use less confusing names for iov_iter direction initializers
[linux-block.git] / drivers / misc / vmw_vmci / vmci_queue_pair.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * VMware VMCI Driver
4  *
5  * Copyright (C) 2012 VMware, Inc. All rights reserved.
6  */
7
8 #include <linux/vmw_vmci_defs.h>
9 #include <linux/vmw_vmci_api.h>
10 #include <linux/highmem.h>
11 #include <linux/kernel.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/pagemap.h>
16 #include <linux/pci.h>
17 #include <linux/sched.h>
18 #include <linux/slab.h>
19 #include <linux/uio.h>
20 #include <linux/wait.h>
21 #include <linux/vmalloc.h>
22 #include <linux/skbuff.h>
23
24 #include "vmci_handle_array.h"
25 #include "vmci_queue_pair.h"
26 #include "vmci_datagram.h"
27 #include "vmci_resource.h"
28 #include "vmci_context.h"
29 #include "vmci_driver.h"
30 #include "vmci_event.h"
31 #include "vmci_route.h"
32
33 /*
34  * In the following, we will distinguish between two kinds of VMX processes -
35  * the ones with versions lower than VMCI_VERSION_NOVMVM that use specialized
36  * VMCI page files in the VMX and supporting VM to VM communication and the
37  * newer ones that use the guest memory directly. We will in the following
38  * refer to the older VMX versions as old-style VMX'en, and the newer ones as
39  * new-style VMX'en.
40  *
41  * The state transition datagram is as follows (the VMCIQPB_ prefix has been
42  * removed for readability) - see below for more details on the transtions:
43  *
44  *            --------------  NEW  -------------
45  *            |                                |
46  *           \_/                              \_/
47  *     CREATED_NO_MEM <-----------------> CREATED_MEM
48  *            |    |                           |
49  *            |    o-----------------------o   |
50  *            |                            |   |
51  *           \_/                          \_/ \_/
52  *     ATTACHED_NO_MEM <----------------> ATTACHED_MEM
53  *            |                            |   |
54  *            |     o----------------------o   |
55  *            |     |                          |
56  *           \_/   \_/                        \_/
57  *     SHUTDOWN_NO_MEM <----------------> SHUTDOWN_MEM
58  *            |                                |
59  *            |                                |
60  *            -------------> gone <-------------
61  *
62  * In more detail. When a VMCI queue pair is first created, it will be in the
63  * VMCIQPB_NEW state. It will then move into one of the following states:
64  *
65  * - VMCIQPB_CREATED_NO_MEM: this state indicates that either:
66  *
67  *     - the created was performed by a host endpoint, in which case there is
68  *       no backing memory yet.
69  *
70  *     - the create was initiated by an old-style VMX, that uses
71  *       vmci_qp_broker_set_page_store to specify the UVAs of the queue pair at
72  *       a later point in time. This state can be distinguished from the one
73  *       above by the context ID of the creator. A host side is not allowed to
74  *       attach until the page store has been set.
75  *
76  * - VMCIQPB_CREATED_MEM: this state is the result when the queue pair
77  *     is created by a VMX using the queue pair device backend that
78  *     sets the UVAs of the queue pair immediately and stores the
79  *     information for later attachers. At this point, it is ready for
80  *     the host side to attach to it.
81  *
82  * Once the queue pair is in one of the created states (with the exception of
83  * the case mentioned for older VMX'en above), it is possible to attach to the
84  * queue pair. Again we have two new states possible:
85  *
86  * - VMCIQPB_ATTACHED_MEM: this state can be reached through the following
87  *   paths:
88  *
89  *     - from VMCIQPB_CREATED_NO_MEM when a new-style VMX allocates a queue
90  *       pair, and attaches to a queue pair previously created by the host side.
91  *
92  *     - from VMCIQPB_CREATED_MEM when the host side attaches to a queue pair
93  *       already created by a guest.
94  *
95  *     - from VMCIQPB_ATTACHED_NO_MEM, when an old-style VMX calls
96  *       vmci_qp_broker_set_page_store (see below).
97  *
98  * - VMCIQPB_ATTACHED_NO_MEM: If the queue pair already was in the
99  *     VMCIQPB_CREATED_NO_MEM due to a host side create, an old-style VMX will
100  *     bring the queue pair into this state. Once vmci_qp_broker_set_page_store
101  *     is called to register the user memory, the VMCIQPB_ATTACH_MEM state
102  *     will be entered.
103  *
104  * From the attached queue pair, the queue pair can enter the shutdown states
105  * when either side of the queue pair detaches. If the guest side detaches
106  * first, the queue pair will enter the VMCIQPB_SHUTDOWN_NO_MEM state, where
107  * the content of the queue pair will no longer be available. If the host
108  * side detaches first, the queue pair will either enter the
109  * VMCIQPB_SHUTDOWN_MEM, if the guest memory is currently mapped, or
110  * VMCIQPB_SHUTDOWN_NO_MEM, if the guest memory is not mapped
111  * (e.g., the host detaches while a guest is stunned).
112  *
113  * New-style VMX'en will also unmap guest memory, if the guest is
114  * quiesced, e.g., during a snapshot operation. In that case, the guest
115  * memory will no longer be available, and the queue pair will transition from
116  * *_MEM state to a *_NO_MEM state. The VMX may later map the memory once more,
117  * in which case the queue pair will transition from the *_NO_MEM state at that
118  * point back to the *_MEM state. Note that the *_NO_MEM state may have changed,
119  * since the peer may have either attached or detached in the meantime. The
120  * values are laid out such that ++ on a state will move from a *_NO_MEM to a
121  * *_MEM state, and vice versa.
122  */
123
124 /* The Kernel specific component of the struct vmci_queue structure. */
125 struct vmci_queue_kern_if {
126         struct mutex __mutex;   /* Protects the queue. */
127         struct mutex *mutex;    /* Shared by producer and consumer queues. */
128         size_t num_pages;       /* Number of pages incl. header. */
129         bool host;              /* Host or guest? */
130         union {
131                 struct {
132                         dma_addr_t *pas;
133                         void **vas;
134                 } g;            /* Used by the guest. */
135                 struct {
136                         struct page **page;
137                         struct page **header_page;
138                 } h;            /* Used by the host. */
139         } u;
140 };
141
142 /*
143  * This structure is opaque to the clients.
144  */
145 struct vmci_qp {
146         struct vmci_handle handle;
147         struct vmci_queue *produce_q;
148         struct vmci_queue *consume_q;
149         u64 produce_q_size;
150         u64 consume_q_size;
151         u32 peer;
152         u32 flags;
153         u32 priv_flags;
154         bool guest_endpoint;
155         unsigned int blocked;
156         unsigned int generation;
157         wait_queue_head_t event;
158 };
159
160 enum qp_broker_state {
161         VMCIQPB_NEW,
162         VMCIQPB_CREATED_NO_MEM,
163         VMCIQPB_CREATED_MEM,
164         VMCIQPB_ATTACHED_NO_MEM,
165         VMCIQPB_ATTACHED_MEM,
166         VMCIQPB_SHUTDOWN_NO_MEM,
167         VMCIQPB_SHUTDOWN_MEM,
168         VMCIQPB_GONE
169 };
170
171 #define QPBROKERSTATE_HAS_MEM(_qpb) (_qpb->state == VMCIQPB_CREATED_MEM || \
172                                      _qpb->state == VMCIQPB_ATTACHED_MEM || \
173                                      _qpb->state == VMCIQPB_SHUTDOWN_MEM)
174
175 /*
176  * In the queue pair broker, we always use the guest point of view for
177  * the produce and consume queue values and references, e.g., the
178  * produce queue size stored is the guests produce queue size. The
179  * host endpoint will need to swap these around. The only exception is
180  * the local queue pairs on the host, in which case the host endpoint
181  * that creates the queue pair will have the right orientation, and
182  * the attaching host endpoint will need to swap.
183  */
184 struct qp_entry {
185         struct list_head list_item;
186         struct vmci_handle handle;
187         u32 peer;
188         u32 flags;
189         u64 produce_size;
190         u64 consume_size;
191         u32 ref_count;
192 };
193
194 struct qp_broker_entry {
195         struct vmci_resource resource;
196         struct qp_entry qp;
197         u32 create_id;
198         u32 attach_id;
199         enum qp_broker_state state;
200         bool require_trusted_attach;
201         bool created_by_trusted;
202         bool vmci_page_files;   /* Created by VMX using VMCI page files */
203         struct vmci_queue *produce_q;
204         struct vmci_queue *consume_q;
205         struct vmci_queue_header saved_produce_q;
206         struct vmci_queue_header saved_consume_q;
207         vmci_event_release_cb wakeup_cb;
208         void *client_data;
209         void *local_mem;        /* Kernel memory for local queue pair */
210 };
211
212 struct qp_guest_endpoint {
213         struct vmci_resource resource;
214         struct qp_entry qp;
215         u64 num_ppns;
216         void *produce_q;
217         void *consume_q;
218         struct ppn_set ppn_set;
219 };
220
221 struct qp_list {
222         struct list_head head;
223         struct mutex mutex;     /* Protect queue list. */
224 };
225
226 static struct qp_list qp_broker_list = {
227         .head = LIST_HEAD_INIT(qp_broker_list.head),
228         .mutex = __MUTEX_INITIALIZER(qp_broker_list.mutex),
229 };
230
231 static struct qp_list qp_guest_endpoints = {
232         .head = LIST_HEAD_INIT(qp_guest_endpoints.head),
233         .mutex = __MUTEX_INITIALIZER(qp_guest_endpoints.mutex),
234 };
235
236 #define INVALID_VMCI_GUEST_MEM_ID  0
237 #define QPE_NUM_PAGES(_QPE) ((u32) \
238                              (DIV_ROUND_UP(_QPE.produce_size, PAGE_SIZE) + \
239                               DIV_ROUND_UP(_QPE.consume_size, PAGE_SIZE) + 2))
240 #define QP_SIZES_ARE_VALID(_prod_qsize, _cons_qsize) \
241         ((_prod_qsize) + (_cons_qsize) >= max(_prod_qsize, _cons_qsize) && \
242          (_prod_qsize) + (_cons_qsize) <= VMCI_MAX_GUEST_QP_MEMORY)
243
244 /*
245  * Frees kernel VA space for a given queue and its queue header, and
246  * frees physical data pages.
247  */
248 static void qp_free_queue(void *q, u64 size)
249 {
250         struct vmci_queue *queue = q;
251
252         if (queue) {
253                 u64 i;
254
255                 /* Given size does not include header, so add in a page here. */
256                 for (i = 0; i < DIV_ROUND_UP(size, PAGE_SIZE) + 1; i++) {
257                         dma_free_coherent(&vmci_pdev->dev, PAGE_SIZE,
258                                           queue->kernel_if->u.g.vas[i],
259                                           queue->kernel_if->u.g.pas[i]);
260                 }
261
262                 vfree(queue);
263         }
264 }
265
266 /*
267  * Allocates kernel queue pages of specified size with IOMMU mappings,
268  * plus space for the queue structure/kernel interface and the queue
269  * header.
270  */
271 static void *qp_alloc_queue(u64 size, u32 flags)
272 {
273         u64 i;
274         struct vmci_queue *queue;
275         size_t pas_size;
276         size_t vas_size;
277         size_t queue_size = sizeof(*queue) + sizeof(*queue->kernel_if);
278         u64 num_pages;
279
280         if (size > SIZE_MAX - PAGE_SIZE)
281                 return NULL;
282         num_pages = DIV_ROUND_UP(size, PAGE_SIZE) + 1;
283         if (num_pages >
284                  (SIZE_MAX - queue_size) /
285                  (sizeof(*queue->kernel_if->u.g.pas) +
286                   sizeof(*queue->kernel_if->u.g.vas)))
287                 return NULL;
288
289         pas_size = num_pages * sizeof(*queue->kernel_if->u.g.pas);
290         vas_size = num_pages * sizeof(*queue->kernel_if->u.g.vas);
291         queue_size += pas_size + vas_size;
292
293         queue = vmalloc(queue_size);
294         if (!queue)
295                 return NULL;
296
297         queue->q_header = NULL;
298         queue->saved_header = NULL;
299         queue->kernel_if = (struct vmci_queue_kern_if *)(queue + 1);
300         queue->kernel_if->mutex = NULL;
301         queue->kernel_if->num_pages = num_pages;
302         queue->kernel_if->u.g.pas = (dma_addr_t *)(queue->kernel_if + 1);
303         queue->kernel_if->u.g.vas =
304                 (void **)((u8 *)queue->kernel_if->u.g.pas + pas_size);
305         queue->kernel_if->host = false;
306
307         for (i = 0; i < num_pages; i++) {
308                 queue->kernel_if->u.g.vas[i] =
309                         dma_alloc_coherent(&vmci_pdev->dev, PAGE_SIZE,
310                                            &queue->kernel_if->u.g.pas[i],
311                                            GFP_KERNEL);
312                 if (!queue->kernel_if->u.g.vas[i]) {
313                         /* Size excl. the header. */
314                         qp_free_queue(queue, i * PAGE_SIZE);
315                         return NULL;
316                 }
317         }
318
319         /* Queue header is the first page. */
320         queue->q_header = queue->kernel_if->u.g.vas[0];
321
322         return queue;
323 }
324
325 /*
326  * Copies from a given buffer or iovector to a VMCI Queue.  Uses
327  * kmap_local_page() to dynamically map required portions of the queue
328  * by traversing the offset -> page translation structure for the queue.
329  * Assumes that offset + size does not wrap around in the queue.
330  */
331 static int qp_memcpy_to_queue_iter(struct vmci_queue *queue,
332                                   u64 queue_offset,
333                                   struct iov_iter *from,
334                                   size_t size)
335 {
336         struct vmci_queue_kern_if *kernel_if = queue->kernel_if;
337         size_t bytes_copied = 0;
338
339         while (bytes_copied < size) {
340                 const u64 page_index =
341                         (queue_offset + bytes_copied) / PAGE_SIZE;
342                 const size_t page_offset =
343                     (queue_offset + bytes_copied) & (PAGE_SIZE - 1);
344                 void *va;
345                 size_t to_copy;
346
347                 if (kernel_if->host)
348                         va = kmap_local_page(kernel_if->u.h.page[page_index]);
349                 else
350                         va = kernel_if->u.g.vas[page_index + 1];
351                         /* Skip header. */
352
353                 if (size - bytes_copied > PAGE_SIZE - page_offset)
354                         /* Enough payload to fill up from this page. */
355                         to_copy = PAGE_SIZE - page_offset;
356                 else
357                         to_copy = size - bytes_copied;
358
359                 if (!copy_from_iter_full((u8 *)va + page_offset, to_copy,
360                                          from)) {
361                         if (kernel_if->host)
362                                 kunmap_local(va);
363                         return VMCI_ERROR_INVALID_ARGS;
364                 }
365                 bytes_copied += to_copy;
366                 if (kernel_if->host)
367                         kunmap_local(va);
368         }
369
370         return VMCI_SUCCESS;
371 }
372
373 /*
374  * Copies to a given buffer or iovector from a VMCI Queue.  Uses
375  * kmap_local_page() to dynamically map required portions of the queue
376  * by traversing the offset -> page translation structure for the queue.
377  * Assumes that offset + size does not wrap around in the queue.
378  */
379 static int qp_memcpy_from_queue_iter(struct iov_iter *to,
380                                     const struct vmci_queue *queue,
381                                     u64 queue_offset, size_t size)
382 {
383         struct vmci_queue_kern_if *kernel_if = queue->kernel_if;
384         size_t bytes_copied = 0;
385
386         while (bytes_copied < size) {
387                 const u64 page_index =
388                         (queue_offset + bytes_copied) / PAGE_SIZE;
389                 const size_t page_offset =
390                     (queue_offset + bytes_copied) & (PAGE_SIZE - 1);
391                 void *va;
392                 size_t to_copy;
393                 int err;
394
395                 if (kernel_if->host)
396                         va = kmap_local_page(kernel_if->u.h.page[page_index]);
397                 else
398                         va = kernel_if->u.g.vas[page_index + 1];
399                         /* Skip header. */
400
401                 if (size - bytes_copied > PAGE_SIZE - page_offset)
402                         /* Enough payload to fill up this page. */
403                         to_copy = PAGE_SIZE - page_offset;
404                 else
405                         to_copy = size - bytes_copied;
406
407                 err = copy_to_iter((u8 *)va + page_offset, to_copy, to);
408                 if (err != to_copy) {
409                         if (kernel_if->host)
410                                 kunmap_local(va);
411                         return VMCI_ERROR_INVALID_ARGS;
412                 }
413                 bytes_copied += to_copy;
414                 if (kernel_if->host)
415                         kunmap_local(va);
416         }
417
418         return VMCI_SUCCESS;
419 }
420
421 /*
422  * Allocates two list of PPNs --- one for the pages in the produce queue,
423  * and the other for the pages in the consume queue. Intializes the list
424  * of PPNs with the page frame numbers of the KVA for the two queues (and
425  * the queue headers).
426  */
427 static int qp_alloc_ppn_set(void *prod_q,
428                             u64 num_produce_pages,
429                             void *cons_q,
430                             u64 num_consume_pages, struct ppn_set *ppn_set)
431 {
432         u64 *produce_ppns;
433         u64 *consume_ppns;
434         struct vmci_queue *produce_q = prod_q;
435         struct vmci_queue *consume_q = cons_q;
436         u64 i;
437
438         if (!produce_q || !num_produce_pages || !consume_q ||
439             !num_consume_pages || !ppn_set)
440                 return VMCI_ERROR_INVALID_ARGS;
441
442         if (ppn_set->initialized)
443                 return VMCI_ERROR_ALREADY_EXISTS;
444
445         produce_ppns =
446             kmalloc_array(num_produce_pages, sizeof(*produce_ppns),
447                           GFP_KERNEL);
448         if (!produce_ppns)
449                 return VMCI_ERROR_NO_MEM;
450
451         consume_ppns =
452             kmalloc_array(num_consume_pages, sizeof(*consume_ppns),
453                           GFP_KERNEL);
454         if (!consume_ppns) {
455                 kfree(produce_ppns);
456                 return VMCI_ERROR_NO_MEM;
457         }
458
459         for (i = 0; i < num_produce_pages; i++)
460                 produce_ppns[i] =
461                         produce_q->kernel_if->u.g.pas[i] >> PAGE_SHIFT;
462
463         for (i = 0; i < num_consume_pages; i++)
464                 consume_ppns[i] =
465                         consume_q->kernel_if->u.g.pas[i] >> PAGE_SHIFT;
466
467         ppn_set->num_produce_pages = num_produce_pages;
468         ppn_set->num_consume_pages = num_consume_pages;
469         ppn_set->produce_ppns = produce_ppns;
470         ppn_set->consume_ppns = consume_ppns;
471         ppn_set->initialized = true;
472         return VMCI_SUCCESS;
473 }
474
475 /*
476  * Frees the two list of PPNs for a queue pair.
477  */
478 static void qp_free_ppn_set(struct ppn_set *ppn_set)
479 {
480         if (ppn_set->initialized) {
481                 /* Do not call these functions on NULL inputs. */
482                 kfree(ppn_set->produce_ppns);
483                 kfree(ppn_set->consume_ppns);
484         }
485         memset(ppn_set, 0, sizeof(*ppn_set));
486 }
487
488 /*
489  * Populates the list of PPNs in the hypercall structure with the PPNS
490  * of the produce queue and the consume queue.
491  */
492 static int qp_populate_ppn_set(u8 *call_buf, const struct ppn_set *ppn_set)
493 {
494         if (vmci_use_ppn64()) {
495                 memcpy(call_buf, ppn_set->produce_ppns,
496                        ppn_set->num_produce_pages *
497                        sizeof(*ppn_set->produce_ppns));
498                 memcpy(call_buf +
499                        ppn_set->num_produce_pages *
500                        sizeof(*ppn_set->produce_ppns),
501                        ppn_set->consume_ppns,
502                        ppn_set->num_consume_pages *
503                        sizeof(*ppn_set->consume_ppns));
504         } else {
505                 int i;
506                 u32 *ppns = (u32 *) call_buf;
507
508                 for (i = 0; i < ppn_set->num_produce_pages; i++)
509                         ppns[i] = (u32) ppn_set->produce_ppns[i];
510
511                 ppns = &ppns[ppn_set->num_produce_pages];
512
513                 for (i = 0; i < ppn_set->num_consume_pages; i++)
514                         ppns[i] = (u32) ppn_set->consume_ppns[i];
515         }
516
517         return VMCI_SUCCESS;
518 }
519
520 /*
521  * Allocates kernel VA space of specified size plus space for the queue
522  * and kernel interface.  This is different from the guest queue allocator,
523  * because we do not allocate our own queue header/data pages here but
524  * share those of the guest.
525  */
526 static struct vmci_queue *qp_host_alloc_queue(u64 size)
527 {
528         struct vmci_queue *queue;
529         size_t queue_page_size;
530         u64 num_pages;
531         const size_t queue_size = sizeof(*queue) + sizeof(*(queue->kernel_if));
532
533         if (size > min_t(size_t, VMCI_MAX_GUEST_QP_MEMORY, SIZE_MAX - PAGE_SIZE))
534                 return NULL;
535         num_pages = DIV_ROUND_UP(size, PAGE_SIZE) + 1;
536         if (num_pages > (SIZE_MAX - queue_size) /
537                  sizeof(*queue->kernel_if->u.h.page))
538                 return NULL;
539
540         queue_page_size = num_pages * sizeof(*queue->kernel_if->u.h.page);
541
542         if (queue_size + queue_page_size > KMALLOC_MAX_SIZE)
543                 return NULL;
544
545         queue = kzalloc(queue_size + queue_page_size, GFP_KERNEL);
546         if (queue) {
547                 queue->q_header = NULL;
548                 queue->saved_header = NULL;
549                 queue->kernel_if = (struct vmci_queue_kern_if *)(queue + 1);
550                 queue->kernel_if->host = true;
551                 queue->kernel_if->mutex = NULL;
552                 queue->kernel_if->num_pages = num_pages;
553                 queue->kernel_if->u.h.header_page =
554                     (struct page **)((u8 *)queue + queue_size);
555                 queue->kernel_if->u.h.page =
556                         &queue->kernel_if->u.h.header_page[1];
557         }
558
559         return queue;
560 }
561
562 /*
563  * Frees kernel memory for a given queue (header plus translation
564  * structure).
565  */
566 static void qp_host_free_queue(struct vmci_queue *queue, u64 queue_size)
567 {
568         kfree(queue);
569 }
570
571 /*
572  * Initialize the mutex for the pair of queues.  This mutex is used to
573  * protect the q_header and the buffer from changing out from under any
574  * users of either queue.  Of course, it's only any good if the mutexes
575  * are actually acquired.  Queue structure must lie on non-paged memory
576  * or we cannot guarantee access to the mutex.
577  */
578 static void qp_init_queue_mutex(struct vmci_queue *produce_q,
579                                 struct vmci_queue *consume_q)
580 {
581         /*
582          * Only the host queue has shared state - the guest queues do not
583          * need to synchronize access using a queue mutex.
584          */
585
586         if (produce_q->kernel_if->host) {
587                 produce_q->kernel_if->mutex = &produce_q->kernel_if->__mutex;
588                 consume_q->kernel_if->mutex = &produce_q->kernel_if->__mutex;
589                 mutex_init(produce_q->kernel_if->mutex);
590         }
591 }
592
593 /*
594  * Cleans up the mutex for the pair of queues.
595  */
596 static void qp_cleanup_queue_mutex(struct vmci_queue *produce_q,
597                                    struct vmci_queue *consume_q)
598 {
599         if (produce_q->kernel_if->host) {
600                 produce_q->kernel_if->mutex = NULL;
601                 consume_q->kernel_if->mutex = NULL;
602         }
603 }
604
605 /*
606  * Acquire the mutex for the queue.  Note that the produce_q and
607  * the consume_q share a mutex.  So, only one of the two need to
608  * be passed in to this routine.  Either will work just fine.
609  */
610 static void qp_acquire_queue_mutex(struct vmci_queue *queue)
611 {
612         if (queue->kernel_if->host)
613                 mutex_lock(queue->kernel_if->mutex);
614 }
615
616 /*
617  * Release the mutex for the queue.  Note that the produce_q and
618  * the consume_q share a mutex.  So, only one of the two need to
619  * be passed in to this routine.  Either will work just fine.
620  */
621 static void qp_release_queue_mutex(struct vmci_queue *queue)
622 {
623         if (queue->kernel_if->host)
624                 mutex_unlock(queue->kernel_if->mutex);
625 }
626
627 /*
628  * Helper function to release pages in the PageStoreAttachInfo
629  * previously obtained using get_user_pages.
630  */
631 static void qp_release_pages(struct page **pages,
632                              u64 num_pages, bool dirty)
633 {
634         int i;
635
636         for (i = 0; i < num_pages; i++) {
637                 if (dirty)
638                         set_page_dirty_lock(pages[i]);
639
640                 put_page(pages[i]);
641                 pages[i] = NULL;
642         }
643 }
644
645 /*
646  * Lock the user pages referenced by the {produce,consume}Buffer
647  * struct into memory and populate the {produce,consume}Pages
648  * arrays in the attach structure with them.
649  */
650 static int qp_host_get_user_memory(u64 produce_uva,
651                                    u64 consume_uva,
652                                    struct vmci_queue *produce_q,
653                                    struct vmci_queue *consume_q)
654 {
655         int retval;
656         int err = VMCI_SUCCESS;
657
658         retval = get_user_pages_fast((uintptr_t) produce_uva,
659                                      produce_q->kernel_if->num_pages,
660                                      FOLL_WRITE,
661                                      produce_q->kernel_if->u.h.header_page);
662         if (retval < (int)produce_q->kernel_if->num_pages) {
663                 pr_debug("get_user_pages_fast(produce) failed (retval=%d)",
664                         retval);
665                 if (retval > 0)
666                         qp_release_pages(produce_q->kernel_if->u.h.header_page,
667                                         retval, false);
668                 err = VMCI_ERROR_NO_MEM;
669                 goto out;
670         }
671
672         retval = get_user_pages_fast((uintptr_t) consume_uva,
673                                      consume_q->kernel_if->num_pages,
674                                      FOLL_WRITE,
675                                      consume_q->kernel_if->u.h.header_page);
676         if (retval < (int)consume_q->kernel_if->num_pages) {
677                 pr_debug("get_user_pages_fast(consume) failed (retval=%d)",
678                         retval);
679                 if (retval > 0)
680                         qp_release_pages(consume_q->kernel_if->u.h.header_page,
681                                         retval, false);
682                 qp_release_pages(produce_q->kernel_if->u.h.header_page,
683                                  produce_q->kernel_if->num_pages, false);
684                 err = VMCI_ERROR_NO_MEM;
685         }
686
687  out:
688         return err;
689 }
690
691 /*
692  * Registers the specification of the user pages used for backing a queue
693  * pair. Enough information to map in pages is stored in the OS specific
694  * part of the struct vmci_queue structure.
695  */
696 static int qp_host_register_user_memory(struct vmci_qp_page_store *page_store,
697                                         struct vmci_queue *produce_q,
698                                         struct vmci_queue *consume_q)
699 {
700         u64 produce_uva;
701         u64 consume_uva;
702
703         /*
704          * The new style and the old style mapping only differs in
705          * that we either get a single or two UVAs, so we split the
706          * single UVA range at the appropriate spot.
707          */
708         produce_uva = page_store->pages;
709         consume_uva = page_store->pages +
710             produce_q->kernel_if->num_pages * PAGE_SIZE;
711         return qp_host_get_user_memory(produce_uva, consume_uva, produce_q,
712                                        consume_q);
713 }
714
715 /*
716  * Releases and removes the references to user pages stored in the attach
717  * struct.  Pages are released from the page cache and may become
718  * swappable again.
719  */
720 static void qp_host_unregister_user_memory(struct vmci_queue *produce_q,
721                                            struct vmci_queue *consume_q)
722 {
723         qp_release_pages(produce_q->kernel_if->u.h.header_page,
724                          produce_q->kernel_if->num_pages, true);
725         memset(produce_q->kernel_if->u.h.header_page, 0,
726                sizeof(*produce_q->kernel_if->u.h.header_page) *
727                produce_q->kernel_if->num_pages);
728         qp_release_pages(consume_q->kernel_if->u.h.header_page,
729                          consume_q->kernel_if->num_pages, true);
730         memset(consume_q->kernel_if->u.h.header_page, 0,
731                sizeof(*consume_q->kernel_if->u.h.header_page) *
732                consume_q->kernel_if->num_pages);
733 }
734
735 /*
736  * Once qp_host_register_user_memory has been performed on a
737  * queue, the queue pair headers can be mapped into the
738  * kernel. Once mapped, they must be unmapped with
739  * qp_host_unmap_queues prior to calling
740  * qp_host_unregister_user_memory.
741  * Pages are pinned.
742  */
743 static int qp_host_map_queues(struct vmci_queue *produce_q,
744                               struct vmci_queue *consume_q)
745 {
746         int result;
747
748         if (!produce_q->q_header || !consume_q->q_header) {
749                 struct page *headers[2];
750
751                 if (produce_q->q_header != consume_q->q_header)
752                         return VMCI_ERROR_QUEUEPAIR_MISMATCH;
753
754                 if (produce_q->kernel_if->u.h.header_page == NULL ||
755                     *produce_q->kernel_if->u.h.header_page == NULL)
756                         return VMCI_ERROR_UNAVAILABLE;
757
758                 headers[0] = *produce_q->kernel_if->u.h.header_page;
759                 headers[1] = *consume_q->kernel_if->u.h.header_page;
760
761                 produce_q->q_header = vmap(headers, 2, VM_MAP, PAGE_KERNEL);
762                 if (produce_q->q_header != NULL) {
763                         consume_q->q_header =
764                             (struct vmci_queue_header *)((u8 *)
765                                                          produce_q->q_header +
766                                                          PAGE_SIZE);
767                         result = VMCI_SUCCESS;
768                 } else {
769                         pr_warn("vmap failed\n");
770                         result = VMCI_ERROR_NO_MEM;
771                 }
772         } else {
773                 result = VMCI_SUCCESS;
774         }
775
776         return result;
777 }
778
779 /*
780  * Unmaps previously mapped queue pair headers from the kernel.
781  * Pages are unpinned.
782  */
783 static int qp_host_unmap_queues(u32 gid,
784                                 struct vmci_queue *produce_q,
785                                 struct vmci_queue *consume_q)
786 {
787         if (produce_q->q_header) {
788                 if (produce_q->q_header < consume_q->q_header)
789                         vunmap(produce_q->q_header);
790                 else
791                         vunmap(consume_q->q_header);
792
793                 produce_q->q_header = NULL;
794                 consume_q->q_header = NULL;
795         }
796
797         return VMCI_SUCCESS;
798 }
799
800 /*
801  * Finds the entry in the list corresponding to a given handle. Assumes
802  * that the list is locked.
803  */
804 static struct qp_entry *qp_list_find(struct qp_list *qp_list,
805                                      struct vmci_handle handle)
806 {
807         struct qp_entry *entry;
808
809         if (vmci_handle_is_invalid(handle))
810                 return NULL;
811
812         list_for_each_entry(entry, &qp_list->head, list_item) {
813                 if (vmci_handle_is_equal(entry->handle, handle))
814                         return entry;
815         }
816
817         return NULL;
818 }
819
820 /*
821  * Finds the entry in the list corresponding to a given handle.
822  */
823 static struct qp_guest_endpoint *
824 qp_guest_handle_to_entry(struct vmci_handle handle)
825 {
826         struct qp_guest_endpoint *entry;
827         struct qp_entry *qp = qp_list_find(&qp_guest_endpoints, handle);
828
829         entry = qp ? container_of(
830                 qp, struct qp_guest_endpoint, qp) : NULL;
831         return entry;
832 }
833
834 /*
835  * Finds the entry in the list corresponding to a given handle.
836  */
837 static struct qp_broker_entry *
838 qp_broker_handle_to_entry(struct vmci_handle handle)
839 {
840         struct qp_broker_entry *entry;
841         struct qp_entry *qp = qp_list_find(&qp_broker_list, handle);
842
843         entry = qp ? container_of(
844                 qp, struct qp_broker_entry, qp) : NULL;
845         return entry;
846 }
847
848 /*
849  * Dispatches a queue pair event message directly into the local event
850  * queue.
851  */
852 static int qp_notify_peer_local(bool attach, struct vmci_handle handle)
853 {
854         u32 context_id = vmci_get_context_id();
855         struct vmci_event_qp ev;
856
857         memset(&ev, 0, sizeof(ev));
858         ev.msg.hdr.dst = vmci_make_handle(context_id, VMCI_EVENT_HANDLER);
859         ev.msg.hdr.src = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
860                                           VMCI_CONTEXT_RESOURCE_ID);
861         ev.msg.hdr.payload_size = sizeof(ev) - sizeof(ev.msg.hdr);
862         ev.msg.event_data.event =
863             attach ? VMCI_EVENT_QP_PEER_ATTACH : VMCI_EVENT_QP_PEER_DETACH;
864         ev.payload.peer_id = context_id;
865         ev.payload.handle = handle;
866
867         return vmci_event_dispatch(&ev.msg.hdr);
868 }
869
870 /*
871  * Allocates and initializes a qp_guest_endpoint structure.
872  * Allocates a queue_pair rid (and handle) iff the given entry has
873  * an invalid handle.  0 through VMCI_RESERVED_RESOURCE_ID_MAX
874  * are reserved handles.  Assumes that the QP list mutex is held
875  * by the caller.
876  */
877 static struct qp_guest_endpoint *
878 qp_guest_endpoint_create(struct vmci_handle handle,
879                          u32 peer,
880                          u32 flags,
881                          u64 produce_size,
882                          u64 consume_size,
883                          void *produce_q,
884                          void *consume_q)
885 {
886         int result;
887         struct qp_guest_endpoint *entry;
888         /* One page each for the queue headers. */
889         const u64 num_ppns = DIV_ROUND_UP(produce_size, PAGE_SIZE) +
890             DIV_ROUND_UP(consume_size, PAGE_SIZE) + 2;
891
892         if (vmci_handle_is_invalid(handle)) {
893                 u32 context_id = vmci_get_context_id();
894
895                 handle = vmci_make_handle(context_id, VMCI_INVALID_ID);
896         }
897
898         entry = kzalloc(sizeof(*entry), GFP_KERNEL);
899         if (entry) {
900                 entry->qp.peer = peer;
901                 entry->qp.flags = flags;
902                 entry->qp.produce_size = produce_size;
903                 entry->qp.consume_size = consume_size;
904                 entry->qp.ref_count = 0;
905                 entry->num_ppns = num_ppns;
906                 entry->produce_q = produce_q;
907                 entry->consume_q = consume_q;
908                 INIT_LIST_HEAD(&entry->qp.list_item);
909
910                 /* Add resource obj */
911                 result = vmci_resource_add(&entry->resource,
912                                            VMCI_RESOURCE_TYPE_QPAIR_GUEST,
913                                            handle);
914                 entry->qp.handle = vmci_resource_handle(&entry->resource);
915                 if ((result != VMCI_SUCCESS) ||
916                     qp_list_find(&qp_guest_endpoints, entry->qp.handle)) {
917                         pr_warn("Failed to add new resource (handle=0x%x:0x%x), error: %d",
918                                 handle.context, handle.resource, result);
919                         kfree(entry);
920                         entry = NULL;
921                 }
922         }
923         return entry;
924 }
925
926 /*
927  * Frees a qp_guest_endpoint structure.
928  */
929 static void qp_guest_endpoint_destroy(struct qp_guest_endpoint *entry)
930 {
931         qp_free_ppn_set(&entry->ppn_set);
932         qp_cleanup_queue_mutex(entry->produce_q, entry->consume_q);
933         qp_free_queue(entry->produce_q, entry->qp.produce_size);
934         qp_free_queue(entry->consume_q, entry->qp.consume_size);
935         /* Unlink from resource hash table and free callback */
936         vmci_resource_remove(&entry->resource);
937
938         kfree(entry);
939 }
940
941 /*
942  * Helper to make a queue_pairAlloc hypercall when the driver is
943  * supporting a guest device.
944  */
945 static int qp_alloc_hypercall(const struct qp_guest_endpoint *entry)
946 {
947         struct vmci_qp_alloc_msg *alloc_msg;
948         size_t msg_size;
949         size_t ppn_size;
950         int result;
951
952         if (!entry || entry->num_ppns <= 2)
953                 return VMCI_ERROR_INVALID_ARGS;
954
955         ppn_size = vmci_use_ppn64() ? sizeof(u64) : sizeof(u32);
956         msg_size = sizeof(*alloc_msg) +
957             (size_t) entry->num_ppns * ppn_size;
958         alloc_msg = kmalloc(msg_size, GFP_KERNEL);
959         if (!alloc_msg)
960                 return VMCI_ERROR_NO_MEM;
961
962         alloc_msg->hdr.dst = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
963                                               VMCI_QUEUEPAIR_ALLOC);
964         alloc_msg->hdr.src = VMCI_ANON_SRC_HANDLE;
965         alloc_msg->hdr.payload_size = msg_size - VMCI_DG_HEADERSIZE;
966         alloc_msg->handle = entry->qp.handle;
967         alloc_msg->peer = entry->qp.peer;
968         alloc_msg->flags = entry->qp.flags;
969         alloc_msg->produce_size = entry->qp.produce_size;
970         alloc_msg->consume_size = entry->qp.consume_size;
971         alloc_msg->num_ppns = entry->num_ppns;
972
973         result = qp_populate_ppn_set((u8 *)alloc_msg + sizeof(*alloc_msg),
974                                      &entry->ppn_set);
975         if (result == VMCI_SUCCESS)
976                 result = vmci_send_datagram(&alloc_msg->hdr);
977
978         kfree(alloc_msg);
979
980         return result;
981 }
982
983 /*
984  * Helper to make a queue_pairDetach hypercall when the driver is
985  * supporting a guest device.
986  */
987 static int qp_detatch_hypercall(struct vmci_handle handle)
988 {
989         struct vmci_qp_detach_msg detach_msg;
990
991         detach_msg.hdr.dst = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
992                                               VMCI_QUEUEPAIR_DETACH);
993         detach_msg.hdr.src = VMCI_ANON_SRC_HANDLE;
994         detach_msg.hdr.payload_size = sizeof(handle);
995         detach_msg.handle = handle;
996
997         return vmci_send_datagram(&detach_msg.hdr);
998 }
999
1000 /*
1001  * Adds the given entry to the list. Assumes that the list is locked.
1002  */
1003 static void qp_list_add_entry(struct qp_list *qp_list, struct qp_entry *entry)
1004 {
1005         if (entry)
1006                 list_add(&entry->list_item, &qp_list->head);
1007 }
1008
1009 /*
1010  * Removes the given entry from the list. Assumes that the list is locked.
1011  */
1012 static void qp_list_remove_entry(struct qp_list *qp_list,
1013                                  struct qp_entry *entry)
1014 {
1015         if (entry)
1016                 list_del(&entry->list_item);
1017 }
1018
1019 /*
1020  * Helper for VMCI queue_pair detach interface. Frees the physical
1021  * pages for the queue pair.
1022  */
1023 static int qp_detatch_guest_work(struct vmci_handle handle)
1024 {
1025         int result;
1026         struct qp_guest_endpoint *entry;
1027         u32 ref_count = ~0;     /* To avoid compiler warning below */
1028
1029         mutex_lock(&qp_guest_endpoints.mutex);
1030
1031         entry = qp_guest_handle_to_entry(handle);
1032         if (!entry) {
1033                 mutex_unlock(&qp_guest_endpoints.mutex);
1034                 return VMCI_ERROR_NOT_FOUND;
1035         }
1036
1037         if (entry->qp.flags & VMCI_QPFLAG_LOCAL) {
1038                 result = VMCI_SUCCESS;
1039
1040                 if (entry->qp.ref_count > 1) {
1041                         result = qp_notify_peer_local(false, handle);
1042                         /*
1043                          * We can fail to notify a local queuepair
1044                          * because we can't allocate.  We still want
1045                          * to release the entry if that happens, so
1046                          * don't bail out yet.
1047                          */
1048                 }
1049         } else {
1050                 result = qp_detatch_hypercall(handle);
1051                 if (result < VMCI_SUCCESS) {
1052                         /*
1053                          * We failed to notify a non-local queuepair.
1054                          * That other queuepair might still be
1055                          * accessing the shared memory, so don't
1056                          * release the entry yet.  It will get cleaned
1057                          * up by VMCIqueue_pair_Exit() if necessary
1058                          * (assuming we are going away, otherwise why
1059                          * did this fail?).
1060                          */
1061
1062                         mutex_unlock(&qp_guest_endpoints.mutex);
1063                         return result;
1064                 }
1065         }
1066
1067         /*
1068          * If we get here then we either failed to notify a local queuepair, or
1069          * we succeeded in all cases.  Release the entry if required.
1070          */
1071
1072         entry->qp.ref_count--;
1073         if (entry->qp.ref_count == 0)
1074                 qp_list_remove_entry(&qp_guest_endpoints, &entry->qp);
1075
1076         /* If we didn't remove the entry, this could change once we unlock. */
1077         if (entry)
1078                 ref_count = entry->qp.ref_count;
1079
1080         mutex_unlock(&qp_guest_endpoints.mutex);
1081
1082         if (ref_count == 0)
1083                 qp_guest_endpoint_destroy(entry);
1084
1085         return result;
1086 }
1087
1088 /*
1089  * This functions handles the actual allocation of a VMCI queue
1090  * pair guest endpoint. Allocates physical pages for the queue
1091  * pair. It makes OS dependent calls through generic wrappers.
1092  */
1093 static int qp_alloc_guest_work(struct vmci_handle *handle,
1094                                struct vmci_queue **produce_q,
1095                                u64 produce_size,
1096                                struct vmci_queue **consume_q,
1097                                u64 consume_size,
1098                                u32 peer,
1099                                u32 flags,
1100                                u32 priv_flags)
1101 {
1102         const u64 num_produce_pages =
1103             DIV_ROUND_UP(produce_size, PAGE_SIZE) + 1;
1104         const u64 num_consume_pages =
1105             DIV_ROUND_UP(consume_size, PAGE_SIZE) + 1;
1106         void *my_produce_q = NULL;
1107         void *my_consume_q = NULL;
1108         int result;
1109         struct qp_guest_endpoint *queue_pair_entry = NULL;
1110
1111         if (priv_flags != VMCI_NO_PRIVILEGE_FLAGS)
1112                 return VMCI_ERROR_NO_ACCESS;
1113
1114         mutex_lock(&qp_guest_endpoints.mutex);
1115
1116         queue_pair_entry = qp_guest_handle_to_entry(*handle);
1117         if (queue_pair_entry) {
1118                 if (queue_pair_entry->qp.flags & VMCI_QPFLAG_LOCAL) {
1119                         /* Local attach case. */
1120                         if (queue_pair_entry->qp.ref_count > 1) {
1121                                 pr_devel("Error attempting to attach more than once\n");
1122                                 result = VMCI_ERROR_UNAVAILABLE;
1123                                 goto error_keep_entry;
1124                         }
1125
1126                         if (queue_pair_entry->qp.produce_size != consume_size ||
1127                             queue_pair_entry->qp.consume_size !=
1128                             produce_size ||
1129                             queue_pair_entry->qp.flags !=
1130                             (flags & ~VMCI_QPFLAG_ATTACH_ONLY)) {
1131                                 pr_devel("Error mismatched queue pair in local attach\n");
1132                                 result = VMCI_ERROR_QUEUEPAIR_MISMATCH;
1133                                 goto error_keep_entry;
1134                         }
1135
1136                         /*
1137                          * Do a local attach.  We swap the consume and
1138                          * produce queues for the attacher and deliver
1139                          * an attach event.
1140                          */
1141                         result = qp_notify_peer_local(true, *handle);
1142                         if (result < VMCI_SUCCESS)
1143                                 goto error_keep_entry;
1144
1145                         my_produce_q = queue_pair_entry->consume_q;
1146                         my_consume_q = queue_pair_entry->produce_q;
1147                         goto out;
1148                 }
1149
1150                 result = VMCI_ERROR_ALREADY_EXISTS;
1151                 goto error_keep_entry;
1152         }
1153
1154         my_produce_q = qp_alloc_queue(produce_size, flags);
1155         if (!my_produce_q) {
1156                 pr_warn("Error allocating pages for produce queue\n");
1157                 result = VMCI_ERROR_NO_MEM;
1158                 goto error;
1159         }
1160
1161         my_consume_q = qp_alloc_queue(consume_size, flags);
1162         if (!my_consume_q) {
1163                 pr_warn("Error allocating pages for consume queue\n");
1164                 result = VMCI_ERROR_NO_MEM;
1165                 goto error;
1166         }
1167
1168         queue_pair_entry = qp_guest_endpoint_create(*handle, peer, flags,
1169                                                     produce_size, consume_size,
1170                                                     my_produce_q, my_consume_q);
1171         if (!queue_pair_entry) {
1172                 pr_warn("Error allocating memory in %s\n", __func__);
1173                 result = VMCI_ERROR_NO_MEM;
1174                 goto error;
1175         }
1176
1177         result = qp_alloc_ppn_set(my_produce_q, num_produce_pages, my_consume_q,
1178                                   num_consume_pages,
1179                                   &queue_pair_entry->ppn_set);
1180         if (result < VMCI_SUCCESS) {
1181                 pr_warn("qp_alloc_ppn_set failed\n");
1182                 goto error;
1183         }
1184
1185         /*
1186          * It's only necessary to notify the host if this queue pair will be
1187          * attached to from another context.
1188          */
1189         if (queue_pair_entry->qp.flags & VMCI_QPFLAG_LOCAL) {
1190                 /* Local create case. */
1191                 u32 context_id = vmci_get_context_id();
1192
1193                 /*
1194                  * Enforce similar checks on local queue pairs as we
1195                  * do for regular ones.  The handle's context must
1196                  * match the creator or attacher context id (here they
1197                  * are both the current context id) and the
1198                  * attach-only flag cannot exist during create.  We
1199                  * also ensure specified peer is this context or an
1200                  * invalid one.
1201                  */
1202                 if (queue_pair_entry->qp.handle.context != context_id ||
1203                     (queue_pair_entry->qp.peer != VMCI_INVALID_ID &&
1204                      queue_pair_entry->qp.peer != context_id)) {
1205                         result = VMCI_ERROR_NO_ACCESS;
1206                         goto error;
1207                 }
1208
1209                 if (queue_pair_entry->qp.flags & VMCI_QPFLAG_ATTACH_ONLY) {
1210                         result = VMCI_ERROR_NOT_FOUND;
1211                         goto error;
1212                 }
1213         } else {
1214                 result = qp_alloc_hypercall(queue_pair_entry);
1215                 if (result < VMCI_SUCCESS) {
1216                         pr_devel("qp_alloc_hypercall result = %d\n", result);
1217                         goto error;
1218                 }
1219         }
1220
1221         qp_init_queue_mutex((struct vmci_queue *)my_produce_q,
1222                             (struct vmci_queue *)my_consume_q);
1223
1224         qp_list_add_entry(&qp_guest_endpoints, &queue_pair_entry->qp);
1225
1226  out:
1227         queue_pair_entry->qp.ref_count++;
1228         *handle = queue_pair_entry->qp.handle;
1229         *produce_q = (struct vmci_queue *)my_produce_q;
1230         *consume_q = (struct vmci_queue *)my_consume_q;
1231
1232         /*
1233          * We should initialize the queue pair header pages on a local
1234          * queue pair create.  For non-local queue pairs, the
1235          * hypervisor initializes the header pages in the create step.
1236          */
1237         if ((queue_pair_entry->qp.flags & VMCI_QPFLAG_LOCAL) &&
1238             queue_pair_entry->qp.ref_count == 1) {
1239                 vmci_q_header_init((*produce_q)->q_header, *handle);
1240                 vmci_q_header_init((*consume_q)->q_header, *handle);
1241         }
1242
1243         mutex_unlock(&qp_guest_endpoints.mutex);
1244
1245         return VMCI_SUCCESS;
1246
1247  error:
1248         mutex_unlock(&qp_guest_endpoints.mutex);
1249         if (queue_pair_entry) {
1250                 /* The queues will be freed inside the destroy routine. */
1251                 qp_guest_endpoint_destroy(queue_pair_entry);
1252         } else {
1253                 qp_free_queue(my_produce_q, produce_size);
1254                 qp_free_queue(my_consume_q, consume_size);
1255         }
1256         return result;
1257
1258  error_keep_entry:
1259         /* This path should only be used when an existing entry was found. */
1260         mutex_unlock(&qp_guest_endpoints.mutex);
1261         return result;
1262 }
1263
1264 /*
1265  * The first endpoint issuing a queue pair allocation will create the state
1266  * of the queue pair in the queue pair broker.
1267  *
1268  * If the creator is a guest, it will associate a VMX virtual address range
1269  * with the queue pair as specified by the page_store. For compatibility with
1270  * older VMX'en, that would use a separate step to set the VMX virtual
1271  * address range, the virtual address range can be registered later using
1272  * vmci_qp_broker_set_page_store. In that case, a page_store of NULL should be
1273  * used.
1274  *
1275  * If the creator is the host, a page_store of NULL should be used as well,
1276  * since the host is not able to supply a page store for the queue pair.
1277  *
1278  * For older VMX and host callers, the queue pair will be created in the
1279  * VMCIQPB_CREATED_NO_MEM state, and for current VMX callers, it will be
1280  * created in VMCOQPB_CREATED_MEM state.
1281  */
1282 static int qp_broker_create(struct vmci_handle handle,
1283                             u32 peer,
1284                             u32 flags,
1285                             u32 priv_flags,
1286                             u64 produce_size,
1287                             u64 consume_size,
1288                             struct vmci_qp_page_store *page_store,
1289                             struct vmci_ctx *context,
1290                             vmci_event_release_cb wakeup_cb,
1291                             void *client_data, struct qp_broker_entry **ent)
1292 {
1293         struct qp_broker_entry *entry = NULL;
1294         const u32 context_id = vmci_ctx_get_id(context);
1295         bool is_local = flags & VMCI_QPFLAG_LOCAL;
1296         int result;
1297         u64 guest_produce_size;
1298         u64 guest_consume_size;
1299
1300         /* Do not create if the caller asked not to. */
1301         if (flags & VMCI_QPFLAG_ATTACH_ONLY)
1302                 return VMCI_ERROR_NOT_FOUND;
1303
1304         /*
1305          * Creator's context ID should match handle's context ID or the creator
1306          * must allow the context in handle's context ID as the "peer".
1307          */
1308         if (handle.context != context_id && handle.context != peer)
1309                 return VMCI_ERROR_NO_ACCESS;
1310
1311         if (VMCI_CONTEXT_IS_VM(context_id) && VMCI_CONTEXT_IS_VM(peer))
1312                 return VMCI_ERROR_DST_UNREACHABLE;
1313
1314         /*
1315          * Creator's context ID for local queue pairs should match the
1316          * peer, if a peer is specified.
1317          */
1318         if (is_local && peer != VMCI_INVALID_ID && context_id != peer)
1319                 return VMCI_ERROR_NO_ACCESS;
1320
1321         entry = kzalloc(sizeof(*entry), GFP_ATOMIC);
1322         if (!entry)
1323                 return VMCI_ERROR_NO_MEM;
1324
1325         if (vmci_ctx_get_id(context) == VMCI_HOST_CONTEXT_ID && !is_local) {
1326                 /*
1327                  * The queue pair broker entry stores values from the guest
1328                  * point of view, so a creating host side endpoint should swap
1329                  * produce and consume values -- unless it is a local queue
1330                  * pair, in which case no swapping is necessary, since the local
1331                  * attacher will swap queues.
1332                  */
1333
1334                 guest_produce_size = consume_size;
1335                 guest_consume_size = produce_size;
1336         } else {
1337                 guest_produce_size = produce_size;
1338                 guest_consume_size = consume_size;
1339         }
1340
1341         entry->qp.handle = handle;
1342         entry->qp.peer = peer;
1343         entry->qp.flags = flags;
1344         entry->qp.produce_size = guest_produce_size;
1345         entry->qp.consume_size = guest_consume_size;
1346         entry->qp.ref_count = 1;
1347         entry->create_id = context_id;
1348         entry->attach_id = VMCI_INVALID_ID;
1349         entry->state = VMCIQPB_NEW;
1350         entry->require_trusted_attach =
1351             !!(context->priv_flags & VMCI_PRIVILEGE_FLAG_RESTRICTED);
1352         entry->created_by_trusted =
1353             !!(priv_flags & VMCI_PRIVILEGE_FLAG_TRUSTED);
1354         entry->vmci_page_files = false;
1355         entry->wakeup_cb = wakeup_cb;
1356         entry->client_data = client_data;
1357         entry->produce_q = qp_host_alloc_queue(guest_produce_size);
1358         if (entry->produce_q == NULL) {
1359                 result = VMCI_ERROR_NO_MEM;
1360                 goto error;
1361         }
1362         entry->consume_q = qp_host_alloc_queue(guest_consume_size);
1363         if (entry->consume_q == NULL) {
1364                 result = VMCI_ERROR_NO_MEM;
1365                 goto error;
1366         }
1367
1368         qp_init_queue_mutex(entry->produce_q, entry->consume_q);
1369
1370         INIT_LIST_HEAD(&entry->qp.list_item);
1371
1372         if (is_local) {
1373                 u8 *tmp;
1374
1375                 entry->local_mem = kcalloc(QPE_NUM_PAGES(entry->qp),
1376                                            PAGE_SIZE, GFP_KERNEL);
1377                 if (entry->local_mem == NULL) {
1378                         result = VMCI_ERROR_NO_MEM;
1379                         goto error;
1380                 }
1381                 entry->state = VMCIQPB_CREATED_MEM;
1382                 entry->produce_q->q_header = entry->local_mem;
1383                 tmp = (u8 *)entry->local_mem + PAGE_SIZE *
1384                     (DIV_ROUND_UP(entry->qp.produce_size, PAGE_SIZE) + 1);
1385                 entry->consume_q->q_header = (struct vmci_queue_header *)tmp;
1386         } else if (page_store) {
1387                 /*
1388                  * The VMX already initialized the queue pair headers, so no
1389                  * need for the kernel side to do that.
1390                  */
1391                 result = qp_host_register_user_memory(page_store,
1392                                                       entry->produce_q,
1393                                                       entry->consume_q);
1394                 if (result < VMCI_SUCCESS)
1395                         goto error;
1396
1397                 entry->state = VMCIQPB_CREATED_MEM;
1398         } else {
1399                 /*
1400                  * A create without a page_store may be either a host
1401                  * side create (in which case we are waiting for the
1402                  * guest side to supply the memory) or an old style
1403                  * queue pair create (in which case we will expect a
1404                  * set page store call as the next step).
1405                  */
1406                 entry->state = VMCIQPB_CREATED_NO_MEM;
1407         }
1408
1409         qp_list_add_entry(&qp_broker_list, &entry->qp);
1410         if (ent != NULL)
1411                 *ent = entry;
1412
1413         /* Add to resource obj */
1414         result = vmci_resource_add(&entry->resource,
1415                                    VMCI_RESOURCE_TYPE_QPAIR_HOST,
1416                                    handle);
1417         if (result != VMCI_SUCCESS) {
1418                 pr_warn("Failed to add new resource (handle=0x%x:0x%x), error: %d",
1419                         handle.context, handle.resource, result);
1420                 goto error;
1421         }
1422
1423         entry->qp.handle = vmci_resource_handle(&entry->resource);
1424         if (is_local) {
1425                 vmci_q_header_init(entry->produce_q->q_header,
1426                                    entry->qp.handle);
1427                 vmci_q_header_init(entry->consume_q->q_header,
1428                                    entry->qp.handle);
1429         }
1430
1431         vmci_ctx_qp_create(context, entry->qp.handle);
1432
1433         return VMCI_SUCCESS;
1434
1435  error:
1436         if (entry != NULL) {
1437                 qp_host_free_queue(entry->produce_q, guest_produce_size);
1438                 qp_host_free_queue(entry->consume_q, guest_consume_size);
1439                 kfree(entry);
1440         }
1441
1442         return result;
1443 }
1444
1445 /*
1446  * Enqueues an event datagram to notify the peer VM attached to
1447  * the given queue pair handle about attach/detach event by the
1448  * given VM.  Returns Payload size of datagram enqueued on
1449  * success, error code otherwise.
1450  */
1451 static int qp_notify_peer(bool attach,
1452                           struct vmci_handle handle,
1453                           u32 my_id,
1454                           u32 peer_id)
1455 {
1456         int rv;
1457         struct vmci_event_qp ev;
1458
1459         if (vmci_handle_is_invalid(handle) || my_id == VMCI_INVALID_ID ||
1460             peer_id == VMCI_INVALID_ID)
1461                 return VMCI_ERROR_INVALID_ARGS;
1462
1463         /*
1464          * In vmci_ctx_enqueue_datagram() we enforce the upper limit on
1465          * number of pending events from the hypervisor to a given VM
1466          * otherwise a rogue VM could do an arbitrary number of attach
1467          * and detach operations causing memory pressure in the host
1468          * kernel.
1469          */
1470
1471         memset(&ev, 0, sizeof(ev));
1472         ev.msg.hdr.dst = vmci_make_handle(peer_id, VMCI_EVENT_HANDLER);
1473         ev.msg.hdr.src = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
1474                                           VMCI_CONTEXT_RESOURCE_ID);
1475         ev.msg.hdr.payload_size = sizeof(ev) - sizeof(ev.msg.hdr);
1476         ev.msg.event_data.event = attach ?
1477             VMCI_EVENT_QP_PEER_ATTACH : VMCI_EVENT_QP_PEER_DETACH;
1478         ev.payload.handle = handle;
1479         ev.payload.peer_id = my_id;
1480
1481         rv = vmci_datagram_dispatch(VMCI_HYPERVISOR_CONTEXT_ID,
1482                                     &ev.msg.hdr, false);
1483         if (rv < VMCI_SUCCESS)
1484                 pr_warn("Failed to enqueue queue_pair %s event datagram for context (ID=0x%x)\n",
1485                         attach ? "ATTACH" : "DETACH", peer_id);
1486
1487         return rv;
1488 }
1489
1490 /*
1491  * The second endpoint issuing a queue pair allocation will attach to
1492  * the queue pair registered with the queue pair broker.
1493  *
1494  * If the attacher is a guest, it will associate a VMX virtual address
1495  * range with the queue pair as specified by the page_store. At this
1496  * point, the already attach host endpoint may start using the queue
1497  * pair, and an attach event is sent to it. For compatibility with
1498  * older VMX'en, that used a separate step to set the VMX virtual
1499  * address range, the virtual address range can be registered later
1500  * using vmci_qp_broker_set_page_store. In that case, a page_store of
1501  * NULL should be used, and the attach event will be generated once
1502  * the actual page store has been set.
1503  *
1504  * If the attacher is the host, a page_store of NULL should be used as
1505  * well, since the page store information is already set by the guest.
1506  *
1507  * For new VMX and host callers, the queue pair will be moved to the
1508  * VMCIQPB_ATTACHED_MEM state, and for older VMX callers, it will be
1509  * moved to the VMCOQPB_ATTACHED_NO_MEM state.
1510  */
1511 static int qp_broker_attach(struct qp_broker_entry *entry,
1512                             u32 peer,
1513                             u32 flags,
1514                             u32 priv_flags,
1515                             u64 produce_size,
1516                             u64 consume_size,
1517                             struct vmci_qp_page_store *page_store,
1518                             struct vmci_ctx *context,
1519                             vmci_event_release_cb wakeup_cb,
1520                             void *client_data,
1521                             struct qp_broker_entry **ent)
1522 {
1523         const u32 context_id = vmci_ctx_get_id(context);
1524         bool is_local = flags & VMCI_QPFLAG_LOCAL;
1525         int result;
1526
1527         if (entry->state != VMCIQPB_CREATED_NO_MEM &&
1528             entry->state != VMCIQPB_CREATED_MEM)
1529                 return VMCI_ERROR_UNAVAILABLE;
1530
1531         if (is_local) {
1532                 if (!(entry->qp.flags & VMCI_QPFLAG_LOCAL) ||
1533                     context_id != entry->create_id) {
1534                         return VMCI_ERROR_INVALID_ARGS;
1535                 }
1536         } else if (context_id == entry->create_id ||
1537                    context_id == entry->attach_id) {
1538                 return VMCI_ERROR_ALREADY_EXISTS;
1539         }
1540
1541         if (VMCI_CONTEXT_IS_VM(context_id) &&
1542             VMCI_CONTEXT_IS_VM(entry->create_id))
1543                 return VMCI_ERROR_DST_UNREACHABLE;
1544
1545         /*
1546          * If we are attaching from a restricted context then the queuepair
1547          * must have been created by a trusted endpoint.
1548          */
1549         if ((context->priv_flags & VMCI_PRIVILEGE_FLAG_RESTRICTED) &&
1550             !entry->created_by_trusted)
1551                 return VMCI_ERROR_NO_ACCESS;
1552
1553         /*
1554          * If we are attaching to a queuepair that was created by a restricted
1555          * context then we must be trusted.
1556          */
1557         if (entry->require_trusted_attach &&
1558             (!(priv_flags & VMCI_PRIVILEGE_FLAG_TRUSTED)))
1559                 return VMCI_ERROR_NO_ACCESS;
1560
1561         /*
1562          * If the creator specifies VMCI_INVALID_ID in "peer" field, access
1563          * control check is not performed.
1564          */
1565         if (entry->qp.peer != VMCI_INVALID_ID && entry->qp.peer != context_id)
1566                 return VMCI_ERROR_NO_ACCESS;
1567
1568         if (entry->create_id == VMCI_HOST_CONTEXT_ID) {
1569                 /*
1570                  * Do not attach if the caller doesn't support Host Queue Pairs
1571                  * and a host created this queue pair.
1572                  */
1573
1574                 if (!vmci_ctx_supports_host_qp(context))
1575                         return VMCI_ERROR_INVALID_RESOURCE;
1576
1577         } else if (context_id == VMCI_HOST_CONTEXT_ID) {
1578                 struct vmci_ctx *create_context;
1579                 bool supports_host_qp;
1580
1581                 /*
1582                  * Do not attach a host to a user created queue pair if that
1583                  * user doesn't support host queue pair end points.
1584                  */
1585
1586                 create_context = vmci_ctx_get(entry->create_id);
1587                 supports_host_qp = vmci_ctx_supports_host_qp(create_context);
1588                 vmci_ctx_put(create_context);
1589
1590                 if (!supports_host_qp)
1591                         return VMCI_ERROR_INVALID_RESOURCE;
1592         }
1593
1594         if ((entry->qp.flags & ~VMCI_QP_ASYMM) != (flags & ~VMCI_QP_ASYMM_PEER))
1595                 return VMCI_ERROR_QUEUEPAIR_MISMATCH;
1596
1597         if (context_id != VMCI_HOST_CONTEXT_ID) {
1598                 /*
1599                  * The queue pair broker entry stores values from the guest
1600                  * point of view, so an attaching guest should match the values
1601                  * stored in the entry.
1602                  */
1603
1604                 if (entry->qp.produce_size != produce_size ||
1605                     entry->qp.consume_size != consume_size) {
1606                         return VMCI_ERROR_QUEUEPAIR_MISMATCH;
1607                 }
1608         } else if (entry->qp.produce_size != consume_size ||
1609                    entry->qp.consume_size != produce_size) {
1610                 return VMCI_ERROR_QUEUEPAIR_MISMATCH;
1611         }
1612
1613         if (context_id != VMCI_HOST_CONTEXT_ID) {
1614                 /*
1615                  * If a guest attached to a queue pair, it will supply
1616                  * the backing memory.  If this is a pre NOVMVM vmx,
1617                  * the backing memory will be supplied by calling
1618                  * vmci_qp_broker_set_page_store() following the
1619                  * return of the vmci_qp_broker_alloc() call. If it is
1620                  * a vmx of version NOVMVM or later, the page store
1621                  * must be supplied as part of the
1622                  * vmci_qp_broker_alloc call.  Under all circumstances
1623                  * must the initially created queue pair not have any
1624                  * memory associated with it already.
1625                  */
1626
1627                 if (entry->state != VMCIQPB_CREATED_NO_MEM)
1628                         return VMCI_ERROR_INVALID_ARGS;
1629
1630                 if (page_store != NULL) {
1631                         /*
1632                          * Patch up host state to point to guest
1633                          * supplied memory. The VMX already
1634                          * initialized the queue pair headers, so no
1635                          * need for the kernel side to do that.
1636                          */
1637
1638                         result = qp_host_register_user_memory(page_store,
1639                                                               entry->produce_q,
1640                                                               entry->consume_q);
1641                         if (result < VMCI_SUCCESS)
1642                                 return result;
1643
1644                         entry->state = VMCIQPB_ATTACHED_MEM;
1645                 } else {
1646                         entry->state = VMCIQPB_ATTACHED_NO_MEM;
1647                 }
1648         } else if (entry->state == VMCIQPB_CREATED_NO_MEM) {
1649                 /*
1650                  * The host side is attempting to attach to a queue
1651                  * pair that doesn't have any memory associated with
1652                  * it. This must be a pre NOVMVM vmx that hasn't set
1653                  * the page store information yet, or a quiesced VM.
1654                  */
1655
1656                 return VMCI_ERROR_UNAVAILABLE;
1657         } else {
1658                 /* The host side has successfully attached to a queue pair. */
1659                 entry->state = VMCIQPB_ATTACHED_MEM;
1660         }
1661
1662         if (entry->state == VMCIQPB_ATTACHED_MEM) {
1663                 result =
1664                     qp_notify_peer(true, entry->qp.handle, context_id,
1665                                    entry->create_id);
1666                 if (result < VMCI_SUCCESS)
1667                         pr_warn("Failed to notify peer (ID=0x%x) of attach to queue pair (handle=0x%x:0x%x)\n",
1668                                 entry->create_id, entry->qp.handle.context,
1669                                 entry->qp.handle.resource);
1670         }
1671
1672         entry->attach_id = context_id;
1673         entry->qp.ref_count++;
1674         if (wakeup_cb) {
1675                 entry->wakeup_cb = wakeup_cb;
1676                 entry->client_data = client_data;
1677         }
1678
1679         /*
1680          * When attaching to local queue pairs, the context already has
1681          * an entry tracking the queue pair, so don't add another one.
1682          */
1683         if (!is_local)
1684                 vmci_ctx_qp_create(context, entry->qp.handle);
1685
1686         if (ent != NULL)
1687                 *ent = entry;
1688
1689         return VMCI_SUCCESS;
1690 }
1691
1692 /*
1693  * queue_pair_Alloc for use when setting up queue pair endpoints
1694  * on the host.
1695  */
1696 static int qp_broker_alloc(struct vmci_handle handle,
1697                            u32 peer,
1698                            u32 flags,
1699                            u32 priv_flags,
1700                            u64 produce_size,
1701                            u64 consume_size,
1702                            struct vmci_qp_page_store *page_store,
1703                            struct vmci_ctx *context,
1704                            vmci_event_release_cb wakeup_cb,
1705                            void *client_data,
1706                            struct qp_broker_entry **ent,
1707                            bool *swap)
1708 {
1709         const u32 context_id = vmci_ctx_get_id(context);
1710         bool create;
1711         struct qp_broker_entry *entry = NULL;
1712         bool is_local = flags & VMCI_QPFLAG_LOCAL;
1713         int result;
1714
1715         if (vmci_handle_is_invalid(handle) ||
1716             (flags & ~VMCI_QP_ALL_FLAGS) || is_local ||
1717             !(produce_size || consume_size) ||
1718             !context || context_id == VMCI_INVALID_ID ||
1719             handle.context == VMCI_INVALID_ID) {
1720                 return VMCI_ERROR_INVALID_ARGS;
1721         }
1722
1723         if (page_store && !VMCI_QP_PAGESTORE_IS_WELLFORMED(page_store))
1724                 return VMCI_ERROR_INVALID_ARGS;
1725
1726         /*
1727          * In the initial argument check, we ensure that non-vmkernel hosts
1728          * are not allowed to create local queue pairs.
1729          */
1730
1731         mutex_lock(&qp_broker_list.mutex);
1732
1733         if (!is_local && vmci_ctx_qp_exists(context, handle)) {
1734                 pr_devel("Context (ID=0x%x) already attached to queue pair (handle=0x%x:0x%x)\n",
1735                          context_id, handle.context, handle.resource);
1736                 mutex_unlock(&qp_broker_list.mutex);
1737                 return VMCI_ERROR_ALREADY_EXISTS;
1738         }
1739
1740         if (handle.resource != VMCI_INVALID_ID)
1741                 entry = qp_broker_handle_to_entry(handle);
1742
1743         if (!entry) {
1744                 create = true;
1745                 result =
1746                     qp_broker_create(handle, peer, flags, priv_flags,
1747                                      produce_size, consume_size, page_store,
1748                                      context, wakeup_cb, client_data, ent);
1749         } else {
1750                 create = false;
1751                 result =
1752                     qp_broker_attach(entry, peer, flags, priv_flags,
1753                                      produce_size, consume_size, page_store,
1754                                      context, wakeup_cb, client_data, ent);
1755         }
1756
1757         mutex_unlock(&qp_broker_list.mutex);
1758
1759         if (swap)
1760                 *swap = (context_id == VMCI_HOST_CONTEXT_ID) &&
1761                     !(create && is_local);
1762
1763         return result;
1764 }
1765
1766 /*
1767  * This function implements the kernel API for allocating a queue
1768  * pair.
1769  */
1770 static int qp_alloc_host_work(struct vmci_handle *handle,
1771                               struct vmci_queue **produce_q,
1772                               u64 produce_size,
1773                               struct vmci_queue **consume_q,
1774                               u64 consume_size,
1775                               u32 peer,
1776                               u32 flags,
1777                               u32 priv_flags,
1778                               vmci_event_release_cb wakeup_cb,
1779                               void *client_data)
1780 {
1781         struct vmci_handle new_handle;
1782         struct vmci_ctx *context;
1783         struct qp_broker_entry *entry;
1784         int result;
1785         bool swap;
1786
1787         if (vmci_handle_is_invalid(*handle)) {
1788                 new_handle = vmci_make_handle(
1789                         VMCI_HOST_CONTEXT_ID, VMCI_INVALID_ID);
1790         } else
1791                 new_handle = *handle;
1792
1793         context = vmci_ctx_get(VMCI_HOST_CONTEXT_ID);
1794         entry = NULL;
1795         result =
1796             qp_broker_alloc(new_handle, peer, flags, priv_flags,
1797                             produce_size, consume_size, NULL, context,
1798                             wakeup_cb, client_data, &entry, &swap);
1799         if (result == VMCI_SUCCESS) {
1800                 if (swap) {
1801                         /*
1802                          * If this is a local queue pair, the attacher
1803                          * will swap around produce and consume
1804                          * queues.
1805                          */
1806
1807                         *produce_q = entry->consume_q;
1808                         *consume_q = entry->produce_q;
1809                 } else {
1810                         *produce_q = entry->produce_q;
1811                         *consume_q = entry->consume_q;
1812                 }
1813
1814                 *handle = vmci_resource_handle(&entry->resource);
1815         } else {
1816                 *handle = VMCI_INVALID_HANDLE;
1817                 pr_devel("queue pair broker failed to alloc (result=%d)\n",
1818                          result);
1819         }
1820         vmci_ctx_put(context);
1821         return result;
1822 }
1823
1824 /*
1825  * Allocates a VMCI queue_pair. Only checks validity of input
1826  * arguments. The real work is done in the host or guest
1827  * specific function.
1828  */
1829 int vmci_qp_alloc(struct vmci_handle *handle,
1830                   struct vmci_queue **produce_q,
1831                   u64 produce_size,
1832                   struct vmci_queue **consume_q,
1833                   u64 consume_size,
1834                   u32 peer,
1835                   u32 flags,
1836                   u32 priv_flags,
1837                   bool guest_endpoint,
1838                   vmci_event_release_cb wakeup_cb,
1839                   void *client_data)
1840 {
1841         if (!handle || !produce_q || !consume_q ||
1842             (!produce_size && !consume_size) || (flags & ~VMCI_QP_ALL_FLAGS))
1843                 return VMCI_ERROR_INVALID_ARGS;
1844
1845         if (guest_endpoint) {
1846                 return qp_alloc_guest_work(handle, produce_q,
1847                                            produce_size, consume_q,
1848                                            consume_size, peer,
1849                                            flags, priv_flags);
1850         } else {
1851                 return qp_alloc_host_work(handle, produce_q,
1852                                           produce_size, consume_q,
1853                                           consume_size, peer, flags,
1854                                           priv_flags, wakeup_cb, client_data);
1855         }
1856 }
1857
1858 /*
1859  * This function implements the host kernel API for detaching from
1860  * a queue pair.
1861  */
1862 static int qp_detatch_host_work(struct vmci_handle handle)
1863 {
1864         int result;
1865         struct vmci_ctx *context;
1866
1867         context = vmci_ctx_get(VMCI_HOST_CONTEXT_ID);
1868
1869         result = vmci_qp_broker_detach(handle, context);
1870
1871         vmci_ctx_put(context);
1872         return result;
1873 }
1874
1875 /*
1876  * Detaches from a VMCI queue_pair. Only checks validity of input argument.
1877  * Real work is done in the host or guest specific function.
1878  */
1879 static int qp_detatch(struct vmci_handle handle, bool guest_endpoint)
1880 {
1881         if (vmci_handle_is_invalid(handle))
1882                 return VMCI_ERROR_INVALID_ARGS;
1883
1884         if (guest_endpoint)
1885                 return qp_detatch_guest_work(handle);
1886         else
1887                 return qp_detatch_host_work(handle);
1888 }
1889
1890 /*
1891  * Returns the entry from the head of the list. Assumes that the list is
1892  * locked.
1893  */
1894 static struct qp_entry *qp_list_get_head(struct qp_list *qp_list)
1895 {
1896         if (!list_empty(&qp_list->head)) {
1897                 struct qp_entry *entry =
1898                     list_first_entry(&qp_list->head, struct qp_entry,
1899                                      list_item);
1900                 return entry;
1901         }
1902
1903         return NULL;
1904 }
1905
1906 void vmci_qp_broker_exit(void)
1907 {
1908         struct qp_entry *entry;
1909         struct qp_broker_entry *be;
1910
1911         mutex_lock(&qp_broker_list.mutex);
1912
1913         while ((entry = qp_list_get_head(&qp_broker_list))) {
1914                 be = (struct qp_broker_entry *)entry;
1915
1916                 qp_list_remove_entry(&qp_broker_list, entry);
1917                 kfree(be);
1918         }
1919
1920         mutex_unlock(&qp_broker_list.mutex);
1921 }
1922
1923 /*
1924  * Requests that a queue pair be allocated with the VMCI queue
1925  * pair broker. Allocates a queue pair entry if one does not
1926  * exist. Attaches to one if it exists, and retrieves the page
1927  * files backing that queue_pair.  Assumes that the queue pair
1928  * broker lock is held.
1929  */
1930 int vmci_qp_broker_alloc(struct vmci_handle handle,
1931                          u32 peer,
1932                          u32 flags,
1933                          u32 priv_flags,
1934                          u64 produce_size,
1935                          u64 consume_size,
1936                          struct vmci_qp_page_store *page_store,
1937                          struct vmci_ctx *context)
1938 {
1939         if (!QP_SIZES_ARE_VALID(produce_size, consume_size))
1940                 return VMCI_ERROR_NO_RESOURCES;
1941
1942         return qp_broker_alloc(handle, peer, flags, priv_flags,
1943                                produce_size, consume_size,
1944                                page_store, context, NULL, NULL, NULL, NULL);
1945 }
1946
1947 /*
1948  * VMX'en with versions lower than VMCI_VERSION_NOVMVM use a separate
1949  * step to add the UVAs of the VMX mapping of the queue pair. This function
1950  * provides backwards compatibility with such VMX'en, and takes care of
1951  * registering the page store for a queue pair previously allocated by the
1952  * VMX during create or attach. This function will move the queue pair state
1953  * to either from VMCIQBP_CREATED_NO_MEM to VMCIQBP_CREATED_MEM or
1954  * VMCIQBP_ATTACHED_NO_MEM to VMCIQBP_ATTACHED_MEM. If moving to the
1955  * attached state with memory, the queue pair is ready to be used by the
1956  * host peer, and an attached event will be generated.
1957  *
1958  * Assumes that the queue pair broker lock is held.
1959  *
1960  * This function is only used by the hosted platform, since there is no
1961  * issue with backwards compatibility for vmkernel.
1962  */
1963 int vmci_qp_broker_set_page_store(struct vmci_handle handle,
1964                                   u64 produce_uva,
1965                                   u64 consume_uva,
1966                                   struct vmci_ctx *context)
1967 {
1968         struct qp_broker_entry *entry;
1969         int result;
1970         const u32 context_id = vmci_ctx_get_id(context);
1971
1972         if (vmci_handle_is_invalid(handle) || !context ||
1973             context_id == VMCI_INVALID_ID)
1974                 return VMCI_ERROR_INVALID_ARGS;
1975
1976         /*
1977          * We only support guest to host queue pairs, so the VMX must
1978          * supply UVAs for the mapped page files.
1979          */
1980
1981         if (produce_uva == 0 || consume_uva == 0)
1982                 return VMCI_ERROR_INVALID_ARGS;
1983
1984         mutex_lock(&qp_broker_list.mutex);
1985
1986         if (!vmci_ctx_qp_exists(context, handle)) {
1987                 pr_warn("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
1988                         context_id, handle.context, handle.resource);
1989                 result = VMCI_ERROR_NOT_FOUND;
1990                 goto out;
1991         }
1992
1993         entry = qp_broker_handle_to_entry(handle);
1994         if (!entry) {
1995                 result = VMCI_ERROR_NOT_FOUND;
1996                 goto out;
1997         }
1998
1999         /*
2000          * If I'm the owner then I can set the page store.
2001          *
2002          * Or, if a host created the queue_pair and I'm the attached peer
2003          * then I can set the page store.
2004          */
2005         if (entry->create_id != context_id &&
2006             (entry->create_id != VMCI_HOST_CONTEXT_ID ||
2007              entry->attach_id != context_id)) {
2008                 result = VMCI_ERROR_QUEUEPAIR_NOTOWNER;
2009                 goto out;
2010         }
2011
2012         if (entry->state != VMCIQPB_CREATED_NO_MEM &&
2013             entry->state != VMCIQPB_ATTACHED_NO_MEM) {
2014                 result = VMCI_ERROR_UNAVAILABLE;
2015                 goto out;
2016         }
2017
2018         result = qp_host_get_user_memory(produce_uva, consume_uva,
2019                                          entry->produce_q, entry->consume_q);
2020         if (result < VMCI_SUCCESS)
2021                 goto out;
2022
2023         result = qp_host_map_queues(entry->produce_q, entry->consume_q);
2024         if (result < VMCI_SUCCESS) {
2025                 qp_host_unregister_user_memory(entry->produce_q,
2026                                                entry->consume_q);
2027                 goto out;
2028         }
2029
2030         if (entry->state == VMCIQPB_CREATED_NO_MEM)
2031                 entry->state = VMCIQPB_CREATED_MEM;
2032         else
2033                 entry->state = VMCIQPB_ATTACHED_MEM;
2034
2035         entry->vmci_page_files = true;
2036
2037         if (entry->state == VMCIQPB_ATTACHED_MEM) {
2038                 result =
2039                     qp_notify_peer(true, handle, context_id, entry->create_id);
2040                 if (result < VMCI_SUCCESS) {
2041                         pr_warn("Failed to notify peer (ID=0x%x) of attach to queue pair (handle=0x%x:0x%x)\n",
2042                                 entry->create_id, entry->qp.handle.context,
2043                                 entry->qp.handle.resource);
2044                 }
2045         }
2046
2047         result = VMCI_SUCCESS;
2048  out:
2049         mutex_unlock(&qp_broker_list.mutex);
2050         return result;
2051 }
2052
2053 /*
2054  * Resets saved queue headers for the given QP broker
2055  * entry. Should be used when guest memory becomes available
2056  * again, or the guest detaches.
2057  */
2058 static void qp_reset_saved_headers(struct qp_broker_entry *entry)
2059 {
2060         entry->produce_q->saved_header = NULL;
2061         entry->consume_q->saved_header = NULL;
2062 }
2063
2064 /*
2065  * The main entry point for detaching from a queue pair registered with the
2066  * queue pair broker. If more than one endpoint is attached to the queue
2067  * pair, the first endpoint will mainly decrement a reference count and
2068  * generate a notification to its peer. The last endpoint will clean up
2069  * the queue pair state registered with the broker.
2070  *
2071  * When a guest endpoint detaches, it will unmap and unregister the guest
2072  * memory backing the queue pair. If the host is still attached, it will
2073  * no longer be able to access the queue pair content.
2074  *
2075  * If the queue pair is already in a state where there is no memory
2076  * registered for the queue pair (any *_NO_MEM state), it will transition to
2077  * the VMCIQPB_SHUTDOWN_NO_MEM state. This will also happen, if a guest
2078  * endpoint is the first of two endpoints to detach. If the host endpoint is
2079  * the first out of two to detach, the queue pair will move to the
2080  * VMCIQPB_SHUTDOWN_MEM state.
2081  */
2082 int vmci_qp_broker_detach(struct vmci_handle handle, struct vmci_ctx *context)
2083 {
2084         struct qp_broker_entry *entry;
2085         const u32 context_id = vmci_ctx_get_id(context);
2086         u32 peer_id;
2087         bool is_local = false;
2088         int result;
2089
2090         if (vmci_handle_is_invalid(handle) || !context ||
2091             context_id == VMCI_INVALID_ID) {
2092                 return VMCI_ERROR_INVALID_ARGS;
2093         }
2094
2095         mutex_lock(&qp_broker_list.mutex);
2096
2097         if (!vmci_ctx_qp_exists(context, handle)) {
2098                 pr_devel("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2099                          context_id, handle.context, handle.resource);
2100                 result = VMCI_ERROR_NOT_FOUND;
2101                 goto out;
2102         }
2103
2104         entry = qp_broker_handle_to_entry(handle);
2105         if (!entry) {
2106                 pr_devel("Context (ID=0x%x) reports being attached to queue pair(handle=0x%x:0x%x) that isn't present in broker\n",
2107                          context_id, handle.context, handle.resource);
2108                 result = VMCI_ERROR_NOT_FOUND;
2109                 goto out;
2110         }
2111
2112         if (context_id != entry->create_id && context_id != entry->attach_id) {
2113                 result = VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2114                 goto out;
2115         }
2116
2117         if (context_id == entry->create_id) {
2118                 peer_id = entry->attach_id;
2119                 entry->create_id = VMCI_INVALID_ID;
2120         } else {
2121                 peer_id = entry->create_id;
2122                 entry->attach_id = VMCI_INVALID_ID;
2123         }
2124         entry->qp.ref_count--;
2125
2126         is_local = entry->qp.flags & VMCI_QPFLAG_LOCAL;
2127
2128         if (context_id != VMCI_HOST_CONTEXT_ID) {
2129                 bool headers_mapped;
2130
2131                 /*
2132                  * Pre NOVMVM vmx'en may detach from a queue pair
2133                  * before setting the page store, and in that case
2134                  * there is no user memory to detach from. Also, more
2135                  * recent VMX'en may detach from a queue pair in the
2136                  * quiesced state.
2137                  */
2138
2139                 qp_acquire_queue_mutex(entry->produce_q);
2140                 headers_mapped = entry->produce_q->q_header ||
2141                     entry->consume_q->q_header;
2142                 if (QPBROKERSTATE_HAS_MEM(entry)) {
2143                         result =
2144                             qp_host_unmap_queues(INVALID_VMCI_GUEST_MEM_ID,
2145                                                  entry->produce_q,
2146                                                  entry->consume_q);
2147                         if (result < VMCI_SUCCESS)
2148                                 pr_warn("Failed to unmap queue headers for queue pair (handle=0x%x:0x%x,result=%d)\n",
2149                                         handle.context, handle.resource,
2150                                         result);
2151
2152                         qp_host_unregister_user_memory(entry->produce_q,
2153                                                        entry->consume_q);
2154
2155                 }
2156
2157                 if (!headers_mapped)
2158                         qp_reset_saved_headers(entry);
2159
2160                 qp_release_queue_mutex(entry->produce_q);
2161
2162                 if (!headers_mapped && entry->wakeup_cb)
2163                         entry->wakeup_cb(entry->client_data);
2164
2165         } else {
2166                 if (entry->wakeup_cb) {
2167                         entry->wakeup_cb = NULL;
2168                         entry->client_data = NULL;
2169                 }
2170         }
2171
2172         if (entry->qp.ref_count == 0) {
2173                 qp_list_remove_entry(&qp_broker_list, &entry->qp);
2174
2175                 if (is_local)
2176                         kfree(entry->local_mem);
2177
2178                 qp_cleanup_queue_mutex(entry->produce_q, entry->consume_q);
2179                 qp_host_free_queue(entry->produce_q, entry->qp.produce_size);
2180                 qp_host_free_queue(entry->consume_q, entry->qp.consume_size);
2181                 /* Unlink from resource hash table and free callback */
2182                 vmci_resource_remove(&entry->resource);
2183
2184                 kfree(entry);
2185
2186                 vmci_ctx_qp_destroy(context, handle);
2187         } else {
2188                 qp_notify_peer(false, handle, context_id, peer_id);
2189                 if (context_id == VMCI_HOST_CONTEXT_ID &&
2190                     QPBROKERSTATE_HAS_MEM(entry)) {
2191                         entry->state = VMCIQPB_SHUTDOWN_MEM;
2192                 } else {
2193                         entry->state = VMCIQPB_SHUTDOWN_NO_MEM;
2194                 }
2195
2196                 if (!is_local)
2197                         vmci_ctx_qp_destroy(context, handle);
2198
2199         }
2200         result = VMCI_SUCCESS;
2201  out:
2202         mutex_unlock(&qp_broker_list.mutex);
2203         return result;
2204 }
2205
2206 /*
2207  * Establishes the necessary mappings for a queue pair given a
2208  * reference to the queue pair guest memory. This is usually
2209  * called when a guest is unquiesced and the VMX is allowed to
2210  * map guest memory once again.
2211  */
2212 int vmci_qp_broker_map(struct vmci_handle handle,
2213                        struct vmci_ctx *context,
2214                        u64 guest_mem)
2215 {
2216         struct qp_broker_entry *entry;
2217         const u32 context_id = vmci_ctx_get_id(context);
2218         int result;
2219
2220         if (vmci_handle_is_invalid(handle) || !context ||
2221             context_id == VMCI_INVALID_ID)
2222                 return VMCI_ERROR_INVALID_ARGS;
2223
2224         mutex_lock(&qp_broker_list.mutex);
2225
2226         if (!vmci_ctx_qp_exists(context, handle)) {
2227                 pr_devel("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2228                          context_id, handle.context, handle.resource);
2229                 result = VMCI_ERROR_NOT_FOUND;
2230                 goto out;
2231         }
2232
2233         entry = qp_broker_handle_to_entry(handle);
2234         if (!entry) {
2235                 pr_devel("Context (ID=0x%x) reports being attached to queue pair (handle=0x%x:0x%x) that isn't present in broker\n",
2236                          context_id, handle.context, handle.resource);
2237                 result = VMCI_ERROR_NOT_FOUND;
2238                 goto out;
2239         }
2240
2241         if (context_id != entry->create_id && context_id != entry->attach_id) {
2242                 result = VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2243                 goto out;
2244         }
2245
2246         result = VMCI_SUCCESS;
2247
2248         if (context_id != VMCI_HOST_CONTEXT_ID &&
2249             !QPBROKERSTATE_HAS_MEM(entry)) {
2250                 struct vmci_qp_page_store page_store;
2251
2252                 page_store.pages = guest_mem;
2253                 page_store.len = QPE_NUM_PAGES(entry->qp);
2254
2255                 qp_acquire_queue_mutex(entry->produce_q);
2256                 qp_reset_saved_headers(entry);
2257                 result =
2258                     qp_host_register_user_memory(&page_store,
2259                                                  entry->produce_q,
2260                                                  entry->consume_q);
2261                 qp_release_queue_mutex(entry->produce_q);
2262                 if (result == VMCI_SUCCESS) {
2263                         /* Move state from *_NO_MEM to *_MEM */
2264
2265                         entry->state++;
2266
2267                         if (entry->wakeup_cb)
2268                                 entry->wakeup_cb(entry->client_data);
2269                 }
2270         }
2271
2272  out:
2273         mutex_unlock(&qp_broker_list.mutex);
2274         return result;
2275 }
2276
2277 /*
2278  * Saves a snapshot of the queue headers for the given QP broker
2279  * entry. Should be used when guest memory is unmapped.
2280  * Results:
2281  * VMCI_SUCCESS on success, appropriate error code if guest memory
2282  * can't be accessed..
2283  */
2284 static int qp_save_headers(struct qp_broker_entry *entry)
2285 {
2286         int result;
2287
2288         if (entry->produce_q->saved_header != NULL &&
2289             entry->consume_q->saved_header != NULL) {
2290                 /*
2291                  *  If the headers have already been saved, we don't need to do
2292                  *  it again, and we don't want to map in the headers
2293                  *  unnecessarily.
2294                  */
2295
2296                 return VMCI_SUCCESS;
2297         }
2298
2299         if (NULL == entry->produce_q->q_header ||
2300             NULL == entry->consume_q->q_header) {
2301                 result = qp_host_map_queues(entry->produce_q, entry->consume_q);
2302                 if (result < VMCI_SUCCESS)
2303                         return result;
2304         }
2305
2306         memcpy(&entry->saved_produce_q, entry->produce_q->q_header,
2307                sizeof(entry->saved_produce_q));
2308         entry->produce_q->saved_header = &entry->saved_produce_q;
2309         memcpy(&entry->saved_consume_q, entry->consume_q->q_header,
2310                sizeof(entry->saved_consume_q));
2311         entry->consume_q->saved_header = &entry->saved_consume_q;
2312
2313         return VMCI_SUCCESS;
2314 }
2315
2316 /*
2317  * Removes all references to the guest memory of a given queue pair, and
2318  * will move the queue pair from state *_MEM to *_NO_MEM. It is usually
2319  * called when a VM is being quiesced where access to guest memory should
2320  * avoided.
2321  */
2322 int vmci_qp_broker_unmap(struct vmci_handle handle,
2323                          struct vmci_ctx *context,
2324                          u32 gid)
2325 {
2326         struct qp_broker_entry *entry;
2327         const u32 context_id = vmci_ctx_get_id(context);
2328         int result;
2329
2330         if (vmci_handle_is_invalid(handle) || !context ||
2331             context_id == VMCI_INVALID_ID)
2332                 return VMCI_ERROR_INVALID_ARGS;
2333
2334         mutex_lock(&qp_broker_list.mutex);
2335
2336         if (!vmci_ctx_qp_exists(context, handle)) {
2337                 pr_devel("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2338                          context_id, handle.context, handle.resource);
2339                 result = VMCI_ERROR_NOT_FOUND;
2340                 goto out;
2341         }
2342
2343         entry = qp_broker_handle_to_entry(handle);
2344         if (!entry) {
2345                 pr_devel("Context (ID=0x%x) reports being attached to queue pair (handle=0x%x:0x%x) that isn't present in broker\n",
2346                          context_id, handle.context, handle.resource);
2347                 result = VMCI_ERROR_NOT_FOUND;
2348                 goto out;
2349         }
2350
2351         if (context_id != entry->create_id && context_id != entry->attach_id) {
2352                 result = VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2353                 goto out;
2354         }
2355
2356         if (context_id != VMCI_HOST_CONTEXT_ID &&
2357             QPBROKERSTATE_HAS_MEM(entry)) {
2358                 qp_acquire_queue_mutex(entry->produce_q);
2359                 result = qp_save_headers(entry);
2360                 if (result < VMCI_SUCCESS)
2361                         pr_warn("Failed to save queue headers for queue pair (handle=0x%x:0x%x,result=%d)\n",
2362                                 handle.context, handle.resource, result);
2363
2364                 qp_host_unmap_queues(gid, entry->produce_q, entry->consume_q);
2365
2366                 /*
2367                  * On hosted, when we unmap queue pairs, the VMX will also
2368                  * unmap the guest memory, so we invalidate the previously
2369                  * registered memory. If the queue pair is mapped again at a
2370                  * later point in time, we will need to reregister the user
2371                  * memory with a possibly new user VA.
2372                  */
2373                 qp_host_unregister_user_memory(entry->produce_q,
2374                                                entry->consume_q);
2375
2376                 /*
2377                  * Move state from *_MEM to *_NO_MEM.
2378                  */
2379                 entry->state--;
2380
2381                 qp_release_queue_mutex(entry->produce_q);
2382         }
2383
2384         result = VMCI_SUCCESS;
2385
2386  out:
2387         mutex_unlock(&qp_broker_list.mutex);
2388         return result;
2389 }
2390
2391 /*
2392  * Destroys all guest queue pair endpoints. If active guest queue
2393  * pairs still exist, hypercalls to attempt detach from these
2394  * queue pairs will be made. Any failure to detach is silently
2395  * ignored.
2396  */
2397 void vmci_qp_guest_endpoints_exit(void)
2398 {
2399         struct qp_entry *entry;
2400         struct qp_guest_endpoint *ep;
2401
2402         mutex_lock(&qp_guest_endpoints.mutex);
2403
2404         while ((entry = qp_list_get_head(&qp_guest_endpoints))) {
2405                 ep = (struct qp_guest_endpoint *)entry;
2406
2407                 /* Don't make a hypercall for local queue_pairs. */
2408                 if (!(entry->flags & VMCI_QPFLAG_LOCAL))
2409                         qp_detatch_hypercall(entry->handle);
2410
2411                 /* We cannot fail the exit, so let's reset ref_count. */
2412                 entry->ref_count = 0;
2413                 qp_list_remove_entry(&qp_guest_endpoints, entry);
2414
2415                 qp_guest_endpoint_destroy(ep);
2416         }
2417
2418         mutex_unlock(&qp_guest_endpoints.mutex);
2419 }
2420
2421 /*
2422  * Helper routine that will lock the queue pair before subsequent
2423  * operations.
2424  * Note: Non-blocking on the host side is currently only implemented in ESX.
2425  * Since non-blocking isn't yet implemented on the host personality we
2426  * have no reason to acquire a spin lock.  So to avoid the use of an
2427  * unnecessary lock only acquire the mutex if we can block.
2428  */
2429 static void qp_lock(const struct vmci_qp *qpair)
2430 {
2431         qp_acquire_queue_mutex(qpair->produce_q);
2432 }
2433
2434 /*
2435  * Helper routine that unlocks the queue pair after calling
2436  * qp_lock.
2437  */
2438 static void qp_unlock(const struct vmci_qp *qpair)
2439 {
2440         qp_release_queue_mutex(qpair->produce_q);
2441 }
2442
2443 /*
2444  * The queue headers may not be mapped at all times. If a queue is
2445  * currently not mapped, it will be attempted to do so.
2446  */
2447 static int qp_map_queue_headers(struct vmci_queue *produce_q,
2448                                 struct vmci_queue *consume_q)
2449 {
2450         int result;
2451
2452         if (NULL == produce_q->q_header || NULL == consume_q->q_header) {
2453                 result = qp_host_map_queues(produce_q, consume_q);
2454                 if (result < VMCI_SUCCESS)
2455                         return (produce_q->saved_header &&
2456                                 consume_q->saved_header) ?
2457                             VMCI_ERROR_QUEUEPAIR_NOT_READY :
2458                             VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2459         }
2460
2461         return VMCI_SUCCESS;
2462 }
2463
2464 /*
2465  * Helper routine that will retrieve the produce and consume
2466  * headers of a given queue pair. If the guest memory of the
2467  * queue pair is currently not available, the saved queue headers
2468  * will be returned, if these are available.
2469  */
2470 static int qp_get_queue_headers(const struct vmci_qp *qpair,
2471                                 struct vmci_queue_header **produce_q_header,
2472                                 struct vmci_queue_header **consume_q_header)
2473 {
2474         int result;
2475
2476         result = qp_map_queue_headers(qpair->produce_q, qpair->consume_q);
2477         if (result == VMCI_SUCCESS) {
2478                 *produce_q_header = qpair->produce_q->q_header;
2479                 *consume_q_header = qpair->consume_q->q_header;
2480         } else if (qpair->produce_q->saved_header &&
2481                    qpair->consume_q->saved_header) {
2482                 *produce_q_header = qpair->produce_q->saved_header;
2483                 *consume_q_header = qpair->consume_q->saved_header;
2484                 result = VMCI_SUCCESS;
2485         }
2486
2487         return result;
2488 }
2489
2490 /*
2491  * Callback from VMCI queue pair broker indicating that a queue
2492  * pair that was previously not ready, now either is ready or
2493  * gone forever.
2494  */
2495 static int qp_wakeup_cb(void *client_data)
2496 {
2497         struct vmci_qp *qpair = (struct vmci_qp *)client_data;
2498
2499         qp_lock(qpair);
2500         while (qpair->blocked > 0) {
2501                 qpair->blocked--;
2502                 qpair->generation++;
2503                 wake_up(&qpair->event);
2504         }
2505         qp_unlock(qpair);
2506
2507         return VMCI_SUCCESS;
2508 }
2509
2510 /*
2511  * Makes the calling thread wait for the queue pair to become
2512  * ready for host side access.  Returns true when thread is
2513  * woken up after queue pair state change, false otherwise.
2514  */
2515 static bool qp_wait_for_ready_queue(struct vmci_qp *qpair)
2516 {
2517         unsigned int generation;
2518
2519         qpair->blocked++;
2520         generation = qpair->generation;
2521         qp_unlock(qpair);
2522         wait_event(qpair->event, generation != qpair->generation);
2523         qp_lock(qpair);
2524
2525         return true;
2526 }
2527
2528 /*
2529  * Enqueues a given buffer to the produce queue using the provided
2530  * function. As many bytes as possible (space available in the queue)
2531  * are enqueued.  Assumes the queue->mutex has been acquired.  Returns
2532  * VMCI_ERROR_QUEUEPAIR_NOSPACE if no space was available to enqueue
2533  * data, VMCI_ERROR_INVALID_SIZE, if any queue pointer is outside the
2534  * queue (as defined by the queue size), VMCI_ERROR_INVALID_ARGS, if
2535  * an error occured when accessing the buffer,
2536  * VMCI_ERROR_QUEUEPAIR_NOTATTACHED, if the queue pair pages aren't
2537  * available.  Otherwise, the number of bytes written to the queue is
2538  * returned.  Updates the tail pointer of the produce queue.
2539  */
2540 static ssize_t qp_enqueue_locked(struct vmci_queue *produce_q,
2541                                  struct vmci_queue *consume_q,
2542                                  const u64 produce_q_size,
2543                                  struct iov_iter *from)
2544 {
2545         s64 free_space;
2546         u64 tail;
2547         size_t buf_size = iov_iter_count(from);
2548         size_t written;
2549         ssize_t result;
2550
2551         result = qp_map_queue_headers(produce_q, consume_q);
2552         if (unlikely(result != VMCI_SUCCESS))
2553                 return result;
2554
2555         free_space = vmci_q_header_free_space(produce_q->q_header,
2556                                               consume_q->q_header,
2557                                               produce_q_size);
2558         if (free_space == 0)
2559                 return VMCI_ERROR_QUEUEPAIR_NOSPACE;
2560
2561         if (free_space < VMCI_SUCCESS)
2562                 return (ssize_t) free_space;
2563
2564         written = (size_t) (free_space > buf_size ? buf_size : free_space);
2565         tail = vmci_q_header_producer_tail(produce_q->q_header);
2566         if (likely(tail + written < produce_q_size)) {
2567                 result = qp_memcpy_to_queue_iter(produce_q, tail, from, written);
2568         } else {
2569                 /* Tail pointer wraps around. */
2570
2571                 const size_t tmp = (size_t) (produce_q_size - tail);
2572
2573                 result = qp_memcpy_to_queue_iter(produce_q, tail, from, tmp);
2574                 if (result >= VMCI_SUCCESS)
2575                         result = qp_memcpy_to_queue_iter(produce_q, 0, from,
2576                                                  written - tmp);
2577         }
2578
2579         if (result < VMCI_SUCCESS)
2580                 return result;
2581
2582         /*
2583          * This virt_wmb() ensures that data written to the queue
2584          * is observable before the new producer_tail is.
2585          */
2586         virt_wmb();
2587
2588         vmci_q_header_add_producer_tail(produce_q->q_header, written,
2589                                         produce_q_size);
2590         return written;
2591 }
2592
2593 /*
2594  * Dequeues data (if available) from the given consume queue. Writes data
2595  * to the user provided buffer using the provided function.
2596  * Assumes the queue->mutex has been acquired.
2597  * Results:
2598  * VMCI_ERROR_QUEUEPAIR_NODATA if no data was available to dequeue.
2599  * VMCI_ERROR_INVALID_SIZE, if any queue pointer is outside the queue
2600  * (as defined by the queue size).
2601  * VMCI_ERROR_INVALID_ARGS, if an error occured when accessing the buffer.
2602  * Otherwise the number of bytes dequeued is returned.
2603  * Side effects:
2604  * Updates the head pointer of the consume queue.
2605  */
2606 static ssize_t qp_dequeue_locked(struct vmci_queue *produce_q,
2607                                  struct vmci_queue *consume_q,
2608                                  const u64 consume_q_size,
2609                                  struct iov_iter *to,
2610                                  bool update_consumer)
2611 {
2612         size_t buf_size = iov_iter_count(to);
2613         s64 buf_ready;
2614         u64 head;
2615         size_t read;
2616         ssize_t result;
2617
2618         result = qp_map_queue_headers(produce_q, consume_q);
2619         if (unlikely(result != VMCI_SUCCESS))
2620                 return result;
2621
2622         buf_ready = vmci_q_header_buf_ready(consume_q->q_header,
2623                                             produce_q->q_header,
2624                                             consume_q_size);
2625         if (buf_ready == 0)
2626                 return VMCI_ERROR_QUEUEPAIR_NODATA;
2627
2628         if (buf_ready < VMCI_SUCCESS)
2629                 return (ssize_t) buf_ready;
2630
2631         /*
2632          * This virt_rmb() ensures that data from the queue will be read
2633          * after we have determined how much is ready to be consumed.
2634          */
2635         virt_rmb();
2636
2637         read = (size_t) (buf_ready > buf_size ? buf_size : buf_ready);
2638         head = vmci_q_header_consumer_head(produce_q->q_header);
2639         if (likely(head + read < consume_q_size)) {
2640                 result = qp_memcpy_from_queue_iter(to, consume_q, head, read);
2641         } else {
2642                 /* Head pointer wraps around. */
2643
2644                 const size_t tmp = (size_t) (consume_q_size - head);
2645
2646                 result = qp_memcpy_from_queue_iter(to, consume_q, head, tmp);
2647                 if (result >= VMCI_SUCCESS)
2648                         result = qp_memcpy_from_queue_iter(to, consume_q, 0,
2649                                                    read - tmp);
2650
2651         }
2652
2653         if (result < VMCI_SUCCESS)
2654                 return result;
2655
2656         if (update_consumer)
2657                 vmci_q_header_add_consumer_head(produce_q->q_header,
2658                                                 read, consume_q_size);
2659
2660         return read;
2661 }
2662
2663 /*
2664  * vmci_qpair_alloc() - Allocates a queue pair.
2665  * @qpair:      Pointer for the new vmci_qp struct.
2666  * @handle:     Handle to track the resource.
2667  * @produce_qsize:      Desired size of the producer queue.
2668  * @consume_qsize:      Desired size of the consumer queue.
2669  * @peer:       ContextID of the peer.
2670  * @flags:      VMCI flags.
2671  * @priv_flags: VMCI priviledge flags.
2672  *
2673  * This is the client interface for allocating the memory for a
2674  * vmci_qp structure and then attaching to the underlying
2675  * queue.  If an error occurs allocating the memory for the
2676  * vmci_qp structure no attempt is made to attach.  If an
2677  * error occurs attaching, then the structure is freed.
2678  */
2679 int vmci_qpair_alloc(struct vmci_qp **qpair,
2680                      struct vmci_handle *handle,
2681                      u64 produce_qsize,
2682                      u64 consume_qsize,
2683                      u32 peer,
2684                      u32 flags,
2685                      u32 priv_flags)
2686 {
2687         struct vmci_qp *my_qpair;
2688         int retval;
2689         struct vmci_handle src = VMCI_INVALID_HANDLE;
2690         struct vmci_handle dst = vmci_make_handle(peer, VMCI_INVALID_ID);
2691         enum vmci_route route;
2692         vmci_event_release_cb wakeup_cb;
2693         void *client_data;
2694
2695         /*
2696          * Restrict the size of a queuepair.  The device already
2697          * enforces a limit on the total amount of memory that can be
2698          * allocated to queuepairs for a guest.  However, we try to
2699          * allocate this memory before we make the queuepair
2700          * allocation hypercall.  On Linux, we allocate each page
2701          * separately, which means rather than fail, the guest will
2702          * thrash while it tries to allocate, and will become
2703          * increasingly unresponsive to the point where it appears to
2704          * be hung.  So we place a limit on the size of an individual
2705          * queuepair here, and leave the device to enforce the
2706          * restriction on total queuepair memory.  (Note that this
2707          * doesn't prevent all cases; a user with only this much
2708          * physical memory could still get into trouble.)  The error
2709          * used by the device is NO_RESOURCES, so use that here too.
2710          */
2711
2712         if (!QP_SIZES_ARE_VALID(produce_qsize, consume_qsize))
2713                 return VMCI_ERROR_NO_RESOURCES;
2714
2715         retval = vmci_route(&src, &dst, false, &route);
2716         if (retval < VMCI_SUCCESS)
2717                 route = vmci_guest_code_active() ?
2718                     VMCI_ROUTE_AS_GUEST : VMCI_ROUTE_AS_HOST;
2719
2720         if (flags & (VMCI_QPFLAG_NONBLOCK | VMCI_QPFLAG_PINNED)) {
2721                 pr_devel("NONBLOCK OR PINNED set");
2722                 return VMCI_ERROR_INVALID_ARGS;
2723         }
2724
2725         my_qpair = kzalloc(sizeof(*my_qpair), GFP_KERNEL);
2726         if (!my_qpair)
2727                 return VMCI_ERROR_NO_MEM;
2728
2729         my_qpair->produce_q_size = produce_qsize;
2730         my_qpair->consume_q_size = consume_qsize;
2731         my_qpair->peer = peer;
2732         my_qpair->flags = flags;
2733         my_qpair->priv_flags = priv_flags;
2734
2735         wakeup_cb = NULL;
2736         client_data = NULL;
2737
2738         if (VMCI_ROUTE_AS_HOST == route) {
2739                 my_qpair->guest_endpoint = false;
2740                 if (!(flags & VMCI_QPFLAG_LOCAL)) {
2741                         my_qpair->blocked = 0;
2742                         my_qpair->generation = 0;
2743                         init_waitqueue_head(&my_qpair->event);
2744                         wakeup_cb = qp_wakeup_cb;
2745                         client_data = (void *)my_qpair;
2746                 }
2747         } else {
2748                 my_qpair->guest_endpoint = true;
2749         }
2750
2751         retval = vmci_qp_alloc(handle,
2752                                &my_qpair->produce_q,
2753                                my_qpair->produce_q_size,
2754                                &my_qpair->consume_q,
2755                                my_qpair->consume_q_size,
2756                                my_qpair->peer,
2757                                my_qpair->flags,
2758                                my_qpair->priv_flags,
2759                                my_qpair->guest_endpoint,
2760                                wakeup_cb, client_data);
2761
2762         if (retval < VMCI_SUCCESS) {
2763                 kfree(my_qpair);
2764                 return retval;
2765         }
2766
2767         *qpair = my_qpair;
2768         my_qpair->handle = *handle;
2769
2770         return retval;
2771 }
2772 EXPORT_SYMBOL_GPL(vmci_qpair_alloc);
2773
2774 /*
2775  * vmci_qpair_detach() - Detatches the client from a queue pair.
2776  * @qpair:      Reference of a pointer to the qpair struct.
2777  *
2778  * This is the client interface for detaching from a VMCIQPair.
2779  * Note that this routine will free the memory allocated for the
2780  * vmci_qp structure too.
2781  */
2782 int vmci_qpair_detach(struct vmci_qp **qpair)
2783 {
2784         int result;
2785         struct vmci_qp *old_qpair;
2786
2787         if (!qpair || !(*qpair))
2788                 return VMCI_ERROR_INVALID_ARGS;
2789
2790         old_qpair = *qpair;
2791         result = qp_detatch(old_qpair->handle, old_qpair->guest_endpoint);
2792
2793         /*
2794          * The guest can fail to detach for a number of reasons, and
2795          * if it does so, it will cleanup the entry (if there is one).
2796          * The host can fail too, but it won't cleanup the entry
2797          * immediately, it will do that later when the context is
2798          * freed.  Either way, we need to release the qpair struct
2799          * here; there isn't much the caller can do, and we don't want
2800          * to leak.
2801          */
2802
2803         memset(old_qpair, 0, sizeof(*old_qpair));
2804         old_qpair->handle = VMCI_INVALID_HANDLE;
2805         old_qpair->peer = VMCI_INVALID_ID;
2806         kfree(old_qpair);
2807         *qpair = NULL;
2808
2809         return result;
2810 }
2811 EXPORT_SYMBOL_GPL(vmci_qpair_detach);
2812
2813 /*
2814  * vmci_qpair_get_produce_indexes() - Retrieves the indexes of the producer.
2815  * @qpair:      Pointer to the queue pair struct.
2816  * @producer_tail:      Reference used for storing producer tail index.
2817  * @consumer_head:      Reference used for storing the consumer head index.
2818  *
2819  * This is the client interface for getting the current indexes of the
2820  * QPair from the point of the view of the caller as the producer.
2821  */
2822 int vmci_qpair_get_produce_indexes(const struct vmci_qp *qpair,
2823                                    u64 *producer_tail,
2824                                    u64 *consumer_head)
2825 {
2826         struct vmci_queue_header *produce_q_header;
2827         struct vmci_queue_header *consume_q_header;
2828         int result;
2829
2830         if (!qpair)
2831                 return VMCI_ERROR_INVALID_ARGS;
2832
2833         qp_lock(qpair);
2834         result =
2835             qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2836         if (result == VMCI_SUCCESS)
2837                 vmci_q_header_get_pointers(produce_q_header, consume_q_header,
2838                                            producer_tail, consumer_head);
2839         qp_unlock(qpair);
2840
2841         if (result == VMCI_SUCCESS &&
2842             ((producer_tail && *producer_tail >= qpair->produce_q_size) ||
2843              (consumer_head && *consumer_head >= qpair->produce_q_size)))
2844                 return VMCI_ERROR_INVALID_SIZE;
2845
2846         return result;
2847 }
2848 EXPORT_SYMBOL_GPL(vmci_qpair_get_produce_indexes);
2849
2850 /*
2851  * vmci_qpair_get_consume_indexes() - Retrieves the indexes of the consumer.
2852  * @qpair:      Pointer to the queue pair struct.
2853  * @consumer_tail:      Reference used for storing consumer tail index.
2854  * @producer_head:      Reference used for storing the producer head index.
2855  *
2856  * This is the client interface for getting the current indexes of the
2857  * QPair from the point of the view of the caller as the consumer.
2858  */
2859 int vmci_qpair_get_consume_indexes(const struct vmci_qp *qpair,
2860                                    u64 *consumer_tail,
2861                                    u64 *producer_head)
2862 {
2863         struct vmci_queue_header *produce_q_header;
2864         struct vmci_queue_header *consume_q_header;
2865         int result;
2866
2867         if (!qpair)
2868                 return VMCI_ERROR_INVALID_ARGS;
2869
2870         qp_lock(qpair);
2871         result =
2872             qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2873         if (result == VMCI_SUCCESS)
2874                 vmci_q_header_get_pointers(consume_q_header, produce_q_header,
2875                                            consumer_tail, producer_head);
2876         qp_unlock(qpair);
2877
2878         if (result == VMCI_SUCCESS &&
2879             ((consumer_tail && *consumer_tail >= qpair->consume_q_size) ||
2880              (producer_head && *producer_head >= qpair->consume_q_size)))
2881                 return VMCI_ERROR_INVALID_SIZE;
2882
2883         return result;
2884 }
2885 EXPORT_SYMBOL_GPL(vmci_qpair_get_consume_indexes);
2886
2887 /*
2888  * vmci_qpair_produce_free_space() - Retrieves free space in producer queue.
2889  * @qpair:      Pointer to the queue pair struct.
2890  *
2891  * This is the client interface for getting the amount of free
2892  * space in the QPair from the point of the view of the caller as
2893  * the producer which is the common case.  Returns < 0 if err, else
2894  * available bytes into which data can be enqueued if > 0.
2895  */
2896 s64 vmci_qpair_produce_free_space(const struct vmci_qp *qpair)
2897 {
2898         struct vmci_queue_header *produce_q_header;
2899         struct vmci_queue_header *consume_q_header;
2900         s64 result;
2901
2902         if (!qpair)
2903                 return VMCI_ERROR_INVALID_ARGS;
2904
2905         qp_lock(qpair);
2906         result =
2907             qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2908         if (result == VMCI_SUCCESS)
2909                 result = vmci_q_header_free_space(produce_q_header,
2910                                                   consume_q_header,
2911                                                   qpair->produce_q_size);
2912         else
2913                 result = 0;
2914
2915         qp_unlock(qpair);
2916
2917         return result;
2918 }
2919 EXPORT_SYMBOL_GPL(vmci_qpair_produce_free_space);
2920
2921 /*
2922  * vmci_qpair_consume_free_space() - Retrieves free space in consumer queue.
2923  * @qpair:      Pointer to the queue pair struct.
2924  *
2925  * This is the client interface for getting the amount of free
2926  * space in the QPair from the point of the view of the caller as
2927  * the consumer which is not the common case.  Returns < 0 if err, else
2928  * available bytes into which data can be enqueued if > 0.
2929  */
2930 s64 vmci_qpair_consume_free_space(const struct vmci_qp *qpair)
2931 {
2932         struct vmci_queue_header *produce_q_header;
2933         struct vmci_queue_header *consume_q_header;
2934         s64 result;
2935
2936         if (!qpair)
2937                 return VMCI_ERROR_INVALID_ARGS;
2938
2939         qp_lock(qpair);
2940         result =
2941             qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2942         if (result == VMCI_SUCCESS)
2943                 result = vmci_q_header_free_space(consume_q_header,
2944                                                   produce_q_header,
2945                                                   qpair->consume_q_size);
2946         else
2947                 result = 0;
2948
2949         qp_unlock(qpair);
2950
2951         return result;
2952 }
2953 EXPORT_SYMBOL_GPL(vmci_qpair_consume_free_space);
2954
2955 /*
2956  * vmci_qpair_produce_buf_ready() - Gets bytes ready to read from
2957  * producer queue.
2958  * @qpair:      Pointer to the queue pair struct.
2959  *
2960  * This is the client interface for getting the amount of
2961  * enqueued data in the QPair from the point of the view of the
2962  * caller as the producer which is not the common case.  Returns < 0 if err,
2963  * else available bytes that may be read.
2964  */
2965 s64 vmci_qpair_produce_buf_ready(const struct vmci_qp *qpair)
2966 {
2967         struct vmci_queue_header *produce_q_header;
2968         struct vmci_queue_header *consume_q_header;
2969         s64 result;
2970
2971         if (!qpair)
2972                 return VMCI_ERROR_INVALID_ARGS;
2973
2974         qp_lock(qpair);
2975         result =
2976             qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2977         if (result == VMCI_SUCCESS)
2978                 result = vmci_q_header_buf_ready(produce_q_header,
2979                                                  consume_q_header,
2980                                                  qpair->produce_q_size);
2981         else
2982                 result = 0;
2983
2984         qp_unlock(qpair);
2985
2986         return result;
2987 }
2988 EXPORT_SYMBOL_GPL(vmci_qpair_produce_buf_ready);
2989
2990 /*
2991  * vmci_qpair_consume_buf_ready() - Gets bytes ready to read from
2992  * consumer queue.
2993  * @qpair:      Pointer to the queue pair struct.
2994  *
2995  * This is the client interface for getting the amount of
2996  * enqueued data in the QPair from the point of the view of the
2997  * caller as the consumer which is the normal case.  Returns < 0 if err,
2998  * else available bytes that may be read.
2999  */
3000 s64 vmci_qpair_consume_buf_ready(const struct vmci_qp *qpair)
3001 {
3002         struct vmci_queue_header *produce_q_header;
3003         struct vmci_queue_header *consume_q_header;
3004         s64 result;
3005
3006         if (!qpair)
3007                 return VMCI_ERROR_INVALID_ARGS;
3008
3009         qp_lock(qpair);
3010         result =
3011             qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
3012         if (result == VMCI_SUCCESS)
3013                 result = vmci_q_header_buf_ready(consume_q_header,
3014                                                  produce_q_header,
3015                                                  qpair->consume_q_size);
3016         else
3017                 result = 0;
3018
3019         qp_unlock(qpair);
3020
3021         return result;
3022 }
3023 EXPORT_SYMBOL_GPL(vmci_qpair_consume_buf_ready);
3024
3025 /*
3026  * vmci_qpair_enqueue() - Throw data on the queue.
3027  * @qpair:      Pointer to the queue pair struct.
3028  * @buf:        Pointer to buffer containing data
3029  * @buf_size:   Length of buffer.
3030  * @buf_type:   Buffer type (Unused).
3031  *
3032  * This is the client interface for enqueueing data into the queue.
3033  * Returns number of bytes enqueued or < 0 on error.
3034  */
3035 ssize_t vmci_qpair_enqueue(struct vmci_qp *qpair,
3036                            const void *buf,
3037                            size_t buf_size,
3038                            int buf_type)
3039 {
3040         ssize_t result;
3041         struct iov_iter from;
3042         struct kvec v = {.iov_base = (void *)buf, .iov_len = buf_size};
3043
3044         if (!qpair || !buf)
3045                 return VMCI_ERROR_INVALID_ARGS;
3046
3047         iov_iter_kvec(&from, ITER_SOURCE, &v, 1, buf_size);
3048
3049         qp_lock(qpair);
3050
3051         do {
3052                 result = qp_enqueue_locked(qpair->produce_q,
3053                                            qpair->consume_q,
3054                                            qpair->produce_q_size,
3055                                            &from);
3056
3057                 if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3058                     !qp_wait_for_ready_queue(qpair))
3059                         result = VMCI_ERROR_WOULD_BLOCK;
3060
3061         } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3062
3063         qp_unlock(qpair);
3064
3065         return result;
3066 }
3067 EXPORT_SYMBOL_GPL(vmci_qpair_enqueue);
3068
3069 /*
3070  * vmci_qpair_dequeue() - Get data from the queue.
3071  * @qpair:      Pointer to the queue pair struct.
3072  * @buf:        Pointer to buffer for the data
3073  * @buf_size:   Length of buffer.
3074  * @buf_type:   Buffer type (Unused).
3075  *
3076  * This is the client interface for dequeueing data from the queue.
3077  * Returns number of bytes dequeued or < 0 on error.
3078  */
3079 ssize_t vmci_qpair_dequeue(struct vmci_qp *qpair,
3080                            void *buf,
3081                            size_t buf_size,
3082                            int buf_type)
3083 {
3084         ssize_t result;
3085         struct iov_iter to;
3086         struct kvec v = {.iov_base = buf, .iov_len = buf_size};
3087
3088         if (!qpair || !buf)
3089                 return VMCI_ERROR_INVALID_ARGS;
3090
3091         iov_iter_kvec(&to, ITER_DEST, &v, 1, buf_size);
3092
3093         qp_lock(qpair);
3094
3095         do {
3096                 result = qp_dequeue_locked(qpair->produce_q,
3097                                            qpair->consume_q,
3098                                            qpair->consume_q_size,
3099                                            &to, true);
3100
3101                 if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3102                     !qp_wait_for_ready_queue(qpair))
3103                         result = VMCI_ERROR_WOULD_BLOCK;
3104
3105         } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3106
3107         qp_unlock(qpair);
3108
3109         return result;
3110 }
3111 EXPORT_SYMBOL_GPL(vmci_qpair_dequeue);
3112
3113 /*
3114  * vmci_qpair_peek() - Peek at the data in the queue.
3115  * @qpair:      Pointer to the queue pair struct.
3116  * @buf:        Pointer to buffer for the data
3117  * @buf_size:   Length of buffer.
3118  * @buf_type:   Buffer type (Unused on Linux).
3119  *
3120  * This is the client interface for peeking into a queue.  (I.e.,
3121  * copy data from the queue without updating the head pointer.)
3122  * Returns number of bytes dequeued or < 0 on error.
3123  */
3124 ssize_t vmci_qpair_peek(struct vmci_qp *qpair,
3125                         void *buf,
3126                         size_t buf_size,
3127                         int buf_type)
3128 {
3129         struct iov_iter to;
3130         struct kvec v = {.iov_base = buf, .iov_len = buf_size};
3131         ssize_t result;
3132
3133         if (!qpair || !buf)
3134                 return VMCI_ERROR_INVALID_ARGS;
3135
3136         iov_iter_kvec(&to, ITER_DEST, &v, 1, buf_size);
3137
3138         qp_lock(qpair);
3139
3140         do {
3141                 result = qp_dequeue_locked(qpair->produce_q,
3142                                            qpair->consume_q,
3143                                            qpair->consume_q_size,
3144                                            &to, false);
3145
3146                 if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3147                     !qp_wait_for_ready_queue(qpair))
3148                         result = VMCI_ERROR_WOULD_BLOCK;
3149
3150         } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3151
3152         qp_unlock(qpair);
3153
3154         return result;
3155 }
3156 EXPORT_SYMBOL_GPL(vmci_qpair_peek);
3157
3158 /*
3159  * vmci_qpair_enquev() - Throw data on the queue using iov.
3160  * @qpair:      Pointer to the queue pair struct.
3161  * @iov:        Pointer to buffer containing data
3162  * @iov_size:   Length of buffer.
3163  * @buf_type:   Buffer type (Unused).
3164  *
3165  * This is the client interface for enqueueing data into the queue.
3166  * This function uses IO vectors to handle the work. Returns number
3167  * of bytes enqueued or < 0 on error.
3168  */
3169 ssize_t vmci_qpair_enquev(struct vmci_qp *qpair,
3170                           struct msghdr *msg,
3171                           size_t iov_size,
3172                           int buf_type)
3173 {
3174         ssize_t result;
3175
3176         if (!qpair)
3177                 return VMCI_ERROR_INVALID_ARGS;
3178
3179         qp_lock(qpair);
3180
3181         do {
3182                 result = qp_enqueue_locked(qpair->produce_q,
3183                                            qpair->consume_q,
3184                                            qpair->produce_q_size,
3185                                            &msg->msg_iter);
3186
3187                 if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3188                     !qp_wait_for_ready_queue(qpair))
3189                         result = VMCI_ERROR_WOULD_BLOCK;
3190
3191         } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3192
3193         qp_unlock(qpair);
3194
3195         return result;
3196 }
3197 EXPORT_SYMBOL_GPL(vmci_qpair_enquev);
3198
3199 /*
3200  * vmci_qpair_dequev() - Get data from the queue using iov.
3201  * @qpair:      Pointer to the queue pair struct.
3202  * @iov:        Pointer to buffer for the data
3203  * @iov_size:   Length of buffer.
3204  * @buf_type:   Buffer type (Unused).
3205  *
3206  * This is the client interface for dequeueing data from the queue.
3207  * This function uses IO vectors to handle the work. Returns number
3208  * of bytes dequeued or < 0 on error.
3209  */
3210 ssize_t vmci_qpair_dequev(struct vmci_qp *qpair,
3211                           struct msghdr *msg,
3212                           size_t iov_size,
3213                           int buf_type)
3214 {
3215         ssize_t result;
3216
3217         if (!qpair)
3218                 return VMCI_ERROR_INVALID_ARGS;
3219
3220         qp_lock(qpair);
3221
3222         do {
3223                 result = qp_dequeue_locked(qpair->produce_q,
3224                                            qpair->consume_q,
3225                                            qpair->consume_q_size,
3226                                            &msg->msg_iter, true);
3227
3228                 if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3229                     !qp_wait_for_ready_queue(qpair))
3230                         result = VMCI_ERROR_WOULD_BLOCK;
3231
3232         } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3233
3234         qp_unlock(qpair);
3235
3236         return result;
3237 }
3238 EXPORT_SYMBOL_GPL(vmci_qpair_dequev);
3239
3240 /*
3241  * vmci_qpair_peekv() - Peek at the data in the queue using iov.
3242  * @qpair:      Pointer to the queue pair struct.
3243  * @iov:        Pointer to buffer for the data
3244  * @iov_size:   Length of buffer.
3245  * @buf_type:   Buffer type (Unused on Linux).
3246  *
3247  * This is the client interface for peeking into a queue.  (I.e.,
3248  * copy data from the queue without updating the head pointer.)
3249  * This function uses IO vectors to handle the work. Returns number
3250  * of bytes peeked or < 0 on error.
3251  */
3252 ssize_t vmci_qpair_peekv(struct vmci_qp *qpair,
3253                          struct msghdr *msg,
3254                          size_t iov_size,
3255                          int buf_type)
3256 {
3257         ssize_t result;
3258
3259         if (!qpair)
3260                 return VMCI_ERROR_INVALID_ARGS;
3261
3262         qp_lock(qpair);
3263
3264         do {
3265                 result = qp_dequeue_locked(qpair->produce_q,
3266                                            qpair->consume_q,
3267                                            qpair->consume_q_size,
3268                                            &msg->msg_iter, false);
3269
3270                 if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3271                     !qp_wait_for_ready_queue(qpair))
3272                         result = VMCI_ERROR_WOULD_BLOCK;
3273
3274         } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3275
3276         qp_unlock(qpair);
3277         return result;
3278 }
3279 EXPORT_SYMBOL_GPL(vmci_qpair_peekv);