mtd: rawnand: Pass a nand_chip object to chip->select_chip()
[linux-2.6-block.git] / drivers / mtd / nand / raw / sh_flctl.c
1 /*
2  * SuperH FLCTL nand controller
3  *
4  * Copyright (c) 2008 Renesas Solutions Corp.
5  * Copyright (c) 2008 Atom Create Engineering Co., Ltd.
6  *
7  * Based on fsl_elbc_nand.c, Copyright (c) 2006-2007 Freescale Semiconductor
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; version 2 of the License.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
21  *
22  */
23
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/completion.h>
27 #include <linux/delay.h>
28 #include <linux/dmaengine.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/interrupt.h>
31 #include <linux/io.h>
32 #include <linux/of.h>
33 #include <linux/of_device.h>
34 #include <linux/platform_device.h>
35 #include <linux/pm_runtime.h>
36 #include <linux/sh_dma.h>
37 #include <linux/slab.h>
38 #include <linux/string.h>
39
40 #include <linux/mtd/mtd.h>
41 #include <linux/mtd/rawnand.h>
42 #include <linux/mtd/partitions.h>
43 #include <linux/mtd/sh_flctl.h>
44
45 static int flctl_4secc_ooblayout_sp_ecc(struct mtd_info *mtd, int section,
46                                         struct mtd_oob_region *oobregion)
47 {
48         struct nand_chip *chip = mtd_to_nand(mtd);
49
50         if (section)
51                 return -ERANGE;
52
53         oobregion->offset = 0;
54         oobregion->length = chip->ecc.bytes;
55
56         return 0;
57 }
58
59 static int flctl_4secc_ooblayout_sp_free(struct mtd_info *mtd, int section,
60                                          struct mtd_oob_region *oobregion)
61 {
62         if (section)
63                 return -ERANGE;
64
65         oobregion->offset = 12;
66         oobregion->length = 4;
67
68         return 0;
69 }
70
71 static const struct mtd_ooblayout_ops flctl_4secc_oob_smallpage_ops = {
72         .ecc = flctl_4secc_ooblayout_sp_ecc,
73         .free = flctl_4secc_ooblayout_sp_free,
74 };
75
76 static int flctl_4secc_ooblayout_lp_ecc(struct mtd_info *mtd, int section,
77                                         struct mtd_oob_region *oobregion)
78 {
79         struct nand_chip *chip = mtd_to_nand(mtd);
80
81         if (section >= chip->ecc.steps)
82                 return -ERANGE;
83
84         oobregion->offset = (section * 16) + 6;
85         oobregion->length = chip->ecc.bytes;
86
87         return 0;
88 }
89
90 static int flctl_4secc_ooblayout_lp_free(struct mtd_info *mtd, int section,
91                                          struct mtd_oob_region *oobregion)
92 {
93         struct nand_chip *chip = mtd_to_nand(mtd);
94
95         if (section >= chip->ecc.steps)
96                 return -ERANGE;
97
98         oobregion->offset = section * 16;
99         oobregion->length = 6;
100
101         if (!section) {
102                 oobregion->offset += 2;
103                 oobregion->length -= 2;
104         }
105
106         return 0;
107 }
108
109 static const struct mtd_ooblayout_ops flctl_4secc_oob_largepage_ops = {
110         .ecc = flctl_4secc_ooblayout_lp_ecc,
111         .free = flctl_4secc_ooblayout_lp_free,
112 };
113
114 static uint8_t scan_ff_pattern[] = { 0xff, 0xff };
115
116 static struct nand_bbt_descr flctl_4secc_smallpage = {
117         .options = NAND_BBT_SCAN2NDPAGE,
118         .offs = 11,
119         .len = 1,
120         .pattern = scan_ff_pattern,
121 };
122
123 static struct nand_bbt_descr flctl_4secc_largepage = {
124         .options = NAND_BBT_SCAN2NDPAGE,
125         .offs = 0,
126         .len = 2,
127         .pattern = scan_ff_pattern,
128 };
129
130 static void empty_fifo(struct sh_flctl *flctl)
131 {
132         writel(flctl->flintdmacr_base | AC1CLR | AC0CLR, FLINTDMACR(flctl));
133         writel(flctl->flintdmacr_base, FLINTDMACR(flctl));
134 }
135
136 static void start_translation(struct sh_flctl *flctl)
137 {
138         writeb(TRSTRT, FLTRCR(flctl));
139 }
140
141 static void timeout_error(struct sh_flctl *flctl, const char *str)
142 {
143         dev_err(&flctl->pdev->dev, "Timeout occurred in %s\n", str);
144 }
145
146 static void wait_completion(struct sh_flctl *flctl)
147 {
148         uint32_t timeout = LOOP_TIMEOUT_MAX;
149
150         while (timeout--) {
151                 if (readb(FLTRCR(flctl)) & TREND) {
152                         writeb(0x0, FLTRCR(flctl));
153                         return;
154                 }
155                 udelay(1);
156         }
157
158         timeout_error(flctl, __func__);
159         writeb(0x0, FLTRCR(flctl));
160 }
161
162 static void flctl_dma_complete(void *param)
163 {
164         struct sh_flctl *flctl = param;
165
166         complete(&flctl->dma_complete);
167 }
168
169 static void flctl_release_dma(struct sh_flctl *flctl)
170 {
171         if (flctl->chan_fifo0_rx) {
172                 dma_release_channel(flctl->chan_fifo0_rx);
173                 flctl->chan_fifo0_rx = NULL;
174         }
175         if (flctl->chan_fifo0_tx) {
176                 dma_release_channel(flctl->chan_fifo0_tx);
177                 flctl->chan_fifo0_tx = NULL;
178         }
179 }
180
181 static void flctl_setup_dma(struct sh_flctl *flctl)
182 {
183         dma_cap_mask_t mask;
184         struct dma_slave_config cfg;
185         struct platform_device *pdev = flctl->pdev;
186         struct sh_flctl_platform_data *pdata = dev_get_platdata(&pdev->dev);
187         int ret;
188
189         if (!pdata)
190                 return;
191
192         if (pdata->slave_id_fifo0_tx <= 0 || pdata->slave_id_fifo0_rx <= 0)
193                 return;
194
195         /* We can only either use DMA for both Tx and Rx or not use it at all */
196         dma_cap_zero(mask);
197         dma_cap_set(DMA_SLAVE, mask);
198
199         flctl->chan_fifo0_tx = dma_request_channel(mask, shdma_chan_filter,
200                                 (void *)(uintptr_t)pdata->slave_id_fifo0_tx);
201         dev_dbg(&pdev->dev, "%s: TX: got channel %p\n", __func__,
202                 flctl->chan_fifo0_tx);
203
204         if (!flctl->chan_fifo0_tx)
205                 return;
206
207         memset(&cfg, 0, sizeof(cfg));
208         cfg.direction = DMA_MEM_TO_DEV;
209         cfg.dst_addr = flctl->fifo;
210         cfg.src_addr = 0;
211         ret = dmaengine_slave_config(flctl->chan_fifo0_tx, &cfg);
212         if (ret < 0)
213                 goto err;
214
215         flctl->chan_fifo0_rx = dma_request_channel(mask, shdma_chan_filter,
216                                 (void *)(uintptr_t)pdata->slave_id_fifo0_rx);
217         dev_dbg(&pdev->dev, "%s: RX: got channel %p\n", __func__,
218                 flctl->chan_fifo0_rx);
219
220         if (!flctl->chan_fifo0_rx)
221                 goto err;
222
223         cfg.direction = DMA_DEV_TO_MEM;
224         cfg.dst_addr = 0;
225         cfg.src_addr = flctl->fifo;
226         ret = dmaengine_slave_config(flctl->chan_fifo0_rx, &cfg);
227         if (ret < 0)
228                 goto err;
229
230         init_completion(&flctl->dma_complete);
231
232         return;
233
234 err:
235         flctl_release_dma(flctl);
236 }
237
238 static void set_addr(struct mtd_info *mtd, int column, int page_addr)
239 {
240         struct sh_flctl *flctl = mtd_to_flctl(mtd);
241         uint32_t addr = 0;
242
243         if (column == -1) {
244                 addr = page_addr;       /* ERASE1 */
245         } else if (page_addr != -1) {
246                 /* SEQIN, READ0, etc.. */
247                 if (flctl->chip.options & NAND_BUSWIDTH_16)
248                         column >>= 1;
249                 if (flctl->page_size) {
250                         addr = column & 0x0FFF;
251                         addr |= (page_addr & 0xff) << 16;
252                         addr |= ((page_addr >> 8) & 0xff) << 24;
253                         /* big than 128MB */
254                         if (flctl->rw_ADRCNT == ADRCNT2_E) {
255                                 uint32_t        addr2;
256                                 addr2 = (page_addr >> 16) & 0xff;
257                                 writel(addr2, FLADR2(flctl));
258                         }
259                 } else {
260                         addr = column;
261                         addr |= (page_addr & 0xff) << 8;
262                         addr |= ((page_addr >> 8) & 0xff) << 16;
263                         addr |= ((page_addr >> 16) & 0xff) << 24;
264                 }
265         }
266         writel(addr, FLADR(flctl));
267 }
268
269 static void wait_rfifo_ready(struct sh_flctl *flctl)
270 {
271         uint32_t timeout = LOOP_TIMEOUT_MAX;
272
273         while (timeout--) {
274                 uint32_t val;
275                 /* check FIFO */
276                 val = readl(FLDTCNTR(flctl)) >> 16;
277                 if (val & 0xFF)
278                         return;
279                 udelay(1);
280         }
281         timeout_error(flctl, __func__);
282 }
283
284 static void wait_wfifo_ready(struct sh_flctl *flctl)
285 {
286         uint32_t len, timeout = LOOP_TIMEOUT_MAX;
287
288         while (timeout--) {
289                 /* check FIFO */
290                 len = (readl(FLDTCNTR(flctl)) >> 16) & 0xFF;
291                 if (len >= 4)
292                         return;
293                 udelay(1);
294         }
295         timeout_error(flctl, __func__);
296 }
297
298 static enum flctl_ecc_res_t wait_recfifo_ready
299                 (struct sh_flctl *flctl, int sector_number)
300 {
301         uint32_t timeout = LOOP_TIMEOUT_MAX;
302         void __iomem *ecc_reg[4];
303         int i;
304         int state = FL_SUCCESS;
305         uint32_t data, size;
306
307         /*
308          * First this loops checks in FLDTCNTR if we are ready to read out the
309          * oob data. This is the case if either all went fine without errors or
310          * if the bottom part of the loop corrected the errors or marked them as
311          * uncorrectable and the controller is given time to push the data into
312          * the FIFO.
313          */
314         while (timeout--) {
315                 /* check if all is ok and we can read out the OOB */
316                 size = readl(FLDTCNTR(flctl)) >> 24;
317                 if ((size & 0xFF) == 4)
318                         return state;
319
320                 /* check if a correction code has been calculated */
321                 if (!(readl(FL4ECCCR(flctl)) & _4ECCEND)) {
322                         /*
323                          * either we wait for the fifo to be filled or a
324                          * correction pattern is being generated
325                          */
326                         udelay(1);
327                         continue;
328                 }
329
330                 /* check for an uncorrectable error */
331                 if (readl(FL4ECCCR(flctl)) & _4ECCFA) {
332                         /* check if we face a non-empty page */
333                         for (i = 0; i < 512; i++) {
334                                 if (flctl->done_buff[i] != 0xff) {
335                                         state = FL_ERROR; /* can't correct */
336                                         break;
337                                 }
338                         }
339
340                         if (state == FL_SUCCESS)
341                                 dev_dbg(&flctl->pdev->dev,
342                                 "reading empty sector %d, ecc error ignored\n",
343                                 sector_number);
344
345                         writel(0, FL4ECCCR(flctl));
346                         continue;
347                 }
348
349                 /* start error correction */
350                 ecc_reg[0] = FL4ECCRESULT0(flctl);
351                 ecc_reg[1] = FL4ECCRESULT1(flctl);
352                 ecc_reg[2] = FL4ECCRESULT2(flctl);
353                 ecc_reg[3] = FL4ECCRESULT3(flctl);
354
355                 for (i = 0; i < 3; i++) {
356                         uint8_t org;
357                         unsigned int index;
358
359                         data = readl(ecc_reg[i]);
360
361                         if (flctl->page_size)
362                                 index = (512 * sector_number) +
363                                         (data >> 16);
364                         else
365                                 index = data >> 16;
366
367                         org = flctl->done_buff[index];
368                         flctl->done_buff[index] = org ^ (data & 0xFF);
369                 }
370                 state = FL_REPAIRABLE;
371                 writel(0, FL4ECCCR(flctl));
372         }
373
374         timeout_error(flctl, __func__);
375         return FL_TIMEOUT;      /* timeout */
376 }
377
378 static void wait_wecfifo_ready(struct sh_flctl *flctl)
379 {
380         uint32_t timeout = LOOP_TIMEOUT_MAX;
381         uint32_t len;
382
383         while (timeout--) {
384                 /* check FLECFIFO */
385                 len = (readl(FLDTCNTR(flctl)) >> 24) & 0xFF;
386                 if (len >= 4)
387                         return;
388                 udelay(1);
389         }
390         timeout_error(flctl, __func__);
391 }
392
393 static int flctl_dma_fifo0_transfer(struct sh_flctl *flctl, unsigned long *buf,
394                                         int len, enum dma_data_direction dir)
395 {
396         struct dma_async_tx_descriptor *desc = NULL;
397         struct dma_chan *chan;
398         enum dma_transfer_direction tr_dir;
399         dma_addr_t dma_addr;
400         dma_cookie_t cookie;
401         uint32_t reg;
402         int ret;
403
404         if (dir == DMA_FROM_DEVICE) {
405                 chan = flctl->chan_fifo0_rx;
406                 tr_dir = DMA_DEV_TO_MEM;
407         } else {
408                 chan = flctl->chan_fifo0_tx;
409                 tr_dir = DMA_MEM_TO_DEV;
410         }
411
412         dma_addr = dma_map_single(chan->device->dev, buf, len, dir);
413
414         if (!dma_mapping_error(chan->device->dev, dma_addr))
415                 desc = dmaengine_prep_slave_single(chan, dma_addr, len,
416                         tr_dir, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
417
418         if (desc) {
419                 reg = readl(FLINTDMACR(flctl));
420                 reg |= DREQ0EN;
421                 writel(reg, FLINTDMACR(flctl));
422
423                 desc->callback = flctl_dma_complete;
424                 desc->callback_param = flctl;
425                 cookie = dmaengine_submit(desc);
426                 if (dma_submit_error(cookie)) {
427                         ret = dma_submit_error(cookie);
428                         dev_warn(&flctl->pdev->dev,
429                                  "DMA submit failed, falling back to PIO\n");
430                         goto out;
431                 }
432
433                 dma_async_issue_pending(chan);
434         } else {
435                 /* DMA failed, fall back to PIO */
436                 flctl_release_dma(flctl);
437                 dev_warn(&flctl->pdev->dev,
438                          "DMA failed, falling back to PIO\n");
439                 ret = -EIO;
440                 goto out;
441         }
442
443         ret =
444         wait_for_completion_timeout(&flctl->dma_complete,
445                                 msecs_to_jiffies(3000));
446
447         if (ret <= 0) {
448                 dmaengine_terminate_all(chan);
449                 dev_err(&flctl->pdev->dev, "wait_for_completion_timeout\n");
450         }
451
452 out:
453         reg = readl(FLINTDMACR(flctl));
454         reg &= ~DREQ0EN;
455         writel(reg, FLINTDMACR(flctl));
456
457         dma_unmap_single(chan->device->dev, dma_addr, len, dir);
458
459         /* ret > 0 is success */
460         return ret;
461 }
462
463 static void read_datareg(struct sh_flctl *flctl, int offset)
464 {
465         unsigned long data;
466         unsigned long *buf = (unsigned long *)&flctl->done_buff[offset];
467
468         wait_completion(flctl);
469
470         data = readl(FLDATAR(flctl));
471         *buf = le32_to_cpu(data);
472 }
473
474 static void read_fiforeg(struct sh_flctl *flctl, int rlen, int offset)
475 {
476         int i, len_4align;
477         unsigned long *buf = (unsigned long *)&flctl->done_buff[offset];
478
479         len_4align = (rlen + 3) / 4;
480
481         /* initiate DMA transfer */
482         if (flctl->chan_fifo0_rx && rlen >= 32 &&
483                 flctl_dma_fifo0_transfer(flctl, buf, rlen, DMA_DEV_TO_MEM) > 0)
484                         goto convert;   /* DMA success */
485
486         /* do polling transfer */
487         for (i = 0; i < len_4align; i++) {
488                 wait_rfifo_ready(flctl);
489                 buf[i] = readl(FLDTFIFO(flctl));
490         }
491
492 convert:
493         for (i = 0; i < len_4align; i++)
494                 buf[i] = be32_to_cpu(buf[i]);
495 }
496
497 static enum flctl_ecc_res_t read_ecfiforeg
498                 (struct sh_flctl *flctl, uint8_t *buff, int sector)
499 {
500         int i;
501         enum flctl_ecc_res_t res;
502         unsigned long *ecc_buf = (unsigned long *)buff;
503
504         res = wait_recfifo_ready(flctl , sector);
505
506         if (res != FL_ERROR) {
507                 for (i = 0; i < 4; i++) {
508                         ecc_buf[i] = readl(FLECFIFO(flctl));
509                         ecc_buf[i] = be32_to_cpu(ecc_buf[i]);
510                 }
511         }
512
513         return res;
514 }
515
516 static void write_fiforeg(struct sh_flctl *flctl, int rlen,
517                                                 unsigned int offset)
518 {
519         int i, len_4align;
520         unsigned long *buf = (unsigned long *)&flctl->done_buff[offset];
521
522         len_4align = (rlen + 3) / 4;
523         for (i = 0; i < len_4align; i++) {
524                 wait_wfifo_ready(flctl);
525                 writel(cpu_to_be32(buf[i]), FLDTFIFO(flctl));
526         }
527 }
528
529 static void write_ec_fiforeg(struct sh_flctl *flctl, int rlen,
530                                                 unsigned int offset)
531 {
532         int i, len_4align;
533         unsigned long *buf = (unsigned long *)&flctl->done_buff[offset];
534
535         len_4align = (rlen + 3) / 4;
536
537         for (i = 0; i < len_4align; i++)
538                 buf[i] = cpu_to_be32(buf[i]);
539
540         /* initiate DMA transfer */
541         if (flctl->chan_fifo0_tx && rlen >= 32 &&
542                 flctl_dma_fifo0_transfer(flctl, buf, rlen, DMA_MEM_TO_DEV) > 0)
543                         return; /* DMA success */
544
545         /* do polling transfer */
546         for (i = 0; i < len_4align; i++) {
547                 wait_wecfifo_ready(flctl);
548                 writel(buf[i], FLECFIFO(flctl));
549         }
550 }
551
552 static void set_cmd_regs(struct mtd_info *mtd, uint32_t cmd, uint32_t flcmcdr_val)
553 {
554         struct sh_flctl *flctl = mtd_to_flctl(mtd);
555         uint32_t flcmncr_val = flctl->flcmncr_base & ~SEL_16BIT;
556         uint32_t flcmdcr_val, addr_len_bytes = 0;
557
558         /* Set SNAND bit if page size is 2048byte */
559         if (flctl->page_size)
560                 flcmncr_val |= SNAND_E;
561         else
562                 flcmncr_val &= ~SNAND_E;
563
564         /* default FLCMDCR val */
565         flcmdcr_val = DOCMD1_E | DOADR_E;
566
567         /* Set for FLCMDCR */
568         switch (cmd) {
569         case NAND_CMD_ERASE1:
570                 addr_len_bytes = flctl->erase_ADRCNT;
571                 flcmdcr_val |= DOCMD2_E;
572                 break;
573         case NAND_CMD_READ0:
574         case NAND_CMD_READOOB:
575         case NAND_CMD_RNDOUT:
576                 addr_len_bytes = flctl->rw_ADRCNT;
577                 flcmdcr_val |= CDSRC_E;
578                 if (flctl->chip.options & NAND_BUSWIDTH_16)
579                         flcmncr_val |= SEL_16BIT;
580                 break;
581         case NAND_CMD_SEQIN:
582                 /* This case is that cmd is READ0 or READ1 or READ00 */
583                 flcmdcr_val &= ~DOADR_E;        /* ONLY execute 1st cmd */
584                 break;
585         case NAND_CMD_PAGEPROG:
586                 addr_len_bytes = flctl->rw_ADRCNT;
587                 flcmdcr_val |= DOCMD2_E | CDSRC_E | SELRW;
588                 if (flctl->chip.options & NAND_BUSWIDTH_16)
589                         flcmncr_val |= SEL_16BIT;
590                 break;
591         case NAND_CMD_READID:
592                 flcmncr_val &= ~SNAND_E;
593                 flcmdcr_val |= CDSRC_E;
594                 addr_len_bytes = ADRCNT_1;
595                 break;
596         case NAND_CMD_STATUS:
597         case NAND_CMD_RESET:
598                 flcmncr_val &= ~SNAND_E;
599                 flcmdcr_val &= ~(DOADR_E | DOSR_E);
600                 break;
601         default:
602                 break;
603         }
604
605         /* Set address bytes parameter */
606         flcmdcr_val |= addr_len_bytes;
607
608         /* Now actually write */
609         writel(flcmncr_val, FLCMNCR(flctl));
610         writel(flcmdcr_val, FLCMDCR(flctl));
611         writel(flcmcdr_val, FLCMCDR(flctl));
612 }
613
614 static int flctl_read_page_hwecc(struct nand_chip *chip, uint8_t *buf,
615                                  int oob_required, int page)
616 {
617         struct mtd_info *mtd = nand_to_mtd(chip);
618
619         nand_read_page_op(chip, page, 0, buf, mtd->writesize);
620         if (oob_required)
621                 chip->read_buf(chip, chip->oob_poi, mtd->oobsize);
622         return 0;
623 }
624
625 static int flctl_write_page_hwecc(struct nand_chip *chip, const uint8_t *buf,
626                                   int oob_required, int page)
627 {
628         struct mtd_info *mtd = nand_to_mtd(chip);
629
630         nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
631         chip->write_buf(chip, chip->oob_poi, mtd->oobsize);
632         return nand_prog_page_end_op(chip);
633 }
634
635 static void execmd_read_page_sector(struct mtd_info *mtd, int page_addr)
636 {
637         struct sh_flctl *flctl = mtd_to_flctl(mtd);
638         int sector, page_sectors;
639         enum flctl_ecc_res_t ecc_result;
640
641         page_sectors = flctl->page_size ? 4 : 1;
642
643         set_cmd_regs(mtd, NAND_CMD_READ0,
644                 (NAND_CMD_READSTART << 8) | NAND_CMD_READ0);
645
646         writel(readl(FLCMNCR(flctl)) | ACM_SACCES_MODE | _4ECCCORRECT,
647                  FLCMNCR(flctl));
648         writel(readl(FLCMDCR(flctl)) | page_sectors, FLCMDCR(flctl));
649         writel(page_addr << 2, FLADR(flctl));
650
651         empty_fifo(flctl);
652         start_translation(flctl);
653
654         for (sector = 0; sector < page_sectors; sector++) {
655                 read_fiforeg(flctl, 512, 512 * sector);
656
657                 ecc_result = read_ecfiforeg(flctl,
658                         &flctl->done_buff[mtd->writesize + 16 * sector],
659                         sector);
660
661                 switch (ecc_result) {
662                 case FL_REPAIRABLE:
663                         dev_info(&flctl->pdev->dev,
664                                 "applied ecc on page 0x%x", page_addr);
665                         mtd->ecc_stats.corrected++;
666                         break;
667                 case FL_ERROR:
668                         dev_warn(&flctl->pdev->dev,
669                                 "page 0x%x contains corrupted data\n",
670                                 page_addr);
671                         mtd->ecc_stats.failed++;
672                         break;
673                 default:
674                         ;
675                 }
676         }
677
678         wait_completion(flctl);
679
680         writel(readl(FLCMNCR(flctl)) & ~(ACM_SACCES_MODE | _4ECCCORRECT),
681                         FLCMNCR(flctl));
682 }
683
684 static void execmd_read_oob(struct mtd_info *mtd, int page_addr)
685 {
686         struct sh_flctl *flctl = mtd_to_flctl(mtd);
687         int page_sectors = flctl->page_size ? 4 : 1;
688         int i;
689
690         set_cmd_regs(mtd, NAND_CMD_READ0,
691                 (NAND_CMD_READSTART << 8) | NAND_CMD_READ0);
692
693         empty_fifo(flctl);
694
695         for (i = 0; i < page_sectors; i++) {
696                 set_addr(mtd, (512 + 16) * i + 512 , page_addr);
697                 writel(16, FLDTCNTR(flctl));
698
699                 start_translation(flctl);
700                 read_fiforeg(flctl, 16, 16 * i);
701                 wait_completion(flctl);
702         }
703 }
704
705 static void execmd_write_page_sector(struct mtd_info *mtd)
706 {
707         struct sh_flctl *flctl = mtd_to_flctl(mtd);
708         int page_addr = flctl->seqin_page_addr;
709         int sector, page_sectors;
710
711         page_sectors = flctl->page_size ? 4 : 1;
712
713         set_cmd_regs(mtd, NAND_CMD_PAGEPROG,
714                         (NAND_CMD_PAGEPROG << 8) | NAND_CMD_SEQIN);
715
716         empty_fifo(flctl);
717         writel(readl(FLCMNCR(flctl)) | ACM_SACCES_MODE, FLCMNCR(flctl));
718         writel(readl(FLCMDCR(flctl)) | page_sectors, FLCMDCR(flctl));
719         writel(page_addr << 2, FLADR(flctl));
720         start_translation(flctl);
721
722         for (sector = 0; sector < page_sectors; sector++) {
723                 write_fiforeg(flctl, 512, 512 * sector);
724                 write_ec_fiforeg(flctl, 16, mtd->writesize + 16 * sector);
725         }
726
727         wait_completion(flctl);
728         writel(readl(FLCMNCR(flctl)) & ~ACM_SACCES_MODE, FLCMNCR(flctl));
729 }
730
731 static void execmd_write_oob(struct mtd_info *mtd)
732 {
733         struct sh_flctl *flctl = mtd_to_flctl(mtd);
734         int page_addr = flctl->seqin_page_addr;
735         int sector, page_sectors;
736
737         page_sectors = flctl->page_size ? 4 : 1;
738
739         set_cmd_regs(mtd, NAND_CMD_PAGEPROG,
740                         (NAND_CMD_PAGEPROG << 8) | NAND_CMD_SEQIN);
741
742         for (sector = 0; sector < page_sectors; sector++) {
743                 empty_fifo(flctl);
744                 set_addr(mtd, sector * 528 + 512, page_addr);
745                 writel(16, FLDTCNTR(flctl));    /* set read size */
746
747                 start_translation(flctl);
748                 write_fiforeg(flctl, 16, 16 * sector);
749                 wait_completion(flctl);
750         }
751 }
752
753 static void flctl_cmdfunc(struct mtd_info *mtd, unsigned int command,
754                         int column, int page_addr)
755 {
756         struct sh_flctl *flctl = mtd_to_flctl(mtd);
757         uint32_t read_cmd = 0;
758
759         pm_runtime_get_sync(&flctl->pdev->dev);
760
761         flctl->read_bytes = 0;
762         if (command != NAND_CMD_PAGEPROG)
763                 flctl->index = 0;
764
765         switch (command) {
766         case NAND_CMD_READ1:
767         case NAND_CMD_READ0:
768                 if (flctl->hwecc) {
769                         /* read page with hwecc */
770                         execmd_read_page_sector(mtd, page_addr);
771                         break;
772                 }
773                 if (flctl->page_size)
774                         set_cmd_regs(mtd, command, (NAND_CMD_READSTART << 8)
775                                 | command);
776                 else
777                         set_cmd_regs(mtd, command, command);
778
779                 set_addr(mtd, 0, page_addr);
780
781                 flctl->read_bytes = mtd->writesize + mtd->oobsize;
782                 if (flctl->chip.options & NAND_BUSWIDTH_16)
783                         column >>= 1;
784                 flctl->index += column;
785                 goto read_normal_exit;
786
787         case NAND_CMD_READOOB:
788                 if (flctl->hwecc) {
789                         /* read page with hwecc */
790                         execmd_read_oob(mtd, page_addr);
791                         break;
792                 }
793
794                 if (flctl->page_size) {
795                         set_cmd_regs(mtd, command, (NAND_CMD_READSTART << 8)
796                                 | NAND_CMD_READ0);
797                         set_addr(mtd, mtd->writesize, page_addr);
798                 } else {
799                         set_cmd_regs(mtd, command, command);
800                         set_addr(mtd, 0, page_addr);
801                 }
802                 flctl->read_bytes = mtd->oobsize;
803                 goto read_normal_exit;
804
805         case NAND_CMD_RNDOUT:
806                 if (flctl->hwecc)
807                         break;
808
809                 if (flctl->page_size)
810                         set_cmd_regs(mtd, command, (NAND_CMD_RNDOUTSTART << 8)
811                                 | command);
812                 else
813                         set_cmd_regs(mtd, command, command);
814
815                 set_addr(mtd, column, 0);
816
817                 flctl->read_bytes = mtd->writesize + mtd->oobsize - column;
818                 goto read_normal_exit;
819
820         case NAND_CMD_READID:
821                 set_cmd_regs(mtd, command, command);
822
823                 /* READID is always performed using an 8-bit bus */
824                 if (flctl->chip.options & NAND_BUSWIDTH_16)
825                         column <<= 1;
826                 set_addr(mtd, column, 0);
827
828                 flctl->read_bytes = 8;
829                 writel(flctl->read_bytes, FLDTCNTR(flctl)); /* set read size */
830                 empty_fifo(flctl);
831                 start_translation(flctl);
832                 read_fiforeg(flctl, flctl->read_bytes, 0);
833                 wait_completion(flctl);
834                 break;
835
836         case NAND_CMD_ERASE1:
837                 flctl->erase1_page_addr = page_addr;
838                 break;
839
840         case NAND_CMD_ERASE2:
841                 set_cmd_regs(mtd, NAND_CMD_ERASE1,
842                         (command << 8) | NAND_CMD_ERASE1);
843                 set_addr(mtd, -1, flctl->erase1_page_addr);
844                 start_translation(flctl);
845                 wait_completion(flctl);
846                 break;
847
848         case NAND_CMD_SEQIN:
849                 if (!flctl->page_size) {
850                         /* output read command */
851                         if (column >= mtd->writesize) {
852                                 column -= mtd->writesize;
853                                 read_cmd = NAND_CMD_READOOB;
854                         } else if (column < 256) {
855                                 read_cmd = NAND_CMD_READ0;
856                         } else {
857                                 column -= 256;
858                                 read_cmd = NAND_CMD_READ1;
859                         }
860                 }
861                 flctl->seqin_column = column;
862                 flctl->seqin_page_addr = page_addr;
863                 flctl->seqin_read_cmd = read_cmd;
864                 break;
865
866         case NAND_CMD_PAGEPROG:
867                 empty_fifo(flctl);
868                 if (!flctl->page_size) {
869                         set_cmd_regs(mtd, NAND_CMD_SEQIN,
870                                         flctl->seqin_read_cmd);
871                         set_addr(mtd, -1, -1);
872                         writel(0, FLDTCNTR(flctl));     /* set 0 size */
873                         start_translation(flctl);
874                         wait_completion(flctl);
875                 }
876                 if (flctl->hwecc) {
877                         /* write page with hwecc */
878                         if (flctl->seqin_column == mtd->writesize)
879                                 execmd_write_oob(mtd);
880                         else if (!flctl->seqin_column)
881                                 execmd_write_page_sector(mtd);
882                         else
883                                 pr_err("Invalid address !?\n");
884                         break;
885                 }
886                 set_cmd_regs(mtd, command, (command << 8) | NAND_CMD_SEQIN);
887                 set_addr(mtd, flctl->seqin_column, flctl->seqin_page_addr);
888                 writel(flctl->index, FLDTCNTR(flctl));  /* set write size */
889                 start_translation(flctl);
890                 write_fiforeg(flctl, flctl->index, 0);
891                 wait_completion(flctl);
892                 break;
893
894         case NAND_CMD_STATUS:
895                 set_cmd_regs(mtd, command, command);
896                 set_addr(mtd, -1, -1);
897
898                 flctl->read_bytes = 1;
899                 writel(flctl->read_bytes, FLDTCNTR(flctl)); /* set read size */
900                 start_translation(flctl);
901                 read_datareg(flctl, 0); /* read and end */
902                 break;
903
904         case NAND_CMD_RESET:
905                 set_cmd_regs(mtd, command, command);
906                 set_addr(mtd, -1, -1);
907
908                 writel(0, FLDTCNTR(flctl));     /* set 0 size */
909                 start_translation(flctl);
910                 wait_completion(flctl);
911                 break;
912
913         default:
914                 break;
915         }
916         goto runtime_exit;
917
918 read_normal_exit:
919         writel(flctl->read_bytes, FLDTCNTR(flctl));     /* set read size */
920         empty_fifo(flctl);
921         start_translation(flctl);
922         read_fiforeg(flctl, flctl->read_bytes, 0);
923         wait_completion(flctl);
924 runtime_exit:
925         pm_runtime_put_sync(&flctl->pdev->dev);
926         return;
927 }
928
929 static void flctl_select_chip(struct nand_chip *chip, int chipnr)
930 {
931         struct sh_flctl *flctl = mtd_to_flctl(nand_to_mtd(chip));
932         int ret;
933
934         switch (chipnr) {
935         case -1:
936                 flctl->flcmncr_base &= ~CE0_ENABLE;
937
938                 pm_runtime_get_sync(&flctl->pdev->dev);
939                 writel(flctl->flcmncr_base, FLCMNCR(flctl));
940
941                 if (flctl->qos_request) {
942                         dev_pm_qos_remove_request(&flctl->pm_qos);
943                         flctl->qos_request = 0;
944                 }
945
946                 pm_runtime_put_sync(&flctl->pdev->dev);
947                 break;
948         case 0:
949                 flctl->flcmncr_base |= CE0_ENABLE;
950
951                 if (!flctl->qos_request) {
952                         ret = dev_pm_qos_add_request(&flctl->pdev->dev,
953                                                         &flctl->pm_qos,
954                                                         DEV_PM_QOS_RESUME_LATENCY,
955                                                         100);
956                         if (ret < 0)
957                                 dev_err(&flctl->pdev->dev,
958                                         "PM QoS request failed: %d\n", ret);
959                         flctl->qos_request = 1;
960                 }
961
962                 if (flctl->holden) {
963                         pm_runtime_get_sync(&flctl->pdev->dev);
964                         writel(HOLDEN, FLHOLDCR(flctl));
965                         pm_runtime_put_sync(&flctl->pdev->dev);
966                 }
967                 break;
968         default:
969                 BUG();
970         }
971 }
972
973 static void flctl_write_buf(struct nand_chip *chip, const uint8_t *buf, int len)
974 {
975         struct sh_flctl *flctl = mtd_to_flctl(nand_to_mtd(chip));
976
977         memcpy(&flctl->done_buff[flctl->index], buf, len);
978         flctl->index += len;
979 }
980
981 static uint8_t flctl_read_byte(struct nand_chip *chip)
982 {
983         struct sh_flctl *flctl = mtd_to_flctl(nand_to_mtd(chip));
984         uint8_t data;
985
986         data = flctl->done_buff[flctl->index];
987         flctl->index++;
988         return data;
989 }
990
991 static void flctl_read_buf(struct nand_chip *chip, uint8_t *buf, int len)
992 {
993         struct sh_flctl *flctl = mtd_to_flctl(nand_to_mtd(chip));
994
995         memcpy(buf, &flctl->done_buff[flctl->index], len);
996         flctl->index += len;
997 }
998
999 static int flctl_chip_attach_chip(struct nand_chip *chip)
1000 {
1001         struct mtd_info *mtd = nand_to_mtd(chip);
1002         struct sh_flctl *flctl = mtd_to_flctl(mtd);
1003
1004         /*
1005          * NAND_BUSWIDTH_16 may have been set by nand_scan_ident().
1006          * Add the SEL_16BIT flag in flctl->flcmncr_base.
1007          */
1008         if (chip->options & NAND_BUSWIDTH_16)
1009                 flctl->flcmncr_base |= SEL_16BIT;
1010
1011         if (mtd->writesize == 512) {
1012                 flctl->page_size = 0;
1013                 if (chip->chipsize > (32 << 20)) {
1014                         /* big than 32MB */
1015                         flctl->rw_ADRCNT = ADRCNT_4;
1016                         flctl->erase_ADRCNT = ADRCNT_3;
1017                 } else if (chip->chipsize > (2 << 16)) {
1018                         /* big than 128KB */
1019                         flctl->rw_ADRCNT = ADRCNT_3;
1020                         flctl->erase_ADRCNT = ADRCNT_2;
1021                 } else {
1022                         flctl->rw_ADRCNT = ADRCNT_2;
1023                         flctl->erase_ADRCNT = ADRCNT_1;
1024                 }
1025         } else {
1026                 flctl->page_size = 1;
1027                 if (chip->chipsize > (128 << 20)) {
1028                         /* big than 128MB */
1029                         flctl->rw_ADRCNT = ADRCNT2_E;
1030                         flctl->erase_ADRCNT = ADRCNT_3;
1031                 } else if (chip->chipsize > (8 << 16)) {
1032                         /* big than 512KB */
1033                         flctl->rw_ADRCNT = ADRCNT_4;
1034                         flctl->erase_ADRCNT = ADRCNT_2;
1035                 } else {
1036                         flctl->rw_ADRCNT = ADRCNT_3;
1037                         flctl->erase_ADRCNT = ADRCNT_1;
1038                 }
1039         }
1040
1041         if (flctl->hwecc) {
1042                 if (mtd->writesize == 512) {
1043                         mtd_set_ooblayout(mtd, &flctl_4secc_oob_smallpage_ops);
1044                         chip->badblock_pattern = &flctl_4secc_smallpage;
1045                 } else {
1046                         mtd_set_ooblayout(mtd, &flctl_4secc_oob_largepage_ops);
1047                         chip->badblock_pattern = &flctl_4secc_largepage;
1048                 }
1049
1050                 chip->ecc.size = 512;
1051                 chip->ecc.bytes = 10;
1052                 chip->ecc.strength = 4;
1053                 chip->ecc.read_page = flctl_read_page_hwecc;
1054                 chip->ecc.write_page = flctl_write_page_hwecc;
1055                 chip->ecc.mode = NAND_ECC_HW;
1056
1057                 /* 4 symbols ECC enabled */
1058                 flctl->flcmncr_base |= _4ECCEN;
1059         } else {
1060                 chip->ecc.mode = NAND_ECC_SOFT;
1061                 chip->ecc.algo = NAND_ECC_HAMMING;
1062         }
1063
1064         return 0;
1065 }
1066
1067 static const struct nand_controller_ops flctl_nand_controller_ops = {
1068         .attach_chip = flctl_chip_attach_chip,
1069 };
1070
1071 static irqreturn_t flctl_handle_flste(int irq, void *dev_id)
1072 {
1073         struct sh_flctl *flctl = dev_id;
1074
1075         dev_err(&flctl->pdev->dev, "flste irq: %x\n", readl(FLINTDMACR(flctl)));
1076         writel(flctl->flintdmacr_base, FLINTDMACR(flctl));
1077
1078         return IRQ_HANDLED;
1079 }
1080
1081 struct flctl_soc_config {
1082         unsigned long flcmncr_val;
1083         unsigned has_hwecc:1;
1084         unsigned use_holden:1;
1085 };
1086
1087 static struct flctl_soc_config flctl_sh7372_config = {
1088         .flcmncr_val = CLK_16B_12L_4H | TYPESEL_SET | SHBUSSEL,
1089         .has_hwecc = 1,
1090         .use_holden = 1,
1091 };
1092
1093 static const struct of_device_id of_flctl_match[] = {
1094         { .compatible = "renesas,shmobile-flctl-sh7372",
1095                                 .data = &flctl_sh7372_config },
1096         {},
1097 };
1098 MODULE_DEVICE_TABLE(of, of_flctl_match);
1099
1100 static struct sh_flctl_platform_data *flctl_parse_dt(struct device *dev)
1101 {
1102         const struct flctl_soc_config *config;
1103         struct sh_flctl_platform_data *pdata;
1104
1105         config = of_device_get_match_data(dev);
1106         if (!config) {
1107                 dev_err(dev, "%s: no OF configuration attached\n", __func__);
1108                 return NULL;
1109         }
1110
1111         pdata = devm_kzalloc(dev, sizeof(struct sh_flctl_platform_data),
1112                                                                 GFP_KERNEL);
1113         if (!pdata)
1114                 return NULL;
1115
1116         /* set SoC specific options */
1117         pdata->flcmncr_val = config->flcmncr_val;
1118         pdata->has_hwecc = config->has_hwecc;
1119         pdata->use_holden = config->use_holden;
1120
1121         return pdata;
1122 }
1123
1124 static int flctl_probe(struct platform_device *pdev)
1125 {
1126         struct resource *res;
1127         struct sh_flctl *flctl;
1128         struct mtd_info *flctl_mtd;
1129         struct nand_chip *nand;
1130         struct sh_flctl_platform_data *pdata;
1131         int ret;
1132         int irq;
1133
1134         flctl = devm_kzalloc(&pdev->dev, sizeof(struct sh_flctl), GFP_KERNEL);
1135         if (!flctl)
1136                 return -ENOMEM;
1137
1138         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1139         flctl->reg = devm_ioremap_resource(&pdev->dev, res);
1140         if (IS_ERR(flctl->reg))
1141                 return PTR_ERR(flctl->reg);
1142         flctl->fifo = res->start + 0x24; /* FLDTFIFO */
1143
1144         irq = platform_get_irq(pdev, 0);
1145         if (irq < 0) {
1146                 dev_err(&pdev->dev, "failed to get flste irq data: %d\n", irq);
1147                 return irq;
1148         }
1149
1150         ret = devm_request_irq(&pdev->dev, irq, flctl_handle_flste, IRQF_SHARED,
1151                                "flste", flctl);
1152         if (ret) {
1153                 dev_err(&pdev->dev, "request interrupt failed.\n");
1154                 return ret;
1155         }
1156
1157         if (pdev->dev.of_node)
1158                 pdata = flctl_parse_dt(&pdev->dev);
1159         else
1160                 pdata = dev_get_platdata(&pdev->dev);
1161
1162         if (!pdata) {
1163                 dev_err(&pdev->dev, "no setup data defined\n");
1164                 return -EINVAL;
1165         }
1166
1167         platform_set_drvdata(pdev, flctl);
1168         nand = &flctl->chip;
1169         flctl_mtd = nand_to_mtd(nand);
1170         nand_set_flash_node(nand, pdev->dev.of_node);
1171         flctl_mtd->dev.parent = &pdev->dev;
1172         flctl->pdev = pdev;
1173         flctl->hwecc = pdata->has_hwecc;
1174         flctl->holden = pdata->use_holden;
1175         flctl->flcmncr_base = pdata->flcmncr_val;
1176         flctl->flintdmacr_base = flctl->hwecc ? (STERINTE | ECERB) : STERINTE;
1177
1178         /* Set address of hardware control function */
1179         /* 20 us command delay time */
1180         nand->chip_delay = 20;
1181
1182         nand->read_byte = flctl_read_byte;
1183         nand->write_buf = flctl_write_buf;
1184         nand->read_buf = flctl_read_buf;
1185         nand->select_chip = flctl_select_chip;
1186         nand->cmdfunc = flctl_cmdfunc;
1187         nand->set_features = nand_get_set_features_notsupp;
1188         nand->get_features = nand_get_set_features_notsupp;
1189
1190         if (pdata->flcmncr_val & SEL_16BIT)
1191                 nand->options |= NAND_BUSWIDTH_16;
1192
1193         pm_runtime_enable(&pdev->dev);
1194         pm_runtime_resume(&pdev->dev);
1195
1196         flctl_setup_dma(flctl);
1197
1198         nand->dummy_controller.ops = &flctl_nand_controller_ops;
1199         ret = nand_scan(nand, 1);
1200         if (ret)
1201                 goto err_chip;
1202
1203         ret = mtd_device_register(flctl_mtd, pdata->parts, pdata->nr_parts);
1204         if (ret)
1205                 goto cleanup_nand;
1206
1207         return 0;
1208
1209 cleanup_nand:
1210         nand_cleanup(nand);
1211 err_chip:
1212         flctl_release_dma(flctl);
1213         pm_runtime_disable(&pdev->dev);
1214         return ret;
1215 }
1216
1217 static int flctl_remove(struct platform_device *pdev)
1218 {
1219         struct sh_flctl *flctl = platform_get_drvdata(pdev);
1220
1221         flctl_release_dma(flctl);
1222         nand_release(&flctl->chip);
1223         pm_runtime_disable(&pdev->dev);
1224
1225         return 0;
1226 }
1227
1228 static struct platform_driver flctl_driver = {
1229         .remove         = flctl_remove,
1230         .driver = {
1231                 .name   = "sh_flctl",
1232                 .of_match_table = of_match_ptr(of_flctl_match),
1233         },
1234 };
1235
1236 module_platform_driver_probe(flctl_driver, flctl_probe);
1237
1238 MODULE_LICENSE("GPL");
1239 MODULE_AUTHOR("Yoshihiro Shimoda");
1240 MODULE_DESCRIPTION("SuperH FLCTL driver");
1241 MODULE_ALIAS("platform:sh_flctl");