2 * Core registration and callback routines for MTD
5 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
6 * Copyright © 2006 Red Hat UK Limited
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/ptrace.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/major.h>
32 #include <linux/err.h>
33 #include <linux/ioctl.h>
34 #include <linux/init.h>
36 #include <linux/proc_fs.h>
37 #include <linux/idr.h>
38 #include <linux/backing-dev.h>
39 #include <linux/gfp.h>
40 #include <linux/slab.h>
41 #include <linux/reboot.h>
42 #include <linux/leds.h>
44 #include <linux/mtd/mtd.h>
45 #include <linux/mtd/partitions.h>
49 static struct backing_dev_info mtd_bdi = {
52 #ifdef CONFIG_PM_SLEEP
54 static int mtd_cls_suspend(struct device *dev)
56 struct mtd_info *mtd = dev_get_drvdata(dev);
58 return mtd ? mtd_suspend(mtd) : 0;
61 static int mtd_cls_resume(struct device *dev)
63 struct mtd_info *mtd = dev_get_drvdata(dev);
70 static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume);
71 #define MTD_CLS_PM_OPS (&mtd_cls_pm_ops)
73 #define MTD_CLS_PM_OPS NULL
76 static struct class mtd_class = {
82 static DEFINE_IDR(mtd_idr);
84 /* These are exported solely for the purpose of mtd_blkdevs.c. You
85 should not use them for _anything_ else */
86 DEFINE_MUTEX(mtd_table_mutex);
87 EXPORT_SYMBOL_GPL(mtd_table_mutex);
89 struct mtd_info *__mtd_next_device(int i)
91 return idr_get_next(&mtd_idr, &i);
93 EXPORT_SYMBOL_GPL(__mtd_next_device);
95 static LIST_HEAD(mtd_notifiers);
98 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
100 /* REVISIT once MTD uses the driver model better, whoever allocates
101 * the mtd_info will probably want to use the release() hook...
103 static void mtd_release(struct device *dev)
105 struct mtd_info *mtd = dev_get_drvdata(dev);
106 dev_t index = MTD_DEVT(mtd->index);
108 /* remove /dev/mtdXro node */
109 device_destroy(&mtd_class, index + 1);
112 static ssize_t mtd_type_show(struct device *dev,
113 struct device_attribute *attr, char *buf)
115 struct mtd_info *mtd = dev_get_drvdata(dev);
140 case MTD_MLCNANDFLASH:
147 return snprintf(buf, PAGE_SIZE, "%s\n", type);
149 static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL);
151 static ssize_t mtd_flags_show(struct device *dev,
152 struct device_attribute *attr, char *buf)
154 struct mtd_info *mtd = dev_get_drvdata(dev);
156 return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags);
159 static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL);
161 static ssize_t mtd_size_show(struct device *dev,
162 struct device_attribute *attr, char *buf)
164 struct mtd_info *mtd = dev_get_drvdata(dev);
166 return snprintf(buf, PAGE_SIZE, "%llu\n",
167 (unsigned long long)mtd->size);
170 static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL);
172 static ssize_t mtd_erasesize_show(struct device *dev,
173 struct device_attribute *attr, char *buf)
175 struct mtd_info *mtd = dev_get_drvdata(dev);
177 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize);
180 static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL);
182 static ssize_t mtd_writesize_show(struct device *dev,
183 struct device_attribute *attr, char *buf)
185 struct mtd_info *mtd = dev_get_drvdata(dev);
187 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize);
190 static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL);
192 static ssize_t mtd_subpagesize_show(struct device *dev,
193 struct device_attribute *attr, char *buf)
195 struct mtd_info *mtd = dev_get_drvdata(dev);
196 unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
198 return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize);
201 static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL);
203 static ssize_t mtd_oobsize_show(struct device *dev,
204 struct device_attribute *attr, char *buf)
206 struct mtd_info *mtd = dev_get_drvdata(dev);
208 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize);
211 static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL);
213 static ssize_t mtd_numeraseregions_show(struct device *dev,
214 struct device_attribute *attr, char *buf)
216 struct mtd_info *mtd = dev_get_drvdata(dev);
218 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions);
221 static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show,
224 static ssize_t mtd_name_show(struct device *dev,
225 struct device_attribute *attr, char *buf)
227 struct mtd_info *mtd = dev_get_drvdata(dev);
229 return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name);
232 static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL);
234 static ssize_t mtd_ecc_strength_show(struct device *dev,
235 struct device_attribute *attr, char *buf)
237 struct mtd_info *mtd = dev_get_drvdata(dev);
239 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength);
241 static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL);
243 static ssize_t mtd_bitflip_threshold_show(struct device *dev,
244 struct device_attribute *attr,
247 struct mtd_info *mtd = dev_get_drvdata(dev);
249 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold);
252 static ssize_t mtd_bitflip_threshold_store(struct device *dev,
253 struct device_attribute *attr,
254 const char *buf, size_t count)
256 struct mtd_info *mtd = dev_get_drvdata(dev);
257 unsigned int bitflip_threshold;
260 retval = kstrtouint(buf, 0, &bitflip_threshold);
264 mtd->bitflip_threshold = bitflip_threshold;
267 static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR,
268 mtd_bitflip_threshold_show,
269 mtd_bitflip_threshold_store);
271 static ssize_t mtd_ecc_step_size_show(struct device *dev,
272 struct device_attribute *attr, char *buf)
274 struct mtd_info *mtd = dev_get_drvdata(dev);
276 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size);
279 static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL);
281 static ssize_t mtd_ecc_stats_corrected_show(struct device *dev,
282 struct device_attribute *attr, char *buf)
284 struct mtd_info *mtd = dev_get_drvdata(dev);
285 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
287 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->corrected);
289 static DEVICE_ATTR(corrected_bits, S_IRUGO,
290 mtd_ecc_stats_corrected_show, NULL);
292 static ssize_t mtd_ecc_stats_errors_show(struct device *dev,
293 struct device_attribute *attr, char *buf)
295 struct mtd_info *mtd = dev_get_drvdata(dev);
296 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
298 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->failed);
300 static DEVICE_ATTR(ecc_failures, S_IRUGO, mtd_ecc_stats_errors_show, NULL);
302 static ssize_t mtd_badblocks_show(struct device *dev,
303 struct device_attribute *attr, char *buf)
305 struct mtd_info *mtd = dev_get_drvdata(dev);
306 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
308 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->badblocks);
310 static DEVICE_ATTR(bad_blocks, S_IRUGO, mtd_badblocks_show, NULL);
312 static ssize_t mtd_bbtblocks_show(struct device *dev,
313 struct device_attribute *attr, char *buf)
315 struct mtd_info *mtd = dev_get_drvdata(dev);
316 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
318 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->bbtblocks);
320 static DEVICE_ATTR(bbt_blocks, S_IRUGO, mtd_bbtblocks_show, NULL);
322 static struct attribute *mtd_attrs[] = {
324 &dev_attr_flags.attr,
326 &dev_attr_erasesize.attr,
327 &dev_attr_writesize.attr,
328 &dev_attr_subpagesize.attr,
329 &dev_attr_oobsize.attr,
330 &dev_attr_numeraseregions.attr,
332 &dev_attr_ecc_strength.attr,
333 &dev_attr_ecc_step_size.attr,
334 &dev_attr_corrected_bits.attr,
335 &dev_attr_ecc_failures.attr,
336 &dev_attr_bad_blocks.attr,
337 &dev_attr_bbt_blocks.attr,
338 &dev_attr_bitflip_threshold.attr,
341 ATTRIBUTE_GROUPS(mtd);
343 static struct device_type mtd_devtype = {
345 .groups = mtd_groups,
346 .release = mtd_release,
350 unsigned mtd_mmap_capabilities(struct mtd_info *mtd)
354 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
355 NOMMU_MAP_READ | NOMMU_MAP_WRITE;
357 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
360 return NOMMU_MAP_COPY;
363 EXPORT_SYMBOL_GPL(mtd_mmap_capabilities);
366 static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state,
369 struct mtd_info *mtd;
371 mtd = container_of(n, struct mtd_info, reboot_notifier);
378 * mtd_wunit_to_pairing_info - get pairing information of a wunit
379 * @mtd: pointer to new MTD device info structure
380 * @wunit: write unit we are interested in
381 * @info: returned pairing information
383 * Retrieve pairing information associated to the wunit.
384 * This is mainly useful when dealing with MLC/TLC NANDs where pages can be
385 * paired together, and where programming a page may influence the page it is
387 * The notion of page is replaced by the term wunit (write-unit) to stay
388 * consistent with the ->writesize field.
390 * The @wunit argument can be extracted from an absolute offset using
391 * mtd_offset_to_wunit(). @info is filled with the pairing information attached
394 * From the pairing info the MTD user can find all the wunits paired with
395 * @wunit using the following loop:
397 * for (i = 0; i < mtd_pairing_groups(mtd); i++) {
399 * mtd_pairing_info_to_wunit(mtd, &info);
403 int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit,
404 struct mtd_pairing_info *info)
406 int npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
408 if (wunit < 0 || wunit >= npairs)
411 if (mtd->pairing && mtd->pairing->get_info)
412 return mtd->pairing->get_info(mtd, wunit, info);
419 EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info);
422 * mtd_wunit_to_pairing_info - get wunit from pairing information
423 * @mtd: pointer to new MTD device info structure
424 * @info: pairing information struct
426 * Returns a positive number representing the wunit associated to the info
427 * struct, or a negative error code.
429 * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to
430 * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info()
433 * It can also be used to only program the first page of each pair (i.e.
434 * page attached to group 0), which allows one to use an MLC NAND in
435 * software-emulated SLC mode:
438 * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
439 * for (info.pair = 0; info.pair < npairs; info.pair++) {
440 * wunit = mtd_pairing_info_to_wunit(mtd, &info);
441 * mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit),
442 * mtd->writesize, &retlen, buf + (i * mtd->writesize));
445 int mtd_pairing_info_to_wunit(struct mtd_info *mtd,
446 const struct mtd_pairing_info *info)
448 int ngroups = mtd_pairing_groups(mtd);
449 int npairs = mtd_wunit_per_eb(mtd) / ngroups;
451 if (!info || info->pair < 0 || info->pair >= npairs ||
452 info->group < 0 || info->group >= ngroups)
455 if (mtd->pairing && mtd->pairing->get_wunit)
456 return mtd->pairing->get_wunit(mtd, info);
460 EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit);
463 * mtd_pairing_groups - get the number of pairing groups
464 * @mtd: pointer to new MTD device info structure
466 * Returns the number of pairing groups.
468 * This number is usually equal to the number of bits exposed by a single
469 * cell, and can be used in conjunction with mtd_pairing_info_to_wunit()
470 * to iterate over all pages of a given pair.
472 int mtd_pairing_groups(struct mtd_info *mtd)
474 if (!mtd->pairing || !mtd->pairing->ngroups)
477 return mtd->pairing->ngroups;
479 EXPORT_SYMBOL_GPL(mtd_pairing_groups);
482 * add_mtd_device - register an MTD device
483 * @mtd: pointer to new MTD device info structure
485 * Add a device to the list of MTD devices present in the system, and
486 * notify each currently active MTD 'user' of its arrival. Returns
487 * zero on success or non-zero on failure.
490 int add_mtd_device(struct mtd_info *mtd)
492 struct mtd_notifier *not;
496 * May occur, for instance, on buggy drivers which call
497 * mtd_device_parse_register() multiple times on the same master MTD,
498 * especially with CONFIG_MTD_PARTITIONED_MASTER=y.
500 if (WARN_ONCE(mtd->backing_dev_info, "MTD already registered\n"))
503 mtd->backing_dev_info = &mtd_bdi;
505 BUG_ON(mtd->writesize == 0);
506 mutex_lock(&mtd_table_mutex);
508 i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
517 /* default value if not set by driver */
518 if (mtd->bitflip_threshold == 0)
519 mtd->bitflip_threshold = mtd->ecc_strength;
521 if (is_power_of_2(mtd->erasesize))
522 mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
524 mtd->erasesize_shift = 0;
526 if (is_power_of_2(mtd->writesize))
527 mtd->writesize_shift = ffs(mtd->writesize) - 1;
529 mtd->writesize_shift = 0;
531 mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
532 mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
534 /* Some chips always power up locked. Unlock them now */
535 if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
536 error = mtd_unlock(mtd, 0, mtd->size);
537 if (error && error != -EOPNOTSUPP)
539 "%s: unlock failed, writes may not work\n",
541 /* Ignore unlock failures? */
545 /* Caller should have set dev.parent to match the
546 * physical device, if appropriate.
548 mtd->dev.type = &mtd_devtype;
549 mtd->dev.class = &mtd_class;
550 mtd->dev.devt = MTD_DEVT(i);
551 dev_set_name(&mtd->dev, "mtd%d", i);
552 dev_set_drvdata(&mtd->dev, mtd);
553 of_node_get(mtd_get_of_node(mtd));
554 error = device_register(&mtd->dev);
558 device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL,
561 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
562 /* No need to get a refcount on the module containing
563 the notifier, since we hold the mtd_table_mutex */
564 list_for_each_entry(not, &mtd_notifiers, list)
567 mutex_unlock(&mtd_table_mutex);
568 /* We _know_ we aren't being removed, because
569 our caller is still holding us here. So none
570 of this try_ nonsense, and no bitching about it
572 __module_get(THIS_MODULE);
576 of_node_put(mtd_get_of_node(mtd));
577 idr_remove(&mtd_idr, i);
579 mutex_unlock(&mtd_table_mutex);
584 * del_mtd_device - unregister an MTD device
585 * @mtd: pointer to MTD device info structure
587 * Remove a device from the list of MTD devices present in the system,
588 * and notify each currently active MTD 'user' of its departure.
589 * Returns zero on success or 1 on failure, which currently will happen
590 * if the requested device does not appear to be present in the list.
593 int del_mtd_device(struct mtd_info *mtd)
596 struct mtd_notifier *not;
598 mutex_lock(&mtd_table_mutex);
600 if (idr_find(&mtd_idr, mtd->index) != mtd) {
605 /* No need to get a refcount on the module containing
606 the notifier, since we hold the mtd_table_mutex */
607 list_for_each_entry(not, &mtd_notifiers, list)
611 printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
612 mtd->index, mtd->name, mtd->usecount);
615 device_unregister(&mtd->dev);
617 idr_remove(&mtd_idr, mtd->index);
618 of_node_put(mtd_get_of_node(mtd));
620 module_put(THIS_MODULE);
625 mutex_unlock(&mtd_table_mutex);
629 static int mtd_add_device_partitions(struct mtd_info *mtd,
630 struct mtd_partitions *parts)
632 const struct mtd_partition *real_parts = parts->parts;
633 int nbparts = parts->nr_parts;
636 if (nbparts == 0 || IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) {
637 ret = add_mtd_device(mtd);
643 ret = add_mtd_partitions(mtd, real_parts, nbparts);
644 if (ret && IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER))
653 * Set a few defaults based on the parent devices, if not provided by the
656 static void mtd_set_dev_defaults(struct mtd_info *mtd)
658 if (mtd->dev.parent) {
659 if (!mtd->owner && mtd->dev.parent->driver)
660 mtd->owner = mtd->dev.parent->driver->owner;
662 mtd->name = dev_name(mtd->dev.parent);
664 pr_debug("mtd device won't show a device symlink in sysfs\n");
669 * mtd_device_parse_register - parse partitions and register an MTD device.
671 * @mtd: the MTD device to register
672 * @types: the list of MTD partition probes to try, see
673 * 'parse_mtd_partitions()' for more information
674 * @parser_data: MTD partition parser-specific data
675 * @parts: fallback partition information to register, if parsing fails;
676 * only valid if %nr_parts > %0
677 * @nr_parts: the number of partitions in parts, if zero then the full
678 * MTD device is registered if no partition info is found
680 * This function aggregates MTD partitions parsing (done by
681 * 'parse_mtd_partitions()') and MTD device and partitions registering. It
682 * basically follows the most common pattern found in many MTD drivers:
684 * * It first tries to probe partitions on MTD device @mtd using parsers
685 * specified in @types (if @types is %NULL, then the default list of parsers
686 * is used, see 'parse_mtd_partitions()' for more information). If none are
687 * found this functions tries to fallback to information specified in
689 * * If any partitioning info was found, this function registers the found
690 * partitions. If the MTD_PARTITIONED_MASTER option is set, then the device
691 * as a whole is registered first.
692 * * If no partitions were found this function just registers the MTD device
695 * Returns zero in case of success and a negative error code in case of failure.
697 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
698 struct mtd_part_parser_data *parser_data,
699 const struct mtd_partition *parts,
702 struct mtd_partitions parsed;
705 mtd_set_dev_defaults(mtd);
707 memset(&parsed, 0, sizeof(parsed));
709 ret = parse_mtd_partitions(mtd, types, &parsed, parser_data);
710 if ((ret < 0 || parsed.nr_parts == 0) && parts && nr_parts) {
711 /* Fall back to driver-provided partitions */
712 parsed = (struct mtd_partitions){
714 .nr_parts = nr_parts,
716 } else if (ret < 0) {
717 /* Didn't come up with parsed OR fallback partitions */
718 pr_info("mtd: failed to find partitions; one or more parsers reports errors (%d)\n",
720 /* Don't abort on errors; we can still use unpartitioned MTD */
721 memset(&parsed, 0, sizeof(parsed));
724 ret = mtd_add_device_partitions(mtd, &parsed);
729 * FIXME: some drivers unfortunately call this function more than once.
730 * So we have to check if we've already assigned the reboot notifier.
732 * Generally, we can make multiple calls work for most cases, but it
733 * does cause problems with parse_mtd_partitions() above (e.g.,
734 * cmdlineparts will register partitions more than once).
736 WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call,
737 "MTD already registered\n");
738 if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) {
739 mtd->reboot_notifier.notifier_call = mtd_reboot_notifier;
740 register_reboot_notifier(&mtd->reboot_notifier);
744 /* Cleanup any parsed partitions */
745 mtd_part_parser_cleanup(&parsed);
748 EXPORT_SYMBOL_GPL(mtd_device_parse_register);
751 * mtd_device_unregister - unregister an existing MTD device.
753 * @master: the MTD device to unregister. This will unregister both the master
754 * and any partitions if registered.
756 int mtd_device_unregister(struct mtd_info *master)
761 unregister_reboot_notifier(&master->reboot_notifier);
763 err = del_mtd_partitions(master);
767 if (!device_is_registered(&master->dev))
770 return del_mtd_device(master);
772 EXPORT_SYMBOL_GPL(mtd_device_unregister);
775 * register_mtd_user - register a 'user' of MTD devices.
776 * @new: pointer to notifier info structure
778 * Registers a pair of callbacks function to be called upon addition
779 * or removal of MTD devices. Causes the 'add' callback to be immediately
780 * invoked for each MTD device currently present in the system.
782 void register_mtd_user (struct mtd_notifier *new)
784 struct mtd_info *mtd;
786 mutex_lock(&mtd_table_mutex);
788 list_add(&new->list, &mtd_notifiers);
790 __module_get(THIS_MODULE);
792 mtd_for_each_device(mtd)
795 mutex_unlock(&mtd_table_mutex);
797 EXPORT_SYMBOL_GPL(register_mtd_user);
800 * unregister_mtd_user - unregister a 'user' of MTD devices.
801 * @old: pointer to notifier info structure
803 * Removes a callback function pair from the list of 'users' to be
804 * notified upon addition or removal of MTD devices. Causes the
805 * 'remove' callback to be immediately invoked for each MTD device
806 * currently present in the system.
808 int unregister_mtd_user (struct mtd_notifier *old)
810 struct mtd_info *mtd;
812 mutex_lock(&mtd_table_mutex);
814 module_put(THIS_MODULE);
816 mtd_for_each_device(mtd)
819 list_del(&old->list);
820 mutex_unlock(&mtd_table_mutex);
823 EXPORT_SYMBOL_GPL(unregister_mtd_user);
826 * get_mtd_device - obtain a validated handle for an MTD device
827 * @mtd: last known address of the required MTD device
828 * @num: internal device number of the required MTD device
830 * Given a number and NULL address, return the num'th entry in the device
831 * table, if any. Given an address and num == -1, search the device table
832 * for a device with that address and return if it's still present. Given
833 * both, return the num'th driver only if its address matches. Return
836 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
838 struct mtd_info *ret = NULL, *other;
841 mutex_lock(&mtd_table_mutex);
844 mtd_for_each_device(other) {
850 } else if (num >= 0) {
851 ret = idr_find(&mtd_idr, num);
852 if (mtd && mtd != ret)
861 err = __get_mtd_device(ret);
865 mutex_unlock(&mtd_table_mutex);
868 EXPORT_SYMBOL_GPL(get_mtd_device);
871 int __get_mtd_device(struct mtd_info *mtd)
875 if (!try_module_get(mtd->owner))
878 if (mtd->_get_device) {
879 err = mtd->_get_device(mtd);
882 module_put(mtd->owner);
889 EXPORT_SYMBOL_GPL(__get_mtd_device);
892 * get_mtd_device_nm - obtain a validated handle for an MTD device by
894 * @name: MTD device name to open
896 * This function returns MTD device description structure in case of
897 * success and an error code in case of failure.
899 struct mtd_info *get_mtd_device_nm(const char *name)
902 struct mtd_info *mtd = NULL, *other;
904 mutex_lock(&mtd_table_mutex);
906 mtd_for_each_device(other) {
907 if (!strcmp(name, other->name)) {
916 err = __get_mtd_device(mtd);
920 mutex_unlock(&mtd_table_mutex);
924 mutex_unlock(&mtd_table_mutex);
927 EXPORT_SYMBOL_GPL(get_mtd_device_nm);
929 void put_mtd_device(struct mtd_info *mtd)
931 mutex_lock(&mtd_table_mutex);
932 __put_mtd_device(mtd);
933 mutex_unlock(&mtd_table_mutex);
936 EXPORT_SYMBOL_GPL(put_mtd_device);
938 void __put_mtd_device(struct mtd_info *mtd)
941 BUG_ON(mtd->usecount < 0);
943 if (mtd->_put_device)
944 mtd->_put_device(mtd);
946 module_put(mtd->owner);
948 EXPORT_SYMBOL_GPL(__put_mtd_device);
951 * Erase is an asynchronous operation. Device drivers are supposed
952 * to call instr->callback() whenever the operation completes, even
953 * if it completes with a failure.
954 * Callers are supposed to pass a callback function and wait for it
955 * to be called before writing to the block.
957 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
959 if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr)
961 if (!(mtd->flags & MTD_WRITEABLE))
963 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
965 instr->state = MTD_ERASE_DONE;
966 mtd_erase_callback(instr);
969 ledtrig_mtd_activity();
970 return mtd->_erase(mtd, instr);
972 EXPORT_SYMBOL_GPL(mtd_erase);
975 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
977 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
978 void **virt, resource_size_t *phys)
986 if (from < 0 || from >= mtd->size || len > mtd->size - from)
990 return mtd->_point(mtd, from, len, retlen, virt, phys);
992 EXPORT_SYMBOL_GPL(mtd_point);
994 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */
995 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
999 if (from < 0 || from >= mtd->size || len > mtd->size - from)
1003 return mtd->_unpoint(mtd, from, len);
1005 EXPORT_SYMBOL_GPL(mtd_unpoint);
1008 * Allow NOMMU mmap() to directly map the device (if not NULL)
1009 * - return the address to which the offset maps
1010 * - return -ENOSYS to indicate refusal to do the mapping
1012 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
1013 unsigned long offset, unsigned long flags)
1015 if (!mtd->_get_unmapped_area)
1017 if (offset >= mtd->size || len > mtd->size - offset)
1019 return mtd->_get_unmapped_area(mtd, len, offset, flags);
1021 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
1023 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1028 if (from < 0 || from >= mtd->size || len > mtd->size - from)
1033 ledtrig_mtd_activity();
1035 * In the absence of an error, drivers return a non-negative integer
1036 * representing the maximum number of bitflips that were corrected on
1037 * any one ecc region (if applicable; zero otherwise).
1039 ret_code = mtd->_read(mtd, from, len, retlen, buf);
1040 if (unlikely(ret_code < 0))
1042 if (mtd->ecc_strength == 0)
1043 return 0; /* device lacks ecc */
1044 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1046 EXPORT_SYMBOL_GPL(mtd_read);
1048 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1052 if (to < 0 || to >= mtd->size || len > mtd->size - to)
1054 if (!mtd->_write || !(mtd->flags & MTD_WRITEABLE))
1058 ledtrig_mtd_activity();
1059 return mtd->_write(mtd, to, len, retlen, buf);
1061 EXPORT_SYMBOL_GPL(mtd_write);
1064 * In blackbox flight recorder like scenarios we want to make successful writes
1065 * in interrupt context. panic_write() is only intended to be called when its
1066 * known the kernel is about to panic and we need the write to succeed. Since
1067 * the kernel is not going to be running for much longer, this function can
1068 * break locks and delay to ensure the write succeeds (but not sleep).
1070 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1074 if (!mtd->_panic_write)
1076 if (to < 0 || to >= mtd->size || len > mtd->size - to)
1078 if (!(mtd->flags & MTD_WRITEABLE))
1082 return mtd->_panic_write(mtd, to, len, retlen, buf);
1084 EXPORT_SYMBOL_GPL(mtd_panic_write);
1086 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
1089 ops->retlen = ops->oobretlen = 0;
1090 if (!mtd->_read_oob)
1093 ledtrig_mtd_activity();
1095 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
1096 * similar to mtd->_read(), returning a non-negative integer
1097 * representing max bitflips. In other cases, mtd->_read_oob() may
1098 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
1100 ret_code = mtd->_read_oob(mtd, from, ops);
1101 if (unlikely(ret_code < 0))
1103 if (mtd->ecc_strength == 0)
1104 return 0; /* device lacks ecc */
1105 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1107 EXPORT_SYMBOL_GPL(mtd_read_oob);
1109 int mtd_write_oob(struct mtd_info *mtd, loff_t to,
1110 struct mtd_oob_ops *ops)
1112 ops->retlen = ops->oobretlen = 0;
1113 if (!mtd->_write_oob)
1115 if (!(mtd->flags & MTD_WRITEABLE))
1117 ledtrig_mtd_activity();
1118 return mtd->_write_oob(mtd, to, ops);
1120 EXPORT_SYMBOL_GPL(mtd_write_oob);
1123 * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section
1124 * @mtd: MTD device structure
1125 * @section: ECC section. Depending on the layout you may have all the ECC
1126 * bytes stored in a single contiguous section, or one section
1127 * per ECC chunk (and sometime several sections for a single ECC
1129 * @oobecc: OOB region struct filled with the appropriate ECC position
1132 * This functions return ECC section information in the OOB area. I you want
1133 * to get all the ECC bytes information, then you should call
1134 * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE.
1136 * Returns zero on success, a negative error code otherwise.
1138 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
1139 struct mtd_oob_region *oobecc)
1141 memset(oobecc, 0, sizeof(*oobecc));
1143 if (!mtd || section < 0)
1146 if (!mtd->ooblayout || !mtd->ooblayout->ecc)
1149 return mtd->ooblayout->ecc(mtd, section, oobecc);
1151 EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc);
1154 * mtd_ooblayout_free - Get the OOB region definition of a specific free
1156 * @mtd: MTD device structure
1157 * @section: Free section you are interested in. Depending on the layout
1158 * you may have all the free bytes stored in a single contiguous
1159 * section, or one section per ECC chunk plus an extra section
1160 * for the remaining bytes (or other funky layout).
1161 * @oobfree: OOB region struct filled with the appropriate free position
1164 * This functions return free bytes position in the OOB area. I you want
1165 * to get all the free bytes information, then you should call
1166 * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE.
1168 * Returns zero on success, a negative error code otherwise.
1170 int mtd_ooblayout_free(struct mtd_info *mtd, int section,
1171 struct mtd_oob_region *oobfree)
1173 memset(oobfree, 0, sizeof(*oobfree));
1175 if (!mtd || section < 0)
1178 if (!mtd->ooblayout || !mtd->ooblayout->free)
1181 return mtd->ooblayout->free(mtd, section, oobfree);
1183 EXPORT_SYMBOL_GPL(mtd_ooblayout_free);
1186 * mtd_ooblayout_find_region - Find the region attached to a specific byte
1187 * @mtd: mtd info structure
1188 * @byte: the byte we are searching for
1189 * @sectionp: pointer where the section id will be stored
1190 * @oobregion: used to retrieve the ECC position
1191 * @iter: iterator function. Should be either mtd_ooblayout_free or
1192 * mtd_ooblayout_ecc depending on the region type you're searching for
1194 * This functions returns the section id and oobregion information of a
1195 * specific byte. For example, say you want to know where the 4th ECC byte is
1196 * stored, you'll use:
1198 * mtd_ooblayout_find_region(mtd, 3, §ion, &oobregion, mtd_ooblayout_ecc);
1200 * Returns zero on success, a negative error code otherwise.
1202 static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte,
1203 int *sectionp, struct mtd_oob_region *oobregion,
1204 int (*iter)(struct mtd_info *,
1206 struct mtd_oob_region *oobregion))
1208 int pos = 0, ret, section = 0;
1210 memset(oobregion, 0, sizeof(*oobregion));
1213 ret = iter(mtd, section, oobregion);
1217 if (pos + oobregion->length > byte)
1220 pos += oobregion->length;
1225 * Adjust region info to make it start at the beginning at the
1228 oobregion->offset += byte - pos;
1229 oobregion->length -= byte - pos;
1230 *sectionp = section;
1236 * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific
1238 * @mtd: mtd info structure
1239 * @eccbyte: the byte we are searching for
1240 * @sectionp: pointer where the section id will be stored
1241 * @oobregion: OOB region information
1243 * Works like mtd_ooblayout_find_region() except it searches for a specific ECC
1246 * Returns zero on success, a negative error code otherwise.
1248 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte,
1250 struct mtd_oob_region *oobregion)
1252 return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion,
1255 EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion);
1258 * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer
1259 * @mtd: mtd info structure
1260 * @buf: destination buffer to store OOB bytes
1261 * @oobbuf: OOB buffer
1262 * @start: first byte to retrieve
1263 * @nbytes: number of bytes to retrieve
1264 * @iter: section iterator
1266 * Extract bytes attached to a specific category (ECC or free)
1267 * from the OOB buffer and copy them into buf.
1269 * Returns zero on success, a negative error code otherwise.
1271 static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf,
1272 const u8 *oobbuf, int start, int nbytes,
1273 int (*iter)(struct mtd_info *,
1275 struct mtd_oob_region *oobregion))
1277 struct mtd_oob_region oobregion = { };
1278 int section = 0, ret;
1280 ret = mtd_ooblayout_find_region(mtd, start, §ion,
1286 cnt = oobregion.length > nbytes ? nbytes : oobregion.length;
1287 memcpy(buf, oobbuf + oobregion.offset, cnt);
1294 ret = iter(mtd, ++section, &oobregion);
1301 * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer
1302 * @mtd: mtd info structure
1303 * @buf: source buffer to get OOB bytes from
1304 * @oobbuf: OOB buffer
1305 * @start: first OOB byte to set
1306 * @nbytes: number of OOB bytes to set
1307 * @iter: section iterator
1309 * Fill the OOB buffer with data provided in buf. The category (ECC or free)
1310 * is selected by passing the appropriate iterator.
1312 * Returns zero on success, a negative error code otherwise.
1314 static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf,
1315 u8 *oobbuf, int start, int nbytes,
1316 int (*iter)(struct mtd_info *,
1318 struct mtd_oob_region *oobregion))
1320 struct mtd_oob_region oobregion = { };
1321 int section = 0, ret;
1323 ret = mtd_ooblayout_find_region(mtd, start, §ion,
1329 cnt = oobregion.length > nbytes ? nbytes : oobregion.length;
1330 memcpy(oobbuf + oobregion.offset, buf, cnt);
1337 ret = iter(mtd, ++section, &oobregion);
1344 * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category
1345 * @mtd: mtd info structure
1346 * @iter: category iterator
1348 * Count the number of bytes in a given category.
1350 * Returns a positive value on success, a negative error code otherwise.
1352 static int mtd_ooblayout_count_bytes(struct mtd_info *mtd,
1353 int (*iter)(struct mtd_info *,
1355 struct mtd_oob_region *oobregion))
1357 struct mtd_oob_region oobregion = { };
1358 int section = 0, ret, nbytes = 0;
1361 ret = iter(mtd, section++, &oobregion);
1368 nbytes += oobregion.length;
1375 * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer
1376 * @mtd: mtd info structure
1377 * @eccbuf: destination buffer to store ECC bytes
1378 * @oobbuf: OOB buffer
1379 * @start: first ECC byte to retrieve
1380 * @nbytes: number of ECC bytes to retrieve
1382 * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes.
1384 * Returns zero on success, a negative error code otherwise.
1386 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf,
1387 const u8 *oobbuf, int start, int nbytes)
1389 return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1392 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes);
1395 * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer
1396 * @mtd: mtd info structure
1397 * @eccbuf: source buffer to get ECC bytes from
1398 * @oobbuf: OOB buffer
1399 * @start: first ECC byte to set
1400 * @nbytes: number of ECC bytes to set
1402 * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes.
1404 * Returns zero on success, a negative error code otherwise.
1406 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf,
1407 u8 *oobbuf, int start, int nbytes)
1409 return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1412 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes);
1415 * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer
1416 * @mtd: mtd info structure
1417 * @databuf: destination buffer to store ECC bytes
1418 * @oobbuf: OOB buffer
1419 * @start: first ECC byte to retrieve
1420 * @nbytes: number of ECC bytes to retrieve
1422 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1424 * Returns zero on success, a negative error code otherwise.
1426 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf,
1427 const u8 *oobbuf, int start, int nbytes)
1429 return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes,
1430 mtd_ooblayout_free);
1432 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes);
1435 * mtd_ooblayout_get_eccbytes - set data bytes into the oob buffer
1436 * @mtd: mtd info structure
1437 * @eccbuf: source buffer to get data bytes from
1438 * @oobbuf: OOB buffer
1439 * @start: first ECC byte to set
1440 * @nbytes: number of ECC bytes to set
1442 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1444 * Returns zero on success, a negative error code otherwise.
1446 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf,
1447 u8 *oobbuf, int start, int nbytes)
1449 return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes,
1450 mtd_ooblayout_free);
1452 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes);
1455 * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB
1456 * @mtd: mtd info structure
1458 * Works like mtd_ooblayout_count_bytes(), except it count free bytes.
1460 * Returns zero on success, a negative error code otherwise.
1462 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd)
1464 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free);
1466 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes);
1469 * mtd_ooblayout_count_freebytes - count the number of ECC bytes in OOB
1470 * @mtd: mtd info structure
1472 * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes.
1474 * Returns zero on success, a negative error code otherwise.
1476 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd)
1478 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc);
1480 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes);
1483 * Method to access the protection register area, present in some flash
1484 * devices. The user data is one time programmable but the factory data is read
1487 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1488 struct otp_info *buf)
1490 if (!mtd->_get_fact_prot_info)
1494 return mtd->_get_fact_prot_info(mtd, len, retlen, buf);
1496 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
1498 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1499 size_t *retlen, u_char *buf)
1502 if (!mtd->_read_fact_prot_reg)
1506 return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf);
1508 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
1510 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1511 struct otp_info *buf)
1513 if (!mtd->_get_user_prot_info)
1517 return mtd->_get_user_prot_info(mtd, len, retlen, buf);
1519 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
1521 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1522 size_t *retlen, u_char *buf)
1525 if (!mtd->_read_user_prot_reg)
1529 return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf);
1531 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
1533 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
1534 size_t *retlen, u_char *buf)
1539 if (!mtd->_write_user_prot_reg)
1543 ret = mtd->_write_user_prot_reg(mtd, to, len, retlen, buf);
1548 * If no data could be written at all, we are out of memory and
1549 * must return -ENOSPC.
1551 return (*retlen) ? 0 : -ENOSPC;
1553 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
1555 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
1557 if (!mtd->_lock_user_prot_reg)
1561 return mtd->_lock_user_prot_reg(mtd, from, len);
1563 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
1565 /* Chip-supported device locking */
1566 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1570 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1574 return mtd->_lock(mtd, ofs, len);
1576 EXPORT_SYMBOL_GPL(mtd_lock);
1578 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1582 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1586 return mtd->_unlock(mtd, ofs, len);
1588 EXPORT_SYMBOL_GPL(mtd_unlock);
1590 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1592 if (!mtd->_is_locked)
1594 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1598 return mtd->_is_locked(mtd, ofs, len);
1600 EXPORT_SYMBOL_GPL(mtd_is_locked);
1602 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
1604 if (ofs < 0 || ofs >= mtd->size)
1606 if (!mtd->_block_isreserved)
1608 return mtd->_block_isreserved(mtd, ofs);
1610 EXPORT_SYMBOL_GPL(mtd_block_isreserved);
1612 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
1614 if (ofs < 0 || ofs >= mtd->size)
1616 if (!mtd->_block_isbad)
1618 return mtd->_block_isbad(mtd, ofs);
1620 EXPORT_SYMBOL_GPL(mtd_block_isbad);
1622 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
1624 if (!mtd->_block_markbad)
1626 if (ofs < 0 || ofs >= mtd->size)
1628 if (!(mtd->flags & MTD_WRITEABLE))
1630 return mtd->_block_markbad(mtd, ofs);
1632 EXPORT_SYMBOL_GPL(mtd_block_markbad);
1635 * default_mtd_writev - the default writev method
1636 * @mtd: mtd device description object pointer
1637 * @vecs: the vectors to write
1638 * @count: count of vectors in @vecs
1639 * @to: the MTD device offset to write to
1640 * @retlen: on exit contains the count of bytes written to the MTD device.
1642 * This function returns zero in case of success and a negative error code in
1645 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1646 unsigned long count, loff_t to, size_t *retlen)
1649 size_t totlen = 0, thislen;
1652 for (i = 0; i < count; i++) {
1653 if (!vecs[i].iov_len)
1655 ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
1658 if (ret || thislen != vecs[i].iov_len)
1660 to += vecs[i].iov_len;
1667 * mtd_writev - the vector-based MTD write method
1668 * @mtd: mtd device description object pointer
1669 * @vecs: the vectors to write
1670 * @count: count of vectors in @vecs
1671 * @to: the MTD device offset to write to
1672 * @retlen: on exit contains the count of bytes written to the MTD device.
1674 * This function returns zero in case of success and a negative error code in
1677 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1678 unsigned long count, loff_t to, size_t *retlen)
1681 if (!(mtd->flags & MTD_WRITEABLE))
1684 return default_mtd_writev(mtd, vecs, count, to, retlen);
1685 return mtd->_writev(mtd, vecs, count, to, retlen);
1687 EXPORT_SYMBOL_GPL(mtd_writev);
1690 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
1691 * @mtd: mtd device description object pointer
1692 * @size: a pointer to the ideal or maximum size of the allocation, points
1693 * to the actual allocation size on success.
1695 * This routine attempts to allocate a contiguous kernel buffer up to
1696 * the specified size, backing off the size of the request exponentially
1697 * until the request succeeds or until the allocation size falls below
1698 * the system page size. This attempts to make sure it does not adversely
1699 * impact system performance, so when allocating more than one page, we
1700 * ask the memory allocator to avoid re-trying, swapping, writing back
1701 * or performing I/O.
1703 * Note, this function also makes sure that the allocated buffer is aligned to
1704 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
1706 * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
1707 * to handle smaller (i.e. degraded) buffer allocations under low- or
1708 * fragmented-memory situations where such reduced allocations, from a
1709 * requested ideal, are allowed.
1711 * Returns a pointer to the allocated buffer on success; otherwise, NULL.
1713 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
1715 gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY;
1716 size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
1719 *size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
1721 while (*size > min_alloc) {
1722 kbuf = kmalloc(*size, flags);
1727 *size = ALIGN(*size, mtd->writesize);
1731 * For the last resort allocation allow 'kmalloc()' to do all sorts of
1732 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
1734 return kmalloc(*size, GFP_KERNEL);
1736 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
1738 #ifdef CONFIG_PROC_FS
1740 /*====================================================================*/
1741 /* Support for /proc/mtd */
1743 static int mtd_proc_show(struct seq_file *m, void *v)
1745 struct mtd_info *mtd;
1747 seq_puts(m, "dev: size erasesize name\n");
1748 mutex_lock(&mtd_table_mutex);
1749 mtd_for_each_device(mtd) {
1750 seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
1751 mtd->index, (unsigned long long)mtd->size,
1752 mtd->erasesize, mtd->name);
1754 mutex_unlock(&mtd_table_mutex);
1758 static int mtd_proc_open(struct inode *inode, struct file *file)
1760 return single_open(file, mtd_proc_show, NULL);
1763 static const struct file_operations mtd_proc_ops = {
1764 .open = mtd_proc_open,
1766 .llseek = seq_lseek,
1767 .release = single_release,
1769 #endif /* CONFIG_PROC_FS */
1771 /*====================================================================*/
1774 static int __init mtd_bdi_init(struct backing_dev_info *bdi, const char *name)
1778 ret = bdi_init(bdi);
1780 ret = bdi_register(bdi, NULL, "%s", name);
1788 static struct proc_dir_entry *proc_mtd;
1790 static int __init init_mtd(void)
1794 ret = class_register(&mtd_class);
1798 ret = mtd_bdi_init(&mtd_bdi, "mtd");
1802 proc_mtd = proc_create("mtd", 0, NULL, &mtd_proc_ops);
1804 ret = init_mtdchar();
1812 remove_proc_entry("mtd", NULL);
1814 class_unregister(&mtd_class);
1816 pr_err("Error registering mtd class or bdi: %d\n", ret);
1820 static void __exit cleanup_mtd(void)
1824 remove_proc_entry("mtd", NULL);
1825 class_unregister(&mtd_class);
1826 bdi_destroy(&mtd_bdi);
1827 idr_destroy(&mtd_idr);
1830 module_init(init_mtd);
1831 module_exit(cleanup_mtd);
1833 MODULE_LICENSE("GPL");
1834 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1835 MODULE_DESCRIPTION("Core MTD registration and access routines");