1 // SPDX-License-Identifier: GPL-2.0-only
3 * linux/drivers/mmc/core/core.c
5 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
6 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
7 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
8 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
10 #include <linux/module.h>
11 #include <linux/init.h>
12 #include <linux/interrupt.h>
13 #include <linux/completion.h>
14 #include <linux/device.h>
15 #include <linux/delay.h>
16 #include <linux/pagemap.h>
17 #include <linux/err.h>
18 #include <linux/leds.h>
19 #include <linux/scatterlist.h>
20 #include <linux/log2.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/suspend.h>
23 #include <linux/fault-inject.h>
24 #include <linux/random.h>
25 #include <linux/slab.h>
28 #include <linux/mmc/card.h>
29 #include <linux/mmc/host.h>
30 #include <linux/mmc/mmc.h>
31 #include <linux/mmc/sd.h>
32 #include <linux/mmc/slot-gpio.h>
34 #define CREATE_TRACE_POINTS
35 #include <trace/events/mmc.h>
49 /* The max erase timeout, used when host->max_busy_timeout isn't specified */
50 #define MMC_ERASE_TIMEOUT_MS (60 * 1000) /* 60 s */
51 #define SD_DISCARD_TIMEOUT_MS (250)
53 static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
56 * Enabling software CRCs on the data blocks can be a significant (30%)
57 * performance cost, and for other reasons may not always be desired.
58 * So we allow it to be disabled.
61 module_param(use_spi_crc, bool, 0);
63 static int mmc_schedule_delayed_work(struct delayed_work *work,
67 * We use the system_freezable_wq, because of two reasons.
68 * First, it allows several works (not the same work item) to be
69 * executed simultaneously. Second, the queue becomes frozen when
70 * userspace becomes frozen during system PM.
72 return queue_delayed_work(system_freezable_wq, work, delay);
75 #ifdef CONFIG_FAIL_MMC_REQUEST
78 * Internal function. Inject random data errors.
79 * If mmc_data is NULL no errors are injected.
81 static void mmc_should_fail_request(struct mmc_host *host,
82 struct mmc_request *mrq)
84 struct mmc_command *cmd = mrq->cmd;
85 struct mmc_data *data = mrq->data;
86 static const int data_errors[] = {
95 if ((cmd && cmd->error) || data->error ||
96 !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
99 data->error = data_errors[get_random_u32_below(ARRAY_SIZE(data_errors))];
100 data->bytes_xfered = get_random_u32_below(data->bytes_xfered >> 9) << 9;
103 #else /* CONFIG_FAIL_MMC_REQUEST */
105 static inline void mmc_should_fail_request(struct mmc_host *host,
106 struct mmc_request *mrq)
110 #endif /* CONFIG_FAIL_MMC_REQUEST */
112 static inline void mmc_complete_cmd(struct mmc_request *mrq)
114 if (mrq->cap_cmd_during_tfr && !completion_done(&mrq->cmd_completion))
115 complete_all(&mrq->cmd_completion);
118 void mmc_command_done(struct mmc_host *host, struct mmc_request *mrq)
120 if (!mrq->cap_cmd_during_tfr)
123 mmc_complete_cmd(mrq);
125 pr_debug("%s: cmd done, tfr ongoing (CMD%u)\n",
126 mmc_hostname(host), mrq->cmd->opcode);
128 EXPORT_SYMBOL(mmc_command_done);
131 * mmc_request_done - finish processing an MMC request
132 * @host: MMC host which completed request
133 * @mrq: MMC request which request
135 * MMC drivers should call this function when they have completed
136 * their processing of a request.
138 void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
140 struct mmc_command *cmd = mrq->cmd;
141 int err = cmd->error;
143 /* Flag re-tuning needed on CRC errors */
144 if (!mmc_op_tuning(cmd->opcode) &&
145 !host->retune_crc_disable &&
146 (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) ||
147 (mrq->data && mrq->data->error == -EILSEQ) ||
148 (mrq->stop && mrq->stop->error == -EILSEQ)))
149 mmc_retune_needed(host);
151 if (err && cmd->retries && mmc_host_is_spi(host)) {
152 if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
156 if (host->ongoing_mrq == mrq)
157 host->ongoing_mrq = NULL;
159 mmc_complete_cmd(mrq);
161 trace_mmc_request_done(host, mrq);
164 * We list various conditions for the command to be considered
167 * - There was no error, OK fine then
168 * - We are not doing some kind of retry
169 * - The card was removed (...so just complete everything no matter
170 * if there are errors or retries)
172 if (!err || !cmd->retries || mmc_card_removed(host->card)) {
173 mmc_should_fail_request(host, mrq);
175 if (!host->ongoing_mrq)
176 led_trigger_event(host->led, LED_OFF);
179 pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
180 mmc_hostname(host), mrq->sbc->opcode,
182 mrq->sbc->resp[0], mrq->sbc->resp[1],
183 mrq->sbc->resp[2], mrq->sbc->resp[3]);
186 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
187 mmc_hostname(host), cmd->opcode, err,
188 cmd->resp[0], cmd->resp[1],
189 cmd->resp[2], cmd->resp[3]);
192 pr_debug("%s: %d bytes transferred: %d\n",
194 mrq->data->bytes_xfered, mrq->data->error);
198 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n",
199 mmc_hostname(host), mrq->stop->opcode,
201 mrq->stop->resp[0], mrq->stop->resp[1],
202 mrq->stop->resp[2], mrq->stop->resp[3]);
206 * Request starter must handle retries - see
207 * mmc_wait_for_req_done().
213 EXPORT_SYMBOL(mmc_request_done);
215 static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
219 /* Assumes host controller has been runtime resumed by mmc_claim_host */
220 err = mmc_retune(host);
222 mrq->cmd->error = err;
223 mmc_request_done(host, mrq);
228 * For sdio rw commands we must wait for card busy otherwise some
229 * sdio devices won't work properly.
230 * And bypass I/O abort, reset and bus suspend operations.
232 if (sdio_is_io_busy(mrq->cmd->opcode, mrq->cmd->arg) &&
233 host->ops->card_busy) {
234 int tries = 500; /* Wait aprox 500ms at maximum */
236 while (host->ops->card_busy(host) && --tries)
240 mrq->cmd->error = -EBUSY;
241 mmc_request_done(host, mrq);
246 if (mrq->cap_cmd_during_tfr) {
247 host->ongoing_mrq = mrq;
249 * Retry path could come through here without having waiting on
250 * cmd_completion, so ensure it is reinitialised.
252 reinit_completion(&mrq->cmd_completion);
255 trace_mmc_request_start(host, mrq);
258 host->cqe_ops->cqe_off(host);
260 host->ops->request(host, mrq);
263 static void mmc_mrq_pr_debug(struct mmc_host *host, struct mmc_request *mrq,
267 pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
268 mmc_hostname(host), mrq->sbc->opcode,
269 mrq->sbc->arg, mrq->sbc->flags);
273 pr_debug("%s: starting %sCMD%u arg %08x flags %08x\n",
274 mmc_hostname(host), cqe ? "CQE direct " : "",
275 mrq->cmd->opcode, mrq->cmd->arg, mrq->cmd->flags);
277 pr_debug("%s: starting CQE transfer for tag %d blkaddr %u\n",
278 mmc_hostname(host), mrq->tag, mrq->data->blk_addr);
282 pr_debug("%s: blksz %d blocks %d flags %08x "
283 "tsac %d ms nsac %d\n",
284 mmc_hostname(host), mrq->data->blksz,
285 mrq->data->blocks, mrq->data->flags,
286 mrq->data->timeout_ns / 1000000,
287 mrq->data->timeout_clks);
291 pr_debug("%s: CMD%u arg %08x flags %08x\n",
292 mmc_hostname(host), mrq->stop->opcode,
293 mrq->stop->arg, mrq->stop->flags);
297 static int mmc_mrq_prep(struct mmc_host *host, struct mmc_request *mrq)
299 unsigned int i, sz = 0;
300 struct scatterlist *sg;
305 mrq->cmd->data = mrq->data;
312 if (mrq->data->blksz > host->max_blk_size ||
313 mrq->data->blocks > host->max_blk_count ||
314 mrq->data->blocks * mrq->data->blksz > host->max_req_size)
317 for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
319 if (sz != mrq->data->blocks * mrq->data->blksz)
322 mrq->data->error = 0;
323 mrq->data->mrq = mrq;
325 mrq->data->stop = mrq->stop;
326 mrq->stop->error = 0;
327 mrq->stop->mrq = mrq;
334 int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
338 if (mrq->cmd->has_ext_addr)
339 mmc_send_ext_addr(host, mrq->cmd->ext_addr);
341 init_completion(&mrq->cmd_completion);
343 mmc_retune_hold(host);
345 if (mmc_card_removed(host->card))
348 mmc_mrq_pr_debug(host, mrq, false);
350 WARN_ON(!host->claimed);
352 err = mmc_mrq_prep(host, mrq);
356 if (host->uhs2_sd_tran)
357 mmc_uhs2_prepare_cmd(host, mrq);
359 led_trigger_event(host->led, LED_FULL);
360 __mmc_start_request(host, mrq);
364 EXPORT_SYMBOL(mmc_start_request);
366 static void mmc_wait_done(struct mmc_request *mrq)
368 complete(&mrq->completion);
371 static inline void mmc_wait_ongoing_tfr_cmd(struct mmc_host *host)
373 struct mmc_request *ongoing_mrq = READ_ONCE(host->ongoing_mrq);
376 * If there is an ongoing transfer, wait for the command line to become
379 if (ongoing_mrq && !completion_done(&ongoing_mrq->cmd_completion))
380 wait_for_completion(&ongoing_mrq->cmd_completion);
383 static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
387 mmc_wait_ongoing_tfr_cmd(host);
389 init_completion(&mrq->completion);
390 mrq->done = mmc_wait_done;
392 err = mmc_start_request(host, mrq);
394 mrq->cmd->error = err;
395 mmc_complete_cmd(mrq);
396 complete(&mrq->completion);
402 void mmc_wait_for_req_done(struct mmc_host *host, struct mmc_request *mrq)
404 struct mmc_command *cmd;
407 wait_for_completion(&mrq->completion);
411 if (!cmd->error || !cmd->retries ||
412 mmc_card_removed(host->card))
415 mmc_retune_recheck(host);
417 pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
418 mmc_hostname(host), cmd->opcode, cmd->error);
421 __mmc_start_request(host, mrq);
424 mmc_retune_release(host);
426 EXPORT_SYMBOL(mmc_wait_for_req_done);
429 * mmc_cqe_start_req - Start a CQE request.
430 * @host: MMC host to start the request
431 * @mrq: request to start
433 * Start the request, re-tuning if needed and it is possible. Returns an error
434 * code if the request fails to start or -EBUSY if CQE is busy.
436 int mmc_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
441 * CQE cannot process re-tuning commands. Caller must hold retuning
442 * while CQE is in use. Re-tuning can happen here only when CQE has no
443 * active requests i.e. this is the first. Note, re-tuning will call
446 err = mmc_retune(host);
452 mmc_mrq_pr_debug(host, mrq, true);
454 err = mmc_mrq_prep(host, mrq);
458 if (host->uhs2_sd_tran)
459 mmc_uhs2_prepare_cmd(host, mrq);
461 err = host->cqe_ops->cqe_request(host, mrq);
465 trace_mmc_request_start(host, mrq);
471 pr_debug("%s: failed to start CQE direct CMD%u, error %d\n",
472 mmc_hostname(host), mrq->cmd->opcode, err);
474 pr_debug("%s: failed to start CQE transfer for tag %d, error %d\n",
475 mmc_hostname(host), mrq->tag, err);
479 EXPORT_SYMBOL(mmc_cqe_start_req);
482 * mmc_cqe_request_done - CQE has finished processing an MMC request
483 * @host: MMC host which completed request
484 * @mrq: MMC request which completed
486 * CQE drivers should call this function when they have completed
487 * their processing of a request.
489 void mmc_cqe_request_done(struct mmc_host *host, struct mmc_request *mrq)
491 mmc_should_fail_request(host, mrq);
493 /* Flag re-tuning needed on CRC errors */
494 if ((mrq->cmd && mrq->cmd->error == -EILSEQ) ||
495 (mrq->data && mrq->data->error == -EILSEQ))
496 mmc_retune_needed(host);
498 trace_mmc_request_done(host, mrq);
501 pr_debug("%s: CQE req done (direct CMD%u): %d\n",
502 mmc_hostname(host), mrq->cmd->opcode, mrq->cmd->error);
504 pr_debug("%s: CQE transfer done tag %d\n",
505 mmc_hostname(host), mrq->tag);
509 pr_debug("%s: %d bytes transferred: %d\n",
511 mrq->data->bytes_xfered, mrq->data->error);
516 EXPORT_SYMBOL(mmc_cqe_request_done);
519 * mmc_cqe_post_req - CQE post process of a completed MMC request
521 * @mrq: MMC request to be processed
523 void mmc_cqe_post_req(struct mmc_host *host, struct mmc_request *mrq)
525 if (host->cqe_ops->cqe_post_req)
526 host->cqe_ops->cqe_post_req(host, mrq);
528 EXPORT_SYMBOL(mmc_cqe_post_req);
530 /* Arbitrary 1 second timeout */
531 #define MMC_CQE_RECOVERY_TIMEOUT 1000
534 * mmc_cqe_recovery - Recover from CQE errors.
535 * @host: MMC host to recover
537 * Recovery consists of stopping CQE, stopping eMMC, discarding the queue
538 * in eMMC, and discarding the queue in CQE. CQE must call
539 * mmc_cqe_request_done() on all requests. An error is returned if the eMMC
540 * fails to discard its queue.
542 int mmc_cqe_recovery(struct mmc_host *host)
544 struct mmc_command cmd;
547 mmc_retune_hold_now(host);
550 * Recovery is expected seldom, if at all, but it reduces performance,
551 * so make sure it is not completely silent.
553 pr_warn("%s: running CQE recovery\n", mmc_hostname(host));
555 host->cqe_ops->cqe_recovery_start(host);
557 memset(&cmd, 0, sizeof(cmd));
558 cmd.opcode = MMC_STOP_TRANSMISSION;
559 cmd.flags = MMC_RSP_R1B_NO_CRC | MMC_CMD_AC; /* Ignore CRC */
560 cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT;
561 mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
563 mmc_poll_for_busy(host->card, MMC_CQE_RECOVERY_TIMEOUT, true, MMC_BUSY_IO);
565 memset(&cmd, 0, sizeof(cmd));
566 cmd.opcode = MMC_CMDQ_TASK_MGMT;
567 cmd.arg = 1; /* Discard entire queue */
568 cmd.flags = MMC_RSP_R1B_NO_CRC | MMC_CMD_AC; /* Ignore CRC */
569 cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT;
570 err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
572 host->cqe_ops->cqe_recovery_finish(host);
575 err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
577 mmc_retune_release(host);
581 EXPORT_SYMBOL(mmc_cqe_recovery);
584 * mmc_is_req_done - Determine if a 'cap_cmd_during_tfr' request is done
588 * mmc_is_req_done() is used with requests that have
589 * mrq->cap_cmd_during_tfr = true. mmc_is_req_done() must be called after
590 * starting a request and before waiting for it to complete. That is,
591 * either in between calls to mmc_start_req(), or after mmc_wait_for_req()
592 * and before mmc_wait_for_req_done(). If it is called at other times the
593 * result is not meaningful.
595 bool mmc_is_req_done(struct mmc_host *host, struct mmc_request *mrq)
597 return completion_done(&mrq->completion);
599 EXPORT_SYMBOL(mmc_is_req_done);
602 * mmc_wait_for_req - start a request and wait for completion
603 * @host: MMC host to start command
604 * @mrq: MMC request to start
606 * Start a new MMC custom command request for a host, and wait
607 * for the command to complete. In the case of 'cap_cmd_during_tfr'
608 * requests, the transfer is ongoing and the caller can issue further
609 * commands that do not use the data lines, and then wait by calling
610 * mmc_wait_for_req_done().
611 * Does not attempt to parse the response.
613 void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
615 __mmc_start_req(host, mrq);
617 if (!mrq->cap_cmd_during_tfr)
618 mmc_wait_for_req_done(host, mrq);
620 EXPORT_SYMBOL(mmc_wait_for_req);
623 * mmc_wait_for_cmd - start a command and wait for completion
624 * @host: MMC host to start command
625 * @cmd: MMC command to start
626 * @retries: maximum number of retries
628 * Start a new MMC command for a host, and wait for the command
629 * to complete. Return any error that occurred while the command
630 * was executing. Do not attempt to parse the response.
632 int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
634 struct mmc_request mrq = {};
636 WARN_ON(!host->claimed);
638 memset(cmd->resp, 0, sizeof(cmd->resp));
639 cmd->retries = retries;
644 mmc_wait_for_req(host, &mrq);
649 EXPORT_SYMBOL(mmc_wait_for_cmd);
652 * mmc_set_data_timeout - set the timeout for a data command
653 * @data: data phase for command
654 * @card: the MMC card associated with the data transfer
656 * Computes the data timeout parameters according to the
657 * correct algorithm given the card type.
659 void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
664 * SDIO cards only define an upper 1 s limit on access.
666 if (mmc_card_sdio(card)) {
667 data->timeout_ns = 1000000000;
668 data->timeout_clks = 0;
673 * SD cards use a 100 multiplier rather than 10
675 mult = mmc_card_sd(card) ? 100 : 10;
678 * Scale up the multiplier (and therefore the timeout) by
679 * the r2w factor for writes.
681 if (data->flags & MMC_DATA_WRITE)
682 mult <<= card->csd.r2w_factor;
684 data->timeout_ns = card->csd.taac_ns * mult;
685 data->timeout_clks = card->csd.taac_clks * mult;
688 * SD cards also have an upper limit on the timeout.
690 if (mmc_card_sd(card)) {
691 unsigned int timeout_us, limit_us;
693 timeout_us = data->timeout_ns / 1000;
694 if (card->host->ios.clock)
695 timeout_us += data->timeout_clks * 1000 /
696 (card->host->ios.clock / 1000);
698 if (data->flags & MMC_DATA_WRITE)
700 * The MMC spec "It is strongly recommended
701 * for hosts to implement more than 500ms
702 * timeout value even if the card indicates
703 * the 250ms maximum busy length." Even the
704 * previous value of 300ms is known to be
705 * insufficient for some cards.
712 * SDHC cards always use these fixed values.
714 if (timeout_us > limit_us) {
715 data->timeout_ns = limit_us * 1000;
716 data->timeout_clks = 0;
719 /* assign limit value if invalid */
721 data->timeout_ns = limit_us * 1000;
725 * Some cards require longer data read timeout than indicated in CSD.
726 * Address this by setting the read timeout to a "reasonably high"
727 * value. For the cards tested, 600ms has proven enough. If necessary,
728 * this value can be increased if other problematic cards require this.
730 if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
731 data->timeout_ns = 600000000;
732 data->timeout_clks = 0;
736 * Some cards need very high timeouts if driven in SPI mode.
737 * The worst observed timeout was 900ms after writing a
738 * continuous stream of data until the internal logic
741 if (mmc_host_is_spi(card->host)) {
742 if (data->flags & MMC_DATA_WRITE) {
743 if (data->timeout_ns < 1000000000)
744 data->timeout_ns = 1000000000; /* 1s */
746 if (data->timeout_ns < 100000000)
747 data->timeout_ns = 100000000; /* 100ms */
751 EXPORT_SYMBOL(mmc_set_data_timeout);
754 * Allow claiming an already claimed host if the context is the same or there is
755 * no context but the task is the same.
757 static inline bool mmc_ctx_matches(struct mmc_host *host, struct mmc_ctx *ctx,
758 struct task_struct *task)
760 return host->claimer == ctx ||
761 (!ctx && task && host->claimer->task == task);
764 static inline void mmc_ctx_set_claimer(struct mmc_host *host,
766 struct task_struct *task)
768 if (!host->claimer) {
772 host->claimer = &host->default_ctx;
775 host->claimer->task = task;
779 * __mmc_claim_host - exclusively claim a host
780 * @host: mmc host to claim
781 * @ctx: context that claims the host or NULL in which case the default
782 * context will be used
783 * @abort: whether or not the operation should be aborted
785 * Claim a host for a set of operations. If @abort is non null and
786 * dereference a non-zero value then this will return prematurely with
787 * that non-zero value without acquiring the lock. Returns zero
788 * with the lock held otherwise.
790 int __mmc_claim_host(struct mmc_host *host, struct mmc_ctx *ctx,
793 struct task_struct *task = ctx ? NULL : current;
794 DECLARE_WAITQUEUE(wait, current);
801 add_wait_queue(&host->wq, &wait);
802 spin_lock_irqsave(&host->lock, flags);
804 set_current_state(TASK_UNINTERRUPTIBLE);
805 stop = abort ? atomic_read(abort) : 0;
806 if (stop || !host->claimed || mmc_ctx_matches(host, ctx, task))
808 spin_unlock_irqrestore(&host->lock, flags);
810 spin_lock_irqsave(&host->lock, flags);
812 set_current_state(TASK_RUNNING);
815 mmc_ctx_set_claimer(host, ctx, task);
816 host->claim_cnt += 1;
817 if (host->claim_cnt == 1)
821 spin_unlock_irqrestore(&host->lock, flags);
822 remove_wait_queue(&host->wq, &wait);
825 pm_runtime_get_sync(mmc_dev(host));
829 EXPORT_SYMBOL(__mmc_claim_host);
832 * mmc_release_host - release a host
833 * @host: mmc host to release
835 * Release a MMC host, allowing others to claim the host
836 * for their operations.
838 void mmc_release_host(struct mmc_host *host)
842 WARN_ON(!host->claimed);
844 spin_lock_irqsave(&host->lock, flags);
845 if (--host->claim_cnt) {
846 /* Release for nested claim */
847 spin_unlock_irqrestore(&host->lock, flags);
850 host->claimer->task = NULL;
851 host->claimer = NULL;
852 spin_unlock_irqrestore(&host->lock, flags);
854 pm_runtime_mark_last_busy(mmc_dev(host));
855 if (host->caps & MMC_CAP_SYNC_RUNTIME_PM)
856 pm_runtime_put_sync_suspend(mmc_dev(host));
858 pm_runtime_put_autosuspend(mmc_dev(host));
861 EXPORT_SYMBOL(mmc_release_host);
864 * This is a helper function, which fetches a runtime pm reference for the
865 * card device and also claims the host.
867 void mmc_get_card(struct mmc_card *card, struct mmc_ctx *ctx)
869 pm_runtime_get_sync(&card->dev);
870 __mmc_claim_host(card->host, ctx, NULL);
872 EXPORT_SYMBOL(mmc_get_card);
875 * This is a helper function, which releases the host and drops the runtime
876 * pm reference for the card device.
878 void mmc_put_card(struct mmc_card *card, struct mmc_ctx *ctx)
880 struct mmc_host *host = card->host;
882 WARN_ON(ctx && host->claimer != ctx);
884 mmc_release_host(host);
885 pm_runtime_mark_last_busy(&card->dev);
886 pm_runtime_put_autosuspend(&card->dev);
888 EXPORT_SYMBOL(mmc_put_card);
891 * Internal function that does the actual ios call to the host driver,
892 * optionally printing some debug output.
894 static inline void mmc_set_ios(struct mmc_host *host)
896 struct mmc_ios *ios = &host->ios;
898 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
899 "width %u timing %u\n",
900 mmc_hostname(host), ios->clock, ios->bus_mode,
901 ios->power_mode, ios->chip_select, ios->vdd,
902 1 << ios->bus_width, ios->timing);
904 host->ops->set_ios(host, ios);
908 * Control chip select pin on a host.
910 void mmc_set_chip_select(struct mmc_host *host, int mode)
912 host->ios.chip_select = mode;
917 * Sets the host clock to the highest possible frequency that
920 void mmc_set_clock(struct mmc_host *host, unsigned int hz)
922 WARN_ON(hz && hz < host->f_min);
924 if (hz > host->f_max)
927 host->ios.clock = hz;
931 int mmc_execute_tuning(struct mmc_card *card)
933 struct mmc_host *host = card->host;
937 if (!host->ops->execute_tuning)
941 host->cqe_ops->cqe_off(host);
943 if (mmc_card_mmc(card))
944 opcode = MMC_SEND_TUNING_BLOCK_HS200;
946 opcode = MMC_SEND_TUNING_BLOCK;
948 err = host->ops->execute_tuning(host, opcode);
950 mmc_retune_clear(host);
951 mmc_retune_enable(host);
955 /* Only print error when we don't check for card removal */
956 if (!host->detect_change) {
957 pr_err("%s: tuning execution failed: %d\n",
958 mmc_hostname(host), err);
959 mmc_debugfs_err_stats_inc(host, MMC_ERR_TUNING);
966 * Change the bus mode (open drain/push-pull) of a host.
968 void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
970 host->ios.bus_mode = mode;
975 * Change data bus width of a host.
977 void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
979 host->ios.bus_width = width;
984 * Set initial state after a power cycle or a hw_reset.
986 void mmc_set_initial_state(struct mmc_host *host)
989 host->cqe_ops->cqe_off(host);
991 mmc_retune_disable(host);
993 if (mmc_host_is_spi(host))
994 host->ios.chip_select = MMC_CS_HIGH;
996 host->ios.chip_select = MMC_CS_DONTCARE;
997 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
998 host->ios.bus_width = MMC_BUS_WIDTH_1;
999 host->ios.timing = MMC_TIMING_LEGACY;
1000 host->ios.drv_type = 0;
1001 host->ios.enhanced_strobe = false;
1004 * Make sure we are in non-enhanced strobe mode before we
1005 * actually enable it in ext_csd.
1007 if ((host->caps2 & MMC_CAP2_HS400_ES) &&
1008 host->ops->hs400_enhanced_strobe)
1009 host->ops->hs400_enhanced_strobe(host, &host->ios);
1013 mmc_crypto_set_initial_state(host);
1017 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1018 * @vdd: voltage (mV)
1019 * @low_bits: prefer low bits in boundary cases
1021 * This function returns the OCR bit number according to the provided @vdd
1022 * value. If conversion is not possible a negative errno value returned.
1024 * Depending on the @low_bits flag the function prefers low or high OCR bits
1025 * on boundary voltages. For example,
1026 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1027 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1029 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1031 static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1033 const int max_bit = ilog2(MMC_VDD_35_36);
1036 if (vdd < 1650 || vdd > 3600)
1039 if (vdd >= 1650 && vdd <= 1950)
1040 return ilog2(MMC_VDD_165_195);
1045 /* Base 2000 mV, step 100 mV, bit's base 8. */
1046 bit = (vdd - 2000) / 100 + 8;
1053 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1054 * @vdd_min: minimum voltage value (mV)
1055 * @vdd_max: maximum voltage value (mV)
1057 * This function returns the OCR mask bits according to the provided @vdd_min
1058 * and @vdd_max values. If conversion is not possible the function returns 0.
1060 * Notes wrt boundary cases:
1061 * This function sets the OCR bits for all boundary voltages, for example
1062 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1063 * MMC_VDD_34_35 mask.
1065 u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1069 if (vdd_max < vdd_min)
1072 /* Prefer high bits for the boundary vdd_max values. */
1073 vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1077 /* Prefer low bits for the boundary vdd_min values. */
1078 vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1082 /* Fill the mask, from max bit to min bit. */
1083 while (vdd_max >= vdd_min)
1084 mask |= 1 << vdd_max--;
1089 static int mmc_of_get_func_num(struct device_node *node)
1094 ret = of_property_read_u32(node, "reg", ®);
1101 struct device_node *mmc_of_find_child_device(struct mmc_host *host,
1104 struct device_node *node;
1106 if (!host->parent || !host->parent->of_node)
1109 for_each_child_of_node(host->parent->of_node, node) {
1110 if (mmc_of_get_func_num(node) == func_num)
1118 * Mask off any voltages we don't support and select
1119 * the lowest voltage
1121 u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1126 * Sanity check the voltages that the card claims to
1130 dev_warn(mmc_dev(host),
1131 "card claims to support voltages below defined range\n");
1135 ocr &= host->ocr_avail;
1137 dev_warn(mmc_dev(host), "no support for card's volts\n");
1141 if (!mmc_card_uhs2(host) && host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
1144 mmc_power_cycle(host, ocr);
1148 * The bit variable represents the highest voltage bit set in
1150 * To keep a range of 2 values (e.g. 3.2V/3.3V and 3.3V/3.4V),
1151 * we must shift the mask '3' with (bit - 1).
1153 ocr &= 3 << (bit - 1);
1154 if (bit != host->ios.vdd)
1155 dev_warn(mmc_dev(host), "exceeding card's volts\n");
1161 int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1164 int old_signal_voltage = host->ios.signal_voltage;
1166 host->ios.signal_voltage = signal_voltage;
1167 if (host->ops->start_signal_voltage_switch)
1168 err = host->ops->start_signal_voltage_switch(host, &host->ios);
1171 host->ios.signal_voltage = old_signal_voltage;
1177 void mmc_set_initial_signal_voltage(struct mmc_host *host)
1179 /* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
1180 if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330))
1181 dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n");
1182 else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1183 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n");
1184 else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120))
1185 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n");
1188 int mmc_host_set_uhs_voltage(struct mmc_host *host)
1193 * During a signal voltage level switch, the clock must be gated
1194 * for 5 ms according to the SD spec
1196 clock = host->ios.clock;
1197 host->ios.clock = 0;
1200 if (mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1203 /* Keep clock gated for at least 10 ms, though spec only says 5 ms */
1205 host->ios.clock = clock;
1211 int mmc_set_uhs_voltage(struct mmc_host *host, u32 ocr)
1213 struct mmc_command cmd = {};
1217 * If we cannot switch voltages, return failure so the caller
1218 * can continue without UHS mode
1220 if (!host->ops->start_signal_voltage_switch)
1222 if (!host->ops->card_busy)
1223 pr_warn("%s: cannot verify signal voltage switch\n",
1224 mmc_hostname(host));
1226 cmd.opcode = SD_SWITCH_VOLTAGE;
1228 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1230 err = mmc_wait_for_cmd(host, &cmd, 0);
1234 if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1238 * The card should drive cmd and dat[0:3] low immediately
1239 * after the response of cmd11, but wait 1 ms to be sure
1242 if (host->ops->card_busy && !host->ops->card_busy(host)) {
1247 if (mmc_host_set_uhs_voltage(host)) {
1249 * Voltages may not have been switched, but we've already
1250 * sent CMD11, so a power cycle is required anyway
1256 /* Wait for at least 1 ms according to spec */
1260 * Failure to switch is indicated by the card holding
1263 if (host->ops->card_busy && host->ops->card_busy(host))
1268 pr_debug("%s: Signal voltage switch failed, "
1269 "power cycling card\n", mmc_hostname(host));
1270 mmc_power_cycle(host, ocr);
1277 * Select timing parameters for host.
1279 void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1281 host->ios.timing = timing;
1286 * Select appropriate driver type for host.
1288 void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1290 host->ios.drv_type = drv_type;
1294 int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr,
1295 int card_drv_type, int *drv_type)
1297 struct mmc_host *host = card->host;
1298 int host_drv_type = SD_DRIVER_TYPE_B;
1302 if (!host->ops->select_drive_strength)
1305 /* Use SD definition of driver strength for hosts */
1306 if (host->caps & MMC_CAP_DRIVER_TYPE_A)
1307 host_drv_type |= SD_DRIVER_TYPE_A;
1309 if (host->caps & MMC_CAP_DRIVER_TYPE_C)
1310 host_drv_type |= SD_DRIVER_TYPE_C;
1312 if (host->caps & MMC_CAP_DRIVER_TYPE_D)
1313 host_drv_type |= SD_DRIVER_TYPE_D;
1316 * The drive strength that the hardware can support
1317 * depends on the board design. Pass the appropriate
1318 * information and let the hardware specific code
1319 * return what is possible given the options
1321 return host->ops->select_drive_strength(card, max_dtr,
1328 * Apply power to the MMC stack. This is a two-stage process.
1329 * First, we enable power to the card without the clock running.
1330 * We then wait a bit for the power to stabilise. Finally,
1331 * enable the bus drivers and clock to the card.
1333 * We must _NOT_ enable the clock prior to power stablising.
1335 * If a host does all the power sequencing itself, ignore the
1336 * initial MMC_POWER_UP stage.
1338 void mmc_power_up(struct mmc_host *host, u32 ocr)
1340 if (host->ios.power_mode == MMC_POWER_ON)
1343 mmc_pwrseq_pre_power_on(host);
1345 host->ios.vdd = fls(ocr) - 1;
1346 host->ios.power_mode = MMC_POWER_UP;
1347 /* Set initial state and call mmc_set_ios */
1348 mmc_set_initial_state(host);
1350 mmc_set_initial_signal_voltage(host);
1353 * This delay should be sufficient to allow the power supply
1354 * to reach the minimum voltage.
1356 mmc_delay(host->ios.power_delay_ms);
1358 mmc_pwrseq_post_power_on(host);
1360 host->ios.clock = host->f_init;
1362 host->ios.power_mode = MMC_POWER_ON;
1366 * This delay must be at least 74 clock sizes, or 1 ms, or the
1367 * time required to reach a stable voltage.
1369 mmc_delay(host->ios.power_delay_ms);
1372 void mmc_power_off(struct mmc_host *host)
1374 if (host->ios.power_mode == MMC_POWER_OFF)
1377 mmc_pwrseq_power_off(host);
1379 host->ios.clock = 0;
1382 host->ios.power_mode = MMC_POWER_OFF;
1383 /* Set initial state and call mmc_set_ios */
1384 mmc_set_initial_state(host);
1387 * Some configurations, such as the 802.11 SDIO card in the OLPC
1388 * XO-1.5, require a short delay after poweroff before the card
1389 * can be successfully turned on again.
1394 void mmc_power_cycle(struct mmc_host *host, u32 ocr)
1396 mmc_power_off(host);
1397 /* Wait at least 1 ms according to SD spec */
1399 mmc_power_up(host, ocr);
1403 * Assign a mmc bus handler to a host. Only one bus handler may control a
1404 * host at any given time.
1406 void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1408 host->bus_ops = ops;
1412 * Remove the current bus handler from a host.
1414 void mmc_detach_bus(struct mmc_host *host)
1416 host->bus_ops = NULL;
1419 void _mmc_detect_change(struct mmc_host *host, unsigned long delay, bool cd_irq)
1422 * Prevent system sleep for 5s to allow user space to consume the
1423 * corresponding uevent. This is especially useful, when CD irq is used
1424 * as a system wakeup, but doesn't hurt in other cases.
1426 if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL))
1427 __pm_wakeup_event(host->ws, 5000);
1429 host->detect_change = 1;
1430 mmc_schedule_delayed_work(&host->detect, delay);
1434 * mmc_detect_change - process change of state on a MMC socket
1435 * @host: host which changed state.
1436 * @delay: optional delay to wait before detection (jiffies)
1438 * MMC drivers should call this when they detect a card has been
1439 * inserted or removed. The MMC layer will confirm that any
1440 * present card is still functional, and initialize any newly
1443 void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1445 _mmc_detect_change(host, delay, true);
1447 EXPORT_SYMBOL(mmc_detect_change);
1449 void mmc_init_erase(struct mmc_card *card)
1453 if (is_power_of_2(card->erase_size))
1454 card->erase_shift = ffs(card->erase_size) - 1;
1456 card->erase_shift = 0;
1459 * It is possible to erase an arbitrarily large area of an SD or MMC
1460 * card. That is not desirable because it can take a long time
1461 * (minutes) potentially delaying more important I/O, and also the
1462 * timeout calculations become increasingly hugely over-estimated.
1463 * Consequently, 'pref_erase' is defined as a guide to limit erases
1464 * to that size and alignment.
1466 * For SD cards that define Allocation Unit size, limit erases to one
1467 * Allocation Unit at a time.
1468 * For MMC, have a stab at ai good value and for modern cards it will
1469 * end up being 4MiB. Note that if the value is too small, it can end
1470 * up taking longer to erase. Also note, erase_size is already set to
1471 * High Capacity Erase Size if available when this function is called.
1473 if (mmc_card_sd(card) && card->ssr.au) {
1474 card->pref_erase = card->ssr.au;
1475 card->erase_shift = ffs(card->ssr.au) - 1;
1476 } else if (card->erase_size) {
1477 sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1479 card->pref_erase = 512 * 1024 / 512;
1481 card->pref_erase = 1024 * 1024 / 512;
1483 card->pref_erase = 2 * 1024 * 1024 / 512;
1485 card->pref_erase = 4 * 1024 * 1024 / 512;
1486 if (card->pref_erase < card->erase_size)
1487 card->pref_erase = card->erase_size;
1489 sz = card->pref_erase % card->erase_size;
1491 card->pref_erase += card->erase_size - sz;
1494 card->pref_erase = 0;
1497 static bool is_trim_arg(unsigned int arg)
1499 return (arg & MMC_TRIM_OR_DISCARD_ARGS) && arg != MMC_DISCARD_ARG;
1502 static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1503 unsigned int arg, unsigned int qty)
1505 unsigned int erase_timeout;
1507 if (arg == MMC_DISCARD_ARG ||
1508 (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1509 erase_timeout = card->ext_csd.trim_timeout;
1510 } else if (card->ext_csd.erase_group_def & 1) {
1511 /* High Capacity Erase Group Size uses HC timeouts */
1512 if (arg == MMC_TRIM_ARG)
1513 erase_timeout = card->ext_csd.trim_timeout;
1515 erase_timeout = card->ext_csd.hc_erase_timeout;
1517 /* CSD Erase Group Size uses write timeout */
1518 unsigned int mult = (10 << card->csd.r2w_factor);
1519 unsigned int timeout_clks = card->csd.taac_clks * mult;
1520 unsigned int timeout_us;
1522 /* Avoid overflow: e.g. taac_ns=80000000 mult=1280 */
1523 if (card->csd.taac_ns < 1000000)
1524 timeout_us = (card->csd.taac_ns * mult) / 1000;
1526 timeout_us = (card->csd.taac_ns / 1000) * mult;
1529 * ios.clock is only a target. The real clock rate might be
1530 * less but not that much less, so fudge it by multiplying by 2.
1533 timeout_us += (timeout_clks * 1000) /
1534 (card->host->ios.clock / 1000);
1536 erase_timeout = timeout_us / 1000;
1539 * Theoretically, the calculation could underflow so round up
1540 * to 1ms in that case.
1546 /* Multiplier for secure operations */
1547 if (arg & MMC_SECURE_ARGS) {
1548 if (arg == MMC_SECURE_ERASE_ARG)
1549 erase_timeout *= card->ext_csd.sec_erase_mult;
1551 erase_timeout *= card->ext_csd.sec_trim_mult;
1554 erase_timeout *= qty;
1557 * Ensure at least a 1 second timeout for SPI as per
1558 * 'mmc_set_data_timeout()'
1560 if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1561 erase_timeout = 1000;
1563 return erase_timeout;
1566 static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1570 unsigned int erase_timeout;
1572 /* for DISCARD none of the below calculation applies.
1573 * the busy timeout is 250msec per discard command.
1575 if (arg == SD_DISCARD_ARG)
1576 return SD_DISCARD_TIMEOUT_MS;
1578 if (card->ssr.erase_timeout) {
1579 /* Erase timeout specified in SD Status Register (SSR) */
1580 erase_timeout = card->ssr.erase_timeout * qty +
1581 card->ssr.erase_offset;
1584 * Erase timeout not specified in SD Status Register (SSR) so
1585 * use 250ms per write block.
1587 erase_timeout = 250 * qty;
1590 /* Must not be less than 1 second */
1591 if (erase_timeout < 1000)
1592 erase_timeout = 1000;
1594 return erase_timeout;
1597 static unsigned int mmc_erase_timeout(struct mmc_card *card,
1601 if (mmc_card_sd(card))
1602 return mmc_sd_erase_timeout(card, arg, qty);
1604 return mmc_mmc_erase_timeout(card, arg, qty);
1607 static int mmc_do_erase(struct mmc_card *card, sector_t from,
1608 sector_t to, unsigned int arg)
1610 struct mmc_command cmd = {};
1611 unsigned int qty = 0, busy_timeout = 0;
1615 mmc_retune_hold(card->host);
1618 * qty is used to calculate the erase timeout which depends on how many
1619 * erase groups (or allocation units in SD terminology) are affected.
1620 * We count erasing part of an erase group as one erase group.
1621 * For SD, the allocation units are always a power of 2. For MMC, the
1622 * erase group size is almost certainly also power of 2, but it does not
1623 * seem to insist on that in the JEDEC standard, so we fall back to
1624 * division in that case. SD may not specify an allocation unit size,
1625 * in which case the timeout is based on the number of write blocks.
1627 * Note that the timeout for secure trim 2 will only be correct if the
1628 * number of erase groups specified is the same as the total of all
1629 * preceding secure trim 1 commands. Since the power may have been
1630 * lost since the secure trim 1 commands occurred, it is generally
1631 * impossible to calculate the secure trim 2 timeout correctly.
1633 if (card->erase_shift)
1634 qty += ((to >> card->erase_shift) -
1635 (from >> card->erase_shift)) + 1;
1636 else if (mmc_card_sd(card))
1637 qty += to - from + 1;
1639 qty += (mmc_sector_div(to, card->erase_size) -
1640 mmc_sector_div(from, card->erase_size)) + 1;
1642 if (!mmc_card_blockaddr(card)) {
1647 if (mmc_card_sd(card))
1648 cmd.opcode = SD_ERASE_WR_BLK_START;
1650 cmd.opcode = MMC_ERASE_GROUP_START;
1652 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1654 if (mmc_card_ult_capacity(card)) {
1655 cmd.ext_addr = from >> 32;
1656 cmd.has_ext_addr = true;
1659 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1661 pr_err("mmc_erase: group start error %d, "
1662 "status %#x\n", err, cmd.resp[0]);
1667 memset(&cmd, 0, sizeof(struct mmc_command));
1668 if (mmc_card_sd(card))
1669 cmd.opcode = SD_ERASE_WR_BLK_END;
1671 cmd.opcode = MMC_ERASE_GROUP_END;
1673 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1675 if (mmc_card_ult_capacity(card)) {
1676 cmd.ext_addr = to >> 32;
1677 cmd.has_ext_addr = true;
1680 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1682 pr_err("mmc_erase: group end error %d, status %#x\n",
1688 memset(&cmd, 0, sizeof(struct mmc_command));
1689 cmd.opcode = MMC_ERASE;
1691 busy_timeout = mmc_erase_timeout(card, arg, qty);
1692 use_r1b_resp = mmc_prepare_busy_cmd(card->host, &cmd, busy_timeout);
1694 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1696 pr_err("mmc_erase: erase error %d, status %#x\n",
1702 if (mmc_host_is_spi(card->host))
1706 * In case of when R1B + MMC_CAP_WAIT_WHILE_BUSY is used, the polling
1709 if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp)
1712 /* Let's poll to find out when the erase operation completes. */
1713 err = mmc_poll_for_busy(card, busy_timeout, false, MMC_BUSY_ERASE);
1716 mmc_retune_release(card->host);
1720 static unsigned int mmc_align_erase_size(struct mmc_card *card,
1725 sector_t from_new = *from;
1726 unsigned int nr_new = nr, rem;
1729 * When the 'card->erase_size' is power of 2, we can use round_up/down()
1730 * to align the erase size efficiently.
1732 if (is_power_of_2(card->erase_size)) {
1733 sector_t temp = from_new;
1735 from_new = round_up(temp, card->erase_size);
1736 rem = from_new - temp;
1743 nr_new = round_down(nr_new, card->erase_size);
1745 rem = mmc_sector_mod(from_new, card->erase_size);
1747 rem = card->erase_size - rem;
1755 rem = nr_new % card->erase_size;
1763 *to = from_new + nr_new;
1770 * mmc_erase - erase sectors.
1771 * @card: card to erase
1772 * @from: first sector to erase
1773 * @nr: number of sectors to erase
1774 * @arg: erase command argument
1776 * Caller must claim host before calling this function.
1778 int mmc_erase(struct mmc_card *card, sector_t from, unsigned int nr,
1782 sector_t to = from + nr;
1786 if (!(card->csd.cmdclass & CCC_ERASE))
1789 if (!card->erase_size)
1792 if (mmc_card_sd(card) && arg != SD_ERASE_ARG && arg != SD_DISCARD_ARG)
1795 if (mmc_card_mmc(card) && (arg & MMC_SECURE_ARGS) &&
1796 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
1799 if (mmc_card_mmc(card) && is_trim_arg(arg) &&
1800 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
1803 if (arg == MMC_SECURE_ERASE_ARG) {
1804 if (mmc_sector_mod(from, card->erase_size) || nr % card->erase_size)
1808 if (arg == MMC_ERASE_ARG)
1809 nr = mmc_align_erase_size(card, &from, &to, nr);
1817 /* 'from' and 'to' are inclusive */
1821 * Special case where only one erase-group fits in the timeout budget:
1822 * If the region crosses an erase-group boundary on this particular
1823 * case, we will be trimming more than one erase-group which, does not
1824 * fit in the timeout budget of the controller, so we need to split it
1825 * and call mmc_do_erase() twice if necessary. This special case is
1826 * identified by the card->eg_boundary flag.
1828 rem = card->erase_size - mmc_sector_mod(from, card->erase_size);
1829 if ((arg & MMC_TRIM_OR_DISCARD_ARGS) && card->eg_boundary && nr > rem) {
1830 err = mmc_do_erase(card, from, from + rem - 1, arg);
1832 if ((err) || (to <= from))
1836 return mmc_do_erase(card, from, to, arg);
1838 EXPORT_SYMBOL(mmc_erase);
1840 bool mmc_card_can_erase(struct mmc_card *card)
1842 return (card->csd.cmdclass & CCC_ERASE && card->erase_size);
1844 EXPORT_SYMBOL(mmc_card_can_erase);
1846 bool mmc_card_can_trim(struct mmc_card *card)
1848 return ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) &&
1849 (!(card->quirks & MMC_QUIRK_TRIM_BROKEN)));
1851 EXPORT_SYMBOL(mmc_card_can_trim);
1853 bool mmc_card_can_discard(struct mmc_card *card)
1856 * As there's no way to detect the discard support bit at v4.5
1857 * use the s/w feature support filed.
1859 return (card->ext_csd.feature_support & MMC_DISCARD_FEATURE);
1861 EXPORT_SYMBOL(mmc_card_can_discard);
1863 bool mmc_card_can_sanitize(struct mmc_card *card)
1865 if (!mmc_card_can_trim(card) && !mmc_card_can_erase(card))
1867 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
1872 bool mmc_card_can_secure_erase_trim(struct mmc_card *card)
1874 return ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) &&
1875 !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN));
1877 EXPORT_SYMBOL(mmc_card_can_secure_erase_trim);
1879 int mmc_erase_group_aligned(struct mmc_card *card, sector_t from,
1882 if (!card->erase_size)
1884 if (mmc_sector_mod(from, card->erase_size) || nr % card->erase_size)
1888 EXPORT_SYMBOL(mmc_erase_group_aligned);
1890 static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
1893 struct mmc_host *host = card->host;
1894 unsigned int max_discard, x, y, qty = 0, max_qty, min_qty, timeout;
1895 unsigned int last_timeout = 0;
1896 unsigned int max_busy_timeout = host->max_busy_timeout ?
1897 host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS;
1899 if (card->erase_shift) {
1900 max_qty = UINT_MAX >> card->erase_shift;
1901 min_qty = card->pref_erase >> card->erase_shift;
1902 } else if (mmc_card_sd(card)) {
1904 min_qty = card->pref_erase;
1906 max_qty = UINT_MAX / card->erase_size;
1907 min_qty = card->pref_erase / card->erase_size;
1911 * We should not only use 'host->max_busy_timeout' as the limitation
1912 * when deciding the max discard sectors. We should set a balance value
1913 * to improve the erase speed, and it can not get too long timeout at
1916 * Here we set 'card->pref_erase' as the minimal discard sectors no
1917 * matter what size of 'host->max_busy_timeout', but if the
1918 * 'host->max_busy_timeout' is large enough for more discard sectors,
1919 * then we can continue to increase the max discard sectors until we
1920 * get a balance value. In cases when the 'host->max_busy_timeout'
1921 * isn't specified, use the default max erase timeout.
1925 for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
1926 timeout = mmc_erase_timeout(card, arg, qty + x);
1928 if (qty + x > min_qty && timeout > max_busy_timeout)
1931 if (timeout < last_timeout)
1933 last_timeout = timeout;
1943 * When specifying a sector range to trim, chances are we might cross
1944 * an erase-group boundary even if the amount of sectors is less than
1946 * If we can only fit one erase-group in the controller timeout budget,
1947 * we have to care that erase-group boundaries are not crossed by a
1948 * single trim operation. We flag that special case with "eg_boundary".
1949 * In all other cases we can just decrement qty and pretend that we
1950 * always touch (qty + 1) erase-groups as a simple optimization.
1953 card->eg_boundary = 1;
1957 /* Convert qty to sectors */
1958 if (card->erase_shift)
1959 max_discard = qty << card->erase_shift;
1960 else if (mmc_card_sd(card))
1961 max_discard = qty + 1;
1963 max_discard = qty * card->erase_size;
1968 unsigned int mmc_calc_max_discard(struct mmc_card *card)
1970 struct mmc_host *host = card->host;
1971 unsigned int max_discard, max_trim;
1974 * Without erase_group_def set, MMC erase timeout depends on clock
1975 * frequence which can change. In that case, the best choice is
1976 * just the preferred erase size.
1978 if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
1979 return card->pref_erase;
1981 max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
1982 if (mmc_card_can_trim(card)) {
1983 max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
1984 if (max_trim < max_discard || max_discard == 0)
1985 max_discard = max_trim;
1986 } else if (max_discard < card->erase_size) {
1989 pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
1990 mmc_hostname(host), max_discard, host->max_busy_timeout ?
1991 host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS);
1994 EXPORT_SYMBOL(mmc_calc_max_discard);
1996 bool mmc_card_is_blockaddr(struct mmc_card *card)
1998 return card ? mmc_card_blockaddr(card) : false;
2000 EXPORT_SYMBOL(mmc_card_is_blockaddr);
2002 int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
2004 struct mmc_command cmd = {};
2006 if (mmc_card_blockaddr(card) || mmc_card_ddr52(card) ||
2007 mmc_card_hs400(card) || mmc_card_hs400es(card))
2010 cmd.opcode = MMC_SET_BLOCKLEN;
2012 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2013 return mmc_wait_for_cmd(card->host, &cmd, 5);
2015 EXPORT_SYMBOL(mmc_set_blocklen);
2017 static void mmc_hw_reset_for_init(struct mmc_host *host)
2019 mmc_pwrseq_reset(host);
2021 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->card_hw_reset)
2023 host->ops->card_hw_reset(host);
2027 * mmc_hw_reset - reset the card in hardware
2028 * @card: card to be reset
2030 * Hard reset the card. This function is only for upper layers, like the
2031 * block layer or card drivers. You cannot use it in host drivers (struct
2032 * mmc_card might be gone then).
2034 * Return: 0 on success, -errno on failure
2036 int mmc_hw_reset(struct mmc_card *card)
2038 struct mmc_host *host = card->host;
2041 ret = host->bus_ops->hw_reset(host);
2043 pr_warn("%s: tried to HW reset card, got error %d\n",
2044 mmc_hostname(host), ret);
2048 EXPORT_SYMBOL(mmc_hw_reset);
2050 int mmc_sw_reset(struct mmc_card *card)
2052 struct mmc_host *host = card->host;
2055 if (!host->bus_ops->sw_reset)
2058 ret = host->bus_ops->sw_reset(host);
2060 pr_warn("%s: tried to SW reset card, got error %d\n",
2061 mmc_hostname(host), ret);
2065 EXPORT_SYMBOL(mmc_sw_reset);
2067 static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2069 host->f_init = freq;
2071 pr_debug("%s: %s: trying to init card at %u Hz\n",
2072 mmc_hostname(host), __func__, host->f_init);
2074 mmc_power_up(host, host->ocr_avail);
2077 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2078 * do a hardware reset if possible.
2080 mmc_hw_reset_for_init(host);
2083 * sdio_reset sends CMD52 to reset card. Since we do not know
2084 * if the card is being re-initialized, just send it. CMD52
2085 * should be ignored by SD/eMMC cards.
2086 * Skip it if we already know that we do not support SDIO commands
2088 if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2093 if (!(host->caps2 & MMC_CAP2_NO_SD)) {
2094 if (mmc_send_if_cond_pcie(host, host->ocr_avail))
2096 if (mmc_card_sd_express(host))
2100 /* Order's important: probe SDIO, then SD, then MMC */
2101 if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2102 if (!mmc_attach_sdio(host))
2105 if (!(host->caps2 & MMC_CAP2_NO_SD))
2106 if (!mmc_attach_sd(host))
2109 if (!(host->caps2 & MMC_CAP2_NO_MMC))
2110 if (!mmc_attach_mmc(host))
2114 mmc_power_off(host);
2118 int _mmc_detect_card_removed(struct mmc_host *host)
2122 if (!host->card || mmc_card_removed(host->card))
2125 ret = host->bus_ops->alive(host);
2128 * Card detect status and alive check may be out of sync if card is
2129 * removed slowly, when card detect switch changes while card/slot
2130 * pads are still contacted in hardware (refer to "SD Card Mechanical
2131 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2132 * detect work 200ms later for this case.
2134 if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2135 mmc_detect_change(host, msecs_to_jiffies(200));
2136 pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2140 mmc_card_set_removed(host->card);
2141 pr_debug("%s: card remove detected\n", mmc_hostname(host));
2147 int mmc_detect_card_removed(struct mmc_host *host)
2149 struct mmc_card *card = host->card;
2152 WARN_ON(!host->claimed);
2157 if (!mmc_card_is_removable(host))
2160 ret = mmc_card_removed(card);
2162 * The card will be considered unchanged unless we have been asked to
2163 * detect a change or host requires polling to provide card detection.
2165 if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
2168 host->detect_change = 0;
2170 ret = _mmc_detect_card_removed(host);
2171 if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
2173 * Schedule a detect work as soon as possible to let a
2174 * rescan handle the card removal.
2176 cancel_delayed_work(&host->detect);
2177 _mmc_detect_change(host, 0, false);
2183 EXPORT_SYMBOL(mmc_detect_card_removed);
2185 int mmc_card_alternative_gpt_sector(struct mmc_card *card, sector_t *gpt_sector)
2187 unsigned int boot_sectors_num;
2189 if ((!(card->host->caps2 & MMC_CAP2_ALT_GPT_TEGRA)))
2192 /* filter out unrelated cards */
2193 if (card->ext_csd.rev < 3 ||
2194 !mmc_card_mmc(card) ||
2195 !mmc_card_is_blockaddr(card) ||
2196 mmc_card_is_removable(card->host))
2200 * eMMC storage has two special boot partitions in addition to the
2201 * main one. NVIDIA's bootloader linearizes eMMC boot0->boot1->main
2202 * accesses, this means that the partition table addresses are shifted
2203 * by the size of boot partitions. In accordance with the eMMC
2204 * specification, the boot partition size is calculated as follows:
2206 * boot partition size = 128K byte x BOOT_SIZE_MULT
2208 * Calculate number of sectors occupied by the both boot partitions.
2210 boot_sectors_num = card->ext_csd.raw_boot_mult * SZ_128K /
2211 SZ_512 * MMC_NUM_BOOT_PARTITION;
2213 /* Defined by NVIDIA and used by Android devices. */
2214 *gpt_sector = card->ext_csd.sectors - boot_sectors_num - 1;
2218 EXPORT_SYMBOL(mmc_card_alternative_gpt_sector);
2220 void mmc_rescan(struct work_struct *work)
2222 struct mmc_host *host =
2223 container_of(work, struct mmc_host, detect.work);
2226 if (host->rescan_disable)
2229 /* If there is a non-removable card registered, only scan once */
2230 if (!mmc_card_is_removable(host) && host->rescan_entered)
2232 host->rescan_entered = 1;
2234 if (host->trigger_card_event && host->ops->card_event) {
2235 mmc_claim_host(host);
2236 host->ops->card_event(host);
2237 mmc_release_host(host);
2238 host->trigger_card_event = false;
2241 /* Verify a registered card to be functional, else remove it. */
2243 host->bus_ops->detect(host);
2245 host->detect_change = 0;
2247 /* if there still is a card present, stop here */
2248 if (host->bus_ops != NULL)
2251 mmc_claim_host(host);
2252 if (mmc_card_is_removable(host) && host->ops->get_cd &&
2253 host->ops->get_cd(host) == 0) {
2254 mmc_power_off(host);
2255 mmc_release_host(host);
2259 /* If an SD express card is present, then leave it as is. */
2260 if (mmc_card_sd_express(host)) {
2261 mmc_release_host(host);
2266 * Ideally we should favor initialization of legacy SD cards and defer
2267 * UHS-II enumeration. However, it seems like cards doesn't reliably
2268 * announce their support for UHS-II in the response to the ACMD41,
2269 * while initializing the legacy SD interface. Therefore, let's start
2270 * with UHS-II for now.
2272 if (!mmc_attach_sd_uhs2(host)) {
2273 mmc_release_host(host);
2277 for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2278 unsigned int freq = freqs[i];
2279 if (freq > host->f_max) {
2280 if (i + 1 < ARRAY_SIZE(freqs))
2284 if (!mmc_rescan_try_freq(host, max(freq, host->f_min)))
2286 if (freqs[i] <= host->f_min)
2290 /* A non-removable card should have been detected by now. */
2291 if (!mmc_card_is_removable(host) && !host->bus_ops)
2292 pr_info("%s: Failed to initialize a non-removable card",
2293 mmc_hostname(host));
2296 * Ignore the command timeout errors observed during
2297 * the card init as those are excepted.
2299 host->err_stats[MMC_ERR_CMD_TIMEOUT] = 0;
2300 mmc_release_host(host);
2303 if (host->caps & MMC_CAP_NEEDS_POLL)
2304 mmc_schedule_delayed_work(&host->detect, HZ);
2307 void mmc_start_host(struct mmc_host *host)
2309 bool power_up = !(host->caps2 &
2310 (MMC_CAP2_NO_PRESCAN_POWERUP | MMC_CAP2_SD_UHS2));
2312 host->f_init = max(min(freqs[0], host->f_max), host->f_min);
2313 host->rescan_disable = 0;
2316 mmc_claim_host(host);
2317 mmc_power_up(host, host->ocr_avail);
2318 mmc_release_host(host);
2321 mmc_gpiod_request_cd_irq(host);
2322 _mmc_detect_change(host, 0, false);
2325 void __mmc_stop_host(struct mmc_host *host)
2327 if (host->rescan_disable)
2330 if (host->slot.cd_irq >= 0) {
2331 mmc_gpio_set_cd_wake(host, false);
2332 disable_irq(host->slot.cd_irq);
2335 host->rescan_disable = 1;
2336 cancel_delayed_work_sync(&host->detect);
2339 void mmc_stop_host(struct mmc_host *host)
2341 __mmc_stop_host(host);
2343 /* clear pm flags now and let card drivers set them as needed */
2346 if (host->bus_ops) {
2347 /* Calling bus_ops->remove() with a claimed host can deadlock */
2348 host->bus_ops->remove(host);
2349 mmc_claim_host(host);
2350 mmc_detach_bus(host);
2351 mmc_power_off(host);
2352 mmc_release_host(host);
2356 mmc_claim_host(host);
2357 mmc_power_off(host);
2358 mmc_release_host(host);
2361 static int __init mmc_init(void)
2365 ret = mmc_register_bus();
2369 ret = mmc_register_host_class();
2371 goto unregister_bus;
2373 ret = sdio_register_bus();
2375 goto unregister_host_class;
2379 unregister_host_class:
2380 mmc_unregister_host_class();
2382 mmc_unregister_bus();
2386 static void __exit mmc_exit(void)
2388 sdio_unregister_bus();
2389 mmc_unregister_host_class();
2390 mmc_unregister_bus();
2393 subsys_initcall(mmc_init);
2394 module_exit(mmc_exit);
2396 MODULE_DESCRIPTION("MMC core driver");
2397 MODULE_LICENSE("GPL");