Merge tag 'modules-6.4-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/mcgrof...
[linux-block.git] / drivers / net / ethernet / broadcom / bnx2x / bnx2x_main.c
1 /* bnx2x_main.c: QLogic Everest network driver.
2  *
3  * Copyright (c) 2007-2013 Broadcom Corporation
4  * Copyright (c) 2014 QLogic Corporation
5  * All rights reserved
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation.
10  *
11  * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
12  * Written by: Eliezer Tamir
13  * Based on code from Michael Chan's bnx2 driver
14  * UDP CSUM errata workaround by Arik Gendelman
15  * Slowpath and fastpath rework by Vladislav Zolotarov
16  * Statistics and Link management by Yitchak Gertner
17  *
18  */
19
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21
22 #include <linux/module.h>
23 #include <linux/moduleparam.h>
24 #include <linux/kernel.h>
25 #include <linux/device.h>  /* for dev_info() */
26 #include <linux/timer.h>
27 #include <linux/errno.h>
28 #include <linux/ioport.h>
29 #include <linux/slab.h>
30 #include <linux/interrupt.h>
31 #include <linux/pci.h>
32 #include <linux/init.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/skbuff.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/bitops.h>
38 #include <linux/irq.h>
39 #include <linux/delay.h>
40 #include <asm/byteorder.h>
41 #include <linux/time.h>
42 #include <linux/ethtool.h>
43 #include <linux/mii.h>
44 #include <linux/if_vlan.h>
45 #include <linux/crash_dump.h>
46 #include <net/ip.h>
47 #include <net/ipv6.h>
48 #include <net/tcp.h>
49 #include <net/vxlan.h>
50 #include <net/checksum.h>
51 #include <net/ip6_checksum.h>
52 #include <linux/workqueue.h>
53 #include <linux/crc32.h>
54 #include <linux/crc32c.h>
55 #include <linux/prefetch.h>
56 #include <linux/zlib.h>
57 #include <linux/io.h>
58 #include <linux/semaphore.h>
59 #include <linux/stringify.h>
60 #include <linux/vmalloc.h>
61 #include "bnx2x.h"
62 #include "bnx2x_init.h"
63 #include "bnx2x_init_ops.h"
64 #include "bnx2x_cmn.h"
65 #include "bnx2x_vfpf.h"
66 #include "bnx2x_dcb.h"
67 #include "bnx2x_sp.h"
68 #include <linux/firmware.h>
69 #include "bnx2x_fw_file_hdr.h"
70 /* FW files */
71 #define FW_FILE_VERSION                                 \
72         __stringify(BCM_5710_FW_MAJOR_VERSION) "."      \
73         __stringify(BCM_5710_FW_MINOR_VERSION) "."      \
74         __stringify(BCM_5710_FW_REVISION_VERSION) "."   \
75         __stringify(BCM_5710_FW_ENGINEERING_VERSION)
76
77 #define FW_FILE_VERSION_V15                             \
78         __stringify(BCM_5710_FW_MAJOR_VERSION) "."      \
79         __stringify(BCM_5710_FW_MINOR_VERSION) "."      \
80         __stringify(BCM_5710_FW_REVISION_VERSION_V15) "."       \
81         __stringify(BCM_5710_FW_ENGINEERING_VERSION)
82
83 #define FW_FILE_NAME_E1         "bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw"
84 #define FW_FILE_NAME_E1H        "bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw"
85 #define FW_FILE_NAME_E2         "bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw"
86 #define FW_FILE_NAME_E1_V15     "bnx2x/bnx2x-e1-" FW_FILE_VERSION_V15 ".fw"
87 #define FW_FILE_NAME_E1H_V15    "bnx2x/bnx2x-e1h-" FW_FILE_VERSION_V15 ".fw"
88 #define FW_FILE_NAME_E2_V15     "bnx2x/bnx2x-e2-" FW_FILE_VERSION_V15 ".fw"
89
90 /* Time in jiffies before concluding the transmitter is hung */
91 #define TX_TIMEOUT              (5*HZ)
92
93 MODULE_AUTHOR("Eliezer Tamir");
94 MODULE_DESCRIPTION("QLogic "
95                    "BCM57710/57711/57711E/"
96                    "57712/57712_MF/57800/57800_MF/57810/57810_MF/"
97                    "57840/57840_MF Driver");
98 MODULE_LICENSE("GPL");
99 MODULE_FIRMWARE(FW_FILE_NAME_E1);
100 MODULE_FIRMWARE(FW_FILE_NAME_E1H);
101 MODULE_FIRMWARE(FW_FILE_NAME_E2);
102 MODULE_FIRMWARE(FW_FILE_NAME_E1_V15);
103 MODULE_FIRMWARE(FW_FILE_NAME_E1H_V15);
104 MODULE_FIRMWARE(FW_FILE_NAME_E2_V15);
105
106 int bnx2x_num_queues;
107 module_param_named(num_queues, bnx2x_num_queues, int, 0444);
108 MODULE_PARM_DESC(num_queues,
109                  " Set number of queues (default is as a number of CPUs)");
110
111 static int disable_tpa;
112 module_param(disable_tpa, int, 0444);
113 MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature");
114
115 static int int_mode;
116 module_param(int_mode, int, 0444);
117 MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X "
118                                 "(1 INT#x; 2 MSI)");
119
120 static int dropless_fc;
121 module_param(dropless_fc, int, 0444);
122 MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring");
123
124 static int mrrs = -1;
125 module_param(mrrs, int, 0444);
126 MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)");
127
128 static int debug;
129 module_param(debug, int, 0444);
130 MODULE_PARM_DESC(debug, " Default debug msglevel");
131
132 static struct workqueue_struct *bnx2x_wq;
133 struct workqueue_struct *bnx2x_iov_wq;
134
135 struct bnx2x_mac_vals {
136         u32 xmac_addr;
137         u32 xmac_val;
138         u32 emac_addr;
139         u32 emac_val;
140         u32 umac_addr[2];
141         u32 umac_val[2];
142         u32 bmac_addr;
143         u32 bmac_val[2];
144 };
145
146 enum bnx2x_board_type {
147         BCM57710 = 0,
148         BCM57711,
149         BCM57711E,
150         BCM57712,
151         BCM57712_MF,
152         BCM57712_VF,
153         BCM57800,
154         BCM57800_MF,
155         BCM57800_VF,
156         BCM57810,
157         BCM57810_MF,
158         BCM57810_VF,
159         BCM57840_4_10,
160         BCM57840_2_20,
161         BCM57840_MF,
162         BCM57840_VF,
163         BCM57811,
164         BCM57811_MF,
165         BCM57840_O,
166         BCM57840_MFO,
167         BCM57811_VF
168 };
169
170 /* indexed by board_type, above */
171 static struct {
172         char *name;
173 } board_info[] = {
174         [BCM57710]      = { "QLogic BCM57710 10 Gigabit PCIe [Everest]" },
175         [BCM57711]      = { "QLogic BCM57711 10 Gigabit PCIe" },
176         [BCM57711E]     = { "QLogic BCM57711E 10 Gigabit PCIe" },
177         [BCM57712]      = { "QLogic BCM57712 10 Gigabit Ethernet" },
178         [BCM57712_MF]   = { "QLogic BCM57712 10 Gigabit Ethernet Multi Function" },
179         [BCM57712_VF]   = { "QLogic BCM57712 10 Gigabit Ethernet Virtual Function" },
180         [BCM57800]      = { "QLogic BCM57800 10 Gigabit Ethernet" },
181         [BCM57800_MF]   = { "QLogic BCM57800 10 Gigabit Ethernet Multi Function" },
182         [BCM57800_VF]   = { "QLogic BCM57800 10 Gigabit Ethernet Virtual Function" },
183         [BCM57810]      = { "QLogic BCM57810 10 Gigabit Ethernet" },
184         [BCM57810_MF]   = { "QLogic BCM57810 10 Gigabit Ethernet Multi Function" },
185         [BCM57810_VF]   = { "QLogic BCM57810 10 Gigabit Ethernet Virtual Function" },
186         [BCM57840_4_10] = { "QLogic BCM57840 10 Gigabit Ethernet" },
187         [BCM57840_2_20] = { "QLogic BCM57840 20 Gigabit Ethernet" },
188         [BCM57840_MF]   = { "QLogic BCM57840 10/20 Gigabit Ethernet Multi Function" },
189         [BCM57840_VF]   = { "QLogic BCM57840 10/20 Gigabit Ethernet Virtual Function" },
190         [BCM57811]      = { "QLogic BCM57811 10 Gigabit Ethernet" },
191         [BCM57811_MF]   = { "QLogic BCM57811 10 Gigabit Ethernet Multi Function" },
192         [BCM57840_O]    = { "QLogic BCM57840 10/20 Gigabit Ethernet" },
193         [BCM57840_MFO]  = { "QLogic BCM57840 10/20 Gigabit Ethernet Multi Function" },
194         [BCM57811_VF]   = { "QLogic BCM57840 10/20 Gigabit Ethernet Virtual Function" }
195 };
196
197 #ifndef PCI_DEVICE_ID_NX2_57710
198 #define PCI_DEVICE_ID_NX2_57710         CHIP_NUM_57710
199 #endif
200 #ifndef PCI_DEVICE_ID_NX2_57711
201 #define PCI_DEVICE_ID_NX2_57711         CHIP_NUM_57711
202 #endif
203 #ifndef PCI_DEVICE_ID_NX2_57711E
204 #define PCI_DEVICE_ID_NX2_57711E        CHIP_NUM_57711E
205 #endif
206 #ifndef PCI_DEVICE_ID_NX2_57712
207 #define PCI_DEVICE_ID_NX2_57712         CHIP_NUM_57712
208 #endif
209 #ifndef PCI_DEVICE_ID_NX2_57712_MF
210 #define PCI_DEVICE_ID_NX2_57712_MF      CHIP_NUM_57712_MF
211 #endif
212 #ifndef PCI_DEVICE_ID_NX2_57712_VF
213 #define PCI_DEVICE_ID_NX2_57712_VF      CHIP_NUM_57712_VF
214 #endif
215 #ifndef PCI_DEVICE_ID_NX2_57800
216 #define PCI_DEVICE_ID_NX2_57800         CHIP_NUM_57800
217 #endif
218 #ifndef PCI_DEVICE_ID_NX2_57800_MF
219 #define PCI_DEVICE_ID_NX2_57800_MF      CHIP_NUM_57800_MF
220 #endif
221 #ifndef PCI_DEVICE_ID_NX2_57800_VF
222 #define PCI_DEVICE_ID_NX2_57800_VF      CHIP_NUM_57800_VF
223 #endif
224 #ifndef PCI_DEVICE_ID_NX2_57810
225 #define PCI_DEVICE_ID_NX2_57810         CHIP_NUM_57810
226 #endif
227 #ifndef PCI_DEVICE_ID_NX2_57810_MF
228 #define PCI_DEVICE_ID_NX2_57810_MF      CHIP_NUM_57810_MF
229 #endif
230 #ifndef PCI_DEVICE_ID_NX2_57840_O
231 #define PCI_DEVICE_ID_NX2_57840_O       CHIP_NUM_57840_OBSOLETE
232 #endif
233 #ifndef PCI_DEVICE_ID_NX2_57810_VF
234 #define PCI_DEVICE_ID_NX2_57810_VF      CHIP_NUM_57810_VF
235 #endif
236 #ifndef PCI_DEVICE_ID_NX2_57840_4_10
237 #define PCI_DEVICE_ID_NX2_57840_4_10    CHIP_NUM_57840_4_10
238 #endif
239 #ifndef PCI_DEVICE_ID_NX2_57840_2_20
240 #define PCI_DEVICE_ID_NX2_57840_2_20    CHIP_NUM_57840_2_20
241 #endif
242 #ifndef PCI_DEVICE_ID_NX2_57840_MFO
243 #define PCI_DEVICE_ID_NX2_57840_MFO     CHIP_NUM_57840_MF_OBSOLETE
244 #endif
245 #ifndef PCI_DEVICE_ID_NX2_57840_MF
246 #define PCI_DEVICE_ID_NX2_57840_MF      CHIP_NUM_57840_MF
247 #endif
248 #ifndef PCI_DEVICE_ID_NX2_57840_VF
249 #define PCI_DEVICE_ID_NX2_57840_VF      CHIP_NUM_57840_VF
250 #endif
251 #ifndef PCI_DEVICE_ID_NX2_57811
252 #define PCI_DEVICE_ID_NX2_57811         CHIP_NUM_57811
253 #endif
254 #ifndef PCI_DEVICE_ID_NX2_57811_MF
255 #define PCI_DEVICE_ID_NX2_57811_MF      CHIP_NUM_57811_MF
256 #endif
257 #ifndef PCI_DEVICE_ID_NX2_57811_VF
258 #define PCI_DEVICE_ID_NX2_57811_VF      CHIP_NUM_57811_VF
259 #endif
260
261 static const struct pci_device_id bnx2x_pci_tbl[] = {
262         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 },
263         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 },
264         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E },
265         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 },
266         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF },
267         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_VF), BCM57712_VF },
268         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 },
269         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF },
270         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_VF), BCM57800_VF },
271         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 },
272         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF },
273         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_O), BCM57840_O },
274         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
275         { PCI_VDEVICE(QLOGIC,   PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
276         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_2_20), BCM57840_2_20 },
277         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_VF), BCM57810_VF },
278         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MFO), BCM57840_MFO },
279         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
280         { PCI_VDEVICE(QLOGIC,   PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
281         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF },
282         { PCI_VDEVICE(QLOGIC,   PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF },
283         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811), BCM57811 },
284         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_MF), BCM57811_MF },
285         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_VF), BCM57811_VF },
286         { 0 }
287 };
288
289 MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl);
290
291 const u32 dmae_reg_go_c[] = {
292         DMAE_REG_GO_C0, DMAE_REG_GO_C1, DMAE_REG_GO_C2, DMAE_REG_GO_C3,
293         DMAE_REG_GO_C4, DMAE_REG_GO_C5, DMAE_REG_GO_C6, DMAE_REG_GO_C7,
294         DMAE_REG_GO_C8, DMAE_REG_GO_C9, DMAE_REG_GO_C10, DMAE_REG_GO_C11,
295         DMAE_REG_GO_C12, DMAE_REG_GO_C13, DMAE_REG_GO_C14, DMAE_REG_GO_C15
296 };
297
298 /* Global resources for unloading a previously loaded device */
299 #define BNX2X_PREV_WAIT_NEEDED 1
300 static DEFINE_SEMAPHORE(bnx2x_prev_sem, 1);
301 static LIST_HEAD(bnx2x_prev_list);
302
303 /* Forward declaration */
304 static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev);
305 static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp);
306 static int bnx2x_set_storm_rx_mode(struct bnx2x *bp);
307
308 /****************************************************************************
309 * General service functions
310 ****************************************************************************/
311
312 static int bnx2x_hwtstamp_ioctl(struct bnx2x *bp, struct ifreq *ifr);
313
314 static void __storm_memset_dma_mapping(struct bnx2x *bp,
315                                        u32 addr, dma_addr_t mapping)
316 {
317         REG_WR(bp,  addr, U64_LO(mapping));
318         REG_WR(bp,  addr + 4, U64_HI(mapping));
319 }
320
321 static void storm_memset_spq_addr(struct bnx2x *bp,
322                                   dma_addr_t mapping, u16 abs_fid)
323 {
324         u32 addr = XSEM_REG_FAST_MEMORY +
325                         XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid);
326
327         __storm_memset_dma_mapping(bp, addr, mapping);
328 }
329
330 static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
331                                   u16 pf_id)
332 {
333         REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
334                 pf_id);
335         REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
336                 pf_id);
337         REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
338                 pf_id);
339         REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
340                 pf_id);
341 }
342
343 static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
344                                  u8 enable)
345 {
346         REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
347                 enable);
348         REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
349                 enable);
350         REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
351                 enable);
352         REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
353                 enable);
354 }
355
356 static void storm_memset_eq_data(struct bnx2x *bp,
357                                  struct event_ring_data *eq_data,
358                                 u16 pfid)
359 {
360         size_t size = sizeof(struct event_ring_data);
361
362         u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid);
363
364         __storm_memset_struct(bp, addr, size, (u32 *)eq_data);
365 }
366
367 static void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod,
368                                  u16 pfid)
369 {
370         u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid);
371         REG_WR16(bp, addr, eq_prod);
372 }
373
374 /* used only at init
375  * locking is done by mcp
376  */
377 static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val)
378 {
379         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
380         pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val);
381         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
382                                PCICFG_VENDOR_ID_OFFSET);
383 }
384
385 static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr)
386 {
387         u32 val;
388
389         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
390         pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val);
391         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
392                                PCICFG_VENDOR_ID_OFFSET);
393
394         return val;
395 }
396
397 #define DMAE_DP_SRC_GRC         "grc src_addr [%08x]"
398 #define DMAE_DP_SRC_PCI         "pci src_addr [%x:%08x]"
399 #define DMAE_DP_DST_GRC         "grc dst_addr [%08x]"
400 #define DMAE_DP_DST_PCI         "pci dst_addr [%x:%08x]"
401 #define DMAE_DP_DST_NONE        "dst_addr [none]"
402
403 static void bnx2x_dp_dmae(struct bnx2x *bp,
404                           struct dmae_command *dmae, int msglvl)
405 {
406         u32 src_type = dmae->opcode & DMAE_COMMAND_SRC;
407         int i;
408
409         switch (dmae->opcode & DMAE_COMMAND_DST) {
410         case DMAE_CMD_DST_PCI:
411                 if (src_type == DMAE_CMD_SRC_PCI)
412                         DP(msglvl, "DMAE: opcode 0x%08x\n"
413                            "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
414                            "comp_addr [%x:%08x], comp_val 0x%08x\n",
415                            dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
416                            dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
417                            dmae->comp_addr_hi, dmae->comp_addr_lo,
418                            dmae->comp_val);
419                 else
420                         DP(msglvl, "DMAE: opcode 0x%08x\n"
421                            "src [%08x], len [%d*4], dst [%x:%08x]\n"
422                            "comp_addr [%x:%08x], comp_val 0x%08x\n",
423                            dmae->opcode, dmae->src_addr_lo >> 2,
424                            dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
425                            dmae->comp_addr_hi, dmae->comp_addr_lo,
426                            dmae->comp_val);
427                 break;
428         case DMAE_CMD_DST_GRC:
429                 if (src_type == DMAE_CMD_SRC_PCI)
430                         DP(msglvl, "DMAE: opcode 0x%08x\n"
431                            "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
432                            "comp_addr [%x:%08x], comp_val 0x%08x\n",
433                            dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
434                            dmae->len, dmae->dst_addr_lo >> 2,
435                            dmae->comp_addr_hi, dmae->comp_addr_lo,
436                            dmae->comp_val);
437                 else
438                         DP(msglvl, "DMAE: opcode 0x%08x\n"
439                            "src [%08x], len [%d*4], dst [%08x]\n"
440                            "comp_addr [%x:%08x], comp_val 0x%08x\n",
441                            dmae->opcode, dmae->src_addr_lo >> 2,
442                            dmae->len, dmae->dst_addr_lo >> 2,
443                            dmae->comp_addr_hi, dmae->comp_addr_lo,
444                            dmae->comp_val);
445                 break;
446         default:
447                 if (src_type == DMAE_CMD_SRC_PCI)
448                         DP(msglvl, "DMAE: opcode 0x%08x\n"
449                            "src_addr [%x:%08x]  len [%d * 4]  dst_addr [none]\n"
450                            "comp_addr [%x:%08x]  comp_val 0x%08x\n",
451                            dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
452                            dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
453                            dmae->comp_val);
454                 else
455                         DP(msglvl, "DMAE: opcode 0x%08x\n"
456                            "src_addr [%08x]  len [%d * 4]  dst_addr [none]\n"
457                            "comp_addr [%x:%08x]  comp_val 0x%08x\n",
458                            dmae->opcode, dmae->src_addr_lo >> 2,
459                            dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
460                            dmae->comp_val);
461                 break;
462         }
463
464         for (i = 0; i < (sizeof(struct dmae_command)/4); i++)
465                 DP(msglvl, "DMAE RAW [%02d]: 0x%08x\n",
466                    i, *(((u32 *)dmae) + i));
467 }
468
469 /* copy command into DMAE command memory and set DMAE command go */
470 void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx)
471 {
472         u32 cmd_offset;
473         int i;
474
475         cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx);
476         for (i = 0; i < (sizeof(struct dmae_command)/4); i++) {
477                 REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i));
478         }
479         REG_WR(bp, dmae_reg_go_c[idx], 1);
480 }
481
482 u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type)
483 {
484         return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
485                            DMAE_CMD_C_ENABLE);
486 }
487
488 u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode)
489 {
490         return opcode & ~DMAE_CMD_SRC_RESET;
491 }
492
493 u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
494                              bool with_comp, u8 comp_type)
495 {
496         u32 opcode = 0;
497
498         opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
499                    (dst_type << DMAE_COMMAND_DST_SHIFT));
500
501         opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
502
503         opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
504         opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) |
505                    (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT));
506         opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
507
508 #ifdef __BIG_ENDIAN
509         opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
510 #else
511         opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
512 #endif
513         if (with_comp)
514                 opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
515         return opcode;
516 }
517
518 void bnx2x_prep_dmae_with_comp(struct bnx2x *bp,
519                                       struct dmae_command *dmae,
520                                       u8 src_type, u8 dst_type)
521 {
522         memset(dmae, 0, sizeof(struct dmae_command));
523
524         /* set the opcode */
525         dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type,
526                                          true, DMAE_COMP_PCI);
527
528         /* fill in the completion parameters */
529         dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp));
530         dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp));
531         dmae->comp_val = DMAE_COMP_VAL;
532 }
533
534 /* issue a dmae command over the init-channel and wait for completion */
535 int bnx2x_issue_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae,
536                                u32 *comp)
537 {
538         int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000;
539         int rc = 0;
540
541         bnx2x_dp_dmae(bp, dmae, BNX2X_MSG_DMAE);
542
543         /* Lock the dmae channel. Disable BHs to prevent a dead-lock
544          * as long as this code is called both from syscall context and
545          * from ndo_set_rx_mode() flow that may be called from BH.
546          */
547
548         spin_lock_bh(&bp->dmae_lock);
549
550         /* reset completion */
551         *comp = 0;
552
553         /* post the command on the channel used for initializations */
554         bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp));
555
556         /* wait for completion */
557         udelay(5);
558         while ((*comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
559
560                 if (!cnt ||
561                     (bp->recovery_state != BNX2X_RECOVERY_DONE &&
562                      bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
563                         BNX2X_ERR("DMAE timeout!\n");
564                         rc = DMAE_TIMEOUT;
565                         goto unlock;
566                 }
567                 cnt--;
568                 udelay(50);
569         }
570         if (*comp & DMAE_PCI_ERR_FLAG) {
571                 BNX2X_ERR("DMAE PCI error!\n");
572                 rc = DMAE_PCI_ERROR;
573         }
574
575 unlock:
576
577         spin_unlock_bh(&bp->dmae_lock);
578
579         return rc;
580 }
581
582 void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
583                       u32 len32)
584 {
585         int rc;
586         struct dmae_command dmae;
587
588         if (!bp->dmae_ready) {
589                 u32 *data = bnx2x_sp(bp, wb_data[0]);
590
591                 if (CHIP_IS_E1(bp))
592                         bnx2x_init_ind_wr(bp, dst_addr, data, len32);
593                 else
594                         bnx2x_init_str_wr(bp, dst_addr, data, len32);
595                 return;
596         }
597
598         /* set opcode and fixed command fields */
599         bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
600
601         /* fill in addresses and len */
602         dmae.src_addr_lo = U64_LO(dma_addr);
603         dmae.src_addr_hi = U64_HI(dma_addr);
604         dmae.dst_addr_lo = dst_addr >> 2;
605         dmae.dst_addr_hi = 0;
606         dmae.len = len32;
607
608         /* issue the command and wait for completion */
609         rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
610         if (rc) {
611                 BNX2X_ERR("DMAE returned failure %d\n", rc);
612 #ifdef BNX2X_STOP_ON_ERROR
613                 bnx2x_panic();
614 #endif
615         }
616 }
617
618 void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32)
619 {
620         int rc;
621         struct dmae_command dmae;
622
623         if (!bp->dmae_ready) {
624                 u32 *data = bnx2x_sp(bp, wb_data[0]);
625                 int i;
626
627                 if (CHIP_IS_E1(bp))
628                         for (i = 0; i < len32; i++)
629                                 data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4);
630                 else
631                         for (i = 0; i < len32; i++)
632                                 data[i] = REG_RD(bp, src_addr + i*4);
633
634                 return;
635         }
636
637         /* set opcode and fixed command fields */
638         bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
639
640         /* fill in addresses and len */
641         dmae.src_addr_lo = src_addr >> 2;
642         dmae.src_addr_hi = 0;
643         dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data));
644         dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data));
645         dmae.len = len32;
646
647         /* issue the command and wait for completion */
648         rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
649         if (rc) {
650                 BNX2X_ERR("DMAE returned failure %d\n", rc);
651 #ifdef BNX2X_STOP_ON_ERROR
652                 bnx2x_panic();
653 #endif
654         }
655 }
656
657 static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
658                                       u32 addr, u32 len)
659 {
660         int dmae_wr_max = DMAE_LEN32_WR_MAX(bp);
661         int offset = 0;
662
663         while (len > dmae_wr_max) {
664                 bnx2x_write_dmae(bp, phys_addr + offset,
665                                  addr + offset, dmae_wr_max);
666                 offset += dmae_wr_max * 4;
667                 len -= dmae_wr_max;
668         }
669
670         bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len);
671 }
672
673 enum storms {
674            XSTORM,
675            TSTORM,
676            CSTORM,
677            USTORM,
678            MAX_STORMS
679 };
680
681 #define STORMS_NUM 4
682 #define REGS_IN_ENTRY 4
683
684 static inline int bnx2x_get_assert_list_entry(struct bnx2x *bp,
685                                               enum storms storm,
686                                               int entry)
687 {
688         switch (storm) {
689         case XSTORM:
690                 return XSTORM_ASSERT_LIST_OFFSET(entry);
691         case TSTORM:
692                 return TSTORM_ASSERT_LIST_OFFSET(entry);
693         case CSTORM:
694                 return CSTORM_ASSERT_LIST_OFFSET(entry);
695         case USTORM:
696                 return USTORM_ASSERT_LIST_OFFSET(entry);
697         case MAX_STORMS:
698         default:
699                 BNX2X_ERR("unknown storm\n");
700         }
701         return -EINVAL;
702 }
703
704 static int bnx2x_mc_assert(struct bnx2x *bp)
705 {
706         char last_idx;
707         int i, j, rc = 0;
708         enum storms storm;
709         u32 regs[REGS_IN_ENTRY];
710         u32 bar_storm_intmem[STORMS_NUM] = {
711                 BAR_XSTRORM_INTMEM,
712                 BAR_TSTRORM_INTMEM,
713                 BAR_CSTRORM_INTMEM,
714                 BAR_USTRORM_INTMEM
715         };
716         u32 storm_assert_list_index[STORMS_NUM] = {
717                 XSTORM_ASSERT_LIST_INDEX_OFFSET,
718                 TSTORM_ASSERT_LIST_INDEX_OFFSET,
719                 CSTORM_ASSERT_LIST_INDEX_OFFSET,
720                 USTORM_ASSERT_LIST_INDEX_OFFSET
721         };
722         char *storms_string[STORMS_NUM] = {
723                 "XSTORM",
724                 "TSTORM",
725                 "CSTORM",
726                 "USTORM"
727         };
728
729         for (storm = XSTORM; storm < MAX_STORMS; storm++) {
730                 last_idx = REG_RD8(bp, bar_storm_intmem[storm] +
731                                    storm_assert_list_index[storm]);
732                 if (last_idx)
733                         BNX2X_ERR("%s_ASSERT_LIST_INDEX 0x%x\n",
734                                   storms_string[storm], last_idx);
735
736                 /* print the asserts */
737                 for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
738                         /* read a single assert entry */
739                         for (j = 0; j < REGS_IN_ENTRY; j++)
740                                 regs[j] = REG_RD(bp, bar_storm_intmem[storm] +
741                                           bnx2x_get_assert_list_entry(bp,
742                                                                       storm,
743                                                                       i) +
744                                           sizeof(u32) * j);
745
746                         /* log entry if it contains a valid assert */
747                         if (regs[0] != COMMON_ASM_INVALID_ASSERT_OPCODE) {
748                                 BNX2X_ERR("%s_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
749                                           storms_string[storm], i, regs[3],
750                                           regs[2], regs[1], regs[0]);
751                                 rc++;
752                         } else {
753                                 break;
754                         }
755                 }
756         }
757
758         BNX2X_ERR("Chip Revision: %s, FW Version: %d_%d_%d\n",
759                   CHIP_IS_E1(bp) ? "everest1" :
760                   CHIP_IS_E1H(bp) ? "everest1h" :
761                   CHIP_IS_E2(bp) ? "everest2" : "everest3",
762                   bp->fw_major, bp->fw_minor, bp->fw_rev);
763
764         return rc;
765 }
766
767 #define MCPR_TRACE_BUFFER_SIZE  (0x800)
768 #define SCRATCH_BUFFER_SIZE(bp) \
769         (CHIP_IS_E1(bp) ? 0x10000 : (CHIP_IS_E1H(bp) ? 0x20000 : 0x28000))
770
771 void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl)
772 {
773         u32 addr, val;
774         u32 mark, offset;
775         __be32 data[9];
776         int word;
777         u32 trace_shmem_base;
778         if (BP_NOMCP(bp)) {
779                 BNX2X_ERR("NO MCP - can not dump\n");
780                 return;
781         }
782         netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n",
783                 (bp->common.bc_ver & 0xff0000) >> 16,
784                 (bp->common.bc_ver & 0xff00) >> 8,
785                 (bp->common.bc_ver & 0xff));
786
787         if (pci_channel_offline(bp->pdev)) {
788                 BNX2X_ERR("Cannot dump MCP info while in PCI error\n");
789                 return;
790         }
791
792         val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER);
793         if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER))
794                 BNX2X_ERR("%s" "MCP PC at 0x%x\n", lvl, val);
795
796         if (BP_PATH(bp) == 0)
797                 trace_shmem_base = bp->common.shmem_base;
798         else
799                 trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr);
800
801         /* sanity */
802         if (trace_shmem_base < MCPR_SCRATCH_BASE(bp) + MCPR_TRACE_BUFFER_SIZE ||
803             trace_shmem_base >= MCPR_SCRATCH_BASE(bp) +
804                                 SCRATCH_BUFFER_SIZE(bp)) {
805                 BNX2X_ERR("Unable to dump trace buffer (mark %x)\n",
806                           trace_shmem_base);
807                 return;
808         }
809
810         addr = trace_shmem_base - MCPR_TRACE_BUFFER_SIZE;
811
812         /* validate TRCB signature */
813         mark = REG_RD(bp, addr);
814         if (mark != MFW_TRACE_SIGNATURE) {
815                 BNX2X_ERR("Trace buffer signature is missing.");
816                 return ;
817         }
818
819         /* read cyclic buffer pointer */
820         addr += 4;
821         mark = REG_RD(bp, addr);
822         mark = MCPR_SCRATCH_BASE(bp) + ((mark + 0x3) & ~0x3) - 0x08000000;
823         if (mark >= trace_shmem_base || mark < addr + 4) {
824                 BNX2X_ERR("Mark doesn't fall inside Trace Buffer\n");
825                 return;
826         }
827         printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark);
828
829         printk("%s", lvl);
830
831         /* dump buffer after the mark */
832         for (offset = mark; offset < trace_shmem_base; offset += 0x8*4) {
833                 for (word = 0; word < 8; word++)
834                         data[word] = htonl(REG_RD(bp, offset + 4*word));
835                 data[8] = 0x0;
836                 pr_cont("%s", (char *)data);
837         }
838
839         /* dump buffer before the mark */
840         for (offset = addr + 4; offset <= mark; offset += 0x8*4) {
841                 for (word = 0; word < 8; word++)
842                         data[word] = htonl(REG_RD(bp, offset + 4*word));
843                 data[8] = 0x0;
844                 pr_cont("%s", (char *)data);
845         }
846         printk("%s" "end of fw dump\n", lvl);
847 }
848
849 static void bnx2x_fw_dump(struct bnx2x *bp)
850 {
851         bnx2x_fw_dump_lvl(bp, KERN_ERR);
852 }
853
854 static void bnx2x_hc_int_disable(struct bnx2x *bp)
855 {
856         int port = BP_PORT(bp);
857         u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
858         u32 val = REG_RD(bp, addr);
859
860         /* in E1 we must use only PCI configuration space to disable
861          * MSI/MSIX capability
862          * It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC block
863          */
864         if (CHIP_IS_E1(bp)) {
865                 /* Since IGU_PF_CONF_MSI_MSIX_EN still always on
866                  * Use mask register to prevent from HC sending interrupts
867                  * after we exit the function
868                  */
869                 REG_WR(bp, HC_REG_INT_MASK + port*4, 0);
870
871                 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
872                          HC_CONFIG_0_REG_INT_LINE_EN_0 |
873                          HC_CONFIG_0_REG_ATTN_BIT_EN_0);
874         } else
875                 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
876                          HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
877                          HC_CONFIG_0_REG_INT_LINE_EN_0 |
878                          HC_CONFIG_0_REG_ATTN_BIT_EN_0);
879
880         DP(NETIF_MSG_IFDOWN,
881            "write %x to HC %d (addr 0x%x)\n",
882            val, port, addr);
883
884         REG_WR(bp, addr, val);
885         if (REG_RD(bp, addr) != val)
886                 BNX2X_ERR("BUG! Proper val not read from IGU!\n");
887 }
888
889 static void bnx2x_igu_int_disable(struct bnx2x *bp)
890 {
891         u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
892
893         val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
894                  IGU_PF_CONF_INT_LINE_EN |
895                  IGU_PF_CONF_ATTN_BIT_EN);
896
897         DP(NETIF_MSG_IFDOWN, "write %x to IGU\n", val);
898
899         REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
900         if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val)
901                 BNX2X_ERR("BUG! Proper val not read from IGU!\n");
902 }
903
904 static void bnx2x_int_disable(struct bnx2x *bp)
905 {
906         if (bp->common.int_block == INT_BLOCK_HC)
907                 bnx2x_hc_int_disable(bp);
908         else
909                 bnx2x_igu_int_disable(bp);
910 }
911
912 void bnx2x_panic_dump(struct bnx2x *bp, bool disable_int)
913 {
914         int i;
915         u16 j;
916         struct hc_sp_status_block_data sp_sb_data;
917         int func = BP_FUNC(bp);
918 #ifdef BNX2X_STOP_ON_ERROR
919         u16 start = 0, end = 0;
920         u8 cos;
921 #endif
922         if (IS_PF(bp) && disable_int)
923                 bnx2x_int_disable(bp);
924
925         bp->stats_state = STATS_STATE_DISABLED;
926         bp->eth_stats.unrecoverable_error++;
927         DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n");
928
929         BNX2X_ERR("begin crash dump -----------------\n");
930
931         /* Indices */
932         /* Common */
933         if (IS_PF(bp)) {
934                 struct host_sp_status_block *def_sb = bp->def_status_blk;
935                 int data_size, cstorm_offset;
936
937                 BNX2X_ERR("def_idx(0x%x)  def_att_idx(0x%x)  attn_state(0x%x)  spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n",
938                           bp->def_idx, bp->def_att_idx, bp->attn_state,
939                           bp->spq_prod_idx, bp->stats_counter);
940                 BNX2X_ERR("DSB: attn bits(0x%x)  ack(0x%x)  id(0x%x)  idx(0x%x)\n",
941                           def_sb->atten_status_block.attn_bits,
942                           def_sb->atten_status_block.attn_bits_ack,
943                           def_sb->atten_status_block.status_block_id,
944                           def_sb->atten_status_block.attn_bits_index);
945                 BNX2X_ERR("     def (");
946                 for (i = 0; i < HC_SP_SB_MAX_INDICES; i++)
947                         pr_cont("0x%x%s",
948                                 def_sb->sp_sb.index_values[i],
949                                 (i == HC_SP_SB_MAX_INDICES - 1) ? ")  " : " ");
950
951                 data_size = sizeof(struct hc_sp_status_block_data) /
952                             sizeof(u32);
953                 cstorm_offset = CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func);
954                 for (i = 0; i < data_size; i++)
955                         *((u32 *)&sp_sb_data + i) =
956                                 REG_RD(bp, BAR_CSTRORM_INTMEM + cstorm_offset +
957                                            i * sizeof(u32));
958
959                 pr_cont("igu_sb_id(0x%x)  igu_seg_id(0x%x) pf_id(0x%x)  vnic_id(0x%x)  vf_id(0x%x)  vf_valid (0x%x) state(0x%x)\n",
960                         sp_sb_data.igu_sb_id,
961                         sp_sb_data.igu_seg_id,
962                         sp_sb_data.p_func.pf_id,
963                         sp_sb_data.p_func.vnic_id,
964                         sp_sb_data.p_func.vf_id,
965                         sp_sb_data.p_func.vf_valid,
966                         sp_sb_data.state);
967         }
968
969         for_each_eth_queue(bp, i) {
970                 struct bnx2x_fastpath *fp = &bp->fp[i];
971                 int loop;
972                 struct hc_status_block_data_e2 sb_data_e2;
973                 struct hc_status_block_data_e1x sb_data_e1x;
974                 struct hc_status_block_sm  *hc_sm_p =
975                         CHIP_IS_E1x(bp) ?
976                         sb_data_e1x.common.state_machine :
977                         sb_data_e2.common.state_machine;
978                 struct hc_index_data *hc_index_p =
979                         CHIP_IS_E1x(bp) ?
980                         sb_data_e1x.index_data :
981                         sb_data_e2.index_data;
982                 u8 data_size, cos;
983                 u32 *sb_data_p;
984                 struct bnx2x_fp_txdata txdata;
985
986                 if (!bp->fp)
987                         break;
988
989                 if (!fp->rx_cons_sb)
990                         continue;
991
992                 /* Rx */
993                 BNX2X_ERR("fp%d: rx_bd_prod(0x%x)  rx_bd_cons(0x%x)  rx_comp_prod(0x%x)  rx_comp_cons(0x%x)  *rx_cons_sb(0x%x)\n",
994                           i, fp->rx_bd_prod, fp->rx_bd_cons,
995                           fp->rx_comp_prod,
996                           fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb));
997                 BNX2X_ERR("     rx_sge_prod(0x%x)  last_max_sge(0x%x)  fp_hc_idx(0x%x)\n",
998                           fp->rx_sge_prod, fp->last_max_sge,
999                           le16_to_cpu(fp->fp_hc_idx));
1000
1001                 /* Tx */
1002                 for_each_cos_in_tx_queue(fp, cos)
1003                 {
1004                         if (!fp->txdata_ptr[cos])
1005                                 break;
1006
1007                         txdata = *fp->txdata_ptr[cos];
1008
1009                         if (!txdata.tx_cons_sb)
1010                                 continue;
1011
1012                         BNX2X_ERR("fp%d: tx_pkt_prod(0x%x)  tx_pkt_cons(0x%x)  tx_bd_prod(0x%x)  tx_bd_cons(0x%x)  *tx_cons_sb(0x%x)\n",
1013                                   i, txdata.tx_pkt_prod,
1014                                   txdata.tx_pkt_cons, txdata.tx_bd_prod,
1015                                   txdata.tx_bd_cons,
1016                                   le16_to_cpu(*txdata.tx_cons_sb));
1017                 }
1018
1019                 loop = CHIP_IS_E1x(bp) ?
1020                         HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2;
1021
1022                 /* host sb data */
1023
1024                 if (IS_FCOE_FP(fp))
1025                         continue;
1026
1027                 BNX2X_ERR("     run indexes (");
1028                 for (j = 0; j < HC_SB_MAX_SM; j++)
1029                         pr_cont("0x%x%s",
1030                                fp->sb_running_index[j],
1031                                (j == HC_SB_MAX_SM - 1) ? ")" : " ");
1032
1033                 BNX2X_ERR("     indexes (");
1034                 for (j = 0; j < loop; j++)
1035                         pr_cont("0x%x%s",
1036                                fp->sb_index_values[j],
1037                                (j == loop - 1) ? ")" : " ");
1038
1039                 /* VF cannot access FW refelection for status block */
1040                 if (IS_VF(bp))
1041                         continue;
1042
1043                 /* fw sb data */
1044                 data_size = CHIP_IS_E1x(bp) ?
1045                         sizeof(struct hc_status_block_data_e1x) :
1046                         sizeof(struct hc_status_block_data_e2);
1047                 data_size /= sizeof(u32);
1048                 sb_data_p = CHIP_IS_E1x(bp) ?
1049                         (u32 *)&sb_data_e1x :
1050                         (u32 *)&sb_data_e2;
1051                 /* copy sb data in here */
1052                 for (j = 0; j < data_size; j++)
1053                         *(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM +
1054                                 CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) +
1055                                 j * sizeof(u32));
1056
1057                 if (!CHIP_IS_E1x(bp)) {
1058                         pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1059                                 sb_data_e2.common.p_func.pf_id,
1060                                 sb_data_e2.common.p_func.vf_id,
1061                                 sb_data_e2.common.p_func.vf_valid,
1062                                 sb_data_e2.common.p_func.vnic_id,
1063                                 sb_data_e2.common.same_igu_sb_1b,
1064                                 sb_data_e2.common.state);
1065                 } else {
1066                         pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1067                                 sb_data_e1x.common.p_func.pf_id,
1068                                 sb_data_e1x.common.p_func.vf_id,
1069                                 sb_data_e1x.common.p_func.vf_valid,
1070                                 sb_data_e1x.common.p_func.vnic_id,
1071                                 sb_data_e1x.common.same_igu_sb_1b,
1072                                 sb_data_e1x.common.state);
1073                 }
1074
1075                 /* SB_SMs data */
1076                 for (j = 0; j < HC_SB_MAX_SM; j++) {
1077                         pr_cont("SM[%d] __flags (0x%x) igu_sb_id (0x%x)  igu_seg_id(0x%x) time_to_expire (0x%x) timer_value(0x%x)\n",
1078                                 j, hc_sm_p[j].__flags,
1079                                 hc_sm_p[j].igu_sb_id,
1080                                 hc_sm_p[j].igu_seg_id,
1081                                 hc_sm_p[j].time_to_expire,
1082                                 hc_sm_p[j].timer_value);
1083                 }
1084
1085                 /* Indices data */
1086                 for (j = 0; j < loop; j++) {
1087                         pr_cont("INDEX[%d] flags (0x%x) timeout (0x%x)\n", j,
1088                                hc_index_p[j].flags,
1089                                hc_index_p[j].timeout);
1090                 }
1091         }
1092
1093 #ifdef BNX2X_STOP_ON_ERROR
1094         if (IS_PF(bp)) {
1095                 /* event queue */
1096                 BNX2X_ERR("eq cons %x prod %x\n", bp->eq_cons, bp->eq_prod);
1097                 for (i = 0; i < NUM_EQ_DESC; i++) {
1098                         u32 *data = (u32 *)&bp->eq_ring[i].message.data;
1099
1100                         BNX2X_ERR("event queue [%d]: header: opcode %d, error %d\n",
1101                                   i, bp->eq_ring[i].message.opcode,
1102                                   bp->eq_ring[i].message.error);
1103                         BNX2X_ERR("data: %x %x %x\n",
1104                                   data[0], data[1], data[2]);
1105                 }
1106         }
1107
1108         /* Rings */
1109         /* Rx */
1110         for_each_valid_rx_queue(bp, i) {
1111                 struct bnx2x_fastpath *fp = &bp->fp[i];
1112
1113                 if (!bp->fp)
1114                         break;
1115
1116                 if (!fp->rx_cons_sb)
1117                         continue;
1118
1119                 start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10);
1120                 end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503);
1121                 for (j = start; j != end; j = RX_BD(j + 1)) {
1122                         u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j];
1123                         struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j];
1124
1125                         BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x]  sw_bd=[%p]\n",
1126                                   i, j, rx_bd[1], rx_bd[0], sw_bd->data);
1127                 }
1128
1129                 start = RX_SGE(fp->rx_sge_prod);
1130                 end = RX_SGE(fp->last_max_sge);
1131                 for (j = start; j != end; j = RX_SGE(j + 1)) {
1132                         u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j];
1133                         struct sw_rx_page *sw_page = &fp->rx_page_ring[j];
1134
1135                         BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x]  sw_page=[%p]\n",
1136                                   i, j, rx_sge[1], rx_sge[0], sw_page->page);
1137                 }
1138
1139                 start = RCQ_BD(fp->rx_comp_cons - 10);
1140                 end = RCQ_BD(fp->rx_comp_cons + 503);
1141                 for (j = start; j != end; j = RCQ_BD(j + 1)) {
1142                         u32 *cqe = (u32 *)&fp->rx_comp_ring[j];
1143
1144                         BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n",
1145                                   i, j, cqe[0], cqe[1], cqe[2], cqe[3]);
1146                 }
1147         }
1148
1149         /* Tx */
1150         for_each_valid_tx_queue(bp, i) {
1151                 struct bnx2x_fastpath *fp = &bp->fp[i];
1152
1153                 if (!bp->fp)
1154                         break;
1155
1156                 for_each_cos_in_tx_queue(fp, cos) {
1157                         struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
1158
1159                         if (!fp->txdata_ptr[cos])
1160                                 break;
1161
1162                         if (!txdata->tx_cons_sb)
1163                                 continue;
1164
1165                         start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10);
1166                         end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245);
1167                         for (j = start; j != end; j = TX_BD(j + 1)) {
1168                                 struct sw_tx_bd *sw_bd =
1169                                         &txdata->tx_buf_ring[j];
1170
1171                                 BNX2X_ERR("fp%d: txdata %d, packet[%x]=[%p,%x]\n",
1172                                           i, cos, j, sw_bd->skb,
1173                                           sw_bd->first_bd);
1174                         }
1175
1176                         start = TX_BD(txdata->tx_bd_cons - 10);
1177                         end = TX_BD(txdata->tx_bd_cons + 254);
1178                         for (j = start; j != end; j = TX_BD(j + 1)) {
1179                                 u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j];
1180
1181                                 BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]=[%x:%x:%x:%x]\n",
1182                                           i, cos, j, tx_bd[0], tx_bd[1],
1183                                           tx_bd[2], tx_bd[3]);
1184                         }
1185                 }
1186         }
1187 #endif
1188         if (IS_PF(bp)) {
1189                 int tmp_msg_en = bp->msg_enable;
1190
1191                 bnx2x_fw_dump(bp);
1192                 bp->msg_enable |= NETIF_MSG_HW;
1193                 BNX2X_ERR("Idle check (1st round) ----------\n");
1194                 bnx2x_idle_chk(bp);
1195                 BNX2X_ERR("Idle check (2nd round) ----------\n");
1196                 bnx2x_idle_chk(bp);
1197                 bp->msg_enable = tmp_msg_en;
1198                 bnx2x_mc_assert(bp);
1199         }
1200
1201         BNX2X_ERR("end crash dump -----------------\n");
1202 }
1203
1204 /*
1205  * FLR Support for E2
1206  *
1207  * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW
1208  * initialization.
1209  */
1210 #define FLR_WAIT_USEC           10000   /* 10 milliseconds */
1211 #define FLR_WAIT_INTERVAL       50      /* usec */
1212 #define FLR_POLL_CNT            (FLR_WAIT_USEC/FLR_WAIT_INTERVAL) /* 200 */
1213
1214 struct pbf_pN_buf_regs {
1215         int pN;
1216         u32 init_crd;
1217         u32 crd;
1218         u32 crd_freed;
1219 };
1220
1221 struct pbf_pN_cmd_regs {
1222         int pN;
1223         u32 lines_occup;
1224         u32 lines_freed;
1225 };
1226
1227 static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp,
1228                                      struct pbf_pN_buf_regs *regs,
1229                                      u32 poll_count)
1230 {
1231         u32 init_crd, crd, crd_start, crd_freed, crd_freed_start;
1232         u32 cur_cnt = poll_count;
1233
1234         crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed);
1235         crd = crd_start = REG_RD(bp, regs->crd);
1236         init_crd = REG_RD(bp, regs->init_crd);
1237
1238         DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
1239         DP(BNX2X_MSG_SP, "CREDIT[%d]      : s:%x\n", regs->pN, crd);
1240         DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
1241
1242         while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) <
1243                (init_crd - crd_start))) {
1244                 if (cur_cnt--) {
1245                         udelay(FLR_WAIT_INTERVAL);
1246                         crd = REG_RD(bp, regs->crd);
1247                         crd_freed = REG_RD(bp, regs->crd_freed);
1248                 } else {
1249                         DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n",
1250                            regs->pN);
1251                         DP(BNX2X_MSG_SP, "CREDIT[%d]      : c:%x\n",
1252                            regs->pN, crd);
1253                         DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n",
1254                            regs->pN, crd_freed);
1255                         break;
1256                 }
1257         }
1258         DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n",
1259            poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1260 }
1261
1262 static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp,
1263                                      struct pbf_pN_cmd_regs *regs,
1264                                      u32 poll_count)
1265 {
1266         u32 occup, to_free, freed, freed_start;
1267         u32 cur_cnt = poll_count;
1268
1269         occup = to_free = REG_RD(bp, regs->lines_occup);
1270         freed = freed_start = REG_RD(bp, regs->lines_freed);
1271
1272         DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
1273         DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
1274
1275         while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) {
1276                 if (cur_cnt--) {
1277                         udelay(FLR_WAIT_INTERVAL);
1278                         occup = REG_RD(bp, regs->lines_occup);
1279                         freed = REG_RD(bp, regs->lines_freed);
1280                 } else {
1281                         DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n",
1282                            regs->pN);
1283                         DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n",
1284                            regs->pN, occup);
1285                         DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n",
1286                            regs->pN, freed);
1287                         break;
1288                 }
1289         }
1290         DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n",
1291            poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1292 }
1293
1294 static u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg,
1295                                     u32 expected, u32 poll_count)
1296 {
1297         u32 cur_cnt = poll_count;
1298         u32 val;
1299
1300         while ((val = REG_RD(bp, reg)) != expected && cur_cnt--)
1301                 udelay(FLR_WAIT_INTERVAL);
1302
1303         return val;
1304 }
1305
1306 int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
1307                                     char *msg, u32 poll_cnt)
1308 {
1309         u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt);
1310         if (val != 0) {
1311                 BNX2X_ERR("%s usage count=%d\n", msg, val);
1312                 return 1;
1313         }
1314         return 0;
1315 }
1316
1317 /* Common routines with VF FLR cleanup */
1318 u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp)
1319 {
1320         /* adjust polling timeout */
1321         if (CHIP_REV_IS_EMUL(bp))
1322                 return FLR_POLL_CNT * 2000;
1323
1324         if (CHIP_REV_IS_FPGA(bp))
1325                 return FLR_POLL_CNT * 120;
1326
1327         return FLR_POLL_CNT;
1328 }
1329
1330 void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count)
1331 {
1332         struct pbf_pN_cmd_regs cmd_regs[] = {
1333                 {0, (CHIP_IS_E3B0(bp)) ?
1334                         PBF_REG_TQ_OCCUPANCY_Q0 :
1335                         PBF_REG_P0_TQ_OCCUPANCY,
1336                     (CHIP_IS_E3B0(bp)) ?
1337                         PBF_REG_TQ_LINES_FREED_CNT_Q0 :
1338                         PBF_REG_P0_TQ_LINES_FREED_CNT},
1339                 {1, (CHIP_IS_E3B0(bp)) ?
1340                         PBF_REG_TQ_OCCUPANCY_Q1 :
1341                         PBF_REG_P1_TQ_OCCUPANCY,
1342                     (CHIP_IS_E3B0(bp)) ?
1343                         PBF_REG_TQ_LINES_FREED_CNT_Q1 :
1344                         PBF_REG_P1_TQ_LINES_FREED_CNT},
1345                 {4, (CHIP_IS_E3B0(bp)) ?
1346                         PBF_REG_TQ_OCCUPANCY_LB_Q :
1347                         PBF_REG_P4_TQ_OCCUPANCY,
1348                     (CHIP_IS_E3B0(bp)) ?
1349                         PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
1350                         PBF_REG_P4_TQ_LINES_FREED_CNT}
1351         };
1352
1353         struct pbf_pN_buf_regs buf_regs[] = {
1354                 {0, (CHIP_IS_E3B0(bp)) ?
1355                         PBF_REG_INIT_CRD_Q0 :
1356                         PBF_REG_P0_INIT_CRD ,
1357                     (CHIP_IS_E3B0(bp)) ?
1358                         PBF_REG_CREDIT_Q0 :
1359                         PBF_REG_P0_CREDIT,
1360                     (CHIP_IS_E3B0(bp)) ?
1361                         PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
1362                         PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
1363                 {1, (CHIP_IS_E3B0(bp)) ?
1364                         PBF_REG_INIT_CRD_Q1 :
1365                         PBF_REG_P1_INIT_CRD,
1366                     (CHIP_IS_E3B0(bp)) ?
1367                         PBF_REG_CREDIT_Q1 :
1368                         PBF_REG_P1_CREDIT,
1369                     (CHIP_IS_E3B0(bp)) ?
1370                         PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
1371                         PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
1372                 {4, (CHIP_IS_E3B0(bp)) ?
1373                         PBF_REG_INIT_CRD_LB_Q :
1374                         PBF_REG_P4_INIT_CRD,
1375                     (CHIP_IS_E3B0(bp)) ?
1376                         PBF_REG_CREDIT_LB_Q :
1377                         PBF_REG_P4_CREDIT,
1378                     (CHIP_IS_E3B0(bp)) ?
1379                         PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
1380                         PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
1381         };
1382
1383         int i;
1384
1385         /* Verify the command queues are flushed P0, P1, P4 */
1386         for (i = 0; i < ARRAY_SIZE(cmd_regs); i++)
1387                 bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count);
1388
1389         /* Verify the transmission buffers are flushed P0, P1, P4 */
1390         for (i = 0; i < ARRAY_SIZE(buf_regs); i++)
1391                 bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count);
1392 }
1393
1394 #define OP_GEN_PARAM(param) \
1395         (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
1396
1397 #define OP_GEN_TYPE(type) \
1398         (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
1399
1400 #define OP_GEN_AGG_VECT(index) \
1401         (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
1402
1403 int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func, u32 poll_cnt)
1404 {
1405         u32 op_gen_command = 0;
1406         u32 comp_addr = BAR_CSTRORM_INTMEM +
1407                         CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func);
1408
1409         if (REG_RD(bp, comp_addr)) {
1410                 BNX2X_ERR("Cleanup complete was not 0 before sending\n");
1411                 return 1;
1412         }
1413
1414         op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
1415         op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
1416         op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
1417         op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
1418
1419         DP(BNX2X_MSG_SP, "sending FW Final cleanup\n");
1420         REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen_command);
1421
1422         if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) {
1423                 BNX2X_ERR("FW final cleanup did not succeed\n");
1424                 DP(BNX2X_MSG_SP, "At timeout completion address contained %x\n",
1425                    (REG_RD(bp, comp_addr)));
1426                 bnx2x_panic();
1427                 return 1;
1428         }
1429         /* Zero completion for next FLR */
1430         REG_WR(bp, comp_addr, 0);
1431
1432         return 0;
1433 }
1434
1435 u8 bnx2x_is_pcie_pending(struct pci_dev *dev)
1436 {
1437         u16 status;
1438
1439         pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
1440         return status & PCI_EXP_DEVSTA_TRPND;
1441 }
1442
1443 /* PF FLR specific routines
1444 */
1445 static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt)
1446 {
1447         /* wait for CFC PF usage-counter to zero (includes all the VFs) */
1448         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1449                         CFC_REG_NUM_LCIDS_INSIDE_PF,
1450                         "CFC PF usage counter timed out",
1451                         poll_cnt))
1452                 return 1;
1453
1454         /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
1455         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1456                         DORQ_REG_PF_USAGE_CNT,
1457                         "DQ PF usage counter timed out",
1458                         poll_cnt))
1459                 return 1;
1460
1461         /* Wait for QM PF usage-counter to zero (until DQ cleanup) */
1462         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1463                         QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp),
1464                         "QM PF usage counter timed out",
1465                         poll_cnt))
1466                 return 1;
1467
1468         /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
1469         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1470                         TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp),
1471                         "Timers VNIC usage counter timed out",
1472                         poll_cnt))
1473                 return 1;
1474         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1475                         TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp),
1476                         "Timers NUM_SCANS usage counter timed out",
1477                         poll_cnt))
1478                 return 1;
1479
1480         /* Wait DMAE PF usage counter to zero */
1481         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1482                         dmae_reg_go_c[INIT_DMAE_C(bp)],
1483                         "DMAE command register timed out",
1484                         poll_cnt))
1485                 return 1;
1486
1487         return 0;
1488 }
1489
1490 static void bnx2x_hw_enable_status(struct bnx2x *bp)
1491 {
1492         u32 val;
1493
1494         val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF);
1495         DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
1496
1497         val = REG_RD(bp, PBF_REG_DISABLE_PF);
1498         DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val);
1499
1500         val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN);
1501         DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
1502
1503         val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN);
1504         DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
1505
1506         val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
1507         DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
1508
1509         val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
1510         DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
1511
1512         val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
1513         DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
1514
1515         val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
1516         DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n",
1517            val);
1518 }
1519
1520 static int bnx2x_pf_flr_clnup(struct bnx2x *bp)
1521 {
1522         u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
1523
1524         DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp));
1525
1526         /* Re-enable PF target read access */
1527         REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
1528
1529         /* Poll HW usage counters */
1530         DP(BNX2X_MSG_SP, "Polling usage counters\n");
1531         if (bnx2x_poll_hw_usage_counters(bp, poll_cnt))
1532                 return -EBUSY;
1533
1534         /* Zero the igu 'trailing edge' and 'leading edge' */
1535
1536         /* Send the FW cleanup command */
1537         if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt))
1538                 return -EBUSY;
1539
1540         /* ATC cleanup */
1541
1542         /* Verify TX hw is flushed */
1543         bnx2x_tx_hw_flushed(bp, poll_cnt);
1544
1545         /* Wait 100ms (not adjusted according to platform) */
1546         msleep(100);
1547
1548         /* Verify no pending pci transactions */
1549         if (bnx2x_is_pcie_pending(bp->pdev))
1550                 BNX2X_ERR("PCIE Transactions still pending\n");
1551
1552         /* Debug */
1553         bnx2x_hw_enable_status(bp);
1554
1555         /*
1556          * Master enable - Due to WB DMAE writes performed before this
1557          * register is re-initialized as part of the regular function init
1558          */
1559         REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
1560
1561         return 0;
1562 }
1563
1564 static void bnx2x_hc_int_enable(struct bnx2x *bp)
1565 {
1566         int port = BP_PORT(bp);
1567         u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1568         u32 val = REG_RD(bp, addr);
1569         bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1570         bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1571         bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1572
1573         if (msix) {
1574                 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1575                          HC_CONFIG_0_REG_INT_LINE_EN_0);
1576                 val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1577                         HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1578                 if (single_msix)
1579                         val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
1580         } else if (msi) {
1581                 val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
1582                 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1583                         HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1584                         HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1585         } else {
1586                 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1587                         HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1588                         HC_CONFIG_0_REG_INT_LINE_EN_0 |
1589                         HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1590
1591                 if (!CHIP_IS_E1(bp)) {
1592                         DP(NETIF_MSG_IFUP,
1593                            "write %x to HC %d (addr 0x%x)\n", val, port, addr);
1594
1595                         REG_WR(bp, addr, val);
1596
1597                         val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
1598                 }
1599         }
1600
1601         if (CHIP_IS_E1(bp))
1602                 REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF);
1603
1604         DP(NETIF_MSG_IFUP,
1605            "write %x to HC %d (addr 0x%x) mode %s\n", val, port, addr,
1606            (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1607
1608         REG_WR(bp, addr, val);
1609         /*
1610          * Ensure that HC_CONFIG is written before leading/trailing edge config
1611          */
1612         barrier();
1613
1614         if (!CHIP_IS_E1(bp)) {
1615                 /* init leading/trailing edge */
1616                 if (IS_MF(bp)) {
1617                         val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1618                         if (bp->port.pmf)
1619                                 /* enable nig and gpio3 attention */
1620                                 val |= 0x1100;
1621                 } else
1622                         val = 0xffff;
1623
1624                 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
1625                 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
1626         }
1627 }
1628
1629 static void bnx2x_igu_int_enable(struct bnx2x *bp)
1630 {
1631         u32 val;
1632         bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1633         bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1634         bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1635
1636         val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1637
1638         if (msix) {
1639                 val &= ~(IGU_PF_CONF_INT_LINE_EN |
1640                          IGU_PF_CONF_SINGLE_ISR_EN);
1641                 val |= (IGU_PF_CONF_MSI_MSIX_EN |
1642                         IGU_PF_CONF_ATTN_BIT_EN);
1643
1644                 if (single_msix)
1645                         val |= IGU_PF_CONF_SINGLE_ISR_EN;
1646         } else if (msi) {
1647                 val &= ~IGU_PF_CONF_INT_LINE_EN;
1648                 val |= (IGU_PF_CONF_MSI_MSIX_EN |
1649                         IGU_PF_CONF_ATTN_BIT_EN |
1650                         IGU_PF_CONF_SINGLE_ISR_EN);
1651         } else {
1652                 val &= ~IGU_PF_CONF_MSI_MSIX_EN;
1653                 val |= (IGU_PF_CONF_INT_LINE_EN |
1654                         IGU_PF_CONF_ATTN_BIT_EN |
1655                         IGU_PF_CONF_SINGLE_ISR_EN);
1656         }
1657
1658         /* Clean previous status - need to configure igu prior to ack*/
1659         if ((!msix) || single_msix) {
1660                 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1661                 bnx2x_ack_int(bp);
1662         }
1663
1664         val |= IGU_PF_CONF_FUNC_EN;
1665
1666         DP(NETIF_MSG_IFUP, "write 0x%x to IGU  mode %s\n",
1667            val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1668
1669         REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1670
1671         if (val & IGU_PF_CONF_INT_LINE_EN)
1672                 pci_intx(bp->pdev, true);
1673
1674         barrier();
1675
1676         /* init leading/trailing edge */
1677         if (IS_MF(bp)) {
1678                 val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1679                 if (bp->port.pmf)
1680                         /* enable nig and gpio3 attention */
1681                         val |= 0x1100;
1682         } else
1683                 val = 0xffff;
1684
1685         REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
1686         REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
1687 }
1688
1689 void bnx2x_int_enable(struct bnx2x *bp)
1690 {
1691         if (bp->common.int_block == INT_BLOCK_HC)
1692                 bnx2x_hc_int_enable(bp);
1693         else
1694                 bnx2x_igu_int_enable(bp);
1695 }
1696
1697 void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw)
1698 {
1699         int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1700         int i, offset;
1701
1702         if (disable_hw)
1703                 /* prevent the HW from sending interrupts */
1704                 bnx2x_int_disable(bp);
1705
1706         /* make sure all ISRs are done */
1707         if (msix) {
1708                 synchronize_irq(bp->msix_table[0].vector);
1709                 offset = 1;
1710                 if (CNIC_SUPPORT(bp))
1711                         offset++;
1712                 for_each_eth_queue(bp, i)
1713                         synchronize_irq(bp->msix_table[offset++].vector);
1714         } else
1715                 synchronize_irq(bp->pdev->irq);
1716
1717         /* make sure sp_task is not running */
1718         cancel_delayed_work(&bp->sp_task);
1719         cancel_delayed_work(&bp->period_task);
1720         flush_workqueue(bnx2x_wq);
1721 }
1722
1723 /* fast path */
1724
1725 /*
1726  * General service functions
1727  */
1728
1729 /* Return true if succeeded to acquire the lock */
1730 static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource)
1731 {
1732         u32 lock_status;
1733         u32 resource_bit = (1 << resource);
1734         int func = BP_FUNC(bp);
1735         u32 hw_lock_control_reg;
1736
1737         DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1738            "Trying to take a lock on resource %d\n", resource);
1739
1740         /* Validating that the resource is within range */
1741         if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1742                 DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1743                    "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1744                    resource, HW_LOCK_MAX_RESOURCE_VALUE);
1745                 return false;
1746         }
1747
1748         if (func <= 5)
1749                 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1750         else
1751                 hw_lock_control_reg =
1752                                 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1753
1754         /* Try to acquire the lock */
1755         REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1756         lock_status = REG_RD(bp, hw_lock_control_reg);
1757         if (lock_status & resource_bit)
1758                 return true;
1759
1760         DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1761            "Failed to get a lock on resource %d\n", resource);
1762         return false;
1763 }
1764
1765 /**
1766  * bnx2x_get_leader_lock_resource - get the recovery leader resource id
1767  *
1768  * @bp: driver handle
1769  *
1770  * Returns the recovery leader resource id according to the engine this function
1771  * belongs to. Currently only only 2 engines is supported.
1772  */
1773 static int bnx2x_get_leader_lock_resource(struct bnx2x *bp)
1774 {
1775         if (BP_PATH(bp))
1776                 return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
1777         else
1778                 return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
1779 }
1780
1781 /**
1782  * bnx2x_trylock_leader_lock- try to acquire a leader lock.
1783  *
1784  * @bp: driver handle
1785  *
1786  * Tries to acquire a leader lock for current engine.
1787  */
1788 static bool bnx2x_trylock_leader_lock(struct bnx2x *bp)
1789 {
1790         return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1791 }
1792
1793 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err);
1794
1795 /* schedule the sp task and mark that interrupt occurred (runs from ISR) */
1796 static int bnx2x_schedule_sp_task(struct bnx2x *bp)
1797 {
1798         /* Set the interrupt occurred bit for the sp-task to recognize it
1799          * must ack the interrupt and transition according to the IGU
1800          * state machine.
1801          */
1802         atomic_set(&bp->interrupt_occurred, 1);
1803
1804         /* The sp_task must execute only after this bit
1805          * is set, otherwise we will get out of sync and miss all
1806          * further interrupts. Hence, the barrier.
1807          */
1808         smp_wmb();
1809
1810         /* schedule sp_task to workqueue */
1811         return queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
1812 }
1813
1814 void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe)
1815 {
1816         struct bnx2x *bp = fp->bp;
1817         int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1818         int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1819         enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX;
1820         struct bnx2x_queue_sp_obj *q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
1821
1822         DP(BNX2X_MSG_SP,
1823            "fp %d  cid %d  got ramrod #%d  state is %x  type is %d\n",
1824            fp->index, cid, command, bp->state,
1825            rr_cqe->ramrod_cqe.ramrod_type);
1826
1827         /* If cid is within VF range, replace the slowpath object with the
1828          * one corresponding to this VF
1829          */
1830         if (cid >= BNX2X_FIRST_VF_CID  &&
1831             cid < BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)
1832                 bnx2x_iov_set_queue_sp_obj(bp, cid, &q_obj);
1833
1834         switch (command) {
1835         case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
1836                 DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid);
1837                 drv_cmd = BNX2X_Q_CMD_UPDATE;
1838                 break;
1839
1840         case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
1841                 DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid);
1842                 drv_cmd = BNX2X_Q_CMD_SETUP;
1843                 break;
1844
1845         case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
1846                 DP(BNX2X_MSG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
1847                 drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
1848                 break;
1849
1850         case (RAMROD_CMD_ID_ETH_HALT):
1851                 DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid);
1852                 drv_cmd = BNX2X_Q_CMD_HALT;
1853                 break;
1854
1855         case (RAMROD_CMD_ID_ETH_TERMINATE):
1856                 DP(BNX2X_MSG_SP, "got MULTI[%d] terminate ramrod\n", cid);
1857                 drv_cmd = BNX2X_Q_CMD_TERMINATE;
1858                 break;
1859
1860         case (RAMROD_CMD_ID_ETH_EMPTY):
1861                 DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid);
1862                 drv_cmd = BNX2X_Q_CMD_EMPTY;
1863                 break;
1864
1865         case (RAMROD_CMD_ID_ETH_TPA_UPDATE):
1866                 DP(BNX2X_MSG_SP, "got tpa update ramrod CID=%d\n", cid);
1867                 drv_cmd = BNX2X_Q_CMD_UPDATE_TPA;
1868                 break;
1869
1870         default:
1871                 BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n",
1872                           command, fp->index);
1873                 return;
1874         }
1875
1876         if ((drv_cmd != BNX2X_Q_CMD_MAX) &&
1877             q_obj->complete_cmd(bp, q_obj, drv_cmd))
1878                 /* q_obj->complete_cmd() failure means that this was
1879                  * an unexpected completion.
1880                  *
1881                  * In this case we don't want to increase the bp->spq_left
1882                  * because apparently we haven't sent this command the first
1883                  * place.
1884                  */
1885 #ifdef BNX2X_STOP_ON_ERROR
1886                 bnx2x_panic();
1887 #else
1888                 return;
1889 #endif
1890
1891         smp_mb__before_atomic();
1892         atomic_inc(&bp->cq_spq_left);
1893         /* push the change in bp->spq_left and towards the memory */
1894         smp_mb__after_atomic();
1895
1896         DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left));
1897
1898         if ((drv_cmd == BNX2X_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) &&
1899             (!!test_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state))) {
1900                 /* if Q update ramrod is completed for last Q in AFEX vif set
1901                  * flow, then ACK MCP at the end
1902                  *
1903                  * mark pending ACK to MCP bit.
1904                  * prevent case that both bits are cleared.
1905                  * At the end of load/unload driver checks that
1906                  * sp_state is cleared, and this order prevents
1907                  * races
1908                  */
1909                 smp_mb__before_atomic();
1910                 set_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, &bp->sp_state);
1911                 wmb();
1912                 clear_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
1913                 smp_mb__after_atomic();
1914
1915                 /* schedule the sp task as mcp ack is required */
1916                 bnx2x_schedule_sp_task(bp);
1917         }
1918
1919         return;
1920 }
1921
1922 irqreturn_t bnx2x_interrupt(int irq, void *dev_instance)
1923 {
1924         struct bnx2x *bp = netdev_priv(dev_instance);
1925         u16 status = bnx2x_ack_int(bp);
1926         u16 mask;
1927         int i;
1928         u8 cos;
1929
1930         /* Return here if interrupt is shared and it's not for us */
1931         if (unlikely(status == 0)) {
1932                 DP(NETIF_MSG_INTR, "not our interrupt!\n");
1933                 return IRQ_NONE;
1934         }
1935         DP(NETIF_MSG_INTR, "got an interrupt  status 0x%x\n", status);
1936
1937 #ifdef BNX2X_STOP_ON_ERROR
1938         if (unlikely(bp->panic))
1939                 return IRQ_HANDLED;
1940 #endif
1941
1942         for_each_eth_queue(bp, i) {
1943                 struct bnx2x_fastpath *fp = &bp->fp[i];
1944
1945                 mask = 0x2 << (fp->index + CNIC_SUPPORT(bp));
1946                 if (status & mask) {
1947                         /* Handle Rx or Tx according to SB id */
1948                         for_each_cos_in_tx_queue(fp, cos)
1949                                 prefetch(fp->txdata_ptr[cos]->tx_cons_sb);
1950                         prefetch(&fp->sb_running_index[SM_RX_ID]);
1951                         napi_schedule_irqoff(&bnx2x_fp(bp, fp->index, napi));
1952                         status &= ~mask;
1953                 }
1954         }
1955
1956         if (CNIC_SUPPORT(bp)) {
1957                 mask = 0x2;
1958                 if (status & (mask | 0x1)) {
1959                         struct cnic_ops *c_ops = NULL;
1960
1961                         rcu_read_lock();
1962                         c_ops = rcu_dereference(bp->cnic_ops);
1963                         if (c_ops && (bp->cnic_eth_dev.drv_state &
1964                                       CNIC_DRV_STATE_HANDLES_IRQ))
1965                                 c_ops->cnic_handler(bp->cnic_data, NULL);
1966                         rcu_read_unlock();
1967
1968                         status &= ~mask;
1969                 }
1970         }
1971
1972         if (unlikely(status & 0x1)) {
1973
1974                 /* schedule sp task to perform default status block work, ack
1975                  * attentions and enable interrupts.
1976                  */
1977                 bnx2x_schedule_sp_task(bp);
1978
1979                 status &= ~0x1;
1980                 if (!status)
1981                         return IRQ_HANDLED;
1982         }
1983
1984         if (unlikely(status))
1985                 DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
1986                    status);
1987
1988         return IRQ_HANDLED;
1989 }
1990
1991 /* Link */
1992
1993 /*
1994  * General service functions
1995  */
1996
1997 int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource)
1998 {
1999         u32 lock_status;
2000         u32 resource_bit = (1 << resource);
2001         int func = BP_FUNC(bp);
2002         u32 hw_lock_control_reg;
2003         int cnt;
2004
2005         /* Validating that the resource is within range */
2006         if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
2007                 BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
2008                    resource, HW_LOCK_MAX_RESOURCE_VALUE);
2009                 return -EINVAL;
2010         }
2011
2012         if (func <= 5) {
2013                 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
2014         } else {
2015                 hw_lock_control_reg =
2016                                 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
2017         }
2018
2019         /* Validating that the resource is not already taken */
2020         lock_status = REG_RD(bp, hw_lock_control_reg);
2021         if (lock_status & resource_bit) {
2022                 BNX2X_ERR("lock_status 0x%x  resource_bit 0x%x\n",
2023                    lock_status, resource_bit);
2024                 return -EEXIST;
2025         }
2026
2027         /* Try for 5 second every 5ms */
2028         for (cnt = 0; cnt < 1000; cnt++) {
2029                 /* Try to acquire the lock */
2030                 REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
2031                 lock_status = REG_RD(bp, hw_lock_control_reg);
2032                 if (lock_status & resource_bit)
2033                         return 0;
2034
2035                 usleep_range(5000, 10000);
2036         }
2037         BNX2X_ERR("Timeout\n");
2038         return -EAGAIN;
2039 }
2040
2041 int bnx2x_release_leader_lock(struct bnx2x *bp)
2042 {
2043         return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
2044 }
2045
2046 int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource)
2047 {
2048         u32 lock_status;
2049         u32 resource_bit = (1 << resource);
2050         int func = BP_FUNC(bp);
2051         u32 hw_lock_control_reg;
2052
2053         /* Validating that the resource is within range */
2054         if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
2055                 BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
2056                    resource, HW_LOCK_MAX_RESOURCE_VALUE);
2057                 return -EINVAL;
2058         }
2059
2060         if (func <= 5) {
2061                 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
2062         } else {
2063                 hw_lock_control_reg =
2064                                 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
2065         }
2066
2067         /* Validating that the resource is currently taken */
2068         lock_status = REG_RD(bp, hw_lock_control_reg);
2069         if (!(lock_status & resource_bit)) {
2070                 BNX2X_ERR("lock_status 0x%x resource_bit 0x%x. Unlock was called but lock wasn't taken!\n",
2071                           lock_status, resource_bit);
2072                 return -EFAULT;
2073         }
2074
2075         REG_WR(bp, hw_lock_control_reg, resource_bit);
2076         return 0;
2077 }
2078
2079 int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port)
2080 {
2081         /* The GPIO should be swapped if swap register is set and active */
2082         int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2083                          REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2084         int gpio_shift = gpio_num +
2085                         (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2086         u32 gpio_mask = (1 << gpio_shift);
2087         u32 gpio_reg;
2088         int value;
2089
2090         if (gpio_num > MISC_REGISTERS_GPIO_3) {
2091                 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2092                 return -EINVAL;
2093         }
2094
2095         /* read GPIO value */
2096         gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2097
2098         /* get the requested pin value */
2099         if ((gpio_reg & gpio_mask) == gpio_mask)
2100                 value = 1;
2101         else
2102                 value = 0;
2103
2104         return value;
2105 }
2106
2107 int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2108 {
2109         /* The GPIO should be swapped if swap register is set and active */
2110         int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2111                          REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2112         int gpio_shift = gpio_num +
2113                         (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2114         u32 gpio_mask = (1 << gpio_shift);
2115         u32 gpio_reg;
2116
2117         if (gpio_num > MISC_REGISTERS_GPIO_3) {
2118                 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2119                 return -EINVAL;
2120         }
2121
2122         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2123         /* read GPIO and mask except the float bits */
2124         gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
2125
2126         switch (mode) {
2127         case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2128                 DP(NETIF_MSG_LINK,
2129                    "Set GPIO %d (shift %d) -> output low\n",
2130                    gpio_num, gpio_shift);
2131                 /* clear FLOAT and set CLR */
2132                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2133                 gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
2134                 break;
2135
2136         case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2137                 DP(NETIF_MSG_LINK,
2138                    "Set GPIO %d (shift %d) -> output high\n",
2139                    gpio_num, gpio_shift);
2140                 /* clear FLOAT and set SET */
2141                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2142                 gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
2143                 break;
2144
2145         case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2146                 DP(NETIF_MSG_LINK,
2147                    "Set GPIO %d (shift %d) -> input\n",
2148                    gpio_num, gpio_shift);
2149                 /* set FLOAT */
2150                 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2151                 break;
2152
2153         default:
2154                 break;
2155         }
2156
2157         REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2158         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2159
2160         return 0;
2161 }
2162
2163 int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode)
2164 {
2165         u32 gpio_reg = 0;
2166         int rc = 0;
2167
2168         /* Any port swapping should be handled by caller. */
2169
2170         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2171         /* read GPIO and mask except the float bits */
2172         gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2173         gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2174         gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
2175         gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
2176
2177         switch (mode) {
2178         case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2179                 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins);
2180                 /* set CLR */
2181                 gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
2182                 break;
2183
2184         case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2185                 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins);
2186                 /* set SET */
2187                 gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2188                 break;
2189
2190         case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2191                 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins);
2192                 /* set FLOAT */
2193                 gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2194                 break;
2195
2196         default:
2197                 BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode);
2198                 rc = -EINVAL;
2199                 break;
2200         }
2201
2202         if (rc == 0)
2203                 REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2204
2205         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2206
2207         return rc;
2208 }
2209
2210 int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2211 {
2212         /* The GPIO should be swapped if swap register is set and active */
2213         int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2214                          REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2215         int gpio_shift = gpio_num +
2216                         (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2217         u32 gpio_mask = (1 << gpio_shift);
2218         u32 gpio_reg;
2219
2220         if (gpio_num > MISC_REGISTERS_GPIO_3) {
2221                 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2222                 return -EINVAL;
2223         }
2224
2225         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2226         /* read GPIO int */
2227         gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT);
2228
2229         switch (mode) {
2230         case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2231                 DP(NETIF_MSG_LINK,
2232                    "Clear GPIO INT %d (shift %d) -> output low\n",
2233                    gpio_num, gpio_shift);
2234                 /* clear SET and set CLR */
2235                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2236                 gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2237                 break;
2238
2239         case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2240                 DP(NETIF_MSG_LINK,
2241                    "Set GPIO INT %d (shift %d) -> output high\n",
2242                    gpio_num, gpio_shift);
2243                 /* clear CLR and set SET */
2244                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2245                 gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2246                 break;
2247
2248         default:
2249                 break;
2250         }
2251
2252         REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg);
2253         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2254
2255         return 0;
2256 }
2257
2258 static int bnx2x_set_spio(struct bnx2x *bp, int spio, u32 mode)
2259 {
2260         u32 spio_reg;
2261
2262         /* Only 2 SPIOs are configurable */
2263         if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
2264                 BNX2X_ERR("Invalid SPIO 0x%x\n", spio);
2265                 return -EINVAL;
2266         }
2267
2268         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2269         /* read SPIO and mask except the float bits */
2270         spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
2271
2272         switch (mode) {
2273         case MISC_SPIO_OUTPUT_LOW:
2274                 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output low\n", spio);
2275                 /* clear FLOAT and set CLR */
2276                 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2277                 spio_reg |=  (spio << MISC_SPIO_CLR_POS);
2278                 break;
2279
2280         case MISC_SPIO_OUTPUT_HIGH:
2281                 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output high\n", spio);
2282                 /* clear FLOAT and set SET */
2283                 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2284                 spio_reg |=  (spio << MISC_SPIO_SET_POS);
2285                 break;
2286
2287         case MISC_SPIO_INPUT_HI_Z:
2288                 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> input\n", spio);
2289                 /* set FLOAT */
2290                 spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
2291                 break;
2292
2293         default:
2294                 break;
2295         }
2296
2297         REG_WR(bp, MISC_REG_SPIO, spio_reg);
2298         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2299
2300         return 0;
2301 }
2302
2303 void bnx2x_calc_fc_adv(struct bnx2x *bp)
2304 {
2305         u8 cfg_idx = bnx2x_get_link_cfg_idx(bp);
2306
2307         bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2308                                            ADVERTISED_Pause);
2309         switch (bp->link_vars.ieee_fc &
2310                 MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
2311         case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
2312                 bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
2313                                                   ADVERTISED_Pause);
2314                 break;
2315
2316         case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
2317                 bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
2318                 break;
2319
2320         default:
2321                 break;
2322         }
2323 }
2324
2325 static void bnx2x_set_requested_fc(struct bnx2x *bp)
2326 {
2327         /* Initialize link parameters structure variables
2328          * It is recommended to turn off RX FC for jumbo frames
2329          *  for better performance
2330          */
2331         if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000))
2332                 bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX;
2333         else
2334                 bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH;
2335 }
2336
2337 static void bnx2x_init_dropless_fc(struct bnx2x *bp)
2338 {
2339         u32 pause_enabled = 0;
2340
2341         if (!CHIP_IS_E1(bp) && bp->dropless_fc && bp->link_vars.link_up) {
2342                 if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
2343                         pause_enabled = 1;
2344
2345                 REG_WR(bp, BAR_USTRORM_INTMEM +
2346                            USTORM_ETH_PAUSE_ENABLED_OFFSET(BP_PORT(bp)),
2347                        pause_enabled);
2348         }
2349
2350         DP(NETIF_MSG_IFUP | NETIF_MSG_LINK, "dropless_fc is %s\n",
2351            pause_enabled ? "enabled" : "disabled");
2352 }
2353
2354 int bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode)
2355 {
2356         int rc, cfx_idx = bnx2x_get_link_cfg_idx(bp);
2357         u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx];
2358
2359         if (!BP_NOMCP(bp)) {
2360                 bnx2x_set_requested_fc(bp);
2361                 bnx2x_acquire_phy_lock(bp);
2362
2363                 if (load_mode == LOAD_DIAG) {
2364                         struct link_params *lp = &bp->link_params;
2365                         lp->loopback_mode = LOOPBACK_XGXS;
2366                         /* Prefer doing PHY loopback at highest speed */
2367                         if (lp->req_line_speed[cfx_idx] < SPEED_20000) {
2368                                 if (lp->speed_cap_mask[cfx_idx] &
2369                                     PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)
2370                                         lp->req_line_speed[cfx_idx] =
2371                                         SPEED_20000;
2372                                 else if (lp->speed_cap_mask[cfx_idx] &
2373                                             PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)
2374                                                 lp->req_line_speed[cfx_idx] =
2375                                                 SPEED_10000;
2376                                 else
2377                                         lp->req_line_speed[cfx_idx] =
2378                                         SPEED_1000;
2379                         }
2380                 }
2381
2382                 if (load_mode == LOAD_LOOPBACK_EXT) {
2383                         struct link_params *lp = &bp->link_params;
2384                         lp->loopback_mode = LOOPBACK_EXT;
2385                 }
2386
2387                 rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2388
2389                 bnx2x_release_phy_lock(bp);
2390
2391                 bnx2x_init_dropless_fc(bp);
2392
2393                 bnx2x_calc_fc_adv(bp);
2394
2395                 if (bp->link_vars.link_up) {
2396                         bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2397                         bnx2x_link_report(bp);
2398                 }
2399                 queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2400                 bp->link_params.req_line_speed[cfx_idx] = req_line_speed;
2401                 return rc;
2402         }
2403         BNX2X_ERR("Bootcode is missing - can not initialize link\n");
2404         return -EINVAL;
2405 }
2406
2407 void bnx2x_link_set(struct bnx2x *bp)
2408 {
2409         if (!BP_NOMCP(bp)) {
2410                 bnx2x_acquire_phy_lock(bp);
2411                 bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2412                 bnx2x_release_phy_lock(bp);
2413
2414                 bnx2x_init_dropless_fc(bp);
2415
2416                 bnx2x_calc_fc_adv(bp);
2417         } else
2418                 BNX2X_ERR("Bootcode is missing - can not set link\n");
2419 }
2420
2421 static void bnx2x__link_reset(struct bnx2x *bp)
2422 {
2423         if (!BP_NOMCP(bp)) {
2424                 bnx2x_acquire_phy_lock(bp);
2425                 bnx2x_lfa_reset(&bp->link_params, &bp->link_vars);
2426                 bnx2x_release_phy_lock(bp);
2427         } else
2428                 BNX2X_ERR("Bootcode is missing - can not reset link\n");
2429 }
2430
2431 void bnx2x_force_link_reset(struct bnx2x *bp)
2432 {
2433         bnx2x_acquire_phy_lock(bp);
2434         bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2435         bnx2x_release_phy_lock(bp);
2436 }
2437
2438 u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes)
2439 {
2440         u8 rc = 0;
2441
2442         if (!BP_NOMCP(bp)) {
2443                 bnx2x_acquire_phy_lock(bp);
2444                 rc = bnx2x_test_link(&bp->link_params, &bp->link_vars,
2445                                      is_serdes);
2446                 bnx2x_release_phy_lock(bp);
2447         } else
2448                 BNX2X_ERR("Bootcode is missing - can not test link\n");
2449
2450         return rc;
2451 }
2452
2453 /* Calculates the sum of vn_min_rates.
2454    It's needed for further normalizing of the min_rates.
2455    Returns:
2456      sum of vn_min_rates.
2457        or
2458      0 - if all the min_rates are 0.
2459      In the later case fairness algorithm should be deactivated.
2460      If not all min_rates are zero then those that are zeroes will be set to 1.
2461  */
2462 static void bnx2x_calc_vn_min(struct bnx2x *bp,
2463                                       struct cmng_init_input *input)
2464 {
2465         int all_zero = 1;
2466         int vn;
2467
2468         for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2469                 u32 vn_cfg = bp->mf_config[vn];
2470                 u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2471                                    FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2472
2473                 /* Skip hidden vns */
2474                 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2475                         vn_min_rate = 0;
2476                 /* If min rate is zero - set it to 1 */
2477                 else if (!vn_min_rate)
2478                         vn_min_rate = DEF_MIN_RATE;
2479                 else
2480                         all_zero = 0;
2481
2482                 input->vnic_min_rate[vn] = vn_min_rate;
2483         }
2484
2485         /* if ETS or all min rates are zeros - disable fairness */
2486         if (BNX2X_IS_ETS_ENABLED(bp)) {
2487                 input->flags.cmng_enables &=
2488                                         ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2489                 DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n");
2490         } else if (all_zero) {
2491                 input->flags.cmng_enables &=
2492                                         ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2493                 DP(NETIF_MSG_IFUP,
2494                    "All MIN values are zeroes fairness will be disabled\n");
2495         } else
2496                 input->flags.cmng_enables |=
2497                                         CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2498 }
2499
2500 static void bnx2x_calc_vn_max(struct bnx2x *bp, int vn,
2501                                     struct cmng_init_input *input)
2502 {
2503         u16 vn_max_rate;
2504         u32 vn_cfg = bp->mf_config[vn];
2505
2506         if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2507                 vn_max_rate = 0;
2508         else {
2509                 u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg);
2510
2511                 if (IS_MF_PERCENT_BW(bp)) {
2512                         /* maxCfg in percents of linkspeed */
2513                         vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100;
2514                 } else /* SD modes */
2515                         /* maxCfg is absolute in 100Mb units */
2516                         vn_max_rate = maxCfg * 100;
2517         }
2518
2519         DP(NETIF_MSG_IFUP, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
2520
2521         input->vnic_max_rate[vn] = vn_max_rate;
2522 }
2523
2524 static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp)
2525 {
2526         if (CHIP_REV_IS_SLOW(bp))
2527                 return CMNG_FNS_NONE;
2528         if (IS_MF(bp))
2529                 return CMNG_FNS_MINMAX;
2530
2531         return CMNG_FNS_NONE;
2532 }
2533
2534 void bnx2x_read_mf_cfg(struct bnx2x *bp)
2535 {
2536         int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1);
2537
2538         if (BP_NOMCP(bp))
2539                 return; /* what should be the default value in this case */
2540
2541         /* For 2 port configuration the absolute function number formula
2542          * is:
2543          *      abs_func = 2 * vn + BP_PORT + BP_PATH
2544          *
2545          *      and there are 4 functions per port
2546          *
2547          * For 4 port configuration it is
2548          *      abs_func = 4 * vn + 2 * BP_PORT + BP_PATH
2549          *
2550          *      and there are 2 functions per port
2551          */
2552         for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2553                 int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp);
2554
2555                 if (func >= E1H_FUNC_MAX)
2556                         break;
2557
2558                 bp->mf_config[vn] =
2559                         MF_CFG_RD(bp, func_mf_config[func].config);
2560         }
2561         if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
2562                 DP(NETIF_MSG_IFUP, "mf_cfg function disabled\n");
2563                 bp->flags |= MF_FUNC_DIS;
2564         } else {
2565                 DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n");
2566                 bp->flags &= ~MF_FUNC_DIS;
2567         }
2568 }
2569
2570 static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type)
2571 {
2572         struct cmng_init_input input;
2573         memset(&input, 0, sizeof(struct cmng_init_input));
2574
2575         input.port_rate = bp->link_vars.line_speed;
2576
2577         if (cmng_type == CMNG_FNS_MINMAX && input.port_rate) {
2578                 int vn;
2579
2580                 /* read mf conf from shmem */
2581                 if (read_cfg)
2582                         bnx2x_read_mf_cfg(bp);
2583
2584                 /* vn_weight_sum and enable fairness if not 0 */
2585                 bnx2x_calc_vn_min(bp, &input);
2586
2587                 /* calculate and set min-max rate for each vn */
2588                 if (bp->port.pmf)
2589                         for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++)
2590                                 bnx2x_calc_vn_max(bp, vn, &input);
2591
2592                 /* always enable rate shaping and fairness */
2593                 input.flags.cmng_enables |=
2594                                         CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
2595
2596                 bnx2x_init_cmng(&input, &bp->cmng);
2597                 return;
2598         }
2599
2600         /* rate shaping and fairness are disabled */
2601         DP(NETIF_MSG_IFUP,
2602            "rate shaping and fairness are disabled\n");
2603 }
2604
2605 static void storm_memset_cmng(struct bnx2x *bp,
2606                               struct cmng_init *cmng,
2607                               u8 port)
2608 {
2609         int vn;
2610         size_t size = sizeof(struct cmng_struct_per_port);
2611
2612         u32 addr = BAR_XSTRORM_INTMEM +
2613                         XSTORM_CMNG_PER_PORT_VARS_OFFSET(port);
2614
2615         __storm_memset_struct(bp, addr, size, (u32 *)&cmng->port);
2616
2617         for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2618                 int func = func_by_vn(bp, vn);
2619
2620                 addr = BAR_XSTRORM_INTMEM +
2621                        XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func);
2622                 size = sizeof(struct rate_shaping_vars_per_vn);
2623                 __storm_memset_struct(bp, addr, size,
2624                                       (u32 *)&cmng->vnic.vnic_max_rate[vn]);
2625
2626                 addr = BAR_XSTRORM_INTMEM +
2627                        XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func);
2628                 size = sizeof(struct fairness_vars_per_vn);
2629                 __storm_memset_struct(bp, addr, size,
2630                                       (u32 *)&cmng->vnic.vnic_min_rate[vn]);
2631         }
2632 }
2633
2634 /* init cmng mode in HW according to local configuration */
2635 void bnx2x_set_local_cmng(struct bnx2x *bp)
2636 {
2637         int cmng_fns = bnx2x_get_cmng_fns_mode(bp);
2638
2639         if (cmng_fns != CMNG_FNS_NONE) {
2640                 bnx2x_cmng_fns_init(bp, false, cmng_fns);
2641                 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2642         } else {
2643                 /* rate shaping and fairness are disabled */
2644                 DP(NETIF_MSG_IFUP,
2645                    "single function mode without fairness\n");
2646         }
2647 }
2648
2649 /* This function is called upon link interrupt */
2650 static void bnx2x_link_attn(struct bnx2x *bp)
2651 {
2652         /* Make sure that we are synced with the current statistics */
2653         bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2654
2655         bnx2x_link_update(&bp->link_params, &bp->link_vars);
2656
2657         bnx2x_init_dropless_fc(bp);
2658
2659         if (bp->link_vars.link_up) {
2660
2661                 if (bp->link_vars.mac_type != MAC_TYPE_EMAC) {
2662                         struct host_port_stats *pstats;
2663
2664                         pstats = bnx2x_sp(bp, port_stats);
2665                         /* reset old mac stats */
2666                         memset(&(pstats->mac_stx[0]), 0,
2667                                sizeof(struct mac_stx));
2668                 }
2669                 if (bp->state == BNX2X_STATE_OPEN)
2670                         bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2671         }
2672
2673         if (bp->link_vars.link_up && bp->link_vars.line_speed)
2674                 bnx2x_set_local_cmng(bp);
2675
2676         __bnx2x_link_report(bp);
2677
2678         if (IS_MF(bp))
2679                 bnx2x_link_sync_notify(bp);
2680 }
2681
2682 void bnx2x__link_status_update(struct bnx2x *bp)
2683 {
2684         if (bp->state != BNX2X_STATE_OPEN)
2685                 return;
2686
2687         /* read updated dcb configuration */
2688         if (IS_PF(bp)) {
2689                 bnx2x_dcbx_pmf_update(bp);
2690                 bnx2x_link_status_update(&bp->link_params, &bp->link_vars);
2691                 if (bp->link_vars.link_up)
2692                         bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2693                 else
2694                         bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2695                         /* indicate link status */
2696                 bnx2x_link_report(bp);
2697
2698         } else { /* VF */
2699                 bp->port.supported[0] |= (SUPPORTED_10baseT_Half |
2700                                           SUPPORTED_10baseT_Full |
2701                                           SUPPORTED_100baseT_Half |
2702                                           SUPPORTED_100baseT_Full |
2703                                           SUPPORTED_1000baseT_Full |
2704                                           SUPPORTED_2500baseX_Full |
2705                                           SUPPORTED_10000baseT_Full |
2706                                           SUPPORTED_TP |
2707                                           SUPPORTED_FIBRE |
2708                                           SUPPORTED_Autoneg |
2709                                           SUPPORTED_Pause |
2710                                           SUPPORTED_Asym_Pause);
2711                 bp->port.advertising[0] = bp->port.supported[0];
2712
2713                 bp->link_params.bp = bp;
2714                 bp->link_params.port = BP_PORT(bp);
2715                 bp->link_params.req_duplex[0] = DUPLEX_FULL;
2716                 bp->link_params.req_flow_ctrl[0] = BNX2X_FLOW_CTRL_NONE;
2717                 bp->link_params.req_line_speed[0] = SPEED_10000;
2718                 bp->link_params.speed_cap_mask[0] = 0x7f0000;
2719                 bp->link_params.switch_cfg = SWITCH_CFG_10G;
2720                 bp->link_vars.mac_type = MAC_TYPE_BMAC;
2721                 bp->link_vars.line_speed = SPEED_10000;
2722                 bp->link_vars.link_status =
2723                         (LINK_STATUS_LINK_UP |
2724                          LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
2725                 bp->link_vars.link_up = 1;
2726                 bp->link_vars.duplex = DUPLEX_FULL;
2727                 bp->link_vars.flow_ctrl = BNX2X_FLOW_CTRL_NONE;
2728                 __bnx2x_link_report(bp);
2729
2730                 bnx2x_sample_bulletin(bp);
2731
2732                 /* if bulletin board did not have an update for link status
2733                  * __bnx2x_link_report will report current status
2734                  * but it will NOT duplicate report in case of already reported
2735                  * during sampling bulletin board.
2736                  */
2737                 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2738         }
2739 }
2740
2741 static int bnx2x_afex_func_update(struct bnx2x *bp, u16 vifid,
2742                                   u16 vlan_val, u8 allowed_prio)
2743 {
2744         struct bnx2x_func_state_params func_params = {NULL};
2745         struct bnx2x_func_afex_update_params *f_update_params =
2746                 &func_params.params.afex_update;
2747
2748         func_params.f_obj = &bp->func_obj;
2749         func_params.cmd = BNX2X_F_CMD_AFEX_UPDATE;
2750
2751         /* no need to wait for RAMROD completion, so don't
2752          * set RAMROD_COMP_WAIT flag
2753          */
2754
2755         f_update_params->vif_id = vifid;
2756         f_update_params->afex_default_vlan = vlan_val;
2757         f_update_params->allowed_priorities = allowed_prio;
2758
2759         /* if ramrod can not be sent, response to MCP immediately */
2760         if (bnx2x_func_state_change(bp, &func_params) < 0)
2761                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
2762
2763         return 0;
2764 }
2765
2766 static int bnx2x_afex_handle_vif_list_cmd(struct bnx2x *bp, u8 cmd_type,
2767                                           u16 vif_index, u8 func_bit_map)
2768 {
2769         struct bnx2x_func_state_params func_params = {NULL};
2770         struct bnx2x_func_afex_viflists_params *update_params =
2771                 &func_params.params.afex_viflists;
2772         int rc;
2773         u32 drv_msg_code;
2774
2775         /* validate only LIST_SET and LIST_GET are received from switch */
2776         if ((cmd_type != VIF_LIST_RULE_GET) && (cmd_type != VIF_LIST_RULE_SET))
2777                 BNX2X_ERR("BUG! afex_handle_vif_list_cmd invalid type 0x%x\n",
2778                           cmd_type);
2779
2780         func_params.f_obj = &bp->func_obj;
2781         func_params.cmd = BNX2X_F_CMD_AFEX_VIFLISTS;
2782
2783         /* set parameters according to cmd_type */
2784         update_params->afex_vif_list_command = cmd_type;
2785         update_params->vif_list_index = vif_index;
2786         update_params->func_bit_map =
2787                 (cmd_type == VIF_LIST_RULE_GET) ? 0 : func_bit_map;
2788         update_params->func_to_clear = 0;
2789         drv_msg_code =
2790                 (cmd_type == VIF_LIST_RULE_GET) ?
2791                 DRV_MSG_CODE_AFEX_LISTGET_ACK :
2792                 DRV_MSG_CODE_AFEX_LISTSET_ACK;
2793
2794         /* if ramrod can not be sent, respond to MCP immediately for
2795          * SET and GET requests (other are not triggered from MCP)
2796          */
2797         rc = bnx2x_func_state_change(bp, &func_params);
2798         if (rc < 0)
2799                 bnx2x_fw_command(bp, drv_msg_code, 0);
2800
2801         return 0;
2802 }
2803
2804 static void bnx2x_handle_afex_cmd(struct bnx2x *bp, u32 cmd)
2805 {
2806         struct afex_stats afex_stats;
2807         u32 func = BP_ABS_FUNC(bp);
2808         u32 mf_config;
2809         u16 vlan_val;
2810         u32 vlan_prio;
2811         u16 vif_id;
2812         u8 allowed_prio;
2813         u8 vlan_mode;
2814         u32 addr_to_write, vifid, addrs, stats_type, i;
2815
2816         if (cmd & DRV_STATUS_AFEX_LISTGET_REQ) {
2817                 vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2818                 DP(BNX2X_MSG_MCP,
2819                    "afex: got MCP req LISTGET_REQ for vifid 0x%x\n", vifid);
2820                 bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_GET, vifid, 0);
2821         }
2822
2823         if (cmd & DRV_STATUS_AFEX_LISTSET_REQ) {
2824                 vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2825                 addrs = SHMEM2_RD(bp, afex_param2_to_driver[BP_FW_MB_IDX(bp)]);
2826                 DP(BNX2X_MSG_MCP,
2827                    "afex: got MCP req LISTSET_REQ for vifid 0x%x addrs 0x%x\n",
2828                    vifid, addrs);
2829                 bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_SET, vifid,
2830                                                addrs);
2831         }
2832
2833         if (cmd & DRV_STATUS_AFEX_STATSGET_REQ) {
2834                 addr_to_write = SHMEM2_RD(bp,
2835                         afex_scratchpad_addr_to_write[BP_FW_MB_IDX(bp)]);
2836                 stats_type = SHMEM2_RD(bp,
2837                         afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2838
2839                 DP(BNX2X_MSG_MCP,
2840                    "afex: got MCP req STATSGET_REQ, write to addr 0x%x\n",
2841                    addr_to_write);
2842
2843                 bnx2x_afex_collect_stats(bp, (void *)&afex_stats, stats_type);
2844
2845                 /* write response to scratchpad, for MCP */
2846                 for (i = 0; i < (sizeof(struct afex_stats)/sizeof(u32)); i++)
2847                         REG_WR(bp, addr_to_write + i*sizeof(u32),
2848                                *(((u32 *)(&afex_stats))+i));
2849
2850                 /* send ack message to MCP */
2851                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_STATSGET_ACK, 0);
2852         }
2853
2854         if (cmd & DRV_STATUS_AFEX_VIFSET_REQ) {
2855                 mf_config = MF_CFG_RD(bp, func_mf_config[func].config);
2856                 bp->mf_config[BP_VN(bp)] = mf_config;
2857                 DP(BNX2X_MSG_MCP,
2858                    "afex: got MCP req VIFSET_REQ, mf_config 0x%x\n",
2859                    mf_config);
2860
2861                 /* if VIF_SET is "enabled" */
2862                 if (!(mf_config & FUNC_MF_CFG_FUNC_DISABLED)) {
2863                         /* set rate limit directly to internal RAM */
2864                         struct cmng_init_input cmng_input;
2865                         struct rate_shaping_vars_per_vn m_rs_vn;
2866                         size_t size = sizeof(struct rate_shaping_vars_per_vn);
2867                         u32 addr = BAR_XSTRORM_INTMEM +
2868                             XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(BP_FUNC(bp));
2869
2870                         bp->mf_config[BP_VN(bp)] = mf_config;
2871
2872                         bnx2x_calc_vn_max(bp, BP_VN(bp), &cmng_input);
2873                         m_rs_vn.vn_counter.rate =
2874                                 cmng_input.vnic_max_rate[BP_VN(bp)];
2875                         m_rs_vn.vn_counter.quota =
2876                                 (m_rs_vn.vn_counter.rate *
2877                                  RS_PERIODIC_TIMEOUT_USEC) / 8;
2878
2879                         __storm_memset_struct(bp, addr, size, (u32 *)&m_rs_vn);
2880
2881                         /* read relevant values from mf_cfg struct in shmem */
2882                         vif_id =
2883                                 (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2884                                  FUNC_MF_CFG_E1HOV_TAG_MASK) >>
2885                                 FUNC_MF_CFG_E1HOV_TAG_SHIFT;
2886                         vlan_val =
2887                                 (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2888                                  FUNC_MF_CFG_AFEX_VLAN_MASK) >>
2889                                 FUNC_MF_CFG_AFEX_VLAN_SHIFT;
2890                         vlan_prio = (mf_config &
2891                                      FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
2892                                     FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT;
2893                         vlan_val |= (vlan_prio << VLAN_PRIO_SHIFT);
2894                         vlan_mode =
2895                                 (MF_CFG_RD(bp,
2896                                            func_mf_config[func].afex_config) &
2897                                  FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
2898                                 FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT;
2899                         allowed_prio =
2900                                 (MF_CFG_RD(bp,
2901                                            func_mf_config[func].afex_config) &
2902                                  FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
2903                                 FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT;
2904
2905                         /* send ramrod to FW, return in case of failure */
2906                         if (bnx2x_afex_func_update(bp, vif_id, vlan_val,
2907                                                    allowed_prio))
2908                                 return;
2909
2910                         bp->afex_def_vlan_tag = vlan_val;
2911                         bp->afex_vlan_mode = vlan_mode;
2912                 } else {
2913                         /* notify link down because BP->flags is disabled */
2914                         bnx2x_link_report(bp);
2915
2916                         /* send INVALID VIF ramrod to FW */
2917                         bnx2x_afex_func_update(bp, 0xFFFF, 0, 0);
2918
2919                         /* Reset the default afex VLAN */
2920                         bp->afex_def_vlan_tag = -1;
2921                 }
2922         }
2923 }
2924
2925 static void bnx2x_handle_update_svid_cmd(struct bnx2x *bp)
2926 {
2927         struct bnx2x_func_switch_update_params *switch_update_params;
2928         struct bnx2x_func_state_params func_params;
2929
2930         memset(&func_params, 0, sizeof(struct bnx2x_func_state_params));
2931         switch_update_params = &func_params.params.switch_update;
2932         func_params.f_obj = &bp->func_obj;
2933         func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
2934
2935         /* Prepare parameters for function state transitions */
2936         __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
2937         __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
2938
2939         if (IS_MF_UFP(bp) || IS_MF_BD(bp)) {
2940                 int func = BP_ABS_FUNC(bp);
2941                 u32 val;
2942
2943                 /* Re-learn the S-tag from shmem */
2944                 val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2945                                 FUNC_MF_CFG_E1HOV_TAG_MASK;
2946                 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
2947                         bp->mf_ov = val;
2948                 } else {
2949                         BNX2X_ERR("Got an SVID event, but no tag is configured in shmem\n");
2950                         goto fail;
2951                 }
2952
2953                 /* Configure new S-tag in LLH */
2954                 REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + BP_PORT(bp) * 8,
2955                        bp->mf_ov);
2956
2957                 /* Send Ramrod to update FW of change */
2958                 __set_bit(BNX2X_F_UPDATE_SD_VLAN_TAG_CHNG,
2959                           &switch_update_params->changes);
2960                 switch_update_params->vlan = bp->mf_ov;
2961
2962                 if (bnx2x_func_state_change(bp, &func_params) < 0) {
2963                         BNX2X_ERR("Failed to configure FW of S-tag Change to %02x\n",
2964                                   bp->mf_ov);
2965                         goto fail;
2966                 } else {
2967                         DP(BNX2X_MSG_MCP, "Configured S-tag %02x\n",
2968                            bp->mf_ov);
2969                 }
2970         } else {
2971                 goto fail;
2972         }
2973
2974         bnx2x_fw_command(bp, DRV_MSG_CODE_OEM_UPDATE_SVID_OK, 0);
2975         return;
2976 fail:
2977         bnx2x_fw_command(bp, DRV_MSG_CODE_OEM_UPDATE_SVID_FAILURE, 0);
2978 }
2979
2980 static void bnx2x_pmf_update(struct bnx2x *bp)
2981 {
2982         int port = BP_PORT(bp);
2983         u32 val;
2984
2985         bp->port.pmf = 1;
2986         DP(BNX2X_MSG_MCP, "pmf %d\n", bp->port.pmf);
2987
2988         /*
2989          * We need the mb() to ensure the ordering between the writing to
2990          * bp->port.pmf here and reading it from the bnx2x_periodic_task().
2991          */
2992         smp_mb();
2993
2994         /* queue a periodic task */
2995         queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2996
2997         bnx2x_dcbx_pmf_update(bp);
2998
2999         /* enable nig attention */
3000         val = (0xff0f | (1 << (BP_VN(bp) + 4)));
3001         if (bp->common.int_block == INT_BLOCK_HC) {
3002                 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
3003                 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
3004         } else if (!CHIP_IS_E1x(bp)) {
3005                 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
3006                 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
3007         }
3008
3009         bnx2x_stats_handle(bp, STATS_EVENT_PMF);
3010 }
3011
3012 /* end of Link */
3013
3014 /* slow path */
3015
3016 /*
3017  * General service functions
3018  */
3019
3020 /* send the MCP a request, block until there is a reply */
3021 u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param)
3022 {
3023         int mb_idx = BP_FW_MB_IDX(bp);
3024         u32 seq;
3025         u32 rc = 0;
3026         u32 cnt = 1;
3027         u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10;
3028
3029         mutex_lock(&bp->fw_mb_mutex);
3030         seq = ++bp->fw_seq;
3031         SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param);
3032         SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq));
3033
3034         DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n",
3035                         (command | seq), param);
3036
3037         do {
3038                 /* let the FW do it's magic ... */
3039                 msleep(delay);
3040
3041                 rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header);
3042
3043                 /* Give the FW up to 5 second (500*10ms) */
3044         } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
3045
3046         DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n",
3047            cnt*delay, rc, seq);
3048
3049         /* is this a reply to our command? */
3050         if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK))
3051                 rc &= FW_MSG_CODE_MASK;
3052         else {
3053                 /* FW BUG! */
3054                 BNX2X_ERR("FW failed to respond!\n");
3055                 bnx2x_fw_dump(bp);
3056                 rc = 0;
3057         }
3058         mutex_unlock(&bp->fw_mb_mutex);
3059
3060         return rc;
3061 }
3062
3063 static void storm_memset_func_cfg(struct bnx2x *bp,
3064                                  struct tstorm_eth_function_common_config *tcfg,
3065                                  u16 abs_fid)
3066 {
3067         size_t size = sizeof(struct tstorm_eth_function_common_config);
3068
3069         u32 addr = BAR_TSTRORM_INTMEM +
3070                         TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid);
3071
3072         __storm_memset_struct(bp, addr, size, (u32 *)tcfg);
3073 }
3074
3075 void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p)
3076 {
3077         if (CHIP_IS_E1x(bp)) {
3078                 struct tstorm_eth_function_common_config tcfg = {0};
3079
3080                 storm_memset_func_cfg(bp, &tcfg, p->func_id);
3081         }
3082
3083         /* Enable the function in the FW */
3084         storm_memset_vf_to_pf(bp, p->func_id, p->pf_id);
3085         storm_memset_func_en(bp, p->func_id, 1);
3086
3087         /* spq */
3088         if (p->spq_active) {
3089                 storm_memset_spq_addr(bp, p->spq_map, p->func_id);
3090                 REG_WR(bp, XSEM_REG_FAST_MEMORY +
3091                        XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod);
3092         }
3093 }
3094
3095 /**
3096  * bnx2x_get_common_flags - Return common flags
3097  *
3098  * @bp:         device handle
3099  * @fp:         queue handle
3100  * @zero_stats: TRUE if statistics zeroing is needed
3101  *
3102  * Return the flags that are common for the Tx-only and not normal connections.
3103  */
3104 static unsigned long bnx2x_get_common_flags(struct bnx2x *bp,
3105                                             struct bnx2x_fastpath *fp,
3106                                             bool zero_stats)
3107 {
3108         unsigned long flags = 0;
3109
3110         /* PF driver will always initialize the Queue to an ACTIVE state */
3111         __set_bit(BNX2X_Q_FLG_ACTIVE, &flags);
3112
3113         /* tx only connections collect statistics (on the same index as the
3114          * parent connection). The statistics are zeroed when the parent
3115          * connection is initialized.
3116          */
3117
3118         __set_bit(BNX2X_Q_FLG_STATS, &flags);
3119         if (zero_stats)
3120                 __set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags);
3121
3122         if (bp->flags & TX_SWITCHING)
3123                 __set_bit(BNX2X_Q_FLG_TX_SWITCH, &flags);
3124
3125         __set_bit(BNX2X_Q_FLG_PCSUM_ON_PKT, &flags);
3126         __set_bit(BNX2X_Q_FLG_TUN_INC_INNER_IP_ID, &flags);
3127
3128 #ifdef BNX2X_STOP_ON_ERROR
3129         __set_bit(BNX2X_Q_FLG_TX_SEC, &flags);
3130 #endif
3131
3132         return flags;
3133 }
3134
3135 static unsigned long bnx2x_get_q_flags(struct bnx2x *bp,
3136                                        struct bnx2x_fastpath *fp,
3137                                        bool leading)
3138 {
3139         unsigned long flags = 0;
3140
3141         /* calculate other queue flags */
3142         if (IS_MF_SD(bp))
3143                 __set_bit(BNX2X_Q_FLG_OV, &flags);
3144
3145         if (IS_FCOE_FP(fp)) {
3146                 __set_bit(BNX2X_Q_FLG_FCOE, &flags);
3147                 /* For FCoE - force usage of default priority (for afex) */
3148                 __set_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI, &flags);
3149         }
3150
3151         if (fp->mode != TPA_MODE_DISABLED) {
3152                 __set_bit(BNX2X_Q_FLG_TPA, &flags);
3153                 __set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags);
3154                 if (fp->mode == TPA_MODE_GRO)
3155                         __set_bit(BNX2X_Q_FLG_TPA_GRO, &flags);
3156         }
3157
3158         if (leading) {
3159                 __set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags);
3160                 __set_bit(BNX2X_Q_FLG_MCAST, &flags);
3161         }
3162
3163         /* Always set HW VLAN stripping */
3164         __set_bit(BNX2X_Q_FLG_VLAN, &flags);
3165
3166         /* configure silent vlan removal */
3167         if (IS_MF_AFEX(bp))
3168                 __set_bit(BNX2X_Q_FLG_SILENT_VLAN_REM, &flags);
3169
3170         return flags | bnx2x_get_common_flags(bp, fp, true);
3171 }
3172
3173 static void bnx2x_pf_q_prep_general(struct bnx2x *bp,
3174         struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init,
3175         u8 cos)
3176 {
3177         gen_init->stat_id = bnx2x_stats_id(fp);
3178         gen_init->spcl_id = fp->cl_id;
3179
3180         /* Always use mini-jumbo MTU for FCoE L2 ring */
3181         if (IS_FCOE_FP(fp))
3182                 gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
3183         else
3184                 gen_init->mtu = bp->dev->mtu;
3185
3186         gen_init->cos = cos;
3187
3188         gen_init->fp_hsi = ETH_FP_HSI_VERSION;
3189 }
3190
3191 static void bnx2x_pf_rx_q_prep(struct bnx2x *bp,
3192         struct bnx2x_fastpath *fp, struct rxq_pause_params *pause,
3193         struct bnx2x_rxq_setup_params *rxq_init)
3194 {
3195         u8 max_sge = 0;
3196         u16 sge_sz = 0;
3197         u16 tpa_agg_size = 0;
3198
3199         if (fp->mode != TPA_MODE_DISABLED) {
3200                 pause->sge_th_lo = SGE_TH_LO(bp);
3201                 pause->sge_th_hi = SGE_TH_HI(bp);
3202
3203                 /* validate SGE ring has enough to cross high threshold */
3204                 WARN_ON(bp->dropless_fc &&
3205                                 pause->sge_th_hi + FW_PREFETCH_CNT >
3206                                 MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES);
3207
3208                 tpa_agg_size = TPA_AGG_SIZE;
3209                 max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >>
3210                         SGE_PAGE_SHIFT;
3211                 max_sge = ((max_sge + PAGES_PER_SGE - 1) &
3212                           (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT;
3213                 sge_sz = (u16)min_t(u32, SGE_PAGES, 0xffff);
3214         }
3215
3216         /* pause - not for e1 */
3217         if (!CHIP_IS_E1(bp)) {
3218                 pause->bd_th_lo = BD_TH_LO(bp);
3219                 pause->bd_th_hi = BD_TH_HI(bp);
3220
3221                 pause->rcq_th_lo = RCQ_TH_LO(bp);
3222                 pause->rcq_th_hi = RCQ_TH_HI(bp);
3223                 /*
3224                  * validate that rings have enough entries to cross
3225                  * high thresholds
3226                  */
3227                 WARN_ON(bp->dropless_fc &&
3228                                 pause->bd_th_hi + FW_PREFETCH_CNT >
3229                                 bp->rx_ring_size);
3230                 WARN_ON(bp->dropless_fc &&
3231                                 pause->rcq_th_hi + FW_PREFETCH_CNT >
3232                                 NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT);
3233
3234                 pause->pri_map = 1;
3235         }
3236
3237         /* rxq setup */
3238         rxq_init->dscr_map = fp->rx_desc_mapping;
3239         rxq_init->sge_map = fp->rx_sge_mapping;
3240         rxq_init->rcq_map = fp->rx_comp_mapping;
3241         rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE;
3242
3243         /* This should be a maximum number of data bytes that may be
3244          * placed on the BD (not including paddings).
3245          */
3246         rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START -
3247                            BNX2X_FW_RX_ALIGN_END - IP_HEADER_ALIGNMENT_PADDING;
3248
3249         rxq_init->cl_qzone_id = fp->cl_qzone_id;
3250         rxq_init->tpa_agg_sz = tpa_agg_size;
3251         rxq_init->sge_buf_sz = sge_sz;
3252         rxq_init->max_sges_pkt = max_sge;
3253         rxq_init->rss_engine_id = BP_FUNC(bp);
3254         rxq_init->mcast_engine_id = BP_FUNC(bp);
3255
3256         /* Maximum number or simultaneous TPA aggregation for this Queue.
3257          *
3258          * For PF Clients it should be the maximum available number.
3259          * VF driver(s) may want to define it to a smaller value.
3260          */
3261         rxq_init->max_tpa_queues = MAX_AGG_QS(bp);
3262
3263         rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
3264         rxq_init->fw_sb_id = fp->fw_sb_id;
3265
3266         if (IS_FCOE_FP(fp))
3267                 rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS;
3268         else
3269                 rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
3270         /* configure silent vlan removal
3271          * if multi function mode is afex, then mask default vlan
3272          */
3273         if (IS_MF_AFEX(bp)) {
3274                 rxq_init->silent_removal_value = bp->afex_def_vlan_tag;
3275                 rxq_init->silent_removal_mask = VLAN_VID_MASK;
3276         }
3277 }
3278
3279 static void bnx2x_pf_tx_q_prep(struct bnx2x *bp,
3280         struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init,
3281         u8 cos)
3282 {
3283         txq_init->dscr_map = fp->txdata_ptr[cos]->tx_desc_mapping;
3284         txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
3285         txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
3286         txq_init->fw_sb_id = fp->fw_sb_id;
3287
3288         /*
3289          * set the tss leading client id for TX classification ==
3290          * leading RSS client id
3291          */
3292         txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id);
3293
3294         if (IS_FCOE_FP(fp)) {
3295                 txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS;
3296                 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE;
3297         }
3298 }
3299
3300 static void bnx2x_pf_init(struct bnx2x *bp)
3301 {
3302         struct bnx2x_func_init_params func_init = {0};
3303         struct event_ring_data eq_data = { {0} };
3304
3305         if (!CHIP_IS_E1x(bp)) {
3306                 /* reset IGU PF statistics: MSIX + ATTN */
3307                 /* PF */
3308                 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3309                            BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3310                            (CHIP_MODE_IS_4_PORT(bp) ?
3311                                 BP_FUNC(bp) : BP_VN(bp))*4, 0);
3312                 /* ATTN */
3313                 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3314                            BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3315                            BNX2X_IGU_STAS_MSG_PF_CNT*4 +
3316                            (CHIP_MODE_IS_4_PORT(bp) ?
3317                                 BP_FUNC(bp) : BP_VN(bp))*4, 0);
3318         }
3319
3320         func_init.spq_active = true;
3321         func_init.pf_id = BP_FUNC(bp);
3322         func_init.func_id = BP_FUNC(bp);
3323         func_init.spq_map = bp->spq_mapping;
3324         func_init.spq_prod = bp->spq_prod_idx;
3325
3326         bnx2x_func_init(bp, &func_init);
3327
3328         memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port));
3329
3330         /*
3331          * Congestion management values depend on the link rate
3332          * There is no active link so initial link rate is set to 10 Gbps.
3333          * When the link comes up The congestion management values are
3334          * re-calculated according to the actual link rate.
3335          */
3336         bp->link_vars.line_speed = SPEED_10000;
3337         bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp));
3338
3339         /* Only the PMF sets the HW */
3340         if (bp->port.pmf)
3341                 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3342
3343         /* init Event Queue - PCI bus guarantees correct endianity*/
3344         eq_data.base_addr.hi = U64_HI(bp->eq_mapping);
3345         eq_data.base_addr.lo = U64_LO(bp->eq_mapping);
3346         eq_data.producer = bp->eq_prod;
3347         eq_data.index_id = HC_SP_INDEX_EQ_CONS;
3348         eq_data.sb_id = DEF_SB_ID;
3349         storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp));
3350 }
3351
3352 static void bnx2x_e1h_disable(struct bnx2x *bp)
3353 {
3354         int port = BP_PORT(bp);
3355
3356         bnx2x_tx_disable(bp);
3357
3358         REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
3359 }
3360
3361 static void bnx2x_e1h_enable(struct bnx2x *bp)
3362 {
3363         int port = BP_PORT(bp);
3364
3365         if (!(IS_MF_UFP(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)))
3366                 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
3367
3368         /* Tx queue should be only re-enabled */
3369         netif_tx_wake_all_queues(bp->dev);
3370
3371         /*
3372          * Should not call netif_carrier_on since it will be called if the link
3373          * is up when checking for link state
3374          */
3375 }
3376
3377 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
3378
3379 static void bnx2x_drv_info_ether_stat(struct bnx2x *bp)
3380 {
3381         struct eth_stats_info *ether_stat =
3382                 &bp->slowpath->drv_info_to_mcp.ether_stat;
3383         struct bnx2x_vlan_mac_obj *mac_obj =
3384                 &bp->sp_objs->mac_obj;
3385         int i;
3386
3387         strscpy(ether_stat->version, DRV_MODULE_VERSION,
3388                 ETH_STAT_INFO_VERSION_LEN);
3389
3390         /* get DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED macs, placing them in the
3391          * mac_local field in ether_stat struct. The base address is offset by 2
3392          * bytes to account for the field being 8 bytes but a mac address is
3393          * only 6 bytes. Likewise, the stride for the get_n_elements function is
3394          * 2 bytes to compensate from the 6 bytes of a mac to the 8 bytes
3395          * allocated by the ether_stat struct, so the macs will land in their
3396          * proper positions.
3397          */
3398         for (i = 0; i < DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED; i++)
3399                 memset(ether_stat->mac_local + i, 0,
3400                        sizeof(ether_stat->mac_local[0]));
3401         mac_obj->get_n_elements(bp, &bp->sp_objs[0].mac_obj,
3402                                 DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
3403                                 ether_stat->mac_local + MAC_PAD, MAC_PAD,
3404                                 ETH_ALEN);
3405         ether_stat->mtu_size = bp->dev->mtu;
3406         if (bp->dev->features & NETIF_F_RXCSUM)
3407                 ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
3408         if (bp->dev->features & NETIF_F_TSO)
3409                 ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
3410         ether_stat->feature_flags |= bp->common.boot_mode;
3411
3412         ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0;
3413
3414         ether_stat->txq_size = bp->tx_ring_size;
3415         ether_stat->rxq_size = bp->rx_ring_size;
3416
3417 #ifdef CONFIG_BNX2X_SRIOV
3418         ether_stat->vf_cnt = IS_SRIOV(bp) ? bp->vfdb->sriov.nr_virtfn : 0;
3419 #endif
3420 }
3421
3422 static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp)
3423 {
3424         struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3425         struct fcoe_stats_info *fcoe_stat =
3426                 &bp->slowpath->drv_info_to_mcp.fcoe_stat;
3427
3428         if (!CNIC_LOADED(bp))
3429                 return;
3430
3431         memcpy(fcoe_stat->mac_local + MAC_PAD, bp->fip_mac, ETH_ALEN);
3432
3433         fcoe_stat->qos_priority =
3434                 app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE];
3435
3436         /* insert FCoE stats from ramrod response */
3437         if (!NO_FCOE(bp)) {
3438                 struct tstorm_per_queue_stats *fcoe_q_tstorm_stats =
3439                         &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3440                         tstorm_queue_statistics;
3441
3442                 struct xstorm_per_queue_stats *fcoe_q_xstorm_stats =
3443                         &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3444                         xstorm_queue_statistics;
3445
3446                 struct fcoe_statistics_params *fw_fcoe_stat =
3447                         &bp->fw_stats_data->fcoe;
3448
3449                 ADD_64_LE(fcoe_stat->rx_bytes_hi, LE32_0,
3450                           fcoe_stat->rx_bytes_lo,
3451                           fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt);
3452
3453                 ADD_64_LE(fcoe_stat->rx_bytes_hi,
3454                           fcoe_q_tstorm_stats->rcv_ucast_bytes.hi,
3455                           fcoe_stat->rx_bytes_lo,
3456                           fcoe_q_tstorm_stats->rcv_ucast_bytes.lo);
3457
3458                 ADD_64_LE(fcoe_stat->rx_bytes_hi,
3459                           fcoe_q_tstorm_stats->rcv_bcast_bytes.hi,
3460                           fcoe_stat->rx_bytes_lo,
3461                           fcoe_q_tstorm_stats->rcv_bcast_bytes.lo);
3462
3463                 ADD_64_LE(fcoe_stat->rx_bytes_hi,
3464                           fcoe_q_tstorm_stats->rcv_mcast_bytes.hi,
3465                           fcoe_stat->rx_bytes_lo,
3466                           fcoe_q_tstorm_stats->rcv_mcast_bytes.lo);
3467
3468                 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3469                           fcoe_stat->rx_frames_lo,
3470                           fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt);
3471
3472                 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3473                           fcoe_stat->rx_frames_lo,
3474                           fcoe_q_tstorm_stats->rcv_ucast_pkts);
3475
3476                 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3477                           fcoe_stat->rx_frames_lo,
3478                           fcoe_q_tstorm_stats->rcv_bcast_pkts);
3479
3480                 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3481                           fcoe_stat->rx_frames_lo,
3482                           fcoe_q_tstorm_stats->rcv_mcast_pkts);
3483
3484                 ADD_64_LE(fcoe_stat->tx_bytes_hi, LE32_0,
3485                           fcoe_stat->tx_bytes_lo,
3486                           fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt);
3487
3488                 ADD_64_LE(fcoe_stat->tx_bytes_hi,
3489                           fcoe_q_xstorm_stats->ucast_bytes_sent.hi,
3490                           fcoe_stat->tx_bytes_lo,
3491                           fcoe_q_xstorm_stats->ucast_bytes_sent.lo);
3492
3493                 ADD_64_LE(fcoe_stat->tx_bytes_hi,
3494                           fcoe_q_xstorm_stats->bcast_bytes_sent.hi,
3495                           fcoe_stat->tx_bytes_lo,
3496                           fcoe_q_xstorm_stats->bcast_bytes_sent.lo);
3497
3498                 ADD_64_LE(fcoe_stat->tx_bytes_hi,
3499                           fcoe_q_xstorm_stats->mcast_bytes_sent.hi,
3500                           fcoe_stat->tx_bytes_lo,
3501                           fcoe_q_xstorm_stats->mcast_bytes_sent.lo);
3502
3503                 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3504                           fcoe_stat->tx_frames_lo,
3505                           fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt);
3506
3507                 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3508                           fcoe_stat->tx_frames_lo,
3509                           fcoe_q_xstorm_stats->ucast_pkts_sent);
3510
3511                 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3512                           fcoe_stat->tx_frames_lo,
3513                           fcoe_q_xstorm_stats->bcast_pkts_sent);
3514
3515                 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3516                           fcoe_stat->tx_frames_lo,
3517                           fcoe_q_xstorm_stats->mcast_pkts_sent);
3518         }
3519
3520         /* ask L5 driver to add data to the struct */
3521         bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD);
3522 }
3523
3524 static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp)
3525 {
3526         struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3527         struct iscsi_stats_info *iscsi_stat =
3528                 &bp->slowpath->drv_info_to_mcp.iscsi_stat;
3529
3530         if (!CNIC_LOADED(bp))
3531                 return;
3532
3533         memcpy(iscsi_stat->mac_local + MAC_PAD, bp->cnic_eth_dev.iscsi_mac,
3534                ETH_ALEN);
3535
3536         iscsi_stat->qos_priority =
3537                 app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI];
3538
3539         /* ask L5 driver to add data to the struct */
3540         bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD);
3541 }
3542
3543 /* called due to MCP event (on pmf):
3544  *      reread new bandwidth configuration
3545  *      configure FW
3546  *      notify others function about the change
3547  */
3548 static void bnx2x_config_mf_bw(struct bnx2x *bp)
3549 {
3550         /* Workaround for MFW bug.
3551          * MFW is not supposed to generate BW attention in
3552          * single function mode.
3553          */
3554         if (!IS_MF(bp)) {
3555                 DP(BNX2X_MSG_MCP,
3556                    "Ignoring MF BW config in single function mode\n");
3557                 return;
3558         }
3559
3560         if (bp->link_vars.link_up) {
3561                 bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX);
3562                 bnx2x_link_sync_notify(bp);
3563         }
3564         storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3565 }
3566
3567 static void bnx2x_set_mf_bw(struct bnx2x *bp)
3568 {
3569         bnx2x_config_mf_bw(bp);
3570         bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
3571 }
3572
3573 static void bnx2x_handle_eee_event(struct bnx2x *bp)
3574 {
3575         DP(BNX2X_MSG_MCP, "EEE - LLDP event\n");
3576         bnx2x_fw_command(bp, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
3577 }
3578
3579 #define BNX2X_UPDATE_DRV_INFO_IND_LENGTH        (20)
3580 #define BNX2X_UPDATE_DRV_INFO_IND_COUNT         (25)
3581
3582 static void bnx2x_handle_drv_info_req(struct bnx2x *bp)
3583 {
3584         enum drv_info_opcode op_code;
3585         u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control);
3586         bool release = false;
3587         int wait;
3588
3589         /* if drv_info version supported by MFW doesn't match - send NACK */
3590         if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
3591                 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3592                 return;
3593         }
3594
3595         op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
3596                   DRV_INFO_CONTROL_OP_CODE_SHIFT;
3597
3598         /* Must prevent other flows from accessing drv_info_to_mcp */
3599         mutex_lock(&bp->drv_info_mutex);
3600
3601         memset(&bp->slowpath->drv_info_to_mcp, 0,
3602                sizeof(union drv_info_to_mcp));
3603
3604         switch (op_code) {
3605         case ETH_STATS_OPCODE:
3606                 bnx2x_drv_info_ether_stat(bp);
3607                 break;
3608         case FCOE_STATS_OPCODE:
3609                 bnx2x_drv_info_fcoe_stat(bp);
3610                 break;
3611         case ISCSI_STATS_OPCODE:
3612                 bnx2x_drv_info_iscsi_stat(bp);
3613                 break;
3614         default:
3615                 /* if op code isn't supported - send NACK */
3616                 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3617                 goto out;
3618         }
3619
3620         /* if we got drv_info attn from MFW then these fields are defined in
3621          * shmem2 for sure
3622          */
3623         SHMEM2_WR(bp, drv_info_host_addr_lo,
3624                 U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3625         SHMEM2_WR(bp, drv_info_host_addr_hi,
3626                 U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3627
3628         bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0);
3629
3630         /* Since possible management wants both this and get_driver_version
3631          * need to wait until management notifies us it finished utilizing
3632          * the buffer.
3633          */
3634         if (!SHMEM2_HAS(bp, mfw_drv_indication)) {
3635                 DP(BNX2X_MSG_MCP, "Management does not support indication\n");
3636         } else if (!bp->drv_info_mng_owner) {
3637                 u32 bit = MFW_DRV_IND_READ_DONE_OFFSET((BP_ABS_FUNC(bp) >> 1));
3638
3639                 for (wait = 0; wait < BNX2X_UPDATE_DRV_INFO_IND_COUNT; wait++) {
3640                         u32 indication = SHMEM2_RD(bp, mfw_drv_indication);
3641
3642                         /* Management is done; need to clear indication */
3643                         if (indication & bit) {
3644                                 SHMEM2_WR(bp, mfw_drv_indication,
3645                                           indication & ~bit);
3646                                 release = true;
3647                                 break;
3648                         }
3649
3650                         msleep(BNX2X_UPDATE_DRV_INFO_IND_LENGTH);
3651                 }
3652         }
3653         if (!release) {
3654                 DP(BNX2X_MSG_MCP, "Management did not release indication\n");
3655                 bp->drv_info_mng_owner = true;
3656         }
3657
3658 out:
3659         mutex_unlock(&bp->drv_info_mutex);
3660 }
3661
3662 static u32 bnx2x_update_mng_version_utility(u8 *version, bool bnx2x_format)
3663 {
3664         u8 vals[4];
3665         int i = 0;
3666
3667         if (bnx2x_format) {
3668                 i = sscanf(version, "1.%c%hhd.%hhd.%hhd",
3669                            &vals[0], &vals[1], &vals[2], &vals[3]);
3670                 if (i > 0)
3671                         vals[0] -= '0';
3672         } else {
3673                 i = sscanf(version, "%hhd.%hhd.%hhd.%hhd",
3674                            &vals[0], &vals[1], &vals[2], &vals[3]);
3675         }
3676
3677         while (i < 4)
3678                 vals[i++] = 0;
3679
3680         return (vals[0] << 24) | (vals[1] << 16) | (vals[2] << 8) | vals[3];
3681 }
3682
3683 void bnx2x_update_mng_version(struct bnx2x *bp)
3684 {
3685         u32 iscsiver = DRV_VER_NOT_LOADED;
3686         u32 fcoever = DRV_VER_NOT_LOADED;
3687         u32 ethver = DRV_VER_NOT_LOADED;
3688         int idx = BP_FW_MB_IDX(bp);
3689         u8 *version;
3690
3691         if (!SHMEM2_HAS(bp, func_os_drv_ver))
3692                 return;
3693
3694         mutex_lock(&bp->drv_info_mutex);
3695         /* Must not proceed when `bnx2x_handle_drv_info_req' is feasible */
3696         if (bp->drv_info_mng_owner)
3697                 goto out;
3698
3699         if (bp->state != BNX2X_STATE_OPEN)
3700                 goto out;
3701
3702         /* Parse ethernet driver version */
3703         ethver = bnx2x_update_mng_version_utility(DRV_MODULE_VERSION, true);
3704         if (!CNIC_LOADED(bp))
3705                 goto out;
3706
3707         /* Try getting storage driver version via cnic */
3708         memset(&bp->slowpath->drv_info_to_mcp, 0,
3709                sizeof(union drv_info_to_mcp));
3710         bnx2x_drv_info_iscsi_stat(bp);
3711         version = bp->slowpath->drv_info_to_mcp.iscsi_stat.version;
3712         iscsiver = bnx2x_update_mng_version_utility(version, false);
3713
3714         memset(&bp->slowpath->drv_info_to_mcp, 0,
3715                sizeof(union drv_info_to_mcp));
3716         bnx2x_drv_info_fcoe_stat(bp);
3717         version = bp->slowpath->drv_info_to_mcp.fcoe_stat.version;
3718         fcoever = bnx2x_update_mng_version_utility(version, false);
3719
3720 out:
3721         SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ETHERNET], ethver);
3722         SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ISCSI], iscsiver);
3723         SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_FCOE], fcoever);
3724
3725         mutex_unlock(&bp->drv_info_mutex);
3726
3727         DP(BNX2X_MSG_MCP, "Setting driver version: ETH [%08x] iSCSI [%08x] FCoE [%08x]\n",
3728            ethver, iscsiver, fcoever);
3729 }
3730
3731 void bnx2x_update_mfw_dump(struct bnx2x *bp)
3732 {
3733         u32 drv_ver;
3734         u32 valid_dump;
3735
3736         if (!SHMEM2_HAS(bp, drv_info))
3737                 return;
3738
3739         /* Update Driver load time, possibly broken in y2038 */
3740         SHMEM2_WR(bp, drv_info.epoc, (u32)ktime_get_real_seconds());
3741
3742         drv_ver = bnx2x_update_mng_version_utility(DRV_MODULE_VERSION, true);
3743         SHMEM2_WR(bp, drv_info.drv_ver, drv_ver);
3744
3745         SHMEM2_WR(bp, drv_info.fw_ver, REG_RD(bp, XSEM_REG_PRAM));
3746
3747         /* Check & notify On-Chip dump. */
3748         valid_dump = SHMEM2_RD(bp, drv_info.valid_dump);
3749
3750         if (valid_dump & FIRST_DUMP_VALID)
3751                 DP(NETIF_MSG_IFUP, "A valid On-Chip MFW dump found on 1st partition\n");
3752
3753         if (valid_dump & SECOND_DUMP_VALID)
3754                 DP(NETIF_MSG_IFUP, "A valid On-Chip MFW dump found on 2nd partition\n");
3755 }
3756
3757 static void bnx2x_oem_event(struct bnx2x *bp, u32 event)
3758 {
3759         u32 cmd_ok, cmd_fail;
3760
3761         /* sanity */
3762         if (event & DRV_STATUS_DCC_EVENT_MASK &&
3763             event & DRV_STATUS_OEM_EVENT_MASK) {
3764                 BNX2X_ERR("Received simultaneous events %08x\n", event);
3765                 return;
3766         }
3767
3768         if (event & DRV_STATUS_DCC_EVENT_MASK) {
3769                 cmd_fail = DRV_MSG_CODE_DCC_FAILURE;
3770                 cmd_ok = DRV_MSG_CODE_DCC_OK;
3771         } else /* if (event & DRV_STATUS_OEM_EVENT_MASK) */ {
3772                 cmd_fail = DRV_MSG_CODE_OEM_FAILURE;
3773                 cmd_ok = DRV_MSG_CODE_OEM_OK;
3774         }
3775
3776         DP(BNX2X_MSG_MCP, "oem_event 0x%x\n", event);
3777
3778         if (event & (DRV_STATUS_DCC_DISABLE_ENABLE_PF |
3779                      DRV_STATUS_OEM_DISABLE_ENABLE_PF)) {
3780                 /* This is the only place besides the function initialization
3781                  * where the bp->flags can change so it is done without any
3782                  * locks
3783                  */
3784                 if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
3785                         DP(BNX2X_MSG_MCP, "mf_cfg function disabled\n");
3786                         bp->flags |= MF_FUNC_DIS;
3787
3788                         bnx2x_e1h_disable(bp);
3789                 } else {
3790                         DP(BNX2X_MSG_MCP, "mf_cfg function enabled\n");
3791                         bp->flags &= ~MF_FUNC_DIS;
3792
3793                         bnx2x_e1h_enable(bp);
3794                 }
3795                 event &= ~(DRV_STATUS_DCC_DISABLE_ENABLE_PF |
3796                            DRV_STATUS_OEM_DISABLE_ENABLE_PF);
3797         }
3798
3799         if (event & (DRV_STATUS_DCC_BANDWIDTH_ALLOCATION |
3800                      DRV_STATUS_OEM_BANDWIDTH_ALLOCATION)) {
3801                 bnx2x_config_mf_bw(bp);
3802                 event &= ~(DRV_STATUS_DCC_BANDWIDTH_ALLOCATION |
3803                            DRV_STATUS_OEM_BANDWIDTH_ALLOCATION);
3804         }
3805
3806         /* Report results to MCP */
3807         if (event)
3808                 bnx2x_fw_command(bp, cmd_fail, 0);
3809         else
3810                 bnx2x_fw_command(bp, cmd_ok, 0);
3811 }
3812
3813 /* must be called under the spq lock */
3814 static struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp)
3815 {
3816         struct eth_spe *next_spe = bp->spq_prod_bd;
3817
3818         if (bp->spq_prod_bd == bp->spq_last_bd) {
3819                 bp->spq_prod_bd = bp->spq;
3820                 bp->spq_prod_idx = 0;
3821                 DP(BNX2X_MSG_SP, "end of spq\n");
3822         } else {
3823                 bp->spq_prod_bd++;
3824                 bp->spq_prod_idx++;
3825         }
3826         return next_spe;
3827 }
3828
3829 /* must be called under the spq lock */
3830 static void bnx2x_sp_prod_update(struct bnx2x *bp)
3831 {
3832         int func = BP_FUNC(bp);
3833
3834         /*
3835          * Make sure that BD data is updated before writing the producer:
3836          * BD data is written to the memory, the producer is read from the
3837          * memory, thus we need a full memory barrier to ensure the ordering.
3838          */
3839         mb();
3840
3841         REG_WR16_RELAXED(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func),
3842                          bp->spq_prod_idx);
3843 }
3844
3845 /**
3846  * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
3847  *
3848  * @cmd:        command to check
3849  * @cmd_type:   command type
3850  */
3851 static bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
3852 {
3853         if ((cmd_type == NONE_CONNECTION_TYPE) ||
3854             (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
3855             (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
3856             (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
3857             (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
3858             (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
3859             (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE))
3860                 return true;
3861         else
3862                 return false;
3863 }
3864
3865 /**
3866  * bnx2x_sp_post - place a single command on an SP ring
3867  *
3868  * @bp:         driver handle
3869  * @command:    command to place (e.g. SETUP, FILTER_RULES, etc.)
3870  * @cid:        SW CID the command is related to
3871  * @data_hi:    command private data address (high 32 bits)
3872  * @data_lo:    command private data address (low 32 bits)
3873  * @cmd_type:   command type (e.g. NONE, ETH)
3874  *
3875  * SP data is handled as if it's always an address pair, thus data fields are
3876  * not swapped to little endian in upper functions. Instead this function swaps
3877  * data as if it's two u32 fields.
3878  */
3879 int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
3880                   u32 data_hi, u32 data_lo, int cmd_type)
3881 {
3882         struct eth_spe *spe;
3883         u16 type;
3884         bool common = bnx2x_is_contextless_ramrod(command, cmd_type);
3885
3886 #ifdef BNX2X_STOP_ON_ERROR
3887         if (unlikely(bp->panic)) {
3888                 BNX2X_ERR("Can't post SP when there is panic\n");
3889                 return -EIO;
3890         }
3891 #endif
3892
3893         spin_lock_bh(&bp->spq_lock);
3894
3895         if (common) {
3896                 if (!atomic_read(&bp->eq_spq_left)) {
3897                         BNX2X_ERR("BUG! EQ ring full!\n");
3898                         spin_unlock_bh(&bp->spq_lock);
3899                         bnx2x_panic();
3900                         return -EBUSY;
3901                 }
3902         } else if (!atomic_read(&bp->cq_spq_left)) {
3903                         BNX2X_ERR("BUG! SPQ ring full!\n");
3904                         spin_unlock_bh(&bp->spq_lock);
3905                         bnx2x_panic();
3906                         return -EBUSY;
3907         }
3908
3909         spe = bnx2x_sp_get_next(bp);
3910
3911         /* CID needs port number to be encoded int it */
3912         spe->hdr.conn_and_cmd_data =
3913                         cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) |
3914                                     HW_CID(bp, cid));
3915
3916         /* In some cases, type may already contain the func-id
3917          * mainly in SRIOV related use cases, so we add it here only
3918          * if it's not already set.
3919          */
3920         if (!(cmd_type & SPE_HDR_FUNCTION_ID)) {
3921                 type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) &
3922                         SPE_HDR_CONN_TYPE;
3923                 type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) &
3924                          SPE_HDR_FUNCTION_ID);
3925         } else {
3926                 type = cmd_type;
3927         }
3928
3929         spe->hdr.type = cpu_to_le16(type);
3930
3931         spe->data.update_data_addr.hi = cpu_to_le32(data_hi);
3932         spe->data.update_data_addr.lo = cpu_to_le32(data_lo);
3933
3934         /*
3935          * It's ok if the actual decrement is issued towards the memory
3936          * somewhere between the spin_lock and spin_unlock. Thus no
3937          * more explicit memory barrier is needed.
3938          */
3939         if (common)
3940                 atomic_dec(&bp->eq_spq_left);
3941         else
3942                 atomic_dec(&bp->cq_spq_left);
3943
3944         DP(BNX2X_MSG_SP,
3945            "SPQE[%x] (%x:%x)  (cmd, common?) (%d,%d)  hw_cid %x  data (%x:%x) type(0x%x) left (CQ, EQ) (%x,%x)\n",
3946            bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping),
3947            (u32)(U64_LO(bp->spq_mapping) +
3948            (void *)bp->spq_prod_bd - (void *)bp->spq), command, common,
3949            HW_CID(bp, cid), data_hi, data_lo, type,
3950            atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left));
3951
3952         bnx2x_sp_prod_update(bp);
3953         spin_unlock_bh(&bp->spq_lock);
3954         return 0;
3955 }
3956
3957 /* acquire split MCP access lock register */
3958 static int bnx2x_acquire_alr(struct bnx2x *bp)
3959 {
3960         u32 j, val;
3961         int rc = 0;
3962
3963         might_sleep();
3964         for (j = 0; j < 1000; j++) {
3965                 REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, MCPR_ACCESS_LOCK_LOCK);
3966                 val = REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK);
3967                 if (val & MCPR_ACCESS_LOCK_LOCK)
3968                         break;
3969
3970                 usleep_range(5000, 10000);
3971         }
3972         if (!(val & MCPR_ACCESS_LOCK_LOCK)) {
3973                 BNX2X_ERR("Cannot acquire MCP access lock register\n");
3974                 rc = -EBUSY;
3975         }
3976
3977         return rc;
3978 }
3979
3980 /* release split MCP access lock register */
3981 static void bnx2x_release_alr(struct bnx2x *bp)
3982 {
3983         REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, 0);
3984 }
3985
3986 #define BNX2X_DEF_SB_ATT_IDX    0x0001
3987 #define BNX2X_DEF_SB_IDX        0x0002
3988
3989 static u16 bnx2x_update_dsb_idx(struct bnx2x *bp)
3990 {
3991         struct host_sp_status_block *def_sb = bp->def_status_blk;
3992         u16 rc = 0;
3993
3994         barrier(); /* status block is written to by the chip */
3995         if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
3996                 bp->def_att_idx = def_sb->atten_status_block.attn_bits_index;
3997                 rc |= BNX2X_DEF_SB_ATT_IDX;
3998         }
3999
4000         if (bp->def_idx != def_sb->sp_sb.running_index) {
4001                 bp->def_idx = def_sb->sp_sb.running_index;
4002                 rc |= BNX2X_DEF_SB_IDX;
4003         }
4004
4005         /* Do not reorder: indices reading should complete before handling */
4006         barrier();
4007         return rc;
4008 }
4009
4010 /*
4011  * slow path service functions
4012  */
4013
4014 static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted)
4015 {
4016         int port = BP_PORT(bp);
4017         u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4018                               MISC_REG_AEU_MASK_ATTN_FUNC_0;
4019         u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
4020                                        NIG_REG_MASK_INTERRUPT_PORT0;
4021         u32 aeu_mask;
4022         u32 nig_mask = 0;
4023         u32 reg_addr;
4024
4025         if (bp->attn_state & asserted)
4026                 BNX2X_ERR("IGU ERROR\n");
4027
4028         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4029         aeu_mask = REG_RD(bp, aeu_addr);
4030
4031         DP(NETIF_MSG_HW, "aeu_mask %x  newly asserted %x\n",
4032            aeu_mask, asserted);
4033         aeu_mask &= ~(asserted & 0x3ff);
4034         DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
4035
4036         REG_WR(bp, aeu_addr, aeu_mask);
4037         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4038
4039         DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
4040         bp->attn_state |= asserted;
4041         DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
4042
4043         if (asserted & ATTN_HARD_WIRED_MASK) {
4044                 if (asserted & ATTN_NIG_FOR_FUNC) {
4045
4046                         bnx2x_acquire_phy_lock(bp);
4047
4048                         /* save nig interrupt mask */
4049                         nig_mask = REG_RD(bp, nig_int_mask_addr);
4050
4051                         /* If nig_mask is not set, no need to call the update
4052                          * function.
4053                          */
4054                         if (nig_mask) {
4055                                 REG_WR(bp, nig_int_mask_addr, 0);
4056
4057                                 bnx2x_link_attn(bp);
4058                         }
4059
4060                         /* handle unicore attn? */
4061                 }
4062                 if (asserted & ATTN_SW_TIMER_4_FUNC)
4063                         DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n");
4064
4065                 if (asserted & GPIO_2_FUNC)
4066                         DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n");
4067
4068                 if (asserted & GPIO_3_FUNC)
4069                         DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n");
4070
4071                 if (asserted & GPIO_4_FUNC)
4072                         DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n");
4073
4074                 if (port == 0) {
4075                         if (asserted & ATTN_GENERAL_ATTN_1) {
4076                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n");
4077                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
4078                         }
4079                         if (asserted & ATTN_GENERAL_ATTN_2) {
4080                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n");
4081                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
4082                         }
4083                         if (asserted & ATTN_GENERAL_ATTN_3) {
4084                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n");
4085                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
4086                         }
4087                 } else {
4088                         if (asserted & ATTN_GENERAL_ATTN_4) {
4089                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n");
4090                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
4091                         }
4092                         if (asserted & ATTN_GENERAL_ATTN_5) {
4093                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n");
4094                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
4095                         }
4096                         if (asserted & ATTN_GENERAL_ATTN_6) {
4097                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n");
4098                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
4099                         }
4100                 }
4101
4102         } /* if hardwired */
4103
4104         if (bp->common.int_block == INT_BLOCK_HC)
4105                 reg_addr = (HC_REG_COMMAND_REG + port*32 +
4106                             COMMAND_REG_ATTN_BITS_SET);
4107         else
4108                 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
4109
4110         DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted,
4111            (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
4112         REG_WR(bp, reg_addr, asserted);
4113
4114         /* now set back the mask */
4115         if (asserted & ATTN_NIG_FOR_FUNC) {
4116                 /* Verify that IGU ack through BAR was written before restoring
4117                  * NIG mask. This loop should exit after 2-3 iterations max.
4118                  */
4119                 if (bp->common.int_block != INT_BLOCK_HC) {
4120                         u32 cnt = 0, igu_acked;
4121                         do {
4122                                 igu_acked = REG_RD(bp,
4123                                                    IGU_REG_ATTENTION_ACK_BITS);
4124                         } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
4125                                  (++cnt < MAX_IGU_ATTN_ACK_TO));
4126                         if (!igu_acked)
4127                                 DP(NETIF_MSG_HW,
4128                                    "Failed to verify IGU ack on time\n");
4129                         barrier();
4130                 }
4131                 REG_WR(bp, nig_int_mask_addr, nig_mask);
4132                 bnx2x_release_phy_lock(bp);
4133         }
4134 }
4135
4136 static void bnx2x_fan_failure(struct bnx2x *bp)
4137 {
4138         int port = BP_PORT(bp);
4139         u32 ext_phy_config;
4140         /* mark the failure */
4141         ext_phy_config =
4142                 SHMEM_RD(bp,
4143                          dev_info.port_hw_config[port].external_phy_config);
4144
4145         ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
4146         ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
4147         SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config,
4148                  ext_phy_config);
4149
4150         /* log the failure */
4151         netdev_err(bp->dev, "Fan Failure on Network Controller has caused the driver to shutdown the card to prevent permanent damage.\n"
4152                             "Please contact OEM Support for assistance\n");
4153
4154         /* Schedule device reset (unload)
4155          * This is due to some boards consuming sufficient power when driver is
4156          * up to overheat if fan fails.
4157          */
4158         bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_FAN_FAILURE, 0);
4159 }
4160
4161 static void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn)
4162 {
4163         int port = BP_PORT(bp);
4164         int reg_offset;
4165         u32 val;
4166
4167         reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
4168                              MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
4169
4170         if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
4171
4172                 val = REG_RD(bp, reg_offset);
4173                 val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
4174                 REG_WR(bp, reg_offset, val);
4175
4176                 BNX2X_ERR("SPIO5 hw attention\n");
4177
4178                 /* Fan failure attention */
4179                 bnx2x_hw_reset_phy(&bp->link_params);
4180                 bnx2x_fan_failure(bp);
4181         }
4182
4183         if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) {
4184                 bnx2x_acquire_phy_lock(bp);
4185                 bnx2x_handle_module_detect_int(&bp->link_params);
4186                 bnx2x_release_phy_lock(bp);
4187         }
4188
4189         if (attn & HW_INTERRUPT_ASSERT_SET_0) {
4190
4191                 val = REG_RD(bp, reg_offset);
4192                 val &= ~(attn & HW_INTERRUPT_ASSERT_SET_0);
4193                 REG_WR(bp, reg_offset, val);
4194
4195                 BNX2X_ERR("FATAL HW block attention set0 0x%x\n",
4196                           (u32)(attn & HW_INTERRUPT_ASSERT_SET_0));
4197                 bnx2x_panic();
4198         }
4199 }
4200
4201 static void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn)
4202 {
4203         u32 val;
4204
4205         if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
4206
4207                 val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR);
4208                 BNX2X_ERR("DB hw attention 0x%x\n", val);
4209                 /* DORQ discard attention */
4210                 if (val & 0x2)
4211                         BNX2X_ERR("FATAL error from DORQ\n");
4212         }
4213
4214         if (attn & HW_INTERRUPT_ASSERT_SET_1) {
4215
4216                 int port = BP_PORT(bp);
4217                 int reg_offset;
4218
4219                 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
4220                                      MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
4221
4222                 val = REG_RD(bp, reg_offset);
4223                 val &= ~(attn & HW_INTERRUPT_ASSERT_SET_1);
4224                 REG_WR(bp, reg_offset, val);
4225
4226                 BNX2X_ERR("FATAL HW block attention set1 0x%x\n",
4227                           (u32)(attn & HW_INTERRUPT_ASSERT_SET_1));
4228                 bnx2x_panic();
4229         }
4230 }
4231
4232 static void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn)
4233 {
4234         u32 val;
4235
4236         if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
4237
4238                 val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR);
4239                 BNX2X_ERR("CFC hw attention 0x%x\n", val);
4240                 /* CFC error attention */
4241                 if (val & 0x2)
4242                         BNX2X_ERR("FATAL error from CFC\n");
4243         }
4244
4245         if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
4246                 val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0);
4247                 BNX2X_ERR("PXP hw attention-0 0x%x\n", val);
4248                 /* RQ_USDMDP_FIFO_OVERFLOW */
4249                 if (val & 0x18000)
4250                         BNX2X_ERR("FATAL error from PXP\n");
4251
4252                 if (!CHIP_IS_E1x(bp)) {
4253                         val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1);
4254                         BNX2X_ERR("PXP hw attention-1 0x%x\n", val);
4255                 }
4256         }
4257
4258         if (attn & HW_INTERRUPT_ASSERT_SET_2) {
4259
4260                 int port = BP_PORT(bp);
4261                 int reg_offset;
4262
4263                 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
4264                                      MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
4265
4266                 val = REG_RD(bp, reg_offset);
4267                 val &= ~(attn & HW_INTERRUPT_ASSERT_SET_2);
4268                 REG_WR(bp, reg_offset, val);
4269
4270                 BNX2X_ERR("FATAL HW block attention set2 0x%x\n",
4271                           (u32)(attn & HW_INTERRUPT_ASSERT_SET_2));
4272                 bnx2x_panic();
4273         }
4274 }
4275
4276 static void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn)
4277 {
4278         u32 val;
4279
4280         if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
4281
4282                 if (attn & BNX2X_PMF_LINK_ASSERT) {
4283                         int func = BP_FUNC(bp);
4284
4285                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
4286                         bnx2x_read_mf_cfg(bp);
4287                         bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp,
4288                                         func_mf_config[BP_ABS_FUNC(bp)].config);
4289                         val = SHMEM_RD(bp,
4290                                        func_mb[BP_FW_MB_IDX(bp)].drv_status);
4291
4292                         if (val & (DRV_STATUS_DCC_EVENT_MASK |
4293                                    DRV_STATUS_OEM_EVENT_MASK))
4294                                 bnx2x_oem_event(bp,
4295                                         (val & (DRV_STATUS_DCC_EVENT_MASK |
4296                                                 DRV_STATUS_OEM_EVENT_MASK)));
4297
4298                         if (val & DRV_STATUS_SET_MF_BW)
4299                                 bnx2x_set_mf_bw(bp);
4300
4301                         if (val & DRV_STATUS_DRV_INFO_REQ)
4302                                 bnx2x_handle_drv_info_req(bp);
4303
4304                         if (val & DRV_STATUS_VF_DISABLED)
4305                                 bnx2x_schedule_iov_task(bp,
4306                                                         BNX2X_IOV_HANDLE_FLR);
4307
4308                         if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF))
4309                                 bnx2x_pmf_update(bp);
4310
4311                         if (bp->port.pmf &&
4312                             (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
4313                                 bp->dcbx_enabled > 0)
4314                                 /* start dcbx state machine */
4315                                 bnx2x_dcbx_set_params(bp,
4316                                         BNX2X_DCBX_STATE_NEG_RECEIVED);
4317                         if (val & DRV_STATUS_AFEX_EVENT_MASK)
4318                                 bnx2x_handle_afex_cmd(bp,
4319                                         val & DRV_STATUS_AFEX_EVENT_MASK);
4320                         if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
4321                                 bnx2x_handle_eee_event(bp);
4322
4323                         if (val & DRV_STATUS_OEM_UPDATE_SVID)
4324                                 bnx2x_schedule_sp_rtnl(bp,
4325                                         BNX2X_SP_RTNL_UPDATE_SVID, 0);
4326
4327                         if (bp->link_vars.periodic_flags &
4328                             PERIODIC_FLAGS_LINK_EVENT) {
4329                                 /*  sync with link */
4330                                 bnx2x_acquire_phy_lock(bp);
4331                                 bp->link_vars.periodic_flags &=
4332                                         ~PERIODIC_FLAGS_LINK_EVENT;
4333                                 bnx2x_release_phy_lock(bp);
4334                                 if (IS_MF(bp))
4335                                         bnx2x_link_sync_notify(bp);
4336                                 bnx2x_link_report(bp);
4337                         }
4338                         /* Always call it here: bnx2x_link_report() will
4339                          * prevent the link indication duplication.
4340                          */
4341                         bnx2x__link_status_update(bp);
4342                 } else if (attn & BNX2X_MC_ASSERT_BITS) {
4343
4344                         BNX2X_ERR("MC assert!\n");
4345                         bnx2x_mc_assert(bp);
4346                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0);
4347                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0);
4348                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0);
4349                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0);
4350                         bnx2x_panic();
4351
4352                 } else if (attn & BNX2X_MCP_ASSERT) {
4353
4354                         BNX2X_ERR("MCP assert!\n");
4355                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0);
4356                         bnx2x_fw_dump(bp);
4357
4358                 } else
4359                         BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn);
4360         }
4361
4362         if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
4363                 BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn);
4364                 if (attn & BNX2X_GRC_TIMEOUT) {
4365                         val = CHIP_IS_E1(bp) ? 0 :
4366                                         REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN);
4367                         BNX2X_ERR("GRC time-out 0x%08x\n", val);
4368                 }
4369                 if (attn & BNX2X_GRC_RSV) {
4370                         val = CHIP_IS_E1(bp) ? 0 :
4371                                         REG_RD(bp, MISC_REG_GRC_RSV_ATTN);
4372                         BNX2X_ERR("GRC reserved 0x%08x\n", val);
4373                 }
4374                 REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
4375         }
4376 }
4377
4378 /*
4379  * Bits map:
4380  * 0-7   - Engine0 load counter.
4381  * 8-15  - Engine1 load counter.
4382  * 16    - Engine0 RESET_IN_PROGRESS bit.
4383  * 17    - Engine1 RESET_IN_PROGRESS bit.
4384  * 18    - Engine0 ONE_IS_LOADED. Set when there is at least one active function
4385  *         on the engine
4386  * 19    - Engine1 ONE_IS_LOADED.
4387  * 20    - Chip reset flow bit. When set none-leader must wait for both engines
4388  *         leader to complete (check for both RESET_IN_PROGRESS bits and not for
4389  *         just the one belonging to its engine).
4390  *
4391  */
4392 #define BNX2X_RECOVERY_GLOB_REG         MISC_REG_GENERIC_POR_1
4393
4394 #define BNX2X_PATH0_LOAD_CNT_MASK       0x000000ff
4395 #define BNX2X_PATH0_LOAD_CNT_SHIFT      0
4396 #define BNX2X_PATH1_LOAD_CNT_MASK       0x0000ff00
4397 #define BNX2X_PATH1_LOAD_CNT_SHIFT      8
4398 #define BNX2X_PATH0_RST_IN_PROG_BIT     0x00010000
4399 #define BNX2X_PATH1_RST_IN_PROG_BIT     0x00020000
4400 #define BNX2X_GLOBAL_RESET_BIT          0x00040000
4401
4402 /*
4403  * Set the GLOBAL_RESET bit.
4404  *
4405  * Should be run under rtnl lock
4406  */
4407 void bnx2x_set_reset_global(struct bnx2x *bp)
4408 {
4409         u32 val;
4410         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4411         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4412         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
4413         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4414 }
4415
4416 /*
4417  * Clear the GLOBAL_RESET bit.
4418  *
4419  * Should be run under rtnl lock
4420  */
4421 static void bnx2x_clear_reset_global(struct bnx2x *bp)
4422 {
4423         u32 val;
4424         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4425         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4426         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
4427         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4428 }
4429
4430 /*
4431  * Checks the GLOBAL_RESET bit.
4432  *
4433  * should be run under rtnl lock
4434  */
4435 static bool bnx2x_reset_is_global(struct bnx2x *bp)
4436 {
4437         u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4438
4439         DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val);
4440         return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false;
4441 }
4442
4443 /*
4444  * Clear RESET_IN_PROGRESS bit for the current engine.
4445  *
4446  * Should be run under rtnl lock
4447  */
4448 static void bnx2x_set_reset_done(struct bnx2x *bp)
4449 {
4450         u32 val;
4451         u32 bit = BP_PATH(bp) ?
4452                 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4453         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4454         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4455
4456         /* Clear the bit */
4457         val &= ~bit;
4458         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4459
4460         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4461 }
4462
4463 /*
4464  * Set RESET_IN_PROGRESS for the current engine.
4465  *
4466  * should be run under rtnl lock
4467  */
4468 void bnx2x_set_reset_in_progress(struct bnx2x *bp)
4469 {
4470         u32 val;
4471         u32 bit = BP_PATH(bp) ?
4472                 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4473         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4474         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4475
4476         /* Set the bit */
4477         val |= bit;
4478         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4479         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4480 }
4481
4482 /*
4483  * Checks the RESET_IN_PROGRESS bit for the given engine.
4484  * should be run under rtnl lock
4485  */
4486 bool bnx2x_reset_is_done(struct bnx2x *bp, int engine)
4487 {
4488         u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4489         u32 bit = engine ?
4490                 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4491
4492         /* return false if bit is set */
4493         return (val & bit) ? false : true;
4494 }
4495
4496 /*
4497  * set pf load for the current pf.
4498  *
4499  * should be run under rtnl lock
4500  */
4501 void bnx2x_set_pf_load(struct bnx2x *bp)
4502 {
4503         u32 val1, val;
4504         u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4505                              BNX2X_PATH0_LOAD_CNT_MASK;
4506         u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4507                              BNX2X_PATH0_LOAD_CNT_SHIFT;
4508
4509         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4510         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4511
4512         DP(NETIF_MSG_IFUP, "Old GEN_REG_VAL=0x%08x\n", val);
4513
4514         /* get the current counter value */
4515         val1 = (val & mask) >> shift;
4516
4517         /* set bit of that PF */
4518         val1 |= (1 << bp->pf_num);
4519
4520         /* clear the old value */
4521         val &= ~mask;
4522
4523         /* set the new one */
4524         val |= ((val1 << shift) & mask);
4525
4526         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4527         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4528 }
4529
4530 /**
4531  * bnx2x_clear_pf_load - clear pf load mark
4532  *
4533  * @bp:         driver handle
4534  *
4535  * Should be run under rtnl lock.
4536  * Decrements the load counter for the current engine. Returns
4537  * whether other functions are still loaded
4538  */
4539 bool bnx2x_clear_pf_load(struct bnx2x *bp)
4540 {
4541         u32 val1, val;
4542         u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4543                              BNX2X_PATH0_LOAD_CNT_MASK;
4544         u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4545                              BNX2X_PATH0_LOAD_CNT_SHIFT;
4546
4547         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4548         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4549         DP(NETIF_MSG_IFDOWN, "Old GEN_REG_VAL=0x%08x\n", val);
4550
4551         /* get the current counter value */
4552         val1 = (val & mask) >> shift;
4553
4554         /* clear bit of that PF */
4555         val1 &= ~(1 << bp->pf_num);
4556
4557         /* clear the old value */
4558         val &= ~mask;
4559
4560         /* set the new one */
4561         val |= ((val1 << shift) & mask);
4562
4563         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4564         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4565         return val1 != 0;
4566 }
4567
4568 /*
4569  * Read the load status for the current engine.
4570  *
4571  * should be run under rtnl lock
4572  */
4573 static bool bnx2x_get_load_status(struct bnx2x *bp, int engine)
4574 {
4575         u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK :
4576                              BNX2X_PATH0_LOAD_CNT_MASK);
4577         u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4578                              BNX2X_PATH0_LOAD_CNT_SHIFT);
4579         u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4580
4581         DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "GLOB_REG=0x%08x\n", val);
4582
4583         val = (val & mask) >> shift;
4584
4585         DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "load mask for engine %d = 0x%x\n",
4586            engine, val);
4587
4588         return val != 0;
4589 }
4590
4591 static void _print_parity(struct bnx2x *bp, u32 reg)
4592 {
4593         pr_cont(" [0x%08x] ", REG_RD(bp, reg));
4594 }
4595
4596 static void _print_next_block(int idx, const char *blk)
4597 {
4598         pr_cont("%s%s", idx ? ", " : "", blk);
4599 }
4600
4601 static bool bnx2x_check_blocks_with_parity0(struct bnx2x *bp, u32 sig,
4602                                             int *par_num, bool print)
4603 {
4604         u32 cur_bit;
4605         bool res;
4606         int i;
4607
4608         res = false;
4609
4610         for (i = 0; sig; i++) {
4611                 cur_bit = (0x1UL << i);
4612                 if (sig & cur_bit) {
4613                         res |= true; /* Each bit is real error! */
4614
4615                         if (print) {
4616                                 switch (cur_bit) {
4617                                 case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
4618                                         _print_next_block((*par_num)++, "BRB");
4619                                         _print_parity(bp,
4620                                                       BRB1_REG_BRB1_PRTY_STS);
4621                                         break;
4622                                 case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
4623                                         _print_next_block((*par_num)++,
4624                                                           "PARSER");
4625                                         _print_parity(bp, PRS_REG_PRS_PRTY_STS);
4626                                         break;
4627                                 case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
4628                                         _print_next_block((*par_num)++, "TSDM");
4629                                         _print_parity(bp,
4630                                                       TSDM_REG_TSDM_PRTY_STS);
4631                                         break;
4632                                 case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
4633                                         _print_next_block((*par_num)++,
4634                                                           "SEARCHER");
4635                                         _print_parity(bp, SRC_REG_SRC_PRTY_STS);
4636                                         break;
4637                                 case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
4638                                         _print_next_block((*par_num)++, "TCM");
4639                                         _print_parity(bp, TCM_REG_TCM_PRTY_STS);
4640                                         break;
4641                                 case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
4642                                         _print_next_block((*par_num)++,
4643                                                           "TSEMI");
4644                                         _print_parity(bp,
4645                                                       TSEM_REG_TSEM_PRTY_STS_0);
4646                                         _print_parity(bp,
4647                                                       TSEM_REG_TSEM_PRTY_STS_1);
4648                                         break;
4649                                 case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
4650                                         _print_next_block((*par_num)++, "XPB");
4651                                         _print_parity(bp, GRCBASE_XPB +
4652                                                           PB_REG_PB_PRTY_STS);
4653                                         break;
4654                                 }
4655                         }
4656
4657                         /* Clear the bit */
4658                         sig &= ~cur_bit;
4659                 }
4660         }
4661
4662         return res;
4663 }
4664
4665 static bool bnx2x_check_blocks_with_parity1(struct bnx2x *bp, u32 sig,
4666                                             int *par_num, bool *global,
4667                                             bool print)
4668 {
4669         u32 cur_bit;
4670         bool res;
4671         int i;
4672
4673         res = false;
4674
4675         for (i = 0; sig; i++) {
4676                 cur_bit = (0x1UL << i);
4677                 if (sig & cur_bit) {
4678                         res |= true; /* Each bit is real error! */
4679                         switch (cur_bit) {
4680                         case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
4681                                 if (print) {
4682                                         _print_next_block((*par_num)++, "PBF");
4683                                         _print_parity(bp, PBF_REG_PBF_PRTY_STS);
4684                                 }
4685                                 break;
4686                         case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
4687                                 if (print) {
4688                                         _print_next_block((*par_num)++, "QM");
4689                                         _print_parity(bp, QM_REG_QM_PRTY_STS);
4690                                 }
4691                                 break;
4692                         case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
4693                                 if (print) {
4694                                         _print_next_block((*par_num)++, "TM");
4695                                         _print_parity(bp, TM_REG_TM_PRTY_STS);
4696                                 }
4697                                 break;
4698                         case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
4699                                 if (print) {
4700                                         _print_next_block((*par_num)++, "XSDM");
4701                                         _print_parity(bp,
4702                                                       XSDM_REG_XSDM_PRTY_STS);
4703                                 }
4704                                 break;
4705                         case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
4706                                 if (print) {
4707                                         _print_next_block((*par_num)++, "XCM");
4708                                         _print_parity(bp, XCM_REG_XCM_PRTY_STS);
4709                                 }
4710                                 break;
4711                         case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
4712                                 if (print) {
4713                                         _print_next_block((*par_num)++,
4714                                                           "XSEMI");
4715                                         _print_parity(bp,
4716                                                       XSEM_REG_XSEM_PRTY_STS_0);
4717                                         _print_parity(bp,
4718                                                       XSEM_REG_XSEM_PRTY_STS_1);
4719                                 }
4720                                 break;
4721                         case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
4722                                 if (print) {
4723                                         _print_next_block((*par_num)++,
4724                                                           "DOORBELLQ");
4725                                         _print_parity(bp,
4726                                                       DORQ_REG_DORQ_PRTY_STS);
4727                                 }
4728                                 break;
4729                         case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
4730                                 if (print) {
4731                                         _print_next_block((*par_num)++, "NIG");
4732                                         if (CHIP_IS_E1x(bp)) {
4733                                                 _print_parity(bp,
4734                                                         NIG_REG_NIG_PRTY_STS);
4735                                         } else {
4736                                                 _print_parity(bp,
4737                                                         NIG_REG_NIG_PRTY_STS_0);
4738                                                 _print_parity(bp,
4739                                                         NIG_REG_NIG_PRTY_STS_1);
4740                                         }
4741                                 }
4742                                 break;
4743                         case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
4744                                 if (print)
4745                                         _print_next_block((*par_num)++,
4746                                                           "VAUX PCI CORE");
4747                                 *global = true;
4748                                 break;
4749                         case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
4750                                 if (print) {
4751                                         _print_next_block((*par_num)++,
4752                                                           "DEBUG");
4753                                         _print_parity(bp, DBG_REG_DBG_PRTY_STS);
4754                                 }
4755                                 break;
4756                         case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
4757                                 if (print) {
4758                                         _print_next_block((*par_num)++, "USDM");
4759                                         _print_parity(bp,
4760                                                       USDM_REG_USDM_PRTY_STS);
4761                                 }
4762                                 break;
4763                         case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
4764                                 if (print) {
4765                                         _print_next_block((*par_num)++, "UCM");
4766                                         _print_parity(bp, UCM_REG_UCM_PRTY_STS);
4767                                 }
4768                                 break;
4769                         case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
4770                                 if (print) {
4771                                         _print_next_block((*par_num)++,
4772                                                           "USEMI");
4773                                         _print_parity(bp,
4774                                                       USEM_REG_USEM_PRTY_STS_0);
4775                                         _print_parity(bp,
4776                                                       USEM_REG_USEM_PRTY_STS_1);
4777                                 }
4778                                 break;
4779                         case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
4780                                 if (print) {
4781                                         _print_next_block((*par_num)++, "UPB");
4782                                         _print_parity(bp, GRCBASE_UPB +
4783                                                           PB_REG_PB_PRTY_STS);
4784                                 }
4785                                 break;
4786                         case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
4787                                 if (print) {
4788                                         _print_next_block((*par_num)++, "CSDM");
4789                                         _print_parity(bp,
4790                                                       CSDM_REG_CSDM_PRTY_STS);
4791                                 }
4792                                 break;
4793                         case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
4794                                 if (print) {
4795                                         _print_next_block((*par_num)++, "CCM");
4796                                         _print_parity(bp, CCM_REG_CCM_PRTY_STS);
4797                                 }
4798                                 break;
4799                         }
4800
4801                         /* Clear the bit */
4802                         sig &= ~cur_bit;
4803                 }
4804         }
4805
4806         return res;
4807 }
4808
4809 static bool bnx2x_check_blocks_with_parity2(struct bnx2x *bp, u32 sig,
4810                                             int *par_num, bool print)
4811 {
4812         u32 cur_bit;
4813         bool res;
4814         int i;
4815
4816         res = false;
4817
4818         for (i = 0; sig; i++) {
4819                 cur_bit = (0x1UL << i);
4820                 if (sig & cur_bit) {
4821                         res = true; /* Each bit is real error! */
4822                         if (print) {
4823                                 switch (cur_bit) {
4824                                 case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
4825                                         _print_next_block((*par_num)++,
4826                                                           "CSEMI");
4827                                         _print_parity(bp,
4828                                                       CSEM_REG_CSEM_PRTY_STS_0);
4829                                         _print_parity(bp,
4830                                                       CSEM_REG_CSEM_PRTY_STS_1);
4831                                         break;
4832                                 case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
4833                                         _print_next_block((*par_num)++, "PXP");
4834                                         _print_parity(bp, PXP_REG_PXP_PRTY_STS);
4835                                         _print_parity(bp,
4836                                                       PXP2_REG_PXP2_PRTY_STS_0);
4837                                         _print_parity(bp,
4838                                                       PXP2_REG_PXP2_PRTY_STS_1);
4839                                         break;
4840                                 case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
4841                                         _print_next_block((*par_num)++,
4842                                                           "PXPPCICLOCKCLIENT");
4843                                         break;
4844                                 case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
4845                                         _print_next_block((*par_num)++, "CFC");
4846                                         _print_parity(bp,
4847                                                       CFC_REG_CFC_PRTY_STS);
4848                                         break;
4849                                 case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
4850                                         _print_next_block((*par_num)++, "CDU");
4851                                         _print_parity(bp, CDU_REG_CDU_PRTY_STS);
4852                                         break;
4853                                 case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
4854                                         _print_next_block((*par_num)++, "DMAE");
4855                                         _print_parity(bp,
4856                                                       DMAE_REG_DMAE_PRTY_STS);
4857                                         break;
4858                                 case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
4859                                         _print_next_block((*par_num)++, "IGU");
4860                                         if (CHIP_IS_E1x(bp))
4861                                                 _print_parity(bp,
4862                                                         HC_REG_HC_PRTY_STS);
4863                                         else
4864                                                 _print_parity(bp,
4865                                                         IGU_REG_IGU_PRTY_STS);
4866                                         break;
4867                                 case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
4868                                         _print_next_block((*par_num)++, "MISC");
4869                                         _print_parity(bp,
4870                                                       MISC_REG_MISC_PRTY_STS);
4871                                         break;
4872                                 }
4873                         }
4874
4875                         /* Clear the bit */
4876                         sig &= ~cur_bit;
4877                 }
4878         }
4879
4880         return res;
4881 }
4882
4883 static bool bnx2x_check_blocks_with_parity3(struct bnx2x *bp, u32 sig,
4884                                             int *par_num, bool *global,
4885                                             bool print)
4886 {
4887         bool res = false;
4888         u32 cur_bit;
4889         int i;
4890
4891         for (i = 0; sig; i++) {
4892                 cur_bit = (0x1UL << i);
4893                 if (sig & cur_bit) {
4894                         switch (cur_bit) {
4895                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
4896                                 if (print)
4897                                         _print_next_block((*par_num)++,
4898                                                           "MCP ROM");
4899                                 *global = true;
4900                                 res = true;
4901                                 break;
4902                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
4903                                 if (print)
4904                                         _print_next_block((*par_num)++,
4905                                                           "MCP UMP RX");
4906                                 *global = true;
4907                                 res = true;
4908                                 break;
4909                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
4910                                 if (print)
4911                                         _print_next_block((*par_num)++,
4912                                                           "MCP UMP TX");
4913                                 *global = true;
4914                                 res = true;
4915                                 break;
4916                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
4917                                 (*par_num)++;
4918                                 /* clear latched SCPAD PATIRY from MCP */
4919                                 REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL,
4920                                        1UL << 10);
4921                                 break;
4922                         }
4923
4924                         /* Clear the bit */
4925                         sig &= ~cur_bit;
4926                 }
4927         }
4928
4929         return res;
4930 }
4931
4932 static bool bnx2x_check_blocks_with_parity4(struct bnx2x *bp, u32 sig,
4933                                             int *par_num, bool print)
4934 {
4935         u32 cur_bit;
4936         bool res;
4937         int i;
4938
4939         res = false;
4940
4941         for (i = 0; sig; i++) {
4942                 cur_bit = (0x1UL << i);
4943                 if (sig & cur_bit) {
4944                         res = true; /* Each bit is real error! */
4945                         if (print) {
4946                                 switch (cur_bit) {
4947                                 case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
4948                                         _print_next_block((*par_num)++,
4949                                                           "PGLUE_B");
4950                                         _print_parity(bp,
4951                                                       PGLUE_B_REG_PGLUE_B_PRTY_STS);
4952                                         break;
4953                                 case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
4954                                         _print_next_block((*par_num)++, "ATC");
4955                                         _print_parity(bp,
4956                                                       ATC_REG_ATC_PRTY_STS);
4957                                         break;
4958                                 }
4959                         }
4960                         /* Clear the bit */
4961                         sig &= ~cur_bit;
4962                 }
4963         }
4964
4965         return res;
4966 }
4967
4968 static bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print,
4969                               u32 *sig)
4970 {
4971         bool res = false;
4972
4973         if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4974             (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4975             (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4976             (sig[3] & HW_PRTY_ASSERT_SET_3) ||
4977             (sig[4] & HW_PRTY_ASSERT_SET_4)) {
4978                 int par_num = 0;
4979
4980                 DP(NETIF_MSG_HW, "Was parity error: HW block parity attention:\n"
4981                                  "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
4982                           sig[0] & HW_PRTY_ASSERT_SET_0,
4983                           sig[1] & HW_PRTY_ASSERT_SET_1,
4984                           sig[2] & HW_PRTY_ASSERT_SET_2,
4985                           sig[3] & HW_PRTY_ASSERT_SET_3,
4986                           sig[4] & HW_PRTY_ASSERT_SET_4);
4987                 if (print) {
4988                         if (((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4989                              (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4990                              (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4991                              (sig[4] & HW_PRTY_ASSERT_SET_4)) ||
4992                              (sig[3] & HW_PRTY_ASSERT_SET_3_WITHOUT_SCPAD)) {
4993                                 netdev_err(bp->dev,
4994                                            "Parity errors detected in blocks: ");
4995                         } else {
4996                                 print = false;
4997                         }
4998                 }
4999                 res |= bnx2x_check_blocks_with_parity0(bp,
5000                         sig[0] & HW_PRTY_ASSERT_SET_0, &par_num, print);
5001                 res |= bnx2x_check_blocks_with_parity1(bp,
5002                         sig[1] & HW_PRTY_ASSERT_SET_1, &par_num, global, print);
5003                 res |= bnx2x_check_blocks_with_parity2(bp,
5004                         sig[2] & HW_PRTY_ASSERT_SET_2, &par_num, print);
5005                 res |= bnx2x_check_blocks_with_parity3(bp,
5006                         sig[3] & HW_PRTY_ASSERT_SET_3, &par_num, global, print);
5007                 res |= bnx2x_check_blocks_with_parity4(bp,
5008                         sig[4] & HW_PRTY_ASSERT_SET_4, &par_num, print);
5009
5010                 if (print)
5011                         pr_cont("\n");
5012         }
5013
5014         return res;
5015 }
5016
5017 /**
5018  * bnx2x_chk_parity_attn - checks for parity attentions.
5019  *
5020  * @bp:         driver handle
5021  * @global:     true if there was a global attention
5022  * @print:      show parity attention in syslog
5023  */
5024 bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print)
5025 {
5026         struct attn_route attn = { {0} };
5027         int port = BP_PORT(bp);
5028
5029         attn.sig[0] = REG_RD(bp,
5030                 MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
5031                              port*4);
5032         attn.sig[1] = REG_RD(bp,
5033                 MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 +
5034                              port*4);
5035         attn.sig[2] = REG_RD(bp,
5036                 MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 +
5037                              port*4);
5038         attn.sig[3] = REG_RD(bp,
5039                 MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 +
5040                              port*4);
5041         /* Since MCP attentions can't be disabled inside the block, we need to
5042          * read AEU registers to see whether they're currently disabled
5043          */
5044         attn.sig[3] &= ((REG_RD(bp,
5045                                 !port ? MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0
5046                                       : MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0) &
5047                          MISC_AEU_ENABLE_MCP_PRTY_BITS) |
5048                         ~MISC_AEU_ENABLE_MCP_PRTY_BITS);
5049
5050         if (!CHIP_IS_E1x(bp))
5051                 attn.sig[4] = REG_RD(bp,
5052                         MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 +
5053                                      port*4);
5054
5055         return bnx2x_parity_attn(bp, global, print, attn.sig);
5056 }
5057
5058 static void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn)
5059 {
5060         u32 val;
5061         if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
5062
5063                 val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
5064                 BNX2X_ERR("PGLUE hw attention 0x%x\n", val);
5065                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
5066                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
5067                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
5068                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
5069                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
5070                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
5071                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
5072                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
5073                 if (val &
5074                     PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
5075                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
5076                 if (val &
5077                     PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
5078                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
5079                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
5080                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
5081                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
5082                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
5083                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
5084                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
5085         }
5086         if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
5087                 val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR);
5088                 BNX2X_ERR("ATC hw attention 0x%x\n", val);
5089                 if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
5090                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
5091                 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
5092                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
5093                 if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
5094                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
5095                 if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
5096                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
5097                 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
5098                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
5099                 if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
5100                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
5101         }
5102
5103         if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
5104                     AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
5105                 BNX2X_ERR("FATAL parity attention set4 0x%x\n",
5106                 (u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
5107                     AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
5108         }
5109 }
5110
5111 static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted)
5112 {
5113         struct attn_route attn, *group_mask;
5114         int port = BP_PORT(bp);
5115         int index;
5116         u32 reg_addr;
5117         u32 val;
5118         u32 aeu_mask;
5119         bool global = false;
5120
5121         /* need to take HW lock because MCP or other port might also
5122            try to handle this event */
5123         bnx2x_acquire_alr(bp);
5124
5125         if (bnx2x_chk_parity_attn(bp, &global, true)) {
5126 #ifndef BNX2X_STOP_ON_ERROR
5127                 bp->recovery_state = BNX2X_RECOVERY_INIT;
5128                 schedule_delayed_work(&bp->sp_rtnl_task, 0);
5129                 /* Disable HW interrupts */
5130                 bnx2x_int_disable(bp);
5131                 /* In case of parity errors don't handle attentions so that
5132                  * other function would "see" parity errors.
5133                  */
5134 #else
5135                 bnx2x_panic();
5136 #endif
5137                 bnx2x_release_alr(bp);
5138                 return;
5139         }
5140
5141         attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
5142         attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
5143         attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
5144         attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
5145         if (!CHIP_IS_E1x(bp))
5146                 attn.sig[4] =
5147                       REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
5148         else
5149                 attn.sig[4] = 0;
5150
5151         DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n",
5152            attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
5153
5154         for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
5155                 if (deasserted & (1 << index)) {
5156                         group_mask = &bp->attn_group[index];
5157
5158                         DP(NETIF_MSG_HW, "group[%d]: %08x %08x %08x %08x %08x\n",
5159                            index,
5160                            group_mask->sig[0], group_mask->sig[1],
5161                            group_mask->sig[2], group_mask->sig[3],
5162                            group_mask->sig[4]);
5163
5164                         bnx2x_attn_int_deasserted4(bp,
5165                                         attn.sig[4] & group_mask->sig[4]);
5166                         bnx2x_attn_int_deasserted3(bp,
5167                                         attn.sig[3] & group_mask->sig[3]);
5168                         bnx2x_attn_int_deasserted1(bp,
5169                                         attn.sig[1] & group_mask->sig[1]);
5170                         bnx2x_attn_int_deasserted2(bp,
5171                                         attn.sig[2] & group_mask->sig[2]);
5172                         bnx2x_attn_int_deasserted0(bp,
5173                                         attn.sig[0] & group_mask->sig[0]);
5174                 }
5175         }
5176
5177         bnx2x_release_alr(bp);
5178
5179         if (bp->common.int_block == INT_BLOCK_HC)
5180                 reg_addr = (HC_REG_COMMAND_REG + port*32 +
5181                             COMMAND_REG_ATTN_BITS_CLR);
5182         else
5183                 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
5184
5185         val = ~deasserted;
5186         DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val,
5187            (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
5188         REG_WR(bp, reg_addr, val);
5189
5190         if (~bp->attn_state & deasserted)
5191                 BNX2X_ERR("IGU ERROR\n");
5192
5193         reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
5194                           MISC_REG_AEU_MASK_ATTN_FUNC_0;
5195
5196         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
5197         aeu_mask = REG_RD(bp, reg_addr);
5198
5199         DP(NETIF_MSG_HW, "aeu_mask %x  newly deasserted %x\n",
5200            aeu_mask, deasserted);
5201         aeu_mask |= (deasserted & 0x3ff);
5202         DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
5203
5204         REG_WR(bp, reg_addr, aeu_mask);
5205         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
5206
5207         DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
5208         bp->attn_state &= ~deasserted;
5209         DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
5210 }
5211
5212 static void bnx2x_attn_int(struct bnx2x *bp)
5213 {
5214         /* read local copy of bits */
5215         u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block.
5216                                                                 attn_bits);
5217         u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block.
5218                                                                 attn_bits_ack);
5219         u32 attn_state = bp->attn_state;
5220
5221         /* look for changed bits */
5222         u32 asserted   =  attn_bits & ~attn_ack & ~attn_state;
5223         u32 deasserted = ~attn_bits &  attn_ack &  attn_state;
5224
5225         DP(NETIF_MSG_HW,
5226            "attn_bits %x  attn_ack %x  asserted %x  deasserted %x\n",
5227            attn_bits, attn_ack, asserted, deasserted);
5228
5229         if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state))
5230                 BNX2X_ERR("BAD attention state\n");
5231
5232         /* handle bits that were raised */
5233         if (asserted)
5234                 bnx2x_attn_int_asserted(bp, asserted);
5235
5236         if (deasserted)
5237                 bnx2x_attn_int_deasserted(bp, deasserted);
5238 }
5239
5240 void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
5241                       u16 index, u8 op, u8 update)
5242 {
5243         u32 igu_addr = bp->igu_base_addr;
5244         igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
5245         bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update,
5246                              igu_addr);
5247 }
5248
5249 static void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod)
5250 {
5251         /* No memory barriers */
5252         storm_memset_eq_prod(bp, prod, BP_FUNC(bp));
5253 }
5254
5255 static int  bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid,
5256                                       union event_ring_elem *elem)
5257 {
5258         u8 err = elem->message.error;
5259
5260         if (!bp->cnic_eth_dev.starting_cid  ||
5261             (cid < bp->cnic_eth_dev.starting_cid &&
5262             cid != bp->cnic_eth_dev.iscsi_l2_cid))
5263                 return 1;
5264
5265         DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid);
5266
5267         if (unlikely(err)) {
5268
5269                 BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n",
5270                           cid);
5271                 bnx2x_panic_dump(bp, false);
5272         }
5273         bnx2x_cnic_cfc_comp(bp, cid, err);
5274         return 0;
5275 }
5276
5277 static void bnx2x_handle_mcast_eqe(struct bnx2x *bp)
5278 {
5279         struct bnx2x_mcast_ramrod_params rparam;
5280         int rc;
5281
5282         memset(&rparam, 0, sizeof(rparam));
5283
5284         rparam.mcast_obj = &bp->mcast_obj;
5285
5286         netif_addr_lock_bh(bp->dev);
5287
5288         /* Clear pending state for the last command */
5289         bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw);
5290
5291         /* If there are pending mcast commands - send them */
5292         if (bp->mcast_obj.check_pending(&bp->mcast_obj)) {
5293                 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
5294                 if (rc < 0)
5295                         BNX2X_ERR("Failed to send pending mcast commands: %d\n",
5296                                   rc);
5297         }
5298
5299         netif_addr_unlock_bh(bp->dev);
5300 }
5301
5302 static void bnx2x_handle_classification_eqe(struct bnx2x *bp,
5303                                             union event_ring_elem *elem)
5304 {
5305         unsigned long ramrod_flags = 0;
5306         int rc = 0;
5307         u32 echo = le32_to_cpu(elem->message.data.eth_event.echo);
5308         u32 cid = echo & BNX2X_SWCID_MASK;
5309         struct bnx2x_vlan_mac_obj *vlan_mac_obj;
5310
5311         /* Always push next commands out, don't wait here */
5312         __set_bit(RAMROD_CONT, &ramrod_flags);
5313
5314         switch (echo >> BNX2X_SWCID_SHIFT) {
5315         case BNX2X_FILTER_MAC_PENDING:
5316                 DP(BNX2X_MSG_SP, "Got SETUP_MAC completions\n");
5317                 if (CNIC_LOADED(bp) && (cid == BNX2X_ISCSI_ETH_CID(bp)))
5318                         vlan_mac_obj = &bp->iscsi_l2_mac_obj;
5319                 else
5320                         vlan_mac_obj = &bp->sp_objs[cid].mac_obj;
5321
5322                 break;
5323         case BNX2X_FILTER_VLAN_PENDING:
5324                 DP(BNX2X_MSG_SP, "Got SETUP_VLAN completions\n");
5325                 vlan_mac_obj = &bp->sp_objs[cid].vlan_obj;
5326                 break;
5327         case BNX2X_FILTER_MCAST_PENDING:
5328                 DP(BNX2X_MSG_SP, "Got SETUP_MCAST completions\n");
5329                 /* This is only relevant for 57710 where multicast MACs are
5330                  * configured as unicast MACs using the same ramrod.
5331                  */
5332                 bnx2x_handle_mcast_eqe(bp);
5333                 return;
5334         default:
5335                 BNX2X_ERR("Unsupported classification command: 0x%x\n", echo);
5336                 return;
5337         }
5338
5339         rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags);
5340
5341         if (rc < 0)
5342                 BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
5343         else if (rc > 0)
5344                 DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n");
5345 }
5346
5347 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start);
5348
5349 static void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp)
5350 {
5351         netif_addr_lock_bh(bp->dev);
5352
5353         clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
5354
5355         /* Send rx_mode command again if was requested */
5356         if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state))
5357                 bnx2x_set_storm_rx_mode(bp);
5358         else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED,
5359                                     &bp->sp_state))
5360                 bnx2x_set_iscsi_eth_rx_mode(bp, true);
5361         else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED,
5362                                     &bp->sp_state))
5363                 bnx2x_set_iscsi_eth_rx_mode(bp, false);
5364
5365         netif_addr_unlock_bh(bp->dev);
5366 }
5367
5368 static void bnx2x_after_afex_vif_lists(struct bnx2x *bp,
5369                                               union event_ring_elem *elem)
5370 {
5371         if (elem->message.data.vif_list_event.echo == VIF_LIST_RULE_GET) {
5372                 DP(BNX2X_MSG_SP,
5373                    "afex: ramrod completed VIF LIST_GET, addrs 0x%x\n",
5374                    elem->message.data.vif_list_event.func_bit_map);
5375                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTGET_ACK,
5376                         elem->message.data.vif_list_event.func_bit_map);
5377         } else if (elem->message.data.vif_list_event.echo ==
5378                    VIF_LIST_RULE_SET) {
5379                 DP(BNX2X_MSG_SP, "afex: ramrod completed VIF LIST_SET\n");
5380                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTSET_ACK, 0);
5381         }
5382 }
5383
5384 /* called with rtnl_lock */
5385 static void bnx2x_after_function_update(struct bnx2x *bp)
5386 {
5387         int q, rc;
5388         struct bnx2x_fastpath *fp;
5389         struct bnx2x_queue_state_params queue_params = {NULL};
5390         struct bnx2x_queue_update_params *q_update_params =
5391                 &queue_params.params.update;
5392
5393         /* Send Q update command with afex vlan removal values for all Qs */
5394         queue_params.cmd = BNX2X_Q_CMD_UPDATE;
5395
5396         /* set silent vlan removal values according to vlan mode */
5397         __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
5398                   &q_update_params->update_flags);
5399         __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
5400                   &q_update_params->update_flags);
5401         __set_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5402
5403         /* in access mode mark mask and value are 0 to strip all vlans */
5404         if (bp->afex_vlan_mode == FUNC_MF_CFG_AFEX_VLAN_ACCESS_MODE) {
5405                 q_update_params->silent_removal_value = 0;
5406                 q_update_params->silent_removal_mask = 0;
5407         } else {
5408                 q_update_params->silent_removal_value =
5409                         (bp->afex_def_vlan_tag & VLAN_VID_MASK);
5410                 q_update_params->silent_removal_mask = VLAN_VID_MASK;
5411         }
5412
5413         for_each_eth_queue(bp, q) {
5414                 /* Set the appropriate Queue object */
5415                 fp = &bp->fp[q];
5416                 queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5417
5418                 /* send the ramrod */
5419                 rc = bnx2x_queue_state_change(bp, &queue_params);
5420                 if (rc < 0)
5421                         BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5422                                   q);
5423         }
5424
5425         if (!NO_FCOE(bp) && CNIC_ENABLED(bp)) {
5426                 fp = &bp->fp[FCOE_IDX(bp)];
5427                 queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5428
5429                 /* clear pending completion bit */
5430                 __clear_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5431
5432                 /* mark latest Q bit */
5433                 smp_mb__before_atomic();
5434                 set_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
5435                 smp_mb__after_atomic();
5436
5437                 /* send Q update ramrod for FCoE Q */
5438                 rc = bnx2x_queue_state_change(bp, &queue_params);
5439                 if (rc < 0)
5440                         BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5441                                   q);
5442         } else {
5443                 /* If no FCoE ring - ACK MCP now */
5444                 bnx2x_link_report(bp);
5445                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5446         }
5447 }
5448
5449 static struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj(
5450         struct bnx2x *bp, u32 cid)
5451 {
5452         DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid);
5453
5454         if (CNIC_LOADED(bp) && (cid == BNX2X_FCOE_ETH_CID(bp)))
5455                 return &bnx2x_fcoe_sp_obj(bp, q_obj);
5456         else
5457                 return &bp->sp_objs[CID_TO_FP(cid, bp)].q_obj;
5458 }
5459
5460 static void bnx2x_eq_int(struct bnx2x *bp)
5461 {
5462         u16 hw_cons, sw_cons, sw_prod;
5463         union event_ring_elem *elem;
5464         u8 echo;
5465         u32 cid;
5466         u8 opcode;
5467         int rc, spqe_cnt = 0;
5468         struct bnx2x_queue_sp_obj *q_obj;
5469         struct bnx2x_func_sp_obj *f_obj = &bp->func_obj;
5470         struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw;
5471
5472         hw_cons = le16_to_cpu(*bp->eq_cons_sb);
5473
5474         /* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256.
5475          * when we get the next-page we need to adjust so the loop
5476          * condition below will be met. The next element is the size of a
5477          * regular element and hence incrementing by 1
5478          */
5479         if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE)
5480                 hw_cons++;
5481
5482         /* This function may never run in parallel with itself for a
5483          * specific bp, thus there is no need in "paired" read memory
5484          * barrier here.
5485          */
5486         sw_cons = bp->eq_cons;
5487         sw_prod = bp->eq_prod;
5488
5489         DP(BNX2X_MSG_SP, "EQ:  hw_cons %u  sw_cons %u bp->eq_spq_left %x\n",
5490                         hw_cons, sw_cons, atomic_read(&bp->eq_spq_left));
5491
5492         for (; sw_cons != hw_cons;
5493               sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
5494
5495                 elem = &bp->eq_ring[EQ_DESC(sw_cons)];
5496
5497                 rc = bnx2x_iov_eq_sp_event(bp, elem);
5498                 if (!rc) {
5499                         DP(BNX2X_MSG_IOV, "bnx2x_iov_eq_sp_event returned %d\n",
5500                            rc);
5501                         goto next_spqe;
5502                 }
5503
5504                 opcode = elem->message.opcode;
5505
5506                 /* handle eq element */
5507                 switch (opcode) {
5508                 case EVENT_RING_OPCODE_VF_PF_CHANNEL:
5509                         bnx2x_vf_mbx_schedule(bp,
5510                                               &elem->message.data.vf_pf_event);
5511                         continue;
5512
5513                 case EVENT_RING_OPCODE_STAT_QUERY:
5514                         DP_AND((BNX2X_MSG_SP | BNX2X_MSG_STATS),
5515                                "got statistics comp event %d\n",
5516                                bp->stats_comp++);
5517                         /* nothing to do with stats comp */
5518                         goto next_spqe;
5519
5520                 case EVENT_RING_OPCODE_CFC_DEL:
5521                         /* handle according to cid range */
5522                         /*
5523                          * we may want to verify here that the bp state is
5524                          * HALTING
5525                          */
5526
5527                         /* elem CID originates from FW; actually LE */
5528                         cid = SW_CID(elem->message.data.cfc_del_event.cid);
5529
5530                         DP(BNX2X_MSG_SP,
5531                            "got delete ramrod for MULTI[%d]\n", cid);
5532
5533                         if (CNIC_LOADED(bp) &&
5534                             !bnx2x_cnic_handle_cfc_del(bp, cid, elem))
5535                                 goto next_spqe;
5536
5537                         q_obj = bnx2x_cid_to_q_obj(bp, cid);
5538
5539                         if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL))
5540                                 break;
5541
5542                         goto next_spqe;
5543
5544                 case EVENT_RING_OPCODE_STOP_TRAFFIC:
5545                         DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got STOP TRAFFIC\n");
5546                         bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED);
5547                         if (f_obj->complete_cmd(bp, f_obj,
5548                                                 BNX2X_F_CMD_TX_STOP))
5549                                 break;
5550                         goto next_spqe;
5551
5552                 case EVENT_RING_OPCODE_START_TRAFFIC:
5553                         DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got START TRAFFIC\n");
5554                         bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED);
5555                         if (f_obj->complete_cmd(bp, f_obj,
5556                                                 BNX2X_F_CMD_TX_START))
5557                                 break;
5558                         goto next_spqe;
5559
5560                 case EVENT_RING_OPCODE_FUNCTION_UPDATE:
5561                         echo = elem->message.data.function_update_event.echo;
5562                         if (echo == SWITCH_UPDATE) {
5563                                 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5564                                    "got FUNC_SWITCH_UPDATE ramrod\n");
5565                                 if (f_obj->complete_cmd(
5566                                         bp, f_obj, BNX2X_F_CMD_SWITCH_UPDATE))
5567                                         break;
5568
5569                         } else {
5570                                 int cmd = BNX2X_SP_RTNL_AFEX_F_UPDATE;
5571
5572                                 DP(BNX2X_MSG_SP | BNX2X_MSG_MCP,
5573                                    "AFEX: ramrod completed FUNCTION_UPDATE\n");
5574                                 f_obj->complete_cmd(bp, f_obj,
5575                                                     BNX2X_F_CMD_AFEX_UPDATE);
5576
5577                                 /* We will perform the Queues update from
5578                                  * sp_rtnl task as all Queue SP operations
5579                                  * should run under rtnl_lock.
5580                                  */
5581                                 bnx2x_schedule_sp_rtnl(bp, cmd, 0);
5582                         }
5583
5584                         goto next_spqe;
5585
5586                 case EVENT_RING_OPCODE_AFEX_VIF_LISTS:
5587                         f_obj->complete_cmd(bp, f_obj,
5588                                             BNX2X_F_CMD_AFEX_VIFLISTS);
5589                         bnx2x_after_afex_vif_lists(bp, elem);
5590                         goto next_spqe;
5591                 case EVENT_RING_OPCODE_FUNCTION_START:
5592                         DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5593                            "got FUNC_START ramrod\n");
5594                         if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START))
5595                                 break;
5596
5597                         goto next_spqe;
5598
5599                 case EVENT_RING_OPCODE_FUNCTION_STOP:
5600                         DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5601                            "got FUNC_STOP ramrod\n");
5602                         if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP))
5603                                 break;
5604
5605                         goto next_spqe;
5606
5607                 case EVENT_RING_OPCODE_SET_TIMESYNC:
5608                         DP(BNX2X_MSG_SP | BNX2X_MSG_PTP,
5609                            "got set_timesync ramrod completion\n");
5610                         if (f_obj->complete_cmd(bp, f_obj,
5611                                                 BNX2X_F_CMD_SET_TIMESYNC))
5612                                 break;
5613                         goto next_spqe;
5614                 }
5615
5616                 switch (opcode | bp->state) {
5617                 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5618                       BNX2X_STATE_OPEN):
5619                 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5620                       BNX2X_STATE_OPENING_WAIT4_PORT):
5621                 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5622                       BNX2X_STATE_CLOSING_WAIT4_HALT):
5623                         DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n",
5624                            SW_CID(elem->message.data.eth_event.echo));
5625                         rss_raw->clear_pending(rss_raw);
5626                         break;
5627
5628                 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
5629                 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
5630                 case (EVENT_RING_OPCODE_SET_MAC |
5631                       BNX2X_STATE_CLOSING_WAIT4_HALT):
5632                 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5633                       BNX2X_STATE_OPEN):
5634                 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5635                       BNX2X_STATE_DIAG):
5636                 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5637                       BNX2X_STATE_CLOSING_WAIT4_HALT):
5638                         DP(BNX2X_MSG_SP, "got (un)set vlan/mac ramrod\n");
5639                         bnx2x_handle_classification_eqe(bp, elem);
5640                         break;
5641
5642                 case (EVENT_RING_OPCODE_MULTICAST_RULES |
5643                       BNX2X_STATE_OPEN):
5644                 case (EVENT_RING_OPCODE_MULTICAST_RULES |
5645                       BNX2X_STATE_DIAG):
5646                 case (EVENT_RING_OPCODE_MULTICAST_RULES |
5647                       BNX2X_STATE_CLOSING_WAIT4_HALT):
5648                         DP(BNX2X_MSG_SP, "got mcast ramrod\n");
5649                         bnx2x_handle_mcast_eqe(bp);
5650                         break;
5651
5652                 case (EVENT_RING_OPCODE_FILTERS_RULES |
5653                       BNX2X_STATE_OPEN):
5654                 case (EVENT_RING_OPCODE_FILTERS_RULES |
5655                       BNX2X_STATE_DIAG):
5656                 case (EVENT_RING_OPCODE_FILTERS_RULES |
5657                       BNX2X_STATE_CLOSING_WAIT4_HALT):
5658                         DP(BNX2X_MSG_SP, "got rx_mode ramrod\n");
5659                         bnx2x_handle_rx_mode_eqe(bp);
5660                         break;
5661                 default:
5662                         /* unknown event log error and continue */
5663                         BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n",
5664                                   elem->message.opcode, bp->state);
5665                 }
5666 next_spqe:
5667                 spqe_cnt++;
5668         } /* for */
5669
5670         smp_mb__before_atomic();
5671         atomic_add(spqe_cnt, &bp->eq_spq_left);
5672
5673         bp->eq_cons = sw_cons;
5674         bp->eq_prod = sw_prod;
5675         /* Make sure that above mem writes were issued towards the memory */
5676         smp_wmb();
5677
5678         /* update producer */
5679         bnx2x_update_eq_prod(bp, bp->eq_prod);
5680 }
5681
5682 static void bnx2x_sp_task(struct work_struct *work)
5683 {
5684         struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work);
5685
5686         DP(BNX2X_MSG_SP, "sp task invoked\n");
5687
5688         /* make sure the atomic interrupt_occurred has been written */
5689         smp_rmb();
5690         if (atomic_read(&bp->interrupt_occurred)) {
5691
5692                 /* what work needs to be performed? */
5693                 u16 status = bnx2x_update_dsb_idx(bp);
5694
5695                 DP(BNX2X_MSG_SP, "status %x\n", status);
5696                 DP(BNX2X_MSG_SP, "setting interrupt_occurred to 0\n");
5697                 atomic_set(&bp->interrupt_occurred, 0);
5698
5699                 /* HW attentions */
5700                 if (status & BNX2X_DEF_SB_ATT_IDX) {
5701                         bnx2x_attn_int(bp);
5702                         status &= ~BNX2X_DEF_SB_ATT_IDX;
5703                 }
5704
5705                 /* SP events: STAT_QUERY and others */
5706                 if (status & BNX2X_DEF_SB_IDX) {
5707                         struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
5708
5709                         if (FCOE_INIT(bp) &&
5710                             (bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
5711                                 /* Prevent local bottom-halves from running as
5712                                  * we are going to change the local NAPI list.
5713                                  */
5714                                 local_bh_disable();
5715                                 napi_schedule(&bnx2x_fcoe(bp, napi));
5716                                 local_bh_enable();
5717                         }
5718
5719                         /* Handle EQ completions */
5720                         bnx2x_eq_int(bp);
5721                         bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID,
5722                                      le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1);
5723
5724                         status &= ~BNX2X_DEF_SB_IDX;
5725                 }
5726
5727                 /* if status is non zero then perhaps something went wrong */
5728                 if (unlikely(status))
5729                         DP(BNX2X_MSG_SP,
5730                            "got an unknown interrupt! (status 0x%x)\n", status);
5731
5732                 /* ack status block only if something was actually handled */
5733                 bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID,
5734                              le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1);
5735         }
5736
5737         /* afex - poll to check if VIFSET_ACK should be sent to MFW */
5738         if (test_and_clear_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK,
5739                                &bp->sp_state)) {
5740                 bnx2x_link_report(bp);
5741                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5742         }
5743 }
5744
5745 irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance)
5746 {
5747         struct net_device *dev = dev_instance;
5748         struct bnx2x *bp = netdev_priv(dev);
5749
5750         bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0,
5751                      IGU_INT_DISABLE, 0);
5752
5753 #ifdef BNX2X_STOP_ON_ERROR
5754         if (unlikely(bp->panic))
5755                 return IRQ_HANDLED;
5756 #endif
5757
5758         if (CNIC_LOADED(bp)) {
5759                 struct cnic_ops *c_ops;
5760
5761                 rcu_read_lock();
5762                 c_ops = rcu_dereference(bp->cnic_ops);
5763                 if (c_ops)
5764                         c_ops->cnic_handler(bp->cnic_data, NULL);
5765                 rcu_read_unlock();
5766         }
5767
5768         /* schedule sp task to perform default status block work, ack
5769          * attentions and enable interrupts.
5770          */
5771         bnx2x_schedule_sp_task(bp);
5772
5773         return IRQ_HANDLED;
5774 }
5775
5776 /* end of slow path */
5777
5778 void bnx2x_drv_pulse(struct bnx2x *bp)
5779 {
5780         SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb,
5781                  bp->fw_drv_pulse_wr_seq);
5782 }
5783
5784 static void bnx2x_timer(struct timer_list *t)
5785 {
5786         struct bnx2x *bp = from_timer(bp, t, timer);
5787
5788         if (!netif_running(bp->dev))
5789                 return;
5790
5791         if (IS_PF(bp) &&
5792             !BP_NOMCP(bp)) {
5793                 int mb_idx = BP_FW_MB_IDX(bp);
5794                 u16 drv_pulse;
5795                 u16 mcp_pulse;
5796
5797                 ++bp->fw_drv_pulse_wr_seq;
5798                 bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
5799                 drv_pulse = bp->fw_drv_pulse_wr_seq;
5800                 bnx2x_drv_pulse(bp);
5801
5802                 mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) &
5803                              MCP_PULSE_SEQ_MASK);
5804                 /* The delta between driver pulse and mcp response
5805                  * should not get too big. If the MFW is more than 5 pulses
5806                  * behind, we should worry about it enough to generate an error
5807                  * log.
5808                  */
5809                 if (((drv_pulse - mcp_pulse) & MCP_PULSE_SEQ_MASK) > 5)
5810                         BNX2X_ERR("MFW seems hanged: drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
5811                                   drv_pulse, mcp_pulse);
5812         }
5813
5814         if (bp->state == BNX2X_STATE_OPEN)
5815                 bnx2x_stats_handle(bp, STATS_EVENT_UPDATE);
5816
5817         /* sample pf vf bulletin board for new posts from pf */
5818         if (IS_VF(bp))
5819                 bnx2x_timer_sriov(bp);
5820
5821         mod_timer(&bp->timer, jiffies + bp->current_interval);
5822 }
5823
5824 /* end of Statistics */
5825
5826 /* nic init */
5827
5828 /*
5829  * nic init service functions
5830  */
5831
5832 static void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
5833 {
5834         u32 i;
5835         if (!(len%4) && !(addr%4))
5836                 for (i = 0; i < len; i += 4)
5837                         REG_WR(bp, addr + i, fill);
5838         else
5839                 for (i = 0; i < len; i++)
5840                         REG_WR8(bp, addr + i, fill);
5841 }
5842
5843 /* helper: writes FP SP data to FW - data_size in dwords */
5844 static void bnx2x_wr_fp_sb_data(struct bnx2x *bp,
5845                                 int fw_sb_id,
5846                                 u32 *sb_data_p,
5847                                 u32 data_size)
5848 {
5849         int index;
5850         for (index = 0; index < data_size; index++)
5851                 REG_WR(bp, BAR_CSTRORM_INTMEM +
5852                         CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
5853                         sizeof(u32)*index,
5854                         *(sb_data_p + index));
5855 }
5856
5857 static void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id)
5858 {
5859         u32 *sb_data_p;
5860         u32 data_size = 0;
5861         struct hc_status_block_data_e2 sb_data_e2;
5862         struct hc_status_block_data_e1x sb_data_e1x;
5863
5864         /* disable the function first */
5865         if (!CHIP_IS_E1x(bp)) {
5866                 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5867                 sb_data_e2.common.state = SB_DISABLED;
5868                 sb_data_e2.common.p_func.vf_valid = false;
5869                 sb_data_p = (u32 *)&sb_data_e2;
5870                 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5871         } else {
5872                 memset(&sb_data_e1x, 0,
5873                        sizeof(struct hc_status_block_data_e1x));
5874                 sb_data_e1x.common.state = SB_DISABLED;
5875                 sb_data_e1x.common.p_func.vf_valid = false;
5876                 sb_data_p = (u32 *)&sb_data_e1x;
5877                 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5878         }
5879         bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5880
5881         bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5882                         CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0,
5883                         CSTORM_STATUS_BLOCK_SIZE);
5884         bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5885                         CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0,
5886                         CSTORM_SYNC_BLOCK_SIZE);
5887 }
5888
5889 /* helper:  writes SP SB data to FW */
5890 static void bnx2x_wr_sp_sb_data(struct bnx2x *bp,
5891                 struct hc_sp_status_block_data *sp_sb_data)
5892 {
5893         int func = BP_FUNC(bp);
5894         int i;
5895         for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
5896                 REG_WR(bp, BAR_CSTRORM_INTMEM +
5897                         CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
5898                         i*sizeof(u32),
5899                         *((u32 *)sp_sb_data + i));
5900 }
5901
5902 static void bnx2x_zero_sp_sb(struct bnx2x *bp)
5903 {
5904         int func = BP_FUNC(bp);
5905         struct hc_sp_status_block_data sp_sb_data;
5906         memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5907
5908         sp_sb_data.state = SB_DISABLED;
5909         sp_sb_data.p_func.vf_valid = false;
5910
5911         bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5912
5913         bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5914                         CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0,
5915                         CSTORM_SP_STATUS_BLOCK_SIZE);
5916         bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5917                         CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0,
5918                         CSTORM_SP_SYNC_BLOCK_SIZE);
5919 }
5920
5921 static void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
5922                                            int igu_sb_id, int igu_seg_id)
5923 {
5924         hc_sm->igu_sb_id = igu_sb_id;
5925         hc_sm->igu_seg_id = igu_seg_id;
5926         hc_sm->timer_value = 0xFF;
5927         hc_sm->time_to_expire = 0xFFFFFFFF;
5928 }
5929
5930 /* allocates state machine ids. */
5931 static void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
5932 {
5933         /* zero out state machine indices */
5934         /* rx indices */
5935         index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5936
5937         /* tx indices */
5938         index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5939         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
5940         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
5941         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
5942
5943         /* map indices */
5944         /* rx indices */
5945         index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
5946                 SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5947
5948         /* tx indices */
5949         index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
5950                 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5951         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
5952                 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5953         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
5954                 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5955         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
5956                 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5957 }
5958
5959 void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
5960                           u8 vf_valid, int fw_sb_id, int igu_sb_id)
5961 {
5962         int igu_seg_id;
5963
5964         struct hc_status_block_data_e2 sb_data_e2;
5965         struct hc_status_block_data_e1x sb_data_e1x;
5966         struct hc_status_block_sm  *hc_sm_p;
5967         int data_size;
5968         u32 *sb_data_p;
5969
5970         if (CHIP_INT_MODE_IS_BC(bp))
5971                 igu_seg_id = HC_SEG_ACCESS_NORM;
5972         else
5973                 igu_seg_id = IGU_SEG_ACCESS_NORM;
5974
5975         bnx2x_zero_fp_sb(bp, fw_sb_id);
5976
5977         if (!CHIP_IS_E1x(bp)) {
5978                 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5979                 sb_data_e2.common.state = SB_ENABLED;
5980                 sb_data_e2.common.p_func.pf_id = BP_FUNC(bp);
5981                 sb_data_e2.common.p_func.vf_id = vfid;
5982                 sb_data_e2.common.p_func.vf_valid = vf_valid;
5983                 sb_data_e2.common.p_func.vnic_id = BP_VN(bp);
5984                 sb_data_e2.common.same_igu_sb_1b = true;
5985                 sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping);
5986                 sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping);
5987                 hc_sm_p = sb_data_e2.common.state_machine;
5988                 sb_data_p = (u32 *)&sb_data_e2;
5989                 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5990                 bnx2x_map_sb_state_machines(sb_data_e2.index_data);
5991         } else {
5992                 memset(&sb_data_e1x, 0,
5993                        sizeof(struct hc_status_block_data_e1x));
5994                 sb_data_e1x.common.state = SB_ENABLED;
5995                 sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp);
5996                 sb_data_e1x.common.p_func.vf_id = 0xff;
5997                 sb_data_e1x.common.p_func.vf_valid = false;
5998                 sb_data_e1x.common.p_func.vnic_id = BP_VN(bp);
5999                 sb_data_e1x.common.same_igu_sb_1b = true;
6000                 sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping);
6001                 sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping);
6002                 hc_sm_p = sb_data_e1x.common.state_machine;
6003                 sb_data_p = (u32 *)&sb_data_e1x;
6004                 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
6005                 bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
6006         }
6007
6008         bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID],
6009                                        igu_sb_id, igu_seg_id);
6010         bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID],
6011                                        igu_sb_id, igu_seg_id);
6012
6013         DP(NETIF_MSG_IFUP, "Init FW SB %d\n", fw_sb_id);
6014
6015         /* write indices to HW - PCI guarantees endianity of regpairs */
6016         bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
6017 }
6018
6019 static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id,
6020                                      u16 tx_usec, u16 rx_usec)
6021 {
6022         bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS,
6023                                     false, rx_usec);
6024         bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
6025                                        HC_INDEX_ETH_TX_CQ_CONS_COS0, false,
6026                                        tx_usec);
6027         bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
6028                                        HC_INDEX_ETH_TX_CQ_CONS_COS1, false,
6029                                        tx_usec);
6030         bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
6031                                        HC_INDEX_ETH_TX_CQ_CONS_COS2, false,
6032                                        tx_usec);
6033 }
6034
6035 static void bnx2x_init_def_sb(struct bnx2x *bp)
6036 {
6037         struct host_sp_status_block *def_sb = bp->def_status_blk;
6038         dma_addr_t mapping = bp->def_status_blk_mapping;
6039         int igu_sp_sb_index;
6040         int igu_seg_id;
6041         int port = BP_PORT(bp);
6042         int func = BP_FUNC(bp);
6043         int reg_offset, reg_offset_en5;
6044         u64 section;
6045         int index;
6046         struct hc_sp_status_block_data sp_sb_data;
6047         memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
6048
6049         if (CHIP_INT_MODE_IS_BC(bp)) {
6050                 igu_sp_sb_index = DEF_SB_IGU_ID;
6051                 igu_seg_id = HC_SEG_ACCESS_DEF;
6052         } else {
6053                 igu_sp_sb_index = bp->igu_dsb_id;
6054                 igu_seg_id = IGU_SEG_ACCESS_DEF;
6055         }
6056
6057         /* ATTN */
6058         section = ((u64)mapping) + offsetof(struct host_sp_status_block,
6059                                             atten_status_block);
6060         def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
6061
6062         bp->attn_state = 0;
6063
6064         reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
6065                              MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
6066         reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
6067                                  MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0);
6068         for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
6069                 int sindex;
6070                 /* take care of sig[0]..sig[4] */
6071                 for (sindex = 0; sindex < 4; sindex++)
6072                         bp->attn_group[index].sig[sindex] =
6073                            REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index);
6074
6075                 if (!CHIP_IS_E1x(bp))
6076                         /*
6077                          * enable5 is separate from the rest of the registers,
6078                          * and therefore the address skip is 4
6079                          * and not 16 between the different groups
6080                          */
6081                         bp->attn_group[index].sig[4] = REG_RD(bp,
6082                                         reg_offset_en5 + 0x4*index);
6083                 else
6084                         bp->attn_group[index].sig[4] = 0;
6085         }
6086
6087         if (bp->common.int_block == INT_BLOCK_HC) {
6088                 reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L :
6089                                      HC_REG_ATTN_MSG0_ADDR_L);
6090
6091                 REG_WR(bp, reg_offset, U64_LO(section));
6092                 REG_WR(bp, reg_offset + 4, U64_HI(section));
6093         } else if (!CHIP_IS_E1x(bp)) {
6094                 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
6095                 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
6096         }
6097
6098         section = ((u64)mapping) + offsetof(struct host_sp_status_block,
6099                                             sp_sb);
6100
6101         bnx2x_zero_sp_sb(bp);
6102
6103         /* PCI guarantees endianity of regpairs */
6104         sp_sb_data.state                = SB_ENABLED;
6105         sp_sb_data.host_sb_addr.lo      = U64_LO(section);
6106         sp_sb_data.host_sb_addr.hi      = U64_HI(section);
6107         sp_sb_data.igu_sb_id            = igu_sp_sb_index;
6108         sp_sb_data.igu_seg_id           = igu_seg_id;
6109         sp_sb_data.p_func.pf_id         = func;
6110         sp_sb_data.p_func.vnic_id       = BP_VN(bp);
6111         sp_sb_data.p_func.vf_id         = 0xff;
6112
6113         bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
6114
6115         bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
6116 }
6117
6118 void bnx2x_update_coalesce(struct bnx2x *bp)
6119 {
6120         int i;
6121
6122         for_each_eth_queue(bp, i)
6123                 bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id,
6124                                          bp->tx_ticks, bp->rx_ticks);
6125 }
6126
6127 static void bnx2x_init_sp_ring(struct bnx2x *bp)
6128 {
6129         spin_lock_init(&bp->spq_lock);
6130         atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING);
6131
6132         bp->spq_prod_idx = 0;
6133         bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX;
6134         bp->spq_prod_bd = bp->spq;
6135         bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT;
6136 }
6137
6138 static void bnx2x_init_eq_ring(struct bnx2x *bp)
6139 {
6140         int i;
6141         for (i = 1; i <= NUM_EQ_PAGES; i++) {
6142                 union event_ring_elem *elem =
6143                         &bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1];
6144
6145                 elem->next_page.addr.hi =
6146                         cpu_to_le32(U64_HI(bp->eq_mapping +
6147                                    BCM_PAGE_SIZE * (i % NUM_EQ_PAGES)));
6148                 elem->next_page.addr.lo =
6149                         cpu_to_le32(U64_LO(bp->eq_mapping +
6150                                    BCM_PAGE_SIZE*(i % NUM_EQ_PAGES)));
6151         }
6152         bp->eq_cons = 0;
6153         bp->eq_prod = NUM_EQ_DESC;
6154         bp->eq_cons_sb = BNX2X_EQ_INDEX;
6155         /* we want a warning message before it gets wrought... */
6156         atomic_set(&bp->eq_spq_left,
6157                 min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1);
6158 }
6159
6160 /* called with netif_addr_lock_bh() */
6161 static int bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id,
6162                                unsigned long rx_mode_flags,
6163                                unsigned long rx_accept_flags,
6164                                unsigned long tx_accept_flags,
6165                                unsigned long ramrod_flags)
6166 {
6167         struct bnx2x_rx_mode_ramrod_params ramrod_param;
6168         int rc;
6169
6170         memset(&ramrod_param, 0, sizeof(ramrod_param));
6171
6172         /* Prepare ramrod parameters */
6173         ramrod_param.cid = 0;
6174         ramrod_param.cl_id = cl_id;
6175         ramrod_param.rx_mode_obj = &bp->rx_mode_obj;
6176         ramrod_param.func_id = BP_FUNC(bp);
6177
6178         ramrod_param.pstate = &bp->sp_state;
6179         ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING;
6180
6181         ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata);
6182         ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata);
6183
6184         set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
6185
6186         ramrod_param.ramrod_flags = ramrod_flags;
6187         ramrod_param.rx_mode_flags = rx_mode_flags;
6188
6189         ramrod_param.rx_accept_flags = rx_accept_flags;
6190         ramrod_param.tx_accept_flags = tx_accept_flags;
6191
6192         rc = bnx2x_config_rx_mode(bp, &ramrod_param);
6193         if (rc < 0) {
6194                 BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode);
6195                 return rc;
6196         }
6197
6198         return 0;
6199 }
6200
6201 static int bnx2x_fill_accept_flags(struct bnx2x *bp, u32 rx_mode,
6202                                    unsigned long *rx_accept_flags,
6203                                    unsigned long *tx_accept_flags)
6204 {
6205         /* Clear the flags first */
6206         *rx_accept_flags = 0;
6207         *tx_accept_flags = 0;
6208
6209         switch (rx_mode) {
6210         case BNX2X_RX_MODE_NONE:
6211                 /*
6212                  * 'drop all' supersedes any accept flags that may have been
6213                  * passed to the function.
6214                  */
6215                 break;
6216         case BNX2X_RX_MODE_NORMAL:
6217                 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6218                 __set_bit(BNX2X_ACCEPT_MULTICAST, rx_accept_flags);
6219                 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6220
6221                 /* internal switching mode */
6222                 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6223                 __set_bit(BNX2X_ACCEPT_MULTICAST, tx_accept_flags);
6224                 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6225
6226                 if (bp->accept_any_vlan) {
6227                         __set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6228                         __set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6229                 }
6230
6231                 break;
6232         case BNX2X_RX_MODE_ALLMULTI:
6233                 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6234                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
6235                 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6236
6237                 /* internal switching mode */
6238                 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6239                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
6240                 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6241
6242                 if (bp->accept_any_vlan) {
6243                         __set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6244                         __set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6245                 }
6246
6247                 break;
6248         case BNX2X_RX_MODE_PROMISC:
6249                 /* According to definition of SI mode, iface in promisc mode
6250                  * should receive matched and unmatched (in resolution of port)
6251                  * unicast packets.
6252                  */
6253                 __set_bit(BNX2X_ACCEPT_UNMATCHED, rx_accept_flags);
6254                 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6255                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
6256                 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6257
6258                 /* internal switching mode */
6259                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
6260                 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6261
6262                 if (IS_MF_SI(bp))
6263                         __set_bit(BNX2X_ACCEPT_ALL_UNICAST, tx_accept_flags);
6264                 else
6265                         __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6266
6267                 __set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6268                 __set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6269
6270                 break;
6271         default:
6272                 BNX2X_ERR("Unknown rx_mode: %d\n", rx_mode);
6273                 return -EINVAL;
6274         }
6275
6276         return 0;
6277 }
6278
6279 /* called with netif_addr_lock_bh() */
6280 static int bnx2x_set_storm_rx_mode(struct bnx2x *bp)
6281 {
6282         unsigned long rx_mode_flags = 0, ramrod_flags = 0;
6283         unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
6284         int rc;
6285
6286         if (!NO_FCOE(bp))
6287                 /* Configure rx_mode of FCoE Queue */
6288                 __set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags);
6289
6290         rc = bnx2x_fill_accept_flags(bp, bp->rx_mode, &rx_accept_flags,
6291                                      &tx_accept_flags);
6292         if (rc)
6293                 return rc;
6294
6295         __set_bit(RAMROD_RX, &ramrod_flags);
6296         __set_bit(RAMROD_TX, &ramrod_flags);
6297
6298         return bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags,
6299                                    rx_accept_flags, tx_accept_flags,
6300                                    ramrod_flags);
6301 }
6302
6303 static void bnx2x_init_internal_common(struct bnx2x *bp)
6304 {
6305         int i;
6306
6307         /* Zero this manually as its initialization is
6308            currently missing in the initTool */
6309         for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++)
6310                 REG_WR(bp, BAR_USTRORM_INTMEM +
6311                        USTORM_AGG_DATA_OFFSET + i * 4, 0);
6312         if (!CHIP_IS_E1x(bp)) {
6313                 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET,
6314                         CHIP_INT_MODE_IS_BC(bp) ?
6315                         HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
6316         }
6317 }
6318
6319 static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code)
6320 {
6321         switch (load_code) {
6322         case FW_MSG_CODE_DRV_LOAD_COMMON:
6323         case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
6324                 bnx2x_init_internal_common(bp);
6325                 fallthrough;
6326
6327         case FW_MSG_CODE_DRV_LOAD_PORT:
6328                 /* nothing to do */
6329                 fallthrough;
6330
6331         case FW_MSG_CODE_DRV_LOAD_FUNCTION:
6332                 /* internal memory per function is
6333                    initialized inside bnx2x_pf_init */
6334                 break;
6335
6336         default:
6337                 BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
6338                 break;
6339         }
6340 }
6341
6342 static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp)
6343 {
6344         return fp->bp->igu_base_sb + fp->index + CNIC_SUPPORT(fp->bp);
6345 }
6346
6347 static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp)
6348 {
6349         return fp->bp->base_fw_ndsb + fp->index + CNIC_SUPPORT(fp->bp);
6350 }
6351
6352 static u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp)
6353 {
6354         if (CHIP_IS_E1x(fp->bp))
6355                 return BP_L_ID(fp->bp) + fp->index;
6356         else    /* We want Client ID to be the same as IGU SB ID for 57712 */
6357                 return bnx2x_fp_igu_sb_id(fp);
6358 }
6359
6360 static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx)
6361 {
6362         struct bnx2x_fastpath *fp = &bp->fp[fp_idx];
6363         u8 cos;
6364         unsigned long q_type = 0;
6365         u32 cids[BNX2X_MULTI_TX_COS] = { 0 };
6366         fp->rx_queue = fp_idx;
6367         fp->cid = fp_idx;
6368         fp->cl_id = bnx2x_fp_cl_id(fp);
6369         fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp);
6370         fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp);
6371         /* qZone id equals to FW (per path) client id */
6372         fp->cl_qzone_id  = bnx2x_fp_qzone_id(fp);
6373
6374         /* init shortcut */
6375         fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp);
6376
6377         /* Setup SB indices */
6378         fp->rx_cons_sb = BNX2X_RX_SB_INDEX;
6379
6380         /* Configure Queue State object */
6381         __set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6382         __set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6383
6384         BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS);
6385
6386         /* init tx data */
6387         for_each_cos_in_tx_queue(fp, cos) {
6388                 bnx2x_init_txdata(bp, fp->txdata_ptr[cos],
6389                                   CID_COS_TO_TX_ONLY_CID(fp->cid, cos, bp),
6390                                   FP_COS_TO_TXQ(fp, cos, bp),
6391                                   BNX2X_TX_SB_INDEX_BASE + cos, fp);
6392                 cids[cos] = fp->txdata_ptr[cos]->cid;
6393         }
6394
6395         /* nothing more for vf to do here */
6396         if (IS_VF(bp))
6397                 return;
6398
6399         bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false,
6400                       fp->fw_sb_id, fp->igu_sb_id);
6401         bnx2x_update_fpsb_idx(fp);
6402         bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id, cids,
6403                              fp->max_cos, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6404                              bnx2x_sp_mapping(bp, q_rdata), q_type);
6405
6406         /**
6407          * Configure classification DBs: Always enable Tx switching
6408          */
6409         bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX);
6410
6411         DP(NETIF_MSG_IFUP,
6412            "queue[%d]:  bnx2x_init_sb(%p,%p)  cl_id %d  fw_sb %d  igu_sb %d\n",
6413            fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6414            fp->igu_sb_id);
6415 }
6416
6417 static void bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata *txdata)
6418 {
6419         int i;
6420
6421         for (i = 1; i <= NUM_TX_RINGS; i++) {
6422                 struct eth_tx_next_bd *tx_next_bd =
6423                         &txdata->tx_desc_ring[TX_DESC_CNT * i - 1].next_bd;
6424
6425                 tx_next_bd->addr_hi =
6426                         cpu_to_le32(U64_HI(txdata->tx_desc_mapping +
6427                                     BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6428                 tx_next_bd->addr_lo =
6429                         cpu_to_le32(U64_LO(txdata->tx_desc_mapping +
6430                                     BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6431         }
6432
6433         *txdata->tx_cons_sb = cpu_to_le16(0);
6434
6435         SET_FLAG(txdata->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1);
6436         txdata->tx_db.data.zero_fill1 = 0;
6437         txdata->tx_db.data.prod = 0;
6438
6439         txdata->tx_pkt_prod = 0;
6440         txdata->tx_pkt_cons = 0;
6441         txdata->tx_bd_prod = 0;
6442         txdata->tx_bd_cons = 0;
6443         txdata->tx_pkt = 0;
6444 }
6445
6446 static void bnx2x_init_tx_rings_cnic(struct bnx2x *bp)
6447 {
6448         int i;
6449
6450         for_each_tx_queue_cnic(bp, i)
6451                 bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[0]);
6452 }
6453
6454 static void bnx2x_init_tx_rings(struct bnx2x *bp)
6455 {
6456         int i;
6457         u8 cos;
6458
6459         for_each_eth_queue(bp, i)
6460                 for_each_cos_in_tx_queue(&bp->fp[i], cos)
6461                         bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[cos]);
6462 }
6463
6464 static void bnx2x_init_fcoe_fp(struct bnx2x *bp)
6465 {
6466         struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
6467         unsigned long q_type = 0;
6468
6469         bnx2x_fcoe(bp, rx_queue) = BNX2X_NUM_ETH_QUEUES(bp);
6470         bnx2x_fcoe(bp, cl_id) = bnx2x_cnic_eth_cl_id(bp,
6471                                                      BNX2X_FCOE_ETH_CL_ID_IDX);
6472         bnx2x_fcoe(bp, cid) = BNX2X_FCOE_ETH_CID(bp);
6473         bnx2x_fcoe(bp, fw_sb_id) = DEF_SB_ID;
6474         bnx2x_fcoe(bp, igu_sb_id) = bp->igu_dsb_id;
6475         bnx2x_fcoe(bp, rx_cons_sb) = BNX2X_FCOE_L2_RX_INDEX;
6476         bnx2x_init_txdata(bp, bnx2x_fcoe(bp, txdata_ptr[0]),
6477                           fp->cid, FCOE_TXQ_IDX(bp), BNX2X_FCOE_L2_TX_INDEX,
6478                           fp);
6479
6480         DP(NETIF_MSG_IFUP, "created fcoe tx data (fp index %d)\n", fp->index);
6481
6482         /* qZone id equals to FW (per path) client id */
6483         bnx2x_fcoe(bp, cl_qzone_id) = bnx2x_fp_qzone_id(fp);
6484         /* init shortcut */
6485         bnx2x_fcoe(bp, ustorm_rx_prods_offset) =
6486                 bnx2x_rx_ustorm_prods_offset(fp);
6487
6488         /* Configure Queue State object */
6489         __set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6490         __set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6491
6492         /* No multi-CoS for FCoE L2 client */
6493         BUG_ON(fp->max_cos != 1);
6494
6495         bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id,
6496                              &fp->cid, 1, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6497                              bnx2x_sp_mapping(bp, q_rdata), q_type);
6498
6499         DP(NETIF_MSG_IFUP,
6500            "queue[%d]: bnx2x_init_sb(%p,%p) cl_id %d fw_sb %d igu_sb %d\n",
6501            fp->index, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6502            fp->igu_sb_id);
6503 }
6504
6505 void bnx2x_nic_init_cnic(struct bnx2x *bp)
6506 {
6507         if (!NO_FCOE(bp))
6508                 bnx2x_init_fcoe_fp(bp);
6509
6510         bnx2x_init_sb(bp, bp->cnic_sb_mapping,
6511                       BNX2X_VF_ID_INVALID, false,
6512                       bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp));
6513
6514         /* ensure status block indices were read */
6515         rmb();
6516         bnx2x_init_rx_rings_cnic(bp);
6517         bnx2x_init_tx_rings_cnic(bp);
6518
6519         /* flush all */
6520         mb();
6521 }
6522
6523 void bnx2x_pre_irq_nic_init(struct bnx2x *bp)
6524 {
6525         int i;
6526
6527         /* Setup NIC internals and enable interrupts */
6528         for_each_eth_queue(bp, i)
6529                 bnx2x_init_eth_fp(bp, i);
6530
6531         /* ensure status block indices were read */
6532         rmb();
6533         bnx2x_init_rx_rings(bp);
6534         bnx2x_init_tx_rings(bp);
6535
6536         if (IS_PF(bp)) {
6537                 /* Initialize MOD_ABS interrupts */
6538                 bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id,
6539                                        bp->common.shmem_base,
6540                                        bp->common.shmem2_base, BP_PORT(bp));
6541
6542                 /* initialize the default status block and sp ring */
6543                 bnx2x_init_def_sb(bp);
6544                 bnx2x_update_dsb_idx(bp);
6545                 bnx2x_init_sp_ring(bp);
6546         } else {
6547                 bnx2x_memset_stats(bp);
6548         }
6549 }
6550
6551 void bnx2x_post_irq_nic_init(struct bnx2x *bp, u32 load_code)
6552 {
6553         bnx2x_init_eq_ring(bp);
6554         bnx2x_init_internal(bp, load_code);
6555         bnx2x_pf_init(bp);
6556         bnx2x_stats_init(bp);
6557
6558         /* flush all before enabling interrupts */
6559         mb();
6560
6561         bnx2x_int_enable(bp);
6562
6563         /* Check for SPIO5 */
6564         bnx2x_attn_int_deasserted0(bp,
6565                 REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) &
6566                                    AEU_INPUTS_ATTN_BITS_SPIO5);
6567 }
6568
6569 /* gzip service functions */
6570 static int bnx2x_gunzip_init(struct bnx2x *bp)
6571 {
6572         bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE,
6573                                             &bp->gunzip_mapping, GFP_KERNEL);
6574         if (bp->gunzip_buf  == NULL)
6575                 goto gunzip_nomem1;
6576
6577         bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL);
6578         if (bp->strm  == NULL)
6579                 goto gunzip_nomem2;
6580
6581         bp->strm->workspace = vmalloc(zlib_inflate_workspacesize());
6582         if (bp->strm->workspace == NULL)
6583                 goto gunzip_nomem3;
6584
6585         return 0;
6586
6587 gunzip_nomem3:
6588         kfree(bp->strm);
6589         bp->strm = NULL;
6590
6591 gunzip_nomem2:
6592         dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6593                           bp->gunzip_mapping);
6594         bp->gunzip_buf = NULL;
6595
6596 gunzip_nomem1:
6597         BNX2X_ERR("Cannot allocate firmware buffer for un-compression\n");
6598         return -ENOMEM;
6599 }
6600
6601 static void bnx2x_gunzip_end(struct bnx2x *bp)
6602 {
6603         if (bp->strm) {
6604                 vfree(bp->strm->workspace);
6605                 kfree(bp->strm);
6606                 bp->strm = NULL;
6607         }
6608
6609         if (bp->gunzip_buf) {
6610                 dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6611                                   bp->gunzip_mapping);
6612                 bp->gunzip_buf = NULL;
6613         }
6614 }
6615
6616 static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len)
6617 {
6618         int n, rc;
6619
6620         /* check gzip header */
6621         if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) {
6622                 BNX2X_ERR("Bad gzip header\n");
6623                 return -EINVAL;
6624         }
6625
6626         n = 10;
6627
6628 #define FNAME                           0x8
6629
6630         if (zbuf[3] & FNAME)
6631                 while ((zbuf[n++] != 0) && (n < len));
6632
6633         bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n;
6634         bp->strm->avail_in = len - n;
6635         bp->strm->next_out = bp->gunzip_buf;
6636         bp->strm->avail_out = FW_BUF_SIZE;
6637
6638         rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
6639         if (rc != Z_OK)
6640                 return rc;
6641
6642         rc = zlib_inflate(bp->strm, Z_FINISH);
6643         if ((rc != Z_OK) && (rc != Z_STREAM_END))
6644                 netdev_err(bp->dev, "Firmware decompression error: %s\n",
6645                            bp->strm->msg);
6646
6647         bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out);
6648         if (bp->gunzip_outlen & 0x3)
6649                 netdev_err(bp->dev,
6650                            "Firmware decompression error: gunzip_outlen (%d) not aligned\n",
6651                                 bp->gunzip_outlen);
6652         bp->gunzip_outlen >>= 2;
6653
6654         zlib_inflateEnd(bp->strm);
6655
6656         if (rc == Z_STREAM_END)
6657                 return 0;
6658
6659         return rc;
6660 }
6661
6662 /* nic load/unload */
6663
6664 /*
6665  * General service functions
6666  */
6667
6668 /* send a NIG loopback debug packet */
6669 static void bnx2x_lb_pckt(struct bnx2x *bp)
6670 {
6671         u32 wb_write[3];
6672
6673         /* Ethernet source and destination addresses */
6674         wb_write[0] = 0x55555555;
6675         wb_write[1] = 0x55555555;
6676         wb_write[2] = 0x20;             /* SOP */
6677         REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6678
6679         /* NON-IP protocol */
6680         wb_write[0] = 0x09000000;
6681         wb_write[1] = 0x55555555;
6682         wb_write[2] = 0x10;             /* EOP, eop_bvalid = 0 */
6683         REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6684 }
6685
6686 /* some of the internal memories
6687  * are not directly readable from the driver
6688  * to test them we send debug packets
6689  */
6690 static int bnx2x_int_mem_test(struct bnx2x *bp)
6691 {
6692         int factor;
6693         int count, i;
6694         u32 val = 0;
6695
6696         if (CHIP_REV_IS_FPGA(bp))
6697                 factor = 120;
6698         else if (CHIP_REV_IS_EMUL(bp))
6699                 factor = 200;
6700         else
6701                 factor = 1;
6702
6703         /* Disable inputs of parser neighbor blocks */
6704         REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6705         REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6706         REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6707         REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6708
6709         /*  Write 0 to parser credits for CFC search request */
6710         REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6711
6712         /* send Ethernet packet */
6713         bnx2x_lb_pckt(bp);
6714
6715         /* TODO do i reset NIG statistic? */
6716         /* Wait until NIG register shows 1 packet of size 0x10 */
6717         count = 1000 * factor;
6718         while (count) {
6719
6720                 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6721                 val = *bnx2x_sp(bp, wb_data[0]);
6722                 if (val == 0x10)
6723                         break;
6724
6725                 usleep_range(10000, 20000);
6726                 count--;
6727         }
6728         if (val != 0x10) {
6729                 BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6730                 return -1;
6731         }
6732
6733         /* Wait until PRS register shows 1 packet */
6734         count = 1000 * factor;
6735         while (count) {
6736                 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6737                 if (val == 1)
6738                         break;
6739
6740                 usleep_range(10000, 20000);
6741                 count--;
6742         }
6743         if (val != 0x1) {
6744                 BNX2X_ERR("PRS timeout val = 0x%x\n", val);
6745                 return -2;
6746         }
6747
6748         /* Reset and init BRB, PRS */
6749         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6750         msleep(50);
6751         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6752         msleep(50);
6753         bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6754         bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6755
6756         DP(NETIF_MSG_HW, "part2\n");
6757
6758         /* Disable inputs of parser neighbor blocks */
6759         REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6760         REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6761         REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6762         REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6763
6764         /* Write 0 to parser credits for CFC search request */
6765         REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6766
6767         /* send 10 Ethernet packets */
6768         for (i = 0; i < 10; i++)
6769                 bnx2x_lb_pckt(bp);
6770
6771         /* Wait until NIG register shows 10 + 1
6772            packets of size 11*0x10 = 0xb0 */
6773         count = 1000 * factor;
6774         while (count) {
6775
6776                 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6777                 val = *bnx2x_sp(bp, wb_data[0]);
6778                 if (val == 0xb0)
6779                         break;
6780
6781                 usleep_range(10000, 20000);
6782                 count--;
6783         }
6784         if (val != 0xb0) {
6785                 BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6786                 return -3;
6787         }
6788
6789         /* Wait until PRS register shows 2 packets */
6790         val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6791         if (val != 2)
6792                 BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6793
6794         /* Write 1 to parser credits for CFC search request */
6795         REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
6796
6797         /* Wait until PRS register shows 3 packets */
6798         msleep(10 * factor);
6799         /* Wait until NIG register shows 1 packet of size 0x10 */
6800         val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6801         if (val != 3)
6802                 BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6803
6804         /* clear NIG EOP FIFO */
6805         for (i = 0; i < 11; i++)
6806                 REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO);
6807         val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY);
6808         if (val != 1) {
6809                 BNX2X_ERR("clear of NIG failed\n");
6810                 return -4;
6811         }
6812
6813         /* Reset and init BRB, PRS, NIG */
6814         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6815         msleep(50);
6816         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6817         msleep(50);
6818         bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6819         bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6820         if (!CNIC_SUPPORT(bp))
6821                 /* set NIC mode */
6822                 REG_WR(bp, PRS_REG_NIC_MODE, 1);
6823
6824         /* Enable inputs of parser neighbor blocks */
6825         REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff);
6826         REG_WR(bp, TCM_REG_PRS_IFEN, 0x1);
6827         REG_WR(bp, CFC_REG_DEBUG0, 0x0);
6828         REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1);
6829
6830         DP(NETIF_MSG_HW, "done\n");
6831
6832         return 0; /* OK */
6833 }
6834
6835 static void bnx2x_enable_blocks_attention(struct bnx2x *bp)
6836 {
6837         u32 val;
6838
6839         REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6840         if (!CHIP_IS_E1x(bp))
6841                 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40);
6842         else
6843                 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0);
6844         REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6845         REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6846         /*
6847          * mask read length error interrupts in brb for parser
6848          * (parsing unit and 'checksum and crc' unit)
6849          * these errors are legal (PU reads fixed length and CAC can cause
6850          * read length error on truncated packets)
6851          */
6852         REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00);
6853         REG_WR(bp, QM_REG_QM_INT_MASK, 0);
6854         REG_WR(bp, TM_REG_TM_INT_MASK, 0);
6855         REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0);
6856         REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0);
6857         REG_WR(bp, XCM_REG_XCM_INT_MASK, 0);
6858 /*      REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */
6859 /*      REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */
6860         REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0);
6861         REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0);
6862         REG_WR(bp, UCM_REG_UCM_INT_MASK, 0);
6863 /*      REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */
6864 /*      REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */
6865         REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
6866         REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0);
6867         REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0);
6868         REG_WR(bp, CCM_REG_CCM_INT_MASK, 0);
6869 /*      REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */
6870 /*      REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */
6871
6872         val = PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT  |
6873                 PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
6874                 PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN;
6875         if (!CHIP_IS_E1x(bp))
6876                 val |= PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
6877                         PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED;
6878         REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, val);
6879
6880         REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0);
6881         REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0);
6882         REG_WR(bp, TCM_REG_TCM_INT_MASK, 0);
6883 /*      REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */
6884
6885         if (!CHIP_IS_E1x(bp))
6886                 /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
6887                 REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
6888
6889         REG_WR(bp, CDU_REG_CDU_INT_MASK, 0);
6890         REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0);
6891 /*      REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */
6892         REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18);         /* bit 3,4 masked */
6893 }
6894
6895 static void bnx2x_reset_common(struct bnx2x *bp)
6896 {
6897         u32 val = 0x1400;
6898
6899         /* reset_common */
6900         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6901                0xd3ffff7f);
6902
6903         if (CHIP_IS_E3(bp)) {
6904                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6905                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6906         }
6907
6908         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val);
6909 }
6910
6911 static void bnx2x_setup_dmae(struct bnx2x *bp)
6912 {
6913         bp->dmae_ready = 0;
6914         spin_lock_init(&bp->dmae_lock);
6915 }
6916
6917 static void bnx2x_init_pxp(struct bnx2x *bp)
6918 {
6919         u16 devctl;
6920         int r_order, w_order;
6921
6922         pcie_capability_read_word(bp->pdev, PCI_EXP_DEVCTL, &devctl);
6923         DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
6924         w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6925         if (bp->mrrs == -1)
6926                 r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
6927         else {
6928                 DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
6929                 r_order = bp->mrrs;
6930         }
6931
6932         bnx2x_init_pxp_arb(bp, r_order, w_order);
6933 }
6934
6935 static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp)
6936 {
6937         int is_required;
6938         u32 val;
6939         int port;
6940
6941         if (BP_NOMCP(bp))
6942                 return;
6943
6944         is_required = 0;
6945         val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) &
6946               SHARED_HW_CFG_FAN_FAILURE_MASK;
6947
6948         if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED)
6949                 is_required = 1;
6950
6951         /*
6952          * The fan failure mechanism is usually related to the PHY type since
6953          * the power consumption of the board is affected by the PHY. Currently,
6954          * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
6955          */
6956         else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE)
6957                 for (port = PORT_0; port < PORT_MAX; port++) {
6958                         is_required |=
6959                                 bnx2x_fan_failure_det_req(
6960                                         bp,
6961                                         bp->common.shmem_base,
6962                                         bp->common.shmem2_base,
6963                                         port);
6964                 }
6965
6966         DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required);
6967
6968         if (is_required == 0)
6969                 return;
6970
6971         /* Fan failure is indicated by SPIO 5 */
6972         bnx2x_set_spio(bp, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
6973
6974         /* set to active low mode */
6975         val = REG_RD(bp, MISC_REG_SPIO_INT);
6976         val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
6977         REG_WR(bp, MISC_REG_SPIO_INT, val);
6978
6979         /* enable interrupt to signal the IGU */
6980         val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
6981         val |= MISC_SPIO_SPIO5;
6982         REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val);
6983 }
6984
6985 void bnx2x_pf_disable(struct bnx2x *bp)
6986 {
6987         u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
6988         val &= ~IGU_PF_CONF_FUNC_EN;
6989
6990         REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
6991         REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6992         REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0);
6993 }
6994
6995 static void bnx2x__common_init_phy(struct bnx2x *bp)
6996 {
6997         u32 shmem_base[2], shmem2_base[2];
6998         /* Avoid common init in case MFW supports LFA */
6999         if (SHMEM2_RD(bp, size) >
7000             (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
7001                 return;
7002         shmem_base[0] =  bp->common.shmem_base;
7003         shmem2_base[0] = bp->common.shmem2_base;
7004         if (!CHIP_IS_E1x(bp)) {
7005                 shmem_base[1] =
7006                         SHMEM2_RD(bp, other_shmem_base_addr);
7007                 shmem2_base[1] =
7008                         SHMEM2_RD(bp, other_shmem2_base_addr);
7009         }
7010         bnx2x_acquire_phy_lock(bp);
7011         bnx2x_common_init_phy(bp, shmem_base, shmem2_base,
7012                               bp->common.chip_id);
7013         bnx2x_release_phy_lock(bp);
7014 }
7015
7016 static void bnx2x_config_endianity(struct bnx2x *bp, u32 val)
7017 {
7018         REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, val);
7019         REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, val);
7020         REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, val);
7021         REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, val);
7022         REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, val);
7023
7024         /* make sure this value is 0 */
7025         REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0);
7026
7027         REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, val);
7028         REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, val);
7029         REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, val);
7030         REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, val);
7031 }
7032
7033 static void bnx2x_set_endianity(struct bnx2x *bp)
7034 {
7035 #ifdef __BIG_ENDIAN
7036         bnx2x_config_endianity(bp, 1);
7037 #else
7038         bnx2x_config_endianity(bp, 0);
7039 #endif
7040 }
7041
7042 static void bnx2x_reset_endianity(struct bnx2x *bp)
7043 {
7044         bnx2x_config_endianity(bp, 0);
7045 }
7046
7047 /**
7048  * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
7049  *
7050  * @bp:         driver handle
7051  */
7052 static int bnx2x_init_hw_common(struct bnx2x *bp)
7053 {
7054         u32 val;
7055
7056         DP(NETIF_MSG_HW, "starting common init  func %d\n", BP_ABS_FUNC(bp));
7057
7058         /*
7059          * take the RESET lock to protect undi_unload flow from accessing
7060          * registers while we're resetting the chip
7061          */
7062         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
7063
7064         bnx2x_reset_common(bp);
7065         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff);
7066
7067         val = 0xfffc;
7068         if (CHIP_IS_E3(bp)) {
7069                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
7070                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
7071         }
7072         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val);
7073
7074         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
7075
7076         bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON);
7077
7078         if (!CHIP_IS_E1x(bp)) {
7079                 u8 abs_func_id;
7080
7081                 /**
7082                  * 4-port mode or 2-port mode we need to turn of master-enable
7083                  * for everyone, after that, turn it back on for self.
7084                  * so, we disregard multi-function or not, and always disable
7085                  * for all functions on the given path, this means 0,2,4,6 for
7086                  * path 0 and 1,3,5,7 for path 1
7087                  */
7088                 for (abs_func_id = BP_PATH(bp);
7089                      abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) {
7090                         if (abs_func_id == BP_ABS_FUNC(bp)) {
7091                                 REG_WR(bp,
7092                                     PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
7093                                     1);
7094                                 continue;
7095                         }
7096
7097                         bnx2x_pretend_func(bp, abs_func_id);
7098                         /* clear pf enable */
7099                         bnx2x_pf_disable(bp);
7100                         bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
7101                 }
7102         }
7103
7104         bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON);
7105         if (CHIP_IS_E1(bp)) {
7106                 /* enable HW interrupt from PXP on USDM overflow
7107                    bit 16 on INT_MASK_0 */
7108                 REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
7109         }
7110
7111         bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON);
7112         bnx2x_init_pxp(bp);
7113         bnx2x_set_endianity(bp);
7114         bnx2x_ilt_init_page_size(bp, INITOP_SET);
7115
7116         if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp))
7117                 REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
7118
7119         /* let the HW do it's magic ... */
7120         msleep(100);
7121         /* finish PXP init */
7122         val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE);
7123         if (val != 1) {
7124                 BNX2X_ERR("PXP2 CFG failed\n");
7125                 return -EBUSY;
7126         }
7127         val = REG_RD(bp, PXP2_REG_RD_INIT_DONE);
7128         if (val != 1) {
7129                 BNX2X_ERR("PXP2 RD_INIT failed\n");
7130                 return -EBUSY;
7131         }
7132
7133         /* Timers bug workaround E2 only. We need to set the entire ILT to
7134          * have entries with value "0" and valid bit on.
7135          * This needs to be done by the first PF that is loaded in a path
7136          * (i.e. common phase)
7137          */
7138         if (!CHIP_IS_E1x(bp)) {
7139 /* In E2 there is a bug in the timers block that can cause function 6 / 7
7140  * (i.e. vnic3) to start even if it is marked as "scan-off".
7141  * This occurs when a different function (func2,3) is being marked
7142  * as "scan-off". Real-life scenario for example: if a driver is being
7143  * load-unloaded while func6,7 are down. This will cause the timer to access
7144  * the ilt, translate to a logical address and send a request to read/write.
7145  * Since the ilt for the function that is down is not valid, this will cause
7146  * a translation error which is unrecoverable.
7147  * The Workaround is intended to make sure that when this happens nothing fatal
7148  * will occur. The workaround:
7149  *      1.  First PF driver which loads on a path will:
7150  *              a.  After taking the chip out of reset, by using pretend,
7151  *                  it will write "0" to the following registers of
7152  *                  the other vnics.
7153  *                  REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
7154  *                  REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
7155  *                  REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
7156  *                  And for itself it will write '1' to
7157  *                  PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
7158  *                  dmae-operations (writing to pram for example.)
7159  *                  note: can be done for only function 6,7 but cleaner this
7160  *                        way.
7161  *              b.  Write zero+valid to the entire ILT.
7162  *              c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
7163  *                  VNIC3 (of that port). The range allocated will be the
7164  *                  entire ILT. This is needed to prevent  ILT range error.
7165  *      2.  Any PF driver load flow:
7166  *              a.  ILT update with the physical addresses of the allocated
7167  *                  logical pages.
7168  *              b.  Wait 20msec. - note that this timeout is needed to make
7169  *                  sure there are no requests in one of the PXP internal
7170  *                  queues with "old" ILT addresses.
7171  *              c.  PF enable in the PGLC.
7172  *              d.  Clear the was_error of the PF in the PGLC. (could have
7173  *                  occurred while driver was down)
7174  *              e.  PF enable in the CFC (WEAK + STRONG)
7175  *              f.  Timers scan enable
7176  *      3.  PF driver unload flow:
7177  *              a.  Clear the Timers scan_en.
7178  *              b.  Polling for scan_on=0 for that PF.
7179  *              c.  Clear the PF enable bit in the PXP.
7180  *              d.  Clear the PF enable in the CFC (WEAK + STRONG)
7181  *              e.  Write zero+valid to all ILT entries (The valid bit must
7182  *                  stay set)
7183  *              f.  If this is VNIC 3 of a port then also init
7184  *                  first_timers_ilt_entry to zero and last_timers_ilt_entry
7185  *                  to the last entry in the ILT.
7186  *
7187  *      Notes:
7188  *      Currently the PF error in the PGLC is non recoverable.
7189  *      In the future the there will be a recovery routine for this error.
7190  *      Currently attention is masked.
7191  *      Having an MCP lock on the load/unload process does not guarantee that
7192  *      there is no Timer disable during Func6/7 enable. This is because the
7193  *      Timers scan is currently being cleared by the MCP on FLR.
7194  *      Step 2.d can be done only for PF6/7 and the driver can also check if
7195  *      there is error before clearing it. But the flow above is simpler and
7196  *      more general.
7197  *      All ILT entries are written by zero+valid and not just PF6/7
7198  *      ILT entries since in the future the ILT entries allocation for
7199  *      PF-s might be dynamic.
7200  */
7201                 struct ilt_client_info ilt_cli;
7202                 struct bnx2x_ilt ilt;
7203                 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
7204                 memset(&ilt, 0, sizeof(struct bnx2x_ilt));
7205
7206                 /* initialize dummy TM client */
7207                 ilt_cli.start = 0;
7208                 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
7209                 ilt_cli.client_num = ILT_CLIENT_TM;
7210
7211                 /* Step 1: set zeroes to all ilt page entries with valid bit on
7212                  * Step 2: set the timers first/last ilt entry to point
7213                  * to the entire range to prevent ILT range error for 3rd/4th
7214                  * vnic (this code assumes existence of the vnic)
7215                  *
7216                  * both steps performed by call to bnx2x_ilt_client_init_op()
7217                  * with dummy TM client
7218                  *
7219                  * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
7220                  * and his brother are split registers
7221                  */
7222                 bnx2x_pretend_func(bp, (BP_PATH(bp) + 6));
7223                 bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR);
7224                 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
7225
7226                 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
7227                 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
7228                 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
7229         }
7230
7231         REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0);
7232         REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0);
7233
7234         if (!CHIP_IS_E1x(bp)) {
7235                 int factor = CHIP_REV_IS_EMUL(bp) ? 1000 :
7236                                 (CHIP_REV_IS_FPGA(bp) ? 400 : 0);
7237                 bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON);
7238
7239                 bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON);
7240
7241                 /* let the HW do it's magic ... */
7242                 do {
7243                         msleep(200);
7244                         val = REG_RD(bp, ATC_REG_ATC_INIT_DONE);
7245                 } while (factor-- && (val != 1));
7246
7247                 if (val != 1) {
7248                         BNX2X_ERR("ATC_INIT failed\n");
7249                         return -EBUSY;
7250                 }
7251         }
7252
7253         bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON);
7254
7255         bnx2x_iov_init_dmae(bp);
7256
7257         /* clean the DMAE memory */
7258         bp->dmae_ready = 1;
7259         bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1);
7260
7261         bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON);
7262
7263         bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON);
7264
7265         bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON);
7266
7267         bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON);
7268
7269         bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3);
7270         bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3);
7271         bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3);
7272         bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3);
7273
7274         bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON);
7275
7276         /* QM queues pointers table */
7277         bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET);
7278
7279         /* soft reset pulse */
7280         REG_WR(bp, QM_REG_SOFT_RESET, 1);
7281         REG_WR(bp, QM_REG_SOFT_RESET, 0);
7282
7283         if (CNIC_SUPPORT(bp))
7284                 bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON);
7285
7286         bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON);
7287
7288         if (!CHIP_REV_IS_SLOW(bp))
7289                 /* enable hw interrupt from doorbell Q */
7290                 REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
7291
7292         bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
7293
7294         bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
7295         REG_WR(bp, PRS_REG_A_PRSU_20, 0xf);
7296
7297         if (!CHIP_IS_E1(bp))
7298                 REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan);
7299
7300         if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp)) {
7301                 if (IS_MF_AFEX(bp)) {
7302                         /* configure that VNTag and VLAN headers must be
7303                          * received in afex mode
7304                          */
7305                         REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, 0xE);
7306                         REG_WR(bp, PRS_REG_MUST_HAVE_HDRS, 0xA);
7307                         REG_WR(bp, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
7308                         REG_WR(bp, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
7309                         REG_WR(bp, PRS_REG_TAG_LEN_0, 0x4);
7310                 } else {
7311                         /* Bit-map indicating which L2 hdrs may appear
7312                          * after the basic Ethernet header
7313                          */
7314                         REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC,
7315                                bp->path_has_ovlan ? 7 : 6);
7316                 }
7317         }
7318
7319         bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON);
7320         bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON);
7321         bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON);
7322         bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON);
7323
7324         if (!CHIP_IS_E1x(bp)) {
7325                 /* reset VFC memories */
7326                 REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
7327                            VFC_MEMORIES_RST_REG_CAM_RST |
7328                            VFC_MEMORIES_RST_REG_RAM_RST);
7329                 REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
7330                            VFC_MEMORIES_RST_REG_CAM_RST |
7331                            VFC_MEMORIES_RST_REG_RAM_RST);
7332
7333                 msleep(20);
7334         }
7335
7336         bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON);
7337         bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON);
7338         bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON);
7339         bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON);
7340
7341         /* sync semi rtc */
7342         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
7343                0x80000000);
7344         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
7345                0x80000000);
7346
7347         bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON);
7348         bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON);
7349         bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON);
7350
7351         if (!CHIP_IS_E1x(bp)) {
7352                 if (IS_MF_AFEX(bp)) {
7353                         /* configure that VNTag and VLAN headers must be
7354                          * sent in afex mode
7355                          */
7356                         REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, 0xE);
7357                         REG_WR(bp, PBF_REG_MUST_HAVE_HDRS, 0xA);
7358                         REG_WR(bp, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
7359                         REG_WR(bp, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
7360                         REG_WR(bp, PBF_REG_TAG_LEN_0, 0x4);
7361                 } else {
7362                         REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC,
7363                                bp->path_has_ovlan ? 7 : 6);
7364                 }
7365         }
7366
7367         REG_WR(bp, SRC_REG_SOFT_RST, 1);
7368
7369         bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON);
7370
7371         if (CNIC_SUPPORT(bp)) {
7372                 REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672);
7373                 REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
7374                 REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b);
7375                 REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a);
7376                 REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116);
7377                 REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
7378                 REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf);
7379                 REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
7380                 REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f);
7381                 REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7);
7382         }
7383         REG_WR(bp, SRC_REG_SOFT_RST, 0);
7384
7385         if (sizeof(union cdu_context) != 1024)
7386                 /* we currently assume that a context is 1024 bytes */
7387                 dev_alert(&bp->pdev->dev,
7388                           "please adjust the size of cdu_context(%ld)\n",
7389                           (long)sizeof(union cdu_context));
7390
7391         bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON);
7392         val = (4 << 24) + (0 << 12) + 1024;
7393         REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val);
7394
7395         bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON);
7396         REG_WR(bp, CFC_REG_INIT_REG, 0x7FF);
7397         /* enable context validation interrupt from CFC */
7398         REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
7399
7400         /* set the thresholds to prevent CFC/CDU race */
7401         REG_WR(bp, CFC_REG_DEBUG0, 0x20020000);
7402
7403         bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON);
7404
7405         if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp))
7406                 REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36);
7407
7408         bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON);
7409         bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON);
7410
7411         /* Reset PCIE errors for debug */
7412         REG_WR(bp, 0x2814, 0xffffffff);
7413         REG_WR(bp, 0x3820, 0xffffffff);
7414
7415         if (!CHIP_IS_E1x(bp)) {
7416                 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
7417                            (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
7418                                 PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
7419                 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
7420                            (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
7421                                 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
7422                                 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
7423                 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
7424                            (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
7425                                 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
7426                                 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
7427         }
7428
7429         bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON);
7430         if (!CHIP_IS_E1(bp)) {
7431                 /* in E3 this done in per-port section */
7432                 if (!CHIP_IS_E3(bp))
7433                         REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp));
7434         }
7435         if (CHIP_IS_E1H(bp))
7436                 /* not applicable for E2 (and above ...) */
7437                 REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp));
7438
7439         if (CHIP_REV_IS_SLOW(bp))
7440                 msleep(200);
7441
7442         /* finish CFC init */
7443         val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10);
7444         if (val != 1) {
7445                 BNX2X_ERR("CFC LL_INIT failed\n");
7446                 return -EBUSY;
7447         }
7448         val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10);
7449         if (val != 1) {
7450                 BNX2X_ERR("CFC AC_INIT failed\n");
7451                 return -EBUSY;
7452         }
7453         val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
7454         if (val != 1) {
7455                 BNX2X_ERR("CFC CAM_INIT failed\n");
7456                 return -EBUSY;
7457         }
7458         REG_WR(bp, CFC_REG_DEBUG0, 0);
7459
7460         if (CHIP_IS_E1(bp)) {
7461                 /* read NIG statistic
7462                    to see if this is our first up since powerup */
7463                 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
7464                 val = *bnx2x_sp(bp, wb_data[0]);
7465
7466                 /* do internal memory self test */
7467                 if ((val == 0) && bnx2x_int_mem_test(bp)) {
7468                         BNX2X_ERR("internal mem self test failed\n");
7469                         return -EBUSY;
7470                 }
7471         }
7472
7473         bnx2x_setup_fan_failure_detection(bp);
7474
7475         /* clear PXP2 attentions */
7476         REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0);
7477
7478         bnx2x_enable_blocks_attention(bp);
7479         bnx2x_enable_blocks_parity(bp);
7480
7481         if (!BP_NOMCP(bp)) {
7482                 if (CHIP_IS_E1x(bp))
7483                         bnx2x__common_init_phy(bp);
7484         } else
7485                 BNX2X_ERR("Bootcode is missing - can not initialize link\n");
7486
7487         if (SHMEM2_HAS(bp, netproc_fw_ver))
7488                 SHMEM2_WR(bp, netproc_fw_ver, REG_RD(bp, XSEM_REG_PRAM));
7489
7490         return 0;
7491 }
7492
7493 /**
7494  * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
7495  *
7496  * @bp:         driver handle
7497  */
7498 static int bnx2x_init_hw_common_chip(struct bnx2x *bp)
7499 {
7500         int rc = bnx2x_init_hw_common(bp);
7501
7502         if (rc)
7503                 return rc;
7504
7505         /* In E2 2-PORT mode, same ext phy is used for the two paths */
7506         if (!BP_NOMCP(bp))
7507                 bnx2x__common_init_phy(bp);
7508
7509         return 0;
7510 }
7511
7512 static int bnx2x_init_hw_port(struct bnx2x *bp)
7513 {
7514         int port = BP_PORT(bp);
7515         int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
7516         u32 low, high;
7517         u32 val, reg;
7518
7519         DP(NETIF_MSG_HW, "starting port init  port %d\n", port);
7520
7521         REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
7522
7523         bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7524         bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7525         bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7526
7527         /* Timers bug workaround: disables the pf_master bit in pglue at
7528          * common phase, we need to enable it here before any dmae access are
7529          * attempted. Therefore we manually added the enable-master to the
7530          * port phase (it also happens in the function phase)
7531          */
7532         if (!CHIP_IS_E1x(bp))
7533                 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7534
7535         bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7536         bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7537         bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7538         bnx2x_init_block(bp, BLOCK_QM, init_phase);
7539
7540         bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7541         bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7542         bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7543         bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7544
7545         /* QM cid (connection) count */
7546         bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET);
7547
7548         if (CNIC_SUPPORT(bp)) {
7549                 bnx2x_init_block(bp, BLOCK_TM, init_phase);
7550                 REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20);
7551                 REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
7552         }
7553
7554         bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
7555
7556         bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
7557
7558         if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) {
7559
7560                 if (IS_MF(bp))
7561                         low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246);
7562                 else if (bp->dev->mtu > 4096) {
7563                         if (bp->flags & ONE_PORT_FLAG)
7564                                 low = 160;
7565                         else {
7566                                 val = bp->dev->mtu;
7567                                 /* (24*1024 + val*4)/256 */
7568                                 low = 96 + (val/64) +
7569                                                 ((val % 64) ? 1 : 0);
7570                         }
7571                 } else
7572                         low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160);
7573                 high = low + 56;        /* 14*1024/256 */
7574                 REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
7575                 REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
7576         }
7577
7578         if (CHIP_MODE_IS_4_PORT(bp))
7579                 REG_WR(bp, (BP_PORT(bp) ?
7580                             BRB1_REG_MAC_GUARANTIED_1 :
7581                             BRB1_REG_MAC_GUARANTIED_0), 40);
7582
7583         bnx2x_init_block(bp, BLOCK_PRS, init_phase);
7584         if (CHIP_IS_E3B0(bp)) {
7585                 if (IS_MF_AFEX(bp)) {
7586                         /* configure headers for AFEX mode */
7587                         REG_WR(bp, BP_PORT(bp) ?
7588                                PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7589                                PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
7590                         REG_WR(bp, BP_PORT(bp) ?
7591                                PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
7592                                PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
7593                         REG_WR(bp, BP_PORT(bp) ?
7594                                PRS_REG_MUST_HAVE_HDRS_PORT_1 :
7595                                PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
7596                 } else {
7597                         /* Ovlan exists only if we are in multi-function +
7598                          * switch-dependent mode, in switch-independent there
7599                          * is no ovlan headers
7600                          */
7601                         REG_WR(bp, BP_PORT(bp) ?
7602                                PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7603                                PRS_REG_HDRS_AFTER_BASIC_PORT_0,
7604                                (bp->path_has_ovlan ? 7 : 6));
7605                 }
7606         }
7607
7608         bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
7609         bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
7610         bnx2x_init_block(bp, BLOCK_USDM, init_phase);
7611         bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
7612
7613         bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7614         bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7615         bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7616         bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7617
7618         bnx2x_init_block(bp, BLOCK_UPB, init_phase);
7619         bnx2x_init_block(bp, BLOCK_XPB, init_phase);
7620
7621         bnx2x_init_block(bp, BLOCK_PBF, init_phase);
7622
7623         if (CHIP_IS_E1x(bp)) {
7624                 /* configure PBF to work without PAUSE mtu 9000 */
7625                 REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
7626
7627                 /* update threshold */
7628                 REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
7629                 /* update init credit */
7630                 REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
7631
7632                 /* probe changes */
7633                 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1);
7634                 udelay(50);
7635                 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0);
7636         }
7637
7638         if (CNIC_SUPPORT(bp))
7639                 bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7640
7641         bnx2x_init_block(bp, BLOCK_CDU, init_phase);
7642         bnx2x_init_block(bp, BLOCK_CFC, init_phase);
7643
7644         if (CHIP_IS_E1(bp)) {
7645                 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7646                 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7647         }
7648         bnx2x_init_block(bp, BLOCK_HC, init_phase);
7649
7650         bnx2x_init_block(bp, BLOCK_IGU, init_phase);
7651
7652         bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
7653         /* init aeu_mask_attn_func_0/1:
7654          *  - SF mode: bits 3-7 are masked. Only bits 0-2 are in use
7655          *  - MF mode: bit 3 is masked. Bits 0-2 are in use as in SF
7656          *             bits 4-7 are used for "per vn group attention" */
7657         val = IS_MF(bp) ? 0xF7 : 0x7;
7658         /* Enable DCBX attention for all but E1 */
7659         val |= CHIP_IS_E1(bp) ? 0 : 0x10;
7660         REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
7661
7662         /* SCPAD_PARITY should NOT trigger close the gates */
7663         reg = port ? MISC_REG_AEU_ENABLE4_NIG_1 : MISC_REG_AEU_ENABLE4_NIG_0;
7664         REG_WR(bp, reg,
7665                REG_RD(bp, reg) &
7666                ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7667
7668         reg = port ? MISC_REG_AEU_ENABLE4_PXP_1 : MISC_REG_AEU_ENABLE4_PXP_0;
7669         REG_WR(bp, reg,
7670                REG_RD(bp, reg) &
7671                ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7672
7673         bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7674
7675         if (!CHIP_IS_E1x(bp)) {
7676                 /* Bit-map indicating which L2 hdrs may appear after the
7677                  * basic Ethernet header
7678                  */
7679                 if (IS_MF_AFEX(bp))
7680                         REG_WR(bp, BP_PORT(bp) ?
7681                                NIG_REG_P1_HDRS_AFTER_BASIC :
7682                                NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
7683                 else
7684                         REG_WR(bp, BP_PORT(bp) ?
7685                                NIG_REG_P1_HDRS_AFTER_BASIC :
7686                                NIG_REG_P0_HDRS_AFTER_BASIC,
7687                                IS_MF_SD(bp) ? 7 : 6);
7688
7689                 if (CHIP_IS_E3(bp))
7690                         REG_WR(bp, BP_PORT(bp) ?
7691                                    NIG_REG_LLH1_MF_MODE :
7692                                    NIG_REG_LLH_MF_MODE, IS_MF(bp));
7693         }
7694         if (!CHIP_IS_E3(bp))
7695                 REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
7696
7697         if (!CHIP_IS_E1(bp)) {
7698                 /* 0x2 disable mf_ov, 0x1 enable */
7699                 REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
7700                        (IS_MF_SD(bp) ? 0x1 : 0x2));
7701
7702                 if (!CHIP_IS_E1x(bp)) {
7703                         val = 0;
7704                         switch (bp->mf_mode) {
7705                         case MULTI_FUNCTION_SD:
7706                                 val = 1;
7707                                 break;
7708                         case MULTI_FUNCTION_SI:
7709                         case MULTI_FUNCTION_AFEX:
7710                                 val = 2;
7711                                 break;
7712                         }
7713
7714                         REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE :
7715                                                   NIG_REG_LLH0_CLS_TYPE), val);
7716                 }
7717                 {
7718                         REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
7719                         REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
7720                         REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
7721                 }
7722         }
7723
7724         /* If SPIO5 is set to generate interrupts, enable it for this port */
7725         val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
7726         if (val & MISC_SPIO_SPIO5) {
7727                 u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
7728                                        MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
7729                 val = REG_RD(bp, reg_addr);
7730                 val |= AEU_INPUTS_ATTN_BITS_SPIO5;
7731                 REG_WR(bp, reg_addr, val);
7732         }
7733
7734         if (CHIP_IS_E3B0(bp))
7735                 bp->flags |= PTP_SUPPORTED;
7736
7737         return 0;
7738 }
7739
7740 static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr)
7741 {
7742         int reg;
7743         u32 wb_write[2];
7744
7745         if (CHIP_IS_E1(bp))
7746                 reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
7747         else
7748                 reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
7749
7750         wb_write[0] = ONCHIP_ADDR1(addr);
7751         wb_write[1] = ONCHIP_ADDR2(addr);
7752         REG_WR_DMAE(bp, reg, wb_write, 2);
7753 }
7754
7755 void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func, u8 idu_sb_id, bool is_pf)
7756 {
7757         u32 data, ctl, cnt = 100;
7758         u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
7759         u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
7760         u32 igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
7761         u32 sb_bit =  1 << (idu_sb_id%32);
7762         u32 func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
7763         u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
7764
7765         /* Not supported in BC mode */
7766         if (CHIP_INT_MODE_IS_BC(bp))
7767                 return;
7768
7769         data = (IGU_USE_REGISTER_cstorm_type_0_sb_cleanup
7770                         << IGU_REGULAR_CLEANUP_TYPE_SHIFT)      |
7771                 IGU_REGULAR_CLEANUP_SET                         |
7772                 IGU_REGULAR_BCLEANUP;
7773
7774         ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT         |
7775               func_encode << IGU_CTRL_REG_FID_SHIFT             |
7776               IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
7777
7778         DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7779                          data, igu_addr_data);
7780         REG_WR(bp, igu_addr_data, data);
7781         barrier();
7782         DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7783                           ctl, igu_addr_ctl);
7784         REG_WR(bp, igu_addr_ctl, ctl);
7785         barrier();
7786
7787         /* wait for clean up to finish */
7788         while (!(REG_RD(bp, igu_addr_ack) & sb_bit) && --cnt)
7789                 msleep(20);
7790
7791         if (!(REG_RD(bp, igu_addr_ack) & sb_bit)) {
7792                 DP(NETIF_MSG_HW,
7793                    "Unable to finish IGU cleanup: idu_sb_id %d offset %d bit %d (cnt %d)\n",
7794                           idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
7795         }
7796 }
7797
7798 static void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id)
7799 {
7800         bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/);
7801 }
7802
7803 static void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func)
7804 {
7805         u32 i, base = FUNC_ILT_BASE(func);
7806         for (i = base; i < base + ILT_PER_FUNC; i++)
7807                 bnx2x_ilt_wr(bp, i, 0);
7808 }
7809
7810 static void bnx2x_init_searcher(struct bnx2x *bp)
7811 {
7812         int port = BP_PORT(bp);
7813         bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM);
7814         /* T1 hash bits value determines the T1 number of entries */
7815         REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
7816 }
7817
7818 static inline int bnx2x_func_switch_update(struct bnx2x *bp, int suspend)
7819 {
7820         int rc;
7821         struct bnx2x_func_state_params func_params = {NULL};
7822         struct bnx2x_func_switch_update_params *switch_update_params =
7823                 &func_params.params.switch_update;
7824
7825         /* Prepare parameters for function state transitions */
7826         __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7827         __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
7828
7829         func_params.f_obj = &bp->func_obj;
7830         func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
7831
7832         /* Function parameters */
7833         __set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND_CHNG,
7834                   &switch_update_params->changes);
7835         if (suspend)
7836                 __set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND,
7837                           &switch_update_params->changes);
7838
7839         rc = bnx2x_func_state_change(bp, &func_params);
7840
7841         return rc;
7842 }
7843
7844 static int bnx2x_reset_nic_mode(struct bnx2x *bp)
7845 {
7846         int rc, i, port = BP_PORT(bp);
7847         int vlan_en = 0, mac_en[NUM_MACS];
7848
7849         /* Close input from network */
7850         if (bp->mf_mode == SINGLE_FUNCTION) {
7851                 bnx2x_set_rx_filter(&bp->link_params, 0);
7852         } else {
7853                 vlan_en = REG_RD(bp, port ? NIG_REG_LLH1_FUNC_EN :
7854                                    NIG_REG_LLH0_FUNC_EN);
7855                 REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7856                           NIG_REG_LLH0_FUNC_EN, 0);
7857                 for (i = 0; i < NUM_MACS; i++) {
7858                         mac_en[i] = REG_RD(bp, port ?
7859                                              (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7860                                               4 * i) :
7861                                              (NIG_REG_LLH0_FUNC_MEM_ENABLE +
7862                                               4 * i));
7863                         REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7864                                               4 * i) :
7865                                   (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i), 0);
7866                 }
7867         }
7868
7869         /* Close BMC to host */
7870         REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7871                NIG_REG_P1_TX_MNG_HOST_ENABLE, 0);
7872
7873         /* Suspend Tx switching to the PF. Completion of this ramrod
7874          * further guarantees that all the packets of that PF / child
7875          * VFs in BRB were processed by the Parser, so it is safe to
7876          * change the NIC_MODE register.
7877          */
7878         rc = bnx2x_func_switch_update(bp, 1);
7879         if (rc) {
7880                 BNX2X_ERR("Can't suspend tx-switching!\n");
7881                 return rc;
7882         }
7883
7884         /* Change NIC_MODE register */
7885         REG_WR(bp, PRS_REG_NIC_MODE, 0);
7886
7887         /* Open input from network */
7888         if (bp->mf_mode == SINGLE_FUNCTION) {
7889                 bnx2x_set_rx_filter(&bp->link_params, 1);
7890         } else {
7891                 REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7892                           NIG_REG_LLH0_FUNC_EN, vlan_en);
7893                 for (i = 0; i < NUM_MACS; i++) {
7894                         REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7895                                               4 * i) :
7896                                   (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i),
7897                                   mac_en[i]);
7898                 }
7899         }
7900
7901         /* Enable BMC to host */
7902         REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7903                NIG_REG_P1_TX_MNG_HOST_ENABLE, 1);
7904
7905         /* Resume Tx switching to the PF */
7906         rc = bnx2x_func_switch_update(bp, 0);
7907         if (rc) {
7908                 BNX2X_ERR("Can't resume tx-switching!\n");
7909                 return rc;
7910         }
7911
7912         DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7913         return 0;
7914 }
7915
7916 int bnx2x_init_hw_func_cnic(struct bnx2x *bp)
7917 {
7918         int rc;
7919
7920         bnx2x_ilt_init_op_cnic(bp, INITOP_SET);
7921
7922         if (CONFIGURE_NIC_MODE(bp)) {
7923                 /* Configure searcher as part of function hw init */
7924                 bnx2x_init_searcher(bp);
7925
7926                 /* Reset NIC mode */
7927                 rc = bnx2x_reset_nic_mode(bp);
7928                 if (rc)
7929                         BNX2X_ERR("Can't change NIC mode!\n");
7930                 return rc;
7931         }
7932
7933         return 0;
7934 }
7935
7936 /* previous driver DMAE transaction may have occurred when pre-boot stage ended
7937  * and boot began, or when kdump kernel was loaded. Either case would invalidate
7938  * the addresses of the transaction, resulting in was-error bit set in the pci
7939  * causing all hw-to-host pcie transactions to timeout. If this happened we want
7940  * to clear the interrupt which detected this from the pglueb and the was done
7941  * bit
7942  */
7943 static void bnx2x_clean_pglue_errors(struct bnx2x *bp)
7944 {
7945         if (!CHIP_IS_E1x(bp))
7946                 REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR,
7947                        1 << BP_ABS_FUNC(bp));
7948 }
7949
7950 static int bnx2x_init_hw_func(struct bnx2x *bp)
7951 {
7952         int port = BP_PORT(bp);
7953         int func = BP_FUNC(bp);
7954         int init_phase = PHASE_PF0 + func;
7955         struct bnx2x_ilt *ilt = BP_ILT(bp);
7956         u16 cdu_ilt_start;
7957         u32 addr, val;
7958         u32 main_mem_base, main_mem_size, main_mem_prty_clr;
7959         int i, main_mem_width, rc;
7960
7961         DP(NETIF_MSG_HW, "starting func init  func %d\n", func);
7962
7963         /* FLR cleanup - hmmm */
7964         if (!CHIP_IS_E1x(bp)) {
7965                 rc = bnx2x_pf_flr_clnup(bp);
7966                 if (rc) {
7967                         bnx2x_fw_dump(bp);
7968                         return rc;
7969                 }
7970         }
7971
7972         /* set MSI reconfigure capability */
7973         if (bp->common.int_block == INT_BLOCK_HC) {
7974                 addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
7975                 val = REG_RD(bp, addr);
7976                 val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
7977                 REG_WR(bp, addr, val);
7978         }
7979
7980         bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7981         bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7982
7983         ilt = BP_ILT(bp);
7984         cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7985
7986         if (IS_SRIOV(bp))
7987                 cdu_ilt_start += BNX2X_FIRST_VF_CID/ILT_PAGE_CIDS;
7988         cdu_ilt_start = bnx2x_iov_init_ilt(bp, cdu_ilt_start);
7989
7990         /* since BNX2X_FIRST_VF_CID > 0 the PF L2 cids precedes
7991          * those of the VFs, so start line should be reset
7992          */
7993         cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7994         for (i = 0; i < L2_ILT_LINES(bp); i++) {
7995                 ilt->lines[cdu_ilt_start + i].page = bp->context[i].vcxt;
7996                 ilt->lines[cdu_ilt_start + i].page_mapping =
7997                         bp->context[i].cxt_mapping;
7998                 ilt->lines[cdu_ilt_start + i].size = bp->context[i].size;
7999         }
8000
8001         bnx2x_ilt_init_op(bp, INITOP_SET);
8002
8003         if (!CONFIGURE_NIC_MODE(bp)) {
8004                 bnx2x_init_searcher(bp);
8005                 REG_WR(bp, PRS_REG_NIC_MODE, 0);
8006                 DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
8007         } else {
8008                 /* Set NIC mode */
8009                 REG_WR(bp, PRS_REG_NIC_MODE, 1);
8010                 DP(NETIF_MSG_IFUP, "NIC MODE configured\n");
8011         }
8012
8013         if (!CHIP_IS_E1x(bp)) {
8014                 u32 pf_conf = IGU_PF_CONF_FUNC_EN;
8015
8016                 /* Turn on a single ISR mode in IGU if driver is going to use
8017                  * INT#x or MSI
8018                  */
8019                 if (!(bp->flags & USING_MSIX_FLAG))
8020                         pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
8021                 /*
8022                  * Timers workaround bug: function init part.
8023                  * Need to wait 20msec after initializing ILT,
8024                  * needed to make sure there are no requests in
8025                  * one of the PXP internal queues with "old" ILT addresses
8026                  */
8027                 msleep(20);
8028                 /*
8029                  * Master enable - Due to WB DMAE writes performed before this
8030                  * register is re-initialized as part of the regular function
8031                  * init
8032                  */
8033                 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
8034                 /* Enable the function in IGU */
8035                 REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf);
8036         }
8037
8038         bp->dmae_ready = 1;
8039
8040         bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
8041
8042         bnx2x_clean_pglue_errors(bp);
8043
8044         bnx2x_init_block(bp, BLOCK_ATC, init_phase);
8045         bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
8046         bnx2x_init_block(bp, BLOCK_NIG, init_phase);
8047         bnx2x_init_block(bp, BLOCK_SRC, init_phase);
8048         bnx2x_init_block(bp, BLOCK_MISC, init_phase);
8049         bnx2x_init_block(bp, BLOCK_TCM, init_phase);
8050         bnx2x_init_block(bp, BLOCK_UCM, init_phase);
8051         bnx2x_init_block(bp, BLOCK_CCM, init_phase);
8052         bnx2x_init_block(bp, BLOCK_XCM, init_phase);
8053         bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
8054         bnx2x_init_block(bp, BLOCK_USEM, init_phase);
8055         bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
8056         bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
8057
8058         if (!CHIP_IS_E1x(bp))
8059                 REG_WR(bp, QM_REG_PF_EN, 1);
8060
8061         if (!CHIP_IS_E1x(bp)) {
8062                 REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8063                 REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8064                 REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8065                 REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8066         }
8067         bnx2x_init_block(bp, BLOCK_QM, init_phase);
8068
8069         bnx2x_init_block(bp, BLOCK_TM, init_phase);
8070         bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
8071         REG_WR(bp, DORQ_REG_MODE_ACT, 1); /* no dpm */
8072
8073         bnx2x_iov_init_dq(bp);
8074
8075         bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
8076         bnx2x_init_block(bp, BLOCK_PRS, init_phase);
8077         bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
8078         bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
8079         bnx2x_init_block(bp, BLOCK_USDM, init_phase);
8080         bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
8081         bnx2x_init_block(bp, BLOCK_UPB, init_phase);
8082         bnx2x_init_block(bp, BLOCK_XPB, init_phase);
8083         bnx2x_init_block(bp, BLOCK_PBF, init_phase);
8084         if (!CHIP_IS_E1x(bp))
8085                 REG_WR(bp, PBF_REG_DISABLE_PF, 0);
8086
8087         bnx2x_init_block(bp, BLOCK_CDU, init_phase);
8088
8089         bnx2x_init_block(bp, BLOCK_CFC, init_phase);
8090
8091         if (!CHIP_IS_E1x(bp))
8092                 REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1);
8093
8094         if (IS_MF(bp)) {
8095                 if (!(IS_MF_UFP(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp))) {
8096                         REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
8097                         REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port * 8,
8098                                bp->mf_ov);
8099                 }
8100         }
8101
8102         bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
8103
8104         /* HC init per function */
8105         if (bp->common.int_block == INT_BLOCK_HC) {
8106                 if (CHIP_IS_E1H(bp)) {
8107                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
8108
8109                         REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
8110                         REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
8111                 }
8112                 bnx2x_init_block(bp, BLOCK_HC, init_phase);
8113
8114         } else {
8115                 int num_segs, sb_idx, prod_offset;
8116
8117                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
8118
8119                 if (!CHIP_IS_E1x(bp)) {
8120                         REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
8121                         REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
8122                 }
8123
8124                 bnx2x_init_block(bp, BLOCK_IGU, init_phase);
8125
8126                 if (!CHIP_IS_E1x(bp)) {
8127                         int dsb_idx = 0;
8128                         /**
8129                          * Producer memory:
8130                          * E2 mode: address 0-135 match to the mapping memory;
8131                          * 136 - PF0 default prod; 137 - PF1 default prod;
8132                          * 138 - PF2 default prod; 139 - PF3 default prod;
8133                          * 140 - PF0 attn prod;    141 - PF1 attn prod;
8134                          * 142 - PF2 attn prod;    143 - PF3 attn prod;
8135                          * 144-147 reserved.
8136                          *
8137                          * E1.5 mode - In backward compatible mode;
8138                          * for non default SB; each even line in the memory
8139                          * holds the U producer and each odd line hold
8140                          * the C producer. The first 128 producers are for
8141                          * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
8142                          * producers are for the DSB for each PF.
8143                          * Each PF has five segments: (the order inside each
8144                          * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
8145                          * 132-135 C prods; 136-139 X prods; 140-143 T prods;
8146                          * 144-147 attn prods;
8147                          */
8148                         /* non-default-status-blocks */
8149                         num_segs = CHIP_INT_MODE_IS_BC(bp) ?
8150                                 IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
8151                         for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) {
8152                                 prod_offset = (bp->igu_base_sb + sb_idx) *
8153                                         num_segs;
8154
8155                                 for (i = 0; i < num_segs; i++) {
8156                                         addr = IGU_REG_PROD_CONS_MEMORY +
8157                                                         (prod_offset + i) * 4;
8158                                         REG_WR(bp, addr, 0);
8159                                 }
8160                                 /* send consumer update with value 0 */
8161                                 bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx,
8162                                              USTORM_ID, 0, IGU_INT_NOP, 1);
8163                                 bnx2x_igu_clear_sb(bp,
8164                                                    bp->igu_base_sb + sb_idx);
8165                         }
8166
8167                         /* default-status-blocks */
8168                         num_segs = CHIP_INT_MODE_IS_BC(bp) ?
8169                                 IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
8170
8171                         if (CHIP_MODE_IS_4_PORT(bp))
8172                                 dsb_idx = BP_FUNC(bp);
8173                         else
8174                                 dsb_idx = BP_VN(bp);
8175
8176                         prod_offset = (CHIP_INT_MODE_IS_BC(bp) ?
8177                                        IGU_BC_BASE_DSB_PROD + dsb_idx :
8178                                        IGU_NORM_BASE_DSB_PROD + dsb_idx);
8179
8180                         /*
8181                          * igu prods come in chunks of E1HVN_MAX (4) -
8182                          * does not matters what is the current chip mode
8183                          */
8184                         for (i = 0; i < (num_segs * E1HVN_MAX);
8185                              i += E1HVN_MAX) {
8186                                 addr = IGU_REG_PROD_CONS_MEMORY +
8187                                                         (prod_offset + i)*4;
8188                                 REG_WR(bp, addr, 0);
8189                         }
8190                         /* send consumer update with 0 */
8191                         if (CHIP_INT_MODE_IS_BC(bp)) {
8192                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8193                                              USTORM_ID, 0, IGU_INT_NOP, 1);
8194                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8195                                              CSTORM_ID, 0, IGU_INT_NOP, 1);
8196                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8197                                              XSTORM_ID, 0, IGU_INT_NOP, 1);
8198                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8199                                              TSTORM_ID, 0, IGU_INT_NOP, 1);
8200                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8201                                              ATTENTION_ID, 0, IGU_INT_NOP, 1);
8202                         } else {
8203                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8204                                              USTORM_ID, 0, IGU_INT_NOP, 1);
8205                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8206                                              ATTENTION_ID, 0, IGU_INT_NOP, 1);
8207                         }
8208                         bnx2x_igu_clear_sb(bp, bp->igu_dsb_id);
8209
8210                         /* !!! These should become driver const once
8211                            rf-tool supports split-68 const */
8212                         REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
8213                         REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
8214                         REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
8215                         REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
8216                         REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
8217                         REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
8218                 }
8219         }
8220
8221         /* Reset PCIE errors for debug */
8222         REG_WR(bp, 0x2114, 0xffffffff);
8223         REG_WR(bp, 0x2120, 0xffffffff);
8224
8225         if (CHIP_IS_E1x(bp)) {
8226                 main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
8227                 main_mem_base = HC_REG_MAIN_MEMORY +
8228                                 BP_PORT(bp) * (main_mem_size * 4);
8229                 main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
8230                 main_mem_width = 8;
8231
8232                 val = REG_RD(bp, main_mem_prty_clr);
8233                 if (val)
8234                         DP(NETIF_MSG_HW,
8235                            "Hmmm... Parity errors in HC block during function init (0x%x)!\n",
8236                            val);
8237
8238                 /* Clear "false" parity errors in MSI-X table */
8239                 for (i = main_mem_base;
8240                      i < main_mem_base + main_mem_size * 4;
8241                      i += main_mem_width) {
8242                         bnx2x_read_dmae(bp, i, main_mem_width / 4);
8243                         bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data),
8244                                          i, main_mem_width / 4);
8245                 }
8246                 /* Clear HC parity attention */
8247                 REG_RD(bp, main_mem_prty_clr);
8248         }
8249
8250 #ifdef BNX2X_STOP_ON_ERROR
8251         /* Enable STORMs SP logging */
8252         REG_WR8(bp, BAR_USTRORM_INTMEM +
8253                USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8254         REG_WR8(bp, BAR_TSTRORM_INTMEM +
8255                TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8256         REG_WR8(bp, BAR_CSTRORM_INTMEM +
8257                CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8258         REG_WR8(bp, BAR_XSTRORM_INTMEM +
8259                XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8260 #endif
8261
8262         bnx2x_phy_probe(&bp->link_params);
8263
8264         return 0;
8265 }
8266
8267 void bnx2x_free_mem_cnic(struct bnx2x *bp)
8268 {
8269         bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_FREE);
8270
8271         if (!CHIP_IS_E1x(bp))
8272                 BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping,
8273                                sizeof(struct host_hc_status_block_e2));
8274         else
8275                 BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping,
8276                                sizeof(struct host_hc_status_block_e1x));
8277
8278         BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
8279 }
8280
8281 void bnx2x_free_mem(struct bnx2x *bp)
8282 {
8283         int i;
8284
8285         BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
8286                        bp->fw_stats_data_sz + bp->fw_stats_req_sz);
8287
8288         if (IS_VF(bp))
8289                 return;
8290
8291         BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping,
8292                        sizeof(struct host_sp_status_block));
8293
8294         BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping,
8295                        sizeof(struct bnx2x_slowpath));
8296
8297         for (i = 0; i < L2_ILT_LINES(bp); i++)
8298                 BNX2X_PCI_FREE(bp->context[i].vcxt, bp->context[i].cxt_mapping,
8299                                bp->context[i].size);
8300         bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE);
8301
8302         BNX2X_FREE(bp->ilt->lines);
8303
8304         BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE);
8305
8306         BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping,
8307                        BCM_PAGE_SIZE * NUM_EQ_PAGES);
8308
8309         BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
8310
8311         bnx2x_iov_free_mem(bp);
8312 }
8313
8314 int bnx2x_alloc_mem_cnic(struct bnx2x *bp)
8315 {
8316         if (!CHIP_IS_E1x(bp)) {
8317                 /* size = the status block + ramrod buffers */
8318                 bp->cnic_sb.e2_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping,
8319                                                     sizeof(struct host_hc_status_block_e2));
8320                 if (!bp->cnic_sb.e2_sb)
8321                         goto alloc_mem_err;
8322         } else {
8323                 bp->cnic_sb.e1x_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping,
8324                                                      sizeof(struct host_hc_status_block_e1x));
8325                 if (!bp->cnic_sb.e1x_sb)
8326                         goto alloc_mem_err;
8327         }
8328
8329         if (CONFIGURE_NIC_MODE(bp) && !bp->t2) {
8330                 /* allocate searcher T2 table, as it wasn't allocated before */
8331                 bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ);
8332                 if (!bp->t2)
8333                         goto alloc_mem_err;
8334         }
8335
8336         /* write address to which L5 should insert its values */
8337         bp->cnic_eth_dev.addr_drv_info_to_mcp =
8338                 &bp->slowpath->drv_info_to_mcp;
8339
8340         if (bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_ALLOC))
8341                 goto alloc_mem_err;
8342
8343         return 0;
8344
8345 alloc_mem_err:
8346         bnx2x_free_mem_cnic(bp);
8347         BNX2X_ERR("Can't allocate memory\n");
8348         return -ENOMEM;
8349 }
8350
8351 int bnx2x_alloc_mem(struct bnx2x *bp)
8352 {
8353         int i, allocated, context_size;
8354
8355         if (!CONFIGURE_NIC_MODE(bp) && !bp->t2) {
8356                 /* allocate searcher T2 table */
8357                 bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ);
8358                 if (!bp->t2)
8359                         goto alloc_mem_err;
8360         }
8361
8362         bp->def_status_blk = BNX2X_PCI_ALLOC(&bp->def_status_blk_mapping,
8363                                              sizeof(struct host_sp_status_block));
8364         if (!bp->def_status_blk)
8365                 goto alloc_mem_err;
8366
8367         bp->slowpath = BNX2X_PCI_ALLOC(&bp->slowpath_mapping,
8368                                        sizeof(struct bnx2x_slowpath));
8369         if (!bp->slowpath)
8370                 goto alloc_mem_err;
8371
8372         /* Allocate memory for CDU context:
8373          * This memory is allocated separately and not in the generic ILT
8374          * functions because CDU differs in few aspects:
8375          * 1. There are multiple entities allocating memory for context -
8376          * 'regular' driver, CNIC and SRIOV driver. Each separately controls
8377          * its own ILT lines.
8378          * 2. Since CDU page-size is not a single 4KB page (which is the case
8379          * for the other ILT clients), to be efficient we want to support
8380          * allocation of sub-page-size in the last entry.
8381          * 3. Context pointers are used by the driver to pass to FW / update
8382          * the context (for the other ILT clients the pointers are used just to
8383          * free the memory during unload).
8384          */
8385         context_size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp);
8386
8387         for (i = 0, allocated = 0; allocated < context_size; i++) {
8388                 bp->context[i].size = min(CDU_ILT_PAGE_SZ,
8389                                           (context_size - allocated));
8390                 bp->context[i].vcxt = BNX2X_PCI_ALLOC(&bp->context[i].cxt_mapping,
8391                                                       bp->context[i].size);
8392                 if (!bp->context[i].vcxt)
8393                         goto alloc_mem_err;
8394                 allocated += bp->context[i].size;
8395         }
8396         bp->ilt->lines = kcalloc(ILT_MAX_LINES, sizeof(struct ilt_line),
8397                                  GFP_KERNEL);
8398         if (!bp->ilt->lines)
8399                 goto alloc_mem_err;
8400
8401         if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC))
8402                 goto alloc_mem_err;
8403
8404         if (bnx2x_iov_alloc_mem(bp))
8405                 goto alloc_mem_err;
8406
8407         /* Slow path ring */
8408         bp->spq = BNX2X_PCI_ALLOC(&bp->spq_mapping, BCM_PAGE_SIZE);
8409         if (!bp->spq)
8410                 goto alloc_mem_err;
8411
8412         /* EQ */
8413         bp->eq_ring = BNX2X_PCI_ALLOC(&bp->eq_mapping,
8414                                       BCM_PAGE_SIZE * NUM_EQ_PAGES);
8415         if (!bp->eq_ring)
8416                 goto alloc_mem_err;
8417
8418         return 0;
8419
8420 alloc_mem_err:
8421         bnx2x_free_mem(bp);
8422         BNX2X_ERR("Can't allocate memory\n");
8423         return -ENOMEM;
8424 }
8425
8426 /*
8427  * Init service functions
8428  */
8429
8430 int bnx2x_set_mac_one(struct bnx2x *bp, const u8 *mac,
8431                       struct bnx2x_vlan_mac_obj *obj, bool set,
8432                       int mac_type, unsigned long *ramrod_flags)
8433 {
8434         int rc;
8435         struct bnx2x_vlan_mac_ramrod_params ramrod_param;
8436
8437         memset(&ramrod_param, 0, sizeof(ramrod_param));
8438
8439         /* Fill general parameters */
8440         ramrod_param.vlan_mac_obj = obj;
8441         ramrod_param.ramrod_flags = *ramrod_flags;
8442
8443         /* Fill a user request section if needed */
8444         if (!test_bit(RAMROD_CONT, ramrod_flags)) {
8445                 memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
8446
8447                 __set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
8448
8449                 /* Set the command: ADD or DEL */
8450                 if (set)
8451                         ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
8452                 else
8453                         ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
8454         }
8455
8456         rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
8457
8458         if (rc == -EEXIST) {
8459                 DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
8460                 /* do not treat adding same MAC as error */
8461                 rc = 0;
8462         } else if (rc < 0)
8463                 BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del"));
8464
8465         return rc;
8466 }
8467
8468 int bnx2x_set_vlan_one(struct bnx2x *bp, u16 vlan,
8469                        struct bnx2x_vlan_mac_obj *obj, bool set,
8470                        unsigned long *ramrod_flags)
8471 {
8472         int rc;
8473         struct bnx2x_vlan_mac_ramrod_params ramrod_param;
8474
8475         memset(&ramrod_param, 0, sizeof(ramrod_param));
8476
8477         /* Fill general parameters */
8478         ramrod_param.vlan_mac_obj = obj;
8479         ramrod_param.ramrod_flags = *ramrod_flags;
8480
8481         /* Fill a user request section if needed */
8482         if (!test_bit(RAMROD_CONT, ramrod_flags)) {
8483                 ramrod_param.user_req.u.vlan.vlan = vlan;
8484                 __set_bit(BNX2X_VLAN, &ramrod_param.user_req.vlan_mac_flags);
8485                 /* Set the command: ADD or DEL */
8486                 if (set)
8487                         ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
8488                 else
8489                         ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
8490         }
8491
8492         rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
8493
8494         if (rc == -EEXIST) {
8495                 /* Do not treat adding same vlan as error. */
8496                 DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
8497                 rc = 0;
8498         } else if (rc < 0) {
8499                 BNX2X_ERR("%s VLAN failed\n", (set ? "Set" : "Del"));
8500         }
8501
8502         return rc;
8503 }
8504
8505 void bnx2x_clear_vlan_info(struct bnx2x *bp)
8506 {
8507         struct bnx2x_vlan_entry *vlan;
8508
8509         /* Mark that hw forgot all entries */
8510         list_for_each_entry(vlan, &bp->vlan_reg, link)
8511                 vlan->hw = false;
8512
8513         bp->vlan_cnt = 0;
8514 }
8515
8516 static int bnx2x_del_all_vlans(struct bnx2x *bp)
8517 {
8518         struct bnx2x_vlan_mac_obj *vlan_obj = &bp->sp_objs[0].vlan_obj;
8519         unsigned long ramrod_flags = 0, vlan_flags = 0;
8520         int rc;
8521
8522         __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8523         __set_bit(BNX2X_VLAN, &vlan_flags);
8524         rc = vlan_obj->delete_all(bp, vlan_obj, &vlan_flags, &ramrod_flags);
8525         if (rc)
8526                 return rc;
8527
8528         bnx2x_clear_vlan_info(bp);
8529
8530         return 0;
8531 }
8532
8533 int bnx2x_del_all_macs(struct bnx2x *bp,
8534                        struct bnx2x_vlan_mac_obj *mac_obj,
8535                        int mac_type, bool wait_for_comp)
8536 {
8537         int rc;
8538         unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
8539
8540         /* Wait for completion of requested */
8541         if (wait_for_comp)
8542                 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8543
8544         /* Set the mac type of addresses we want to clear */
8545         __set_bit(mac_type, &vlan_mac_flags);
8546
8547         rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags);
8548         if (rc < 0)
8549                 BNX2X_ERR("Failed to delete MACs: %d\n", rc);
8550
8551         return rc;
8552 }
8553
8554 int bnx2x_set_eth_mac(struct bnx2x *bp, bool set)
8555 {
8556         if (IS_PF(bp)) {
8557                 unsigned long ramrod_flags = 0;
8558
8559                 DP(NETIF_MSG_IFUP, "Adding Eth MAC\n");
8560                 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8561                 return bnx2x_set_mac_one(bp, bp->dev->dev_addr,
8562                                          &bp->sp_objs->mac_obj, set,
8563                                          BNX2X_ETH_MAC, &ramrod_flags);
8564         } else { /* vf */
8565                 return bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr,
8566                                              bp->fp->index, set);
8567         }
8568 }
8569
8570 int bnx2x_setup_leading(struct bnx2x *bp)
8571 {
8572         if (IS_PF(bp))
8573                 return bnx2x_setup_queue(bp, &bp->fp[0], true);
8574         else /* VF */
8575                 return bnx2x_vfpf_setup_q(bp, &bp->fp[0], true);
8576 }
8577
8578 /**
8579  * bnx2x_set_int_mode - configure interrupt mode
8580  *
8581  * @bp:         driver handle
8582  *
8583  * In case of MSI-X it will also try to enable MSI-X.
8584  */
8585 int bnx2x_set_int_mode(struct bnx2x *bp)
8586 {
8587         int rc = 0;
8588
8589         if (IS_VF(bp) && int_mode != BNX2X_INT_MODE_MSIX) {
8590                 BNX2X_ERR("VF not loaded since interrupt mode not msix\n");
8591                 return -EINVAL;
8592         }
8593
8594         switch (int_mode) {
8595         case BNX2X_INT_MODE_MSIX:
8596                 /* attempt to enable msix */
8597                 rc = bnx2x_enable_msix(bp);
8598
8599                 /* msix attained */
8600                 if (!rc)
8601                         return 0;
8602
8603                 /* vfs use only msix */
8604                 if (rc && IS_VF(bp))
8605                         return rc;
8606
8607                 /* failed to enable multiple MSI-X */
8608                 BNX2X_DEV_INFO("Failed to enable multiple MSI-X (%d), set number of queues to %d\n",
8609                                bp->num_queues,
8610                                1 + bp->num_cnic_queues);
8611
8612                 fallthrough;
8613         case BNX2X_INT_MODE_MSI:
8614                 bnx2x_enable_msi(bp);
8615
8616                 fallthrough;
8617         case BNX2X_INT_MODE_INTX:
8618                 bp->num_ethernet_queues = 1;
8619                 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
8620                 BNX2X_DEV_INFO("set number of queues to 1\n");
8621                 break;
8622         default:
8623                 BNX2X_DEV_INFO("unknown value in int_mode module parameter\n");
8624                 return -EINVAL;
8625         }
8626         return 0;
8627 }
8628
8629 /* must be called prior to any HW initializations */
8630 static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp)
8631 {
8632         if (IS_SRIOV(bp))
8633                 return (BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)/ILT_PAGE_CIDS;
8634         return L2_ILT_LINES(bp);
8635 }
8636
8637 void bnx2x_ilt_set_info(struct bnx2x *bp)
8638 {
8639         struct ilt_client_info *ilt_client;
8640         struct bnx2x_ilt *ilt = BP_ILT(bp);
8641         u16 line = 0;
8642
8643         ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp));
8644         DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line);
8645
8646         /* CDU */
8647         ilt_client = &ilt->clients[ILT_CLIENT_CDU];
8648         ilt_client->client_num = ILT_CLIENT_CDU;
8649         ilt_client->page_size = CDU_ILT_PAGE_SZ;
8650         ilt_client->flags = ILT_CLIENT_SKIP_MEM;
8651         ilt_client->start = line;
8652         line += bnx2x_cid_ilt_lines(bp);
8653
8654         if (CNIC_SUPPORT(bp))
8655                 line += CNIC_ILT_LINES;
8656         ilt_client->end = line - 1;
8657
8658         DP(NETIF_MSG_IFUP, "ilt client[CDU]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8659            ilt_client->start,
8660            ilt_client->end,
8661            ilt_client->page_size,
8662            ilt_client->flags,
8663            ilog2(ilt_client->page_size >> 12));
8664
8665         /* QM */
8666         if (QM_INIT(bp->qm_cid_count)) {
8667                 ilt_client = &ilt->clients[ILT_CLIENT_QM];
8668                 ilt_client->client_num = ILT_CLIENT_QM;
8669                 ilt_client->page_size = QM_ILT_PAGE_SZ;
8670                 ilt_client->flags = 0;
8671                 ilt_client->start = line;
8672
8673                 /* 4 bytes for each cid */
8674                 line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
8675                                                          QM_ILT_PAGE_SZ);
8676
8677                 ilt_client->end = line - 1;
8678
8679                 DP(NETIF_MSG_IFUP,
8680                    "ilt client[QM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8681                    ilt_client->start,
8682                    ilt_client->end,
8683                    ilt_client->page_size,
8684                    ilt_client->flags,
8685                    ilog2(ilt_client->page_size >> 12));
8686         }
8687
8688         if (CNIC_SUPPORT(bp)) {
8689                 /* SRC */
8690                 ilt_client = &ilt->clients[ILT_CLIENT_SRC];
8691                 ilt_client->client_num = ILT_CLIENT_SRC;
8692                 ilt_client->page_size = SRC_ILT_PAGE_SZ;
8693                 ilt_client->flags = 0;
8694                 ilt_client->start = line;
8695                 line += SRC_ILT_LINES;
8696                 ilt_client->end = line - 1;
8697
8698                 DP(NETIF_MSG_IFUP,
8699                    "ilt client[SRC]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8700                    ilt_client->start,
8701                    ilt_client->end,
8702                    ilt_client->page_size,
8703                    ilt_client->flags,
8704                    ilog2(ilt_client->page_size >> 12));
8705
8706                 /* TM */
8707                 ilt_client = &ilt->clients[ILT_CLIENT_TM];
8708                 ilt_client->client_num = ILT_CLIENT_TM;
8709                 ilt_client->page_size = TM_ILT_PAGE_SZ;
8710                 ilt_client->flags = 0;
8711                 ilt_client->start = line;
8712                 line += TM_ILT_LINES;
8713                 ilt_client->end = line - 1;
8714
8715                 DP(NETIF_MSG_IFUP,
8716                    "ilt client[TM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8717                    ilt_client->start,
8718                    ilt_client->end,
8719                    ilt_client->page_size,
8720                    ilt_client->flags,
8721                    ilog2(ilt_client->page_size >> 12));
8722         }
8723
8724         BUG_ON(line > ILT_MAX_LINES);
8725 }
8726
8727 /**
8728  * bnx2x_pf_q_prep_init - prepare INIT transition parameters
8729  *
8730  * @bp:                 driver handle
8731  * @fp:                 pointer to fastpath
8732  * @init_params:        pointer to parameters structure
8733  *
8734  * parameters configured:
8735  *      - HC configuration
8736  *      - Queue's CDU context
8737  */
8738 static void bnx2x_pf_q_prep_init(struct bnx2x *bp,
8739         struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params)
8740 {
8741         u8 cos;
8742         int cxt_index, cxt_offset;
8743
8744         /* FCoE Queue uses Default SB, thus has no HC capabilities */
8745         if (!IS_FCOE_FP(fp)) {
8746                 __set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags);
8747                 __set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags);
8748
8749                 /* If HC is supported, enable host coalescing in the transition
8750                  * to INIT state.
8751                  */
8752                 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags);
8753                 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags);
8754
8755                 /* HC rate */
8756                 init_params->rx.hc_rate = bp->rx_ticks ?
8757                         (1000000 / bp->rx_ticks) : 0;
8758                 init_params->tx.hc_rate = bp->tx_ticks ?
8759                         (1000000 / bp->tx_ticks) : 0;
8760
8761                 /* FW SB ID */
8762                 init_params->rx.fw_sb_id = init_params->tx.fw_sb_id =
8763                         fp->fw_sb_id;
8764
8765                 /*
8766                  * CQ index among the SB indices: FCoE clients uses the default
8767                  * SB, therefore it's different.
8768                  */
8769                 init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
8770                 init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
8771         }
8772
8773         /* set maximum number of COSs supported by this queue */
8774         init_params->max_cos = fp->max_cos;
8775
8776         DP(NETIF_MSG_IFUP, "fp: %d setting queue params max cos to: %d\n",
8777             fp->index, init_params->max_cos);
8778
8779         /* set the context pointers queue object */
8780         for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
8781                 cxt_index = fp->txdata_ptr[cos]->cid / ILT_PAGE_CIDS;
8782                 cxt_offset = fp->txdata_ptr[cos]->cid - (cxt_index *
8783                                 ILT_PAGE_CIDS);
8784                 init_params->cxts[cos] =
8785                         &bp->context[cxt_index].vcxt[cxt_offset].eth;
8786         }
8787 }
8788
8789 static int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8790                         struct bnx2x_queue_state_params *q_params,
8791                         struct bnx2x_queue_setup_tx_only_params *tx_only_params,
8792                         int tx_index, bool leading)
8793 {
8794         memset(tx_only_params, 0, sizeof(*tx_only_params));
8795
8796         /* Set the command */
8797         q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
8798
8799         /* Set tx-only QUEUE flags: don't zero statistics */
8800         tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false);
8801
8802         /* choose the index of the cid to send the slow path on */
8803         tx_only_params->cid_index = tx_index;
8804
8805         /* Set general TX_ONLY_SETUP parameters */
8806         bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index);
8807
8808         /* Set Tx TX_ONLY_SETUP parameters */
8809         bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index);
8810
8811         DP(NETIF_MSG_IFUP,
8812            "preparing to send tx-only ramrod for connection: cos %d, primary cid %d, cid %d, client id %d, sp-client id %d, flags %lx\n",
8813            tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX],
8814            q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id,
8815            tx_only_params->gen_params.spcl_id, tx_only_params->flags);
8816
8817         /* send the ramrod */
8818         return bnx2x_queue_state_change(bp, q_params);
8819 }
8820
8821 /**
8822  * bnx2x_setup_queue - setup queue
8823  *
8824  * @bp:         driver handle
8825  * @fp:         pointer to fastpath
8826  * @leading:    is leading
8827  *
8828  * This function performs 2 steps in a Queue state machine
8829  *      actually: 1) RESET->INIT 2) INIT->SETUP
8830  */
8831
8832 int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8833                        bool leading)
8834 {
8835         struct bnx2x_queue_state_params q_params = {NULL};
8836         struct bnx2x_queue_setup_params *setup_params =
8837                                                 &q_params.params.setup;
8838         struct bnx2x_queue_setup_tx_only_params *tx_only_params =
8839                                                 &q_params.params.tx_only;
8840         int rc;
8841         u8 tx_index;
8842
8843         DP(NETIF_MSG_IFUP, "setting up queue %d\n", fp->index);
8844
8845         /* reset IGU state skip FCoE L2 queue */
8846         if (!IS_FCOE_FP(fp))
8847                 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0,
8848                              IGU_INT_ENABLE, 0);
8849
8850         q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8851         /* We want to wait for completion in this context */
8852         __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8853
8854         /* Prepare the INIT parameters */
8855         bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init);
8856
8857         /* Set the command */
8858         q_params.cmd = BNX2X_Q_CMD_INIT;
8859
8860         /* Change the state to INIT */
8861         rc = bnx2x_queue_state_change(bp, &q_params);
8862         if (rc) {
8863                 BNX2X_ERR("Queue(%d) INIT failed\n", fp->index);
8864                 return rc;
8865         }
8866
8867         DP(NETIF_MSG_IFUP, "init complete\n");
8868
8869         /* Now move the Queue to the SETUP state... */
8870         memset(setup_params, 0, sizeof(*setup_params));
8871
8872         /* Set QUEUE flags */
8873         setup_params->flags = bnx2x_get_q_flags(bp, fp, leading);
8874
8875         /* Set general SETUP parameters */
8876         bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params,
8877                                 FIRST_TX_COS_INDEX);
8878
8879         bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params,
8880                             &setup_params->rxq_params);
8881
8882         bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params,
8883                            FIRST_TX_COS_INDEX);
8884
8885         /* Set the command */
8886         q_params.cmd = BNX2X_Q_CMD_SETUP;
8887
8888         if (IS_FCOE_FP(fp))
8889                 bp->fcoe_init = true;
8890
8891         /* Change the state to SETUP */
8892         rc = bnx2x_queue_state_change(bp, &q_params);
8893         if (rc) {
8894                 BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index);
8895                 return rc;
8896         }
8897
8898         /* loop through the relevant tx-only indices */
8899         for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8900               tx_index < fp->max_cos;
8901               tx_index++) {
8902
8903                 /* prepare and send tx-only ramrod*/
8904                 rc = bnx2x_setup_tx_only(bp, fp, &q_params,
8905                                           tx_only_params, tx_index, leading);
8906                 if (rc) {
8907                         BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n",
8908                                   fp->index, tx_index);
8909                         return rc;
8910                 }
8911         }
8912
8913         return rc;
8914 }
8915
8916 static int bnx2x_stop_queue(struct bnx2x *bp, int index)
8917 {
8918         struct bnx2x_fastpath *fp = &bp->fp[index];
8919         struct bnx2x_fp_txdata *txdata;
8920         struct bnx2x_queue_state_params q_params = {NULL};
8921         int rc, tx_index;
8922
8923         DP(NETIF_MSG_IFDOWN, "stopping queue %d cid %d\n", index, fp->cid);
8924
8925         q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8926         /* We want to wait for completion in this context */
8927         __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8928
8929         /* close tx-only connections */
8930         for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8931              tx_index < fp->max_cos;
8932              tx_index++){
8933
8934                 /* ascertain this is a normal queue*/
8935                 txdata = fp->txdata_ptr[tx_index];
8936
8937                 DP(NETIF_MSG_IFDOWN, "stopping tx-only queue %d\n",
8938                                                         txdata->txq_index);
8939
8940                 /* send halt terminate on tx-only connection */
8941                 q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8942                 memset(&q_params.params.terminate, 0,
8943                        sizeof(q_params.params.terminate));
8944                 q_params.params.terminate.cid_index = tx_index;
8945
8946                 rc = bnx2x_queue_state_change(bp, &q_params);
8947                 if (rc)
8948                         return rc;
8949
8950                 /* send halt terminate on tx-only connection */
8951                 q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8952                 memset(&q_params.params.cfc_del, 0,
8953                        sizeof(q_params.params.cfc_del));
8954                 q_params.params.cfc_del.cid_index = tx_index;
8955                 rc = bnx2x_queue_state_change(bp, &q_params);
8956                 if (rc)
8957                         return rc;
8958         }
8959         /* Stop the primary connection: */
8960         /* ...halt the connection */
8961         q_params.cmd = BNX2X_Q_CMD_HALT;
8962         rc = bnx2x_queue_state_change(bp, &q_params);
8963         if (rc)
8964                 return rc;
8965
8966         /* ...terminate the connection */
8967         q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8968         memset(&q_params.params.terminate, 0,
8969                sizeof(q_params.params.terminate));
8970         q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
8971         rc = bnx2x_queue_state_change(bp, &q_params);
8972         if (rc)
8973                 return rc;
8974         /* ...delete cfc entry */
8975         q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8976         memset(&q_params.params.cfc_del, 0,
8977                sizeof(q_params.params.cfc_del));
8978         q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
8979         return bnx2x_queue_state_change(bp, &q_params);
8980 }
8981
8982 static void bnx2x_reset_func(struct bnx2x *bp)
8983 {
8984         int port = BP_PORT(bp);
8985         int func = BP_FUNC(bp);
8986         int i;
8987
8988         /* Disable the function in the FW */
8989         REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
8990         REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
8991         REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
8992         REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
8993
8994         /* FP SBs */
8995         for_each_eth_queue(bp, i) {
8996                 struct bnx2x_fastpath *fp = &bp->fp[i];
8997                 REG_WR8(bp, BAR_CSTRORM_INTMEM +
8998                            CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
8999                            SB_DISABLED);
9000         }
9001
9002         if (CNIC_LOADED(bp))
9003                 /* CNIC SB */
9004                 REG_WR8(bp, BAR_CSTRORM_INTMEM +
9005                         CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET
9006                         (bnx2x_cnic_fw_sb_id(bp)), SB_DISABLED);
9007
9008         /* SP SB */
9009         REG_WR8(bp, BAR_CSTRORM_INTMEM +
9010                 CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
9011                 SB_DISABLED);
9012
9013         for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++)
9014                 REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
9015                        0);
9016
9017         /* Configure IGU */
9018         if (bp->common.int_block == INT_BLOCK_HC) {
9019                 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
9020                 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
9021         } else {
9022                 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
9023                 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
9024         }
9025
9026         if (CNIC_LOADED(bp)) {
9027                 /* Disable Timer scan */
9028                 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
9029                 /*
9030                  * Wait for at least 10ms and up to 2 second for the timers
9031                  * scan to complete
9032                  */
9033                 for (i = 0; i < 200; i++) {
9034                         usleep_range(10000, 20000);
9035                         if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4))
9036                                 break;
9037                 }
9038         }
9039         /* Clear ILT */
9040         bnx2x_clear_func_ilt(bp, func);
9041
9042         /* Timers workaround bug for E2: if this is vnic-3,
9043          * we need to set the entire ilt range for this timers.
9044          */
9045         if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) {
9046                 struct ilt_client_info ilt_cli;
9047                 /* use dummy TM client */
9048                 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
9049                 ilt_cli.start = 0;
9050                 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
9051                 ilt_cli.client_num = ILT_CLIENT_TM;
9052
9053                 bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR);
9054         }
9055
9056         /* this assumes that reset_port() called before reset_func()*/
9057         if (!CHIP_IS_E1x(bp))
9058                 bnx2x_pf_disable(bp);
9059
9060         bp->dmae_ready = 0;
9061 }
9062
9063 static void bnx2x_reset_port(struct bnx2x *bp)
9064 {
9065         int port = BP_PORT(bp);
9066         u32 val;
9067
9068         /* Reset physical Link */
9069         bnx2x__link_reset(bp);
9070
9071         REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
9072
9073         /* Do not rcv packets to BRB */
9074         REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
9075         /* Do not direct rcv packets that are not for MCP to the BRB */
9076         REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
9077                            NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
9078
9079         /* Configure AEU */
9080         REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
9081
9082         msleep(100);
9083         /* Check for BRB port occupancy */
9084         val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
9085         if (val)
9086                 DP(NETIF_MSG_IFDOWN,
9087                    "BRB1 is not empty  %d blocks are occupied\n", val);
9088
9089         /* TODO: Close Doorbell port? */
9090 }
9091
9092 static int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code)
9093 {
9094         struct bnx2x_func_state_params func_params = {NULL};
9095
9096         /* Prepare parameters for function state transitions */
9097         __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
9098
9099         func_params.f_obj = &bp->func_obj;
9100         func_params.cmd = BNX2X_F_CMD_HW_RESET;
9101
9102         func_params.params.hw_init.load_phase = load_code;
9103
9104         return bnx2x_func_state_change(bp, &func_params);
9105 }
9106
9107 static int bnx2x_func_stop(struct bnx2x *bp)
9108 {
9109         struct bnx2x_func_state_params func_params = {NULL};
9110         int rc;
9111
9112         /* Prepare parameters for function state transitions */
9113         __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
9114         func_params.f_obj = &bp->func_obj;
9115         func_params.cmd = BNX2X_F_CMD_STOP;
9116
9117         /*
9118          * Try to stop the function the 'good way'. If fails (in case
9119          * of a parity error during bnx2x_chip_cleanup()) and we are
9120          * not in a debug mode, perform a state transaction in order to
9121          * enable further HW_RESET transaction.
9122          */
9123         rc = bnx2x_func_state_change(bp, &func_params);
9124         if (rc) {
9125 #ifdef BNX2X_STOP_ON_ERROR
9126                 return rc;
9127 #else
9128                 BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry transaction\n");
9129                 __set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
9130                 return bnx2x_func_state_change(bp, &func_params);
9131 #endif
9132         }
9133
9134         return 0;
9135 }
9136
9137 /**
9138  * bnx2x_send_unload_req - request unload mode from the MCP.
9139  *
9140  * @bp:                 driver handle
9141  * @unload_mode:        requested function's unload mode
9142  *
9143  * Return unload mode returned by the MCP: COMMON, PORT or FUNC.
9144  */
9145 u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode)
9146 {
9147         u32 reset_code = 0;
9148         int port = BP_PORT(bp);
9149
9150         /* Select the UNLOAD request mode */
9151         if (unload_mode == UNLOAD_NORMAL)
9152                 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
9153
9154         else if (bp->flags & NO_WOL_FLAG)
9155                 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
9156
9157         else if (bp->wol) {
9158                 u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
9159                 const u8 *mac_addr = bp->dev->dev_addr;
9160                 struct pci_dev *pdev = bp->pdev;
9161                 u32 val;
9162                 u16 pmc;
9163
9164                 /* The mac address is written to entries 1-4 to
9165                  * preserve entry 0 which is used by the PMF
9166                  */
9167                 u8 entry = (BP_VN(bp) + 1)*8;
9168
9169                 val = (mac_addr[0] << 8) | mac_addr[1];
9170                 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val);
9171
9172                 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
9173                       (mac_addr[4] << 8) | mac_addr[5];
9174                 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
9175
9176                 /* Enable the PME and clear the status */
9177                 pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &pmc);
9178                 pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS;
9179                 pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, pmc);
9180
9181                 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
9182
9183         } else
9184                 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
9185
9186         /* Send the request to the MCP */
9187         if (!BP_NOMCP(bp))
9188                 reset_code = bnx2x_fw_command(bp, reset_code, 0);
9189         else {
9190                 int path = BP_PATH(bp);
9191
9192                 DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d]      %d, %d, %d\n",
9193                    path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
9194                    bnx2x_load_count[path][2]);
9195                 bnx2x_load_count[path][0]--;
9196                 bnx2x_load_count[path][1 + port]--;
9197                 DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d]  %d, %d, %d\n",
9198                    path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
9199                    bnx2x_load_count[path][2]);
9200                 if (bnx2x_load_count[path][0] == 0)
9201                         reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON;
9202                 else if (bnx2x_load_count[path][1 + port] == 0)
9203                         reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT;
9204                 else
9205                         reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
9206         }
9207
9208         return reset_code;
9209 }
9210
9211 /**
9212  * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
9213  *
9214  * @bp:         driver handle
9215  * @keep_link:          true iff link should be kept up
9216  */
9217 void bnx2x_send_unload_done(struct bnx2x *bp, bool keep_link)
9218 {
9219         u32 reset_param = keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
9220
9221         /* Report UNLOAD_DONE to MCP */
9222         if (!BP_NOMCP(bp))
9223                 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
9224 }
9225
9226 static int bnx2x_func_wait_started(struct bnx2x *bp)
9227 {
9228         int tout = 50;
9229         int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
9230
9231         if (!bp->port.pmf)
9232                 return 0;
9233
9234         /*
9235          * (assumption: No Attention from MCP at this stage)
9236          * PMF probably in the middle of TX disable/enable transaction
9237          * 1. Sync IRS for default SB
9238          * 2. Sync SP queue - this guarantees us that attention handling started
9239          * 3. Wait, that TX disable/enable transaction completes
9240          *
9241          * 1+2 guarantee that if DCBx attention was scheduled it already changed
9242          * pending bit of transaction from STARTED-->TX_STOPPED, if we already
9243          * received completion for the transaction the state is TX_STOPPED.
9244          * State will return to STARTED after completion of TX_STOPPED-->STARTED
9245          * transaction.
9246          */
9247
9248         /* make sure default SB ISR is done */
9249         if (msix)
9250                 synchronize_irq(bp->msix_table[0].vector);
9251         else
9252                 synchronize_irq(bp->pdev->irq);
9253
9254         flush_workqueue(bnx2x_wq);
9255         flush_workqueue(bnx2x_iov_wq);
9256
9257         while (bnx2x_func_get_state(bp, &bp->func_obj) !=
9258                                 BNX2X_F_STATE_STARTED && tout--)
9259                 msleep(20);
9260
9261         if (bnx2x_func_get_state(bp, &bp->func_obj) !=
9262                                                 BNX2X_F_STATE_STARTED) {
9263 #ifdef BNX2X_STOP_ON_ERROR
9264                 BNX2X_ERR("Wrong function state\n");
9265                 return -EBUSY;
9266 #else
9267                 /*
9268                  * Failed to complete the transaction in a "good way"
9269                  * Force both transactions with CLR bit
9270                  */
9271                 struct bnx2x_func_state_params func_params = {NULL};
9272
9273                 DP(NETIF_MSG_IFDOWN,
9274                    "Hmmm... Unexpected function state! Forcing STARTED-->TX_STOPPED-->STARTED\n");
9275
9276                 func_params.f_obj = &bp->func_obj;
9277                 __set_bit(RAMROD_DRV_CLR_ONLY,
9278                                         &func_params.ramrod_flags);
9279
9280                 /* STARTED-->TX_ST0PPED */
9281                 func_params.cmd = BNX2X_F_CMD_TX_STOP;
9282                 bnx2x_func_state_change(bp, &func_params);
9283
9284                 /* TX_ST0PPED-->STARTED */
9285                 func_params.cmd = BNX2X_F_CMD_TX_START;
9286                 return bnx2x_func_state_change(bp, &func_params);
9287 #endif
9288         }
9289
9290         return 0;
9291 }
9292
9293 static void bnx2x_disable_ptp(struct bnx2x *bp)
9294 {
9295         int port = BP_PORT(bp);
9296
9297         /* Disable sending PTP packets to host */
9298         REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
9299                NIG_REG_P0_LLH_PTP_TO_HOST, 0x0);
9300
9301         /* Reset PTP event detection rules */
9302         REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
9303                NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7FF);
9304         REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
9305                NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFF);
9306         REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
9307                NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x7FF);
9308         REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
9309                NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3FFF);
9310
9311         /* Disable the PTP feature */
9312         REG_WR(bp, port ? NIG_REG_P1_PTP_EN :
9313                NIG_REG_P0_PTP_EN, 0x0);
9314 }
9315
9316 /* Called during unload, to stop PTP-related stuff */
9317 static void bnx2x_stop_ptp(struct bnx2x *bp)
9318 {
9319         /* Cancel PTP work queue. Should be done after the Tx queues are
9320          * drained to prevent additional scheduling.
9321          */
9322         cancel_work_sync(&bp->ptp_task);
9323
9324         if (bp->ptp_tx_skb) {
9325                 dev_kfree_skb_any(bp->ptp_tx_skb);
9326                 bp->ptp_tx_skb = NULL;
9327         }
9328
9329         /* Disable PTP in HW */
9330         bnx2x_disable_ptp(bp);
9331
9332         DP(BNX2X_MSG_PTP, "PTP stop ended successfully\n");
9333 }
9334
9335 void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode, bool keep_link)
9336 {
9337         int port = BP_PORT(bp);
9338         int i, rc = 0;
9339         u8 cos;
9340         struct bnx2x_mcast_ramrod_params rparam = {NULL};
9341         u32 reset_code;
9342
9343         /* Wait until tx fastpath tasks complete */
9344         for_each_tx_queue(bp, i) {
9345                 struct bnx2x_fastpath *fp = &bp->fp[i];
9346
9347                 for_each_cos_in_tx_queue(fp, cos)
9348                         rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]);
9349 #ifdef BNX2X_STOP_ON_ERROR
9350                 if (rc)
9351                         return;
9352 #endif
9353         }
9354
9355         /* Give HW time to discard old tx messages */
9356         usleep_range(1000, 2000);
9357
9358         /* Clean all ETH MACs */
9359         rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_ETH_MAC,
9360                                 false);
9361         if (rc < 0)
9362                 BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc);
9363
9364         /* Clean up UC list  */
9365         rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_UC_LIST_MAC,
9366                                 true);
9367         if (rc < 0)
9368                 BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: %d\n",
9369                           rc);
9370
9371         /* The whole *vlan_obj structure may be not initialized if VLAN
9372          * filtering offload is not supported by hardware. Currently this is
9373          * true for all hardware covered by CHIP_IS_E1x().
9374          */
9375         if (!CHIP_IS_E1x(bp)) {
9376                 /* Remove all currently configured VLANs */
9377                 rc = bnx2x_del_all_vlans(bp);
9378                 if (rc < 0)
9379                         BNX2X_ERR("Failed to delete all VLANs\n");
9380         }
9381
9382         /* Disable LLH */
9383         if (!CHIP_IS_E1(bp))
9384                 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
9385
9386         /* Set "drop all" (stop Rx).
9387          * We need to take a netif_addr_lock() here in order to prevent
9388          * a race between the completion code and this code.
9389          */
9390         netif_addr_lock_bh(bp->dev);
9391         /* Schedule the rx_mode command */
9392         if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
9393                 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
9394         else if (bp->slowpath)
9395                 bnx2x_set_storm_rx_mode(bp);
9396
9397         /* Cleanup multicast configuration */
9398         rparam.mcast_obj = &bp->mcast_obj;
9399         rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
9400         if (rc < 0)
9401                 BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc);
9402
9403         netif_addr_unlock_bh(bp->dev);
9404
9405         bnx2x_iov_chip_cleanup(bp);
9406
9407         /*
9408          * Send the UNLOAD_REQUEST to the MCP. This will return if
9409          * this function should perform FUNC, PORT or COMMON HW
9410          * reset.
9411          */
9412         reset_code = bnx2x_send_unload_req(bp, unload_mode);
9413
9414         /*
9415          * (assumption: No Attention from MCP at this stage)
9416          * PMF probably in the middle of TX disable/enable transaction
9417          */
9418         rc = bnx2x_func_wait_started(bp);
9419         if (rc) {
9420                 BNX2X_ERR("bnx2x_func_wait_started failed\n");
9421 #ifdef BNX2X_STOP_ON_ERROR
9422                 return;
9423 #endif
9424         }
9425
9426         /* Close multi and leading connections
9427          * Completions for ramrods are collected in a synchronous way
9428          */
9429         for_each_eth_queue(bp, i)
9430                 if (bnx2x_stop_queue(bp, i))
9431 #ifdef BNX2X_STOP_ON_ERROR
9432                         return;
9433 #else
9434                         goto unload_error;
9435 #endif
9436
9437         if (CNIC_LOADED(bp)) {
9438                 for_each_cnic_queue(bp, i)
9439                         if (bnx2x_stop_queue(bp, i))
9440 #ifdef BNX2X_STOP_ON_ERROR
9441                                 return;
9442 #else
9443                                 goto unload_error;
9444 #endif
9445         }
9446
9447         /* If SP settings didn't get completed so far - something
9448          * very wrong has happen.
9449          */
9450         if (!bnx2x_wait_sp_comp(bp, ~0x0UL))
9451                 BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n");
9452
9453 #ifndef BNX2X_STOP_ON_ERROR
9454 unload_error:
9455 #endif
9456         rc = bnx2x_func_stop(bp);
9457         if (rc) {
9458                 BNX2X_ERR("Function stop failed!\n");
9459 #ifdef BNX2X_STOP_ON_ERROR
9460                 return;
9461 #endif
9462         }
9463
9464         /* stop_ptp should be after the Tx queues are drained to prevent
9465          * scheduling to the cancelled PTP work queue. It should also be after
9466          * function stop ramrod is sent, since as part of this ramrod FW access
9467          * PTP registers.
9468          */
9469         if (bp->flags & PTP_SUPPORTED) {
9470                 bnx2x_stop_ptp(bp);
9471                 if (bp->ptp_clock) {
9472                         ptp_clock_unregister(bp->ptp_clock);
9473                         bp->ptp_clock = NULL;
9474                 }
9475         }
9476
9477         /* Disable HW interrupts, NAPI */
9478         bnx2x_netif_stop(bp, 1);
9479         /* Delete all NAPI objects */
9480         bnx2x_del_all_napi(bp);
9481         if (CNIC_LOADED(bp))
9482                 bnx2x_del_all_napi_cnic(bp);
9483
9484         /* Release IRQs */
9485         bnx2x_free_irq(bp);
9486
9487         /* Reset the chip, unless PCI function is offline. If we reach this
9488          * point following a PCI error handling, it means device is really
9489          * in a bad state and we're about to remove it, so reset the chip
9490          * is not a good idea.
9491          */
9492         if (!pci_channel_offline(bp->pdev)) {
9493                 rc = bnx2x_reset_hw(bp, reset_code);
9494                 if (rc)
9495                         BNX2X_ERR("HW_RESET failed\n");
9496         }
9497
9498         /* Report UNLOAD_DONE to MCP */
9499         bnx2x_send_unload_done(bp, keep_link);
9500 }
9501
9502 void bnx2x_disable_close_the_gate(struct bnx2x *bp)
9503 {
9504         u32 val;
9505
9506         DP(NETIF_MSG_IFDOWN, "Disabling \"close the gates\"\n");
9507
9508         if (CHIP_IS_E1(bp)) {
9509                 int port = BP_PORT(bp);
9510                 u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
9511                         MISC_REG_AEU_MASK_ATTN_FUNC_0;
9512
9513                 val = REG_RD(bp, addr);
9514                 val &= ~(0x300);
9515                 REG_WR(bp, addr, val);
9516         } else {
9517                 val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK);
9518                 val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
9519                          MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
9520                 REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val);
9521         }
9522 }
9523
9524 /* Close gates #2, #3 and #4: */
9525 static void bnx2x_set_234_gates(struct bnx2x *bp, bool close)
9526 {
9527         u32 val;
9528
9529         /* Gates #2 and #4a are closed/opened for "not E1" only */
9530         if (!CHIP_IS_E1(bp)) {
9531                 /* #4 */
9532                 REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
9533                 /* #2 */
9534                 REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
9535         }
9536
9537         /* #3 */
9538         if (CHIP_IS_E1x(bp)) {
9539                 /* Prevent interrupts from HC on both ports */
9540                 val = REG_RD(bp, HC_REG_CONFIG_1);
9541                 REG_WR(bp, HC_REG_CONFIG_1,
9542                        (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
9543                        (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
9544
9545                 val = REG_RD(bp, HC_REG_CONFIG_0);
9546                 REG_WR(bp, HC_REG_CONFIG_0,
9547                        (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
9548                        (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
9549         } else {
9550                 /* Prevent incoming interrupts in IGU */
9551                 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
9552
9553                 REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION,
9554                        (!close) ?
9555                        (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
9556                        (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
9557         }
9558
9559         DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "%s gates #2, #3 and #4\n",
9560                 close ? "closing" : "opening");
9561 }
9562
9563 #define SHARED_MF_CLP_MAGIC  0x80000000 /* `magic' bit */
9564
9565 static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val)
9566 {
9567         /* Do some magic... */
9568         u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9569         *magic_val = val & SHARED_MF_CLP_MAGIC;
9570         MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
9571 }
9572
9573 /**
9574  * bnx2x_clp_reset_done - restore the value of the `magic' bit.
9575  *
9576  * @bp:         driver handle
9577  * @magic_val:  old value of the `magic' bit.
9578  */
9579 static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val)
9580 {
9581         /* Restore the `magic' bit value... */
9582         u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9583         MF_CFG_WR(bp, shared_mf_config.clp_mb,
9584                 (val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
9585 }
9586
9587 /**
9588  * bnx2x_reset_mcp_prep - prepare for MCP reset.
9589  *
9590  * @bp:         driver handle
9591  * @magic_val:  old value of 'magic' bit.
9592  *
9593  * Takes care of CLP configurations.
9594  */
9595 static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val)
9596 {
9597         u32 shmem;
9598         u32 validity_offset;
9599
9600         DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "Starting\n");
9601
9602         /* Set `magic' bit in order to save MF config */
9603         if (!CHIP_IS_E1(bp))
9604                 bnx2x_clp_reset_prep(bp, magic_val);
9605
9606         /* Get shmem offset */
9607         shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9608         validity_offset =
9609                 offsetof(struct shmem_region, validity_map[BP_PORT(bp)]);
9610
9611         /* Clear validity map flags */
9612         if (shmem > 0)
9613                 REG_WR(bp, shmem + validity_offset, 0);
9614 }
9615
9616 #define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
9617 #define MCP_ONE_TIMEOUT  100    /* 100 ms */
9618
9619 /**
9620  * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT
9621  *
9622  * @bp: driver handle
9623  */
9624 static void bnx2x_mcp_wait_one(struct bnx2x *bp)
9625 {
9626         /* special handling for emulation and FPGA,
9627            wait 10 times longer */
9628         if (CHIP_REV_IS_SLOW(bp))
9629                 msleep(MCP_ONE_TIMEOUT*10);
9630         else
9631                 msleep(MCP_ONE_TIMEOUT);
9632 }
9633
9634 /*
9635  * initializes bp->common.shmem_base and waits for validity signature to appear
9636  */
9637 static int bnx2x_init_shmem(struct bnx2x *bp)
9638 {
9639         int cnt = 0;
9640         u32 val = 0;
9641
9642         do {
9643                 bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9644
9645                 /* If we read all 0xFFs, means we are in PCI error state and
9646                  * should bail out to avoid crashes on adapter's FW reads.
9647                  */
9648                 if (bp->common.shmem_base == 0xFFFFFFFF) {
9649                         bp->flags |= NO_MCP_FLAG;
9650                         return -ENODEV;
9651                 }
9652
9653                 if (bp->common.shmem_base) {
9654                         val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
9655                         if (val & SHR_MEM_VALIDITY_MB)
9656                                 return 0;
9657                 }
9658
9659                 bnx2x_mcp_wait_one(bp);
9660
9661         } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
9662
9663         BNX2X_ERR("BAD MCP validity signature\n");
9664
9665         return -ENODEV;
9666 }
9667
9668 static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val)
9669 {
9670         int rc = bnx2x_init_shmem(bp);
9671
9672         /* Restore the `magic' bit value */
9673         if (!CHIP_IS_E1(bp))
9674                 bnx2x_clp_reset_done(bp, magic_val);
9675
9676         return rc;
9677 }
9678
9679 static void bnx2x_pxp_prep(struct bnx2x *bp)
9680 {
9681         if (!CHIP_IS_E1(bp)) {
9682                 REG_WR(bp, PXP2_REG_RD_START_INIT, 0);
9683                 REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0);
9684         }
9685 }
9686
9687 /*
9688  * Reset the whole chip except for:
9689  *      - PCIE core
9690  *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by
9691  *              one reset bit)
9692  *      - IGU
9693  *      - MISC (including AEU)
9694  *      - GRC
9695  *      - RBCN, RBCP
9696  */
9697 static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global)
9698 {
9699         u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
9700         u32 global_bits2, stay_reset2;
9701
9702         /*
9703          * Bits that have to be set in reset_mask2 if we want to reset 'global'
9704          * (per chip) blocks.
9705          */
9706         global_bits2 =
9707                 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
9708                 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
9709
9710         /* Don't reset the following blocks.
9711          * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
9712          *            reset, as in 4 port device they might still be owned
9713          *            by the MCP (there is only one leader per path).
9714          */
9715         not_reset_mask1 =
9716                 MISC_REGISTERS_RESET_REG_1_RST_HC |
9717                 MISC_REGISTERS_RESET_REG_1_RST_PXPV |
9718                 MISC_REGISTERS_RESET_REG_1_RST_PXP;
9719
9720         not_reset_mask2 =
9721                 MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
9722                 MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
9723                 MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
9724                 MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
9725                 MISC_REGISTERS_RESET_REG_2_RST_RBCN |
9726                 MISC_REGISTERS_RESET_REG_2_RST_GRC  |
9727                 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
9728                 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
9729                 MISC_REGISTERS_RESET_REG_2_RST_ATC |
9730                 MISC_REGISTERS_RESET_REG_2_PGLC |
9731                 MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
9732                 MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
9733                 MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
9734                 MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
9735                 MISC_REGISTERS_RESET_REG_2_UMAC0 |
9736                 MISC_REGISTERS_RESET_REG_2_UMAC1;
9737
9738         /*
9739          * Keep the following blocks in reset:
9740          *  - all xxMACs are handled by the bnx2x_link code.
9741          */
9742         stay_reset2 =
9743                 MISC_REGISTERS_RESET_REG_2_XMAC |
9744                 MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
9745
9746         /* Full reset masks according to the chip */
9747         reset_mask1 = 0xffffffff;
9748
9749         if (CHIP_IS_E1(bp))
9750                 reset_mask2 = 0xffff;
9751         else if (CHIP_IS_E1H(bp))
9752                 reset_mask2 = 0x1ffff;
9753         else if (CHIP_IS_E2(bp))
9754                 reset_mask2 = 0xfffff;
9755         else /* CHIP_IS_E3 */
9756                 reset_mask2 = 0x3ffffff;
9757
9758         /* Don't reset global blocks unless we need to */
9759         if (!global)
9760                 reset_mask2 &= ~global_bits2;
9761
9762         /*
9763          * In case of attention in the QM, we need to reset PXP
9764          * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
9765          * because otherwise QM reset would release 'close the gates' shortly
9766          * before resetting the PXP, then the PSWRQ would send a write
9767          * request to PGLUE. Then when PXP is reset, PGLUE would try to
9768          * read the payload data from PSWWR, but PSWWR would not
9769          * respond. The write queue in PGLUE would stuck, dmae commands
9770          * would not return. Therefore it's important to reset the second
9771          * reset register (containing the
9772          * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
9773          * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
9774          * bit).
9775          */
9776         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
9777                reset_mask2 & (~not_reset_mask2));
9778
9779         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
9780                reset_mask1 & (~not_reset_mask1));
9781
9782         barrier();
9783
9784         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
9785                reset_mask2 & (~stay_reset2));
9786
9787         barrier();
9788
9789         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
9790 }
9791
9792 /**
9793  * bnx2x_er_poll_igu_vq - poll for pending writes bit.
9794  * It should get cleared in no more than 1s.
9795  *
9796  * @bp: driver handle
9797  *
9798  * It should get cleared in no more than 1s. Returns 0 if
9799  * pending writes bit gets cleared.
9800  */
9801 static int bnx2x_er_poll_igu_vq(struct bnx2x *bp)
9802 {
9803         u32 cnt = 1000;
9804         u32 pend_bits = 0;
9805
9806         do {
9807                 pend_bits  = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS);
9808
9809                 if (pend_bits == 0)
9810                         break;
9811
9812                 usleep_range(1000, 2000);
9813         } while (cnt-- > 0);
9814
9815         if (cnt <= 0) {
9816                 BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n",
9817                           pend_bits);
9818                 return -EBUSY;
9819         }
9820
9821         return 0;
9822 }
9823
9824 static int bnx2x_process_kill(struct bnx2x *bp, bool global)
9825 {
9826         int cnt = 1000;
9827         u32 val = 0;
9828         u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
9829         u32 tags_63_32 = 0;
9830
9831         /* Empty the Tetris buffer, wait for 1s */
9832         do {
9833                 sr_cnt  = REG_RD(bp, PXP2_REG_RD_SR_CNT);
9834                 blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT);
9835                 port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0);
9836                 port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1);
9837                 pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2);
9838                 if (CHIP_IS_E3(bp))
9839                         tags_63_32 = REG_RD(bp, PGLUE_B_REG_TAGS_63_32);
9840
9841                 if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
9842                     ((port_is_idle_0 & 0x1) == 0x1) &&
9843                     ((port_is_idle_1 & 0x1) == 0x1) &&
9844                     (pgl_exp_rom2 == 0xffffffff) &&
9845                     (!CHIP_IS_E3(bp) || (tags_63_32 == 0xffffffff)))
9846                         break;
9847                 usleep_range(1000, 2000);
9848         } while (cnt-- > 0);
9849
9850         if (cnt <= 0) {
9851                 BNX2X_ERR("Tetris buffer didn't get empty or there are still outstanding read requests after 1s!\n");
9852                 BNX2X_ERR("sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
9853                           sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
9854                           pgl_exp_rom2);
9855                 return -EAGAIN;
9856         }
9857
9858         barrier();
9859
9860         /* Close gates #2, #3 and #4 */
9861         bnx2x_set_234_gates(bp, true);
9862
9863         /* Poll for IGU VQs for 57712 and newer chips */
9864         if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp))
9865                 return -EAGAIN;
9866
9867         /* TBD: Indicate that "process kill" is in progress to MCP */
9868
9869         /* Clear "unprepared" bit */
9870         REG_WR(bp, MISC_REG_UNPREPARED, 0);
9871         barrier();
9872
9873         /* Wait for 1ms to empty GLUE and PCI-E core queues,
9874          * PSWHST, GRC and PSWRD Tetris buffer.
9875          */
9876         usleep_range(1000, 2000);
9877
9878         /* Prepare to chip reset: */
9879         /* MCP */
9880         if (global)
9881                 bnx2x_reset_mcp_prep(bp, &val);
9882
9883         /* PXP */
9884         bnx2x_pxp_prep(bp);
9885         barrier();
9886
9887         /* reset the chip */
9888         bnx2x_process_kill_chip_reset(bp, global);
9889         barrier();
9890
9891         /* clear errors in PGB */
9892         if (!CHIP_IS_E1x(bp))
9893                 REG_WR(bp, PGLUE_B_REG_LATCHED_ERRORS_CLR, 0x7f);
9894
9895         /* Recover after reset: */
9896         /* MCP */
9897         if (global && bnx2x_reset_mcp_comp(bp, val))
9898                 return -EAGAIN;
9899
9900         /* TBD: Add resetting the NO_MCP mode DB here */
9901
9902         /* Open the gates #2, #3 and #4 */
9903         bnx2x_set_234_gates(bp, false);
9904
9905         /* TBD: IGU/AEU preparation bring back the AEU/IGU to a
9906          * reset state, re-enable attentions. */
9907
9908         return 0;
9909 }
9910
9911 static int bnx2x_leader_reset(struct bnx2x *bp)
9912 {
9913         int rc = 0;
9914         bool global = bnx2x_reset_is_global(bp);
9915         u32 load_code;
9916
9917         /* if not going to reset MCP - load "fake" driver to reset HW while
9918          * driver is owner of the HW
9919          */
9920         if (!global && !BP_NOMCP(bp)) {
9921                 load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ,
9922                                              DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
9923                 if (!load_code) {
9924                         BNX2X_ERR("MCP response failure, aborting\n");
9925                         rc = -EAGAIN;
9926                         goto exit_leader_reset;
9927                 }
9928                 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
9929                     (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
9930                         BNX2X_ERR("MCP unexpected resp, aborting\n");
9931                         rc = -EAGAIN;
9932                         goto exit_leader_reset2;
9933                 }
9934                 load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
9935                 if (!load_code) {
9936                         BNX2X_ERR("MCP response failure, aborting\n");
9937                         rc = -EAGAIN;
9938                         goto exit_leader_reset2;
9939                 }
9940         }
9941
9942         /* Try to recover after the failure */
9943         if (bnx2x_process_kill(bp, global)) {
9944                 BNX2X_ERR("Something bad had happen on engine %d! Aii!\n",
9945                           BP_PATH(bp));
9946                 rc = -EAGAIN;
9947                 goto exit_leader_reset2;
9948         }
9949
9950         /*
9951          * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver
9952          * state.
9953          */
9954         bnx2x_set_reset_done(bp);
9955         if (global)
9956                 bnx2x_clear_reset_global(bp);
9957
9958 exit_leader_reset2:
9959         /* unload "fake driver" if it was loaded */
9960         if (!global && !BP_NOMCP(bp)) {
9961                 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
9962                 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
9963         }
9964 exit_leader_reset:
9965         bp->is_leader = 0;
9966         bnx2x_release_leader_lock(bp);
9967         smp_mb();
9968         return rc;
9969 }
9970
9971 static void bnx2x_recovery_failed(struct bnx2x *bp)
9972 {
9973         netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n");
9974
9975         /* Disconnect this device */
9976         netif_device_detach(bp->dev);
9977
9978         /*
9979          * Block ifup for all function on this engine until "process kill"
9980          * or power cycle.
9981          */
9982         bnx2x_set_reset_in_progress(bp);
9983
9984         /* Shut down the power */
9985         bnx2x_set_power_state(bp, PCI_D3hot);
9986
9987         bp->recovery_state = BNX2X_RECOVERY_FAILED;
9988
9989         smp_mb();
9990 }
9991
9992 /*
9993  * Assumption: runs under rtnl lock. This together with the fact
9994  * that it's called only from bnx2x_sp_rtnl() ensure that it
9995  * will never be called when netif_running(bp->dev) is false.
9996  */
9997 static void bnx2x_parity_recover(struct bnx2x *bp)
9998 {
9999         u32 error_recovered, error_unrecovered;
10000         bool is_parity, global = false;
10001 #ifdef CONFIG_BNX2X_SRIOV
10002         int vf_idx;
10003
10004         for (vf_idx = 0; vf_idx < bp->requested_nr_virtfn; vf_idx++) {
10005                 struct bnx2x_virtf *vf = BP_VF(bp, vf_idx);
10006
10007                 if (vf)
10008                         vf->state = VF_LOST;
10009         }
10010 #endif
10011         DP(NETIF_MSG_HW, "Handling parity\n");
10012         while (1) {
10013                 switch (bp->recovery_state) {
10014                 case BNX2X_RECOVERY_INIT:
10015                         DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n");
10016                         is_parity = bnx2x_chk_parity_attn(bp, &global, false);
10017                         WARN_ON(!is_parity);
10018
10019                         /* Try to get a LEADER_LOCK HW lock */
10020                         if (bnx2x_trylock_leader_lock(bp)) {
10021                                 bnx2x_set_reset_in_progress(bp);
10022                                 /*
10023                                  * Check if there is a global attention and if
10024                                  * there was a global attention, set the global
10025                                  * reset bit.
10026                                  */
10027
10028                                 if (global)
10029                                         bnx2x_set_reset_global(bp);
10030
10031                                 bp->is_leader = 1;
10032                         }
10033
10034                         /* Stop the driver */
10035                         /* If interface has been removed - break */
10036                         if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY, false))
10037                                 return;
10038
10039                         bp->recovery_state = BNX2X_RECOVERY_WAIT;
10040
10041                         /* Ensure "is_leader", MCP command sequence and
10042                          * "recovery_state" update values are seen on other
10043                          * CPUs.
10044                          */
10045                         smp_mb();
10046                         break;
10047
10048                 case BNX2X_RECOVERY_WAIT:
10049                         DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n");
10050                         if (bp->is_leader) {
10051                                 int other_engine = BP_PATH(bp) ? 0 : 1;
10052                                 bool other_load_status =
10053                                         bnx2x_get_load_status(bp, other_engine);
10054                                 bool load_status =
10055                                         bnx2x_get_load_status(bp, BP_PATH(bp));
10056                                 global = bnx2x_reset_is_global(bp);
10057
10058                                 /*
10059                                  * In case of a parity in a global block, let
10060                                  * the first leader that performs a
10061                                  * leader_reset() reset the global blocks in
10062                                  * order to clear global attentions. Otherwise
10063                                  * the gates will remain closed for that
10064                                  * engine.
10065                                  */
10066                                 if (load_status ||
10067                                     (global && other_load_status)) {
10068                                         /* Wait until all other functions get
10069                                          * down.
10070                                          */
10071                                         schedule_delayed_work(&bp->sp_rtnl_task,
10072                                                                 HZ/10);
10073                                         return;
10074                                 } else {
10075                                         /* If all other functions got down -
10076                                          * try to bring the chip back to
10077                                          * normal. In any case it's an exit
10078                                          * point for a leader.
10079                                          */
10080                                         if (bnx2x_leader_reset(bp)) {
10081                                                 bnx2x_recovery_failed(bp);
10082                                                 return;
10083                                         }
10084
10085                                         /* If we are here, means that the
10086                                          * leader has succeeded and doesn't
10087                                          * want to be a leader any more. Try
10088                                          * to continue as a none-leader.
10089                                          */
10090                                         break;
10091                                 }
10092                         } else { /* non-leader */
10093                                 if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) {
10094                                         /* Try to get a LEADER_LOCK HW lock as
10095                                          * long as a former leader may have
10096                                          * been unloaded by the user or
10097                                          * released a leadership by another
10098                                          * reason.
10099                                          */
10100                                         if (bnx2x_trylock_leader_lock(bp)) {
10101                                                 /* I'm a leader now! Restart a
10102                                                  * switch case.
10103                                                  */
10104                                                 bp->is_leader = 1;
10105                                                 break;
10106                                         }
10107
10108                                         schedule_delayed_work(&bp->sp_rtnl_task,
10109                                                                 HZ/10);
10110                                         return;
10111
10112                                 } else {
10113                                         /*
10114                                          * If there was a global attention, wait
10115                                          * for it to be cleared.
10116                                          */
10117                                         if (bnx2x_reset_is_global(bp)) {
10118                                                 schedule_delayed_work(
10119                                                         &bp->sp_rtnl_task,
10120                                                         HZ/10);
10121                                                 return;
10122                                         }
10123
10124                                         error_recovered =
10125                                           bp->eth_stats.recoverable_error;
10126                                         error_unrecovered =
10127                                           bp->eth_stats.unrecoverable_error;
10128                                         bp->recovery_state =
10129                                                 BNX2X_RECOVERY_NIC_LOADING;
10130                                         if (bnx2x_nic_load(bp, LOAD_NORMAL)) {
10131                                                 error_unrecovered++;
10132                                                 netdev_err(bp->dev,
10133                                                            "Recovery failed. Power cycle needed\n");
10134                                                 /* Disconnect this device */
10135                                                 netif_device_detach(bp->dev);
10136                                                 /* Shut down the power */
10137                                                 bnx2x_set_power_state(
10138                                                         bp, PCI_D3hot);
10139                                                 smp_mb();
10140                                         } else {
10141                                                 bp->recovery_state =
10142                                                         BNX2X_RECOVERY_DONE;
10143                                                 error_recovered++;
10144                                                 smp_mb();
10145                                         }
10146                                         bp->eth_stats.recoverable_error =
10147                                                 error_recovered;
10148                                         bp->eth_stats.unrecoverable_error =
10149                                                 error_unrecovered;
10150
10151                                         return;
10152                                 }
10153                         }
10154                 default:
10155                         return;
10156                 }
10157         }
10158 }
10159
10160 static int bnx2x_udp_port_update(struct bnx2x *bp)
10161 {
10162         struct bnx2x_func_switch_update_params *switch_update_params;
10163         struct bnx2x_func_state_params func_params = {NULL};
10164         u16 vxlan_port = 0, geneve_port = 0;
10165         int rc;
10166
10167         switch_update_params = &func_params.params.switch_update;
10168
10169         /* Prepare parameters for function state transitions */
10170         __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
10171         __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
10172
10173         func_params.f_obj = &bp->func_obj;
10174         func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
10175
10176         /* Function parameters */
10177         __set_bit(BNX2X_F_UPDATE_TUNNEL_CFG_CHNG,
10178                   &switch_update_params->changes);
10179
10180         if (bp->udp_tunnel_ports[BNX2X_UDP_PORT_GENEVE]) {
10181                 geneve_port = bp->udp_tunnel_ports[BNX2X_UDP_PORT_GENEVE];
10182                 switch_update_params->geneve_dst_port = geneve_port;
10183         }
10184
10185         if (bp->udp_tunnel_ports[BNX2X_UDP_PORT_VXLAN]) {
10186                 vxlan_port = bp->udp_tunnel_ports[BNX2X_UDP_PORT_VXLAN];
10187                 switch_update_params->vxlan_dst_port = vxlan_port;
10188         }
10189
10190         /* Re-enable inner-rss for the offloaded UDP tunnels */
10191         __set_bit(BNX2X_F_UPDATE_TUNNEL_INNER_RSS,
10192                   &switch_update_params->changes);
10193
10194         rc = bnx2x_func_state_change(bp, &func_params);
10195         if (rc)
10196                 BNX2X_ERR("failed to set UDP dst port to %04x %04x (rc = 0x%x)\n",
10197                           vxlan_port, geneve_port, rc);
10198         else
10199                 DP(BNX2X_MSG_SP,
10200                    "Configured UDP ports: Vxlan [%04x] Geneve [%04x]\n",
10201                    vxlan_port, geneve_port);
10202
10203         return rc;
10204 }
10205
10206 static int bnx2x_udp_tunnel_sync(struct net_device *netdev, unsigned int table)
10207 {
10208         struct bnx2x *bp = netdev_priv(netdev);
10209         struct udp_tunnel_info ti;
10210
10211         udp_tunnel_nic_get_port(netdev, table, 0, &ti);
10212         bp->udp_tunnel_ports[table] = be16_to_cpu(ti.port);
10213
10214         return bnx2x_udp_port_update(bp);
10215 }
10216
10217 static const struct udp_tunnel_nic_info bnx2x_udp_tunnels = {
10218         .sync_table     = bnx2x_udp_tunnel_sync,
10219         .flags          = UDP_TUNNEL_NIC_INFO_MAY_SLEEP |
10220                           UDP_TUNNEL_NIC_INFO_OPEN_ONLY,
10221         .tables         = {
10222                 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN,  },
10223                 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, },
10224         },
10225 };
10226
10227 static int bnx2x_close(struct net_device *dev);
10228
10229 /* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is
10230  * scheduled on a general queue in order to prevent a dead lock.
10231  */
10232 static void bnx2x_sp_rtnl_task(struct work_struct *work)
10233 {
10234         struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work);
10235
10236         rtnl_lock();
10237
10238         if (!netif_running(bp->dev)) {
10239                 rtnl_unlock();
10240                 return;
10241         }
10242
10243         if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) {
10244 #ifdef BNX2X_STOP_ON_ERROR
10245                 BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
10246                           "you will need to reboot when done\n");
10247                 goto sp_rtnl_not_reset;
10248 #endif
10249                 /*
10250                  * Clear all pending SP commands as we are going to reset the
10251                  * function anyway.
10252                  */
10253                 bp->sp_rtnl_state = 0;
10254                 smp_mb();
10255
10256                 bnx2x_parity_recover(bp);
10257
10258                 rtnl_unlock();
10259                 return;
10260         }
10261
10262         if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) {
10263 #ifdef BNX2X_STOP_ON_ERROR
10264                 BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
10265                           "you will need to reboot when done\n");
10266                 goto sp_rtnl_not_reset;
10267 #endif
10268
10269                 /*
10270                  * Clear all pending SP commands as we are going to reset the
10271                  * function anyway.
10272                  */
10273                 bp->sp_rtnl_state = 0;
10274                 smp_mb();
10275
10276                 /* Immediately indicate link as down */
10277                 bp->link_vars.link_up = 0;
10278                 bp->force_link_down = true;
10279                 netif_carrier_off(bp->dev);
10280                 BNX2X_ERR("Indicating link is down due to Tx-timeout\n");
10281
10282                 bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
10283                 /* When ret value shows failure of allocation failure,
10284                  * the nic is rebooted again. If open still fails, a error
10285                  * message to notify the user.
10286                  */
10287                 if (bnx2x_nic_load(bp, LOAD_NORMAL) == -ENOMEM) {
10288                         bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
10289                         if (bnx2x_nic_load(bp, LOAD_NORMAL))
10290                                 BNX2X_ERR("Open the NIC fails again!\n");
10291                 }
10292                 rtnl_unlock();
10293                 return;
10294         }
10295 #ifdef BNX2X_STOP_ON_ERROR
10296 sp_rtnl_not_reset:
10297 #endif
10298         if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state))
10299                 bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos);
10300         if (test_and_clear_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE, &bp->sp_rtnl_state))
10301                 bnx2x_after_function_update(bp);
10302         /*
10303          * in case of fan failure we need to reset id if the "stop on error"
10304          * debug flag is set, since we trying to prevent permanent overheating
10305          * damage
10306          */
10307         if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) {
10308                 DP(NETIF_MSG_HW, "fan failure detected. Unloading driver\n");
10309                 netif_device_detach(bp->dev);
10310                 bnx2x_close(bp->dev);
10311                 rtnl_unlock();
10312                 return;
10313         }
10314
10315         if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_MCAST, &bp->sp_rtnl_state)) {
10316                 DP(BNX2X_MSG_SP,
10317                    "sending set mcast vf pf channel message from rtnl sp-task\n");
10318                 bnx2x_vfpf_set_mcast(bp->dev);
10319         }
10320         if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN,
10321                                &bp->sp_rtnl_state)){
10322                 if (netif_carrier_ok(bp->dev)) {
10323                         bnx2x_tx_disable(bp);
10324                         BNX2X_ERR("PF indicated channel is not servicable anymore. This means this VF device is no longer operational\n");
10325                 }
10326         }
10327
10328         if (test_and_clear_bit(BNX2X_SP_RTNL_RX_MODE, &bp->sp_rtnl_state)) {
10329                 DP(BNX2X_MSG_SP, "Handling Rx Mode setting\n");
10330                 bnx2x_set_rx_mode_inner(bp);
10331         }
10332
10333         if (test_and_clear_bit(BNX2X_SP_RTNL_HYPERVISOR_VLAN,
10334                                &bp->sp_rtnl_state))
10335                 bnx2x_pf_set_vfs_vlan(bp);
10336
10337         if (test_and_clear_bit(BNX2X_SP_RTNL_TX_STOP, &bp->sp_rtnl_state)) {
10338                 bnx2x_dcbx_stop_hw_tx(bp);
10339                 bnx2x_dcbx_resume_hw_tx(bp);
10340         }
10341
10342         if (test_and_clear_bit(BNX2X_SP_RTNL_GET_DRV_VERSION,
10343                                &bp->sp_rtnl_state))
10344                 bnx2x_update_mng_version(bp);
10345
10346         if (test_and_clear_bit(BNX2X_SP_RTNL_UPDATE_SVID, &bp->sp_rtnl_state))
10347                 bnx2x_handle_update_svid_cmd(bp);
10348
10349         /* work which needs rtnl lock not-taken (as it takes the lock itself and
10350          * can be called from other contexts as well)
10351          */
10352         rtnl_unlock();
10353
10354         /* enable SR-IOV if applicable */
10355         if (IS_SRIOV(bp) && test_and_clear_bit(BNX2X_SP_RTNL_ENABLE_SRIOV,
10356                                                &bp->sp_rtnl_state)) {
10357                 bnx2x_disable_sriov(bp);
10358                 bnx2x_enable_sriov(bp);
10359         }
10360 }
10361
10362 static void bnx2x_period_task(struct work_struct *work)
10363 {
10364         struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work);
10365
10366         if (!netif_running(bp->dev))
10367                 goto period_task_exit;
10368
10369         if (CHIP_REV_IS_SLOW(bp)) {
10370                 BNX2X_ERR("period task called on emulation, ignoring\n");
10371                 goto period_task_exit;
10372         }
10373
10374         bnx2x_acquire_phy_lock(bp);
10375         /*
10376          * The barrier is needed to ensure the ordering between the writing to
10377          * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
10378          * the reading here.
10379          */
10380         smp_mb();
10381         if (bp->port.pmf) {
10382                 bnx2x_period_func(&bp->link_params, &bp->link_vars);
10383
10384                 /* Re-queue task in 1 sec */
10385                 queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ);
10386         }
10387
10388         bnx2x_release_phy_lock(bp);
10389 period_task_exit:
10390         return;
10391 }
10392
10393 /*
10394  * Init service functions
10395  */
10396
10397 static u32 bnx2x_get_pretend_reg(struct bnx2x *bp)
10398 {
10399         u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0;
10400         u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base;
10401         return base + (BP_ABS_FUNC(bp)) * stride;
10402 }
10403
10404 static bool bnx2x_prev_unload_close_umac(struct bnx2x *bp,
10405                                          u8 port, u32 reset_reg,
10406                                          struct bnx2x_mac_vals *vals)
10407 {
10408         u32 mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
10409         u32 base_addr;
10410
10411         if (!(mask & reset_reg))
10412                 return false;
10413
10414         BNX2X_DEV_INFO("Disable umac Rx %02x\n", port);
10415         base_addr = port ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
10416         vals->umac_addr[port] = base_addr + UMAC_REG_COMMAND_CONFIG;
10417         vals->umac_val[port] = REG_RD(bp, vals->umac_addr[port]);
10418         REG_WR(bp, vals->umac_addr[port], 0);
10419
10420         return true;
10421 }
10422
10423 static void bnx2x_prev_unload_close_mac(struct bnx2x *bp,
10424                                         struct bnx2x_mac_vals *vals)
10425 {
10426         u32 val, base_addr, offset, mask, reset_reg;
10427         bool mac_stopped = false;
10428         u8 port = BP_PORT(bp);
10429
10430         /* reset addresses as they also mark which values were changed */
10431         memset(vals, 0, sizeof(*vals));
10432
10433         reset_reg = REG_RD(bp, MISC_REG_RESET_REG_2);
10434
10435         if (!CHIP_IS_E3(bp)) {
10436                 val = REG_RD(bp, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
10437                 mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
10438                 if ((mask & reset_reg) && val) {
10439                         u32 wb_data[2];
10440                         BNX2X_DEV_INFO("Disable bmac Rx\n");
10441                         base_addr = BP_PORT(bp) ? NIG_REG_INGRESS_BMAC1_MEM
10442                                                 : NIG_REG_INGRESS_BMAC0_MEM;
10443                         offset = CHIP_IS_E2(bp) ? BIGMAC2_REGISTER_BMAC_CONTROL
10444                                                 : BIGMAC_REGISTER_BMAC_CONTROL;
10445
10446                         /*
10447                          * use rd/wr since we cannot use dmae. This is safe
10448                          * since MCP won't access the bus due to the request
10449                          * to unload, and no function on the path can be
10450                          * loaded at this time.
10451                          */
10452                         wb_data[0] = REG_RD(bp, base_addr + offset);
10453                         wb_data[1] = REG_RD(bp, base_addr + offset + 0x4);
10454                         vals->bmac_addr = base_addr + offset;
10455                         vals->bmac_val[0] = wb_data[0];
10456                         vals->bmac_val[1] = wb_data[1];
10457                         wb_data[0] &= ~BMAC_CONTROL_RX_ENABLE;
10458                         REG_WR(bp, vals->bmac_addr, wb_data[0]);
10459                         REG_WR(bp, vals->bmac_addr + 0x4, wb_data[1]);
10460                 }
10461                 BNX2X_DEV_INFO("Disable emac Rx\n");
10462                 vals->emac_addr = NIG_REG_NIG_EMAC0_EN + BP_PORT(bp)*4;
10463                 vals->emac_val = REG_RD(bp, vals->emac_addr);
10464                 REG_WR(bp, vals->emac_addr, 0);
10465                 mac_stopped = true;
10466         } else {
10467                 if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
10468                         BNX2X_DEV_INFO("Disable xmac Rx\n");
10469                         base_addr = BP_PORT(bp) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
10470                         val = REG_RD(bp, base_addr + XMAC_REG_PFC_CTRL_HI);
10471                         REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
10472                                val & ~(1 << 1));
10473                         REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
10474                                val | (1 << 1));
10475                         vals->xmac_addr = base_addr + XMAC_REG_CTRL;
10476                         vals->xmac_val = REG_RD(bp, vals->xmac_addr);
10477                         REG_WR(bp, vals->xmac_addr, 0);
10478                         mac_stopped = true;
10479                 }
10480
10481                 mac_stopped |= bnx2x_prev_unload_close_umac(bp, 0,
10482                                                             reset_reg, vals);
10483                 mac_stopped |= bnx2x_prev_unload_close_umac(bp, 1,
10484                                                             reset_reg, vals);
10485         }
10486
10487         if (mac_stopped)
10488                 msleep(20);
10489 }
10490
10491 #define BNX2X_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
10492 #define BNX2X_PREV_UNDI_PROD_ADDR_H(f) (BAR_TSTRORM_INTMEM + \
10493                                         0x1848 + ((f) << 4))
10494 #define BNX2X_PREV_UNDI_RCQ(val)        ((val) & 0xffff)
10495 #define BNX2X_PREV_UNDI_BD(val)         ((val) >> 16 & 0xffff)
10496 #define BNX2X_PREV_UNDI_PROD(rcq, bd)   ((bd) << 16 | (rcq))
10497
10498 #define BCM_5710_UNDI_FW_MF_MAJOR       (0x07)
10499 #define BCM_5710_UNDI_FW_MF_MINOR       (0x08)
10500 #define BCM_5710_UNDI_FW_MF_VERS        (0x05)
10501
10502 static bool bnx2x_prev_is_after_undi(struct bnx2x *bp)
10503 {
10504         /* UNDI marks its presence in DORQ -
10505          * it initializes CID offset for normal bell to 0x7
10506          */
10507         if (!(REG_RD(bp, MISC_REG_RESET_REG_1) &
10508             MISC_REGISTERS_RESET_REG_1_RST_DORQ))
10509                 return false;
10510
10511         if (REG_RD(bp, DORQ_REG_NORM_CID_OFST) == 0x7) {
10512                 BNX2X_DEV_INFO("UNDI previously loaded\n");
10513                 return true;
10514         }
10515
10516         return false;
10517 }
10518
10519 static void bnx2x_prev_unload_undi_inc(struct bnx2x *bp, u8 inc)
10520 {
10521         u16 rcq, bd;
10522         u32 addr, tmp_reg;
10523
10524         if (BP_FUNC(bp) < 2)
10525                 addr = BNX2X_PREV_UNDI_PROD_ADDR(BP_PORT(bp));
10526         else
10527                 addr = BNX2X_PREV_UNDI_PROD_ADDR_H(BP_FUNC(bp) - 2);
10528
10529         tmp_reg = REG_RD(bp, addr);
10530         rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc;
10531         bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc;
10532
10533         tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd);
10534         REG_WR(bp, addr, tmp_reg);
10535
10536         BNX2X_DEV_INFO("UNDI producer [%d/%d][%08x] rings bd -> 0x%04x, rcq -> 0x%04x\n",
10537                        BP_PORT(bp), BP_FUNC(bp), addr, bd, rcq);
10538 }
10539
10540 static int bnx2x_prev_mcp_done(struct bnx2x *bp)
10541 {
10542         u32 rc = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE,
10543                                   DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
10544         if (!rc) {
10545                 BNX2X_ERR("MCP response failure, aborting\n");
10546                 return -EBUSY;
10547         }
10548
10549         return 0;
10550 }
10551
10552 static struct bnx2x_prev_path_list *
10553                 bnx2x_prev_path_get_entry(struct bnx2x *bp)
10554 {
10555         struct bnx2x_prev_path_list *tmp_list;
10556
10557         list_for_each_entry(tmp_list, &bnx2x_prev_list, list)
10558                 if (PCI_SLOT(bp->pdev->devfn) == tmp_list->slot &&
10559                     bp->pdev->bus->number == tmp_list->bus &&
10560                     BP_PATH(bp) == tmp_list->path)
10561                         return tmp_list;
10562
10563         return NULL;
10564 }
10565
10566 static int bnx2x_prev_path_mark_eeh(struct bnx2x *bp)
10567 {
10568         struct bnx2x_prev_path_list *tmp_list;
10569         int rc;
10570
10571         rc = down_interruptible(&bnx2x_prev_sem);
10572         if (rc) {
10573                 BNX2X_ERR("Received %d when tried to take lock\n", rc);
10574                 return rc;
10575         }
10576
10577         tmp_list = bnx2x_prev_path_get_entry(bp);
10578         if (tmp_list) {
10579                 tmp_list->aer = 1;
10580                 rc = 0;
10581         } else {
10582                 BNX2X_ERR("path %d: Entry does not exist for eeh; Flow occurs before initial insmod is over ?\n",
10583                           BP_PATH(bp));
10584         }
10585
10586         up(&bnx2x_prev_sem);
10587
10588         return rc;
10589 }
10590
10591 static bool bnx2x_prev_is_path_marked(struct bnx2x *bp)
10592 {
10593         struct bnx2x_prev_path_list *tmp_list;
10594         bool rc = false;
10595
10596         if (down_trylock(&bnx2x_prev_sem))
10597                 return false;
10598
10599         tmp_list = bnx2x_prev_path_get_entry(bp);
10600         if (tmp_list) {
10601                 if (tmp_list->aer) {
10602                         DP(NETIF_MSG_HW, "Path %d was marked by AER\n",
10603                            BP_PATH(bp));
10604                 } else {
10605                         rc = true;
10606                         BNX2X_DEV_INFO("Path %d was already cleaned from previous drivers\n",
10607                                        BP_PATH(bp));
10608                 }
10609         }
10610
10611         up(&bnx2x_prev_sem);
10612
10613         return rc;
10614 }
10615
10616 bool bnx2x_port_after_undi(struct bnx2x *bp)
10617 {
10618         struct bnx2x_prev_path_list *entry;
10619         bool val;
10620
10621         down(&bnx2x_prev_sem);
10622
10623         entry = bnx2x_prev_path_get_entry(bp);
10624         val = !!(entry && (entry->undi & (1 << BP_PORT(bp))));
10625
10626         up(&bnx2x_prev_sem);
10627
10628         return val;
10629 }
10630
10631 static int bnx2x_prev_mark_path(struct bnx2x *bp, bool after_undi)
10632 {
10633         struct bnx2x_prev_path_list *tmp_list;
10634         int rc;
10635
10636         rc = down_interruptible(&bnx2x_prev_sem);
10637         if (rc) {
10638                 BNX2X_ERR("Received %d when tried to take lock\n", rc);
10639                 return rc;
10640         }
10641
10642         /* Check whether the entry for this path already exists */
10643         tmp_list = bnx2x_prev_path_get_entry(bp);
10644         if (tmp_list) {
10645                 if (!tmp_list->aer) {
10646                         BNX2X_ERR("Re-Marking the path.\n");
10647                 } else {
10648                         DP(NETIF_MSG_HW, "Removing AER indication from path %d\n",
10649                            BP_PATH(bp));
10650                         tmp_list->aer = 0;
10651                 }
10652                 up(&bnx2x_prev_sem);
10653                 return 0;
10654         }
10655         up(&bnx2x_prev_sem);
10656
10657         /* Create an entry for this path and add it */
10658         tmp_list = kmalloc(sizeof(struct bnx2x_prev_path_list), GFP_KERNEL);
10659         if (!tmp_list) {
10660                 BNX2X_ERR("Failed to allocate 'bnx2x_prev_path_list'\n");
10661                 return -ENOMEM;
10662         }
10663
10664         tmp_list->bus = bp->pdev->bus->number;
10665         tmp_list->slot = PCI_SLOT(bp->pdev->devfn);
10666         tmp_list->path = BP_PATH(bp);
10667         tmp_list->aer = 0;
10668         tmp_list->undi = after_undi ? (1 << BP_PORT(bp)) : 0;
10669
10670         rc = down_interruptible(&bnx2x_prev_sem);
10671         if (rc) {
10672                 BNX2X_ERR("Received %d when tried to take lock\n", rc);
10673                 kfree(tmp_list);
10674         } else {
10675                 DP(NETIF_MSG_HW, "Marked path [%d] - finished previous unload\n",
10676                    BP_PATH(bp));
10677                 list_add(&tmp_list->list, &bnx2x_prev_list);
10678                 up(&bnx2x_prev_sem);
10679         }
10680
10681         return rc;
10682 }
10683
10684 static int bnx2x_do_flr(struct bnx2x *bp)
10685 {
10686         struct pci_dev *dev = bp->pdev;
10687
10688         if (CHIP_IS_E1x(bp)) {
10689                 BNX2X_DEV_INFO("FLR not supported in E1/E1H\n");
10690                 return -EINVAL;
10691         }
10692
10693         /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
10694         if (bp->common.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
10695                 BNX2X_ERR("FLR not supported by BC_VER: 0x%x\n",
10696                           bp->common.bc_ver);
10697                 return -EINVAL;
10698         }
10699
10700         if (!pci_wait_for_pending_transaction(dev))
10701                 dev_err(&dev->dev, "transaction is not cleared; proceeding with reset anyway\n");
10702
10703         BNX2X_DEV_INFO("Initiating FLR\n");
10704         bnx2x_fw_command(bp, DRV_MSG_CODE_INITIATE_FLR, 0);
10705
10706         return 0;
10707 }
10708
10709 static int bnx2x_prev_unload_uncommon(struct bnx2x *bp)
10710 {
10711         int rc;
10712
10713         BNX2X_DEV_INFO("Uncommon unload Flow\n");
10714
10715         /* Test if previous unload process was already finished for this path */
10716         if (bnx2x_prev_is_path_marked(bp))
10717                 return bnx2x_prev_mcp_done(bp);
10718
10719         BNX2X_DEV_INFO("Path is unmarked\n");
10720
10721         /* Cannot proceed with FLR if UNDI is loaded, since FW does not match */
10722         if (bnx2x_prev_is_after_undi(bp))
10723                 goto out;
10724
10725         /* If function has FLR capabilities, and existing FW version matches
10726          * the one required, then FLR will be sufficient to clean any residue
10727          * left by previous driver
10728          */
10729         rc = bnx2x_compare_fw_ver(bp, FW_MSG_CODE_DRV_LOAD_FUNCTION, false);
10730
10731         if (!rc) {
10732                 /* fw version is good */
10733                 BNX2X_DEV_INFO("FW version matches our own. Attempting FLR\n");
10734                 rc = bnx2x_do_flr(bp);
10735         }
10736
10737         if (!rc) {
10738                 /* FLR was performed */
10739                 BNX2X_DEV_INFO("FLR successful\n");
10740                 return 0;
10741         }
10742
10743         BNX2X_DEV_INFO("Could not FLR\n");
10744
10745 out:
10746         /* Close the MCP request, return failure*/
10747         rc = bnx2x_prev_mcp_done(bp);
10748         if (!rc)
10749                 rc = BNX2X_PREV_WAIT_NEEDED;
10750
10751         return rc;
10752 }
10753
10754 static int bnx2x_prev_unload_common(struct bnx2x *bp)
10755 {
10756         u32 reset_reg, tmp_reg = 0, rc;
10757         bool prev_undi = false;
10758         struct bnx2x_mac_vals mac_vals;
10759
10760         /* It is possible a previous function received 'common' answer,
10761          * but hasn't loaded yet, therefore creating a scenario of
10762          * multiple functions receiving 'common' on the same path.
10763          */
10764         BNX2X_DEV_INFO("Common unload Flow\n");
10765
10766         memset(&mac_vals, 0, sizeof(mac_vals));
10767
10768         if (bnx2x_prev_is_path_marked(bp))
10769                 return bnx2x_prev_mcp_done(bp);
10770
10771         reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1);
10772
10773         /* Reset should be performed after BRB is emptied */
10774         if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
10775                 u32 timer_count = 1000;
10776
10777                 /* Close the MAC Rx to prevent BRB from filling up */
10778                 bnx2x_prev_unload_close_mac(bp, &mac_vals);
10779
10780                 /* close LLH filters for both ports towards the BRB */
10781                 bnx2x_set_rx_filter(&bp->link_params, 0);
10782                 bp->link_params.port ^= 1;
10783                 bnx2x_set_rx_filter(&bp->link_params, 0);
10784                 bp->link_params.port ^= 1;
10785
10786                 /* Check if the UNDI driver was previously loaded */
10787                 if (bnx2x_prev_is_after_undi(bp)) {
10788                         prev_undi = true;
10789                         /* clear the UNDI indication */
10790                         REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0);
10791                         /* clear possible idle check errors */
10792                         REG_RD(bp, NIG_REG_NIG_INT_STS_CLR_0);
10793                 }
10794                 if (!CHIP_IS_E1x(bp))
10795                         /* block FW from writing to host */
10796                         REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
10797
10798                 /* wait until BRB is empty */
10799                 tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10800                 while (timer_count) {
10801                         u32 prev_brb = tmp_reg;
10802
10803                         tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10804                         if (!tmp_reg)
10805                                 break;
10806
10807                         BNX2X_DEV_INFO("BRB still has 0x%08x\n", tmp_reg);
10808
10809                         /* reset timer as long as BRB actually gets emptied */
10810                         if (prev_brb > tmp_reg)
10811                                 timer_count = 1000;
10812                         else
10813                                 timer_count--;
10814
10815                         /* If UNDI resides in memory, manually increment it */
10816                         if (prev_undi)
10817                                 bnx2x_prev_unload_undi_inc(bp, 1);
10818
10819                         udelay(10);
10820                 }
10821
10822                 if (!timer_count)
10823                         BNX2X_ERR("Failed to empty BRB, hope for the best\n");
10824         }
10825
10826         /* No packets are in the pipeline, path is ready for reset */
10827         bnx2x_reset_common(bp);
10828
10829         if (mac_vals.xmac_addr)
10830                 REG_WR(bp, mac_vals.xmac_addr, mac_vals.xmac_val);
10831         if (mac_vals.umac_addr[0])
10832                 REG_WR(bp, mac_vals.umac_addr[0], mac_vals.umac_val[0]);
10833         if (mac_vals.umac_addr[1])
10834                 REG_WR(bp, mac_vals.umac_addr[1], mac_vals.umac_val[1]);
10835         if (mac_vals.emac_addr)
10836                 REG_WR(bp, mac_vals.emac_addr, mac_vals.emac_val);
10837         if (mac_vals.bmac_addr) {
10838                 REG_WR(bp, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
10839                 REG_WR(bp, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
10840         }
10841
10842         rc = bnx2x_prev_mark_path(bp, prev_undi);
10843         if (rc) {
10844                 bnx2x_prev_mcp_done(bp);
10845                 return rc;
10846         }
10847
10848         return bnx2x_prev_mcp_done(bp);
10849 }
10850
10851 static int bnx2x_prev_unload(struct bnx2x *bp)
10852 {
10853         int time_counter = 10;
10854         u32 rc, fw, hw_lock_reg, hw_lock_val;
10855         BNX2X_DEV_INFO("Entering Previous Unload Flow\n");
10856
10857         /* clear hw from errors which may have resulted from an interrupted
10858          * dmae transaction.
10859          */
10860         bnx2x_clean_pglue_errors(bp);
10861
10862         /* Release previously held locks */
10863         hw_lock_reg = (BP_FUNC(bp) <= 5) ?
10864                       (MISC_REG_DRIVER_CONTROL_1 + BP_FUNC(bp) * 8) :
10865                       (MISC_REG_DRIVER_CONTROL_7 + (BP_FUNC(bp) - 6) * 8);
10866
10867         hw_lock_val = REG_RD(bp, hw_lock_reg);
10868         if (hw_lock_val) {
10869                 if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
10870                         BNX2X_DEV_INFO("Release Previously held NVRAM lock\n");
10871                         REG_WR(bp, MCP_REG_MCPR_NVM_SW_ARB,
10872                                (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << BP_PORT(bp)));
10873                 }
10874
10875                 BNX2X_DEV_INFO("Release Previously held hw lock\n");
10876                 REG_WR(bp, hw_lock_reg, 0xffffffff);
10877         } else
10878                 BNX2X_DEV_INFO("No need to release hw/nvram locks\n");
10879
10880         if (MCPR_ACCESS_LOCK_LOCK & REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK)) {
10881                 BNX2X_DEV_INFO("Release previously held alr\n");
10882                 bnx2x_release_alr(bp);
10883         }
10884
10885         do {
10886                 int aer = 0;
10887                 /* Lock MCP using an unload request */
10888                 fw = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
10889                 if (!fw) {
10890                         BNX2X_ERR("MCP response failure, aborting\n");
10891                         rc = -EBUSY;
10892                         break;
10893                 }
10894
10895                 rc = down_interruptible(&bnx2x_prev_sem);
10896                 if (rc) {
10897                         BNX2X_ERR("Cannot check for AER; Received %d when tried to take lock\n",
10898                                   rc);
10899                 } else {
10900                         /* If Path is marked by EEH, ignore unload status */
10901                         aer = !!(bnx2x_prev_path_get_entry(bp) &&
10902                                  bnx2x_prev_path_get_entry(bp)->aer);
10903                         up(&bnx2x_prev_sem);
10904                 }
10905
10906                 if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON || aer) {
10907                         rc = bnx2x_prev_unload_common(bp);
10908                         break;
10909                 }
10910
10911                 /* non-common reply from MCP might require looping */
10912                 rc = bnx2x_prev_unload_uncommon(bp);
10913                 if (rc != BNX2X_PREV_WAIT_NEEDED)
10914                         break;
10915
10916                 msleep(20);
10917         } while (--time_counter);
10918
10919         if (!time_counter || rc) {
10920                 BNX2X_DEV_INFO("Unloading previous driver did not occur, Possibly due to MF UNDI\n");
10921                 rc = -EPROBE_DEFER;
10922         }
10923
10924         /* Mark function if its port was used to boot from SAN */
10925         if (bnx2x_port_after_undi(bp))
10926                 bp->link_params.feature_config_flags |=
10927                         FEATURE_CONFIG_BOOT_FROM_SAN;
10928
10929         BNX2X_DEV_INFO("Finished Previous Unload Flow [%d]\n", rc);
10930
10931         return rc;
10932 }
10933
10934 static void bnx2x_get_common_hwinfo(struct bnx2x *bp)
10935 {
10936         u32 val, val2, val3, val4, id, boot_mode;
10937         u16 pmc;
10938
10939         /* Get the chip revision id and number. */
10940         /* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
10941         val = REG_RD(bp, MISC_REG_CHIP_NUM);
10942         id = ((val & 0xffff) << 16);
10943         val = REG_RD(bp, MISC_REG_CHIP_REV);
10944         id |= ((val & 0xf) << 12);
10945
10946         /* Metal is read from PCI regs, but we can't access >=0x400 from
10947          * the configuration space (so we need to reg_rd)
10948          */
10949         val = REG_RD(bp, PCICFG_OFFSET + PCI_ID_VAL3);
10950         id |= (((val >> 24) & 0xf) << 4);
10951         val = REG_RD(bp, MISC_REG_BOND_ID);
10952         id |= (val & 0xf);
10953         bp->common.chip_id = id;
10954
10955         /* force 57811 according to MISC register */
10956         if (REG_RD(bp, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
10957                 if (CHIP_IS_57810(bp))
10958                         bp->common.chip_id = (CHIP_NUM_57811 << 16) |
10959                                 (bp->common.chip_id & 0x0000FFFF);
10960                 else if (CHIP_IS_57810_MF(bp))
10961                         bp->common.chip_id = (CHIP_NUM_57811_MF << 16) |
10962                                 (bp->common.chip_id & 0x0000FFFF);
10963                 bp->common.chip_id |= 0x1;
10964         }
10965
10966         /* Set doorbell size */
10967         bp->db_size = (1 << BNX2X_DB_SHIFT);
10968
10969         if (!CHIP_IS_E1x(bp)) {
10970                 val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR);
10971                 if ((val & 1) == 0)
10972                         val = REG_RD(bp, MISC_REG_PORT4MODE_EN);
10973                 else
10974                         val = (val >> 1) & 1;
10975                 BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" :
10976                                                        "2_PORT_MODE");
10977                 bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE :
10978                                                  CHIP_2_PORT_MODE;
10979
10980                 if (CHIP_MODE_IS_4_PORT(bp))
10981                         bp->pfid = (bp->pf_num >> 1);   /* 0..3 */
10982                 else
10983                         bp->pfid = (bp->pf_num & 0x6);  /* 0, 2, 4, 6 */
10984         } else {
10985                 bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */
10986                 bp->pfid = bp->pf_num;                  /* 0..7 */
10987         }
10988
10989         BNX2X_DEV_INFO("pf_id: %x", bp->pfid);
10990
10991         bp->link_params.chip_id = bp->common.chip_id;
10992         BNX2X_DEV_INFO("chip ID is 0x%x\n", id);
10993
10994         val = (REG_RD(bp, 0x2874) & 0x55);
10995         if ((bp->common.chip_id & 0x1) ||
10996             (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) {
10997                 bp->flags |= ONE_PORT_FLAG;
10998                 BNX2X_DEV_INFO("single port device\n");
10999         }
11000
11001         val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4);
11002         bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE <<
11003                                  (val & MCPR_NVM_CFG4_FLASH_SIZE));
11004         BNX2X_DEV_INFO("flash_size 0x%x (%d)\n",
11005                        bp->common.flash_size, bp->common.flash_size);
11006
11007         bnx2x_init_shmem(bp);
11008
11009         bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ?
11010                                         MISC_REG_GENERIC_CR_1 :
11011                                         MISC_REG_GENERIC_CR_0));
11012
11013         bp->link_params.shmem_base = bp->common.shmem_base;
11014         bp->link_params.shmem2_base = bp->common.shmem2_base;
11015         if (SHMEM2_RD(bp, size) >
11016             (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
11017                 bp->link_params.lfa_base =
11018                 REG_RD(bp, bp->common.shmem2_base +
11019                        (u32)offsetof(struct shmem2_region,
11020                                      lfa_host_addr[BP_PORT(bp)]));
11021         else
11022                 bp->link_params.lfa_base = 0;
11023         BNX2X_DEV_INFO("shmem offset 0x%x  shmem2 offset 0x%x\n",
11024                        bp->common.shmem_base, bp->common.shmem2_base);
11025
11026         if (!bp->common.shmem_base) {
11027                 BNX2X_DEV_INFO("MCP not active\n");
11028                 bp->flags |= NO_MCP_FLAG;
11029                 return;
11030         }
11031
11032         bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config);
11033         BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config);
11034
11035         bp->link_params.hw_led_mode = ((bp->common.hw_config &
11036                                         SHARED_HW_CFG_LED_MODE_MASK) >>
11037                                        SHARED_HW_CFG_LED_MODE_SHIFT);
11038
11039         bp->link_params.feature_config_flags = 0;
11040         val = SHMEM_RD(bp, dev_info.shared_feature_config.config);
11041         if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED)
11042                 bp->link_params.feature_config_flags |=
11043                                 FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
11044         else
11045                 bp->link_params.feature_config_flags &=
11046                                 ~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
11047
11048         val = SHMEM_RD(bp, dev_info.bc_rev) >> 8;
11049         bp->common.bc_ver = val;
11050         BNX2X_DEV_INFO("bc_ver %X\n", val);
11051         if (val < BNX2X_BC_VER) {
11052                 /* for now only warn
11053                  * later we might need to enforce this */
11054                 BNX2X_ERR("This driver needs bc_ver %X but found %X, please upgrade BC\n",
11055                           BNX2X_BC_VER, val);
11056         }
11057         bp->link_params.feature_config_flags |=
11058                                 (val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
11059                                 FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0;
11060
11061         bp->link_params.feature_config_flags |=
11062                 (val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
11063                 FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
11064         bp->link_params.feature_config_flags |=
11065                 (val >= REQ_BC_VER_4_VRFY_AFEX_SUPPORTED) ?
11066                 FEATURE_CONFIG_BC_SUPPORTS_AFEX : 0;
11067         bp->link_params.feature_config_flags |=
11068                 (val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ?
11069                 FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0;
11070
11071         bp->link_params.feature_config_flags |=
11072                 (val >= REQ_BC_VER_4_MT_SUPPORTED) ?
11073                 FEATURE_CONFIG_MT_SUPPORT : 0;
11074
11075         bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ?
11076                         BC_SUPPORTS_PFC_STATS : 0;
11077
11078         bp->flags |= (val >= REQ_BC_VER_4_FCOE_FEATURES) ?
11079                         BC_SUPPORTS_FCOE_FEATURES : 0;
11080
11081         bp->flags |= (val >= REQ_BC_VER_4_DCBX_ADMIN_MSG_NON_PMF) ?
11082                         BC_SUPPORTS_DCBX_MSG_NON_PMF : 0;
11083
11084         bp->flags |= (val >= REQ_BC_VER_4_RMMOD_CMD) ?
11085                         BC_SUPPORTS_RMMOD_CMD : 0;
11086
11087         boot_mode = SHMEM_RD(bp,
11088                         dev_info.port_feature_config[BP_PORT(bp)].mba_config) &
11089                         PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK;
11090         switch (boot_mode) {
11091         case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE:
11092                 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE;
11093                 break;
11094         case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB:
11095                 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI;
11096                 break;
11097         case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT:
11098                 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE;
11099                 break;
11100         case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE:
11101                 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE;
11102                 break;
11103         }
11104
11105         pci_read_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_PMC, &pmc);
11106         bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG;
11107
11108         BNX2X_DEV_INFO("%sWoL capable\n",
11109                        (bp->flags & NO_WOL_FLAG) ? "not " : "");
11110
11111         val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num);
11112         val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]);
11113         val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]);
11114         val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]);
11115
11116         dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n",
11117                  val, val2, val3, val4);
11118 }
11119
11120 #define IGU_FID(val)    GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
11121 #define IGU_VEC(val)    GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
11122
11123 static int bnx2x_get_igu_cam_info(struct bnx2x *bp)
11124 {
11125         int pfid = BP_FUNC(bp);
11126         int igu_sb_id;
11127         u32 val;
11128         u8 fid, igu_sb_cnt = 0;
11129
11130         bp->igu_base_sb = 0xff;
11131         if (CHIP_INT_MODE_IS_BC(bp)) {
11132                 int vn = BP_VN(bp);
11133                 igu_sb_cnt = bp->igu_sb_cnt;
11134                 bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) *
11135                         FP_SB_MAX_E1x;
11136
11137                 bp->igu_dsb_id =  E1HVN_MAX * FP_SB_MAX_E1x +
11138                         (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn);
11139
11140                 return 0;
11141         }
11142
11143         /* IGU in normal mode - read CAM */
11144         for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
11145              igu_sb_id++) {
11146                 val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
11147                 if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
11148                         continue;
11149                 fid = IGU_FID(val);
11150                 if ((fid & IGU_FID_ENCODE_IS_PF)) {
11151                         if ((fid & IGU_FID_PF_NUM_MASK) != pfid)
11152                                 continue;
11153                         if (IGU_VEC(val) == 0)
11154                                 /* default status block */
11155                                 bp->igu_dsb_id = igu_sb_id;
11156                         else {
11157                                 if (bp->igu_base_sb == 0xff)
11158                                         bp->igu_base_sb = igu_sb_id;
11159                                 igu_sb_cnt++;
11160                         }
11161                 }
11162         }
11163
11164 #ifdef CONFIG_PCI_MSI
11165         /* Due to new PF resource allocation by MFW T7.4 and above, it's
11166          * optional that number of CAM entries will not be equal to the value
11167          * advertised in PCI.
11168          * Driver should use the minimal value of both as the actual status
11169          * block count
11170          */
11171         bp->igu_sb_cnt = min_t(int, bp->igu_sb_cnt, igu_sb_cnt);
11172 #endif
11173
11174         if (igu_sb_cnt == 0) {
11175                 BNX2X_ERR("CAM configuration error\n");
11176                 return -EINVAL;
11177         }
11178
11179         return 0;
11180 }
11181
11182 static void bnx2x_link_settings_supported(struct bnx2x *bp, u32 switch_cfg)
11183 {
11184         int cfg_size = 0, idx, port = BP_PORT(bp);
11185
11186         /* Aggregation of supported attributes of all external phys */
11187         bp->port.supported[0] = 0;
11188         bp->port.supported[1] = 0;
11189         switch (bp->link_params.num_phys) {
11190         case 1:
11191                 bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported;
11192                 cfg_size = 1;
11193                 break;
11194         case 2:
11195                 bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported;
11196                 cfg_size = 1;
11197                 break;
11198         case 3:
11199                 if (bp->link_params.multi_phy_config &
11200                     PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
11201                         bp->port.supported[1] =
11202                                 bp->link_params.phy[EXT_PHY1].supported;
11203                         bp->port.supported[0] =
11204                                 bp->link_params.phy[EXT_PHY2].supported;
11205                 } else {
11206                         bp->port.supported[0] =
11207                                 bp->link_params.phy[EXT_PHY1].supported;
11208                         bp->port.supported[1] =
11209                                 bp->link_params.phy[EXT_PHY2].supported;
11210                 }
11211                 cfg_size = 2;
11212                 break;
11213         }
11214
11215         if (!(bp->port.supported[0] || bp->port.supported[1])) {
11216                 BNX2X_ERR("NVRAM config error. BAD phy config. PHY1 config 0x%x, PHY2 config 0x%x\n",
11217                            SHMEM_RD(bp,
11218                            dev_info.port_hw_config[port].external_phy_config),
11219                            SHMEM_RD(bp,
11220                            dev_info.port_hw_config[port].external_phy_config2));
11221                 return;
11222         }
11223
11224         if (CHIP_IS_E3(bp))
11225                 bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR);
11226         else {
11227                 switch (switch_cfg) {
11228                 case SWITCH_CFG_1G:
11229                         bp->port.phy_addr = REG_RD(
11230                                 bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
11231                         break;
11232                 case SWITCH_CFG_10G:
11233                         bp->port.phy_addr = REG_RD(
11234                                 bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
11235                         break;
11236                 default:
11237                         BNX2X_ERR("BAD switch_cfg link_config 0x%x\n",
11238                                   bp->port.link_config[0]);
11239                         return;
11240                 }
11241         }
11242         BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr);
11243         /* mask what we support according to speed_cap_mask per configuration */
11244         for (idx = 0; idx < cfg_size; idx++) {
11245                 if (!(bp->link_params.speed_cap_mask[idx] &
11246                                 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF))
11247                         bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half;
11248
11249                 if (!(bp->link_params.speed_cap_mask[idx] &
11250                                 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL))
11251                         bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full;
11252
11253                 if (!(bp->link_params.speed_cap_mask[idx] &
11254                                 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF))
11255                         bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half;
11256
11257                 if (!(bp->link_params.speed_cap_mask[idx] &
11258                                 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL))
11259                         bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full;
11260
11261                 if (!(bp->link_params.speed_cap_mask[idx] &
11262                                         PORT_HW_CFG_SPEED_CAPABILITY_D0_1G))
11263                         bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half |
11264                                                      SUPPORTED_1000baseT_Full);
11265
11266                 if (!(bp->link_params.speed_cap_mask[idx] &
11267                                         PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G))
11268                         bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full;
11269
11270                 if (!(bp->link_params.speed_cap_mask[idx] &
11271                                         PORT_HW_CFG_SPEED_CAPABILITY_D0_10G))
11272                         bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full;
11273
11274                 if (!(bp->link_params.speed_cap_mask[idx] &
11275                                         PORT_HW_CFG_SPEED_CAPABILITY_D0_20G))
11276                         bp->port.supported[idx] &= ~SUPPORTED_20000baseKR2_Full;
11277         }
11278
11279         BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0],
11280                        bp->port.supported[1]);
11281 }
11282
11283 static void bnx2x_link_settings_requested(struct bnx2x *bp)
11284 {
11285         u32 link_config, idx, cfg_size = 0;
11286         bp->port.advertising[0] = 0;
11287         bp->port.advertising[1] = 0;
11288         switch (bp->link_params.num_phys) {
11289         case 1:
11290         case 2:
11291                 cfg_size = 1;
11292                 break;
11293         case 3:
11294                 cfg_size = 2;
11295                 break;
11296         }
11297         for (idx = 0; idx < cfg_size; idx++) {
11298                 bp->link_params.req_duplex[idx] = DUPLEX_FULL;
11299                 link_config = bp->port.link_config[idx];
11300                 switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
11301                 case PORT_FEATURE_LINK_SPEED_AUTO:
11302                         if (bp->port.supported[idx] & SUPPORTED_Autoneg) {
11303                                 bp->link_params.req_line_speed[idx] =
11304                                         SPEED_AUTO_NEG;
11305                                 bp->port.advertising[idx] |=
11306                                         bp->port.supported[idx];
11307                                 if (bp->link_params.phy[EXT_PHY1].type ==
11308                                     PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
11309                                         bp->port.advertising[idx] |=
11310                                         (SUPPORTED_100baseT_Half |
11311                                          SUPPORTED_100baseT_Full);
11312                         } else {
11313                                 /* force 10G, no AN */
11314                                 bp->link_params.req_line_speed[idx] =
11315                                         SPEED_10000;
11316                                 bp->port.advertising[idx] |=
11317                                         (ADVERTISED_10000baseT_Full |
11318                                          ADVERTISED_FIBRE);
11319                                 continue;
11320                         }
11321                         break;
11322
11323                 case PORT_FEATURE_LINK_SPEED_10M_FULL:
11324                         if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) {
11325                                 bp->link_params.req_line_speed[idx] =
11326                                         SPEED_10;
11327                                 bp->port.advertising[idx] |=
11328                                         (ADVERTISED_10baseT_Full |
11329                                          ADVERTISED_TP);
11330                         } else {
11331                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11332                                             link_config,
11333                                     bp->link_params.speed_cap_mask[idx]);
11334                                 return;
11335                         }
11336                         break;
11337
11338                 case PORT_FEATURE_LINK_SPEED_10M_HALF:
11339                         if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) {
11340                                 bp->link_params.req_line_speed[idx] =
11341                                         SPEED_10;
11342                                 bp->link_params.req_duplex[idx] =
11343                                         DUPLEX_HALF;
11344                                 bp->port.advertising[idx] |=
11345                                         (ADVERTISED_10baseT_Half |
11346                                          ADVERTISED_TP);
11347                         } else {
11348                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11349                                             link_config,
11350                                           bp->link_params.speed_cap_mask[idx]);
11351                                 return;
11352                         }
11353                         break;
11354
11355                 case PORT_FEATURE_LINK_SPEED_100M_FULL:
11356                         if (bp->port.supported[idx] &
11357                             SUPPORTED_100baseT_Full) {
11358                                 bp->link_params.req_line_speed[idx] =
11359                                         SPEED_100;
11360                                 bp->port.advertising[idx] |=
11361                                         (ADVERTISED_100baseT_Full |
11362                                          ADVERTISED_TP);
11363                         } else {
11364                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11365                                             link_config,
11366                                           bp->link_params.speed_cap_mask[idx]);
11367                                 return;
11368                         }
11369                         break;
11370
11371                 case PORT_FEATURE_LINK_SPEED_100M_HALF:
11372                         if (bp->port.supported[idx] &
11373                             SUPPORTED_100baseT_Half) {
11374                                 bp->link_params.req_line_speed[idx] =
11375                                                                 SPEED_100;
11376                                 bp->link_params.req_duplex[idx] =
11377                                                                 DUPLEX_HALF;
11378                                 bp->port.advertising[idx] |=
11379                                         (ADVERTISED_100baseT_Half |
11380                                          ADVERTISED_TP);
11381                         } else {
11382                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11383                                     link_config,
11384                                     bp->link_params.speed_cap_mask[idx]);
11385                                 return;
11386                         }
11387                         break;
11388
11389                 case PORT_FEATURE_LINK_SPEED_1G:
11390                         if (bp->port.supported[idx] &
11391                             SUPPORTED_1000baseT_Full) {
11392                                 bp->link_params.req_line_speed[idx] =
11393                                         SPEED_1000;
11394                                 bp->port.advertising[idx] |=
11395                                         (ADVERTISED_1000baseT_Full |
11396                                          ADVERTISED_TP);
11397                         } else if (bp->port.supported[idx] &
11398                                    SUPPORTED_1000baseKX_Full) {
11399                                 bp->link_params.req_line_speed[idx] =
11400                                         SPEED_1000;
11401                                 bp->port.advertising[idx] |=
11402                                         ADVERTISED_1000baseKX_Full;
11403                         } else {
11404                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11405                                     link_config,
11406                                     bp->link_params.speed_cap_mask[idx]);
11407                                 return;
11408                         }
11409                         break;
11410
11411                 case PORT_FEATURE_LINK_SPEED_2_5G:
11412                         if (bp->port.supported[idx] &
11413                             SUPPORTED_2500baseX_Full) {
11414                                 bp->link_params.req_line_speed[idx] =
11415                                         SPEED_2500;
11416                                 bp->port.advertising[idx] |=
11417                                         (ADVERTISED_2500baseX_Full |
11418                                                 ADVERTISED_TP);
11419                         } else {
11420                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11421                                     link_config,
11422                                     bp->link_params.speed_cap_mask[idx]);
11423                                 return;
11424                         }
11425                         break;
11426
11427                 case PORT_FEATURE_LINK_SPEED_10G_CX4:
11428                         if (bp->port.supported[idx] &
11429                             SUPPORTED_10000baseT_Full) {
11430                                 bp->link_params.req_line_speed[idx] =
11431                                         SPEED_10000;
11432                                 bp->port.advertising[idx] |=
11433                                         (ADVERTISED_10000baseT_Full |
11434                                                 ADVERTISED_FIBRE);
11435                         } else if (bp->port.supported[idx] &
11436                                    SUPPORTED_10000baseKR_Full) {
11437                                 bp->link_params.req_line_speed[idx] =
11438                                         SPEED_10000;
11439                                 bp->port.advertising[idx] |=
11440                                         (ADVERTISED_10000baseKR_Full |
11441                                                 ADVERTISED_FIBRE);
11442                         } else {
11443                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11444                                     link_config,
11445                                     bp->link_params.speed_cap_mask[idx]);
11446                                 return;
11447                         }
11448                         break;
11449                 case PORT_FEATURE_LINK_SPEED_20G:
11450                         bp->link_params.req_line_speed[idx] = SPEED_20000;
11451
11452                         break;
11453                 default:
11454                         BNX2X_ERR("NVRAM config error. BAD link speed link_config 0x%x\n",
11455                                   link_config);
11456                                 bp->link_params.req_line_speed[idx] =
11457                                                         SPEED_AUTO_NEG;
11458                                 bp->port.advertising[idx] =
11459                                                 bp->port.supported[idx];
11460                         break;
11461                 }
11462
11463                 bp->link_params.req_flow_ctrl[idx] = (link_config &
11464                                          PORT_FEATURE_FLOW_CONTROL_MASK);
11465                 if (bp->link_params.req_flow_ctrl[idx] ==
11466                     BNX2X_FLOW_CTRL_AUTO) {
11467                         if (!(bp->port.supported[idx] & SUPPORTED_Autoneg))
11468                                 bp->link_params.req_flow_ctrl[idx] =
11469                                                         BNX2X_FLOW_CTRL_NONE;
11470                         else
11471                                 bnx2x_set_requested_fc(bp);
11472                 }
11473
11474                 BNX2X_DEV_INFO("req_line_speed %d  req_duplex %d req_flow_ctrl 0x%x advertising 0x%x\n",
11475                                bp->link_params.req_line_speed[idx],
11476                                bp->link_params.req_duplex[idx],
11477                                bp->link_params.req_flow_ctrl[idx],
11478                                bp->port.advertising[idx]);
11479         }
11480 }
11481
11482 static void bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi)
11483 {
11484         __be16 mac_hi_be = cpu_to_be16(mac_hi);
11485         __be32 mac_lo_be = cpu_to_be32(mac_lo);
11486         memcpy(mac_buf, &mac_hi_be, sizeof(mac_hi_be));
11487         memcpy(mac_buf + sizeof(mac_hi_be), &mac_lo_be, sizeof(mac_lo_be));
11488 }
11489
11490 static void bnx2x_get_port_hwinfo(struct bnx2x *bp)
11491 {
11492         int port = BP_PORT(bp);
11493         u32 config;
11494         u32 ext_phy_type, ext_phy_config, eee_mode;
11495
11496         bp->link_params.bp = bp;
11497         bp->link_params.port = port;
11498
11499         bp->link_params.lane_config =
11500                 SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config);
11501
11502         bp->link_params.speed_cap_mask[0] =
11503                 SHMEM_RD(bp,
11504                          dev_info.port_hw_config[port].speed_capability_mask) &
11505                 PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
11506         bp->link_params.speed_cap_mask[1] =
11507                 SHMEM_RD(bp,
11508                          dev_info.port_hw_config[port].speed_capability_mask2) &
11509                 PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
11510         bp->port.link_config[0] =
11511                 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config);
11512
11513         bp->port.link_config[1] =
11514                 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2);
11515
11516         bp->link_params.multi_phy_config =
11517                 SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config);
11518         /* If the device is capable of WoL, set the default state according
11519          * to the HW
11520          */
11521         config = SHMEM_RD(bp, dev_info.port_feature_config[port].config);
11522         bp->wol = (!(bp->flags & NO_WOL_FLAG) &&
11523                    (config & PORT_FEATURE_WOL_ENABLED));
11524
11525         if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
11526             PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE && !IS_MF(bp))
11527                 bp->flags |= NO_ISCSI_FLAG;
11528         if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
11529             PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI && !(IS_MF(bp)))
11530                 bp->flags |= NO_FCOE_FLAG;
11531
11532         BNX2X_DEV_INFO("lane_config 0x%08x  speed_cap_mask0 0x%08x  link_config0 0x%08x\n",
11533                        bp->link_params.lane_config,
11534                        bp->link_params.speed_cap_mask[0],
11535                        bp->port.link_config[0]);
11536
11537         bp->link_params.switch_cfg = (bp->port.link_config[0] &
11538                                       PORT_FEATURE_CONNECTED_SWITCH_MASK);
11539         bnx2x_phy_probe(&bp->link_params);
11540         bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg);
11541
11542         bnx2x_link_settings_requested(bp);
11543
11544         /*
11545          * If connected directly, work with the internal PHY, otherwise, work
11546          * with the external PHY
11547          */
11548         ext_phy_config =
11549                 SHMEM_RD(bp,
11550                          dev_info.port_hw_config[port].external_phy_config);
11551         ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config);
11552         if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
11553                 bp->mdio.prtad = bp->port.phy_addr;
11554
11555         else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
11556                  (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
11557                 bp->mdio.prtad =
11558                         XGXS_EXT_PHY_ADDR(ext_phy_config);
11559
11560         /* Configure link feature according to nvram value */
11561         eee_mode = (((SHMEM_RD(bp, dev_info.
11562                       port_feature_config[port].eee_power_mode)) &
11563                      PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
11564                     PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
11565         if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
11566                 bp->link_params.eee_mode = EEE_MODE_ADV_LPI |
11567                                            EEE_MODE_ENABLE_LPI |
11568                                            EEE_MODE_OUTPUT_TIME;
11569         } else {
11570                 bp->link_params.eee_mode = 0;
11571         }
11572 }
11573
11574 void bnx2x_get_iscsi_info(struct bnx2x *bp)
11575 {
11576         u32 no_flags = NO_ISCSI_FLAG;
11577         int port = BP_PORT(bp);
11578         u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
11579                                 drv_lic_key[port].max_iscsi_conn);
11580
11581         if (!CNIC_SUPPORT(bp)) {
11582                 bp->flags |= no_flags;
11583                 return;
11584         }
11585
11586         /* Get the number of maximum allowed iSCSI connections */
11587         bp->cnic_eth_dev.max_iscsi_conn =
11588                 (max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >>
11589                 BNX2X_MAX_ISCSI_INIT_CONN_SHIFT;
11590
11591         BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n",
11592                        bp->cnic_eth_dev.max_iscsi_conn);
11593
11594         /*
11595          * If maximum allowed number of connections is zero -
11596          * disable the feature.
11597          */
11598         if (!bp->cnic_eth_dev.max_iscsi_conn)
11599                 bp->flags |= no_flags;
11600 }
11601
11602 static void bnx2x_get_ext_wwn_info(struct bnx2x *bp, int func)
11603 {
11604         /* Port info */
11605         bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
11606                 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_upper);
11607         bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
11608                 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_lower);
11609
11610         /* Node info */
11611         bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
11612                 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_upper);
11613         bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
11614                 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_lower);
11615 }
11616
11617 static int bnx2x_shared_fcoe_funcs(struct bnx2x *bp)
11618 {
11619         u8 count = 0;
11620
11621         if (IS_MF(bp)) {
11622                 u8 fid;
11623
11624                 /* iterate over absolute function ids for this path: */
11625                 for (fid = BP_PATH(bp); fid < E2_FUNC_MAX * 2; fid += 2) {
11626                         if (IS_MF_SD(bp)) {
11627                                 u32 cfg = MF_CFG_RD(bp,
11628                                                     func_mf_config[fid].config);
11629
11630                                 if (!(cfg & FUNC_MF_CFG_FUNC_HIDE) &&
11631                                     ((cfg & FUNC_MF_CFG_PROTOCOL_MASK) ==
11632                                             FUNC_MF_CFG_PROTOCOL_FCOE))
11633                                         count++;
11634                         } else {
11635                                 u32 cfg = MF_CFG_RD(bp,
11636                                                     func_ext_config[fid].
11637                                                                       func_cfg);
11638
11639                                 if ((cfg & MACP_FUNC_CFG_FLAGS_ENABLED) &&
11640                                     (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD))
11641                                         count++;
11642                         }
11643                 }
11644         } else { /* SF */
11645                 int port, port_cnt = CHIP_MODE_IS_4_PORT(bp) ? 2 : 1;
11646
11647                 for (port = 0; port < port_cnt; port++) {
11648                         u32 lic = SHMEM_RD(bp,
11649                                            drv_lic_key[port].max_fcoe_conn) ^
11650                                   FW_ENCODE_32BIT_PATTERN;
11651                         if (lic)
11652                                 count++;
11653                 }
11654         }
11655
11656         return count;
11657 }
11658
11659 static void bnx2x_get_fcoe_info(struct bnx2x *bp)
11660 {
11661         int port = BP_PORT(bp);
11662         int func = BP_ABS_FUNC(bp);
11663         u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
11664                                 drv_lic_key[port].max_fcoe_conn);
11665         u8 num_fcoe_func = bnx2x_shared_fcoe_funcs(bp);
11666
11667         if (!CNIC_SUPPORT(bp)) {
11668                 bp->flags |= NO_FCOE_FLAG;
11669                 return;
11670         }
11671
11672         /* Get the number of maximum allowed FCoE connections */
11673         bp->cnic_eth_dev.max_fcoe_conn =
11674                 (max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >>
11675                 BNX2X_MAX_FCOE_INIT_CONN_SHIFT;
11676
11677         /* Calculate the number of maximum allowed FCoE tasks */
11678         bp->cnic_eth_dev.max_fcoe_exchanges = MAX_NUM_FCOE_TASKS_PER_ENGINE;
11679
11680         /* check if FCoE resources must be shared between different functions */
11681         if (num_fcoe_func)
11682                 bp->cnic_eth_dev.max_fcoe_exchanges /= num_fcoe_func;
11683
11684         /* Read the WWN: */
11685         if (!IS_MF(bp)) {
11686                 /* Port info */
11687                 bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
11688                         SHMEM_RD(bp,
11689                                  dev_info.port_hw_config[port].
11690                                  fcoe_wwn_port_name_upper);
11691                 bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
11692                         SHMEM_RD(bp,
11693                                  dev_info.port_hw_config[port].
11694                                  fcoe_wwn_port_name_lower);
11695
11696                 /* Node info */
11697                 bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
11698                         SHMEM_RD(bp,
11699                                  dev_info.port_hw_config[port].
11700                                  fcoe_wwn_node_name_upper);
11701                 bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
11702                         SHMEM_RD(bp,
11703                                  dev_info.port_hw_config[port].
11704                                  fcoe_wwn_node_name_lower);
11705         } else if (!IS_MF_SD(bp)) {
11706                 /* Read the WWN info only if the FCoE feature is enabled for
11707                  * this function.
11708                  */
11709                 if (BNX2X_HAS_MF_EXT_PROTOCOL_FCOE(bp))
11710                         bnx2x_get_ext_wwn_info(bp, func);
11711         } else {
11712                 if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp) && !CHIP_IS_E1x(bp))
11713                         bnx2x_get_ext_wwn_info(bp, func);
11714         }
11715
11716         BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn);
11717
11718         /*
11719          * If maximum allowed number of connections is zero -
11720          * disable the feature.
11721          */
11722         if (!bp->cnic_eth_dev.max_fcoe_conn) {
11723                 bp->flags |= NO_FCOE_FLAG;
11724                 eth_zero_addr(bp->fip_mac);
11725         }
11726 }
11727
11728 static void bnx2x_get_cnic_info(struct bnx2x *bp)
11729 {
11730         /*
11731          * iSCSI may be dynamically disabled but reading
11732          * info here we will decrease memory usage by driver
11733          * if the feature is disabled for good
11734          */
11735         bnx2x_get_iscsi_info(bp);
11736         bnx2x_get_fcoe_info(bp);
11737 }
11738
11739 static void bnx2x_get_cnic_mac_hwinfo(struct bnx2x *bp)
11740 {
11741         u32 val, val2;
11742         int func = BP_ABS_FUNC(bp);
11743         int port = BP_PORT(bp);
11744         u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac;
11745         u8 *fip_mac = bp->fip_mac;
11746
11747         if (IS_MF(bp)) {
11748                 /* iSCSI and FCoE NPAR MACs: if there is no either iSCSI or
11749                  * FCoE MAC then the appropriate feature should be disabled.
11750                  * In non SD mode features configuration comes from struct
11751                  * func_ext_config.
11752                  */
11753                 if (!IS_MF_SD(bp)) {
11754                         u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
11755                         if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
11756                                 val2 = MF_CFG_RD(bp, func_ext_config[func].
11757                                                  iscsi_mac_addr_upper);
11758                                 val = MF_CFG_RD(bp, func_ext_config[func].
11759                                                 iscsi_mac_addr_lower);
11760                                 bnx2x_set_mac_buf(iscsi_mac, val, val2);
11761                                 BNX2X_DEV_INFO
11762                                         ("Read iSCSI MAC: %pM\n", iscsi_mac);
11763                         } else {
11764                                 bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11765                         }
11766
11767                         if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
11768                                 val2 = MF_CFG_RD(bp, func_ext_config[func].
11769                                                  fcoe_mac_addr_upper);
11770                                 val = MF_CFG_RD(bp, func_ext_config[func].
11771                                                 fcoe_mac_addr_lower);
11772                                 bnx2x_set_mac_buf(fip_mac, val, val2);
11773                                 BNX2X_DEV_INFO
11774                                         ("Read FCoE L2 MAC: %pM\n", fip_mac);
11775                         } else {
11776                                 bp->flags |= NO_FCOE_FLAG;
11777                         }
11778
11779                         bp->mf_ext_config = cfg;
11780
11781                 } else { /* SD MODE */
11782                         if (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp)) {
11783                                 /* use primary mac as iscsi mac */
11784                                 memcpy(iscsi_mac, bp->dev->dev_addr, ETH_ALEN);
11785
11786                                 BNX2X_DEV_INFO("SD ISCSI MODE\n");
11787                                 BNX2X_DEV_INFO
11788                                         ("Read iSCSI MAC: %pM\n", iscsi_mac);
11789                         } else if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)) {
11790                                 /* use primary mac as fip mac */
11791                                 memcpy(fip_mac, bp->dev->dev_addr, ETH_ALEN);
11792                                 BNX2X_DEV_INFO("SD FCoE MODE\n");
11793                                 BNX2X_DEV_INFO
11794                                         ("Read FIP MAC: %pM\n", fip_mac);
11795                         }
11796                 }
11797
11798                 /* If this is a storage-only interface, use SAN mac as
11799                  * primary MAC. Notice that for SD this is already the case,
11800                  * as the SAN mac was copied from the primary MAC.
11801                  */
11802                 if (IS_MF_FCOE_AFEX(bp))
11803                         eth_hw_addr_set(bp->dev, fip_mac);
11804         } else {
11805                 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11806                                 iscsi_mac_upper);
11807                 val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11808                                iscsi_mac_lower);
11809                 bnx2x_set_mac_buf(iscsi_mac, val, val2);
11810
11811                 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11812                                 fcoe_fip_mac_upper);
11813                 val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11814                                fcoe_fip_mac_lower);
11815                 bnx2x_set_mac_buf(fip_mac, val, val2);
11816         }
11817
11818         /* Disable iSCSI OOO if MAC configuration is invalid. */
11819         if (!is_valid_ether_addr(iscsi_mac)) {
11820                 bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11821                 eth_zero_addr(iscsi_mac);
11822         }
11823
11824         /* Disable FCoE if MAC configuration is invalid. */
11825         if (!is_valid_ether_addr(fip_mac)) {
11826                 bp->flags |= NO_FCOE_FLAG;
11827                 eth_zero_addr(bp->fip_mac);
11828         }
11829 }
11830
11831 static void bnx2x_get_mac_hwinfo(struct bnx2x *bp)
11832 {
11833         u32 val, val2;
11834         int func = BP_ABS_FUNC(bp);
11835         int port = BP_PORT(bp);
11836         u8 addr[ETH_ALEN] = {};
11837
11838         /* Zero primary MAC configuration */
11839         eth_hw_addr_set(bp->dev, addr);
11840
11841         if (BP_NOMCP(bp)) {
11842                 BNX2X_ERROR("warning: random MAC workaround active\n");
11843                 eth_hw_addr_random(bp->dev);
11844         } else if (IS_MF(bp)) {
11845                 val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
11846                 val = MF_CFG_RD(bp, func_mf_config[func].mac_lower);
11847                 if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) &&
11848                     (val != FUNC_MF_CFG_LOWERMAC_DEFAULT)) {
11849                         bnx2x_set_mac_buf(addr, val, val2);
11850                         eth_hw_addr_set(bp->dev, addr);
11851                 }
11852
11853                 if (CNIC_SUPPORT(bp))
11854                         bnx2x_get_cnic_mac_hwinfo(bp);
11855         } else {
11856                 /* in SF read MACs from port configuration */
11857                 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11858                 val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11859                 bnx2x_set_mac_buf(addr, val, val2);
11860                 eth_hw_addr_set(bp->dev, addr);
11861
11862                 if (CNIC_SUPPORT(bp))
11863                         bnx2x_get_cnic_mac_hwinfo(bp);
11864         }
11865
11866         if (!BP_NOMCP(bp)) {
11867                 /* Read physical port identifier from shmem */
11868                 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11869                 val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11870                 bnx2x_set_mac_buf(bp->phys_port_id, val, val2);
11871                 bp->flags |= HAS_PHYS_PORT_ID;
11872         }
11873
11874         memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN);
11875
11876         if (!is_valid_ether_addr(bp->dev->dev_addr))
11877                 dev_err(&bp->pdev->dev,
11878                         "bad Ethernet MAC address configuration: %pM\n"
11879                         "change it manually before bringing up the appropriate network interface\n",
11880                         bp->dev->dev_addr);
11881 }
11882
11883 static bool bnx2x_get_dropless_info(struct bnx2x *bp)
11884 {
11885         int tmp;
11886         u32 cfg;
11887
11888         if (IS_VF(bp))
11889                 return false;
11890
11891         if (IS_MF(bp) && !CHIP_IS_E1x(bp)) {
11892                 /* Take function: tmp = func */
11893                 tmp = BP_ABS_FUNC(bp);
11894                 cfg = MF_CFG_RD(bp, func_ext_config[tmp].func_cfg);
11895                 cfg = !!(cfg & MACP_FUNC_CFG_PAUSE_ON_HOST_RING);
11896         } else {
11897                 /* Take port: tmp = port */
11898                 tmp = BP_PORT(bp);
11899                 cfg = SHMEM_RD(bp,
11900                                dev_info.port_hw_config[tmp].generic_features);
11901                 cfg = !!(cfg & PORT_HW_CFG_PAUSE_ON_HOST_RING_ENABLED);
11902         }
11903         return cfg;
11904 }
11905
11906 static void validate_set_si_mode(struct bnx2x *bp)
11907 {
11908         u8 func = BP_ABS_FUNC(bp);
11909         u32 val;
11910
11911         val = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
11912
11913         /* check for legal mac (upper bytes) */
11914         if (val != 0xffff) {
11915                 bp->mf_mode = MULTI_FUNCTION_SI;
11916                 bp->mf_config[BP_VN(bp)] =
11917                         MF_CFG_RD(bp, func_mf_config[func].config);
11918         } else
11919                 BNX2X_DEV_INFO("illegal MAC address for SI\n");
11920 }
11921
11922 static int bnx2x_get_hwinfo(struct bnx2x *bp)
11923 {
11924         int /*abs*/func = BP_ABS_FUNC(bp);
11925         int vn;
11926         u32 val = 0, val2 = 0;
11927         int rc = 0;
11928
11929         /* Validate that chip access is feasible */
11930         if (REG_RD(bp, MISC_REG_CHIP_NUM) == 0xffffffff) {
11931                 dev_err(&bp->pdev->dev,
11932                         "Chip read returns all Fs. Preventing probe from continuing\n");
11933                 return -EINVAL;
11934         }
11935
11936         bnx2x_get_common_hwinfo(bp);
11937
11938         /*
11939          * initialize IGU parameters
11940          */
11941         if (CHIP_IS_E1x(bp)) {
11942                 bp->common.int_block = INT_BLOCK_HC;
11943
11944                 bp->igu_dsb_id = DEF_SB_IGU_ID;
11945                 bp->igu_base_sb = 0;
11946         } else {
11947                 bp->common.int_block = INT_BLOCK_IGU;
11948
11949                 /* do not allow device reset during IGU info processing */
11950                 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11951
11952                 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
11953
11954                 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11955                         int tout = 5000;
11956
11957                         BNX2X_DEV_INFO("FORCING Normal Mode\n");
11958
11959                         val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
11960                         REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val);
11961                         REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f);
11962
11963                         while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11964                                 tout--;
11965                                 usleep_range(1000, 2000);
11966                         }
11967
11968                         if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11969                                 dev_err(&bp->pdev->dev,
11970                                         "FORCING Normal Mode failed!!!\n");
11971                                 bnx2x_release_hw_lock(bp,
11972                                                       HW_LOCK_RESOURCE_RESET);
11973                                 return -EPERM;
11974                         }
11975                 }
11976
11977                 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11978                         BNX2X_DEV_INFO("IGU Backward Compatible Mode\n");
11979                         bp->common.int_block |= INT_BLOCK_MODE_BW_COMP;
11980                 } else
11981                         BNX2X_DEV_INFO("IGU Normal Mode\n");
11982
11983                 rc = bnx2x_get_igu_cam_info(bp);
11984                 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11985                 if (rc)
11986                         return rc;
11987         }
11988
11989         /*
11990          * set base FW non-default (fast path) status block id, this value is
11991          * used to initialize the fw_sb_id saved on the fp/queue structure to
11992          * determine the id used by the FW.
11993          */
11994         if (CHIP_IS_E1x(bp))
11995                 bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp);
11996         else /*
11997               * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of
11998               * the same queue are indicated on the same IGU SB). So we prefer
11999               * FW and IGU SBs to be the same value.
12000               */
12001                 bp->base_fw_ndsb = bp->igu_base_sb;
12002
12003         BNX2X_DEV_INFO("igu_dsb_id %d  igu_base_sb %d  igu_sb_cnt %d\n"
12004                        "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb,
12005                        bp->igu_sb_cnt, bp->base_fw_ndsb);
12006
12007         /*
12008          * Initialize MF configuration
12009          */
12010         bp->mf_ov = 0;
12011         bp->mf_mode = 0;
12012         bp->mf_sub_mode = 0;
12013         vn = BP_VN(bp);
12014
12015         if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) {
12016                 BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n",
12017                                bp->common.shmem2_base, SHMEM2_RD(bp, size),
12018                               (u32)offsetof(struct shmem2_region, mf_cfg_addr));
12019
12020                 if (SHMEM2_HAS(bp, mf_cfg_addr))
12021                         bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr);
12022                 else
12023                         bp->common.mf_cfg_base = bp->common.shmem_base +
12024                                 offsetof(struct shmem_region, func_mb) +
12025                                 E1H_FUNC_MAX * sizeof(struct drv_func_mb);
12026                 /*
12027                  * get mf configuration:
12028                  * 1. Existence of MF configuration
12029                  * 2. MAC address must be legal (check only upper bytes)
12030                  *    for  Switch-Independent mode;
12031                  *    OVLAN must be legal for Switch-Dependent mode
12032                  * 3. SF_MODE configures specific MF mode
12033                  */
12034                 if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
12035                         /* get mf configuration */
12036                         val = SHMEM_RD(bp,
12037                                        dev_info.shared_feature_config.config);
12038                         val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK;
12039
12040                         switch (val) {
12041                         case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
12042                                 validate_set_si_mode(bp);
12043                                 break;
12044                         case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
12045                                 if ((!CHIP_IS_E1x(bp)) &&
12046                                     (MF_CFG_RD(bp, func_mf_config[func].
12047                                                mac_upper) != 0xffff) &&
12048                                     (SHMEM2_HAS(bp,
12049                                                 afex_driver_support))) {
12050                                         bp->mf_mode = MULTI_FUNCTION_AFEX;
12051                                         bp->mf_config[vn] = MF_CFG_RD(bp,
12052                                                 func_mf_config[func].config);
12053                                 } else {
12054                                         BNX2X_DEV_INFO("can not configure afex mode\n");
12055                                 }
12056                                 break;
12057                         case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
12058                                 /* get OV configuration */
12059                                 val = MF_CFG_RD(bp,
12060                                         func_mf_config[FUNC_0].e1hov_tag);
12061                                 val &= FUNC_MF_CFG_E1HOV_TAG_MASK;
12062
12063                                 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
12064                                         bp->mf_mode = MULTI_FUNCTION_SD;
12065                                         bp->mf_config[vn] = MF_CFG_RD(bp,
12066                                                 func_mf_config[func].config);
12067                                 } else
12068                                         BNX2X_DEV_INFO("illegal OV for SD\n");
12069                                 break;
12070                         case SHARED_FEAT_CFG_FORCE_SF_MODE_BD_MODE:
12071                                 bp->mf_mode = MULTI_FUNCTION_SD;
12072                                 bp->mf_sub_mode = SUB_MF_MODE_BD;
12073                                 bp->mf_config[vn] =
12074                                         MF_CFG_RD(bp,
12075                                                   func_mf_config[func].config);
12076
12077                                 if (SHMEM2_HAS(bp, mtu_size)) {
12078                                         int mtu_idx = BP_FW_MB_IDX(bp);
12079                                         u16 mtu_size;
12080                                         u32 mtu;
12081
12082                                         mtu = SHMEM2_RD(bp, mtu_size[mtu_idx]);
12083                                         mtu_size = (u16)mtu;
12084                                         DP(NETIF_MSG_IFUP, "Read MTU size %04x [%08x]\n",
12085                                            mtu_size, mtu);
12086
12087                                         /* if valid: update device mtu */
12088                                         if ((mtu_size >= ETH_MIN_PACKET_SIZE) &&
12089                                             (mtu_size <=
12090                                              ETH_MAX_JUMBO_PACKET_SIZE))
12091                                                 bp->dev->mtu = mtu_size;
12092                                 }
12093                                 break;
12094                         case SHARED_FEAT_CFG_FORCE_SF_MODE_UFP_MODE:
12095                                 bp->mf_mode = MULTI_FUNCTION_SD;
12096                                 bp->mf_sub_mode = SUB_MF_MODE_UFP;
12097                                 bp->mf_config[vn] =
12098                                         MF_CFG_RD(bp,
12099                                                   func_mf_config[func].config);
12100                                 break;
12101                         case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
12102                                 bp->mf_config[vn] = 0;
12103                                 break;
12104                         case SHARED_FEAT_CFG_FORCE_SF_MODE_EXTENDED_MODE:
12105                                 val2 = SHMEM_RD(bp,
12106                                         dev_info.shared_hw_config.config_3);
12107                                 val2 &= SHARED_HW_CFG_EXTENDED_MF_MODE_MASK;
12108                                 switch (val2) {
12109                                 case SHARED_HW_CFG_EXTENDED_MF_MODE_NPAR1_DOT_5:
12110                                         validate_set_si_mode(bp);
12111                                         bp->mf_sub_mode =
12112                                                         SUB_MF_MODE_NPAR1_DOT_5;
12113                                         break;
12114                                 default:
12115                                         /* Unknown configuration */
12116                                         bp->mf_config[vn] = 0;
12117                                         BNX2X_DEV_INFO("unknown extended MF mode 0x%x\n",
12118                                                        val);
12119                                 }
12120                                 break;
12121                         default:
12122                                 /* Unknown configuration: reset mf_config */
12123                                 bp->mf_config[vn] = 0;
12124                                 BNX2X_DEV_INFO("unknown MF mode 0x%x\n", val);
12125                         }
12126                 }
12127
12128                 BNX2X_DEV_INFO("%s function mode\n",
12129                                IS_MF(bp) ? "multi" : "single");
12130
12131                 switch (bp->mf_mode) {
12132                 case MULTI_FUNCTION_SD:
12133                         val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
12134                               FUNC_MF_CFG_E1HOV_TAG_MASK;
12135                         if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
12136                                 bp->mf_ov = val;
12137                                 bp->path_has_ovlan = true;
12138
12139                                 BNX2X_DEV_INFO("MF OV for func %d is %d (0x%04x)\n",
12140                                                func, bp->mf_ov, bp->mf_ov);
12141                         } else if ((bp->mf_sub_mode == SUB_MF_MODE_UFP) ||
12142                                    (bp->mf_sub_mode == SUB_MF_MODE_BD)) {
12143                                 dev_err(&bp->pdev->dev,
12144                                         "Unexpected - no valid MF OV for func %d in UFP/BD mode\n",
12145                                         func);
12146                                 bp->path_has_ovlan = true;
12147                         } else {
12148                                 dev_err(&bp->pdev->dev,
12149                                         "No valid MF OV for func %d, aborting\n",
12150                                         func);
12151                                 return -EPERM;
12152                         }
12153                         break;
12154                 case MULTI_FUNCTION_AFEX:
12155                         BNX2X_DEV_INFO("func %d is in MF afex mode\n", func);
12156                         break;
12157                 case MULTI_FUNCTION_SI:
12158                         BNX2X_DEV_INFO("func %d is in MF switch-independent mode\n",
12159                                        func);
12160                         break;
12161                 default:
12162                         if (vn) {
12163                                 dev_err(&bp->pdev->dev,
12164                                         "VN %d is in a single function mode, aborting\n",
12165                                         vn);
12166                                 return -EPERM;
12167                         }
12168                         break;
12169                 }
12170
12171                 /* check if other port on the path needs ovlan:
12172                  * Since MF configuration is shared between ports
12173                  * Possible mixed modes are only
12174                  * {SF, SI} {SF, SD} {SD, SF} {SI, SF}
12175                  */
12176                 if (CHIP_MODE_IS_4_PORT(bp) &&
12177                     !bp->path_has_ovlan &&
12178                     !IS_MF(bp) &&
12179                     bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
12180                         u8 other_port = !BP_PORT(bp);
12181                         u8 other_func = BP_PATH(bp) + 2*other_port;
12182                         val = MF_CFG_RD(bp,
12183                                         func_mf_config[other_func].e1hov_tag);
12184                         if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT)
12185                                 bp->path_has_ovlan = true;
12186                 }
12187         }
12188
12189         /* adjust igu_sb_cnt to MF for E1H */
12190         if (CHIP_IS_E1H(bp) && IS_MF(bp))
12191                 bp->igu_sb_cnt = min_t(u8, bp->igu_sb_cnt, E1H_MAX_MF_SB_COUNT);
12192
12193         /* port info */
12194         bnx2x_get_port_hwinfo(bp);
12195
12196         /* Get MAC addresses */
12197         bnx2x_get_mac_hwinfo(bp);
12198
12199         bnx2x_get_cnic_info(bp);
12200
12201         return rc;
12202 }
12203
12204 static void bnx2x_read_fwinfo(struct bnx2x *bp)
12205 {
12206         char str_id[VENDOR_ID_LEN + 1];
12207         unsigned int vpd_len, kw_len;
12208         u8 *vpd_data;
12209         int rodi;
12210
12211         memset(bp->fw_ver, 0, sizeof(bp->fw_ver));
12212
12213         vpd_data = pci_vpd_alloc(bp->pdev, &vpd_len);
12214         if (IS_ERR(vpd_data))
12215                 return;
12216
12217         rodi = pci_vpd_find_ro_info_keyword(vpd_data, vpd_len,
12218                                             PCI_VPD_RO_KEYWORD_MFR_ID, &kw_len);
12219         if (rodi < 0 || kw_len != VENDOR_ID_LEN)
12220                 goto out_not_found;
12221
12222         /* vendor specific info */
12223         snprintf(str_id, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL);
12224         if (!strncasecmp(str_id, &vpd_data[rodi], VENDOR_ID_LEN)) {
12225                 rodi = pci_vpd_find_ro_info_keyword(vpd_data, vpd_len,
12226                                                     PCI_VPD_RO_KEYWORD_VENDOR0,
12227                                                     &kw_len);
12228                 if (rodi >= 0 && kw_len < sizeof(bp->fw_ver)) {
12229                         memcpy(bp->fw_ver, &vpd_data[rodi], kw_len);
12230                         bp->fw_ver[kw_len] = ' ';
12231                 }
12232         }
12233 out_not_found:
12234         kfree(vpd_data);
12235 }
12236
12237 static void bnx2x_set_modes_bitmap(struct bnx2x *bp)
12238 {
12239         u32 flags = 0;
12240
12241         if (CHIP_REV_IS_FPGA(bp))
12242                 SET_FLAGS(flags, MODE_FPGA);
12243         else if (CHIP_REV_IS_EMUL(bp))
12244                 SET_FLAGS(flags, MODE_EMUL);
12245         else
12246                 SET_FLAGS(flags, MODE_ASIC);
12247
12248         if (CHIP_MODE_IS_4_PORT(bp))
12249                 SET_FLAGS(flags, MODE_PORT4);
12250         else
12251                 SET_FLAGS(flags, MODE_PORT2);
12252
12253         if (CHIP_IS_E2(bp))
12254                 SET_FLAGS(flags, MODE_E2);
12255         else if (CHIP_IS_E3(bp)) {
12256                 SET_FLAGS(flags, MODE_E3);
12257                 if (CHIP_REV(bp) == CHIP_REV_Ax)
12258                         SET_FLAGS(flags, MODE_E3_A0);
12259                 else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/
12260                         SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
12261         }
12262
12263         if (IS_MF(bp)) {
12264                 SET_FLAGS(flags, MODE_MF);
12265                 switch (bp->mf_mode) {
12266                 case MULTI_FUNCTION_SD:
12267                         SET_FLAGS(flags, MODE_MF_SD);
12268                         break;
12269                 case MULTI_FUNCTION_SI:
12270                         SET_FLAGS(flags, MODE_MF_SI);
12271                         break;
12272                 case MULTI_FUNCTION_AFEX:
12273                         SET_FLAGS(flags, MODE_MF_AFEX);
12274                         break;
12275                 }
12276         } else
12277                 SET_FLAGS(flags, MODE_SF);
12278
12279 #if defined(__LITTLE_ENDIAN)
12280         SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
12281 #else /*(__BIG_ENDIAN)*/
12282         SET_FLAGS(flags, MODE_BIG_ENDIAN);
12283 #endif
12284         INIT_MODE_FLAGS(bp) = flags;
12285 }
12286
12287 static int bnx2x_init_bp(struct bnx2x *bp)
12288 {
12289         int func;
12290         int rc;
12291
12292         mutex_init(&bp->port.phy_mutex);
12293         mutex_init(&bp->fw_mb_mutex);
12294         mutex_init(&bp->drv_info_mutex);
12295         sema_init(&bp->stats_lock, 1);
12296         bp->drv_info_mng_owner = false;
12297         INIT_LIST_HEAD(&bp->vlan_reg);
12298
12299         INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task);
12300         INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task);
12301         INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task);
12302         INIT_DELAYED_WORK(&bp->iov_task, bnx2x_iov_task);
12303         if (IS_PF(bp)) {
12304                 rc = bnx2x_get_hwinfo(bp);
12305                 if (rc)
12306                         return rc;
12307         } else {
12308                 static const u8 zero_addr[ETH_ALEN] = {};
12309
12310                 eth_hw_addr_set(bp->dev, zero_addr);
12311         }
12312
12313         bnx2x_set_modes_bitmap(bp);
12314
12315         rc = bnx2x_alloc_mem_bp(bp);
12316         if (rc)
12317                 return rc;
12318
12319         bnx2x_read_fwinfo(bp);
12320
12321         func = BP_FUNC(bp);
12322
12323         /* need to reset chip if undi was active */
12324         if (IS_PF(bp) && !BP_NOMCP(bp)) {
12325                 /* init fw_seq */
12326                 bp->fw_seq =
12327                         SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
12328                                                         DRV_MSG_SEQ_NUMBER_MASK;
12329                 BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
12330
12331                 rc = bnx2x_prev_unload(bp);
12332                 if (rc) {
12333                         bnx2x_free_mem_bp(bp);
12334                         return rc;
12335                 }
12336         }
12337
12338         if (CHIP_REV_IS_FPGA(bp))
12339                 dev_err(&bp->pdev->dev, "FPGA detected\n");
12340
12341         if (BP_NOMCP(bp) && (func == 0))
12342                 dev_err(&bp->pdev->dev, "MCP disabled, must load devices in order!\n");
12343
12344         bp->disable_tpa = disable_tpa;
12345         bp->disable_tpa |= !!IS_MF_STORAGE_ONLY(bp);
12346         /* Reduce memory usage in kdump environment by disabling TPA */
12347         bp->disable_tpa |= is_kdump_kernel();
12348
12349         /* Set TPA flags */
12350         if (bp->disable_tpa) {
12351                 bp->dev->hw_features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
12352                 bp->dev->features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
12353         }
12354
12355         if (CHIP_IS_E1(bp))
12356                 bp->dropless_fc = false;
12357         else
12358                 bp->dropless_fc = dropless_fc | bnx2x_get_dropless_info(bp);
12359
12360         bp->mrrs = mrrs;
12361
12362         bp->tx_ring_size = IS_MF_STORAGE_ONLY(bp) ? 0 : MAX_TX_AVAIL;
12363         if (IS_VF(bp))
12364                 bp->rx_ring_size = MAX_RX_AVAIL;
12365
12366         /* make sure that the numbers are in the right granularity */
12367         bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR;
12368         bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR;
12369
12370         bp->current_interval = CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ;
12371
12372         timer_setup(&bp->timer, bnx2x_timer, 0);
12373         bp->timer.expires = jiffies + bp->current_interval;
12374
12375         if (SHMEM2_HAS(bp, dcbx_lldp_params_offset) &&
12376             SHMEM2_HAS(bp, dcbx_lldp_dcbx_stat_offset) &&
12377             SHMEM2_HAS(bp, dcbx_en) &&
12378             SHMEM2_RD(bp, dcbx_lldp_params_offset) &&
12379             SHMEM2_RD(bp, dcbx_lldp_dcbx_stat_offset) &&
12380             SHMEM2_RD(bp, dcbx_en[BP_PORT(bp)])) {
12381                 bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON);
12382                 bnx2x_dcbx_init_params(bp);
12383         } else {
12384                 bnx2x_dcbx_set_state(bp, false, BNX2X_DCBX_ENABLED_OFF);
12385         }
12386
12387         if (CHIP_IS_E1x(bp))
12388                 bp->cnic_base_cl_id = FP_SB_MAX_E1x;
12389         else
12390                 bp->cnic_base_cl_id = FP_SB_MAX_E2;
12391
12392         /* multiple tx priority */
12393         if (IS_VF(bp))
12394                 bp->max_cos = 1;
12395         else if (CHIP_IS_E1x(bp))
12396                 bp->max_cos = BNX2X_MULTI_TX_COS_E1X;
12397         else if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp))
12398                 bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0;
12399         else if (CHIP_IS_E3B0(bp))
12400                 bp->max_cos = BNX2X_MULTI_TX_COS_E3B0;
12401         else
12402                 BNX2X_ERR("unknown chip %x revision %x\n",
12403                           CHIP_NUM(bp), CHIP_REV(bp));
12404         BNX2X_DEV_INFO("set bp->max_cos to %d\n", bp->max_cos);
12405
12406         /* We need at least one default status block for slow-path events,
12407          * second status block for the L2 queue, and a third status block for
12408          * CNIC if supported.
12409          */
12410         if (IS_VF(bp))
12411                 bp->min_msix_vec_cnt = 1;
12412         else if (CNIC_SUPPORT(bp))
12413                 bp->min_msix_vec_cnt = 3;
12414         else /* PF w/o cnic */
12415                 bp->min_msix_vec_cnt = 2;
12416         BNX2X_DEV_INFO("bp->min_msix_vec_cnt %d", bp->min_msix_vec_cnt);
12417
12418         bp->dump_preset_idx = 1;
12419
12420         return rc;
12421 }
12422
12423 /****************************************************************************
12424 * General service functions
12425 ****************************************************************************/
12426
12427 /*
12428  * net_device service functions
12429  */
12430
12431 /* called with rtnl_lock */
12432 static int bnx2x_open(struct net_device *dev)
12433 {
12434         struct bnx2x *bp = netdev_priv(dev);
12435         int rc;
12436
12437         bp->stats_init = true;
12438
12439         netif_carrier_off(dev);
12440
12441         bnx2x_set_power_state(bp, PCI_D0);
12442
12443         /* If parity had happen during the unload, then attentions
12444          * and/or RECOVERY_IN_PROGRES may still be set. In this case we
12445          * want the first function loaded on the current engine to
12446          * complete the recovery.
12447          * Parity recovery is only relevant for PF driver.
12448          */
12449         if (IS_PF(bp)) {
12450                 int other_engine = BP_PATH(bp) ? 0 : 1;
12451                 bool other_load_status, load_status;
12452                 bool global = false;
12453
12454                 other_load_status = bnx2x_get_load_status(bp, other_engine);
12455                 load_status = bnx2x_get_load_status(bp, BP_PATH(bp));
12456                 if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) ||
12457                     bnx2x_chk_parity_attn(bp, &global, true)) {
12458                         do {
12459                                 /* If there are attentions and they are in a
12460                                  * global blocks, set the GLOBAL_RESET bit
12461                                  * regardless whether it will be this function
12462                                  * that will complete the recovery or not.
12463                                  */
12464                                 if (global)
12465                                         bnx2x_set_reset_global(bp);
12466
12467                                 /* Only the first function on the current
12468                                  * engine should try to recover in open. In case
12469                                  * of attentions in global blocks only the first
12470                                  * in the chip should try to recover.
12471                                  */
12472                                 if ((!load_status &&
12473                                      (!global || !other_load_status)) &&
12474                                       bnx2x_trylock_leader_lock(bp) &&
12475                                       !bnx2x_leader_reset(bp)) {
12476                                         netdev_info(bp->dev,
12477                                                     "Recovered in open\n");
12478                                         break;
12479                                 }
12480
12481                                 /* recovery has failed... */
12482                                 bnx2x_set_power_state(bp, PCI_D3hot);
12483                                 bp->recovery_state = BNX2X_RECOVERY_FAILED;
12484
12485                                 BNX2X_ERR("Recovery flow hasn't been properly completed yet. Try again later.\n"
12486                                           "If you still see this message after a few retries then power cycle is required.\n");
12487
12488                                 return -EAGAIN;
12489                         } while (0);
12490                 }
12491         }
12492
12493         bp->recovery_state = BNX2X_RECOVERY_DONE;
12494         rc = bnx2x_nic_load(bp, LOAD_OPEN);
12495         if (rc)
12496                 return rc;
12497
12498         return 0;
12499 }
12500
12501 /* called with rtnl_lock */
12502 static int bnx2x_close(struct net_device *dev)
12503 {
12504         struct bnx2x *bp = netdev_priv(dev);
12505
12506         /* Unload the driver, release IRQs */
12507         bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
12508
12509         return 0;
12510 }
12511
12512 struct bnx2x_mcast_list_elem_group
12513 {
12514         struct list_head mcast_group_link;
12515         struct bnx2x_mcast_list_elem mcast_elems[];
12516 };
12517
12518 #define MCAST_ELEMS_PER_PG \
12519         ((PAGE_SIZE - sizeof(struct bnx2x_mcast_list_elem_group)) / \
12520         sizeof(struct bnx2x_mcast_list_elem))
12521
12522 static void bnx2x_free_mcast_macs_list(struct list_head *mcast_group_list)
12523 {
12524         struct bnx2x_mcast_list_elem_group *current_mcast_group;
12525
12526         while (!list_empty(mcast_group_list)) {
12527                 current_mcast_group = list_first_entry(mcast_group_list,
12528                                       struct bnx2x_mcast_list_elem_group,
12529                                       mcast_group_link);
12530                 list_del(&current_mcast_group->mcast_group_link);
12531                 free_page((unsigned long)current_mcast_group);
12532         }
12533 }
12534
12535 static int bnx2x_init_mcast_macs_list(struct bnx2x *bp,
12536                                       struct bnx2x_mcast_ramrod_params *p,
12537                                       struct list_head *mcast_group_list)
12538 {
12539         struct bnx2x_mcast_list_elem *mc_mac;
12540         struct netdev_hw_addr *ha;
12541         struct bnx2x_mcast_list_elem_group *current_mcast_group = NULL;
12542         int mc_count = netdev_mc_count(bp->dev);
12543         int offset = 0;
12544
12545         INIT_LIST_HEAD(&p->mcast_list);
12546         netdev_for_each_mc_addr(ha, bp->dev) {
12547                 if (!offset) {
12548                         current_mcast_group =
12549                                 (struct bnx2x_mcast_list_elem_group *)
12550                                 __get_free_page(GFP_ATOMIC);
12551                         if (!current_mcast_group) {
12552                                 bnx2x_free_mcast_macs_list(mcast_group_list);
12553                                 BNX2X_ERR("Failed to allocate mc MAC list\n");
12554                                 return -ENOMEM;
12555                         }
12556                         list_add(&current_mcast_group->mcast_group_link,
12557                                  mcast_group_list);
12558                 }
12559                 mc_mac = &current_mcast_group->mcast_elems[offset];
12560                 mc_mac->mac = bnx2x_mc_addr(ha);
12561                 list_add_tail(&mc_mac->link, &p->mcast_list);
12562                 offset++;
12563                 if (offset == MCAST_ELEMS_PER_PG)
12564                         offset = 0;
12565         }
12566         p->mcast_list_len = mc_count;
12567         return 0;
12568 }
12569
12570 /**
12571  * bnx2x_set_uc_list - configure a new unicast MACs list.
12572  *
12573  * @bp: driver handle
12574  *
12575  * We will use zero (0) as a MAC type for these MACs.
12576  */
12577 static int bnx2x_set_uc_list(struct bnx2x *bp)
12578 {
12579         int rc;
12580         struct net_device *dev = bp->dev;
12581         struct netdev_hw_addr *ha;
12582         struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj;
12583         unsigned long ramrod_flags = 0;
12584
12585         /* First schedule a cleanup up of old configuration */
12586         rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false);
12587         if (rc < 0) {
12588                 BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc);
12589                 return rc;
12590         }
12591
12592         netdev_for_each_uc_addr(ha, dev) {
12593                 rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true,
12594                                        BNX2X_UC_LIST_MAC, &ramrod_flags);
12595                 if (rc == -EEXIST) {
12596                         DP(BNX2X_MSG_SP,
12597                            "Failed to schedule ADD operations: %d\n", rc);
12598                         /* do not treat adding same MAC as error */
12599                         rc = 0;
12600
12601                 } else if (rc < 0) {
12602
12603                         BNX2X_ERR("Failed to schedule ADD operations: %d\n",
12604                                   rc);
12605                         return rc;
12606                 }
12607         }
12608
12609         /* Execute the pending commands */
12610         __set_bit(RAMROD_CONT, &ramrod_flags);
12611         return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */,
12612                                  BNX2X_UC_LIST_MAC, &ramrod_flags);
12613 }
12614
12615 static int bnx2x_set_mc_list_e1x(struct bnx2x *bp)
12616 {
12617         LIST_HEAD(mcast_group_list);
12618         struct net_device *dev = bp->dev;
12619         struct bnx2x_mcast_ramrod_params rparam = {NULL};
12620         int rc = 0;
12621
12622         rparam.mcast_obj = &bp->mcast_obj;
12623
12624         /* first, clear all configured multicast MACs */
12625         rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
12626         if (rc < 0) {
12627                 BNX2X_ERR("Failed to clear multicast configuration: %d\n", rc);
12628                 return rc;
12629         }
12630
12631         /* then, configure a new MACs list */
12632         if (netdev_mc_count(dev)) {
12633                 rc = bnx2x_init_mcast_macs_list(bp, &rparam, &mcast_group_list);
12634                 if (rc)
12635                         return rc;
12636
12637                 /* Now add the new MACs */
12638                 rc = bnx2x_config_mcast(bp, &rparam,
12639                                         BNX2X_MCAST_CMD_ADD);
12640                 if (rc < 0)
12641                         BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
12642                                   rc);
12643
12644                 bnx2x_free_mcast_macs_list(&mcast_group_list);
12645         }
12646
12647         return rc;
12648 }
12649
12650 static int bnx2x_set_mc_list(struct bnx2x *bp)
12651 {
12652         LIST_HEAD(mcast_group_list);
12653         struct bnx2x_mcast_ramrod_params rparam = {NULL};
12654         struct net_device *dev = bp->dev;
12655         int rc = 0;
12656
12657         /* On older adapters, we need to flush and re-add filters */
12658         if (CHIP_IS_E1x(bp))
12659                 return bnx2x_set_mc_list_e1x(bp);
12660
12661         rparam.mcast_obj = &bp->mcast_obj;
12662
12663         if (netdev_mc_count(dev)) {
12664                 rc = bnx2x_init_mcast_macs_list(bp, &rparam, &mcast_group_list);
12665                 if (rc)
12666                         return rc;
12667
12668                 /* Override the curently configured set of mc filters */
12669                 rc = bnx2x_config_mcast(bp, &rparam,
12670                                         BNX2X_MCAST_CMD_SET);
12671                 if (rc < 0)
12672                         BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
12673                                   rc);
12674
12675                 bnx2x_free_mcast_macs_list(&mcast_group_list);
12676         } else {
12677                 /* If no mc addresses are required, flush the configuration */
12678                 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
12679                 if (rc < 0)
12680                         BNX2X_ERR("Failed to clear multicast configuration %d\n",
12681                                   rc);
12682         }
12683
12684         return rc;
12685 }
12686
12687 /* If bp->state is OPEN, should be called with netif_addr_lock_bh() */
12688 static void bnx2x_set_rx_mode(struct net_device *dev)
12689 {
12690         struct bnx2x *bp = netdev_priv(dev);
12691
12692         if (bp->state != BNX2X_STATE_OPEN) {
12693                 DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state);
12694                 return;
12695         } else {
12696                 /* Schedule an SP task to handle rest of change */
12697                 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_RX_MODE,
12698                                        NETIF_MSG_IFUP);
12699         }
12700 }
12701
12702 void bnx2x_set_rx_mode_inner(struct bnx2x *bp)
12703 {
12704         u32 rx_mode = BNX2X_RX_MODE_NORMAL;
12705
12706         DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags);
12707
12708         netif_addr_lock_bh(bp->dev);
12709
12710         if (bp->dev->flags & IFF_PROMISC) {
12711                 rx_mode = BNX2X_RX_MODE_PROMISC;
12712         } else if ((bp->dev->flags & IFF_ALLMULTI) ||
12713                    ((netdev_mc_count(bp->dev) > BNX2X_MAX_MULTICAST) &&
12714                     CHIP_IS_E1(bp))) {
12715                 rx_mode = BNX2X_RX_MODE_ALLMULTI;
12716         } else {
12717                 if (IS_PF(bp)) {
12718                         /* some multicasts */
12719                         if (bnx2x_set_mc_list(bp) < 0)
12720                                 rx_mode = BNX2X_RX_MODE_ALLMULTI;
12721
12722                         /* release bh lock, as bnx2x_set_uc_list might sleep */
12723                         netif_addr_unlock_bh(bp->dev);
12724                         if (bnx2x_set_uc_list(bp) < 0)
12725                                 rx_mode = BNX2X_RX_MODE_PROMISC;
12726                         netif_addr_lock_bh(bp->dev);
12727                 } else {
12728                         /* configuring mcast to a vf involves sleeping (when we
12729                          * wait for the pf's response).
12730                          */
12731                         bnx2x_schedule_sp_rtnl(bp,
12732                                                BNX2X_SP_RTNL_VFPF_MCAST, 0);
12733                 }
12734         }
12735
12736         bp->rx_mode = rx_mode;
12737         /* handle ISCSI SD mode */
12738         if (IS_MF_ISCSI_ONLY(bp))
12739                 bp->rx_mode = BNX2X_RX_MODE_NONE;
12740
12741         /* Schedule the rx_mode command */
12742         if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) {
12743                 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
12744                 netif_addr_unlock_bh(bp->dev);
12745                 return;
12746         }
12747
12748         if (IS_PF(bp)) {
12749                 bnx2x_set_storm_rx_mode(bp);
12750                 netif_addr_unlock_bh(bp->dev);
12751         } else {
12752                 /* VF will need to request the PF to make this change, and so
12753                  * the VF needs to release the bottom-half lock prior to the
12754                  * request (as it will likely require sleep on the VF side)
12755                  */
12756                 netif_addr_unlock_bh(bp->dev);
12757                 bnx2x_vfpf_storm_rx_mode(bp);
12758         }
12759 }
12760
12761 /* called with rtnl_lock */
12762 static int bnx2x_mdio_read(struct net_device *netdev, int prtad,
12763                            int devad, u16 addr)
12764 {
12765         struct bnx2x *bp = netdev_priv(netdev);
12766         u16 value;
12767         int rc;
12768
12769         DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n",
12770            prtad, devad, addr);
12771
12772         /* The HW expects different devad if CL22 is used */
12773         devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12774
12775         bnx2x_acquire_phy_lock(bp);
12776         rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value);
12777         bnx2x_release_phy_lock(bp);
12778         DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc);
12779
12780         if (!rc)
12781                 rc = value;
12782         return rc;
12783 }
12784
12785 /* called with rtnl_lock */
12786 static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad,
12787                             u16 addr, u16 value)
12788 {
12789         struct bnx2x *bp = netdev_priv(netdev);
12790         int rc;
12791
12792         DP(NETIF_MSG_LINK,
12793            "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x, value 0x%x\n",
12794            prtad, devad, addr, value);
12795
12796         /* The HW expects different devad if CL22 is used */
12797         devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12798
12799         bnx2x_acquire_phy_lock(bp);
12800         rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value);
12801         bnx2x_release_phy_lock(bp);
12802         return rc;
12803 }
12804
12805 /* called with rtnl_lock */
12806 static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
12807 {
12808         struct bnx2x *bp = netdev_priv(dev);
12809         struct mii_ioctl_data *mdio = if_mii(ifr);
12810
12811         if (!netif_running(dev))
12812                 return -EAGAIN;
12813
12814         switch (cmd) {
12815         case SIOCSHWTSTAMP:
12816                 return bnx2x_hwtstamp_ioctl(bp, ifr);
12817         default:
12818                 DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n",
12819                    mdio->phy_id, mdio->reg_num, mdio->val_in);
12820                 return mdio_mii_ioctl(&bp->mdio, mdio, cmd);
12821         }
12822 }
12823
12824 static int bnx2x_validate_addr(struct net_device *dev)
12825 {
12826         struct bnx2x *bp = netdev_priv(dev);
12827
12828         /* query the bulletin board for mac address configured by the PF */
12829         if (IS_VF(bp))
12830                 bnx2x_sample_bulletin(bp);
12831
12832         if (!is_valid_ether_addr(dev->dev_addr)) {
12833                 BNX2X_ERR("Non-valid Ethernet address\n");
12834                 return -EADDRNOTAVAIL;
12835         }
12836         return 0;
12837 }
12838
12839 static int bnx2x_get_phys_port_id(struct net_device *netdev,
12840                                   struct netdev_phys_item_id *ppid)
12841 {
12842         struct bnx2x *bp = netdev_priv(netdev);
12843
12844         if (!(bp->flags & HAS_PHYS_PORT_ID))
12845                 return -EOPNOTSUPP;
12846
12847         ppid->id_len = sizeof(bp->phys_port_id);
12848         memcpy(ppid->id, bp->phys_port_id, ppid->id_len);
12849
12850         return 0;
12851 }
12852
12853 static netdev_features_t bnx2x_features_check(struct sk_buff *skb,
12854                                               struct net_device *dev,
12855                                               netdev_features_t features)
12856 {
12857         /*
12858          * A skb with gso_size + header length > 9700 will cause a
12859          * firmware panic. Drop GSO support.
12860          *
12861          * Eventually the upper layer should not pass these packets down.
12862          *
12863          * For speed, if the gso_size is <= 9000, assume there will
12864          * not be 700 bytes of headers and pass it through. Only do a
12865          * full (slow) validation if the gso_size is > 9000.
12866          *
12867          * (Due to the way SKB_BY_FRAGS works this will also do a full
12868          * validation in that case.)
12869          */
12870         if (unlikely(skb_is_gso(skb) &&
12871                      (skb_shinfo(skb)->gso_size > 9000) &&
12872                      !skb_gso_validate_mac_len(skb, 9700)))
12873                 features &= ~NETIF_F_GSO_MASK;
12874
12875         features = vlan_features_check(skb, features);
12876         return vxlan_features_check(skb, features);
12877 }
12878
12879 static int __bnx2x_vlan_configure_vid(struct bnx2x *bp, u16 vid, bool add)
12880 {
12881         int rc;
12882
12883         if (IS_PF(bp)) {
12884                 unsigned long ramrod_flags = 0;
12885
12886                 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
12887                 rc = bnx2x_set_vlan_one(bp, vid, &bp->sp_objs->vlan_obj,
12888                                         add, &ramrod_flags);
12889         } else {
12890                 rc = bnx2x_vfpf_update_vlan(bp, vid, bp->fp->index, add);
12891         }
12892
12893         return rc;
12894 }
12895
12896 static int bnx2x_vlan_configure_vid_list(struct bnx2x *bp)
12897 {
12898         struct bnx2x_vlan_entry *vlan;
12899         int rc = 0;
12900
12901         /* Configure all non-configured entries */
12902         list_for_each_entry(vlan, &bp->vlan_reg, link) {
12903                 if (vlan->hw)
12904                         continue;
12905
12906                 if (bp->vlan_cnt >= bp->vlan_credit)
12907                         return -ENOBUFS;
12908
12909                 rc = __bnx2x_vlan_configure_vid(bp, vlan->vid, true);
12910                 if (rc) {
12911                         BNX2X_ERR("Unable to config VLAN %d\n", vlan->vid);
12912                         return rc;
12913                 }
12914
12915                 DP(NETIF_MSG_IFUP, "HW configured for VLAN %d\n", vlan->vid);
12916                 vlan->hw = true;
12917                 bp->vlan_cnt++;
12918         }
12919
12920         return 0;
12921 }
12922
12923 static void bnx2x_vlan_configure(struct bnx2x *bp, bool set_rx_mode)
12924 {
12925         bool need_accept_any_vlan;
12926
12927         need_accept_any_vlan = !!bnx2x_vlan_configure_vid_list(bp);
12928
12929         if (bp->accept_any_vlan != need_accept_any_vlan) {
12930                 bp->accept_any_vlan = need_accept_any_vlan;
12931                 DP(NETIF_MSG_IFUP, "Accept all VLAN %s\n",
12932                    bp->accept_any_vlan ? "raised" : "cleared");
12933                 if (set_rx_mode) {
12934                         if (IS_PF(bp))
12935                                 bnx2x_set_rx_mode_inner(bp);
12936                         else
12937                                 bnx2x_vfpf_storm_rx_mode(bp);
12938                 }
12939         }
12940 }
12941
12942 int bnx2x_vlan_reconfigure_vid(struct bnx2x *bp)
12943 {
12944         /* Don't set rx mode here. Our caller will do it. */
12945         bnx2x_vlan_configure(bp, false);
12946
12947         return 0;
12948 }
12949
12950 static int bnx2x_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid)
12951 {
12952         struct bnx2x *bp = netdev_priv(dev);
12953         struct bnx2x_vlan_entry *vlan;
12954
12955         DP(NETIF_MSG_IFUP, "Adding VLAN %d\n", vid);
12956
12957         vlan = kmalloc(sizeof(*vlan), GFP_KERNEL);
12958         if (!vlan)
12959                 return -ENOMEM;
12960
12961         vlan->vid = vid;
12962         vlan->hw = false;
12963         list_add_tail(&vlan->link, &bp->vlan_reg);
12964
12965         if (netif_running(dev))
12966                 bnx2x_vlan_configure(bp, true);
12967
12968         return 0;
12969 }
12970
12971 static int bnx2x_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid)
12972 {
12973         struct bnx2x *bp = netdev_priv(dev);
12974         struct bnx2x_vlan_entry *vlan;
12975         bool found = false;
12976         int rc = 0;
12977
12978         DP(NETIF_MSG_IFUP, "Removing VLAN %d\n", vid);
12979
12980         list_for_each_entry(vlan, &bp->vlan_reg, link)
12981                 if (vlan->vid == vid) {
12982                         found = true;
12983                         break;
12984                 }
12985
12986         if (!found) {
12987                 BNX2X_ERR("Unable to kill VLAN %d - not found\n", vid);
12988                 return -EINVAL;
12989         }
12990
12991         if (netif_running(dev) && vlan->hw) {
12992                 rc = __bnx2x_vlan_configure_vid(bp, vid, false);
12993                 DP(NETIF_MSG_IFUP, "HW deconfigured for VLAN %d\n", vid);
12994                 bp->vlan_cnt--;
12995         }
12996
12997         list_del(&vlan->link);
12998         kfree(vlan);
12999
13000         if (netif_running(dev))
13001                 bnx2x_vlan_configure(bp, true);
13002
13003         DP(NETIF_MSG_IFUP, "Removing VLAN result %d\n", rc);
13004
13005         return rc;
13006 }
13007
13008 static const struct net_device_ops bnx2x_netdev_ops = {
13009         .ndo_open               = bnx2x_open,
13010         .ndo_stop               = bnx2x_close,
13011         .ndo_start_xmit         = bnx2x_start_xmit,
13012         .ndo_select_queue       = bnx2x_select_queue,
13013         .ndo_set_rx_mode        = bnx2x_set_rx_mode,
13014         .ndo_set_mac_address    = bnx2x_change_mac_addr,
13015         .ndo_validate_addr      = bnx2x_validate_addr,
13016         .ndo_eth_ioctl          = bnx2x_ioctl,
13017         .ndo_change_mtu         = bnx2x_change_mtu,
13018         .ndo_fix_features       = bnx2x_fix_features,
13019         .ndo_set_features       = bnx2x_set_features,
13020         .ndo_tx_timeout         = bnx2x_tx_timeout,
13021         .ndo_vlan_rx_add_vid    = bnx2x_vlan_rx_add_vid,
13022         .ndo_vlan_rx_kill_vid   = bnx2x_vlan_rx_kill_vid,
13023         .ndo_setup_tc           = __bnx2x_setup_tc,
13024 #ifdef CONFIG_BNX2X_SRIOV
13025         .ndo_set_vf_mac         = bnx2x_set_vf_mac,
13026         .ndo_set_vf_vlan        = bnx2x_set_vf_vlan,
13027         .ndo_get_vf_config      = bnx2x_get_vf_config,
13028         .ndo_set_vf_spoofchk    = bnx2x_set_vf_spoofchk,
13029 #endif
13030 #ifdef NETDEV_FCOE_WWNN
13031         .ndo_fcoe_get_wwn       = bnx2x_fcoe_get_wwn,
13032 #endif
13033
13034         .ndo_get_phys_port_id   = bnx2x_get_phys_port_id,
13035         .ndo_set_vf_link_state  = bnx2x_set_vf_link_state,
13036         .ndo_features_check     = bnx2x_features_check,
13037 };
13038
13039 static int bnx2x_init_dev(struct bnx2x *bp, struct pci_dev *pdev,
13040                           struct net_device *dev, unsigned long board_type)
13041 {
13042         int rc;
13043         u32 pci_cfg_dword;
13044         bool chip_is_e1x = (board_type == BCM57710 ||
13045                             board_type == BCM57711 ||
13046                             board_type == BCM57711E);
13047
13048         SET_NETDEV_DEV(dev, &pdev->dev);
13049
13050         bp->dev = dev;
13051         bp->pdev = pdev;
13052
13053         rc = pci_enable_device(pdev);
13054         if (rc) {
13055                 dev_err(&bp->pdev->dev,
13056                         "Cannot enable PCI device, aborting\n");
13057                 goto err_out;
13058         }
13059
13060         if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
13061                 dev_err(&bp->pdev->dev,
13062                         "Cannot find PCI device base address, aborting\n");
13063                 rc = -ENODEV;
13064                 goto err_out_disable;
13065         }
13066
13067         if (IS_PF(bp) && !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
13068                 dev_err(&bp->pdev->dev, "Cannot find second PCI device base address, aborting\n");
13069                 rc = -ENODEV;
13070                 goto err_out_disable;
13071         }
13072
13073         pci_read_config_dword(pdev, PCICFG_REVISION_ID_OFFSET, &pci_cfg_dword);
13074         if ((pci_cfg_dword & PCICFG_REVESION_ID_MASK) ==
13075             PCICFG_REVESION_ID_ERROR_VAL) {
13076                 pr_err("PCI device error, probably due to fan failure, aborting\n");
13077                 rc = -ENODEV;
13078                 goto err_out_disable;
13079         }
13080
13081         if (atomic_read(&pdev->enable_cnt) == 1) {
13082                 rc = pci_request_regions(pdev, DRV_MODULE_NAME);
13083                 if (rc) {
13084                         dev_err(&bp->pdev->dev,
13085                                 "Cannot obtain PCI resources, aborting\n");
13086                         goto err_out_disable;
13087                 }
13088
13089                 pci_set_master(pdev);
13090                 pci_save_state(pdev);
13091         }
13092
13093         if (IS_PF(bp)) {
13094                 if (!pdev->pm_cap) {
13095                         dev_err(&bp->pdev->dev,
13096                                 "Cannot find power management capability, aborting\n");
13097                         rc = -EIO;
13098                         goto err_out_release;
13099                 }
13100         }
13101
13102         if (!pci_is_pcie(pdev)) {
13103                 dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n");
13104                 rc = -EIO;
13105                 goto err_out_release;
13106         }
13107
13108         rc = dma_set_mask_and_coherent(&bp->pdev->dev, DMA_BIT_MASK(64));
13109         if (rc) {
13110                 dev_err(&bp->pdev->dev, "System does not support DMA, aborting\n");
13111                 goto err_out_release;
13112         }
13113
13114         dev->mem_start = pci_resource_start(pdev, 0);
13115         dev->base_addr = dev->mem_start;
13116         dev->mem_end = pci_resource_end(pdev, 0);
13117
13118         dev->irq = pdev->irq;
13119
13120         bp->regview = pci_ioremap_bar(pdev, 0);
13121         if (!bp->regview) {
13122                 dev_err(&bp->pdev->dev,
13123                         "Cannot map register space, aborting\n");
13124                 rc = -ENOMEM;
13125                 goto err_out_release;
13126         }
13127
13128         /* In E1/E1H use pci device function given by kernel.
13129          * In E2/E3 read physical function from ME register since these chips
13130          * support Physical Device Assignment where kernel BDF maybe arbitrary
13131          * (depending on hypervisor).
13132          */
13133         if (chip_is_e1x) {
13134                 bp->pf_num = PCI_FUNC(pdev->devfn);
13135         } else {
13136                 /* chip is E2/3*/
13137                 pci_read_config_dword(bp->pdev,
13138                                       PCICFG_ME_REGISTER, &pci_cfg_dword);
13139                 bp->pf_num = (u8)((pci_cfg_dword & ME_REG_ABS_PF_NUM) >>
13140                                   ME_REG_ABS_PF_NUM_SHIFT);
13141         }
13142         BNX2X_DEV_INFO("me reg PF num: %d\n", bp->pf_num);
13143
13144         /* clean indirect addresses */
13145         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
13146                                PCICFG_VENDOR_ID_OFFSET);
13147
13148         /* Set PCIe reset type to fundamental for EEH recovery */
13149         pdev->needs_freset = 1;
13150
13151         /*
13152          * Clean the following indirect addresses for all functions since it
13153          * is not used by the driver.
13154          */
13155         if (IS_PF(bp)) {
13156                 REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0);
13157                 REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0);
13158                 REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0);
13159                 REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0);
13160
13161                 if (chip_is_e1x) {
13162                         REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0);
13163                         REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0);
13164                         REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0);
13165                         REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0);
13166                 }
13167
13168                 /* Enable internal target-read (in case we are probed after PF
13169                  * FLR). Must be done prior to any BAR read access. Only for
13170                  * 57712 and up
13171                  */
13172                 if (!chip_is_e1x)
13173                         REG_WR(bp,
13174                                PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
13175         }
13176
13177         dev->watchdog_timeo = TX_TIMEOUT;
13178
13179         dev->netdev_ops = &bnx2x_netdev_ops;
13180         bnx2x_set_ethtool_ops(bp, dev);
13181
13182         dev->priv_flags |= IFF_UNICAST_FLT;
13183
13184         dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
13185                 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
13186                 NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO | NETIF_F_GRO_HW |
13187                 NETIF_F_RXHASH | NETIF_F_HW_VLAN_CTAG_TX;
13188         if (!chip_is_e1x) {
13189                 dev->hw_features |= NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM |
13190                                     NETIF_F_GSO_IPXIP4 |
13191                                     NETIF_F_GSO_UDP_TUNNEL |
13192                                     NETIF_F_GSO_UDP_TUNNEL_CSUM |
13193                                     NETIF_F_GSO_PARTIAL;
13194
13195                 dev->hw_enc_features =
13196                         NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
13197                         NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
13198                         NETIF_F_GSO_IPXIP4 |
13199                         NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM |
13200                         NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_UDP_TUNNEL_CSUM |
13201                         NETIF_F_GSO_PARTIAL;
13202
13203                 dev->gso_partial_features = NETIF_F_GSO_GRE_CSUM |
13204                                             NETIF_F_GSO_UDP_TUNNEL_CSUM;
13205
13206                 if (IS_PF(bp))
13207                         dev->udp_tunnel_nic_info = &bnx2x_udp_tunnels;
13208         }
13209
13210         dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
13211                 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA;
13212
13213         if (IS_PF(bp)) {
13214                 if (chip_is_e1x)
13215                         bp->accept_any_vlan = true;
13216                 else
13217                         dev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
13218         }
13219         /* For VF we'll know whether to enable VLAN filtering after
13220          * getting a response to CHANNEL_TLV_ACQUIRE from PF.
13221          */
13222
13223         dev->features |= dev->hw_features | NETIF_F_HW_VLAN_CTAG_RX;
13224         dev->features |= NETIF_F_HIGHDMA;
13225         if (dev->features & NETIF_F_LRO)
13226                 dev->features &= ~NETIF_F_GRO_HW;
13227
13228         /* Add Loopback capability to the device */
13229         dev->hw_features |= NETIF_F_LOOPBACK;
13230
13231 #ifdef BCM_DCBNL
13232         dev->dcbnl_ops = &bnx2x_dcbnl_ops;
13233 #endif
13234
13235         /* MTU range, 46 - 9600 */
13236         dev->min_mtu = ETH_MIN_PACKET_SIZE;
13237         dev->max_mtu = ETH_MAX_JUMBO_PACKET_SIZE;
13238
13239         /* get_port_hwinfo() will set prtad and mmds properly */
13240         bp->mdio.prtad = MDIO_PRTAD_NONE;
13241         bp->mdio.mmds = 0;
13242         bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
13243         bp->mdio.dev = dev;
13244         bp->mdio.mdio_read = bnx2x_mdio_read;
13245         bp->mdio.mdio_write = bnx2x_mdio_write;
13246
13247         return 0;
13248
13249 err_out_release:
13250         if (atomic_read(&pdev->enable_cnt) == 1)
13251                 pci_release_regions(pdev);
13252
13253 err_out_disable:
13254         pci_disable_device(pdev);
13255
13256 err_out:
13257         return rc;
13258 }
13259
13260 static int bnx2x_check_firmware(struct bnx2x *bp)
13261 {
13262         const struct firmware *firmware = bp->firmware;
13263         struct bnx2x_fw_file_hdr *fw_hdr;
13264         struct bnx2x_fw_file_section *sections;
13265         u32 offset, len, num_ops;
13266         __be16 *ops_offsets;
13267         int i;
13268         const u8 *fw_ver;
13269
13270         if (firmware->size < sizeof(struct bnx2x_fw_file_hdr)) {
13271                 BNX2X_ERR("Wrong FW size\n");
13272                 return -EINVAL;
13273         }
13274
13275         fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data;
13276         sections = (struct bnx2x_fw_file_section *)fw_hdr;
13277
13278         /* Make sure none of the offsets and sizes make us read beyond
13279          * the end of the firmware data */
13280         for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) {
13281                 offset = be32_to_cpu(sections[i].offset);
13282                 len = be32_to_cpu(sections[i].len);
13283                 if (offset + len > firmware->size) {
13284                         BNX2X_ERR("Section %d length is out of bounds\n", i);
13285                         return -EINVAL;
13286                 }
13287         }
13288
13289         /* Likewise for the init_ops offsets */
13290         offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset);
13291         ops_offsets = (__force __be16 *)(firmware->data + offset);
13292         num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op);
13293
13294         for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) {
13295                 if (be16_to_cpu(ops_offsets[i]) > num_ops) {
13296                         BNX2X_ERR("Section offset %d is out of bounds\n", i);
13297                         return -EINVAL;
13298                 }
13299         }
13300
13301         /* Check FW version */
13302         offset = be32_to_cpu(fw_hdr->fw_version.offset);
13303         fw_ver = firmware->data + offset;
13304         if (fw_ver[0] != bp->fw_major || fw_ver[1] != bp->fw_minor ||
13305             fw_ver[2] != bp->fw_rev || fw_ver[3] != bp->fw_eng) {
13306                 BNX2X_ERR("Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n",
13307                           fw_ver[0], fw_ver[1], fw_ver[2], fw_ver[3],
13308                           bp->fw_major, bp->fw_minor, bp->fw_rev, bp->fw_eng);
13309                 return -EINVAL;
13310         }
13311
13312         return 0;
13313 }
13314
13315 static void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
13316 {
13317         const __be32 *source = (const __be32 *)_source;
13318         u32 *target = (u32 *)_target;
13319         u32 i;
13320
13321         for (i = 0; i < n/4; i++)
13322                 target[i] = be32_to_cpu(source[i]);
13323 }
13324
13325 /*
13326    Ops array is stored in the following format:
13327    {op(8bit), offset(24bit, big endian), data(32bit, big endian)}
13328  */
13329 static void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n)
13330 {
13331         const __be32 *source = (const __be32 *)_source;
13332         struct raw_op *target = (struct raw_op *)_target;
13333         u32 i, j, tmp;
13334
13335         for (i = 0, j = 0; i < n/8; i++, j += 2) {
13336                 tmp = be32_to_cpu(source[j]);
13337                 target[i].op = (tmp >> 24) & 0xff;
13338                 target[i].offset = tmp & 0xffffff;
13339                 target[i].raw_data = be32_to_cpu(source[j + 1]);
13340         }
13341 }
13342
13343 /* IRO array is stored in the following format:
13344  * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) }
13345  */
13346 static void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n)
13347 {
13348         const __be32 *source = (const __be32 *)_source;
13349         struct iro *target = (struct iro *)_target;
13350         u32 i, j, tmp;
13351
13352         for (i = 0, j = 0; i < n/sizeof(struct iro); i++) {
13353                 target[i].base = be32_to_cpu(source[j]);
13354                 j++;
13355                 tmp = be32_to_cpu(source[j]);
13356                 target[i].m1 = (tmp >> 16) & 0xffff;
13357                 target[i].m2 = tmp & 0xffff;
13358                 j++;
13359                 tmp = be32_to_cpu(source[j]);
13360                 target[i].m3 = (tmp >> 16) & 0xffff;
13361                 target[i].size = tmp & 0xffff;
13362                 j++;
13363         }
13364 }
13365
13366 static void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
13367 {
13368         const __be16 *source = (const __be16 *)_source;
13369         u16 *target = (u16 *)_target;
13370         u32 i;
13371
13372         for (i = 0; i < n/2; i++)
13373                 target[i] = be16_to_cpu(source[i]);
13374 }
13375
13376 #define BNX2X_ALLOC_AND_SET(arr, lbl, func)                             \
13377 do {                                                                    \
13378         u32 len = be32_to_cpu(fw_hdr->arr.len);                         \
13379         bp->arr = kmalloc(len, GFP_KERNEL);                             \
13380         if (!bp->arr)                                                   \
13381                 goto lbl;                                               \
13382         func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset),      \
13383              (u8 *)bp->arr, len);                                       \
13384 } while (0)
13385
13386 static int bnx2x_init_firmware(struct bnx2x *bp)
13387 {
13388         const char *fw_file_name, *fw_file_name_v15;
13389         struct bnx2x_fw_file_hdr *fw_hdr;
13390         int rc;
13391
13392         if (bp->firmware)
13393                 return 0;
13394
13395         if (CHIP_IS_E1(bp)) {
13396                 fw_file_name = FW_FILE_NAME_E1;
13397                 fw_file_name_v15 = FW_FILE_NAME_E1_V15;
13398         } else if (CHIP_IS_E1H(bp)) {
13399                 fw_file_name = FW_FILE_NAME_E1H;
13400                 fw_file_name_v15 = FW_FILE_NAME_E1H_V15;
13401         } else if (!CHIP_IS_E1x(bp)) {
13402                 fw_file_name = FW_FILE_NAME_E2;
13403                 fw_file_name_v15 = FW_FILE_NAME_E2_V15;
13404         } else {
13405                 BNX2X_ERR("Unsupported chip revision\n");
13406                 return -EINVAL;
13407         }
13408
13409         BNX2X_DEV_INFO("Loading %s\n", fw_file_name);
13410
13411         rc = request_firmware(&bp->firmware, fw_file_name, &bp->pdev->dev);
13412         if (rc) {
13413                 BNX2X_DEV_INFO("Trying to load older fw %s\n", fw_file_name_v15);
13414
13415                 /* try to load prev version */
13416                 rc = request_firmware(&bp->firmware, fw_file_name_v15, &bp->pdev->dev);
13417
13418                 if (rc)
13419                         goto request_firmware_exit;
13420
13421                 bp->fw_rev = BCM_5710_FW_REVISION_VERSION_V15;
13422         } else {
13423                 bp->fw_cap |= FW_CAP_INVALIDATE_VF_FP_HSI;
13424                 bp->fw_rev = BCM_5710_FW_REVISION_VERSION;
13425         }
13426
13427         bp->fw_major = BCM_5710_FW_MAJOR_VERSION;
13428         bp->fw_minor = BCM_5710_FW_MINOR_VERSION;
13429         bp->fw_eng = BCM_5710_FW_ENGINEERING_VERSION;
13430
13431         rc = bnx2x_check_firmware(bp);
13432         if (rc) {
13433                 BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name);
13434                 goto request_firmware_exit;
13435         }
13436
13437         fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data;
13438
13439         /* Initialize the pointers to the init arrays */
13440         /* Blob */
13441         rc = -ENOMEM;
13442         BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n);
13443
13444         /* Opcodes */
13445         BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops);
13446
13447         /* Offsets */
13448         BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err,
13449                             be16_to_cpu_n);
13450
13451         /* STORMs firmware */
13452         INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13453                         be32_to_cpu(fw_hdr->tsem_int_table_data.offset);
13454         INIT_TSEM_PRAM_DATA(bp)      = bp->firmware->data +
13455                         be32_to_cpu(fw_hdr->tsem_pram_data.offset);
13456         INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13457                         be32_to_cpu(fw_hdr->usem_int_table_data.offset);
13458         INIT_USEM_PRAM_DATA(bp)      = bp->firmware->data +
13459                         be32_to_cpu(fw_hdr->usem_pram_data.offset);
13460         INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13461                         be32_to_cpu(fw_hdr->xsem_int_table_data.offset);
13462         INIT_XSEM_PRAM_DATA(bp)      = bp->firmware->data +
13463                         be32_to_cpu(fw_hdr->xsem_pram_data.offset);
13464         INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13465                         be32_to_cpu(fw_hdr->csem_int_table_data.offset);
13466         INIT_CSEM_PRAM_DATA(bp)      = bp->firmware->data +
13467                         be32_to_cpu(fw_hdr->csem_pram_data.offset);
13468         /* IRO */
13469         BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro);
13470
13471         return 0;
13472
13473 iro_alloc_err:
13474         kfree(bp->init_ops_offsets);
13475 init_offsets_alloc_err:
13476         kfree(bp->init_ops);
13477 init_ops_alloc_err:
13478         kfree(bp->init_data);
13479 request_firmware_exit:
13480         release_firmware(bp->firmware);
13481         bp->firmware = NULL;
13482
13483         return rc;
13484 }
13485
13486 static void bnx2x_release_firmware(struct bnx2x *bp)
13487 {
13488         kfree(bp->init_ops_offsets);
13489         kfree(bp->init_ops);
13490         kfree(bp->init_data);
13491         release_firmware(bp->firmware);
13492         bp->firmware = NULL;
13493 }
13494
13495 static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = {
13496         .init_hw_cmn_chip = bnx2x_init_hw_common_chip,
13497         .init_hw_cmn      = bnx2x_init_hw_common,
13498         .init_hw_port     = bnx2x_init_hw_port,
13499         .init_hw_func     = bnx2x_init_hw_func,
13500
13501         .reset_hw_cmn     = bnx2x_reset_common,
13502         .reset_hw_port    = bnx2x_reset_port,
13503         .reset_hw_func    = bnx2x_reset_func,
13504
13505         .gunzip_init      = bnx2x_gunzip_init,
13506         .gunzip_end       = bnx2x_gunzip_end,
13507
13508         .init_fw          = bnx2x_init_firmware,
13509         .release_fw       = bnx2x_release_firmware,
13510 };
13511
13512 void bnx2x__init_func_obj(struct bnx2x *bp)
13513 {
13514         /* Prepare DMAE related driver resources */
13515         bnx2x_setup_dmae(bp);
13516
13517         bnx2x_init_func_obj(bp, &bp->func_obj,
13518                             bnx2x_sp(bp, func_rdata),
13519                             bnx2x_sp_mapping(bp, func_rdata),
13520                             bnx2x_sp(bp, func_afex_rdata),
13521                             bnx2x_sp_mapping(bp, func_afex_rdata),
13522                             &bnx2x_func_sp_drv);
13523 }
13524
13525 /* must be called after sriov-enable */
13526 static int bnx2x_set_qm_cid_count(struct bnx2x *bp)
13527 {
13528         int cid_count = BNX2X_L2_MAX_CID(bp);
13529
13530         if (IS_SRIOV(bp))
13531                 cid_count += BNX2X_VF_CIDS;
13532
13533         if (CNIC_SUPPORT(bp))
13534                 cid_count += CNIC_CID_MAX;
13535
13536         return roundup(cid_count, QM_CID_ROUND);
13537 }
13538
13539 /**
13540  * bnx2x_get_num_non_def_sbs - return the number of none default SBs
13541  * @pdev: pci device
13542  * @cnic_cnt: count
13543  *
13544  */
13545 static int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev, int cnic_cnt)
13546 {
13547         int index;
13548         u16 control = 0;
13549
13550         /*
13551          * If MSI-X is not supported - return number of SBs needed to support
13552          * one fast path queue: one FP queue + SB for CNIC
13553          */
13554         if (!pdev->msix_cap) {
13555                 dev_info(&pdev->dev, "no msix capability found\n");
13556                 return 1 + cnic_cnt;
13557         }
13558         dev_info(&pdev->dev, "msix capability found\n");
13559
13560         /*
13561          * The value in the PCI configuration space is the index of the last
13562          * entry, namely one less than the actual size of the table, which is
13563          * exactly what we want to return from this function: number of all SBs
13564          * without the default SB.
13565          * For VFs there is no default SB, then we return (index+1).
13566          */
13567         pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &control);
13568
13569         index = control & PCI_MSIX_FLAGS_QSIZE;
13570
13571         return index;
13572 }
13573
13574 static int set_max_cos_est(int chip_id)
13575 {
13576         switch (chip_id) {
13577         case BCM57710:
13578         case BCM57711:
13579         case BCM57711E:
13580                 return BNX2X_MULTI_TX_COS_E1X;
13581         case BCM57712:
13582         case BCM57712_MF:
13583                 return BNX2X_MULTI_TX_COS_E2_E3A0;
13584         case BCM57800:
13585         case BCM57800_MF:
13586         case BCM57810:
13587         case BCM57810_MF:
13588         case BCM57840_4_10:
13589         case BCM57840_2_20:
13590         case BCM57840_O:
13591         case BCM57840_MFO:
13592         case BCM57840_MF:
13593         case BCM57811:
13594         case BCM57811_MF:
13595                 return BNX2X_MULTI_TX_COS_E3B0;
13596         case BCM57712_VF:
13597         case BCM57800_VF:
13598         case BCM57810_VF:
13599         case BCM57840_VF:
13600         case BCM57811_VF:
13601                 return 1;
13602         default:
13603                 pr_err("Unknown board_type (%d), aborting\n", chip_id);
13604                 return -ENODEV;
13605         }
13606 }
13607
13608 static int set_is_vf(int chip_id)
13609 {
13610         switch (chip_id) {
13611         case BCM57712_VF:
13612         case BCM57800_VF:
13613         case BCM57810_VF:
13614         case BCM57840_VF:
13615         case BCM57811_VF:
13616                 return true;
13617         default:
13618                 return false;
13619         }
13620 }
13621
13622 /* nig_tsgen registers relative address */
13623 #define tsgen_ctrl 0x0
13624 #define tsgen_freecount 0x10
13625 #define tsgen_synctime_t0 0x20
13626 #define tsgen_offset_t0 0x28
13627 #define tsgen_drift_t0 0x30
13628 #define tsgen_synctime_t1 0x58
13629 #define tsgen_offset_t1 0x60
13630 #define tsgen_drift_t1 0x68
13631
13632 /* FW workaround for setting drift */
13633 static int bnx2x_send_update_drift_ramrod(struct bnx2x *bp, int drift_dir,
13634                                           int best_val, int best_period)
13635 {
13636         struct bnx2x_func_state_params func_params = {NULL};
13637         struct bnx2x_func_set_timesync_params *set_timesync_params =
13638                 &func_params.params.set_timesync;
13639
13640         /* Prepare parameters for function state transitions */
13641         __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
13642         __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
13643
13644         func_params.f_obj = &bp->func_obj;
13645         func_params.cmd = BNX2X_F_CMD_SET_TIMESYNC;
13646
13647         /* Function parameters */
13648         set_timesync_params->drift_adjust_cmd = TS_DRIFT_ADJUST_SET;
13649         set_timesync_params->offset_cmd = TS_OFFSET_KEEP;
13650         set_timesync_params->add_sub_drift_adjust_value =
13651                 drift_dir ? TS_ADD_VALUE : TS_SUB_VALUE;
13652         set_timesync_params->drift_adjust_value = best_val;
13653         set_timesync_params->drift_adjust_period = best_period;
13654
13655         return bnx2x_func_state_change(bp, &func_params);
13656 }
13657
13658 static int bnx2x_ptp_adjfine(struct ptp_clock_info *ptp, long scaled_ppm)
13659 {
13660         struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13661         int rc;
13662         int drift_dir = 1;
13663         int val, period, period1, period2, dif, dif1, dif2;
13664         int best_dif = BNX2X_MAX_PHC_DRIFT, best_period = 0, best_val = 0;
13665         s32 ppb = scaled_ppm_to_ppb(scaled_ppm);
13666
13667         DP(BNX2X_MSG_PTP, "PTP adjfine called, ppb = %d\n", ppb);
13668
13669         if (!netif_running(bp->dev)) {
13670                 DP(BNX2X_MSG_PTP,
13671                    "PTP adjfine called while the interface is down\n");
13672                 return -ENETDOWN;
13673         }
13674
13675         if (ppb < 0) {
13676                 ppb = -ppb;
13677                 drift_dir = 0;
13678         }
13679
13680         if (ppb == 0) {
13681                 best_val = 1;
13682                 best_period = 0x1FFFFFF;
13683         } else if (ppb >= BNX2X_MAX_PHC_DRIFT) {
13684                 best_val = 31;
13685                 best_period = 1;
13686         } else {
13687                 /* Changed not to allow val = 8, 16, 24 as these values
13688                  * are not supported in workaround.
13689                  */
13690                 for (val = 0; val <= 31; val++) {
13691                         if ((val & 0x7) == 0)
13692                                 continue;
13693                         period1 = val * 1000000 / ppb;
13694                         period2 = period1 + 1;
13695                         if (period1 != 0)
13696                                 dif1 = ppb - (val * 1000000 / period1);
13697                         else
13698                                 dif1 = BNX2X_MAX_PHC_DRIFT;
13699                         if (dif1 < 0)
13700                                 dif1 = -dif1;
13701                         dif2 = ppb - (val * 1000000 / period2);
13702                         if (dif2 < 0)
13703                                 dif2 = -dif2;
13704                         dif = (dif1 < dif2) ? dif1 : dif2;
13705                         period = (dif1 < dif2) ? period1 : period2;
13706                         if (dif < best_dif) {
13707                                 best_dif = dif;
13708                                 best_val = val;
13709                                 best_period = period;
13710                         }
13711                 }
13712         }
13713
13714         rc = bnx2x_send_update_drift_ramrod(bp, drift_dir, best_val,
13715                                             best_period);
13716         if (rc) {
13717                 BNX2X_ERR("Failed to set drift\n");
13718                 return -EFAULT;
13719         }
13720
13721         DP(BNX2X_MSG_PTP, "Configured val = %d, period = %d\n", best_val,
13722            best_period);
13723
13724         return 0;
13725 }
13726
13727 static int bnx2x_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
13728 {
13729         struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13730
13731         if (!netif_running(bp->dev)) {
13732                 DP(BNX2X_MSG_PTP,
13733                    "PTP adjtime called while the interface is down\n");
13734                 return -ENETDOWN;
13735         }
13736
13737         DP(BNX2X_MSG_PTP, "PTP adjtime called, delta = %llx\n", delta);
13738
13739         timecounter_adjtime(&bp->timecounter, delta);
13740
13741         return 0;
13742 }
13743
13744 static int bnx2x_ptp_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
13745 {
13746         struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13747         u64 ns;
13748
13749         if (!netif_running(bp->dev)) {
13750                 DP(BNX2X_MSG_PTP,
13751                    "PTP gettime called while the interface is down\n");
13752                 return -ENETDOWN;
13753         }
13754
13755         ns = timecounter_read(&bp->timecounter);
13756
13757         DP(BNX2X_MSG_PTP, "PTP gettime called, ns = %llu\n", ns);
13758
13759         *ts = ns_to_timespec64(ns);
13760
13761         return 0;
13762 }
13763
13764 static int bnx2x_ptp_settime(struct ptp_clock_info *ptp,
13765                              const struct timespec64 *ts)
13766 {
13767         struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13768         u64 ns;
13769
13770         if (!netif_running(bp->dev)) {
13771                 DP(BNX2X_MSG_PTP,
13772                    "PTP settime called while the interface is down\n");
13773                 return -ENETDOWN;
13774         }
13775
13776         ns = timespec64_to_ns(ts);
13777
13778         DP(BNX2X_MSG_PTP, "PTP settime called, ns = %llu\n", ns);
13779
13780         /* Re-init the timecounter */
13781         timecounter_init(&bp->timecounter, &bp->cyclecounter, ns);
13782
13783         return 0;
13784 }
13785
13786 /* Enable (or disable) ancillary features of the phc subsystem */
13787 static int bnx2x_ptp_enable(struct ptp_clock_info *ptp,
13788                             struct ptp_clock_request *rq, int on)
13789 {
13790         struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13791
13792         BNX2X_ERR("PHC ancillary features are not supported\n");
13793         return -ENOTSUPP;
13794 }
13795
13796 void bnx2x_register_phc(struct bnx2x *bp)
13797 {
13798         /* Fill the ptp_clock_info struct and register PTP clock*/
13799         bp->ptp_clock_info.owner = THIS_MODULE;
13800         snprintf(bp->ptp_clock_info.name, 16, "%s", bp->dev->name);
13801         bp->ptp_clock_info.max_adj = BNX2X_MAX_PHC_DRIFT; /* In PPB */
13802         bp->ptp_clock_info.n_alarm = 0;
13803         bp->ptp_clock_info.n_ext_ts = 0;
13804         bp->ptp_clock_info.n_per_out = 0;
13805         bp->ptp_clock_info.pps = 0;
13806         bp->ptp_clock_info.adjfine = bnx2x_ptp_adjfine;
13807         bp->ptp_clock_info.adjtime = bnx2x_ptp_adjtime;
13808         bp->ptp_clock_info.gettime64 = bnx2x_ptp_gettime;
13809         bp->ptp_clock_info.settime64 = bnx2x_ptp_settime;
13810         bp->ptp_clock_info.enable = bnx2x_ptp_enable;
13811
13812         bp->ptp_clock = ptp_clock_register(&bp->ptp_clock_info, &bp->pdev->dev);
13813         if (IS_ERR(bp->ptp_clock)) {
13814                 bp->ptp_clock = NULL;
13815                 BNX2X_ERR("PTP clock registration failed\n");
13816         }
13817 }
13818
13819 static int bnx2x_init_one(struct pci_dev *pdev,
13820                                     const struct pci_device_id *ent)
13821 {
13822         struct net_device *dev = NULL;
13823         struct bnx2x *bp;
13824         int rc, max_non_def_sbs;
13825         int rx_count, tx_count, rss_count, doorbell_size;
13826         int max_cos_est;
13827         bool is_vf;
13828         int cnic_cnt;
13829
13830         /* Management FW 'remembers' living interfaces. Allow it some time
13831          * to forget previously living interfaces, allowing a proper re-load.
13832          */
13833         if (is_kdump_kernel()) {
13834                 ktime_t now = ktime_get_boottime();
13835                 ktime_t fw_ready_time = ktime_set(5, 0);
13836
13837                 if (ktime_before(now, fw_ready_time))
13838                         msleep(ktime_ms_delta(fw_ready_time, now));
13839         }
13840
13841         /* An estimated maximum supported CoS number according to the chip
13842          * version.
13843          * We will try to roughly estimate the maximum number of CoSes this chip
13844          * may support in order to minimize the memory allocated for Tx
13845          * netdev_queue's. This number will be accurately calculated during the
13846          * initialization of bp->max_cos based on the chip versions AND chip
13847          * revision in the bnx2x_init_bp().
13848          */
13849         max_cos_est = set_max_cos_est(ent->driver_data);
13850         if (max_cos_est < 0)
13851                 return max_cos_est;
13852         is_vf = set_is_vf(ent->driver_data);
13853         cnic_cnt = is_vf ? 0 : 1;
13854
13855         max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev, cnic_cnt);
13856
13857         /* add another SB for VF as it has no default SB */
13858         max_non_def_sbs += is_vf ? 1 : 0;
13859
13860         /* Maximum number of RSS queues: one IGU SB goes to CNIC */
13861         rss_count = max_non_def_sbs - cnic_cnt;
13862
13863         if (rss_count < 1)
13864                 return -EINVAL;
13865
13866         /* Maximum number of netdev Rx queues: RSS + FCoE L2 */
13867         rx_count = rss_count + cnic_cnt;
13868
13869         /* Maximum number of netdev Tx queues:
13870          * Maximum TSS queues * Maximum supported number of CoS  + FCoE L2
13871          */
13872         tx_count = rss_count * max_cos_est + cnic_cnt;
13873
13874         /* dev zeroed in init_etherdev */
13875         dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count);
13876         if (!dev)
13877                 return -ENOMEM;
13878
13879         bp = netdev_priv(dev);
13880
13881         bp->flags = 0;
13882         if (is_vf)
13883                 bp->flags |= IS_VF_FLAG;
13884
13885         bp->igu_sb_cnt = max_non_def_sbs;
13886         bp->igu_base_addr = IS_VF(bp) ? PXP_VF_ADDR_IGU_START : BAR_IGU_INTMEM;
13887         bp->msg_enable = debug;
13888         bp->cnic_support = cnic_cnt;
13889         bp->cnic_probe = bnx2x_cnic_probe;
13890
13891         pci_set_drvdata(pdev, dev);
13892
13893         rc = bnx2x_init_dev(bp, pdev, dev, ent->driver_data);
13894         if (rc < 0) {
13895                 free_netdev(dev);
13896                 return rc;
13897         }
13898
13899         BNX2X_DEV_INFO("This is a %s function\n",
13900                        IS_PF(bp) ? "physical" : "virtual");
13901         BNX2X_DEV_INFO("Cnic support is %s\n", CNIC_SUPPORT(bp) ? "on" : "off");
13902         BNX2X_DEV_INFO("Max num of status blocks %d\n", max_non_def_sbs);
13903         BNX2X_DEV_INFO("Allocated netdev with %d tx and %d rx queues\n",
13904                        tx_count, rx_count);
13905
13906         rc = bnx2x_init_bp(bp);
13907         if (rc)
13908                 goto init_one_exit;
13909
13910         /* Map doorbells here as we need the real value of bp->max_cos which
13911          * is initialized in bnx2x_init_bp() to determine the number of
13912          * l2 connections.
13913          */
13914         if (IS_VF(bp)) {
13915                 bp->doorbells = bnx2x_vf_doorbells(bp);
13916                 rc = bnx2x_vf_pci_alloc(bp);
13917                 if (rc)
13918                         goto init_one_freemem;
13919         } else {
13920                 doorbell_size = BNX2X_L2_MAX_CID(bp) * (1 << BNX2X_DB_SHIFT);
13921                 if (doorbell_size > pci_resource_len(pdev, 2)) {
13922                         dev_err(&bp->pdev->dev,
13923                                 "Cannot map doorbells, bar size too small, aborting\n");
13924                         rc = -ENOMEM;
13925                         goto init_one_freemem;
13926                 }
13927                 bp->doorbells = ioremap(pci_resource_start(pdev, 2),
13928                                                 doorbell_size);
13929         }
13930         if (!bp->doorbells) {
13931                 dev_err(&bp->pdev->dev,
13932                         "Cannot map doorbell space, aborting\n");
13933                 rc = -ENOMEM;
13934                 goto init_one_freemem;
13935         }
13936
13937         if (IS_VF(bp)) {
13938                 rc = bnx2x_vfpf_acquire(bp, tx_count, rx_count);
13939                 if (rc)
13940                         goto init_one_freemem;
13941
13942 #ifdef CONFIG_BNX2X_SRIOV
13943                 /* VF with OLD Hypervisor or old PF do not support filtering */
13944                 if (bp->acquire_resp.pfdev_info.pf_cap & PFVF_CAP_VLAN_FILTER) {
13945                         dev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
13946                         dev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
13947                 }
13948 #endif
13949         }
13950
13951         /* Enable SRIOV if capability found in configuration space */
13952         rc = bnx2x_iov_init_one(bp, int_mode, BNX2X_MAX_NUM_OF_VFS);
13953         if (rc)
13954                 goto init_one_freemem;
13955
13956         /* calc qm_cid_count */
13957         bp->qm_cid_count = bnx2x_set_qm_cid_count(bp);
13958         BNX2X_DEV_INFO("qm_cid_count %d\n", bp->qm_cid_count);
13959
13960         /* disable FCOE L2 queue for E1x*/
13961         if (CHIP_IS_E1x(bp))
13962                 bp->flags |= NO_FCOE_FLAG;
13963
13964         /* Set bp->num_queues for MSI-X mode*/
13965         bnx2x_set_num_queues(bp);
13966
13967         /* Configure interrupt mode: try to enable MSI-X/MSI if
13968          * needed.
13969          */
13970         rc = bnx2x_set_int_mode(bp);
13971         if (rc) {
13972                 dev_err(&pdev->dev, "Cannot set interrupts\n");
13973                 goto init_one_freemem;
13974         }
13975         BNX2X_DEV_INFO("set interrupts successfully\n");
13976
13977         /* register the net device */
13978         rc = register_netdev(dev);
13979         if (rc) {
13980                 dev_err(&pdev->dev, "Cannot register net device\n");
13981                 goto init_one_freemem;
13982         }
13983         BNX2X_DEV_INFO("device name after netdev register %s\n", dev->name);
13984
13985         if (!NO_FCOE(bp)) {
13986                 /* Add storage MAC address */
13987                 rtnl_lock();
13988                 dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
13989                 rtnl_unlock();
13990         }
13991         BNX2X_DEV_INFO(
13992                "%s (%c%d) PCI-E found at mem %lx, IRQ %d, node addr %pM\n",
13993                board_info[ent->driver_data].name,
13994                (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4),
13995                dev->base_addr, bp->pdev->irq, dev->dev_addr);
13996         pcie_print_link_status(bp->pdev);
13997
13998         if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp))
13999                 bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_DISABLED);
14000
14001         return 0;
14002
14003 init_one_freemem:
14004         bnx2x_free_mem_bp(bp);
14005
14006 init_one_exit:
14007         if (bp->regview)
14008                 iounmap(bp->regview);
14009
14010         if (IS_PF(bp) && bp->doorbells)
14011                 iounmap(bp->doorbells);
14012
14013         free_netdev(dev);
14014
14015         if (atomic_read(&pdev->enable_cnt) == 1)
14016                 pci_release_regions(pdev);
14017
14018         pci_disable_device(pdev);
14019
14020         return rc;
14021 }
14022
14023 static void __bnx2x_remove(struct pci_dev *pdev,
14024                            struct net_device *dev,
14025                            struct bnx2x *bp,
14026                            bool remove_netdev)
14027 {
14028         /* Delete storage MAC address */
14029         if (!NO_FCOE(bp)) {
14030                 rtnl_lock();
14031                 dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
14032                 rtnl_unlock();
14033         }
14034
14035 #ifdef BCM_DCBNL
14036         /* Delete app tlvs from dcbnl */
14037         bnx2x_dcbnl_update_applist(bp, true);
14038 #endif
14039
14040         if (IS_PF(bp) &&
14041             !BP_NOMCP(bp) &&
14042             (bp->flags & BC_SUPPORTS_RMMOD_CMD))
14043                 bnx2x_fw_command(bp, DRV_MSG_CODE_RMMOD, 0);
14044
14045         /* Close the interface - either directly or implicitly */
14046         if (remove_netdev) {
14047                 unregister_netdev(dev);
14048         } else {
14049                 rtnl_lock();
14050                 dev_close(dev);
14051                 rtnl_unlock();
14052         }
14053
14054         bnx2x_iov_remove_one(bp);
14055
14056         /* Power on: we can't let PCI layer write to us while we are in D3 */
14057         if (IS_PF(bp)) {
14058                 bnx2x_set_power_state(bp, PCI_D0);
14059                 bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_NOT_LOADED);
14060
14061                 /* Set endianity registers to reset values in case next driver
14062                  * boots in different endianty environment.
14063                  */
14064                 bnx2x_reset_endianity(bp);
14065         }
14066
14067         /* Disable MSI/MSI-X */
14068         bnx2x_disable_msi(bp);
14069
14070         /* Power off */
14071         if (IS_PF(bp))
14072                 bnx2x_set_power_state(bp, PCI_D3hot);
14073
14074         /* Make sure RESET task is not scheduled before continuing */
14075         cancel_delayed_work_sync(&bp->sp_rtnl_task);
14076
14077         /* send message via vfpf channel to release the resources of this vf */
14078         if (IS_VF(bp))
14079                 bnx2x_vfpf_release(bp);
14080
14081         /* Assumes no further PCIe PM changes will occur */
14082         if (system_state == SYSTEM_POWER_OFF) {
14083                 pci_wake_from_d3(pdev, bp->wol);
14084                 pci_set_power_state(pdev, PCI_D3hot);
14085         }
14086
14087         if (remove_netdev) {
14088                 if (bp->regview)
14089                         iounmap(bp->regview);
14090
14091                 /* For vfs, doorbells are part of the regview and were unmapped
14092                  * along with it. FW is only loaded by PF.
14093                  */
14094                 if (IS_PF(bp)) {
14095                         if (bp->doorbells)
14096                                 iounmap(bp->doorbells);
14097
14098                         bnx2x_release_firmware(bp);
14099                 } else {
14100                         bnx2x_vf_pci_dealloc(bp);
14101                 }
14102                 bnx2x_free_mem_bp(bp);
14103
14104                 free_netdev(dev);
14105
14106                 if (atomic_read(&pdev->enable_cnt) == 1)
14107                         pci_release_regions(pdev);
14108
14109                 pci_disable_device(pdev);
14110         }
14111 }
14112
14113 static void bnx2x_remove_one(struct pci_dev *pdev)
14114 {
14115         struct net_device *dev = pci_get_drvdata(pdev);
14116         struct bnx2x *bp;
14117
14118         if (!dev) {
14119                 dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
14120                 return;
14121         }
14122         bp = netdev_priv(dev);
14123
14124         __bnx2x_remove(pdev, dev, bp, true);
14125 }
14126
14127 static int bnx2x_eeh_nic_unload(struct bnx2x *bp)
14128 {
14129         bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT;
14130
14131         bp->rx_mode = BNX2X_RX_MODE_NONE;
14132
14133         if (CNIC_LOADED(bp))
14134                 bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
14135
14136         /* Stop Tx */
14137         bnx2x_tx_disable(bp);
14138         netdev_reset_tc(bp->dev);
14139
14140         del_timer_sync(&bp->timer);
14141         cancel_delayed_work_sync(&bp->sp_task);
14142         cancel_delayed_work_sync(&bp->period_task);
14143
14144         if (!down_timeout(&bp->stats_lock, HZ / 10)) {
14145                 bp->stats_state = STATS_STATE_DISABLED;
14146                 up(&bp->stats_lock);
14147         }
14148
14149         bnx2x_save_statistics(bp);
14150
14151         netif_carrier_off(bp->dev);
14152
14153         return 0;
14154 }
14155
14156 /**
14157  * bnx2x_io_error_detected - called when PCI error is detected
14158  * @pdev: Pointer to PCI device
14159  * @state: The current pci connection state
14160  *
14161  * This function is called after a PCI bus error affecting
14162  * this device has been detected.
14163  */
14164 static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev,
14165                                                 pci_channel_state_t state)
14166 {
14167         struct net_device *dev = pci_get_drvdata(pdev);
14168         struct bnx2x *bp = netdev_priv(dev);
14169
14170         rtnl_lock();
14171
14172         BNX2X_ERR("IO error detected\n");
14173
14174         netif_device_detach(dev);
14175
14176         if (state == pci_channel_io_perm_failure) {
14177                 rtnl_unlock();
14178                 return PCI_ERS_RESULT_DISCONNECT;
14179         }
14180
14181         if (netif_running(dev))
14182                 bnx2x_eeh_nic_unload(bp);
14183
14184         bnx2x_prev_path_mark_eeh(bp);
14185
14186         pci_disable_device(pdev);
14187
14188         rtnl_unlock();
14189
14190         /* Request a slot reset */
14191         return PCI_ERS_RESULT_NEED_RESET;
14192 }
14193
14194 /**
14195  * bnx2x_io_slot_reset - called after the PCI bus has been reset
14196  * @pdev: Pointer to PCI device
14197  *
14198  * Restart the card from scratch, as if from a cold-boot.
14199  */
14200 static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev)
14201 {
14202         struct net_device *dev = pci_get_drvdata(pdev);
14203         struct bnx2x *bp = netdev_priv(dev);
14204         int i;
14205
14206         rtnl_lock();
14207         BNX2X_ERR("IO slot reset initializing...\n");
14208         if (pci_enable_device(pdev)) {
14209                 dev_err(&pdev->dev,
14210                         "Cannot re-enable PCI device after reset\n");
14211                 rtnl_unlock();
14212                 return PCI_ERS_RESULT_DISCONNECT;
14213         }
14214
14215         pci_set_master(pdev);
14216         pci_restore_state(pdev);
14217         pci_save_state(pdev);
14218
14219         if (netif_running(dev))
14220                 bnx2x_set_power_state(bp, PCI_D0);
14221
14222         if (netif_running(dev)) {
14223                 BNX2X_ERR("IO slot reset --> driver unload\n");
14224
14225                 /* MCP should have been reset; Need to wait for validity */
14226                 if (bnx2x_init_shmem(bp)) {
14227                         rtnl_unlock();
14228                         return PCI_ERS_RESULT_DISCONNECT;
14229                 }
14230
14231                 if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
14232                         u32 v;
14233
14234                         v = SHMEM2_RD(bp,
14235                                       drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
14236                         SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
14237                                   v & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
14238                 }
14239                 bnx2x_drain_tx_queues(bp);
14240                 bnx2x_send_unload_req(bp, UNLOAD_RECOVERY);
14241                 bnx2x_netif_stop(bp, 1);
14242                 bnx2x_del_all_napi(bp);
14243
14244                 if (CNIC_LOADED(bp))
14245                         bnx2x_del_all_napi_cnic(bp);
14246
14247                 bnx2x_free_irq(bp);
14248
14249                 /* Report UNLOAD_DONE to MCP */
14250                 bnx2x_send_unload_done(bp, true);
14251
14252                 bp->sp_state = 0;
14253                 bp->port.pmf = 0;
14254
14255                 bnx2x_prev_unload(bp);
14256
14257                 /* We should have reseted the engine, so It's fair to
14258                  * assume the FW will no longer write to the bnx2x driver.
14259                  */
14260                 bnx2x_squeeze_objects(bp);
14261                 bnx2x_free_skbs(bp);
14262                 for_each_rx_queue(bp, i)
14263                         bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
14264                 bnx2x_free_fp_mem(bp);
14265                 bnx2x_free_mem(bp);
14266
14267                 bp->state = BNX2X_STATE_CLOSED;
14268         }
14269
14270         rtnl_unlock();
14271
14272         return PCI_ERS_RESULT_RECOVERED;
14273 }
14274
14275 /**
14276  * bnx2x_io_resume - called when traffic can start flowing again
14277  * @pdev: Pointer to PCI device
14278  *
14279  * This callback is called when the error recovery driver tells us that
14280  * its OK to resume normal operation.
14281  */
14282 static void bnx2x_io_resume(struct pci_dev *pdev)
14283 {
14284         struct net_device *dev = pci_get_drvdata(pdev);
14285         struct bnx2x *bp = netdev_priv(dev);
14286
14287         if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
14288                 netdev_err(bp->dev, "Handling parity error recovery. Try again later\n");
14289                 return;
14290         }
14291
14292         rtnl_lock();
14293
14294         bp->fw_seq = SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
14295                                                         DRV_MSG_SEQ_NUMBER_MASK;
14296
14297         if (netif_running(dev))
14298                 bnx2x_nic_load(bp, LOAD_NORMAL);
14299
14300         netif_device_attach(dev);
14301
14302         rtnl_unlock();
14303 }
14304
14305 static const struct pci_error_handlers bnx2x_err_handler = {
14306         .error_detected = bnx2x_io_error_detected,
14307         .slot_reset     = bnx2x_io_slot_reset,
14308         .resume         = bnx2x_io_resume,
14309 };
14310
14311 static void bnx2x_shutdown(struct pci_dev *pdev)
14312 {
14313         struct net_device *dev = pci_get_drvdata(pdev);
14314         struct bnx2x *bp;
14315
14316         if (!dev)
14317                 return;
14318
14319         bp = netdev_priv(dev);
14320         if (!bp)
14321                 return;
14322
14323         rtnl_lock();
14324         netif_device_detach(dev);
14325         rtnl_unlock();
14326
14327         /* Don't remove the netdevice, as there are scenarios which will cause
14328          * the kernel to hang, e.g., when trying to remove bnx2i while the
14329          * rootfs is mounted from SAN.
14330          */
14331         __bnx2x_remove(pdev, dev, bp, false);
14332 }
14333
14334 static struct pci_driver bnx2x_pci_driver = {
14335         .name        = DRV_MODULE_NAME,
14336         .id_table    = bnx2x_pci_tbl,
14337         .probe       = bnx2x_init_one,
14338         .remove      = bnx2x_remove_one,
14339         .driver.pm   = &bnx2x_pm_ops,
14340         .err_handler = &bnx2x_err_handler,
14341 #ifdef CONFIG_BNX2X_SRIOV
14342         .sriov_configure = bnx2x_sriov_configure,
14343 #endif
14344         .shutdown    = bnx2x_shutdown,
14345 };
14346
14347 static int __init bnx2x_init(void)
14348 {
14349         int ret;
14350
14351         bnx2x_wq = create_singlethread_workqueue("bnx2x");
14352         if (bnx2x_wq == NULL) {
14353                 pr_err("Cannot create workqueue\n");
14354                 return -ENOMEM;
14355         }
14356         bnx2x_iov_wq = create_singlethread_workqueue("bnx2x_iov");
14357         if (!bnx2x_iov_wq) {
14358                 pr_err("Cannot create iov workqueue\n");
14359                 destroy_workqueue(bnx2x_wq);
14360                 return -ENOMEM;
14361         }
14362
14363         ret = pci_register_driver(&bnx2x_pci_driver);
14364         if (ret) {
14365                 pr_err("Cannot register driver\n");
14366                 destroy_workqueue(bnx2x_wq);
14367                 destroy_workqueue(bnx2x_iov_wq);
14368         }
14369         return ret;
14370 }
14371
14372 static void __exit bnx2x_cleanup(void)
14373 {
14374         struct list_head *pos, *q;
14375
14376         pci_unregister_driver(&bnx2x_pci_driver);
14377
14378         destroy_workqueue(bnx2x_wq);
14379         destroy_workqueue(bnx2x_iov_wq);
14380
14381         /* Free globally allocated resources */
14382         list_for_each_safe(pos, q, &bnx2x_prev_list) {
14383                 struct bnx2x_prev_path_list *tmp =
14384                         list_entry(pos, struct bnx2x_prev_path_list, list);
14385                 list_del(pos);
14386                 kfree(tmp);
14387         }
14388 }
14389
14390 void bnx2x_notify_link_changed(struct bnx2x *bp)
14391 {
14392         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1);
14393 }
14394
14395 module_init(bnx2x_init);
14396 module_exit(bnx2x_cleanup);
14397
14398 /**
14399  * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s).
14400  * @bp:         driver handle
14401  *
14402  * This function will wait until the ramrod completion returns.
14403  * Return 0 if success, -ENODEV if ramrod doesn't return.
14404  */
14405 static int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp)
14406 {
14407         unsigned long ramrod_flags = 0;
14408
14409         __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
14410         return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac,
14411                                  &bp->iscsi_l2_mac_obj, true,
14412                                  BNX2X_ISCSI_ETH_MAC, &ramrod_flags);
14413 }
14414
14415 /* count denotes the number of new completions we have seen */
14416 static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count)
14417 {
14418         struct eth_spe *spe;
14419         int cxt_index, cxt_offset;
14420
14421 #ifdef BNX2X_STOP_ON_ERROR
14422         if (unlikely(bp->panic))
14423                 return;
14424 #endif
14425
14426         spin_lock_bh(&bp->spq_lock);
14427         BUG_ON(bp->cnic_spq_pending < count);
14428         bp->cnic_spq_pending -= count;
14429
14430         for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) {
14431                 u16 type =  (le16_to_cpu(bp->cnic_kwq_cons->hdr.type)
14432                                 & SPE_HDR_CONN_TYPE) >>
14433                                 SPE_HDR_CONN_TYPE_SHIFT;
14434                 u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data)
14435                                 >> SPE_HDR_CMD_ID_SHIFT) & 0xff;
14436
14437                 /* Set validation for iSCSI L2 client before sending SETUP
14438                  *  ramrod
14439                  */
14440                 if (type == ETH_CONNECTION_TYPE) {
14441                         if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP) {
14442                                 cxt_index = BNX2X_ISCSI_ETH_CID(bp) /
14443                                         ILT_PAGE_CIDS;
14444                                 cxt_offset = BNX2X_ISCSI_ETH_CID(bp) -
14445                                         (cxt_index * ILT_PAGE_CIDS);
14446                                 bnx2x_set_ctx_validation(bp,
14447                                         &bp->context[cxt_index].
14448                                                          vcxt[cxt_offset].eth,
14449                                         BNX2X_ISCSI_ETH_CID(bp));
14450                         }
14451                 }
14452
14453                 /*
14454                  * There may be not more than 8 L2, not more than 8 L5 SPEs
14455                  * and in the air. We also check that number of outstanding
14456                  * COMMON ramrods is not more than the EQ and SPQ can
14457                  * accommodate.
14458                  */
14459                 if (type == ETH_CONNECTION_TYPE) {
14460                         if (!atomic_read(&bp->cq_spq_left))
14461                                 break;
14462                         else
14463                                 atomic_dec(&bp->cq_spq_left);
14464                 } else if (type == NONE_CONNECTION_TYPE) {
14465                         if (!atomic_read(&bp->eq_spq_left))
14466                                 break;
14467                         else
14468                                 atomic_dec(&bp->eq_spq_left);
14469                 } else if ((type == ISCSI_CONNECTION_TYPE) ||
14470                            (type == FCOE_CONNECTION_TYPE)) {
14471                         if (bp->cnic_spq_pending >=
14472                             bp->cnic_eth_dev.max_kwqe_pending)
14473                                 break;
14474                         else
14475                                 bp->cnic_spq_pending++;
14476                 } else {
14477                         BNX2X_ERR("Unknown SPE type: %d\n", type);
14478                         bnx2x_panic();
14479                         break;
14480                 }
14481
14482                 spe = bnx2x_sp_get_next(bp);
14483                 *spe = *bp->cnic_kwq_cons;
14484
14485                 DP(BNX2X_MSG_SP, "pending on SPQ %d, on KWQ %d count %d\n",
14486                    bp->cnic_spq_pending, bp->cnic_kwq_pending, count);
14487
14488                 if (bp->cnic_kwq_cons == bp->cnic_kwq_last)
14489                         bp->cnic_kwq_cons = bp->cnic_kwq;
14490                 else
14491                         bp->cnic_kwq_cons++;
14492         }
14493         bnx2x_sp_prod_update(bp);
14494         spin_unlock_bh(&bp->spq_lock);
14495 }
14496
14497 static int bnx2x_cnic_sp_queue(struct net_device *dev,
14498                                struct kwqe_16 *kwqes[], u32 count)
14499 {
14500         struct bnx2x *bp = netdev_priv(dev);
14501         int i;
14502
14503 #ifdef BNX2X_STOP_ON_ERROR
14504         if (unlikely(bp->panic)) {
14505                 BNX2X_ERR("Can't post to SP queue while panic\n");
14506                 return -EIO;
14507         }
14508 #endif
14509
14510         if ((bp->recovery_state != BNX2X_RECOVERY_DONE) &&
14511             (bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
14512                 BNX2X_ERR("Handling parity error recovery. Try again later\n");
14513                 return -EAGAIN;
14514         }
14515
14516         spin_lock_bh(&bp->spq_lock);
14517
14518         for (i = 0; i < count; i++) {
14519                 struct eth_spe *spe = (struct eth_spe *)kwqes[i];
14520
14521                 if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT)
14522                         break;
14523
14524                 *bp->cnic_kwq_prod = *spe;
14525
14526                 bp->cnic_kwq_pending++;
14527
14528                 DP(BNX2X_MSG_SP, "L5 SPQE %x %x %x:%x pos %d\n",
14529                    spe->hdr.conn_and_cmd_data, spe->hdr.type,
14530                    spe->data.update_data_addr.hi,
14531                    spe->data.update_data_addr.lo,
14532                    bp->cnic_kwq_pending);
14533
14534                 if (bp->cnic_kwq_prod == bp->cnic_kwq_last)
14535                         bp->cnic_kwq_prod = bp->cnic_kwq;
14536                 else
14537                         bp->cnic_kwq_prod++;
14538         }
14539
14540         spin_unlock_bh(&bp->spq_lock);
14541
14542         if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending)
14543                 bnx2x_cnic_sp_post(bp, 0);
14544
14545         return i;
14546 }
14547
14548 static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl)
14549 {
14550         struct cnic_ops *c_ops;
14551         int rc = 0;
14552
14553         mutex_lock(&bp->cnic_mutex);
14554         c_ops = rcu_dereference_protected(bp->cnic_ops,
14555                                           lockdep_is_held(&bp->cnic_mutex));
14556         if (c_ops)
14557                 rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
14558         mutex_unlock(&bp->cnic_mutex);
14559
14560         return rc;
14561 }
14562
14563 static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl)
14564 {
14565         struct cnic_ops *c_ops;
14566         int rc = 0;
14567
14568         rcu_read_lock();
14569         c_ops = rcu_dereference(bp->cnic_ops);
14570         if (c_ops)
14571                 rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
14572         rcu_read_unlock();
14573
14574         return rc;
14575 }
14576
14577 /*
14578  * for commands that have no data
14579  */
14580 int bnx2x_cnic_notify(struct bnx2x *bp, int cmd)
14581 {
14582         struct cnic_ctl_info ctl = {0};
14583
14584         ctl.cmd = cmd;
14585
14586         return bnx2x_cnic_ctl_send(bp, &ctl);
14587 }
14588
14589 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err)
14590 {
14591         struct cnic_ctl_info ctl = {0};
14592
14593         /* first we tell CNIC and only then we count this as a completion */
14594         ctl.cmd = CNIC_CTL_COMPLETION_CMD;
14595         ctl.data.comp.cid = cid;
14596         ctl.data.comp.error = err;
14597
14598         bnx2x_cnic_ctl_send_bh(bp, &ctl);
14599         bnx2x_cnic_sp_post(bp, 0);
14600 }
14601
14602 /* Called with netif_addr_lock_bh() taken.
14603  * Sets an rx_mode config for an iSCSI ETH client.
14604  * Doesn't block.
14605  * Completion should be checked outside.
14606  */
14607 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start)
14608 {
14609         unsigned long accept_flags = 0, ramrod_flags = 0;
14610         u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
14611         int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED;
14612
14613         if (start) {
14614                 /* Start accepting on iSCSI L2 ring. Accept all multicasts
14615                  * because it's the only way for UIO Queue to accept
14616                  * multicasts (in non-promiscuous mode only one Queue per
14617                  * function will receive multicast packets (leading in our
14618                  * case).
14619                  */
14620                 __set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags);
14621                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags);
14622                 __set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags);
14623                 __set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
14624
14625                 /* Clear STOP_PENDING bit if START is requested */
14626                 clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state);
14627
14628                 sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED;
14629         } else
14630                 /* Clear START_PENDING bit if STOP is requested */
14631                 clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state);
14632
14633         if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
14634                 set_bit(sched_state, &bp->sp_state);
14635         else {
14636                 __set_bit(RAMROD_RX, &ramrod_flags);
14637                 bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0,
14638                                     ramrod_flags);
14639         }
14640 }
14641
14642 static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl)
14643 {
14644         struct bnx2x *bp = netdev_priv(dev);
14645         int rc = 0;
14646
14647         switch (ctl->cmd) {
14648         case DRV_CTL_CTXTBL_WR_CMD: {
14649                 u32 index = ctl->data.io.offset;
14650                 dma_addr_t addr = ctl->data.io.dma_addr;
14651
14652                 bnx2x_ilt_wr(bp, index, addr);
14653                 break;
14654         }
14655
14656         case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: {
14657                 int count = ctl->data.credit.credit_count;
14658
14659                 bnx2x_cnic_sp_post(bp, count);
14660                 break;
14661         }
14662
14663         /* rtnl_lock is held.  */
14664         case DRV_CTL_START_L2_CMD: {
14665                 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14666                 unsigned long sp_bits = 0;
14667
14668                 /* Configure the iSCSI classification object */
14669                 bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj,
14670                                    cp->iscsi_l2_client_id,
14671                                    cp->iscsi_l2_cid, BP_FUNC(bp),
14672                                    bnx2x_sp(bp, mac_rdata),
14673                                    bnx2x_sp_mapping(bp, mac_rdata),
14674                                    BNX2X_FILTER_MAC_PENDING,
14675                                    &bp->sp_state, BNX2X_OBJ_TYPE_RX,
14676                                    &bp->macs_pool);
14677
14678                 /* Set iSCSI MAC address */
14679                 rc = bnx2x_set_iscsi_eth_mac_addr(bp);
14680                 if (rc)
14681                         break;
14682
14683                 barrier();
14684
14685                 /* Start accepting on iSCSI L2 ring */
14686
14687                 netif_addr_lock_bh(dev);
14688                 bnx2x_set_iscsi_eth_rx_mode(bp, true);
14689                 netif_addr_unlock_bh(dev);
14690
14691                 /* bits to wait on */
14692                 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
14693                 __set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits);
14694
14695                 if (!bnx2x_wait_sp_comp(bp, sp_bits))
14696                         BNX2X_ERR("rx_mode completion timed out!\n");
14697
14698                 break;
14699         }
14700
14701         /* rtnl_lock is held.  */
14702         case DRV_CTL_STOP_L2_CMD: {
14703                 unsigned long sp_bits = 0;
14704
14705                 /* Stop accepting on iSCSI L2 ring */
14706                 netif_addr_lock_bh(dev);
14707                 bnx2x_set_iscsi_eth_rx_mode(bp, false);
14708                 netif_addr_unlock_bh(dev);
14709
14710                 /* bits to wait on */
14711                 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
14712                 __set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits);
14713
14714                 if (!bnx2x_wait_sp_comp(bp, sp_bits))
14715                         BNX2X_ERR("rx_mode completion timed out!\n");
14716
14717                 barrier();
14718
14719                 /* Unset iSCSI L2 MAC */
14720                 rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj,
14721                                         BNX2X_ISCSI_ETH_MAC, true);
14722                 break;
14723         }
14724         case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: {
14725                 int count = ctl->data.credit.credit_count;
14726
14727                 smp_mb__before_atomic();
14728                 atomic_add(count, &bp->cq_spq_left);
14729                 smp_mb__after_atomic();
14730                 break;
14731         }
14732         case DRV_CTL_ULP_REGISTER_CMD: {
14733                 int ulp_type = ctl->data.register_data.ulp_type;
14734
14735                 if (CHIP_IS_E3(bp)) {
14736                         int idx = BP_FW_MB_IDX(bp);
14737                         u32 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
14738                         int path = BP_PATH(bp);
14739                         int port = BP_PORT(bp);
14740                         int i;
14741                         u32 scratch_offset;
14742                         u32 *host_addr;
14743
14744                         /* first write capability to shmem2 */
14745                         if (ulp_type == CNIC_ULP_ISCSI)
14746                                 cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
14747                         else if (ulp_type == CNIC_ULP_FCOE)
14748                                 cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
14749                         SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
14750
14751                         if ((ulp_type != CNIC_ULP_FCOE) ||
14752                             (!SHMEM2_HAS(bp, ncsi_oem_data_addr)) ||
14753                             (!(bp->flags &  BC_SUPPORTS_FCOE_FEATURES)))
14754                                 break;
14755
14756                         /* if reached here - should write fcoe capabilities */
14757                         scratch_offset = SHMEM2_RD(bp, ncsi_oem_data_addr);
14758                         if (!scratch_offset)
14759                                 break;
14760                         scratch_offset += offsetof(struct glob_ncsi_oem_data,
14761                                                    fcoe_features[path][port]);
14762                         host_addr = (u32 *) &(ctl->data.register_data.
14763                                               fcoe_features);
14764                         for (i = 0; i < sizeof(struct fcoe_capabilities);
14765                              i += 4)
14766                                 REG_WR(bp, scratch_offset + i,
14767                                        *(host_addr + i/4));
14768                 }
14769                 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14770                 break;
14771         }
14772
14773         case DRV_CTL_ULP_UNREGISTER_CMD: {
14774                 int ulp_type = ctl->data.ulp_type;
14775
14776                 if (CHIP_IS_E3(bp)) {
14777                         int idx = BP_FW_MB_IDX(bp);
14778                         u32 cap;
14779
14780                         cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
14781                         if (ulp_type == CNIC_ULP_ISCSI)
14782                                 cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
14783                         else if (ulp_type == CNIC_ULP_FCOE)
14784                                 cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
14785                         SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
14786                 }
14787                 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14788                 break;
14789         }
14790
14791         default:
14792                 BNX2X_ERR("unknown command %x\n", ctl->cmd);
14793                 rc = -EINVAL;
14794         }
14795
14796         /* For storage-only interfaces, change driver state */
14797         if (IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp)) {
14798                 switch (ctl->drv_state) {
14799                 case DRV_NOP:
14800                         break;
14801                 case DRV_ACTIVE:
14802                         bnx2x_set_os_driver_state(bp,
14803                                                   OS_DRIVER_STATE_ACTIVE);
14804                         break;
14805                 case DRV_INACTIVE:
14806                         bnx2x_set_os_driver_state(bp,
14807                                                   OS_DRIVER_STATE_DISABLED);
14808                         break;
14809                 case DRV_UNLOADED:
14810                         bnx2x_set_os_driver_state(bp,
14811                                                   OS_DRIVER_STATE_NOT_LOADED);
14812                         break;
14813                 default:
14814                 BNX2X_ERR("Unknown cnic driver state: %d\n", ctl->drv_state);
14815                 }
14816         }
14817
14818         return rc;
14819 }
14820
14821 static int bnx2x_get_fc_npiv(struct net_device *dev,
14822                              struct cnic_fc_npiv_tbl *cnic_tbl)
14823 {
14824         struct bnx2x *bp = netdev_priv(dev);
14825         struct bdn_fc_npiv_tbl *tbl = NULL;
14826         u32 offset, entries;
14827         int rc = -EINVAL;
14828         int i;
14829
14830         if (!SHMEM2_HAS(bp, fc_npiv_nvram_tbl_addr[0]))
14831                 goto out;
14832
14833         DP(BNX2X_MSG_MCP, "About to read the FC-NPIV table\n");
14834
14835         tbl = kmalloc(sizeof(*tbl), GFP_KERNEL);
14836         if (!tbl) {
14837                 BNX2X_ERR("Failed to allocate fc_npiv table\n");
14838                 goto out;
14839         }
14840
14841         offset = SHMEM2_RD(bp, fc_npiv_nvram_tbl_addr[BP_PORT(bp)]);
14842         if (!offset) {
14843                 DP(BNX2X_MSG_MCP, "No FC-NPIV in NVRAM\n");
14844                 goto out;
14845         }
14846         DP(BNX2X_MSG_MCP, "Offset of FC-NPIV in NVRAM: %08x\n", offset);
14847
14848         /* Read the table contents from nvram */
14849         if (bnx2x_nvram_read(bp, offset, (u8 *)tbl, sizeof(*tbl))) {
14850                 BNX2X_ERR("Failed to read FC-NPIV table\n");
14851                 goto out;
14852         }
14853
14854         /* Since bnx2x_nvram_read() returns data in be32, we need to convert
14855          * the number of entries back to cpu endianness.
14856          */
14857         entries = tbl->fc_npiv_cfg.num_of_npiv;
14858         entries = (__force u32)be32_to_cpu((__force __be32)entries);
14859         tbl->fc_npiv_cfg.num_of_npiv = entries;
14860
14861         if (!tbl->fc_npiv_cfg.num_of_npiv) {
14862                 DP(BNX2X_MSG_MCP,
14863                    "No FC-NPIV table [valid, simply not present]\n");
14864                 goto out;
14865         } else if (tbl->fc_npiv_cfg.num_of_npiv > MAX_NUMBER_NPIV) {
14866                 BNX2X_ERR("FC-NPIV table with bad length 0x%08x\n",
14867                           tbl->fc_npiv_cfg.num_of_npiv);
14868                 goto out;
14869         } else {
14870                 DP(BNX2X_MSG_MCP, "Read 0x%08x entries from NVRAM\n",
14871                    tbl->fc_npiv_cfg.num_of_npiv);
14872         }
14873
14874         /* Copy the data into cnic-provided struct */
14875         cnic_tbl->count = tbl->fc_npiv_cfg.num_of_npiv;
14876         for (i = 0; i < cnic_tbl->count; i++) {
14877                 memcpy(cnic_tbl->wwpn[i], tbl->settings[i].npiv_wwpn, 8);
14878                 memcpy(cnic_tbl->wwnn[i], tbl->settings[i].npiv_wwnn, 8);
14879         }
14880
14881         rc = 0;
14882 out:
14883         kfree(tbl);
14884         return rc;
14885 }
14886
14887 void bnx2x_setup_cnic_irq_info(struct bnx2x *bp)
14888 {
14889         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14890
14891         if (bp->flags & USING_MSIX_FLAG) {
14892                 cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
14893                 cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
14894                 cp->irq_arr[0].vector = bp->msix_table[1].vector;
14895         } else {
14896                 cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
14897                 cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
14898         }
14899         if (!CHIP_IS_E1x(bp))
14900                 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb;
14901         else
14902                 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb;
14903
14904         cp->irq_arr[0].status_blk_num =  bnx2x_cnic_fw_sb_id(bp);
14905         cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp);
14906         cp->irq_arr[1].status_blk = bp->def_status_blk;
14907         cp->irq_arr[1].status_blk_num = DEF_SB_ID;
14908         cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID;
14909
14910         cp->num_irq = 2;
14911 }
14912
14913 void bnx2x_setup_cnic_info(struct bnx2x *bp)
14914 {
14915         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14916
14917         cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
14918                              bnx2x_cid_ilt_lines(bp);
14919         cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
14920         cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
14921         cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
14922
14923         DP(NETIF_MSG_IFUP, "BNX2X_1st_NON_L2_ETH_CID(bp) %x, cp->starting_cid %x, cp->fcoe_init_cid %x, cp->iscsi_l2_cid %x\n",
14924            BNX2X_1st_NON_L2_ETH_CID(bp), cp->starting_cid, cp->fcoe_init_cid,
14925            cp->iscsi_l2_cid);
14926
14927         if (NO_ISCSI_OOO(bp))
14928                 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
14929 }
14930
14931 static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops,
14932                                void *data)
14933 {
14934         struct bnx2x *bp = netdev_priv(dev);
14935         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14936         int rc;
14937
14938         DP(NETIF_MSG_IFUP, "Register_cnic called\n");
14939
14940         if (ops == NULL) {
14941                 BNX2X_ERR("NULL ops received\n");
14942                 return -EINVAL;
14943         }
14944
14945         if (!CNIC_SUPPORT(bp)) {
14946                 BNX2X_ERR("Can't register CNIC when not supported\n");
14947                 return -EOPNOTSUPP;
14948         }
14949
14950         if (!CNIC_LOADED(bp)) {
14951                 rc = bnx2x_load_cnic(bp);
14952                 if (rc) {
14953                         BNX2X_ERR("CNIC-related load failed\n");
14954                         return rc;
14955                 }
14956         }
14957
14958         bp->cnic_enabled = true;
14959
14960         bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL);
14961         if (!bp->cnic_kwq)
14962                 return -ENOMEM;
14963
14964         bp->cnic_kwq_cons = bp->cnic_kwq;
14965         bp->cnic_kwq_prod = bp->cnic_kwq;
14966         bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT;
14967
14968         bp->cnic_spq_pending = 0;
14969         bp->cnic_kwq_pending = 0;
14970
14971         bp->cnic_data = data;
14972
14973         cp->num_irq = 0;
14974         cp->drv_state |= CNIC_DRV_STATE_REGD;
14975         cp->iro_arr = bp->iro_arr;
14976
14977         bnx2x_setup_cnic_irq_info(bp);
14978
14979         rcu_assign_pointer(bp->cnic_ops, ops);
14980
14981         /* Schedule driver to read CNIC driver versions */
14982         bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14983
14984         return 0;
14985 }
14986
14987 static int bnx2x_unregister_cnic(struct net_device *dev)
14988 {
14989         struct bnx2x *bp = netdev_priv(dev);
14990         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14991
14992         mutex_lock(&bp->cnic_mutex);
14993         cp->drv_state = 0;
14994         RCU_INIT_POINTER(bp->cnic_ops, NULL);
14995         mutex_unlock(&bp->cnic_mutex);
14996         synchronize_rcu();
14997         bp->cnic_enabled = false;
14998         kfree(bp->cnic_kwq);
14999         bp->cnic_kwq = NULL;
15000
15001         return 0;
15002 }
15003
15004 static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev)
15005 {
15006         struct bnx2x *bp = netdev_priv(dev);
15007         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
15008
15009         /* If both iSCSI and FCoE are disabled - return NULL in
15010          * order to indicate CNIC that it should not try to work
15011          * with this device.
15012          */
15013         if (NO_ISCSI(bp) && NO_FCOE(bp))
15014                 return NULL;
15015
15016         cp->drv_owner = THIS_MODULE;
15017         cp->chip_id = CHIP_ID(bp);
15018         cp->pdev = bp->pdev;
15019         cp->io_base = bp->regview;
15020         cp->io_base2 = bp->doorbells;
15021         cp->max_kwqe_pending = 8;
15022         cp->ctx_blk_size = CDU_ILT_PAGE_SZ;
15023         cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
15024                              bnx2x_cid_ilt_lines(bp);
15025         cp->ctx_tbl_len = CNIC_ILT_LINES;
15026         cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
15027         cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue;
15028         cp->drv_ctl = bnx2x_drv_ctl;
15029         cp->drv_get_fc_npiv_tbl = bnx2x_get_fc_npiv;
15030         cp->drv_register_cnic = bnx2x_register_cnic;
15031         cp->drv_unregister_cnic = bnx2x_unregister_cnic;
15032         cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
15033         cp->iscsi_l2_client_id =
15034                 bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
15035         cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
15036
15037         if (NO_ISCSI_OOO(bp))
15038                 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
15039
15040         if (NO_ISCSI(bp))
15041                 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI;
15042
15043         if (NO_FCOE(bp))
15044                 cp->drv_state |= CNIC_DRV_STATE_NO_FCOE;
15045
15046         BNX2X_DEV_INFO(
15047                 "page_size %d, tbl_offset %d, tbl_lines %d, starting cid %d\n",
15048            cp->ctx_blk_size,
15049            cp->ctx_tbl_offset,
15050            cp->ctx_tbl_len,
15051            cp->starting_cid);
15052         return cp;
15053 }
15054
15055 static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp)
15056 {
15057         struct bnx2x *bp = fp->bp;
15058         u32 offset = BAR_USTRORM_INTMEM;
15059
15060         if (IS_VF(bp))
15061                 return bnx2x_vf_ustorm_prods_offset(bp, fp);
15062         else if (!CHIP_IS_E1x(bp))
15063                 offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
15064         else
15065                 offset += USTORM_RX_PRODS_E1X_OFFSET(BP_PORT(bp), fp->cl_id);
15066
15067         return offset;
15068 }
15069
15070 /* called only on E1H or E2.
15071  * When pretending to be PF, the pretend value is the function number 0...7
15072  * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
15073  * combination
15074  */
15075 int bnx2x_pretend_func(struct bnx2x *bp, u16 pretend_func_val)
15076 {
15077         u32 pretend_reg;
15078
15079         if (CHIP_IS_E1H(bp) && pretend_func_val >= E1H_FUNC_MAX)
15080                 return -1;
15081
15082         /* get my own pretend register */
15083         pretend_reg = bnx2x_get_pretend_reg(bp);
15084         REG_WR(bp, pretend_reg, pretend_func_val);
15085         REG_RD(bp, pretend_reg);
15086         return 0;
15087 }
15088
15089 static void bnx2x_ptp_task(struct work_struct *work)
15090 {
15091         struct bnx2x *bp = container_of(work, struct bnx2x, ptp_task);
15092         int port = BP_PORT(bp);
15093         u32 val_seq;
15094         u64 timestamp, ns;
15095         struct skb_shared_hwtstamps shhwtstamps;
15096         bool bail = true;
15097         int i;
15098
15099         /* FW may take a while to complete timestamping; try a bit and if it's
15100          * still not complete, may indicate an error state - bail out then.
15101          */
15102         for (i = 0; i < 10; i++) {
15103                 /* Read Tx timestamp registers */
15104                 val_seq = REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
15105                                  NIG_REG_P0_TLLH_PTP_BUF_SEQID);
15106                 if (val_seq & 0x10000) {
15107                         bail = false;
15108                         break;
15109                 }
15110                 msleep(1 << i);
15111         }
15112
15113         if (!bail) {
15114                 /* There is a valid timestamp value */
15115                 timestamp = REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_TS_MSB :
15116                                    NIG_REG_P0_TLLH_PTP_BUF_TS_MSB);
15117                 timestamp <<= 32;
15118                 timestamp |= REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_TS_LSB :
15119                                     NIG_REG_P0_TLLH_PTP_BUF_TS_LSB);
15120                 /* Reset timestamp register to allow new timestamp */
15121                 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
15122                        NIG_REG_P0_TLLH_PTP_BUF_SEQID, 0x10000);
15123                 ns = timecounter_cyc2time(&bp->timecounter, timestamp);
15124
15125                 memset(&shhwtstamps, 0, sizeof(shhwtstamps));
15126                 shhwtstamps.hwtstamp = ns_to_ktime(ns);
15127                 skb_tstamp_tx(bp->ptp_tx_skb, &shhwtstamps);
15128
15129                 DP(BNX2X_MSG_PTP, "Tx timestamp, timestamp cycles = %llu, ns = %llu\n",
15130                    timestamp, ns);
15131         } else {
15132                 DP(BNX2X_MSG_PTP,
15133                    "Tx timestamp is not recorded (register read=%u)\n",
15134                    val_seq);
15135                 bp->eth_stats.ptp_skip_tx_ts++;
15136         }
15137
15138         dev_kfree_skb_any(bp->ptp_tx_skb);
15139         bp->ptp_tx_skb = NULL;
15140 }
15141
15142 void bnx2x_set_rx_ts(struct bnx2x *bp, struct sk_buff *skb)
15143 {
15144         int port = BP_PORT(bp);
15145         u64 timestamp, ns;
15146
15147         timestamp = REG_RD(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_TS_MSB :
15148                             NIG_REG_P0_LLH_PTP_HOST_BUF_TS_MSB);
15149         timestamp <<= 32;
15150         timestamp |= REG_RD(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_TS_LSB :
15151                             NIG_REG_P0_LLH_PTP_HOST_BUF_TS_LSB);
15152
15153         /* Reset timestamp register to allow new timestamp */
15154         REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_SEQID :
15155                NIG_REG_P0_LLH_PTP_HOST_BUF_SEQID, 0x10000);
15156
15157         ns = timecounter_cyc2time(&bp->timecounter, timestamp);
15158
15159         skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns);
15160
15161         DP(BNX2X_MSG_PTP, "Rx timestamp, timestamp cycles = %llu, ns = %llu\n",
15162            timestamp, ns);
15163 }
15164
15165 /* Read the PHC */
15166 static u64 bnx2x_cyclecounter_read(const struct cyclecounter *cc)
15167 {
15168         struct bnx2x *bp = container_of(cc, struct bnx2x, cyclecounter);
15169         int port = BP_PORT(bp);
15170         u32 wb_data[2];
15171         u64 phc_cycles;
15172
15173         REG_RD_DMAE(bp, port ? NIG_REG_TIMESYNC_GEN_REG + tsgen_synctime_t1 :
15174                     NIG_REG_TIMESYNC_GEN_REG + tsgen_synctime_t0, wb_data, 2);
15175         phc_cycles = wb_data[1];
15176         phc_cycles = (phc_cycles << 32) + wb_data[0];
15177
15178         DP(BNX2X_MSG_PTP, "PHC read cycles = %llu\n", phc_cycles);
15179
15180         return phc_cycles;
15181 }
15182
15183 static void bnx2x_init_cyclecounter(struct bnx2x *bp)
15184 {
15185         memset(&bp->cyclecounter, 0, sizeof(bp->cyclecounter));
15186         bp->cyclecounter.read = bnx2x_cyclecounter_read;
15187         bp->cyclecounter.mask = CYCLECOUNTER_MASK(64);
15188         bp->cyclecounter.shift = 0;
15189         bp->cyclecounter.mult = 1;
15190 }
15191
15192 static int bnx2x_send_reset_timesync_ramrod(struct bnx2x *bp)
15193 {
15194         struct bnx2x_func_state_params func_params = {NULL};
15195         struct bnx2x_func_set_timesync_params *set_timesync_params =
15196                 &func_params.params.set_timesync;
15197
15198         /* Prepare parameters for function state transitions */
15199         __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
15200         __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
15201
15202         func_params.f_obj = &bp->func_obj;
15203         func_params.cmd = BNX2X_F_CMD_SET_TIMESYNC;
15204
15205         /* Function parameters */
15206         set_timesync_params->drift_adjust_cmd = TS_DRIFT_ADJUST_RESET;
15207         set_timesync_params->offset_cmd = TS_OFFSET_KEEP;
15208
15209         return bnx2x_func_state_change(bp, &func_params);
15210 }
15211
15212 static int bnx2x_enable_ptp_packets(struct bnx2x *bp)
15213 {
15214         struct bnx2x_queue_state_params q_params;
15215         int rc, i;
15216
15217         /* send queue update ramrod to enable PTP packets */
15218         memset(&q_params, 0, sizeof(q_params));
15219         __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
15220         q_params.cmd = BNX2X_Q_CMD_UPDATE;
15221         __set_bit(BNX2X_Q_UPDATE_PTP_PKTS_CHNG,
15222                   &q_params.params.update.update_flags);
15223         __set_bit(BNX2X_Q_UPDATE_PTP_PKTS,
15224                   &q_params.params.update.update_flags);
15225
15226         /* send the ramrod on all the queues of the PF */
15227         for_each_eth_queue(bp, i) {
15228                 struct bnx2x_fastpath *fp = &bp->fp[i];
15229
15230                 /* Set the appropriate Queue object */
15231                 q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
15232
15233                 /* Update the Queue state */
15234                 rc = bnx2x_queue_state_change(bp, &q_params);
15235                 if (rc) {
15236                         BNX2X_ERR("Failed to enable PTP packets\n");
15237                         return rc;
15238                 }
15239         }
15240
15241         return 0;
15242 }
15243
15244 #define BNX2X_P2P_DETECT_PARAM_MASK 0x5F5
15245 #define BNX2X_P2P_DETECT_RULE_MASK 0x3DBB
15246 #define BNX2X_PTP_TX_ON_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x6AA)
15247 #define BNX2X_PTP_TX_ON_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3EEE)
15248 #define BNX2X_PTP_V1_L4_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x7EE)
15249 #define BNX2X_PTP_V1_L4_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3FFE)
15250 #define BNX2X_PTP_V2_L4_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x7EA)
15251 #define BNX2X_PTP_V2_L4_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3FEE)
15252 #define BNX2X_PTP_V2_L2_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x6BF)
15253 #define BNX2X_PTP_V2_L2_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3EFF)
15254 #define BNX2X_PTP_V2_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x6AA)
15255 #define BNX2X_PTP_V2_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3EEE)
15256
15257 int bnx2x_configure_ptp_filters(struct bnx2x *bp)
15258 {
15259         int port = BP_PORT(bp);
15260         u32 param, rule;
15261         int rc;
15262
15263         if (!bp->hwtstamp_ioctl_called)
15264                 return 0;
15265
15266         param = port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
15267                 NIG_REG_P0_TLLH_PTP_PARAM_MASK;
15268         rule = port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
15269                 NIG_REG_P0_TLLH_PTP_RULE_MASK;
15270         switch (bp->tx_type) {
15271         case HWTSTAMP_TX_ON:
15272                 bp->flags |= TX_TIMESTAMPING_EN;
15273                 REG_WR(bp, param, BNX2X_PTP_TX_ON_PARAM_MASK);
15274                 REG_WR(bp, rule, BNX2X_PTP_TX_ON_RULE_MASK);
15275                 break;
15276         case HWTSTAMP_TX_ONESTEP_SYNC:
15277         case HWTSTAMP_TX_ONESTEP_P2P:
15278                 BNX2X_ERR("One-step timestamping is not supported\n");
15279                 return -ERANGE;
15280         }
15281
15282         param = port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15283                 NIG_REG_P0_LLH_PTP_PARAM_MASK;
15284         rule = port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15285                 NIG_REG_P0_LLH_PTP_RULE_MASK;
15286         switch (bp->rx_filter) {
15287         case HWTSTAMP_FILTER_NONE:
15288                 break;
15289         case HWTSTAMP_FILTER_ALL:
15290         case HWTSTAMP_FILTER_SOME:
15291         case HWTSTAMP_FILTER_NTP_ALL:
15292                 bp->rx_filter = HWTSTAMP_FILTER_NONE;
15293                 break;
15294         case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
15295         case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
15296         case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
15297                 bp->rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
15298                 /* Initialize PTP detection for UDP/IPv4 events */
15299                 REG_WR(bp, param, BNX2X_PTP_V1_L4_PARAM_MASK);
15300                 REG_WR(bp, rule, BNX2X_PTP_V1_L4_RULE_MASK);
15301                 break;
15302         case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
15303         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
15304         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
15305                 bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
15306                 /* Initialize PTP detection for UDP/IPv4 or UDP/IPv6 events */
15307                 REG_WR(bp, param, BNX2X_PTP_V2_L4_PARAM_MASK);
15308                 REG_WR(bp, rule, BNX2X_PTP_V2_L4_RULE_MASK);
15309                 break;
15310         case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
15311         case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
15312         case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
15313                 bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
15314                 /* Initialize PTP detection L2 events */
15315                 REG_WR(bp, param, BNX2X_PTP_V2_L2_PARAM_MASK);
15316                 REG_WR(bp, rule, BNX2X_PTP_V2_L2_RULE_MASK);
15317
15318                 break;
15319         case HWTSTAMP_FILTER_PTP_V2_EVENT:
15320         case HWTSTAMP_FILTER_PTP_V2_SYNC:
15321         case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
15322                 bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
15323                 /* Initialize PTP detection L2, UDP/IPv4 or UDP/IPv6 events */
15324                 REG_WR(bp, param, BNX2X_PTP_V2_PARAM_MASK);
15325                 REG_WR(bp, rule, BNX2X_PTP_V2_RULE_MASK);
15326                 break;
15327         }
15328
15329         /* Indicate to FW that this PF expects recorded PTP packets */
15330         rc = bnx2x_enable_ptp_packets(bp);
15331         if (rc)
15332                 return rc;
15333
15334         /* Enable sending PTP packets to host */
15335         REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
15336                NIG_REG_P0_LLH_PTP_TO_HOST, 0x1);
15337
15338         return 0;
15339 }
15340
15341 static int bnx2x_hwtstamp_ioctl(struct bnx2x *bp, struct ifreq *ifr)
15342 {
15343         struct hwtstamp_config config;
15344         int rc;
15345
15346         DP(BNX2X_MSG_PTP, "HWTSTAMP IOCTL called\n");
15347
15348         if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
15349                 return -EFAULT;
15350
15351         DP(BNX2X_MSG_PTP, "Requested tx_type: %d, requested rx_filters = %d\n",
15352            config.tx_type, config.rx_filter);
15353
15354         bp->hwtstamp_ioctl_called = true;
15355         bp->tx_type = config.tx_type;
15356         bp->rx_filter = config.rx_filter;
15357
15358         rc = bnx2x_configure_ptp_filters(bp);
15359         if (rc)
15360                 return rc;
15361
15362         config.rx_filter = bp->rx_filter;
15363
15364         return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
15365                 -EFAULT : 0;
15366 }
15367
15368 /* Configures HW for PTP */
15369 static int bnx2x_configure_ptp(struct bnx2x *bp)
15370 {
15371         int rc, port = BP_PORT(bp);
15372         u32 wb_data[2];
15373
15374         /* Reset PTP event detection rules - will be configured in the IOCTL */
15375         REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15376                NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7FF);
15377         REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15378                NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFF);
15379         REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
15380                NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x7FF);
15381         REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
15382                NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3FFF);
15383
15384         /* Disable PTP packets to host - will be configured in the IOCTL*/
15385         REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
15386                NIG_REG_P0_LLH_PTP_TO_HOST, 0x0);
15387
15388         /* Enable the PTP feature */
15389         REG_WR(bp, port ? NIG_REG_P1_PTP_EN :
15390                NIG_REG_P0_PTP_EN, 0x3F);
15391
15392         /* Enable the free-running counter */
15393         wb_data[0] = 0;
15394         wb_data[1] = 0;
15395         REG_WR_DMAE(bp, NIG_REG_TIMESYNC_GEN_REG + tsgen_ctrl, wb_data, 2);
15396
15397         /* Reset drift register (offset register is not reset) */
15398         rc = bnx2x_send_reset_timesync_ramrod(bp);
15399         if (rc) {
15400                 BNX2X_ERR("Failed to reset PHC drift register\n");
15401                 return -EFAULT;
15402         }
15403
15404         /* Reset possibly old timestamps */
15405         REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_SEQID :
15406                NIG_REG_P0_LLH_PTP_HOST_BUF_SEQID, 0x10000);
15407         REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
15408                NIG_REG_P0_TLLH_PTP_BUF_SEQID, 0x10000);
15409
15410         return 0;
15411 }
15412
15413 /* Called during load, to initialize PTP-related stuff */
15414 void bnx2x_init_ptp(struct bnx2x *bp)
15415 {
15416         int rc;
15417
15418         /* Configure PTP in HW */
15419         rc = bnx2x_configure_ptp(bp);
15420         if (rc) {
15421                 BNX2X_ERR("Stopping PTP initialization\n");
15422                 return;
15423         }
15424
15425         /* Init work queue for Tx timestamping */
15426         INIT_WORK(&bp->ptp_task, bnx2x_ptp_task);
15427
15428         /* Init cyclecounter and timecounter. This is done only in the first
15429          * load. If done in every load, PTP application will fail when doing
15430          * unload / load (e.g. MTU change) while it is running.
15431          */
15432         if (!bp->timecounter_init_done) {
15433                 bnx2x_init_cyclecounter(bp);
15434                 timecounter_init(&bp->timecounter, &bp->cyclecounter,
15435                                  ktime_to_ns(ktime_get_real()));
15436                 bp->timecounter_init_done = true;
15437         }
15438
15439         DP(BNX2X_MSG_PTP, "PTP initialization ended successfully\n");
15440 }