Merge tag 'powerpc-4.6-4' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc...
[linux-2.6-block.git] / drivers / mtd / nand / lpc32xx_slc.c
1 /*
2  * NXP LPC32XX NAND SLC driver
3  *
4  * Authors:
5  *    Kevin Wells <kevin.wells@nxp.com>
6  *    Roland Stigge <stigge@antcom.de>
7  *
8  * Copyright © 2011 NXP Semiconductors
9  * Copyright © 2012 Roland Stigge
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2 of the License, or
14  * (at your option) any later version.
15  *
16  * This program is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19  * GNU General Public License for more details.
20  */
21
22 #include <linux/slab.h>
23 #include <linux/module.h>
24 #include <linux/platform_device.h>
25 #include <linux/mtd/mtd.h>
26 #include <linux/mtd/nand.h>
27 #include <linux/mtd/partitions.h>
28 #include <linux/clk.h>
29 #include <linux/err.h>
30 #include <linux/delay.h>
31 #include <linux/io.h>
32 #include <linux/mm.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/dmaengine.h>
35 #include <linux/mtd/nand_ecc.h>
36 #include <linux/gpio.h>
37 #include <linux/of.h>
38 #include <linux/of_mtd.h>
39 #include <linux/of_gpio.h>
40 #include <linux/mtd/lpc32xx_slc.h>
41
42 #define LPC32XX_MODNAME         "lpc32xx-nand"
43
44 /**********************************************************************
45 * SLC NAND controller register offsets
46 **********************************************************************/
47
48 #define SLC_DATA(x)             (x + 0x000)
49 #define SLC_ADDR(x)             (x + 0x004)
50 #define SLC_CMD(x)              (x + 0x008)
51 #define SLC_STOP(x)             (x + 0x00C)
52 #define SLC_CTRL(x)             (x + 0x010)
53 #define SLC_CFG(x)              (x + 0x014)
54 #define SLC_STAT(x)             (x + 0x018)
55 #define SLC_INT_STAT(x)         (x + 0x01C)
56 #define SLC_IEN(x)              (x + 0x020)
57 #define SLC_ISR(x)              (x + 0x024)
58 #define SLC_ICR(x)              (x + 0x028)
59 #define SLC_TAC(x)              (x + 0x02C)
60 #define SLC_TC(x)               (x + 0x030)
61 #define SLC_ECC(x)              (x + 0x034)
62 #define SLC_DMA_DATA(x)         (x + 0x038)
63
64 /**********************************************************************
65 * slc_ctrl register definitions
66 **********************************************************************/
67 #define SLCCTRL_SW_RESET        (1 << 2) /* Reset the NAND controller bit */
68 #define SLCCTRL_ECC_CLEAR       (1 << 1) /* Reset ECC bit */
69 #define SLCCTRL_DMA_START       (1 << 0) /* Start DMA channel bit */
70
71 /**********************************************************************
72 * slc_cfg register definitions
73 **********************************************************************/
74 #define SLCCFG_CE_LOW           (1 << 5) /* Force CE low bit */
75 #define SLCCFG_DMA_ECC          (1 << 4) /* Enable DMA ECC bit */
76 #define SLCCFG_ECC_EN           (1 << 3) /* ECC enable bit */
77 #define SLCCFG_DMA_BURST        (1 << 2) /* DMA burst bit */
78 #define SLCCFG_DMA_DIR          (1 << 1) /* DMA write(0)/read(1) bit */
79 #define SLCCFG_WIDTH            (1 << 0) /* External device width, 0=8bit */
80
81 /**********************************************************************
82 * slc_stat register definitions
83 **********************************************************************/
84 #define SLCSTAT_DMA_FIFO        (1 << 2) /* DMA FIFO has data bit */
85 #define SLCSTAT_SLC_FIFO        (1 << 1) /* SLC FIFO has data bit */
86 #define SLCSTAT_NAND_READY      (1 << 0) /* NAND device is ready bit */
87
88 /**********************************************************************
89 * slc_int_stat, slc_ien, slc_isr, and slc_icr register definitions
90 **********************************************************************/
91 #define SLCSTAT_INT_TC          (1 << 1) /* Transfer count bit */
92 #define SLCSTAT_INT_RDY_EN      (1 << 0) /* Ready interrupt bit */
93
94 /**********************************************************************
95 * slc_tac register definitions
96 **********************************************************************/
97 /* Computation of clock cycles on basis of controller and device clock rates */
98 #define SLCTAC_CLOCKS(c, n, s)  (min_t(u32, DIV_ROUND_UP(c, n) - 1, 0xF) << s)
99
100 /* Clock setting for RDY write sample wait time in 2*n clocks */
101 #define SLCTAC_WDR(n)           (((n) & 0xF) << 28)
102 /* Write pulse width in clock cycles, 1 to 16 clocks */
103 #define SLCTAC_WWIDTH(c, n)     (SLCTAC_CLOCKS(c, n, 24))
104 /* Write hold time of control and data signals, 1 to 16 clocks */
105 #define SLCTAC_WHOLD(c, n)      (SLCTAC_CLOCKS(c, n, 20))
106 /* Write setup time of control and data signals, 1 to 16 clocks */
107 #define SLCTAC_WSETUP(c, n)     (SLCTAC_CLOCKS(c, n, 16))
108 /* Clock setting for RDY read sample wait time in 2*n clocks */
109 #define SLCTAC_RDR(n)           (((n) & 0xF) << 12)
110 /* Read pulse width in clock cycles, 1 to 16 clocks */
111 #define SLCTAC_RWIDTH(c, n)     (SLCTAC_CLOCKS(c, n, 8))
112 /* Read hold time of control and data signals, 1 to 16 clocks */
113 #define SLCTAC_RHOLD(c, n)      (SLCTAC_CLOCKS(c, n, 4))
114 /* Read setup time of control and data signals, 1 to 16 clocks */
115 #define SLCTAC_RSETUP(c, n)     (SLCTAC_CLOCKS(c, n, 0))
116
117 /**********************************************************************
118 * slc_ecc register definitions
119 **********************************************************************/
120 /* ECC line party fetch macro */
121 #define SLCECC_TO_LINEPAR(n)    (((n) >> 6) & 0x7FFF)
122 #define SLCECC_TO_COLPAR(n)     ((n) & 0x3F)
123
124 /*
125  * DMA requires storage space for the DMA local buffer and the hardware ECC
126  * storage area. The DMA local buffer is only used if DMA mapping fails
127  * during runtime.
128  */
129 #define LPC32XX_DMA_DATA_SIZE           4096
130 #define LPC32XX_ECC_SAVE_SIZE           ((4096 / 256) * 4)
131
132 /* Number of bytes used for ECC stored in NAND per 256 bytes */
133 #define LPC32XX_SLC_DEV_ECC_BYTES       3
134
135 /*
136  * If the NAND base clock frequency can't be fetched, this frequency will be
137  * used instead as the base. This rate is used to setup the timing registers
138  * used for NAND accesses.
139  */
140 #define LPC32XX_DEF_BUS_RATE            133250000
141
142 /* Milliseconds for DMA FIFO timeout (unlikely anyway) */
143 #define LPC32XX_DMA_TIMEOUT             100
144
145 /*
146  * NAND ECC Layout for small page NAND devices
147  * Note: For large and huge page devices, the default layouts are used
148  */
149 static struct nand_ecclayout lpc32xx_nand_oob_16 = {
150         .eccbytes = 6,
151         .eccpos = {10, 11, 12, 13, 14, 15},
152         .oobfree = {
153                 { .offset = 0, .length = 4 },
154                 { .offset = 6, .length = 4 },
155         },
156 };
157
158 static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
159 static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
160
161 /*
162  * Small page FLASH BBT descriptors, marker at offset 0, version at offset 6
163  * Note: Large page devices used the default layout
164  */
165 static struct nand_bbt_descr bbt_smallpage_main_descr = {
166         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
167                 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
168         .offs = 0,
169         .len = 4,
170         .veroffs = 6,
171         .maxblocks = 4,
172         .pattern = bbt_pattern
173 };
174
175 static struct nand_bbt_descr bbt_smallpage_mirror_descr = {
176         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
177                 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
178         .offs = 0,
179         .len = 4,
180         .veroffs = 6,
181         .maxblocks = 4,
182         .pattern = mirror_pattern
183 };
184
185 /*
186  * NAND platform configuration structure
187  */
188 struct lpc32xx_nand_cfg_slc {
189         uint32_t wdr_clks;
190         uint32_t wwidth;
191         uint32_t whold;
192         uint32_t wsetup;
193         uint32_t rdr_clks;
194         uint32_t rwidth;
195         uint32_t rhold;
196         uint32_t rsetup;
197         bool use_bbt;
198         int wp_gpio;
199         struct mtd_partition *parts;
200         unsigned num_parts;
201 };
202
203 struct lpc32xx_nand_host {
204         struct nand_chip        nand_chip;
205         struct lpc32xx_slc_platform_data *pdata;
206         struct clk              *clk;
207         void __iomem            *io_base;
208         struct lpc32xx_nand_cfg_slc *ncfg;
209
210         struct completion       comp;
211         struct dma_chan         *dma_chan;
212         uint32_t                dma_buf_len;
213         struct dma_slave_config dma_slave_config;
214         struct scatterlist      sgl;
215
216         /*
217          * DMA and CPU addresses of ECC work area and data buffer
218          */
219         uint32_t                *ecc_buf;
220         uint8_t                 *data_buf;
221         dma_addr_t              io_base_dma;
222 };
223
224 static void lpc32xx_nand_setup(struct lpc32xx_nand_host *host)
225 {
226         uint32_t clkrate, tmp;
227
228         /* Reset SLC controller */
229         writel(SLCCTRL_SW_RESET, SLC_CTRL(host->io_base));
230         udelay(1000);
231
232         /* Basic setup */
233         writel(0, SLC_CFG(host->io_base));
234         writel(0, SLC_IEN(host->io_base));
235         writel((SLCSTAT_INT_TC | SLCSTAT_INT_RDY_EN),
236                 SLC_ICR(host->io_base));
237
238         /* Get base clock for SLC block */
239         clkrate = clk_get_rate(host->clk);
240         if (clkrate == 0)
241                 clkrate = LPC32XX_DEF_BUS_RATE;
242
243         /* Compute clock setup values */
244         tmp = SLCTAC_WDR(host->ncfg->wdr_clks) |
245                 SLCTAC_WWIDTH(clkrate, host->ncfg->wwidth) |
246                 SLCTAC_WHOLD(clkrate, host->ncfg->whold) |
247                 SLCTAC_WSETUP(clkrate, host->ncfg->wsetup) |
248                 SLCTAC_RDR(host->ncfg->rdr_clks) |
249                 SLCTAC_RWIDTH(clkrate, host->ncfg->rwidth) |
250                 SLCTAC_RHOLD(clkrate, host->ncfg->rhold) |
251                 SLCTAC_RSETUP(clkrate, host->ncfg->rsetup);
252         writel(tmp, SLC_TAC(host->io_base));
253 }
254
255 /*
256  * Hardware specific access to control lines
257  */
258 static void lpc32xx_nand_cmd_ctrl(struct mtd_info *mtd, int cmd,
259         unsigned int ctrl)
260 {
261         uint32_t tmp;
262         struct nand_chip *chip = mtd_to_nand(mtd);
263         struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
264
265         /* Does CE state need to be changed? */
266         tmp = readl(SLC_CFG(host->io_base));
267         if (ctrl & NAND_NCE)
268                 tmp |= SLCCFG_CE_LOW;
269         else
270                 tmp &= ~SLCCFG_CE_LOW;
271         writel(tmp, SLC_CFG(host->io_base));
272
273         if (cmd != NAND_CMD_NONE) {
274                 if (ctrl & NAND_CLE)
275                         writel(cmd, SLC_CMD(host->io_base));
276                 else
277                         writel(cmd, SLC_ADDR(host->io_base));
278         }
279 }
280
281 /*
282  * Read the Device Ready pin
283  */
284 static int lpc32xx_nand_device_ready(struct mtd_info *mtd)
285 {
286         struct nand_chip *chip = mtd_to_nand(mtd);
287         struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
288         int rdy = 0;
289
290         if ((readl(SLC_STAT(host->io_base)) & SLCSTAT_NAND_READY) != 0)
291                 rdy = 1;
292
293         return rdy;
294 }
295
296 /*
297  * Enable NAND write protect
298  */
299 static void lpc32xx_wp_enable(struct lpc32xx_nand_host *host)
300 {
301         if (gpio_is_valid(host->ncfg->wp_gpio))
302                 gpio_set_value(host->ncfg->wp_gpio, 0);
303 }
304
305 /*
306  * Disable NAND write protect
307  */
308 static void lpc32xx_wp_disable(struct lpc32xx_nand_host *host)
309 {
310         if (gpio_is_valid(host->ncfg->wp_gpio))
311                 gpio_set_value(host->ncfg->wp_gpio, 1);
312 }
313
314 /*
315  * Prepares SLC for transfers with H/W ECC enabled
316  */
317 static void lpc32xx_nand_ecc_enable(struct mtd_info *mtd, int mode)
318 {
319         /* Hardware ECC is enabled automatically in hardware as needed */
320 }
321
322 /*
323  * Calculates the ECC for the data
324  */
325 static int lpc32xx_nand_ecc_calculate(struct mtd_info *mtd,
326                                       const unsigned char *buf,
327                                       unsigned char *code)
328 {
329         /*
330          * ECC is calculated automatically in hardware during syndrome read
331          * and write operations, so it doesn't need to be calculated here.
332          */
333         return 0;
334 }
335
336 /*
337  * Read a single byte from NAND device
338  */
339 static uint8_t lpc32xx_nand_read_byte(struct mtd_info *mtd)
340 {
341         struct nand_chip *chip = mtd_to_nand(mtd);
342         struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
343
344         return (uint8_t)readl(SLC_DATA(host->io_base));
345 }
346
347 /*
348  * Simple device read without ECC
349  */
350 static void lpc32xx_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
351 {
352         struct nand_chip *chip = mtd_to_nand(mtd);
353         struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
354
355         /* Direct device read with no ECC */
356         while (len-- > 0)
357                 *buf++ = (uint8_t)readl(SLC_DATA(host->io_base));
358 }
359
360 /*
361  * Simple device write without ECC
362  */
363 static void lpc32xx_nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
364 {
365         struct nand_chip *chip = mtd_to_nand(mtd);
366         struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
367
368         /* Direct device write with no ECC */
369         while (len-- > 0)
370                 writel((uint32_t)*buf++, SLC_DATA(host->io_base));
371 }
372
373 /*
374  * Read the OOB data from the device without ECC using FIFO method
375  */
376 static int lpc32xx_nand_read_oob_syndrome(struct mtd_info *mtd,
377                                           struct nand_chip *chip, int page)
378 {
379         chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
380         chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
381
382         return 0;
383 }
384
385 /*
386  * Write the OOB data to the device without ECC using FIFO method
387  */
388 static int lpc32xx_nand_write_oob_syndrome(struct mtd_info *mtd,
389         struct nand_chip *chip, int page)
390 {
391         int status;
392
393         chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
394         chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
395
396         /* Send command to program the OOB data */
397         chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
398
399         status = chip->waitfunc(mtd, chip);
400
401         return status & NAND_STATUS_FAIL ? -EIO : 0;
402 }
403
404 /*
405  * Fills in the ECC fields in the OOB buffer with the hardware generated ECC
406  */
407 static void lpc32xx_slc_ecc_copy(uint8_t *spare, const uint32_t *ecc, int count)
408 {
409         int i;
410
411         for (i = 0; i < (count * 3); i += 3) {
412                 uint32_t ce = ecc[i / 3];
413                 ce = ~(ce << 2) & 0xFFFFFF;
414                 spare[i + 2] = (uint8_t)(ce & 0xFF);
415                 ce >>= 8;
416                 spare[i + 1] = (uint8_t)(ce & 0xFF);
417                 ce >>= 8;
418                 spare[i] = (uint8_t)(ce & 0xFF);
419         }
420 }
421
422 static void lpc32xx_dma_complete_func(void *completion)
423 {
424         complete(completion);
425 }
426
427 static int lpc32xx_xmit_dma(struct mtd_info *mtd, dma_addr_t dma,
428                             void *mem, int len, enum dma_transfer_direction dir)
429 {
430         struct nand_chip *chip = mtd_to_nand(mtd);
431         struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
432         struct dma_async_tx_descriptor *desc;
433         int flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
434         int res;
435
436         host->dma_slave_config.direction = dir;
437         host->dma_slave_config.src_addr = dma;
438         host->dma_slave_config.dst_addr = dma;
439         host->dma_slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
440         host->dma_slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
441         host->dma_slave_config.src_maxburst = 4;
442         host->dma_slave_config.dst_maxburst = 4;
443         /* DMA controller does flow control: */
444         host->dma_slave_config.device_fc = false;
445         if (dmaengine_slave_config(host->dma_chan, &host->dma_slave_config)) {
446                 dev_err(mtd->dev.parent, "Failed to setup DMA slave\n");
447                 return -ENXIO;
448         }
449
450         sg_init_one(&host->sgl, mem, len);
451
452         res = dma_map_sg(host->dma_chan->device->dev, &host->sgl, 1,
453                          DMA_BIDIRECTIONAL);
454         if (res != 1) {
455                 dev_err(mtd->dev.parent, "Failed to map sg list\n");
456                 return -ENXIO;
457         }
458         desc = dmaengine_prep_slave_sg(host->dma_chan, &host->sgl, 1, dir,
459                                        flags);
460         if (!desc) {
461                 dev_err(mtd->dev.parent, "Failed to prepare slave sg\n");
462                 goto out1;
463         }
464
465         init_completion(&host->comp);
466         desc->callback = lpc32xx_dma_complete_func;
467         desc->callback_param = &host->comp;
468
469         dmaengine_submit(desc);
470         dma_async_issue_pending(host->dma_chan);
471
472         wait_for_completion_timeout(&host->comp, msecs_to_jiffies(1000));
473
474         dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1,
475                      DMA_BIDIRECTIONAL);
476
477         return 0;
478 out1:
479         dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1,
480                      DMA_BIDIRECTIONAL);
481         return -ENXIO;
482 }
483
484 /*
485  * DMA read/write transfers with ECC support
486  */
487 static int lpc32xx_xfer(struct mtd_info *mtd, uint8_t *buf, int eccsubpages,
488                         int read)
489 {
490         struct nand_chip *chip = mtd_to_nand(mtd);
491         struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
492         int i, status = 0;
493         unsigned long timeout;
494         int res;
495         enum dma_transfer_direction dir =
496                 read ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV;
497         uint8_t *dma_buf;
498         bool dma_mapped;
499
500         if ((void *)buf <= high_memory) {
501                 dma_buf = buf;
502                 dma_mapped = true;
503         } else {
504                 dma_buf = host->data_buf;
505                 dma_mapped = false;
506                 if (!read)
507                         memcpy(host->data_buf, buf, mtd->writesize);
508         }
509
510         if (read) {
511                 writel(readl(SLC_CFG(host->io_base)) |
512                        SLCCFG_DMA_DIR | SLCCFG_ECC_EN | SLCCFG_DMA_ECC |
513                        SLCCFG_DMA_BURST, SLC_CFG(host->io_base));
514         } else {
515                 writel((readl(SLC_CFG(host->io_base)) |
516                         SLCCFG_ECC_EN | SLCCFG_DMA_ECC | SLCCFG_DMA_BURST) &
517                        ~SLCCFG_DMA_DIR,
518                         SLC_CFG(host->io_base));
519         }
520
521         /* Clear initial ECC */
522         writel(SLCCTRL_ECC_CLEAR, SLC_CTRL(host->io_base));
523
524         /* Transfer size is data area only */
525         writel(mtd->writesize, SLC_TC(host->io_base));
526
527         /* Start transfer in the NAND controller */
528         writel(readl(SLC_CTRL(host->io_base)) | SLCCTRL_DMA_START,
529                SLC_CTRL(host->io_base));
530
531         for (i = 0; i < chip->ecc.steps; i++) {
532                 /* Data */
533                 res = lpc32xx_xmit_dma(mtd, SLC_DMA_DATA(host->io_base_dma),
534                                        dma_buf + i * chip->ecc.size,
535                                        mtd->writesize / chip->ecc.steps, dir);
536                 if (res)
537                         return res;
538
539                 /* Always _read_ ECC */
540                 if (i == chip->ecc.steps - 1)
541                         break;
542                 if (!read) /* ECC availability delayed on write */
543                         udelay(10);
544                 res = lpc32xx_xmit_dma(mtd, SLC_ECC(host->io_base_dma),
545                                        &host->ecc_buf[i], 4, DMA_DEV_TO_MEM);
546                 if (res)
547                         return res;
548         }
549
550         /*
551          * According to NXP, the DMA can be finished here, but the NAND
552          * controller may still have buffered data. After porting to using the
553          * dmaengine DMA driver (amba-pl080), the condition (DMA_FIFO empty)
554          * appears to be always true, according to tests. Keeping the check for
555          * safety reasons for now.
556          */
557         if (readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO) {
558                 dev_warn(mtd->dev.parent, "FIFO not empty!\n");
559                 timeout = jiffies + msecs_to_jiffies(LPC32XX_DMA_TIMEOUT);
560                 while ((readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO) &&
561                        time_before(jiffies, timeout))
562                         cpu_relax();
563                 if (!time_before(jiffies, timeout)) {
564                         dev_err(mtd->dev.parent, "FIFO held data too long\n");
565                         status = -EIO;
566                 }
567         }
568
569         /* Read last calculated ECC value */
570         if (!read)
571                 udelay(10);
572         host->ecc_buf[chip->ecc.steps - 1] =
573                 readl(SLC_ECC(host->io_base));
574
575         /* Flush DMA */
576         dmaengine_terminate_all(host->dma_chan);
577
578         if (readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO ||
579             readl(SLC_TC(host->io_base))) {
580                 /* Something is left in the FIFO, something is wrong */
581                 dev_err(mtd->dev.parent, "DMA FIFO failure\n");
582                 status = -EIO;
583         }
584
585         /* Stop DMA & HW ECC */
586         writel(readl(SLC_CTRL(host->io_base)) & ~SLCCTRL_DMA_START,
587                SLC_CTRL(host->io_base));
588         writel(readl(SLC_CFG(host->io_base)) &
589                ~(SLCCFG_DMA_DIR | SLCCFG_ECC_EN | SLCCFG_DMA_ECC |
590                  SLCCFG_DMA_BURST), SLC_CFG(host->io_base));
591
592         if (!dma_mapped && read)
593                 memcpy(buf, host->data_buf, mtd->writesize);
594
595         return status;
596 }
597
598 /*
599  * Read the data and OOB data from the device, use ECC correction with the
600  * data, disable ECC for the OOB data
601  */
602 static int lpc32xx_nand_read_page_syndrome(struct mtd_info *mtd,
603                                            struct nand_chip *chip, uint8_t *buf,
604                                            int oob_required, int page)
605 {
606         struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
607         int stat, i, status;
608         uint8_t *oobecc, tmpecc[LPC32XX_ECC_SAVE_SIZE];
609
610         /* Issue read command */
611         chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
612
613         /* Read data and oob, calculate ECC */
614         status = lpc32xx_xfer(mtd, buf, chip->ecc.steps, 1);
615
616         /* Get OOB data */
617         chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
618
619         /* Convert to stored ECC format */
620         lpc32xx_slc_ecc_copy(tmpecc, (uint32_t *) host->ecc_buf, chip->ecc.steps);
621
622         /* Pointer to ECC data retrieved from NAND spare area */
623         oobecc = chip->oob_poi + chip->ecc.layout->eccpos[0];
624
625         for (i = 0; i < chip->ecc.steps; i++) {
626                 stat = chip->ecc.correct(mtd, buf, oobecc,
627                                          &tmpecc[i * chip->ecc.bytes]);
628                 if (stat < 0)
629                         mtd->ecc_stats.failed++;
630                 else
631                         mtd->ecc_stats.corrected += stat;
632
633                 buf += chip->ecc.size;
634                 oobecc += chip->ecc.bytes;
635         }
636
637         return status;
638 }
639
640 /*
641  * Read the data and OOB data from the device, no ECC correction with the
642  * data or OOB data
643  */
644 static int lpc32xx_nand_read_page_raw_syndrome(struct mtd_info *mtd,
645                                                struct nand_chip *chip,
646                                                uint8_t *buf, int oob_required,
647                                                int page)
648 {
649         /* Issue read command */
650         chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
651
652         /* Raw reads can just use the FIFO interface */
653         chip->read_buf(mtd, buf, chip->ecc.size * chip->ecc.steps);
654         chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
655
656         return 0;
657 }
658
659 /*
660  * Write the data and OOB data to the device, use ECC with the data,
661  * disable ECC for the OOB data
662  */
663 static int lpc32xx_nand_write_page_syndrome(struct mtd_info *mtd,
664                                             struct nand_chip *chip,
665                                             const uint8_t *buf,
666                                             int oob_required, int page)
667 {
668         struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
669         uint8_t *pb = chip->oob_poi + chip->ecc.layout->eccpos[0];
670         int error;
671
672         /* Write data, calculate ECC on outbound data */
673         error = lpc32xx_xfer(mtd, (uint8_t *)buf, chip->ecc.steps, 0);
674         if (error)
675                 return error;
676
677         /*
678          * The calculated ECC needs some manual work done to it before
679          * committing it to NAND. Process the calculated ECC and place
680          * the resultant values directly into the OOB buffer. */
681         lpc32xx_slc_ecc_copy(pb, (uint32_t *)host->ecc_buf, chip->ecc.steps);
682
683         /* Write ECC data to device */
684         chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
685         return 0;
686 }
687
688 /*
689  * Write the data and OOB data to the device, no ECC correction with the
690  * data or OOB data
691  */
692 static int lpc32xx_nand_write_page_raw_syndrome(struct mtd_info *mtd,
693                                                 struct nand_chip *chip,
694                                                 const uint8_t *buf,
695                                                 int oob_required, int page)
696 {
697         /* Raw writes can just use the FIFO interface */
698         chip->write_buf(mtd, buf, chip->ecc.size * chip->ecc.steps);
699         chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
700         return 0;
701 }
702
703 static int lpc32xx_nand_dma_setup(struct lpc32xx_nand_host *host)
704 {
705         struct mtd_info *mtd = nand_to_mtd(&host->nand_chip);
706         dma_cap_mask_t mask;
707
708         if (!host->pdata || !host->pdata->dma_filter) {
709                 dev_err(mtd->dev.parent, "no DMA platform data\n");
710                 return -ENOENT;
711         }
712
713         dma_cap_zero(mask);
714         dma_cap_set(DMA_SLAVE, mask);
715         host->dma_chan = dma_request_channel(mask, host->pdata->dma_filter,
716                                              "nand-slc");
717         if (!host->dma_chan) {
718                 dev_err(mtd->dev.parent, "Failed to request DMA channel\n");
719                 return -EBUSY;
720         }
721
722         return 0;
723 }
724
725 static struct lpc32xx_nand_cfg_slc *lpc32xx_parse_dt(struct device *dev)
726 {
727         struct lpc32xx_nand_cfg_slc *ncfg;
728         struct device_node *np = dev->of_node;
729
730         ncfg = devm_kzalloc(dev, sizeof(*ncfg), GFP_KERNEL);
731         if (!ncfg)
732                 return NULL;
733
734         of_property_read_u32(np, "nxp,wdr-clks", &ncfg->wdr_clks);
735         of_property_read_u32(np, "nxp,wwidth", &ncfg->wwidth);
736         of_property_read_u32(np, "nxp,whold", &ncfg->whold);
737         of_property_read_u32(np, "nxp,wsetup", &ncfg->wsetup);
738         of_property_read_u32(np, "nxp,rdr-clks", &ncfg->rdr_clks);
739         of_property_read_u32(np, "nxp,rwidth", &ncfg->rwidth);
740         of_property_read_u32(np, "nxp,rhold", &ncfg->rhold);
741         of_property_read_u32(np, "nxp,rsetup", &ncfg->rsetup);
742
743         if (!ncfg->wdr_clks || !ncfg->wwidth || !ncfg->whold ||
744             !ncfg->wsetup || !ncfg->rdr_clks || !ncfg->rwidth ||
745             !ncfg->rhold || !ncfg->rsetup) {
746                 dev_err(dev, "chip parameters not specified correctly\n");
747                 return NULL;
748         }
749
750         ncfg->use_bbt = of_get_nand_on_flash_bbt(np);
751         ncfg->wp_gpio = of_get_named_gpio(np, "gpios", 0);
752
753         return ncfg;
754 }
755
756 /*
757  * Probe for NAND controller
758  */
759 static int lpc32xx_nand_probe(struct platform_device *pdev)
760 {
761         struct lpc32xx_nand_host *host;
762         struct mtd_info *mtd;
763         struct nand_chip *chip;
764         struct resource *rc;
765         int res;
766
767         rc = platform_get_resource(pdev, IORESOURCE_MEM, 0);
768         if (rc == NULL) {
769                 dev_err(&pdev->dev, "No memory resource found for device\n");
770                 return -EBUSY;
771         }
772
773         /* Allocate memory for the device structure (and zero it) */
774         host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL);
775         if (!host)
776                 return -ENOMEM;
777         host->io_base_dma = rc->start;
778
779         host->io_base = devm_ioremap_resource(&pdev->dev, rc);
780         if (IS_ERR(host->io_base))
781                 return PTR_ERR(host->io_base);
782
783         if (pdev->dev.of_node)
784                 host->ncfg = lpc32xx_parse_dt(&pdev->dev);
785         if (!host->ncfg) {
786                 dev_err(&pdev->dev,
787                         "Missing or bad NAND config from device tree\n");
788                 return -ENOENT;
789         }
790         if (host->ncfg->wp_gpio == -EPROBE_DEFER)
791                 return -EPROBE_DEFER;
792         if (gpio_is_valid(host->ncfg->wp_gpio) && devm_gpio_request(&pdev->dev,
793                         host->ncfg->wp_gpio, "NAND WP")) {
794                 dev_err(&pdev->dev, "GPIO not available\n");
795                 return -EBUSY;
796         }
797         lpc32xx_wp_disable(host);
798
799         host->pdata = dev_get_platdata(&pdev->dev);
800
801         chip = &host->nand_chip;
802         mtd = nand_to_mtd(chip);
803         nand_set_controller_data(chip, host);
804         nand_set_flash_node(chip, pdev->dev.of_node);
805         mtd->owner = THIS_MODULE;
806         mtd->dev.parent = &pdev->dev;
807
808         /* Get NAND clock */
809         host->clk = devm_clk_get(&pdev->dev, NULL);
810         if (IS_ERR(host->clk)) {
811                 dev_err(&pdev->dev, "Clock failure\n");
812                 res = -ENOENT;
813                 goto err_exit1;
814         }
815         clk_prepare_enable(host->clk);
816
817         /* Set NAND IO addresses and command/ready functions */
818         chip->IO_ADDR_R = SLC_DATA(host->io_base);
819         chip->IO_ADDR_W = SLC_DATA(host->io_base);
820         chip->cmd_ctrl = lpc32xx_nand_cmd_ctrl;
821         chip->dev_ready = lpc32xx_nand_device_ready;
822         chip->chip_delay = 20; /* 20us command delay time */
823
824         /* Init NAND controller */
825         lpc32xx_nand_setup(host);
826
827         platform_set_drvdata(pdev, host);
828
829         /* NAND callbacks for LPC32xx SLC hardware */
830         chip->ecc.mode = NAND_ECC_HW_SYNDROME;
831         chip->read_byte = lpc32xx_nand_read_byte;
832         chip->read_buf = lpc32xx_nand_read_buf;
833         chip->write_buf = lpc32xx_nand_write_buf;
834         chip->ecc.read_page_raw = lpc32xx_nand_read_page_raw_syndrome;
835         chip->ecc.read_page = lpc32xx_nand_read_page_syndrome;
836         chip->ecc.write_page_raw = lpc32xx_nand_write_page_raw_syndrome;
837         chip->ecc.write_page = lpc32xx_nand_write_page_syndrome;
838         chip->ecc.write_oob = lpc32xx_nand_write_oob_syndrome;
839         chip->ecc.read_oob = lpc32xx_nand_read_oob_syndrome;
840         chip->ecc.calculate = lpc32xx_nand_ecc_calculate;
841         chip->ecc.correct = nand_correct_data;
842         chip->ecc.strength = 1;
843         chip->ecc.hwctl = lpc32xx_nand_ecc_enable;
844
845         /*
846          * Allocate a large enough buffer for a single huge page plus
847          * extra space for the spare area and ECC storage area
848          */
849         host->dma_buf_len = LPC32XX_DMA_DATA_SIZE + LPC32XX_ECC_SAVE_SIZE;
850         host->data_buf = devm_kzalloc(&pdev->dev, host->dma_buf_len,
851                                       GFP_KERNEL);
852         if (host->data_buf == NULL) {
853                 res = -ENOMEM;
854                 goto err_exit2;
855         }
856
857         res = lpc32xx_nand_dma_setup(host);
858         if (res) {
859                 res = -EIO;
860                 goto err_exit2;
861         }
862
863         /* Find NAND device */
864         if (nand_scan_ident(mtd, 1, NULL)) {
865                 res = -ENXIO;
866                 goto err_exit3;
867         }
868
869         /* OOB and ECC CPU and DMA work areas */
870         host->ecc_buf = (uint32_t *)(host->data_buf + LPC32XX_DMA_DATA_SIZE);
871
872         /*
873          * Small page FLASH has a unique OOB layout, but large and huge
874          * page FLASH use the standard layout. Small page FLASH uses a
875          * custom BBT marker layout.
876          */
877         if (mtd->writesize <= 512)
878                 chip->ecc.layout = &lpc32xx_nand_oob_16;
879
880         /* These sizes remain the same regardless of page size */
881         chip->ecc.size = 256;
882         chip->ecc.bytes = LPC32XX_SLC_DEV_ECC_BYTES;
883         chip->ecc.prepad = chip->ecc.postpad = 0;
884
885         /* Avoid extra scan if using BBT, setup BBT support */
886         if (host->ncfg->use_bbt) {
887                 chip->bbt_options |= NAND_BBT_USE_FLASH;
888
889                 /*
890                  * Use a custom BBT marker setup for small page FLASH that
891                  * won't interfere with the ECC layout. Large and huge page
892                  * FLASH use the standard layout.
893                  */
894                 if (mtd->writesize <= 512) {
895                         chip->bbt_td = &bbt_smallpage_main_descr;
896                         chip->bbt_md = &bbt_smallpage_mirror_descr;
897                 }
898         }
899
900         /*
901          * Fills out all the uninitialized function pointers with the defaults
902          */
903         if (nand_scan_tail(mtd)) {
904                 res = -ENXIO;
905                 goto err_exit3;
906         }
907
908         mtd->name = "nxp_lpc3220_slc";
909         res = mtd_device_register(mtd, host->ncfg->parts,
910                                   host->ncfg->num_parts);
911         if (!res)
912                 return res;
913
914         nand_release(mtd);
915
916 err_exit3:
917         dma_release_channel(host->dma_chan);
918 err_exit2:
919         clk_disable_unprepare(host->clk);
920 err_exit1:
921         lpc32xx_wp_enable(host);
922
923         return res;
924 }
925
926 /*
927  * Remove NAND device.
928  */
929 static int lpc32xx_nand_remove(struct platform_device *pdev)
930 {
931         uint32_t tmp;
932         struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
933         struct mtd_info *mtd = nand_to_mtd(&host->nand_chip);
934
935         nand_release(mtd);
936         dma_release_channel(host->dma_chan);
937
938         /* Force CE high */
939         tmp = readl(SLC_CTRL(host->io_base));
940         tmp &= ~SLCCFG_CE_LOW;
941         writel(tmp, SLC_CTRL(host->io_base));
942
943         clk_disable_unprepare(host->clk);
944         lpc32xx_wp_enable(host);
945
946         return 0;
947 }
948
949 #ifdef CONFIG_PM
950 static int lpc32xx_nand_resume(struct platform_device *pdev)
951 {
952         struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
953
954         /* Re-enable NAND clock */
955         clk_prepare_enable(host->clk);
956
957         /* Fresh init of NAND controller */
958         lpc32xx_nand_setup(host);
959
960         /* Disable write protect */
961         lpc32xx_wp_disable(host);
962
963         return 0;
964 }
965
966 static int lpc32xx_nand_suspend(struct platform_device *pdev, pm_message_t pm)
967 {
968         uint32_t tmp;
969         struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
970
971         /* Force CE high */
972         tmp = readl(SLC_CTRL(host->io_base));
973         tmp &= ~SLCCFG_CE_LOW;
974         writel(tmp, SLC_CTRL(host->io_base));
975
976         /* Enable write protect for safety */
977         lpc32xx_wp_enable(host);
978
979         /* Disable clock */
980         clk_disable_unprepare(host->clk);
981
982         return 0;
983 }
984
985 #else
986 #define lpc32xx_nand_resume NULL
987 #define lpc32xx_nand_suspend NULL
988 #endif
989
990 static const struct of_device_id lpc32xx_nand_match[] = {
991         { .compatible = "nxp,lpc3220-slc" },
992         { /* sentinel */ },
993 };
994 MODULE_DEVICE_TABLE(of, lpc32xx_nand_match);
995
996 static struct platform_driver lpc32xx_nand_driver = {
997         .probe          = lpc32xx_nand_probe,
998         .remove         = lpc32xx_nand_remove,
999         .resume         = lpc32xx_nand_resume,
1000         .suspend        = lpc32xx_nand_suspend,
1001         .driver         = {
1002                 .name   = LPC32XX_MODNAME,
1003                 .of_match_table = lpc32xx_nand_match,
1004         },
1005 };
1006
1007 module_platform_driver(lpc32xx_nand_driver);
1008
1009 MODULE_LICENSE("GPL");
1010 MODULE_AUTHOR("Kevin Wells <kevin.wells@nxp.com>");
1011 MODULE_AUTHOR("Roland Stigge <stigge@antcom.de>");
1012 MODULE_DESCRIPTION("NAND driver for the NXP LPC32XX SLC controller");