mtd: rawnand: sunxi: Add A23/A33 DMA support
[linux-2.6-block.git] / drivers / mtd / nand / raw / marvell_nand.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Marvell NAND flash controller driver
4  *
5  * Copyright (C) 2017 Marvell
6  * Author: Miquel RAYNAL <miquel.raynal@free-electrons.com>
7  *
8  *
9  * This NAND controller driver handles two versions of the hardware,
10  * one is called NFCv1 and is available on PXA SoCs and the other is
11  * called NFCv2 and is available on Armada SoCs.
12  *
13  * The main visible difference is that NFCv1 only has Hamming ECC
14  * capabilities, while NFCv2 also embeds a BCH ECC engine. Also, DMA
15  * is not used with NFCv2.
16  *
17  * The ECC layouts are depicted in details in Marvell AN-379, but here
18  * is a brief description.
19  *
20  * When using Hamming, the data is split in 512B chunks (either 1, 2
21  * or 4) and each chunk will have its own ECC "digest" of 6B at the
22  * beginning of the OOB area and eventually the remaining free OOB
23  * bytes (also called "spare" bytes in the driver). This engine
24  * corrects up to 1 bit per chunk and detects reliably an error if
25  * there are at most 2 bitflips. Here is the page layout used by the
26  * controller when Hamming is chosen:
27  *
28  * +-------------------------------------------------------------+
29  * | Data 1 | ... | Data N | ECC 1 | ... | ECCN | Free OOB bytes |
30  * +-------------------------------------------------------------+
31  *
32  * When using the BCH engine, there are N identical (data + free OOB +
33  * ECC) sections and potentially an extra one to deal with
34  * configurations where the chosen (data + free OOB + ECC) sizes do
35  * not align with the page (data + OOB) size. ECC bytes are always
36  * 30B per ECC chunk. Here is the page layout used by the controller
37  * when BCH is chosen:
38  *
39  * +-----------------------------------------
40  * | Data 1 | Free OOB bytes 1 | ECC 1 | ...
41  * +-----------------------------------------
42  *
43  *      -------------------------------------------
44  *       ... | Data N | Free OOB bytes N | ECC N |
45  *      -------------------------------------------
46  *
47  *           --------------------------------------------+
48  *            Last Data | Last Free OOB bytes | Last ECC |
49  *           --------------------------------------------+
50  *
51  * In both cases, the layout seen by the user is always: all data
52  * first, then all free OOB bytes and finally all ECC bytes. With BCH,
53  * ECC bytes are 30B long and are padded with 0xFF to align on 32
54  * bytes.
55  *
56  * The controller has certain limitations that are handled by the
57  * driver:
58  *   - It can only read 2k at a time. To overcome this limitation, the
59  *     driver issues data cycles on the bus, without issuing new
60  *     CMD + ADDR cycles. The Marvell term is "naked" operations.
61  *   - The ECC strength in BCH mode cannot be tuned. It is fixed 16
62  *     bits. What can be tuned is the ECC block size as long as it
63  *     stays between 512B and 2kiB. It's usually chosen based on the
64  *     chip ECC requirements. For instance, using 2kiB ECC chunks
65  *     provides 4b/512B correctability.
66  *   - The controller will always treat data bytes, free OOB bytes
67  *     and ECC bytes in that order, no matter what the real layout is
68  *     (which is usually all data then all OOB bytes). The
69  *     marvell_nfc_layouts array below contains the currently
70  *     supported layouts.
71  *   - Because of these weird layouts, the Bad Block Markers can be
72  *     located in data section. In this case, the NAND_BBT_NO_OOB_BBM
73  *     option must be set to prevent scanning/writing bad block
74  *     markers.
75  */
76
77 #include <linux/module.h>
78 #include <linux/clk.h>
79 #include <linux/mtd/rawnand.h>
80 #include <linux/of_platform.h>
81 #include <linux/iopoll.h>
82 #include <linux/interrupt.h>
83 #include <linux/slab.h>
84 #include <linux/mfd/syscon.h>
85 #include <linux/regmap.h>
86 #include <asm/unaligned.h>
87
88 #include <linux/dmaengine.h>
89 #include <linux/dma-mapping.h>
90 #include <linux/dma/pxa-dma.h>
91 #include <linux/platform_data/mtd-nand-pxa3xx.h>
92
93 /* Data FIFO granularity, FIFO reads/writes must be a multiple of this length */
94 #define FIFO_DEPTH              8
95 #define FIFO_REP(x)             (x / sizeof(u32))
96 #define BCH_SEQ_READS           (32 / FIFO_DEPTH)
97 /* NFC does not support transfers of larger chunks at a time */
98 #define MAX_CHUNK_SIZE          2112
99 /* NFCv1 cannot read more that 7 bytes of ID */
100 #define NFCV1_READID_LEN        7
101 /* Polling is done at a pace of POLL_PERIOD us until POLL_TIMEOUT is reached */
102 #define POLL_PERIOD             0
103 #define POLL_TIMEOUT            100000
104 /* Interrupt maximum wait period in ms */
105 #define IRQ_TIMEOUT             1000
106 /* Latency in clock cycles between SoC pins and NFC logic */
107 #define MIN_RD_DEL_CNT          3
108 /* Maximum number of contiguous address cycles */
109 #define MAX_ADDRESS_CYC_NFCV1   5
110 #define MAX_ADDRESS_CYC_NFCV2   7
111 /* System control registers/bits to enable the NAND controller on some SoCs */
112 #define GENCONF_SOC_DEVICE_MUX  0x208
113 #define GENCONF_SOC_DEVICE_MUX_NFC_EN BIT(0)
114 #define GENCONF_SOC_DEVICE_MUX_ECC_CLK_RST BIT(20)
115 #define GENCONF_SOC_DEVICE_MUX_ECC_CORE_RST BIT(21)
116 #define GENCONF_SOC_DEVICE_MUX_NFC_INT_EN BIT(25)
117 #define GENCONF_CLK_GATING_CTRL 0x220
118 #define GENCONF_CLK_GATING_CTRL_ND_GATE BIT(2)
119 #define GENCONF_ND_CLK_CTRL     0x700
120 #define GENCONF_ND_CLK_CTRL_EN  BIT(0)
121
122 /* NAND controller data flash control register */
123 #define NDCR                    0x00
124 #define NDCR_ALL_INT            GENMASK(11, 0)
125 #define NDCR_CS1_CMDDM          BIT(7)
126 #define NDCR_CS0_CMDDM          BIT(8)
127 #define NDCR_RDYM               BIT(11)
128 #define NDCR_ND_ARB_EN          BIT(12)
129 #define NDCR_RA_START           BIT(15)
130 #define NDCR_RD_ID_CNT(x)       (min_t(unsigned int, x, 0x7) << 16)
131 #define NDCR_PAGE_SZ(x)         (x >= 2048 ? BIT(24) : 0)
132 #define NDCR_DWIDTH_M           BIT(26)
133 #define NDCR_DWIDTH_C           BIT(27)
134 #define NDCR_ND_RUN             BIT(28)
135 #define NDCR_DMA_EN             BIT(29)
136 #define NDCR_ECC_EN             BIT(30)
137 #define NDCR_SPARE_EN           BIT(31)
138 #define NDCR_GENERIC_FIELDS_MASK (~(NDCR_RA_START | NDCR_PAGE_SZ(2048) | \
139                                     NDCR_DWIDTH_M | NDCR_DWIDTH_C))
140
141 /* NAND interface timing parameter 0 register */
142 #define NDTR0                   0x04
143 #define NDTR0_TRP(x)            ((min_t(unsigned int, x, 0xF) & 0x7) << 0)
144 #define NDTR0_TRH(x)            (min_t(unsigned int, x, 0x7) << 3)
145 #define NDTR0_ETRP(x)           ((min_t(unsigned int, x, 0xF) & 0x8) << 3)
146 #define NDTR0_SEL_NRE_EDGE      BIT(7)
147 #define NDTR0_TWP(x)            (min_t(unsigned int, x, 0x7) << 8)
148 #define NDTR0_TWH(x)            (min_t(unsigned int, x, 0x7) << 11)
149 #define NDTR0_TCS(x)            (min_t(unsigned int, x, 0x7) << 16)
150 #define NDTR0_TCH(x)            (min_t(unsigned int, x, 0x7) << 19)
151 #define NDTR0_RD_CNT_DEL(x)     (min_t(unsigned int, x, 0xF) << 22)
152 #define NDTR0_SELCNTR           BIT(26)
153 #define NDTR0_TADL(x)           (min_t(unsigned int, x, 0x1F) << 27)
154
155 /* NAND interface timing parameter 1 register */
156 #define NDTR1                   0x0C
157 #define NDTR1_TAR(x)            (min_t(unsigned int, x, 0xF) << 0)
158 #define NDTR1_TWHR(x)           (min_t(unsigned int, x, 0xF) << 4)
159 #define NDTR1_TRHW(x)           (min_t(unsigned int, x / 16, 0x3) << 8)
160 #define NDTR1_PRESCALE          BIT(14)
161 #define NDTR1_WAIT_MODE         BIT(15)
162 #define NDTR1_TR(x)             (min_t(unsigned int, x, 0xFFFF) << 16)
163
164 /* NAND controller status register */
165 #define NDSR                    0x14
166 #define NDSR_WRCMDREQ           BIT(0)
167 #define NDSR_RDDREQ             BIT(1)
168 #define NDSR_WRDREQ             BIT(2)
169 #define NDSR_CORERR             BIT(3)
170 #define NDSR_UNCERR             BIT(4)
171 #define NDSR_CMDD(cs)           BIT(8 - cs)
172 #define NDSR_RDY(rb)            BIT(11 + rb)
173 #define NDSR_ERRCNT(x)          ((x >> 16) & 0x1F)
174
175 /* NAND ECC control register */
176 #define NDECCCTRL               0x28
177 #define NDECCCTRL_BCH_EN        BIT(0)
178
179 /* NAND controller data buffer register */
180 #define NDDB                    0x40
181
182 /* NAND controller command buffer 0 register */
183 #define NDCB0                   0x48
184 #define NDCB0_CMD1(x)           ((x & 0xFF) << 0)
185 #define NDCB0_CMD2(x)           ((x & 0xFF) << 8)
186 #define NDCB0_ADDR_CYC(x)       ((x & 0x7) << 16)
187 #define NDCB0_ADDR_GET_NUM_CYC(x) (((x) >> 16) & 0x7)
188 #define NDCB0_DBC               BIT(19)
189 #define NDCB0_CMD_TYPE(x)       ((x & 0x7) << 21)
190 #define NDCB0_CSEL              BIT(24)
191 #define NDCB0_RDY_BYP           BIT(27)
192 #define NDCB0_LEN_OVRD          BIT(28)
193 #define NDCB0_CMD_XTYPE(x)      ((x & 0x7) << 29)
194
195 /* NAND controller command buffer 1 register */
196 #define NDCB1                   0x4C
197 #define NDCB1_COLS(x)           ((x & 0xFFFF) << 0)
198 #define NDCB1_ADDRS_PAGE(x)     (x << 16)
199
200 /* NAND controller command buffer 2 register */
201 #define NDCB2                   0x50
202 #define NDCB2_ADDR5_PAGE(x)     (((x >> 16) & 0xFF) << 0)
203 #define NDCB2_ADDR5_CYC(x)      ((x & 0xFF) << 0)
204
205 /* NAND controller command buffer 3 register */
206 #define NDCB3                   0x54
207 #define NDCB3_ADDR6_CYC(x)      ((x & 0xFF) << 16)
208 #define NDCB3_ADDR7_CYC(x)      ((x & 0xFF) << 24)
209
210 /* NAND controller command buffer 0 register 'type' and 'xtype' fields */
211 #define TYPE_READ               0
212 #define TYPE_WRITE              1
213 #define TYPE_ERASE              2
214 #define TYPE_READ_ID            3
215 #define TYPE_STATUS             4
216 #define TYPE_RESET              5
217 #define TYPE_NAKED_CMD          6
218 #define TYPE_NAKED_ADDR         7
219 #define TYPE_MASK               7
220 #define XTYPE_MONOLITHIC_RW     0
221 #define XTYPE_LAST_NAKED_RW     1
222 #define XTYPE_FINAL_COMMAND     3
223 #define XTYPE_READ              4
224 #define XTYPE_WRITE_DISPATCH    4
225 #define XTYPE_NAKED_RW          5
226 #define XTYPE_COMMAND_DISPATCH  6
227 #define XTYPE_MASK              7
228
229 /**
230  * Marvell ECC engine works differently than the others, in order to limit the
231  * size of the IP, hardware engineers chose to set a fixed strength at 16 bits
232  * per subpage, and depending on a the desired strength needed by the NAND chip,
233  * a particular layout mixing data/spare/ecc is defined, with a possible last
234  * chunk smaller that the others.
235  *
236  * @writesize:          Full page size on which the layout applies
237  * @chunk:              Desired ECC chunk size on which the layout applies
238  * @strength:           Desired ECC strength (per chunk size bytes) on which the
239  *                      layout applies
240  * @nchunks:            Total number of chunks
241  * @full_chunk_cnt:     Number of full-sized chunks, which is the number of
242  *                      repetitions of the pattern:
243  *                      (data_bytes + spare_bytes + ecc_bytes).
244  * @data_bytes:         Number of data bytes per chunk
245  * @spare_bytes:        Number of spare bytes per chunk
246  * @ecc_bytes:          Number of ecc bytes per chunk
247  * @last_data_bytes:    Number of data bytes in the last chunk
248  * @last_spare_bytes:   Number of spare bytes in the last chunk
249  * @last_ecc_bytes:     Number of ecc bytes in the last chunk
250  */
251 struct marvell_hw_ecc_layout {
252         /* Constraints */
253         int writesize;
254         int chunk;
255         int strength;
256         /* Corresponding layout */
257         int nchunks;
258         int full_chunk_cnt;
259         int data_bytes;
260         int spare_bytes;
261         int ecc_bytes;
262         int last_data_bytes;
263         int last_spare_bytes;
264         int last_ecc_bytes;
265 };
266
267 #define MARVELL_LAYOUT(ws, dc, ds, nc, fcc, db, sb, eb, ldb, lsb, leb)  \
268         {                                                               \
269                 .writesize = ws,                                        \
270                 .chunk = dc,                                            \
271                 .strength = ds,                                         \
272                 .nchunks = nc,                                          \
273                 .full_chunk_cnt = fcc,                                  \
274                 .data_bytes = db,                                       \
275                 .spare_bytes = sb,                                      \
276                 .ecc_bytes = eb,                                        \
277                 .last_data_bytes = ldb,                                 \
278                 .last_spare_bytes = lsb,                                \
279                 .last_ecc_bytes = leb,                                  \
280         }
281
282 /* Layouts explained in AN-379_Marvell_SoC_NFC_ECC */
283 static const struct marvell_hw_ecc_layout marvell_nfc_layouts[] = {
284         MARVELL_LAYOUT(  512,   512,  1,  1,  1,  512,  8,  8,  0,  0,  0),
285         MARVELL_LAYOUT( 2048,   512,  1,  1,  1, 2048, 40, 24,  0,  0,  0),
286         MARVELL_LAYOUT( 2048,   512,  4,  1,  1, 2048, 32, 30,  0,  0,  0),
287         MARVELL_LAYOUT( 2048,   512,  8,  2,  1, 1024,  0, 30,1024,32, 30),
288         MARVELL_LAYOUT( 4096,   512,  4,  2,  2, 2048, 32, 30,  0,  0,  0),
289         MARVELL_LAYOUT( 4096,   512,  8,  5,  4, 1024,  0, 30,  0, 64, 30),
290         MARVELL_LAYOUT( 8192,   512,  4,  4,  4, 2048,  0, 30,  0,  0,  0),
291         MARVELL_LAYOUT( 8192,   512,  8,  9,  8, 1024,  0, 30,  0, 160, 30),
292 };
293
294 /**
295  * The Nand Flash Controller has up to 4 CE and 2 RB pins. The CE selection
296  * is made by a field in NDCB0 register, and in another field in NDCB2 register.
297  * The datasheet describes the logic with an error: ADDR5 field is once
298  * declared at the beginning of NDCB2, and another time at its end. Because the
299  * ADDR5 field of NDCB2 may be used by other bytes, it would be more logical
300  * to use the last bit of this field instead of the first ones.
301  *
302  * @cs:                 Wanted CE lane.
303  * @ndcb0_csel:         Value of the NDCB0 register with or without the flag
304  *                      selecting the wanted CE lane. This is set once when
305  *                      the Device Tree is probed.
306  * @rb:                 Ready/Busy pin for the flash chip
307  */
308 struct marvell_nand_chip_sel {
309         unsigned int cs;
310         u32 ndcb0_csel;
311         unsigned int rb;
312 };
313
314 /**
315  * NAND chip structure: stores NAND chip device related information
316  *
317  * @chip:               Base NAND chip structure
318  * @node:               Used to store NAND chips into a list
319  * @layout              NAND layout when using hardware ECC
320  * @ndcr:               Controller register value for this NAND chip
321  * @ndtr0:              Timing registers 0 value for this NAND chip
322  * @ndtr1:              Timing registers 1 value for this NAND chip
323  * @selected_die:       Current active CS
324  * @nsels:              Number of CS lines required by the NAND chip
325  * @sels:               Array of CS lines descriptions
326  */
327 struct marvell_nand_chip {
328         struct nand_chip chip;
329         struct list_head node;
330         const struct marvell_hw_ecc_layout *layout;
331         u32 ndcr;
332         u32 ndtr0;
333         u32 ndtr1;
334         int addr_cyc;
335         int selected_die;
336         unsigned int nsels;
337         struct marvell_nand_chip_sel sels[0];
338 };
339
340 static inline struct marvell_nand_chip *to_marvell_nand(struct nand_chip *chip)
341 {
342         return container_of(chip, struct marvell_nand_chip, chip);
343 }
344
345 static inline struct marvell_nand_chip_sel *to_nand_sel(struct marvell_nand_chip
346                                                         *nand)
347 {
348         return &nand->sels[nand->selected_die];
349 }
350
351 /**
352  * NAND controller capabilities for distinction between compatible strings
353  *
354  * @max_cs_nb:          Number of Chip Select lines available
355  * @max_rb_nb:          Number of Ready/Busy lines available
356  * @need_system_controller: Indicates if the SoC needs to have access to the
357  *                      system controller (ie. to enable the NAND controller)
358  * @legacy_of_bindings: Indicates if DT parsing must be done using the old
359  *                      fashion way
360  * @is_nfcv2:           NFCv2 has numerous enhancements compared to NFCv1, ie.
361  *                      BCH error detection and correction algorithm,
362  *                      NDCB3 register has been added
363  * @use_dma:            Use dma for data transfers
364  */
365 struct marvell_nfc_caps {
366         unsigned int max_cs_nb;
367         unsigned int max_rb_nb;
368         bool need_system_controller;
369         bool legacy_of_bindings;
370         bool is_nfcv2;
371         bool use_dma;
372 };
373
374 /**
375  * NAND controller structure: stores Marvell NAND controller information
376  *
377  * @controller:         Base controller structure
378  * @dev:                Parent device (used to print error messages)
379  * @regs:               NAND controller registers
380  * @core_clk:           Core clock
381  * @reg_clk:            Registers clock
382  * @complete:           Completion object to wait for NAND controller events
383  * @assigned_cs:        Bitmask describing already assigned CS lines
384  * @chips:              List containing all the NAND chips attached to
385  *                      this NAND controller
386  * @caps:               NAND controller capabilities for each compatible string
387  * @dma_chan:           DMA channel (NFCv1 only)
388  * @dma_buf:            32-bit aligned buffer for DMA transfers (NFCv1 only)
389  */
390 struct marvell_nfc {
391         struct nand_controller controller;
392         struct device *dev;
393         void __iomem *regs;
394         struct clk *core_clk;
395         struct clk *reg_clk;
396         struct completion complete;
397         unsigned long assigned_cs;
398         struct list_head chips;
399         struct nand_chip *selected_chip;
400         const struct marvell_nfc_caps *caps;
401
402         /* DMA (NFCv1 only) */
403         bool use_dma;
404         struct dma_chan *dma_chan;
405         u8 *dma_buf;
406 };
407
408 static inline struct marvell_nfc *to_marvell_nfc(struct nand_controller *ctrl)
409 {
410         return container_of(ctrl, struct marvell_nfc, controller);
411 }
412
413 /**
414  * NAND controller timings expressed in NAND Controller clock cycles
415  *
416  * @tRP:                ND_nRE pulse width
417  * @tRH:                ND_nRE high duration
418  * @tWP:                ND_nWE pulse time
419  * @tWH:                ND_nWE high duration
420  * @tCS:                Enable signal setup time
421  * @tCH:                Enable signal hold time
422  * @tADL:               Address to write data delay
423  * @tAR:                ND_ALE low to ND_nRE low delay
424  * @tWHR:               ND_nWE high to ND_nRE low for status read
425  * @tRHW:               ND_nRE high duration, read to write delay
426  * @tR:                 ND_nWE high to ND_nRE low for read
427  */
428 struct marvell_nfc_timings {
429         /* NDTR0 fields */
430         unsigned int tRP;
431         unsigned int tRH;
432         unsigned int tWP;
433         unsigned int tWH;
434         unsigned int tCS;
435         unsigned int tCH;
436         unsigned int tADL;
437         /* NDTR1 fields */
438         unsigned int tAR;
439         unsigned int tWHR;
440         unsigned int tRHW;
441         unsigned int tR;
442 };
443
444 /**
445  * Derives a duration in numbers of clock cycles.
446  *
447  * @ps: Duration in pico-seconds
448  * @period_ns:  Clock period in nano-seconds
449  *
450  * Convert the duration in nano-seconds, then divide by the period and
451  * return the number of clock periods.
452  */
453 #define TO_CYCLES(ps, period_ns) (DIV_ROUND_UP(ps / 1000, period_ns))
454 #define TO_CYCLES64(ps, period_ns) (DIV_ROUND_UP_ULL(div_u64(ps, 1000), \
455                                                      period_ns))
456
457 /**
458  * NAND driver structure filled during the parsing of the ->exec_op() subop
459  * subset of instructions.
460  *
461  * @ndcb:               Array of values written to NDCBx registers
462  * @cle_ale_delay_ns:   Optional delay after the last CMD or ADDR cycle
463  * @rdy_timeout_ms:     Timeout for waits on Ready/Busy pin
464  * @rdy_delay_ns:       Optional delay after waiting for the RB pin
465  * @data_delay_ns:      Optional delay after the data xfer
466  * @data_instr_idx:     Index of the data instruction in the subop
467  * @data_instr:         Pointer to the data instruction in the subop
468  */
469 struct marvell_nfc_op {
470         u32 ndcb[4];
471         unsigned int cle_ale_delay_ns;
472         unsigned int rdy_timeout_ms;
473         unsigned int rdy_delay_ns;
474         unsigned int data_delay_ns;
475         unsigned int data_instr_idx;
476         const struct nand_op_instr *data_instr;
477 };
478
479 /*
480  * Internal helper to conditionnally apply a delay (from the above structure,
481  * most of the time).
482  */
483 static void cond_delay(unsigned int ns)
484 {
485         if (!ns)
486                 return;
487
488         if (ns < 10000)
489                 ndelay(ns);
490         else
491                 udelay(DIV_ROUND_UP(ns, 1000));
492 }
493
494 /*
495  * The controller has many flags that could generate interrupts, most of them
496  * are disabled and polling is used. For the very slow signals, using interrupts
497  * may relax the CPU charge.
498  */
499 static void marvell_nfc_disable_int(struct marvell_nfc *nfc, u32 int_mask)
500 {
501         u32 reg;
502
503         /* Writing 1 disables the interrupt */
504         reg = readl_relaxed(nfc->regs + NDCR);
505         writel_relaxed(reg | int_mask, nfc->regs + NDCR);
506 }
507
508 static void marvell_nfc_enable_int(struct marvell_nfc *nfc, u32 int_mask)
509 {
510         u32 reg;
511
512         /* Writing 0 enables the interrupt */
513         reg = readl_relaxed(nfc->regs + NDCR);
514         writel_relaxed(reg & ~int_mask, nfc->regs + NDCR);
515 }
516
517 static u32 marvell_nfc_clear_int(struct marvell_nfc *nfc, u32 int_mask)
518 {
519         u32 reg;
520
521         reg = readl_relaxed(nfc->regs + NDSR);
522         writel_relaxed(int_mask, nfc->regs + NDSR);
523
524         return reg & int_mask;
525 }
526
527 static void marvell_nfc_force_byte_access(struct nand_chip *chip,
528                                           bool force_8bit)
529 {
530         struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
531         u32 ndcr;
532
533         /*
534          * Callers of this function do not verify if the NAND is using a 16-bit
535          * an 8-bit bus for normal operations, so we need to take care of that
536          * here by leaving the configuration unchanged if the NAND does not have
537          * the NAND_BUSWIDTH_16 flag set.
538          */
539         if (!(chip->options & NAND_BUSWIDTH_16))
540                 return;
541
542         ndcr = readl_relaxed(nfc->regs + NDCR);
543
544         if (force_8bit)
545                 ndcr &= ~(NDCR_DWIDTH_M | NDCR_DWIDTH_C);
546         else
547                 ndcr |= NDCR_DWIDTH_M | NDCR_DWIDTH_C;
548
549         writel_relaxed(ndcr, nfc->regs + NDCR);
550 }
551
552 static int marvell_nfc_wait_ndrun(struct nand_chip *chip)
553 {
554         struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
555         u32 val;
556         int ret;
557
558         /*
559          * The command is being processed, wait for the ND_RUN bit to be
560          * cleared by the NFC. If not, we must clear it by hand.
561          */
562         ret = readl_relaxed_poll_timeout(nfc->regs + NDCR, val,
563                                          (val & NDCR_ND_RUN) == 0,
564                                          POLL_PERIOD, POLL_TIMEOUT);
565         if (ret) {
566                 dev_err(nfc->dev, "Timeout on NAND controller run mode\n");
567                 writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN,
568                                nfc->regs + NDCR);
569                 return ret;
570         }
571
572         return 0;
573 }
574
575 /*
576  * Any time a command has to be sent to the controller, the following sequence
577  * has to be followed:
578  * - call marvell_nfc_prepare_cmd()
579  *      -> activate the ND_RUN bit that will kind of 'start a job'
580  *      -> wait the signal indicating the NFC is waiting for a command
581  * - send the command (cmd and address cycles)
582  * - enventually send or receive the data
583  * - call marvell_nfc_end_cmd() with the corresponding flag
584  *      -> wait the flag to be triggered or cancel the job with a timeout
585  *
586  * The following helpers are here to factorize the code a bit so that
587  * specialized functions responsible for executing the actual NAND
588  * operations do not have to replicate the same code blocks.
589  */
590 static int marvell_nfc_prepare_cmd(struct nand_chip *chip)
591 {
592         struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
593         u32 ndcr, val;
594         int ret;
595
596         /* Poll ND_RUN and clear NDSR before issuing any command */
597         ret = marvell_nfc_wait_ndrun(chip);
598         if (ret) {
599                 dev_err(nfc->dev, "Last operation did not succeed\n");
600                 return ret;
601         }
602
603         ndcr = readl_relaxed(nfc->regs + NDCR);
604         writel_relaxed(readl(nfc->regs + NDSR), nfc->regs + NDSR);
605
606         /* Assert ND_RUN bit and wait the NFC to be ready */
607         writel_relaxed(ndcr | NDCR_ND_RUN, nfc->regs + NDCR);
608         ret = readl_relaxed_poll_timeout(nfc->regs + NDSR, val,
609                                          val & NDSR_WRCMDREQ,
610                                          POLL_PERIOD, POLL_TIMEOUT);
611         if (ret) {
612                 dev_err(nfc->dev, "Timeout on WRCMDRE\n");
613                 return -ETIMEDOUT;
614         }
615
616         /* Command may be written, clear WRCMDREQ status bit */
617         writel_relaxed(NDSR_WRCMDREQ, nfc->regs + NDSR);
618
619         return 0;
620 }
621
622 static void marvell_nfc_send_cmd(struct nand_chip *chip,
623                                  struct marvell_nfc_op *nfc_op)
624 {
625         struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
626         struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
627
628         dev_dbg(nfc->dev, "\nNDCR:  0x%08x\n"
629                 "NDCB0: 0x%08x\nNDCB1: 0x%08x\nNDCB2: 0x%08x\nNDCB3: 0x%08x\n",
630                 (u32)readl_relaxed(nfc->regs + NDCR), nfc_op->ndcb[0],
631                 nfc_op->ndcb[1], nfc_op->ndcb[2], nfc_op->ndcb[3]);
632
633         writel_relaxed(to_nand_sel(marvell_nand)->ndcb0_csel | nfc_op->ndcb[0],
634                        nfc->regs + NDCB0);
635         writel_relaxed(nfc_op->ndcb[1], nfc->regs + NDCB0);
636         writel(nfc_op->ndcb[2], nfc->regs + NDCB0);
637
638         /*
639          * Write NDCB0 four times only if LEN_OVRD is set or if ADDR6 or ADDR7
640          * fields are used (only available on NFCv2).
641          */
642         if (nfc_op->ndcb[0] & NDCB0_LEN_OVRD ||
643             NDCB0_ADDR_GET_NUM_CYC(nfc_op->ndcb[0]) >= 6) {
644                 if (!WARN_ON_ONCE(!nfc->caps->is_nfcv2))
645                         writel(nfc_op->ndcb[3], nfc->regs + NDCB0);
646         }
647 }
648
649 static int marvell_nfc_end_cmd(struct nand_chip *chip, int flag,
650                                const char *label)
651 {
652         struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
653         u32 val;
654         int ret;
655
656         ret = readl_relaxed_poll_timeout(nfc->regs + NDSR, val,
657                                          val & flag,
658                                          POLL_PERIOD, POLL_TIMEOUT);
659
660         if (ret) {
661                 dev_err(nfc->dev, "Timeout on %s (NDSR: 0x%08x)\n",
662                         label, val);
663                 if (nfc->dma_chan)
664                         dmaengine_terminate_all(nfc->dma_chan);
665                 return ret;
666         }
667
668         /*
669          * DMA function uses this helper to poll on CMDD bits without wanting
670          * them to be cleared.
671          */
672         if (nfc->use_dma && (readl_relaxed(nfc->regs + NDCR) & NDCR_DMA_EN))
673                 return 0;
674
675         writel_relaxed(flag, nfc->regs + NDSR);
676
677         return 0;
678 }
679
680 static int marvell_nfc_wait_cmdd(struct nand_chip *chip)
681 {
682         struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
683         int cs_flag = NDSR_CMDD(to_nand_sel(marvell_nand)->ndcb0_csel);
684
685         return marvell_nfc_end_cmd(chip, cs_flag, "CMDD");
686 }
687
688 static int marvell_nfc_wait_op(struct nand_chip *chip, unsigned int timeout_ms)
689 {
690         struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
691         u32 pending;
692         int ret;
693
694         /* Timeout is expressed in ms */
695         if (!timeout_ms)
696                 timeout_ms = IRQ_TIMEOUT;
697
698         init_completion(&nfc->complete);
699
700         marvell_nfc_enable_int(nfc, NDCR_RDYM);
701         ret = wait_for_completion_timeout(&nfc->complete,
702                                           msecs_to_jiffies(timeout_ms));
703         marvell_nfc_disable_int(nfc, NDCR_RDYM);
704         pending = marvell_nfc_clear_int(nfc, NDSR_RDY(0) | NDSR_RDY(1));
705
706         /*
707          * In case the interrupt was not served in the required time frame,
708          * check if the ISR was not served or if something went actually wrong.
709          */
710         if (ret && !pending) {
711                 dev_err(nfc->dev, "Timeout waiting for RB signal\n");
712                 return -ETIMEDOUT;
713         }
714
715         return 0;
716 }
717
718 static void marvell_nfc_select_target(struct nand_chip *chip,
719                                       unsigned int die_nr)
720 {
721         struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
722         struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
723         u32 ndcr_generic;
724
725         if (chip == nfc->selected_chip && die_nr == marvell_nand->selected_die)
726                 return;
727
728         writel_relaxed(marvell_nand->ndtr0, nfc->regs + NDTR0);
729         writel_relaxed(marvell_nand->ndtr1, nfc->regs + NDTR1);
730
731         /*
732          * Reset the NDCR register to a clean state for this particular chip,
733          * also clear ND_RUN bit.
734          */
735         ndcr_generic = readl_relaxed(nfc->regs + NDCR) &
736                        NDCR_GENERIC_FIELDS_MASK & ~NDCR_ND_RUN;
737         writel_relaxed(ndcr_generic | marvell_nand->ndcr, nfc->regs + NDCR);
738
739         /* Also reset the interrupt status register */
740         marvell_nfc_clear_int(nfc, NDCR_ALL_INT);
741
742         nfc->selected_chip = chip;
743         marvell_nand->selected_die = die_nr;
744 }
745
746 static irqreturn_t marvell_nfc_isr(int irq, void *dev_id)
747 {
748         struct marvell_nfc *nfc = dev_id;
749         u32 st = readl_relaxed(nfc->regs + NDSR);
750         u32 ien = (~readl_relaxed(nfc->regs + NDCR)) & NDCR_ALL_INT;
751
752         /*
753          * RDY interrupt mask is one bit in NDCR while there are two status
754          * bit in NDSR (RDY[cs0/cs2] and RDY[cs1/cs3]).
755          */
756         if (st & NDSR_RDY(1))
757                 st |= NDSR_RDY(0);
758
759         if (!(st & ien))
760                 return IRQ_NONE;
761
762         marvell_nfc_disable_int(nfc, st & NDCR_ALL_INT);
763
764         if (st & (NDSR_RDY(0) | NDSR_RDY(1)))
765                 complete(&nfc->complete);
766
767         return IRQ_HANDLED;
768 }
769
770 /* HW ECC related functions */
771 static void marvell_nfc_enable_hw_ecc(struct nand_chip *chip)
772 {
773         struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
774         u32 ndcr = readl_relaxed(nfc->regs + NDCR);
775
776         if (!(ndcr & NDCR_ECC_EN)) {
777                 writel_relaxed(ndcr | NDCR_ECC_EN, nfc->regs + NDCR);
778
779                 /*
780                  * When enabling BCH, set threshold to 0 to always know the
781                  * number of corrected bitflips.
782                  */
783                 if (chip->ecc.algo == NAND_ECC_BCH)
784                         writel_relaxed(NDECCCTRL_BCH_EN, nfc->regs + NDECCCTRL);
785         }
786 }
787
788 static void marvell_nfc_disable_hw_ecc(struct nand_chip *chip)
789 {
790         struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
791         u32 ndcr = readl_relaxed(nfc->regs + NDCR);
792
793         if (ndcr & NDCR_ECC_EN) {
794                 writel_relaxed(ndcr & ~NDCR_ECC_EN, nfc->regs + NDCR);
795                 if (chip->ecc.algo == NAND_ECC_BCH)
796                         writel_relaxed(0, nfc->regs + NDECCCTRL);
797         }
798 }
799
800 /* DMA related helpers */
801 static void marvell_nfc_enable_dma(struct marvell_nfc *nfc)
802 {
803         u32 reg;
804
805         reg = readl_relaxed(nfc->regs + NDCR);
806         writel_relaxed(reg | NDCR_DMA_EN, nfc->regs + NDCR);
807 }
808
809 static void marvell_nfc_disable_dma(struct marvell_nfc *nfc)
810 {
811         u32 reg;
812
813         reg = readl_relaxed(nfc->regs + NDCR);
814         writel_relaxed(reg & ~NDCR_DMA_EN, nfc->regs + NDCR);
815 }
816
817 /* Read/write PIO/DMA accessors */
818 static int marvell_nfc_xfer_data_dma(struct marvell_nfc *nfc,
819                                      enum dma_data_direction direction,
820                                      unsigned int len)
821 {
822         unsigned int dma_len = min_t(int, ALIGN(len, 32), MAX_CHUNK_SIZE);
823         struct dma_async_tx_descriptor *tx;
824         struct scatterlist sg;
825         dma_cookie_t cookie;
826         int ret;
827
828         marvell_nfc_enable_dma(nfc);
829         /* Prepare the DMA transfer */
830         sg_init_one(&sg, nfc->dma_buf, dma_len);
831         dma_map_sg(nfc->dma_chan->device->dev, &sg, 1, direction);
832         tx = dmaengine_prep_slave_sg(nfc->dma_chan, &sg, 1,
833                                      direction == DMA_FROM_DEVICE ?
834                                      DMA_DEV_TO_MEM : DMA_MEM_TO_DEV,
835                                      DMA_PREP_INTERRUPT);
836         if (!tx) {
837                 dev_err(nfc->dev, "Could not prepare DMA S/G list\n");
838                 return -ENXIO;
839         }
840
841         /* Do the task and wait for it to finish */
842         cookie = dmaengine_submit(tx);
843         ret = dma_submit_error(cookie);
844         if (ret)
845                 return -EIO;
846
847         dma_async_issue_pending(nfc->dma_chan);
848         ret = marvell_nfc_wait_cmdd(nfc->selected_chip);
849         dma_unmap_sg(nfc->dma_chan->device->dev, &sg, 1, direction);
850         marvell_nfc_disable_dma(nfc);
851         if (ret) {
852                 dev_err(nfc->dev, "Timeout waiting for DMA (status: %d)\n",
853                         dmaengine_tx_status(nfc->dma_chan, cookie, NULL));
854                 dmaengine_terminate_all(nfc->dma_chan);
855                 return -ETIMEDOUT;
856         }
857
858         return 0;
859 }
860
861 static int marvell_nfc_xfer_data_in_pio(struct marvell_nfc *nfc, u8 *in,
862                                         unsigned int len)
863 {
864         unsigned int last_len = len % FIFO_DEPTH;
865         unsigned int last_full_offset = round_down(len, FIFO_DEPTH);
866         int i;
867
868         for (i = 0; i < last_full_offset; i += FIFO_DEPTH)
869                 ioread32_rep(nfc->regs + NDDB, in + i, FIFO_REP(FIFO_DEPTH));
870
871         if (last_len) {
872                 u8 tmp_buf[FIFO_DEPTH];
873
874                 ioread32_rep(nfc->regs + NDDB, tmp_buf, FIFO_REP(FIFO_DEPTH));
875                 memcpy(in + last_full_offset, tmp_buf, last_len);
876         }
877
878         return 0;
879 }
880
881 static int marvell_nfc_xfer_data_out_pio(struct marvell_nfc *nfc, const u8 *out,
882                                          unsigned int len)
883 {
884         unsigned int last_len = len % FIFO_DEPTH;
885         unsigned int last_full_offset = round_down(len, FIFO_DEPTH);
886         int i;
887
888         for (i = 0; i < last_full_offset; i += FIFO_DEPTH)
889                 iowrite32_rep(nfc->regs + NDDB, out + i, FIFO_REP(FIFO_DEPTH));
890
891         if (last_len) {
892                 u8 tmp_buf[FIFO_DEPTH];
893
894                 memcpy(tmp_buf, out + last_full_offset, last_len);
895                 iowrite32_rep(nfc->regs + NDDB, tmp_buf, FIFO_REP(FIFO_DEPTH));
896         }
897
898         return 0;
899 }
900
901 static void marvell_nfc_check_empty_chunk(struct nand_chip *chip,
902                                           u8 *data, int data_len,
903                                           u8 *spare, int spare_len,
904                                           u8 *ecc, int ecc_len,
905                                           unsigned int *max_bitflips)
906 {
907         struct mtd_info *mtd = nand_to_mtd(chip);
908         int bf;
909
910         /*
911          * Blank pages (all 0xFF) that have not been written may be recognized
912          * as bad if bitflips occur, so whenever an uncorrectable error occurs,
913          * check if the entire page (with ECC bytes) is actually blank or not.
914          */
915         if (!data)
916                 data_len = 0;
917         if (!spare)
918                 spare_len = 0;
919         if (!ecc)
920                 ecc_len = 0;
921
922         bf = nand_check_erased_ecc_chunk(data, data_len, ecc, ecc_len,
923                                          spare, spare_len, chip->ecc.strength);
924         if (bf < 0) {
925                 mtd->ecc_stats.failed++;
926                 return;
927         }
928
929         /* Update the stats and max_bitflips */
930         mtd->ecc_stats.corrected += bf;
931         *max_bitflips = max_t(unsigned int, *max_bitflips, bf);
932 }
933
934 /*
935  * Check a chunk is correct or not according to hardware ECC engine.
936  * mtd->ecc_stats.corrected is updated, as well as max_bitflips, however
937  * mtd->ecc_stats.failure is not, the function will instead return a non-zero
938  * value indicating that a check on the emptyness of the subpage must be
939  * performed before declaring the subpage corrupted.
940  */
941 static int marvell_nfc_hw_ecc_correct(struct nand_chip *chip,
942                                       unsigned int *max_bitflips)
943 {
944         struct mtd_info *mtd = nand_to_mtd(chip);
945         struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
946         int bf = 0;
947         u32 ndsr;
948
949         ndsr = readl_relaxed(nfc->regs + NDSR);
950
951         /* Check uncorrectable error flag */
952         if (ndsr & NDSR_UNCERR) {
953                 writel_relaxed(ndsr, nfc->regs + NDSR);
954
955                 /*
956                  * Do not increment ->ecc_stats.failed now, instead, return a
957                  * non-zero value to indicate that this chunk was apparently
958                  * bad, and it should be check to see if it empty or not. If
959                  * the chunk (with ECC bytes) is not declared empty, the calling
960                  * function must increment the failure count.
961                  */
962                 return -EBADMSG;
963         }
964
965         /* Check correctable error flag */
966         if (ndsr & NDSR_CORERR) {
967                 writel_relaxed(ndsr, nfc->regs + NDSR);
968
969                 if (chip->ecc.algo == NAND_ECC_BCH)
970                         bf = NDSR_ERRCNT(ndsr);
971                 else
972                         bf = 1;
973         }
974
975         /* Update the stats and max_bitflips */
976         mtd->ecc_stats.corrected += bf;
977         *max_bitflips = max_t(unsigned int, *max_bitflips, bf);
978
979         return 0;
980 }
981
982 /* Hamming read helpers */
983 static int marvell_nfc_hw_ecc_hmg_do_read_page(struct nand_chip *chip,
984                                                u8 *data_buf, u8 *oob_buf,
985                                                bool raw, int page)
986 {
987         struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
988         struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
989         const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
990         struct marvell_nfc_op nfc_op = {
991                 .ndcb[0] = NDCB0_CMD_TYPE(TYPE_READ) |
992                            NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
993                            NDCB0_DBC |
994                            NDCB0_CMD1(NAND_CMD_READ0) |
995                            NDCB0_CMD2(NAND_CMD_READSTART),
996                 .ndcb[1] = NDCB1_ADDRS_PAGE(page),
997                 .ndcb[2] = NDCB2_ADDR5_PAGE(page),
998         };
999         unsigned int oob_bytes = lt->spare_bytes + (raw ? lt->ecc_bytes : 0);
1000         int ret;
1001
1002         /* NFCv2 needs more information about the operation being executed */
1003         if (nfc->caps->is_nfcv2)
1004                 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW);
1005
1006         ret = marvell_nfc_prepare_cmd(chip);
1007         if (ret)
1008                 return ret;
1009
1010         marvell_nfc_send_cmd(chip, &nfc_op);
1011         ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
1012                                   "RDDREQ while draining FIFO (data/oob)");
1013         if (ret)
1014                 return ret;
1015
1016         /*
1017          * Read the page then the OOB area. Unlike what is shown in current
1018          * documentation, spare bytes are protected by the ECC engine, and must
1019          * be at the beginning of the OOB area or running this driver on legacy
1020          * systems will prevent the discovery of the BBM/BBT.
1021          */
1022         if (nfc->use_dma) {
1023                 marvell_nfc_xfer_data_dma(nfc, DMA_FROM_DEVICE,
1024                                           lt->data_bytes + oob_bytes);
1025                 memcpy(data_buf, nfc->dma_buf, lt->data_bytes);
1026                 memcpy(oob_buf, nfc->dma_buf + lt->data_bytes, oob_bytes);
1027         } else {
1028                 marvell_nfc_xfer_data_in_pio(nfc, data_buf, lt->data_bytes);
1029                 marvell_nfc_xfer_data_in_pio(nfc, oob_buf, oob_bytes);
1030         }
1031
1032         ret = marvell_nfc_wait_cmdd(chip);
1033         return ret;
1034 }
1035
1036 static int marvell_nfc_hw_ecc_hmg_read_page_raw(struct nand_chip *chip, u8 *buf,
1037                                                 int oob_required, int page)
1038 {
1039         marvell_nfc_select_target(chip, chip->cur_cs);
1040         return marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi,
1041                                                    true, page);
1042 }
1043
1044 static int marvell_nfc_hw_ecc_hmg_read_page(struct nand_chip *chip, u8 *buf,
1045                                             int oob_required, int page)
1046 {
1047         const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1048         unsigned int full_sz = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes;
1049         int max_bitflips = 0, ret;
1050         u8 *raw_buf;
1051
1052         marvell_nfc_select_target(chip, chip->cur_cs);
1053         marvell_nfc_enable_hw_ecc(chip);
1054         marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi, false,
1055                                             page);
1056         ret = marvell_nfc_hw_ecc_correct(chip, &max_bitflips);
1057         marvell_nfc_disable_hw_ecc(chip);
1058
1059         if (!ret)
1060                 return max_bitflips;
1061
1062         /*
1063          * When ECC failures are detected, check if the full page has been
1064          * written or not. Ignore the failure if it is actually empty.
1065          */
1066         raw_buf = kmalloc(full_sz, GFP_KERNEL);
1067         if (!raw_buf)
1068                 return -ENOMEM;
1069
1070         marvell_nfc_hw_ecc_hmg_do_read_page(chip, raw_buf, raw_buf +
1071                                             lt->data_bytes, true, page);
1072         marvell_nfc_check_empty_chunk(chip, raw_buf, full_sz, NULL, 0, NULL, 0,
1073                                       &max_bitflips);
1074         kfree(raw_buf);
1075
1076         return max_bitflips;
1077 }
1078
1079 /*
1080  * Spare area in Hamming layouts is not protected by the ECC engine (even if
1081  * it appears before the ECC bytes when reading), the ->read_oob_raw() function
1082  * also stands for ->read_oob().
1083  */
1084 static int marvell_nfc_hw_ecc_hmg_read_oob_raw(struct nand_chip *chip, int page)
1085 {
1086         u8 *buf = nand_get_data_buf(chip);
1087
1088         marvell_nfc_select_target(chip, chip->cur_cs);
1089         return marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi,
1090                                                    true, page);
1091 }
1092
1093 /* Hamming write helpers */
1094 static int marvell_nfc_hw_ecc_hmg_do_write_page(struct nand_chip *chip,
1095                                                 const u8 *data_buf,
1096                                                 const u8 *oob_buf, bool raw,
1097                                                 int page)
1098 {
1099         struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
1100         struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1101         const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1102         struct marvell_nfc_op nfc_op = {
1103                 .ndcb[0] = NDCB0_CMD_TYPE(TYPE_WRITE) |
1104                            NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
1105                            NDCB0_CMD1(NAND_CMD_SEQIN) |
1106                            NDCB0_CMD2(NAND_CMD_PAGEPROG) |
1107                            NDCB0_DBC,
1108                 .ndcb[1] = NDCB1_ADDRS_PAGE(page),
1109                 .ndcb[2] = NDCB2_ADDR5_PAGE(page),
1110         };
1111         unsigned int oob_bytes = lt->spare_bytes + (raw ? lt->ecc_bytes : 0);
1112         int ret;
1113
1114         /* NFCv2 needs more information about the operation being executed */
1115         if (nfc->caps->is_nfcv2)
1116                 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW);
1117
1118         ret = marvell_nfc_prepare_cmd(chip);
1119         if (ret)
1120                 return ret;
1121
1122         marvell_nfc_send_cmd(chip, &nfc_op);
1123         ret = marvell_nfc_end_cmd(chip, NDSR_WRDREQ,
1124                                   "WRDREQ while loading FIFO (data)");
1125         if (ret)
1126                 return ret;
1127
1128         /* Write the page then the OOB area */
1129         if (nfc->use_dma) {
1130                 memcpy(nfc->dma_buf, data_buf, lt->data_bytes);
1131                 memcpy(nfc->dma_buf + lt->data_bytes, oob_buf, oob_bytes);
1132                 marvell_nfc_xfer_data_dma(nfc, DMA_TO_DEVICE, lt->data_bytes +
1133                                           lt->ecc_bytes + lt->spare_bytes);
1134         } else {
1135                 marvell_nfc_xfer_data_out_pio(nfc, data_buf, lt->data_bytes);
1136                 marvell_nfc_xfer_data_out_pio(nfc, oob_buf, oob_bytes);
1137         }
1138
1139         ret = marvell_nfc_wait_cmdd(chip);
1140         if (ret)
1141                 return ret;
1142
1143         ret = marvell_nfc_wait_op(chip,
1144                                   PSEC_TO_MSEC(chip->data_interface.timings.sdr.tPROG_max));
1145         return ret;
1146 }
1147
1148 static int marvell_nfc_hw_ecc_hmg_write_page_raw(struct nand_chip *chip,
1149                                                  const u8 *buf,
1150                                                  int oob_required, int page)
1151 {
1152         marvell_nfc_select_target(chip, chip->cur_cs);
1153         return marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi,
1154                                                     true, page);
1155 }
1156
1157 static int marvell_nfc_hw_ecc_hmg_write_page(struct nand_chip *chip,
1158                                              const u8 *buf,
1159                                              int oob_required, int page)
1160 {
1161         int ret;
1162
1163         marvell_nfc_select_target(chip, chip->cur_cs);
1164         marvell_nfc_enable_hw_ecc(chip);
1165         ret = marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi,
1166                                                    false, page);
1167         marvell_nfc_disable_hw_ecc(chip);
1168
1169         return ret;
1170 }
1171
1172 /*
1173  * Spare area in Hamming layouts is not protected by the ECC engine (even if
1174  * it appears before the ECC bytes when reading), the ->write_oob_raw() function
1175  * also stands for ->write_oob().
1176  */
1177 static int marvell_nfc_hw_ecc_hmg_write_oob_raw(struct nand_chip *chip,
1178                                                 int page)
1179 {
1180         struct mtd_info *mtd = nand_to_mtd(chip);
1181         u8 *buf = nand_get_data_buf(chip);
1182
1183         memset(buf, 0xFF, mtd->writesize);
1184
1185         marvell_nfc_select_target(chip, chip->cur_cs);
1186         return marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi,
1187                                                     true, page);
1188 }
1189
1190 /* BCH read helpers */
1191 static int marvell_nfc_hw_ecc_bch_read_page_raw(struct nand_chip *chip, u8 *buf,
1192                                                 int oob_required, int page)
1193 {
1194         struct mtd_info *mtd = nand_to_mtd(chip);
1195         const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1196         u8 *oob = chip->oob_poi;
1197         int chunk_size = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes;
1198         int ecc_offset = (lt->full_chunk_cnt * lt->spare_bytes) +
1199                 lt->last_spare_bytes;
1200         int data_len = lt->data_bytes;
1201         int spare_len = lt->spare_bytes;
1202         int ecc_len = lt->ecc_bytes;
1203         int chunk;
1204
1205         marvell_nfc_select_target(chip, chip->cur_cs);
1206
1207         if (oob_required)
1208                 memset(chip->oob_poi, 0xFF, mtd->oobsize);
1209
1210         nand_read_page_op(chip, page, 0, NULL, 0);
1211
1212         for (chunk = 0; chunk < lt->nchunks; chunk++) {
1213                 /* Update last chunk length */
1214                 if (chunk >= lt->full_chunk_cnt) {
1215                         data_len = lt->last_data_bytes;
1216                         spare_len = lt->last_spare_bytes;
1217                         ecc_len = lt->last_ecc_bytes;
1218                 }
1219
1220                 /* Read data bytes*/
1221                 nand_change_read_column_op(chip, chunk * chunk_size,
1222                                            buf + (lt->data_bytes * chunk),
1223                                            data_len, false);
1224
1225                 /* Read spare bytes */
1226                 nand_read_data_op(chip, oob + (lt->spare_bytes * chunk),
1227                                   spare_len, false);
1228
1229                 /* Read ECC bytes */
1230                 nand_read_data_op(chip, oob + ecc_offset +
1231                                   (ALIGN(lt->ecc_bytes, 32) * chunk),
1232                                   ecc_len, false);
1233         }
1234
1235         return 0;
1236 }
1237
1238 static void marvell_nfc_hw_ecc_bch_read_chunk(struct nand_chip *chip, int chunk,
1239                                               u8 *data, unsigned int data_len,
1240                                               u8 *spare, unsigned int spare_len,
1241                                               int page)
1242 {
1243         struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
1244         struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1245         const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1246         int i, ret;
1247         struct marvell_nfc_op nfc_op = {
1248                 .ndcb[0] = NDCB0_CMD_TYPE(TYPE_READ) |
1249                            NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
1250                            NDCB0_LEN_OVRD,
1251                 .ndcb[1] = NDCB1_ADDRS_PAGE(page),
1252                 .ndcb[2] = NDCB2_ADDR5_PAGE(page),
1253                 .ndcb[3] = data_len + spare_len,
1254         };
1255
1256         ret = marvell_nfc_prepare_cmd(chip);
1257         if (ret)
1258                 return;
1259
1260         if (chunk == 0)
1261                 nfc_op.ndcb[0] |= NDCB0_DBC |
1262                                   NDCB0_CMD1(NAND_CMD_READ0) |
1263                                   NDCB0_CMD2(NAND_CMD_READSTART);
1264
1265         /*
1266          * Trigger the monolithic read on the first chunk, then naked read on
1267          * intermediate chunks and finally a last naked read on the last chunk.
1268          */
1269         if (chunk == 0)
1270                 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW);
1271         else if (chunk < lt->nchunks - 1)
1272                 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_NAKED_RW);
1273         else
1274                 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);
1275
1276         marvell_nfc_send_cmd(chip, &nfc_op);
1277
1278         /*
1279          * According to the datasheet, when reading from NDDB
1280          * with BCH enabled, after each 32 bytes reads, we
1281          * have to make sure that the NDSR.RDDREQ bit is set.
1282          *
1283          * Drain the FIFO, 8 32-bit reads at a time, and skip
1284          * the polling on the last read.
1285          *
1286          * Length is a multiple of 32 bytes, hence it is a multiple of 8 too.
1287          */
1288         for (i = 0; i < data_len; i += FIFO_DEPTH * BCH_SEQ_READS) {
1289                 marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
1290                                     "RDDREQ while draining FIFO (data)");
1291                 marvell_nfc_xfer_data_in_pio(nfc, data,
1292                                              FIFO_DEPTH * BCH_SEQ_READS);
1293                 data += FIFO_DEPTH * BCH_SEQ_READS;
1294         }
1295
1296         for (i = 0; i < spare_len; i += FIFO_DEPTH * BCH_SEQ_READS) {
1297                 marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
1298                                     "RDDREQ while draining FIFO (OOB)");
1299                 marvell_nfc_xfer_data_in_pio(nfc, spare,
1300                                              FIFO_DEPTH * BCH_SEQ_READS);
1301                 spare += FIFO_DEPTH * BCH_SEQ_READS;
1302         }
1303 }
1304
1305 static int marvell_nfc_hw_ecc_bch_read_page(struct nand_chip *chip,
1306                                             u8 *buf, int oob_required,
1307                                             int page)
1308 {
1309         struct mtd_info *mtd = nand_to_mtd(chip);
1310         const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1311         int data_len = lt->data_bytes, spare_len = lt->spare_bytes;
1312         u8 *data = buf, *spare = chip->oob_poi;
1313         int max_bitflips = 0;
1314         u32 failure_mask = 0;
1315         int chunk, ret;
1316
1317         marvell_nfc_select_target(chip, chip->cur_cs);
1318
1319         /*
1320          * With BCH, OOB is not fully used (and thus not read entirely), not
1321          * expected bytes could show up at the end of the OOB buffer if not
1322          * explicitly erased.
1323          */
1324         if (oob_required)
1325                 memset(chip->oob_poi, 0xFF, mtd->oobsize);
1326
1327         marvell_nfc_enable_hw_ecc(chip);
1328
1329         for (chunk = 0; chunk < lt->nchunks; chunk++) {
1330                 /* Update length for the last chunk */
1331                 if (chunk >= lt->full_chunk_cnt) {
1332                         data_len = lt->last_data_bytes;
1333                         spare_len = lt->last_spare_bytes;
1334                 }
1335
1336                 /* Read the chunk and detect number of bitflips */
1337                 marvell_nfc_hw_ecc_bch_read_chunk(chip, chunk, data, data_len,
1338                                                   spare, spare_len, page);
1339                 ret = marvell_nfc_hw_ecc_correct(chip, &max_bitflips);
1340                 if (ret)
1341                         failure_mask |= BIT(chunk);
1342
1343                 data += data_len;
1344                 spare += spare_len;
1345         }
1346
1347         marvell_nfc_disable_hw_ecc(chip);
1348
1349         if (!failure_mask)
1350                 return max_bitflips;
1351
1352         /*
1353          * Please note that dumping the ECC bytes during a normal read with OOB
1354          * area would add a significant overhead as ECC bytes are "consumed" by
1355          * the controller in normal mode and must be re-read in raw mode. To
1356          * avoid dropping the performances, we prefer not to include them. The
1357          * user should re-read the page in raw mode if ECC bytes are required.
1358          */
1359
1360         /*
1361          * In case there is any subpage read error reported by ->correct(), we
1362          * usually re-read only ECC bytes in raw mode and check if the whole
1363          * page is empty. In this case, it is normal that the ECC check failed
1364          * and we just ignore the error.
1365          *
1366          * However, it has been empirically observed that for some layouts (e.g
1367          * 2k page, 8b strength per 512B chunk), the controller tries to correct
1368          * bits and may create itself bitflips in the erased area. To overcome
1369          * this strange behavior, the whole page is re-read in raw mode, not
1370          * only the ECC bytes.
1371          */
1372         for (chunk = 0; chunk < lt->nchunks; chunk++) {
1373                 int data_off_in_page, spare_off_in_page, ecc_off_in_page;
1374                 int data_off, spare_off, ecc_off;
1375                 int data_len, spare_len, ecc_len;
1376
1377                 /* No failure reported for this chunk, move to the next one */
1378                 if (!(failure_mask & BIT(chunk)))
1379                         continue;
1380
1381                 data_off_in_page = chunk * (lt->data_bytes + lt->spare_bytes +
1382                                             lt->ecc_bytes);
1383                 spare_off_in_page = data_off_in_page +
1384                         (chunk < lt->full_chunk_cnt ? lt->data_bytes :
1385                                                       lt->last_data_bytes);
1386                 ecc_off_in_page = spare_off_in_page +
1387                         (chunk < lt->full_chunk_cnt ? lt->spare_bytes :
1388                                                       lt->last_spare_bytes);
1389
1390                 data_off = chunk * lt->data_bytes;
1391                 spare_off = chunk * lt->spare_bytes;
1392                 ecc_off = (lt->full_chunk_cnt * lt->spare_bytes) +
1393                           lt->last_spare_bytes +
1394                           (chunk * (lt->ecc_bytes + 2));
1395
1396                 data_len = chunk < lt->full_chunk_cnt ? lt->data_bytes :
1397                                                         lt->last_data_bytes;
1398                 spare_len = chunk < lt->full_chunk_cnt ? lt->spare_bytes :
1399                                                          lt->last_spare_bytes;
1400                 ecc_len = chunk < lt->full_chunk_cnt ? lt->ecc_bytes :
1401                                                        lt->last_ecc_bytes;
1402
1403                 /*
1404                  * Only re-read the ECC bytes, unless we are using the 2k/8b
1405                  * layout which is buggy in the sense that the ECC engine will
1406                  * try to correct data bytes anyway, creating bitflips. In this
1407                  * case, re-read the entire page.
1408                  */
1409                 if (lt->writesize == 2048 && lt->strength == 8) {
1410                         nand_change_read_column_op(chip, data_off_in_page,
1411                                                    buf + data_off, data_len,
1412                                                    false);
1413                         nand_change_read_column_op(chip, spare_off_in_page,
1414                                                    chip->oob_poi + spare_off, spare_len,
1415                                                    false);
1416                 }
1417
1418                 nand_change_read_column_op(chip, ecc_off_in_page,
1419                                            chip->oob_poi + ecc_off, ecc_len,
1420                                            false);
1421
1422                 /* Check the entire chunk (data + spare + ecc) for emptyness */
1423                 marvell_nfc_check_empty_chunk(chip, buf + data_off, data_len,
1424                                               chip->oob_poi + spare_off, spare_len,
1425                                               chip->oob_poi + ecc_off, ecc_len,
1426                                               &max_bitflips);
1427         }
1428
1429         return max_bitflips;
1430 }
1431
1432 static int marvell_nfc_hw_ecc_bch_read_oob_raw(struct nand_chip *chip, int page)
1433 {
1434         u8 *buf = nand_get_data_buf(chip);
1435
1436         return chip->ecc.read_page_raw(chip, buf, true, page);
1437 }
1438
1439 static int marvell_nfc_hw_ecc_bch_read_oob(struct nand_chip *chip, int page)
1440 {
1441         u8 *buf = nand_get_data_buf(chip);
1442
1443         return chip->ecc.read_page(chip, buf, true, page);
1444 }
1445
1446 /* BCH write helpers */
1447 static int marvell_nfc_hw_ecc_bch_write_page_raw(struct nand_chip *chip,
1448                                                  const u8 *buf,
1449                                                  int oob_required, int page)
1450 {
1451         const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1452         int full_chunk_size = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes;
1453         int data_len = lt->data_bytes;
1454         int spare_len = lt->spare_bytes;
1455         int ecc_len = lt->ecc_bytes;
1456         int spare_offset = 0;
1457         int ecc_offset = (lt->full_chunk_cnt * lt->spare_bytes) +
1458                 lt->last_spare_bytes;
1459         int chunk;
1460
1461         marvell_nfc_select_target(chip, chip->cur_cs);
1462
1463         nand_prog_page_begin_op(chip, page, 0, NULL, 0);
1464
1465         for (chunk = 0; chunk < lt->nchunks; chunk++) {
1466                 if (chunk >= lt->full_chunk_cnt) {
1467                         data_len = lt->last_data_bytes;
1468                         spare_len = lt->last_spare_bytes;
1469                         ecc_len = lt->last_ecc_bytes;
1470                 }
1471
1472                 /* Point to the column of the next chunk */
1473                 nand_change_write_column_op(chip, chunk * full_chunk_size,
1474                                             NULL, 0, false);
1475
1476                 /* Write the data */
1477                 nand_write_data_op(chip, buf + (chunk * lt->data_bytes),
1478                                    data_len, false);
1479
1480                 if (!oob_required)
1481                         continue;
1482
1483                 /* Write the spare bytes */
1484                 if (spare_len)
1485                         nand_write_data_op(chip, chip->oob_poi + spare_offset,
1486                                            spare_len, false);
1487
1488                 /* Write the ECC bytes */
1489                 if (ecc_len)
1490                         nand_write_data_op(chip, chip->oob_poi + ecc_offset,
1491                                            ecc_len, false);
1492
1493                 spare_offset += spare_len;
1494                 ecc_offset += ALIGN(ecc_len, 32);
1495         }
1496
1497         return nand_prog_page_end_op(chip);
1498 }
1499
1500 static int
1501 marvell_nfc_hw_ecc_bch_write_chunk(struct nand_chip *chip, int chunk,
1502                                    const u8 *data, unsigned int data_len,
1503                                    const u8 *spare, unsigned int spare_len,
1504                                    int page)
1505 {
1506         struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
1507         struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1508         const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1509         u32 xtype;
1510         int ret;
1511         struct marvell_nfc_op nfc_op = {
1512                 .ndcb[0] = NDCB0_CMD_TYPE(TYPE_WRITE) | NDCB0_LEN_OVRD,
1513                 .ndcb[3] = data_len + spare_len,
1514         };
1515
1516         /*
1517          * First operation dispatches the CMD_SEQIN command, issue the address
1518          * cycles and asks for the first chunk of data.
1519          * All operations in the middle (if any) will issue a naked write and
1520          * also ask for data.
1521          * Last operation (if any) asks for the last chunk of data through a
1522          * last naked write.
1523          */
1524         if (chunk == 0) {
1525                 if (lt->nchunks == 1)
1526                         xtype = XTYPE_MONOLITHIC_RW;
1527                 else
1528                         xtype = XTYPE_WRITE_DISPATCH;
1529
1530                 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(xtype) |
1531                                   NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
1532                                   NDCB0_CMD1(NAND_CMD_SEQIN);
1533                 nfc_op.ndcb[1] |= NDCB1_ADDRS_PAGE(page);
1534                 nfc_op.ndcb[2] |= NDCB2_ADDR5_PAGE(page);
1535         } else if (chunk < lt->nchunks - 1) {
1536                 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_NAKED_RW);
1537         } else {
1538                 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);
1539         }
1540
1541         /* Always dispatch the PAGEPROG command on the last chunk */
1542         if (chunk == lt->nchunks - 1)
1543                 nfc_op.ndcb[0] |= NDCB0_CMD2(NAND_CMD_PAGEPROG) | NDCB0_DBC;
1544
1545         ret = marvell_nfc_prepare_cmd(chip);
1546         if (ret)
1547                 return ret;
1548
1549         marvell_nfc_send_cmd(chip, &nfc_op);
1550         ret = marvell_nfc_end_cmd(chip, NDSR_WRDREQ,
1551                                   "WRDREQ while loading FIFO (data)");
1552         if (ret)
1553                 return ret;
1554
1555         /* Transfer the contents */
1556         iowrite32_rep(nfc->regs + NDDB, data, FIFO_REP(data_len));
1557         iowrite32_rep(nfc->regs + NDDB, spare, FIFO_REP(spare_len));
1558
1559         return 0;
1560 }
1561
1562 static int marvell_nfc_hw_ecc_bch_write_page(struct nand_chip *chip,
1563                                              const u8 *buf,
1564                                              int oob_required, int page)
1565 {
1566         struct mtd_info *mtd = nand_to_mtd(chip);
1567         const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1568         const u8 *data = buf;
1569         const u8 *spare = chip->oob_poi;
1570         int data_len = lt->data_bytes;
1571         int spare_len = lt->spare_bytes;
1572         int chunk, ret;
1573
1574         marvell_nfc_select_target(chip, chip->cur_cs);
1575
1576         /* Spare data will be written anyway, so clear it to avoid garbage */
1577         if (!oob_required)
1578                 memset(chip->oob_poi, 0xFF, mtd->oobsize);
1579
1580         marvell_nfc_enable_hw_ecc(chip);
1581
1582         for (chunk = 0; chunk < lt->nchunks; chunk++) {
1583                 if (chunk >= lt->full_chunk_cnt) {
1584                         data_len = lt->last_data_bytes;
1585                         spare_len = lt->last_spare_bytes;
1586                 }
1587
1588                 marvell_nfc_hw_ecc_bch_write_chunk(chip, chunk, data, data_len,
1589                                                    spare, spare_len, page);
1590                 data += data_len;
1591                 spare += spare_len;
1592
1593                 /*
1594                  * Waiting only for CMDD or PAGED is not enough, ECC are
1595                  * partially written. No flag is set once the operation is
1596                  * really finished but the ND_RUN bit is cleared, so wait for it
1597                  * before stepping into the next command.
1598                  */
1599                 marvell_nfc_wait_ndrun(chip);
1600         }
1601
1602         ret = marvell_nfc_wait_op(chip,
1603                                   PSEC_TO_MSEC(chip->data_interface.timings.sdr.tPROG_max));
1604
1605         marvell_nfc_disable_hw_ecc(chip);
1606
1607         if (ret)
1608                 return ret;
1609
1610         return 0;
1611 }
1612
1613 static int marvell_nfc_hw_ecc_bch_write_oob_raw(struct nand_chip *chip,
1614                                                 int page)
1615 {
1616         struct mtd_info *mtd = nand_to_mtd(chip);
1617         u8 *buf = nand_get_data_buf(chip);
1618
1619         memset(buf, 0xFF, mtd->writesize);
1620
1621         return chip->ecc.write_page_raw(chip, buf, true, page);
1622 }
1623
1624 static int marvell_nfc_hw_ecc_bch_write_oob(struct nand_chip *chip, int page)
1625 {
1626         struct mtd_info *mtd = nand_to_mtd(chip);
1627         u8 *buf = nand_get_data_buf(chip);
1628
1629         memset(buf, 0xFF, mtd->writesize);
1630
1631         return chip->ecc.write_page(chip, buf, true, page);
1632 }
1633
1634 /* NAND framework ->exec_op() hooks and related helpers */
1635 static void marvell_nfc_parse_instructions(struct nand_chip *chip,
1636                                            const struct nand_subop *subop,
1637                                            struct marvell_nfc_op *nfc_op)
1638 {
1639         const struct nand_op_instr *instr = NULL;
1640         struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1641         bool first_cmd = true;
1642         unsigned int op_id;
1643         int i;
1644
1645         /* Reset the input structure as most of its fields will be OR'ed */
1646         memset(nfc_op, 0, sizeof(struct marvell_nfc_op));
1647
1648         for (op_id = 0; op_id < subop->ninstrs; op_id++) {
1649                 unsigned int offset, naddrs;
1650                 const u8 *addrs;
1651                 int len;
1652
1653                 instr = &subop->instrs[op_id];
1654
1655                 switch (instr->type) {
1656                 case NAND_OP_CMD_INSTR:
1657                         if (first_cmd)
1658                                 nfc_op->ndcb[0] |=
1659                                         NDCB0_CMD1(instr->ctx.cmd.opcode);
1660                         else
1661                                 nfc_op->ndcb[0] |=
1662                                         NDCB0_CMD2(instr->ctx.cmd.opcode) |
1663                                         NDCB0_DBC;
1664
1665                         nfc_op->cle_ale_delay_ns = instr->delay_ns;
1666                         first_cmd = false;
1667                         break;
1668
1669                 case NAND_OP_ADDR_INSTR:
1670                         offset = nand_subop_get_addr_start_off(subop, op_id);
1671                         naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
1672                         addrs = &instr->ctx.addr.addrs[offset];
1673
1674                         nfc_op->ndcb[0] |= NDCB0_ADDR_CYC(naddrs);
1675
1676                         for (i = 0; i < min_t(unsigned int, 4, naddrs); i++)
1677                                 nfc_op->ndcb[1] |= addrs[i] << (8 * i);
1678
1679                         if (naddrs >= 5)
1680                                 nfc_op->ndcb[2] |= NDCB2_ADDR5_CYC(addrs[4]);
1681                         if (naddrs >= 6)
1682                                 nfc_op->ndcb[3] |= NDCB3_ADDR6_CYC(addrs[5]);
1683                         if (naddrs == 7)
1684                                 nfc_op->ndcb[3] |= NDCB3_ADDR7_CYC(addrs[6]);
1685
1686                         nfc_op->cle_ale_delay_ns = instr->delay_ns;
1687                         break;
1688
1689                 case NAND_OP_DATA_IN_INSTR:
1690                         nfc_op->data_instr = instr;
1691                         nfc_op->data_instr_idx = op_id;
1692                         nfc_op->ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ);
1693                         if (nfc->caps->is_nfcv2) {
1694                                 nfc_op->ndcb[0] |=
1695                                         NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW) |
1696                                         NDCB0_LEN_OVRD;
1697                                 len = nand_subop_get_data_len(subop, op_id);
1698                                 nfc_op->ndcb[3] |= round_up(len, FIFO_DEPTH);
1699                         }
1700                         nfc_op->data_delay_ns = instr->delay_ns;
1701                         break;
1702
1703                 case NAND_OP_DATA_OUT_INSTR:
1704                         nfc_op->data_instr = instr;
1705                         nfc_op->data_instr_idx = op_id;
1706                         nfc_op->ndcb[0] |= NDCB0_CMD_TYPE(TYPE_WRITE);
1707                         if (nfc->caps->is_nfcv2) {
1708                                 nfc_op->ndcb[0] |=
1709                                         NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW) |
1710                                         NDCB0_LEN_OVRD;
1711                                 len = nand_subop_get_data_len(subop, op_id);
1712                                 nfc_op->ndcb[3] |= round_up(len, FIFO_DEPTH);
1713                         }
1714                         nfc_op->data_delay_ns = instr->delay_ns;
1715                         break;
1716
1717                 case NAND_OP_WAITRDY_INSTR:
1718                         nfc_op->rdy_timeout_ms = instr->ctx.waitrdy.timeout_ms;
1719                         nfc_op->rdy_delay_ns = instr->delay_ns;
1720                         break;
1721                 }
1722         }
1723 }
1724
1725 static int marvell_nfc_xfer_data_pio(struct nand_chip *chip,
1726                                      const struct nand_subop *subop,
1727                                      struct marvell_nfc_op *nfc_op)
1728 {
1729         struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1730         const struct nand_op_instr *instr = nfc_op->data_instr;
1731         unsigned int op_id = nfc_op->data_instr_idx;
1732         unsigned int len = nand_subop_get_data_len(subop, op_id);
1733         unsigned int offset = nand_subop_get_data_start_off(subop, op_id);
1734         bool reading = (instr->type == NAND_OP_DATA_IN_INSTR);
1735         int ret;
1736
1737         if (instr->ctx.data.force_8bit)
1738                 marvell_nfc_force_byte_access(chip, true);
1739
1740         if (reading) {
1741                 u8 *in = instr->ctx.data.buf.in + offset;
1742
1743                 ret = marvell_nfc_xfer_data_in_pio(nfc, in, len);
1744         } else {
1745                 const u8 *out = instr->ctx.data.buf.out + offset;
1746
1747                 ret = marvell_nfc_xfer_data_out_pio(nfc, out, len);
1748         }
1749
1750         if (instr->ctx.data.force_8bit)
1751                 marvell_nfc_force_byte_access(chip, false);
1752
1753         return ret;
1754 }
1755
1756 static int marvell_nfc_monolithic_access_exec(struct nand_chip *chip,
1757                                               const struct nand_subop *subop)
1758 {
1759         struct marvell_nfc_op nfc_op;
1760         bool reading;
1761         int ret;
1762
1763         marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1764         reading = (nfc_op.data_instr->type == NAND_OP_DATA_IN_INSTR);
1765
1766         ret = marvell_nfc_prepare_cmd(chip);
1767         if (ret)
1768                 return ret;
1769
1770         marvell_nfc_send_cmd(chip, &nfc_op);
1771         ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ | NDSR_WRDREQ,
1772                                   "RDDREQ/WRDREQ while draining raw data");
1773         if (ret)
1774                 return ret;
1775
1776         cond_delay(nfc_op.cle_ale_delay_ns);
1777
1778         if (reading) {
1779                 if (nfc_op.rdy_timeout_ms) {
1780                         ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1781                         if (ret)
1782                                 return ret;
1783                 }
1784
1785                 cond_delay(nfc_op.rdy_delay_ns);
1786         }
1787
1788         marvell_nfc_xfer_data_pio(chip, subop, &nfc_op);
1789         ret = marvell_nfc_wait_cmdd(chip);
1790         if (ret)
1791                 return ret;
1792
1793         cond_delay(nfc_op.data_delay_ns);
1794
1795         if (!reading) {
1796                 if (nfc_op.rdy_timeout_ms) {
1797                         ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1798                         if (ret)
1799                                 return ret;
1800                 }
1801
1802                 cond_delay(nfc_op.rdy_delay_ns);
1803         }
1804
1805         /*
1806          * NDCR ND_RUN bit should be cleared automatically at the end of each
1807          * operation but experience shows that the behavior is buggy when it
1808          * comes to writes (with LEN_OVRD). Clear it by hand in this case.
1809          */
1810         if (!reading) {
1811                 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1812
1813                 writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN,
1814                                nfc->regs + NDCR);
1815         }
1816
1817         return 0;
1818 }
1819
1820 static int marvell_nfc_naked_access_exec(struct nand_chip *chip,
1821                                          const struct nand_subop *subop)
1822 {
1823         struct marvell_nfc_op nfc_op;
1824         int ret;
1825
1826         marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1827
1828         /*
1829          * Naked access are different in that they need to be flagged as naked
1830          * by the controller. Reset the controller registers fields that inform
1831          * on the type and refill them according to the ongoing operation.
1832          */
1833         nfc_op.ndcb[0] &= ~(NDCB0_CMD_TYPE(TYPE_MASK) |
1834                             NDCB0_CMD_XTYPE(XTYPE_MASK));
1835         switch (subop->instrs[0].type) {
1836         case NAND_OP_CMD_INSTR:
1837                 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_NAKED_CMD);
1838                 break;
1839         case NAND_OP_ADDR_INSTR:
1840                 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_NAKED_ADDR);
1841                 break;
1842         case NAND_OP_DATA_IN_INSTR:
1843                 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ) |
1844                                   NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);
1845                 break;
1846         case NAND_OP_DATA_OUT_INSTR:
1847                 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_WRITE) |
1848                                   NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);
1849                 break;
1850         default:
1851                 /* This should never happen */
1852                 break;
1853         }
1854
1855         ret = marvell_nfc_prepare_cmd(chip);
1856         if (ret)
1857                 return ret;
1858
1859         marvell_nfc_send_cmd(chip, &nfc_op);
1860
1861         if (!nfc_op.data_instr) {
1862                 ret = marvell_nfc_wait_cmdd(chip);
1863                 cond_delay(nfc_op.cle_ale_delay_ns);
1864                 return ret;
1865         }
1866
1867         ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ | NDSR_WRDREQ,
1868                                   "RDDREQ/WRDREQ while draining raw data");
1869         if (ret)
1870                 return ret;
1871
1872         marvell_nfc_xfer_data_pio(chip, subop, &nfc_op);
1873         ret = marvell_nfc_wait_cmdd(chip);
1874         if (ret)
1875                 return ret;
1876
1877         /*
1878          * NDCR ND_RUN bit should be cleared automatically at the end of each
1879          * operation but experience shows that the behavior is buggy when it
1880          * comes to writes (with LEN_OVRD). Clear it by hand in this case.
1881          */
1882         if (subop->instrs[0].type == NAND_OP_DATA_OUT_INSTR) {
1883                 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1884
1885                 writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN,
1886                                nfc->regs + NDCR);
1887         }
1888
1889         return 0;
1890 }
1891
1892 static int marvell_nfc_naked_waitrdy_exec(struct nand_chip *chip,
1893                                           const struct nand_subop *subop)
1894 {
1895         struct marvell_nfc_op nfc_op;
1896         int ret;
1897
1898         marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1899
1900         ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1901         cond_delay(nfc_op.rdy_delay_ns);
1902
1903         return ret;
1904 }
1905
1906 static int marvell_nfc_read_id_type_exec(struct nand_chip *chip,
1907                                          const struct nand_subop *subop)
1908 {
1909         struct marvell_nfc_op nfc_op;
1910         int ret;
1911
1912         marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1913         nfc_op.ndcb[0] &= ~NDCB0_CMD_TYPE(TYPE_READ);
1914         nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ_ID);
1915
1916         ret = marvell_nfc_prepare_cmd(chip);
1917         if (ret)
1918                 return ret;
1919
1920         marvell_nfc_send_cmd(chip, &nfc_op);
1921         ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
1922                                   "RDDREQ while reading ID");
1923         if (ret)
1924                 return ret;
1925
1926         cond_delay(nfc_op.cle_ale_delay_ns);
1927
1928         if (nfc_op.rdy_timeout_ms) {
1929                 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1930                 if (ret)
1931                         return ret;
1932         }
1933
1934         cond_delay(nfc_op.rdy_delay_ns);
1935
1936         marvell_nfc_xfer_data_pio(chip, subop, &nfc_op);
1937         ret = marvell_nfc_wait_cmdd(chip);
1938         if (ret)
1939                 return ret;
1940
1941         cond_delay(nfc_op.data_delay_ns);
1942
1943         return 0;
1944 }
1945
1946 static int marvell_nfc_read_status_exec(struct nand_chip *chip,
1947                                         const struct nand_subop *subop)
1948 {
1949         struct marvell_nfc_op nfc_op;
1950         int ret;
1951
1952         marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1953         nfc_op.ndcb[0] &= ~NDCB0_CMD_TYPE(TYPE_READ);
1954         nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_STATUS);
1955
1956         ret = marvell_nfc_prepare_cmd(chip);
1957         if (ret)
1958                 return ret;
1959
1960         marvell_nfc_send_cmd(chip, &nfc_op);
1961         ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
1962                                   "RDDREQ while reading status");
1963         if (ret)
1964                 return ret;
1965
1966         cond_delay(nfc_op.cle_ale_delay_ns);
1967
1968         if (nfc_op.rdy_timeout_ms) {
1969                 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1970                 if (ret)
1971                         return ret;
1972         }
1973
1974         cond_delay(nfc_op.rdy_delay_ns);
1975
1976         marvell_nfc_xfer_data_pio(chip, subop, &nfc_op);
1977         ret = marvell_nfc_wait_cmdd(chip);
1978         if (ret)
1979                 return ret;
1980
1981         cond_delay(nfc_op.data_delay_ns);
1982
1983         return 0;
1984 }
1985
1986 static int marvell_nfc_reset_cmd_type_exec(struct nand_chip *chip,
1987                                            const struct nand_subop *subop)
1988 {
1989         struct marvell_nfc_op nfc_op;
1990         int ret;
1991
1992         marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1993         nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_RESET);
1994
1995         ret = marvell_nfc_prepare_cmd(chip);
1996         if (ret)
1997                 return ret;
1998
1999         marvell_nfc_send_cmd(chip, &nfc_op);
2000         ret = marvell_nfc_wait_cmdd(chip);
2001         if (ret)
2002                 return ret;
2003
2004         cond_delay(nfc_op.cle_ale_delay_ns);
2005
2006         ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
2007         if (ret)
2008                 return ret;
2009
2010         cond_delay(nfc_op.rdy_delay_ns);
2011
2012         return 0;
2013 }
2014
2015 static int marvell_nfc_erase_cmd_type_exec(struct nand_chip *chip,
2016                                            const struct nand_subop *subop)
2017 {
2018         struct marvell_nfc_op nfc_op;
2019         int ret;
2020
2021         marvell_nfc_parse_instructions(chip, subop, &nfc_op);
2022         nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_ERASE);
2023
2024         ret = marvell_nfc_prepare_cmd(chip);
2025         if (ret)
2026                 return ret;
2027
2028         marvell_nfc_send_cmd(chip, &nfc_op);
2029         ret = marvell_nfc_wait_cmdd(chip);
2030         if (ret)
2031                 return ret;
2032
2033         cond_delay(nfc_op.cle_ale_delay_ns);
2034
2035         ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
2036         if (ret)
2037                 return ret;
2038
2039         cond_delay(nfc_op.rdy_delay_ns);
2040
2041         return 0;
2042 }
2043
2044 static const struct nand_op_parser marvell_nfcv2_op_parser = NAND_OP_PARSER(
2045         /* Monolithic reads/writes */
2046         NAND_OP_PARSER_PATTERN(
2047                 marvell_nfc_monolithic_access_exec,
2048                 NAND_OP_PARSER_PAT_CMD_ELEM(false),
2049                 NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC_NFCV2),
2050                 NAND_OP_PARSER_PAT_CMD_ELEM(true),
2051                 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
2052                 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_CHUNK_SIZE)),
2053         NAND_OP_PARSER_PATTERN(
2054                 marvell_nfc_monolithic_access_exec,
2055                 NAND_OP_PARSER_PAT_CMD_ELEM(false),
2056                 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV2),
2057                 NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_CHUNK_SIZE),
2058                 NAND_OP_PARSER_PAT_CMD_ELEM(true),
2059                 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
2060         /* Naked commands */
2061         NAND_OP_PARSER_PATTERN(
2062                 marvell_nfc_naked_access_exec,
2063                 NAND_OP_PARSER_PAT_CMD_ELEM(false)),
2064         NAND_OP_PARSER_PATTERN(
2065                 marvell_nfc_naked_access_exec,
2066                 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV2)),
2067         NAND_OP_PARSER_PATTERN(
2068                 marvell_nfc_naked_access_exec,
2069                 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_CHUNK_SIZE)),
2070         NAND_OP_PARSER_PATTERN(
2071                 marvell_nfc_naked_access_exec,
2072                 NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_CHUNK_SIZE)),
2073         NAND_OP_PARSER_PATTERN(
2074                 marvell_nfc_naked_waitrdy_exec,
2075                 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
2076         );
2077
2078 static const struct nand_op_parser marvell_nfcv1_op_parser = NAND_OP_PARSER(
2079         /* Naked commands not supported, use a function for each pattern */
2080         NAND_OP_PARSER_PATTERN(
2081                 marvell_nfc_read_id_type_exec,
2082                 NAND_OP_PARSER_PAT_CMD_ELEM(false),
2083                 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV1),
2084                 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 8)),
2085         NAND_OP_PARSER_PATTERN(
2086                 marvell_nfc_erase_cmd_type_exec,
2087                 NAND_OP_PARSER_PAT_CMD_ELEM(false),
2088                 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV1),
2089                 NAND_OP_PARSER_PAT_CMD_ELEM(false),
2090                 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
2091         NAND_OP_PARSER_PATTERN(
2092                 marvell_nfc_read_status_exec,
2093                 NAND_OP_PARSER_PAT_CMD_ELEM(false),
2094                 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 1)),
2095         NAND_OP_PARSER_PATTERN(
2096                 marvell_nfc_reset_cmd_type_exec,
2097                 NAND_OP_PARSER_PAT_CMD_ELEM(false),
2098                 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
2099         NAND_OP_PARSER_PATTERN(
2100                 marvell_nfc_naked_waitrdy_exec,
2101                 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
2102         );
2103
2104 static int marvell_nfc_exec_op(struct nand_chip *chip,
2105                                const struct nand_operation *op,
2106                                bool check_only)
2107 {
2108         struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
2109
2110         marvell_nfc_select_target(chip, op->cs);
2111
2112         if (nfc->caps->is_nfcv2)
2113                 return nand_op_parser_exec_op(chip, &marvell_nfcv2_op_parser,
2114                                               op, check_only);
2115         else
2116                 return nand_op_parser_exec_op(chip, &marvell_nfcv1_op_parser,
2117                                               op, check_only);
2118 }
2119
2120 /*
2121  * Layouts were broken in old pxa3xx_nand driver, these are supposed to be
2122  * usable.
2123  */
2124 static int marvell_nand_ooblayout_ecc(struct mtd_info *mtd, int section,
2125                                       struct mtd_oob_region *oobregion)
2126 {
2127         struct nand_chip *chip = mtd_to_nand(mtd);
2128         const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
2129
2130         if (section)
2131                 return -ERANGE;
2132
2133         oobregion->length = (lt->full_chunk_cnt * lt->ecc_bytes) +
2134                             lt->last_ecc_bytes;
2135         oobregion->offset = mtd->oobsize - oobregion->length;
2136
2137         return 0;
2138 }
2139
2140 static int marvell_nand_ooblayout_free(struct mtd_info *mtd, int section,
2141                                        struct mtd_oob_region *oobregion)
2142 {
2143         struct nand_chip *chip = mtd_to_nand(mtd);
2144         const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
2145
2146         if (section)
2147                 return -ERANGE;
2148
2149         /*
2150          * Bootrom looks in bytes 0 & 5 for bad blocks for the
2151          * 4KB page / 4bit BCH combination.
2152          */
2153         if (mtd->writesize == SZ_4K && lt->data_bytes == SZ_2K)
2154                 oobregion->offset = 6;
2155         else
2156                 oobregion->offset = 2;
2157
2158         oobregion->length = (lt->full_chunk_cnt * lt->spare_bytes) +
2159                             lt->last_spare_bytes - oobregion->offset;
2160
2161         return 0;
2162 }
2163
2164 static const struct mtd_ooblayout_ops marvell_nand_ooblayout_ops = {
2165         .ecc = marvell_nand_ooblayout_ecc,
2166         .free = marvell_nand_ooblayout_free,
2167 };
2168
2169 static int marvell_nand_hw_ecc_ctrl_init(struct mtd_info *mtd,
2170                                          struct nand_ecc_ctrl *ecc)
2171 {
2172         struct nand_chip *chip = mtd_to_nand(mtd);
2173         struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
2174         const struct marvell_hw_ecc_layout *l;
2175         int i;
2176
2177         if (!nfc->caps->is_nfcv2 &&
2178             (mtd->writesize + mtd->oobsize > MAX_CHUNK_SIZE)) {
2179                 dev_err(nfc->dev,
2180                         "NFCv1: writesize (%d) cannot be bigger than a chunk (%d)\n",
2181                         mtd->writesize, MAX_CHUNK_SIZE - mtd->oobsize);
2182                 return -ENOTSUPP;
2183         }
2184
2185         to_marvell_nand(chip)->layout = NULL;
2186         for (i = 0; i < ARRAY_SIZE(marvell_nfc_layouts); i++) {
2187                 l = &marvell_nfc_layouts[i];
2188                 if (mtd->writesize == l->writesize &&
2189                     ecc->size == l->chunk && ecc->strength == l->strength) {
2190                         to_marvell_nand(chip)->layout = l;
2191                         break;
2192                 }
2193         }
2194
2195         if (!to_marvell_nand(chip)->layout ||
2196             (!nfc->caps->is_nfcv2 && ecc->strength > 1)) {
2197                 dev_err(nfc->dev,
2198                         "ECC strength %d at page size %d is not supported\n",
2199                         ecc->strength, mtd->writesize);
2200                 return -ENOTSUPP;
2201         }
2202
2203         /* Special care for the layout 2k/8-bit/512B  */
2204         if (l->writesize == 2048 && l->strength == 8) {
2205                 if (mtd->oobsize < 128) {
2206                         dev_err(nfc->dev, "Requested layout needs at least 128 OOB bytes\n");
2207                         return -ENOTSUPP;
2208                 } else {
2209                         chip->bbt_options |= NAND_BBT_NO_OOB_BBM;
2210                 }
2211         }
2212
2213         mtd_set_ooblayout(mtd, &marvell_nand_ooblayout_ops);
2214         ecc->steps = l->nchunks;
2215         ecc->size = l->data_bytes;
2216
2217         if (ecc->strength == 1) {
2218                 chip->ecc.algo = NAND_ECC_HAMMING;
2219                 ecc->read_page_raw = marvell_nfc_hw_ecc_hmg_read_page_raw;
2220                 ecc->read_page = marvell_nfc_hw_ecc_hmg_read_page;
2221                 ecc->read_oob_raw = marvell_nfc_hw_ecc_hmg_read_oob_raw;
2222                 ecc->read_oob = ecc->read_oob_raw;
2223                 ecc->write_page_raw = marvell_nfc_hw_ecc_hmg_write_page_raw;
2224                 ecc->write_page = marvell_nfc_hw_ecc_hmg_write_page;
2225                 ecc->write_oob_raw = marvell_nfc_hw_ecc_hmg_write_oob_raw;
2226                 ecc->write_oob = ecc->write_oob_raw;
2227         } else {
2228                 chip->ecc.algo = NAND_ECC_BCH;
2229                 ecc->strength = 16;
2230                 ecc->read_page_raw = marvell_nfc_hw_ecc_bch_read_page_raw;
2231                 ecc->read_page = marvell_nfc_hw_ecc_bch_read_page;
2232                 ecc->read_oob_raw = marvell_nfc_hw_ecc_bch_read_oob_raw;
2233                 ecc->read_oob = marvell_nfc_hw_ecc_bch_read_oob;
2234                 ecc->write_page_raw = marvell_nfc_hw_ecc_bch_write_page_raw;
2235                 ecc->write_page = marvell_nfc_hw_ecc_bch_write_page;
2236                 ecc->write_oob_raw = marvell_nfc_hw_ecc_bch_write_oob_raw;
2237                 ecc->write_oob = marvell_nfc_hw_ecc_bch_write_oob;
2238         }
2239
2240         return 0;
2241 }
2242
2243 static int marvell_nand_ecc_init(struct mtd_info *mtd,
2244                                  struct nand_ecc_ctrl *ecc)
2245 {
2246         struct nand_chip *chip = mtd_to_nand(mtd);
2247         struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
2248         int ret;
2249
2250         if (ecc->mode != NAND_ECC_NONE && (!ecc->size || !ecc->strength)) {
2251                 if (chip->base.eccreq.step_size && chip->base.eccreq.strength) {
2252                         ecc->size = chip->base.eccreq.step_size;
2253                         ecc->strength = chip->base.eccreq.strength;
2254                 } else {
2255                         dev_info(nfc->dev,
2256                                  "No minimum ECC strength, using 1b/512B\n");
2257                         ecc->size = 512;
2258                         ecc->strength = 1;
2259                 }
2260         }
2261
2262         switch (ecc->mode) {
2263         case NAND_ECC_HW:
2264                 ret = marvell_nand_hw_ecc_ctrl_init(mtd, ecc);
2265                 if (ret)
2266                         return ret;
2267                 break;
2268         case NAND_ECC_NONE:
2269         case NAND_ECC_SOFT:
2270         case NAND_ECC_ON_DIE:
2271                 if (!nfc->caps->is_nfcv2 && mtd->writesize != SZ_512 &&
2272                     mtd->writesize != SZ_2K) {
2273                         dev_err(nfc->dev, "NFCv1 cannot write %d bytes pages\n",
2274                                 mtd->writesize);
2275                         return -EINVAL;
2276                 }
2277                 break;
2278         default:
2279                 return -EINVAL;
2280         }
2281
2282         return 0;
2283 }
2284
2285 static u8 bbt_pattern[] = {'M', 'V', 'B', 'b', 't', '0' };
2286 static u8 bbt_mirror_pattern[] = {'1', 't', 'b', 'B', 'V', 'M' };
2287
2288 static struct nand_bbt_descr bbt_main_descr = {
2289         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
2290                    NAND_BBT_2BIT | NAND_BBT_VERSION,
2291         .offs = 8,
2292         .len = 6,
2293         .veroffs = 14,
2294         .maxblocks = 8, /* Last 8 blocks in each chip */
2295         .pattern = bbt_pattern
2296 };
2297
2298 static struct nand_bbt_descr bbt_mirror_descr = {
2299         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
2300                    NAND_BBT_2BIT | NAND_BBT_VERSION,
2301         .offs = 8,
2302         .len = 6,
2303         .veroffs = 14,
2304         .maxblocks = 8, /* Last 8 blocks in each chip */
2305         .pattern = bbt_mirror_pattern
2306 };
2307
2308 static int marvell_nfc_setup_data_interface(struct nand_chip *chip, int chipnr,
2309                                             const struct nand_data_interface
2310                                             *conf)
2311 {
2312         struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
2313         struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
2314         unsigned int period_ns = 1000000000 / clk_get_rate(nfc->core_clk) * 2;
2315         const struct nand_sdr_timings *sdr;
2316         struct marvell_nfc_timings nfc_tmg;
2317         int read_delay;
2318
2319         sdr = nand_get_sdr_timings(conf);
2320         if (IS_ERR(sdr))
2321                 return PTR_ERR(sdr);
2322
2323         /*
2324          * SDR timings are given in pico-seconds while NFC timings must be
2325          * expressed in NAND controller clock cycles, which is half of the
2326          * frequency of the accessible ECC clock retrieved by clk_get_rate().
2327          * This is not written anywhere in the datasheet but was observed
2328          * with an oscilloscope.
2329          *
2330          * NFC datasheet gives equations from which thoses calculations
2331          * are derived, they tend to be slightly more restrictives than the
2332          * given core timings and may improve the overall speed.
2333          */
2334         nfc_tmg.tRP = TO_CYCLES(DIV_ROUND_UP(sdr->tRC_min, 2), period_ns) - 1;
2335         nfc_tmg.tRH = nfc_tmg.tRP;
2336         nfc_tmg.tWP = TO_CYCLES(DIV_ROUND_UP(sdr->tWC_min, 2), period_ns) - 1;
2337         nfc_tmg.tWH = nfc_tmg.tWP;
2338         nfc_tmg.tCS = TO_CYCLES(sdr->tCS_min, period_ns);
2339         nfc_tmg.tCH = TO_CYCLES(sdr->tCH_min, period_ns) - 1;
2340         nfc_tmg.tADL = TO_CYCLES(sdr->tADL_min, period_ns);
2341         /*
2342          * Read delay is the time of propagation from SoC pins to NFC internal
2343          * logic. With non-EDO timings, this is MIN_RD_DEL_CNT clock cycles. In
2344          * EDO mode, an additional delay of tRH must be taken into account so
2345          * the data is sampled on the falling edge instead of the rising edge.
2346          */
2347         read_delay = sdr->tRC_min >= 30000 ?
2348                 MIN_RD_DEL_CNT : MIN_RD_DEL_CNT + nfc_tmg.tRH;
2349
2350         nfc_tmg.tAR = TO_CYCLES(sdr->tAR_min, period_ns);
2351         /*
2352          * tWHR and tRHW are supposed to be read to write delays (and vice
2353          * versa) but in some cases, ie. when doing a change column, they must
2354          * be greater than that to be sure tCCS delay is respected.
2355          */
2356         nfc_tmg.tWHR = TO_CYCLES(max_t(int, sdr->tWHR_min, sdr->tCCS_min),
2357                                  period_ns) - 2,
2358         nfc_tmg.tRHW = TO_CYCLES(max_t(int, sdr->tRHW_min, sdr->tCCS_min),
2359                                  period_ns);
2360
2361         /*
2362          * NFCv2: Use WAIT_MODE (wait for RB line), do not rely only on delays.
2363          * NFCv1: No WAIT_MODE, tR must be maximal.
2364          */
2365         if (nfc->caps->is_nfcv2) {
2366                 nfc_tmg.tR = TO_CYCLES(sdr->tWB_max, period_ns);
2367         } else {
2368                 nfc_tmg.tR = TO_CYCLES64(sdr->tWB_max + sdr->tR_max,
2369                                          period_ns);
2370                 if (nfc_tmg.tR + 3 > nfc_tmg.tCH)
2371                         nfc_tmg.tR = nfc_tmg.tCH - 3;
2372                 else
2373                         nfc_tmg.tR = 0;
2374         }
2375
2376         if (chipnr < 0)
2377                 return 0;
2378
2379         marvell_nand->ndtr0 =
2380                 NDTR0_TRP(nfc_tmg.tRP) |
2381                 NDTR0_TRH(nfc_tmg.tRH) |
2382                 NDTR0_ETRP(nfc_tmg.tRP) |
2383                 NDTR0_TWP(nfc_tmg.tWP) |
2384                 NDTR0_TWH(nfc_tmg.tWH) |
2385                 NDTR0_TCS(nfc_tmg.tCS) |
2386                 NDTR0_TCH(nfc_tmg.tCH);
2387
2388         marvell_nand->ndtr1 =
2389                 NDTR1_TAR(nfc_tmg.tAR) |
2390                 NDTR1_TWHR(nfc_tmg.tWHR) |
2391                 NDTR1_TR(nfc_tmg.tR);
2392
2393         if (nfc->caps->is_nfcv2) {
2394                 marvell_nand->ndtr0 |=
2395                         NDTR0_RD_CNT_DEL(read_delay) |
2396                         NDTR0_SELCNTR |
2397                         NDTR0_TADL(nfc_tmg.tADL);
2398
2399                 marvell_nand->ndtr1 |=
2400                         NDTR1_TRHW(nfc_tmg.tRHW) |
2401                         NDTR1_WAIT_MODE;
2402         }
2403
2404         return 0;
2405 }
2406
2407 static int marvell_nand_attach_chip(struct nand_chip *chip)
2408 {
2409         struct mtd_info *mtd = nand_to_mtd(chip);
2410         struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
2411         struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
2412         struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(nfc->dev);
2413         int ret;
2414
2415         if (pdata && pdata->flash_bbt)
2416                 chip->bbt_options |= NAND_BBT_USE_FLASH;
2417
2418         if (chip->bbt_options & NAND_BBT_USE_FLASH) {
2419                 /*
2420                  * We'll use a bad block table stored in-flash and don't
2421                  * allow writing the bad block marker to the flash.
2422                  */
2423                 chip->bbt_options |= NAND_BBT_NO_OOB_BBM;
2424                 chip->bbt_td = &bbt_main_descr;
2425                 chip->bbt_md = &bbt_mirror_descr;
2426         }
2427
2428         /* Save the chip-specific fields of NDCR */
2429         marvell_nand->ndcr = NDCR_PAGE_SZ(mtd->writesize);
2430         if (chip->options & NAND_BUSWIDTH_16)
2431                 marvell_nand->ndcr |= NDCR_DWIDTH_M | NDCR_DWIDTH_C;
2432
2433         /*
2434          * On small page NANDs, only one cycle is needed to pass the
2435          * column address.
2436          */
2437         if (mtd->writesize <= 512) {
2438                 marvell_nand->addr_cyc = 1;
2439         } else {
2440                 marvell_nand->addr_cyc = 2;
2441                 marvell_nand->ndcr |= NDCR_RA_START;
2442         }
2443
2444         /*
2445          * Now add the number of cycles needed to pass the row
2446          * address.
2447          *
2448          * Addressing a chip using CS 2 or 3 should also need the third row
2449          * cycle but due to inconsistance in the documentation and lack of
2450          * hardware to test this situation, this case is not supported.
2451          */
2452         if (chip->options & NAND_ROW_ADDR_3)
2453                 marvell_nand->addr_cyc += 3;
2454         else
2455                 marvell_nand->addr_cyc += 2;
2456
2457         if (pdata) {
2458                 chip->ecc.size = pdata->ecc_step_size;
2459                 chip->ecc.strength = pdata->ecc_strength;
2460         }
2461
2462         ret = marvell_nand_ecc_init(mtd, &chip->ecc);
2463         if (ret) {
2464                 dev_err(nfc->dev, "ECC init failed: %d\n", ret);
2465                 return ret;
2466         }
2467
2468         if (chip->ecc.mode == NAND_ECC_HW) {
2469                 /*
2470                  * Subpage write not available with hardware ECC, prohibit also
2471                  * subpage read as in userspace subpage access would still be
2472                  * allowed and subpage write, if used, would lead to numerous
2473                  * uncorrectable ECC errors.
2474                  */
2475                 chip->options |= NAND_NO_SUBPAGE_WRITE;
2476         }
2477
2478         if (pdata || nfc->caps->legacy_of_bindings) {
2479                 /*
2480                  * We keep the MTD name unchanged to avoid breaking platforms
2481                  * where the MTD cmdline parser is used and the bootloader
2482                  * has not been updated to use the new naming scheme.
2483                  */
2484                 mtd->name = "pxa3xx_nand-0";
2485         } else if (!mtd->name) {
2486                 /*
2487                  * If the new bindings are used and the bootloader has not been
2488                  * updated to pass a new mtdparts parameter on the cmdline, you
2489                  * should define the following property in your NAND node, ie:
2490                  *
2491                  *      label = "main-storage";
2492                  *
2493                  * This way, mtd->name will be set by the core when
2494                  * nand_set_flash_node() is called.
2495                  */
2496                 mtd->name = devm_kasprintf(nfc->dev, GFP_KERNEL,
2497                                            "%s:nand.%d", dev_name(nfc->dev),
2498                                            marvell_nand->sels[0].cs);
2499                 if (!mtd->name) {
2500                         dev_err(nfc->dev, "Failed to allocate mtd->name\n");
2501                         return -ENOMEM;
2502                 }
2503         }
2504
2505         return 0;
2506 }
2507
2508 static const struct nand_controller_ops marvell_nand_controller_ops = {
2509         .attach_chip = marvell_nand_attach_chip,
2510         .exec_op = marvell_nfc_exec_op,
2511         .setup_data_interface = marvell_nfc_setup_data_interface,
2512 };
2513
2514 static int marvell_nand_chip_init(struct device *dev, struct marvell_nfc *nfc,
2515                                   struct device_node *np)
2516 {
2517         struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(dev);
2518         struct marvell_nand_chip *marvell_nand;
2519         struct mtd_info *mtd;
2520         struct nand_chip *chip;
2521         int nsels, ret, i;
2522         u32 cs, rb;
2523
2524         /*
2525          * The legacy "num-cs" property indicates the number of CS on the only
2526          * chip connected to the controller (legacy bindings does not support
2527          * more than one chip). The CS and RB pins are always the #0.
2528          *
2529          * When not using legacy bindings, a couple of "reg" and "nand-rb"
2530          * properties must be filled. For each chip, expressed as a subnode,
2531          * "reg" points to the CS lines and "nand-rb" to the RB line.
2532          */
2533         if (pdata || nfc->caps->legacy_of_bindings) {
2534                 nsels = 1;
2535         } else {
2536                 nsels = of_property_count_elems_of_size(np, "reg", sizeof(u32));
2537                 if (nsels <= 0) {
2538                         dev_err(dev, "missing/invalid reg property\n");
2539                         return -EINVAL;
2540                 }
2541         }
2542
2543         /* Alloc the nand chip structure */
2544         marvell_nand = devm_kzalloc(dev,
2545                                     struct_size(marvell_nand, sels, nsels),
2546                                     GFP_KERNEL);
2547         if (!marvell_nand) {
2548                 dev_err(dev, "could not allocate chip structure\n");
2549                 return -ENOMEM;
2550         }
2551
2552         marvell_nand->nsels = nsels;
2553         marvell_nand->selected_die = -1;
2554
2555         for (i = 0; i < nsels; i++) {
2556                 if (pdata || nfc->caps->legacy_of_bindings) {
2557                         /*
2558                          * Legacy bindings use the CS lines in natural
2559                          * order (0, 1, ...)
2560                          */
2561                         cs = i;
2562                 } else {
2563                         /* Retrieve CS id */
2564                         ret = of_property_read_u32_index(np, "reg", i, &cs);
2565                         if (ret) {
2566                                 dev_err(dev, "could not retrieve reg property: %d\n",
2567                                         ret);
2568                                 return ret;
2569                         }
2570                 }
2571
2572                 if (cs >= nfc->caps->max_cs_nb) {
2573                         dev_err(dev, "invalid reg value: %u (max CS = %d)\n",
2574                                 cs, nfc->caps->max_cs_nb);
2575                         return -EINVAL;
2576                 }
2577
2578                 if (test_and_set_bit(cs, &nfc->assigned_cs)) {
2579                         dev_err(dev, "CS %d already assigned\n", cs);
2580                         return -EINVAL;
2581                 }
2582
2583                 /*
2584                  * The cs variable represents the chip select id, which must be
2585                  * converted in bit fields for NDCB0 and NDCB2 to select the
2586                  * right chip. Unfortunately, due to a lack of information on
2587                  * the subject and incoherent documentation, the user should not
2588                  * use CS1 and CS3 at all as asserting them is not supported in
2589                  * a reliable way (due to multiplexing inside ADDR5 field).
2590                  */
2591                 marvell_nand->sels[i].cs = cs;
2592                 switch (cs) {
2593                 case 0:
2594                 case 2:
2595                         marvell_nand->sels[i].ndcb0_csel = 0;
2596                         break;
2597                 case 1:
2598                 case 3:
2599                         marvell_nand->sels[i].ndcb0_csel = NDCB0_CSEL;
2600                         break;
2601                 default:
2602                         return -EINVAL;
2603                 }
2604
2605                 /* Retrieve RB id */
2606                 if (pdata || nfc->caps->legacy_of_bindings) {
2607                         /* Legacy bindings always use RB #0 */
2608                         rb = 0;
2609                 } else {
2610                         ret = of_property_read_u32_index(np, "nand-rb", i,
2611                                                          &rb);
2612                         if (ret) {
2613                                 dev_err(dev,
2614                                         "could not retrieve RB property: %d\n",
2615                                         ret);
2616                                 return ret;
2617                         }
2618                 }
2619
2620                 if (rb >= nfc->caps->max_rb_nb) {
2621                         dev_err(dev, "invalid reg value: %u (max RB = %d)\n",
2622                                 rb, nfc->caps->max_rb_nb);
2623                         return -EINVAL;
2624                 }
2625
2626                 marvell_nand->sels[i].rb = rb;
2627         }
2628
2629         chip = &marvell_nand->chip;
2630         chip->controller = &nfc->controller;
2631         nand_set_flash_node(chip, np);
2632
2633         if (!of_property_read_bool(np, "marvell,nand-keep-config"))
2634                 chip->options |= NAND_KEEP_TIMINGS;
2635
2636         mtd = nand_to_mtd(chip);
2637         mtd->dev.parent = dev;
2638
2639         /*
2640          * Default to HW ECC engine mode. If the nand-ecc-mode property is given
2641          * in the DT node, this entry will be overwritten in nand_scan_ident().
2642          */
2643         chip->ecc.mode = NAND_ECC_HW;
2644
2645         /*
2646          * Save a reference value for timing registers before
2647          * ->setup_data_interface() is called.
2648          */
2649         marvell_nand->ndtr0 = readl_relaxed(nfc->regs + NDTR0);
2650         marvell_nand->ndtr1 = readl_relaxed(nfc->regs + NDTR1);
2651
2652         chip->options |= NAND_BUSWIDTH_AUTO;
2653
2654         ret = nand_scan(chip, marvell_nand->nsels);
2655         if (ret) {
2656                 dev_err(dev, "could not scan the nand chip\n");
2657                 return ret;
2658         }
2659
2660         if (pdata)
2661                 /* Legacy bindings support only one chip */
2662                 ret = mtd_device_register(mtd, pdata->parts, pdata->nr_parts);
2663         else
2664                 ret = mtd_device_register(mtd, NULL, 0);
2665         if (ret) {
2666                 dev_err(dev, "failed to register mtd device: %d\n", ret);
2667                 nand_release(chip);
2668                 return ret;
2669         }
2670
2671         list_add_tail(&marvell_nand->node, &nfc->chips);
2672
2673         return 0;
2674 }
2675
2676 static int marvell_nand_chips_init(struct device *dev, struct marvell_nfc *nfc)
2677 {
2678         struct device_node *np = dev->of_node;
2679         struct device_node *nand_np;
2680         int max_cs = nfc->caps->max_cs_nb;
2681         int nchips;
2682         int ret;
2683
2684         if (!np)
2685                 nchips = 1;
2686         else
2687                 nchips = of_get_child_count(np);
2688
2689         if (nchips > max_cs) {
2690                 dev_err(dev, "too many NAND chips: %d (max = %d CS)\n", nchips,
2691                         max_cs);
2692                 return -EINVAL;
2693         }
2694
2695         /*
2696          * Legacy bindings do not use child nodes to exhibit NAND chip
2697          * properties and layout. Instead, NAND properties are mixed with the
2698          * controller ones, and partitions are defined as direct subnodes of the
2699          * NAND controller node.
2700          */
2701         if (nfc->caps->legacy_of_bindings) {
2702                 ret = marvell_nand_chip_init(dev, nfc, np);
2703                 return ret;
2704         }
2705
2706         for_each_child_of_node(np, nand_np) {
2707                 ret = marvell_nand_chip_init(dev, nfc, nand_np);
2708                 if (ret) {
2709                         of_node_put(nand_np);
2710                         return ret;
2711                 }
2712         }
2713
2714         return 0;
2715 }
2716
2717 static void marvell_nand_chips_cleanup(struct marvell_nfc *nfc)
2718 {
2719         struct marvell_nand_chip *entry, *temp;
2720
2721         list_for_each_entry_safe(entry, temp, &nfc->chips, node) {
2722                 nand_release(&entry->chip);
2723                 list_del(&entry->node);
2724         }
2725 }
2726
2727 static int marvell_nfc_init_dma(struct marvell_nfc *nfc)
2728 {
2729         struct platform_device *pdev = container_of(nfc->dev,
2730                                                     struct platform_device,
2731                                                     dev);
2732         struct dma_slave_config config = {};
2733         struct resource *r;
2734         int ret;
2735
2736         if (!IS_ENABLED(CONFIG_PXA_DMA)) {
2737                 dev_warn(nfc->dev,
2738                          "DMA not enabled in configuration\n");
2739                 return -ENOTSUPP;
2740         }
2741
2742         ret = dma_set_mask_and_coherent(nfc->dev, DMA_BIT_MASK(32));
2743         if (ret)
2744                 return ret;
2745
2746         nfc->dma_chan = dma_request_slave_channel(nfc->dev, "data");
2747         if (!nfc->dma_chan) {
2748                 dev_err(nfc->dev,
2749                         "Unable to request data DMA channel\n");
2750                 return -ENODEV;
2751         }
2752
2753         r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2754         if (!r)
2755                 return -ENXIO;
2756
2757         config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
2758         config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
2759         config.src_addr = r->start + NDDB;
2760         config.dst_addr = r->start + NDDB;
2761         config.src_maxburst = 32;
2762         config.dst_maxburst = 32;
2763         ret = dmaengine_slave_config(nfc->dma_chan, &config);
2764         if (ret < 0) {
2765                 dev_err(nfc->dev, "Failed to configure DMA channel\n");
2766                 return ret;
2767         }
2768
2769         /*
2770          * DMA must act on length multiple of 32 and this length may be
2771          * bigger than the destination buffer. Use this buffer instead
2772          * for DMA transfers and then copy the desired amount of data to
2773          * the provided buffer.
2774          */
2775         nfc->dma_buf = kmalloc(MAX_CHUNK_SIZE, GFP_KERNEL | GFP_DMA);
2776         if (!nfc->dma_buf)
2777                 return -ENOMEM;
2778
2779         nfc->use_dma = true;
2780
2781         return 0;
2782 }
2783
2784 static void marvell_nfc_reset(struct marvell_nfc *nfc)
2785 {
2786         /*
2787          * ECC operations and interruptions are only enabled when specifically
2788          * needed. ECC shall not be activated in the early stages (fails probe).
2789          * Arbiter flag, even if marked as "reserved", must be set (empirical).
2790          * SPARE_EN bit must always be set or ECC bytes will not be at the same
2791          * offset in the read page and this will fail the protection.
2792          */
2793         writel_relaxed(NDCR_ALL_INT | NDCR_ND_ARB_EN | NDCR_SPARE_EN |
2794                        NDCR_RD_ID_CNT(NFCV1_READID_LEN), nfc->regs + NDCR);
2795         writel_relaxed(0xFFFFFFFF, nfc->regs + NDSR);
2796         writel_relaxed(0, nfc->regs + NDECCCTRL);
2797 }
2798
2799 static int marvell_nfc_init(struct marvell_nfc *nfc)
2800 {
2801         struct device_node *np = nfc->dev->of_node;
2802
2803         /*
2804          * Some SoCs like A7k/A8k need to enable manually the NAND
2805          * controller, gated clocks and reset bits to avoid being bootloader
2806          * dependent. This is done through the use of the System Functions
2807          * registers.
2808          */
2809         if (nfc->caps->need_system_controller) {
2810                 struct regmap *sysctrl_base =
2811                         syscon_regmap_lookup_by_phandle(np,
2812                                                         "marvell,system-controller");
2813
2814                 if (IS_ERR(sysctrl_base))
2815                         return PTR_ERR(sysctrl_base);
2816
2817                 regmap_write(sysctrl_base, GENCONF_SOC_DEVICE_MUX,
2818                              GENCONF_SOC_DEVICE_MUX_NFC_EN |
2819                              GENCONF_SOC_DEVICE_MUX_ECC_CLK_RST |
2820                              GENCONF_SOC_DEVICE_MUX_ECC_CORE_RST |
2821                              GENCONF_SOC_DEVICE_MUX_NFC_INT_EN);
2822
2823                 regmap_update_bits(sysctrl_base, GENCONF_CLK_GATING_CTRL,
2824                                    GENCONF_CLK_GATING_CTRL_ND_GATE,
2825                                    GENCONF_CLK_GATING_CTRL_ND_GATE);
2826
2827                 regmap_update_bits(sysctrl_base, GENCONF_ND_CLK_CTRL,
2828                                    GENCONF_ND_CLK_CTRL_EN,
2829                                    GENCONF_ND_CLK_CTRL_EN);
2830         }
2831
2832         /* Configure the DMA if appropriate */
2833         if (!nfc->caps->is_nfcv2)
2834                 marvell_nfc_init_dma(nfc);
2835
2836         marvell_nfc_reset(nfc);
2837
2838         return 0;
2839 }
2840
2841 static int marvell_nfc_probe(struct platform_device *pdev)
2842 {
2843         struct device *dev = &pdev->dev;
2844         struct resource *r;
2845         struct marvell_nfc *nfc;
2846         int ret;
2847         int irq;
2848
2849         nfc = devm_kzalloc(&pdev->dev, sizeof(struct marvell_nfc),
2850                            GFP_KERNEL);
2851         if (!nfc)
2852                 return -ENOMEM;
2853
2854         nfc->dev = dev;
2855         nand_controller_init(&nfc->controller);
2856         nfc->controller.ops = &marvell_nand_controller_ops;
2857         INIT_LIST_HEAD(&nfc->chips);
2858
2859         r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2860         nfc->regs = devm_ioremap_resource(dev, r);
2861         if (IS_ERR(nfc->regs))
2862                 return PTR_ERR(nfc->regs);
2863
2864         irq = platform_get_irq(pdev, 0);
2865         if (irq < 0) {
2866                 dev_err(dev, "failed to retrieve irq\n");
2867                 return irq;
2868         }
2869
2870         nfc->core_clk = devm_clk_get(&pdev->dev, "core");
2871
2872         /* Managed the legacy case (when the first clock was not named) */
2873         if (nfc->core_clk == ERR_PTR(-ENOENT))
2874                 nfc->core_clk = devm_clk_get(&pdev->dev, NULL);
2875
2876         if (IS_ERR(nfc->core_clk))
2877                 return PTR_ERR(nfc->core_clk);
2878
2879         ret = clk_prepare_enable(nfc->core_clk);
2880         if (ret)
2881                 return ret;
2882
2883         nfc->reg_clk = devm_clk_get(&pdev->dev, "reg");
2884         if (IS_ERR(nfc->reg_clk)) {
2885                 if (PTR_ERR(nfc->reg_clk) != -ENOENT) {
2886                         ret = PTR_ERR(nfc->reg_clk);
2887                         goto unprepare_core_clk;
2888                 }
2889
2890                 nfc->reg_clk = NULL;
2891         }
2892
2893         ret = clk_prepare_enable(nfc->reg_clk);
2894         if (ret)
2895                 goto unprepare_core_clk;
2896
2897         marvell_nfc_disable_int(nfc, NDCR_ALL_INT);
2898         marvell_nfc_clear_int(nfc, NDCR_ALL_INT);
2899         ret = devm_request_irq(dev, irq, marvell_nfc_isr,
2900                                0, "marvell-nfc", nfc);
2901         if (ret)
2902                 goto unprepare_reg_clk;
2903
2904         /* Get NAND controller capabilities */
2905         if (pdev->id_entry)
2906                 nfc->caps = (void *)pdev->id_entry->driver_data;
2907         else
2908                 nfc->caps = of_device_get_match_data(&pdev->dev);
2909
2910         if (!nfc->caps) {
2911                 dev_err(dev, "Could not retrieve NFC caps\n");
2912                 ret = -EINVAL;
2913                 goto unprepare_reg_clk;
2914         }
2915
2916         /* Init the controller and then probe the chips */
2917         ret = marvell_nfc_init(nfc);
2918         if (ret)
2919                 goto unprepare_reg_clk;
2920
2921         platform_set_drvdata(pdev, nfc);
2922
2923         ret = marvell_nand_chips_init(dev, nfc);
2924         if (ret)
2925                 goto unprepare_reg_clk;
2926
2927         return 0;
2928
2929 unprepare_reg_clk:
2930         clk_disable_unprepare(nfc->reg_clk);
2931 unprepare_core_clk:
2932         clk_disable_unprepare(nfc->core_clk);
2933
2934         return ret;
2935 }
2936
2937 static int marvell_nfc_remove(struct platform_device *pdev)
2938 {
2939         struct marvell_nfc *nfc = platform_get_drvdata(pdev);
2940
2941         marvell_nand_chips_cleanup(nfc);
2942
2943         if (nfc->use_dma) {
2944                 dmaengine_terminate_all(nfc->dma_chan);
2945                 dma_release_channel(nfc->dma_chan);
2946         }
2947
2948         clk_disable_unprepare(nfc->reg_clk);
2949         clk_disable_unprepare(nfc->core_clk);
2950
2951         return 0;
2952 }
2953
2954 static int __maybe_unused marvell_nfc_suspend(struct device *dev)
2955 {
2956         struct marvell_nfc *nfc = dev_get_drvdata(dev);
2957         struct marvell_nand_chip *chip;
2958
2959         list_for_each_entry(chip, &nfc->chips, node)
2960                 marvell_nfc_wait_ndrun(&chip->chip);
2961
2962         clk_disable_unprepare(nfc->reg_clk);
2963         clk_disable_unprepare(nfc->core_clk);
2964
2965         return 0;
2966 }
2967
2968 static int __maybe_unused marvell_nfc_resume(struct device *dev)
2969 {
2970         struct marvell_nfc *nfc = dev_get_drvdata(dev);
2971         int ret;
2972
2973         ret = clk_prepare_enable(nfc->core_clk);
2974         if (ret < 0)
2975                 return ret;
2976
2977         ret = clk_prepare_enable(nfc->reg_clk);
2978         if (ret < 0)
2979                 return ret;
2980
2981         /*
2982          * Reset nfc->selected_chip so the next command will cause the timing
2983          * registers to be restored in marvell_nfc_select_chip().
2984          */
2985         nfc->selected_chip = NULL;
2986
2987         /* Reset registers that have lost their contents */
2988         marvell_nfc_reset(nfc);
2989
2990         return 0;
2991 }
2992
2993 static const struct dev_pm_ops marvell_nfc_pm_ops = {
2994         SET_SYSTEM_SLEEP_PM_OPS(marvell_nfc_suspend, marvell_nfc_resume)
2995 };
2996
2997 static const struct marvell_nfc_caps marvell_armada_8k_nfc_caps = {
2998         .max_cs_nb = 4,
2999         .max_rb_nb = 2,
3000         .need_system_controller = true,
3001         .is_nfcv2 = true,
3002 };
3003
3004 static const struct marvell_nfc_caps marvell_armada370_nfc_caps = {
3005         .max_cs_nb = 4,
3006         .max_rb_nb = 2,
3007         .is_nfcv2 = true,
3008 };
3009
3010 static const struct marvell_nfc_caps marvell_pxa3xx_nfc_caps = {
3011         .max_cs_nb = 2,
3012         .max_rb_nb = 1,
3013         .use_dma = true,
3014 };
3015
3016 static const struct marvell_nfc_caps marvell_armada_8k_nfc_legacy_caps = {
3017         .max_cs_nb = 4,
3018         .max_rb_nb = 2,
3019         .need_system_controller = true,
3020         .legacy_of_bindings = true,
3021         .is_nfcv2 = true,
3022 };
3023
3024 static const struct marvell_nfc_caps marvell_armada370_nfc_legacy_caps = {
3025         .max_cs_nb = 4,
3026         .max_rb_nb = 2,
3027         .legacy_of_bindings = true,
3028         .is_nfcv2 = true,
3029 };
3030
3031 static const struct marvell_nfc_caps marvell_pxa3xx_nfc_legacy_caps = {
3032         .max_cs_nb = 2,
3033         .max_rb_nb = 1,
3034         .legacy_of_bindings = true,
3035         .use_dma = true,
3036 };
3037
3038 static const struct platform_device_id marvell_nfc_platform_ids[] = {
3039         {
3040                 .name = "pxa3xx-nand",
3041                 .driver_data = (kernel_ulong_t)&marvell_pxa3xx_nfc_legacy_caps,
3042         },
3043         { /* sentinel */ },
3044 };
3045 MODULE_DEVICE_TABLE(platform, marvell_nfc_platform_ids);
3046
3047 static const struct of_device_id marvell_nfc_of_ids[] = {
3048         {
3049                 .compatible = "marvell,armada-8k-nand-controller",
3050                 .data = &marvell_armada_8k_nfc_caps,
3051         },
3052         {
3053                 .compatible = "marvell,armada370-nand-controller",
3054                 .data = &marvell_armada370_nfc_caps,
3055         },
3056         {
3057                 .compatible = "marvell,pxa3xx-nand-controller",
3058                 .data = &marvell_pxa3xx_nfc_caps,
3059         },
3060         /* Support for old/deprecated bindings: */
3061         {
3062                 .compatible = "marvell,armada-8k-nand",
3063                 .data = &marvell_armada_8k_nfc_legacy_caps,
3064         },
3065         {
3066                 .compatible = "marvell,armada370-nand",
3067                 .data = &marvell_armada370_nfc_legacy_caps,
3068         },
3069         {
3070                 .compatible = "marvell,pxa3xx-nand",
3071                 .data = &marvell_pxa3xx_nfc_legacy_caps,
3072         },
3073         { /* sentinel */ },
3074 };
3075 MODULE_DEVICE_TABLE(of, marvell_nfc_of_ids);
3076
3077 static struct platform_driver marvell_nfc_driver = {
3078         .driver = {
3079                 .name           = "marvell-nfc",
3080                 .of_match_table = marvell_nfc_of_ids,
3081                 .pm             = &marvell_nfc_pm_ops,
3082         },
3083         .id_table = marvell_nfc_platform_ids,
3084         .probe = marvell_nfc_probe,
3085         .remove = marvell_nfc_remove,
3086 };
3087 module_platform_driver(marvell_nfc_driver);
3088
3089 MODULE_LICENSE("GPL");
3090 MODULE_DESCRIPTION("Marvell NAND controller driver");