mtd: rawnand: Create a legacy struct and move ->IO_ADDR_{R, W} there
[linux-2.6-block.git] / drivers / mtd / nand / raw / davinci_nand.c
1 /*
2  * davinci_nand.c - NAND Flash Driver for DaVinci family chips
3  *
4  * Copyright © 2006 Texas Instruments.
5  *
6  * Port to 2.6.23 Copyright © 2008 by:
7  *   Sander Huijsen <Shuijsen@optelecom-nkf.com>
8  *   Troy Kisky <troy.kisky@boundarydevices.com>
9  *   Dirk Behme <Dirk.Behme@gmail.com>
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2 of the License, or
14  * (at your option) any later version.
15  *
16  * This program is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19  * GNU General Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; if not, write to the Free Software
23  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24  */
25
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28 #include <linux/platform_device.h>
29 #include <linux/err.h>
30 #include <linux/io.h>
31 #include <linux/mtd/rawnand.h>
32 #include <linux/mtd/partitions.h>
33 #include <linux/slab.h>
34 #include <linux/of_device.h>
35 #include <linux/of.h>
36
37 #include <linux/platform_data/mtd-davinci.h>
38 #include <linux/platform_data/mtd-davinci-aemif.h>
39
40 /*
41  * This is a device driver for the NAND flash controller found on the
42  * various DaVinci family chips.  It handles up to four SoC chipselects,
43  * and some flavors of secondary chipselect (e.g. based on A12) as used
44  * with multichip packages.
45  *
46  * The 1-bit ECC hardware is supported, as well as the newer 4-bit ECC
47  * available on chips like the DM355 and OMAP-L137 and needed with the
48  * more error-prone MLC NAND chips.
49  *
50  * This driver assumes EM_WAIT connects all the NAND devices' RDY/nBUSY
51  * outputs in a "wire-AND" configuration, with no per-chip signals.
52  */
53 struct davinci_nand_info {
54         struct nand_chip        chip;
55
56         struct platform_device  *pdev;
57
58         bool                    is_readmode;
59
60         void __iomem            *base;
61         void __iomem            *vaddr;
62
63         void __iomem            *current_cs;
64
65         uint32_t                mask_chipsel;
66         uint32_t                mask_ale;
67         uint32_t                mask_cle;
68
69         uint32_t                core_chipsel;
70
71         struct davinci_aemif_timing     *timing;
72 };
73
74 static DEFINE_SPINLOCK(davinci_nand_lock);
75 static bool ecc4_busy;
76
77 static inline struct davinci_nand_info *to_davinci_nand(struct mtd_info *mtd)
78 {
79         return container_of(mtd_to_nand(mtd), struct davinci_nand_info, chip);
80 }
81
82 static inline unsigned int davinci_nand_readl(struct davinci_nand_info *info,
83                 int offset)
84 {
85         return __raw_readl(info->base + offset);
86 }
87
88 static inline void davinci_nand_writel(struct davinci_nand_info *info,
89                 int offset, unsigned long value)
90 {
91         __raw_writel(value, info->base + offset);
92 }
93
94 /*----------------------------------------------------------------------*/
95
96 /*
97  * Access to hardware control lines:  ALE, CLE, secondary chipselect.
98  */
99
100 static void nand_davinci_hwcontrol(struct nand_chip *nand, int cmd,
101                                    unsigned int ctrl)
102 {
103         struct davinci_nand_info *info = to_davinci_nand(nand_to_mtd(nand));
104         void __iomem                    *addr = info->current_cs;
105
106         /* Did the control lines change? */
107         if (ctrl & NAND_CTRL_CHANGE) {
108                 if ((ctrl & NAND_CTRL_CLE) == NAND_CTRL_CLE)
109                         addr += info->mask_cle;
110                 else if ((ctrl & NAND_CTRL_ALE) == NAND_CTRL_ALE)
111                         addr += info->mask_ale;
112
113                 nand->legacy.IO_ADDR_W = addr;
114         }
115
116         if (cmd != NAND_CMD_NONE)
117                 iowrite8(cmd, nand->legacy.IO_ADDR_W);
118 }
119
120 static void nand_davinci_select_chip(struct nand_chip *nand, int chip)
121 {
122         struct davinci_nand_info *info = to_davinci_nand(nand_to_mtd(nand));
123
124         info->current_cs = info->vaddr;
125
126         /* maybe kick in a second chipselect */
127         if (chip > 0)
128                 info->current_cs += info->mask_chipsel;
129
130         info->chip.legacy.IO_ADDR_W = info->current_cs;
131         info->chip.legacy.IO_ADDR_R = info->chip.legacy.IO_ADDR_W;
132 }
133
134 /*----------------------------------------------------------------------*/
135
136 /*
137  * 1-bit hardware ECC ... context maintained for each core chipselect
138  */
139
140 static inline uint32_t nand_davinci_readecc_1bit(struct mtd_info *mtd)
141 {
142         struct davinci_nand_info *info = to_davinci_nand(mtd);
143
144         return davinci_nand_readl(info, NANDF1ECC_OFFSET
145                         + 4 * info->core_chipsel);
146 }
147
148 static void nand_davinci_hwctl_1bit(struct nand_chip *chip, int mode)
149 {
150         struct davinci_nand_info *info;
151         uint32_t nandcfr;
152         unsigned long flags;
153
154         info = to_davinci_nand(nand_to_mtd(chip));
155
156         /* Reset ECC hardware */
157         nand_davinci_readecc_1bit(nand_to_mtd(chip));
158
159         spin_lock_irqsave(&davinci_nand_lock, flags);
160
161         /* Restart ECC hardware */
162         nandcfr = davinci_nand_readl(info, NANDFCR_OFFSET);
163         nandcfr |= BIT(8 + info->core_chipsel);
164         davinci_nand_writel(info, NANDFCR_OFFSET, nandcfr);
165
166         spin_unlock_irqrestore(&davinci_nand_lock, flags);
167 }
168
169 /*
170  * Read hardware ECC value and pack into three bytes
171  */
172 static int nand_davinci_calculate_1bit(struct nand_chip *chip,
173                                        const u_char *dat, u_char *ecc_code)
174 {
175         unsigned int ecc_val = nand_davinci_readecc_1bit(nand_to_mtd(chip));
176         unsigned int ecc24 = (ecc_val & 0x0fff) | ((ecc_val & 0x0fff0000) >> 4);
177
178         /* invert so that erased block ecc is correct */
179         ecc24 = ~ecc24;
180         ecc_code[0] = (u_char)(ecc24);
181         ecc_code[1] = (u_char)(ecc24 >> 8);
182         ecc_code[2] = (u_char)(ecc24 >> 16);
183
184         return 0;
185 }
186
187 static int nand_davinci_correct_1bit(struct nand_chip *chip, u_char *dat,
188                                      u_char *read_ecc, u_char *calc_ecc)
189 {
190         uint32_t eccNand = read_ecc[0] | (read_ecc[1] << 8) |
191                                           (read_ecc[2] << 16);
192         uint32_t eccCalc = calc_ecc[0] | (calc_ecc[1] << 8) |
193                                           (calc_ecc[2] << 16);
194         uint32_t diff = eccCalc ^ eccNand;
195
196         if (diff) {
197                 if ((((diff >> 12) ^ diff) & 0xfff) == 0xfff) {
198                         /* Correctable error */
199                         if ((diff >> (12 + 3)) < chip->ecc.size) {
200                                 dat[diff >> (12 + 3)] ^= BIT((diff >> 12) & 7);
201                                 return 1;
202                         } else {
203                                 return -EBADMSG;
204                         }
205                 } else if (!(diff & (diff - 1))) {
206                         /* Single bit ECC error in the ECC itself,
207                          * nothing to fix */
208                         return 1;
209                 } else {
210                         /* Uncorrectable error */
211                         return -EBADMSG;
212                 }
213
214         }
215         return 0;
216 }
217
218 /*----------------------------------------------------------------------*/
219
220 /*
221  * 4-bit hardware ECC ... context maintained over entire AEMIF
222  *
223  * This is a syndrome engine, but we avoid NAND_ECC_HW_SYNDROME
224  * since that forces use of a problematic "infix OOB" layout.
225  * Among other things, it trashes manufacturer bad block markers.
226  * Also, and specific to this hardware, it ECC-protects the "prepad"
227  * in the OOB ... while having ECC protection for parts of OOB would
228  * seem useful, the current MTD stack sometimes wants to update the
229  * OOB without recomputing ECC.
230  */
231
232 static void nand_davinci_hwctl_4bit(struct nand_chip *chip, int mode)
233 {
234         struct davinci_nand_info *info = to_davinci_nand(nand_to_mtd(chip));
235         unsigned long flags;
236         u32 val;
237
238         /* Reset ECC hardware */
239         davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET);
240
241         spin_lock_irqsave(&davinci_nand_lock, flags);
242
243         /* Start 4-bit ECC calculation for read/write */
244         val = davinci_nand_readl(info, NANDFCR_OFFSET);
245         val &= ~(0x03 << 4);
246         val |= (info->core_chipsel << 4) | BIT(12);
247         davinci_nand_writel(info, NANDFCR_OFFSET, val);
248
249         info->is_readmode = (mode == NAND_ECC_READ);
250
251         spin_unlock_irqrestore(&davinci_nand_lock, flags);
252 }
253
254 /* Read raw ECC code after writing to NAND. */
255 static void
256 nand_davinci_readecc_4bit(struct davinci_nand_info *info, u32 code[4])
257 {
258         const u32 mask = 0x03ff03ff;
259
260         code[0] = davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET) & mask;
261         code[1] = davinci_nand_readl(info, NAND_4BIT_ECC2_OFFSET) & mask;
262         code[2] = davinci_nand_readl(info, NAND_4BIT_ECC3_OFFSET) & mask;
263         code[3] = davinci_nand_readl(info, NAND_4BIT_ECC4_OFFSET) & mask;
264 }
265
266 /* Terminate read ECC; or return ECC (as bytes) of data written to NAND. */
267 static int nand_davinci_calculate_4bit(struct nand_chip *chip,
268                                        const u_char *dat, u_char *ecc_code)
269 {
270         struct davinci_nand_info *info = to_davinci_nand(nand_to_mtd(chip));
271         u32 raw_ecc[4], *p;
272         unsigned i;
273
274         /* After a read, terminate ECC calculation by a dummy read
275          * of some 4-bit ECC register.  ECC covers everything that
276          * was read; correct() just uses the hardware state, so
277          * ecc_code is not needed.
278          */
279         if (info->is_readmode) {
280                 davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET);
281                 return 0;
282         }
283
284         /* Pack eight raw 10-bit ecc values into ten bytes, making
285          * two passes which each convert four values (in upper and
286          * lower halves of two 32-bit words) into five bytes.  The
287          * ROM boot loader uses this same packing scheme.
288          */
289         nand_davinci_readecc_4bit(info, raw_ecc);
290         for (i = 0, p = raw_ecc; i < 2; i++, p += 2) {
291                 *ecc_code++ =   p[0]        & 0xff;
292                 *ecc_code++ = ((p[0] >>  8) & 0x03) | ((p[0] >> 14) & 0xfc);
293                 *ecc_code++ = ((p[0] >> 22) & 0x0f) | ((p[1] <<  4) & 0xf0);
294                 *ecc_code++ = ((p[1] >>  4) & 0x3f) | ((p[1] >> 10) & 0xc0);
295                 *ecc_code++ =  (p[1] >> 18) & 0xff;
296         }
297
298         return 0;
299 }
300
301 /* Correct up to 4 bits in data we just read, using state left in the
302  * hardware plus the ecc_code computed when it was first written.
303  */
304 static int nand_davinci_correct_4bit(struct nand_chip *chip, u_char *data,
305                                      u_char *ecc_code, u_char *null)
306 {
307         int i;
308         struct davinci_nand_info *info = to_davinci_nand(nand_to_mtd(chip));
309         unsigned short ecc10[8];
310         unsigned short *ecc16;
311         u32 syndrome[4];
312         u32 ecc_state;
313         unsigned num_errors, corrected;
314         unsigned long timeo;
315
316         /* Unpack ten bytes into eight 10 bit values.  We know we're
317          * little-endian, and use type punning for less shifting/masking.
318          */
319         if (WARN_ON(0x01 & (uintptr_t)ecc_code))
320                 return -EINVAL;
321         ecc16 = (unsigned short *)ecc_code;
322
323         ecc10[0] =  (ecc16[0] >>  0) & 0x3ff;
324         ecc10[1] = ((ecc16[0] >> 10) & 0x3f) | ((ecc16[1] << 6) & 0x3c0);
325         ecc10[2] =  (ecc16[1] >>  4) & 0x3ff;
326         ecc10[3] = ((ecc16[1] >> 14) & 0x3)  | ((ecc16[2] << 2) & 0x3fc);
327         ecc10[4] =  (ecc16[2] >>  8)         | ((ecc16[3] << 8) & 0x300);
328         ecc10[5] =  (ecc16[3] >>  2) & 0x3ff;
329         ecc10[6] = ((ecc16[3] >> 12) & 0xf)  | ((ecc16[4] << 4) & 0x3f0);
330         ecc10[7] =  (ecc16[4] >>  6) & 0x3ff;
331
332         /* Tell ECC controller about the expected ECC codes. */
333         for (i = 7; i >= 0; i--)
334                 davinci_nand_writel(info, NAND_4BIT_ECC_LOAD_OFFSET, ecc10[i]);
335
336         /* Allow time for syndrome calculation ... then read it.
337          * A syndrome of all zeroes 0 means no detected errors.
338          */
339         davinci_nand_readl(info, NANDFSR_OFFSET);
340         nand_davinci_readecc_4bit(info, syndrome);
341         if (!(syndrome[0] | syndrome[1] | syndrome[2] | syndrome[3]))
342                 return 0;
343
344         /*
345          * Clear any previous address calculation by doing a dummy read of an
346          * error address register.
347          */
348         davinci_nand_readl(info, NAND_ERR_ADD1_OFFSET);
349
350         /* Start address calculation, and wait for it to complete.
351          * We _could_ start reading more data while this is working,
352          * to speed up the overall page read.
353          */
354         davinci_nand_writel(info, NANDFCR_OFFSET,
355                         davinci_nand_readl(info, NANDFCR_OFFSET) | BIT(13));
356
357         /*
358          * ECC_STATE field reads 0x3 (Error correction complete) immediately
359          * after setting the 4BITECC_ADD_CALC_START bit. So if you immediately
360          * begin trying to poll for the state, you may fall right out of your
361          * loop without any of the correction calculations having taken place.
362          * The recommendation from the hardware team is to initially delay as
363          * long as ECC_STATE reads less than 4. After that, ECC HW has entered
364          * correction state.
365          */
366         timeo = jiffies + usecs_to_jiffies(100);
367         do {
368                 ecc_state = (davinci_nand_readl(info,
369                                 NANDFSR_OFFSET) >> 8) & 0x0f;
370                 cpu_relax();
371         } while ((ecc_state < 4) && time_before(jiffies, timeo));
372
373         for (;;) {
374                 u32     fsr = davinci_nand_readl(info, NANDFSR_OFFSET);
375
376                 switch ((fsr >> 8) & 0x0f) {
377                 case 0:         /* no error, should not happen */
378                         davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET);
379                         return 0;
380                 case 1:         /* five or more errors detected */
381                         davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET);
382                         return -EBADMSG;
383                 case 2:         /* error addresses computed */
384                 case 3:
385                         num_errors = 1 + ((fsr >> 16) & 0x03);
386                         goto correct;
387                 default:        /* still working on it */
388                         cpu_relax();
389                         continue;
390                 }
391         }
392
393 correct:
394         /* correct each error */
395         for (i = 0, corrected = 0; i < num_errors; i++) {
396                 int error_address, error_value;
397
398                 if (i > 1) {
399                         error_address = davinci_nand_readl(info,
400                                                 NAND_ERR_ADD2_OFFSET);
401                         error_value = davinci_nand_readl(info,
402                                                 NAND_ERR_ERRVAL2_OFFSET);
403                 } else {
404                         error_address = davinci_nand_readl(info,
405                                                 NAND_ERR_ADD1_OFFSET);
406                         error_value = davinci_nand_readl(info,
407                                                 NAND_ERR_ERRVAL1_OFFSET);
408                 }
409
410                 if (i & 1) {
411                         error_address >>= 16;
412                         error_value >>= 16;
413                 }
414                 error_address &= 0x3ff;
415                 error_address = (512 + 7) - error_address;
416
417                 if (error_address < 512) {
418                         data[error_address] ^= error_value;
419                         corrected++;
420                 }
421         }
422
423         return corrected;
424 }
425
426 /*----------------------------------------------------------------------*/
427
428 /*
429  * NOTE:  NAND boot requires ALE == EM_A[1], CLE == EM_A[2], so that's
430  * how these chips are normally wired.  This translates to both 8 and 16
431  * bit busses using ALE == BIT(3) in byte addresses, and CLE == BIT(4).
432  *
433  * For now we assume that configuration, or any other one which ignores
434  * the two LSBs for NAND access ... so we can issue 32-bit reads/writes
435  * and have that transparently morphed into multiple NAND operations.
436  */
437 static void nand_davinci_read_buf(struct nand_chip *chip, uint8_t *buf,
438                                   int len)
439 {
440         if ((0x03 & ((uintptr_t)buf)) == 0 && (0x03 & len) == 0)
441                 ioread32_rep(chip->legacy.IO_ADDR_R, buf, len >> 2);
442         else if ((0x01 & ((uintptr_t)buf)) == 0 && (0x01 & len) == 0)
443                 ioread16_rep(chip->legacy.IO_ADDR_R, buf, len >> 1);
444         else
445                 ioread8_rep(chip->legacy.IO_ADDR_R, buf, len);
446 }
447
448 static void nand_davinci_write_buf(struct nand_chip *chip, const uint8_t *buf,
449                                    int len)
450 {
451         if ((0x03 & ((uintptr_t)buf)) == 0 && (0x03 & len) == 0)
452                 iowrite32_rep(chip->legacy.IO_ADDR_R, buf, len >> 2);
453         else if ((0x01 & ((uintptr_t)buf)) == 0 && (0x01 & len) == 0)
454                 iowrite16_rep(chip->legacy.IO_ADDR_R, buf, len >> 1);
455         else
456                 iowrite8_rep(chip->legacy.IO_ADDR_R, buf, len);
457 }
458
459 /*
460  * Check hardware register for wait status. Returns 1 if device is ready,
461  * 0 if it is still busy.
462  */
463 static int nand_davinci_dev_ready(struct nand_chip *chip)
464 {
465         struct davinci_nand_info *info = to_davinci_nand(nand_to_mtd(chip));
466
467         return davinci_nand_readl(info, NANDFSR_OFFSET) & BIT(0);
468 }
469
470 /*----------------------------------------------------------------------*/
471
472 /* An ECC layout for using 4-bit ECC with small-page flash, storing
473  * ten ECC bytes plus the manufacturer's bad block marker byte, and
474  * and not overlapping the default BBT markers.
475  */
476 static int hwecc4_ooblayout_small_ecc(struct mtd_info *mtd, int section,
477                                       struct mtd_oob_region *oobregion)
478 {
479         if (section > 2)
480                 return -ERANGE;
481
482         if (!section) {
483                 oobregion->offset = 0;
484                 oobregion->length = 5;
485         } else if (section == 1) {
486                 oobregion->offset = 6;
487                 oobregion->length = 2;
488         } else {
489                 oobregion->offset = 13;
490                 oobregion->length = 3;
491         }
492
493         return 0;
494 }
495
496 static int hwecc4_ooblayout_small_free(struct mtd_info *mtd, int section,
497                                        struct mtd_oob_region *oobregion)
498 {
499         if (section > 1)
500                 return -ERANGE;
501
502         if (!section) {
503                 oobregion->offset = 8;
504                 oobregion->length = 5;
505         } else {
506                 oobregion->offset = 16;
507                 oobregion->length = mtd->oobsize - 16;
508         }
509
510         return 0;
511 }
512
513 static const struct mtd_ooblayout_ops hwecc4_small_ooblayout_ops = {
514         .ecc = hwecc4_ooblayout_small_ecc,
515         .free = hwecc4_ooblayout_small_free,
516 };
517
518 #if defined(CONFIG_OF)
519 static const struct of_device_id davinci_nand_of_match[] = {
520         {.compatible = "ti,davinci-nand", },
521         {.compatible = "ti,keystone-nand", },
522         {},
523 };
524 MODULE_DEVICE_TABLE(of, davinci_nand_of_match);
525
526 static struct davinci_nand_pdata
527         *nand_davinci_get_pdata(struct platform_device *pdev)
528 {
529         if (!dev_get_platdata(&pdev->dev) && pdev->dev.of_node) {
530                 struct davinci_nand_pdata *pdata;
531                 const char *mode;
532                 u32 prop;
533
534                 pdata =  devm_kzalloc(&pdev->dev,
535                                 sizeof(struct davinci_nand_pdata),
536                                 GFP_KERNEL);
537                 pdev->dev.platform_data = pdata;
538                 if (!pdata)
539                         return ERR_PTR(-ENOMEM);
540                 if (!of_property_read_u32(pdev->dev.of_node,
541                         "ti,davinci-chipselect", &prop))
542                         pdata->core_chipsel = prop;
543                 else
544                         return ERR_PTR(-EINVAL);
545
546                 if (!of_property_read_u32(pdev->dev.of_node,
547                         "ti,davinci-mask-ale", &prop))
548                         pdata->mask_ale = prop;
549                 if (!of_property_read_u32(pdev->dev.of_node,
550                         "ti,davinci-mask-cle", &prop))
551                         pdata->mask_cle = prop;
552                 if (!of_property_read_u32(pdev->dev.of_node,
553                         "ti,davinci-mask-chipsel", &prop))
554                         pdata->mask_chipsel = prop;
555                 if (!of_property_read_string(pdev->dev.of_node,
556                         "ti,davinci-ecc-mode", &mode)) {
557                         if (!strncmp("none", mode, 4))
558                                 pdata->ecc_mode = NAND_ECC_NONE;
559                         if (!strncmp("soft", mode, 4))
560                                 pdata->ecc_mode = NAND_ECC_SOFT;
561                         if (!strncmp("hw", mode, 2))
562                                 pdata->ecc_mode = NAND_ECC_HW;
563                 }
564                 if (!of_property_read_u32(pdev->dev.of_node,
565                         "ti,davinci-ecc-bits", &prop))
566                         pdata->ecc_bits = prop;
567
568                 if (!of_property_read_u32(pdev->dev.of_node,
569                         "ti,davinci-nand-buswidth", &prop) && prop == 16)
570                         pdata->options |= NAND_BUSWIDTH_16;
571
572                 if (of_property_read_bool(pdev->dev.of_node,
573                         "ti,davinci-nand-use-bbt"))
574                         pdata->bbt_options = NAND_BBT_USE_FLASH;
575
576                 /*
577                  * Since kernel v4.8, this driver has been fixed to enable
578                  * use of 4-bit hardware ECC with subpages and verified on
579                  * TI's keystone EVMs (K2L, K2HK and K2E).
580                  * However, in the interest of not breaking systems using
581                  * existing UBI partitions, sub-page writes are not being
582                  * (re)enabled. If you want to use subpage writes on Keystone
583                  * platforms (i.e. do not have any existing UBI partitions),
584                  * then use "ti,davinci-nand" as the compatible in your
585                  * device-tree file.
586                  */
587                 if (of_device_is_compatible(pdev->dev.of_node,
588                                             "ti,keystone-nand")) {
589                         pdata->options |= NAND_NO_SUBPAGE_WRITE;
590                 }
591         }
592
593         return dev_get_platdata(&pdev->dev);
594 }
595 #else
596 static struct davinci_nand_pdata
597         *nand_davinci_get_pdata(struct platform_device *pdev)
598 {
599         return dev_get_platdata(&pdev->dev);
600 }
601 #endif
602
603 static int davinci_nand_attach_chip(struct nand_chip *chip)
604 {
605         struct mtd_info *mtd = nand_to_mtd(chip);
606         struct davinci_nand_info *info = to_davinci_nand(mtd);
607         struct davinci_nand_pdata *pdata = nand_davinci_get_pdata(info->pdev);
608         int ret = 0;
609
610         if (IS_ERR(pdata))
611                 return PTR_ERR(pdata);
612
613         switch (info->chip.ecc.mode) {
614         case NAND_ECC_NONE:
615                 pdata->ecc_bits = 0;
616                 break;
617         case NAND_ECC_SOFT:
618                 pdata->ecc_bits = 0;
619                 /*
620                  * This driver expects Hamming based ECC when ecc_mode is set
621                  * to NAND_ECC_SOFT. Force ecc.algo to NAND_ECC_HAMMING to
622                  * avoid adding an extra ->ecc_algo field to
623                  * davinci_nand_pdata.
624                  */
625                 info->chip.ecc.algo = NAND_ECC_HAMMING;
626                 break;
627         case NAND_ECC_HW:
628                 if (pdata->ecc_bits == 4) {
629                         /*
630                          * No sanity checks:  CPUs must support this,
631                          * and the chips may not use NAND_BUSWIDTH_16.
632                          */
633
634                         /* No sharing 4-bit hardware between chipselects yet */
635                         spin_lock_irq(&davinci_nand_lock);
636                         if (ecc4_busy)
637                                 ret = -EBUSY;
638                         else
639                                 ecc4_busy = true;
640                         spin_unlock_irq(&davinci_nand_lock);
641
642                         if (ret == -EBUSY)
643                                 return ret;
644
645                         info->chip.ecc.calculate = nand_davinci_calculate_4bit;
646                         info->chip.ecc.correct = nand_davinci_correct_4bit;
647                         info->chip.ecc.hwctl = nand_davinci_hwctl_4bit;
648                         info->chip.ecc.bytes = 10;
649                         info->chip.ecc.options = NAND_ECC_GENERIC_ERASED_CHECK;
650                         info->chip.ecc.algo = NAND_ECC_BCH;
651                 } else {
652                         /* 1bit ecc hamming */
653                         info->chip.ecc.calculate = nand_davinci_calculate_1bit;
654                         info->chip.ecc.correct = nand_davinci_correct_1bit;
655                         info->chip.ecc.hwctl = nand_davinci_hwctl_1bit;
656                         info->chip.ecc.bytes = 3;
657                         info->chip.ecc.algo = NAND_ECC_HAMMING;
658                 }
659                 info->chip.ecc.size = 512;
660                 info->chip.ecc.strength = pdata->ecc_bits;
661                 break;
662         default:
663                 return -EINVAL;
664         }
665
666         /*
667          * Update ECC layout if needed ... for 1-bit HW ECC, the default
668          * is OK, but it allocates 6 bytes when only 3 are needed (for
669          * each 512 bytes).  For the 4-bit HW ECC, that default is not
670          * usable:  10 bytes are needed, not 6.
671          */
672         if (pdata->ecc_bits == 4) {
673                 int chunks = mtd->writesize / 512;
674
675                 if (!chunks || mtd->oobsize < 16) {
676                         dev_dbg(&info->pdev->dev, "too small\n");
677                         return -EINVAL;
678                 }
679
680                 /* For small page chips, preserve the manufacturer's
681                  * badblock marking data ... and make sure a flash BBT
682                  * table marker fits in the free bytes.
683                  */
684                 if (chunks == 1) {
685                         mtd_set_ooblayout(mtd, &hwecc4_small_ooblayout_ops);
686                 } else if (chunks == 4 || chunks == 8) {
687                         mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops);
688                         info->chip.ecc.mode = NAND_ECC_HW_OOB_FIRST;
689                 } else {
690                         return -EIO;
691                 }
692         }
693
694         return ret;
695 }
696
697 static const struct nand_controller_ops davinci_nand_controller_ops = {
698         .attach_chip = davinci_nand_attach_chip,
699 };
700
701 static int nand_davinci_probe(struct platform_device *pdev)
702 {
703         struct davinci_nand_pdata       *pdata;
704         struct davinci_nand_info        *info;
705         struct resource                 *res1;
706         struct resource                 *res2;
707         void __iomem                    *vaddr;
708         void __iomem                    *base;
709         int                             ret;
710         uint32_t                        val;
711         struct mtd_info                 *mtd;
712
713         pdata = nand_davinci_get_pdata(pdev);
714         if (IS_ERR(pdata))
715                 return PTR_ERR(pdata);
716
717         /* insist on board-specific configuration */
718         if (!pdata)
719                 return -ENODEV;
720
721         /* which external chipselect will we be managing? */
722         if (pdata->core_chipsel < 0 || pdata->core_chipsel > 3)
723                 return -ENODEV;
724
725         info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
726         if (!info)
727                 return -ENOMEM;
728
729         platform_set_drvdata(pdev, info);
730
731         res1 = platform_get_resource(pdev, IORESOURCE_MEM, 0);
732         res2 = platform_get_resource(pdev, IORESOURCE_MEM, 1);
733         if (!res1 || !res2) {
734                 dev_err(&pdev->dev, "resource missing\n");
735                 return -EINVAL;
736         }
737
738         vaddr = devm_ioremap_resource(&pdev->dev, res1);
739         if (IS_ERR(vaddr))
740                 return PTR_ERR(vaddr);
741
742         /*
743          * This registers range is used to setup NAND settings. In case with
744          * TI AEMIF driver, the same memory address range is requested already
745          * by AEMIF, so we cannot request it twice, just ioremap.
746          * The AEMIF and NAND drivers not use the same registers in this range.
747          */
748         base = devm_ioremap(&pdev->dev, res2->start, resource_size(res2));
749         if (!base) {
750                 dev_err(&pdev->dev, "ioremap failed for resource %pR\n", res2);
751                 return -EADDRNOTAVAIL;
752         }
753
754         info->pdev              = pdev;
755         info->base              = base;
756         info->vaddr             = vaddr;
757
758         mtd                     = nand_to_mtd(&info->chip);
759         mtd->dev.parent         = &pdev->dev;
760         nand_set_flash_node(&info->chip, pdev->dev.of_node);
761
762         info->chip.legacy.IO_ADDR_R     = vaddr;
763         info->chip.legacy.IO_ADDR_W     = vaddr;
764         info->chip.chip_delay   = 0;
765         info->chip.select_chip  = nand_davinci_select_chip;
766
767         /* options such as NAND_BBT_USE_FLASH */
768         info->chip.bbt_options  = pdata->bbt_options;
769         /* options such as 16-bit widths */
770         info->chip.options      = pdata->options;
771         info->chip.bbt_td       = pdata->bbt_td;
772         info->chip.bbt_md       = pdata->bbt_md;
773         info->timing            = pdata->timing;
774
775         info->current_cs        = info->vaddr;
776         info->core_chipsel      = pdata->core_chipsel;
777         info->mask_chipsel      = pdata->mask_chipsel;
778
779         /* use nandboot-capable ALE/CLE masks by default */
780         info->mask_ale          = pdata->mask_ale ? : MASK_ALE;
781         info->mask_cle          = pdata->mask_cle ? : MASK_CLE;
782
783         /* Set address of hardware control function */
784         info->chip.cmd_ctrl     = nand_davinci_hwcontrol;
785         info->chip.dev_ready    = nand_davinci_dev_ready;
786
787         /* Speed up buffer I/O */
788         info->chip.read_buf     = nand_davinci_read_buf;
789         info->chip.write_buf    = nand_davinci_write_buf;
790
791         /* Use board-specific ECC config */
792         info->chip.ecc.mode     = pdata->ecc_mode;
793
794         spin_lock_irq(&davinci_nand_lock);
795
796         /* put CSxNAND into NAND mode */
797         val = davinci_nand_readl(info, NANDFCR_OFFSET);
798         val |= BIT(info->core_chipsel);
799         davinci_nand_writel(info, NANDFCR_OFFSET, val);
800
801         spin_unlock_irq(&davinci_nand_lock);
802
803         /* Scan to find existence of the device(s) */
804         info->chip.dummy_controller.ops = &davinci_nand_controller_ops;
805         ret = nand_scan(&info->chip, pdata->mask_chipsel ? 2 : 1);
806         if (ret < 0) {
807                 dev_dbg(&pdev->dev, "no NAND chip(s) found\n");
808                 return ret;
809         }
810
811         if (pdata->parts)
812                 ret = mtd_device_register(mtd, pdata->parts, pdata->nr_parts);
813         else
814                 ret = mtd_device_register(mtd, NULL, 0);
815         if (ret < 0)
816                 goto err_cleanup_nand;
817
818         val = davinci_nand_readl(info, NRCSR_OFFSET);
819         dev_info(&pdev->dev, "controller rev. %d.%d\n",
820                (val >> 8) & 0xff, val & 0xff);
821
822         return 0;
823
824 err_cleanup_nand:
825         nand_cleanup(&info->chip);
826
827         return ret;
828 }
829
830 static int nand_davinci_remove(struct platform_device *pdev)
831 {
832         struct davinci_nand_info *info = platform_get_drvdata(pdev);
833
834         spin_lock_irq(&davinci_nand_lock);
835         if (info->chip.ecc.mode == NAND_ECC_HW_SYNDROME)
836                 ecc4_busy = false;
837         spin_unlock_irq(&davinci_nand_lock);
838
839         nand_release(&info->chip);
840
841         return 0;
842 }
843
844 static struct platform_driver nand_davinci_driver = {
845         .probe          = nand_davinci_probe,
846         .remove         = nand_davinci_remove,
847         .driver         = {
848                 .name   = "davinci_nand",
849                 .of_match_table = of_match_ptr(davinci_nand_of_match),
850         },
851 };
852 MODULE_ALIAS("platform:davinci_nand");
853
854 module_platform_driver(nand_davinci_driver);
855
856 MODULE_LICENSE("GPL");
857 MODULE_AUTHOR("Texas Instruments");
858 MODULE_DESCRIPTION("Davinci NAND flash driver");
859