mtd: rawnand: s/data_interface/interface_config/
[linux-2.6-block.git] / drivers / mtd / nand / raw / fsmc_nand.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * ST Microelectronics
4  * Flexible Static Memory Controller (FSMC)
5  * Driver for NAND portions
6  *
7  * Copyright © 2010 ST Microelectronics
8  * Vipin Kumar <vipin.kumar@st.com>
9  * Ashish Priyadarshi
10  *
11  * Based on drivers/mtd/nand/nomadik_nand.c (removed in v3.8)
12  *  Copyright © 2007 STMicroelectronics Pvt. Ltd.
13  *  Copyright © 2009 Alessandro Rubini
14  */
15
16 #include <linux/clk.h>
17 #include <linux/completion.h>
18 #include <linux/dmaengine.h>
19 #include <linux/dma-direction.h>
20 #include <linux/dma-mapping.h>
21 #include <linux/err.h>
22 #include <linux/init.h>
23 #include <linux/module.h>
24 #include <linux/resource.h>
25 #include <linux/sched.h>
26 #include <linux/types.h>
27 #include <linux/mtd/mtd.h>
28 #include <linux/mtd/rawnand.h>
29 #include <linux/mtd/nand_ecc.h>
30 #include <linux/platform_device.h>
31 #include <linux/of.h>
32 #include <linux/mtd/partitions.h>
33 #include <linux/io.h>
34 #include <linux/slab.h>
35 #include <linux/amba/bus.h>
36 #include <mtd/mtd-abi.h>
37
38 /* fsmc controller registers for NOR flash */
39 #define CTRL                    0x0
40         /* ctrl register definitions */
41         #define BANK_ENABLE             BIT(0)
42         #define MUXED                   BIT(1)
43         #define NOR_DEV                 (2 << 2)
44         #define WIDTH_16                BIT(4)
45         #define RSTPWRDWN               BIT(6)
46         #define WPROT                   BIT(7)
47         #define WRT_ENABLE              BIT(12)
48         #define WAIT_ENB                BIT(13)
49
50 #define CTRL_TIM                0x4
51         /* ctrl_tim register definitions */
52
53 #define FSMC_NOR_BANK_SZ        0x8
54 #define FSMC_NOR_REG_SIZE       0x40
55
56 #define FSMC_NOR_REG(base, bank, reg)   ((base) +                       \
57                                          (FSMC_NOR_BANK_SZ * (bank)) +  \
58                                          (reg))
59
60 /* fsmc controller registers for NAND flash */
61 #define FSMC_PC                 0x00
62         /* pc register definitions */
63         #define FSMC_RESET              BIT(0)
64         #define FSMC_WAITON             BIT(1)
65         #define FSMC_ENABLE             BIT(2)
66         #define FSMC_DEVTYPE_NAND       BIT(3)
67         #define FSMC_DEVWID_16          BIT(4)
68         #define FSMC_ECCEN              BIT(6)
69         #define FSMC_ECCPLEN_256        BIT(7)
70         #define FSMC_TCLR_SHIFT         (9)
71         #define FSMC_TCLR_MASK          (0xF)
72         #define FSMC_TAR_SHIFT          (13)
73         #define FSMC_TAR_MASK           (0xF)
74 #define STS                     0x04
75         /* sts register definitions */
76         #define FSMC_CODE_RDY           BIT(15)
77 #define COMM                    0x08
78         /* comm register definitions */
79         #define FSMC_TSET_SHIFT         0
80         #define FSMC_TSET_MASK          0xFF
81         #define FSMC_TWAIT_SHIFT        8
82         #define FSMC_TWAIT_MASK         0xFF
83         #define FSMC_THOLD_SHIFT        16
84         #define FSMC_THOLD_MASK         0xFF
85         #define FSMC_THIZ_SHIFT         24
86         #define FSMC_THIZ_MASK          0xFF
87 #define ATTRIB                  0x0C
88 #define IOATA                   0x10
89 #define ECC1                    0x14
90 #define ECC2                    0x18
91 #define ECC3                    0x1C
92 #define FSMC_NAND_BANK_SZ       0x20
93
94 #define FSMC_BUSY_WAIT_TIMEOUT  (1 * HZ)
95
96 struct fsmc_nand_timings {
97         u8 tclr;
98         u8 tar;
99         u8 thiz;
100         u8 thold;
101         u8 twait;
102         u8 tset;
103 };
104
105 enum access_mode {
106         USE_DMA_ACCESS = 1,
107         USE_WORD_ACCESS,
108 };
109
110 /**
111  * struct fsmc_nand_data - structure for FSMC NAND device state
112  *
113  * @base:               Inherit from the nand_controller struct
114  * @pid:                Part ID on the AMBA PrimeCell format
115  * @nand:               Chip related info for a NAND flash.
116  *
117  * @bank:               Bank number for probed device.
118  * @dev:                Parent device
119  * @mode:               Access mode
120  * @clk:                Clock structure for FSMC.
121  *
122  * @read_dma_chan:      DMA channel for read access
123  * @write_dma_chan:     DMA channel for write access to NAND
124  * @dma_access_complete: Completion structure
125  *
126  * @dev_timings:        NAND timings
127  *
128  * @data_pa:            NAND Physical port for Data.
129  * @data_va:            NAND port for Data.
130  * @cmd_va:             NAND port for Command.
131  * @addr_va:            NAND port for Address.
132  * @regs_va:            Registers base address for a given bank.
133  */
134 struct fsmc_nand_data {
135         struct nand_controller  base;
136         u32                     pid;
137         struct nand_chip        nand;
138
139         unsigned int            bank;
140         struct device           *dev;
141         enum access_mode        mode;
142         struct clk              *clk;
143
144         /* DMA related objects */
145         struct dma_chan         *read_dma_chan;
146         struct dma_chan         *write_dma_chan;
147         struct completion       dma_access_complete;
148
149         struct fsmc_nand_timings *dev_timings;
150
151         dma_addr_t              data_pa;
152         void __iomem            *data_va;
153         void __iomem            *cmd_va;
154         void __iomem            *addr_va;
155         void __iomem            *regs_va;
156 };
157
158 static int fsmc_ecc1_ooblayout_ecc(struct mtd_info *mtd, int section,
159                                    struct mtd_oob_region *oobregion)
160 {
161         struct nand_chip *chip = mtd_to_nand(mtd);
162
163         if (section >= chip->ecc.steps)
164                 return -ERANGE;
165
166         oobregion->offset = (section * 16) + 2;
167         oobregion->length = 3;
168
169         return 0;
170 }
171
172 static int fsmc_ecc1_ooblayout_free(struct mtd_info *mtd, int section,
173                                     struct mtd_oob_region *oobregion)
174 {
175         struct nand_chip *chip = mtd_to_nand(mtd);
176
177         if (section >= chip->ecc.steps)
178                 return -ERANGE;
179
180         oobregion->offset = (section * 16) + 8;
181
182         if (section < chip->ecc.steps - 1)
183                 oobregion->length = 8;
184         else
185                 oobregion->length = mtd->oobsize - oobregion->offset;
186
187         return 0;
188 }
189
190 static const struct mtd_ooblayout_ops fsmc_ecc1_ooblayout_ops = {
191         .ecc = fsmc_ecc1_ooblayout_ecc,
192         .free = fsmc_ecc1_ooblayout_free,
193 };
194
195 /*
196  * ECC placement definitions in oobfree type format.
197  * There are 13 bytes of ecc for every 512 byte block and it has to be read
198  * consecutively and immediately after the 512 byte data block for hardware to
199  * generate the error bit offsets in 512 byte data.
200  */
201 static int fsmc_ecc4_ooblayout_ecc(struct mtd_info *mtd, int section,
202                                    struct mtd_oob_region *oobregion)
203 {
204         struct nand_chip *chip = mtd_to_nand(mtd);
205
206         if (section >= chip->ecc.steps)
207                 return -ERANGE;
208
209         oobregion->length = chip->ecc.bytes;
210
211         if (!section && mtd->writesize <= 512)
212                 oobregion->offset = 0;
213         else
214                 oobregion->offset = (section * 16) + 2;
215
216         return 0;
217 }
218
219 static int fsmc_ecc4_ooblayout_free(struct mtd_info *mtd, int section,
220                                     struct mtd_oob_region *oobregion)
221 {
222         struct nand_chip *chip = mtd_to_nand(mtd);
223
224         if (section >= chip->ecc.steps)
225                 return -ERANGE;
226
227         oobregion->offset = (section * 16) + 15;
228
229         if (section < chip->ecc.steps - 1)
230                 oobregion->length = 3;
231         else
232                 oobregion->length = mtd->oobsize - oobregion->offset;
233
234         return 0;
235 }
236
237 static const struct mtd_ooblayout_ops fsmc_ecc4_ooblayout_ops = {
238         .ecc = fsmc_ecc4_ooblayout_ecc,
239         .free = fsmc_ecc4_ooblayout_free,
240 };
241
242 static inline struct fsmc_nand_data *nand_to_fsmc(struct nand_chip *chip)
243 {
244         return container_of(chip, struct fsmc_nand_data, nand);
245 }
246
247 /*
248  * fsmc_nand_setup - FSMC (Flexible Static Memory Controller) init routine
249  *
250  * This routine initializes timing parameters related to NAND memory access in
251  * FSMC registers
252  */
253 static void fsmc_nand_setup(struct fsmc_nand_data *host,
254                             struct fsmc_nand_timings *tims)
255 {
256         u32 value = FSMC_DEVTYPE_NAND | FSMC_ENABLE | FSMC_WAITON;
257         u32 tclr, tar, thiz, thold, twait, tset;
258
259         tclr = (tims->tclr & FSMC_TCLR_MASK) << FSMC_TCLR_SHIFT;
260         tar = (tims->tar & FSMC_TAR_MASK) << FSMC_TAR_SHIFT;
261         thiz = (tims->thiz & FSMC_THIZ_MASK) << FSMC_THIZ_SHIFT;
262         thold = (tims->thold & FSMC_THOLD_MASK) << FSMC_THOLD_SHIFT;
263         twait = (tims->twait & FSMC_TWAIT_MASK) << FSMC_TWAIT_SHIFT;
264         tset = (tims->tset & FSMC_TSET_MASK) << FSMC_TSET_SHIFT;
265
266         if (host->nand.options & NAND_BUSWIDTH_16)
267                 value |= FSMC_DEVWID_16;
268
269         writel_relaxed(value | tclr | tar, host->regs_va + FSMC_PC);
270         writel_relaxed(thiz | thold | twait | tset, host->regs_va + COMM);
271         writel_relaxed(thiz | thold | twait | tset, host->regs_va + ATTRIB);
272 }
273
274 static int fsmc_calc_timings(struct fsmc_nand_data *host,
275                              const struct nand_sdr_timings *sdrt,
276                              struct fsmc_nand_timings *tims)
277 {
278         unsigned long hclk = clk_get_rate(host->clk);
279         unsigned long hclkn = NSEC_PER_SEC / hclk;
280         u32 thiz, thold, twait, tset;
281
282         if (sdrt->tRC_min < 30000)
283                 return -EOPNOTSUPP;
284
285         tims->tar = DIV_ROUND_UP(sdrt->tAR_min / 1000, hclkn) - 1;
286         if (tims->tar > FSMC_TAR_MASK)
287                 tims->tar = FSMC_TAR_MASK;
288         tims->tclr = DIV_ROUND_UP(sdrt->tCLR_min / 1000, hclkn) - 1;
289         if (tims->tclr > FSMC_TCLR_MASK)
290                 tims->tclr = FSMC_TCLR_MASK;
291
292         thiz = sdrt->tCS_min - sdrt->tWP_min;
293         tims->thiz = DIV_ROUND_UP(thiz / 1000, hclkn);
294
295         thold = sdrt->tDH_min;
296         if (thold < sdrt->tCH_min)
297                 thold = sdrt->tCH_min;
298         if (thold < sdrt->tCLH_min)
299                 thold = sdrt->tCLH_min;
300         if (thold < sdrt->tWH_min)
301                 thold = sdrt->tWH_min;
302         if (thold < sdrt->tALH_min)
303                 thold = sdrt->tALH_min;
304         if (thold < sdrt->tREH_min)
305                 thold = sdrt->tREH_min;
306         tims->thold = DIV_ROUND_UP(thold / 1000, hclkn);
307         if (tims->thold == 0)
308                 tims->thold = 1;
309         else if (tims->thold > FSMC_THOLD_MASK)
310                 tims->thold = FSMC_THOLD_MASK;
311
312         twait = max(sdrt->tRP_min, sdrt->tWP_min);
313         tims->twait = DIV_ROUND_UP(twait / 1000, hclkn) - 1;
314         if (tims->twait == 0)
315                 tims->twait = 1;
316         else if (tims->twait > FSMC_TWAIT_MASK)
317                 tims->twait = FSMC_TWAIT_MASK;
318
319         tset = max(sdrt->tCS_min - sdrt->tWP_min,
320                    sdrt->tCEA_max - sdrt->tREA_max);
321         tims->tset = DIV_ROUND_UP(tset / 1000, hclkn) - 1;
322         if (tims->tset == 0)
323                 tims->tset = 1;
324         else if (tims->tset > FSMC_TSET_MASK)
325                 tims->tset = FSMC_TSET_MASK;
326
327         return 0;
328 }
329
330 static int fsmc_setup_interface(struct nand_chip *nand, int csline,
331                                 const struct nand_interface_config *conf)
332 {
333         struct fsmc_nand_data *host = nand_to_fsmc(nand);
334         struct fsmc_nand_timings tims;
335         const struct nand_sdr_timings *sdrt;
336         int ret;
337
338         sdrt = nand_get_sdr_timings(conf);
339         if (IS_ERR(sdrt))
340                 return PTR_ERR(sdrt);
341
342         ret = fsmc_calc_timings(host, sdrt, &tims);
343         if (ret)
344                 return ret;
345
346         if (csline == NAND_DATA_IFACE_CHECK_ONLY)
347                 return 0;
348
349         fsmc_nand_setup(host, &tims);
350
351         return 0;
352 }
353
354 /*
355  * fsmc_enable_hwecc - Enables Hardware ECC through FSMC registers
356  */
357 static void fsmc_enable_hwecc(struct nand_chip *chip, int mode)
358 {
359         struct fsmc_nand_data *host = nand_to_fsmc(chip);
360
361         writel_relaxed(readl(host->regs_va + FSMC_PC) & ~FSMC_ECCPLEN_256,
362                        host->regs_va + FSMC_PC);
363         writel_relaxed(readl(host->regs_va + FSMC_PC) & ~FSMC_ECCEN,
364                        host->regs_va + FSMC_PC);
365         writel_relaxed(readl(host->regs_va + FSMC_PC) | FSMC_ECCEN,
366                        host->regs_va + FSMC_PC);
367 }
368
369 /*
370  * fsmc_read_hwecc_ecc4 - Hardware ECC calculator for ecc4 option supported by
371  * FSMC. ECC is 13 bytes for 512 bytes of data (supports error correction up to
372  * max of 8-bits)
373  */
374 static int fsmc_read_hwecc_ecc4(struct nand_chip *chip, const u8 *data,
375                                 u8 *ecc)
376 {
377         struct fsmc_nand_data *host = nand_to_fsmc(chip);
378         u32 ecc_tmp;
379         unsigned long deadline = jiffies + FSMC_BUSY_WAIT_TIMEOUT;
380
381         do {
382                 if (readl_relaxed(host->regs_va + STS) & FSMC_CODE_RDY)
383                         break;
384
385                 cond_resched();
386         } while (!time_after_eq(jiffies, deadline));
387
388         if (time_after_eq(jiffies, deadline)) {
389                 dev_err(host->dev, "calculate ecc timed out\n");
390                 return -ETIMEDOUT;
391         }
392
393         ecc_tmp = readl_relaxed(host->regs_va + ECC1);
394         ecc[0] = ecc_tmp;
395         ecc[1] = ecc_tmp >> 8;
396         ecc[2] = ecc_tmp >> 16;
397         ecc[3] = ecc_tmp >> 24;
398
399         ecc_tmp = readl_relaxed(host->regs_va + ECC2);
400         ecc[4] = ecc_tmp;
401         ecc[5] = ecc_tmp >> 8;
402         ecc[6] = ecc_tmp >> 16;
403         ecc[7] = ecc_tmp >> 24;
404
405         ecc_tmp = readl_relaxed(host->regs_va + ECC3);
406         ecc[8] = ecc_tmp;
407         ecc[9] = ecc_tmp >> 8;
408         ecc[10] = ecc_tmp >> 16;
409         ecc[11] = ecc_tmp >> 24;
410
411         ecc_tmp = readl_relaxed(host->regs_va + STS);
412         ecc[12] = ecc_tmp >> 16;
413
414         return 0;
415 }
416
417 /*
418  * fsmc_read_hwecc_ecc1 - Hardware ECC calculator for ecc1 option supported by
419  * FSMC. ECC is 3 bytes for 512 bytes of data (supports error correction up to
420  * max of 1-bit)
421  */
422 static int fsmc_read_hwecc_ecc1(struct nand_chip *chip, const u8 *data,
423                                 u8 *ecc)
424 {
425         struct fsmc_nand_data *host = nand_to_fsmc(chip);
426         u32 ecc_tmp;
427
428         ecc_tmp = readl_relaxed(host->regs_va + ECC1);
429         ecc[0] = ecc_tmp;
430         ecc[1] = ecc_tmp >> 8;
431         ecc[2] = ecc_tmp >> 16;
432
433         return 0;
434 }
435
436 /* Count the number of 0's in buff upto a max of max_bits */
437 static int count_written_bits(u8 *buff, int size, int max_bits)
438 {
439         int k, written_bits = 0;
440
441         for (k = 0; k < size; k++) {
442                 written_bits += hweight8(~buff[k]);
443                 if (written_bits > max_bits)
444                         break;
445         }
446
447         return written_bits;
448 }
449
450 static void dma_complete(void *param)
451 {
452         struct fsmc_nand_data *host = param;
453
454         complete(&host->dma_access_complete);
455 }
456
457 static int dma_xfer(struct fsmc_nand_data *host, void *buffer, int len,
458                     enum dma_data_direction direction)
459 {
460         struct dma_chan *chan;
461         struct dma_device *dma_dev;
462         struct dma_async_tx_descriptor *tx;
463         dma_addr_t dma_dst, dma_src, dma_addr;
464         dma_cookie_t cookie;
465         unsigned long flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
466         int ret;
467         unsigned long time_left;
468
469         if (direction == DMA_TO_DEVICE)
470                 chan = host->write_dma_chan;
471         else if (direction == DMA_FROM_DEVICE)
472                 chan = host->read_dma_chan;
473         else
474                 return -EINVAL;
475
476         dma_dev = chan->device;
477         dma_addr = dma_map_single(dma_dev->dev, buffer, len, direction);
478
479         if (direction == DMA_TO_DEVICE) {
480                 dma_src = dma_addr;
481                 dma_dst = host->data_pa;
482         } else {
483                 dma_src = host->data_pa;
484                 dma_dst = dma_addr;
485         }
486
487         tx = dma_dev->device_prep_dma_memcpy(chan, dma_dst, dma_src,
488                         len, flags);
489         if (!tx) {
490                 dev_err(host->dev, "device_prep_dma_memcpy error\n");
491                 ret = -EIO;
492                 goto unmap_dma;
493         }
494
495         tx->callback = dma_complete;
496         tx->callback_param = host;
497         cookie = tx->tx_submit(tx);
498
499         ret = dma_submit_error(cookie);
500         if (ret) {
501                 dev_err(host->dev, "dma_submit_error %d\n", cookie);
502                 goto unmap_dma;
503         }
504
505         dma_async_issue_pending(chan);
506
507         time_left =
508         wait_for_completion_timeout(&host->dma_access_complete,
509                                     msecs_to_jiffies(3000));
510         if (time_left == 0) {
511                 dmaengine_terminate_all(chan);
512                 dev_err(host->dev, "wait_for_completion_timeout\n");
513                 ret = -ETIMEDOUT;
514                 goto unmap_dma;
515         }
516
517         ret = 0;
518
519 unmap_dma:
520         dma_unmap_single(dma_dev->dev, dma_addr, len, direction);
521
522         return ret;
523 }
524
525 /*
526  * fsmc_write_buf - write buffer to chip
527  * @host:       FSMC NAND controller
528  * @buf:        data buffer
529  * @len:        number of bytes to write
530  */
531 static void fsmc_write_buf(struct fsmc_nand_data *host, const u8 *buf,
532                            int len)
533 {
534         int i;
535
536         if (IS_ALIGNED((uintptr_t)buf, sizeof(u32)) &&
537             IS_ALIGNED(len, sizeof(u32))) {
538                 u32 *p = (u32 *)buf;
539
540                 len = len >> 2;
541                 for (i = 0; i < len; i++)
542                         writel_relaxed(p[i], host->data_va);
543         } else {
544                 for (i = 0; i < len; i++)
545                         writeb_relaxed(buf[i], host->data_va);
546         }
547 }
548
549 /*
550  * fsmc_read_buf - read chip data into buffer
551  * @host:       FSMC NAND controller
552  * @buf:        buffer to store date
553  * @len:        number of bytes to read
554  */
555 static void fsmc_read_buf(struct fsmc_nand_data *host, u8 *buf, int len)
556 {
557         int i;
558
559         if (IS_ALIGNED((uintptr_t)buf, sizeof(u32)) &&
560             IS_ALIGNED(len, sizeof(u32))) {
561                 u32 *p = (u32 *)buf;
562
563                 len = len >> 2;
564                 for (i = 0; i < len; i++)
565                         p[i] = readl_relaxed(host->data_va);
566         } else {
567                 for (i = 0; i < len; i++)
568                         buf[i] = readb_relaxed(host->data_va);
569         }
570 }
571
572 /*
573  * fsmc_read_buf_dma - read chip data into buffer
574  * @host:       FSMC NAND controller
575  * @buf:        buffer to store date
576  * @len:        number of bytes to read
577  */
578 static void fsmc_read_buf_dma(struct fsmc_nand_data *host, u8 *buf,
579                               int len)
580 {
581         dma_xfer(host, buf, len, DMA_FROM_DEVICE);
582 }
583
584 /*
585  * fsmc_write_buf_dma - write buffer to chip
586  * @host:       FSMC NAND controller
587  * @buf:        data buffer
588  * @len:        number of bytes to write
589  */
590 static void fsmc_write_buf_dma(struct fsmc_nand_data *host, const u8 *buf,
591                                int len)
592 {
593         dma_xfer(host, (void *)buf, len, DMA_TO_DEVICE);
594 }
595
596 /*
597  * fsmc_exec_op - hook called by the core to execute NAND operations
598  *
599  * This controller is simple enough and thus does not need to use the parser
600  * provided by the core, instead, handle every situation here.
601  */
602 static int fsmc_exec_op(struct nand_chip *chip, const struct nand_operation *op,
603                         bool check_only)
604 {
605         struct fsmc_nand_data *host = nand_to_fsmc(chip);
606         const struct nand_op_instr *instr = NULL;
607         int ret = 0;
608         unsigned int op_id;
609         int i;
610
611         if (check_only)
612                 return 0;
613
614         pr_debug("Executing operation [%d instructions]:\n", op->ninstrs);
615
616         for (op_id = 0; op_id < op->ninstrs; op_id++) {
617                 instr = &op->instrs[op_id];
618
619                 nand_op_trace("  ", instr);
620
621                 switch (instr->type) {
622                 case NAND_OP_CMD_INSTR:
623                         writeb_relaxed(instr->ctx.cmd.opcode, host->cmd_va);
624                         break;
625
626                 case NAND_OP_ADDR_INSTR:
627                         for (i = 0; i < instr->ctx.addr.naddrs; i++)
628                                 writeb_relaxed(instr->ctx.addr.addrs[i],
629                                                host->addr_va);
630                         break;
631
632                 case NAND_OP_DATA_IN_INSTR:
633                         if (host->mode == USE_DMA_ACCESS)
634                                 fsmc_read_buf_dma(host, instr->ctx.data.buf.in,
635                                                   instr->ctx.data.len);
636                         else
637                                 fsmc_read_buf(host, instr->ctx.data.buf.in,
638                                               instr->ctx.data.len);
639                         break;
640
641                 case NAND_OP_DATA_OUT_INSTR:
642                         if (host->mode == USE_DMA_ACCESS)
643                                 fsmc_write_buf_dma(host,
644                                                    instr->ctx.data.buf.out,
645                                                    instr->ctx.data.len);
646                         else
647                                 fsmc_write_buf(host, instr->ctx.data.buf.out,
648                                                instr->ctx.data.len);
649                         break;
650
651                 case NAND_OP_WAITRDY_INSTR:
652                         ret = nand_soft_waitrdy(chip,
653                                                 instr->ctx.waitrdy.timeout_ms);
654                         break;
655                 }
656         }
657
658         return ret;
659 }
660
661 /*
662  * fsmc_read_page_hwecc
663  * @chip:       nand chip info structure
664  * @buf:        buffer to store read data
665  * @oob_required:       caller expects OOB data read to chip->oob_poi
666  * @page:       page number to read
667  *
668  * This routine is needed for fsmc version 8 as reading from NAND chip has to be
669  * performed in a strict sequence as follows:
670  * data(512 byte) -> ecc(13 byte)
671  * After this read, fsmc hardware generates and reports error data bits(up to a
672  * max of 8 bits)
673  */
674 static int fsmc_read_page_hwecc(struct nand_chip *chip, u8 *buf,
675                                 int oob_required, int page)
676 {
677         struct mtd_info *mtd = nand_to_mtd(chip);
678         int i, j, s, stat, eccsize = chip->ecc.size;
679         int eccbytes = chip->ecc.bytes;
680         int eccsteps = chip->ecc.steps;
681         u8 *p = buf;
682         u8 *ecc_calc = chip->ecc.calc_buf;
683         u8 *ecc_code = chip->ecc.code_buf;
684         int off, len, ret, group = 0;
685         /*
686          * ecc_oob is intentionally taken as u16. In 16bit devices, we
687          * end up reading 14 bytes (7 words) from oob. The local array is
688          * to maintain word alignment
689          */
690         u16 ecc_oob[7];
691         u8 *oob = (u8 *)&ecc_oob[0];
692         unsigned int max_bitflips = 0;
693
694         for (i = 0, s = 0; s < eccsteps; s++, i += eccbytes, p += eccsize) {
695                 nand_read_page_op(chip, page, s * eccsize, NULL, 0);
696                 chip->ecc.hwctl(chip, NAND_ECC_READ);
697                 ret = nand_read_data_op(chip, p, eccsize, false, false);
698                 if (ret)
699                         return ret;
700
701                 for (j = 0; j < eccbytes;) {
702                         struct mtd_oob_region oobregion;
703
704                         ret = mtd_ooblayout_ecc(mtd, group++, &oobregion);
705                         if (ret)
706                                 return ret;
707
708                         off = oobregion.offset;
709                         len = oobregion.length;
710
711                         /*
712                          * length is intentionally kept a higher multiple of 2
713                          * to read at least 13 bytes even in case of 16 bit NAND
714                          * devices
715                          */
716                         if (chip->options & NAND_BUSWIDTH_16)
717                                 len = roundup(len, 2);
718
719                         nand_read_oob_op(chip, page, off, oob + j, len);
720                         j += len;
721                 }
722
723                 memcpy(&ecc_code[i], oob, chip->ecc.bytes);
724                 chip->ecc.calculate(chip, p, &ecc_calc[i]);
725
726                 stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]);
727                 if (stat < 0) {
728                         mtd->ecc_stats.failed++;
729                 } else {
730                         mtd->ecc_stats.corrected += stat;
731                         max_bitflips = max_t(unsigned int, max_bitflips, stat);
732                 }
733         }
734
735         return max_bitflips;
736 }
737
738 /*
739  * fsmc_bch8_correct_data
740  * @mtd:        mtd info structure
741  * @dat:        buffer of read data
742  * @read_ecc:   ecc read from device spare area
743  * @calc_ecc:   ecc calculated from read data
744  *
745  * calc_ecc is a 104 bit information containing maximum of 8 error
746  * offset information of 13 bits each in 512 bytes of read data.
747  */
748 static int fsmc_bch8_correct_data(struct nand_chip *chip, u8 *dat,
749                                   u8 *read_ecc, u8 *calc_ecc)
750 {
751         struct fsmc_nand_data *host = nand_to_fsmc(chip);
752         u32 err_idx[8];
753         u32 num_err, i;
754         u32 ecc1, ecc2, ecc3, ecc4;
755
756         num_err = (readl_relaxed(host->regs_va + STS) >> 10) & 0xF;
757
758         /* no bit flipping */
759         if (likely(num_err == 0))
760                 return 0;
761
762         /* too many errors */
763         if (unlikely(num_err > 8)) {
764                 /*
765                  * This is a temporary erase check. A newly erased page read
766                  * would result in an ecc error because the oob data is also
767                  * erased to FF and the calculated ecc for an FF data is not
768                  * FF..FF.
769                  * This is a workaround to skip performing correction in case
770                  * data is FF..FF
771                  *
772                  * Logic:
773                  * For every page, each bit written as 0 is counted until these
774                  * number of bits are greater than 8 (the maximum correction
775                  * capability of FSMC for each 512 + 13 bytes)
776                  */
777
778                 int bits_ecc = count_written_bits(read_ecc, chip->ecc.bytes, 8);
779                 int bits_data = count_written_bits(dat, chip->ecc.size, 8);
780
781                 if ((bits_ecc + bits_data) <= 8) {
782                         if (bits_data)
783                                 memset(dat, 0xff, chip->ecc.size);
784                         return bits_data;
785                 }
786
787                 return -EBADMSG;
788         }
789
790         /*
791          * ------------------- calc_ecc[] bit wise -----------|--13 bits--|
792          * |---idx[7]--|--.....-----|---idx[2]--||---idx[1]--||---idx[0]--|
793          *
794          * calc_ecc is a 104 bit information containing maximum of 8 error
795          * offset information of 13 bits each. calc_ecc is copied into a
796          * u64 array and error offset indexes are populated in err_idx
797          * array
798          */
799         ecc1 = readl_relaxed(host->regs_va + ECC1);
800         ecc2 = readl_relaxed(host->regs_va + ECC2);
801         ecc3 = readl_relaxed(host->regs_va + ECC3);
802         ecc4 = readl_relaxed(host->regs_va + STS);
803
804         err_idx[0] = (ecc1 >> 0) & 0x1FFF;
805         err_idx[1] = (ecc1 >> 13) & 0x1FFF;
806         err_idx[2] = (((ecc2 >> 0) & 0x7F) << 6) | ((ecc1 >> 26) & 0x3F);
807         err_idx[3] = (ecc2 >> 7) & 0x1FFF;
808         err_idx[4] = (((ecc3 >> 0) & 0x1) << 12) | ((ecc2 >> 20) & 0xFFF);
809         err_idx[5] = (ecc3 >> 1) & 0x1FFF;
810         err_idx[6] = (ecc3 >> 14) & 0x1FFF;
811         err_idx[7] = (((ecc4 >> 16) & 0xFF) << 5) | ((ecc3 >> 27) & 0x1F);
812
813         i = 0;
814         while (num_err--) {
815                 err_idx[i] ^= 3;
816
817                 if (err_idx[i] < chip->ecc.size * 8) {
818                         int err = err_idx[i];
819
820                         dat[err >> 3] ^= BIT(err & 7);
821                         i++;
822                 }
823         }
824         return i;
825 }
826
827 static bool filter(struct dma_chan *chan, void *slave)
828 {
829         chan->private = slave;
830         return true;
831 }
832
833 static int fsmc_nand_probe_config_dt(struct platform_device *pdev,
834                                      struct fsmc_nand_data *host,
835                                      struct nand_chip *nand)
836 {
837         struct device_node *np = pdev->dev.of_node;
838         u32 val;
839         int ret;
840
841         nand->options = 0;
842
843         if (!of_property_read_u32(np, "bank-width", &val)) {
844                 if (val == 2) {
845                         nand->options |= NAND_BUSWIDTH_16;
846                 } else if (val != 1) {
847                         dev_err(&pdev->dev, "invalid bank-width %u\n", val);
848                         return -EINVAL;
849                 }
850         }
851
852         if (of_get_property(np, "nand-skip-bbtscan", NULL))
853                 nand->options |= NAND_SKIP_BBTSCAN;
854
855         host->dev_timings = devm_kzalloc(&pdev->dev,
856                                          sizeof(*host->dev_timings),
857                                          GFP_KERNEL);
858         if (!host->dev_timings)
859                 return -ENOMEM;
860
861         ret = of_property_read_u8_array(np, "timings", (u8 *)host->dev_timings,
862                                         sizeof(*host->dev_timings));
863         if (ret)
864                 host->dev_timings = NULL;
865
866         /* Set default NAND bank to 0 */
867         host->bank = 0;
868         if (!of_property_read_u32(np, "bank", &val)) {
869                 if (val > 3) {
870                         dev_err(&pdev->dev, "invalid bank %u\n", val);
871                         return -EINVAL;
872                 }
873                 host->bank = val;
874         }
875         return 0;
876 }
877
878 static int fsmc_nand_attach_chip(struct nand_chip *nand)
879 {
880         struct mtd_info *mtd = nand_to_mtd(nand);
881         struct fsmc_nand_data *host = nand_to_fsmc(nand);
882
883         if (AMBA_REV_BITS(host->pid) >= 8) {
884                 switch (mtd->oobsize) {
885                 case 16:
886                 case 64:
887                 case 128:
888                 case 224:
889                 case 256:
890                         break;
891                 default:
892                         dev_warn(host->dev,
893                                  "No oob scheme defined for oobsize %d\n",
894                                  mtd->oobsize);
895                         return -EINVAL;
896                 }
897
898                 mtd_set_ooblayout(mtd, &fsmc_ecc4_ooblayout_ops);
899
900                 return 0;
901         }
902
903         switch (nand->ecc.mode) {
904         case NAND_ECC_HW:
905                 dev_info(host->dev, "Using 1-bit HW ECC scheme\n");
906                 nand->ecc.calculate = fsmc_read_hwecc_ecc1;
907                 nand->ecc.correct = nand_correct_data;
908                 nand->ecc.bytes = 3;
909                 nand->ecc.strength = 1;
910                 nand->ecc.options |= NAND_ECC_SOFT_HAMMING_SM_ORDER;
911                 break;
912
913         case NAND_ECC_SOFT:
914                 if (nand->ecc.algo == NAND_ECC_BCH) {
915                         dev_info(host->dev,
916                                  "Using 4-bit SW BCH ECC scheme\n");
917                         break;
918                 }
919
920         case NAND_ECC_ON_DIE:
921                 break;
922
923         default:
924                 dev_err(host->dev, "Unsupported ECC mode!\n");
925                 return -ENOTSUPP;
926         }
927
928         /*
929          * Don't set layout for BCH4 SW ECC. This will be
930          * generated later in nand_bch_init() later.
931          */
932         if (nand->ecc.mode == NAND_ECC_HW) {
933                 switch (mtd->oobsize) {
934                 case 16:
935                 case 64:
936                 case 128:
937                         mtd_set_ooblayout(mtd,
938                                           &fsmc_ecc1_ooblayout_ops);
939                         break;
940                 default:
941                         dev_warn(host->dev,
942                                  "No oob scheme defined for oobsize %d\n",
943                                  mtd->oobsize);
944                         return -EINVAL;
945                 }
946         }
947
948         return 0;
949 }
950
951 static const struct nand_controller_ops fsmc_nand_controller_ops = {
952         .attach_chip = fsmc_nand_attach_chip,
953         .exec_op = fsmc_exec_op,
954         .setup_interface = fsmc_setup_interface,
955 };
956
957 /**
958  * fsmc_nand_disable() - Disables the NAND bank
959  * @host: The instance to disable
960  */
961 static void fsmc_nand_disable(struct fsmc_nand_data *host)
962 {
963         u32 val;
964
965         val = readl(host->regs_va + FSMC_PC);
966         val &= ~FSMC_ENABLE;
967         writel(val, host->regs_va + FSMC_PC);
968 }
969
970 /*
971  * fsmc_nand_probe - Probe function
972  * @pdev:       platform device structure
973  */
974 static int __init fsmc_nand_probe(struct platform_device *pdev)
975 {
976         struct fsmc_nand_data *host;
977         struct mtd_info *mtd;
978         struct nand_chip *nand;
979         struct resource *res;
980         void __iomem *base;
981         dma_cap_mask_t mask;
982         int ret = 0;
983         u32 pid;
984         int i;
985
986         /* Allocate memory for the device structure (and zero it) */
987         host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL);
988         if (!host)
989                 return -ENOMEM;
990
991         nand = &host->nand;
992
993         ret = fsmc_nand_probe_config_dt(pdev, host, nand);
994         if (ret)
995                 return ret;
996
997         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_data");
998         host->data_va = devm_ioremap_resource(&pdev->dev, res);
999         if (IS_ERR(host->data_va))
1000                 return PTR_ERR(host->data_va);
1001
1002         host->data_pa = (dma_addr_t)res->start;
1003
1004         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_addr");
1005         host->addr_va = devm_ioremap_resource(&pdev->dev, res);
1006         if (IS_ERR(host->addr_va))
1007                 return PTR_ERR(host->addr_va);
1008
1009         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_cmd");
1010         host->cmd_va = devm_ioremap_resource(&pdev->dev, res);
1011         if (IS_ERR(host->cmd_va))
1012                 return PTR_ERR(host->cmd_va);
1013
1014         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "fsmc_regs");
1015         base = devm_ioremap_resource(&pdev->dev, res);
1016         if (IS_ERR(base))
1017                 return PTR_ERR(base);
1018
1019         host->regs_va = base + FSMC_NOR_REG_SIZE +
1020                 (host->bank * FSMC_NAND_BANK_SZ);
1021
1022         host->clk = devm_clk_get(&pdev->dev, NULL);
1023         if (IS_ERR(host->clk)) {
1024                 dev_err(&pdev->dev, "failed to fetch block clock\n");
1025                 return PTR_ERR(host->clk);
1026         }
1027
1028         ret = clk_prepare_enable(host->clk);
1029         if (ret)
1030                 return ret;
1031
1032         /*
1033          * This device ID is actually a common AMBA ID as used on the
1034          * AMBA PrimeCell bus. However it is not a PrimeCell.
1035          */
1036         for (pid = 0, i = 0; i < 4; i++)
1037                 pid |= (readl(base + resource_size(res) - 0x20 + 4 * i) &
1038                         255) << (i * 8);
1039
1040         host->pid = pid;
1041
1042         dev_info(&pdev->dev,
1043                  "FSMC device partno %03x, manufacturer %02x, revision %02x, config %02x\n",
1044                  AMBA_PART_BITS(pid), AMBA_MANF_BITS(pid),
1045                  AMBA_REV_BITS(pid), AMBA_CONFIG_BITS(pid));
1046
1047         host->dev = &pdev->dev;
1048
1049         if (host->mode == USE_DMA_ACCESS)
1050                 init_completion(&host->dma_access_complete);
1051
1052         /* Link all private pointers */
1053         mtd = nand_to_mtd(&host->nand);
1054         nand_set_flash_node(nand, pdev->dev.of_node);
1055
1056         mtd->dev.parent = &pdev->dev;
1057
1058         /*
1059          * Setup default ECC mode. nand_dt_init() called from nand_scan_ident()
1060          * can overwrite this value if the DT provides a different value.
1061          */
1062         nand->ecc.mode = NAND_ECC_HW;
1063         nand->ecc.hwctl = fsmc_enable_hwecc;
1064         nand->ecc.size = 512;
1065         nand->badblockbits = 7;
1066
1067         if (host->mode == USE_DMA_ACCESS) {
1068                 dma_cap_zero(mask);
1069                 dma_cap_set(DMA_MEMCPY, mask);
1070                 host->read_dma_chan = dma_request_channel(mask, filter, NULL);
1071                 if (!host->read_dma_chan) {
1072                         dev_err(&pdev->dev, "Unable to get read dma channel\n");
1073                         goto disable_clk;
1074                 }
1075                 host->write_dma_chan = dma_request_channel(mask, filter, NULL);
1076                 if (!host->write_dma_chan) {
1077                         dev_err(&pdev->dev, "Unable to get write dma channel\n");
1078                         goto release_dma_read_chan;
1079                 }
1080         }
1081
1082         if (host->dev_timings) {
1083                 fsmc_nand_setup(host, host->dev_timings);
1084                 nand->options |= NAND_KEEP_TIMINGS;
1085         }
1086
1087         if (AMBA_REV_BITS(host->pid) >= 8) {
1088                 nand->ecc.read_page = fsmc_read_page_hwecc;
1089                 nand->ecc.calculate = fsmc_read_hwecc_ecc4;
1090                 nand->ecc.correct = fsmc_bch8_correct_data;
1091                 nand->ecc.bytes = 13;
1092                 nand->ecc.strength = 8;
1093         }
1094
1095         nand_controller_init(&host->base);
1096         host->base.ops = &fsmc_nand_controller_ops;
1097         nand->controller = &host->base;
1098
1099         /*
1100          * Scan to find existence of the device
1101          */
1102         ret = nand_scan(nand, 1);
1103         if (ret)
1104                 goto release_dma_write_chan;
1105
1106         mtd->name = "nand";
1107         ret = mtd_device_register(mtd, NULL, 0);
1108         if (ret)
1109                 goto cleanup_nand;
1110
1111         platform_set_drvdata(pdev, host);
1112         dev_info(&pdev->dev, "FSMC NAND driver registration successful\n");
1113
1114         return 0;
1115
1116 cleanup_nand:
1117         nand_cleanup(nand);
1118 release_dma_write_chan:
1119         if (host->mode == USE_DMA_ACCESS)
1120                 dma_release_channel(host->write_dma_chan);
1121 release_dma_read_chan:
1122         if (host->mode == USE_DMA_ACCESS)
1123                 dma_release_channel(host->read_dma_chan);
1124 disable_clk:
1125         fsmc_nand_disable(host);
1126         clk_disable_unprepare(host->clk);
1127
1128         return ret;
1129 }
1130
1131 /*
1132  * Clean up routine
1133  */
1134 static int fsmc_nand_remove(struct platform_device *pdev)
1135 {
1136         struct fsmc_nand_data *host = platform_get_drvdata(pdev);
1137
1138         if (host) {
1139                 struct nand_chip *chip = &host->nand;
1140                 int ret;
1141
1142                 ret = mtd_device_unregister(nand_to_mtd(chip));
1143                 WARN_ON(ret);
1144                 nand_cleanup(chip);
1145                 fsmc_nand_disable(host);
1146
1147                 if (host->mode == USE_DMA_ACCESS) {
1148                         dma_release_channel(host->write_dma_chan);
1149                         dma_release_channel(host->read_dma_chan);
1150                 }
1151                 clk_disable_unprepare(host->clk);
1152         }
1153
1154         return 0;
1155 }
1156
1157 #ifdef CONFIG_PM_SLEEP
1158 static int fsmc_nand_suspend(struct device *dev)
1159 {
1160         struct fsmc_nand_data *host = dev_get_drvdata(dev);
1161
1162         if (host)
1163                 clk_disable_unprepare(host->clk);
1164
1165         return 0;
1166 }
1167
1168 static int fsmc_nand_resume(struct device *dev)
1169 {
1170         struct fsmc_nand_data *host = dev_get_drvdata(dev);
1171
1172         if (host) {
1173                 clk_prepare_enable(host->clk);
1174                 if (host->dev_timings)
1175                         fsmc_nand_setup(host, host->dev_timings);
1176                 nand_reset(&host->nand, 0);
1177         }
1178
1179         return 0;
1180 }
1181 #endif
1182
1183 static SIMPLE_DEV_PM_OPS(fsmc_nand_pm_ops, fsmc_nand_suspend, fsmc_nand_resume);
1184
1185 static const struct of_device_id fsmc_nand_id_table[] = {
1186         { .compatible = "st,spear600-fsmc-nand" },
1187         { .compatible = "stericsson,fsmc-nand" },
1188         {}
1189 };
1190 MODULE_DEVICE_TABLE(of, fsmc_nand_id_table);
1191
1192 static struct platform_driver fsmc_nand_driver = {
1193         .remove = fsmc_nand_remove,
1194         .driver = {
1195                 .name = "fsmc-nand",
1196                 .of_match_table = fsmc_nand_id_table,
1197                 .pm = &fsmc_nand_pm_ops,
1198         },
1199 };
1200
1201 module_platform_driver_probe(fsmc_nand_driver, fsmc_nand_probe);
1202
1203 MODULE_LICENSE("GPL v2");
1204 MODULE_AUTHOR("Vipin Kumar <vipin.kumar@st.com>, Ashish Priyadarshi");
1205 MODULE_DESCRIPTION("NAND driver for SPEAr Platforms");