Merge tag 'regulator-v4.18' of git://git.kernel.org/pub/scm/linux/kernel/git/broonie...
[linux-2.6-block.git] / drivers / mmc / host / mmci.c
1 /*
2  *  linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
3  *
4  *  Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
5  *  Copyright (C) 2010 ST-Ericsson SA
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/module.h>
12 #include <linux/moduleparam.h>
13 #include <linux/init.h>
14 #include <linux/ioport.h>
15 #include <linux/device.h>
16 #include <linux/io.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel.h>
19 #include <linux/slab.h>
20 #include <linux/delay.h>
21 #include <linux/err.h>
22 #include <linux/highmem.h>
23 #include <linux/log2.h>
24 #include <linux/mmc/pm.h>
25 #include <linux/mmc/host.h>
26 #include <linux/mmc/card.h>
27 #include <linux/mmc/slot-gpio.h>
28 #include <linux/amba/bus.h>
29 #include <linux/clk.h>
30 #include <linux/scatterlist.h>
31 #include <linux/gpio.h>
32 #include <linux/of_gpio.h>
33 #include <linux/regulator/consumer.h>
34 #include <linux/dmaengine.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/amba/mmci.h>
37 #include <linux/pm_runtime.h>
38 #include <linux/types.h>
39 #include <linux/pinctrl/consumer.h>
40
41 #include <asm/div64.h>
42 #include <asm/io.h>
43
44 #include "mmci.h"
45 #include "mmci_qcom_dml.h"
46
47 #define DRIVER_NAME "mmci-pl18x"
48
49 static unsigned int fmax = 515633;
50
51 /**
52  * struct variant_data - MMCI variant-specific quirks
53  * @clkreg: default value for MCICLOCK register
54  * @clkreg_enable: enable value for MMCICLOCK register
55  * @clkreg_8bit_bus_enable: enable value for 8 bit bus
56  * @clkreg_neg_edge_enable: enable value for inverted data/cmd output
57  * @datalength_bits: number of bits in the MMCIDATALENGTH register
58  * @fifosize: number of bytes that can be written when MMCI_TXFIFOEMPTY
59  *            is asserted (likewise for RX)
60  * @fifohalfsize: number of bytes that can be written when MCI_TXFIFOHALFEMPTY
61  *                is asserted (likewise for RX)
62  * @data_cmd_enable: enable value for data commands.
63  * @st_sdio: enable ST specific SDIO logic
64  * @st_clkdiv: true if using a ST-specific clock divider algorithm
65  * @datactrl_mask_ddrmode: ddr mode mask in datactrl register.
66  * @blksz_datactrl16: true if Block size is at b16..b30 position in datactrl register
67  * @blksz_datactrl4: true if Block size is at b4..b16 position in datactrl
68  *                   register
69  * @datactrl_mask_sdio: SDIO enable mask in datactrl register
70  * @pwrreg_powerup: power up value for MMCIPOWER register
71  * @f_max: maximum clk frequency supported by the controller.
72  * @signal_direction: input/out direction of bus signals can be indicated
73  * @pwrreg_clkgate: MMCIPOWER register must be used to gate the clock
74  * @busy_detect: true if the variant supports busy detection on DAT0.
75  * @busy_dpsm_flag: bitmask enabling busy detection in the DPSM
76  * @busy_detect_flag: bitmask identifying the bit in the MMCISTATUS register
77  *                    indicating that the card is busy
78  * @busy_detect_mask: bitmask identifying the bit in the MMCIMASK0 to mask for
79  *                    getting busy end detection interrupts
80  * @pwrreg_nopower: bits in MMCIPOWER don't controls ext. power supply
81  * @explicit_mclk_control: enable explicit mclk control in driver.
82  * @qcom_fifo: enables qcom specific fifo pio read logic.
83  * @qcom_dml: enables qcom specific dma glue for dma transfers.
84  * @reversed_irq_handling: handle data irq before cmd irq.
85  * @mmcimask1: true if variant have a MMCIMASK1 register.
86  * @start_err: bitmask identifying the STARTBITERR bit inside MMCISTATUS
87  *             register.
88  * @opendrain: bitmask identifying the OPENDRAIN bit inside MMCIPOWER register
89  */
90 struct variant_data {
91         unsigned int            clkreg;
92         unsigned int            clkreg_enable;
93         unsigned int            clkreg_8bit_bus_enable;
94         unsigned int            clkreg_neg_edge_enable;
95         unsigned int            datalength_bits;
96         unsigned int            fifosize;
97         unsigned int            fifohalfsize;
98         unsigned int            data_cmd_enable;
99         unsigned int            datactrl_mask_ddrmode;
100         unsigned int            datactrl_mask_sdio;
101         bool                    st_sdio;
102         bool                    st_clkdiv;
103         bool                    blksz_datactrl16;
104         bool                    blksz_datactrl4;
105         u32                     pwrreg_powerup;
106         u32                     f_max;
107         bool                    signal_direction;
108         bool                    pwrreg_clkgate;
109         bool                    busy_detect;
110         u32                     busy_dpsm_flag;
111         u32                     busy_detect_flag;
112         u32                     busy_detect_mask;
113         bool                    pwrreg_nopower;
114         bool                    explicit_mclk_control;
115         bool                    qcom_fifo;
116         bool                    qcom_dml;
117         bool                    reversed_irq_handling;
118         bool                    mmcimask1;
119         u32                     start_err;
120         u32                     opendrain;
121 };
122
123 static struct variant_data variant_arm = {
124         .fifosize               = 16 * 4,
125         .fifohalfsize           = 8 * 4,
126         .datalength_bits        = 16,
127         .pwrreg_powerup         = MCI_PWR_UP,
128         .f_max                  = 100000000,
129         .reversed_irq_handling  = true,
130         .mmcimask1              = true,
131         .start_err              = MCI_STARTBITERR,
132         .opendrain              = MCI_ROD,
133 };
134
135 static struct variant_data variant_arm_extended_fifo = {
136         .fifosize               = 128 * 4,
137         .fifohalfsize           = 64 * 4,
138         .datalength_bits        = 16,
139         .pwrreg_powerup         = MCI_PWR_UP,
140         .f_max                  = 100000000,
141         .mmcimask1              = true,
142         .start_err              = MCI_STARTBITERR,
143         .opendrain              = MCI_ROD,
144 };
145
146 static struct variant_data variant_arm_extended_fifo_hwfc = {
147         .fifosize               = 128 * 4,
148         .fifohalfsize           = 64 * 4,
149         .clkreg_enable          = MCI_ARM_HWFCEN,
150         .datalength_bits        = 16,
151         .pwrreg_powerup         = MCI_PWR_UP,
152         .f_max                  = 100000000,
153         .mmcimask1              = true,
154         .start_err              = MCI_STARTBITERR,
155         .opendrain              = MCI_ROD,
156 };
157
158 static struct variant_data variant_u300 = {
159         .fifosize               = 16 * 4,
160         .fifohalfsize           = 8 * 4,
161         .clkreg_enable          = MCI_ST_U300_HWFCEN,
162         .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
163         .datalength_bits        = 16,
164         .datactrl_mask_sdio     = MCI_DPSM_ST_SDIOEN,
165         .st_sdio                        = true,
166         .pwrreg_powerup         = MCI_PWR_ON,
167         .f_max                  = 100000000,
168         .signal_direction       = true,
169         .pwrreg_clkgate         = true,
170         .pwrreg_nopower         = true,
171         .mmcimask1              = true,
172         .start_err              = MCI_STARTBITERR,
173         .opendrain              = MCI_OD,
174 };
175
176 static struct variant_data variant_nomadik = {
177         .fifosize               = 16 * 4,
178         .fifohalfsize           = 8 * 4,
179         .clkreg                 = MCI_CLK_ENABLE,
180         .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
181         .datalength_bits        = 24,
182         .datactrl_mask_sdio     = MCI_DPSM_ST_SDIOEN,
183         .st_sdio                = true,
184         .st_clkdiv              = true,
185         .pwrreg_powerup         = MCI_PWR_ON,
186         .f_max                  = 100000000,
187         .signal_direction       = true,
188         .pwrreg_clkgate         = true,
189         .pwrreg_nopower         = true,
190         .mmcimask1              = true,
191         .start_err              = MCI_STARTBITERR,
192         .opendrain              = MCI_OD,
193 };
194
195 static struct variant_data variant_ux500 = {
196         .fifosize               = 30 * 4,
197         .fifohalfsize           = 8 * 4,
198         .clkreg                 = MCI_CLK_ENABLE,
199         .clkreg_enable          = MCI_ST_UX500_HWFCEN,
200         .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
201         .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE,
202         .datalength_bits        = 24,
203         .datactrl_mask_sdio     = MCI_DPSM_ST_SDIOEN,
204         .st_sdio                = true,
205         .st_clkdiv              = true,
206         .pwrreg_powerup         = MCI_PWR_ON,
207         .f_max                  = 100000000,
208         .signal_direction       = true,
209         .pwrreg_clkgate         = true,
210         .busy_detect            = true,
211         .busy_dpsm_flag         = MCI_DPSM_ST_BUSYMODE,
212         .busy_detect_flag       = MCI_ST_CARDBUSY,
213         .busy_detect_mask       = MCI_ST_BUSYENDMASK,
214         .pwrreg_nopower         = true,
215         .mmcimask1              = true,
216         .start_err              = MCI_STARTBITERR,
217         .opendrain              = MCI_OD,
218 };
219
220 static struct variant_data variant_ux500v2 = {
221         .fifosize               = 30 * 4,
222         .fifohalfsize           = 8 * 4,
223         .clkreg                 = MCI_CLK_ENABLE,
224         .clkreg_enable          = MCI_ST_UX500_HWFCEN,
225         .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
226         .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE,
227         .datactrl_mask_ddrmode  = MCI_DPSM_ST_DDRMODE,
228         .datalength_bits        = 24,
229         .datactrl_mask_sdio     = MCI_DPSM_ST_SDIOEN,
230         .st_sdio                = true,
231         .st_clkdiv              = true,
232         .blksz_datactrl16       = true,
233         .pwrreg_powerup         = MCI_PWR_ON,
234         .f_max                  = 100000000,
235         .signal_direction       = true,
236         .pwrreg_clkgate         = true,
237         .busy_detect            = true,
238         .busy_dpsm_flag         = MCI_DPSM_ST_BUSYMODE,
239         .busy_detect_flag       = MCI_ST_CARDBUSY,
240         .busy_detect_mask       = MCI_ST_BUSYENDMASK,
241         .pwrreg_nopower         = true,
242         .mmcimask1              = true,
243         .start_err              = MCI_STARTBITERR,
244         .opendrain              = MCI_OD,
245 };
246
247 static struct variant_data variant_stm32 = {
248         .fifosize               = 32 * 4,
249         .fifohalfsize           = 8 * 4,
250         .clkreg                 = MCI_CLK_ENABLE,
251         .clkreg_enable          = MCI_ST_UX500_HWFCEN,
252         .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
253         .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE,
254         .datalength_bits        = 24,
255         .datactrl_mask_sdio     = MCI_DPSM_ST_SDIOEN,
256         .st_sdio                = true,
257         .st_clkdiv              = true,
258         .pwrreg_powerup         = MCI_PWR_ON,
259         .f_max                  = 48000000,
260         .pwrreg_clkgate         = true,
261         .pwrreg_nopower         = true,
262 };
263
264 static struct variant_data variant_qcom = {
265         .fifosize               = 16 * 4,
266         .fifohalfsize           = 8 * 4,
267         .clkreg                 = MCI_CLK_ENABLE,
268         .clkreg_enable          = MCI_QCOM_CLK_FLOWENA |
269                                   MCI_QCOM_CLK_SELECT_IN_FBCLK,
270         .clkreg_8bit_bus_enable = MCI_QCOM_CLK_WIDEBUS_8,
271         .datactrl_mask_ddrmode  = MCI_QCOM_CLK_SELECT_IN_DDR_MODE,
272         .data_cmd_enable        = MCI_CPSM_QCOM_DATCMD,
273         .blksz_datactrl4        = true,
274         .datalength_bits        = 24,
275         .pwrreg_powerup         = MCI_PWR_UP,
276         .f_max                  = 208000000,
277         .explicit_mclk_control  = true,
278         .qcom_fifo              = true,
279         .qcom_dml               = true,
280         .mmcimask1              = true,
281         .start_err              = MCI_STARTBITERR,
282         .opendrain              = MCI_ROD,
283 };
284
285 /* Busy detection for the ST Micro variant */
286 static int mmci_card_busy(struct mmc_host *mmc)
287 {
288         struct mmci_host *host = mmc_priv(mmc);
289         unsigned long flags;
290         int busy = 0;
291
292         spin_lock_irqsave(&host->lock, flags);
293         if (readl(host->base + MMCISTATUS) & host->variant->busy_detect_flag)
294                 busy = 1;
295         spin_unlock_irqrestore(&host->lock, flags);
296
297         return busy;
298 }
299
300 /*
301  * Validate mmc prerequisites
302  */
303 static int mmci_validate_data(struct mmci_host *host,
304                               struct mmc_data *data)
305 {
306         if (!data)
307                 return 0;
308
309         if (!is_power_of_2(data->blksz)) {
310                 dev_err(mmc_dev(host->mmc),
311                         "unsupported block size (%d bytes)\n", data->blksz);
312                 return -EINVAL;
313         }
314
315         return 0;
316 }
317
318 static void mmci_reg_delay(struct mmci_host *host)
319 {
320         /*
321          * According to the spec, at least three feedback clock cycles
322          * of max 52 MHz must pass between two writes to the MMCICLOCK reg.
323          * Three MCLK clock cycles must pass between two MMCIPOWER reg writes.
324          * Worst delay time during card init is at 100 kHz => 30 us.
325          * Worst delay time when up and running is at 25 MHz => 120 ns.
326          */
327         if (host->cclk < 25000000)
328                 udelay(30);
329         else
330                 ndelay(120);
331 }
332
333 /*
334  * This must be called with host->lock held
335  */
336 static void mmci_write_clkreg(struct mmci_host *host, u32 clk)
337 {
338         if (host->clk_reg != clk) {
339                 host->clk_reg = clk;
340                 writel(clk, host->base + MMCICLOCK);
341         }
342 }
343
344 /*
345  * This must be called with host->lock held
346  */
347 static void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
348 {
349         if (host->pwr_reg != pwr) {
350                 host->pwr_reg = pwr;
351                 writel(pwr, host->base + MMCIPOWER);
352         }
353 }
354
355 /*
356  * This must be called with host->lock held
357  */
358 static void mmci_write_datactrlreg(struct mmci_host *host, u32 datactrl)
359 {
360         /* Keep busy mode in DPSM if enabled */
361         datactrl |= host->datactrl_reg & host->variant->busy_dpsm_flag;
362
363         if (host->datactrl_reg != datactrl) {
364                 host->datactrl_reg = datactrl;
365                 writel(datactrl, host->base + MMCIDATACTRL);
366         }
367 }
368
369 /*
370  * This must be called with host->lock held
371  */
372 static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
373 {
374         struct variant_data *variant = host->variant;
375         u32 clk = variant->clkreg;
376
377         /* Make sure cclk reflects the current calculated clock */
378         host->cclk = 0;
379
380         if (desired) {
381                 if (variant->explicit_mclk_control) {
382                         host->cclk = host->mclk;
383                 } else if (desired >= host->mclk) {
384                         clk = MCI_CLK_BYPASS;
385                         if (variant->st_clkdiv)
386                                 clk |= MCI_ST_UX500_NEG_EDGE;
387                         host->cclk = host->mclk;
388                 } else if (variant->st_clkdiv) {
389                         /*
390                          * DB8500 TRM says f = mclk / (clkdiv + 2)
391                          * => clkdiv = (mclk / f) - 2
392                          * Round the divider up so we don't exceed the max
393                          * frequency
394                          */
395                         clk = DIV_ROUND_UP(host->mclk, desired) - 2;
396                         if (clk >= 256)
397                                 clk = 255;
398                         host->cclk = host->mclk / (clk + 2);
399                 } else {
400                         /*
401                          * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
402                          * => clkdiv = mclk / (2 * f) - 1
403                          */
404                         clk = host->mclk / (2 * desired) - 1;
405                         if (clk >= 256)
406                                 clk = 255;
407                         host->cclk = host->mclk / (2 * (clk + 1));
408                 }
409
410                 clk |= variant->clkreg_enable;
411                 clk |= MCI_CLK_ENABLE;
412                 /* This hasn't proven to be worthwhile */
413                 /* clk |= MCI_CLK_PWRSAVE; */
414         }
415
416         /* Set actual clock for debug */
417         host->mmc->actual_clock = host->cclk;
418
419         if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
420                 clk |= MCI_4BIT_BUS;
421         if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
422                 clk |= variant->clkreg_8bit_bus_enable;
423
424         if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
425             host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
426                 clk |= variant->clkreg_neg_edge_enable;
427
428         mmci_write_clkreg(host, clk);
429 }
430
431 static void
432 mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
433 {
434         writel(0, host->base + MMCICOMMAND);
435
436         BUG_ON(host->data);
437
438         host->mrq = NULL;
439         host->cmd = NULL;
440
441         mmc_request_done(host->mmc, mrq);
442 }
443
444 static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
445 {
446         void __iomem *base = host->base;
447         struct variant_data *variant = host->variant;
448
449         if (host->singleirq) {
450                 unsigned int mask0 = readl(base + MMCIMASK0);
451
452                 mask0 &= ~MCI_IRQ1MASK;
453                 mask0 |= mask;
454
455                 writel(mask0, base + MMCIMASK0);
456         }
457
458         if (variant->mmcimask1)
459                 writel(mask, base + MMCIMASK1);
460
461         host->mask1_reg = mask;
462 }
463
464 static void mmci_stop_data(struct mmci_host *host)
465 {
466         mmci_write_datactrlreg(host, 0);
467         mmci_set_mask1(host, 0);
468         host->data = NULL;
469 }
470
471 static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
472 {
473         unsigned int flags = SG_MITER_ATOMIC;
474
475         if (data->flags & MMC_DATA_READ)
476                 flags |= SG_MITER_TO_SG;
477         else
478                 flags |= SG_MITER_FROM_SG;
479
480         sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
481 }
482
483 /*
484  * All the DMA operation mode stuff goes inside this ifdef.
485  * This assumes that you have a generic DMA device interface,
486  * no custom DMA interfaces are supported.
487  */
488 #ifdef CONFIG_DMA_ENGINE
489 static void mmci_dma_setup(struct mmci_host *host)
490 {
491         const char *rxname, *txname;
492         struct variant_data *variant = host->variant;
493
494         host->dma_rx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "rx");
495         host->dma_tx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "tx");
496
497         /* initialize pre request cookie */
498         host->next_data.cookie = 1;
499
500         /*
501          * If only an RX channel is specified, the driver will
502          * attempt to use it bidirectionally, however if it is
503          * is specified but cannot be located, DMA will be disabled.
504          */
505         if (host->dma_rx_channel && !host->dma_tx_channel)
506                 host->dma_tx_channel = host->dma_rx_channel;
507
508         if (host->dma_rx_channel)
509                 rxname = dma_chan_name(host->dma_rx_channel);
510         else
511                 rxname = "none";
512
513         if (host->dma_tx_channel)
514                 txname = dma_chan_name(host->dma_tx_channel);
515         else
516                 txname = "none";
517
518         dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
519                  rxname, txname);
520
521         /*
522          * Limit the maximum segment size in any SG entry according to
523          * the parameters of the DMA engine device.
524          */
525         if (host->dma_tx_channel) {
526                 struct device *dev = host->dma_tx_channel->device->dev;
527                 unsigned int max_seg_size = dma_get_max_seg_size(dev);
528
529                 if (max_seg_size < host->mmc->max_seg_size)
530                         host->mmc->max_seg_size = max_seg_size;
531         }
532         if (host->dma_rx_channel) {
533                 struct device *dev = host->dma_rx_channel->device->dev;
534                 unsigned int max_seg_size = dma_get_max_seg_size(dev);
535
536                 if (max_seg_size < host->mmc->max_seg_size)
537                         host->mmc->max_seg_size = max_seg_size;
538         }
539
540         if (variant->qcom_dml && host->dma_rx_channel && host->dma_tx_channel)
541                 if (dml_hw_init(host, host->mmc->parent->of_node))
542                         variant->qcom_dml = false;
543 }
544
545 /*
546  * This is used in or so inline it
547  * so it can be discarded.
548  */
549 static inline void mmci_dma_release(struct mmci_host *host)
550 {
551         if (host->dma_rx_channel)
552                 dma_release_channel(host->dma_rx_channel);
553         if (host->dma_tx_channel)
554                 dma_release_channel(host->dma_tx_channel);
555         host->dma_rx_channel = host->dma_tx_channel = NULL;
556 }
557
558 static void mmci_dma_data_error(struct mmci_host *host)
559 {
560         dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
561         dmaengine_terminate_all(host->dma_current);
562         host->dma_in_progress = false;
563         host->dma_current = NULL;
564         host->dma_desc_current = NULL;
565         host->data->host_cookie = 0;
566 }
567
568 static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
569 {
570         struct dma_chan *chan;
571
572         if (data->flags & MMC_DATA_READ)
573                 chan = host->dma_rx_channel;
574         else
575                 chan = host->dma_tx_channel;
576
577         dma_unmap_sg(chan->device->dev, data->sg, data->sg_len,
578                      mmc_get_dma_dir(data));
579 }
580
581 static void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data)
582 {
583         u32 status;
584         int i;
585
586         /* Wait up to 1ms for the DMA to complete */
587         for (i = 0; ; i++) {
588                 status = readl(host->base + MMCISTATUS);
589                 if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
590                         break;
591                 udelay(10);
592         }
593
594         /*
595          * Check to see whether we still have some data left in the FIFO -
596          * this catches DMA controllers which are unable to monitor the
597          * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
598          * contiguous buffers.  On TX, we'll get a FIFO underrun error.
599          */
600         if (status & MCI_RXDATAAVLBLMASK) {
601                 mmci_dma_data_error(host);
602                 if (!data->error)
603                         data->error = -EIO;
604         }
605
606         if (!data->host_cookie)
607                 mmci_dma_unmap(host, data);
608
609         /*
610          * Use of DMA with scatter-gather is impossible.
611          * Give up with DMA and switch back to PIO mode.
612          */
613         if (status & MCI_RXDATAAVLBLMASK) {
614                 dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
615                 mmci_dma_release(host);
616         }
617
618         host->dma_in_progress = false;
619         host->dma_current = NULL;
620         host->dma_desc_current = NULL;
621 }
622
623 /* prepares DMA channel and DMA descriptor, returns non-zero on failure */
624 static int __mmci_dma_prep_data(struct mmci_host *host, struct mmc_data *data,
625                                 struct dma_chan **dma_chan,
626                                 struct dma_async_tx_descriptor **dma_desc)
627 {
628         struct variant_data *variant = host->variant;
629         struct dma_slave_config conf = {
630                 .src_addr = host->phybase + MMCIFIFO,
631                 .dst_addr = host->phybase + MMCIFIFO,
632                 .src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
633                 .dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
634                 .src_maxburst = variant->fifohalfsize >> 2, /* # of words */
635                 .dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
636                 .device_fc = false,
637         };
638         struct dma_chan *chan;
639         struct dma_device *device;
640         struct dma_async_tx_descriptor *desc;
641         int nr_sg;
642         unsigned long flags = DMA_CTRL_ACK;
643
644         if (data->flags & MMC_DATA_READ) {
645                 conf.direction = DMA_DEV_TO_MEM;
646                 chan = host->dma_rx_channel;
647         } else {
648                 conf.direction = DMA_MEM_TO_DEV;
649                 chan = host->dma_tx_channel;
650         }
651
652         /* If there's no DMA channel, fall back to PIO */
653         if (!chan)
654                 return -EINVAL;
655
656         /* If less than or equal to the fifo size, don't bother with DMA */
657         if (data->blksz * data->blocks <= variant->fifosize)
658                 return -EINVAL;
659
660         device = chan->device;
661         nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len,
662                            mmc_get_dma_dir(data));
663         if (nr_sg == 0)
664                 return -EINVAL;
665
666         if (host->variant->qcom_dml)
667                 flags |= DMA_PREP_INTERRUPT;
668
669         dmaengine_slave_config(chan, &conf);
670         desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
671                                             conf.direction, flags);
672         if (!desc)
673                 goto unmap_exit;
674
675         *dma_chan = chan;
676         *dma_desc = desc;
677
678         return 0;
679
680  unmap_exit:
681         dma_unmap_sg(device->dev, data->sg, data->sg_len,
682                      mmc_get_dma_dir(data));
683         return -ENOMEM;
684 }
685
686 static inline int mmci_dma_prep_data(struct mmci_host *host,
687                                      struct mmc_data *data)
688 {
689         /* Check if next job is already prepared. */
690         if (host->dma_current && host->dma_desc_current)
691                 return 0;
692
693         /* No job were prepared thus do it now. */
694         return __mmci_dma_prep_data(host, data, &host->dma_current,
695                                     &host->dma_desc_current);
696 }
697
698 static inline int mmci_dma_prep_next(struct mmci_host *host,
699                                      struct mmc_data *data)
700 {
701         struct mmci_host_next *nd = &host->next_data;
702         return __mmci_dma_prep_data(host, data, &nd->dma_chan, &nd->dma_desc);
703 }
704
705 static int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
706 {
707         int ret;
708         struct mmc_data *data = host->data;
709
710         ret = mmci_dma_prep_data(host, host->data);
711         if (ret)
712                 return ret;
713
714         /* Okay, go for it. */
715         dev_vdbg(mmc_dev(host->mmc),
716                  "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
717                  data->sg_len, data->blksz, data->blocks, data->flags);
718         host->dma_in_progress = true;
719         dmaengine_submit(host->dma_desc_current);
720         dma_async_issue_pending(host->dma_current);
721
722         if (host->variant->qcom_dml)
723                 dml_start_xfer(host, data);
724
725         datactrl |= MCI_DPSM_DMAENABLE;
726
727         /* Trigger the DMA transfer */
728         mmci_write_datactrlreg(host, datactrl);
729
730         /*
731          * Let the MMCI say when the data is ended and it's time
732          * to fire next DMA request. When that happens, MMCI will
733          * call mmci_data_end()
734          */
735         writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
736                host->base + MMCIMASK0);
737         return 0;
738 }
739
740 static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
741 {
742         struct mmci_host_next *next = &host->next_data;
743
744         WARN_ON(data->host_cookie && data->host_cookie != next->cookie);
745         WARN_ON(!data->host_cookie && (next->dma_desc || next->dma_chan));
746
747         host->dma_desc_current = next->dma_desc;
748         host->dma_current = next->dma_chan;
749         next->dma_desc = NULL;
750         next->dma_chan = NULL;
751 }
752
753 static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq)
754 {
755         struct mmci_host *host = mmc_priv(mmc);
756         struct mmc_data *data = mrq->data;
757         struct mmci_host_next *nd = &host->next_data;
758
759         if (!data)
760                 return;
761
762         BUG_ON(data->host_cookie);
763
764         if (mmci_validate_data(host, data))
765                 return;
766
767         if (!mmci_dma_prep_next(host, data))
768                 data->host_cookie = ++nd->cookie < 0 ? 1 : nd->cookie;
769 }
770
771 static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
772                               int err)
773 {
774         struct mmci_host *host = mmc_priv(mmc);
775         struct mmc_data *data = mrq->data;
776
777         if (!data || !data->host_cookie)
778                 return;
779
780         mmci_dma_unmap(host, data);
781
782         if (err) {
783                 struct mmci_host_next *next = &host->next_data;
784                 struct dma_chan *chan;
785                 if (data->flags & MMC_DATA_READ)
786                         chan = host->dma_rx_channel;
787                 else
788                         chan = host->dma_tx_channel;
789                 dmaengine_terminate_all(chan);
790
791                 if (host->dma_desc_current == next->dma_desc)
792                         host->dma_desc_current = NULL;
793
794                 if (host->dma_current == next->dma_chan) {
795                         host->dma_in_progress = false;
796                         host->dma_current = NULL;
797                 }
798
799                 next->dma_desc = NULL;
800                 next->dma_chan = NULL;
801                 data->host_cookie = 0;
802         }
803 }
804
805 #else
806 /* Blank functions if the DMA engine is not available */
807 static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
808 {
809 }
810 static inline void mmci_dma_setup(struct mmci_host *host)
811 {
812 }
813
814 static inline void mmci_dma_release(struct mmci_host *host)
815 {
816 }
817
818 static inline void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
819 {
820 }
821
822 static inline void mmci_dma_finalize(struct mmci_host *host,
823                                      struct mmc_data *data)
824 {
825 }
826
827 static inline void mmci_dma_data_error(struct mmci_host *host)
828 {
829 }
830
831 static inline int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
832 {
833         return -ENOSYS;
834 }
835
836 #define mmci_pre_request NULL
837 #define mmci_post_request NULL
838
839 #endif
840
841 static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
842 {
843         struct variant_data *variant = host->variant;
844         unsigned int datactrl, timeout, irqmask;
845         unsigned long long clks;
846         void __iomem *base;
847         int blksz_bits;
848
849         dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
850                 data->blksz, data->blocks, data->flags);
851
852         host->data = data;
853         host->size = data->blksz * data->blocks;
854         data->bytes_xfered = 0;
855
856         clks = (unsigned long long)data->timeout_ns * host->cclk;
857         do_div(clks, NSEC_PER_SEC);
858
859         timeout = data->timeout_clks + (unsigned int)clks;
860
861         base = host->base;
862         writel(timeout, base + MMCIDATATIMER);
863         writel(host->size, base + MMCIDATALENGTH);
864
865         blksz_bits = ffs(data->blksz) - 1;
866         BUG_ON(1 << blksz_bits != data->blksz);
867
868         if (variant->blksz_datactrl16)
869                 datactrl = MCI_DPSM_ENABLE | (data->blksz << 16);
870         else if (variant->blksz_datactrl4)
871                 datactrl = MCI_DPSM_ENABLE | (data->blksz << 4);
872         else
873                 datactrl = MCI_DPSM_ENABLE | blksz_bits << 4;
874
875         if (data->flags & MMC_DATA_READ)
876                 datactrl |= MCI_DPSM_DIRECTION;
877
878         if (host->mmc->card && mmc_card_sdio(host->mmc->card)) {
879                 u32 clk;
880
881                 datactrl |= variant->datactrl_mask_sdio;
882
883                 /*
884                  * The ST Micro variant for SDIO small write transfers
885                  * needs to have clock H/W flow control disabled,
886                  * otherwise the transfer will not start. The threshold
887                  * depends on the rate of MCLK.
888                  */
889                 if (variant->st_sdio && data->flags & MMC_DATA_WRITE &&
890                     (host->size < 8 ||
891                      (host->size <= 8 && host->mclk > 50000000)))
892                         clk = host->clk_reg & ~variant->clkreg_enable;
893                 else
894                         clk = host->clk_reg | variant->clkreg_enable;
895
896                 mmci_write_clkreg(host, clk);
897         }
898
899         if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
900             host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
901                 datactrl |= variant->datactrl_mask_ddrmode;
902
903         /*
904          * Attempt to use DMA operation mode, if this
905          * should fail, fall back to PIO mode
906          */
907         if (!mmci_dma_start_data(host, datactrl))
908                 return;
909
910         /* IRQ mode, map the SG list for CPU reading/writing */
911         mmci_init_sg(host, data);
912
913         if (data->flags & MMC_DATA_READ) {
914                 irqmask = MCI_RXFIFOHALFFULLMASK;
915
916                 /*
917                  * If we have less than the fifo 'half-full' threshold to
918                  * transfer, trigger a PIO interrupt as soon as any data
919                  * is available.
920                  */
921                 if (host->size < variant->fifohalfsize)
922                         irqmask |= MCI_RXDATAAVLBLMASK;
923         } else {
924                 /*
925                  * We don't actually need to include "FIFO empty" here
926                  * since its implicit in "FIFO half empty".
927                  */
928                 irqmask = MCI_TXFIFOHALFEMPTYMASK;
929         }
930
931         mmci_write_datactrlreg(host, datactrl);
932         writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
933         mmci_set_mask1(host, irqmask);
934 }
935
936 static void
937 mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
938 {
939         void __iomem *base = host->base;
940
941         dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
942             cmd->opcode, cmd->arg, cmd->flags);
943
944         if (readl(base + MMCICOMMAND) & MCI_CPSM_ENABLE) {
945                 writel(0, base + MMCICOMMAND);
946                 mmci_reg_delay(host);
947         }
948
949         c |= cmd->opcode | MCI_CPSM_ENABLE;
950         if (cmd->flags & MMC_RSP_PRESENT) {
951                 if (cmd->flags & MMC_RSP_136)
952                         c |= MCI_CPSM_LONGRSP;
953                 c |= MCI_CPSM_RESPONSE;
954         }
955         if (/*interrupt*/0)
956                 c |= MCI_CPSM_INTERRUPT;
957
958         if (mmc_cmd_type(cmd) == MMC_CMD_ADTC)
959                 c |= host->variant->data_cmd_enable;
960
961         host->cmd = cmd;
962
963         writel(cmd->arg, base + MMCIARGUMENT);
964         writel(c, base + MMCICOMMAND);
965 }
966
967 static void
968 mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
969               unsigned int status)
970 {
971         /* Make sure we have data to handle */
972         if (!data)
973                 return;
974
975         /* First check for errors */
976         if (status & (MCI_DATACRCFAIL | MCI_DATATIMEOUT |
977                       host->variant->start_err |
978                       MCI_TXUNDERRUN | MCI_RXOVERRUN)) {
979                 u32 remain, success;
980
981                 /* Terminate the DMA transfer */
982                 if (dma_inprogress(host)) {
983                         mmci_dma_data_error(host);
984                         mmci_dma_unmap(host, data);
985                 }
986
987                 /*
988                  * Calculate how far we are into the transfer.  Note that
989                  * the data counter gives the number of bytes transferred
990                  * on the MMC bus, not on the host side.  On reads, this
991                  * can be as much as a FIFO-worth of data ahead.  This
992                  * matters for FIFO overruns only.
993                  */
994                 remain = readl(host->base + MMCIDATACNT);
995                 success = data->blksz * data->blocks - remain;
996
997                 dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
998                         status, success);
999                 if (status & MCI_DATACRCFAIL) {
1000                         /* Last block was not successful */
1001                         success -= 1;
1002                         data->error = -EILSEQ;
1003                 } else if (status & MCI_DATATIMEOUT) {
1004                         data->error = -ETIMEDOUT;
1005                 } else if (status & MCI_STARTBITERR) {
1006                         data->error = -ECOMM;
1007                 } else if (status & MCI_TXUNDERRUN) {
1008                         data->error = -EIO;
1009                 } else if (status & MCI_RXOVERRUN) {
1010                         if (success > host->variant->fifosize)
1011                                 success -= host->variant->fifosize;
1012                         else
1013                                 success = 0;
1014                         data->error = -EIO;
1015                 }
1016                 data->bytes_xfered = round_down(success, data->blksz);
1017         }
1018
1019         if (status & MCI_DATABLOCKEND)
1020                 dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
1021
1022         if (status & MCI_DATAEND || data->error) {
1023                 if (dma_inprogress(host))
1024                         mmci_dma_finalize(host, data);
1025                 mmci_stop_data(host);
1026
1027                 if (!data->error)
1028                         /* The error clause is handled above, success! */
1029                         data->bytes_xfered = data->blksz * data->blocks;
1030
1031                 if (!data->stop || host->mrq->sbc) {
1032                         mmci_request_end(host, data->mrq);
1033                 } else {
1034                         mmci_start_command(host, data->stop, 0);
1035                 }
1036         }
1037 }
1038
1039 static void
1040 mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
1041              unsigned int status)
1042 {
1043         void __iomem *base = host->base;
1044         bool sbc;
1045
1046         if (!cmd)
1047                 return;
1048
1049         sbc = (cmd == host->mrq->sbc);
1050
1051         /*
1052          * We need to be one of these interrupts to be considered worth
1053          * handling. Note that we tag on any latent IRQs postponed
1054          * due to waiting for busy status.
1055          */
1056         if (!((status|host->busy_status) &
1057               (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|MCI_CMDSENT|MCI_CMDRESPEND)))
1058                 return;
1059
1060         /*
1061          * ST Micro variant: handle busy detection.
1062          */
1063         if (host->variant->busy_detect) {
1064                 bool busy_resp = !!(cmd->flags & MMC_RSP_BUSY);
1065
1066                 /* We are busy with a command, return */
1067                 if (host->busy_status &&
1068                     (status & host->variant->busy_detect_flag))
1069                         return;
1070
1071                 /*
1072                  * We were not busy, but we now got a busy response on
1073                  * something that was not an error, and we double-check
1074                  * that the special busy status bit is still set before
1075                  * proceeding.
1076                  */
1077                 if (!host->busy_status && busy_resp &&
1078                     !(status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT)) &&
1079                     (readl(base + MMCISTATUS) & host->variant->busy_detect_flag)) {
1080
1081                         /* Clear the busy start IRQ */
1082                         writel(host->variant->busy_detect_mask,
1083                                host->base + MMCICLEAR);
1084
1085                         /* Unmask the busy end IRQ */
1086                         writel(readl(base + MMCIMASK0) |
1087                                host->variant->busy_detect_mask,
1088                                base + MMCIMASK0);
1089                         /*
1090                          * Now cache the last response status code (until
1091                          * the busy bit goes low), and return.
1092                          */
1093                         host->busy_status =
1094                                 status & (MCI_CMDSENT|MCI_CMDRESPEND);
1095                         return;
1096                 }
1097
1098                 /*
1099                  * At this point we are not busy with a command, we have
1100                  * not received a new busy request, clear and mask the busy
1101                  * end IRQ and fall through to process the IRQ.
1102                  */
1103                 if (host->busy_status) {
1104
1105                         writel(host->variant->busy_detect_mask,
1106                                host->base + MMCICLEAR);
1107
1108                         writel(readl(base + MMCIMASK0) &
1109                                ~host->variant->busy_detect_mask,
1110                                base + MMCIMASK0);
1111                         host->busy_status = 0;
1112                 }
1113         }
1114
1115         host->cmd = NULL;
1116
1117         if (status & MCI_CMDTIMEOUT) {
1118                 cmd->error = -ETIMEDOUT;
1119         } else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
1120                 cmd->error = -EILSEQ;
1121         } else {
1122                 cmd->resp[0] = readl(base + MMCIRESPONSE0);
1123                 cmd->resp[1] = readl(base + MMCIRESPONSE1);
1124                 cmd->resp[2] = readl(base + MMCIRESPONSE2);
1125                 cmd->resp[3] = readl(base + MMCIRESPONSE3);
1126         }
1127
1128         if ((!sbc && !cmd->data) || cmd->error) {
1129                 if (host->data) {
1130                         /* Terminate the DMA transfer */
1131                         if (dma_inprogress(host)) {
1132                                 mmci_dma_data_error(host);
1133                                 mmci_dma_unmap(host, host->data);
1134                         }
1135                         mmci_stop_data(host);
1136                 }
1137                 mmci_request_end(host, host->mrq);
1138         } else if (sbc) {
1139                 mmci_start_command(host, host->mrq->cmd, 0);
1140         } else if (!(cmd->data->flags & MMC_DATA_READ)) {
1141                 mmci_start_data(host, cmd->data);
1142         }
1143 }
1144
1145 static int mmci_get_rx_fifocnt(struct mmci_host *host, u32 status, int remain)
1146 {
1147         return remain - (readl(host->base + MMCIFIFOCNT) << 2);
1148 }
1149
1150 static int mmci_qcom_get_rx_fifocnt(struct mmci_host *host, u32 status, int r)
1151 {
1152         /*
1153          * on qcom SDCC4 only 8 words are used in each burst so only 8 addresses
1154          * from the fifo range should be used
1155          */
1156         if (status & MCI_RXFIFOHALFFULL)
1157                 return host->variant->fifohalfsize;
1158         else if (status & MCI_RXDATAAVLBL)
1159                 return 4;
1160
1161         return 0;
1162 }
1163
1164 static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
1165 {
1166         void __iomem *base = host->base;
1167         char *ptr = buffer;
1168         u32 status = readl(host->base + MMCISTATUS);
1169         int host_remain = host->size;
1170
1171         do {
1172                 int count = host->get_rx_fifocnt(host, status, host_remain);
1173
1174                 if (count > remain)
1175                         count = remain;
1176
1177                 if (count <= 0)
1178                         break;
1179
1180                 /*
1181                  * SDIO especially may want to send something that is
1182                  * not divisible by 4 (as opposed to card sectors
1183                  * etc). Therefore make sure to always read the last bytes
1184                  * while only doing full 32-bit reads towards the FIFO.
1185                  */
1186                 if (unlikely(count & 0x3)) {
1187                         if (count < 4) {
1188                                 unsigned char buf[4];
1189                                 ioread32_rep(base + MMCIFIFO, buf, 1);
1190                                 memcpy(ptr, buf, count);
1191                         } else {
1192                                 ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1193                                 count &= ~0x3;
1194                         }
1195                 } else {
1196                         ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1197                 }
1198
1199                 ptr += count;
1200                 remain -= count;
1201                 host_remain -= count;
1202
1203                 if (remain == 0)
1204                         break;
1205
1206                 status = readl(base + MMCISTATUS);
1207         } while (status & MCI_RXDATAAVLBL);
1208
1209         return ptr - buffer;
1210 }
1211
1212 static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
1213 {
1214         struct variant_data *variant = host->variant;
1215         void __iomem *base = host->base;
1216         char *ptr = buffer;
1217
1218         do {
1219                 unsigned int count, maxcnt;
1220
1221                 maxcnt = status & MCI_TXFIFOEMPTY ?
1222                          variant->fifosize : variant->fifohalfsize;
1223                 count = min(remain, maxcnt);
1224
1225                 /*
1226                  * SDIO especially may want to send something that is
1227                  * not divisible by 4 (as opposed to card sectors
1228                  * etc), and the FIFO only accept full 32-bit writes.
1229                  * So compensate by adding +3 on the count, a single
1230                  * byte become a 32bit write, 7 bytes will be two
1231                  * 32bit writes etc.
1232                  */
1233                 iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2);
1234
1235                 ptr += count;
1236                 remain -= count;
1237
1238                 if (remain == 0)
1239                         break;
1240
1241                 status = readl(base + MMCISTATUS);
1242         } while (status & MCI_TXFIFOHALFEMPTY);
1243
1244         return ptr - buffer;
1245 }
1246
1247 /*
1248  * PIO data transfer IRQ handler.
1249  */
1250 static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
1251 {
1252         struct mmci_host *host = dev_id;
1253         struct sg_mapping_iter *sg_miter = &host->sg_miter;
1254         struct variant_data *variant = host->variant;
1255         void __iomem *base = host->base;
1256         u32 status;
1257
1258         status = readl(base + MMCISTATUS);
1259
1260         dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
1261
1262         do {
1263                 unsigned int remain, len;
1264                 char *buffer;
1265
1266                 /*
1267                  * For write, we only need to test the half-empty flag
1268                  * here - if the FIFO is completely empty, then by
1269                  * definition it is more than half empty.
1270                  *
1271                  * For read, check for data available.
1272                  */
1273                 if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
1274                         break;
1275
1276                 if (!sg_miter_next(sg_miter))
1277                         break;
1278
1279                 buffer = sg_miter->addr;
1280                 remain = sg_miter->length;
1281
1282                 len = 0;
1283                 if (status & MCI_RXACTIVE)
1284                         len = mmci_pio_read(host, buffer, remain);
1285                 if (status & MCI_TXACTIVE)
1286                         len = mmci_pio_write(host, buffer, remain, status);
1287
1288                 sg_miter->consumed = len;
1289
1290                 host->size -= len;
1291                 remain -= len;
1292
1293                 if (remain)
1294                         break;
1295
1296                 status = readl(base + MMCISTATUS);
1297         } while (1);
1298
1299         sg_miter_stop(sg_miter);
1300
1301         /*
1302          * If we have less than the fifo 'half-full' threshold to transfer,
1303          * trigger a PIO interrupt as soon as any data is available.
1304          */
1305         if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
1306                 mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
1307
1308         /*
1309          * If we run out of data, disable the data IRQs; this
1310          * prevents a race where the FIFO becomes empty before
1311          * the chip itself has disabled the data path, and
1312          * stops us racing with our data end IRQ.
1313          */
1314         if (host->size == 0) {
1315                 mmci_set_mask1(host, 0);
1316                 writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
1317         }
1318
1319         return IRQ_HANDLED;
1320 }
1321
1322 /*
1323  * Handle completion of command and data transfers.
1324  */
1325 static irqreturn_t mmci_irq(int irq, void *dev_id)
1326 {
1327         struct mmci_host *host = dev_id;
1328         u32 status;
1329         int ret = 0;
1330
1331         spin_lock(&host->lock);
1332
1333         do {
1334                 status = readl(host->base + MMCISTATUS);
1335
1336                 if (host->singleirq) {
1337                         if (status & host->mask1_reg)
1338                                 mmci_pio_irq(irq, dev_id);
1339
1340                         status &= ~MCI_IRQ1MASK;
1341                 }
1342
1343                 /*
1344                  * We intentionally clear the MCI_ST_CARDBUSY IRQ (if it's
1345                  * enabled) in mmci_cmd_irq() function where ST Micro busy
1346                  * detection variant is handled. Considering the HW seems to be
1347                  * triggering the IRQ on both edges while monitoring DAT0 for
1348                  * busy completion and that same status bit is used to monitor
1349                  * start and end of busy detection, special care must be taken
1350                  * to make sure that both start and end interrupts are always
1351                  * cleared one after the other.
1352                  */
1353                 status &= readl(host->base + MMCIMASK0);
1354                 if (host->variant->busy_detect)
1355                         writel(status & ~host->variant->busy_detect_mask,
1356                                host->base + MMCICLEAR);
1357                 else
1358                         writel(status, host->base + MMCICLEAR);
1359
1360                 dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
1361
1362                 if (host->variant->reversed_irq_handling) {
1363                         mmci_data_irq(host, host->data, status);
1364                         mmci_cmd_irq(host, host->cmd, status);
1365                 } else {
1366                         mmci_cmd_irq(host, host->cmd, status);
1367                         mmci_data_irq(host, host->data, status);
1368                 }
1369
1370                 /*
1371                  * Don't poll for busy completion in irq context.
1372                  */
1373                 if (host->variant->busy_detect && host->busy_status)
1374                         status &= ~host->variant->busy_detect_flag;
1375
1376                 ret = 1;
1377         } while (status);
1378
1379         spin_unlock(&host->lock);
1380
1381         return IRQ_RETVAL(ret);
1382 }
1383
1384 static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1385 {
1386         struct mmci_host *host = mmc_priv(mmc);
1387         unsigned long flags;
1388
1389         WARN_ON(host->mrq != NULL);
1390
1391         mrq->cmd->error = mmci_validate_data(host, mrq->data);
1392         if (mrq->cmd->error) {
1393                 mmc_request_done(mmc, mrq);
1394                 return;
1395         }
1396
1397         spin_lock_irqsave(&host->lock, flags);
1398
1399         host->mrq = mrq;
1400
1401         if (mrq->data)
1402                 mmci_get_next_data(host, mrq->data);
1403
1404         if (mrq->data && mrq->data->flags & MMC_DATA_READ)
1405                 mmci_start_data(host, mrq->data);
1406
1407         if (mrq->sbc)
1408                 mmci_start_command(host, mrq->sbc, 0);
1409         else
1410                 mmci_start_command(host, mrq->cmd, 0);
1411
1412         spin_unlock_irqrestore(&host->lock, flags);
1413 }
1414
1415 static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1416 {
1417         struct mmci_host *host = mmc_priv(mmc);
1418         struct variant_data *variant = host->variant;
1419         u32 pwr = 0;
1420         unsigned long flags;
1421         int ret;
1422
1423         if (host->plat->ios_handler &&
1424                 host->plat->ios_handler(mmc_dev(mmc), ios))
1425                         dev_err(mmc_dev(mmc), "platform ios_handler failed\n");
1426
1427         switch (ios->power_mode) {
1428         case MMC_POWER_OFF:
1429                 if (!IS_ERR(mmc->supply.vmmc))
1430                         mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1431
1432                 if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
1433                         regulator_disable(mmc->supply.vqmmc);
1434                         host->vqmmc_enabled = false;
1435                 }
1436
1437                 break;
1438         case MMC_POWER_UP:
1439                 if (!IS_ERR(mmc->supply.vmmc))
1440                         mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1441
1442                 /*
1443                  * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1444                  * and instead uses MCI_PWR_ON so apply whatever value is
1445                  * configured in the variant data.
1446                  */
1447                 pwr |= variant->pwrreg_powerup;
1448
1449                 break;
1450         case MMC_POWER_ON:
1451                 if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
1452                         ret = regulator_enable(mmc->supply.vqmmc);
1453                         if (ret < 0)
1454                                 dev_err(mmc_dev(mmc),
1455                                         "failed to enable vqmmc regulator\n");
1456                         else
1457                                 host->vqmmc_enabled = true;
1458                 }
1459
1460                 pwr |= MCI_PWR_ON;
1461                 break;
1462         }
1463
1464         if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
1465                 /*
1466                  * The ST Micro variant has some additional bits
1467                  * indicating signal direction for the signals in
1468                  * the SD/MMC bus and feedback-clock usage.
1469                  */
1470                 pwr |= host->pwr_reg_add;
1471
1472                 if (ios->bus_width == MMC_BUS_WIDTH_4)
1473                         pwr &= ~MCI_ST_DATA74DIREN;
1474                 else if (ios->bus_width == MMC_BUS_WIDTH_1)
1475                         pwr &= (~MCI_ST_DATA74DIREN &
1476                                 ~MCI_ST_DATA31DIREN &
1477                                 ~MCI_ST_DATA2DIREN);
1478         }
1479
1480         if (variant->opendrain) {
1481                 if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1482                         pwr |= variant->opendrain;
1483         } else {
1484                 /*
1485                  * If the variant cannot configure the pads by its own, then we
1486                  * expect the pinctrl to be able to do that for us
1487                  */
1488                 if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1489                         pinctrl_select_state(host->pinctrl, host->pins_opendrain);
1490                 else
1491                         pinctrl_select_state(host->pinctrl, host->pins_default);
1492         }
1493
1494         /*
1495          * If clock = 0 and the variant requires the MMCIPOWER to be used for
1496          * gating the clock, the MCI_PWR_ON bit is cleared.
1497          */
1498         if (!ios->clock && variant->pwrreg_clkgate)
1499                 pwr &= ~MCI_PWR_ON;
1500
1501         if (host->variant->explicit_mclk_control &&
1502             ios->clock != host->clock_cache) {
1503                 ret = clk_set_rate(host->clk, ios->clock);
1504                 if (ret < 0)
1505                         dev_err(mmc_dev(host->mmc),
1506                                 "Error setting clock rate (%d)\n", ret);
1507                 else
1508                         host->mclk = clk_get_rate(host->clk);
1509         }
1510         host->clock_cache = ios->clock;
1511
1512         spin_lock_irqsave(&host->lock, flags);
1513
1514         mmci_set_clkreg(host, ios->clock);
1515         mmci_write_pwrreg(host, pwr);
1516         mmci_reg_delay(host);
1517
1518         spin_unlock_irqrestore(&host->lock, flags);
1519 }
1520
1521 static int mmci_get_cd(struct mmc_host *mmc)
1522 {
1523         struct mmci_host *host = mmc_priv(mmc);
1524         struct mmci_platform_data *plat = host->plat;
1525         unsigned int status = mmc_gpio_get_cd(mmc);
1526
1527         if (status == -ENOSYS) {
1528                 if (!plat->status)
1529                         return 1; /* Assume always present */
1530
1531                 status = plat->status(mmc_dev(host->mmc));
1532         }
1533         return status;
1534 }
1535
1536 static int mmci_sig_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios)
1537 {
1538         int ret = 0;
1539
1540         if (!IS_ERR(mmc->supply.vqmmc)) {
1541
1542                 switch (ios->signal_voltage) {
1543                 case MMC_SIGNAL_VOLTAGE_330:
1544                         ret = regulator_set_voltage(mmc->supply.vqmmc,
1545                                                 2700000, 3600000);
1546                         break;
1547                 case MMC_SIGNAL_VOLTAGE_180:
1548                         ret = regulator_set_voltage(mmc->supply.vqmmc,
1549                                                 1700000, 1950000);
1550                         break;
1551                 case MMC_SIGNAL_VOLTAGE_120:
1552                         ret = regulator_set_voltage(mmc->supply.vqmmc,
1553                                                 1100000, 1300000);
1554                         break;
1555                 }
1556
1557                 if (ret)
1558                         dev_warn(mmc_dev(mmc), "Voltage switch failed\n");
1559         }
1560
1561         return ret;
1562 }
1563
1564 static struct mmc_host_ops mmci_ops = {
1565         .request        = mmci_request,
1566         .pre_req        = mmci_pre_request,
1567         .post_req       = mmci_post_request,
1568         .set_ios        = mmci_set_ios,
1569         .get_ro         = mmc_gpio_get_ro,
1570         .get_cd         = mmci_get_cd,
1571         .start_signal_voltage_switch = mmci_sig_volt_switch,
1572 };
1573
1574 static int mmci_of_parse(struct device_node *np, struct mmc_host *mmc)
1575 {
1576         struct mmci_host *host = mmc_priv(mmc);
1577         int ret = mmc_of_parse(mmc);
1578
1579         if (ret)
1580                 return ret;
1581
1582         if (of_get_property(np, "st,sig-dir-dat0", NULL))
1583                 host->pwr_reg_add |= MCI_ST_DATA0DIREN;
1584         if (of_get_property(np, "st,sig-dir-dat2", NULL))
1585                 host->pwr_reg_add |= MCI_ST_DATA2DIREN;
1586         if (of_get_property(np, "st,sig-dir-dat31", NULL))
1587                 host->pwr_reg_add |= MCI_ST_DATA31DIREN;
1588         if (of_get_property(np, "st,sig-dir-dat74", NULL))
1589                 host->pwr_reg_add |= MCI_ST_DATA74DIREN;
1590         if (of_get_property(np, "st,sig-dir-cmd", NULL))
1591                 host->pwr_reg_add |= MCI_ST_CMDDIREN;
1592         if (of_get_property(np, "st,sig-pin-fbclk", NULL))
1593                 host->pwr_reg_add |= MCI_ST_FBCLKEN;
1594
1595         if (of_get_property(np, "mmc-cap-mmc-highspeed", NULL))
1596                 mmc->caps |= MMC_CAP_MMC_HIGHSPEED;
1597         if (of_get_property(np, "mmc-cap-sd-highspeed", NULL))
1598                 mmc->caps |= MMC_CAP_SD_HIGHSPEED;
1599
1600         return 0;
1601 }
1602
1603 static int mmci_probe(struct amba_device *dev,
1604         const struct amba_id *id)
1605 {
1606         struct mmci_platform_data *plat = dev->dev.platform_data;
1607         struct device_node *np = dev->dev.of_node;
1608         struct variant_data *variant = id->data;
1609         struct mmci_host *host;
1610         struct mmc_host *mmc;
1611         int ret;
1612
1613         /* Must have platform data or Device Tree. */
1614         if (!plat && !np) {
1615                 dev_err(&dev->dev, "No plat data or DT found\n");
1616                 return -EINVAL;
1617         }
1618
1619         if (!plat) {
1620                 plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL);
1621                 if (!plat)
1622                         return -ENOMEM;
1623         }
1624
1625         mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
1626         if (!mmc)
1627                 return -ENOMEM;
1628
1629         ret = mmci_of_parse(np, mmc);
1630         if (ret)
1631                 goto host_free;
1632
1633         host = mmc_priv(mmc);
1634         host->mmc = mmc;
1635
1636         /*
1637          * Some variant (STM32) doesn't have opendrain bit, nevertheless
1638          * pins can be set accordingly using pinctrl
1639          */
1640         if (!variant->opendrain) {
1641                 host->pinctrl = devm_pinctrl_get(&dev->dev);
1642                 if (IS_ERR(host->pinctrl)) {
1643                         dev_err(&dev->dev, "failed to get pinctrl");
1644                         ret = PTR_ERR(host->pinctrl);
1645                         goto host_free;
1646                 }
1647
1648                 host->pins_default = pinctrl_lookup_state(host->pinctrl,
1649                                                           PINCTRL_STATE_DEFAULT);
1650                 if (IS_ERR(host->pins_default)) {
1651                         dev_err(mmc_dev(mmc), "Can't select default pins\n");
1652                         ret = PTR_ERR(host->pins_default);
1653                         goto host_free;
1654                 }
1655
1656                 host->pins_opendrain = pinctrl_lookup_state(host->pinctrl,
1657                                                             MMCI_PINCTRL_STATE_OPENDRAIN);
1658                 if (IS_ERR(host->pins_opendrain)) {
1659                         dev_err(mmc_dev(mmc), "Can't select opendrain pins\n");
1660                         ret = PTR_ERR(host->pins_opendrain);
1661                         goto host_free;
1662                 }
1663         }
1664
1665         host->hw_designer = amba_manf(dev);
1666         host->hw_revision = amba_rev(dev);
1667         dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1668         dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1669
1670         host->clk = devm_clk_get(&dev->dev, NULL);
1671         if (IS_ERR(host->clk)) {
1672                 ret = PTR_ERR(host->clk);
1673                 goto host_free;
1674         }
1675
1676         ret = clk_prepare_enable(host->clk);
1677         if (ret)
1678                 goto host_free;
1679
1680         if (variant->qcom_fifo)
1681                 host->get_rx_fifocnt = mmci_qcom_get_rx_fifocnt;
1682         else
1683                 host->get_rx_fifocnt = mmci_get_rx_fifocnt;
1684
1685         host->plat = plat;
1686         host->variant = variant;
1687         host->mclk = clk_get_rate(host->clk);
1688         /*
1689          * According to the spec, mclk is max 100 MHz,
1690          * so we try to adjust the clock down to this,
1691          * (if possible).
1692          */
1693         if (host->mclk > variant->f_max) {
1694                 ret = clk_set_rate(host->clk, variant->f_max);
1695                 if (ret < 0)
1696                         goto clk_disable;
1697                 host->mclk = clk_get_rate(host->clk);
1698                 dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
1699                         host->mclk);
1700         }
1701
1702         host->phybase = dev->res.start;
1703         host->base = devm_ioremap_resource(&dev->dev, &dev->res);
1704         if (IS_ERR(host->base)) {
1705                 ret = PTR_ERR(host->base);
1706                 goto clk_disable;
1707         }
1708
1709         /*
1710          * The ARM and ST versions of the block have slightly different
1711          * clock divider equations which means that the minimum divider
1712          * differs too.
1713          * on Qualcomm like controllers get the nearest minimum clock to 100Khz
1714          */
1715         if (variant->st_clkdiv)
1716                 mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
1717         else if (variant->explicit_mclk_control)
1718                 mmc->f_min = clk_round_rate(host->clk, 100000);
1719         else
1720                 mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
1721         /*
1722          * If no maximum operating frequency is supplied, fall back to use
1723          * the module parameter, which has a (low) default value in case it
1724          * is not specified. Either value must not exceed the clock rate into
1725          * the block, of course.
1726          */
1727         if (mmc->f_max)
1728                 mmc->f_max = variant->explicit_mclk_control ?
1729                                 min(variant->f_max, mmc->f_max) :
1730                                 min(host->mclk, mmc->f_max);
1731         else
1732                 mmc->f_max = variant->explicit_mclk_control ?
1733                                 fmax : min(host->mclk, fmax);
1734
1735
1736         dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
1737
1738         /* Get regulators and the supported OCR mask */
1739         ret = mmc_regulator_get_supply(mmc);
1740         if (ret)
1741                 goto clk_disable;
1742
1743         if (!mmc->ocr_avail)
1744                 mmc->ocr_avail = plat->ocr_mask;
1745         else if (plat->ocr_mask)
1746                 dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1747
1748         /* DT takes precedence over platform data. */
1749         if (!np) {
1750                 if (!plat->cd_invert)
1751                         mmc->caps2 |= MMC_CAP2_CD_ACTIVE_HIGH;
1752                 mmc->caps2 |= MMC_CAP2_RO_ACTIVE_HIGH;
1753         }
1754
1755         /* We support these capabilities. */
1756         mmc->caps |= MMC_CAP_CMD23;
1757
1758         /*
1759          * Enable busy detection.
1760          */
1761         if (variant->busy_detect) {
1762                 mmci_ops.card_busy = mmci_card_busy;
1763                 /*
1764                  * Not all variants have a flag to enable busy detection
1765                  * in the DPSM, but if they do, set it here.
1766                  */
1767                 if (variant->busy_dpsm_flag)
1768                         mmci_write_datactrlreg(host,
1769                                                host->variant->busy_dpsm_flag);
1770                 mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY;
1771                 mmc->max_busy_timeout = 0;
1772         }
1773
1774         mmc->ops = &mmci_ops;
1775
1776         /* We support these PM capabilities. */
1777         mmc->pm_caps |= MMC_PM_KEEP_POWER;
1778
1779         /*
1780          * We can do SGIO
1781          */
1782         mmc->max_segs = NR_SG;
1783
1784         /*
1785          * Since only a certain number of bits are valid in the data length
1786          * register, we must ensure that we don't exceed 2^num-1 bytes in a
1787          * single request.
1788          */
1789         mmc->max_req_size = (1 << variant->datalength_bits) - 1;
1790
1791         /*
1792          * Set the maximum segment size.  Since we aren't doing DMA
1793          * (yet) we are only limited by the data length register.
1794          */
1795         mmc->max_seg_size = mmc->max_req_size;
1796
1797         /*
1798          * Block size can be up to 2048 bytes, but must be a power of two.
1799          */
1800         mmc->max_blk_size = 1 << 11;
1801
1802         /*
1803          * Limit the number of blocks transferred so that we don't overflow
1804          * the maximum request size.
1805          */
1806         mmc->max_blk_count = mmc->max_req_size >> 11;
1807
1808         spin_lock_init(&host->lock);
1809
1810         writel(0, host->base + MMCIMASK0);
1811
1812         if (variant->mmcimask1)
1813                 writel(0, host->base + MMCIMASK1);
1814
1815         writel(0xfff, host->base + MMCICLEAR);
1816
1817         /*
1818          * If:
1819          * - not using DT but using a descriptor table, or
1820          * - using a table of descriptors ALONGSIDE DT, or
1821          * look up these descriptors named "cd" and "wp" right here, fail
1822          * silently of these do not exist and proceed to try platform data
1823          */
1824         if (!np) {
1825                 ret = mmc_gpiod_request_cd(mmc, "cd", 0, false, 0, NULL);
1826                 if (ret < 0) {
1827                         if (ret == -EPROBE_DEFER)
1828                                 goto clk_disable;
1829                         else if (gpio_is_valid(plat->gpio_cd)) {
1830                                 ret = mmc_gpio_request_cd(mmc, plat->gpio_cd, 0);
1831                                 if (ret)
1832                                         goto clk_disable;
1833                         }
1834                 }
1835
1836                 ret = mmc_gpiod_request_ro(mmc, "wp", 0, false, 0, NULL);
1837                 if (ret < 0) {
1838                         if (ret == -EPROBE_DEFER)
1839                                 goto clk_disable;
1840                         else if (gpio_is_valid(plat->gpio_wp)) {
1841                                 ret = mmc_gpio_request_ro(mmc, plat->gpio_wp);
1842                                 if (ret)
1843                                         goto clk_disable;
1844                         }
1845                 }
1846         }
1847
1848         ret = devm_request_irq(&dev->dev, dev->irq[0], mmci_irq, IRQF_SHARED,
1849                         DRIVER_NAME " (cmd)", host);
1850         if (ret)
1851                 goto clk_disable;
1852
1853         if (!dev->irq[1])
1854                 host->singleirq = true;
1855         else {
1856                 ret = devm_request_irq(&dev->dev, dev->irq[1], mmci_pio_irq,
1857                                 IRQF_SHARED, DRIVER_NAME " (pio)", host);
1858                 if (ret)
1859                         goto clk_disable;
1860         }
1861
1862         writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1863
1864         amba_set_drvdata(dev, mmc);
1865
1866         dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
1867                  mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
1868                  amba_rev(dev), (unsigned long long)dev->res.start,
1869                  dev->irq[0], dev->irq[1]);
1870
1871         mmci_dma_setup(host);
1872
1873         pm_runtime_set_autosuspend_delay(&dev->dev, 50);
1874         pm_runtime_use_autosuspend(&dev->dev);
1875
1876         mmc_add_host(mmc);
1877
1878         pm_runtime_put(&dev->dev);
1879         return 0;
1880
1881  clk_disable:
1882         clk_disable_unprepare(host->clk);
1883  host_free:
1884         mmc_free_host(mmc);
1885         return ret;
1886 }
1887
1888 static int mmci_remove(struct amba_device *dev)
1889 {
1890         struct mmc_host *mmc = amba_get_drvdata(dev);
1891
1892         if (mmc) {
1893                 struct mmci_host *host = mmc_priv(mmc);
1894                 struct variant_data *variant = host->variant;
1895
1896                 /*
1897                  * Undo pm_runtime_put() in probe.  We use the _sync
1898                  * version here so that we can access the primecell.
1899                  */
1900                 pm_runtime_get_sync(&dev->dev);
1901
1902                 mmc_remove_host(mmc);
1903
1904                 writel(0, host->base + MMCIMASK0);
1905
1906                 if (variant->mmcimask1)
1907                         writel(0, host->base + MMCIMASK1);
1908
1909                 writel(0, host->base + MMCICOMMAND);
1910                 writel(0, host->base + MMCIDATACTRL);
1911
1912                 mmci_dma_release(host);
1913                 clk_disable_unprepare(host->clk);
1914                 mmc_free_host(mmc);
1915         }
1916
1917         return 0;
1918 }
1919
1920 #ifdef CONFIG_PM
1921 static void mmci_save(struct mmci_host *host)
1922 {
1923         unsigned long flags;
1924
1925         spin_lock_irqsave(&host->lock, flags);
1926
1927         writel(0, host->base + MMCIMASK0);
1928         if (host->variant->pwrreg_nopower) {
1929                 writel(0, host->base + MMCIDATACTRL);
1930                 writel(0, host->base + MMCIPOWER);
1931                 writel(0, host->base + MMCICLOCK);
1932         }
1933         mmci_reg_delay(host);
1934
1935         spin_unlock_irqrestore(&host->lock, flags);
1936 }
1937
1938 static void mmci_restore(struct mmci_host *host)
1939 {
1940         unsigned long flags;
1941
1942         spin_lock_irqsave(&host->lock, flags);
1943
1944         if (host->variant->pwrreg_nopower) {
1945                 writel(host->clk_reg, host->base + MMCICLOCK);
1946                 writel(host->datactrl_reg, host->base + MMCIDATACTRL);
1947                 writel(host->pwr_reg, host->base + MMCIPOWER);
1948         }
1949         writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1950         mmci_reg_delay(host);
1951
1952         spin_unlock_irqrestore(&host->lock, flags);
1953 }
1954
1955 static int mmci_runtime_suspend(struct device *dev)
1956 {
1957         struct amba_device *adev = to_amba_device(dev);
1958         struct mmc_host *mmc = amba_get_drvdata(adev);
1959
1960         if (mmc) {
1961                 struct mmci_host *host = mmc_priv(mmc);
1962                 pinctrl_pm_select_sleep_state(dev);
1963                 mmci_save(host);
1964                 clk_disable_unprepare(host->clk);
1965         }
1966
1967         return 0;
1968 }
1969
1970 static int mmci_runtime_resume(struct device *dev)
1971 {
1972         struct amba_device *adev = to_amba_device(dev);
1973         struct mmc_host *mmc = amba_get_drvdata(adev);
1974
1975         if (mmc) {
1976                 struct mmci_host *host = mmc_priv(mmc);
1977                 clk_prepare_enable(host->clk);
1978                 mmci_restore(host);
1979                 pinctrl_pm_select_default_state(dev);
1980         }
1981
1982         return 0;
1983 }
1984 #endif
1985
1986 static const struct dev_pm_ops mmci_dev_pm_ops = {
1987         SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1988                                 pm_runtime_force_resume)
1989         SET_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL)
1990 };
1991
1992 static const struct amba_id mmci_ids[] = {
1993         {
1994                 .id     = 0x00041180,
1995                 .mask   = 0xff0fffff,
1996                 .data   = &variant_arm,
1997         },
1998         {
1999                 .id     = 0x01041180,
2000                 .mask   = 0xff0fffff,
2001                 .data   = &variant_arm_extended_fifo,
2002         },
2003         {
2004                 .id     = 0x02041180,
2005                 .mask   = 0xff0fffff,
2006                 .data   = &variant_arm_extended_fifo_hwfc,
2007         },
2008         {
2009                 .id     = 0x00041181,
2010                 .mask   = 0x000fffff,
2011                 .data   = &variant_arm,
2012         },
2013         /* ST Micro variants */
2014         {
2015                 .id     = 0x00180180,
2016                 .mask   = 0x00ffffff,
2017                 .data   = &variant_u300,
2018         },
2019         {
2020                 .id     = 0x10180180,
2021                 .mask   = 0xf0ffffff,
2022                 .data   = &variant_nomadik,
2023         },
2024         {
2025                 .id     = 0x00280180,
2026                 .mask   = 0x00ffffff,
2027                 .data   = &variant_nomadik,
2028         },
2029         {
2030                 .id     = 0x00480180,
2031                 .mask   = 0xf0ffffff,
2032                 .data   = &variant_ux500,
2033         },
2034         {
2035                 .id     = 0x10480180,
2036                 .mask   = 0xf0ffffff,
2037                 .data   = &variant_ux500v2,
2038         },
2039         {
2040                 .id     = 0x00880180,
2041                 .mask   = 0x00ffffff,
2042                 .data   = &variant_stm32,
2043         },
2044         /* Qualcomm variants */
2045         {
2046                 .id     = 0x00051180,
2047                 .mask   = 0x000fffff,
2048                 .data   = &variant_qcom,
2049         },
2050         { 0, 0 },
2051 };
2052
2053 MODULE_DEVICE_TABLE(amba, mmci_ids);
2054
2055 static struct amba_driver mmci_driver = {
2056         .drv            = {
2057                 .name   = DRIVER_NAME,
2058                 .pm     = &mmci_dev_pm_ops,
2059         },
2060         .probe          = mmci_probe,
2061         .remove         = mmci_remove,
2062         .id_table       = mmci_ids,
2063 };
2064
2065 module_amba_driver(mmci_driver);
2066
2067 module_param(fmax, uint, 0444);
2068
2069 MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
2070 MODULE_LICENSE("GPL");