) PCI-E x%d %s found at mem %lx, IRQ %d, node addr %pM\n",
12376                     board_info[ent->driver_data].name,
12377                     (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4),
12378                     pcie_width,
12379                     ((!CHIP_IS_E2(bp) && pcie_speed == 2) ||
12380                      (CHIP_IS_E2(bp) && pcie_speed == 1)) ?
12381                     "5GHz (Gen2)" : "2.5GHz",
12382                     dev->base_addr, bp->pdev->irq, dev->dev_addr);
12383
12384         return 0;
12385
12386 alloc_mem_err:
12387         BNX2X_PCI_FREE(bp->vf2pf_mbox, bp->vf2pf_mbox_mapping,
12388                        sizeof(struct bnx2x_vf_mbx_msg));
12389         rc = -ENOMEM;
12390
12391 init_one_exit:
12392         if (bp->regview)
12393                 iounmap(bp->regview);
12394
12395         if (IS_PF(bp) && bp->doorbells)
12396                 iounmap(bp->doorbells);
12397
12398         free_netdev(dev);
12399
12400         if (atomic_read(&pdev->enable_cnt) == 1)
12401                 pci_release_regions(pdev);
12402
12403         pci_disable_device(pdev);
12404         pci_set_drvdata(pdev, NULL);
12405
12406         return rc;
12407 }
12408
12409 static void bnx2x_remove_one(struct pci_dev *pdev)
12410 {
12411         struct net_device *dev = pci_get_drvdata(pdev);
12412         struct bnx2x *bp;
12413
12414         if (!dev) {
12415                 dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
12416                 return;
12417         }
12418         bp = netdev_priv(dev);
12419
12420         /* Delete storage MAC address */
12421         if (!NO_FCOE(bp)) {
12422                 rtnl_lock();
12423                 dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
12424                 rtnl_unlock();
12425         }
12426
12427 #ifdef BCM_DCBNL
12428         /* Delete app tlvs from dcbnl */
12429         bnx2x_dcbnl_update_applist(bp, true);
12430 #endif
12431
12432         unregister_netdev(dev);
12433
12434         /* Power on: we can't let PCI layer write to us while we are in D3 */
12435         if (IS_PF(bp))
12436                 bnx2x_set_power_state(bp, PCI_D0);
12437
12438         /* Disable MSI/MSI-X */
12439         bnx2x_disable_msi(bp);
12440
12441         /* Power off */
12442         if (IS_PF(bp))
12443                 bnx2x_set_power_state(bp, PCI_D3hot);
12444
12445         /* Make sure RESET task is not scheduled before continuing */
12446         cancel_delayed_work_sync(&bp->sp_rtnl_task);
12447         /* send message via vfpf channel to release the resources of this vf */
12448         if (IS_VF(bp))
12449                 bnx2x_vfpf_release(bp);
12450
12451         if (bp->regview)
12452                 iounmap(bp->regview);
12453
12454         /* for vf doorbells are part of the regview and were unmapped along with
12455          * it. FW is only loaded by PF.
12456          */
12457         if (IS_PF(bp)) {
12458                 if (bp->doorbells)
12459                         iounmap(bp->doorbells);
12460
12461                 bnx2x_release_firmware(bp);
12462         }
12463         bnx2x_free_mem_bp(bp);
12464
12465         free_netdev(dev);
12466
12467         if (atomic_read(&pdev->enable_cnt) == 1)
12468                 pci_release_regions(pdev);
12469
12470         pci_disable_device(pdev);
12471         pci_set_drvdata(pdev, NULL);
12472 }
12473
12474 static int bnx2x_eeh_nic_unload(struct bnx2x *bp)
12475 {
12476         int i;
12477
12478         bp->state = BNX2X_STATE_ERROR;
12479
12480         bp->rx_mode = BNX2X_RX_MODE_NONE;
12481
12482         if (CNIC_LOADED(bp))
12483                 bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
12484
12485         /* Stop Tx */
12486         bnx2x_tx_disable(bp);
12487
12488         bnx2x_netif_stop(bp, 0);
12489         /* Delete all NAPI objects */
12490         bnx2x_del_all_napi(bp);
12491         if (CNIC_LOADED(bp))
12492                 bnx2x_del_all_napi_cnic(bp);
12493
12494         del_timer_sync(&bp->timer);
12495
12496         bnx2x_stats_handle(bp, STATS_EVENT_STOP);
12497
12498         /* Release IRQs */
12499         bnx2x_free_irq(bp);
12500
12501         /* Free SKBs, SGEs, TPA pool and driver internals */
12502         bnx2x_free_skbs(bp);
12503
12504         for_each_rx_queue(bp, i)
12505                 bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
12506
12507         bnx2x_free_mem(bp);
12508
12509         bp->state = BNX2X_STATE_CLOSED;
12510
12511         netif_carrier_off(bp->dev);
12512
12513         return 0;
12514 }
12515
12516 static void bnx2x_eeh_recover(struct bnx2x *bp)
12517 {
12518         u32 val;
12519
12520         mutex_init(&bp->port.phy_mutex);
12521
12522
12523         val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
12524         if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB))
12525                 != (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB))
12526                 BNX2X_ERR("BAD MCP validity signature\n");
12527 }
12528
12529 /**
12530  * bnx2x_io_error_detected - called when PCI error is detected
12531  * @pdev: Pointer to PCI device
12532  * @state: The current pci connection state
12533  *
12534  * This function is called after a PCI bus error affecting
12535  * this device has been detected.
12536  */
12537 static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev,
12538                                                 pci_channel_state_t state)
12539 {
12540         struct net_device *dev = pci_get_drvdata(pdev);
12541         struct bnx2x *bp = netdev_priv(dev);
12542
12543         rtnl_lock();
12544
12545         netif_device_detach(dev);
12546
12547         if (state == pci_channel_io_perm_failure) {
12548                 rtnl_unlock();
12549                 return PCI_ERS_RESULT_DISCONNECT;
12550         }
12551
12552         if (netif_running(dev))
12553                 bnx2x_eeh_nic_unload(bp);
12554
12555         pci_disable_device(pdev);
12556
12557         rtnl_unlock();
12558
12559         /* Request a slot reset */
12560         return PCI_ERS_RESULT_NEED_RESET;
12561 }
12562
12563 /**
12564  * bnx2x_io_slot_reset - called after the PCI bus has been reset
12565  * @pdev: Pointer to PCI device
12566  *
12567  * Restart the card from scratch, as if from a cold-boot.
12568  */
12569 static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev)
12570 {
12571         struct net_device *dev = pci_get_drvdata(pdev);
12572         struct bnx2x *bp = netdev_priv(dev);
12573
12574         rtnl_lock();
12575
12576         if (pci_enable_device(pdev)) {
12577                 dev_err(&pdev->dev,
12578                         "Cannot re-enable PCI device after reset\n");
12579                 rtnl_unlock();
12580                 return PCI_ERS_RESULT_DISCONNECT;
12581         }
12582
12583         pci_set_master(pdev);
12584         pci_restore_state(pdev);
12585
12586         if (netif_running(dev))
12587                 bnx2x_set_power_state(bp, PCI_D0);
12588
12589         rtnl_unlock();
12590
12591         return PCI_ERS_RESULT_RECOVERED;
12592 }
12593
12594 /**
12595  * bnx2x_io_resume - called when traffic can start flowing again
12596  * @pdev: Pointer to PCI device
12597  *
12598  * This callback is called when the error recovery driver tells us that
12599  * its OK to resume normal operation.
12600  */
12601 static void bnx2x_io_resume(struct pci_dev *pdev)
12602 {
12603         struct net_device *dev = pci_get_drvdata(pdev);
12604         struct bnx2x *bp = netdev_priv(dev);
12605
12606         if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
12607                 netdev_err(bp->dev, "Handling parity error recovery. Try again later\n");
12608                 return;
12609         }
12610
12611         rtnl_lock();
12612
12613         bnx2x_eeh_recover(bp);
12614
12615         if (netif_running(dev))
12616                 bnx2x_nic_load(bp, LOAD_NORMAL);
12617
12618         netif_device_attach(dev);
12619
12620         rtnl_unlock();
12621 }
12622
12623 static const struct pci_error_handlers bnx2x_err_handler = {
12624         .error_detected = bnx2x_io_error_detected,
12625         .slot_reset     = bnx2x_io_slot_reset,
12626         .resume         = bnx2x_io_resume,
12627 };
12628
12629 static struct pci_driver bnx2x_pci_driver = {
12630         .name        = DRV_MODULE_NAME,
12631         .id_table    = bnx2x_pci_tbl,
12632         .probe       = bnx2x_init_one,
12633         .remove      = bnx2x_remove_one,
12634         .suspend     = bnx2x_suspend,
12635         .resume      = bnx2x_resume,
12636         .err_handler = &bnx2x_err_handler,
12637 };
12638
12639 static int __init bnx2x_init(void)
12640 {
12641         int ret;
12642
12643         pr_info("%s", version);
12644
12645         bnx2x_wq = create_singlethread_workqueue("bnx2x");
12646         if (bnx2x_wq == NULL) {
12647                 pr_err("Cannot create workqueue\n");
12648                 return -ENOMEM;
12649         }
12650
12651         ret = pci_register_driver(&bnx2x_pci_driver);
12652         if (ret) {
12653                 pr_err("Cannot register driver\n");
12654                 destroy_workqueue(bnx2x_wq);
12655         }
12656         return ret;
12657 }
12658
12659 static void __exit bnx2x_cleanup(void)
12660 {
12661         struct list_head *pos, *q;
12662         pci_unregister_driver(&bnx2x_pci_driver);
12663
12664         destroy_workqueue(bnx2x_wq);
12665
12666         /* Free globablly allocated resources */
12667         list_for_each_safe(pos, q, &bnx2x_prev_list) {
12668                 struct bnx2x_prev_path_list *tmp =
12669                         list_entry(pos, struct bnx2x_prev_path_list, list);
12670                 list_del(pos);
12671                 kfree(tmp);
12672         }
12673 }
12674
12675 void bnx2x_notify_link_changed(struct bnx2x *bp)
12676 {
12677         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1);
12678 }
12679
12680 module_init(bnx2x_init);
12681 module_exit(bnx2x_cleanup);
12682
12683 /**
12684  * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s).
12685  *
12686  * @bp:         driver handle
12687  * @set:        set or clear the CAM entry
12688  *
12689  * This function will wait until the ramdord completion returns.
12690  * Return 0 if success, -ENODEV if ramrod doesn't return.
12691  */
12692 static int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp)
12693 {
12694         unsigned long ramrod_flags = 0;
12695
12696         __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
12697         return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac,
12698                                  &bp->iscsi_l2_mac_obj, true,
12699                                  BNX2X_ISCSI_ETH_MAC, &ramrod_flags);
12700 }
12701
12702 /* count denotes the number of new completions we have seen */
12703 static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count)
12704 {
12705         struct eth_spe *spe;
12706         int cxt_index, cxt_offset;
12707
12708 #ifdef BNX2X_STOP_ON_ERROR
12709         if (unlikely(bp->panic))
12710                 return;
12711 #endif
12712
12713         spin_lock_bh(&bp->spq_lock);
12714         BUG_ON(bp->cnic_spq_pending < count);
12715         bp->cnic_spq_pending -= count;
12716
12717
12718         for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) {
12719                 u16 type =  (le16_to_cpu(bp->cnic_kwq_cons->hdr.type)
12720                                 & SPE_HDR_CONN_TYPE) >>
12721                                 SPE_HDR_CONN_TYPE_SHIFT;
12722                 u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data)
12723                                 >> SPE_HDR_CMD_ID_SHIFT) & 0xff;
12724
12725                 /* Set validation for iSCSI L2 client before sending SETUP
12726                  *  ramrod
12727                  */
12728                 if (type == ETH_CONNECTION_TYPE) {
12729                         if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP) {
12730                                 cxt_index = BNX2X_ISCSI_ETH_CID(bp) /
12731                                         ILT_PAGE_CIDS;
12732                                 cxt_offset = BNX2X_ISCSI_ETH_CID(bp) -
12733                                         (cxt_index * ILT_PAGE_CIDS);
12734                                 bnx2x_set_ctx_validation(bp,
12735                                         &bp->context[cxt_index].
12736                                                          vcxt[cxt_offset].eth,
12737                                         BNX2X_ISCSI_ETH_CID(bp));
12738                         }
12739                 }
12740
12741                 /*
12742                  * There may be not more than 8 L2, not more than 8 L5 SPEs
12743                  * and in the air. We also check that number of outstanding
12744                  * COMMON ramrods is not more than the EQ and SPQ can
12745                  * accommodate.
12746                  */
12747                 if (type == ETH_CONNECTION_TYPE) {
12748                         if (!atomic_read(&bp->cq_spq_left))
12749                                 break;
12750                         else
12751                                 atomic_dec(&bp->cq_spq_left);
12752                 } else if (type == NONE_CONNECTION_TYPE) {
12753                         if (!atomic_read(&bp->eq_spq_left))
12754                                 break;
12755                         else
12756                                 atomic_dec(&bp->eq_spq_left);
12757                 } else if ((type == ISCSI_CONNECTION_TYPE) ||
12758                            (type == FCOE_CONNECTION_TYPE)) {
12759                         if (bp->cnic_spq_pending >=
12760                             bp->cnic_eth_dev.max_kwqe_pending)
12761                                 break;
12762                         else
12763                                 bp->cnic_spq_pending++;
12764                 } else {
12765                         BNX2X_ERR("Unknown SPE type: %d\n", type);
12766                         bnx2x_panic();
12767                         break;
12768                 }
12769
12770                 spe = bnx2x_sp_get_next(bp);
12771                 *spe = *bp->cnic_kwq_cons;
12772
12773                 DP(BNX2X_MSG_SP, "pending on SPQ %d, on KWQ %d count %d\n",
12774                    bp->cnic_spq_pending, bp->cnic_kwq_pending, count);
12775
12776                 if (bp->cnic_kwq_cons == bp->cnic_kwq_last)
12777                         bp->cnic_kwq_cons = bp->cnic_kwq;
12778                 else
12779                         bp->cnic_kwq_cons++;
12780         }
12781         bnx2x_sp_prod_update(bp);
12782         spin_unlock_bh(&bp->spq_lock);
12783 }
12784
12785 static int bnx2x_cnic_sp_queue(struct net_device *dev,
12786                                struct kwqe_16 *kwqes[], u32 count)
12787 {
12788         struct bnx2x *bp = netdev_priv(dev);
12789         int i;
12790
12791 #ifdef BNX2X_STOP_ON_ERROR
12792         if (unlikely(bp->panic)) {
12793                 BNX2X_ERR("Can't post to SP queue while panic\n");
12794                 return -EIO;
12795         }
12796 #endif
12797
12798         if ((bp->recovery_state != BNX2X_RECOVERY_DONE) &&
12799             (bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
12800                 BNX2X_ERR("Handling parity error recovery. Try again later\n");
12801                 return -EAGAIN;
12802         }
12803
12804         spin_lock_bh(&bp->spq_lock);
12805
12806         for (i = 0; i < count; i++) {
12807                 struct eth_spe *spe = (struct eth_spe *)kwqes[i];
12808
12809                 if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT)
12810                         break;
12811
12812                 *bp->cnic_kwq_prod = *spe;
12813
12814                 bp->cnic_kwq_pending++;
12815
12816                 DP(BNX2X_MSG_SP, "L5 SPQE %x %x %x:%x pos %d\n",
12817                    spe->hdr.conn_and_cmd_data, spe->hdr.type,
12818                    spe->data.update_data_addr.hi,
12819                    spe->data.update_data_addr.lo,
12820                    bp->cnic_kwq_pending);
12821
12822                 if (bp->cnic_kwq_prod == bp->cnic_kwq_last)
12823                         bp->cnic_kwq_prod = bp->cnic_kwq;
12824                 else
12825                         bp->cnic_kwq_prod++;
12826         }
12827
12828         spin_unlock_bh(&bp->spq_lock);
12829
12830         if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending)
12831                 bnx2x_cnic_sp_post(bp, 0);
12832
12833         return i;
12834 }
12835
12836 static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl)
12837 {
12838         struct cnic_ops *c_ops;
12839         int rc = 0;
12840
12841         mutex_lock(&bp->cnic_mutex);
12842         c_ops = rcu_dereference_protected(bp->cnic_ops,
12843                                           lockdep_is_held(&bp->cnic_mutex));
12844         if (c_ops)
12845                 rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
12846         mutex_unlock(&bp->cnic_mutex);
12847
12848         return rc;
12849 }
12850
12851 static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl)
12852 {
12853         struct cnic_ops *c_ops;
12854         int rc = 0;
12855
12856         rcu_read_lock();
12857         c_ops = rcu_dereference(bp->cnic_ops);
12858         if (c_ops)
12859                 rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
12860         rcu_read_unlock();
12861
12862         return rc;
12863 }
12864
12865 /*
12866  * for commands that have no data
12867  */
12868 int bnx2x_cnic_notify(struct bnx2x *bp, int cmd)
12869 {
12870         struct cnic_ctl_info ctl = {0};
12871
12872         ctl.cmd = cmd;
12873
12874         return bnx2x_cnic_ctl_send(bp, &ctl);
12875 }
12876
12877 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err)
12878 {
12879         struct cnic_ctl_info ctl = {0};
12880
12881         /* first we tell CNIC and only then we count this as a completion */
12882         ctl.cmd = CNIC_CTL_COMPLETION_CMD;
12883         ctl.data.comp.cid = cid;
12884         ctl.data.comp.error = err;
12885
12886         bnx2x_cnic_ctl_send_bh(bp, &ctl);
12887         bnx2x_cnic_sp_post(bp, 0);
12888 }
12889
12890
12891 /* Called with netif_addr_lock_bh() taken.
12892  * Sets an rx_mode config for an iSCSI ETH client.
12893  * Doesn't block.
12894  * Completion should be checked outside.
12895  */
12896 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start)
12897 {
12898         unsigned long accept_flags = 0, ramrod_flags = 0;
12899         u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
12900         int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED;
12901
12902         if (start) {
12903                 /* Start accepting on iSCSI L2 ring. Accept all multicasts
12904                  * because it's the only way for UIO Queue to accept
12905                  * multicasts (in non-promiscuous mode only one Queue per
12906                  * function will receive multicast packets (leading in our
12907                  * case).
12908                  */
12909                 __set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags);
12910                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags);
12911                 __set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags);
12912                 __set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
12913
12914                 /* Clear STOP_PENDING bit if START is requested */
12915                 clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state);
12916
12917                 sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED;
12918         } else
12919                 /* Clear START_PENDING bit if STOP is requested */
12920                 clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state);
12921
12922         if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
12923                 set_bit(sched_state, &bp->sp_state);
12924         else {
12925                 __set_bit(RAMROD_RX, &ramrod_flags);
12926                 bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0,
12927                                     ramrod_flags);
12928         }
12929 }
12930
12931
12932 static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl)
12933 {
12934         struct bnx2x *bp = netdev_priv(dev);
12935         int rc = 0;
12936
12937         switch (ctl->cmd) {
12938         case DRV_CTL_CTXTBL_WR_CMD: {
12939                 u32 index = ctl->data.io.offset;
12940                 dma_addr_t addr = ctl->data.io.dma_addr;
12941
12942                 bnx2x_ilt_wr(bp, index, addr);
12943                 break;
12944         }
12945
12946         case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: {
12947                 int count = ctl->data.credit.credit_count;
12948
12949                 bnx2x_cnic_sp_post(bp, count);
12950                 break;
12951         }
12952
12953         /* rtnl_lock is held.  */
12954         case DRV_CTL_START_L2_CMD: {
12955                 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
12956                 unsigned long sp_bits = 0;
12957
12958                 /* Configure the iSCSI classification object */
12959                 bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj,
12960                                    cp->iscsi_l2_client_id,
12961                                    cp->iscsi_l2_cid, BP_FUNC(bp),
12962                                    bnx2x_sp(bp, mac_rdata),
12963                                    bnx2x_sp_mapping(bp, mac_rdata),
12964                                    BNX2X_FILTER_MAC_PENDING,
12965                                    &bp->sp_state, BNX2X_OBJ_TYPE_RX,
12966                                    &bp->macs_pool);
12967
12968                 /* Set iSCSI MAC address */
12969                 rc = bnx2x_set_iscsi_eth_mac_addr(bp);
12970                 if (rc)
12971                         break;
12972
12973                 mmiowb();
12974                 barrier();
12975
12976                 /* Start accepting on iSCSI L2 ring */
12977
12978                 netif_addr_lock_bh(dev);
12979                 bnx2x_set_iscsi_eth_rx_mode(bp, true);
12980                 netif_addr_unlock_bh(dev);
12981
12982                 /* bits to wait on */
12983                 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
12984                 __set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits);
12985
12986                 if (!bnx2x_wait_sp_comp(bp, sp_bits))
12987                         BNX2X_ERR("rx_mode completion timed out!\n");
12988
12989                 break;
12990         }
12991
12992         /* rtnl_lock is held.  */
12993         case DRV_CTL_STOP_L2_CMD: {
12994                 unsigned long sp_bits = 0;
12995
12996                 /* Stop accepting on iSCSI L2 ring */
12997                 netif_addr_lock_bh(dev);
12998                 bnx2x_set_iscsi_eth_rx_mode(bp, false);
12999                 netif_addr_unlock_bh(dev);
13000
13001                 /* bits to wait on */
13002                 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
13003                 __set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits);
13004
13005                 if (!bnx2x_wait_sp_comp(bp, sp_bits))
13006                         BNX2X_ERR("rx_mode completion timed out!\n");
13007
13008                 mmiowb();
13009                 barrier();
13010
13011                 /* Unset iSCSI L2 MAC */
13012                 rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj,
13013                                         BNX2X_ISCSI_ETH_MAC, true);
13014                 break;
13015         }
13016         case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: {
13017                 int count = ctl->data.credit.credit_count;
13018
13019                 smp_mb__before_atomic_inc();
13020                 atomic_add(count, &bp->cq_spq_left);
13021                 smp_mb__after_atomic_inc();
13022                 break;
13023         }
13024         case DRV_CTL_ULP_REGISTER_CMD: {
13025                 int ulp_type = ctl->data.register_data.ulp_type;
13026
13027                 if (CHIP_IS_E3(bp)) {
13028                         int idx = BP_FW_MB_IDX(bp);
13029                         u32 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
13030                         int path = BP_PATH(bp);
13031                         int port = BP_PORT(bp);
13032                         int i;
13033                         u32 scratch_offset;
13034                         u32 *host_addr;
13035
13036                         /* first write capability to shmem2 */
13037                         if (ulp_type == CNIC_ULP_ISCSI)
13038                                 cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
13039                         else if (ulp_type == CNIC_ULP_FCOE)
13040                                 cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
13041                         SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
13042
13043                         if ((ulp_type != CNIC_ULP_FCOE) ||
13044                             (!SHMEM2_HAS(bp, ncsi_oem_data_addr)) ||
13045                             (!(bp->flags &  BC_SUPPORTS_FCOE_FEATURES)))
13046                                 break;
13047
13048                         /* if reached here - should write fcoe capabilities */
13049                         scratch_offset = SHMEM2_RD(bp, ncsi_oem_data_addr);
13050                         if (!scratch_offset)
13051                                 break;
13052                         scratch_offset += offsetof(struct glob_ncsi_oem_data,
13053                                                    fcoe_features[path][port]);
13054                         host_addr = (u32 *) &(ctl->data.register_data.
13055                                               fcoe_features);
13056                         for (i = 0; i < sizeof(struct fcoe_capabilities);
13057                              i += 4)
13058                                 REG_WR(bp, scratch_offset + i,
13059                                        *(host_addr + i/4));
13060                 }
13061                 break;
13062         }
13063
13064         case DRV_CTL_ULP_UNREGISTER_CMD: {
13065                 int ulp_type = ctl->data.ulp_type;
13066
13067                 if (CHIP_IS_E3(bp)) {
13068                         int idx = BP_FW_MB_IDX(bp);
13069                         u32 cap;
13070
13071                         cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
13072                         if (ulp_type == CNIC_ULP_ISCSI)
13073                                 cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
13074                         else if (ulp_type == CNIC_ULP_FCOE)
13075                                 cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
13076                         SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
13077                 }
13078                 break;
13079         }
13080
13081         default:
13082                 BNX2X_ERR("unknown command %x\n", ctl->cmd);
13083                 rc = -EINVAL;
13084         }
13085
13086         return rc;
13087 }
13088
13089 void bnx2x_setup_cnic_irq_info(struct bnx2x *bp)
13090 {
13091         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13092
13093         if (bp->flags & USING_MSIX_FLAG) {
13094                 cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
13095                 cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
13096                 cp->irq_arr[0].vector = bp->msix_table[1].vector;
13097         } else {
13098                 cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
13099                 cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
13100         }
13101         if (!CHIP_IS_E1x(bp))
13102                 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb;
13103         else
13104                 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb;
13105
13106         cp->irq_arr[0].status_blk_num =  bnx2x_cnic_fw_sb_id(bp);
13107         cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp);
13108         cp->irq_arr[1].status_blk = bp->def_status_blk;
13109         cp->irq_arr[1].status_blk_num = DEF_SB_ID;
13110         cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID;
13111
13112         cp->num_irq = 2;
13113 }
13114
13115 void bnx2x_setup_cnic_info(struct bnx2x *bp)
13116 {
13117         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13118
13119
13120         cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
13121                              bnx2x_cid_ilt_lines(bp);
13122         cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
13123         cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
13124         cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
13125
13126         if (NO_ISCSI_OOO(bp))
13127                 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
13128 }
13129
13130 static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops,
13131                                void *data)
13132 {
13133         struct bnx2x *bp = netdev_priv(dev);
13134         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13135         int rc;
13136
13137         DP(NETIF_MSG_IFUP, "Register_cnic called\n");
13138
13139         if (ops == NULL) {
13140                 BNX2X_ERR("NULL ops received\n");
13141                 return -EINVAL;
13142         }
13143
13144         if (!CNIC_SUPPORT(bp)) {
13145                 BNX2X_ERR("Can't register CNIC when not supported\n");
13146                 return -EOPNOTSUPP;
13147         }
13148
13149         if (!CNIC_LOADED(bp)) {
13150                 rc = bnx2x_load_cnic(bp);
13151                 if (rc) {
13152                         BNX2X_ERR("CNIC-related load failed\n");
13153                         return rc;
13154                 }
13155
13156         }
13157
13158         bp->cnic_enabled = true;
13159
13160         bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL);
13161         if (!bp->cnic_kwq)
13162                 return -ENOMEM;
13163
13164         bp->cnic_kwq_cons = bp->cnic_kwq;
13165         bp->cnic_kwq_prod = bp->cnic_kwq;
13166         bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT;
13167
13168         bp->cnic_spq_pending = 0;
13169         bp->cnic_kwq_pending = 0;
13170
13171         bp->cnic_data = data;
13172
13173         cp->num_irq = 0;
13174         cp->drv_state |= CNIC_DRV_STATE_REGD;
13175         cp->iro_arr = bp->iro_arr;
13176
13177         bnx2x_setup_cnic_irq_info(bp);
13178
13179         rcu_assign_pointer(bp->cnic_ops, ops);
13180
13181         return 0;
13182 }
13183
13184 static int bnx2x_unregister_cnic(struct net_device *dev)
13185 {
13186         struct bnx2x *bp = netdev_priv(dev);
13187         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13188
13189         mutex_lock(&bp->cnic_mutex);
13190         cp->drv_state = 0;
13191         RCU_INIT_POINTER(bp->cnic_ops, NULL);
13192         mutex_unlock(&bp->cnic_mutex);
13193         synchronize_rcu();
13194         kfree(bp->cnic_kwq);
13195         bp->cnic_kwq = NULL;
13196
13197         return 0;
13198 }
13199
13200 struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev)
13201 {
13202         struct bnx2x *bp = netdev_priv(dev);
13203         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13204
13205         /* If both iSCSI and FCoE are disabled - return NULL in
13206          * order to indicate CNIC that it should not try to work
13207          * with this device.
13208          */
13209         if (NO_ISCSI(bp) && NO_FCOE(bp))
13210                 return NULL;
13211
13212         cp->drv_owner = THIS_MODULE;
13213         cp->chip_id = CHIP_ID(bp);
13214         cp->pdev = bp->pdev;
13215         cp->io_base = bp->regview;
13216         cp->io_base2 = bp->doorbells;
13217         cp->max_kwqe_pending = 8;
13218         cp->ctx_blk_size = CDU_ILT_PAGE_SZ;
13219         cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
13220                              bnx2x_cid_ilt_lines(bp);
13221         cp->ctx_tbl_len = CNIC_ILT_LINES;
13222         cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
13223         cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue;
13224         cp->drv_ctl = bnx2x_drv_ctl;
13225         cp->drv_register_cnic = bnx2x_register_cnic;
13226         cp->drv_unregister_cnic = bnx2x_unregister_cnic;
13227         cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
13228         cp->iscsi_l2_client_id =
13229                 bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
13230         cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
13231
13232         if (NO_ISCSI_OOO(bp))
13233                 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
13234
13235         if (NO_ISCSI(bp))
13236                 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI;
13237
13238         if (NO_FCOE(bp))
13239                 cp->drv_state |= CNIC_DRV_STATE_NO_FCOE;
13240
13241         BNX2X_DEV_INFO(
13242                 "page_size %d, tbl_offset %d, tbl_lines %d, starting cid %d\n",
13243            cp->ctx_blk_size,
13244            cp->ctx_tbl_offset,
13245            cp->ctx_tbl_len,
13246            cp->starting_cid);
13247         return cp;
13248 }
13249
13250 int bnx2x_send_msg2pf(struct bnx2x *bp, u8 *done, dma_addr_t msg_mapping)
13251 {
13252         struct cstorm_vf_zone_data __iomem *zone_data =
13253                 REG_ADDR(bp, PXP_VF_ADDR_CSDM_GLOBAL_START);
13254         int tout = 600, interval = 100; /* wait for 60 seconds */
13255
13256         if (*done) {
13257                 BNX2X_ERR("done was non zero before message to pf was sent\n");
13258                 WARN_ON(true);
13259                 return -EINVAL;
13260         }
13261
13262         /* Write message address */
13263         writel(U64_LO(msg_mapping),
13264                &zone_data->non_trigger.vf_pf_channel.msg_addr_lo);
13265         writel(U64_HI(msg_mapping),
13266                &zone_data->non_trigger.vf_pf_channel.msg_addr_hi);
13267
13268         /* make sure the address is written before FW accesses it */
13269         wmb();
13270
13271         /* Trigger the PF FW */
13272         writeb(1, &zone_data->trigger.vf_pf_channel.addr_valid);
13273
13274         /* Wait for PF to complete */
13275         while ((tout >= 0) && (!*done)) {
13276                 msleep(interval);
13277                 tout -= 1;
13278
13279                 /* progress indicator - HV can take its own sweet time in
13280                  * answering VFs...
13281                  */
13282                 DP_CONT(BNX2X_MSG_IOV, ".");
13283         }
13284
13285         if (!*done) {
13286                 BNX2X_ERR("PF response has timed out\n");
13287                 return -EAGAIN;
13288         }
13289         DP(BNX2X_MSG_SP, "Got a response from PF\n");
13290         return 0;
13291 }
13292
13293 int bnx2x_get_vf_id(struct bnx2x *bp, u32 *vf_id)
13294 {
13295         u32 me_reg;
13296         int tout = 10, interval = 100; /* Wait for 1 sec */
13297
13298         do {
13299                 /* pxp traps vf read of doorbells and returns me reg value */
13300                 me_reg = readl(bp->doorbells);
13301                 if (GOOD_ME_REG(me_reg))
13302                         break;
13303
13304                 msleep(interval);
13305
13306                 BNX2X_ERR("Invalid ME register value: 0x%08x\n. Is pf driver up?",
13307                           me_reg);
13308         } while (tout-- > 0);
13309
13310         if (!GOOD_ME_REG(me_reg)) {
13311                 BNX2X_ERR("Invalid ME register value: 0x%08x\n", me_reg);
13312                 return -EINVAL;
13313         }
13314
13315         BNX2X_ERR("valid ME register value: 0x%08x\n", me_reg);
13316
13317         *vf_id = (me_reg & ME_REG_VF_NUM_MASK) >> ME_REG_VF_NUM_SHIFT;
13318
13319         return 0;
13320 }
13321
13322 int bnx2x_vfpf_acquire(struct bnx2x *bp, u8 tx_count, u8 rx_count)
13323 {
13324         int rc = 0, attempts = 0;
13325         struct vfpf_acquire_tlv *req = &bp->vf2pf_mbox->req.acquire;
13326         struct pfvf_acquire_resp_tlv *resp = &bp->vf2pf_mbox->resp.acquire_resp;
13327         u32 vf_id;
13328         bool resources_acquired = false;
13329
13330         /* clear mailbox and prep first tlv */
13331         bnx2x_vfpf_prep(bp, &req->first_tlv, CHANNEL_TLV_ACQUIRE, sizeof(*req));
13332
13333         if (bnx2x_get_vf_id(bp, &vf_id))
13334                 return -EAGAIN;
13335
13336         req->vfdev_info.vf_id = vf_id;
13337         req->vfdev_info.vf_os = 0;
13338
13339         req->resc_request.num_rxqs = rx_count;
13340         req->resc_request.num_txqs = tx_count;
13341         req->resc_request.num_sbs = bp->igu_sb_cnt;
13342         req->resc_request.num_mac_filters = VF_ACQUIRE_MAC_FILTERS;
13343         req->resc_request.num_mc_filters = VF_ACQUIRE_MC_FILTERS;
13344
13345         /* add list termination tlv */
13346         bnx2x_add_tlv(bp, req, req->first_tlv.tl.length, CHANNEL_TLV_LIST_END,
13347                       sizeof(struct channel_list_end_tlv));
13348
13349         /* output tlvs list */
13350         bnx2x_dp_tlv_list(bp, req);
13351
13352         while (!resources_acquired) {
13353                 DP(BNX2X_MSG_SP, "attempting to acquire resources\n");
13354
13355                 /* send acquire request */
13356                 rc = bnx2x_send_msg2pf(bp,
13357                                        &resp->hdr.status,
13358                                        bp->vf2pf_mbox_mapping);
13359
13360                 /* PF timeout */
13361                 if (rc)
13362                         return rc;
13363
13364                 /* copy acquire response from buffer to bp */
13365                 memcpy(&bp->acquire_resp, resp, sizeof(bp->acquire_resp));
13366
13367                 attempts++;
13368
13369                 /* test whether the PF accepted our request. If not, humble the
13370                  * the request and try again.
13371                  */
13372                 if (bp->acquire_resp.hdr.status == PFVF_STATUS_SUCCESS) {
13373                         DP(BNX2X_MSG_SP, "resources acquired\n");
13374                         resources_acquired = true;
13375                 } else if (bp->acquire_resp.hdr.status ==
13376                            PFVF_STATUS_NO_RESOURCE &&
13377                            attempts < VF_ACQUIRE_THRESH) {
13378                         DP(BNX2X_MSG_SP,
13379                            "PF unwilling to fulfill resource request. Try PF recommended amount\n");
13380
13381                         /* humble our request */
13382                         req->resc_request.num_txqs =
13383                                 bp->acquire_resp.resc.num_txqs;
13384                         req->resc_request.num_rxqs =
13385                                 bp->acquire_resp.resc.num_rxqs;
13386                         req->resc_request.num_sbs =
13387                                 bp->acquire_resp.resc.num_sbs;
13388                         req->resc_request.num_mac_filters =
13389                                 bp->acquire_resp.resc.num_mac_filters;
13390                         req->resc_request.num_vlan_filters =
13391                                 bp->acquire_resp.resc.num_vlan_filters;
13392                         req->resc_request.num_mc_filters =
13393                                 bp->acquire_resp.resc.num_mc_filters;
13394
13395                         /* Clear response buffer */
13396                         memset(&bp->vf2pf_mbox->resp, 0,
13397                                sizeof(union pfvf_tlvs));
13398                 } else {
13399                         /* PF reports error */
13400                         BNX2X_ERR("Failed to get the requested amount of resources: %d. Breaking...\n",
13401                                   bp->acquire_resp.hdr.status);
13402                         return -EAGAIN;
13403                 }
13404         }
13405
13406         /* get HW info */
13407         bp->common.chip_id |= (bp->acquire_resp.pfdev_info.chip_num & 0xffff);
13408         bp->link_params.chip_id = bp->common.chip_id;
13409         bp->db_size = bp->acquire_resp.pfdev_info.db_size;
13410         bp->common.int_block = INT_BLOCK_IGU;
13411         bp->common.chip_port_mode = CHIP_2_PORT_MODE;
13412         bp->igu_dsb_id = -1;
13413         bp->mf_ov = 0;
13414         bp->mf_mode = 0;
13415         bp->common.flash_size = 0;
13416         bp->flags |=
13417                 NO_WOL_FLAG | NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG | NO_FCOE_FLAG;
13418         bp->igu_sb_cnt = 1;
13419         bp->igu_base_sb = bp->acquire_resp.resc.hw_sbs[0].hw_sb_id;
13420         strlcpy(bp->fw_ver, bp->acquire_resp.pfdev_info.fw_ver,
13421                 sizeof(bp->fw_ver));
13422
13423         if (is_valid_ether_addr(bp->acquire_resp.resc.current_mac_addr))
13424                 memcpy(bp->dev->dev_addr,
13425                        bp->acquire_resp.resc.current_mac_addr,
13426                        ETH_ALEN);
13427
13428         return 0;
13429 }
13430
13431 int bnx2x_vfpf_release(struct bnx2x *bp)
13432 {
13433         struct vfpf_release_tlv *req = &bp->vf2pf_mbox->req.release;
13434         struct pfvf_general_resp_tlv *resp = &bp->vf2pf_mbox->resp.general_resp;
13435         u32 rc = 0, vf_id;
13436
13437         /* clear mailbox and prep first tlv */
13438         bnx2x_vfpf_prep(bp, &req->first_tlv, CHANNEL_TLV_RELEASE, sizeof(*req));
13439
13440         if (bnx2x_get_vf_id(bp, &vf_id))
13441                 return -EAGAIN;
13442
13443         req->vf_id = vf_id;
13444
13445         /* add list termination tlv */
13446         bnx2x_add_tlv(bp, req, req->first_tlv.tl.length, CHANNEL_TLV_LIST_END,
13447                       sizeof(struct channel_list_end_tlv));
13448
13449         /* output tlvs list */
13450         bnx2x_dp_tlv_list(bp, req);
13451
13452         /* send release request */
13453         rc = bnx2x_send_msg2pf(bp, &resp->hdr.status, bp->vf2pf_mbox_mapping);
13454
13455         if (rc)
13456                 /* PF timeout */
13457                 return rc;
13458         if (resp->hdr.status == PFVF_STATUS_SUCCESS) {
13459                 /* PF released us */
13460                 DP(BNX2X_MSG_SP, "vf released\n");
13461         } else {
13462                 /* PF reports error */
13463                 BNX2X_ERR("PF failed our release request - are we out of sync? response status: %d\n",
13464                           resp->hdr.status);
13465                 return -EAGAIN;
13466         }
13467
13468         return 0;
13469 }
13470
13471 /* Tell PF about SB addresses */
13472 int bnx2x_vfpf_init(struct bnx2x *bp)
13473 {
13474         struct vfpf_init_tlv *req = &bp->vf2pf_mbox->req.init;
13475         struct pfvf_general_resp_tlv *resp = &bp->vf2pf_mbox->resp.general_resp;
13476         int rc, i;
13477
13478         /* clear mailbox and prep first tlv */
13479         bnx2x_vfpf_prep(bp, &req->first_tlv, CHANNEL_TLV_INIT, sizeof(*req));
13480
13481         /* status blocks */
13482         for_each_eth_queue(bp, i)
13483                 req->sb_addr[i] = (dma_addr_t)bnx2x_fp(bp, i,
13484                                                        status_blk_mapping);
13485
13486         /* statistics - requests only supports single queue for now */
13487         req->stats_addr = bp->fw_stats_data_mapping +
13488                           offsetof(struct bnx2x_fw_stats_data, queue_stats);
13489
13490         /* add list termination tlv */
13491         bnx2x_add_tlv(bp, req, req->first_tlv.tl.length, CHANNEL_TLV_LIST_END,
13492                       sizeof(struct channel_list_end_tlv));
13493
13494         /* output tlvs list */
13495         bnx2x_dp_tlv_list(bp, req);
13496
13497         rc = bnx2x_send_msg2pf(bp, &resp->hdr.status, bp->vf2pf_mbox_mapping);
13498         if (rc)
13499                 return rc;
13500
13501         if (resp->hdr.status != PFVF_STATUS_SUCCESS) {
13502                 BNX2X_ERR("INIT VF failed: %d. Breaking...\n",
13503                           resp->hdr.status);
13504                 return -EAGAIN;
13505         }
13506
13507         DP(BNX2X_MSG_SP, "INIT VF Succeeded\n");
13508         return 0;
13509 }
13510
13511 /* CLOSE VF - opposite to INIT_VF */
13512 void bnx2x_vfpf_close_vf(struct bnx2x *bp)
13513 {
13514         struct vfpf_close_tlv *req = &bp->vf2pf_mbox->req.close;
13515         struct pfvf_general_resp_tlv *resp = &bp->vf2pf_mbox->resp.general_resp;
13516         int i, rc;
13517         u32 vf_id;
13518
13519         /* If we haven't got a valid VF id, there is no sense to
13520          * continue with sending messages
13521          */
13522         if (bnx2x_get_vf_id(bp, &vf_id))
13523                 goto free_irq;
13524
13525         /* Close the queues */
13526         for_each_queue(bp, i)
13527                 bnx2x_vfpf_teardown_queue(bp, i);
13528
13529         /* clear mailbox and prep first tlv */
13530         bnx2x_vfpf_prep(bp, &req->first_tlv, CHANNEL_TLV_CLOSE, sizeof(*req));
13531
13532         req->vf_id = vf_id;
13533
13534         /* add list termination tlv */
13535         bnx2x_add_tlv(bp, req, req->first_tlv.tl.length, CHANNEL_TLV_LIST_END,
13536                       sizeof(struct channel_list_end_tlv));
13537
13538         /* output tlvs list */
13539         bnx2x_dp_tlv_list(bp, req);
13540
13541         rc = bnx2x_send_msg2pf(bp, &resp->hdr.status, bp->vf2pf_mbox_mapping);
13542
13543         if (rc)
13544                 BNX2X_ERR("Sending CLOSE failed. rc was: %d\n", rc);
13545
13546         else if (resp->hdr.status != PFVF_STATUS_SUCCESS)
13547                 BNX2X_ERR("Sending CLOSE failed: pf response was %d\n",
13548                           resp->hdr.status);
13549
13550 free_irq:
13551         /* Disable HW interrupts, NAPI */
13552         bnx2x_netif_stop(bp, 0);
13553         /* Delete all NAPI objects */
13554         bnx2x_del_all_napi(bp);
13555
13556         /* Release IRQs */
13557         bnx2x_free_irq(bp);
13558 }
13559
13560 /* ask the pf to open a queue for the vf */
13561 int bnx2x_vfpf_setup_q(struct bnx2x *bp, int fp_idx)
13562 {
13563         struct vfpf_setup_q_tlv *req = &bp->vf2pf_mbox->req.setup_q;
13564         struct pfvf_general_resp_tlv *resp = &bp->vf2pf_mbox->resp.general_resp;
13565         struct bnx2x_fastpath *fp = &bp->fp[fp_idx];
13566         u16 tpa_agg_size = 0, flags = 0;
13567         int rc;
13568
13569         /* clear mailbox and prep first tlv */
13570         bnx2x_vfpf_prep(bp, &req->first_tlv, CHANNEL_TLV_SETUP_Q, sizeof(*req));
13571
13572         /* select tpa mode to request */
13573         if (!fp->disable_tpa) {
13574                 flags |= VFPF_QUEUE_FLG_TPA;
13575                 flags |= VFPF_QUEUE_FLG_TPA_IPV6;
13576                 if (fp->mode == TPA_MODE_GRO)
13577                         flags |= VFPF_QUEUE_FLG_TPA_GRO;
13578                 tpa_agg_size = TPA_AGG_SIZE;
13579         }
13580
13581         /* calculate queue flags */
13582         flags |= VFPF_QUEUE_FLG_STATS;
13583         flags |= VFPF_QUEUE_FLG_CACHE_ALIGN;
13584         flags |= IS_MF_SD(bp) ? VFPF_QUEUE_FLG_OV : 0;
13585         flags |= VFPF_QUEUE_FLG_VLAN;
13586         DP(NETIF_MSG_IFUP, "vlan removal enabled\n");
13587
13588         /* Common */
13589         req->vf_qid = fp_idx;
13590         req->param_valid = VFPF_RXQ_VALID | VFPF_TXQ_VALID;
13591
13592         /* Rx */
13593         req->rxq.rcq_addr = fp->rx_comp_mapping;
13594         req->rxq.rcq_np_addr = fp->rx_comp_mapping + BCM_PAGE_SIZE;
13595         req->rxq.rxq_addr = fp->rx_desc_mapping;
13596         req->rxq.sge_addr = fp->rx_sge_mapping;
13597         req->rxq.vf_sb = fp_idx;
13598         req->rxq.sb_index = HC_INDEX_ETH_RX_CQ_CONS;
13599         req->rxq.hc_rate = bp->rx_ticks ? 1000000/bp->rx_ticks : 0;
13600         req->rxq.mtu = bp->dev->mtu;
13601         req->rxq.buf_sz = fp->rx_buf_size;
13602         req->rxq.sge_buf_sz = BCM_PAGE_SIZE * PAGES_PER_SGE;
13603         req->rxq.tpa_agg_sz = tpa_agg_size;
13604         req->rxq.max_sge_pkt = SGE_PAGE_ALIGN(bp->dev->mtu) >> SGE_PAGE_SHIFT;
13605         req->rxq.max_sge_pkt = ((req->rxq.max_sge_pkt + PAGES_PER_SGE - 1) &
13606                           (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT;
13607         req->rxq.flags = flags;
13608         req->rxq.drop_flags = 0;
13609         req->rxq.cache_line_log = BNX2X_RX_ALIGN_SHIFT;
13610         req->rxq.stat_id = -1; /* No stats at the moment */
13611
13612         /* Tx */
13613         req->txq.txq_addr = fp->txdata_ptr[FIRST_TX_COS_INDEX]->tx_desc_mapping;
13614         req->txq.vf_sb = fp_idx;
13615         req->txq.sb_index = HC_INDEX_ETH_TX_CQ_CONS_COS0;
13616         req->txq.hc_rate = bp->tx_ticks ? 1000000/bp->tx_ticks : 0;
13617         req->txq.flags = flags;
13618         req->txq.traffic_type = LLFC_TRAFFIC_TYPE_NW;
13619
13620         /* add list termination tlv */
13621         bnx2x_add_tlv(bp, req, req->first_tlv.tl.length, CHANNEL_TLV_LIST_END,
13622                       sizeof(struct channel_list_end_tlv));
13623
13624         /* output tlvs list */
13625         bnx2x_dp_tlv_list(bp, req);
13626
13627         rc = bnx2x_send_msg2pf(bp, &resp->hdr.status, bp->vf2pf_mbox_mapping);
13628         if (rc)
13629                 BNX2X_ERR("Sending SETUP_Q message for queue[%d] failed!\n",
13630                           fp_idx);
13631
13632         if (resp->hdr.status != PFVF_STATUS_SUCCESS) {
13633                 BNX2X_ERR("Status of SETUP_Q for queue[%d] is %d\n",
13634                           fp_idx, resp->hdr.status);
13635                 return -EINVAL;
13636         }
13637         return rc;
13638 }
13639
13640 int bnx2x_vfpf_teardown_queue(struct bnx2x *bp, int qidx)
13641 {
13642         struct vfpf_q_op_tlv *req = &bp->vf2pf_mbox->req.q_op;
13643         struct pfvf_general_resp_tlv *resp = &bp->vf2pf_mbox->resp.general_resp;
13644         int rc;
13645
13646         /* clear mailbox and prep first tlv */
13647         bnx2x_vfpf_prep(bp, &req->first_tlv, CHANNEL_TLV_TEARDOWN_Q,
13648                         sizeof(*req));
13649
13650         req->vf_qid = qidx;
13651
13652         /* add list termination tlv */
13653         bnx2x_add_tlv(bp, req, req->first_tlv.tl.length, CHANNEL_TLV_LIST_END,
13654                       sizeof(struct channel_list_end_tlv));
13655
13656         /* output tlvs list */
13657         bnx2x_dp_tlv_list(bp, req);
13658
13659         rc = bnx2x_send_msg2pf(bp, &resp->hdr.status, bp->vf2pf_mbox_mapping);
13660
13661         if (rc) {
13662                 BNX2X_ERR("Sending TEARDOWN for queue %d failed: %d\n", qidx,
13663                           rc);
13664                 return rc;
13665         }
13666
13667         if (resp->hdr.status != PFVF_STATUS_SUCCESS) {
13668                 BNX2X_ERR("TEARDOWN for queue %d failed: %d\n", qidx,
13669                           resp->hdr.status);
13670                 return -EINVAL;
13671         }
13672
13673         return 0;
13674 }
13675
13676 /* request pf to add a mac for the vf */
13677 int bnx2x_vfpf_set_mac(struct bnx2x *bp)
13678 {
13679         struct vfpf_set_q_filters_tlv *req = &bp->vf2pf_mbox->req.set_q_filters;
13680         struct pfvf_general_resp_tlv *resp = &bp->vf2pf_mbox->resp.general_resp;
13681         int rc;
13682
13683         /* clear mailbox and prep first tlv */
13684         bnx2x_vfpf_prep(bp, &req->first_tlv, CHANNEL_TLV_SET_Q_FILTERS,
13685                         sizeof(*req));
13686
13687         req->flags = VFPF_SET_Q_FILTERS_MAC_VLAN_CHANGED;
13688         req->vf_qid = 0;
13689         req->n_mac_vlan_filters = 1;
13690         req->filters[0].flags =
13691                 VFPF_Q_FILTER_DEST_MAC_VALID | VFPF_Q_FILTER_SET_MAC;
13692
13693         /* copy mac from device to request */
13694         memcpy(req->filters[0].mac, bp->dev->dev_addr, ETH_ALEN);
13695
13696         /* add list termination tlv */
13697         bnx2x_add_tlv(bp, req, req->first_tlv.tl.length, CHANNEL_TLV_LIST_END,
13698                       sizeof(struct channel_list_end_tlv));
13699
13700         /* output tlvs list */
13701         bnx2x_dp_tlv_list(bp, req);
13702
13703         /* send message to pf */
13704         rc = bnx2x_send_msg2pf(bp, &resp->hdr.status, bp->vf2pf_mbox_mapping);
13705         if (rc) {
13706                 BNX2X_ERR("failed to send message to pf. rc was %d\n", rc);
13707                 return rc;
13708         }
13709
13710         /* PF failed the transaction */
13711         if (resp->hdr.status != PFVF_STATUS_SUCCESS) {
13712                 BNX2X_ERR("vfpf SET MAC failed: %d\n", resp->hdr.status);
13713                 return -EINVAL;
13714         }
13715
13716         return 0;
13717 }
13718
13719 int bnx2x_vfpf_set_mcast(struct net_device *dev)
13720 {
13721         struct bnx2x *bp = netdev_priv(dev);
13722         struct vfpf_set_q_filters_tlv *req = &bp->vf2pf_mbox->req.set_q_filters;
13723         struct pfvf_general_resp_tlv *resp = &bp->vf2pf_mbox->resp.general_resp;
13724         int rc, i = 0;
13725         struct netdev_hw_addr *ha;
13726
13727         if (bp->state != BNX2X_STATE_OPEN) {
13728                 DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state);
13729                 return -EINVAL;
13730         }
13731
13732         /* clear mailbox and prep first tlv */
13733         bnx2x_vfpf_prep(bp, &req->first_tlv, CHANNEL_TLV_SET_Q_FILTERS,
13734                         sizeof(*req));
13735
13736         /* Get Rx mode requested */
13737         DP(NETIF_MSG_IFUP, "dev->flags = %x\n", dev->flags);
13738
13739         netdev_for_each_mc_addr(ha, dev) {
13740                 DP(NETIF_MSG_IFUP, "Adding mcast MAC: %pM\n",
13741                    bnx2x_mc_addr(ha));
13742                 memcpy(req->multicast[i], bnx2x_mc_addr(ha), ETH_ALEN);
13743                 i++;
13744         }
13745
13746         /* We support four PFVF_MAX_MULTICAST_PER_VF mcast
13747          * addresses tops
13748          */
13749         if (i >= PFVF_MAX_MULTICAST_PER_VF) {
13750                 DP(NETIF_MSG_IFUP,
13751                    "VF supports not more than %d multicast MAC addresses\n",
13752                    PFVF_MAX_MULTICAST_PER_VF);
13753                 return -EINVAL;
13754         }
13755
13756         req->n_multicast = i;
13757         req->flags |= VFPF_SET_Q_FILTERS_MULTICAST_CHANGED;
13758         req->vf_qid = 0;
13759
13760         /* add list termination tlv */
13761         bnx2x_add_tlv(bp, req, req->first_tlv.tl.length, CHANNEL_TLV_LIST_END,
13762                       sizeof(struct channel_list_end_tlv));
13763
13764         /* output tlvs list */
13765         bnx2x_dp_tlv_list(bp, req);
13766
13767         rc = bnx2x_send_msg2pf(bp, &resp->hdr.status, bp->vf2pf_mbox_mapping);
13768         if (rc) {
13769                 BNX2X_ERR("Sending a message failed: %d\n", rc);
13770                 return rc;
13771         }
13772
13773         if (resp->hdr.status != PFVF_STATUS_SUCCESS) {
13774                 BNX2X_ERR("Set Rx mode/multicast failed: %d\n",
13775                           resp->hdr.status);
13776                 return -EINVAL;
13777         }
13778
13779         return 0;
13780 }
13781
13782 int bnx2x_vfpf_storm_rx_mode(struct bnx2x *bp)
13783 {
13784         int mode = bp->rx_mode;
13785         struct vfpf_set_q_filters_tlv *req = &bp->vf2pf_mbox->req.set_q_filters;
13786         struct pfvf_general_resp_tlv *resp = &bp->vf2pf_mbox->resp.general_resp;
13787         int rc;
13788
13789         /* clear mailbox and prep first tlv */
13790         bnx2x_vfpf_prep(bp, &req->first_tlv, CHANNEL_TLV_SET_Q_FILTERS,
13791                         sizeof(*req));
13792
13793         DP(NETIF_MSG_IFUP, "Rx mode is %d\n", mode);
13794
13795         switch (mode) {
13796         case BNX2X_RX_MODE_NONE: /* no Rx */
13797                 req->rx_mask = VFPF_RX_MASK_ACCEPT_NONE;
13798                 break;
13799         case BNX2X_RX_MODE_NORMAL:
13800                 req->rx_mask = VFPF_RX_MASK_ACCEPT_MATCHED_MULTICAST;
13801                 req->rx_mask |= VFPF_RX_MASK_ACCEPT_MATCHED_UNICAST;
13802                 req->rx_mask |= VFPF_RX_MASK_ACCEPT_BROADCAST;
13803                 break;
13804         case BNX2X_RX_MODE_ALLMULTI:
13805                 req->rx_mask = VFPF_RX_MASK_ACCEPT_ALL_MULTICAST;
13806                 req->rx_mask |= VFPF_RX_MASK_ACCEPT_MATCHED_UNICAST;
13807                 req->rx_mask |= VFPF_RX_MASK_ACCEPT_BROADCAST;
13808                 break;
13809         case BNX2X_RX_MODE_PROMISC:
13810                 req->rx_mask = VFPF_RX_MASK_ACCEPT_ALL_UNICAST;
13811                 req->rx_mask |= VFPF_RX_MASK_ACCEPT_ALL_MULTICAST;
13812                 req->rx_mask |= VFPF_RX_MASK_ACCEPT_BROADCAST;
13813                 break;
13814         default:
13815                 BNX2X_ERR("BAD rx mode (%d)\n", mode);
13816                 return -EINVAL;
13817         }
13818
13819         req->flags |= VFPF_SET_Q_FILTERS_RX_MASK_CHANGED;
13820         req->vf_qid = 0;
13821
13822         /* add list termination tlv */
13823         bnx2x_add_tlv(bp, req, req->first_tlv.tl.length, CHANNEL_TLV_LIST_END,
13824                       sizeof(struct channel_list_end_tlv));
13825
13826         /* output tlvs list */
13827         bnx2x_dp_tlv_list(bp, req);
13828
13829         rc = bnx2x_send_msg2pf(bp, &resp->hdr.status, bp->vf2pf_mbox_mapping);
13830         if (rc)
13831                 BNX2X_ERR("Sending a message failed: %d\n", rc);
13832
13833         if (resp->hdr.status != PFVF_STATUS_SUCCESS) {
13834                 BNX2X_ERR("Set Rx mode failed: %d\n", resp->hdr.status);
13835                 return -EINVAL;
13836         }
13837
13838         return rc;
13839 }