Merge tag 'armsoc-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/soc/soc
[linux-2.6-block.git] / drivers / mmc / host / mmci.c
1 /*
2  *  linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
3  *
4  *  Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
5  *  Copyright (C) 2010 ST-Ericsson SA
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/module.h>
12 #include <linux/moduleparam.h>
13 #include <linux/init.h>
14 #include <linux/ioport.h>
15 #include <linux/device.h>
16 #include <linux/io.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel.h>
19 #include <linux/slab.h>
20 #include <linux/delay.h>
21 #include <linux/err.h>
22 #include <linux/highmem.h>
23 #include <linux/log2.h>
24 #include <linux/mmc/mmc.h>
25 #include <linux/mmc/pm.h>
26 #include <linux/mmc/host.h>
27 #include <linux/mmc/card.h>
28 #include <linux/mmc/slot-gpio.h>
29 #include <linux/amba/bus.h>
30 #include <linux/clk.h>
31 #include <linux/scatterlist.h>
32 #include <linux/of.h>
33 #include <linux/regulator/consumer.h>
34 #include <linux/dmaengine.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/amba/mmci.h>
37 #include <linux/pm_runtime.h>
38 #include <linux/types.h>
39 #include <linux/pinctrl/consumer.h>
40 #include <linux/reset.h>
41
42 #include <asm/div64.h>
43 #include <asm/io.h>
44
45 #include "mmci.h"
46
47 #define DRIVER_NAME "mmci-pl18x"
48
49 static void mmci_variant_init(struct mmci_host *host);
50 static void ux500v2_variant_init(struct mmci_host *host);
51
52 static unsigned int fmax = 515633;
53
54 static struct variant_data variant_arm = {
55         .fifosize               = 16 * 4,
56         .fifohalfsize           = 8 * 4,
57         .cmdreg_cpsm_enable     = MCI_CPSM_ENABLE,
58         .cmdreg_lrsp_crc        = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
59         .cmdreg_srsp_crc        = MCI_CPSM_RESPONSE,
60         .cmdreg_srsp            = MCI_CPSM_RESPONSE,
61         .datalength_bits        = 16,
62         .datactrl_blocksz       = 11,
63         .pwrreg_powerup         = MCI_PWR_UP,
64         .f_max                  = 100000000,
65         .reversed_irq_handling  = true,
66         .mmcimask1              = true,
67         .irq_pio_mask           = MCI_IRQ_PIO_MASK,
68         .start_err              = MCI_STARTBITERR,
69         .opendrain              = MCI_ROD,
70         .init                   = mmci_variant_init,
71 };
72
73 static struct variant_data variant_arm_extended_fifo = {
74         .fifosize               = 128 * 4,
75         .fifohalfsize           = 64 * 4,
76         .cmdreg_cpsm_enable     = MCI_CPSM_ENABLE,
77         .cmdreg_lrsp_crc        = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
78         .cmdreg_srsp_crc        = MCI_CPSM_RESPONSE,
79         .cmdreg_srsp            = MCI_CPSM_RESPONSE,
80         .datalength_bits        = 16,
81         .datactrl_blocksz       = 11,
82         .pwrreg_powerup         = MCI_PWR_UP,
83         .f_max                  = 100000000,
84         .mmcimask1              = true,
85         .irq_pio_mask           = MCI_IRQ_PIO_MASK,
86         .start_err              = MCI_STARTBITERR,
87         .opendrain              = MCI_ROD,
88         .init                   = mmci_variant_init,
89 };
90
91 static struct variant_data variant_arm_extended_fifo_hwfc = {
92         .fifosize               = 128 * 4,
93         .fifohalfsize           = 64 * 4,
94         .clkreg_enable          = MCI_ARM_HWFCEN,
95         .cmdreg_cpsm_enable     = MCI_CPSM_ENABLE,
96         .cmdreg_lrsp_crc        = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
97         .cmdreg_srsp_crc        = MCI_CPSM_RESPONSE,
98         .cmdreg_srsp            = MCI_CPSM_RESPONSE,
99         .datalength_bits        = 16,
100         .datactrl_blocksz       = 11,
101         .pwrreg_powerup         = MCI_PWR_UP,
102         .f_max                  = 100000000,
103         .mmcimask1              = true,
104         .irq_pio_mask           = MCI_IRQ_PIO_MASK,
105         .start_err              = MCI_STARTBITERR,
106         .opendrain              = MCI_ROD,
107         .init                   = mmci_variant_init,
108 };
109
110 static struct variant_data variant_u300 = {
111         .fifosize               = 16 * 4,
112         .fifohalfsize           = 8 * 4,
113         .clkreg_enable          = MCI_ST_U300_HWFCEN,
114         .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
115         .cmdreg_cpsm_enable     = MCI_CPSM_ENABLE,
116         .cmdreg_lrsp_crc        = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
117         .cmdreg_srsp_crc        = MCI_CPSM_RESPONSE,
118         .cmdreg_srsp            = MCI_CPSM_RESPONSE,
119         .datalength_bits        = 16,
120         .datactrl_blocksz       = 11,
121         .datactrl_mask_sdio     = MCI_DPSM_ST_SDIOEN,
122         .st_sdio                        = true,
123         .pwrreg_powerup         = MCI_PWR_ON,
124         .f_max                  = 100000000,
125         .signal_direction       = true,
126         .pwrreg_clkgate         = true,
127         .pwrreg_nopower         = true,
128         .mmcimask1              = true,
129         .irq_pio_mask           = MCI_IRQ_PIO_MASK,
130         .start_err              = MCI_STARTBITERR,
131         .opendrain              = MCI_OD,
132         .init                   = mmci_variant_init,
133 };
134
135 static struct variant_data variant_nomadik = {
136         .fifosize               = 16 * 4,
137         .fifohalfsize           = 8 * 4,
138         .clkreg                 = MCI_CLK_ENABLE,
139         .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
140         .cmdreg_cpsm_enable     = MCI_CPSM_ENABLE,
141         .cmdreg_lrsp_crc        = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
142         .cmdreg_srsp_crc        = MCI_CPSM_RESPONSE,
143         .cmdreg_srsp            = MCI_CPSM_RESPONSE,
144         .datalength_bits        = 24,
145         .datactrl_blocksz       = 11,
146         .datactrl_mask_sdio     = MCI_DPSM_ST_SDIOEN,
147         .st_sdio                = true,
148         .st_clkdiv              = true,
149         .pwrreg_powerup         = MCI_PWR_ON,
150         .f_max                  = 100000000,
151         .signal_direction       = true,
152         .pwrreg_clkgate         = true,
153         .pwrreg_nopower         = true,
154         .mmcimask1              = true,
155         .irq_pio_mask           = MCI_IRQ_PIO_MASK,
156         .start_err              = MCI_STARTBITERR,
157         .opendrain              = MCI_OD,
158         .init                   = mmci_variant_init,
159 };
160
161 static struct variant_data variant_ux500 = {
162         .fifosize               = 30 * 4,
163         .fifohalfsize           = 8 * 4,
164         .clkreg                 = MCI_CLK_ENABLE,
165         .clkreg_enable          = MCI_ST_UX500_HWFCEN,
166         .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
167         .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE,
168         .cmdreg_cpsm_enable     = MCI_CPSM_ENABLE,
169         .cmdreg_lrsp_crc        = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
170         .cmdreg_srsp_crc        = MCI_CPSM_RESPONSE,
171         .cmdreg_srsp            = MCI_CPSM_RESPONSE,
172         .datalength_bits        = 24,
173         .datactrl_blocksz       = 11,
174         .datactrl_mask_sdio     = MCI_DPSM_ST_SDIOEN,
175         .st_sdio                = true,
176         .st_clkdiv              = true,
177         .pwrreg_powerup         = MCI_PWR_ON,
178         .f_max                  = 100000000,
179         .signal_direction       = true,
180         .pwrreg_clkgate         = true,
181         .busy_detect            = true,
182         .busy_dpsm_flag         = MCI_DPSM_ST_BUSYMODE,
183         .busy_detect_flag       = MCI_ST_CARDBUSY,
184         .busy_detect_mask       = MCI_ST_BUSYENDMASK,
185         .pwrreg_nopower         = true,
186         .mmcimask1              = true,
187         .irq_pio_mask           = MCI_IRQ_PIO_MASK,
188         .start_err              = MCI_STARTBITERR,
189         .opendrain              = MCI_OD,
190         .init                   = mmci_variant_init,
191 };
192
193 static struct variant_data variant_ux500v2 = {
194         .fifosize               = 30 * 4,
195         .fifohalfsize           = 8 * 4,
196         .clkreg                 = MCI_CLK_ENABLE,
197         .clkreg_enable          = MCI_ST_UX500_HWFCEN,
198         .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
199         .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE,
200         .cmdreg_cpsm_enable     = MCI_CPSM_ENABLE,
201         .cmdreg_lrsp_crc        = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
202         .cmdreg_srsp_crc        = MCI_CPSM_RESPONSE,
203         .cmdreg_srsp            = MCI_CPSM_RESPONSE,
204         .datactrl_mask_ddrmode  = MCI_DPSM_ST_DDRMODE,
205         .datalength_bits        = 24,
206         .datactrl_blocksz       = 11,
207         .datactrl_mask_sdio     = MCI_DPSM_ST_SDIOEN,
208         .st_sdio                = true,
209         .st_clkdiv              = true,
210         .pwrreg_powerup         = MCI_PWR_ON,
211         .f_max                  = 100000000,
212         .signal_direction       = true,
213         .pwrreg_clkgate         = true,
214         .busy_detect            = true,
215         .busy_dpsm_flag         = MCI_DPSM_ST_BUSYMODE,
216         .busy_detect_flag       = MCI_ST_CARDBUSY,
217         .busy_detect_mask       = MCI_ST_BUSYENDMASK,
218         .pwrreg_nopower         = true,
219         .mmcimask1              = true,
220         .irq_pio_mask           = MCI_IRQ_PIO_MASK,
221         .start_err              = MCI_STARTBITERR,
222         .opendrain              = MCI_OD,
223         .init                   = ux500v2_variant_init,
224 };
225
226 static struct variant_data variant_stm32 = {
227         .fifosize               = 32 * 4,
228         .fifohalfsize           = 8 * 4,
229         .clkreg                 = MCI_CLK_ENABLE,
230         .clkreg_enable          = MCI_ST_UX500_HWFCEN,
231         .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
232         .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE,
233         .cmdreg_cpsm_enable     = MCI_CPSM_ENABLE,
234         .cmdreg_lrsp_crc        = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
235         .cmdreg_srsp_crc        = MCI_CPSM_RESPONSE,
236         .cmdreg_srsp            = MCI_CPSM_RESPONSE,
237         .irq_pio_mask           = MCI_IRQ_PIO_MASK,
238         .datalength_bits        = 24,
239         .datactrl_blocksz       = 11,
240         .datactrl_mask_sdio     = MCI_DPSM_ST_SDIOEN,
241         .st_sdio                = true,
242         .st_clkdiv              = true,
243         .pwrreg_powerup         = MCI_PWR_ON,
244         .f_max                  = 48000000,
245         .pwrreg_clkgate         = true,
246         .pwrreg_nopower         = true,
247         .init                   = mmci_variant_init,
248 };
249
250 static struct variant_data variant_stm32_sdmmc = {
251         .fifosize               = 16 * 4,
252         .fifohalfsize           = 8 * 4,
253         .f_max                  = 208000000,
254         .stm32_clkdiv           = true,
255         .cmdreg_cpsm_enable     = MCI_CPSM_STM32_ENABLE,
256         .cmdreg_lrsp_crc        = MCI_CPSM_STM32_LRSP_CRC,
257         .cmdreg_srsp_crc        = MCI_CPSM_STM32_SRSP_CRC,
258         .cmdreg_srsp            = MCI_CPSM_STM32_SRSP,
259         .cmdreg_stop            = MCI_CPSM_STM32_CMDSTOP,
260         .data_cmd_enable        = MCI_CPSM_STM32_CMDTRANS,
261         .irq_pio_mask           = MCI_IRQ_PIO_STM32_MASK,
262         .datactrl_first         = true,
263         .datacnt_useless        = true,
264         .datalength_bits        = 25,
265         .datactrl_blocksz       = 14,
266         .stm32_idmabsize_mask   = GENMASK(12, 5),
267         .init                   = sdmmc_variant_init,
268 };
269
270 static struct variant_data variant_qcom = {
271         .fifosize               = 16 * 4,
272         .fifohalfsize           = 8 * 4,
273         .clkreg                 = MCI_CLK_ENABLE,
274         .clkreg_enable          = MCI_QCOM_CLK_FLOWENA |
275                                   MCI_QCOM_CLK_SELECT_IN_FBCLK,
276         .clkreg_8bit_bus_enable = MCI_QCOM_CLK_WIDEBUS_8,
277         .datactrl_mask_ddrmode  = MCI_QCOM_CLK_SELECT_IN_DDR_MODE,
278         .cmdreg_cpsm_enable     = MCI_CPSM_ENABLE,
279         .cmdreg_lrsp_crc        = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
280         .cmdreg_srsp_crc        = MCI_CPSM_RESPONSE,
281         .cmdreg_srsp            = MCI_CPSM_RESPONSE,
282         .data_cmd_enable        = MCI_CPSM_QCOM_DATCMD,
283         .datalength_bits        = 24,
284         .datactrl_blocksz       = 11,
285         .pwrreg_powerup         = MCI_PWR_UP,
286         .f_max                  = 208000000,
287         .explicit_mclk_control  = true,
288         .qcom_fifo              = true,
289         .qcom_dml               = true,
290         .mmcimask1              = true,
291         .irq_pio_mask           = MCI_IRQ_PIO_MASK,
292         .start_err              = MCI_STARTBITERR,
293         .opendrain              = MCI_ROD,
294         .init                   = qcom_variant_init,
295 };
296
297 /* Busy detection for the ST Micro variant */
298 static int mmci_card_busy(struct mmc_host *mmc)
299 {
300         struct mmci_host *host = mmc_priv(mmc);
301         unsigned long flags;
302         int busy = 0;
303
304         spin_lock_irqsave(&host->lock, flags);
305         if (readl(host->base + MMCISTATUS) & host->variant->busy_detect_flag)
306                 busy = 1;
307         spin_unlock_irqrestore(&host->lock, flags);
308
309         return busy;
310 }
311
312 static void mmci_reg_delay(struct mmci_host *host)
313 {
314         /*
315          * According to the spec, at least three feedback clock cycles
316          * of max 52 MHz must pass between two writes to the MMCICLOCK reg.
317          * Three MCLK clock cycles must pass between two MMCIPOWER reg writes.
318          * Worst delay time during card init is at 100 kHz => 30 us.
319          * Worst delay time when up and running is at 25 MHz => 120 ns.
320          */
321         if (host->cclk < 25000000)
322                 udelay(30);
323         else
324                 ndelay(120);
325 }
326
327 /*
328  * This must be called with host->lock held
329  */
330 void mmci_write_clkreg(struct mmci_host *host, u32 clk)
331 {
332         if (host->clk_reg != clk) {
333                 host->clk_reg = clk;
334                 writel(clk, host->base + MMCICLOCK);
335         }
336 }
337
338 /*
339  * This must be called with host->lock held
340  */
341 void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
342 {
343         if (host->pwr_reg != pwr) {
344                 host->pwr_reg = pwr;
345                 writel(pwr, host->base + MMCIPOWER);
346         }
347 }
348
349 /*
350  * This must be called with host->lock held
351  */
352 static void mmci_write_datactrlreg(struct mmci_host *host, u32 datactrl)
353 {
354         /* Keep busy mode in DPSM if enabled */
355         datactrl |= host->datactrl_reg & host->variant->busy_dpsm_flag;
356
357         if (host->datactrl_reg != datactrl) {
358                 host->datactrl_reg = datactrl;
359                 writel(datactrl, host->base + MMCIDATACTRL);
360         }
361 }
362
363 /*
364  * This must be called with host->lock held
365  */
366 static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
367 {
368         struct variant_data *variant = host->variant;
369         u32 clk = variant->clkreg;
370
371         /* Make sure cclk reflects the current calculated clock */
372         host->cclk = 0;
373
374         if (desired) {
375                 if (variant->explicit_mclk_control) {
376                         host->cclk = host->mclk;
377                 } else if (desired >= host->mclk) {
378                         clk = MCI_CLK_BYPASS;
379                         if (variant->st_clkdiv)
380                                 clk |= MCI_ST_UX500_NEG_EDGE;
381                         host->cclk = host->mclk;
382                 } else if (variant->st_clkdiv) {
383                         /*
384                          * DB8500 TRM says f = mclk / (clkdiv + 2)
385                          * => clkdiv = (mclk / f) - 2
386                          * Round the divider up so we don't exceed the max
387                          * frequency
388                          */
389                         clk = DIV_ROUND_UP(host->mclk, desired) - 2;
390                         if (clk >= 256)
391                                 clk = 255;
392                         host->cclk = host->mclk / (clk + 2);
393                 } else {
394                         /*
395                          * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
396                          * => clkdiv = mclk / (2 * f) - 1
397                          */
398                         clk = host->mclk / (2 * desired) - 1;
399                         if (clk >= 256)
400                                 clk = 255;
401                         host->cclk = host->mclk / (2 * (clk + 1));
402                 }
403
404                 clk |= variant->clkreg_enable;
405                 clk |= MCI_CLK_ENABLE;
406                 /* This hasn't proven to be worthwhile */
407                 /* clk |= MCI_CLK_PWRSAVE; */
408         }
409
410         /* Set actual clock for debug */
411         host->mmc->actual_clock = host->cclk;
412
413         if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
414                 clk |= MCI_4BIT_BUS;
415         if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
416                 clk |= variant->clkreg_8bit_bus_enable;
417
418         if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
419             host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
420                 clk |= variant->clkreg_neg_edge_enable;
421
422         mmci_write_clkreg(host, clk);
423 }
424
425 void mmci_dma_release(struct mmci_host *host)
426 {
427         if (host->ops && host->ops->dma_release)
428                 host->ops->dma_release(host);
429
430         host->use_dma = false;
431 }
432
433 void mmci_dma_setup(struct mmci_host *host)
434 {
435         if (!host->ops || !host->ops->dma_setup)
436                 return;
437
438         if (host->ops->dma_setup(host))
439                 return;
440
441         /* initialize pre request cookie */
442         host->next_cookie = 1;
443
444         host->use_dma = true;
445 }
446
447 /*
448  * Validate mmc prerequisites
449  */
450 static int mmci_validate_data(struct mmci_host *host,
451                               struct mmc_data *data)
452 {
453         if (!data)
454                 return 0;
455
456         if (!is_power_of_2(data->blksz)) {
457                 dev_err(mmc_dev(host->mmc),
458                         "unsupported block size (%d bytes)\n", data->blksz);
459                 return -EINVAL;
460         }
461
462         if (host->ops && host->ops->validate_data)
463                 return host->ops->validate_data(host, data);
464
465         return 0;
466 }
467
468 int mmci_prep_data(struct mmci_host *host, struct mmc_data *data, bool next)
469 {
470         int err;
471
472         if (!host->ops || !host->ops->prep_data)
473                 return 0;
474
475         err = host->ops->prep_data(host, data, next);
476
477         if (next && !err)
478                 data->host_cookie = ++host->next_cookie < 0 ?
479                         1 : host->next_cookie;
480
481         return err;
482 }
483
484 void mmci_unprep_data(struct mmci_host *host, struct mmc_data *data,
485                       int err)
486 {
487         if (host->ops && host->ops->unprep_data)
488                 host->ops->unprep_data(host, data, err);
489
490         data->host_cookie = 0;
491 }
492
493 void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
494 {
495         WARN_ON(data->host_cookie && data->host_cookie != host->next_cookie);
496
497         if (host->ops && host->ops->get_next_data)
498                 host->ops->get_next_data(host, data);
499 }
500
501 int mmci_dma_start(struct mmci_host *host, unsigned int datactrl)
502 {
503         struct mmc_data *data = host->data;
504         int ret;
505
506         if (!host->use_dma)
507                 return -EINVAL;
508
509         ret = mmci_prep_data(host, data, false);
510         if (ret)
511                 return ret;
512
513         if (!host->ops || !host->ops->dma_start)
514                 return -EINVAL;
515
516         /* Okay, go for it. */
517         dev_vdbg(mmc_dev(host->mmc),
518                  "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
519                  data->sg_len, data->blksz, data->blocks, data->flags);
520
521         host->ops->dma_start(host, &datactrl);
522
523         /* Trigger the DMA transfer */
524         mmci_write_datactrlreg(host, datactrl);
525
526         /*
527          * Let the MMCI say when the data is ended and it's time
528          * to fire next DMA request. When that happens, MMCI will
529          * call mmci_data_end()
530          */
531         writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
532                host->base + MMCIMASK0);
533         return 0;
534 }
535
536 void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data)
537 {
538         if (!host->use_dma)
539                 return;
540
541         if (host->ops && host->ops->dma_finalize)
542                 host->ops->dma_finalize(host, data);
543 }
544
545 void mmci_dma_error(struct mmci_host *host)
546 {
547         if (!host->use_dma)
548                 return;
549
550         if (host->ops && host->ops->dma_error)
551                 host->ops->dma_error(host);
552 }
553
554 static void
555 mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
556 {
557         writel(0, host->base + MMCICOMMAND);
558
559         BUG_ON(host->data);
560
561         host->mrq = NULL;
562         host->cmd = NULL;
563
564         mmc_request_done(host->mmc, mrq);
565 }
566
567 static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
568 {
569         void __iomem *base = host->base;
570         struct variant_data *variant = host->variant;
571
572         if (host->singleirq) {
573                 unsigned int mask0 = readl(base + MMCIMASK0);
574
575                 mask0 &= ~variant->irq_pio_mask;
576                 mask0 |= mask;
577
578                 writel(mask0, base + MMCIMASK0);
579         }
580
581         if (variant->mmcimask1)
582                 writel(mask, base + MMCIMASK1);
583
584         host->mask1_reg = mask;
585 }
586
587 static void mmci_stop_data(struct mmci_host *host)
588 {
589         mmci_write_datactrlreg(host, 0);
590         mmci_set_mask1(host, 0);
591         host->data = NULL;
592 }
593
594 static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
595 {
596         unsigned int flags = SG_MITER_ATOMIC;
597
598         if (data->flags & MMC_DATA_READ)
599                 flags |= SG_MITER_TO_SG;
600         else
601                 flags |= SG_MITER_FROM_SG;
602
603         sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
604 }
605
606 static u32 mmci_get_dctrl_cfg(struct mmci_host *host)
607 {
608         return MCI_DPSM_ENABLE | mmci_dctrl_blksz(host);
609 }
610
611 static u32 ux500v2_get_dctrl_cfg(struct mmci_host *host)
612 {
613         return MCI_DPSM_ENABLE | (host->data->blksz << 16);
614 }
615
616 /*
617  * All the DMA operation mode stuff goes inside this ifdef.
618  * This assumes that you have a generic DMA device interface,
619  * no custom DMA interfaces are supported.
620  */
621 #ifdef CONFIG_DMA_ENGINE
622 struct mmci_dmae_next {
623         struct dma_async_tx_descriptor *desc;
624         struct dma_chan *chan;
625 };
626
627 struct mmci_dmae_priv {
628         struct dma_chan *cur;
629         struct dma_chan *rx_channel;
630         struct dma_chan *tx_channel;
631         struct dma_async_tx_descriptor  *desc_current;
632         struct mmci_dmae_next next_data;
633 };
634
635 int mmci_dmae_setup(struct mmci_host *host)
636 {
637         const char *rxname, *txname;
638         struct mmci_dmae_priv *dmae;
639
640         dmae = devm_kzalloc(mmc_dev(host->mmc), sizeof(*dmae), GFP_KERNEL);
641         if (!dmae)
642                 return -ENOMEM;
643
644         host->dma_priv = dmae;
645
646         dmae->rx_channel = dma_request_slave_channel(mmc_dev(host->mmc),
647                                                      "rx");
648         dmae->tx_channel = dma_request_slave_channel(mmc_dev(host->mmc),
649                                                      "tx");
650
651         /*
652          * If only an RX channel is specified, the driver will
653          * attempt to use it bidirectionally, however if it is
654          * is specified but cannot be located, DMA will be disabled.
655          */
656         if (dmae->rx_channel && !dmae->tx_channel)
657                 dmae->tx_channel = dmae->rx_channel;
658
659         if (dmae->rx_channel)
660                 rxname = dma_chan_name(dmae->rx_channel);
661         else
662                 rxname = "none";
663
664         if (dmae->tx_channel)
665                 txname = dma_chan_name(dmae->tx_channel);
666         else
667                 txname = "none";
668
669         dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
670                  rxname, txname);
671
672         /*
673          * Limit the maximum segment size in any SG entry according to
674          * the parameters of the DMA engine device.
675          */
676         if (dmae->tx_channel) {
677                 struct device *dev = dmae->tx_channel->device->dev;
678                 unsigned int max_seg_size = dma_get_max_seg_size(dev);
679
680                 if (max_seg_size < host->mmc->max_seg_size)
681                         host->mmc->max_seg_size = max_seg_size;
682         }
683         if (dmae->rx_channel) {
684                 struct device *dev = dmae->rx_channel->device->dev;
685                 unsigned int max_seg_size = dma_get_max_seg_size(dev);
686
687                 if (max_seg_size < host->mmc->max_seg_size)
688                         host->mmc->max_seg_size = max_seg_size;
689         }
690
691         if (!dmae->tx_channel || !dmae->rx_channel) {
692                 mmci_dmae_release(host);
693                 return -EINVAL;
694         }
695
696         return 0;
697 }
698
699 /*
700  * This is used in or so inline it
701  * so it can be discarded.
702  */
703 void mmci_dmae_release(struct mmci_host *host)
704 {
705         struct mmci_dmae_priv *dmae = host->dma_priv;
706
707         if (dmae->rx_channel)
708                 dma_release_channel(dmae->rx_channel);
709         if (dmae->tx_channel)
710                 dma_release_channel(dmae->tx_channel);
711         dmae->rx_channel = dmae->tx_channel = NULL;
712 }
713
714 static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
715 {
716         struct mmci_dmae_priv *dmae = host->dma_priv;
717         struct dma_chan *chan;
718
719         if (data->flags & MMC_DATA_READ)
720                 chan = dmae->rx_channel;
721         else
722                 chan = dmae->tx_channel;
723
724         dma_unmap_sg(chan->device->dev, data->sg, data->sg_len,
725                      mmc_get_dma_dir(data));
726 }
727
728 void mmci_dmae_error(struct mmci_host *host)
729 {
730         struct mmci_dmae_priv *dmae = host->dma_priv;
731
732         if (!dma_inprogress(host))
733                 return;
734
735         dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
736         dmaengine_terminate_all(dmae->cur);
737         host->dma_in_progress = false;
738         dmae->cur = NULL;
739         dmae->desc_current = NULL;
740         host->data->host_cookie = 0;
741
742         mmci_dma_unmap(host, host->data);
743 }
744
745 void mmci_dmae_finalize(struct mmci_host *host, struct mmc_data *data)
746 {
747         struct mmci_dmae_priv *dmae = host->dma_priv;
748         u32 status;
749         int i;
750
751         if (!dma_inprogress(host))
752                 return;
753
754         /* Wait up to 1ms for the DMA to complete */
755         for (i = 0; ; i++) {
756                 status = readl(host->base + MMCISTATUS);
757                 if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
758                         break;
759                 udelay(10);
760         }
761
762         /*
763          * Check to see whether we still have some data left in the FIFO -
764          * this catches DMA controllers which are unable to monitor the
765          * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
766          * contiguous buffers.  On TX, we'll get a FIFO underrun error.
767          */
768         if (status & MCI_RXDATAAVLBLMASK) {
769                 mmci_dma_error(host);
770                 if (!data->error)
771                         data->error = -EIO;
772         } else if (!data->host_cookie) {
773                 mmci_dma_unmap(host, data);
774         }
775
776         /*
777          * Use of DMA with scatter-gather is impossible.
778          * Give up with DMA and switch back to PIO mode.
779          */
780         if (status & MCI_RXDATAAVLBLMASK) {
781                 dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
782                 mmci_dma_release(host);
783         }
784
785         host->dma_in_progress = false;
786         dmae->cur = NULL;
787         dmae->desc_current = NULL;
788 }
789
790 /* prepares DMA channel and DMA descriptor, returns non-zero on failure */
791 static int _mmci_dmae_prep_data(struct mmci_host *host, struct mmc_data *data,
792                                 struct dma_chan **dma_chan,
793                                 struct dma_async_tx_descriptor **dma_desc)
794 {
795         struct mmci_dmae_priv *dmae = host->dma_priv;
796         struct variant_data *variant = host->variant;
797         struct dma_slave_config conf = {
798                 .src_addr = host->phybase + MMCIFIFO,
799                 .dst_addr = host->phybase + MMCIFIFO,
800                 .src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
801                 .dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
802                 .src_maxburst = variant->fifohalfsize >> 2, /* # of words */
803                 .dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
804                 .device_fc = false,
805         };
806         struct dma_chan *chan;
807         struct dma_device *device;
808         struct dma_async_tx_descriptor *desc;
809         int nr_sg;
810         unsigned long flags = DMA_CTRL_ACK;
811
812         if (data->flags & MMC_DATA_READ) {
813                 conf.direction = DMA_DEV_TO_MEM;
814                 chan = dmae->rx_channel;
815         } else {
816                 conf.direction = DMA_MEM_TO_DEV;
817                 chan = dmae->tx_channel;
818         }
819
820         /* If there's no DMA channel, fall back to PIO */
821         if (!chan)
822                 return -EINVAL;
823
824         /* If less than or equal to the fifo size, don't bother with DMA */
825         if (data->blksz * data->blocks <= variant->fifosize)
826                 return -EINVAL;
827
828         device = chan->device;
829         nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len,
830                            mmc_get_dma_dir(data));
831         if (nr_sg == 0)
832                 return -EINVAL;
833
834         if (host->variant->qcom_dml)
835                 flags |= DMA_PREP_INTERRUPT;
836
837         dmaengine_slave_config(chan, &conf);
838         desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
839                                             conf.direction, flags);
840         if (!desc)
841                 goto unmap_exit;
842
843         *dma_chan = chan;
844         *dma_desc = desc;
845
846         return 0;
847
848  unmap_exit:
849         dma_unmap_sg(device->dev, data->sg, data->sg_len,
850                      mmc_get_dma_dir(data));
851         return -ENOMEM;
852 }
853
854 int mmci_dmae_prep_data(struct mmci_host *host,
855                         struct mmc_data *data,
856                         bool next)
857 {
858         struct mmci_dmae_priv *dmae = host->dma_priv;
859         struct mmci_dmae_next *nd = &dmae->next_data;
860
861         if (!host->use_dma)
862                 return -EINVAL;
863
864         if (next)
865                 return _mmci_dmae_prep_data(host, data, &nd->chan, &nd->desc);
866         /* Check if next job is already prepared. */
867         if (dmae->cur && dmae->desc_current)
868                 return 0;
869
870         /* No job were prepared thus do it now. */
871         return _mmci_dmae_prep_data(host, data, &dmae->cur,
872                                     &dmae->desc_current);
873 }
874
875 int mmci_dmae_start(struct mmci_host *host, unsigned int *datactrl)
876 {
877         struct mmci_dmae_priv *dmae = host->dma_priv;
878
879         host->dma_in_progress = true;
880         dmaengine_submit(dmae->desc_current);
881         dma_async_issue_pending(dmae->cur);
882
883         *datactrl |= MCI_DPSM_DMAENABLE;
884
885         return 0;
886 }
887
888 void mmci_dmae_get_next_data(struct mmci_host *host, struct mmc_data *data)
889 {
890         struct mmci_dmae_priv *dmae = host->dma_priv;
891         struct mmci_dmae_next *next = &dmae->next_data;
892
893         if (!host->use_dma)
894                 return;
895
896         WARN_ON(!data->host_cookie && (next->desc || next->chan));
897
898         dmae->desc_current = next->desc;
899         dmae->cur = next->chan;
900         next->desc = NULL;
901         next->chan = NULL;
902 }
903
904 void mmci_dmae_unprep_data(struct mmci_host *host,
905                            struct mmc_data *data, int err)
906
907 {
908         struct mmci_dmae_priv *dmae = host->dma_priv;
909
910         if (!host->use_dma)
911                 return;
912
913         mmci_dma_unmap(host, data);
914
915         if (err) {
916                 struct mmci_dmae_next *next = &dmae->next_data;
917                 struct dma_chan *chan;
918                 if (data->flags & MMC_DATA_READ)
919                         chan = dmae->rx_channel;
920                 else
921                         chan = dmae->tx_channel;
922                 dmaengine_terminate_all(chan);
923
924                 if (dmae->desc_current == next->desc)
925                         dmae->desc_current = NULL;
926
927                 if (dmae->cur == next->chan) {
928                         host->dma_in_progress = false;
929                         dmae->cur = NULL;
930                 }
931
932                 next->desc = NULL;
933                 next->chan = NULL;
934         }
935 }
936
937 static struct mmci_host_ops mmci_variant_ops = {
938         .prep_data = mmci_dmae_prep_data,
939         .unprep_data = mmci_dmae_unprep_data,
940         .get_datactrl_cfg = mmci_get_dctrl_cfg,
941         .get_next_data = mmci_dmae_get_next_data,
942         .dma_setup = mmci_dmae_setup,
943         .dma_release = mmci_dmae_release,
944         .dma_start = mmci_dmae_start,
945         .dma_finalize = mmci_dmae_finalize,
946         .dma_error = mmci_dmae_error,
947 };
948 #else
949 static struct mmci_host_ops mmci_variant_ops = {
950         .get_datactrl_cfg = mmci_get_dctrl_cfg,
951 };
952 #endif
953
954 void mmci_variant_init(struct mmci_host *host)
955 {
956         host->ops = &mmci_variant_ops;
957 }
958
959 void ux500v2_variant_init(struct mmci_host *host)
960 {
961         host->ops = &mmci_variant_ops;
962         host->ops->get_datactrl_cfg = ux500v2_get_dctrl_cfg;
963 }
964
965 static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq)
966 {
967         struct mmci_host *host = mmc_priv(mmc);
968         struct mmc_data *data = mrq->data;
969
970         if (!data)
971                 return;
972
973         WARN_ON(data->host_cookie);
974
975         if (mmci_validate_data(host, data))
976                 return;
977
978         mmci_prep_data(host, data, true);
979 }
980
981 static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
982                               int err)
983 {
984         struct mmci_host *host = mmc_priv(mmc);
985         struct mmc_data *data = mrq->data;
986
987         if (!data || !data->host_cookie)
988                 return;
989
990         mmci_unprep_data(host, data, err);
991 }
992
993 static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
994 {
995         struct variant_data *variant = host->variant;
996         unsigned int datactrl, timeout, irqmask;
997         unsigned long long clks;
998         void __iomem *base;
999
1000         dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
1001                 data->blksz, data->blocks, data->flags);
1002
1003         host->data = data;
1004         host->size = data->blksz * data->blocks;
1005         data->bytes_xfered = 0;
1006
1007         clks = (unsigned long long)data->timeout_ns * host->cclk;
1008         do_div(clks, NSEC_PER_SEC);
1009
1010         timeout = data->timeout_clks + (unsigned int)clks;
1011
1012         base = host->base;
1013         writel(timeout, base + MMCIDATATIMER);
1014         writel(host->size, base + MMCIDATALENGTH);
1015
1016         datactrl = host->ops->get_datactrl_cfg(host);
1017         datactrl |= host->data->flags & MMC_DATA_READ ? MCI_DPSM_DIRECTION : 0;
1018
1019         if (host->mmc->card && mmc_card_sdio(host->mmc->card)) {
1020                 u32 clk;
1021
1022                 datactrl |= variant->datactrl_mask_sdio;
1023
1024                 /*
1025                  * The ST Micro variant for SDIO small write transfers
1026                  * needs to have clock H/W flow control disabled,
1027                  * otherwise the transfer will not start. The threshold
1028                  * depends on the rate of MCLK.
1029                  */
1030                 if (variant->st_sdio && data->flags & MMC_DATA_WRITE &&
1031                     (host->size < 8 ||
1032                      (host->size <= 8 && host->mclk > 50000000)))
1033                         clk = host->clk_reg & ~variant->clkreg_enable;
1034                 else
1035                         clk = host->clk_reg | variant->clkreg_enable;
1036
1037                 mmci_write_clkreg(host, clk);
1038         }
1039
1040         if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
1041             host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
1042                 datactrl |= variant->datactrl_mask_ddrmode;
1043
1044         /*
1045          * Attempt to use DMA operation mode, if this
1046          * should fail, fall back to PIO mode
1047          */
1048         if (!mmci_dma_start(host, datactrl))
1049                 return;
1050
1051         /* IRQ mode, map the SG list for CPU reading/writing */
1052         mmci_init_sg(host, data);
1053
1054         if (data->flags & MMC_DATA_READ) {
1055                 irqmask = MCI_RXFIFOHALFFULLMASK;
1056
1057                 /*
1058                  * If we have less than the fifo 'half-full' threshold to
1059                  * transfer, trigger a PIO interrupt as soon as any data
1060                  * is available.
1061                  */
1062                 if (host->size < variant->fifohalfsize)
1063                         irqmask |= MCI_RXDATAAVLBLMASK;
1064         } else {
1065                 /*
1066                  * We don't actually need to include "FIFO empty" here
1067                  * since its implicit in "FIFO half empty".
1068                  */
1069                 irqmask = MCI_TXFIFOHALFEMPTYMASK;
1070         }
1071
1072         mmci_write_datactrlreg(host, datactrl);
1073         writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
1074         mmci_set_mask1(host, irqmask);
1075 }
1076
1077 static void
1078 mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
1079 {
1080         void __iomem *base = host->base;
1081
1082         dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
1083             cmd->opcode, cmd->arg, cmd->flags);
1084
1085         if (readl(base + MMCICOMMAND) & host->variant->cmdreg_cpsm_enable) {
1086                 writel(0, base + MMCICOMMAND);
1087                 mmci_reg_delay(host);
1088         }
1089
1090         if (host->variant->cmdreg_stop &&
1091             cmd->opcode == MMC_STOP_TRANSMISSION)
1092                 c |= host->variant->cmdreg_stop;
1093
1094         c |= cmd->opcode | host->variant->cmdreg_cpsm_enable;
1095         if (cmd->flags & MMC_RSP_PRESENT) {
1096                 if (cmd->flags & MMC_RSP_136)
1097                         c |= host->variant->cmdreg_lrsp_crc;
1098                 else if (cmd->flags & MMC_RSP_CRC)
1099                         c |= host->variant->cmdreg_srsp_crc;
1100                 else
1101                         c |= host->variant->cmdreg_srsp;
1102         }
1103         if (/*interrupt*/0)
1104                 c |= MCI_CPSM_INTERRUPT;
1105
1106         if (mmc_cmd_type(cmd) == MMC_CMD_ADTC)
1107                 c |= host->variant->data_cmd_enable;
1108
1109         host->cmd = cmd;
1110
1111         writel(cmd->arg, base + MMCIARGUMENT);
1112         writel(c, base + MMCICOMMAND);
1113 }
1114
1115 static void mmci_stop_command(struct mmci_host *host)
1116 {
1117         host->stop_abort.error = 0;
1118         mmci_start_command(host, &host->stop_abort, 0);
1119 }
1120
1121 static void
1122 mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
1123               unsigned int status)
1124 {
1125         unsigned int status_err;
1126
1127         /* Make sure we have data to handle */
1128         if (!data)
1129                 return;
1130
1131         /* First check for errors */
1132         status_err = status & (host->variant->start_err |
1133                                MCI_DATACRCFAIL | MCI_DATATIMEOUT |
1134                                MCI_TXUNDERRUN | MCI_RXOVERRUN);
1135
1136         if (status_err) {
1137                 u32 remain, success;
1138
1139                 /* Terminate the DMA transfer */
1140                 mmci_dma_error(host);
1141
1142                 /*
1143                  * Calculate how far we are into the transfer.  Note that
1144                  * the data counter gives the number of bytes transferred
1145                  * on the MMC bus, not on the host side.  On reads, this
1146                  * can be as much as a FIFO-worth of data ahead.  This
1147                  * matters for FIFO overruns only.
1148                  */
1149                 if (!host->variant->datacnt_useless) {
1150                         remain = readl(host->base + MMCIDATACNT);
1151                         success = data->blksz * data->blocks - remain;
1152                 } else {
1153                         success = 0;
1154                 }
1155
1156                 dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
1157                         status_err, success);
1158                 if (status_err & MCI_DATACRCFAIL) {
1159                         /* Last block was not successful */
1160                         success -= 1;
1161                         data->error = -EILSEQ;
1162                 } else if (status_err & MCI_DATATIMEOUT) {
1163                         data->error = -ETIMEDOUT;
1164                 } else if (status_err & MCI_STARTBITERR) {
1165                         data->error = -ECOMM;
1166                 } else if (status_err & MCI_TXUNDERRUN) {
1167                         data->error = -EIO;
1168                 } else if (status_err & MCI_RXOVERRUN) {
1169                         if (success > host->variant->fifosize)
1170                                 success -= host->variant->fifosize;
1171                         else
1172                                 success = 0;
1173                         data->error = -EIO;
1174                 }
1175                 data->bytes_xfered = round_down(success, data->blksz);
1176         }
1177
1178         if (status & MCI_DATABLOCKEND)
1179                 dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
1180
1181         if (status & MCI_DATAEND || data->error) {
1182                 mmci_dma_finalize(host, data);
1183
1184                 mmci_stop_data(host);
1185
1186                 if (!data->error)
1187                         /* The error clause is handled above, success! */
1188                         data->bytes_xfered = data->blksz * data->blocks;
1189
1190                 if (!data->stop) {
1191                         if (host->variant->cmdreg_stop && data->error)
1192                                 mmci_stop_command(host);
1193                         else
1194                                 mmci_request_end(host, data->mrq);
1195                 } else if (host->mrq->sbc && !data->error) {
1196                         mmci_request_end(host, data->mrq);
1197                 } else {
1198                         mmci_start_command(host, data->stop, 0);
1199                 }
1200         }
1201 }
1202
1203 static void
1204 mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
1205              unsigned int status)
1206 {
1207         void __iomem *base = host->base;
1208         bool sbc, busy_resp;
1209
1210         if (!cmd)
1211                 return;
1212
1213         sbc = (cmd == host->mrq->sbc);
1214         busy_resp = !!(cmd->flags & MMC_RSP_BUSY);
1215
1216         /*
1217          * We need to be one of these interrupts to be considered worth
1218          * handling. Note that we tag on any latent IRQs postponed
1219          * due to waiting for busy status.
1220          */
1221         if (!((status|host->busy_status) &
1222               (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|MCI_CMDSENT|MCI_CMDRESPEND)))
1223                 return;
1224
1225         /*
1226          * ST Micro variant: handle busy detection.
1227          */
1228         if (busy_resp && host->variant->busy_detect) {
1229
1230                 /* We are busy with a command, return */
1231                 if (host->busy_status &&
1232                     (status & host->variant->busy_detect_flag))
1233                         return;
1234
1235                 /*
1236                  * We were not busy, but we now got a busy response on
1237                  * something that was not an error, and we double-check
1238                  * that the special busy status bit is still set before
1239                  * proceeding.
1240                  */
1241                 if (!host->busy_status &&
1242                     !(status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT)) &&
1243                     (readl(base + MMCISTATUS) & host->variant->busy_detect_flag)) {
1244
1245                         /* Clear the busy start IRQ */
1246                         writel(host->variant->busy_detect_mask,
1247                                host->base + MMCICLEAR);
1248
1249                         /* Unmask the busy end IRQ */
1250                         writel(readl(base + MMCIMASK0) |
1251                                host->variant->busy_detect_mask,
1252                                base + MMCIMASK0);
1253                         /*
1254                          * Now cache the last response status code (until
1255                          * the busy bit goes low), and return.
1256                          */
1257                         host->busy_status =
1258                                 status & (MCI_CMDSENT|MCI_CMDRESPEND);
1259                         return;
1260                 }
1261
1262                 /*
1263                  * At this point we are not busy with a command, we have
1264                  * not received a new busy request, clear and mask the busy
1265                  * end IRQ and fall through to process the IRQ.
1266                  */
1267                 if (host->busy_status) {
1268
1269                         writel(host->variant->busy_detect_mask,
1270                                host->base + MMCICLEAR);
1271
1272                         writel(readl(base + MMCIMASK0) &
1273                                ~host->variant->busy_detect_mask,
1274                                base + MMCIMASK0);
1275                         host->busy_status = 0;
1276                 }
1277         }
1278
1279         host->cmd = NULL;
1280
1281         if (status & MCI_CMDTIMEOUT) {
1282                 cmd->error = -ETIMEDOUT;
1283         } else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
1284                 cmd->error = -EILSEQ;
1285         } else {
1286                 cmd->resp[0] = readl(base + MMCIRESPONSE0);
1287                 cmd->resp[1] = readl(base + MMCIRESPONSE1);
1288                 cmd->resp[2] = readl(base + MMCIRESPONSE2);
1289                 cmd->resp[3] = readl(base + MMCIRESPONSE3);
1290         }
1291
1292         if ((!sbc && !cmd->data) || cmd->error) {
1293                 if (host->data) {
1294                         /* Terminate the DMA transfer */
1295                         mmci_dma_error(host);
1296
1297                         mmci_stop_data(host);
1298                         if (host->variant->cmdreg_stop && cmd->error) {
1299                                 mmci_stop_command(host);
1300                                 return;
1301                         }
1302                 }
1303                 mmci_request_end(host, host->mrq);
1304         } else if (sbc) {
1305                 mmci_start_command(host, host->mrq->cmd, 0);
1306         } else if (!host->variant->datactrl_first &&
1307                    !(cmd->data->flags & MMC_DATA_READ)) {
1308                 mmci_start_data(host, cmd->data);
1309         }
1310 }
1311
1312 static int mmci_get_rx_fifocnt(struct mmci_host *host, u32 status, int remain)
1313 {
1314         return remain - (readl(host->base + MMCIFIFOCNT) << 2);
1315 }
1316
1317 static int mmci_qcom_get_rx_fifocnt(struct mmci_host *host, u32 status, int r)
1318 {
1319         /*
1320          * on qcom SDCC4 only 8 words are used in each burst so only 8 addresses
1321          * from the fifo range should be used
1322          */
1323         if (status & MCI_RXFIFOHALFFULL)
1324                 return host->variant->fifohalfsize;
1325         else if (status & MCI_RXDATAAVLBL)
1326                 return 4;
1327
1328         return 0;
1329 }
1330
1331 static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
1332 {
1333         void __iomem *base = host->base;
1334         char *ptr = buffer;
1335         u32 status = readl(host->base + MMCISTATUS);
1336         int host_remain = host->size;
1337
1338         do {
1339                 int count = host->get_rx_fifocnt(host, status, host_remain);
1340
1341                 if (count > remain)
1342                         count = remain;
1343
1344                 if (count <= 0)
1345                         break;
1346
1347                 /*
1348                  * SDIO especially may want to send something that is
1349                  * not divisible by 4 (as opposed to card sectors
1350                  * etc). Therefore make sure to always read the last bytes
1351                  * while only doing full 32-bit reads towards the FIFO.
1352                  */
1353                 if (unlikely(count & 0x3)) {
1354                         if (count < 4) {
1355                                 unsigned char buf[4];
1356                                 ioread32_rep(base + MMCIFIFO, buf, 1);
1357                                 memcpy(ptr, buf, count);
1358                         } else {
1359                                 ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1360                                 count &= ~0x3;
1361                         }
1362                 } else {
1363                         ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1364                 }
1365
1366                 ptr += count;
1367                 remain -= count;
1368                 host_remain -= count;
1369
1370                 if (remain == 0)
1371                         break;
1372
1373                 status = readl(base + MMCISTATUS);
1374         } while (status & MCI_RXDATAAVLBL);
1375
1376         return ptr - buffer;
1377 }
1378
1379 static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
1380 {
1381         struct variant_data *variant = host->variant;
1382         void __iomem *base = host->base;
1383         char *ptr = buffer;
1384
1385         do {
1386                 unsigned int count, maxcnt;
1387
1388                 maxcnt = status & MCI_TXFIFOEMPTY ?
1389                          variant->fifosize : variant->fifohalfsize;
1390                 count = min(remain, maxcnt);
1391
1392                 /*
1393                  * SDIO especially may want to send something that is
1394                  * not divisible by 4 (as opposed to card sectors
1395                  * etc), and the FIFO only accept full 32-bit writes.
1396                  * So compensate by adding +3 on the count, a single
1397                  * byte become a 32bit write, 7 bytes will be two
1398                  * 32bit writes etc.
1399                  */
1400                 iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2);
1401
1402                 ptr += count;
1403                 remain -= count;
1404
1405                 if (remain == 0)
1406                         break;
1407
1408                 status = readl(base + MMCISTATUS);
1409         } while (status & MCI_TXFIFOHALFEMPTY);
1410
1411         return ptr - buffer;
1412 }
1413
1414 /*
1415  * PIO data transfer IRQ handler.
1416  */
1417 static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
1418 {
1419         struct mmci_host *host = dev_id;
1420         struct sg_mapping_iter *sg_miter = &host->sg_miter;
1421         struct variant_data *variant = host->variant;
1422         void __iomem *base = host->base;
1423         u32 status;
1424
1425         status = readl(base + MMCISTATUS);
1426
1427         dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
1428
1429         do {
1430                 unsigned int remain, len;
1431                 char *buffer;
1432
1433                 /*
1434                  * For write, we only need to test the half-empty flag
1435                  * here - if the FIFO is completely empty, then by
1436                  * definition it is more than half empty.
1437                  *
1438                  * For read, check for data available.
1439                  */
1440                 if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
1441                         break;
1442
1443                 if (!sg_miter_next(sg_miter))
1444                         break;
1445
1446                 buffer = sg_miter->addr;
1447                 remain = sg_miter->length;
1448
1449                 len = 0;
1450                 if (status & MCI_RXACTIVE)
1451                         len = mmci_pio_read(host, buffer, remain);
1452                 if (status & MCI_TXACTIVE)
1453                         len = mmci_pio_write(host, buffer, remain, status);
1454
1455                 sg_miter->consumed = len;
1456
1457                 host->size -= len;
1458                 remain -= len;
1459
1460                 if (remain)
1461                         break;
1462
1463                 status = readl(base + MMCISTATUS);
1464         } while (1);
1465
1466         sg_miter_stop(sg_miter);
1467
1468         /*
1469          * If we have less than the fifo 'half-full' threshold to transfer,
1470          * trigger a PIO interrupt as soon as any data is available.
1471          */
1472         if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
1473                 mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
1474
1475         /*
1476          * If we run out of data, disable the data IRQs; this
1477          * prevents a race where the FIFO becomes empty before
1478          * the chip itself has disabled the data path, and
1479          * stops us racing with our data end IRQ.
1480          */
1481         if (host->size == 0) {
1482                 mmci_set_mask1(host, 0);
1483                 writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
1484         }
1485
1486         return IRQ_HANDLED;
1487 }
1488
1489 /*
1490  * Handle completion of command and data transfers.
1491  */
1492 static irqreturn_t mmci_irq(int irq, void *dev_id)
1493 {
1494         struct mmci_host *host = dev_id;
1495         u32 status;
1496         int ret = 0;
1497
1498         spin_lock(&host->lock);
1499
1500         do {
1501                 status = readl(host->base + MMCISTATUS);
1502
1503                 if (host->singleirq) {
1504                         if (status & host->mask1_reg)
1505                                 mmci_pio_irq(irq, dev_id);
1506
1507                         status &= ~host->variant->irq_pio_mask;
1508                 }
1509
1510                 /*
1511                  * We intentionally clear the MCI_ST_CARDBUSY IRQ (if it's
1512                  * enabled) in mmci_cmd_irq() function where ST Micro busy
1513                  * detection variant is handled. Considering the HW seems to be
1514                  * triggering the IRQ on both edges while monitoring DAT0 for
1515                  * busy completion and that same status bit is used to monitor
1516                  * start and end of busy detection, special care must be taken
1517                  * to make sure that both start and end interrupts are always
1518                  * cleared one after the other.
1519                  */
1520                 status &= readl(host->base + MMCIMASK0);
1521                 if (host->variant->busy_detect)
1522                         writel(status & ~host->variant->busy_detect_mask,
1523                                host->base + MMCICLEAR);
1524                 else
1525                         writel(status, host->base + MMCICLEAR);
1526
1527                 dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
1528
1529                 if (host->variant->reversed_irq_handling) {
1530                         mmci_data_irq(host, host->data, status);
1531                         mmci_cmd_irq(host, host->cmd, status);
1532                 } else {
1533                         mmci_cmd_irq(host, host->cmd, status);
1534                         mmci_data_irq(host, host->data, status);
1535                 }
1536
1537                 /*
1538                  * Busy detection has been handled by mmci_cmd_irq() above.
1539                  * Clear the status bit to prevent polling in IRQ context.
1540                  */
1541                 if (host->variant->busy_detect_flag)
1542                         status &= ~host->variant->busy_detect_flag;
1543
1544                 ret = 1;
1545         } while (status);
1546
1547         spin_unlock(&host->lock);
1548
1549         return IRQ_RETVAL(ret);
1550 }
1551
1552 static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1553 {
1554         struct mmci_host *host = mmc_priv(mmc);
1555         unsigned long flags;
1556
1557         WARN_ON(host->mrq != NULL);
1558
1559         mrq->cmd->error = mmci_validate_data(host, mrq->data);
1560         if (mrq->cmd->error) {
1561                 mmc_request_done(mmc, mrq);
1562                 return;
1563         }
1564
1565         spin_lock_irqsave(&host->lock, flags);
1566
1567         host->mrq = mrq;
1568
1569         if (mrq->data)
1570                 mmci_get_next_data(host, mrq->data);
1571
1572         if (mrq->data &&
1573             (host->variant->datactrl_first || mrq->data->flags & MMC_DATA_READ))
1574                 mmci_start_data(host, mrq->data);
1575
1576         if (mrq->sbc)
1577                 mmci_start_command(host, mrq->sbc, 0);
1578         else
1579                 mmci_start_command(host, mrq->cmd, 0);
1580
1581         spin_unlock_irqrestore(&host->lock, flags);
1582 }
1583
1584 static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1585 {
1586         struct mmci_host *host = mmc_priv(mmc);
1587         struct variant_data *variant = host->variant;
1588         u32 pwr = 0;
1589         unsigned long flags;
1590         int ret;
1591
1592         if (host->plat->ios_handler &&
1593                 host->plat->ios_handler(mmc_dev(mmc), ios))
1594                         dev_err(mmc_dev(mmc), "platform ios_handler failed\n");
1595
1596         switch (ios->power_mode) {
1597         case MMC_POWER_OFF:
1598                 if (!IS_ERR(mmc->supply.vmmc))
1599                         mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1600
1601                 if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
1602                         regulator_disable(mmc->supply.vqmmc);
1603                         host->vqmmc_enabled = false;
1604                 }
1605
1606                 break;
1607         case MMC_POWER_UP:
1608                 if (!IS_ERR(mmc->supply.vmmc))
1609                         mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1610
1611                 /*
1612                  * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1613                  * and instead uses MCI_PWR_ON so apply whatever value is
1614                  * configured in the variant data.
1615                  */
1616                 pwr |= variant->pwrreg_powerup;
1617
1618                 break;
1619         case MMC_POWER_ON:
1620                 if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
1621                         ret = regulator_enable(mmc->supply.vqmmc);
1622                         if (ret < 0)
1623                                 dev_err(mmc_dev(mmc),
1624                                         "failed to enable vqmmc regulator\n");
1625                         else
1626                                 host->vqmmc_enabled = true;
1627                 }
1628
1629                 pwr |= MCI_PWR_ON;
1630                 break;
1631         }
1632
1633         if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
1634                 /*
1635                  * The ST Micro variant has some additional bits
1636                  * indicating signal direction for the signals in
1637                  * the SD/MMC bus and feedback-clock usage.
1638                  */
1639                 pwr |= host->pwr_reg_add;
1640
1641                 if (ios->bus_width == MMC_BUS_WIDTH_4)
1642                         pwr &= ~MCI_ST_DATA74DIREN;
1643                 else if (ios->bus_width == MMC_BUS_WIDTH_1)
1644                         pwr &= (~MCI_ST_DATA74DIREN &
1645                                 ~MCI_ST_DATA31DIREN &
1646                                 ~MCI_ST_DATA2DIREN);
1647         }
1648
1649         if (variant->opendrain) {
1650                 if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1651                         pwr |= variant->opendrain;
1652         } else {
1653                 /*
1654                  * If the variant cannot configure the pads by its own, then we
1655                  * expect the pinctrl to be able to do that for us
1656                  */
1657                 if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1658                         pinctrl_select_state(host->pinctrl, host->pins_opendrain);
1659                 else
1660                         pinctrl_select_state(host->pinctrl, host->pins_default);
1661         }
1662
1663         /*
1664          * If clock = 0 and the variant requires the MMCIPOWER to be used for
1665          * gating the clock, the MCI_PWR_ON bit is cleared.
1666          */
1667         if (!ios->clock && variant->pwrreg_clkgate)
1668                 pwr &= ~MCI_PWR_ON;
1669
1670         if (host->variant->explicit_mclk_control &&
1671             ios->clock != host->clock_cache) {
1672                 ret = clk_set_rate(host->clk, ios->clock);
1673                 if (ret < 0)
1674                         dev_err(mmc_dev(host->mmc),
1675                                 "Error setting clock rate (%d)\n", ret);
1676                 else
1677                         host->mclk = clk_get_rate(host->clk);
1678         }
1679         host->clock_cache = ios->clock;
1680
1681         spin_lock_irqsave(&host->lock, flags);
1682
1683         if (host->ops && host->ops->set_clkreg)
1684                 host->ops->set_clkreg(host, ios->clock);
1685         else
1686                 mmci_set_clkreg(host, ios->clock);
1687
1688         if (host->ops && host->ops->set_pwrreg)
1689                 host->ops->set_pwrreg(host, pwr);
1690         else
1691                 mmci_write_pwrreg(host, pwr);
1692
1693         mmci_reg_delay(host);
1694
1695         spin_unlock_irqrestore(&host->lock, flags);
1696 }
1697
1698 static int mmci_get_cd(struct mmc_host *mmc)
1699 {
1700         struct mmci_host *host = mmc_priv(mmc);
1701         struct mmci_platform_data *plat = host->plat;
1702         unsigned int status = mmc_gpio_get_cd(mmc);
1703
1704         if (status == -ENOSYS) {
1705                 if (!plat->status)
1706                         return 1; /* Assume always present */
1707
1708                 status = plat->status(mmc_dev(host->mmc));
1709         }
1710         return status;
1711 }
1712
1713 static int mmci_sig_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios)
1714 {
1715         int ret = 0;
1716
1717         if (!IS_ERR(mmc->supply.vqmmc)) {
1718
1719                 switch (ios->signal_voltage) {
1720                 case MMC_SIGNAL_VOLTAGE_330:
1721                         ret = regulator_set_voltage(mmc->supply.vqmmc,
1722                                                 2700000, 3600000);
1723                         break;
1724                 case MMC_SIGNAL_VOLTAGE_180:
1725                         ret = regulator_set_voltage(mmc->supply.vqmmc,
1726                                                 1700000, 1950000);
1727                         break;
1728                 case MMC_SIGNAL_VOLTAGE_120:
1729                         ret = regulator_set_voltage(mmc->supply.vqmmc,
1730                                                 1100000, 1300000);
1731                         break;
1732                 }
1733
1734                 if (ret)
1735                         dev_warn(mmc_dev(mmc), "Voltage switch failed\n");
1736         }
1737
1738         return ret;
1739 }
1740
1741 static struct mmc_host_ops mmci_ops = {
1742         .request        = mmci_request,
1743         .pre_req        = mmci_pre_request,
1744         .post_req       = mmci_post_request,
1745         .set_ios        = mmci_set_ios,
1746         .get_ro         = mmc_gpio_get_ro,
1747         .get_cd         = mmci_get_cd,
1748         .start_signal_voltage_switch = mmci_sig_volt_switch,
1749 };
1750
1751 static int mmci_of_parse(struct device_node *np, struct mmc_host *mmc)
1752 {
1753         struct mmci_host *host = mmc_priv(mmc);
1754         int ret = mmc_of_parse(mmc);
1755
1756         if (ret)
1757                 return ret;
1758
1759         if (of_get_property(np, "st,sig-dir-dat0", NULL))
1760                 host->pwr_reg_add |= MCI_ST_DATA0DIREN;
1761         if (of_get_property(np, "st,sig-dir-dat2", NULL))
1762                 host->pwr_reg_add |= MCI_ST_DATA2DIREN;
1763         if (of_get_property(np, "st,sig-dir-dat31", NULL))
1764                 host->pwr_reg_add |= MCI_ST_DATA31DIREN;
1765         if (of_get_property(np, "st,sig-dir-dat74", NULL))
1766                 host->pwr_reg_add |= MCI_ST_DATA74DIREN;
1767         if (of_get_property(np, "st,sig-dir-cmd", NULL))
1768                 host->pwr_reg_add |= MCI_ST_CMDDIREN;
1769         if (of_get_property(np, "st,sig-pin-fbclk", NULL))
1770                 host->pwr_reg_add |= MCI_ST_FBCLKEN;
1771         if (of_get_property(np, "st,sig-dir", NULL))
1772                 host->pwr_reg_add |= MCI_STM32_DIRPOL;
1773         if (of_get_property(np, "st,neg-edge", NULL))
1774                 host->clk_reg_add |= MCI_STM32_CLK_NEGEDGE;
1775         if (of_get_property(np, "st,use-ckin", NULL))
1776                 host->clk_reg_add |= MCI_STM32_CLK_SELCKIN;
1777
1778         if (of_get_property(np, "mmc-cap-mmc-highspeed", NULL))
1779                 mmc->caps |= MMC_CAP_MMC_HIGHSPEED;
1780         if (of_get_property(np, "mmc-cap-sd-highspeed", NULL))
1781                 mmc->caps |= MMC_CAP_SD_HIGHSPEED;
1782
1783         return 0;
1784 }
1785
1786 static int mmci_probe(struct amba_device *dev,
1787         const struct amba_id *id)
1788 {
1789         struct mmci_platform_data *plat = dev->dev.platform_data;
1790         struct device_node *np = dev->dev.of_node;
1791         struct variant_data *variant = id->data;
1792         struct mmci_host *host;
1793         struct mmc_host *mmc;
1794         int ret;
1795
1796         /* Must have platform data or Device Tree. */
1797         if (!plat && !np) {
1798                 dev_err(&dev->dev, "No plat data or DT found\n");
1799                 return -EINVAL;
1800         }
1801
1802         if (!plat) {
1803                 plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL);
1804                 if (!plat)
1805                         return -ENOMEM;
1806         }
1807
1808         mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
1809         if (!mmc)
1810                 return -ENOMEM;
1811
1812         ret = mmci_of_parse(np, mmc);
1813         if (ret)
1814                 goto host_free;
1815
1816         host = mmc_priv(mmc);
1817         host->mmc = mmc;
1818
1819         /*
1820          * Some variant (STM32) doesn't have opendrain bit, nevertheless
1821          * pins can be set accordingly using pinctrl
1822          */
1823         if (!variant->opendrain) {
1824                 host->pinctrl = devm_pinctrl_get(&dev->dev);
1825                 if (IS_ERR(host->pinctrl)) {
1826                         dev_err(&dev->dev, "failed to get pinctrl");
1827                         ret = PTR_ERR(host->pinctrl);
1828                         goto host_free;
1829                 }
1830
1831                 host->pins_default = pinctrl_lookup_state(host->pinctrl,
1832                                                           PINCTRL_STATE_DEFAULT);
1833                 if (IS_ERR(host->pins_default)) {
1834                         dev_err(mmc_dev(mmc), "Can't select default pins\n");
1835                         ret = PTR_ERR(host->pins_default);
1836                         goto host_free;
1837                 }
1838
1839                 host->pins_opendrain = pinctrl_lookup_state(host->pinctrl,
1840                                                             MMCI_PINCTRL_STATE_OPENDRAIN);
1841                 if (IS_ERR(host->pins_opendrain)) {
1842                         dev_err(mmc_dev(mmc), "Can't select opendrain pins\n");
1843                         ret = PTR_ERR(host->pins_opendrain);
1844                         goto host_free;
1845                 }
1846         }
1847
1848         host->hw_designer = amba_manf(dev);
1849         host->hw_revision = amba_rev(dev);
1850         dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1851         dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1852
1853         host->clk = devm_clk_get(&dev->dev, NULL);
1854         if (IS_ERR(host->clk)) {
1855                 ret = PTR_ERR(host->clk);
1856                 goto host_free;
1857         }
1858
1859         ret = clk_prepare_enable(host->clk);
1860         if (ret)
1861                 goto host_free;
1862
1863         if (variant->qcom_fifo)
1864                 host->get_rx_fifocnt = mmci_qcom_get_rx_fifocnt;
1865         else
1866                 host->get_rx_fifocnt = mmci_get_rx_fifocnt;
1867
1868         host->plat = plat;
1869         host->variant = variant;
1870         host->mclk = clk_get_rate(host->clk);
1871         /*
1872          * According to the spec, mclk is max 100 MHz,
1873          * so we try to adjust the clock down to this,
1874          * (if possible).
1875          */
1876         if (host->mclk > variant->f_max) {
1877                 ret = clk_set_rate(host->clk, variant->f_max);
1878                 if (ret < 0)
1879                         goto clk_disable;
1880                 host->mclk = clk_get_rate(host->clk);
1881                 dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
1882                         host->mclk);
1883         }
1884
1885         host->phybase = dev->res.start;
1886         host->base = devm_ioremap_resource(&dev->dev, &dev->res);
1887         if (IS_ERR(host->base)) {
1888                 ret = PTR_ERR(host->base);
1889                 goto clk_disable;
1890         }
1891
1892         if (variant->init)
1893                 variant->init(host);
1894
1895         /*
1896          * The ARM and ST versions of the block have slightly different
1897          * clock divider equations which means that the minimum divider
1898          * differs too.
1899          * on Qualcomm like controllers get the nearest minimum clock to 100Khz
1900          */
1901         if (variant->st_clkdiv)
1902                 mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
1903         else if (variant->stm32_clkdiv)
1904                 mmc->f_min = DIV_ROUND_UP(host->mclk, 2046);
1905         else if (variant->explicit_mclk_control)
1906                 mmc->f_min = clk_round_rate(host->clk, 100000);
1907         else
1908                 mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
1909         /*
1910          * If no maximum operating frequency is supplied, fall back to use
1911          * the module parameter, which has a (low) default value in case it
1912          * is not specified. Either value must not exceed the clock rate into
1913          * the block, of course.
1914          */
1915         if (mmc->f_max)
1916                 mmc->f_max = variant->explicit_mclk_control ?
1917                                 min(variant->f_max, mmc->f_max) :
1918                                 min(host->mclk, mmc->f_max);
1919         else
1920                 mmc->f_max = variant->explicit_mclk_control ?
1921                                 fmax : min(host->mclk, fmax);
1922
1923
1924         dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
1925
1926         host->rst = devm_reset_control_get_optional_exclusive(&dev->dev, NULL);
1927         if (IS_ERR(host->rst)) {
1928                 ret = PTR_ERR(host->rst);
1929                 goto clk_disable;
1930         }
1931
1932         /* Get regulators and the supported OCR mask */
1933         ret = mmc_regulator_get_supply(mmc);
1934         if (ret)
1935                 goto clk_disable;
1936
1937         if (!mmc->ocr_avail)
1938                 mmc->ocr_avail = plat->ocr_mask;
1939         else if (plat->ocr_mask)
1940                 dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1941
1942         /* We support these capabilities. */
1943         mmc->caps |= MMC_CAP_CMD23;
1944
1945         /*
1946          * Enable busy detection.
1947          */
1948         if (variant->busy_detect) {
1949                 mmci_ops.card_busy = mmci_card_busy;
1950                 /*
1951                  * Not all variants have a flag to enable busy detection
1952                  * in the DPSM, but if they do, set it here.
1953                  */
1954                 if (variant->busy_dpsm_flag)
1955                         mmci_write_datactrlreg(host,
1956                                                host->variant->busy_dpsm_flag);
1957                 mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY;
1958                 mmc->max_busy_timeout = 0;
1959         }
1960
1961         /* Prepare a CMD12 - needed to clear the DPSM on some variants. */
1962         host->stop_abort.opcode = MMC_STOP_TRANSMISSION;
1963         host->stop_abort.arg = 0;
1964         host->stop_abort.flags = MMC_RSP_R1B | MMC_CMD_AC;
1965
1966         mmc->ops = &mmci_ops;
1967
1968         /* We support these PM capabilities. */
1969         mmc->pm_caps |= MMC_PM_KEEP_POWER;
1970
1971         /*
1972          * We can do SGIO
1973          */
1974         mmc->max_segs = NR_SG;
1975
1976         /*
1977          * Since only a certain number of bits are valid in the data length
1978          * register, we must ensure that we don't exceed 2^num-1 bytes in a
1979          * single request.
1980          */
1981         mmc->max_req_size = (1 << variant->datalength_bits) - 1;
1982
1983         /*
1984          * Set the maximum segment size.  Since we aren't doing DMA
1985          * (yet) we are only limited by the data length register.
1986          */
1987         mmc->max_seg_size = mmc->max_req_size;
1988
1989         /*
1990          * Block size can be up to 2048 bytes, but must be a power of two.
1991          */
1992         mmc->max_blk_size = 1 << variant->datactrl_blocksz;
1993
1994         /*
1995          * Limit the number of blocks transferred so that we don't overflow
1996          * the maximum request size.
1997          */
1998         mmc->max_blk_count = mmc->max_req_size >> variant->datactrl_blocksz;
1999
2000         spin_lock_init(&host->lock);
2001
2002         writel(0, host->base + MMCIMASK0);
2003
2004         if (variant->mmcimask1)
2005                 writel(0, host->base + MMCIMASK1);
2006
2007         writel(0xfff, host->base + MMCICLEAR);
2008
2009         /*
2010          * If:
2011          * - not using DT but using a descriptor table, or
2012          * - using a table of descriptors ALONGSIDE DT, or
2013          * look up these descriptors named "cd" and "wp" right here, fail
2014          * silently of these do not exist
2015          */
2016         if (!np) {
2017                 ret = mmc_gpiod_request_cd(mmc, "cd", 0, false, 0, NULL);
2018                 if (ret == -EPROBE_DEFER)
2019                         goto clk_disable;
2020
2021                 ret = mmc_gpiod_request_ro(mmc, "wp", 0, 0, NULL);
2022                 if (ret == -EPROBE_DEFER)
2023                         goto clk_disable;
2024         }
2025
2026         ret = devm_request_irq(&dev->dev, dev->irq[0], mmci_irq, IRQF_SHARED,
2027                         DRIVER_NAME " (cmd)", host);
2028         if (ret)
2029                 goto clk_disable;
2030
2031         if (!dev->irq[1])
2032                 host->singleirq = true;
2033         else {
2034                 ret = devm_request_irq(&dev->dev, dev->irq[1], mmci_pio_irq,
2035                                 IRQF_SHARED, DRIVER_NAME " (pio)", host);
2036                 if (ret)
2037                         goto clk_disable;
2038         }
2039
2040         writel(MCI_IRQENABLE | variant->start_err, host->base + MMCIMASK0);
2041
2042         amba_set_drvdata(dev, mmc);
2043
2044         dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
2045                  mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
2046                  amba_rev(dev), (unsigned long long)dev->res.start,
2047                  dev->irq[0], dev->irq[1]);
2048
2049         mmci_dma_setup(host);
2050
2051         pm_runtime_set_autosuspend_delay(&dev->dev, 50);
2052         pm_runtime_use_autosuspend(&dev->dev);
2053
2054         mmc_add_host(mmc);
2055
2056         pm_runtime_put(&dev->dev);
2057         return 0;
2058
2059  clk_disable:
2060         clk_disable_unprepare(host->clk);
2061  host_free:
2062         mmc_free_host(mmc);
2063         return ret;
2064 }
2065
2066 static int mmci_remove(struct amba_device *dev)
2067 {
2068         struct mmc_host *mmc = amba_get_drvdata(dev);
2069
2070         if (mmc) {
2071                 struct mmci_host *host = mmc_priv(mmc);
2072                 struct variant_data *variant = host->variant;
2073
2074                 /*
2075                  * Undo pm_runtime_put() in probe.  We use the _sync
2076                  * version here so that we can access the primecell.
2077                  */
2078                 pm_runtime_get_sync(&dev->dev);
2079
2080                 mmc_remove_host(mmc);
2081
2082                 writel(0, host->base + MMCIMASK0);
2083
2084                 if (variant->mmcimask1)
2085                         writel(0, host->base + MMCIMASK1);
2086
2087                 writel(0, host->base + MMCICOMMAND);
2088                 writel(0, host->base + MMCIDATACTRL);
2089
2090                 mmci_dma_release(host);
2091                 clk_disable_unprepare(host->clk);
2092                 mmc_free_host(mmc);
2093         }
2094
2095         return 0;
2096 }
2097
2098 #ifdef CONFIG_PM
2099 static void mmci_save(struct mmci_host *host)
2100 {
2101         unsigned long flags;
2102
2103         spin_lock_irqsave(&host->lock, flags);
2104
2105         writel(0, host->base + MMCIMASK0);
2106         if (host->variant->pwrreg_nopower) {
2107                 writel(0, host->base + MMCIDATACTRL);
2108                 writel(0, host->base + MMCIPOWER);
2109                 writel(0, host->base + MMCICLOCK);
2110         }
2111         mmci_reg_delay(host);
2112
2113         spin_unlock_irqrestore(&host->lock, flags);
2114 }
2115
2116 static void mmci_restore(struct mmci_host *host)
2117 {
2118         unsigned long flags;
2119
2120         spin_lock_irqsave(&host->lock, flags);
2121
2122         if (host->variant->pwrreg_nopower) {
2123                 writel(host->clk_reg, host->base + MMCICLOCK);
2124                 writel(host->datactrl_reg, host->base + MMCIDATACTRL);
2125                 writel(host->pwr_reg, host->base + MMCIPOWER);
2126         }
2127         writel(MCI_IRQENABLE | host->variant->start_err,
2128                host->base + MMCIMASK0);
2129         mmci_reg_delay(host);
2130
2131         spin_unlock_irqrestore(&host->lock, flags);
2132 }
2133
2134 static int mmci_runtime_suspend(struct device *dev)
2135 {
2136         struct amba_device *adev = to_amba_device(dev);
2137         struct mmc_host *mmc = amba_get_drvdata(adev);
2138
2139         if (mmc) {
2140                 struct mmci_host *host = mmc_priv(mmc);
2141                 pinctrl_pm_select_sleep_state(dev);
2142                 mmci_save(host);
2143                 clk_disable_unprepare(host->clk);
2144         }
2145
2146         return 0;
2147 }
2148
2149 static int mmci_runtime_resume(struct device *dev)
2150 {
2151         struct amba_device *adev = to_amba_device(dev);
2152         struct mmc_host *mmc = amba_get_drvdata(adev);
2153
2154         if (mmc) {
2155                 struct mmci_host *host = mmc_priv(mmc);
2156                 clk_prepare_enable(host->clk);
2157                 mmci_restore(host);
2158                 pinctrl_pm_select_default_state(dev);
2159         }
2160
2161         return 0;
2162 }
2163 #endif
2164
2165 static const struct dev_pm_ops mmci_dev_pm_ops = {
2166         SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
2167                                 pm_runtime_force_resume)
2168         SET_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL)
2169 };
2170
2171 static const struct amba_id mmci_ids[] = {
2172         {
2173                 .id     = 0x00041180,
2174                 .mask   = 0xff0fffff,
2175                 .data   = &variant_arm,
2176         },
2177         {
2178                 .id     = 0x01041180,
2179                 .mask   = 0xff0fffff,
2180                 .data   = &variant_arm_extended_fifo,
2181         },
2182         {
2183                 .id     = 0x02041180,
2184                 .mask   = 0xff0fffff,
2185                 .data   = &variant_arm_extended_fifo_hwfc,
2186         },
2187         {
2188                 .id     = 0x00041181,
2189                 .mask   = 0x000fffff,
2190                 .data   = &variant_arm,
2191         },
2192         /* ST Micro variants */
2193         {
2194                 .id     = 0x00180180,
2195                 .mask   = 0x00ffffff,
2196                 .data   = &variant_u300,
2197         },
2198         {
2199                 .id     = 0x10180180,
2200                 .mask   = 0xf0ffffff,
2201                 .data   = &variant_nomadik,
2202         },
2203         {
2204                 .id     = 0x00280180,
2205                 .mask   = 0x00ffffff,
2206                 .data   = &variant_nomadik,
2207         },
2208         {
2209                 .id     = 0x00480180,
2210                 .mask   = 0xf0ffffff,
2211                 .data   = &variant_ux500,
2212         },
2213         {
2214                 .id     = 0x10480180,
2215                 .mask   = 0xf0ffffff,
2216                 .data   = &variant_ux500v2,
2217         },
2218         {
2219                 .id     = 0x00880180,
2220                 .mask   = 0x00ffffff,
2221                 .data   = &variant_stm32,
2222         },
2223         {
2224                 .id     = 0x10153180,
2225                 .mask   = 0xf0ffffff,
2226                 .data   = &variant_stm32_sdmmc,
2227         },
2228         /* Qualcomm variants */
2229         {
2230                 .id     = 0x00051180,
2231                 .mask   = 0x000fffff,
2232                 .data   = &variant_qcom,
2233         },
2234         { 0, 0 },
2235 };
2236
2237 MODULE_DEVICE_TABLE(amba, mmci_ids);
2238
2239 static struct amba_driver mmci_driver = {
2240         .drv            = {
2241                 .name   = DRIVER_NAME,
2242                 .pm     = &mmci_dev_pm_ops,
2243         },
2244         .probe          = mmci_probe,
2245         .remove         = mmci_remove,
2246         .id_table       = mmci_ids,
2247 };
2248
2249 module_amba_driver(mmci_driver);
2250
2251 module_param(fmax, uint, 0444);
2252
2253 MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
2254 MODULE_LICENSE("GPL");