e1000e: convert to new VLAN model
[linux-2.6-block.git] / drivers / net / e1000e / netdev.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2011 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/module.h>
32 #include <linux/types.h>
33 #include <linux/init.h>
34 #include <linux/pci.h>
35 #include <linux/vmalloc.h>
36 #include <linux/pagemap.h>
37 #include <linux/delay.h>
38 #include <linux/netdevice.h>
39 #include <linux/tcp.h>
40 #include <linux/ipv6.h>
41 #include <linux/slab.h>
42 #include <net/checksum.h>
43 #include <net/ip6_checksum.h>
44 #include <linux/mii.h>
45 #include <linux/ethtool.h>
46 #include <linux/if_vlan.h>
47 #include <linux/cpu.h>
48 #include <linux/smp.h>
49 #include <linux/pm_qos_params.h>
50 #include <linux/pm_runtime.h>
51 #include <linux/aer.h>
52
53 #include "e1000.h"
54
55 #define DRV_EXTRAVERSION "-k2"
56
57 #define DRV_VERSION "1.3.10" DRV_EXTRAVERSION
58 char e1000e_driver_name[] = "e1000e";
59 const char e1000e_driver_version[] = DRV_VERSION;
60
61 static const struct e1000_info *e1000_info_tbl[] = {
62         [board_82571]           = &e1000_82571_info,
63         [board_82572]           = &e1000_82572_info,
64         [board_82573]           = &e1000_82573_info,
65         [board_82574]           = &e1000_82574_info,
66         [board_82583]           = &e1000_82583_info,
67         [board_80003es2lan]     = &e1000_es2_info,
68         [board_ich8lan]         = &e1000_ich8_info,
69         [board_ich9lan]         = &e1000_ich9_info,
70         [board_ich10lan]        = &e1000_ich10_info,
71         [board_pchlan]          = &e1000_pch_info,
72         [board_pch2lan]         = &e1000_pch2_info,
73 };
74
75 struct e1000_reg_info {
76         u32 ofs;
77         char *name;
78 };
79
80 #define E1000_RDFH      0x02410 /* Rx Data FIFO Head - RW */
81 #define E1000_RDFT      0x02418 /* Rx Data FIFO Tail - RW */
82 #define E1000_RDFHS     0x02420 /* Rx Data FIFO Head Saved - RW */
83 #define E1000_RDFTS     0x02428 /* Rx Data FIFO Tail Saved - RW */
84 #define E1000_RDFPC     0x02430 /* Rx Data FIFO Packet Count - RW */
85
86 #define E1000_TDFH      0x03410 /* Tx Data FIFO Head - RW */
87 #define E1000_TDFT      0x03418 /* Tx Data FIFO Tail - RW */
88 #define E1000_TDFHS     0x03420 /* Tx Data FIFO Head Saved - RW */
89 #define E1000_TDFTS     0x03428 /* Tx Data FIFO Tail Saved - RW */
90 #define E1000_TDFPC     0x03430 /* Tx Data FIFO Packet Count - RW */
91
92 static const struct e1000_reg_info e1000_reg_info_tbl[] = {
93
94         /* General Registers */
95         {E1000_CTRL, "CTRL"},
96         {E1000_STATUS, "STATUS"},
97         {E1000_CTRL_EXT, "CTRL_EXT"},
98
99         /* Interrupt Registers */
100         {E1000_ICR, "ICR"},
101
102         /* Rx Registers */
103         {E1000_RCTL, "RCTL"},
104         {E1000_RDLEN, "RDLEN"},
105         {E1000_RDH, "RDH"},
106         {E1000_RDT, "RDT"},
107         {E1000_RDTR, "RDTR"},
108         {E1000_RXDCTL(0), "RXDCTL"},
109         {E1000_ERT, "ERT"},
110         {E1000_RDBAL, "RDBAL"},
111         {E1000_RDBAH, "RDBAH"},
112         {E1000_RDFH, "RDFH"},
113         {E1000_RDFT, "RDFT"},
114         {E1000_RDFHS, "RDFHS"},
115         {E1000_RDFTS, "RDFTS"},
116         {E1000_RDFPC, "RDFPC"},
117
118         /* Tx Registers */
119         {E1000_TCTL, "TCTL"},
120         {E1000_TDBAL, "TDBAL"},
121         {E1000_TDBAH, "TDBAH"},
122         {E1000_TDLEN, "TDLEN"},
123         {E1000_TDH, "TDH"},
124         {E1000_TDT, "TDT"},
125         {E1000_TIDV, "TIDV"},
126         {E1000_TXDCTL(0), "TXDCTL"},
127         {E1000_TADV, "TADV"},
128         {E1000_TARC(0), "TARC"},
129         {E1000_TDFH, "TDFH"},
130         {E1000_TDFT, "TDFT"},
131         {E1000_TDFHS, "TDFHS"},
132         {E1000_TDFTS, "TDFTS"},
133         {E1000_TDFPC, "TDFPC"},
134
135         /* List Terminator */
136         {}
137 };
138
139 /*
140  * e1000_regdump - register printout routine
141  */
142 static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
143 {
144         int n = 0;
145         char rname[16];
146         u32 regs[8];
147
148         switch (reginfo->ofs) {
149         case E1000_RXDCTL(0):
150                 for (n = 0; n < 2; n++)
151                         regs[n] = __er32(hw, E1000_RXDCTL(n));
152                 break;
153         case E1000_TXDCTL(0):
154                 for (n = 0; n < 2; n++)
155                         regs[n] = __er32(hw, E1000_TXDCTL(n));
156                 break;
157         case E1000_TARC(0):
158                 for (n = 0; n < 2; n++)
159                         regs[n] = __er32(hw, E1000_TARC(n));
160                 break;
161         default:
162                 printk(KERN_INFO "%-15s %08x\n",
163                        reginfo->name, __er32(hw, reginfo->ofs));
164                 return;
165         }
166
167         snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
168         printk(KERN_INFO "%-15s ", rname);
169         for (n = 0; n < 2; n++)
170                 printk(KERN_CONT "%08x ", regs[n]);
171         printk(KERN_CONT "\n");
172 }
173
174 /*
175  * e1000e_dump - Print registers, Tx-ring and Rx-ring
176  */
177 static void e1000e_dump(struct e1000_adapter *adapter)
178 {
179         struct net_device *netdev = adapter->netdev;
180         struct e1000_hw *hw = &adapter->hw;
181         struct e1000_reg_info *reginfo;
182         struct e1000_ring *tx_ring = adapter->tx_ring;
183         struct e1000_tx_desc *tx_desc;
184         struct my_u0 {
185                 u64 a;
186                 u64 b;
187         } *u0;
188         struct e1000_buffer *buffer_info;
189         struct e1000_ring *rx_ring = adapter->rx_ring;
190         union e1000_rx_desc_packet_split *rx_desc_ps;
191         struct e1000_rx_desc *rx_desc;
192         struct my_u1 {
193                 u64 a;
194                 u64 b;
195                 u64 c;
196                 u64 d;
197         } *u1;
198         u32 staterr;
199         int i = 0;
200
201         if (!netif_msg_hw(adapter))
202                 return;
203
204         /* Print netdevice Info */
205         if (netdev) {
206                 dev_info(&adapter->pdev->dev, "Net device Info\n");
207                 printk(KERN_INFO "Device Name     state            "
208                        "trans_start      last_rx\n");
209                 printk(KERN_INFO "%-15s %016lX %016lX %016lX\n",
210                        netdev->name, netdev->state, netdev->trans_start,
211                        netdev->last_rx);
212         }
213
214         /* Print Registers */
215         dev_info(&adapter->pdev->dev, "Register Dump\n");
216         printk(KERN_INFO " Register Name   Value\n");
217         for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
218              reginfo->name; reginfo++) {
219                 e1000_regdump(hw, reginfo);
220         }
221
222         /* Print Tx Ring Summary */
223         if (!netdev || !netif_running(netdev))
224                 goto exit;
225
226         dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
227         printk(KERN_INFO "Queue [NTU] [NTC] [bi(ntc)->dma  ]"
228                " leng ntw timestamp\n");
229         buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
230         printk(KERN_INFO " %5d %5X %5X %016llX %04X %3X %016llX\n",
231                0, tx_ring->next_to_use, tx_ring->next_to_clean,
232                (unsigned long long)buffer_info->dma,
233                buffer_info->length,
234                buffer_info->next_to_watch,
235                (unsigned long long)buffer_info->time_stamp);
236
237         /* Print Tx Ring */
238         if (!netif_msg_tx_done(adapter))
239                 goto rx_ring_summary;
240
241         dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
242
243         /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
244          *
245          * Legacy Transmit Descriptor
246          *   +--------------------------------------------------------------+
247          * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
248          *   +--------------------------------------------------------------+
249          * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
250          *   +--------------------------------------------------------------+
251          *   63       48 47        36 35    32 31     24 23    16 15        0
252          *
253          * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
254          *   63      48 47    40 39       32 31             16 15    8 7      0
255          *   +----------------------------------------------------------------+
256          * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
257          *   +----------------------------------------------------------------+
258          * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
259          *   +----------------------------------------------------------------+
260          *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
261          *
262          * Extended Data Descriptor (DTYP=0x1)
263          *   +----------------------------------------------------------------+
264          * 0 |                     Buffer Address [63:0]                      |
265          *   +----------------------------------------------------------------+
266          * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
267          *   +----------------------------------------------------------------+
268          *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
269          */
270         printk(KERN_INFO "Tl[desc]     [address 63:0  ] [SpeCssSCmCsLen]"
271                " [bi->dma       ] leng  ntw timestamp        bi->skb "
272                "<-- Legacy format\n");
273         printk(KERN_INFO "Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen]"
274                " [bi->dma       ] leng  ntw timestamp        bi->skb "
275                "<-- Ext Context format\n");
276         printk(KERN_INFO "Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen]"
277                " [bi->dma       ] leng  ntw timestamp        bi->skb "
278                "<-- Ext Data format\n");
279         for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
280                 tx_desc = E1000_TX_DESC(*tx_ring, i);
281                 buffer_info = &tx_ring->buffer_info[i];
282                 u0 = (struct my_u0 *)tx_desc;
283                 printk(KERN_INFO "T%c[0x%03X]    %016llX %016llX %016llX "
284                        "%04X  %3X %016llX %p",
285                        (!(le64_to_cpu(u0->b) & (1 << 29)) ? 'l' :
286                         ((le64_to_cpu(u0->b) & (1 << 20)) ? 'd' : 'c')), i,
287                        (unsigned long long)le64_to_cpu(u0->a),
288                        (unsigned long long)le64_to_cpu(u0->b),
289                        (unsigned long long)buffer_info->dma,
290                        buffer_info->length, buffer_info->next_to_watch,
291                        (unsigned long long)buffer_info->time_stamp,
292                        buffer_info->skb);
293                 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
294                         printk(KERN_CONT " NTC/U\n");
295                 else if (i == tx_ring->next_to_use)
296                         printk(KERN_CONT " NTU\n");
297                 else if (i == tx_ring->next_to_clean)
298                         printk(KERN_CONT " NTC\n");
299                 else
300                         printk(KERN_CONT "\n");
301
302                 if (netif_msg_pktdata(adapter) && buffer_info->dma != 0)
303                         print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
304                                        16, 1, phys_to_virt(buffer_info->dma),
305                                        buffer_info->length, true);
306         }
307
308         /* Print Rx Ring Summary */
309 rx_ring_summary:
310         dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
311         printk(KERN_INFO "Queue [NTU] [NTC]\n");
312         printk(KERN_INFO " %5d %5X %5X\n", 0,
313                rx_ring->next_to_use, rx_ring->next_to_clean);
314
315         /* Print Rx Ring */
316         if (!netif_msg_rx_status(adapter))
317                 goto exit;
318
319         dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
320         switch (adapter->rx_ps_pages) {
321         case 1:
322         case 2:
323         case 3:
324                 /* [Extended] Packet Split Receive Descriptor Format
325                  *
326                  *    +-----------------------------------------------------+
327                  *  0 |                Buffer Address 0 [63:0]              |
328                  *    +-----------------------------------------------------+
329                  *  8 |                Buffer Address 1 [63:0]              |
330                  *    +-----------------------------------------------------+
331                  * 16 |                Buffer Address 2 [63:0]              |
332                  *    +-----------------------------------------------------+
333                  * 24 |                Buffer Address 3 [63:0]              |
334                  *    +-----------------------------------------------------+
335                  */
336                 printk(KERN_INFO "R  [desc]      [buffer 0 63:0 ] "
337                        "[buffer 1 63:0 ] "
338                        "[buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma       ] "
339                        "[bi->skb] <-- Ext Pkt Split format\n");
340                 /* [Extended] Receive Descriptor (Write-Back) Format
341                  *
342                  *   63       48 47    32 31     13 12    8 7    4 3        0
343                  *   +------------------------------------------------------+
344                  * 0 | Packet   | IP     |  Rsvd   | MRQ   | Rsvd | MRQ RSS |
345                  *   | Checksum | Ident  |         | Queue |      |  Type   |
346                  *   +------------------------------------------------------+
347                  * 8 | VLAN Tag | Length | Extended Error | Extended Status |
348                  *   +------------------------------------------------------+
349                  *   63       48 47    32 31            20 19               0
350                  */
351                 printk(KERN_INFO "RWB[desc]      [ck ipid mrqhsh] "
352                        "[vl   l0 ee  es] "
353                        "[ l3  l2  l1 hs] [reserved      ] ---------------- "
354                        "[bi->skb] <-- Ext Rx Write-Back format\n");
355                 for (i = 0; i < rx_ring->count; i++) {
356                         buffer_info = &rx_ring->buffer_info[i];
357                         rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
358                         u1 = (struct my_u1 *)rx_desc_ps;
359                         staterr =
360                             le32_to_cpu(rx_desc_ps->wb.middle.status_error);
361                         if (staterr & E1000_RXD_STAT_DD) {
362                                 /* Descriptor Done */
363                                 printk(KERN_INFO "RWB[0x%03X]     %016llX "
364                                        "%016llX %016llX %016llX "
365                                        "---------------- %p", i,
366                                        (unsigned long long)le64_to_cpu(u1->a),
367                                        (unsigned long long)le64_to_cpu(u1->b),
368                                        (unsigned long long)le64_to_cpu(u1->c),
369                                        (unsigned long long)le64_to_cpu(u1->d),
370                                        buffer_info->skb);
371                         } else {
372                                 printk(KERN_INFO "R  [0x%03X]     %016llX "
373                                        "%016llX %016llX %016llX %016llX %p", i,
374                                        (unsigned long long)le64_to_cpu(u1->a),
375                                        (unsigned long long)le64_to_cpu(u1->b),
376                                        (unsigned long long)le64_to_cpu(u1->c),
377                                        (unsigned long long)le64_to_cpu(u1->d),
378                                        (unsigned long long)buffer_info->dma,
379                                        buffer_info->skb);
380
381                                 if (netif_msg_pktdata(adapter))
382                                         print_hex_dump(KERN_INFO, "",
383                                                 DUMP_PREFIX_ADDRESS, 16, 1,
384                                                 phys_to_virt(buffer_info->dma),
385                                                 adapter->rx_ps_bsize0, true);
386                         }
387
388                         if (i == rx_ring->next_to_use)
389                                 printk(KERN_CONT " NTU\n");
390                         else if (i == rx_ring->next_to_clean)
391                                 printk(KERN_CONT " NTC\n");
392                         else
393                                 printk(KERN_CONT "\n");
394                 }
395                 break;
396         default:
397         case 0:
398                 /* Legacy Receive Descriptor Format
399                  *
400                  * +-----------------------------------------------------+
401                  * |                Buffer Address [63:0]                |
402                  * +-----------------------------------------------------+
403                  * | VLAN Tag | Errors | Status 0 | Packet csum | Length |
404                  * +-----------------------------------------------------+
405                  * 63       48 47    40 39      32 31         16 15      0
406                  */
407                 printk(KERN_INFO "Rl[desc]     [address 63:0  ] "
408                        "[vl er S cks ln] [bi->dma       ] [bi->skb] "
409                        "<-- Legacy format\n");
410                 for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) {
411                         rx_desc = E1000_RX_DESC(*rx_ring, i);
412                         buffer_info = &rx_ring->buffer_info[i];
413                         u0 = (struct my_u0 *)rx_desc;
414                         printk(KERN_INFO "Rl[0x%03X]    %016llX %016llX "
415                                "%016llX %p", i,
416                                (unsigned long long)le64_to_cpu(u0->a),
417                                (unsigned long long)le64_to_cpu(u0->b),
418                                (unsigned long long)buffer_info->dma,
419                                buffer_info->skb);
420                         if (i == rx_ring->next_to_use)
421                                 printk(KERN_CONT " NTU\n");
422                         else if (i == rx_ring->next_to_clean)
423                                 printk(KERN_CONT " NTC\n");
424                         else
425                                 printk(KERN_CONT "\n");
426
427                         if (netif_msg_pktdata(adapter))
428                                 print_hex_dump(KERN_INFO, "",
429                                                DUMP_PREFIX_ADDRESS,
430                                                16, 1,
431                                                phys_to_virt(buffer_info->dma),
432                                                adapter->rx_buffer_len, true);
433                 }
434         }
435
436 exit:
437         return;
438 }
439
440 /**
441  * e1000_desc_unused - calculate if we have unused descriptors
442  **/
443 static int e1000_desc_unused(struct e1000_ring *ring)
444 {
445         if (ring->next_to_clean > ring->next_to_use)
446                 return ring->next_to_clean - ring->next_to_use - 1;
447
448         return ring->count + ring->next_to_clean - ring->next_to_use - 1;
449 }
450
451 /**
452  * e1000_receive_skb - helper function to handle Rx indications
453  * @adapter: board private structure
454  * @status: descriptor status field as written by hardware
455  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
456  * @skb: pointer to sk_buff to be indicated to stack
457  **/
458 static void e1000_receive_skb(struct e1000_adapter *adapter,
459                               struct net_device *netdev, struct sk_buff *skb,
460                               u8 status, __le16 vlan)
461 {
462         u16 tag = le16_to_cpu(vlan);
463         skb->protocol = eth_type_trans(skb, netdev);
464
465         if (status & E1000_RXD_STAT_VP)
466                 __vlan_hwaccel_put_tag(skb, tag);
467
468         napi_gro_receive(&adapter->napi, skb);
469 }
470
471 /**
472  * e1000_rx_checksum - Receive Checksum Offload
473  * @adapter:     board private structure
474  * @status_err:  receive descriptor status and error fields
475  * @csum:       receive descriptor csum field
476  * @sk_buff:     socket buffer with received data
477  **/
478 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
479                               u32 csum, struct sk_buff *skb)
480 {
481         u16 status = (u16)status_err;
482         u8 errors = (u8)(status_err >> 24);
483
484         skb_checksum_none_assert(skb);
485
486         /* Ignore Checksum bit is set */
487         if (status & E1000_RXD_STAT_IXSM)
488                 return;
489         /* TCP/UDP checksum error bit is set */
490         if (errors & E1000_RXD_ERR_TCPE) {
491                 /* let the stack verify checksum errors */
492                 adapter->hw_csum_err++;
493                 return;
494         }
495
496         /* TCP/UDP Checksum has not been calculated */
497         if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
498                 return;
499
500         /* It must be a TCP or UDP packet with a valid checksum */
501         if (status & E1000_RXD_STAT_TCPCS) {
502                 /* TCP checksum is good */
503                 skb->ip_summed = CHECKSUM_UNNECESSARY;
504         } else {
505                 /*
506                  * IP fragment with UDP payload
507                  * Hardware complements the payload checksum, so we undo it
508                  * and then put the value in host order for further stack use.
509                  */
510                 __sum16 sum = (__force __sum16)htons(csum);
511                 skb->csum = csum_unfold(~sum);
512                 skb->ip_summed = CHECKSUM_COMPLETE;
513         }
514         adapter->hw_csum_good++;
515 }
516
517 /**
518  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
519  * @adapter: address of board private structure
520  **/
521 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
522                                    int cleaned_count)
523 {
524         struct net_device *netdev = adapter->netdev;
525         struct pci_dev *pdev = adapter->pdev;
526         struct e1000_ring *rx_ring = adapter->rx_ring;
527         struct e1000_rx_desc *rx_desc;
528         struct e1000_buffer *buffer_info;
529         struct sk_buff *skb;
530         unsigned int i;
531         unsigned int bufsz = adapter->rx_buffer_len;
532
533         i = rx_ring->next_to_use;
534         buffer_info = &rx_ring->buffer_info[i];
535
536         while (cleaned_count--) {
537                 skb = buffer_info->skb;
538                 if (skb) {
539                         skb_trim(skb, 0);
540                         goto map_skb;
541                 }
542
543                 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
544                 if (!skb) {
545                         /* Better luck next round */
546                         adapter->alloc_rx_buff_failed++;
547                         break;
548                 }
549
550                 buffer_info->skb = skb;
551 map_skb:
552                 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
553                                                   adapter->rx_buffer_len,
554                                                   DMA_FROM_DEVICE);
555                 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
556                         dev_err(&pdev->dev, "Rx DMA map failed\n");
557                         adapter->rx_dma_failed++;
558                         break;
559                 }
560
561                 rx_desc = E1000_RX_DESC(*rx_ring, i);
562                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
563
564                 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
565                         /*
566                          * Force memory writes to complete before letting h/w
567                          * know there are new descriptors to fetch.  (Only
568                          * applicable for weak-ordered memory model archs,
569                          * such as IA-64).
570                          */
571                         wmb();
572                         writel(i, adapter->hw.hw_addr + rx_ring->tail);
573                 }
574                 i++;
575                 if (i == rx_ring->count)
576                         i = 0;
577                 buffer_info = &rx_ring->buffer_info[i];
578         }
579
580         rx_ring->next_to_use = i;
581 }
582
583 /**
584  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
585  * @adapter: address of board private structure
586  **/
587 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
588                                       int cleaned_count)
589 {
590         struct net_device *netdev = adapter->netdev;
591         struct pci_dev *pdev = adapter->pdev;
592         union e1000_rx_desc_packet_split *rx_desc;
593         struct e1000_ring *rx_ring = adapter->rx_ring;
594         struct e1000_buffer *buffer_info;
595         struct e1000_ps_page *ps_page;
596         struct sk_buff *skb;
597         unsigned int i, j;
598
599         i = rx_ring->next_to_use;
600         buffer_info = &rx_ring->buffer_info[i];
601
602         while (cleaned_count--) {
603                 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
604
605                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
606                         ps_page = &buffer_info->ps_pages[j];
607                         if (j >= adapter->rx_ps_pages) {
608                                 /* all unused desc entries get hw null ptr */
609                                 rx_desc->read.buffer_addr[j + 1] =
610                                     ~cpu_to_le64(0);
611                                 continue;
612                         }
613                         if (!ps_page->page) {
614                                 ps_page->page = alloc_page(GFP_ATOMIC);
615                                 if (!ps_page->page) {
616                                         adapter->alloc_rx_buff_failed++;
617                                         goto no_buffers;
618                                 }
619                                 ps_page->dma = dma_map_page(&pdev->dev,
620                                                             ps_page->page,
621                                                             0, PAGE_SIZE,
622                                                             DMA_FROM_DEVICE);
623                                 if (dma_mapping_error(&pdev->dev,
624                                                       ps_page->dma)) {
625                                         dev_err(&adapter->pdev->dev,
626                                                 "Rx DMA page map failed\n");
627                                         adapter->rx_dma_failed++;
628                                         goto no_buffers;
629                                 }
630                         }
631                         /*
632                          * Refresh the desc even if buffer_addrs
633                          * didn't change because each write-back
634                          * erases this info.
635                          */
636                         rx_desc->read.buffer_addr[j + 1] =
637                             cpu_to_le64(ps_page->dma);
638                 }
639
640                 skb = netdev_alloc_skb_ip_align(netdev,
641                                                 adapter->rx_ps_bsize0);
642
643                 if (!skb) {
644                         adapter->alloc_rx_buff_failed++;
645                         break;
646                 }
647
648                 buffer_info->skb = skb;
649                 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
650                                                   adapter->rx_ps_bsize0,
651                                                   DMA_FROM_DEVICE);
652                 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
653                         dev_err(&pdev->dev, "Rx DMA map failed\n");
654                         adapter->rx_dma_failed++;
655                         /* cleanup skb */
656                         dev_kfree_skb_any(skb);
657                         buffer_info->skb = NULL;
658                         break;
659                 }
660
661                 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
662
663                 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
664                         /*
665                          * Force memory writes to complete before letting h/w
666                          * know there are new descriptors to fetch.  (Only
667                          * applicable for weak-ordered memory model archs,
668                          * such as IA-64).
669                          */
670                         wmb();
671                         writel(i << 1, adapter->hw.hw_addr + rx_ring->tail);
672                 }
673
674                 i++;
675                 if (i == rx_ring->count)
676                         i = 0;
677                 buffer_info = &rx_ring->buffer_info[i];
678         }
679
680 no_buffers:
681         rx_ring->next_to_use = i;
682 }
683
684 /**
685  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
686  * @adapter: address of board private structure
687  * @cleaned_count: number of buffers to allocate this pass
688  **/
689
690 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
691                                          int cleaned_count)
692 {
693         struct net_device *netdev = adapter->netdev;
694         struct pci_dev *pdev = adapter->pdev;
695         struct e1000_rx_desc *rx_desc;
696         struct e1000_ring *rx_ring = adapter->rx_ring;
697         struct e1000_buffer *buffer_info;
698         struct sk_buff *skb;
699         unsigned int i;
700         unsigned int bufsz = 256 - 16 /* for skb_reserve */;
701
702         i = rx_ring->next_to_use;
703         buffer_info = &rx_ring->buffer_info[i];
704
705         while (cleaned_count--) {
706                 skb = buffer_info->skb;
707                 if (skb) {
708                         skb_trim(skb, 0);
709                         goto check_page;
710                 }
711
712                 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
713                 if (unlikely(!skb)) {
714                         /* Better luck next round */
715                         adapter->alloc_rx_buff_failed++;
716                         break;
717                 }
718
719                 buffer_info->skb = skb;
720 check_page:
721                 /* allocate a new page if necessary */
722                 if (!buffer_info->page) {
723                         buffer_info->page = alloc_page(GFP_ATOMIC);
724                         if (unlikely(!buffer_info->page)) {
725                                 adapter->alloc_rx_buff_failed++;
726                                 break;
727                         }
728                 }
729
730                 if (!buffer_info->dma)
731                         buffer_info->dma = dma_map_page(&pdev->dev,
732                                                         buffer_info->page, 0,
733                                                         PAGE_SIZE,
734                                                         DMA_FROM_DEVICE);
735
736                 rx_desc = E1000_RX_DESC(*rx_ring, i);
737                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
738
739                 if (unlikely(++i == rx_ring->count))
740                         i = 0;
741                 buffer_info = &rx_ring->buffer_info[i];
742         }
743
744         if (likely(rx_ring->next_to_use != i)) {
745                 rx_ring->next_to_use = i;
746                 if (unlikely(i-- == 0))
747                         i = (rx_ring->count - 1);
748
749                 /* Force memory writes to complete before letting h/w
750                  * know there are new descriptors to fetch.  (Only
751                  * applicable for weak-ordered memory model archs,
752                  * such as IA-64). */
753                 wmb();
754                 writel(i, adapter->hw.hw_addr + rx_ring->tail);
755         }
756 }
757
758 /**
759  * e1000_clean_rx_irq - Send received data up the network stack; legacy
760  * @adapter: board private structure
761  *
762  * the return value indicates whether actual cleaning was done, there
763  * is no guarantee that everything was cleaned
764  **/
765 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
766                                int *work_done, int work_to_do)
767 {
768         struct net_device *netdev = adapter->netdev;
769         struct pci_dev *pdev = adapter->pdev;
770         struct e1000_hw *hw = &adapter->hw;
771         struct e1000_ring *rx_ring = adapter->rx_ring;
772         struct e1000_rx_desc *rx_desc, *next_rxd;
773         struct e1000_buffer *buffer_info, *next_buffer;
774         u32 length;
775         unsigned int i;
776         int cleaned_count = 0;
777         bool cleaned = 0;
778         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
779
780         i = rx_ring->next_to_clean;
781         rx_desc = E1000_RX_DESC(*rx_ring, i);
782         buffer_info = &rx_ring->buffer_info[i];
783
784         while (rx_desc->status & E1000_RXD_STAT_DD) {
785                 struct sk_buff *skb;
786                 u8 status;
787
788                 if (*work_done >= work_to_do)
789                         break;
790                 (*work_done)++;
791                 rmb();  /* read descriptor and rx_buffer_info after status DD */
792
793                 status = rx_desc->status;
794                 skb = buffer_info->skb;
795                 buffer_info->skb = NULL;
796
797                 prefetch(skb->data - NET_IP_ALIGN);
798
799                 i++;
800                 if (i == rx_ring->count)
801                         i = 0;
802                 next_rxd = E1000_RX_DESC(*rx_ring, i);
803                 prefetch(next_rxd);
804
805                 next_buffer = &rx_ring->buffer_info[i];
806
807                 cleaned = 1;
808                 cleaned_count++;
809                 dma_unmap_single(&pdev->dev,
810                                  buffer_info->dma,
811                                  adapter->rx_buffer_len,
812                                  DMA_FROM_DEVICE);
813                 buffer_info->dma = 0;
814
815                 length = le16_to_cpu(rx_desc->length);
816
817                 /*
818                  * !EOP means multiple descriptors were used to store a single
819                  * packet, if that's the case we need to toss it.  In fact, we
820                  * need to toss every packet with the EOP bit clear and the
821                  * next frame that _does_ have the EOP bit set, as it is by
822                  * definition only a frame fragment
823                  */
824                 if (unlikely(!(status & E1000_RXD_STAT_EOP)))
825                         adapter->flags2 |= FLAG2_IS_DISCARDING;
826
827                 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
828                         /* All receives must fit into a single buffer */
829                         e_dbg("Receive packet consumed multiple buffers\n");
830                         /* recycle */
831                         buffer_info->skb = skb;
832                         if (status & E1000_RXD_STAT_EOP)
833                                 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
834                         goto next_desc;
835                 }
836
837                 if (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
838                         /* recycle */
839                         buffer_info->skb = skb;
840                         goto next_desc;
841                 }
842
843                 /* adjust length to remove Ethernet CRC */
844                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
845                         length -= 4;
846
847                 total_rx_bytes += length;
848                 total_rx_packets++;
849
850                 /*
851                  * code added for copybreak, this should improve
852                  * performance for small packets with large amounts
853                  * of reassembly being done in the stack
854                  */
855                 if (length < copybreak) {
856                         struct sk_buff *new_skb =
857                             netdev_alloc_skb_ip_align(netdev, length);
858                         if (new_skb) {
859                                 skb_copy_to_linear_data_offset(new_skb,
860                                                                -NET_IP_ALIGN,
861                                                                (skb->data -
862                                                                 NET_IP_ALIGN),
863                                                                (length +
864                                                                 NET_IP_ALIGN));
865                                 /* save the skb in buffer_info as good */
866                                 buffer_info->skb = skb;
867                                 skb = new_skb;
868                         }
869                         /* else just continue with the old one */
870                 }
871                 /* end copybreak code */
872                 skb_put(skb, length);
873
874                 /* Receive Checksum Offload */
875                 e1000_rx_checksum(adapter,
876                                   (u32)(status) |
877                                   ((u32)(rx_desc->errors) << 24),
878                                   le16_to_cpu(rx_desc->csum), skb);
879
880                 e1000_receive_skb(adapter, netdev, skb,status,rx_desc->special);
881
882 next_desc:
883                 rx_desc->status = 0;
884
885                 /* return some buffers to hardware, one at a time is too slow */
886                 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
887                         adapter->alloc_rx_buf(adapter, cleaned_count);
888                         cleaned_count = 0;
889                 }
890
891                 /* use prefetched values */
892                 rx_desc = next_rxd;
893                 buffer_info = next_buffer;
894         }
895         rx_ring->next_to_clean = i;
896
897         cleaned_count = e1000_desc_unused(rx_ring);
898         if (cleaned_count)
899                 adapter->alloc_rx_buf(adapter, cleaned_count);
900
901         adapter->total_rx_bytes += total_rx_bytes;
902         adapter->total_rx_packets += total_rx_packets;
903         return cleaned;
904 }
905
906 static void e1000_put_txbuf(struct e1000_adapter *adapter,
907                              struct e1000_buffer *buffer_info)
908 {
909         if (buffer_info->dma) {
910                 if (buffer_info->mapped_as_page)
911                         dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
912                                        buffer_info->length, DMA_TO_DEVICE);
913                 else
914                         dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
915                                          buffer_info->length, DMA_TO_DEVICE);
916                 buffer_info->dma = 0;
917         }
918         if (buffer_info->skb) {
919                 dev_kfree_skb_any(buffer_info->skb);
920                 buffer_info->skb = NULL;
921         }
922         buffer_info->time_stamp = 0;
923 }
924
925 static void e1000_print_hw_hang(struct work_struct *work)
926 {
927         struct e1000_adapter *adapter = container_of(work,
928                                                      struct e1000_adapter,
929                                                      print_hang_task);
930         struct e1000_ring *tx_ring = adapter->tx_ring;
931         unsigned int i = tx_ring->next_to_clean;
932         unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
933         struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
934         struct e1000_hw *hw = &adapter->hw;
935         u16 phy_status, phy_1000t_status, phy_ext_status;
936         u16 pci_status;
937
938         if (test_bit(__E1000_DOWN, &adapter->state))
939                 return;
940
941         e1e_rphy(hw, PHY_STATUS, &phy_status);
942         e1e_rphy(hw, PHY_1000T_STATUS, &phy_1000t_status);
943         e1e_rphy(hw, PHY_EXT_STATUS, &phy_ext_status);
944
945         pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
946
947         /* detected Hardware unit hang */
948         e_err("Detected Hardware Unit Hang:\n"
949               "  TDH                  <%x>\n"
950               "  TDT                  <%x>\n"
951               "  next_to_use          <%x>\n"
952               "  next_to_clean        <%x>\n"
953               "buffer_info[next_to_clean]:\n"
954               "  time_stamp           <%lx>\n"
955               "  next_to_watch        <%x>\n"
956               "  jiffies              <%lx>\n"
957               "  next_to_watch.status <%x>\n"
958               "MAC Status             <%x>\n"
959               "PHY Status             <%x>\n"
960               "PHY 1000BASE-T Status  <%x>\n"
961               "PHY Extended Status    <%x>\n"
962               "PCI Status             <%x>\n",
963               readl(adapter->hw.hw_addr + tx_ring->head),
964               readl(adapter->hw.hw_addr + tx_ring->tail),
965               tx_ring->next_to_use,
966               tx_ring->next_to_clean,
967               tx_ring->buffer_info[eop].time_stamp,
968               eop,
969               jiffies,
970               eop_desc->upper.fields.status,
971               er32(STATUS),
972               phy_status,
973               phy_1000t_status,
974               phy_ext_status,
975               pci_status);
976 }
977
978 /**
979  * e1000_clean_tx_irq - Reclaim resources after transmit completes
980  * @adapter: board private structure
981  *
982  * the return value indicates whether actual cleaning was done, there
983  * is no guarantee that everything was cleaned
984  **/
985 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter)
986 {
987         struct net_device *netdev = adapter->netdev;
988         struct e1000_hw *hw = &adapter->hw;
989         struct e1000_ring *tx_ring = adapter->tx_ring;
990         struct e1000_tx_desc *tx_desc, *eop_desc;
991         struct e1000_buffer *buffer_info;
992         unsigned int i, eop;
993         unsigned int count = 0;
994         unsigned int total_tx_bytes = 0, total_tx_packets = 0;
995
996         i = tx_ring->next_to_clean;
997         eop = tx_ring->buffer_info[i].next_to_watch;
998         eop_desc = E1000_TX_DESC(*tx_ring, eop);
999
1000         while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
1001                (count < tx_ring->count)) {
1002                 bool cleaned = false;
1003                 rmb(); /* read buffer_info after eop_desc */
1004                 for (; !cleaned; count++) {
1005                         tx_desc = E1000_TX_DESC(*tx_ring, i);
1006                         buffer_info = &tx_ring->buffer_info[i];
1007                         cleaned = (i == eop);
1008
1009                         if (cleaned) {
1010                                 total_tx_packets += buffer_info->segs;
1011                                 total_tx_bytes += buffer_info->bytecount;
1012                         }
1013
1014                         e1000_put_txbuf(adapter, buffer_info);
1015                         tx_desc->upper.data = 0;
1016
1017                         i++;
1018                         if (i == tx_ring->count)
1019                                 i = 0;
1020                 }
1021
1022                 if (i == tx_ring->next_to_use)
1023                         break;
1024                 eop = tx_ring->buffer_info[i].next_to_watch;
1025                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
1026         }
1027
1028         tx_ring->next_to_clean = i;
1029
1030 #define TX_WAKE_THRESHOLD 32
1031         if (count && netif_carrier_ok(netdev) &&
1032             e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1033                 /* Make sure that anybody stopping the queue after this
1034                  * sees the new next_to_clean.
1035                  */
1036                 smp_mb();
1037
1038                 if (netif_queue_stopped(netdev) &&
1039                     !(test_bit(__E1000_DOWN, &adapter->state))) {
1040                         netif_wake_queue(netdev);
1041                         ++adapter->restart_queue;
1042                 }
1043         }
1044
1045         if (adapter->detect_tx_hung) {
1046                 /*
1047                  * Detect a transmit hang in hardware, this serializes the
1048                  * check with the clearing of time_stamp and movement of i
1049                  */
1050                 adapter->detect_tx_hung = 0;
1051                 if (tx_ring->buffer_info[i].time_stamp &&
1052                     time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1053                                + (adapter->tx_timeout_factor * HZ)) &&
1054                     !(er32(STATUS) & E1000_STATUS_TXOFF)) {
1055                         schedule_work(&adapter->print_hang_task);
1056                         netif_stop_queue(netdev);
1057                 }
1058         }
1059         adapter->total_tx_bytes += total_tx_bytes;
1060         adapter->total_tx_packets += total_tx_packets;
1061         return count < tx_ring->count;
1062 }
1063
1064 /**
1065  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1066  * @adapter: board private structure
1067  *
1068  * the return value indicates whether actual cleaning was done, there
1069  * is no guarantee that everything was cleaned
1070  **/
1071 static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
1072                                   int *work_done, int work_to_do)
1073 {
1074         struct e1000_hw *hw = &adapter->hw;
1075         union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
1076         struct net_device *netdev = adapter->netdev;
1077         struct pci_dev *pdev = adapter->pdev;
1078         struct e1000_ring *rx_ring = adapter->rx_ring;
1079         struct e1000_buffer *buffer_info, *next_buffer;
1080         struct e1000_ps_page *ps_page;
1081         struct sk_buff *skb;
1082         unsigned int i, j;
1083         u32 length, staterr;
1084         int cleaned_count = 0;
1085         bool cleaned = 0;
1086         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1087
1088         i = rx_ring->next_to_clean;
1089         rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
1090         staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1091         buffer_info = &rx_ring->buffer_info[i];
1092
1093         while (staterr & E1000_RXD_STAT_DD) {
1094                 if (*work_done >= work_to_do)
1095                         break;
1096                 (*work_done)++;
1097                 skb = buffer_info->skb;
1098                 rmb();  /* read descriptor and rx_buffer_info after status DD */
1099
1100                 /* in the packet split case this is header only */
1101                 prefetch(skb->data - NET_IP_ALIGN);
1102
1103                 i++;
1104                 if (i == rx_ring->count)
1105                         i = 0;
1106                 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
1107                 prefetch(next_rxd);
1108
1109                 next_buffer = &rx_ring->buffer_info[i];
1110
1111                 cleaned = 1;
1112                 cleaned_count++;
1113                 dma_unmap_single(&pdev->dev, buffer_info->dma,
1114                                  adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
1115                 buffer_info->dma = 0;
1116
1117                 /* see !EOP comment in other Rx routine */
1118                 if (!(staterr & E1000_RXD_STAT_EOP))
1119                         adapter->flags2 |= FLAG2_IS_DISCARDING;
1120
1121                 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1122                         e_dbg("Packet Split buffers didn't pick up the full "
1123                               "packet\n");
1124                         dev_kfree_skb_irq(skb);
1125                         if (staterr & E1000_RXD_STAT_EOP)
1126                                 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1127                         goto next_desc;
1128                 }
1129
1130                 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
1131                         dev_kfree_skb_irq(skb);
1132                         goto next_desc;
1133                 }
1134
1135                 length = le16_to_cpu(rx_desc->wb.middle.length0);
1136
1137                 if (!length) {
1138                         e_dbg("Last part of the packet spanning multiple "
1139                               "descriptors\n");
1140                         dev_kfree_skb_irq(skb);
1141                         goto next_desc;
1142                 }
1143
1144                 /* Good Receive */
1145                 skb_put(skb, length);
1146
1147                 {
1148                 /*
1149                  * this looks ugly, but it seems compiler issues make it
1150                  * more efficient than reusing j
1151                  */
1152                 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
1153
1154                 /*
1155                  * page alloc/put takes too long and effects small packet
1156                  * throughput, so unsplit small packets and save the alloc/put
1157                  * only valid in softirq (napi) context to call kmap_*
1158                  */
1159                 if (l1 && (l1 <= copybreak) &&
1160                     ((length + l1) <= adapter->rx_ps_bsize0)) {
1161                         u8 *vaddr;
1162
1163                         ps_page = &buffer_info->ps_pages[0];
1164
1165                         /*
1166                          * there is no documentation about how to call
1167                          * kmap_atomic, so we can't hold the mapping
1168                          * very long
1169                          */
1170                         dma_sync_single_for_cpu(&pdev->dev, ps_page->dma,
1171                                                 PAGE_SIZE, DMA_FROM_DEVICE);
1172                         vaddr = kmap_atomic(ps_page->page, KM_SKB_DATA_SOFTIRQ);
1173                         memcpy(skb_tail_pointer(skb), vaddr, l1);
1174                         kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
1175                         dma_sync_single_for_device(&pdev->dev, ps_page->dma,
1176                                                    PAGE_SIZE, DMA_FROM_DEVICE);
1177
1178                         /* remove the CRC */
1179                         if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
1180                                 l1 -= 4;
1181
1182                         skb_put(skb, l1);
1183                         goto copydone;
1184                 } /* if */
1185                 }
1186
1187                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1188                         length = le16_to_cpu(rx_desc->wb.upper.length[j]);
1189                         if (!length)
1190                                 break;
1191
1192                         ps_page = &buffer_info->ps_pages[j];
1193                         dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1194                                        DMA_FROM_DEVICE);
1195                         ps_page->dma = 0;
1196                         skb_fill_page_desc(skb, j, ps_page->page, 0, length);
1197                         ps_page->page = NULL;
1198                         skb->len += length;
1199                         skb->data_len += length;
1200                         skb->truesize += length;
1201                 }
1202
1203                 /* strip the ethernet crc, problem is we're using pages now so
1204                  * this whole operation can get a little cpu intensive
1205                  */
1206                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
1207                         pskb_trim(skb, skb->len - 4);
1208
1209 copydone:
1210                 total_rx_bytes += skb->len;
1211                 total_rx_packets++;
1212
1213                 e1000_rx_checksum(adapter, staterr, le16_to_cpu(
1214                         rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
1215
1216                 if (rx_desc->wb.upper.header_status &
1217                            cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
1218                         adapter->rx_hdr_split++;
1219
1220                 e1000_receive_skb(adapter, netdev, skb,
1221                                   staterr, rx_desc->wb.middle.vlan);
1222
1223 next_desc:
1224                 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
1225                 buffer_info->skb = NULL;
1226
1227                 /* return some buffers to hardware, one at a time is too slow */
1228                 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1229                         adapter->alloc_rx_buf(adapter, cleaned_count);
1230                         cleaned_count = 0;
1231                 }
1232
1233                 /* use prefetched values */
1234                 rx_desc = next_rxd;
1235                 buffer_info = next_buffer;
1236
1237                 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1238         }
1239         rx_ring->next_to_clean = i;
1240
1241         cleaned_count = e1000_desc_unused(rx_ring);
1242         if (cleaned_count)
1243                 adapter->alloc_rx_buf(adapter, cleaned_count);
1244
1245         adapter->total_rx_bytes += total_rx_bytes;
1246         adapter->total_rx_packets += total_rx_packets;
1247         return cleaned;
1248 }
1249
1250 /**
1251  * e1000_consume_page - helper function
1252  **/
1253 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
1254                                u16 length)
1255 {
1256         bi->page = NULL;
1257         skb->len += length;
1258         skb->data_len += length;
1259         skb->truesize += length;
1260 }
1261
1262 /**
1263  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1264  * @adapter: board private structure
1265  *
1266  * the return value indicates whether actual cleaning was done, there
1267  * is no guarantee that everything was cleaned
1268  **/
1269
1270 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
1271                                      int *work_done, int work_to_do)
1272 {
1273         struct net_device *netdev = adapter->netdev;
1274         struct pci_dev *pdev = adapter->pdev;
1275         struct e1000_ring *rx_ring = adapter->rx_ring;
1276         struct e1000_rx_desc *rx_desc, *next_rxd;
1277         struct e1000_buffer *buffer_info, *next_buffer;
1278         u32 length;
1279         unsigned int i;
1280         int cleaned_count = 0;
1281         bool cleaned = false;
1282         unsigned int total_rx_bytes=0, total_rx_packets=0;
1283
1284         i = rx_ring->next_to_clean;
1285         rx_desc = E1000_RX_DESC(*rx_ring, i);
1286         buffer_info = &rx_ring->buffer_info[i];
1287
1288         while (rx_desc->status & E1000_RXD_STAT_DD) {
1289                 struct sk_buff *skb;
1290                 u8 status;
1291
1292                 if (*work_done >= work_to_do)
1293                         break;
1294                 (*work_done)++;
1295                 rmb();  /* read descriptor and rx_buffer_info after status DD */
1296
1297                 status = rx_desc->status;
1298                 skb = buffer_info->skb;
1299                 buffer_info->skb = NULL;
1300
1301                 ++i;
1302                 if (i == rx_ring->count)
1303                         i = 0;
1304                 next_rxd = E1000_RX_DESC(*rx_ring, i);
1305                 prefetch(next_rxd);
1306
1307                 next_buffer = &rx_ring->buffer_info[i];
1308
1309                 cleaned = true;
1310                 cleaned_count++;
1311                 dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
1312                                DMA_FROM_DEVICE);
1313                 buffer_info->dma = 0;
1314
1315                 length = le16_to_cpu(rx_desc->length);
1316
1317                 /* errors is only valid for DD + EOP descriptors */
1318                 if (unlikely((status & E1000_RXD_STAT_EOP) &&
1319                     (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
1320                                 /* recycle both page and skb */
1321                                 buffer_info->skb = skb;
1322                                 /* an error means any chain goes out the window
1323                                  * too */
1324                                 if (rx_ring->rx_skb_top)
1325                                         dev_kfree_skb_irq(rx_ring->rx_skb_top);
1326                                 rx_ring->rx_skb_top = NULL;
1327                                 goto next_desc;
1328                 }
1329
1330 #define rxtop (rx_ring->rx_skb_top)
1331                 if (!(status & E1000_RXD_STAT_EOP)) {
1332                         /* this descriptor is only the beginning (or middle) */
1333                         if (!rxtop) {
1334                                 /* this is the beginning of a chain */
1335                                 rxtop = skb;
1336                                 skb_fill_page_desc(rxtop, 0, buffer_info->page,
1337                                                    0, length);
1338                         } else {
1339                                 /* this is the middle of a chain */
1340                                 skb_fill_page_desc(rxtop,
1341                                     skb_shinfo(rxtop)->nr_frags,
1342                                     buffer_info->page, 0, length);
1343                                 /* re-use the skb, only consumed the page */
1344                                 buffer_info->skb = skb;
1345                         }
1346                         e1000_consume_page(buffer_info, rxtop, length);
1347                         goto next_desc;
1348                 } else {
1349                         if (rxtop) {
1350                                 /* end of the chain */
1351                                 skb_fill_page_desc(rxtop,
1352                                     skb_shinfo(rxtop)->nr_frags,
1353                                     buffer_info->page, 0, length);
1354                                 /* re-use the current skb, we only consumed the
1355                                  * page */
1356                                 buffer_info->skb = skb;
1357                                 skb = rxtop;
1358                                 rxtop = NULL;
1359                                 e1000_consume_page(buffer_info, skb, length);
1360                         } else {
1361                                 /* no chain, got EOP, this buf is the packet
1362                                  * copybreak to save the put_page/alloc_page */
1363                                 if (length <= copybreak &&
1364                                     skb_tailroom(skb) >= length) {
1365                                         u8 *vaddr;
1366                                         vaddr = kmap_atomic(buffer_info->page,
1367                                                            KM_SKB_DATA_SOFTIRQ);
1368                                         memcpy(skb_tail_pointer(skb), vaddr,
1369                                                length);
1370                                         kunmap_atomic(vaddr,
1371                                                       KM_SKB_DATA_SOFTIRQ);
1372                                         /* re-use the page, so don't erase
1373                                          * buffer_info->page */
1374                                         skb_put(skb, length);
1375                                 } else {
1376                                         skb_fill_page_desc(skb, 0,
1377                                                            buffer_info->page, 0,
1378                                                            length);
1379                                         e1000_consume_page(buffer_info, skb,
1380                                                            length);
1381                                 }
1382                         }
1383                 }
1384
1385                 /* Receive Checksum Offload XXX recompute due to CRC strip? */
1386                 e1000_rx_checksum(adapter,
1387                                   (u32)(status) |
1388                                   ((u32)(rx_desc->errors) << 24),
1389                                   le16_to_cpu(rx_desc->csum), skb);
1390
1391                 /* probably a little skewed due to removing CRC */
1392                 total_rx_bytes += skb->len;
1393                 total_rx_packets++;
1394
1395                 /* eth type trans needs skb->data to point to something */
1396                 if (!pskb_may_pull(skb, ETH_HLEN)) {
1397                         e_err("pskb_may_pull failed.\n");
1398                         dev_kfree_skb_irq(skb);
1399                         goto next_desc;
1400                 }
1401
1402                 e1000_receive_skb(adapter, netdev, skb, status,
1403                                   rx_desc->special);
1404
1405 next_desc:
1406                 rx_desc->status = 0;
1407
1408                 /* return some buffers to hardware, one at a time is too slow */
1409                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1410                         adapter->alloc_rx_buf(adapter, cleaned_count);
1411                         cleaned_count = 0;
1412                 }
1413
1414                 /* use prefetched values */
1415                 rx_desc = next_rxd;
1416                 buffer_info = next_buffer;
1417         }
1418         rx_ring->next_to_clean = i;
1419
1420         cleaned_count = e1000_desc_unused(rx_ring);
1421         if (cleaned_count)
1422                 adapter->alloc_rx_buf(adapter, cleaned_count);
1423
1424         adapter->total_rx_bytes += total_rx_bytes;
1425         adapter->total_rx_packets += total_rx_packets;
1426         return cleaned;
1427 }
1428
1429 /**
1430  * e1000_clean_rx_ring - Free Rx Buffers per Queue
1431  * @adapter: board private structure
1432  **/
1433 static void e1000_clean_rx_ring(struct e1000_adapter *adapter)
1434 {
1435         struct e1000_ring *rx_ring = adapter->rx_ring;
1436         struct e1000_buffer *buffer_info;
1437         struct e1000_ps_page *ps_page;
1438         struct pci_dev *pdev = adapter->pdev;
1439         unsigned int i, j;
1440
1441         /* Free all the Rx ring sk_buffs */
1442         for (i = 0; i < rx_ring->count; i++) {
1443                 buffer_info = &rx_ring->buffer_info[i];
1444                 if (buffer_info->dma) {
1445                         if (adapter->clean_rx == e1000_clean_rx_irq)
1446                                 dma_unmap_single(&pdev->dev, buffer_info->dma,
1447                                                  adapter->rx_buffer_len,
1448                                                  DMA_FROM_DEVICE);
1449                         else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1450                                 dma_unmap_page(&pdev->dev, buffer_info->dma,
1451                                                PAGE_SIZE,
1452                                                DMA_FROM_DEVICE);
1453                         else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1454                                 dma_unmap_single(&pdev->dev, buffer_info->dma,
1455                                                  adapter->rx_ps_bsize0,
1456                                                  DMA_FROM_DEVICE);
1457                         buffer_info->dma = 0;
1458                 }
1459
1460                 if (buffer_info->page) {
1461                         put_page(buffer_info->page);
1462                         buffer_info->page = NULL;
1463                 }
1464
1465                 if (buffer_info->skb) {
1466                         dev_kfree_skb(buffer_info->skb);
1467                         buffer_info->skb = NULL;
1468                 }
1469
1470                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1471                         ps_page = &buffer_info->ps_pages[j];
1472                         if (!ps_page->page)
1473                                 break;
1474                         dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1475                                        DMA_FROM_DEVICE);
1476                         ps_page->dma = 0;
1477                         put_page(ps_page->page);
1478                         ps_page->page = NULL;
1479                 }
1480         }
1481
1482         /* there also may be some cached data from a chained receive */
1483         if (rx_ring->rx_skb_top) {
1484                 dev_kfree_skb(rx_ring->rx_skb_top);
1485                 rx_ring->rx_skb_top = NULL;
1486         }
1487
1488         /* Zero out the descriptor ring */
1489         memset(rx_ring->desc, 0, rx_ring->size);
1490
1491         rx_ring->next_to_clean = 0;
1492         rx_ring->next_to_use = 0;
1493         adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1494
1495         writel(0, adapter->hw.hw_addr + rx_ring->head);
1496         writel(0, adapter->hw.hw_addr + rx_ring->tail);
1497 }
1498
1499 static void e1000e_downshift_workaround(struct work_struct *work)
1500 {
1501         struct e1000_adapter *adapter = container_of(work,
1502                                         struct e1000_adapter, downshift_task);
1503
1504         if (test_bit(__E1000_DOWN, &adapter->state))
1505                 return;
1506
1507         e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1508 }
1509
1510 /**
1511  * e1000_intr_msi - Interrupt Handler
1512  * @irq: interrupt number
1513  * @data: pointer to a network interface device structure
1514  **/
1515 static irqreturn_t e1000_intr_msi(int irq, void *data)
1516 {
1517         struct net_device *netdev = data;
1518         struct e1000_adapter *adapter = netdev_priv(netdev);
1519         struct e1000_hw *hw = &adapter->hw;
1520         u32 icr = er32(ICR);
1521
1522         /*
1523          * read ICR disables interrupts using IAM
1524          */
1525
1526         if (icr & E1000_ICR_LSC) {
1527                 hw->mac.get_link_status = 1;
1528                 /*
1529                  * ICH8 workaround-- Call gig speed drop workaround on cable
1530                  * disconnect (LSC) before accessing any PHY registers
1531                  */
1532                 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1533                     (!(er32(STATUS) & E1000_STATUS_LU)))
1534                         schedule_work(&adapter->downshift_task);
1535
1536                 /*
1537                  * 80003ES2LAN workaround-- For packet buffer work-around on
1538                  * link down event; disable receives here in the ISR and reset
1539                  * adapter in watchdog
1540                  */
1541                 if (netif_carrier_ok(netdev) &&
1542                     adapter->flags & FLAG_RX_NEEDS_RESTART) {
1543                         /* disable receives */
1544                         u32 rctl = er32(RCTL);
1545                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1546                         adapter->flags |= FLAG_RX_RESTART_NOW;
1547                 }
1548                 /* guard against interrupt when we're going down */
1549                 if (!test_bit(__E1000_DOWN, &adapter->state))
1550                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1551         }
1552
1553         if (napi_schedule_prep(&adapter->napi)) {
1554                 adapter->total_tx_bytes = 0;
1555                 adapter->total_tx_packets = 0;
1556                 adapter->total_rx_bytes = 0;
1557                 adapter->total_rx_packets = 0;
1558                 __napi_schedule(&adapter->napi);
1559         }
1560
1561         return IRQ_HANDLED;
1562 }
1563
1564 /**
1565  * e1000_intr - Interrupt Handler
1566  * @irq: interrupt number
1567  * @data: pointer to a network interface device structure
1568  **/
1569 static irqreturn_t e1000_intr(int irq, void *data)
1570 {
1571         struct net_device *netdev = data;
1572         struct e1000_adapter *adapter = netdev_priv(netdev);
1573         struct e1000_hw *hw = &adapter->hw;
1574         u32 rctl, icr = er32(ICR);
1575
1576         if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1577                 return IRQ_NONE;  /* Not our interrupt */
1578
1579         /*
1580          * IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1581          * not set, then the adapter didn't send an interrupt
1582          */
1583         if (!(icr & E1000_ICR_INT_ASSERTED))
1584                 return IRQ_NONE;
1585
1586         /*
1587          * Interrupt Auto-Mask...upon reading ICR,
1588          * interrupts are masked.  No need for the
1589          * IMC write
1590          */
1591
1592         if (icr & E1000_ICR_LSC) {
1593                 hw->mac.get_link_status = 1;
1594                 /*
1595                  * ICH8 workaround-- Call gig speed drop workaround on cable
1596                  * disconnect (LSC) before accessing any PHY registers
1597                  */
1598                 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1599                     (!(er32(STATUS) & E1000_STATUS_LU)))
1600                         schedule_work(&adapter->downshift_task);
1601
1602                 /*
1603                  * 80003ES2LAN workaround--
1604                  * For packet buffer work-around on link down event;
1605                  * disable receives here in the ISR and
1606                  * reset adapter in watchdog
1607                  */
1608                 if (netif_carrier_ok(netdev) &&
1609                     (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1610                         /* disable receives */
1611                         rctl = er32(RCTL);
1612                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1613                         adapter->flags |= FLAG_RX_RESTART_NOW;
1614                 }
1615                 /* guard against interrupt when we're going down */
1616                 if (!test_bit(__E1000_DOWN, &adapter->state))
1617                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1618         }
1619
1620         if (napi_schedule_prep(&adapter->napi)) {
1621                 adapter->total_tx_bytes = 0;
1622                 adapter->total_tx_packets = 0;
1623                 adapter->total_rx_bytes = 0;
1624                 adapter->total_rx_packets = 0;
1625                 __napi_schedule(&adapter->napi);
1626         }
1627
1628         return IRQ_HANDLED;
1629 }
1630
1631 static irqreturn_t e1000_msix_other(int irq, void *data)
1632 {
1633         struct net_device *netdev = data;
1634         struct e1000_adapter *adapter = netdev_priv(netdev);
1635         struct e1000_hw *hw = &adapter->hw;
1636         u32 icr = er32(ICR);
1637
1638         if (!(icr & E1000_ICR_INT_ASSERTED)) {
1639                 if (!test_bit(__E1000_DOWN, &adapter->state))
1640                         ew32(IMS, E1000_IMS_OTHER);
1641                 return IRQ_NONE;
1642         }
1643
1644         if (icr & adapter->eiac_mask)
1645                 ew32(ICS, (icr & adapter->eiac_mask));
1646
1647         if (icr & E1000_ICR_OTHER) {
1648                 if (!(icr & E1000_ICR_LSC))
1649                         goto no_link_interrupt;
1650                 hw->mac.get_link_status = 1;
1651                 /* guard against interrupt when we're going down */
1652                 if (!test_bit(__E1000_DOWN, &adapter->state))
1653                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1654         }
1655
1656 no_link_interrupt:
1657         if (!test_bit(__E1000_DOWN, &adapter->state))
1658                 ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER);
1659
1660         return IRQ_HANDLED;
1661 }
1662
1663
1664 static irqreturn_t e1000_intr_msix_tx(int irq, void *data)
1665 {
1666         struct net_device *netdev = data;
1667         struct e1000_adapter *adapter = netdev_priv(netdev);
1668         struct e1000_hw *hw = &adapter->hw;
1669         struct e1000_ring *tx_ring = adapter->tx_ring;
1670
1671
1672         adapter->total_tx_bytes = 0;
1673         adapter->total_tx_packets = 0;
1674
1675         if (!e1000_clean_tx_irq(adapter))
1676                 /* Ring was not completely cleaned, so fire another interrupt */
1677                 ew32(ICS, tx_ring->ims_val);
1678
1679         return IRQ_HANDLED;
1680 }
1681
1682 static irqreturn_t e1000_intr_msix_rx(int irq, void *data)
1683 {
1684         struct net_device *netdev = data;
1685         struct e1000_adapter *adapter = netdev_priv(netdev);
1686
1687         /* Write the ITR value calculated at the end of the
1688          * previous interrupt.
1689          */
1690         if (adapter->rx_ring->set_itr) {
1691                 writel(1000000000 / (adapter->rx_ring->itr_val * 256),
1692                        adapter->hw.hw_addr + adapter->rx_ring->itr_register);
1693                 adapter->rx_ring->set_itr = 0;
1694         }
1695
1696         if (napi_schedule_prep(&adapter->napi)) {
1697                 adapter->total_rx_bytes = 0;
1698                 adapter->total_rx_packets = 0;
1699                 __napi_schedule(&adapter->napi);
1700         }
1701         return IRQ_HANDLED;
1702 }
1703
1704 /**
1705  * e1000_configure_msix - Configure MSI-X hardware
1706  *
1707  * e1000_configure_msix sets up the hardware to properly
1708  * generate MSI-X interrupts.
1709  **/
1710 static void e1000_configure_msix(struct e1000_adapter *adapter)
1711 {
1712         struct e1000_hw *hw = &adapter->hw;
1713         struct e1000_ring *rx_ring = adapter->rx_ring;
1714         struct e1000_ring *tx_ring = adapter->tx_ring;
1715         int vector = 0;
1716         u32 ctrl_ext, ivar = 0;
1717
1718         adapter->eiac_mask = 0;
1719
1720         /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1721         if (hw->mac.type == e1000_82574) {
1722                 u32 rfctl = er32(RFCTL);
1723                 rfctl |= E1000_RFCTL_ACK_DIS;
1724                 ew32(RFCTL, rfctl);
1725         }
1726
1727 #define E1000_IVAR_INT_ALLOC_VALID      0x8
1728         /* Configure Rx vector */
1729         rx_ring->ims_val = E1000_IMS_RXQ0;
1730         adapter->eiac_mask |= rx_ring->ims_val;
1731         if (rx_ring->itr_val)
1732                 writel(1000000000 / (rx_ring->itr_val * 256),
1733                        hw->hw_addr + rx_ring->itr_register);
1734         else
1735                 writel(1, hw->hw_addr + rx_ring->itr_register);
1736         ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
1737
1738         /* Configure Tx vector */
1739         tx_ring->ims_val = E1000_IMS_TXQ0;
1740         vector++;
1741         if (tx_ring->itr_val)
1742                 writel(1000000000 / (tx_ring->itr_val * 256),
1743                        hw->hw_addr + tx_ring->itr_register);
1744         else
1745                 writel(1, hw->hw_addr + tx_ring->itr_register);
1746         adapter->eiac_mask |= tx_ring->ims_val;
1747         ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
1748
1749         /* set vector for Other Causes, e.g. link changes */
1750         vector++;
1751         ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
1752         if (rx_ring->itr_val)
1753                 writel(1000000000 / (rx_ring->itr_val * 256),
1754                        hw->hw_addr + E1000_EITR_82574(vector));
1755         else
1756                 writel(1, hw->hw_addr + E1000_EITR_82574(vector));
1757
1758         /* Cause Tx interrupts on every write back */
1759         ivar |= (1 << 31);
1760
1761         ew32(IVAR, ivar);
1762
1763         /* enable MSI-X PBA support */
1764         ctrl_ext = er32(CTRL_EXT);
1765         ctrl_ext |= E1000_CTRL_EXT_PBA_CLR;
1766
1767         /* Auto-Mask Other interrupts upon ICR read */
1768 #define E1000_EIAC_MASK_82574   0x01F00000
1769         ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER);
1770         ctrl_ext |= E1000_CTRL_EXT_EIAME;
1771         ew32(CTRL_EXT, ctrl_ext);
1772         e1e_flush();
1773 }
1774
1775 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
1776 {
1777         if (adapter->msix_entries) {
1778                 pci_disable_msix(adapter->pdev);
1779                 kfree(adapter->msix_entries);
1780                 adapter->msix_entries = NULL;
1781         } else if (adapter->flags & FLAG_MSI_ENABLED) {
1782                 pci_disable_msi(adapter->pdev);
1783                 adapter->flags &= ~FLAG_MSI_ENABLED;
1784         }
1785 }
1786
1787 /**
1788  * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
1789  *
1790  * Attempt to configure interrupts using the best available
1791  * capabilities of the hardware and kernel.
1792  **/
1793 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
1794 {
1795         int err;
1796         int i;
1797
1798         switch (adapter->int_mode) {
1799         case E1000E_INT_MODE_MSIX:
1800                 if (adapter->flags & FLAG_HAS_MSIX) {
1801                         adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
1802                         adapter->msix_entries = kcalloc(adapter->num_vectors,
1803                                                       sizeof(struct msix_entry),
1804                                                       GFP_KERNEL);
1805                         if (adapter->msix_entries) {
1806                                 for (i = 0; i < adapter->num_vectors; i++)
1807                                         adapter->msix_entries[i].entry = i;
1808
1809                                 err = pci_enable_msix(adapter->pdev,
1810                                                       adapter->msix_entries,
1811                                                       adapter->num_vectors);
1812                                 if (err == 0)
1813                                         return;
1814                         }
1815                         /* MSI-X failed, so fall through and try MSI */
1816                         e_err("Failed to initialize MSI-X interrupts.  "
1817                               "Falling back to MSI interrupts.\n");
1818                         e1000e_reset_interrupt_capability(adapter);
1819                 }
1820                 adapter->int_mode = E1000E_INT_MODE_MSI;
1821                 /* Fall through */
1822         case E1000E_INT_MODE_MSI:
1823                 if (!pci_enable_msi(adapter->pdev)) {
1824                         adapter->flags |= FLAG_MSI_ENABLED;
1825                 } else {
1826                         adapter->int_mode = E1000E_INT_MODE_LEGACY;
1827                         e_err("Failed to initialize MSI interrupts.  Falling "
1828                               "back to legacy interrupts.\n");
1829                 }
1830                 /* Fall through */
1831         case E1000E_INT_MODE_LEGACY:
1832                 /* Don't do anything; this is the system default */
1833                 break;
1834         }
1835
1836         /* store the number of vectors being used */
1837         adapter->num_vectors = 1;
1838 }
1839
1840 /**
1841  * e1000_request_msix - Initialize MSI-X interrupts
1842  *
1843  * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
1844  * kernel.
1845  **/
1846 static int e1000_request_msix(struct e1000_adapter *adapter)
1847 {
1848         struct net_device *netdev = adapter->netdev;
1849         int err = 0, vector = 0;
1850
1851         if (strlen(netdev->name) < (IFNAMSIZ - 5))
1852                 snprintf(adapter->rx_ring->name,
1853                          sizeof(adapter->rx_ring->name) - 1,
1854                          "%s-rx-0", netdev->name);
1855         else
1856                 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1857         err = request_irq(adapter->msix_entries[vector].vector,
1858                           e1000_intr_msix_rx, 0, adapter->rx_ring->name,
1859                           netdev);
1860         if (err)
1861                 goto out;
1862         adapter->rx_ring->itr_register = E1000_EITR_82574(vector);
1863         adapter->rx_ring->itr_val = adapter->itr;
1864         vector++;
1865
1866         if (strlen(netdev->name) < (IFNAMSIZ - 5))
1867                 snprintf(adapter->tx_ring->name,
1868                          sizeof(adapter->tx_ring->name) - 1,
1869                          "%s-tx-0", netdev->name);
1870         else
1871                 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1872         err = request_irq(adapter->msix_entries[vector].vector,
1873                           e1000_intr_msix_tx, 0, adapter->tx_ring->name,
1874                           netdev);
1875         if (err)
1876                 goto out;
1877         adapter->tx_ring->itr_register = E1000_EITR_82574(vector);
1878         adapter->tx_ring->itr_val = adapter->itr;
1879         vector++;
1880
1881         err = request_irq(adapter->msix_entries[vector].vector,
1882                           e1000_msix_other, 0, netdev->name, netdev);
1883         if (err)
1884                 goto out;
1885
1886         e1000_configure_msix(adapter);
1887         return 0;
1888 out:
1889         return err;
1890 }
1891
1892 /**
1893  * e1000_request_irq - initialize interrupts
1894  *
1895  * Attempts to configure interrupts using the best available
1896  * capabilities of the hardware and kernel.
1897  **/
1898 static int e1000_request_irq(struct e1000_adapter *adapter)
1899 {
1900         struct net_device *netdev = adapter->netdev;
1901         int err;
1902
1903         if (adapter->msix_entries) {
1904                 err = e1000_request_msix(adapter);
1905                 if (!err)
1906                         return err;
1907                 /* fall back to MSI */
1908                 e1000e_reset_interrupt_capability(adapter);
1909                 adapter->int_mode = E1000E_INT_MODE_MSI;
1910                 e1000e_set_interrupt_capability(adapter);
1911         }
1912         if (adapter->flags & FLAG_MSI_ENABLED) {
1913                 err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
1914                                   netdev->name, netdev);
1915                 if (!err)
1916                         return err;
1917
1918                 /* fall back to legacy interrupt */
1919                 e1000e_reset_interrupt_capability(adapter);
1920                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
1921         }
1922
1923         err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
1924                           netdev->name, netdev);
1925         if (err)
1926                 e_err("Unable to allocate interrupt, Error: %d\n", err);
1927
1928         return err;
1929 }
1930
1931 static void e1000_free_irq(struct e1000_adapter *adapter)
1932 {
1933         struct net_device *netdev = adapter->netdev;
1934
1935         if (adapter->msix_entries) {
1936                 int vector = 0;
1937
1938                 free_irq(adapter->msix_entries[vector].vector, netdev);
1939                 vector++;
1940
1941                 free_irq(adapter->msix_entries[vector].vector, netdev);
1942                 vector++;
1943
1944                 /* Other Causes interrupt vector */
1945                 free_irq(adapter->msix_entries[vector].vector, netdev);
1946                 return;
1947         }
1948
1949         free_irq(adapter->pdev->irq, netdev);
1950 }
1951
1952 /**
1953  * e1000_irq_disable - Mask off interrupt generation on the NIC
1954  **/
1955 static void e1000_irq_disable(struct e1000_adapter *adapter)
1956 {
1957         struct e1000_hw *hw = &adapter->hw;
1958
1959         ew32(IMC, ~0);
1960         if (adapter->msix_entries)
1961                 ew32(EIAC_82574, 0);
1962         e1e_flush();
1963
1964         if (adapter->msix_entries) {
1965                 int i;
1966                 for (i = 0; i < adapter->num_vectors; i++)
1967                         synchronize_irq(adapter->msix_entries[i].vector);
1968         } else {
1969                 synchronize_irq(adapter->pdev->irq);
1970         }
1971 }
1972
1973 /**
1974  * e1000_irq_enable - Enable default interrupt generation settings
1975  **/
1976 static void e1000_irq_enable(struct e1000_adapter *adapter)
1977 {
1978         struct e1000_hw *hw = &adapter->hw;
1979
1980         if (adapter->msix_entries) {
1981                 ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
1982                 ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC);
1983         } else {
1984                 ew32(IMS, IMS_ENABLE_MASK);
1985         }
1986         e1e_flush();
1987 }
1988
1989 /**
1990  * e1000e_get_hw_control - get control of the h/w from f/w
1991  * @adapter: address of board private structure
1992  *
1993  * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
1994  * For ASF and Pass Through versions of f/w this means that
1995  * the driver is loaded. For AMT version (only with 82573)
1996  * of the f/w this means that the network i/f is open.
1997  **/
1998 void e1000e_get_hw_control(struct e1000_adapter *adapter)
1999 {
2000         struct e1000_hw *hw = &adapter->hw;
2001         u32 ctrl_ext;
2002         u32 swsm;
2003
2004         /* Let firmware know the driver has taken over */
2005         if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2006                 swsm = er32(SWSM);
2007                 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
2008         } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2009                 ctrl_ext = er32(CTRL_EXT);
2010                 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2011         }
2012 }
2013
2014 /**
2015  * e1000e_release_hw_control - release control of the h/w to f/w
2016  * @adapter: address of board private structure
2017  *
2018  * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2019  * For ASF and Pass Through versions of f/w this means that the
2020  * driver is no longer loaded. For AMT version (only with 82573) i
2021  * of the f/w this means that the network i/f is closed.
2022  *
2023  **/
2024 void e1000e_release_hw_control(struct e1000_adapter *adapter)
2025 {
2026         struct e1000_hw *hw = &adapter->hw;
2027         u32 ctrl_ext;
2028         u32 swsm;
2029
2030         /* Let firmware taken over control of h/w */
2031         if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2032                 swsm = er32(SWSM);
2033                 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
2034         } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2035                 ctrl_ext = er32(CTRL_EXT);
2036                 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2037         }
2038 }
2039
2040 /**
2041  * @e1000_alloc_ring - allocate memory for a ring structure
2042  **/
2043 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
2044                                 struct e1000_ring *ring)
2045 {
2046         struct pci_dev *pdev = adapter->pdev;
2047
2048         ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
2049                                         GFP_KERNEL);
2050         if (!ring->desc)
2051                 return -ENOMEM;
2052
2053         return 0;
2054 }
2055
2056 /**
2057  * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2058  * @adapter: board private structure
2059  *
2060  * Return 0 on success, negative on failure
2061  **/
2062 int e1000e_setup_tx_resources(struct e1000_adapter *adapter)
2063 {
2064         struct e1000_ring *tx_ring = adapter->tx_ring;
2065         int err = -ENOMEM, size;
2066
2067         size = sizeof(struct e1000_buffer) * tx_ring->count;
2068         tx_ring->buffer_info = vzalloc(size);
2069         if (!tx_ring->buffer_info)
2070                 goto err;
2071
2072         /* round up to nearest 4K */
2073         tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
2074         tx_ring->size = ALIGN(tx_ring->size, 4096);
2075
2076         err = e1000_alloc_ring_dma(adapter, tx_ring);
2077         if (err)
2078                 goto err;
2079
2080         tx_ring->next_to_use = 0;
2081         tx_ring->next_to_clean = 0;
2082
2083         return 0;
2084 err:
2085         vfree(tx_ring->buffer_info);
2086         e_err("Unable to allocate memory for the transmit descriptor ring\n");
2087         return err;
2088 }
2089
2090 /**
2091  * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2092  * @adapter: board private structure
2093  *
2094  * Returns 0 on success, negative on failure
2095  **/
2096 int e1000e_setup_rx_resources(struct e1000_adapter *adapter)
2097 {
2098         struct e1000_ring *rx_ring = adapter->rx_ring;
2099         struct e1000_buffer *buffer_info;
2100         int i, size, desc_len, err = -ENOMEM;
2101
2102         size = sizeof(struct e1000_buffer) * rx_ring->count;
2103         rx_ring->buffer_info = vzalloc(size);
2104         if (!rx_ring->buffer_info)
2105                 goto err;
2106
2107         for (i = 0; i < rx_ring->count; i++) {
2108                 buffer_info = &rx_ring->buffer_info[i];
2109                 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
2110                                                 sizeof(struct e1000_ps_page),
2111                                                 GFP_KERNEL);
2112                 if (!buffer_info->ps_pages)
2113                         goto err_pages;
2114         }
2115
2116         desc_len = sizeof(union e1000_rx_desc_packet_split);
2117
2118         /* Round up to nearest 4K */
2119         rx_ring->size = rx_ring->count * desc_len;
2120         rx_ring->size = ALIGN(rx_ring->size, 4096);
2121
2122         err = e1000_alloc_ring_dma(adapter, rx_ring);
2123         if (err)
2124                 goto err_pages;
2125
2126         rx_ring->next_to_clean = 0;
2127         rx_ring->next_to_use = 0;
2128         rx_ring->rx_skb_top = NULL;
2129
2130         return 0;
2131
2132 err_pages:
2133         for (i = 0; i < rx_ring->count; i++) {
2134                 buffer_info = &rx_ring->buffer_info[i];
2135                 kfree(buffer_info->ps_pages);
2136         }
2137 err:
2138         vfree(rx_ring->buffer_info);
2139         e_err("Unable to allocate memory for the receive descriptor ring\n");
2140         return err;
2141 }
2142
2143 /**
2144  * e1000_clean_tx_ring - Free Tx Buffers
2145  * @adapter: board private structure
2146  **/
2147 static void e1000_clean_tx_ring(struct e1000_adapter *adapter)
2148 {
2149         struct e1000_ring *tx_ring = adapter->tx_ring;
2150         struct e1000_buffer *buffer_info;
2151         unsigned long size;
2152         unsigned int i;
2153
2154         for (i = 0; i < tx_ring->count; i++) {
2155                 buffer_info = &tx_ring->buffer_info[i];
2156                 e1000_put_txbuf(adapter, buffer_info);
2157         }
2158
2159         size = sizeof(struct e1000_buffer) * tx_ring->count;
2160         memset(tx_ring->buffer_info, 0, size);
2161
2162         memset(tx_ring->desc, 0, tx_ring->size);
2163
2164         tx_ring->next_to_use = 0;
2165         tx_ring->next_to_clean = 0;
2166
2167         writel(0, adapter->hw.hw_addr + tx_ring->head);
2168         writel(0, adapter->hw.hw_addr + tx_ring->tail);
2169 }
2170
2171 /**
2172  * e1000e_free_tx_resources - Free Tx Resources per Queue
2173  * @adapter: board private structure
2174  *
2175  * Free all transmit software resources
2176  **/
2177 void e1000e_free_tx_resources(struct e1000_adapter *adapter)
2178 {
2179         struct pci_dev *pdev = adapter->pdev;
2180         struct e1000_ring *tx_ring = adapter->tx_ring;
2181
2182         e1000_clean_tx_ring(adapter);
2183
2184         vfree(tx_ring->buffer_info);
2185         tx_ring->buffer_info = NULL;
2186
2187         dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2188                           tx_ring->dma);
2189         tx_ring->desc = NULL;
2190 }
2191
2192 /**
2193  * e1000e_free_rx_resources - Free Rx Resources
2194  * @adapter: board private structure
2195  *
2196  * Free all receive software resources
2197  **/
2198
2199 void e1000e_free_rx_resources(struct e1000_adapter *adapter)
2200 {
2201         struct pci_dev *pdev = adapter->pdev;
2202         struct e1000_ring *rx_ring = adapter->rx_ring;
2203         int i;
2204
2205         e1000_clean_rx_ring(adapter);
2206
2207         for (i = 0; i < rx_ring->count; i++)
2208                 kfree(rx_ring->buffer_info[i].ps_pages);
2209
2210         vfree(rx_ring->buffer_info);
2211         rx_ring->buffer_info = NULL;
2212
2213         dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2214                           rx_ring->dma);
2215         rx_ring->desc = NULL;
2216 }
2217
2218 /**
2219  * e1000_update_itr - update the dynamic ITR value based on statistics
2220  * @adapter: pointer to adapter
2221  * @itr_setting: current adapter->itr
2222  * @packets: the number of packets during this measurement interval
2223  * @bytes: the number of bytes during this measurement interval
2224  *
2225  *      Stores a new ITR value based on packets and byte
2226  *      counts during the last interrupt.  The advantage of per interrupt
2227  *      computation is faster updates and more accurate ITR for the current
2228  *      traffic pattern.  Constants in this function were computed
2229  *      based on theoretical maximum wire speed and thresholds were set based
2230  *      on testing data as well as attempting to minimize response time
2231  *      while increasing bulk throughput.  This functionality is controlled
2232  *      by the InterruptThrottleRate module parameter.
2233  **/
2234 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2235                                      u16 itr_setting, int packets,
2236                                      int bytes)
2237 {
2238         unsigned int retval = itr_setting;
2239
2240         if (packets == 0)
2241                 goto update_itr_done;
2242
2243         switch (itr_setting) {
2244         case lowest_latency:
2245                 /* handle TSO and jumbo frames */
2246                 if (bytes/packets > 8000)
2247                         retval = bulk_latency;
2248                 else if ((packets < 5) && (bytes > 512))
2249                         retval = low_latency;
2250                 break;
2251         case low_latency:  /* 50 usec aka 20000 ints/s */
2252                 if (bytes > 10000) {
2253                         /* this if handles the TSO accounting */
2254                         if (bytes/packets > 8000)
2255                                 retval = bulk_latency;
2256                         else if ((packets < 10) || ((bytes/packets) > 1200))
2257                                 retval = bulk_latency;
2258                         else if ((packets > 35))
2259                                 retval = lowest_latency;
2260                 } else if (bytes/packets > 2000) {
2261                         retval = bulk_latency;
2262                 } else if (packets <= 2 && bytes < 512) {
2263                         retval = lowest_latency;
2264                 }
2265                 break;
2266         case bulk_latency: /* 250 usec aka 4000 ints/s */
2267                 if (bytes > 25000) {
2268                         if (packets > 35)
2269                                 retval = low_latency;
2270                 } else if (bytes < 6000) {
2271                         retval = low_latency;
2272                 }
2273                 break;
2274         }
2275
2276 update_itr_done:
2277         return retval;
2278 }
2279
2280 static void e1000_set_itr(struct e1000_adapter *adapter)
2281 {
2282         struct e1000_hw *hw = &adapter->hw;
2283         u16 current_itr;
2284         u32 new_itr = adapter->itr;
2285
2286         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2287         if (adapter->link_speed != SPEED_1000) {
2288                 current_itr = 0;
2289                 new_itr = 4000;
2290                 goto set_itr_now;
2291         }
2292
2293         if (adapter->flags2 & FLAG2_DISABLE_AIM) {
2294                 new_itr = 0;
2295                 goto set_itr_now;
2296         }
2297
2298         adapter->tx_itr = e1000_update_itr(adapter,
2299                                     adapter->tx_itr,
2300                                     adapter->total_tx_packets,
2301                                     adapter->total_tx_bytes);
2302         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2303         if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2304                 adapter->tx_itr = low_latency;
2305
2306         adapter->rx_itr = e1000_update_itr(adapter,
2307                                     adapter->rx_itr,
2308                                     adapter->total_rx_packets,
2309                                     adapter->total_rx_bytes);
2310         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2311         if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2312                 adapter->rx_itr = low_latency;
2313
2314         current_itr = max(adapter->rx_itr, adapter->tx_itr);
2315
2316         switch (current_itr) {
2317         /* counts and packets in update_itr are dependent on these numbers */
2318         case lowest_latency:
2319                 new_itr = 70000;
2320                 break;
2321         case low_latency:
2322                 new_itr = 20000; /* aka hwitr = ~200 */
2323                 break;
2324         case bulk_latency:
2325                 new_itr = 4000;
2326                 break;
2327         default:
2328                 break;
2329         }
2330
2331 set_itr_now:
2332         if (new_itr != adapter->itr) {
2333                 /*
2334                  * this attempts to bias the interrupt rate towards Bulk
2335                  * by adding intermediate steps when interrupt rate is
2336                  * increasing
2337                  */
2338                 new_itr = new_itr > adapter->itr ?
2339                              min(adapter->itr + (new_itr >> 2), new_itr) :
2340                              new_itr;
2341                 adapter->itr = new_itr;
2342                 adapter->rx_ring->itr_val = new_itr;
2343                 if (adapter->msix_entries)
2344                         adapter->rx_ring->set_itr = 1;
2345                 else
2346                         if (new_itr)
2347                                 ew32(ITR, 1000000000 / (new_itr * 256));
2348                         else
2349                                 ew32(ITR, 0);
2350         }
2351 }
2352
2353 /**
2354  * e1000_alloc_queues - Allocate memory for all rings
2355  * @adapter: board private structure to initialize
2356  **/
2357 static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
2358 {
2359         adapter->tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
2360         if (!adapter->tx_ring)
2361                 goto err;
2362
2363         adapter->rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
2364         if (!adapter->rx_ring)
2365                 goto err;
2366
2367         return 0;
2368 err:
2369         e_err("Unable to allocate memory for queues\n");
2370         kfree(adapter->rx_ring);
2371         kfree(adapter->tx_ring);
2372         return -ENOMEM;
2373 }
2374
2375 /**
2376  * e1000_clean - NAPI Rx polling callback
2377  * @napi: struct associated with this polling callback
2378  * @budget: amount of packets driver is allowed to process this poll
2379  **/
2380 static int e1000_clean(struct napi_struct *napi, int budget)
2381 {
2382         struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
2383         struct e1000_hw *hw = &adapter->hw;
2384         struct net_device *poll_dev = adapter->netdev;
2385         int tx_cleaned = 1, work_done = 0;
2386
2387         adapter = netdev_priv(poll_dev);
2388
2389         if (adapter->msix_entries &&
2390             !(adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2391                 goto clean_rx;
2392
2393         tx_cleaned = e1000_clean_tx_irq(adapter);
2394
2395 clean_rx:
2396         adapter->clean_rx(adapter, &work_done, budget);
2397
2398         if (!tx_cleaned)
2399                 work_done = budget;
2400
2401         /* If budget not fully consumed, exit the polling mode */
2402         if (work_done < budget) {
2403                 if (adapter->itr_setting & 3)
2404                         e1000_set_itr(adapter);
2405                 napi_complete(napi);
2406                 if (!test_bit(__E1000_DOWN, &adapter->state)) {
2407                         if (adapter->msix_entries)
2408                                 ew32(IMS, adapter->rx_ring->ims_val);
2409                         else
2410                                 e1000_irq_enable(adapter);
2411                 }
2412         }
2413
2414         return work_done;
2415 }
2416
2417 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
2418 {
2419         struct e1000_adapter *adapter = netdev_priv(netdev);
2420         struct e1000_hw *hw = &adapter->hw;
2421         u32 vfta, index;
2422
2423         /* don't update vlan cookie if already programmed */
2424         if ((adapter->hw.mng_cookie.status &
2425              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2426             (vid == adapter->mng_vlan_id))
2427                 return;
2428
2429         /* add VID to filter table */
2430         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2431                 index = (vid >> 5) & 0x7F;
2432                 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2433                 vfta |= (1 << (vid & 0x1F));
2434                 hw->mac.ops.write_vfta(hw, index, vfta);
2435         }
2436
2437         set_bit(vid, adapter->active_vlans);
2438 }
2439
2440 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
2441 {
2442         struct e1000_adapter *adapter = netdev_priv(netdev);
2443         struct e1000_hw *hw = &adapter->hw;
2444         u32 vfta, index;
2445
2446         if ((adapter->hw.mng_cookie.status &
2447              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2448             (vid == adapter->mng_vlan_id)) {
2449                 /* release control to f/w */
2450                 e1000e_release_hw_control(adapter);
2451                 return;
2452         }
2453
2454         /* remove VID from filter table */
2455         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2456                 index = (vid >> 5) & 0x7F;
2457                 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2458                 vfta &= ~(1 << (vid & 0x1F));
2459                 hw->mac.ops.write_vfta(hw, index, vfta);
2460         }
2461
2462         clear_bit(vid, adapter->active_vlans);
2463 }
2464
2465 /**
2466  * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
2467  * @adapter: board private structure to initialize
2468  **/
2469 static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
2470 {
2471         struct net_device *netdev = adapter->netdev;
2472         struct e1000_hw *hw = &adapter->hw;
2473         u32 rctl;
2474
2475         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2476                 /* disable VLAN receive filtering */
2477                 rctl = er32(RCTL);
2478                 rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
2479                 ew32(RCTL, rctl);
2480
2481                 if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
2482                         e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
2483                         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2484                 }
2485         }
2486 }
2487
2488 /**
2489  * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
2490  * @adapter: board private structure to initialize
2491  **/
2492 static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
2493 {
2494         struct e1000_hw *hw = &adapter->hw;
2495         u32 rctl;
2496
2497         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2498                 /* enable VLAN receive filtering */
2499                 rctl = er32(RCTL);
2500                 rctl |= E1000_RCTL_VFE;
2501                 rctl &= ~E1000_RCTL_CFIEN;
2502                 ew32(RCTL, rctl);
2503         }
2504 }
2505
2506 /**
2507  * e1000e_vlan_strip_enable - helper to disable HW VLAN stripping
2508  * @adapter: board private structure to initialize
2509  **/
2510 static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
2511 {
2512         struct e1000_hw *hw = &adapter->hw;
2513         u32 ctrl;
2514
2515         /* disable VLAN tag insert/strip */
2516         ctrl = er32(CTRL);
2517         ctrl &= ~E1000_CTRL_VME;
2518         ew32(CTRL, ctrl);
2519 }
2520
2521 /**
2522  * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
2523  * @adapter: board private structure to initialize
2524  **/
2525 static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
2526 {
2527         struct e1000_hw *hw = &adapter->hw;
2528         u32 ctrl;
2529
2530         /* enable VLAN tag insert/strip */
2531         ctrl = er32(CTRL);
2532         ctrl |= E1000_CTRL_VME;
2533         ew32(CTRL, ctrl);
2534 }
2535
2536 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2537 {
2538         struct net_device *netdev = adapter->netdev;
2539         u16 vid = adapter->hw.mng_cookie.vlan_id;
2540         u16 old_vid = adapter->mng_vlan_id;
2541
2542         if (adapter->hw.mng_cookie.status &
2543             E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2544                 e1000_vlan_rx_add_vid(netdev, vid);
2545                 adapter->mng_vlan_id = vid;
2546         }
2547
2548         if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
2549                 e1000_vlan_rx_kill_vid(netdev, old_vid);
2550 }
2551
2552 static void e1000_restore_vlan(struct e1000_adapter *adapter)
2553 {
2554         u16 vid;
2555
2556         e1000_vlan_rx_add_vid(adapter->netdev, 0);
2557
2558         for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2559                 e1000_vlan_rx_add_vid(adapter->netdev, vid);
2560 }
2561
2562 static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2563 {
2564         struct e1000_hw *hw = &adapter->hw;
2565         u32 manc, manc2h, mdef, i, j;
2566
2567         if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2568                 return;
2569
2570         manc = er32(MANC);
2571
2572         /*
2573          * enable receiving management packets to the host. this will probably
2574          * generate destination unreachable messages from the host OS, but
2575          * the packets will be handled on SMBUS
2576          */
2577         manc |= E1000_MANC_EN_MNG2HOST;
2578         manc2h = er32(MANC2H);
2579
2580         switch (hw->mac.type) {
2581         default:
2582                 manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
2583                 break;
2584         case e1000_82574:
2585         case e1000_82583:
2586                 /*
2587                  * Check if IPMI pass-through decision filter already exists;
2588                  * if so, enable it.
2589                  */
2590                 for (i = 0, j = 0; i < 8; i++) {
2591                         mdef = er32(MDEF(i));
2592
2593                         /* Ignore filters with anything other than IPMI ports */
2594                         if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2595                                 continue;
2596
2597                         /* Enable this decision filter in MANC2H */
2598                         if (mdef)
2599                                 manc2h |= (1 << i);
2600
2601                         j |= mdef;
2602                 }
2603
2604                 if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2605                         break;
2606
2607                 /* Create new decision filter in an empty filter */
2608                 for (i = 0, j = 0; i < 8; i++)
2609                         if (er32(MDEF(i)) == 0) {
2610                                 ew32(MDEF(i), (E1000_MDEF_PORT_623 |
2611                                                E1000_MDEF_PORT_664));
2612                                 manc2h |= (1 << 1);
2613                                 j++;
2614                                 break;
2615                         }
2616
2617                 if (!j)
2618                         e_warn("Unable to create IPMI pass-through filter\n");
2619                 break;
2620         }
2621
2622         ew32(MANC2H, manc2h);
2623         ew32(MANC, manc);
2624 }
2625
2626 /**
2627  * e1000_configure_tx - Configure Transmit Unit after Reset
2628  * @adapter: board private structure
2629  *
2630  * Configure the Tx unit of the MAC after a reset.
2631  **/
2632 static void e1000_configure_tx(struct e1000_adapter *adapter)
2633 {
2634         struct e1000_hw *hw = &adapter->hw;
2635         struct e1000_ring *tx_ring = adapter->tx_ring;
2636         u64 tdba;
2637         u32 tdlen, tctl, tipg, tarc;
2638         u32 ipgr1, ipgr2;
2639
2640         /* Setup the HW Tx Head and Tail descriptor pointers */
2641         tdba = tx_ring->dma;
2642         tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2643         ew32(TDBAL, (tdba & DMA_BIT_MASK(32)));
2644         ew32(TDBAH, (tdba >> 32));
2645         ew32(TDLEN, tdlen);
2646         ew32(TDH, 0);
2647         ew32(TDT, 0);
2648         tx_ring->head = E1000_TDH;
2649         tx_ring->tail = E1000_TDT;
2650
2651         /* Set the default values for the Tx Inter Packet Gap timer */
2652         tipg = DEFAULT_82543_TIPG_IPGT_COPPER;          /*  8  */
2653         ipgr1 = DEFAULT_82543_TIPG_IPGR1;               /*  8  */
2654         ipgr2 = DEFAULT_82543_TIPG_IPGR2;               /*  6  */
2655
2656         if (adapter->flags & FLAG_TIPG_MEDIUM_FOR_80003ESLAN)
2657                 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2; /*  7  */
2658
2659         tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
2660         tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
2661         ew32(TIPG, tipg);
2662
2663         /* Set the Tx Interrupt Delay register */
2664         ew32(TIDV, adapter->tx_int_delay);
2665         /* Tx irq moderation */
2666         ew32(TADV, adapter->tx_abs_int_delay);
2667
2668         if (adapter->flags2 & FLAG2_DMA_BURST) {
2669                 u32 txdctl = er32(TXDCTL(0));
2670                 txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
2671                             E1000_TXDCTL_WTHRESH);
2672                 /*
2673                  * set up some performance related parameters to encourage the
2674                  * hardware to use the bus more efficiently in bursts, depends
2675                  * on the tx_int_delay to be enabled,
2676                  * wthresh = 5 ==> burst write a cacheline (64 bytes) at a time
2677                  * hthresh = 1 ==> prefetch when one or more available
2678                  * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2679                  * BEWARE: this seems to work but should be considered first if
2680                  * there are Tx hangs or other Tx related bugs
2681                  */
2682                 txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
2683                 ew32(TXDCTL(0), txdctl);
2684                 /* erratum work around: set txdctl the same for both queues */
2685                 ew32(TXDCTL(1), txdctl);
2686         }
2687
2688         /* Program the Transmit Control Register */
2689         tctl = er32(TCTL);
2690         tctl &= ~E1000_TCTL_CT;
2691         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2692                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2693
2694         if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2695                 tarc = er32(TARC(0));
2696                 /*
2697                  * set the speed mode bit, we'll clear it if we're not at
2698                  * gigabit link later
2699                  */
2700 #define SPEED_MODE_BIT (1 << 21)
2701                 tarc |= SPEED_MODE_BIT;
2702                 ew32(TARC(0), tarc);
2703         }
2704
2705         /* errata: program both queues to unweighted RR */
2706         if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2707                 tarc = er32(TARC(0));
2708                 tarc |= 1;
2709                 ew32(TARC(0), tarc);
2710                 tarc = er32(TARC(1));
2711                 tarc |= 1;
2712                 ew32(TARC(1), tarc);
2713         }
2714
2715         /* Setup Transmit Descriptor Settings for eop descriptor */
2716         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
2717
2718         /* only set IDE if we are delaying interrupts using the timers */
2719         if (adapter->tx_int_delay)
2720                 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
2721
2722         /* enable Report Status bit */
2723         adapter->txd_cmd |= E1000_TXD_CMD_RS;
2724
2725         ew32(TCTL, tctl);
2726
2727         e1000e_config_collision_dist(hw);
2728 }
2729
2730 /**
2731  * e1000_setup_rctl - configure the receive control registers
2732  * @adapter: Board private structure
2733  **/
2734 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
2735                            (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
2736 static void e1000_setup_rctl(struct e1000_adapter *adapter)
2737 {
2738         struct e1000_hw *hw = &adapter->hw;
2739         u32 rctl, rfctl;
2740         u32 pages = 0;
2741
2742         /* Workaround Si errata on 82579 - configure jumbo frame flow */
2743         if (hw->mac.type == e1000_pch2lan) {
2744                 s32 ret_val;
2745
2746                 if (adapter->netdev->mtu > ETH_DATA_LEN)
2747                         ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
2748                 else
2749                         ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
2750
2751                 if (ret_val)
2752                         e_dbg("failed to enable jumbo frame workaround mode\n");
2753         }
2754
2755         /* Program MC offset vector base */
2756         rctl = er32(RCTL);
2757         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2758         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
2759                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
2760                 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2761
2762         /* Do not Store bad packets */
2763         rctl &= ~E1000_RCTL_SBP;
2764
2765         /* Enable Long Packet receive */
2766         if (adapter->netdev->mtu <= ETH_DATA_LEN)
2767                 rctl &= ~E1000_RCTL_LPE;
2768         else
2769                 rctl |= E1000_RCTL_LPE;
2770
2771         /* Some systems expect that the CRC is included in SMBUS traffic. The
2772          * hardware strips the CRC before sending to both SMBUS (BMC) and to
2773          * host memory when this is enabled
2774          */
2775         if (adapter->flags2 & FLAG2_CRC_STRIPPING)
2776                 rctl |= E1000_RCTL_SECRC;
2777
2778         /* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
2779         if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
2780                 u16 phy_data;
2781
2782                 e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
2783                 phy_data &= 0xfff8;
2784                 phy_data |= (1 << 2);
2785                 e1e_wphy(hw, PHY_REG(770, 26), phy_data);
2786
2787                 e1e_rphy(hw, 22, &phy_data);
2788                 phy_data &= 0x0fff;
2789                 phy_data |= (1 << 14);
2790                 e1e_wphy(hw, 0x10, 0x2823);
2791                 e1e_wphy(hw, 0x11, 0x0003);
2792                 e1e_wphy(hw, 22, phy_data);
2793         }
2794
2795         /* Setup buffer sizes */
2796         rctl &= ~E1000_RCTL_SZ_4096;
2797         rctl |= E1000_RCTL_BSEX;
2798         switch (adapter->rx_buffer_len) {
2799         case 2048:
2800         default:
2801                 rctl |= E1000_RCTL_SZ_2048;
2802                 rctl &= ~E1000_RCTL_BSEX;
2803                 break;
2804         case 4096:
2805                 rctl |= E1000_RCTL_SZ_4096;
2806                 break;
2807         case 8192:
2808                 rctl |= E1000_RCTL_SZ_8192;
2809                 break;
2810         case 16384:
2811                 rctl |= E1000_RCTL_SZ_16384;
2812                 break;
2813         }
2814
2815         /*
2816          * 82571 and greater support packet-split where the protocol
2817          * header is placed in skb->data and the packet data is
2818          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
2819          * In the case of a non-split, skb->data is linearly filled,
2820          * followed by the page buffers.  Therefore, skb->data is
2821          * sized to hold the largest protocol header.
2822          *
2823          * allocations using alloc_page take too long for regular MTU
2824          * so only enable packet split for jumbo frames
2825          *
2826          * Using pages when the page size is greater than 16k wastes
2827          * a lot of memory, since we allocate 3 pages at all times
2828          * per packet.
2829          */
2830         pages = PAGE_USE_COUNT(adapter->netdev->mtu);
2831         if (!(adapter->flags & FLAG_HAS_ERT) && (pages <= 3) &&
2832             (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
2833                 adapter->rx_ps_pages = pages;
2834         else
2835                 adapter->rx_ps_pages = 0;
2836
2837         if (adapter->rx_ps_pages) {
2838                 u32 psrctl = 0;
2839
2840                 /* Configure extra packet-split registers */
2841                 rfctl = er32(RFCTL);
2842                 rfctl |= E1000_RFCTL_EXTEN;
2843                 /*
2844                  * disable packet split support for IPv6 extension headers,
2845                  * because some malformed IPv6 headers can hang the Rx
2846                  */
2847                 rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
2848                           E1000_RFCTL_NEW_IPV6_EXT_DIS);
2849
2850                 ew32(RFCTL, rfctl);
2851
2852                 /* Enable Packet split descriptors */
2853                 rctl |= E1000_RCTL_DTYP_PS;
2854
2855                 psrctl |= adapter->rx_ps_bsize0 >>
2856                         E1000_PSRCTL_BSIZE0_SHIFT;
2857
2858                 switch (adapter->rx_ps_pages) {
2859                 case 3:
2860                         psrctl |= PAGE_SIZE <<
2861                                 E1000_PSRCTL_BSIZE3_SHIFT;
2862                 case 2:
2863                         psrctl |= PAGE_SIZE <<
2864                                 E1000_PSRCTL_BSIZE2_SHIFT;
2865                 case 1:
2866                         psrctl |= PAGE_SIZE >>
2867                                 E1000_PSRCTL_BSIZE1_SHIFT;
2868                         break;
2869                 }
2870
2871                 ew32(PSRCTL, psrctl);
2872         }
2873
2874         ew32(RCTL, rctl);
2875         /* just started the receive unit, no need to restart */
2876         adapter->flags &= ~FLAG_RX_RESTART_NOW;
2877 }
2878
2879 /**
2880  * e1000_configure_rx - Configure Receive Unit after Reset
2881  * @adapter: board private structure
2882  *
2883  * Configure the Rx unit of the MAC after a reset.
2884  **/
2885 static void e1000_configure_rx(struct e1000_adapter *adapter)
2886 {
2887         struct e1000_hw *hw = &adapter->hw;
2888         struct e1000_ring *rx_ring = adapter->rx_ring;
2889         u64 rdba;
2890         u32 rdlen, rctl, rxcsum, ctrl_ext;
2891
2892         if (adapter->rx_ps_pages) {
2893                 /* this is a 32 byte descriptor */
2894                 rdlen = rx_ring->count *
2895                     sizeof(union e1000_rx_desc_packet_split);
2896                 adapter->clean_rx = e1000_clean_rx_irq_ps;
2897                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
2898         } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
2899                 rdlen = rx_ring->count * sizeof(struct e1000_rx_desc);
2900                 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
2901                 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
2902         } else {
2903                 rdlen = rx_ring->count * sizeof(struct e1000_rx_desc);
2904                 adapter->clean_rx = e1000_clean_rx_irq;
2905                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
2906         }
2907
2908         /* disable receives while setting up the descriptors */
2909         rctl = er32(RCTL);
2910         ew32(RCTL, rctl & ~E1000_RCTL_EN);
2911         e1e_flush();
2912         usleep_range(10000, 20000);
2913
2914         if (adapter->flags2 & FLAG2_DMA_BURST) {
2915                 /*
2916                  * set the writeback threshold (only takes effect if the RDTR
2917                  * is set). set GRAN=1 and write back up to 0x4 worth, and
2918                  * enable prefetching of 0x20 Rx descriptors
2919                  * granularity = 01
2920                  * wthresh = 04,
2921                  * hthresh = 04,
2922                  * pthresh = 0x20
2923                  */
2924                 ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
2925                 ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);
2926
2927                 /*
2928                  * override the delay timers for enabling bursting, only if
2929                  * the value was not set by the user via module options
2930                  */
2931                 if (adapter->rx_int_delay == DEFAULT_RDTR)
2932                         adapter->rx_int_delay = BURST_RDTR;
2933                 if (adapter->rx_abs_int_delay == DEFAULT_RADV)
2934                         adapter->rx_abs_int_delay = BURST_RADV;
2935         }
2936
2937         /* set the Receive Delay Timer Register */
2938         ew32(RDTR, adapter->rx_int_delay);
2939
2940         /* irq moderation */
2941         ew32(RADV, adapter->rx_abs_int_delay);
2942         if ((adapter->itr_setting != 0) && (adapter->itr != 0))
2943                 ew32(ITR, 1000000000 / (adapter->itr * 256));
2944
2945         ctrl_ext = er32(CTRL_EXT);
2946         /* Auto-Mask interrupts upon ICR access */
2947         ctrl_ext |= E1000_CTRL_EXT_IAME;
2948         ew32(IAM, 0xffffffff);
2949         ew32(CTRL_EXT, ctrl_ext);
2950         e1e_flush();
2951
2952         /*
2953          * Setup the HW Rx Head and Tail Descriptor Pointers and
2954          * the Base and Length of the Rx Descriptor Ring
2955          */
2956         rdba = rx_ring->dma;
2957         ew32(RDBAL, (rdba & DMA_BIT_MASK(32)));
2958         ew32(RDBAH, (rdba >> 32));
2959         ew32(RDLEN, rdlen);
2960         ew32(RDH, 0);
2961         ew32(RDT, 0);
2962         rx_ring->head = E1000_RDH;
2963         rx_ring->tail = E1000_RDT;
2964
2965         /* Enable Receive Checksum Offload for TCP and UDP */
2966         rxcsum = er32(RXCSUM);
2967         if (adapter->flags & FLAG_RX_CSUM_ENABLED) {
2968                 rxcsum |= E1000_RXCSUM_TUOFL;
2969
2970                 /*
2971                  * IPv4 payload checksum for UDP fragments must be
2972                  * used in conjunction with packet-split.
2973                  */
2974                 if (adapter->rx_ps_pages)
2975                         rxcsum |= E1000_RXCSUM_IPPCSE;
2976         } else {
2977                 rxcsum &= ~E1000_RXCSUM_TUOFL;
2978                 /* no need to clear IPPCSE as it defaults to 0 */
2979         }
2980         ew32(RXCSUM, rxcsum);
2981
2982         /*
2983          * Enable early receives on supported devices, only takes effect when
2984          * packet size is equal or larger than the specified value (in 8 byte
2985          * units), e.g. using jumbo frames when setting to E1000_ERT_2048
2986          */
2987         if ((adapter->flags & FLAG_HAS_ERT) ||
2988             (adapter->hw.mac.type == e1000_pch2lan)) {
2989                 if (adapter->netdev->mtu > ETH_DATA_LEN) {
2990                         u32 rxdctl = er32(RXDCTL(0));
2991                         ew32(RXDCTL(0), rxdctl | 0x3);
2992                         if (adapter->flags & FLAG_HAS_ERT)
2993                                 ew32(ERT, E1000_ERT_2048 | (1 << 13));
2994                         /*
2995                          * With jumbo frames and early-receive enabled,
2996                          * excessive C-state transition latencies result in
2997                          * dropped transactions.
2998                          */
2999                         pm_qos_update_request(&adapter->netdev->pm_qos_req, 55);
3000                 } else {
3001                         pm_qos_update_request(&adapter->netdev->pm_qos_req,
3002                                               PM_QOS_DEFAULT_VALUE);
3003                 }
3004         }
3005
3006         /* Enable Receives */
3007         ew32(RCTL, rctl);
3008 }
3009
3010 /**
3011  *  e1000_update_mc_addr_list - Update Multicast addresses
3012  *  @hw: pointer to the HW structure
3013  *  @mc_addr_list: array of multicast addresses to program
3014  *  @mc_addr_count: number of multicast addresses to program
3015  *
3016  *  Updates the Multicast Table Array.
3017  *  The caller must have a packed mc_addr_list of multicast addresses.
3018  **/
3019 static void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
3020                                       u32 mc_addr_count)
3021 {
3022         hw->mac.ops.update_mc_addr_list(hw, mc_addr_list, mc_addr_count);
3023 }
3024
3025 /**
3026  * e1000_set_multi - Multicast and Promiscuous mode set
3027  * @netdev: network interface device structure
3028  *
3029  * The set_multi entry point is called whenever the multicast address
3030  * list or the network interface flags are updated.  This routine is
3031  * responsible for configuring the hardware for proper multicast,
3032  * promiscuous mode, and all-multi behavior.
3033  **/
3034 static void e1000_set_multi(struct net_device *netdev)
3035 {
3036         struct e1000_adapter *adapter = netdev_priv(netdev);
3037         struct e1000_hw *hw = &adapter->hw;
3038         struct netdev_hw_addr *ha;
3039         u8  *mta_list;
3040         u32 rctl;
3041
3042         /* Check for Promiscuous and All Multicast modes */
3043
3044         rctl = er32(RCTL);
3045
3046         if (netdev->flags & IFF_PROMISC) {
3047                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3048                 rctl &= ~E1000_RCTL_VFE;
3049                 /* Do not hardware filter VLANs in promisc mode */
3050                 e1000e_vlan_filter_disable(adapter);
3051         } else {
3052                 if (netdev->flags & IFF_ALLMULTI) {
3053                         rctl |= E1000_RCTL_MPE;
3054                         rctl &= ~E1000_RCTL_UPE;
3055                 } else {
3056                         rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
3057                 }
3058                 e1000e_vlan_filter_enable(adapter);
3059         }
3060
3061         ew32(RCTL, rctl);
3062
3063         if (!netdev_mc_empty(netdev)) {
3064                 int i = 0;
3065
3066                 mta_list = kmalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3067                 if (!mta_list)
3068                         return;
3069
3070                 /* prepare a packed array of only addresses. */
3071                 netdev_for_each_mc_addr(ha, netdev)
3072                         memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3073
3074                 e1000_update_mc_addr_list(hw, mta_list, i);
3075                 kfree(mta_list);
3076         } else {
3077                 /*
3078                  * if we're called from probe, we might not have
3079                  * anything to do here, so clear out the list
3080                  */
3081                 e1000_update_mc_addr_list(hw, NULL, 0);
3082         }
3083
3084         if (netdev->features & NETIF_F_HW_VLAN_RX)
3085                 e1000e_vlan_strip_enable(adapter);
3086         else
3087                 e1000e_vlan_strip_disable(adapter);
3088 }
3089
3090 /**
3091  * e1000_configure - configure the hardware for Rx and Tx
3092  * @adapter: private board structure
3093  **/
3094 static void e1000_configure(struct e1000_adapter *adapter)
3095 {
3096         e1000_set_multi(adapter->netdev);
3097
3098         e1000_restore_vlan(adapter);
3099         e1000_init_manageability_pt(adapter);
3100
3101         e1000_configure_tx(adapter);
3102         e1000_setup_rctl(adapter);
3103         e1000_configure_rx(adapter);
3104         adapter->alloc_rx_buf(adapter, e1000_desc_unused(adapter->rx_ring));
3105 }
3106
3107 /**
3108  * e1000e_power_up_phy - restore link in case the phy was powered down
3109  * @adapter: address of board private structure
3110  *
3111  * The phy may be powered down to save power and turn off link when the
3112  * driver is unloaded and wake on lan is not enabled (among others)
3113  * *** this routine MUST be followed by a call to e1000e_reset ***
3114  **/
3115 void e1000e_power_up_phy(struct e1000_adapter *adapter)
3116 {
3117         if (adapter->hw.phy.ops.power_up)
3118                 adapter->hw.phy.ops.power_up(&adapter->hw);
3119
3120         adapter->hw.mac.ops.setup_link(&adapter->hw);
3121 }
3122
3123 /**
3124  * e1000_power_down_phy - Power down the PHY
3125  *
3126  * Power down the PHY so no link is implied when interface is down.
3127  * The PHY cannot be powered down if management or WoL is active.
3128  */
3129 static void e1000_power_down_phy(struct e1000_adapter *adapter)
3130 {
3131         /* WoL is enabled */
3132         if (adapter->wol)
3133                 return;
3134
3135         if (adapter->hw.phy.ops.power_down)
3136                 adapter->hw.phy.ops.power_down(&adapter->hw);
3137 }
3138
3139 /**
3140  * e1000e_reset - bring the hardware into a known good state
3141  *
3142  * This function boots the hardware and enables some settings that
3143  * require a configuration cycle of the hardware - those cannot be
3144  * set/changed during runtime. After reset the device needs to be
3145  * properly configured for Rx, Tx etc.
3146  */
3147 void e1000e_reset(struct e1000_adapter *adapter)
3148 {
3149         struct e1000_mac_info *mac = &adapter->hw.mac;
3150         struct e1000_fc_info *fc = &adapter->hw.fc;
3151         struct e1000_hw *hw = &adapter->hw;
3152         u32 tx_space, min_tx_space, min_rx_space;
3153         u32 pba = adapter->pba;
3154         u16 hwm;
3155
3156         /* reset Packet Buffer Allocation to default */
3157         ew32(PBA, pba);
3158
3159         if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
3160                 /*
3161                  * To maintain wire speed transmits, the Tx FIFO should be
3162                  * large enough to accommodate two full transmit packets,
3163                  * rounded up to the next 1KB and expressed in KB.  Likewise,
3164                  * the Rx FIFO should be large enough to accommodate at least
3165                  * one full receive packet and is similarly rounded up and
3166                  * expressed in KB.
3167                  */
3168                 pba = er32(PBA);
3169                 /* upper 16 bits has Tx packet buffer allocation size in KB */
3170                 tx_space = pba >> 16;
3171                 /* lower 16 bits has Rx packet buffer allocation size in KB */
3172                 pba &= 0xffff;
3173                 /*
3174                  * the Tx fifo also stores 16 bytes of information about the Tx
3175                  * but don't include ethernet FCS because hardware appends it
3176                  */
3177                 min_tx_space = (adapter->max_frame_size +
3178                                 sizeof(struct e1000_tx_desc) -
3179                                 ETH_FCS_LEN) * 2;
3180                 min_tx_space = ALIGN(min_tx_space, 1024);
3181                 min_tx_space >>= 10;
3182                 /* software strips receive CRC, so leave room for it */
3183                 min_rx_space = adapter->max_frame_size;
3184                 min_rx_space = ALIGN(min_rx_space, 1024);
3185                 min_rx_space >>= 10;
3186
3187                 /*
3188                  * If current Tx allocation is less than the min Tx FIFO size,
3189                  * and the min Tx FIFO size is less than the current Rx FIFO
3190                  * allocation, take space away from current Rx allocation
3191                  */
3192                 if ((tx_space < min_tx_space) &&
3193                     ((min_tx_space - tx_space) < pba)) {
3194                         pba -= min_tx_space - tx_space;
3195
3196                         /*
3197                          * if short on Rx space, Rx wins and must trump Tx
3198                          * adjustment or use Early Receive if available
3199                          */
3200                         if ((pba < min_rx_space) &&
3201                             (!(adapter->flags & FLAG_HAS_ERT)))
3202                                 /* ERT enabled in e1000_configure_rx */
3203                                 pba = min_rx_space;
3204                 }
3205
3206                 ew32(PBA, pba);
3207         }
3208
3209         /*
3210          * flow control settings
3211          *
3212          * The high water mark must be low enough to fit one full frame
3213          * (or the size used for early receive) above it in the Rx FIFO.
3214          * Set it to the lower of:
3215          * - 90% of the Rx FIFO size, and
3216          * - the full Rx FIFO size minus the early receive size (for parts
3217          *   with ERT support assuming ERT set to E1000_ERT_2048), or
3218          * - the full Rx FIFO size minus one full frame
3219          */
3220         if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
3221                 fc->pause_time = 0xFFFF;
3222         else
3223                 fc->pause_time = E1000_FC_PAUSE_TIME;
3224         fc->send_xon = 1;
3225         fc->current_mode = fc->requested_mode;
3226
3227         switch (hw->mac.type) {
3228         default:
3229                 if ((adapter->flags & FLAG_HAS_ERT) &&
3230                     (adapter->netdev->mtu > ETH_DATA_LEN))
3231                         hwm = min(((pba << 10) * 9 / 10),
3232                                   ((pba << 10) - (E1000_ERT_2048 << 3)));
3233                 else
3234                         hwm = min(((pba << 10) * 9 / 10),
3235                                   ((pba << 10) - adapter->max_frame_size));
3236
3237                 fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */
3238                 fc->low_water = fc->high_water - 8;
3239                 break;
3240         case e1000_pchlan:
3241                 /*
3242                  * Workaround PCH LOM adapter hangs with certain network
3243                  * loads.  If hangs persist, try disabling Tx flow control.
3244                  */
3245                 if (adapter->netdev->mtu > ETH_DATA_LEN) {
3246                         fc->high_water = 0x3500;
3247                         fc->low_water  = 0x1500;
3248                 } else {
3249                         fc->high_water = 0x5000;
3250                         fc->low_water  = 0x3000;
3251                 }
3252                 fc->refresh_time = 0x1000;
3253                 break;
3254         case e1000_pch2lan:
3255                 fc->high_water = 0x05C20;
3256                 fc->low_water = 0x05048;
3257                 fc->pause_time = 0x0650;
3258                 fc->refresh_time = 0x0400;
3259                 if (adapter->netdev->mtu > ETH_DATA_LEN) {
3260                         pba = 14;
3261                         ew32(PBA, pba);
3262                 }
3263                 break;
3264         }
3265
3266         /*
3267          * Disable Adaptive Interrupt Moderation if 2 full packets cannot
3268          * fit in receive buffer and early-receive not supported.
3269          */
3270         if (adapter->itr_setting & 0x3) {
3271                 if (((adapter->max_frame_size * 2) > (pba << 10)) &&
3272                     !(adapter->flags & FLAG_HAS_ERT)) {
3273                         if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
3274                                 dev_info(&adapter->pdev->dev,
3275                                         "Interrupt Throttle Rate turned off\n");
3276                                 adapter->flags2 |= FLAG2_DISABLE_AIM;
3277                                 ew32(ITR, 0);
3278                         }
3279                 } else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
3280                         dev_info(&adapter->pdev->dev,
3281                                  "Interrupt Throttle Rate turned on\n");
3282                         adapter->flags2 &= ~FLAG2_DISABLE_AIM;
3283                         adapter->itr = 20000;
3284                         ew32(ITR, 1000000000 / (adapter->itr * 256));
3285                 }
3286         }
3287
3288         /* Allow time for pending master requests to run */
3289         mac->ops.reset_hw(hw);
3290
3291         /*
3292          * For parts with AMT enabled, let the firmware know
3293          * that the network interface is in control
3294          */
3295         if (adapter->flags & FLAG_HAS_AMT)
3296                 e1000e_get_hw_control(adapter);
3297
3298         ew32(WUC, 0);
3299
3300         if (mac->ops.init_hw(hw))
3301                 e_err("Hardware Error\n");
3302
3303         e1000_update_mng_vlan(adapter);
3304
3305         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
3306         ew32(VET, ETH_P_8021Q);
3307
3308         e1000e_reset_adaptive(hw);
3309
3310         if (!netif_running(adapter->netdev) &&
3311             !test_bit(__E1000_TESTING, &adapter->state)) {
3312                 e1000_power_down_phy(adapter);
3313                 return;
3314         }
3315
3316         e1000_get_phy_info(hw);
3317
3318         if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
3319             !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
3320                 u16 phy_data = 0;
3321                 /*
3322                  * speed up time to link by disabling smart power down, ignore
3323                  * the return value of this function because there is nothing
3324                  * different we would do if it failed
3325                  */
3326                 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
3327                 phy_data &= ~IGP02E1000_PM_SPD;
3328                 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
3329         }
3330 }
3331
3332 int e1000e_up(struct e1000_adapter *adapter)
3333 {
3334         struct e1000_hw *hw = &adapter->hw;
3335
3336         /* hardware has been reset, we need to reload some things */
3337         e1000_configure(adapter);
3338
3339         clear_bit(__E1000_DOWN, &adapter->state);
3340
3341         napi_enable(&adapter->napi);
3342         if (adapter->msix_entries)
3343                 e1000_configure_msix(adapter);
3344         e1000_irq_enable(adapter);
3345
3346         netif_wake_queue(adapter->netdev);
3347
3348         /* fire a link change interrupt to start the watchdog */
3349         if (adapter->msix_entries)
3350                 ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
3351         else
3352                 ew32(ICS, E1000_ICS_LSC);
3353
3354         return 0;
3355 }
3356
3357 static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
3358 {
3359         struct e1000_hw *hw = &adapter->hw;
3360
3361         if (!(adapter->flags2 & FLAG2_DMA_BURST))
3362                 return;
3363
3364         /* flush pending descriptor writebacks to memory */
3365         ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
3366         ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
3367
3368         /* execute the writes immediately */
3369         e1e_flush();
3370 }
3371
3372 static void e1000e_update_stats(struct e1000_adapter *adapter);
3373
3374 void e1000e_down(struct e1000_adapter *adapter)
3375 {
3376         struct net_device *netdev = adapter->netdev;
3377         struct e1000_hw *hw = &adapter->hw;
3378         u32 tctl, rctl;
3379
3380         /*
3381          * signal that we're down so the interrupt handler does not
3382          * reschedule our watchdog timer
3383          */
3384         set_bit(__E1000_DOWN, &adapter->state);
3385
3386         /* disable receives in the hardware */
3387         rctl = er32(RCTL);
3388         ew32(RCTL, rctl & ~E1000_RCTL_EN);
3389         /* flush and sleep below */
3390
3391         netif_stop_queue(netdev);
3392
3393         /* disable transmits in the hardware */
3394         tctl = er32(TCTL);
3395         tctl &= ~E1000_TCTL_EN;
3396         ew32(TCTL, tctl);
3397         /* flush both disables and wait for them to finish */
3398         e1e_flush();
3399         usleep_range(10000, 20000);
3400
3401         napi_disable(&adapter->napi);
3402         e1000_irq_disable(adapter);
3403
3404         del_timer_sync(&adapter->watchdog_timer);
3405         del_timer_sync(&adapter->phy_info_timer);
3406
3407         netif_carrier_off(netdev);
3408
3409         spin_lock(&adapter->stats64_lock);
3410         e1000e_update_stats(adapter);
3411         spin_unlock(&adapter->stats64_lock);
3412
3413         adapter->link_speed = 0;
3414         adapter->link_duplex = 0;
3415
3416         if (!pci_channel_offline(adapter->pdev))
3417                 e1000e_reset(adapter);
3418
3419         e1000e_flush_descriptors(adapter);
3420
3421         e1000_clean_tx_ring(adapter);
3422         e1000_clean_rx_ring(adapter);
3423
3424         /*
3425          * TODO: for power management, we could drop the link and
3426          * pci_disable_device here.
3427          */
3428 }
3429
3430 void e1000e_reinit_locked(struct e1000_adapter *adapter)
3431 {
3432         might_sleep();
3433         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
3434                 usleep_range(1000, 2000);
3435         e1000e_down(adapter);
3436         e1000e_up(adapter);
3437         clear_bit(__E1000_RESETTING, &adapter->state);
3438 }
3439
3440 /**
3441  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
3442  * @adapter: board private structure to initialize
3443  *
3444  * e1000_sw_init initializes the Adapter private data structure.
3445  * Fields are initialized based on PCI device information and
3446  * OS network device settings (MTU size).
3447  **/
3448 static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
3449 {
3450         struct net_device *netdev = adapter->netdev;
3451
3452         adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
3453         adapter->rx_ps_bsize0 = 128;
3454         adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
3455         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3456
3457         spin_lock_init(&adapter->stats64_lock);
3458
3459         e1000e_set_interrupt_capability(adapter);
3460
3461         if (e1000_alloc_queues(adapter))
3462                 return -ENOMEM;
3463
3464         /* Explicitly disable IRQ since the NIC can be in any state. */
3465         e1000_irq_disable(adapter);
3466
3467         set_bit(__E1000_DOWN, &adapter->state);
3468         return 0;
3469 }
3470
3471 /**
3472  * e1000_intr_msi_test - Interrupt Handler
3473  * @irq: interrupt number
3474  * @data: pointer to a network interface device structure
3475  **/
3476 static irqreturn_t e1000_intr_msi_test(int irq, void *data)
3477 {
3478         struct net_device *netdev = data;
3479         struct e1000_adapter *adapter = netdev_priv(netdev);
3480         struct e1000_hw *hw = &adapter->hw;
3481         u32 icr = er32(ICR);
3482
3483         e_dbg("icr is %08X\n", icr);
3484         if (icr & E1000_ICR_RXSEQ) {
3485                 adapter->flags &= ~FLAG_MSI_TEST_FAILED;
3486                 wmb();
3487         }
3488
3489         return IRQ_HANDLED;
3490 }
3491
3492 /**
3493  * e1000_test_msi_interrupt - Returns 0 for successful test
3494  * @adapter: board private struct
3495  *
3496  * code flow taken from tg3.c
3497  **/
3498 static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
3499 {
3500         struct net_device *netdev = adapter->netdev;
3501         struct e1000_hw *hw = &adapter->hw;
3502         int err;
3503
3504         /* poll_enable hasn't been called yet, so don't need disable */
3505         /* clear any pending events */
3506         er32(ICR);
3507
3508         /* free the real vector and request a test handler */
3509         e1000_free_irq(adapter);
3510         e1000e_reset_interrupt_capability(adapter);
3511
3512         /* Assume that the test fails, if it succeeds then the test
3513          * MSI irq handler will unset this flag */
3514         adapter->flags |= FLAG_MSI_TEST_FAILED;
3515
3516         err = pci_enable_msi(adapter->pdev);
3517         if (err)
3518                 goto msi_test_failed;
3519
3520         err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
3521                           netdev->name, netdev);
3522         if (err) {
3523                 pci_disable_msi(adapter->pdev);
3524                 goto msi_test_failed;
3525         }
3526
3527         wmb();
3528
3529         e1000_irq_enable(adapter);
3530
3531         /* fire an unusual interrupt on the test handler */
3532         ew32(ICS, E1000_ICS_RXSEQ);
3533         e1e_flush();
3534         msleep(50);
3535
3536         e1000_irq_disable(adapter);
3537
3538         rmb();
3539
3540         if (adapter->flags & FLAG_MSI_TEST_FAILED) {
3541                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
3542                 e_info("MSI interrupt test failed, using legacy interrupt.\n");
3543         } else
3544                 e_dbg("MSI interrupt test succeeded!\n");
3545
3546         free_irq(adapter->pdev->irq, netdev);
3547         pci_disable_msi(adapter->pdev);
3548
3549 msi_test_failed:
3550         e1000e_set_interrupt_capability(adapter);
3551         return e1000_request_irq(adapter);
3552 }
3553
3554 /**
3555  * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
3556  * @adapter: board private struct
3557  *
3558  * code flow taken from tg3.c, called with e1000 interrupts disabled.
3559  **/
3560 static int e1000_test_msi(struct e1000_adapter *adapter)
3561 {
3562         int err;
3563         u16 pci_cmd;
3564
3565         if (!(adapter->flags & FLAG_MSI_ENABLED))
3566                 return 0;
3567
3568         /* disable SERR in case the MSI write causes a master abort */
3569         pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
3570         if (pci_cmd & PCI_COMMAND_SERR)
3571                 pci_write_config_word(adapter->pdev, PCI_COMMAND,
3572                                       pci_cmd & ~PCI_COMMAND_SERR);
3573
3574         err = e1000_test_msi_interrupt(adapter);
3575
3576         /* re-enable SERR */
3577         if (pci_cmd & PCI_COMMAND_SERR) {
3578                 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
3579                 pci_cmd |= PCI_COMMAND_SERR;
3580                 pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
3581         }
3582
3583         return err;
3584 }
3585
3586 /**
3587  * e1000_open - Called when a network interface is made active
3588  * @netdev: network interface device structure
3589  *
3590  * Returns 0 on success, negative value on failure
3591  *
3592  * The open entry point is called when a network interface is made
3593  * active by the system (IFF_UP).  At this point all resources needed
3594  * for transmit and receive operations are allocated, the interrupt
3595  * handler is registered with the OS, the watchdog timer is started,
3596  * and the stack is notified that the interface is ready.
3597  **/
3598 static int e1000_open(struct net_device *netdev)
3599 {
3600         struct e1000_adapter *adapter = netdev_priv(netdev);
3601         struct e1000_hw *hw = &adapter->hw;
3602         struct pci_dev *pdev = adapter->pdev;
3603         int err;
3604
3605         /* disallow open during test */
3606         if (test_bit(__E1000_TESTING, &adapter->state))
3607                 return -EBUSY;
3608
3609         pm_runtime_get_sync(&pdev->dev);
3610
3611         netif_carrier_off(netdev);
3612
3613         /* allocate transmit descriptors */
3614         err = e1000e_setup_tx_resources(adapter);
3615         if (err)
3616                 goto err_setup_tx;
3617
3618         /* allocate receive descriptors */
3619         err = e1000e_setup_rx_resources(adapter);
3620         if (err)
3621                 goto err_setup_rx;
3622
3623         /*
3624          * If AMT is enabled, let the firmware know that the network
3625          * interface is now open and reset the part to a known state.
3626          */
3627         if (adapter->flags & FLAG_HAS_AMT) {
3628                 e1000e_get_hw_control(adapter);
3629                 e1000e_reset(adapter);
3630         }
3631
3632         e1000e_power_up_phy(adapter);
3633
3634         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
3635         if ((adapter->hw.mng_cookie.status &
3636              E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
3637                 e1000_update_mng_vlan(adapter);
3638
3639         /* DMA latency requirement to workaround early-receive/jumbo issue */
3640         if ((adapter->flags & FLAG_HAS_ERT) ||
3641             (adapter->hw.mac.type == e1000_pch2lan))
3642                 pm_qos_add_request(&adapter->netdev->pm_qos_req,
3643                                    PM_QOS_CPU_DMA_LATENCY,
3644                                    PM_QOS_DEFAULT_VALUE);
3645
3646         /*
3647          * before we allocate an interrupt, we must be ready to handle it.
3648          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3649          * as soon as we call pci_request_irq, so we have to setup our
3650          * clean_rx handler before we do so.
3651          */
3652         e1000_configure(adapter);
3653
3654         err = e1000_request_irq(adapter);
3655         if (err)
3656                 goto err_req_irq;
3657
3658         /*
3659          * Work around PCIe errata with MSI interrupts causing some chipsets to
3660          * ignore e1000e MSI messages, which means we need to test our MSI
3661          * interrupt now
3662          */
3663         if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
3664                 err = e1000_test_msi(adapter);
3665                 if (err) {
3666                         e_err("Interrupt allocation failed\n");
3667                         goto err_req_irq;
3668                 }
3669         }
3670
3671         /* From here on the code is the same as e1000e_up() */
3672         clear_bit(__E1000_DOWN, &adapter->state);
3673
3674         napi_enable(&adapter->napi);
3675
3676         e1000_irq_enable(adapter);
3677
3678         netif_start_queue(netdev);
3679
3680         adapter->idle_check = true;
3681         pm_runtime_put(&pdev->dev);
3682
3683         /* fire a link status change interrupt to start the watchdog */
3684         if (adapter->msix_entries)
3685                 ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
3686         else
3687                 ew32(ICS, E1000_ICS_LSC);
3688
3689         return 0;
3690
3691 err_req_irq:
3692         e1000e_release_hw_control(adapter);
3693         e1000_power_down_phy(adapter);
3694         e1000e_free_rx_resources(adapter);
3695 err_setup_rx:
3696         e1000e_free_tx_resources(adapter);
3697 err_setup_tx:
3698         e1000e_reset(adapter);
3699         pm_runtime_put_sync(&pdev->dev);
3700
3701         return err;
3702 }
3703
3704 /**
3705  * e1000_close - Disables a network interface
3706  * @netdev: network interface device structure
3707  *
3708  * Returns 0, this is not allowed to fail
3709  *
3710  * The close entry point is called when an interface is de-activated
3711  * by the OS.  The hardware is still under the drivers control, but
3712  * needs to be disabled.  A global MAC reset is issued to stop the
3713  * hardware, and all transmit and receive resources are freed.
3714  **/
3715 static int e1000_close(struct net_device *netdev)
3716 {
3717         struct e1000_adapter *adapter = netdev_priv(netdev);
3718         struct pci_dev *pdev = adapter->pdev;
3719
3720         WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
3721
3722         pm_runtime_get_sync(&pdev->dev);
3723
3724         if (!test_bit(__E1000_DOWN, &adapter->state)) {
3725                 e1000e_down(adapter);
3726                 e1000_free_irq(adapter);
3727         }
3728         e1000_power_down_phy(adapter);
3729
3730         e1000e_free_tx_resources(adapter);
3731         e1000e_free_rx_resources(adapter);
3732
3733         /*
3734          * kill manageability vlan ID if supported, but not if a vlan with
3735          * the same ID is registered on the host OS (let 8021q kill it)
3736          */
3737         if (adapter->hw.mng_cookie.status &
3738             E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
3739                 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
3740
3741         /*
3742          * If AMT is enabled, let the firmware know that the network
3743          * interface is now closed
3744          */
3745         if ((adapter->flags & FLAG_HAS_AMT) &&
3746             !test_bit(__E1000_TESTING, &adapter->state))
3747                 e1000e_release_hw_control(adapter);
3748
3749         if ((adapter->flags & FLAG_HAS_ERT) ||
3750             (adapter->hw.mac.type == e1000_pch2lan))
3751                 pm_qos_remove_request(&adapter->netdev->pm_qos_req);
3752
3753         pm_runtime_put_sync(&pdev->dev);
3754
3755         return 0;
3756 }
3757 /**
3758  * e1000_set_mac - Change the Ethernet Address of the NIC
3759  * @netdev: network interface device structure
3760  * @p: pointer to an address structure
3761  *
3762  * Returns 0 on success, negative on failure
3763  **/
3764 static int e1000_set_mac(struct net_device *netdev, void *p)
3765 {
3766         struct e1000_adapter *adapter = netdev_priv(netdev);
3767         struct sockaddr *addr = p;
3768
3769         if (!is_valid_ether_addr(addr->sa_data))
3770                 return -EADDRNOTAVAIL;
3771
3772         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3773         memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
3774
3775         e1000e_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
3776
3777         if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
3778                 /* activate the work around */
3779                 e1000e_set_laa_state_82571(&adapter->hw, 1);
3780
3781                 /*
3782                  * Hold a copy of the LAA in RAR[14] This is done so that
3783                  * between the time RAR[0] gets clobbered  and the time it
3784                  * gets fixed (in e1000_watchdog), the actual LAA is in one
3785                  * of the RARs and no incoming packets directed to this port
3786                  * are dropped. Eventually the LAA will be in RAR[0] and
3787                  * RAR[14]
3788                  */
3789                 e1000e_rar_set(&adapter->hw,
3790                               adapter->hw.mac.addr,
3791                               adapter->hw.mac.rar_entry_count - 1);
3792         }
3793
3794         return 0;
3795 }
3796
3797 /**
3798  * e1000e_update_phy_task - work thread to update phy
3799  * @work: pointer to our work struct
3800  *
3801  * this worker thread exists because we must acquire a
3802  * semaphore to read the phy, which we could msleep while
3803  * waiting for it, and we can't msleep in a timer.
3804  **/
3805 static void e1000e_update_phy_task(struct work_struct *work)
3806 {
3807         struct e1000_adapter *adapter = container_of(work,
3808                                         struct e1000_adapter, update_phy_task);
3809
3810         if (test_bit(__E1000_DOWN, &adapter->state))
3811                 return;
3812
3813         e1000_get_phy_info(&adapter->hw);
3814 }
3815
3816 /*
3817  * Need to wait a few seconds after link up to get diagnostic information from
3818  * the phy
3819  */
3820 static void e1000_update_phy_info(unsigned long data)
3821 {
3822         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
3823
3824         if (test_bit(__E1000_DOWN, &adapter->state))
3825                 return;
3826
3827         schedule_work(&adapter->update_phy_task);
3828 }
3829
3830 /**
3831  * e1000e_update_phy_stats - Update the PHY statistics counters
3832  * @adapter: board private structure
3833  **/
3834 static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
3835 {
3836         struct e1000_hw *hw = &adapter->hw;
3837         s32 ret_val;
3838         u16 phy_data;
3839
3840         ret_val = hw->phy.ops.acquire(hw);
3841         if (ret_val)
3842                 return;
3843
3844         hw->phy.addr = 1;
3845
3846 #define HV_PHY_STATS_PAGE       778
3847         /*
3848          * A page set is expensive so check if already on desired page.
3849          * If not, set to the page with the PHY status registers.
3850          */
3851         ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
3852                                            &phy_data);
3853         if (ret_val)
3854                 goto release;
3855         if (phy_data != (HV_PHY_STATS_PAGE << IGP_PAGE_SHIFT)) {
3856                 ret_val = e1000e_write_phy_reg_mdic(hw,
3857                                                     IGP01E1000_PHY_PAGE_SELECT,
3858                                                     (HV_PHY_STATS_PAGE <<
3859                                                      IGP_PAGE_SHIFT));
3860                 if (ret_val)
3861                         goto release;
3862         }
3863
3864         /* Read/clear the upper 16-bit registers and read/accumulate lower */
3865
3866         /* Single Collision Count */
3867         e1000e_read_phy_reg_mdic(hw, HV_SCC_UPPER & MAX_PHY_REG_ADDRESS,
3868                                  &phy_data);
3869         ret_val = e1000e_read_phy_reg_mdic(hw,
3870                                            HV_SCC_LOWER & MAX_PHY_REG_ADDRESS,
3871                                            &phy_data);
3872         if (!ret_val)
3873                 adapter->stats.scc += phy_data;
3874
3875         /* Excessive Collision Count */
3876         e1000e_read_phy_reg_mdic(hw, HV_ECOL_UPPER & MAX_PHY_REG_ADDRESS,
3877                                  &phy_data);
3878         ret_val = e1000e_read_phy_reg_mdic(hw,
3879                                            HV_ECOL_LOWER & MAX_PHY_REG_ADDRESS,
3880                                            &phy_data);
3881         if (!ret_val)
3882                 adapter->stats.ecol += phy_data;
3883
3884         /* Multiple Collision Count */
3885         e1000e_read_phy_reg_mdic(hw, HV_MCC_UPPER & MAX_PHY_REG_ADDRESS,
3886                                  &phy_data);
3887         ret_val = e1000e_read_phy_reg_mdic(hw,
3888                                            HV_MCC_LOWER & MAX_PHY_REG_ADDRESS,
3889                                            &phy_data);
3890         if (!ret_val)
3891                 adapter->stats.mcc += phy_data;
3892
3893         /* Late Collision Count */
3894         e1000e_read_phy_reg_mdic(hw, HV_LATECOL_UPPER & MAX_PHY_REG_ADDRESS,
3895                                  &phy_data);
3896         ret_val = e1000e_read_phy_reg_mdic(hw,
3897                                            HV_LATECOL_LOWER &
3898                                            MAX_PHY_REG_ADDRESS,
3899                                            &phy_data);
3900         if (!ret_val)
3901                 adapter->stats.latecol += phy_data;
3902
3903         /* Collision Count - also used for adaptive IFS */
3904         e1000e_read_phy_reg_mdic(hw, HV_COLC_UPPER & MAX_PHY_REG_ADDRESS,
3905                                  &phy_data);
3906         ret_val = e1000e_read_phy_reg_mdic(hw,
3907                                            HV_COLC_LOWER & MAX_PHY_REG_ADDRESS,
3908                                            &phy_data);
3909         if (!ret_val)
3910                 hw->mac.collision_delta = phy_data;
3911
3912         /* Defer Count */
3913         e1000e_read_phy_reg_mdic(hw, HV_DC_UPPER & MAX_PHY_REG_ADDRESS,
3914                                  &phy_data);
3915         ret_val = e1000e_read_phy_reg_mdic(hw,
3916                                            HV_DC_LOWER & MAX_PHY_REG_ADDRESS,
3917                                            &phy_data);
3918         if (!ret_val)
3919                 adapter->stats.dc += phy_data;
3920
3921         /* Transmit with no CRS */
3922         e1000e_read_phy_reg_mdic(hw, HV_TNCRS_UPPER & MAX_PHY_REG_ADDRESS,
3923                                  &phy_data);
3924         ret_val = e1000e_read_phy_reg_mdic(hw,
3925                                            HV_TNCRS_LOWER & MAX_PHY_REG_ADDRESS,
3926                                            &phy_data);
3927         if (!ret_val)
3928                 adapter->stats.tncrs += phy_data;
3929
3930 release:
3931         hw->phy.ops.release(hw);
3932 }
3933
3934 /**
3935  * e1000e_update_stats - Update the board statistics counters
3936  * @adapter: board private structure
3937  **/
3938 static void e1000e_update_stats(struct e1000_adapter *adapter)
3939 {
3940         struct net_device *netdev = adapter->netdev;
3941         struct e1000_hw *hw = &adapter->hw;
3942         struct pci_dev *pdev = adapter->pdev;
3943
3944         /*
3945          * Prevent stats update while adapter is being reset, or if the pci
3946          * connection is down.
3947          */
3948         if (adapter->link_speed == 0)
3949                 return;
3950         if (pci_channel_offline(pdev))
3951                 return;
3952
3953         adapter->stats.crcerrs += er32(CRCERRS);
3954         adapter->stats.gprc += er32(GPRC);
3955         adapter->stats.gorc += er32(GORCL);
3956         er32(GORCH); /* Clear gorc */
3957         adapter->stats.bprc += er32(BPRC);
3958         adapter->stats.mprc += er32(MPRC);
3959         adapter->stats.roc += er32(ROC);
3960
3961         adapter->stats.mpc += er32(MPC);
3962
3963         /* Half-duplex statistics */
3964         if (adapter->link_duplex == HALF_DUPLEX) {
3965                 if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
3966                         e1000e_update_phy_stats(adapter);
3967                 } else {
3968                         adapter->stats.scc += er32(SCC);
3969                         adapter->stats.ecol += er32(ECOL);
3970                         adapter->stats.mcc += er32(MCC);
3971                         adapter->stats.latecol += er32(LATECOL);
3972                         adapter->stats.dc += er32(DC);
3973
3974                         hw->mac.collision_delta = er32(COLC);
3975
3976                         if ((hw->mac.type != e1000_82574) &&
3977                             (hw->mac.type != e1000_82583))
3978                                 adapter->stats.tncrs += er32(TNCRS);
3979                 }
3980                 adapter->stats.colc += hw->mac.collision_delta;
3981         }
3982
3983         adapter->stats.xonrxc += er32(XONRXC);
3984         adapter->stats.xontxc += er32(XONTXC);
3985         adapter->stats.xoffrxc += er32(XOFFRXC);
3986         adapter->stats.xofftxc += er32(XOFFTXC);
3987         adapter->stats.gptc += er32(GPTC);
3988         adapter->stats.gotc += er32(GOTCL);
3989         er32(GOTCH); /* Clear gotc */
3990         adapter->stats.rnbc += er32(RNBC);
3991         adapter->stats.ruc += er32(RUC);
3992
3993         adapter->stats.mptc += er32(MPTC);
3994         adapter->stats.bptc += er32(BPTC);
3995
3996         /* used for adaptive IFS */
3997
3998         hw->mac.tx_packet_delta = er32(TPT);
3999         adapter->stats.tpt += hw->mac.tx_packet_delta;
4000
4001         adapter->stats.algnerrc += er32(ALGNERRC);
4002         adapter->stats.rxerrc += er32(RXERRC);
4003         adapter->stats.cexterr += er32(CEXTERR);
4004         adapter->stats.tsctc += er32(TSCTC);
4005         adapter->stats.tsctfc += er32(TSCTFC);
4006
4007         /* Fill out the OS statistics structure */
4008         netdev->stats.multicast = adapter->stats.mprc;
4009         netdev->stats.collisions = adapter->stats.colc;
4010
4011         /* Rx Errors */
4012
4013         /*
4014          * RLEC on some newer hardware can be incorrect so build
4015          * our own version based on RUC and ROC
4016          */
4017         netdev->stats.rx_errors = adapter->stats.rxerrc +
4018                 adapter->stats.crcerrs + adapter->stats.algnerrc +
4019                 adapter->stats.ruc + adapter->stats.roc +
4020                 adapter->stats.cexterr;
4021         netdev->stats.rx_length_errors = adapter->stats.ruc +
4022                                               adapter->stats.roc;
4023         netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
4024         netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
4025         netdev->stats.rx_missed_errors = adapter->stats.mpc;
4026
4027         /* Tx Errors */
4028         netdev->stats.tx_errors = adapter->stats.ecol +
4029                                        adapter->stats.latecol;
4030         netdev->stats.tx_aborted_errors = adapter->stats.ecol;
4031         netdev->stats.tx_window_errors = adapter->stats.latecol;
4032         netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
4033
4034         /* Tx Dropped needs to be maintained elsewhere */
4035
4036         /* Management Stats */
4037         adapter->stats.mgptc += er32(MGTPTC);
4038         adapter->stats.mgprc += er32(MGTPRC);
4039         adapter->stats.mgpdc += er32(MGTPDC);
4040 }
4041
4042 /**
4043  * e1000_phy_read_status - Update the PHY register status snapshot
4044  * @adapter: board private structure
4045  **/
4046 static void e1000_phy_read_status(struct e1000_adapter *adapter)
4047 {
4048         struct e1000_hw *hw = &adapter->hw;
4049         struct e1000_phy_regs *phy = &adapter->phy_regs;
4050
4051         if ((er32(STATUS) & E1000_STATUS_LU) &&
4052             (adapter->hw.phy.media_type == e1000_media_type_copper)) {
4053                 int ret_val;
4054
4055                 ret_val  = e1e_rphy(hw, PHY_CONTROL, &phy->bmcr);
4056                 ret_val |= e1e_rphy(hw, PHY_STATUS, &phy->bmsr);
4057                 ret_val |= e1e_rphy(hw, PHY_AUTONEG_ADV, &phy->advertise);
4058                 ret_val |= e1e_rphy(hw, PHY_LP_ABILITY, &phy->lpa);
4059                 ret_val |= e1e_rphy(hw, PHY_AUTONEG_EXP, &phy->expansion);
4060                 ret_val |= e1e_rphy(hw, PHY_1000T_CTRL, &phy->ctrl1000);
4061                 ret_val |= e1e_rphy(hw, PHY_1000T_STATUS, &phy->stat1000);
4062                 ret_val |= e1e_rphy(hw, PHY_EXT_STATUS, &phy->estatus);
4063                 if (ret_val)
4064                         e_warn("Error reading PHY register\n");
4065         } else {
4066                 /*
4067                  * Do not read PHY registers if link is not up
4068                  * Set values to typical power-on defaults
4069                  */
4070                 phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
4071                 phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
4072                              BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
4073                              BMSR_ERCAP);
4074                 phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
4075                                   ADVERTISE_ALL | ADVERTISE_CSMA);
4076                 phy->lpa = 0;
4077                 phy->expansion = EXPANSION_ENABLENPAGE;
4078                 phy->ctrl1000 = ADVERTISE_1000FULL;
4079                 phy->stat1000 = 0;
4080                 phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
4081         }
4082 }
4083
4084 static void e1000_print_link_info(struct e1000_adapter *adapter)
4085 {
4086         struct e1000_hw *hw = &adapter->hw;
4087         u32 ctrl = er32(CTRL);
4088
4089         /* Link status message must follow this format for user tools */
4090         printk(KERN_INFO "e1000e: %s NIC Link is Up %d Mbps %s, "
4091                "Flow Control: %s\n",
4092                adapter->netdev->name,
4093                adapter->link_speed,
4094                (adapter->link_duplex == FULL_DUPLEX) ?
4095                "Full Duplex" : "Half Duplex",
4096                ((ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE)) ?
4097                "Rx/Tx" :
4098                ((ctrl & E1000_CTRL_RFCE) ? "Rx" :
4099                 ((ctrl & E1000_CTRL_TFCE) ? "Tx" : "None")));
4100 }
4101
4102 static bool e1000e_has_link(struct e1000_adapter *adapter)
4103 {
4104         struct e1000_hw *hw = &adapter->hw;
4105         bool link_active = 0;
4106         s32 ret_val = 0;
4107
4108         /*
4109          * get_link_status is set on LSC (link status) interrupt or
4110          * Rx sequence error interrupt.  get_link_status will stay
4111          * false until the check_for_link establishes link
4112          * for copper adapters ONLY
4113          */
4114         switch (hw->phy.media_type) {
4115         case e1000_media_type_copper:
4116                 if (hw->mac.get_link_status) {
4117                         ret_val = hw->mac.ops.check_for_link(hw);
4118                         link_active = !hw->mac.get_link_status;
4119                 } else {
4120                         link_active = 1;
4121                 }
4122                 break;
4123         case e1000_media_type_fiber:
4124                 ret_val = hw->mac.ops.check_for_link(hw);
4125                 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
4126                 break;
4127         case e1000_media_type_internal_serdes:
4128                 ret_val = hw->mac.ops.check_for_link(hw);
4129                 link_active = adapter->hw.mac.serdes_has_link;
4130                 break;
4131         default:
4132         case e1000_media_type_unknown:
4133                 break;
4134         }
4135
4136         if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
4137             (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
4138                 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
4139                 e_info("Gigabit has been disabled, downgrading speed\n");
4140         }
4141
4142         return link_active;
4143 }
4144
4145 static void e1000e_enable_receives(struct e1000_adapter *adapter)
4146 {
4147         /* make sure the receive unit is started */
4148         if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
4149             (adapter->flags & FLAG_RX_RESTART_NOW)) {
4150                 struct e1000_hw *hw = &adapter->hw;
4151                 u32 rctl = er32(RCTL);
4152                 ew32(RCTL, rctl | E1000_RCTL_EN);
4153                 adapter->flags &= ~FLAG_RX_RESTART_NOW;
4154         }
4155 }
4156
4157 static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
4158 {
4159         struct e1000_hw *hw = &adapter->hw;
4160
4161         /*
4162          * With 82574 controllers, PHY needs to be checked periodically
4163          * for hung state and reset, if two calls return true
4164          */
4165         if (e1000_check_phy_82574(hw))
4166                 adapter->phy_hang_count++;
4167         else
4168                 adapter->phy_hang_count = 0;
4169
4170         if (adapter->phy_hang_count > 1) {
4171                 adapter->phy_hang_count = 0;
4172                 schedule_work(&adapter->reset_task);
4173         }
4174 }
4175
4176 /**
4177  * e1000_watchdog - Timer Call-back
4178  * @data: pointer to adapter cast into an unsigned long
4179  **/
4180 static void e1000_watchdog(unsigned long data)
4181 {
4182         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
4183
4184         /* Do the rest outside of interrupt context */
4185         schedule_work(&adapter->watchdog_task);
4186
4187         /* TODO: make this use queue_delayed_work() */
4188 }
4189
4190 static void e1000_watchdog_task(struct work_struct *work)
4191 {
4192         struct e1000_adapter *adapter = container_of(work,
4193                                         struct e1000_adapter, watchdog_task);
4194         struct net_device *netdev = adapter->netdev;
4195         struct e1000_mac_info *mac = &adapter->hw.mac;
4196         struct e1000_phy_info *phy = &adapter->hw.phy;
4197         struct e1000_ring *tx_ring = adapter->tx_ring;
4198         struct e1000_hw *hw = &adapter->hw;
4199         u32 link, tctl;
4200
4201         if (test_bit(__E1000_DOWN, &adapter->state))
4202                 return;
4203
4204         link = e1000e_has_link(adapter);
4205         if ((netif_carrier_ok(netdev)) && link) {
4206                 /* Cancel scheduled suspend requests. */
4207                 pm_runtime_resume(netdev->dev.parent);
4208
4209                 e1000e_enable_receives(adapter);
4210                 goto link_up;
4211         }
4212
4213         if ((e1000e_enable_tx_pkt_filtering(hw)) &&
4214             (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
4215                 e1000_update_mng_vlan(adapter);
4216
4217         if (link) {
4218                 if (!netif_carrier_ok(netdev)) {
4219                         bool txb2b = 1;
4220
4221                         /* Cancel scheduled suspend requests. */
4222                         pm_runtime_resume(netdev->dev.parent);
4223
4224                         /* update snapshot of PHY registers on LSC */
4225                         e1000_phy_read_status(adapter);
4226                         mac->ops.get_link_up_info(&adapter->hw,
4227                                                    &adapter->link_speed,
4228                                                    &adapter->link_duplex);
4229                         e1000_print_link_info(adapter);
4230                         /*
4231                          * On supported PHYs, check for duplex mismatch only
4232                          * if link has autonegotiated at 10/100 half
4233                          */
4234                         if ((hw->phy.type == e1000_phy_igp_3 ||
4235                              hw->phy.type == e1000_phy_bm) &&
4236                             (hw->mac.autoneg == true) &&
4237                             (adapter->link_speed == SPEED_10 ||
4238                              adapter->link_speed == SPEED_100) &&
4239                             (adapter->link_duplex == HALF_DUPLEX)) {
4240                                 u16 autoneg_exp;
4241
4242                                 e1e_rphy(hw, PHY_AUTONEG_EXP, &autoneg_exp);
4243
4244                                 if (!(autoneg_exp & NWAY_ER_LP_NWAY_CAPS))
4245                                         e_info("Autonegotiated half duplex but"
4246                                                " link partner cannot autoneg. "
4247                                                " Try forcing full duplex if "
4248                                                "link gets many collisions.\n");
4249                         }
4250
4251                         /* adjust timeout factor according to speed/duplex */
4252                         adapter->tx_timeout_factor = 1;
4253                         switch (adapter->link_speed) {
4254                         case SPEED_10:
4255                                 txb2b = 0;
4256                                 adapter->tx_timeout_factor = 16;
4257                                 break;
4258                         case SPEED_100:
4259                                 txb2b = 0;
4260                                 adapter->tx_timeout_factor = 10;
4261                                 break;
4262                         }
4263
4264                         /*
4265                          * workaround: re-program speed mode bit after
4266                          * link-up event
4267                          */
4268                         if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
4269                             !txb2b) {
4270                                 u32 tarc0;
4271                                 tarc0 = er32(TARC(0));
4272                                 tarc0 &= ~SPEED_MODE_BIT;
4273                                 ew32(TARC(0), tarc0);
4274                         }
4275
4276                         /*
4277                          * disable TSO for pcie and 10/100 speeds, to avoid
4278                          * some hardware issues
4279                          */
4280                         if (!(adapter->flags & FLAG_TSO_FORCE)) {
4281                                 switch (adapter->link_speed) {
4282                                 case SPEED_10:
4283                                 case SPEED_100:
4284                                         e_info("10/100 speed: disabling TSO\n");
4285                                         netdev->features &= ~NETIF_F_TSO;
4286                                         netdev->features &= ~NETIF_F_TSO6;
4287                                         break;
4288                                 case SPEED_1000:
4289                                         netdev->features |= NETIF_F_TSO;
4290                                         netdev->features |= NETIF_F_TSO6;
4291                                         break;
4292                                 default:
4293                                         /* oops */
4294                                         break;
4295                                 }
4296                         }
4297
4298                         /*
4299                          * enable transmits in the hardware, need to do this
4300                          * after setting TARC(0)
4301                          */
4302                         tctl = er32(TCTL);
4303                         tctl |= E1000_TCTL_EN;
4304                         ew32(TCTL, tctl);
4305
4306                         /*
4307                          * Perform any post-link-up configuration before
4308                          * reporting link up.
4309                          */
4310                         if (phy->ops.cfg_on_link_up)
4311                                 phy->ops.cfg_on_link_up(hw);
4312
4313                         netif_carrier_on(netdev);
4314
4315                         if (!test_bit(__E1000_DOWN, &adapter->state))
4316                                 mod_timer(&adapter->phy_info_timer,
4317                                           round_jiffies(jiffies + 2 * HZ));
4318                 }
4319         } else {
4320                 if (netif_carrier_ok(netdev)) {
4321                         adapter->link_speed = 0;
4322                         adapter->link_duplex = 0;
4323                         /* Link status message must follow this format */
4324                         printk(KERN_INFO "e1000e: %s NIC Link is Down\n",
4325                                adapter->netdev->name);
4326                         netif_carrier_off(netdev);
4327                         if (!test_bit(__E1000_DOWN, &adapter->state))
4328                                 mod_timer(&adapter->phy_info_timer,
4329                                           round_jiffies(jiffies + 2 * HZ));
4330
4331                         if (adapter->flags & FLAG_RX_NEEDS_RESTART)
4332                                 schedule_work(&adapter->reset_task);
4333                         else
4334                                 pm_schedule_suspend(netdev->dev.parent,
4335                                                         LINK_TIMEOUT);
4336                 }
4337         }
4338
4339 link_up:
4340         spin_lock(&adapter->stats64_lock);
4341         e1000e_update_stats(adapter);
4342         spin_unlock(&adapter->stats64_lock);
4343
4344         mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
4345         adapter->tpt_old = adapter->stats.tpt;
4346         mac->collision_delta = adapter->stats.colc - adapter->colc_old;
4347         adapter->colc_old = adapter->stats.colc;
4348
4349         adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
4350         adapter->gorc_old = adapter->stats.gorc;
4351         adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
4352         adapter->gotc_old = adapter->stats.gotc;
4353
4354         e1000e_update_adaptive(&adapter->hw);
4355
4356         if (!netif_carrier_ok(netdev) &&
4357             (e1000_desc_unused(tx_ring) + 1 < tx_ring->count)) {
4358                 /*
4359                  * We've lost link, so the controller stops DMA,
4360                  * but we've got queued Tx work that's never going
4361                  * to get done, so reset controller to flush Tx.
4362                  * (Do the reset outside of interrupt context).
4363                  */
4364                 schedule_work(&adapter->reset_task);
4365                 /* return immediately since reset is imminent */
4366                 return;
4367         }
4368
4369         /* Simple mode for Interrupt Throttle Rate (ITR) */
4370         if (adapter->itr_setting == 4) {
4371                 /*
4372                  * Symmetric Tx/Rx gets a reduced ITR=2000;
4373                  * Total asymmetrical Tx or Rx gets ITR=8000;
4374                  * everyone else is between 2000-8000.
4375                  */
4376                 u32 goc = (adapter->gotc + adapter->gorc) / 10000;
4377                 u32 dif = (adapter->gotc > adapter->gorc ?
4378                             adapter->gotc - adapter->gorc :
4379                             adapter->gorc - adapter->gotc) / 10000;
4380                 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
4381
4382                 ew32(ITR, 1000000000 / (itr * 256));
4383         }
4384
4385         /* Cause software interrupt to ensure Rx ring is cleaned */
4386         if (adapter->msix_entries)
4387                 ew32(ICS, adapter->rx_ring->ims_val);
4388         else
4389                 ew32(ICS, E1000_ICS_RXDMT0);
4390
4391         /* flush pending descriptors to memory before detecting Tx hang */
4392         e1000e_flush_descriptors(adapter);
4393
4394         /* Force detection of hung controller every watchdog period */
4395         adapter->detect_tx_hung = 1;
4396
4397         /*
4398          * With 82571 controllers, LAA may be overwritten due to controller
4399          * reset from the other port. Set the appropriate LAA in RAR[0]
4400          */
4401         if (e1000e_get_laa_state_82571(hw))
4402                 e1000e_rar_set(hw, adapter->hw.mac.addr, 0);
4403
4404         if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
4405                 e1000e_check_82574_phy_workaround(adapter);
4406
4407         /* Reset the timer */
4408         if (!test_bit(__E1000_DOWN, &adapter->state))
4409                 mod_timer(&adapter->watchdog_timer,
4410                           round_jiffies(jiffies + 2 * HZ));
4411 }
4412
4413 #define E1000_TX_FLAGS_CSUM             0x00000001
4414 #define E1000_TX_FLAGS_VLAN             0x00000002
4415 #define E1000_TX_FLAGS_TSO              0x00000004
4416 #define E1000_TX_FLAGS_IPV4             0x00000008
4417 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
4418 #define E1000_TX_FLAGS_VLAN_SHIFT       16
4419
4420 static int e1000_tso(struct e1000_adapter *adapter,
4421                      struct sk_buff *skb)
4422 {
4423         struct e1000_ring *tx_ring = adapter->tx_ring;
4424         struct e1000_context_desc *context_desc;
4425         struct e1000_buffer *buffer_info;
4426         unsigned int i;
4427         u32 cmd_length = 0;
4428         u16 ipcse = 0, tucse, mss;
4429         u8 ipcss, ipcso, tucss, tucso, hdr_len;
4430
4431         if (!skb_is_gso(skb))
4432                 return 0;
4433
4434         if (skb_header_cloned(skb)) {
4435                 int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4436
4437                 if (err)
4438                         return err;
4439         }
4440
4441         hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
4442         mss = skb_shinfo(skb)->gso_size;
4443         if (skb->protocol == htons(ETH_P_IP)) {
4444                 struct iphdr *iph = ip_hdr(skb);
4445                 iph->tot_len = 0;
4446                 iph->check = 0;
4447                 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
4448                                                          0, IPPROTO_TCP, 0);
4449                 cmd_length = E1000_TXD_CMD_IP;
4450                 ipcse = skb_transport_offset(skb) - 1;
4451         } else if (skb_is_gso_v6(skb)) {
4452                 ipv6_hdr(skb)->payload_len = 0;
4453                 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4454                                                        &ipv6_hdr(skb)->daddr,
4455                                                        0, IPPROTO_TCP, 0);
4456                 ipcse = 0;
4457         }
4458         ipcss = skb_network_offset(skb);
4459         ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
4460         tucss = skb_transport_offset(skb);
4461         tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
4462         tucse = 0;
4463
4464         cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
4465                        E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
4466
4467         i = tx_ring->next_to_use;
4468         context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
4469         buffer_info = &tx_ring->buffer_info[i];
4470
4471         context_desc->lower_setup.ip_fields.ipcss  = ipcss;
4472         context_desc->lower_setup.ip_fields.ipcso  = ipcso;
4473         context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
4474         context_desc->upper_setup.tcp_fields.tucss = tucss;
4475         context_desc->upper_setup.tcp_fields.tucso = tucso;
4476         context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
4477         context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
4478         context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
4479         context_desc->cmd_and_length = cpu_to_le32(cmd_length);
4480
4481         buffer_info->time_stamp = jiffies;
4482         buffer_info->next_to_watch = i;
4483
4484         i++;
4485         if (i == tx_ring->count)
4486                 i = 0;
4487         tx_ring->next_to_use = i;
4488
4489         return 1;
4490 }
4491
4492 static bool e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb)
4493 {
4494         struct e1000_ring *tx_ring = adapter->tx_ring;
4495         struct e1000_context_desc *context_desc;
4496         struct e1000_buffer *buffer_info;
4497         unsigned int i;
4498         u8 css;
4499         u32 cmd_len = E1000_TXD_CMD_DEXT;
4500         __be16 protocol;
4501
4502         if (skb->ip_summed != CHECKSUM_PARTIAL)
4503                 return 0;
4504
4505         if (skb->protocol == cpu_to_be16(ETH_P_8021Q))
4506                 protocol = vlan_eth_hdr(skb)->h_vlan_encapsulated_proto;
4507         else
4508                 protocol = skb->protocol;
4509
4510         switch (protocol) {
4511         case cpu_to_be16(ETH_P_IP):
4512                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
4513                         cmd_len |= E1000_TXD_CMD_TCP;
4514                 break;
4515         case cpu_to_be16(ETH_P_IPV6):
4516                 /* XXX not handling all IPV6 headers */
4517                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
4518                         cmd_len |= E1000_TXD_CMD_TCP;
4519                 break;
4520         default:
4521                 if (unlikely(net_ratelimit()))
4522                         e_warn("checksum_partial proto=%x!\n",
4523                                be16_to_cpu(protocol));
4524                 break;
4525         }
4526
4527         css = skb_checksum_start_offset(skb);
4528
4529         i = tx_ring->next_to_use;
4530         buffer_info = &tx_ring->buffer_info[i];
4531         context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
4532
4533         context_desc->lower_setup.ip_config = 0;
4534         context_desc->upper_setup.tcp_fields.tucss = css;
4535         context_desc->upper_setup.tcp_fields.tucso =
4536                                 css + skb->csum_offset;
4537         context_desc->upper_setup.tcp_fields.tucse = 0;
4538         context_desc->tcp_seg_setup.data = 0;
4539         context_desc->cmd_and_length = cpu_to_le32(cmd_len);
4540
4541         buffer_info->time_stamp = jiffies;
4542         buffer_info->next_to_watch = i;
4543
4544         i++;
4545         if (i == tx_ring->count)
4546                 i = 0;
4547         tx_ring->next_to_use = i;
4548
4549         return 1;
4550 }
4551
4552 #define E1000_MAX_PER_TXD       8192
4553 #define E1000_MAX_TXD_PWR       12
4554
4555 static int e1000_tx_map(struct e1000_adapter *adapter,
4556                         struct sk_buff *skb, unsigned int first,
4557                         unsigned int max_per_txd, unsigned int nr_frags,
4558                         unsigned int mss)
4559 {
4560         struct e1000_ring *tx_ring = adapter->tx_ring;
4561         struct pci_dev *pdev = adapter->pdev;
4562         struct e1000_buffer *buffer_info;
4563         unsigned int len = skb_headlen(skb);
4564         unsigned int offset = 0, size, count = 0, i;
4565         unsigned int f, bytecount, segs;
4566
4567         i = tx_ring->next_to_use;
4568
4569         while (len) {
4570                 buffer_info = &tx_ring->buffer_info[i];
4571                 size = min(len, max_per_txd);
4572
4573                 buffer_info->length = size;
4574                 buffer_info->time_stamp = jiffies;
4575                 buffer_info->next_to_watch = i;
4576                 buffer_info->dma = dma_map_single(&pdev->dev,
4577                                                   skb->data + offset,
4578                                                   size, DMA_TO_DEVICE);
4579                 buffer_info->mapped_as_page = false;
4580                 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
4581                         goto dma_error;
4582
4583                 len -= size;
4584                 offset += size;
4585                 count++;
4586
4587                 if (len) {
4588                         i++;
4589                         if (i == tx_ring->count)
4590                                 i = 0;
4591                 }
4592         }
4593
4594         for (f = 0; f < nr_frags; f++) {
4595                 struct skb_frag_struct *frag;
4596
4597                 frag = &skb_shinfo(skb)->frags[f];
4598                 len = frag->size;
4599                 offset = frag->page_offset;
4600
4601                 while (len) {
4602                         i++;
4603                         if (i == tx_ring->count)
4604                                 i = 0;
4605
4606                         buffer_info = &tx_ring->buffer_info[i];
4607                         size = min(len, max_per_txd);
4608
4609                         buffer_info->length = size;
4610                         buffer_info->time_stamp = jiffies;
4611                         buffer_info->next_to_watch = i;
4612                         buffer_info->dma = dma_map_page(&pdev->dev, frag->page,
4613                                                         offset, size,
4614                                                         DMA_TO_DEVICE);
4615                         buffer_info->mapped_as_page = true;
4616                         if (dma_mapping_error(&pdev->dev, buffer_info->dma))
4617                                 goto dma_error;
4618
4619                         len -= size;
4620                         offset += size;
4621                         count++;
4622                 }
4623         }
4624
4625         segs = skb_shinfo(skb)->gso_segs ? : 1;
4626         /* multiply data chunks by size of headers */
4627         bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
4628
4629         tx_ring->buffer_info[i].skb = skb;
4630         tx_ring->buffer_info[i].segs = segs;
4631         tx_ring->buffer_info[i].bytecount = bytecount;
4632         tx_ring->buffer_info[first].next_to_watch = i;
4633
4634         return count;
4635
4636 dma_error:
4637         dev_err(&pdev->dev, "Tx DMA map failed\n");
4638         buffer_info->dma = 0;
4639         if (count)
4640                 count--;
4641
4642         while (count--) {
4643                 if (i == 0)
4644                         i += tx_ring->count;
4645                 i--;
4646                 buffer_info = &tx_ring->buffer_info[i];
4647                 e1000_put_txbuf(adapter, buffer_info);
4648         }
4649
4650         return 0;
4651 }
4652
4653 static void e1000_tx_queue(struct e1000_adapter *adapter,
4654                            int tx_flags, int count)
4655 {
4656         struct e1000_ring *tx_ring = adapter->tx_ring;
4657         struct e1000_tx_desc *tx_desc = NULL;
4658         struct e1000_buffer *buffer_info;
4659         u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
4660         unsigned int i;
4661
4662         if (tx_flags & E1000_TX_FLAGS_TSO) {
4663                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
4664                              E1000_TXD_CMD_TSE;
4665                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
4666
4667                 if (tx_flags & E1000_TX_FLAGS_IPV4)
4668                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
4669         }
4670
4671         if (tx_flags & E1000_TX_FLAGS_CSUM) {
4672                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
4673                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
4674         }
4675
4676         if (tx_flags & E1000_TX_FLAGS_VLAN) {
4677                 txd_lower |= E1000_TXD_CMD_VLE;
4678                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
4679         }
4680
4681         i = tx_ring->next_to_use;
4682
4683         do {
4684                 buffer_info = &tx_ring->buffer_info[i];
4685                 tx_desc = E1000_TX_DESC(*tx_ring, i);
4686                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4687                 tx_desc->lower.data =
4688                         cpu_to_le32(txd_lower | buffer_info->length);
4689                 tx_desc->upper.data = cpu_to_le32(txd_upper);
4690
4691                 i++;
4692                 if (i == tx_ring->count)
4693                         i = 0;
4694         } while (--count > 0);
4695
4696         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
4697
4698         /*
4699          * Force memory writes to complete before letting h/w
4700          * know there are new descriptors to fetch.  (Only
4701          * applicable for weak-ordered memory model archs,
4702          * such as IA-64).
4703          */
4704         wmb();
4705
4706         tx_ring->next_to_use = i;
4707         writel(i, adapter->hw.hw_addr + tx_ring->tail);
4708         /*
4709          * we need this if more than one processor can write to our tail
4710          * at a time, it synchronizes IO on IA64/Altix systems
4711          */
4712         mmiowb();
4713 }
4714
4715 #define MINIMUM_DHCP_PACKET_SIZE 282
4716 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
4717                                     struct sk_buff *skb)
4718 {
4719         struct e1000_hw *hw =  &adapter->hw;
4720         u16 length, offset;
4721
4722         if (vlan_tx_tag_present(skb)) {
4723                 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
4724                     (adapter->hw.mng_cookie.status &
4725                         E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
4726                         return 0;
4727         }
4728
4729         if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
4730                 return 0;
4731
4732         if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP))
4733                 return 0;
4734
4735         {
4736                 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14);
4737                 struct udphdr *udp;
4738
4739                 if (ip->protocol != IPPROTO_UDP)
4740                         return 0;
4741
4742                 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
4743                 if (ntohs(udp->dest) != 67)
4744                         return 0;
4745
4746                 offset = (u8 *)udp + 8 - skb->data;
4747                 length = skb->len - offset;
4748                 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
4749         }
4750
4751         return 0;
4752 }
4753
4754 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
4755 {
4756         struct e1000_adapter *adapter = netdev_priv(netdev);
4757
4758         netif_stop_queue(netdev);
4759         /*
4760          * Herbert's original patch had:
4761          *  smp_mb__after_netif_stop_queue();
4762          * but since that doesn't exist yet, just open code it.
4763          */
4764         smp_mb();
4765
4766         /*
4767          * We need to check again in a case another CPU has just
4768          * made room available.
4769          */
4770         if (e1000_desc_unused(adapter->tx_ring) < size)
4771                 return -EBUSY;
4772
4773         /* A reprieve! */
4774         netif_start_queue(netdev);
4775         ++adapter->restart_queue;
4776         return 0;
4777 }
4778
4779 static int e1000_maybe_stop_tx(struct net_device *netdev, int size)
4780 {
4781         struct e1000_adapter *adapter = netdev_priv(netdev);
4782
4783         if (e1000_desc_unused(adapter->tx_ring) >= size)
4784                 return 0;
4785         return __e1000_maybe_stop_tx(netdev, size);
4786 }
4787
4788 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
4789 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
4790                                     struct net_device *netdev)
4791 {
4792         struct e1000_adapter *adapter = netdev_priv(netdev);
4793         struct e1000_ring *tx_ring = adapter->tx_ring;
4794         unsigned int first;
4795         unsigned int max_per_txd = E1000_MAX_PER_TXD;
4796         unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
4797         unsigned int tx_flags = 0;
4798         unsigned int len = skb_headlen(skb);
4799         unsigned int nr_frags;
4800         unsigned int mss;
4801         int count = 0;
4802         int tso;
4803         unsigned int f;
4804
4805         if (test_bit(__E1000_DOWN, &adapter->state)) {
4806                 dev_kfree_skb_any(skb);
4807                 return NETDEV_TX_OK;
4808         }
4809
4810         if (skb->len <= 0) {
4811                 dev_kfree_skb_any(skb);
4812                 return NETDEV_TX_OK;
4813         }
4814
4815         mss = skb_shinfo(skb)->gso_size;
4816         /*
4817          * The controller does a simple calculation to
4818          * make sure there is enough room in the FIFO before
4819          * initiating the DMA for each buffer.  The calc is:
4820          * 4 = ceil(buffer len/mss).  To make sure we don't
4821          * overrun the FIFO, adjust the max buffer len if mss
4822          * drops.
4823          */
4824         if (mss) {
4825                 u8 hdr_len;
4826                 max_per_txd = min(mss << 2, max_per_txd);
4827                 max_txd_pwr = fls(max_per_txd) - 1;
4828
4829                 /*
4830                  * TSO Workaround for 82571/2/3 Controllers -- if skb->data
4831                  * points to just header, pull a few bytes of payload from
4832                  * frags into skb->data
4833                  */
4834                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
4835                 /*
4836                  * we do this workaround for ES2LAN, but it is un-necessary,
4837                  * avoiding it could save a lot of cycles
4838                  */
4839                 if (skb->data_len && (hdr_len == len)) {
4840                         unsigned int pull_size;
4841
4842                         pull_size = min((unsigned int)4, skb->data_len);
4843                         if (!__pskb_pull_tail(skb, pull_size)) {
4844                                 e_err("__pskb_pull_tail failed.\n");
4845                                 dev_kfree_skb_any(skb);
4846                                 return NETDEV_TX_OK;
4847                         }
4848                         len = skb_headlen(skb);
4849                 }
4850         }
4851
4852         /* reserve a descriptor for the offload context */
4853         if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
4854                 count++;
4855         count++;
4856
4857         count += TXD_USE_COUNT(len, max_txd_pwr);
4858
4859         nr_frags = skb_shinfo(skb)->nr_frags;
4860         for (f = 0; f < nr_frags; f++)
4861                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
4862                                        max_txd_pwr);
4863
4864         if (adapter->hw.mac.tx_pkt_filtering)
4865                 e1000_transfer_dhcp_info(adapter, skb);
4866
4867         /*
4868          * need: count + 2 desc gap to keep tail from touching
4869          * head, otherwise try next time
4870          */
4871         if (e1000_maybe_stop_tx(netdev, count + 2))
4872                 return NETDEV_TX_BUSY;
4873
4874         if (vlan_tx_tag_present(skb)) {
4875                 tx_flags |= E1000_TX_FLAGS_VLAN;
4876                 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
4877         }
4878
4879         first = tx_ring->next_to_use;
4880
4881         tso = e1000_tso(adapter, skb);
4882         if (tso < 0) {
4883                 dev_kfree_skb_any(skb);
4884                 return NETDEV_TX_OK;
4885         }
4886
4887         if (tso)
4888                 tx_flags |= E1000_TX_FLAGS_TSO;
4889         else if (e1000_tx_csum(adapter, skb))
4890                 tx_flags |= E1000_TX_FLAGS_CSUM;
4891
4892         /*
4893          * Old method was to assume IPv4 packet by default if TSO was enabled.
4894          * 82571 hardware supports TSO capabilities for IPv6 as well...
4895          * no longer assume, we must.
4896          */
4897         if (skb->protocol == htons(ETH_P_IP))
4898                 tx_flags |= E1000_TX_FLAGS_IPV4;
4899
4900         /* if count is 0 then mapping error has occurred */
4901         count = e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss);
4902         if (count) {
4903                 e1000_tx_queue(adapter, tx_flags, count);
4904                 /* Make sure there is space in the ring for the next send. */
4905                 e1000_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 2);
4906
4907         } else {
4908                 dev_kfree_skb_any(skb);
4909                 tx_ring->buffer_info[first].time_stamp = 0;
4910                 tx_ring->next_to_use = first;
4911         }
4912
4913         return NETDEV_TX_OK;
4914 }
4915
4916 /**
4917  * e1000_tx_timeout - Respond to a Tx Hang
4918  * @netdev: network interface device structure
4919  **/
4920 static void e1000_tx_timeout(struct net_device *netdev)
4921 {
4922         struct e1000_adapter *adapter = netdev_priv(netdev);
4923
4924         /* Do the reset outside of interrupt context */
4925         adapter->tx_timeout_count++;
4926         schedule_work(&adapter->reset_task);
4927 }
4928
4929 static void e1000_reset_task(struct work_struct *work)
4930 {
4931         struct e1000_adapter *adapter;
4932         adapter = container_of(work, struct e1000_adapter, reset_task);
4933
4934         /* don't run the task if already down */
4935         if (test_bit(__E1000_DOWN, &adapter->state))
4936                 return;
4937
4938         if (!((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
4939               (adapter->flags & FLAG_RX_RESTART_NOW))) {
4940                 e1000e_dump(adapter);
4941                 e_err("Reset adapter\n");
4942         }
4943         e1000e_reinit_locked(adapter);
4944 }
4945
4946 /**
4947  * e1000_get_stats64 - Get System Network Statistics
4948  * @netdev: network interface device structure
4949  * @stats: rtnl_link_stats64 pointer
4950  *
4951  * Returns the address of the device statistics structure.
4952  **/
4953 struct rtnl_link_stats64 *e1000e_get_stats64(struct net_device *netdev,
4954                                              struct rtnl_link_stats64 *stats)
4955 {
4956         struct e1000_adapter *adapter = netdev_priv(netdev);
4957
4958         memset(stats, 0, sizeof(struct rtnl_link_stats64));
4959         spin_lock(&adapter->stats64_lock);
4960         e1000e_update_stats(adapter);
4961         /* Fill out the OS statistics structure */
4962         stats->rx_bytes = adapter->stats.gorc;
4963         stats->rx_packets = adapter->stats.gprc;
4964         stats->tx_bytes = adapter->stats.gotc;
4965         stats->tx_packets = adapter->stats.gptc;
4966         stats->multicast = adapter->stats.mprc;
4967         stats->collisions = adapter->stats.colc;
4968
4969         /* Rx Errors */
4970
4971         /*
4972          * RLEC on some newer hardware can be incorrect so build
4973          * our own version based on RUC and ROC
4974          */
4975         stats->rx_errors = adapter->stats.rxerrc +
4976                 adapter->stats.crcerrs + adapter->stats.algnerrc +
4977                 adapter->stats.ruc + adapter->stats.roc +
4978                 adapter->stats.cexterr;
4979         stats->rx_length_errors = adapter->stats.ruc +
4980                                               adapter->stats.roc;
4981         stats->rx_crc_errors = adapter->stats.crcerrs;
4982         stats->rx_frame_errors = adapter->stats.algnerrc;
4983         stats->rx_missed_errors = adapter->stats.mpc;
4984
4985         /* Tx Errors */
4986         stats->tx_errors = adapter->stats.ecol +
4987                                        adapter->stats.latecol;
4988         stats->tx_aborted_errors = adapter->stats.ecol;
4989         stats->tx_window_errors = adapter->stats.latecol;
4990         stats->tx_carrier_errors = adapter->stats.tncrs;
4991
4992         /* Tx Dropped needs to be maintained elsewhere */
4993
4994         spin_unlock(&adapter->stats64_lock);
4995         return stats;
4996 }
4997
4998 /**
4999  * e1000_change_mtu - Change the Maximum Transfer Unit
5000  * @netdev: network interface device structure
5001  * @new_mtu: new value for maximum frame size
5002  *
5003  * Returns 0 on success, negative on failure
5004  **/
5005 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
5006 {
5007         struct e1000_adapter *adapter = netdev_priv(netdev);
5008         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
5009
5010         /* Jumbo frame support */
5011         if ((max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) &&
5012             !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
5013                 e_err("Jumbo Frames not supported.\n");
5014                 return -EINVAL;
5015         }
5016
5017         /* Supported frame sizes */
5018         if ((new_mtu < ETH_ZLEN + ETH_FCS_LEN + VLAN_HLEN) ||
5019             (max_frame > adapter->max_hw_frame_size)) {
5020                 e_err("Unsupported MTU setting\n");
5021                 return -EINVAL;
5022         }
5023
5024         /* Jumbo frame workaround on 82579 requires CRC be stripped */
5025         if ((adapter->hw.mac.type == e1000_pch2lan) &&
5026             !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
5027             (new_mtu > ETH_DATA_LEN)) {
5028                 e_err("Jumbo Frames not supported on 82579 when CRC "
5029                       "stripping is disabled.\n");
5030                 return -EINVAL;
5031         }
5032
5033         /* 82573 Errata 17 */
5034         if (((adapter->hw.mac.type == e1000_82573) ||
5035              (adapter->hw.mac.type == e1000_82574)) &&
5036             (max_frame > ETH_FRAME_LEN + ETH_FCS_LEN)) {
5037                 adapter->flags2 |= FLAG2_DISABLE_ASPM_L1;
5038                 e1000e_disable_aspm(adapter->pdev, PCIE_LINK_STATE_L1);
5039         }
5040
5041         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
5042                 usleep_range(1000, 2000);
5043         /* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
5044         adapter->max_frame_size = max_frame;
5045         e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
5046         netdev->mtu = new_mtu;
5047         if (netif_running(netdev))
5048                 e1000e_down(adapter);
5049
5050         /*
5051          * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
5052          * means we reserve 2 more, this pushes us to allocate from the next
5053          * larger slab size.
5054          * i.e. RXBUFFER_2048 --> size-4096 slab
5055          * However with the new *_jumbo_rx* routines, jumbo receives will use
5056          * fragmented skbs
5057          */
5058
5059         if (max_frame <= 2048)
5060                 adapter->rx_buffer_len = 2048;
5061         else
5062                 adapter->rx_buffer_len = 4096;
5063
5064         /* adjust allocation if LPE protects us, and we aren't using SBP */
5065         if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
5066              (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
5067                 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
5068                                          + ETH_FCS_LEN;
5069
5070         if (netif_running(netdev))
5071                 e1000e_up(adapter);
5072         else
5073                 e1000e_reset(adapter);
5074
5075         clear_bit(__E1000_RESETTING, &adapter->state);
5076
5077         return 0;
5078 }
5079
5080 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
5081                            int cmd)
5082 {
5083         struct e1000_adapter *adapter = netdev_priv(netdev);
5084         struct mii_ioctl_data *data = if_mii(ifr);
5085
5086         if (adapter->hw.phy.media_type != e1000_media_type_copper)
5087                 return -EOPNOTSUPP;
5088
5089         switch (cmd) {
5090         case SIOCGMIIPHY:
5091                 data->phy_id = adapter->hw.phy.addr;
5092                 break;
5093         case SIOCGMIIREG:
5094                 e1000_phy_read_status(adapter);
5095
5096                 switch (data->reg_num & 0x1F) {
5097                 case MII_BMCR:
5098                         data->val_out = adapter->phy_regs.bmcr;
5099                         break;
5100                 case MII_BMSR:
5101                         data->val_out = adapter->phy_regs.bmsr;
5102                         break;
5103                 case MII_PHYSID1:
5104                         data->val_out = (adapter->hw.phy.id >> 16);
5105                         break;
5106                 case MII_PHYSID2:
5107                         data->val_out = (adapter->hw.phy.id & 0xFFFF);
5108                         break;
5109                 case MII_ADVERTISE:
5110                         data->val_out = adapter->phy_regs.advertise;
5111                         break;
5112                 case MII_LPA:
5113                         data->val_out = adapter->phy_regs.lpa;
5114                         break;
5115                 case MII_EXPANSION:
5116                         data->val_out = adapter->phy_regs.expansion;
5117                         break;
5118                 case MII_CTRL1000:
5119                         data->val_out = adapter->phy_regs.ctrl1000;
5120                         break;
5121                 case MII_STAT1000:
5122                         data->val_out = adapter->phy_regs.stat1000;
5123                         break;
5124                 case MII_ESTATUS:
5125                         data->val_out = adapter->phy_regs.estatus;
5126                         break;
5127                 default:
5128                         return -EIO;
5129                 }
5130                 break;
5131         case SIOCSMIIREG:
5132         default:
5133                 return -EOPNOTSUPP;
5134         }
5135         return 0;
5136 }
5137
5138 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5139 {
5140         switch (cmd) {
5141         case SIOCGMIIPHY:
5142         case SIOCGMIIREG:
5143         case SIOCSMIIREG:
5144                 return e1000_mii_ioctl(netdev, ifr, cmd);
5145         default:
5146                 return -EOPNOTSUPP;
5147         }
5148 }
5149
5150 static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
5151 {
5152         struct e1000_hw *hw = &adapter->hw;
5153         u32 i, mac_reg;
5154         u16 phy_reg;
5155         int retval = 0;
5156
5157         /* copy MAC RARs to PHY RARs */
5158         e1000_copy_rx_addrs_to_phy_ich8lan(hw);
5159
5160         /* copy MAC MTA to PHY MTA */
5161         for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
5162                 mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
5163                 e1e_wphy(hw, BM_MTA(i), (u16)(mac_reg & 0xFFFF));
5164                 e1e_wphy(hw, BM_MTA(i) + 1, (u16)((mac_reg >> 16) & 0xFFFF));
5165         }
5166
5167         /* configure PHY Rx Control register */
5168         e1e_rphy(&adapter->hw, BM_RCTL, &phy_reg);
5169         mac_reg = er32(RCTL);
5170         if (mac_reg & E1000_RCTL_UPE)
5171                 phy_reg |= BM_RCTL_UPE;
5172         if (mac_reg & E1000_RCTL_MPE)
5173                 phy_reg |= BM_RCTL_MPE;
5174         phy_reg &= ~(BM_RCTL_MO_MASK);
5175         if (mac_reg & E1000_RCTL_MO_3)
5176                 phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
5177                                 << BM_RCTL_MO_SHIFT);
5178         if (mac_reg & E1000_RCTL_BAM)
5179                 phy_reg |= BM_RCTL_BAM;
5180         if (mac_reg & E1000_RCTL_PMCF)
5181                 phy_reg |= BM_RCTL_PMCF;
5182         mac_reg = er32(CTRL);
5183         if (mac_reg & E1000_CTRL_RFCE)
5184                 phy_reg |= BM_RCTL_RFCE;
5185         e1e_wphy(&adapter->hw, BM_RCTL, phy_reg);
5186
5187         /* enable PHY wakeup in MAC register */
5188         ew32(WUFC, wufc);
5189         ew32(WUC, E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN);
5190
5191         /* configure and enable PHY wakeup in PHY registers */
5192         e1e_wphy(&adapter->hw, BM_WUFC, wufc);
5193         e1e_wphy(&adapter->hw, BM_WUC, E1000_WUC_PME_EN);
5194
5195         /* activate PHY wakeup */
5196         retval = hw->phy.ops.acquire(hw);
5197         if (retval) {
5198                 e_err("Could not acquire PHY\n");
5199                 return retval;
5200         }
5201         e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
5202                                  (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT));
5203         retval = e1000e_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, &phy_reg);
5204         if (retval) {
5205                 e_err("Could not read PHY page 769\n");
5206                 goto out;
5207         }
5208         phy_reg |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
5209         retval = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
5210         if (retval)
5211                 e_err("Could not set PHY Host Wakeup bit\n");
5212 out:
5213         hw->phy.ops.release(hw);
5214
5215         return retval;
5216 }
5217
5218 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake,
5219                             bool runtime)
5220 {
5221         struct net_device *netdev = pci_get_drvdata(pdev);
5222         struct e1000_adapter *adapter = netdev_priv(netdev);
5223         struct e1000_hw *hw = &adapter->hw;
5224         u32 ctrl, ctrl_ext, rctl, status;
5225         /* Runtime suspend should only enable wakeup for link changes */
5226         u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
5227         int retval = 0;
5228
5229         netif_device_detach(netdev);
5230
5231         if (netif_running(netdev)) {
5232                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
5233                 e1000e_down(adapter);
5234                 e1000_free_irq(adapter);
5235         }
5236         e1000e_reset_interrupt_capability(adapter);
5237
5238         retval = pci_save_state(pdev);
5239         if (retval)
5240                 return retval;
5241
5242         status = er32(STATUS);
5243         if (status & E1000_STATUS_LU)
5244                 wufc &= ~E1000_WUFC_LNKC;
5245
5246         if (wufc) {
5247                 e1000_setup_rctl(adapter);
5248                 e1000_set_multi(netdev);
5249
5250                 /* turn on all-multi mode if wake on multicast is enabled */
5251                 if (wufc & E1000_WUFC_MC) {
5252                         rctl = er32(RCTL);
5253                         rctl |= E1000_RCTL_MPE;
5254                         ew32(RCTL, rctl);
5255                 }
5256
5257                 ctrl = er32(CTRL);
5258                 /* advertise wake from D3Cold */
5259                 #define E1000_CTRL_ADVD3WUC 0x00100000
5260                 /* phy power management enable */
5261                 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5262                 ctrl |= E1000_CTRL_ADVD3WUC;
5263                 if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
5264                         ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
5265                 ew32(CTRL, ctrl);
5266
5267                 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
5268                     adapter->hw.phy.media_type ==
5269                     e1000_media_type_internal_serdes) {
5270                         /* keep the laser running in D3 */
5271                         ctrl_ext = er32(CTRL_EXT);
5272                         ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
5273                         ew32(CTRL_EXT, ctrl_ext);
5274                 }
5275
5276                 if (adapter->flags & FLAG_IS_ICH)
5277                         e1000e_disable_gig_wol_ich8lan(&adapter->hw);
5278
5279                 /* Allow time for pending master requests to run */
5280                 e1000e_disable_pcie_master(&adapter->hw);
5281
5282                 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
5283                         /* enable wakeup by the PHY */
5284                         retval = e1000_init_phy_wakeup(adapter, wufc);
5285                         if (retval)
5286                                 return retval;
5287                 } else {
5288                         /* enable wakeup by the MAC */
5289                         ew32(WUFC, wufc);
5290                         ew32(WUC, E1000_WUC_PME_EN);
5291                 }
5292         } else {
5293                 ew32(WUC, 0);
5294                 ew32(WUFC, 0);
5295         }
5296
5297         *enable_wake = !!wufc;
5298
5299         /* make sure adapter isn't asleep if manageability is enabled */
5300         if ((adapter->flags & FLAG_MNG_PT_ENABLED) ||
5301             (hw->mac.ops.check_mng_mode(hw)))
5302                 *enable_wake = true;
5303
5304         if (adapter->hw.phy.type == e1000_phy_igp_3)
5305                 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
5306
5307         /*
5308          * Release control of h/w to f/w.  If f/w is AMT enabled, this
5309          * would have already happened in close and is redundant.
5310          */
5311         e1000e_release_hw_control(adapter);
5312
5313         pci_disable_device(pdev);
5314
5315         return 0;
5316 }
5317
5318 static void e1000_power_off(struct pci_dev *pdev, bool sleep, bool wake)
5319 {
5320         if (sleep && wake) {
5321                 pci_prepare_to_sleep(pdev);
5322                 return;
5323         }
5324
5325         pci_wake_from_d3(pdev, wake);
5326         pci_set_power_state(pdev, PCI_D3hot);
5327 }
5328
5329 static void e1000_complete_shutdown(struct pci_dev *pdev, bool sleep,
5330                                     bool wake)
5331 {
5332         struct net_device *netdev = pci_get_drvdata(pdev);
5333         struct e1000_adapter *adapter = netdev_priv(netdev);
5334
5335         /*
5336          * The pci-e switch on some quad port adapters will report a
5337          * correctable error when the MAC transitions from D0 to D3.  To
5338          * prevent this we need to mask off the correctable errors on the
5339          * downstream port of the pci-e switch.
5340          */
5341         if (adapter->flags & FLAG_IS_QUAD_PORT) {
5342                 struct pci_dev *us_dev = pdev->bus->self;
5343                 int pos = pci_find_capability(us_dev, PCI_CAP_ID_EXP);
5344                 u16 devctl;
5345
5346                 pci_read_config_word(us_dev, pos + PCI_EXP_DEVCTL, &devctl);
5347                 pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL,
5348                                       (devctl & ~PCI_EXP_DEVCTL_CERE));
5349
5350                 e1000_power_off(pdev, sleep, wake);
5351
5352                 pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL, devctl);
5353         } else {
5354                 e1000_power_off(pdev, sleep, wake);
5355         }
5356 }
5357
5358 #ifdef CONFIG_PCIEASPM
5359 static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
5360 {
5361         pci_disable_link_state(pdev, state);
5362 }
5363 #else
5364 static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
5365 {
5366         int pos;
5367         u16 reg16;
5368
5369         /*
5370          * Both device and parent should have the same ASPM setting.
5371          * Disable ASPM in downstream component first and then upstream.
5372          */
5373         pos = pci_pcie_cap(pdev);
5374         pci_read_config_word(pdev, pos + PCI_EXP_LNKCTL, &reg16);
5375         reg16 &= ~state;
5376         pci_write_config_word(pdev, pos + PCI_EXP_LNKCTL, reg16);
5377
5378         if (!pdev->bus->self)
5379                 return;
5380
5381         pos = pci_pcie_cap(pdev->bus->self);
5382         pci_read_config_word(pdev->bus->self, pos + PCI_EXP_LNKCTL, &reg16);
5383         reg16 &= ~state;
5384         pci_write_config_word(pdev->bus->self, pos + PCI_EXP_LNKCTL, reg16);
5385 }
5386 #endif
5387 void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
5388 {
5389         dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
5390                  (state & PCIE_LINK_STATE_L0S) ? "L0s" : "",
5391                  (state & PCIE_LINK_STATE_L1) ? "L1" : "");
5392
5393         __e1000e_disable_aspm(pdev, state);
5394 }
5395
5396 #ifdef CONFIG_PM
5397 static bool e1000e_pm_ready(struct e1000_adapter *adapter)
5398 {
5399         return !!adapter->tx_ring->buffer_info;
5400 }
5401
5402 static int __e1000_resume(struct pci_dev *pdev)
5403 {
5404         struct net_device *netdev = pci_get_drvdata(pdev);
5405         struct e1000_adapter *adapter = netdev_priv(netdev);
5406         struct e1000_hw *hw = &adapter->hw;
5407         u32 err;
5408
5409         pci_set_power_state(pdev, PCI_D0);
5410         pci_restore_state(pdev);
5411         pci_save_state(pdev);
5412         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
5413                 e1000e_disable_aspm(pdev, PCIE_LINK_STATE_L1);
5414
5415         e1000e_set_interrupt_capability(adapter);
5416         if (netif_running(netdev)) {
5417                 err = e1000_request_irq(adapter);
5418                 if (err)
5419                         return err;
5420         }
5421
5422         e1000e_power_up_phy(adapter);
5423
5424         /* report the system wakeup cause from S3/S4 */
5425         if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
5426                 u16 phy_data;
5427
5428                 e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
5429                 if (phy_data) {
5430                         e_info("PHY Wakeup cause - %s\n",
5431                                 phy_data & E1000_WUS_EX ? "Unicast Packet" :
5432                                 phy_data & E1000_WUS_MC ? "Multicast Packet" :
5433                                 phy_data & E1000_WUS_BC ? "Broadcast Packet" :
5434                                 phy_data & E1000_WUS_MAG ? "Magic Packet" :
5435                                 phy_data & E1000_WUS_LNKC ? "Link Status "
5436                                 " Change" : "other");
5437                 }
5438                 e1e_wphy(&adapter->hw, BM_WUS, ~0);
5439         } else {
5440                 u32 wus = er32(WUS);
5441                 if (wus) {
5442                         e_info("MAC Wakeup cause - %s\n",
5443                                 wus & E1000_WUS_EX ? "Unicast Packet" :
5444                                 wus & E1000_WUS_MC ? "Multicast Packet" :
5445                                 wus & E1000_WUS_BC ? "Broadcast Packet" :
5446                                 wus & E1000_WUS_MAG ? "Magic Packet" :
5447                                 wus & E1000_WUS_LNKC ? "Link Status Change" :
5448                                 "other");
5449                 }
5450                 ew32(WUS, ~0);
5451         }
5452
5453         e1000e_reset(adapter);
5454
5455         e1000_init_manageability_pt(adapter);
5456
5457         if (netif_running(netdev))
5458                 e1000e_up(adapter);
5459
5460         netif_device_attach(netdev);
5461
5462         /*
5463          * If the controller has AMT, do not set DRV_LOAD until the interface
5464          * is up.  For all other cases, let the f/w know that the h/w is now
5465          * under the control of the driver.
5466          */
5467         if (!(adapter->flags & FLAG_HAS_AMT))
5468                 e1000e_get_hw_control(adapter);
5469
5470         return 0;
5471 }
5472
5473 #ifdef CONFIG_PM_SLEEP
5474 static int e1000_suspend(struct device *dev)
5475 {
5476         struct pci_dev *pdev = to_pci_dev(dev);
5477         int retval;
5478         bool wake;
5479
5480         retval = __e1000_shutdown(pdev, &wake, false);
5481         if (!retval)
5482                 e1000_complete_shutdown(pdev, true, wake);
5483
5484         return retval;
5485 }
5486
5487 static int e1000_resume(struct device *dev)
5488 {
5489         struct pci_dev *pdev = to_pci_dev(dev);
5490         struct net_device *netdev = pci_get_drvdata(pdev);
5491         struct e1000_adapter *adapter = netdev_priv(netdev);
5492
5493         if (e1000e_pm_ready(adapter))
5494                 adapter->idle_check = true;
5495
5496         return __e1000_resume(pdev);
5497 }
5498 #endif /* CONFIG_PM_SLEEP */
5499
5500 #ifdef CONFIG_PM_RUNTIME
5501 static int e1000_runtime_suspend(struct device *dev)
5502 {
5503         struct pci_dev *pdev = to_pci_dev(dev);
5504         struct net_device *netdev = pci_get_drvdata(pdev);
5505         struct e1000_adapter *adapter = netdev_priv(netdev);
5506
5507         if (e1000e_pm_ready(adapter)) {
5508                 bool wake;
5509
5510                 __e1000_shutdown(pdev, &wake, true);
5511         }
5512
5513         return 0;
5514 }
5515
5516 static int e1000_idle(struct device *dev)
5517 {
5518         struct pci_dev *pdev = to_pci_dev(dev);
5519         struct net_device *netdev = pci_get_drvdata(pdev);
5520         struct e1000_adapter *adapter = netdev_priv(netdev);
5521
5522         if (!e1000e_pm_ready(adapter))
5523                 return 0;
5524
5525         if (adapter->idle_check) {
5526                 adapter->idle_check = false;
5527                 if (!e1000e_has_link(adapter))
5528                         pm_schedule_suspend(dev, MSEC_PER_SEC);
5529         }
5530
5531         return -EBUSY;
5532 }
5533
5534 static int e1000_runtime_resume(struct device *dev)
5535 {
5536         struct pci_dev *pdev = to_pci_dev(dev);
5537         struct net_device *netdev = pci_get_drvdata(pdev);
5538         struct e1000_adapter *adapter = netdev_priv(netdev);
5539
5540         if (!e1000e_pm_ready(adapter))
5541                 return 0;
5542
5543         adapter->idle_check = !dev->power.runtime_auto;
5544         return __e1000_resume(pdev);
5545 }
5546 #endif /* CONFIG_PM_RUNTIME */
5547 #endif /* CONFIG_PM */
5548
5549 static void e1000_shutdown(struct pci_dev *pdev)
5550 {
5551         bool wake = false;
5552
5553         __e1000_shutdown(pdev, &wake, false);
5554
5555         if (system_state == SYSTEM_POWER_OFF)
5556                 e1000_complete_shutdown(pdev, false, wake);
5557 }
5558
5559 #ifdef CONFIG_NET_POLL_CONTROLLER
5560
5561 static irqreturn_t e1000_intr_msix(int irq, void *data)
5562 {
5563         struct net_device *netdev = data;
5564         struct e1000_adapter *adapter = netdev_priv(netdev);
5565
5566         if (adapter->msix_entries) {
5567                 int vector, msix_irq;
5568
5569                 vector = 0;
5570                 msix_irq = adapter->msix_entries[vector].vector;
5571                 disable_irq(msix_irq);
5572                 e1000_intr_msix_rx(msix_irq, netdev);
5573                 enable_irq(msix_irq);
5574
5575                 vector++;
5576                 msix_irq = adapter->msix_entries[vector].vector;
5577                 disable_irq(msix_irq);
5578                 e1000_intr_msix_tx(msix_irq, netdev);
5579                 enable_irq(msix_irq);
5580
5581                 vector++;
5582                 msix_irq = adapter->msix_entries[vector].vector;
5583                 disable_irq(msix_irq);
5584                 e1000_msix_other(msix_irq, netdev);
5585                 enable_irq(msix_irq);
5586         }
5587
5588         return IRQ_HANDLED;
5589 }
5590
5591 /*
5592  * Polling 'interrupt' - used by things like netconsole to send skbs
5593  * without having to re-enable interrupts. It's not called while
5594  * the interrupt routine is executing.
5595  */
5596 static void e1000_netpoll(struct net_device *netdev)
5597 {
5598         struct e1000_adapter *adapter = netdev_priv(netdev);
5599
5600         switch (adapter->int_mode) {
5601         case E1000E_INT_MODE_MSIX:
5602                 e1000_intr_msix(adapter->pdev->irq, netdev);
5603                 break;
5604         case E1000E_INT_MODE_MSI:
5605                 disable_irq(adapter->pdev->irq);
5606                 e1000_intr_msi(adapter->pdev->irq, netdev);
5607                 enable_irq(adapter->pdev->irq);
5608                 break;
5609         default: /* E1000E_INT_MODE_LEGACY */
5610                 disable_irq(adapter->pdev->irq);
5611                 e1000_intr(adapter->pdev->irq, netdev);
5612                 enable_irq(adapter->pdev->irq);
5613                 break;
5614         }
5615 }
5616 #endif
5617
5618 /**
5619  * e1000_io_error_detected - called when PCI error is detected
5620  * @pdev: Pointer to PCI device
5621  * @state: The current pci connection state
5622  *
5623  * This function is called after a PCI bus error affecting
5624  * this device has been detected.
5625  */
5626 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5627                                                 pci_channel_state_t state)
5628 {
5629         struct net_device *netdev = pci_get_drvdata(pdev);
5630         struct e1000_adapter *adapter = netdev_priv(netdev);
5631
5632         netif_device_detach(netdev);
5633
5634         if (state == pci_channel_io_perm_failure)
5635                 return PCI_ERS_RESULT_DISCONNECT;
5636
5637         if (netif_running(netdev))
5638                 e1000e_down(adapter);
5639         pci_disable_device(pdev);
5640
5641         /* Request a slot slot reset. */
5642         return PCI_ERS_RESULT_NEED_RESET;
5643 }
5644
5645 /**
5646  * e1000_io_slot_reset - called after the pci bus has been reset.
5647  * @pdev: Pointer to PCI device
5648  *
5649  * Restart the card from scratch, as if from a cold-boot. Implementation
5650  * resembles the first-half of the e1000_resume routine.
5651  */
5652 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5653 {
5654         struct net_device *netdev = pci_get_drvdata(pdev);
5655         struct e1000_adapter *adapter = netdev_priv(netdev);
5656         struct e1000_hw *hw = &adapter->hw;
5657         int err;
5658         pci_ers_result_t result;
5659
5660         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
5661                 e1000e_disable_aspm(pdev, PCIE_LINK_STATE_L1);
5662         err = pci_enable_device_mem(pdev);
5663         if (err) {
5664                 dev_err(&pdev->dev,
5665                         "Cannot re-enable PCI device after reset.\n");
5666                 result = PCI_ERS_RESULT_DISCONNECT;
5667         } else {
5668                 pci_set_master(pdev);
5669                 pdev->state_saved = true;
5670                 pci_restore_state(pdev);
5671
5672                 pci_enable_wake(pdev, PCI_D3hot, 0);
5673                 pci_enable_wake(pdev, PCI_D3cold, 0);
5674
5675                 e1000e_reset(adapter);
5676                 ew32(WUS, ~0);
5677                 result = PCI_ERS_RESULT_RECOVERED;
5678         }
5679
5680         pci_cleanup_aer_uncorrect_error_status(pdev);
5681
5682         return result;
5683 }
5684
5685 /**
5686  * e1000_io_resume - called when traffic can start flowing again.
5687  * @pdev: Pointer to PCI device
5688  *
5689  * This callback is called when the error recovery driver tells us that
5690  * its OK to resume normal operation. Implementation resembles the
5691  * second-half of the e1000_resume routine.
5692  */
5693 static void e1000_io_resume(struct pci_dev *pdev)
5694 {
5695         struct net_device *netdev = pci_get_drvdata(pdev);
5696         struct e1000_adapter *adapter = netdev_priv(netdev);
5697
5698         e1000_init_manageability_pt(adapter);
5699
5700         if (netif_running(netdev)) {
5701                 if (e1000e_up(adapter)) {
5702                         dev_err(&pdev->dev,
5703                                 "can't bring device back up after reset\n");
5704                         return;
5705                 }
5706         }
5707
5708         netif_device_attach(netdev);
5709
5710         /*
5711          * If the controller has AMT, do not set DRV_LOAD until the interface
5712          * is up.  For all other cases, let the f/w know that the h/w is now
5713          * under the control of the driver.
5714          */
5715         if (!(adapter->flags & FLAG_HAS_AMT))
5716                 e1000e_get_hw_control(adapter);
5717
5718 }
5719
5720 static void e1000_print_device_info(struct e1000_adapter *adapter)
5721 {
5722         struct e1000_hw *hw = &adapter->hw;
5723         struct net_device *netdev = adapter->netdev;
5724         u32 ret_val;
5725         u8 pba_str[E1000_PBANUM_LENGTH];
5726
5727         /* print bus type/speed/width info */
5728         e_info("(PCI Express:2.5GT/s:%s) %pM\n",
5729                /* bus width */
5730                ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
5731                 "Width x1"),
5732                /* MAC address */
5733                netdev->dev_addr);
5734         e_info("Intel(R) PRO/%s Network Connection\n",
5735                (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
5736         ret_val = e1000_read_pba_string_generic(hw, pba_str,
5737                                                 E1000_PBANUM_LENGTH);
5738         if (ret_val)
5739                 strncpy((char *)pba_str, "Unknown", sizeof(pba_str) - 1);
5740         e_info("MAC: %d, PHY: %d, PBA No: %s\n",
5741                hw->mac.type, hw->phy.type, pba_str);
5742 }
5743
5744 static void e1000_eeprom_checks(struct e1000_adapter *adapter)
5745 {
5746         struct e1000_hw *hw = &adapter->hw;
5747         int ret_val;
5748         u16 buf = 0;
5749
5750         if (hw->mac.type != e1000_82573)
5751                 return;
5752
5753         ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
5754         if (!ret_val && (!(le16_to_cpu(buf) & (1 << 0)))) {
5755                 /* Deep Smart Power Down (DSPD) */
5756                 dev_warn(&adapter->pdev->dev,
5757                          "Warning: detected DSPD enabled in EEPROM\n");
5758         }
5759 }
5760
5761 static const struct net_device_ops e1000e_netdev_ops = {
5762         .ndo_open               = e1000_open,
5763         .ndo_stop               = e1000_close,
5764         .ndo_start_xmit         = e1000_xmit_frame,
5765         .ndo_get_stats64        = e1000e_get_stats64,
5766         .ndo_set_multicast_list = e1000_set_multi,
5767         .ndo_set_mac_address    = e1000_set_mac,
5768         .ndo_change_mtu         = e1000_change_mtu,
5769         .ndo_do_ioctl           = e1000_ioctl,
5770         .ndo_tx_timeout         = e1000_tx_timeout,
5771         .ndo_validate_addr      = eth_validate_addr,
5772
5773         .ndo_vlan_rx_add_vid    = e1000_vlan_rx_add_vid,
5774         .ndo_vlan_rx_kill_vid   = e1000_vlan_rx_kill_vid,
5775 #ifdef CONFIG_NET_POLL_CONTROLLER
5776         .ndo_poll_controller    = e1000_netpoll,
5777 #endif
5778 };
5779
5780 /**
5781  * e1000_probe - Device Initialization Routine
5782  * @pdev: PCI device information struct
5783  * @ent: entry in e1000_pci_tbl
5784  *
5785  * Returns 0 on success, negative on failure
5786  *
5787  * e1000_probe initializes an adapter identified by a pci_dev structure.
5788  * The OS initialization, configuring of the adapter private structure,
5789  * and a hardware reset occur.
5790  **/
5791 static int __devinit e1000_probe(struct pci_dev *pdev,
5792                                  const struct pci_device_id *ent)
5793 {
5794         struct net_device *netdev;
5795         struct e1000_adapter *adapter;
5796         struct e1000_hw *hw;
5797         const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
5798         resource_size_t mmio_start, mmio_len;
5799         resource_size_t flash_start, flash_len;
5800
5801         static int cards_found;
5802         int i, err, pci_using_dac;
5803         u16 eeprom_data = 0;
5804         u16 eeprom_apme_mask = E1000_EEPROM_APME;
5805
5806         if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
5807                 e1000e_disable_aspm(pdev, PCIE_LINK_STATE_L1);
5808
5809         err = pci_enable_device_mem(pdev);
5810         if (err)
5811                 return err;
5812
5813         pci_using_dac = 0;
5814         err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
5815         if (!err) {
5816                 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
5817                 if (!err)
5818                         pci_using_dac = 1;
5819         } else {
5820                 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
5821                 if (err) {
5822                         err = dma_set_coherent_mask(&pdev->dev,
5823                                                     DMA_BIT_MASK(32));
5824                         if (err) {
5825                                 dev_err(&pdev->dev, "No usable DMA "
5826                                         "configuration, aborting\n");
5827                                 goto err_dma;
5828                         }
5829                 }
5830         }
5831
5832         err = pci_request_selected_regions_exclusive(pdev,
5833                                           pci_select_bars(pdev, IORESOURCE_MEM),
5834                                           e1000e_driver_name);
5835         if (err)
5836                 goto err_pci_reg;
5837
5838         /* AER (Advanced Error Reporting) hooks */
5839         pci_enable_pcie_error_reporting(pdev);
5840
5841         pci_set_master(pdev);
5842         /* PCI config space info */
5843         err = pci_save_state(pdev);
5844         if (err)
5845                 goto err_alloc_etherdev;
5846
5847         err = -ENOMEM;
5848         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
5849         if (!netdev)
5850                 goto err_alloc_etherdev;
5851
5852         SET_NETDEV_DEV(netdev, &pdev->dev);
5853
5854         netdev->irq = pdev->irq;
5855
5856         pci_set_drvdata(pdev, netdev);
5857         adapter = netdev_priv(netdev);
5858         hw = &adapter->hw;
5859         adapter->netdev = netdev;
5860         adapter->pdev = pdev;
5861         adapter->ei = ei;
5862         adapter->pba = ei->pba;
5863         adapter->flags = ei->flags;
5864         adapter->flags2 = ei->flags2;
5865         adapter->hw.adapter = adapter;
5866         adapter->hw.mac.type = ei->mac;
5867         adapter->max_hw_frame_size = ei->max_hw_frame_size;
5868         adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1;
5869
5870         mmio_start = pci_resource_start(pdev, 0);
5871         mmio_len = pci_resource_len(pdev, 0);
5872
5873         err = -EIO;
5874         adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
5875         if (!adapter->hw.hw_addr)
5876                 goto err_ioremap;
5877
5878         if ((adapter->flags & FLAG_HAS_FLASH) &&
5879             (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
5880                 flash_start = pci_resource_start(pdev, 1);
5881                 flash_len = pci_resource_len(pdev, 1);
5882                 adapter->hw.flash_address = ioremap(flash_start, flash_len);
5883                 if (!adapter->hw.flash_address)
5884                         goto err_flashmap;
5885         }
5886
5887         /* construct the net_device struct */
5888         netdev->netdev_ops              = &e1000e_netdev_ops;
5889         e1000e_set_ethtool_ops(netdev);
5890         netdev->watchdog_timeo          = 5 * HZ;
5891         netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
5892         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
5893
5894         netdev->mem_start = mmio_start;
5895         netdev->mem_end = mmio_start + mmio_len;
5896
5897         adapter->bd_number = cards_found++;
5898
5899         e1000e_check_options(adapter);
5900
5901         /* setup adapter struct */
5902         err = e1000_sw_init(adapter);
5903         if (err)
5904                 goto err_sw_init;
5905
5906         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
5907         memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
5908         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
5909
5910         err = ei->get_variants(adapter);
5911         if (err)
5912                 goto err_hw_init;
5913
5914         if ((adapter->flags & FLAG_IS_ICH) &&
5915             (adapter->flags & FLAG_READ_ONLY_NVM))
5916                 e1000e_write_protect_nvm_ich8lan(&adapter->hw);
5917
5918         hw->mac.ops.get_bus_info(&adapter->hw);
5919
5920         adapter->hw.phy.autoneg_wait_to_complete = 0;
5921
5922         /* Copper options */
5923         if (adapter->hw.phy.media_type == e1000_media_type_copper) {
5924                 adapter->hw.phy.mdix = AUTO_ALL_MODES;
5925                 adapter->hw.phy.disable_polarity_correction = 0;
5926                 adapter->hw.phy.ms_type = e1000_ms_hw_default;
5927         }
5928
5929         if (e1000_check_reset_block(&adapter->hw))
5930                 e_info("PHY reset is blocked due to SOL/IDER session.\n");
5931
5932         netdev->features = NETIF_F_SG |
5933                            NETIF_F_HW_CSUM |
5934                            NETIF_F_HW_VLAN_TX |
5935                            NETIF_F_HW_VLAN_RX;
5936
5937         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
5938                 netdev->features |= NETIF_F_HW_VLAN_FILTER;
5939
5940         netdev->features |= NETIF_F_TSO;
5941         netdev->features |= NETIF_F_TSO6;
5942
5943         netdev->vlan_features |= NETIF_F_TSO;
5944         netdev->vlan_features |= NETIF_F_TSO6;
5945         netdev->vlan_features |= NETIF_F_HW_CSUM;
5946         netdev->vlan_features |= NETIF_F_SG;
5947
5948         if (pci_using_dac) {
5949                 netdev->features |= NETIF_F_HIGHDMA;
5950                 netdev->vlan_features |= NETIF_F_HIGHDMA;
5951         }
5952
5953         if (e1000e_enable_mng_pass_thru(&adapter->hw))
5954                 adapter->flags |= FLAG_MNG_PT_ENABLED;
5955
5956         /*
5957          * before reading the NVM, reset the controller to
5958          * put the device in a known good starting state
5959          */
5960         adapter->hw.mac.ops.reset_hw(&adapter->hw);
5961
5962         /*
5963          * systems with ASPM and others may see the checksum fail on the first
5964          * attempt. Let's give it a few tries
5965          */
5966         for (i = 0;; i++) {
5967                 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
5968                         break;
5969                 if (i == 2) {
5970                         e_err("The NVM Checksum Is Not Valid\n");
5971                         err = -EIO;
5972                         goto err_eeprom;
5973                 }
5974         }
5975
5976         e1000_eeprom_checks(adapter);
5977
5978         /* copy the MAC address */
5979         if (e1000e_read_mac_addr(&adapter->hw))
5980                 e_err("NVM Read Error while reading MAC address\n");
5981
5982         memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
5983         memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
5984
5985         if (!is_valid_ether_addr(netdev->perm_addr)) {
5986                 e_err("Invalid MAC Address: %pM\n", netdev->perm_addr);
5987                 err = -EIO;
5988                 goto err_eeprom;
5989         }
5990
5991         init_timer(&adapter->watchdog_timer);
5992         adapter->watchdog_timer.function = e1000_watchdog;
5993         adapter->watchdog_timer.data = (unsigned long) adapter;
5994
5995         init_timer(&adapter->phy_info_timer);
5996         adapter->phy_info_timer.function = e1000_update_phy_info;
5997         adapter->phy_info_timer.data = (unsigned long) adapter;
5998
5999         INIT_WORK(&adapter->reset_task, e1000_reset_task);
6000         INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
6001         INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
6002         INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
6003         INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
6004         INIT_WORK(&adapter->led_blink_task, e1000e_led_blink_task);
6005
6006         /* Initialize link parameters. User can change them with ethtool */
6007         adapter->hw.mac.autoneg = 1;
6008         adapter->fc_autoneg = 1;
6009         adapter->hw.fc.requested_mode = e1000_fc_default;
6010         adapter->hw.fc.current_mode = e1000_fc_default;
6011         adapter->hw.phy.autoneg_advertised = 0x2f;
6012
6013         /* ring size defaults */
6014         adapter->rx_ring->count = 256;
6015         adapter->tx_ring->count = 256;
6016
6017         /*
6018          * Initial Wake on LAN setting - If APM wake is enabled in
6019          * the EEPROM, enable the ACPI Magic Packet filter
6020          */
6021         if (adapter->flags & FLAG_APME_IN_WUC) {
6022                 /* APME bit in EEPROM is mapped to WUC.APME */
6023                 eeprom_data = er32(WUC);
6024                 eeprom_apme_mask = E1000_WUC_APME;
6025                 if ((hw->mac.type > e1000_ich10lan) &&
6026                     (eeprom_data & E1000_WUC_PHY_WAKE))
6027                         adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
6028         } else if (adapter->flags & FLAG_APME_IN_CTRL3) {
6029                 if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
6030                     (adapter->hw.bus.func == 1))
6031                         e1000_read_nvm(&adapter->hw,
6032                                 NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
6033                 else
6034                         e1000_read_nvm(&adapter->hw,
6035                                 NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
6036         }
6037
6038         /* fetch WoL from EEPROM */
6039         if (eeprom_data & eeprom_apme_mask)
6040                 adapter->eeprom_wol |= E1000_WUFC_MAG;
6041
6042         /*
6043          * now that we have the eeprom settings, apply the special cases
6044          * where the eeprom may be wrong or the board simply won't support
6045          * wake on lan on a particular port
6046          */
6047         if (!(adapter->flags & FLAG_HAS_WOL))
6048                 adapter->eeprom_wol = 0;
6049
6050         /* initialize the wol settings based on the eeprom settings */
6051         adapter->wol = adapter->eeprom_wol;
6052         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
6053
6054         /* save off EEPROM version number */
6055         e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
6056
6057         /* reset the hardware with the new settings */
6058         e1000e_reset(adapter);
6059
6060         /*
6061          * If the controller has AMT, do not set DRV_LOAD until the interface
6062          * is up.  For all other cases, let the f/w know that the h/w is now
6063          * under the control of the driver.
6064          */
6065         if (!(adapter->flags & FLAG_HAS_AMT))
6066                 e1000e_get_hw_control(adapter);
6067
6068         strncpy(netdev->name, "eth%d", sizeof(netdev->name) - 1);
6069         err = register_netdev(netdev);
6070         if (err)
6071                 goto err_register;
6072
6073         /* carrier off reporting is important to ethtool even BEFORE open */
6074         netif_carrier_off(netdev);
6075
6076         e1000_print_device_info(adapter);
6077
6078         if (pci_dev_run_wake(pdev))
6079                 pm_runtime_put_noidle(&pdev->dev);
6080
6081         return 0;
6082
6083 err_register:
6084         if (!(adapter->flags & FLAG_HAS_AMT))
6085                 e1000e_release_hw_control(adapter);
6086 err_eeprom:
6087         if (!e1000_check_reset_block(&adapter->hw))
6088                 e1000_phy_hw_reset(&adapter->hw);
6089 err_hw_init:
6090         kfree(adapter->tx_ring);
6091         kfree(adapter->rx_ring);
6092 err_sw_init:
6093         if (adapter->hw.flash_address)
6094                 iounmap(adapter->hw.flash_address);
6095         e1000e_reset_interrupt_capability(adapter);
6096 err_flashmap:
6097         iounmap(adapter->hw.hw_addr);
6098 err_ioremap:
6099         free_netdev(netdev);
6100 err_alloc_etherdev:
6101         pci_release_selected_regions(pdev,
6102                                      pci_select_bars(pdev, IORESOURCE_MEM));
6103 err_pci_reg:
6104 err_dma:
6105         pci_disable_device(pdev);
6106         return err;
6107 }
6108
6109 /**
6110  * e1000_remove - Device Removal Routine
6111  * @pdev: PCI device information struct
6112  *
6113  * e1000_remove is called by the PCI subsystem to alert the driver
6114  * that it should release a PCI device.  The could be caused by a
6115  * Hot-Plug event, or because the driver is going to be removed from
6116  * memory.
6117  **/
6118 static void __devexit e1000_remove(struct pci_dev *pdev)
6119 {
6120         struct net_device *netdev = pci_get_drvdata(pdev);
6121         struct e1000_adapter *adapter = netdev_priv(netdev);
6122         bool down = test_bit(__E1000_DOWN, &adapter->state);
6123
6124         /*
6125          * The timers may be rescheduled, so explicitly disable them
6126          * from being rescheduled.
6127          */
6128         if (!down)
6129                 set_bit(__E1000_DOWN, &adapter->state);
6130         del_timer_sync(&adapter->watchdog_timer);
6131         del_timer_sync(&adapter->phy_info_timer);
6132
6133         cancel_work_sync(&adapter->reset_task);
6134         cancel_work_sync(&adapter->watchdog_task);
6135         cancel_work_sync(&adapter->downshift_task);
6136         cancel_work_sync(&adapter->update_phy_task);
6137         cancel_work_sync(&adapter->led_blink_task);
6138         cancel_work_sync(&adapter->print_hang_task);
6139
6140         if (!(netdev->flags & IFF_UP))
6141                 e1000_power_down_phy(adapter);
6142
6143         /* Don't lie to e1000_close() down the road. */
6144         if (!down)
6145                 clear_bit(__E1000_DOWN, &adapter->state);
6146         unregister_netdev(netdev);
6147
6148         if (pci_dev_run_wake(pdev))
6149                 pm_runtime_get_noresume(&pdev->dev);
6150
6151         /*
6152          * Release control of h/w to f/w.  If f/w is AMT enabled, this
6153          * would have already happened in close and is redundant.
6154          */
6155         e1000e_release_hw_control(adapter);
6156
6157         e1000e_reset_interrupt_capability(adapter);
6158         kfree(adapter->tx_ring);
6159         kfree(adapter->rx_ring);
6160
6161         iounmap(adapter->hw.hw_addr);
6162         if (adapter->hw.flash_address)
6163                 iounmap(adapter->hw.flash_address);
6164         pci_release_selected_regions(pdev,
6165                                      pci_select_bars(pdev, IORESOURCE_MEM));
6166
6167         free_netdev(netdev);
6168
6169         /* AER disable */
6170         pci_disable_pcie_error_reporting(pdev);
6171
6172         pci_disable_device(pdev);
6173 }
6174
6175 /* PCI Error Recovery (ERS) */
6176 static struct pci_error_handlers e1000_err_handler = {
6177         .error_detected = e1000_io_error_detected,
6178         .slot_reset = e1000_io_slot_reset,
6179         .resume = e1000_io_resume,
6180 };
6181
6182 static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
6183         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
6184         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
6185         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
6186         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 },
6187         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
6188         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
6189         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
6190         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
6191         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
6192
6193         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
6194         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
6195         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
6196         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
6197
6198         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
6199         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
6200         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
6201
6202         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
6203         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
6204         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
6205
6206         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
6207           board_80003es2lan },
6208         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
6209           board_80003es2lan },
6210         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
6211           board_80003es2lan },
6212         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
6213           board_80003es2lan },
6214
6215         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
6216         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
6217         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
6218         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
6219         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
6220         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
6221         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
6222         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
6223
6224         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
6225         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
6226         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
6227         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
6228         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
6229         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
6230         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
6231         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
6232         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
6233
6234         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
6235         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
6236         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
6237
6238         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
6239         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
6240         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
6241
6242         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
6243         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
6244         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
6245         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
6246
6247         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
6248         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },
6249
6250         { }     /* terminate list */
6251 };
6252 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
6253
6254 #ifdef CONFIG_PM
6255 static const struct dev_pm_ops e1000_pm_ops = {
6256         SET_SYSTEM_SLEEP_PM_OPS(e1000_suspend, e1000_resume)
6257         SET_RUNTIME_PM_OPS(e1000_runtime_suspend,
6258                                 e1000_runtime_resume, e1000_idle)
6259 };
6260 #endif
6261
6262 /* PCI Device API Driver */
6263 static struct pci_driver e1000_driver = {
6264         .name     = e1000e_driver_name,
6265         .id_table = e1000_pci_tbl,
6266         .probe    = e1000_probe,
6267         .remove   = __devexit_p(e1000_remove),
6268 #ifdef CONFIG_PM
6269         .driver.pm = &e1000_pm_ops,
6270 #endif
6271         .shutdown = e1000_shutdown,
6272         .err_handler = &e1000_err_handler
6273 };
6274
6275 /**
6276  * e1000_init_module - Driver Registration Routine
6277  *
6278  * e1000_init_module is the first routine called when the driver is
6279  * loaded. All it does is register with the PCI subsystem.
6280  **/
6281 static int __init e1000_init_module(void)
6282 {
6283         int ret;
6284         pr_info("Intel(R) PRO/1000 Network Driver - %s\n",
6285                 e1000e_driver_version);
6286         pr_info("Copyright(c) 1999 - 2011 Intel Corporation.\n");
6287         ret = pci_register_driver(&e1000_driver);
6288
6289         return ret;
6290 }
6291 module_init(e1000_init_module);
6292
6293 /**
6294  * e1000_exit_module - Driver Exit Cleanup Routine
6295  *
6296  * e1000_exit_module is called just before the driver is removed
6297  * from memory.
6298  **/
6299 static void __exit e1000_exit_module(void)
6300 {
6301         pci_unregister_driver(&e1000_driver);
6302 }
6303 module_exit(e1000_exit_module);
6304
6305
6306 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
6307 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
6308 MODULE_LICENSE("GPL");
6309 MODULE_VERSION(DRV_VERSION);
6310
6311 /* e1000_main.c */