mtd: nandsim: simplify NS_RAW_OFFSET()
[linux-2.6-block.git] / drivers / mtd / nand / nandsim.c
1 /*
2  * NAND flash simulator.
3  *
4  * Author: Artem B. Bityuckiy <dedekind@oktetlabs.ru>, <dedekind@infradead.org>
5  *
6  * Copyright (C) 2004 Nokia Corporation
7  *
8  * Note: NS means "NAND Simulator".
9  * Note: Input means input TO flash chip, output means output FROM chip.
10  *
11  * This program is free software; you can redistribute it and/or modify it
12  * under the terms of the GNU General Public License as published by the
13  * Free Software Foundation; either version 2, or (at your option) any later
14  * version.
15  *
16  * This program is distributed in the hope that it will be useful, but
17  * WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
19  * Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; if not, write to the Free Software
23  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA
24  */
25
26 #include <linux/init.h>
27 #include <linux/types.h>
28 #include <linux/module.h>
29 #include <linux/moduleparam.h>
30 #include <linux/vmalloc.h>
31 #include <linux/math64.h>
32 #include <linux/slab.h>
33 #include <linux/errno.h>
34 #include <linux/string.h>
35 #include <linux/mtd/mtd.h>
36 #include <linux/mtd/nand.h>
37 #include <linux/mtd/nand_bch.h>
38 #include <linux/mtd/partitions.h>
39 #include <linux/delay.h>
40 #include <linux/list.h>
41 #include <linux/random.h>
42 #include <linux/sched.h>
43 #include <linux/fs.h>
44 #include <linux/pagemap.h>
45 #include <linux/seq_file.h>
46 #include <linux/debugfs.h>
47
48 /* Default simulator parameters values */
49 #if !defined(CONFIG_NANDSIM_FIRST_ID_BYTE)  || \
50     !defined(CONFIG_NANDSIM_SECOND_ID_BYTE) || \
51     !defined(CONFIG_NANDSIM_THIRD_ID_BYTE)  || \
52     !defined(CONFIG_NANDSIM_FOURTH_ID_BYTE)
53 #define CONFIG_NANDSIM_FIRST_ID_BYTE  0x98
54 #define CONFIG_NANDSIM_SECOND_ID_BYTE 0x39
55 #define CONFIG_NANDSIM_THIRD_ID_BYTE  0xFF /* No byte */
56 #define CONFIG_NANDSIM_FOURTH_ID_BYTE 0xFF /* No byte */
57 #endif
58
59 #ifndef CONFIG_NANDSIM_ACCESS_DELAY
60 #define CONFIG_NANDSIM_ACCESS_DELAY 25
61 #endif
62 #ifndef CONFIG_NANDSIM_PROGRAMM_DELAY
63 #define CONFIG_NANDSIM_PROGRAMM_DELAY 200
64 #endif
65 #ifndef CONFIG_NANDSIM_ERASE_DELAY
66 #define CONFIG_NANDSIM_ERASE_DELAY 2
67 #endif
68 #ifndef CONFIG_NANDSIM_OUTPUT_CYCLE
69 #define CONFIG_NANDSIM_OUTPUT_CYCLE 40
70 #endif
71 #ifndef CONFIG_NANDSIM_INPUT_CYCLE
72 #define CONFIG_NANDSIM_INPUT_CYCLE  50
73 #endif
74 #ifndef CONFIG_NANDSIM_BUS_WIDTH
75 #define CONFIG_NANDSIM_BUS_WIDTH  8
76 #endif
77 #ifndef CONFIG_NANDSIM_DO_DELAYS
78 #define CONFIG_NANDSIM_DO_DELAYS  0
79 #endif
80 #ifndef CONFIG_NANDSIM_LOG
81 #define CONFIG_NANDSIM_LOG        0
82 #endif
83 #ifndef CONFIG_NANDSIM_DBG
84 #define CONFIG_NANDSIM_DBG        0
85 #endif
86 #ifndef CONFIG_NANDSIM_MAX_PARTS
87 #define CONFIG_NANDSIM_MAX_PARTS  32
88 #endif
89
90 static uint first_id_byte  = CONFIG_NANDSIM_FIRST_ID_BYTE;
91 static uint second_id_byte = CONFIG_NANDSIM_SECOND_ID_BYTE;
92 static uint third_id_byte  = CONFIG_NANDSIM_THIRD_ID_BYTE;
93 static uint fourth_id_byte = CONFIG_NANDSIM_FOURTH_ID_BYTE;
94 static uint access_delay   = CONFIG_NANDSIM_ACCESS_DELAY;
95 static uint programm_delay = CONFIG_NANDSIM_PROGRAMM_DELAY;
96 static uint erase_delay    = CONFIG_NANDSIM_ERASE_DELAY;
97 static uint output_cycle   = CONFIG_NANDSIM_OUTPUT_CYCLE;
98 static uint input_cycle    = CONFIG_NANDSIM_INPUT_CYCLE;
99 static uint bus_width      = CONFIG_NANDSIM_BUS_WIDTH;
100 static uint do_delays      = CONFIG_NANDSIM_DO_DELAYS;
101 static uint log            = CONFIG_NANDSIM_LOG;
102 static uint dbg            = CONFIG_NANDSIM_DBG;
103 static unsigned long parts[CONFIG_NANDSIM_MAX_PARTS];
104 static unsigned int parts_num;
105 static char *badblocks = NULL;
106 static char *weakblocks = NULL;
107 static char *weakpages = NULL;
108 static unsigned int bitflips = 0;
109 static char *gravepages = NULL;
110 static unsigned int overridesize = 0;
111 static char *cache_file = NULL;
112 static unsigned int bbt;
113 static unsigned int bch;
114
115 module_param(first_id_byte,  uint, 0400);
116 module_param(second_id_byte, uint, 0400);
117 module_param(third_id_byte,  uint, 0400);
118 module_param(fourth_id_byte, uint, 0400);
119 module_param(access_delay,   uint, 0400);
120 module_param(programm_delay, uint, 0400);
121 module_param(erase_delay,    uint, 0400);
122 module_param(output_cycle,   uint, 0400);
123 module_param(input_cycle,    uint, 0400);
124 module_param(bus_width,      uint, 0400);
125 module_param(do_delays,      uint, 0400);
126 module_param(log,            uint, 0400);
127 module_param(dbg,            uint, 0400);
128 module_param_array(parts, ulong, &parts_num, 0400);
129 module_param(badblocks,      charp, 0400);
130 module_param(weakblocks,     charp, 0400);
131 module_param(weakpages,      charp, 0400);
132 module_param(bitflips,       uint, 0400);
133 module_param(gravepages,     charp, 0400);
134 module_param(overridesize,   uint, 0400);
135 module_param(cache_file,     charp, 0400);
136 module_param(bbt,            uint, 0400);
137 module_param(bch,            uint, 0400);
138
139 MODULE_PARM_DESC(first_id_byte,  "The first byte returned by NAND Flash 'read ID' command (manufacturer ID)");
140 MODULE_PARM_DESC(second_id_byte, "The second byte returned by NAND Flash 'read ID' command (chip ID)");
141 MODULE_PARM_DESC(third_id_byte,  "The third byte returned by NAND Flash 'read ID' command");
142 MODULE_PARM_DESC(fourth_id_byte, "The fourth byte returned by NAND Flash 'read ID' command");
143 MODULE_PARM_DESC(access_delay,   "Initial page access delay (microseconds)");
144 MODULE_PARM_DESC(programm_delay, "Page programm delay (microseconds");
145 MODULE_PARM_DESC(erase_delay,    "Sector erase delay (milliseconds)");
146 MODULE_PARM_DESC(output_cycle,   "Word output (from flash) time (nanoseconds)");
147 MODULE_PARM_DESC(input_cycle,    "Word input (to flash) time (nanoseconds)");
148 MODULE_PARM_DESC(bus_width,      "Chip's bus width (8- or 16-bit)");
149 MODULE_PARM_DESC(do_delays,      "Simulate NAND delays using busy-waits if not zero");
150 MODULE_PARM_DESC(log,            "Perform logging if not zero");
151 MODULE_PARM_DESC(dbg,            "Output debug information if not zero");
152 MODULE_PARM_DESC(parts,          "Partition sizes (in erase blocks) separated by commas");
153 /* Page and erase block positions for the following parameters are independent of any partitions */
154 MODULE_PARM_DESC(badblocks,      "Erase blocks that are initially marked bad, separated by commas");
155 MODULE_PARM_DESC(weakblocks,     "Weak erase blocks [: remaining erase cycles (defaults to 3)]"
156                                  " separated by commas e.g. 113:2 means eb 113"
157                                  " can be erased only twice before failing");
158 MODULE_PARM_DESC(weakpages,      "Weak pages [: maximum writes (defaults to 3)]"
159                                  " separated by commas e.g. 1401:2 means page 1401"
160                                  " can be written only twice before failing");
161 MODULE_PARM_DESC(bitflips,       "Maximum number of random bit flips per page (zero by default)");
162 MODULE_PARM_DESC(gravepages,     "Pages that lose data [: maximum reads (defaults to 3)]"
163                                  " separated by commas e.g. 1401:2 means page 1401"
164                                  " can be read only twice before failing");
165 MODULE_PARM_DESC(overridesize,   "Specifies the NAND Flash size overriding the ID bytes. "
166                                  "The size is specified in erase blocks and as the exponent of a power of two"
167                                  " e.g. 5 means a size of 32 erase blocks");
168 MODULE_PARM_DESC(cache_file,     "File to use to cache nand pages instead of memory");
169 MODULE_PARM_DESC(bbt,            "0 OOB, 1 BBT with marker in OOB, 2 BBT with marker in data area");
170 MODULE_PARM_DESC(bch,            "Enable BCH ecc and set how many bits should "
171                                  "be correctable in 512-byte blocks");
172
173 /* The largest possible page size */
174 #define NS_LARGEST_PAGE_SIZE    4096
175
176 /* The prefix for simulator output */
177 #define NS_OUTPUT_PREFIX "[nandsim]"
178
179 /* Simulator's output macros (logging, debugging, warning, error) */
180 #define NS_LOG(args...) \
181         do { if (log) printk(KERN_DEBUG NS_OUTPUT_PREFIX " log: " args); } while(0)
182 #define NS_DBG(args...) \
183         do { if (dbg) printk(KERN_DEBUG NS_OUTPUT_PREFIX " debug: " args); } while(0)
184 #define NS_WARN(args...) \
185         do { printk(KERN_WARNING NS_OUTPUT_PREFIX " warning: " args); } while(0)
186 #define NS_ERR(args...) \
187         do { printk(KERN_ERR NS_OUTPUT_PREFIX " error: " args); } while(0)
188 #define NS_INFO(args...) \
189         do { printk(KERN_INFO NS_OUTPUT_PREFIX " " args); } while(0)
190
191 /* Busy-wait delay macros (microseconds, milliseconds) */
192 #define NS_UDELAY(us) \
193         do { if (do_delays) udelay(us); } while(0)
194 #define NS_MDELAY(us) \
195         do { if (do_delays) mdelay(us); } while(0)
196
197 /* Is the nandsim structure initialized ? */
198 #define NS_IS_INITIALIZED(ns) ((ns)->geom.totsz != 0)
199
200 /* Good operation completion status */
201 #define NS_STATUS_OK(ns) (NAND_STATUS_READY | (NAND_STATUS_WP * ((ns)->lines.wp == 0)))
202
203 /* Operation failed completion status */
204 #define NS_STATUS_FAILED(ns) (NAND_STATUS_FAIL | NS_STATUS_OK(ns))
205
206 /* Calculate the page offset in flash RAM image by (row, column) address */
207 #define NS_RAW_OFFSET(ns) \
208         (((ns)->regs.row * (ns)->geom.pgszoob) + (ns)->regs.column)
209
210 /* Calculate the OOB offset in flash RAM image by (row, column) address */
211 #define NS_RAW_OFFSET_OOB(ns) (NS_RAW_OFFSET(ns) + ns->geom.pgsz)
212
213 /* After a command is input, the simulator goes to one of the following states */
214 #define STATE_CMD_READ0        0x00000001 /* read data from the beginning of page */
215 #define STATE_CMD_READ1        0x00000002 /* read data from the second half of page */
216 #define STATE_CMD_READSTART    0x00000003 /* read data second command (large page devices) */
217 #define STATE_CMD_PAGEPROG     0x00000004 /* start page program */
218 #define STATE_CMD_READOOB      0x00000005 /* read OOB area */
219 #define STATE_CMD_ERASE1       0x00000006 /* sector erase first command */
220 #define STATE_CMD_STATUS       0x00000007 /* read status */
221 #define STATE_CMD_SEQIN        0x00000009 /* sequential data input */
222 #define STATE_CMD_READID       0x0000000A /* read ID */
223 #define STATE_CMD_ERASE2       0x0000000B /* sector erase second command */
224 #define STATE_CMD_RESET        0x0000000C /* reset */
225 #define STATE_CMD_RNDOUT       0x0000000D /* random output command */
226 #define STATE_CMD_RNDOUTSTART  0x0000000E /* random output start command */
227 #define STATE_CMD_MASK         0x0000000F /* command states mask */
228
229 /* After an address is input, the simulator goes to one of these states */
230 #define STATE_ADDR_PAGE        0x00000010 /* full (row, column) address is accepted */
231 #define STATE_ADDR_SEC         0x00000020 /* sector address was accepted */
232 #define STATE_ADDR_COLUMN      0x00000030 /* column address was accepted */
233 #define STATE_ADDR_ZERO        0x00000040 /* one byte zero address was accepted */
234 #define STATE_ADDR_MASK        0x00000070 /* address states mask */
235
236 /* During data input/output the simulator is in these states */
237 #define STATE_DATAIN           0x00000100 /* waiting for data input */
238 #define STATE_DATAIN_MASK      0x00000100 /* data input states mask */
239
240 #define STATE_DATAOUT          0x00001000 /* waiting for page data output */
241 #define STATE_DATAOUT_ID       0x00002000 /* waiting for ID bytes output */
242 #define STATE_DATAOUT_STATUS   0x00003000 /* waiting for status output */
243 #define STATE_DATAOUT_STATUS_M 0x00004000 /* waiting for multi-plane status output */
244 #define STATE_DATAOUT_MASK     0x00007000 /* data output states mask */
245
246 /* Previous operation is done, ready to accept new requests */
247 #define STATE_READY            0x00000000
248
249 /* This state is used to mark that the next state isn't known yet */
250 #define STATE_UNKNOWN          0x10000000
251
252 /* Simulator's actions bit masks */
253 #define ACTION_CPY       0x00100000 /* copy page/OOB to the internal buffer */
254 #define ACTION_PRGPAGE   0x00200000 /* program the internal buffer to flash */
255 #define ACTION_SECERASE  0x00300000 /* erase sector */
256 #define ACTION_ZEROOFF   0x00400000 /* don't add any offset to address */
257 #define ACTION_HALFOFF   0x00500000 /* add to address half of page */
258 #define ACTION_OOBOFF    0x00600000 /* add to address OOB offset */
259 #define ACTION_MASK      0x00700000 /* action mask */
260
261 #define NS_OPER_NUM      13 /* Number of operations supported by the simulator */
262 #define NS_OPER_STATES   6  /* Maximum number of states in operation */
263
264 #define OPT_ANY          0xFFFFFFFF /* any chip supports this operation */
265 #define OPT_PAGE512      0x00000002 /* 512-byte  page chips */
266 #define OPT_PAGE2048     0x00000008 /* 2048-byte page chips */
267 #define OPT_SMARTMEDIA   0x00000010 /* SmartMedia technology chips */
268 #define OPT_PAGE512_8BIT 0x00000040 /* 512-byte page chips with 8-bit bus width */
269 #define OPT_PAGE4096     0x00000080 /* 4096-byte page chips */
270 #define OPT_LARGEPAGE    (OPT_PAGE2048 | OPT_PAGE4096) /* 2048 & 4096-byte page chips */
271 #define OPT_SMALLPAGE    (OPT_PAGE512) /* 512-byte page chips */
272
273 /* Remove action bits from state */
274 #define NS_STATE(x) ((x) & ~ACTION_MASK)
275
276 /*
277  * Maximum previous states which need to be saved. Currently saving is
278  * only needed for page program operation with preceded read command
279  * (which is only valid for 512-byte pages).
280  */
281 #define NS_MAX_PREVSTATES 1
282
283 /* Maximum page cache pages needed to read or write a NAND page to the cache_file */
284 #define NS_MAX_HELD_PAGES 16
285
286 struct nandsim_debug_info {
287         struct dentry *dfs_root;
288         struct dentry *dfs_wear_report;
289 };
290
291 /*
292  * A union to represent flash memory contents and flash buffer.
293  */
294 union ns_mem {
295         u_char *byte;    /* for byte access */
296         uint16_t *word;  /* for 16-bit word access */
297 };
298
299 /*
300  * The structure which describes all the internal simulator data.
301  */
302 struct nandsim {
303         struct mtd_partition partitions[CONFIG_NANDSIM_MAX_PARTS];
304         unsigned int nbparts;
305
306         uint busw;              /* flash chip bus width (8 or 16) */
307         u_char ids[4];          /* chip's ID bytes */
308         uint32_t options;       /* chip's characteristic bits */
309         uint32_t state;         /* current chip state */
310         uint32_t nxstate;       /* next expected state */
311
312         uint32_t *op;           /* current operation, NULL operations isn't known yet  */
313         uint32_t pstates[NS_MAX_PREVSTATES]; /* previous states */
314         uint16_t npstates;      /* number of previous states saved */
315         uint16_t stateidx;      /* current state index */
316
317         /* The simulated NAND flash pages array */
318         union ns_mem *pages;
319
320         /* Slab allocator for nand pages */
321         struct kmem_cache *nand_pages_slab;
322
323         /* Internal buffer of page + OOB size bytes */
324         union ns_mem buf;
325
326         /* NAND flash "geometry" */
327         struct {
328                 uint64_t totsz;     /* total flash size, bytes */
329                 uint32_t secsz;     /* flash sector (erase block) size, bytes */
330                 uint pgsz;          /* NAND flash page size, bytes */
331                 uint oobsz;         /* page OOB area size, bytes */
332                 uint64_t totszoob;  /* total flash size including OOB, bytes */
333                 uint pgszoob;       /* page size including OOB , bytes*/
334                 uint secszoob;      /* sector size including OOB, bytes */
335                 uint pgnum;         /* total number of pages */
336                 uint pgsec;         /* number of pages per sector */
337                 uint secshift;      /* bits number in sector size */
338                 uint pgshift;       /* bits number in page size */
339                 uint oobshift;      /* bits number in OOB size */
340                 uint pgaddrbytes;   /* bytes per page address */
341                 uint secaddrbytes;  /* bytes per sector address */
342                 uint idbytes;       /* the number ID bytes that this chip outputs */
343         } geom;
344
345         /* NAND flash internal registers */
346         struct {
347                 unsigned command; /* the command register */
348                 u_char   status;  /* the status register */
349                 uint     row;     /* the page number */
350                 uint     column;  /* the offset within page */
351                 uint     count;   /* internal counter */
352                 uint     num;     /* number of bytes which must be processed */
353                 uint     off;     /* fixed page offset */
354         } regs;
355
356         /* NAND flash lines state */
357         struct {
358                 int ce;  /* chip Enable */
359                 int cle; /* command Latch Enable */
360                 int ale; /* address Latch Enable */
361                 int wp;  /* write Protect */
362         } lines;
363
364         /* Fields needed when using a cache file */
365         struct file *cfile; /* Open file */
366         unsigned long *pages_written; /* Which pages have been written */
367         void *file_buf;
368         struct page *held_pages[NS_MAX_HELD_PAGES];
369         int held_cnt;
370
371         struct nandsim_debug_info dbg;
372 };
373
374 /*
375  * Operations array. To perform any operation the simulator must pass
376  * through the correspondent states chain.
377  */
378 static struct nandsim_operations {
379         uint32_t reqopts;  /* options which are required to perform the operation */
380         uint32_t states[NS_OPER_STATES]; /* operation's states */
381 } ops[NS_OPER_NUM] = {
382         /* Read page + OOB from the beginning */
383         {OPT_SMALLPAGE, {STATE_CMD_READ0 | ACTION_ZEROOFF, STATE_ADDR_PAGE | ACTION_CPY,
384                         STATE_DATAOUT, STATE_READY}},
385         /* Read page + OOB from the second half */
386         {OPT_PAGE512_8BIT, {STATE_CMD_READ1 | ACTION_HALFOFF, STATE_ADDR_PAGE | ACTION_CPY,
387                         STATE_DATAOUT, STATE_READY}},
388         /* Read OOB */
389         {OPT_SMALLPAGE, {STATE_CMD_READOOB | ACTION_OOBOFF, STATE_ADDR_PAGE | ACTION_CPY,
390                         STATE_DATAOUT, STATE_READY}},
391         /* Program page starting from the beginning */
392         {OPT_ANY, {STATE_CMD_SEQIN, STATE_ADDR_PAGE, STATE_DATAIN,
393                         STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
394         /* Program page starting from the beginning */
395         {OPT_SMALLPAGE, {STATE_CMD_READ0, STATE_CMD_SEQIN | ACTION_ZEROOFF, STATE_ADDR_PAGE,
396                               STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
397         /* Program page starting from the second half */
398         {OPT_PAGE512, {STATE_CMD_READ1, STATE_CMD_SEQIN | ACTION_HALFOFF, STATE_ADDR_PAGE,
399                               STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
400         /* Program OOB */
401         {OPT_SMALLPAGE, {STATE_CMD_READOOB, STATE_CMD_SEQIN | ACTION_OOBOFF, STATE_ADDR_PAGE,
402                               STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
403         /* Erase sector */
404         {OPT_ANY, {STATE_CMD_ERASE1, STATE_ADDR_SEC, STATE_CMD_ERASE2 | ACTION_SECERASE, STATE_READY}},
405         /* Read status */
406         {OPT_ANY, {STATE_CMD_STATUS, STATE_DATAOUT_STATUS, STATE_READY}},
407         /* Read ID */
408         {OPT_ANY, {STATE_CMD_READID, STATE_ADDR_ZERO, STATE_DATAOUT_ID, STATE_READY}},
409         /* Large page devices read page */
410         {OPT_LARGEPAGE, {STATE_CMD_READ0, STATE_ADDR_PAGE, STATE_CMD_READSTART | ACTION_CPY,
411                                STATE_DATAOUT, STATE_READY}},
412         /* Large page devices random page read */
413         {OPT_LARGEPAGE, {STATE_CMD_RNDOUT, STATE_ADDR_COLUMN, STATE_CMD_RNDOUTSTART | ACTION_CPY,
414                                STATE_DATAOUT, STATE_READY}},
415 };
416
417 struct weak_block {
418         struct list_head list;
419         unsigned int erase_block_no;
420         unsigned int max_erases;
421         unsigned int erases_done;
422 };
423
424 static LIST_HEAD(weak_blocks);
425
426 struct weak_page {
427         struct list_head list;
428         unsigned int page_no;
429         unsigned int max_writes;
430         unsigned int writes_done;
431 };
432
433 static LIST_HEAD(weak_pages);
434
435 struct grave_page {
436         struct list_head list;
437         unsigned int page_no;
438         unsigned int max_reads;
439         unsigned int reads_done;
440 };
441
442 static LIST_HEAD(grave_pages);
443
444 static unsigned long *erase_block_wear = NULL;
445 static unsigned int wear_eb_count = 0;
446 static unsigned long total_wear = 0;
447
448 /* MTD structure for NAND controller */
449 static struct mtd_info *nsmtd;
450
451 static int nandsim_debugfs_show(struct seq_file *m, void *private)
452 {
453         unsigned long wmin = -1, wmax = 0, avg;
454         unsigned long deciles[10], decile_max[10], tot = 0;
455         unsigned int i;
456
457         /* Calc wear stats */
458         for (i = 0; i < wear_eb_count; ++i) {
459                 unsigned long wear = erase_block_wear[i];
460                 if (wear < wmin)
461                         wmin = wear;
462                 if (wear > wmax)
463                         wmax = wear;
464                 tot += wear;
465         }
466
467         for (i = 0; i < 9; ++i) {
468                 deciles[i] = 0;
469                 decile_max[i] = (wmax * (i + 1) + 5) / 10;
470         }
471         deciles[9] = 0;
472         decile_max[9] = wmax;
473         for (i = 0; i < wear_eb_count; ++i) {
474                 int d;
475                 unsigned long wear = erase_block_wear[i];
476                 for (d = 0; d < 10; ++d)
477                         if (wear <= decile_max[d]) {
478                                 deciles[d] += 1;
479                                 break;
480                         }
481         }
482         avg = tot / wear_eb_count;
483
484         /* Output wear report */
485         seq_printf(m, "Total numbers of erases:  %lu\n", tot);
486         seq_printf(m, "Number of erase blocks:   %u\n", wear_eb_count);
487         seq_printf(m, "Average number of erases: %lu\n", avg);
488         seq_printf(m, "Maximum number of erases: %lu\n", wmax);
489         seq_printf(m, "Minimum number of erases: %lu\n", wmin);
490         for (i = 0; i < 10; ++i) {
491                 unsigned long from = (i ? decile_max[i - 1] + 1 : 0);
492                 if (from > decile_max[i])
493                         continue;
494                 seq_printf(m, "Number of ebs with erase counts from %lu to %lu : %lu\n",
495                         from,
496                         decile_max[i],
497                         deciles[i]);
498         }
499
500         return 0;
501 }
502
503 static int nandsim_debugfs_open(struct inode *inode, struct file *file)
504 {
505         return single_open(file, nandsim_debugfs_show, inode->i_private);
506 }
507
508 static const struct file_operations dfs_fops = {
509         .open           = nandsim_debugfs_open,
510         .read           = seq_read,
511         .llseek         = seq_lseek,
512         .release        = single_release,
513 };
514
515 /**
516  * nandsim_debugfs_create - initialize debugfs
517  * @dev: nandsim device description object
518  *
519  * This function creates all debugfs files for UBI device @ubi. Returns zero in
520  * case of success and a negative error code in case of failure.
521  */
522 static int nandsim_debugfs_create(struct nandsim *dev)
523 {
524         struct nandsim_debug_info *dbg = &dev->dbg;
525         struct dentry *dent;
526         int err;
527
528         if (!IS_ENABLED(CONFIG_DEBUG_FS))
529                 return 0;
530
531         dent = debugfs_create_dir("nandsim", NULL);
532         if (IS_ERR_OR_NULL(dent)) {
533                 int err = dent ? -ENODEV : PTR_ERR(dent);
534
535                 NS_ERR("cannot create \"nandsim\" debugfs directory, err %d\n",
536                         err);
537                 return err;
538         }
539         dbg->dfs_root = dent;
540
541         dent = debugfs_create_file("wear_report", S_IRUSR,
542                                    dbg->dfs_root, dev, &dfs_fops);
543         if (IS_ERR_OR_NULL(dent))
544                 goto out_remove;
545         dbg->dfs_wear_report = dent;
546
547         return 0;
548
549 out_remove:
550         debugfs_remove_recursive(dbg->dfs_root);
551         err = dent ? PTR_ERR(dent) : -ENODEV;
552         return err;
553 }
554
555 /**
556  * nandsim_debugfs_remove - destroy all debugfs files
557  */
558 static void nandsim_debugfs_remove(struct nandsim *ns)
559 {
560         if (IS_ENABLED(CONFIG_DEBUG_FS))
561                 debugfs_remove_recursive(ns->dbg.dfs_root);
562 }
563
564 /*
565  * Allocate array of page pointers, create slab allocation for an array
566  * and initialize the array by NULL pointers.
567  *
568  * RETURNS: 0 if success, -ENOMEM if memory alloc fails.
569  */
570 static int alloc_device(struct nandsim *ns)
571 {
572         struct file *cfile;
573         int i, err;
574
575         if (cache_file) {
576                 cfile = filp_open(cache_file, O_CREAT | O_RDWR | O_LARGEFILE, 0600);
577                 if (IS_ERR(cfile))
578                         return PTR_ERR(cfile);
579                 if (!cfile->f_op || (!cfile->f_op->read && !cfile->f_op->aio_read)) {
580                         NS_ERR("alloc_device: cache file not readable\n");
581                         err = -EINVAL;
582                         goto err_close;
583                 }
584                 if (!cfile->f_op->write && !cfile->f_op->aio_write) {
585                         NS_ERR("alloc_device: cache file not writeable\n");
586                         err = -EINVAL;
587                         goto err_close;
588                 }
589                 ns->pages_written = vzalloc(BITS_TO_LONGS(ns->geom.pgnum) *
590                                             sizeof(unsigned long));
591                 if (!ns->pages_written) {
592                         NS_ERR("alloc_device: unable to allocate pages written array\n");
593                         err = -ENOMEM;
594                         goto err_close;
595                 }
596                 ns->file_buf = kmalloc(ns->geom.pgszoob, GFP_KERNEL);
597                 if (!ns->file_buf) {
598                         NS_ERR("alloc_device: unable to allocate file buf\n");
599                         err = -ENOMEM;
600                         goto err_free;
601                 }
602                 ns->cfile = cfile;
603                 return 0;
604         }
605
606         ns->pages = vmalloc(ns->geom.pgnum * sizeof(union ns_mem));
607         if (!ns->pages) {
608                 NS_ERR("alloc_device: unable to allocate page array\n");
609                 return -ENOMEM;
610         }
611         for (i = 0; i < ns->geom.pgnum; i++) {
612                 ns->pages[i].byte = NULL;
613         }
614         ns->nand_pages_slab = kmem_cache_create("nandsim",
615                                                 ns->geom.pgszoob, 0, 0, NULL);
616         if (!ns->nand_pages_slab) {
617                 NS_ERR("cache_create: unable to create kmem_cache\n");
618                 return -ENOMEM;
619         }
620
621         return 0;
622
623 err_free:
624         vfree(ns->pages_written);
625 err_close:
626         filp_close(cfile, NULL);
627         return err;
628 }
629
630 /*
631  * Free any allocated pages, and free the array of page pointers.
632  */
633 static void free_device(struct nandsim *ns)
634 {
635         int i;
636
637         if (ns->cfile) {
638                 kfree(ns->file_buf);
639                 vfree(ns->pages_written);
640                 filp_close(ns->cfile, NULL);
641                 return;
642         }
643
644         if (ns->pages) {
645                 for (i = 0; i < ns->geom.pgnum; i++) {
646                         if (ns->pages[i].byte)
647                                 kmem_cache_free(ns->nand_pages_slab,
648                                                 ns->pages[i].byte);
649                 }
650                 kmem_cache_destroy(ns->nand_pages_slab);
651                 vfree(ns->pages);
652         }
653 }
654
655 static char *get_partition_name(int i)
656 {
657         return kasprintf(GFP_KERNEL, "NAND simulator partition %d", i);
658 }
659
660 /*
661  * Initialize the nandsim structure.
662  *
663  * RETURNS: 0 if success, -ERRNO if failure.
664  */
665 static int init_nandsim(struct mtd_info *mtd)
666 {
667         struct nand_chip *chip = mtd->priv;
668         struct nandsim   *ns   = chip->priv;
669         int i, ret = 0;
670         uint64_t remains;
671         uint64_t next_offset;
672
673         if (NS_IS_INITIALIZED(ns)) {
674                 NS_ERR("init_nandsim: nandsim is already initialized\n");
675                 return -EIO;
676         }
677
678         /* Force mtd to not do delays */
679         chip->chip_delay = 0;
680
681         /* Initialize the NAND flash parameters */
682         ns->busw = chip->options & NAND_BUSWIDTH_16 ? 16 : 8;
683         ns->geom.totsz    = mtd->size;
684         ns->geom.pgsz     = mtd->writesize;
685         ns->geom.oobsz    = mtd->oobsize;
686         ns->geom.secsz    = mtd->erasesize;
687         ns->geom.pgszoob  = ns->geom.pgsz + ns->geom.oobsz;
688         ns->geom.pgnum    = div_u64(ns->geom.totsz, ns->geom.pgsz);
689         ns->geom.totszoob = ns->geom.totsz + (uint64_t)ns->geom.pgnum * ns->geom.oobsz;
690         ns->geom.secshift = ffs(ns->geom.secsz) - 1;
691         ns->geom.pgshift  = chip->page_shift;
692         ns->geom.oobshift = ffs(ns->geom.oobsz) - 1;
693         ns->geom.pgsec    = ns->geom.secsz / ns->geom.pgsz;
694         ns->geom.secszoob = ns->geom.secsz + ns->geom.oobsz * ns->geom.pgsec;
695         ns->options = 0;
696
697         if (ns->geom.pgsz == 512) {
698                 ns->options |= OPT_PAGE512;
699                 if (ns->busw == 8)
700                         ns->options |= OPT_PAGE512_8BIT;
701         } else if (ns->geom.pgsz == 2048) {
702                 ns->options |= OPT_PAGE2048;
703         } else if (ns->geom.pgsz == 4096) {
704                 ns->options |= OPT_PAGE4096;
705         } else {
706                 NS_ERR("init_nandsim: unknown page size %u\n", ns->geom.pgsz);
707                 return -EIO;
708         }
709
710         if (ns->options & OPT_SMALLPAGE) {
711                 if (ns->geom.totsz <= (32 << 20)) {
712                         ns->geom.pgaddrbytes  = 3;
713                         ns->geom.secaddrbytes = 2;
714                 } else {
715                         ns->geom.pgaddrbytes  = 4;
716                         ns->geom.secaddrbytes = 3;
717                 }
718         } else {
719                 if (ns->geom.totsz <= (128 << 20)) {
720                         ns->geom.pgaddrbytes  = 4;
721                         ns->geom.secaddrbytes = 2;
722                 } else {
723                         ns->geom.pgaddrbytes  = 5;
724                         ns->geom.secaddrbytes = 3;
725                 }
726         }
727
728         /* Fill the partition_info structure */
729         if (parts_num > ARRAY_SIZE(ns->partitions)) {
730                 NS_ERR("too many partitions.\n");
731                 ret = -EINVAL;
732                 goto error;
733         }
734         remains = ns->geom.totsz;
735         next_offset = 0;
736         for (i = 0; i < parts_num; ++i) {
737                 uint64_t part_sz = (uint64_t)parts[i] * ns->geom.secsz;
738
739                 if (!part_sz || part_sz > remains) {
740                         NS_ERR("bad partition size.\n");
741                         ret = -EINVAL;
742                         goto error;
743                 }
744                 ns->partitions[i].name   = get_partition_name(i);
745                 ns->partitions[i].offset = next_offset;
746                 ns->partitions[i].size   = part_sz;
747                 next_offset += ns->partitions[i].size;
748                 remains -= ns->partitions[i].size;
749         }
750         ns->nbparts = parts_num;
751         if (remains) {
752                 if (parts_num + 1 > ARRAY_SIZE(ns->partitions)) {
753                         NS_ERR("too many partitions.\n");
754                         ret = -EINVAL;
755                         goto error;
756                 }
757                 ns->partitions[i].name   = get_partition_name(i);
758                 ns->partitions[i].offset = next_offset;
759                 ns->partitions[i].size   = remains;
760                 ns->nbparts += 1;
761         }
762
763         /* Detect how many ID bytes the NAND chip outputs */
764         for (i = 0; nand_flash_ids[i].name != NULL; i++) {
765                 if (second_id_byte != nand_flash_ids[i].dev_id)
766                         continue;
767         }
768
769         if (ns->busw == 16)
770                 NS_WARN("16-bit flashes support wasn't tested\n");
771
772         printk("flash size: %llu MiB\n",
773                         (unsigned long long)ns->geom.totsz >> 20);
774         printk("page size: %u bytes\n",         ns->geom.pgsz);
775         printk("OOB area size: %u bytes\n",     ns->geom.oobsz);
776         printk("sector size: %u KiB\n",         ns->geom.secsz >> 10);
777         printk("pages number: %u\n",            ns->geom.pgnum);
778         printk("pages per sector: %u\n",        ns->geom.pgsec);
779         printk("bus width: %u\n",               ns->busw);
780         printk("bits in sector size: %u\n",     ns->geom.secshift);
781         printk("bits in page size: %u\n",       ns->geom.pgshift);
782         printk("bits in OOB size: %u\n",        ns->geom.oobshift);
783         printk("flash size with OOB: %llu KiB\n",
784                         (unsigned long long)ns->geom.totszoob >> 10);
785         printk("page address bytes: %u\n",      ns->geom.pgaddrbytes);
786         printk("sector address bytes: %u\n",    ns->geom.secaddrbytes);
787         printk("options: %#x\n",                ns->options);
788
789         if ((ret = alloc_device(ns)) != 0)
790                 goto error;
791
792         /* Allocate / initialize the internal buffer */
793         ns->buf.byte = kmalloc(ns->geom.pgszoob, GFP_KERNEL);
794         if (!ns->buf.byte) {
795                 NS_ERR("init_nandsim: unable to allocate %u bytes for the internal buffer\n",
796                         ns->geom.pgszoob);
797                 ret = -ENOMEM;
798                 goto error;
799         }
800         memset(ns->buf.byte, 0xFF, ns->geom.pgszoob);
801
802         return 0;
803
804 error:
805         free_device(ns);
806
807         return ret;
808 }
809
810 /*
811  * Free the nandsim structure.
812  */
813 static void free_nandsim(struct nandsim *ns)
814 {
815         kfree(ns->buf.byte);
816         free_device(ns);
817
818         return;
819 }
820
821 static int parse_badblocks(struct nandsim *ns, struct mtd_info *mtd)
822 {
823         char *w;
824         int zero_ok;
825         unsigned int erase_block_no;
826         loff_t offset;
827
828         if (!badblocks)
829                 return 0;
830         w = badblocks;
831         do {
832                 zero_ok = (*w == '0' ? 1 : 0);
833                 erase_block_no = simple_strtoul(w, &w, 0);
834                 if (!zero_ok && !erase_block_no) {
835                         NS_ERR("invalid badblocks.\n");
836                         return -EINVAL;
837                 }
838                 offset = erase_block_no * ns->geom.secsz;
839                 if (mtd_block_markbad(mtd, offset)) {
840                         NS_ERR("invalid badblocks.\n");
841                         return -EINVAL;
842                 }
843                 if (*w == ',')
844                         w += 1;
845         } while (*w);
846         return 0;
847 }
848
849 static int parse_weakblocks(void)
850 {
851         char *w;
852         int zero_ok;
853         unsigned int erase_block_no;
854         unsigned int max_erases;
855         struct weak_block *wb;
856
857         if (!weakblocks)
858                 return 0;
859         w = weakblocks;
860         do {
861                 zero_ok = (*w == '0' ? 1 : 0);
862                 erase_block_no = simple_strtoul(w, &w, 0);
863                 if (!zero_ok && !erase_block_no) {
864                         NS_ERR("invalid weakblocks.\n");
865                         return -EINVAL;
866                 }
867                 max_erases = 3;
868                 if (*w == ':') {
869                         w += 1;
870                         max_erases = simple_strtoul(w, &w, 0);
871                 }
872                 if (*w == ',')
873                         w += 1;
874                 wb = kzalloc(sizeof(*wb), GFP_KERNEL);
875                 if (!wb) {
876                         NS_ERR("unable to allocate memory.\n");
877                         return -ENOMEM;
878                 }
879                 wb->erase_block_no = erase_block_no;
880                 wb->max_erases = max_erases;
881                 list_add(&wb->list, &weak_blocks);
882         } while (*w);
883         return 0;
884 }
885
886 static int erase_error(unsigned int erase_block_no)
887 {
888         struct weak_block *wb;
889
890         list_for_each_entry(wb, &weak_blocks, list)
891                 if (wb->erase_block_no == erase_block_no) {
892                         if (wb->erases_done >= wb->max_erases)
893                                 return 1;
894                         wb->erases_done += 1;
895                         return 0;
896                 }
897         return 0;
898 }
899
900 static int parse_weakpages(void)
901 {
902         char *w;
903         int zero_ok;
904         unsigned int page_no;
905         unsigned int max_writes;
906         struct weak_page *wp;
907
908         if (!weakpages)
909                 return 0;
910         w = weakpages;
911         do {
912                 zero_ok = (*w == '0' ? 1 : 0);
913                 page_no = simple_strtoul(w, &w, 0);
914                 if (!zero_ok && !page_no) {
915                         NS_ERR("invalid weakpagess.\n");
916                         return -EINVAL;
917                 }
918                 max_writes = 3;
919                 if (*w == ':') {
920                         w += 1;
921                         max_writes = simple_strtoul(w, &w, 0);
922                 }
923                 if (*w == ',')
924                         w += 1;
925                 wp = kzalloc(sizeof(*wp), GFP_KERNEL);
926                 if (!wp) {
927                         NS_ERR("unable to allocate memory.\n");
928                         return -ENOMEM;
929                 }
930                 wp->page_no = page_no;
931                 wp->max_writes = max_writes;
932                 list_add(&wp->list, &weak_pages);
933         } while (*w);
934         return 0;
935 }
936
937 static int write_error(unsigned int page_no)
938 {
939         struct weak_page *wp;
940
941         list_for_each_entry(wp, &weak_pages, list)
942                 if (wp->page_no == page_no) {
943                         if (wp->writes_done >= wp->max_writes)
944                                 return 1;
945                         wp->writes_done += 1;
946                         return 0;
947                 }
948         return 0;
949 }
950
951 static int parse_gravepages(void)
952 {
953         char *g;
954         int zero_ok;
955         unsigned int page_no;
956         unsigned int max_reads;
957         struct grave_page *gp;
958
959         if (!gravepages)
960                 return 0;
961         g = gravepages;
962         do {
963                 zero_ok = (*g == '0' ? 1 : 0);
964                 page_no = simple_strtoul(g, &g, 0);
965                 if (!zero_ok && !page_no) {
966                         NS_ERR("invalid gravepagess.\n");
967                         return -EINVAL;
968                 }
969                 max_reads = 3;
970                 if (*g == ':') {
971                         g += 1;
972                         max_reads = simple_strtoul(g, &g, 0);
973                 }
974                 if (*g == ',')
975                         g += 1;
976                 gp = kzalloc(sizeof(*gp), GFP_KERNEL);
977                 if (!gp) {
978                         NS_ERR("unable to allocate memory.\n");
979                         return -ENOMEM;
980                 }
981                 gp->page_no = page_no;
982                 gp->max_reads = max_reads;
983                 list_add(&gp->list, &grave_pages);
984         } while (*g);
985         return 0;
986 }
987
988 static int read_error(unsigned int page_no)
989 {
990         struct grave_page *gp;
991
992         list_for_each_entry(gp, &grave_pages, list)
993                 if (gp->page_no == page_no) {
994                         if (gp->reads_done >= gp->max_reads)
995                                 return 1;
996                         gp->reads_done += 1;
997                         return 0;
998                 }
999         return 0;
1000 }
1001
1002 static void free_lists(void)
1003 {
1004         struct list_head *pos, *n;
1005         list_for_each_safe(pos, n, &weak_blocks) {
1006                 list_del(pos);
1007                 kfree(list_entry(pos, struct weak_block, list));
1008         }
1009         list_for_each_safe(pos, n, &weak_pages) {
1010                 list_del(pos);
1011                 kfree(list_entry(pos, struct weak_page, list));
1012         }
1013         list_for_each_safe(pos, n, &grave_pages) {
1014                 list_del(pos);
1015                 kfree(list_entry(pos, struct grave_page, list));
1016         }
1017         kfree(erase_block_wear);
1018 }
1019
1020 static int setup_wear_reporting(struct mtd_info *mtd)
1021 {
1022         size_t mem;
1023
1024         wear_eb_count = div_u64(mtd->size, mtd->erasesize);
1025         mem = wear_eb_count * sizeof(unsigned long);
1026         if (mem / sizeof(unsigned long) != wear_eb_count) {
1027                 NS_ERR("Too many erase blocks for wear reporting\n");
1028                 return -ENOMEM;
1029         }
1030         erase_block_wear = kzalloc(mem, GFP_KERNEL);
1031         if (!erase_block_wear) {
1032                 NS_ERR("Too many erase blocks for wear reporting\n");
1033                 return -ENOMEM;
1034         }
1035         return 0;
1036 }
1037
1038 static void update_wear(unsigned int erase_block_no)
1039 {
1040         if (!erase_block_wear)
1041                 return;
1042         total_wear += 1;
1043         /*
1044          * TODO: Notify this through a debugfs entry,
1045          * instead of showing an error message.
1046          */
1047         if (total_wear == 0)
1048                 NS_ERR("Erase counter total overflow\n");
1049         erase_block_wear[erase_block_no] += 1;
1050         if (erase_block_wear[erase_block_no] == 0)
1051                 NS_ERR("Erase counter overflow for erase block %u\n", erase_block_no);
1052 }
1053
1054 /*
1055  * Returns the string representation of 'state' state.
1056  */
1057 static char *get_state_name(uint32_t state)
1058 {
1059         switch (NS_STATE(state)) {
1060                 case STATE_CMD_READ0:
1061                         return "STATE_CMD_READ0";
1062                 case STATE_CMD_READ1:
1063                         return "STATE_CMD_READ1";
1064                 case STATE_CMD_PAGEPROG:
1065                         return "STATE_CMD_PAGEPROG";
1066                 case STATE_CMD_READOOB:
1067                         return "STATE_CMD_READOOB";
1068                 case STATE_CMD_READSTART:
1069                         return "STATE_CMD_READSTART";
1070                 case STATE_CMD_ERASE1:
1071                         return "STATE_CMD_ERASE1";
1072                 case STATE_CMD_STATUS:
1073                         return "STATE_CMD_STATUS";
1074                 case STATE_CMD_SEQIN:
1075                         return "STATE_CMD_SEQIN";
1076                 case STATE_CMD_READID:
1077                         return "STATE_CMD_READID";
1078                 case STATE_CMD_ERASE2:
1079                         return "STATE_CMD_ERASE2";
1080                 case STATE_CMD_RESET:
1081                         return "STATE_CMD_RESET";
1082                 case STATE_CMD_RNDOUT:
1083                         return "STATE_CMD_RNDOUT";
1084                 case STATE_CMD_RNDOUTSTART:
1085                         return "STATE_CMD_RNDOUTSTART";
1086                 case STATE_ADDR_PAGE:
1087                         return "STATE_ADDR_PAGE";
1088                 case STATE_ADDR_SEC:
1089                         return "STATE_ADDR_SEC";
1090                 case STATE_ADDR_ZERO:
1091                         return "STATE_ADDR_ZERO";
1092                 case STATE_ADDR_COLUMN:
1093                         return "STATE_ADDR_COLUMN";
1094                 case STATE_DATAIN:
1095                         return "STATE_DATAIN";
1096                 case STATE_DATAOUT:
1097                         return "STATE_DATAOUT";
1098                 case STATE_DATAOUT_ID:
1099                         return "STATE_DATAOUT_ID";
1100                 case STATE_DATAOUT_STATUS:
1101                         return "STATE_DATAOUT_STATUS";
1102                 case STATE_DATAOUT_STATUS_M:
1103                         return "STATE_DATAOUT_STATUS_M";
1104                 case STATE_READY:
1105                         return "STATE_READY";
1106                 case STATE_UNKNOWN:
1107                         return "STATE_UNKNOWN";
1108         }
1109
1110         NS_ERR("get_state_name: unknown state, BUG\n");
1111         return NULL;
1112 }
1113
1114 /*
1115  * Check if command is valid.
1116  *
1117  * RETURNS: 1 if wrong command, 0 if right.
1118  */
1119 static int check_command(int cmd)
1120 {
1121         switch (cmd) {
1122
1123         case NAND_CMD_READ0:
1124         case NAND_CMD_READ1:
1125         case NAND_CMD_READSTART:
1126         case NAND_CMD_PAGEPROG:
1127         case NAND_CMD_READOOB:
1128         case NAND_CMD_ERASE1:
1129         case NAND_CMD_STATUS:
1130         case NAND_CMD_SEQIN:
1131         case NAND_CMD_READID:
1132         case NAND_CMD_ERASE2:
1133         case NAND_CMD_RESET:
1134         case NAND_CMD_RNDOUT:
1135         case NAND_CMD_RNDOUTSTART:
1136                 return 0;
1137
1138         default:
1139                 return 1;
1140         }
1141 }
1142
1143 /*
1144  * Returns state after command is accepted by command number.
1145  */
1146 static uint32_t get_state_by_command(unsigned command)
1147 {
1148         switch (command) {
1149                 case NAND_CMD_READ0:
1150                         return STATE_CMD_READ0;
1151                 case NAND_CMD_READ1:
1152                         return STATE_CMD_READ1;
1153                 case NAND_CMD_PAGEPROG:
1154                         return STATE_CMD_PAGEPROG;
1155                 case NAND_CMD_READSTART:
1156                         return STATE_CMD_READSTART;
1157                 case NAND_CMD_READOOB:
1158                         return STATE_CMD_READOOB;
1159                 case NAND_CMD_ERASE1:
1160                         return STATE_CMD_ERASE1;
1161                 case NAND_CMD_STATUS:
1162                         return STATE_CMD_STATUS;
1163                 case NAND_CMD_SEQIN:
1164                         return STATE_CMD_SEQIN;
1165                 case NAND_CMD_READID:
1166                         return STATE_CMD_READID;
1167                 case NAND_CMD_ERASE2:
1168                         return STATE_CMD_ERASE2;
1169                 case NAND_CMD_RESET:
1170                         return STATE_CMD_RESET;
1171                 case NAND_CMD_RNDOUT:
1172                         return STATE_CMD_RNDOUT;
1173                 case NAND_CMD_RNDOUTSTART:
1174                         return STATE_CMD_RNDOUTSTART;
1175         }
1176
1177         NS_ERR("get_state_by_command: unknown command, BUG\n");
1178         return 0;
1179 }
1180
1181 /*
1182  * Move an address byte to the correspondent internal register.
1183  */
1184 static inline void accept_addr_byte(struct nandsim *ns, u_char bt)
1185 {
1186         uint byte = (uint)bt;
1187
1188         if (ns->regs.count < (ns->geom.pgaddrbytes - ns->geom.secaddrbytes))
1189                 ns->regs.column |= (byte << 8 * ns->regs.count);
1190         else {
1191                 ns->regs.row |= (byte << 8 * (ns->regs.count -
1192                                                 ns->geom.pgaddrbytes +
1193                                                 ns->geom.secaddrbytes));
1194         }
1195
1196         return;
1197 }
1198
1199 /*
1200  * Switch to STATE_READY state.
1201  */
1202 static inline void switch_to_ready_state(struct nandsim *ns, u_char status)
1203 {
1204         NS_DBG("switch_to_ready_state: switch to %s state\n", get_state_name(STATE_READY));
1205
1206         ns->state       = STATE_READY;
1207         ns->nxstate     = STATE_UNKNOWN;
1208         ns->op          = NULL;
1209         ns->npstates    = 0;
1210         ns->stateidx    = 0;
1211         ns->regs.num    = 0;
1212         ns->regs.count  = 0;
1213         ns->regs.off    = 0;
1214         ns->regs.row    = 0;
1215         ns->regs.column = 0;
1216         ns->regs.status = status;
1217 }
1218
1219 /*
1220  * If the operation isn't known yet, try to find it in the global array
1221  * of supported operations.
1222  *
1223  * Operation can be unknown because of the following.
1224  *   1. New command was accepted and this is the first call to find the
1225  *      correspondent states chain. In this case ns->npstates = 0;
1226  *   2. There are several operations which begin with the same command(s)
1227  *      (for example program from the second half and read from the
1228  *      second half operations both begin with the READ1 command). In this
1229  *      case the ns->pstates[] array contains previous states.
1230  *
1231  * Thus, the function tries to find operation containing the following
1232  * states (if the 'flag' parameter is 0):
1233  *    ns->pstates[0], ... ns->pstates[ns->npstates], ns->state
1234  *
1235  * If (one and only one) matching operation is found, it is accepted (
1236  * ns->ops, ns->state, ns->nxstate are initialized, ns->npstate is
1237  * zeroed).
1238  *
1239  * If there are several matches, the current state is pushed to the
1240  * ns->pstates.
1241  *
1242  * The operation can be unknown only while commands are input to the chip.
1243  * As soon as address command is accepted, the operation must be known.
1244  * In such situation the function is called with 'flag' != 0, and the
1245  * operation is searched using the following pattern:
1246  *     ns->pstates[0], ... ns->pstates[ns->npstates], <address input>
1247  *
1248  * It is supposed that this pattern must either match one operation or
1249  * none. There can't be ambiguity in that case.
1250  *
1251  * If no matches found, the function does the following:
1252  *   1. if there are saved states present, try to ignore them and search
1253  *      again only using the last command. If nothing was found, switch
1254  *      to the STATE_READY state.
1255  *   2. if there are no saved states, switch to the STATE_READY state.
1256  *
1257  * RETURNS: -2 - no matched operations found.
1258  *          -1 - several matches.
1259  *           0 - operation is found.
1260  */
1261 static int find_operation(struct nandsim *ns, uint32_t flag)
1262 {
1263         int opsfound = 0;
1264         int i, j, idx = 0;
1265
1266         for (i = 0; i < NS_OPER_NUM; i++) {
1267
1268                 int found = 1;
1269
1270                 if (!(ns->options & ops[i].reqopts))
1271                         /* Ignore operations we can't perform */
1272                         continue;
1273
1274                 if (flag) {
1275                         if (!(ops[i].states[ns->npstates] & STATE_ADDR_MASK))
1276                                 continue;
1277                 } else {
1278                         if (NS_STATE(ns->state) != NS_STATE(ops[i].states[ns->npstates]))
1279                                 continue;
1280                 }
1281
1282                 for (j = 0; j < ns->npstates; j++)
1283                         if (NS_STATE(ops[i].states[j]) != NS_STATE(ns->pstates[j])
1284                                 && (ns->options & ops[idx].reqopts)) {
1285                                 found = 0;
1286                                 break;
1287                         }
1288
1289                 if (found) {
1290                         idx = i;
1291                         opsfound += 1;
1292                 }
1293         }
1294
1295         if (opsfound == 1) {
1296                 /* Exact match */
1297                 ns->op = &ops[idx].states[0];
1298                 if (flag) {
1299                         /*
1300                          * In this case the find_operation function was
1301                          * called when address has just began input. But it isn't
1302                          * yet fully input and the current state must
1303                          * not be one of STATE_ADDR_*, but the STATE_ADDR_*
1304                          * state must be the next state (ns->nxstate).
1305                          */
1306                         ns->stateidx = ns->npstates - 1;
1307                 } else {
1308                         ns->stateidx = ns->npstates;
1309                 }
1310                 ns->npstates = 0;
1311                 ns->state = ns->op[ns->stateidx];
1312                 ns->nxstate = ns->op[ns->stateidx + 1];
1313                 NS_DBG("find_operation: operation found, index: %d, state: %s, nxstate %s\n",
1314                                 idx, get_state_name(ns->state), get_state_name(ns->nxstate));
1315                 return 0;
1316         }
1317
1318         if (opsfound == 0) {
1319                 /* Nothing was found. Try to ignore previous commands (if any) and search again */
1320                 if (ns->npstates != 0) {
1321                         NS_DBG("find_operation: no operation found, try again with state %s\n",
1322                                         get_state_name(ns->state));
1323                         ns->npstates = 0;
1324                         return find_operation(ns, 0);
1325
1326                 }
1327                 NS_DBG("find_operation: no operations found\n");
1328                 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1329                 return -2;
1330         }
1331
1332         if (flag) {
1333                 /* This shouldn't happen */
1334                 NS_DBG("find_operation: BUG, operation must be known if address is input\n");
1335                 return -2;
1336         }
1337
1338         NS_DBG("find_operation: there is still ambiguity\n");
1339
1340         ns->pstates[ns->npstates++] = ns->state;
1341
1342         return -1;
1343 }
1344
1345 static void put_pages(struct nandsim *ns)
1346 {
1347         int i;
1348
1349         for (i = 0; i < ns->held_cnt; i++)
1350                 page_cache_release(ns->held_pages[i]);
1351 }
1352
1353 /* Get page cache pages in advance to provide NOFS memory allocation */
1354 static int get_pages(struct nandsim *ns, struct file *file, size_t count, loff_t pos)
1355 {
1356         pgoff_t index, start_index, end_index;
1357         struct page *page;
1358         struct address_space *mapping = file->f_mapping;
1359
1360         start_index = pos >> PAGE_CACHE_SHIFT;
1361         end_index = (pos + count - 1) >> PAGE_CACHE_SHIFT;
1362         if (end_index - start_index + 1 > NS_MAX_HELD_PAGES)
1363                 return -EINVAL;
1364         ns->held_cnt = 0;
1365         for (index = start_index; index <= end_index; index++) {
1366                 page = find_get_page(mapping, index);
1367                 if (page == NULL) {
1368                         page = find_or_create_page(mapping, index, GFP_NOFS);
1369                         if (page == NULL) {
1370                                 write_inode_now(mapping->host, 1);
1371                                 page = find_or_create_page(mapping, index, GFP_NOFS);
1372                         }
1373                         if (page == NULL) {
1374                                 put_pages(ns);
1375                                 return -ENOMEM;
1376                         }
1377                         unlock_page(page);
1378                 }
1379                 ns->held_pages[ns->held_cnt++] = page;
1380         }
1381         return 0;
1382 }
1383
1384 static int set_memalloc(void)
1385 {
1386         if (current->flags & PF_MEMALLOC)
1387                 return 0;
1388         current->flags |= PF_MEMALLOC;
1389         return 1;
1390 }
1391
1392 static void clear_memalloc(int memalloc)
1393 {
1394         if (memalloc)
1395                 current->flags &= ~PF_MEMALLOC;
1396 }
1397
1398 static ssize_t read_file(struct nandsim *ns, struct file *file, void *buf, size_t count, loff_t pos)
1399 {
1400         ssize_t tx;
1401         int err, memalloc;
1402
1403         err = get_pages(ns, file, count, pos);
1404         if (err)
1405                 return err;
1406         memalloc = set_memalloc();
1407         tx = kernel_read(file, pos, buf, count);
1408         clear_memalloc(memalloc);
1409         put_pages(ns);
1410         return tx;
1411 }
1412
1413 static ssize_t write_file(struct nandsim *ns, struct file *file, void *buf, size_t count, loff_t pos)
1414 {
1415         ssize_t tx;
1416         int err, memalloc;
1417
1418         err = get_pages(ns, file, count, pos);
1419         if (err)
1420                 return err;
1421         memalloc = set_memalloc();
1422         tx = kernel_write(file, buf, count, pos);
1423         clear_memalloc(memalloc);
1424         put_pages(ns);
1425         return tx;
1426 }
1427
1428 /*
1429  * Returns a pointer to the current page.
1430  */
1431 static inline union ns_mem *NS_GET_PAGE(struct nandsim *ns)
1432 {
1433         return &(ns->pages[ns->regs.row]);
1434 }
1435
1436 /*
1437  * Retuns a pointer to the current byte, within the current page.
1438  */
1439 static inline u_char *NS_PAGE_BYTE_OFF(struct nandsim *ns)
1440 {
1441         return NS_GET_PAGE(ns)->byte + ns->regs.column + ns->regs.off;
1442 }
1443
1444 int do_read_error(struct nandsim *ns, int num)
1445 {
1446         unsigned int page_no = ns->regs.row;
1447
1448         if (read_error(page_no)) {
1449                 prandom_bytes(ns->buf.byte, num);
1450                 NS_WARN("simulating read error in page %u\n", page_no);
1451                 return 1;
1452         }
1453         return 0;
1454 }
1455
1456 void do_bit_flips(struct nandsim *ns, int num)
1457 {
1458         if (bitflips && prandom_u32() < (1 << 22)) {
1459                 int flips = 1;
1460                 if (bitflips > 1)
1461                         flips = (prandom_u32() % (int) bitflips) + 1;
1462                 while (flips--) {
1463                         int pos = prandom_u32() % (num * 8);
1464                         ns->buf.byte[pos / 8] ^= (1 << (pos % 8));
1465                         NS_WARN("read_page: flipping bit %d in page %d "
1466                                 "reading from %d ecc: corrected=%u failed=%u\n",
1467                                 pos, ns->regs.row, ns->regs.column + ns->regs.off,
1468                                 nsmtd->ecc_stats.corrected, nsmtd->ecc_stats.failed);
1469                 }
1470         }
1471 }
1472
1473 /*
1474  * Fill the NAND buffer with data read from the specified page.
1475  */
1476 static void read_page(struct nandsim *ns, int num)
1477 {
1478         union ns_mem *mypage;
1479
1480         if (ns->cfile) {
1481                 if (!test_bit(ns->regs.row, ns->pages_written)) {
1482                         NS_DBG("read_page: page %d not written\n", ns->regs.row);
1483                         memset(ns->buf.byte, 0xFF, num);
1484                 } else {
1485                         loff_t pos;
1486                         ssize_t tx;
1487
1488                         NS_DBG("read_page: page %d written, reading from %d\n",
1489                                 ns->regs.row, ns->regs.column + ns->regs.off);
1490                         if (do_read_error(ns, num))
1491                                 return;
1492                         pos = (loff_t)ns->regs.row * ns->geom.pgszoob + ns->regs.column + ns->regs.off;
1493                         tx = read_file(ns, ns->cfile, ns->buf.byte, num, pos);
1494                         if (tx != num) {
1495                                 NS_ERR("read_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx);
1496                                 return;
1497                         }
1498                         do_bit_flips(ns, num);
1499                 }
1500                 return;
1501         }
1502
1503         mypage = NS_GET_PAGE(ns);
1504         if (mypage->byte == NULL) {
1505                 NS_DBG("read_page: page %d not allocated\n", ns->regs.row);
1506                 memset(ns->buf.byte, 0xFF, num);
1507         } else {
1508                 NS_DBG("read_page: page %d allocated, reading from %d\n",
1509                         ns->regs.row, ns->regs.column + ns->regs.off);
1510                 if (do_read_error(ns, num))
1511                         return;
1512                 memcpy(ns->buf.byte, NS_PAGE_BYTE_OFF(ns), num);
1513                 do_bit_flips(ns, num);
1514         }
1515 }
1516
1517 /*
1518  * Erase all pages in the specified sector.
1519  */
1520 static void erase_sector(struct nandsim *ns)
1521 {
1522         union ns_mem *mypage;
1523         int i;
1524
1525         if (ns->cfile) {
1526                 for (i = 0; i < ns->geom.pgsec; i++)
1527                         if (__test_and_clear_bit(ns->regs.row + i,
1528                                                  ns->pages_written)) {
1529                                 NS_DBG("erase_sector: freeing page %d\n", ns->regs.row + i);
1530                         }
1531                 return;
1532         }
1533
1534         mypage = NS_GET_PAGE(ns);
1535         for (i = 0; i < ns->geom.pgsec; i++) {
1536                 if (mypage->byte != NULL) {
1537                         NS_DBG("erase_sector: freeing page %d\n", ns->regs.row+i);
1538                         kmem_cache_free(ns->nand_pages_slab, mypage->byte);
1539                         mypage->byte = NULL;
1540                 }
1541                 mypage++;
1542         }
1543 }
1544
1545 /*
1546  * Program the specified page with the contents from the NAND buffer.
1547  */
1548 static int prog_page(struct nandsim *ns, int num)
1549 {
1550         int i;
1551         union ns_mem *mypage;
1552         u_char *pg_off;
1553
1554         if (ns->cfile) {
1555                 loff_t off;
1556                 ssize_t tx;
1557                 int all;
1558
1559                 NS_DBG("prog_page: writing page %d\n", ns->regs.row);
1560                 pg_off = ns->file_buf + ns->regs.column + ns->regs.off;
1561                 off = (loff_t)ns->regs.row * ns->geom.pgszoob + ns->regs.column + ns->regs.off;
1562                 if (!test_bit(ns->regs.row, ns->pages_written)) {
1563                         all = 1;
1564                         memset(ns->file_buf, 0xff, ns->geom.pgszoob);
1565                 } else {
1566                         all = 0;
1567                         tx = read_file(ns, ns->cfile, pg_off, num, off);
1568                         if (tx != num) {
1569                                 NS_ERR("prog_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx);
1570                                 return -1;
1571                         }
1572                 }
1573                 for (i = 0; i < num; i++)
1574                         pg_off[i] &= ns->buf.byte[i];
1575                 if (all) {
1576                         loff_t pos = (loff_t)ns->regs.row * ns->geom.pgszoob;
1577                         tx = write_file(ns, ns->cfile, ns->file_buf, ns->geom.pgszoob, pos);
1578                         if (tx != ns->geom.pgszoob) {
1579                                 NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx);
1580                                 return -1;
1581                         }
1582                         __set_bit(ns->regs.row, ns->pages_written);
1583                 } else {
1584                         tx = write_file(ns, ns->cfile, pg_off, num, off);
1585                         if (tx != num) {
1586                                 NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx);
1587                                 return -1;
1588                         }
1589                 }
1590                 return 0;
1591         }
1592
1593         mypage = NS_GET_PAGE(ns);
1594         if (mypage->byte == NULL) {
1595                 NS_DBG("prog_page: allocating page %d\n", ns->regs.row);
1596                 /*
1597                  * We allocate memory with GFP_NOFS because a flash FS may
1598                  * utilize this. If it is holding an FS lock, then gets here,
1599                  * then kernel memory alloc runs writeback which goes to the FS
1600                  * again and deadlocks. This was seen in practice.
1601                  */
1602                 mypage->byte = kmem_cache_alloc(ns->nand_pages_slab, GFP_NOFS);
1603                 if (mypage->byte == NULL) {
1604                         NS_ERR("prog_page: error allocating memory for page %d\n", ns->regs.row);
1605                         return -1;
1606                 }
1607                 memset(mypage->byte, 0xFF, ns->geom.pgszoob);
1608         }
1609
1610         pg_off = NS_PAGE_BYTE_OFF(ns);
1611         for (i = 0; i < num; i++)
1612                 pg_off[i] &= ns->buf.byte[i];
1613
1614         return 0;
1615 }
1616
1617 /*
1618  * If state has any action bit, perform this action.
1619  *
1620  * RETURNS: 0 if success, -1 if error.
1621  */
1622 static int do_state_action(struct nandsim *ns, uint32_t action)
1623 {
1624         int num;
1625         int busdiv = ns->busw == 8 ? 1 : 2;
1626         unsigned int erase_block_no, page_no;
1627
1628         action &= ACTION_MASK;
1629
1630         /* Check that page address input is correct */
1631         if (action != ACTION_SECERASE && ns->regs.row >= ns->geom.pgnum) {
1632                 NS_WARN("do_state_action: wrong page number (%#x)\n", ns->regs.row);
1633                 return -1;
1634         }
1635
1636         switch (action) {
1637
1638         case ACTION_CPY:
1639                 /*
1640                  * Copy page data to the internal buffer.
1641                  */
1642
1643                 /* Column shouldn't be very large */
1644                 if (ns->regs.column >= (ns->geom.pgszoob - ns->regs.off)) {
1645                         NS_ERR("do_state_action: column number is too large\n");
1646                         break;
1647                 }
1648                 num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1649                 read_page(ns, num);
1650
1651                 NS_DBG("do_state_action: (ACTION_CPY:) copy %d bytes to int buf, raw offset %d\n",
1652                         num, NS_RAW_OFFSET(ns) + ns->regs.off);
1653
1654                 if (ns->regs.off == 0)
1655                         NS_LOG("read page %d\n", ns->regs.row);
1656                 else if (ns->regs.off < ns->geom.pgsz)
1657                         NS_LOG("read page %d (second half)\n", ns->regs.row);
1658                 else
1659                         NS_LOG("read OOB of page %d\n", ns->regs.row);
1660
1661                 NS_UDELAY(access_delay);
1662                 NS_UDELAY(input_cycle * ns->geom.pgsz / 1000 / busdiv);
1663
1664                 break;
1665
1666         case ACTION_SECERASE:
1667                 /*
1668                  * Erase sector.
1669                  */
1670
1671                 if (ns->lines.wp) {
1672                         NS_ERR("do_state_action: device is write-protected, ignore sector erase\n");
1673                         return -1;
1674                 }
1675
1676                 if (ns->regs.row >= ns->geom.pgnum - ns->geom.pgsec
1677                         || (ns->regs.row & ~(ns->geom.secsz - 1))) {
1678                         NS_ERR("do_state_action: wrong sector address (%#x)\n", ns->regs.row);
1679                         return -1;
1680                 }
1681
1682                 ns->regs.row = (ns->regs.row <<
1683                                 8 * (ns->geom.pgaddrbytes - ns->geom.secaddrbytes)) | ns->regs.column;
1684                 ns->regs.column = 0;
1685
1686                 erase_block_no = ns->regs.row >> (ns->geom.secshift - ns->geom.pgshift);
1687
1688                 NS_DBG("do_state_action: erase sector at address %#x, off = %d\n",
1689                                 ns->regs.row, NS_RAW_OFFSET(ns));
1690                 NS_LOG("erase sector %u\n", erase_block_no);
1691
1692                 erase_sector(ns);
1693
1694                 NS_MDELAY(erase_delay);
1695
1696                 if (erase_block_wear)
1697                         update_wear(erase_block_no);
1698
1699                 if (erase_error(erase_block_no)) {
1700                         NS_WARN("simulating erase failure in erase block %u\n", erase_block_no);
1701                         return -1;
1702                 }
1703
1704                 break;
1705
1706         case ACTION_PRGPAGE:
1707                 /*
1708                  * Program page - move internal buffer data to the page.
1709                  */
1710
1711                 if (ns->lines.wp) {
1712                         NS_WARN("do_state_action: device is write-protected, programm\n");
1713                         return -1;
1714                 }
1715
1716                 num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1717                 if (num != ns->regs.count) {
1718                         NS_ERR("do_state_action: too few bytes were input (%d instead of %d)\n",
1719                                         ns->regs.count, num);
1720                         return -1;
1721                 }
1722
1723                 if (prog_page(ns, num) == -1)
1724                         return -1;
1725
1726                 page_no = ns->regs.row;
1727
1728                 NS_DBG("do_state_action: copy %d bytes from int buf to (%#x, %#x), raw off = %d\n",
1729                         num, ns->regs.row, ns->regs.column, NS_RAW_OFFSET(ns) + ns->regs.off);
1730                 NS_LOG("programm page %d\n", ns->regs.row);
1731
1732                 NS_UDELAY(programm_delay);
1733                 NS_UDELAY(output_cycle * ns->geom.pgsz / 1000 / busdiv);
1734
1735                 if (write_error(page_no)) {
1736                         NS_WARN("simulating write failure in page %u\n", page_no);
1737                         return -1;
1738                 }
1739
1740                 break;
1741
1742         case ACTION_ZEROOFF:
1743                 NS_DBG("do_state_action: set internal offset to 0\n");
1744                 ns->regs.off = 0;
1745                 break;
1746
1747         case ACTION_HALFOFF:
1748                 if (!(ns->options & OPT_PAGE512_8BIT)) {
1749                         NS_ERR("do_state_action: BUG! can't skip half of page for non-512"
1750                                 "byte page size 8x chips\n");
1751                         return -1;
1752                 }
1753                 NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz/2);
1754                 ns->regs.off = ns->geom.pgsz/2;
1755                 break;
1756
1757         case ACTION_OOBOFF:
1758                 NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz);
1759                 ns->regs.off = ns->geom.pgsz;
1760                 break;
1761
1762         default:
1763                 NS_DBG("do_state_action: BUG! unknown action\n");
1764         }
1765
1766         return 0;
1767 }
1768
1769 /*
1770  * Switch simulator's state.
1771  */
1772 static void switch_state(struct nandsim *ns)
1773 {
1774         if (ns->op) {
1775                 /*
1776                  * The current operation have already been identified.
1777                  * Just follow the states chain.
1778                  */
1779
1780                 ns->stateidx += 1;
1781                 ns->state = ns->nxstate;
1782                 ns->nxstate = ns->op[ns->stateidx + 1];
1783
1784                 NS_DBG("switch_state: operation is known, switch to the next state, "
1785                         "state: %s, nxstate: %s\n",
1786                         get_state_name(ns->state), get_state_name(ns->nxstate));
1787
1788                 /* See, whether we need to do some action */
1789                 if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
1790                         switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1791                         return;
1792                 }
1793
1794         } else {
1795                 /*
1796                  * We don't yet know which operation we perform.
1797                  * Try to identify it.
1798                  */
1799
1800                 /*
1801                  *  The only event causing the switch_state function to
1802                  *  be called with yet unknown operation is new command.
1803                  */
1804                 ns->state = get_state_by_command(ns->regs.command);
1805
1806                 NS_DBG("switch_state: operation is unknown, try to find it\n");
1807
1808                 if (find_operation(ns, 0) != 0)
1809                         return;
1810
1811                 if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
1812                         switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1813                         return;
1814                 }
1815         }
1816
1817         /* For 16x devices column means the page offset in words */
1818         if ((ns->nxstate & STATE_ADDR_MASK) && ns->busw == 16) {
1819                 NS_DBG("switch_state: double the column number for 16x device\n");
1820                 ns->regs.column <<= 1;
1821         }
1822
1823         if (NS_STATE(ns->nxstate) == STATE_READY) {
1824                 /*
1825                  * The current state is the last. Return to STATE_READY
1826                  */
1827
1828                 u_char status = NS_STATUS_OK(ns);
1829
1830                 /* In case of data states, see if all bytes were input/output */
1831                 if ((ns->state & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK))
1832                         && ns->regs.count != ns->regs.num) {
1833                         NS_WARN("switch_state: not all bytes were processed, %d left\n",
1834                                         ns->regs.num - ns->regs.count);
1835                         status = NS_STATUS_FAILED(ns);
1836                 }
1837
1838                 NS_DBG("switch_state: operation complete, switch to STATE_READY state\n");
1839
1840                 switch_to_ready_state(ns, status);
1841
1842                 return;
1843         } else if (ns->nxstate & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK)) {
1844                 /*
1845                  * If the next state is data input/output, switch to it now
1846                  */
1847
1848                 ns->state      = ns->nxstate;
1849                 ns->nxstate    = ns->op[++ns->stateidx + 1];
1850                 ns->regs.num   = ns->regs.count = 0;
1851
1852                 NS_DBG("switch_state: the next state is data I/O, switch, "
1853                         "state: %s, nxstate: %s\n",
1854                         get_state_name(ns->state), get_state_name(ns->nxstate));
1855
1856                 /*
1857                  * Set the internal register to the count of bytes which
1858                  * are expected to be input or output
1859                  */
1860                 switch (NS_STATE(ns->state)) {
1861                         case STATE_DATAIN:
1862                         case STATE_DATAOUT:
1863                                 ns->regs.num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1864                                 break;
1865
1866                         case STATE_DATAOUT_ID:
1867                                 ns->regs.num = ns->geom.idbytes;
1868                                 break;
1869
1870                         case STATE_DATAOUT_STATUS:
1871                         case STATE_DATAOUT_STATUS_M:
1872                                 ns->regs.count = ns->regs.num = 0;
1873                                 break;
1874
1875                         default:
1876                                 NS_ERR("switch_state: BUG! unknown data state\n");
1877                 }
1878
1879         } else if (ns->nxstate & STATE_ADDR_MASK) {
1880                 /*
1881                  * If the next state is address input, set the internal
1882                  * register to the number of expected address bytes
1883                  */
1884
1885                 ns->regs.count = 0;
1886
1887                 switch (NS_STATE(ns->nxstate)) {
1888                         case STATE_ADDR_PAGE:
1889                                 ns->regs.num = ns->geom.pgaddrbytes;
1890
1891                                 break;
1892                         case STATE_ADDR_SEC:
1893                                 ns->regs.num = ns->geom.secaddrbytes;
1894                                 break;
1895
1896                         case STATE_ADDR_ZERO:
1897                                 ns->regs.num = 1;
1898                                 break;
1899
1900                         case STATE_ADDR_COLUMN:
1901                                 /* Column address is always 2 bytes */
1902                                 ns->regs.num = ns->geom.pgaddrbytes - ns->geom.secaddrbytes;
1903                                 break;
1904
1905                         default:
1906                                 NS_ERR("switch_state: BUG! unknown address state\n");
1907                 }
1908         } else {
1909                 /*
1910                  * Just reset internal counters.
1911                  */
1912
1913                 ns->regs.num = 0;
1914                 ns->regs.count = 0;
1915         }
1916 }
1917
1918 static u_char ns_nand_read_byte(struct mtd_info *mtd)
1919 {
1920         struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
1921         u_char outb = 0x00;
1922
1923         /* Sanity and correctness checks */
1924         if (!ns->lines.ce) {
1925                 NS_ERR("read_byte: chip is disabled, return %#x\n", (uint)outb);
1926                 return outb;
1927         }
1928         if (ns->lines.ale || ns->lines.cle) {
1929                 NS_ERR("read_byte: ALE or CLE pin is high, return %#x\n", (uint)outb);
1930                 return outb;
1931         }
1932         if (!(ns->state & STATE_DATAOUT_MASK)) {
1933                 NS_WARN("read_byte: unexpected data output cycle, state is %s "
1934                         "return %#x\n", get_state_name(ns->state), (uint)outb);
1935                 return outb;
1936         }
1937
1938         /* Status register may be read as many times as it is wanted */
1939         if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS) {
1940                 NS_DBG("read_byte: return %#x status\n", ns->regs.status);
1941                 return ns->regs.status;
1942         }
1943
1944         /* Check if there is any data in the internal buffer which may be read */
1945         if (ns->regs.count == ns->regs.num) {
1946                 NS_WARN("read_byte: no more data to output, return %#x\n", (uint)outb);
1947                 return outb;
1948         }
1949
1950         switch (NS_STATE(ns->state)) {
1951                 case STATE_DATAOUT:
1952                         if (ns->busw == 8) {
1953                                 outb = ns->buf.byte[ns->regs.count];
1954                                 ns->regs.count += 1;
1955                         } else {
1956                                 outb = (u_char)cpu_to_le16(ns->buf.word[ns->regs.count >> 1]);
1957                                 ns->regs.count += 2;
1958                         }
1959                         break;
1960                 case STATE_DATAOUT_ID:
1961                         NS_DBG("read_byte: read ID byte %d, total = %d\n", ns->regs.count, ns->regs.num);
1962                         outb = ns->ids[ns->regs.count];
1963                         ns->regs.count += 1;
1964                         break;
1965                 default:
1966                         BUG();
1967         }
1968
1969         if (ns->regs.count == ns->regs.num) {
1970                 NS_DBG("read_byte: all bytes were read\n");
1971
1972                 if (NS_STATE(ns->nxstate) == STATE_READY)
1973                         switch_state(ns);
1974         }
1975
1976         return outb;
1977 }
1978
1979 static void ns_nand_write_byte(struct mtd_info *mtd, u_char byte)
1980 {
1981         struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
1982
1983         /* Sanity and correctness checks */
1984         if (!ns->lines.ce) {
1985                 NS_ERR("write_byte: chip is disabled, ignore write\n");
1986                 return;
1987         }
1988         if (ns->lines.ale && ns->lines.cle) {
1989                 NS_ERR("write_byte: ALE and CLE pins are high simultaneously, ignore write\n");
1990                 return;
1991         }
1992
1993         if (ns->lines.cle == 1) {
1994                 /*
1995                  * The byte written is a command.
1996                  */
1997
1998                 if (byte == NAND_CMD_RESET) {
1999                         NS_LOG("reset chip\n");
2000                         switch_to_ready_state(ns, NS_STATUS_OK(ns));
2001                         return;
2002                 }
2003
2004                 /* Check that the command byte is correct */
2005                 if (check_command(byte)) {
2006                         NS_ERR("write_byte: unknown command %#x\n", (uint)byte);
2007                         return;
2008                 }
2009
2010                 if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS
2011                         || NS_STATE(ns->state) == STATE_DATAOUT_STATUS_M
2012                         || NS_STATE(ns->state) == STATE_DATAOUT) {
2013                         int row = ns->regs.row;
2014
2015                         switch_state(ns);
2016                         if (byte == NAND_CMD_RNDOUT)
2017                                 ns->regs.row = row;
2018                 }
2019
2020                 /* Check if chip is expecting command */
2021                 if (NS_STATE(ns->nxstate) != STATE_UNKNOWN && !(ns->nxstate & STATE_CMD_MASK)) {
2022                         /* Do not warn if only 2 id bytes are read */
2023                         if (!(ns->regs.command == NAND_CMD_READID &&
2024                             NS_STATE(ns->state) == STATE_DATAOUT_ID && ns->regs.count == 2)) {
2025                                 /*
2026                                  * We are in situation when something else (not command)
2027                                  * was expected but command was input. In this case ignore
2028                                  * previous command(s)/state(s) and accept the last one.
2029                                  */
2030                                 NS_WARN("write_byte: command (%#x) wasn't expected, expected state is %s, "
2031                                         "ignore previous states\n", (uint)byte, get_state_name(ns->nxstate));
2032                         }
2033                         switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2034                 }
2035
2036                 NS_DBG("command byte corresponding to %s state accepted\n",
2037                         get_state_name(get_state_by_command(byte)));
2038                 ns->regs.command = byte;
2039                 switch_state(ns);
2040
2041         } else if (ns->lines.ale == 1) {
2042                 /*
2043                  * The byte written is an address.
2044                  */
2045
2046                 if (NS_STATE(ns->nxstate) == STATE_UNKNOWN) {
2047
2048                         NS_DBG("write_byte: operation isn't known yet, identify it\n");
2049
2050                         if (find_operation(ns, 1) < 0)
2051                                 return;
2052
2053                         if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
2054                                 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2055                                 return;
2056                         }
2057
2058                         ns->regs.count = 0;
2059                         switch (NS_STATE(ns->nxstate)) {
2060                                 case STATE_ADDR_PAGE:
2061                                         ns->regs.num = ns->geom.pgaddrbytes;
2062                                         break;
2063                                 case STATE_ADDR_SEC:
2064                                         ns->regs.num = ns->geom.secaddrbytes;
2065                                         break;
2066                                 case STATE_ADDR_ZERO:
2067                                         ns->regs.num = 1;
2068                                         break;
2069                                 default:
2070                                         BUG();
2071                         }
2072                 }
2073
2074                 /* Check that chip is expecting address */
2075                 if (!(ns->nxstate & STATE_ADDR_MASK)) {
2076                         NS_ERR("write_byte: address (%#x) isn't expected, expected state is %s, "
2077                                 "switch to STATE_READY\n", (uint)byte, get_state_name(ns->nxstate));
2078                         switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2079                         return;
2080                 }
2081
2082                 /* Check if this is expected byte */
2083                 if (ns->regs.count == ns->regs.num) {
2084                         NS_ERR("write_byte: no more address bytes expected\n");
2085                         switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2086                         return;
2087                 }
2088
2089                 accept_addr_byte(ns, byte);
2090
2091                 ns->regs.count += 1;
2092
2093                 NS_DBG("write_byte: address byte %#x was accepted (%d bytes input, %d expected)\n",
2094                                 (uint)byte, ns->regs.count, ns->regs.num);
2095
2096                 if (ns->regs.count == ns->regs.num) {
2097                         NS_DBG("address (%#x, %#x) is accepted\n", ns->regs.row, ns->regs.column);
2098                         switch_state(ns);
2099                 }
2100
2101         } else {
2102                 /*
2103                  * The byte written is an input data.
2104                  */
2105
2106                 /* Check that chip is expecting data input */
2107                 if (!(ns->state & STATE_DATAIN_MASK)) {
2108                         NS_ERR("write_byte: data input (%#x) isn't expected, state is %s, "
2109                                 "switch to %s\n", (uint)byte,
2110                                 get_state_name(ns->state), get_state_name(STATE_READY));
2111                         switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2112                         return;
2113                 }
2114
2115                 /* Check if this is expected byte */
2116                 if (ns->regs.count == ns->regs.num) {
2117                         NS_WARN("write_byte: %u input bytes has already been accepted, ignore write\n",
2118                                         ns->regs.num);
2119                         return;
2120                 }
2121
2122                 if (ns->busw == 8) {
2123                         ns->buf.byte[ns->regs.count] = byte;
2124                         ns->regs.count += 1;
2125                 } else {
2126                         ns->buf.word[ns->regs.count >> 1] = cpu_to_le16((uint16_t)byte);
2127                         ns->regs.count += 2;
2128                 }
2129         }
2130
2131         return;
2132 }
2133
2134 static void ns_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int bitmask)
2135 {
2136         struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
2137
2138         ns->lines.cle = bitmask & NAND_CLE ? 1 : 0;
2139         ns->lines.ale = bitmask & NAND_ALE ? 1 : 0;
2140         ns->lines.ce = bitmask & NAND_NCE ? 1 : 0;
2141
2142         if (cmd != NAND_CMD_NONE)
2143                 ns_nand_write_byte(mtd, cmd);
2144 }
2145
2146 static int ns_device_ready(struct mtd_info *mtd)
2147 {
2148         NS_DBG("device_ready\n");
2149         return 1;
2150 }
2151
2152 static uint16_t ns_nand_read_word(struct mtd_info *mtd)
2153 {
2154         struct nand_chip *chip = (struct nand_chip *)mtd->priv;
2155
2156         NS_DBG("read_word\n");
2157
2158         return chip->read_byte(mtd) | (chip->read_byte(mtd) << 8);
2159 }
2160
2161 static void ns_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
2162 {
2163         struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
2164
2165         /* Check that chip is expecting data input */
2166         if (!(ns->state & STATE_DATAIN_MASK)) {
2167                 NS_ERR("write_buf: data input isn't expected, state is %s, "
2168                         "switch to STATE_READY\n", get_state_name(ns->state));
2169                 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2170                 return;
2171         }
2172
2173         /* Check if these are expected bytes */
2174         if (ns->regs.count + len > ns->regs.num) {
2175                 NS_ERR("write_buf: too many input bytes\n");
2176                 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2177                 return;
2178         }
2179
2180         memcpy(ns->buf.byte + ns->regs.count, buf, len);
2181         ns->regs.count += len;
2182
2183         if (ns->regs.count == ns->regs.num) {
2184                 NS_DBG("write_buf: %d bytes were written\n", ns->regs.count);
2185         }
2186 }
2187
2188 static void ns_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
2189 {
2190         struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
2191
2192         /* Sanity and correctness checks */
2193         if (!ns->lines.ce) {
2194                 NS_ERR("read_buf: chip is disabled\n");
2195                 return;
2196         }
2197         if (ns->lines.ale || ns->lines.cle) {
2198                 NS_ERR("read_buf: ALE or CLE pin is high\n");
2199                 return;
2200         }
2201         if (!(ns->state & STATE_DATAOUT_MASK)) {
2202                 NS_WARN("read_buf: unexpected data output cycle, current state is %s\n",
2203                         get_state_name(ns->state));
2204                 return;
2205         }
2206
2207         if (NS_STATE(ns->state) != STATE_DATAOUT) {
2208                 int i;
2209
2210                 for (i = 0; i < len; i++)
2211                         buf[i] = ((struct nand_chip *)mtd->priv)->read_byte(mtd);
2212
2213                 return;
2214         }
2215
2216         /* Check if these are expected bytes */
2217         if (ns->regs.count + len > ns->regs.num) {
2218                 NS_ERR("read_buf: too many bytes to read\n");
2219                 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2220                 return;
2221         }
2222
2223         memcpy(buf, ns->buf.byte + ns->regs.count, len);
2224         ns->regs.count += len;
2225
2226         if (ns->regs.count == ns->regs.num) {
2227                 if (NS_STATE(ns->nxstate) == STATE_READY)
2228                         switch_state(ns);
2229         }
2230
2231         return;
2232 }
2233
2234 /*
2235  * Module initialization function
2236  */
2237 static int __init ns_init_module(void)
2238 {
2239         struct nand_chip *chip;
2240         struct nandsim *nand;
2241         int retval = -ENOMEM, i;
2242
2243         if (bus_width != 8 && bus_width != 16) {
2244                 NS_ERR("wrong bus width (%d), use only 8 or 16\n", bus_width);
2245                 return -EINVAL;
2246         }
2247
2248         /* Allocate and initialize mtd_info, nand_chip and nandsim structures */
2249         nsmtd = kzalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip)
2250                                 + sizeof(struct nandsim), GFP_KERNEL);
2251         if (!nsmtd) {
2252                 NS_ERR("unable to allocate core structures.\n");
2253                 return -ENOMEM;
2254         }
2255         chip        = (struct nand_chip *)(nsmtd + 1);
2256         nsmtd->priv = (void *)chip;
2257         nand        = (struct nandsim *)(chip + 1);
2258         chip->priv  = (void *)nand;
2259
2260         /*
2261          * Register simulator's callbacks.
2262          */
2263         chip->cmd_ctrl   = ns_hwcontrol;
2264         chip->read_byte  = ns_nand_read_byte;
2265         chip->dev_ready  = ns_device_ready;
2266         chip->write_buf  = ns_nand_write_buf;
2267         chip->read_buf   = ns_nand_read_buf;
2268         chip->read_word  = ns_nand_read_word;
2269         chip->ecc.mode   = NAND_ECC_SOFT;
2270         /* The NAND_SKIP_BBTSCAN option is necessary for 'overridesize' */
2271         /* and 'badblocks' parameters to work */
2272         chip->options   |= NAND_SKIP_BBTSCAN;
2273
2274         switch (bbt) {
2275         case 2:
2276                  chip->bbt_options |= NAND_BBT_NO_OOB;
2277         case 1:
2278                  chip->bbt_options |= NAND_BBT_USE_FLASH;
2279         case 0:
2280                 break;
2281         default:
2282                 NS_ERR("bbt has to be 0..2\n");
2283                 retval = -EINVAL;
2284                 goto error;
2285         }
2286         /*
2287          * Perform minimum nandsim structure initialization to handle
2288          * the initial ID read command correctly
2289          */
2290         if (third_id_byte != 0xFF || fourth_id_byte != 0xFF)
2291                 nand->geom.idbytes = 4;
2292         else
2293                 nand->geom.idbytes = 2;
2294         nand->regs.status = NS_STATUS_OK(nand);
2295         nand->nxstate = STATE_UNKNOWN;
2296         nand->options |= OPT_PAGE512; /* temporary value */
2297         nand->ids[0] = first_id_byte;
2298         nand->ids[1] = second_id_byte;
2299         nand->ids[2] = third_id_byte;
2300         nand->ids[3] = fourth_id_byte;
2301         if (bus_width == 16) {
2302                 nand->busw = 16;
2303                 chip->options |= NAND_BUSWIDTH_16;
2304         }
2305
2306         nsmtd->owner = THIS_MODULE;
2307
2308         if ((retval = parse_weakblocks()) != 0)
2309                 goto error;
2310
2311         if ((retval = parse_weakpages()) != 0)
2312                 goto error;
2313
2314         if ((retval = parse_gravepages()) != 0)
2315                 goto error;
2316
2317         retval = nand_scan_ident(nsmtd, 1, NULL);
2318         if (retval) {
2319                 NS_ERR("cannot scan NAND Simulator device\n");
2320                 if (retval > 0)
2321                         retval = -ENXIO;
2322                 goto error;
2323         }
2324
2325         if (bch) {
2326                 unsigned int eccsteps, eccbytes;
2327                 if (!mtd_nand_has_bch()) {
2328                         NS_ERR("BCH ECC support is disabled\n");
2329                         retval = -EINVAL;
2330                         goto error;
2331                 }
2332                 /* use 512-byte ecc blocks */
2333                 eccsteps = nsmtd->writesize/512;
2334                 eccbytes = (bch*13+7)/8;
2335                 /* do not bother supporting small page devices */
2336                 if ((nsmtd->oobsize < 64) || !eccsteps) {
2337                         NS_ERR("bch not available on small page devices\n");
2338                         retval = -EINVAL;
2339                         goto error;
2340                 }
2341                 if ((eccbytes*eccsteps+2) > nsmtd->oobsize) {
2342                         NS_ERR("invalid bch value %u\n", bch);
2343                         retval = -EINVAL;
2344                         goto error;
2345                 }
2346                 chip->ecc.mode = NAND_ECC_SOFT_BCH;
2347                 chip->ecc.size = 512;
2348                 chip->ecc.bytes = eccbytes;
2349                 NS_INFO("using %u-bit/%u bytes BCH ECC\n", bch, chip->ecc.size);
2350         }
2351
2352         retval = nand_scan_tail(nsmtd);
2353         if (retval) {
2354                 NS_ERR("can't register NAND Simulator\n");
2355                 if (retval > 0)
2356                         retval = -ENXIO;
2357                 goto error;
2358         }
2359
2360         if (overridesize) {
2361                 uint64_t new_size = (uint64_t)nsmtd->erasesize << overridesize;
2362                 if (new_size >> overridesize != nsmtd->erasesize) {
2363                         NS_ERR("overridesize is too big\n");
2364                         retval = -EINVAL;
2365                         goto err_exit;
2366                 }
2367                 /* N.B. This relies on nand_scan not doing anything with the size before we change it */
2368                 nsmtd->size = new_size;
2369                 chip->chipsize = new_size;
2370                 chip->chip_shift = ffs(nsmtd->erasesize) + overridesize - 1;
2371                 chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
2372         }
2373
2374         if ((retval = setup_wear_reporting(nsmtd)) != 0)
2375                 goto err_exit;
2376
2377         if ((retval = nandsim_debugfs_create(nand)) != 0)
2378                 goto err_exit;
2379
2380         if ((retval = init_nandsim(nsmtd)) != 0)
2381                 goto err_exit;
2382
2383         if ((retval = nand_default_bbt(nsmtd)) != 0)
2384                 goto err_exit;
2385
2386         if ((retval = parse_badblocks(nand, nsmtd)) != 0)
2387                 goto err_exit;
2388
2389         /* Register NAND partitions */
2390         retval = mtd_device_register(nsmtd, &nand->partitions[0],
2391                                      nand->nbparts);
2392         if (retval != 0)
2393                 goto err_exit;
2394
2395         return 0;
2396
2397 err_exit:
2398         free_nandsim(nand);
2399         nand_release(nsmtd);
2400         for (i = 0;i < ARRAY_SIZE(nand->partitions); ++i)
2401                 kfree(nand->partitions[i].name);
2402 error:
2403         kfree(nsmtd);
2404         free_lists();
2405
2406         return retval;
2407 }
2408
2409 module_init(ns_init_module);
2410
2411 /*
2412  * Module clean-up function
2413  */
2414 static void __exit ns_cleanup_module(void)
2415 {
2416         struct nandsim *ns = ((struct nand_chip *)nsmtd->priv)->priv;
2417         int i;
2418
2419         nandsim_debugfs_remove(ns);
2420         free_nandsim(ns);    /* Free nandsim private resources */
2421         nand_release(nsmtd); /* Unregister driver */
2422         for (i = 0;i < ARRAY_SIZE(ns->partitions); ++i)
2423                 kfree(ns->partitions[i].name);
2424         kfree(nsmtd);        /* Free other structures */
2425         free_lists();
2426 }
2427
2428 module_exit(ns_cleanup_module);
2429
2430 MODULE_LICENSE ("GPL");
2431 MODULE_AUTHOR ("Artem B. Bityuckiy");
2432 MODULE_DESCRIPTION ("The NAND flash simulator");