e1000e: cleanup ops function pointers
[linux-2.6-block.git] / drivers / net / e1000e / es2lan.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2008 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /*
30  * 80003ES2LAN Gigabit Ethernet Controller (Copper)
31  * 80003ES2LAN Gigabit Ethernet Controller (Serdes)
32  */
33
34 #include "e1000.h"
35
36 #define E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL       0x00
37 #define E1000_KMRNCTRLSTA_OFFSET_INB_CTRL        0x02
38 #define E1000_KMRNCTRLSTA_OFFSET_HD_CTRL         0x10
39 #define E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE  0x1F
40
41 #define E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS    0x0008
42 #define E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS    0x0800
43 #define E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING   0x0010
44
45 #define E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT 0x0004
46 #define E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT   0x0000
47 #define E1000_KMRNCTRLSTA_OPMODE_E_IDLE          0x2000
48
49 #define E1000_TCTL_EXT_GCEX_MASK 0x000FFC00 /* Gigabit Carry Extend Padding */
50 #define DEFAULT_TCTL_EXT_GCEX_80003ES2LAN        0x00010000
51
52 #define DEFAULT_TIPG_IPGT_1000_80003ES2LAN       0x8
53 #define DEFAULT_TIPG_IPGT_10_100_80003ES2LAN     0x9
54
55 /* GG82563 PHY Specific Status Register (Page 0, Register 16 */
56 #define GG82563_PSCR_POLARITY_REVERSAL_DISABLE   0x0002 /* 1=Reversal Disab. */
57 #define GG82563_PSCR_CROSSOVER_MODE_MASK         0x0060
58 #define GG82563_PSCR_CROSSOVER_MODE_MDI          0x0000 /* 00=Manual MDI */
59 #define GG82563_PSCR_CROSSOVER_MODE_MDIX         0x0020 /* 01=Manual MDIX */
60 #define GG82563_PSCR_CROSSOVER_MODE_AUTO         0x0060 /* 11=Auto crossover */
61
62 /* PHY Specific Control Register 2 (Page 0, Register 26) */
63 #define GG82563_PSCR2_REVERSE_AUTO_NEG           0x2000
64                                                 /* 1=Reverse Auto-Negotiation */
65
66 /* MAC Specific Control Register (Page 2, Register 21) */
67 /* Tx clock speed for Link Down and 1000BASE-T for the following speeds */
68 #define GG82563_MSCR_TX_CLK_MASK                 0x0007
69 #define GG82563_MSCR_TX_CLK_10MBPS_2_5           0x0004
70 #define GG82563_MSCR_TX_CLK_100MBPS_25           0x0005
71 #define GG82563_MSCR_TX_CLK_1000MBPS_25          0x0007
72
73 #define GG82563_MSCR_ASSERT_CRS_ON_TX            0x0010 /* 1=Assert */
74
75 /* DSP Distance Register (Page 5, Register 26) */
76 #define GG82563_DSPD_CABLE_LENGTH                0x0007 /* 0 = <50M
77                                                            1 = 50-80M
78                                                            2 = 80-110M
79                                                            3 = 110-140M
80                                                            4 = >140M */
81
82 /* Kumeran Mode Control Register (Page 193, Register 16) */
83 #define GG82563_KMCR_PASS_FALSE_CARRIER          0x0800
84
85 /* Max number of times Kumeran read/write should be validated */
86 #define GG82563_MAX_KMRN_RETRY  0x5
87
88 /* Power Management Control Register (Page 193, Register 20) */
89 #define GG82563_PMCR_ENABLE_ELECTRICAL_IDLE      0x0001
90                                            /* 1=Enable SERDES Electrical Idle */
91
92 /* In-Band Control Register (Page 194, Register 18) */
93 #define GG82563_ICR_DIS_PADDING                  0x0010 /* Disable Padding */
94
95 /*
96  * A table for the GG82563 cable length where the range is defined
97  * with a lower bound at "index" and the upper bound at
98  * "index + 5".
99  */
100 static const u16 e1000_gg82563_cable_length_table[] =
101          { 0, 60, 115, 150, 150, 60, 115, 150, 180, 180, 0xFF };
102
103 static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw);
104 static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
105 static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
106 static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw);
107 static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw);
108 static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw);
109 static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex);
110 static s32 e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw);
111 static s32  e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
112                                             u16 *data);
113 static s32  e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
114                                              u16 data);
115
116 /**
117  *  e1000_init_phy_params_80003es2lan - Init ESB2 PHY func ptrs.
118  *  @hw: pointer to the HW structure
119  *
120  *  This is a function pointer entry point called by the api module.
121  **/
122 static s32 e1000_init_phy_params_80003es2lan(struct e1000_hw *hw)
123 {
124         struct e1000_phy_info *phy = &hw->phy;
125         s32 ret_val;
126
127         if (hw->phy.media_type != e1000_media_type_copper) {
128                 phy->type       = e1000_phy_none;
129                 return 0;
130         }
131
132         phy->addr               = 1;
133         phy->autoneg_mask       = AUTONEG_ADVERTISE_SPEED_DEFAULT;
134         phy->reset_delay_us      = 100;
135         phy->type               = e1000_phy_gg82563;
136
137         /* This can only be done after all function pointers are setup. */
138         ret_val = e1000e_get_phy_id(hw);
139
140         /* Verify phy id */
141         if (phy->id != GG82563_E_PHY_ID)
142                 return -E1000_ERR_PHY;
143
144         return ret_val;
145 }
146
147 /**
148  *  e1000_init_nvm_params_80003es2lan - Init ESB2 NVM func ptrs.
149  *  @hw: pointer to the HW structure
150  *
151  *  This is a function pointer entry point called by the api module.
152  **/
153 static s32 e1000_init_nvm_params_80003es2lan(struct e1000_hw *hw)
154 {
155         struct e1000_nvm_info *nvm = &hw->nvm;
156         u32 eecd = er32(EECD);
157         u16 size;
158
159         nvm->opcode_bits        = 8;
160         nvm->delay_usec  = 1;
161         switch (nvm->override) {
162         case e1000_nvm_override_spi_large:
163                 nvm->page_size    = 32;
164                 nvm->address_bits = 16;
165                 break;
166         case e1000_nvm_override_spi_small:
167                 nvm->page_size    = 8;
168                 nvm->address_bits = 8;
169                 break;
170         default:
171                 nvm->page_size    = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
172                 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
173                 break;
174         }
175
176         nvm->type = e1000_nvm_eeprom_spi;
177
178         size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
179                           E1000_EECD_SIZE_EX_SHIFT);
180
181         /*
182          * Added to a constant, "size" becomes the left-shift value
183          * for setting word_size.
184          */
185         size += NVM_WORD_SIZE_BASE_SHIFT;
186
187         /* EEPROM access above 16k is unsupported */
188         if (size > 14)
189                 size = 14;
190         nvm->word_size  = 1 << size;
191
192         return 0;
193 }
194
195 /**
196  *  e1000_init_mac_params_80003es2lan - Init ESB2 MAC func ptrs.
197  *  @hw: pointer to the HW structure
198  *
199  *  This is a function pointer entry point called by the api module.
200  **/
201 static s32 e1000_init_mac_params_80003es2lan(struct e1000_adapter *adapter)
202 {
203         struct e1000_hw *hw = &adapter->hw;
204         struct e1000_mac_info *mac = &hw->mac;
205         struct e1000_mac_operations *func = &mac->ops;
206
207         /* Set media type */
208         switch (adapter->pdev->device) {
209         case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
210                 hw->phy.media_type = e1000_media_type_internal_serdes;
211                 break;
212         default:
213                 hw->phy.media_type = e1000_media_type_copper;
214                 break;
215         }
216
217         /* Set mta register count */
218         mac->mta_reg_count = 128;
219         /* Set rar entry count */
220         mac->rar_entry_count = E1000_RAR_ENTRIES;
221         /* Set if manageability features are enabled. */
222         mac->arc_subsystem_valid = (er32(FWSM) & E1000_FWSM_MODE_MASK) ? 1 : 0;
223
224         /* check for link */
225         switch (hw->phy.media_type) {
226         case e1000_media_type_copper:
227                 func->setup_physical_interface = e1000_setup_copper_link_80003es2lan;
228                 func->check_for_link = e1000e_check_for_copper_link;
229                 break;
230         case e1000_media_type_fiber:
231                 func->setup_physical_interface = e1000e_setup_fiber_serdes_link;
232                 func->check_for_link = e1000e_check_for_fiber_link;
233                 break;
234         case e1000_media_type_internal_serdes:
235                 func->setup_physical_interface = e1000e_setup_fiber_serdes_link;
236                 func->check_for_link = e1000e_check_for_serdes_link;
237                 break;
238         default:
239                 return -E1000_ERR_CONFIG;
240                 break;
241         }
242
243         return 0;
244 }
245
246 static s32 e1000_get_variants_80003es2lan(struct e1000_adapter *adapter)
247 {
248         struct e1000_hw *hw = &adapter->hw;
249         s32 rc;
250
251         rc = e1000_init_mac_params_80003es2lan(adapter);
252         if (rc)
253                 return rc;
254
255         rc = e1000_init_nvm_params_80003es2lan(hw);
256         if (rc)
257                 return rc;
258
259         rc = e1000_init_phy_params_80003es2lan(hw);
260         if (rc)
261                 return rc;
262
263         return 0;
264 }
265
266 /**
267  *  e1000_acquire_phy_80003es2lan - Acquire rights to access PHY
268  *  @hw: pointer to the HW structure
269  *
270  *  A wrapper to acquire access rights to the correct PHY.  This is a
271  *  function pointer entry point called by the api module.
272  **/
273 static s32 e1000_acquire_phy_80003es2lan(struct e1000_hw *hw)
274 {
275         u16 mask;
276
277         mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
278         return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
279 }
280
281 /**
282  *  e1000_release_phy_80003es2lan - Release rights to access PHY
283  *  @hw: pointer to the HW structure
284  *
285  *  A wrapper to release access rights to the correct PHY.  This is a
286  *  function pointer entry point called by the api module.
287  **/
288 static void e1000_release_phy_80003es2lan(struct e1000_hw *hw)
289 {
290         u16 mask;
291
292         mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
293         e1000_release_swfw_sync_80003es2lan(hw, mask);
294 }
295
296 /**
297  *  e1000_acquire_mac_csr_80003es2lan - Acquire rights to access Kumeran register
298  *  @hw: pointer to the HW structure
299  *
300  *  Acquire the semaphore to access the Kumeran interface.
301  *
302  **/
303 static s32 e1000_acquire_mac_csr_80003es2lan(struct e1000_hw *hw)
304 {
305         u16 mask;
306
307         mask = E1000_SWFW_CSR_SM;
308
309         return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
310 }
311
312 /**
313  *  e1000_release_mac_csr_80003es2lan - Release rights to access Kumeran Register
314  *  @hw: pointer to the HW structure
315  *
316  *  Release the semaphore used to access the Kumeran interface
317  **/
318 static void e1000_release_mac_csr_80003es2lan(struct e1000_hw *hw)
319 {
320         u16 mask;
321
322         mask = E1000_SWFW_CSR_SM;
323
324         e1000_release_swfw_sync_80003es2lan(hw, mask);
325 }
326
327 /**
328  *  e1000_acquire_nvm_80003es2lan - Acquire rights to access NVM
329  *  @hw: pointer to the HW structure
330  *
331  *  Acquire the semaphore to access the EEPROM.  This is a function
332  *  pointer entry point called by the api module.
333  **/
334 static s32 e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw)
335 {
336         s32 ret_val;
337
338         ret_val = e1000_acquire_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
339         if (ret_val)
340                 return ret_val;
341
342         ret_val = e1000e_acquire_nvm(hw);
343
344         if (ret_val)
345                 e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
346
347         return ret_val;
348 }
349
350 /**
351  *  e1000_release_nvm_80003es2lan - Relinquish rights to access NVM
352  *  @hw: pointer to the HW structure
353  *
354  *  Release the semaphore used to access the EEPROM.  This is a
355  *  function pointer entry point called by the api module.
356  **/
357 static void e1000_release_nvm_80003es2lan(struct e1000_hw *hw)
358 {
359         e1000e_release_nvm(hw);
360         e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
361 }
362
363 /**
364  *  e1000_acquire_swfw_sync_80003es2lan - Acquire SW/FW semaphore
365  *  @hw: pointer to the HW structure
366  *  @mask: specifies which semaphore to acquire
367  *
368  *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
369  *  will also specify which port we're acquiring the lock for.
370  **/
371 static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
372 {
373         u32 swfw_sync;
374         u32 swmask = mask;
375         u32 fwmask = mask << 16;
376         s32 i = 0;
377         s32 timeout = 50;
378
379         while (i < timeout) {
380                 if (e1000e_get_hw_semaphore(hw))
381                         return -E1000_ERR_SWFW_SYNC;
382
383                 swfw_sync = er32(SW_FW_SYNC);
384                 if (!(swfw_sync & (fwmask | swmask)))
385                         break;
386
387                 /*
388                  * Firmware currently using resource (fwmask)
389                  * or other software thread using resource (swmask)
390                  */
391                 e1000e_put_hw_semaphore(hw);
392                 mdelay(5);
393                 i++;
394         }
395
396         if (i == timeout) {
397                 e_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
398                 return -E1000_ERR_SWFW_SYNC;
399         }
400
401         swfw_sync |= swmask;
402         ew32(SW_FW_SYNC, swfw_sync);
403
404         e1000e_put_hw_semaphore(hw);
405
406         return 0;
407 }
408
409 /**
410  *  e1000_release_swfw_sync_80003es2lan - Release SW/FW semaphore
411  *  @hw: pointer to the HW structure
412  *  @mask: specifies which semaphore to acquire
413  *
414  *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
415  *  will also specify which port we're releasing the lock for.
416  **/
417 static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
418 {
419         u32 swfw_sync;
420
421         while (e1000e_get_hw_semaphore(hw) != 0);
422         /* Empty */
423
424         swfw_sync = er32(SW_FW_SYNC);
425         swfw_sync &= ~mask;
426         ew32(SW_FW_SYNC, swfw_sync);
427
428         e1000e_put_hw_semaphore(hw);
429 }
430
431 /**
432  *  e1000_read_phy_reg_gg82563_80003es2lan - Read GG82563 PHY register
433  *  @hw: pointer to the HW structure
434  *  @offset: offset of the register to read
435  *  @data: pointer to the data returned from the operation
436  *
437  *  Read the GG82563 PHY register.  This is a function pointer entry
438  *  point called by the api module.
439  **/
440 static s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
441                                                   u32 offset, u16 *data)
442 {
443         s32 ret_val;
444         u32 page_select;
445         u16 temp;
446
447         ret_val = e1000_acquire_phy_80003es2lan(hw);
448         if (ret_val)
449                 return ret_val;
450
451         /* Select Configuration Page */
452         if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
453                 page_select = GG82563_PHY_PAGE_SELECT;
454         } else {
455                 /*
456                  * Use Alternative Page Select register to access
457                  * registers 30 and 31
458                  */
459                 page_select = GG82563_PHY_PAGE_SELECT_ALT;
460         }
461
462         temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
463         ret_val = e1000e_write_phy_reg_mdic(hw, page_select, temp);
464         if (ret_val) {
465                 e1000_release_phy_80003es2lan(hw);
466                 return ret_val;
467         }
468
469         /*
470          * The "ready" bit in the MDIC register may be incorrectly set
471          * before the device has completed the "Page Select" MDI
472          * transaction.  So we wait 200us after each MDI command...
473          */
474         udelay(200);
475
476         /* ...and verify the command was successful. */
477         ret_val = e1000e_read_phy_reg_mdic(hw, page_select, &temp);
478
479         if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
480                 ret_val = -E1000_ERR_PHY;
481                 e1000_release_phy_80003es2lan(hw);
482                 return ret_val;
483         }
484
485         udelay(200);
486
487         ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
488                                            data);
489
490         udelay(200);
491         e1000_release_phy_80003es2lan(hw);
492
493         return ret_val;
494 }
495
496 /**
497  *  e1000_write_phy_reg_gg82563_80003es2lan - Write GG82563 PHY register
498  *  @hw: pointer to the HW structure
499  *  @offset: offset of the register to read
500  *  @data: value to write to the register
501  *
502  *  Write to the GG82563 PHY register.  This is a function pointer entry
503  *  point called by the api module.
504  **/
505 static s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
506                                                    u32 offset, u16 data)
507 {
508         s32 ret_val;
509         u32 page_select;
510         u16 temp;
511
512         ret_val = e1000_acquire_phy_80003es2lan(hw);
513         if (ret_val)
514                 return ret_val;
515
516         /* Select Configuration Page */
517         if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
518                 page_select = GG82563_PHY_PAGE_SELECT;
519         } else {
520                 /*
521                  * Use Alternative Page Select register to access
522                  * registers 30 and 31
523                  */
524                 page_select = GG82563_PHY_PAGE_SELECT_ALT;
525         }
526
527         temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
528         ret_val = e1000e_write_phy_reg_mdic(hw, page_select, temp);
529         if (ret_val) {
530                 e1000_release_phy_80003es2lan(hw);
531                 return ret_val;
532         }
533
534
535         /*
536          * The "ready" bit in the MDIC register may be incorrectly set
537          * before the device has completed the "Page Select" MDI
538          * transaction.  So we wait 200us after each MDI command...
539          */
540         udelay(200);
541
542         /* ...and verify the command was successful. */
543         ret_val = e1000e_read_phy_reg_mdic(hw, page_select, &temp);
544
545         if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
546                 e1000_release_phy_80003es2lan(hw);
547                 return -E1000_ERR_PHY;
548         }
549
550         udelay(200);
551
552         ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
553                                             data);
554
555         udelay(200);
556         e1000_release_phy_80003es2lan(hw);
557
558         return ret_val;
559 }
560
561 /**
562  *  e1000_write_nvm_80003es2lan - Write to ESB2 NVM
563  *  @hw: pointer to the HW structure
564  *  @offset: offset of the register to read
565  *  @words: number of words to write
566  *  @data: buffer of data to write to the NVM
567  *
568  *  Write "words" of data to the ESB2 NVM.  This is a function
569  *  pointer entry point called by the api module.
570  **/
571 static s32 e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset,
572                                        u16 words, u16 *data)
573 {
574         return e1000e_write_nvm_spi(hw, offset, words, data);
575 }
576
577 /**
578  *  e1000_get_cfg_done_80003es2lan - Wait for configuration to complete
579  *  @hw: pointer to the HW structure
580  *
581  *  Wait a specific amount of time for manageability processes to complete.
582  *  This is a function pointer entry point called by the phy module.
583  **/
584 static s32 e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw)
585 {
586         s32 timeout = PHY_CFG_TIMEOUT;
587         u32 mask = E1000_NVM_CFG_DONE_PORT_0;
588
589         if (hw->bus.func == 1)
590                 mask = E1000_NVM_CFG_DONE_PORT_1;
591
592         while (timeout) {
593                 if (er32(EEMNGCTL) & mask)
594                         break;
595                 msleep(1);
596                 timeout--;
597         }
598         if (!timeout) {
599                 e_dbg("MNG configuration cycle has not completed.\n");
600                 return -E1000_ERR_RESET;
601         }
602
603         return 0;
604 }
605
606 /**
607  *  e1000_phy_force_speed_duplex_80003es2lan - Force PHY speed and duplex
608  *  @hw: pointer to the HW structure
609  *
610  *  Force the speed and duplex settings onto the PHY.  This is a
611  *  function pointer entry point called by the phy module.
612  **/
613 static s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw)
614 {
615         s32 ret_val;
616         u16 phy_data;
617         bool link;
618
619         /*
620          * Clear Auto-Crossover to force MDI manually.  M88E1000 requires MDI
621          * forced whenever speed and duplex are forced.
622          */
623         ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
624         if (ret_val)
625                 return ret_val;
626
627         phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_AUTO;
628         ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, phy_data);
629         if (ret_val)
630                 return ret_val;
631
632         e_dbg("GG82563 PSCR: %X\n", phy_data);
633
634         ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
635         if (ret_val)
636                 return ret_val;
637
638         e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
639
640         /* Reset the phy to commit changes. */
641         phy_data |= MII_CR_RESET;
642
643         ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
644         if (ret_val)
645                 return ret_val;
646
647         udelay(1);
648
649         if (hw->phy.autoneg_wait_to_complete) {
650                 e_dbg("Waiting for forced speed/duplex link "
651                          "on GG82563 phy.\n");
652
653                 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
654                                                      100000, &link);
655                 if (ret_val)
656                         return ret_val;
657
658                 if (!link) {
659                         /*
660                          * We didn't get link.
661                          * Reset the DSP and cross our fingers.
662                          */
663                         ret_val = e1000e_phy_reset_dsp(hw);
664                         if (ret_val)
665                                 return ret_val;
666                 }
667
668                 /* Try once more */
669                 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
670                                                      100000, &link);
671                 if (ret_val)
672                         return ret_val;
673         }
674
675         ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
676         if (ret_val)
677                 return ret_val;
678
679         /*
680          * Resetting the phy means we need to verify the TX_CLK corresponds
681          * to the link speed.  10Mbps -> 2.5MHz, else 25MHz.
682          */
683         phy_data &= ~GG82563_MSCR_TX_CLK_MASK;
684         if (hw->mac.forced_speed_duplex & E1000_ALL_10_SPEED)
685                 phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5;
686         else
687                 phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25;
688
689         /*
690          * In addition, we must re-enable CRS on Tx for both half and full
691          * duplex.
692          */
693         phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
694         ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, phy_data);
695
696         return ret_val;
697 }
698
699 /**
700  *  e1000_get_cable_length_80003es2lan - Set approximate cable length
701  *  @hw: pointer to the HW structure
702  *
703  *  Find the approximate cable length as measured by the GG82563 PHY.
704  *  This is a function pointer entry point called by the phy module.
705  **/
706 static s32 e1000_get_cable_length_80003es2lan(struct e1000_hw *hw)
707 {
708         struct e1000_phy_info *phy = &hw->phy;
709         s32 ret_val;
710         u16 phy_data;
711         u16 index;
712
713         ret_val = e1e_rphy(hw, GG82563_PHY_DSP_DISTANCE, &phy_data);
714         if (ret_val)
715                 return ret_val;
716
717         index = phy_data & GG82563_DSPD_CABLE_LENGTH;
718         phy->min_cable_length = e1000_gg82563_cable_length_table[index];
719         phy->max_cable_length = e1000_gg82563_cable_length_table[index+5];
720
721         phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
722
723         return 0;
724 }
725
726 /**
727  *  e1000_get_link_up_info_80003es2lan - Report speed and duplex
728  *  @hw: pointer to the HW structure
729  *  @speed: pointer to speed buffer
730  *  @duplex: pointer to duplex buffer
731  *
732  *  Retrieve the current speed and duplex configuration.
733  *  This is a function pointer entry point called by the api module.
734  **/
735 static s32 e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed,
736                                               u16 *duplex)
737 {
738         s32 ret_val;
739
740         if (hw->phy.media_type == e1000_media_type_copper) {
741                 ret_val = e1000e_get_speed_and_duplex_copper(hw,
742                                                                     speed,
743                                                                     duplex);
744                 hw->phy.ops.cfg_on_link_up(hw);
745         } else {
746                 ret_val = e1000e_get_speed_and_duplex_fiber_serdes(hw,
747                                                                   speed,
748                                                                   duplex);
749         }
750
751         return ret_val;
752 }
753
754 /**
755  *  e1000_reset_hw_80003es2lan - Reset the ESB2 controller
756  *  @hw: pointer to the HW structure
757  *
758  *  Perform a global reset to the ESB2 controller.
759  *  This is a function pointer entry point called by the api module.
760  **/
761 static s32 e1000_reset_hw_80003es2lan(struct e1000_hw *hw)
762 {
763         u32 ctrl;
764         u32 icr;
765         s32 ret_val;
766
767         /*
768          * Prevent the PCI-E bus from sticking if there is no TLP connection
769          * on the last TLP read/write transaction when MAC is reset.
770          */
771         ret_val = e1000e_disable_pcie_master(hw);
772         if (ret_val)
773                 e_dbg("PCI-E Master disable polling has failed.\n");
774
775         e_dbg("Masking off all interrupts\n");
776         ew32(IMC, 0xffffffff);
777
778         ew32(RCTL, 0);
779         ew32(TCTL, E1000_TCTL_PSP);
780         e1e_flush();
781
782         msleep(10);
783
784         ctrl = er32(CTRL);
785
786         ret_val = e1000_acquire_phy_80003es2lan(hw);
787         e_dbg("Issuing a global reset to MAC\n");
788         ew32(CTRL, ctrl | E1000_CTRL_RST);
789         e1000_release_phy_80003es2lan(hw);
790
791         ret_val = e1000e_get_auto_rd_done(hw);
792         if (ret_val)
793                 /* We don't want to continue accessing MAC registers. */
794                 return ret_val;
795
796         /* Clear any pending interrupt events. */
797         ew32(IMC, 0xffffffff);
798         icr = er32(ICR);
799
800         return 0;
801 }
802
803 /**
804  *  e1000_init_hw_80003es2lan - Initialize the ESB2 controller
805  *  @hw: pointer to the HW structure
806  *
807  *  Initialize the hw bits, LED, VFTA, MTA, link and hw counters.
808  *  This is a function pointer entry point called by the api module.
809  **/
810 static s32 e1000_init_hw_80003es2lan(struct e1000_hw *hw)
811 {
812         struct e1000_mac_info *mac = &hw->mac;
813         u32 reg_data;
814         s32 ret_val;
815         u16 i;
816
817         e1000_initialize_hw_bits_80003es2lan(hw);
818
819         /* Initialize identification LED */
820         ret_val = e1000e_id_led_init(hw);
821         if (ret_val) {
822                 e_dbg("Error initializing identification LED\n");
823                 return ret_val;
824         }
825
826         /* Disabling VLAN filtering */
827         e_dbg("Initializing the IEEE VLAN\n");
828         e1000e_clear_vfta(hw);
829
830         /* Setup the receive address. */
831         e1000e_init_rx_addrs(hw, mac->rar_entry_count);
832
833         /* Zero out the Multicast HASH table */
834         e_dbg("Zeroing the MTA\n");
835         for (i = 0; i < mac->mta_reg_count; i++)
836                 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
837
838         /* Setup link and flow control */
839         ret_val = e1000e_setup_link(hw);
840
841         /* Set the transmit descriptor write-back policy */
842         reg_data = er32(TXDCTL(0));
843         reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
844                    E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC;
845         ew32(TXDCTL(0), reg_data);
846
847         /* ...for both queues. */
848         reg_data = er32(TXDCTL(1));
849         reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
850                    E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC;
851         ew32(TXDCTL(1), reg_data);
852
853         /* Enable retransmit on late collisions */
854         reg_data = er32(TCTL);
855         reg_data |= E1000_TCTL_RTLC;
856         ew32(TCTL, reg_data);
857
858         /* Configure Gigabit Carry Extend Padding */
859         reg_data = er32(TCTL_EXT);
860         reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
861         reg_data |= DEFAULT_TCTL_EXT_GCEX_80003ES2LAN;
862         ew32(TCTL_EXT, reg_data);
863
864         /* Configure Transmit Inter-Packet Gap */
865         reg_data = er32(TIPG);
866         reg_data &= ~E1000_TIPG_IPGT_MASK;
867         reg_data |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
868         ew32(TIPG, reg_data);
869
870         reg_data = E1000_READ_REG_ARRAY(hw, E1000_FFLT, 0x0001);
871         reg_data &= ~0x00100000;
872         E1000_WRITE_REG_ARRAY(hw, E1000_FFLT, 0x0001, reg_data);
873
874         /*
875          * Clear all of the statistics registers (clear on read).  It is
876          * important that we do this after we have tried to establish link
877          * because the symbol error count will increment wildly if there
878          * is no link.
879          */
880         e1000_clear_hw_cntrs_80003es2lan(hw);
881
882         return ret_val;
883 }
884
885 /**
886  *  e1000_initialize_hw_bits_80003es2lan - Init hw bits of ESB2
887  *  @hw: pointer to the HW structure
888  *
889  *  Initializes required hardware-dependent bits needed for normal operation.
890  **/
891 static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw)
892 {
893         u32 reg;
894
895         /* Transmit Descriptor Control 0 */
896         reg = er32(TXDCTL(0));
897         reg |= (1 << 22);
898         ew32(TXDCTL(0), reg);
899
900         /* Transmit Descriptor Control 1 */
901         reg = er32(TXDCTL(1));
902         reg |= (1 << 22);
903         ew32(TXDCTL(1), reg);
904
905         /* Transmit Arbitration Control 0 */
906         reg = er32(TARC(0));
907         reg &= ~(0xF << 27); /* 30:27 */
908         if (hw->phy.media_type != e1000_media_type_copper)
909                 reg &= ~(1 << 20);
910         ew32(TARC(0), reg);
911
912         /* Transmit Arbitration Control 1 */
913         reg = er32(TARC(1));
914         if (er32(TCTL) & E1000_TCTL_MULR)
915                 reg &= ~(1 << 28);
916         else
917                 reg |= (1 << 28);
918         ew32(TARC(1), reg);
919 }
920
921 /**
922  *  e1000_copper_link_setup_gg82563_80003es2lan - Configure GG82563 Link
923  *  @hw: pointer to the HW structure
924  *
925  *  Setup some GG82563 PHY registers for obtaining link
926  **/
927 static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw)
928 {
929         struct e1000_phy_info *phy = &hw->phy;
930         s32 ret_val;
931         u32 ctrl_ext;
932         u16 data;
933
934         ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &data);
935         if (ret_val)
936                 return ret_val;
937
938         data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
939         /* Use 25MHz for both link down and 1000Base-T for Tx clock. */
940         data |= GG82563_MSCR_TX_CLK_1000MBPS_25;
941
942         ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, data);
943         if (ret_val)
944                 return ret_val;
945
946         /*
947          * Options:
948          *   MDI/MDI-X = 0 (default)
949          *   0 - Auto for all speeds
950          *   1 - MDI mode
951          *   2 - MDI-X mode
952          *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
953          */
954         ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL, &data);
955         if (ret_val)
956                 return ret_val;
957
958         data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
959
960         switch (phy->mdix) {
961         case 1:
962                 data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
963                 break;
964         case 2:
965                 data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
966                 break;
967         case 0:
968         default:
969                 data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
970                 break;
971         }
972
973         /*
974          * Options:
975          *   disable_polarity_correction = 0 (default)
976          *       Automatic Correction for Reversed Cable Polarity
977          *   0 - Disabled
978          *   1 - Enabled
979          */
980         data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
981         if (phy->disable_polarity_correction)
982                 data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
983
984         ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, data);
985         if (ret_val)
986                 return ret_val;
987
988         /* SW Reset the PHY so all changes take effect */
989         ret_val = e1000e_commit_phy(hw);
990         if (ret_val) {
991                 e_dbg("Error Resetting the PHY\n");
992                 return ret_val;
993         }
994
995         /* Bypass Rx and Tx FIFO's */
996         ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
997                                         E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL,
998                                         E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS |
999                                         E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS);
1000         if (ret_val)
1001                 return ret_val;
1002
1003         ret_val = e1000_read_kmrn_reg_80003es2lan(hw,
1004                                        E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE,
1005                                        &data);
1006         if (ret_val)
1007                 return ret_val;
1008         data |= E1000_KMRNCTRLSTA_OPMODE_E_IDLE;
1009         ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
1010                                         E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE,
1011                                         data);
1012         if (ret_val)
1013                 return ret_val;
1014
1015         ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL_2, &data);
1016         if (ret_val)
1017                 return ret_val;
1018
1019         data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
1020         ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL_2, data);
1021         if (ret_val)
1022                 return ret_val;
1023
1024         ctrl_ext = er32(CTRL_EXT);
1025         ctrl_ext &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
1026         ew32(CTRL_EXT, ctrl_ext);
1027
1028         ret_val = e1e_rphy(hw, GG82563_PHY_PWR_MGMT_CTRL, &data);
1029         if (ret_val)
1030                 return ret_val;
1031
1032         /*
1033          * Do not init these registers when the HW is in IAMT mode, since the
1034          * firmware will have already initialized them.  We only initialize
1035          * them if the HW is not in IAMT mode.
1036          */
1037         if (!e1000e_check_mng_mode(hw)) {
1038                 /* Enable Electrical Idle on the PHY */
1039                 data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
1040                 ret_val = e1e_wphy(hw, GG82563_PHY_PWR_MGMT_CTRL, data);
1041                 if (ret_val)
1042                         return ret_val;
1043
1044                 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &data);
1045                 if (ret_val)
1046                         return ret_val;
1047
1048                 data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1049                 ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, data);
1050                 if (ret_val)
1051                         return ret_val;
1052         }
1053
1054         /*
1055          * Workaround: Disable padding in Kumeran interface in the MAC
1056          * and in the PHY to avoid CRC errors.
1057          */
1058         ret_val = e1e_rphy(hw, GG82563_PHY_INBAND_CTRL, &data);
1059         if (ret_val)
1060                 return ret_val;
1061
1062         data |= GG82563_ICR_DIS_PADDING;
1063         ret_val = e1e_wphy(hw, GG82563_PHY_INBAND_CTRL, data);
1064         if (ret_val)
1065                 return ret_val;
1066
1067         return 0;
1068 }
1069
1070 /**
1071  *  e1000_setup_copper_link_80003es2lan - Setup Copper Link for ESB2
1072  *  @hw: pointer to the HW structure
1073  *
1074  *  Essentially a wrapper for setting up all things "copper" related.
1075  *  This is a function pointer entry point called by the mac module.
1076  **/
1077 static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw)
1078 {
1079         u32 ctrl;
1080         s32 ret_val;
1081         u16 reg_data;
1082
1083         ctrl = er32(CTRL);
1084         ctrl |= E1000_CTRL_SLU;
1085         ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1086         ew32(CTRL, ctrl);
1087
1088         /*
1089          * Set the mac to wait the maximum time between each
1090          * iteration and increase the max iterations when
1091          * polling the phy; this fixes erroneous timeouts at 10Mbps.
1092          */
1093         ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 4),
1094                                                    0xFFFF);
1095         if (ret_val)
1096                 return ret_val;
1097         ret_val = e1000_read_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9),
1098                                                   &reg_data);
1099         if (ret_val)
1100                 return ret_val;
1101         reg_data |= 0x3F;
1102         ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9),
1103                                                    reg_data);
1104         if (ret_val)
1105                 return ret_val;
1106         ret_val = e1000_read_kmrn_reg_80003es2lan(hw,
1107                                       E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
1108                                       &reg_data);
1109         if (ret_val)
1110                 return ret_val;
1111         reg_data |= E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING;
1112         ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
1113                                         E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
1114                                         reg_data);
1115         if (ret_val)
1116                 return ret_val;
1117
1118         ret_val = e1000_copper_link_setup_gg82563_80003es2lan(hw);
1119         if (ret_val)
1120                 return ret_val;
1121
1122         ret_val = e1000e_setup_copper_link(hw);
1123
1124         return 0;
1125 }
1126
1127 /**
1128  *  e1000_cfg_on_link_up_80003es2lan - es2 link configuration after link-up
1129  *  @hw: pointer to the HW structure
1130  *  @duplex: current duplex setting
1131  *
1132  *  Configure the KMRN interface by applying last minute quirks for
1133  *  10/100 operation.
1134  **/
1135 static s32 e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw)
1136 {
1137         s32 ret_val = 0;
1138         u16 speed;
1139         u16 duplex;
1140
1141         if (hw->phy.media_type == e1000_media_type_copper) {
1142                 ret_val = e1000e_get_speed_and_duplex_copper(hw, &speed,
1143                                                              &duplex);
1144                 if (ret_val)
1145                         return ret_val;
1146
1147                 if (speed == SPEED_1000)
1148                         ret_val = e1000_cfg_kmrn_1000_80003es2lan(hw);
1149                 else
1150                         ret_val = e1000_cfg_kmrn_10_100_80003es2lan(hw, duplex);
1151         }
1152
1153         return ret_val;
1154 }
1155
1156 /**
1157  *  e1000_cfg_kmrn_10_100_80003es2lan - Apply "quirks" for 10/100 operation
1158  *  @hw: pointer to the HW structure
1159  *  @duplex: current duplex setting
1160  *
1161  *  Configure the KMRN interface by applying last minute quirks for
1162  *  10/100 operation.
1163  **/
1164 static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex)
1165 {
1166         s32 ret_val;
1167         u32 tipg;
1168         u32 i = 0;
1169         u16 reg_data, reg_data2;
1170
1171         reg_data = E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT;
1172         ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
1173                                        E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
1174                                        reg_data);
1175         if (ret_val)
1176                 return ret_val;
1177
1178         /* Configure Transmit Inter-Packet Gap */
1179         tipg = er32(TIPG);
1180         tipg &= ~E1000_TIPG_IPGT_MASK;
1181         tipg |= DEFAULT_TIPG_IPGT_10_100_80003ES2LAN;
1182         ew32(TIPG, tipg);
1183
1184         do {
1185                 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
1186                 if (ret_val)
1187                         return ret_val;
1188
1189                 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data2);
1190                 if (ret_val)
1191                         return ret_val;
1192                 i++;
1193         } while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
1194
1195         if (duplex == HALF_DUPLEX)
1196                 reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
1197         else
1198                 reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1199
1200         ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
1201
1202         return 0;
1203 }
1204
1205 /**
1206  *  e1000_cfg_kmrn_1000_80003es2lan - Apply "quirks" for gigabit operation
1207  *  @hw: pointer to the HW structure
1208  *
1209  *  Configure the KMRN interface by applying last minute quirks for
1210  *  gigabit operation.
1211  **/
1212 static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw)
1213 {
1214         s32 ret_val;
1215         u16 reg_data, reg_data2;
1216         u32 tipg;
1217         u32 i = 0;
1218
1219         reg_data = E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT;
1220         ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
1221                                        E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
1222                                        reg_data);
1223         if (ret_val)
1224                 return ret_val;
1225
1226         /* Configure Transmit Inter-Packet Gap */
1227         tipg = er32(TIPG);
1228         tipg &= ~E1000_TIPG_IPGT_MASK;
1229         tipg |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
1230         ew32(TIPG, tipg);
1231
1232         do {
1233                 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
1234                 if (ret_val)
1235                         return ret_val;
1236
1237                 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data2);
1238                 if (ret_val)
1239                         return ret_val;
1240                 i++;
1241         } while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
1242
1243         reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1244         ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
1245
1246         return ret_val;
1247 }
1248
1249 /**
1250  *  e1000_read_kmrn_reg_80003es2lan - Read kumeran register
1251  *  @hw: pointer to the HW structure
1252  *  @offset: register offset to be read
1253  *  @data: pointer to the read data
1254  *
1255  *  Acquire semaphore, then read the PHY register at offset
1256  *  using the kumeran interface.  The information retrieved is stored in data.
1257  *  Release the semaphore before exiting.
1258  **/
1259 static s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
1260                                            u16 *data)
1261 {
1262         u32 kmrnctrlsta;
1263         s32 ret_val = 0;
1264
1265         ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
1266         if (ret_val)
1267                 return ret_val;
1268
1269         kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
1270                        E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
1271         ew32(KMRNCTRLSTA, kmrnctrlsta);
1272
1273         udelay(2);
1274
1275         kmrnctrlsta = er32(KMRNCTRLSTA);
1276         *data = (u16)kmrnctrlsta;
1277
1278         e1000_release_mac_csr_80003es2lan(hw);
1279
1280         return ret_val;
1281 }
1282
1283 /**
1284  *  e1000_write_kmrn_reg_80003es2lan - Write kumeran register
1285  *  @hw: pointer to the HW structure
1286  *  @offset: register offset to write to
1287  *  @data: data to write at register offset
1288  *
1289  *  Acquire semaphore, then write the data to PHY register
1290  *  at the offset using the kumeran interface.  Release semaphore
1291  *  before exiting.
1292  **/
1293 static s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
1294                                             u16 data)
1295 {
1296         u32 kmrnctrlsta;
1297         s32 ret_val = 0;
1298
1299         ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
1300         if (ret_val)
1301                 return ret_val;
1302
1303         kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
1304                        E1000_KMRNCTRLSTA_OFFSET) | data;
1305         ew32(KMRNCTRLSTA, kmrnctrlsta);
1306
1307         udelay(2);
1308
1309         e1000_release_mac_csr_80003es2lan(hw);
1310
1311         return ret_val;
1312 }
1313
1314 /**
1315  *  e1000_clear_hw_cntrs_80003es2lan - Clear device specific hardware counters
1316  *  @hw: pointer to the HW structure
1317  *
1318  *  Clears the hardware counters by reading the counter registers.
1319  **/
1320 static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw)
1321 {
1322         u32 temp;
1323
1324         e1000e_clear_hw_cntrs_base(hw);
1325
1326         temp = er32(PRC64);
1327         temp = er32(PRC127);
1328         temp = er32(PRC255);
1329         temp = er32(PRC511);
1330         temp = er32(PRC1023);
1331         temp = er32(PRC1522);
1332         temp = er32(PTC64);
1333         temp = er32(PTC127);
1334         temp = er32(PTC255);
1335         temp = er32(PTC511);
1336         temp = er32(PTC1023);
1337         temp = er32(PTC1522);
1338
1339         temp = er32(ALGNERRC);
1340         temp = er32(RXERRC);
1341         temp = er32(TNCRS);
1342         temp = er32(CEXTERR);
1343         temp = er32(TSCTC);
1344         temp = er32(TSCTFC);
1345
1346         temp = er32(MGTPRC);
1347         temp = er32(MGTPDC);
1348         temp = er32(MGTPTC);
1349
1350         temp = er32(IAC);
1351         temp = er32(ICRXOC);
1352
1353         temp = er32(ICRXPTC);
1354         temp = er32(ICRXATC);
1355         temp = er32(ICTXPTC);
1356         temp = er32(ICTXATC);
1357         temp = er32(ICTXQEC);
1358         temp = er32(ICTXQMTC);
1359         temp = er32(ICRXDMTC);
1360 }
1361
1362 static struct e1000_mac_operations es2_mac_ops = {
1363         .id_led_init            = e1000e_id_led_init,
1364         .check_mng_mode         = e1000e_check_mng_mode_generic,
1365         /* check_for_link dependent on media type */
1366         .cleanup_led            = e1000e_cleanup_led_generic,
1367         .clear_hw_cntrs         = e1000_clear_hw_cntrs_80003es2lan,
1368         .get_bus_info           = e1000e_get_bus_info_pcie,
1369         .get_link_up_info       = e1000_get_link_up_info_80003es2lan,
1370         .led_on                 = e1000e_led_on_generic,
1371         .led_off                = e1000e_led_off_generic,
1372         .update_mc_addr_list    = e1000e_update_mc_addr_list_generic,
1373         .reset_hw               = e1000_reset_hw_80003es2lan,
1374         .init_hw                = e1000_init_hw_80003es2lan,
1375         .setup_link             = e1000e_setup_link,
1376         /* setup_physical_interface dependent on media type */
1377         .setup_led              = e1000e_setup_led_generic,
1378 };
1379
1380 static struct e1000_phy_operations es2_phy_ops = {
1381         .acquire                = e1000_acquire_phy_80003es2lan,
1382         .check_reset_block      = e1000e_check_reset_block_generic,
1383         .commit                 = e1000e_phy_sw_reset,
1384         .force_speed_duplex     = e1000_phy_force_speed_duplex_80003es2lan,
1385         .get_cfg_done           = e1000_get_cfg_done_80003es2lan,
1386         .get_cable_length       = e1000_get_cable_length_80003es2lan,
1387         .get_info               = e1000e_get_phy_info_m88,
1388         .read_reg               = e1000_read_phy_reg_gg82563_80003es2lan,
1389         .release                = e1000_release_phy_80003es2lan,
1390         .reset                  = e1000e_phy_hw_reset_generic,
1391         .set_d0_lplu_state      = NULL,
1392         .set_d3_lplu_state      = e1000e_set_d3_lplu_state,
1393         .write_reg              = e1000_write_phy_reg_gg82563_80003es2lan,
1394         .cfg_on_link_up         = e1000_cfg_on_link_up_80003es2lan,
1395 };
1396
1397 static struct e1000_nvm_operations es2_nvm_ops = {
1398         .acquire                = e1000_acquire_nvm_80003es2lan,
1399         .read                   = e1000e_read_nvm_eerd,
1400         .release                = e1000_release_nvm_80003es2lan,
1401         .update                 = e1000e_update_nvm_checksum_generic,
1402         .valid_led_default      = e1000e_valid_led_default,
1403         .validate               = e1000e_validate_nvm_checksum_generic,
1404         .write                  = e1000_write_nvm_80003es2lan,
1405 };
1406
1407 struct e1000_info e1000_es2_info = {
1408         .mac                    = e1000_80003es2lan,
1409         .flags                  = FLAG_HAS_HW_VLAN_FILTER
1410                                   | FLAG_HAS_JUMBO_FRAMES
1411                                   | FLAG_HAS_WOL
1412                                   | FLAG_APME_IN_CTRL3
1413                                   | FLAG_RX_CSUM_ENABLED
1414                                   | FLAG_HAS_CTRLEXT_ON_LOAD
1415                                   | FLAG_RX_NEEDS_RESTART /* errata */
1416                                   | FLAG_TARC_SET_BIT_ZERO /* errata */
1417                                   | FLAG_APME_CHECK_PORT_B
1418                                   | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
1419                                   | FLAG_TIPG_MEDIUM_FOR_80003ESLAN,
1420         .pba                    = 38,
1421         .max_hw_frame_size      = DEFAULT_JUMBO,
1422         .get_variants           = e1000_get_variants_80003es2lan,
1423         .mac_ops                = &es2_mac_ops,
1424         .phy_ops                = &es2_phy_ops,
1425         .nvm_ops                = &es2_nvm_ops,
1426 };
1427