treewide: kzalloc() -> kcalloc()
[linux-2.6-block.git] / drivers / misc / sgi-xp / xpc_main.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (c) 2004-2009 Silicon Graphics, Inc.  All Rights Reserved.
7  */
8
9 /*
10  * Cross Partition Communication (XPC) support - standard version.
11  *
12  *      XPC provides a message passing capability that crosses partition
13  *      boundaries. This module is made up of two parts:
14  *
15  *          partition   This part detects the presence/absence of other
16  *                      partitions. It provides a heartbeat and monitors
17  *                      the heartbeats of other partitions.
18  *
19  *          channel     This part manages the channels and sends/receives
20  *                      messages across them to/from other partitions.
21  *
22  *      There are a couple of additional functions residing in XP, which
23  *      provide an interface to XPC for its users.
24  *
25  *
26  *      Caveats:
27  *
28  *        . Currently on sn2, we have no way to determine which nasid an IRQ
29  *          came from. Thus, xpc_send_IRQ_sn2() does a remote amo write
30  *          followed by an IPI. The amo indicates where data is to be pulled
31  *          from, so after the IPI arrives, the remote partition checks the amo
32  *          word. The IPI can actually arrive before the amo however, so other
33  *          code must periodically check for this case. Also, remote amo
34  *          operations do not reliably time out. Thus we do a remote PIO read
35  *          solely to know whether the remote partition is down and whether we
36  *          should stop sending IPIs to it. This remote PIO read operation is
37  *          set up in a special nofault region so SAL knows to ignore (and
38  *          cleanup) any errors due to the remote amo write, PIO read, and/or
39  *          PIO write operations.
40  *
41  *          If/when new hardware solves this IPI problem, we should abandon
42  *          the current approach.
43  *
44  */
45
46 #include <linux/module.h>
47 #include <linux/slab.h>
48 #include <linux/sysctl.h>
49 #include <linux/device.h>
50 #include <linux/delay.h>
51 #include <linux/reboot.h>
52 #include <linux/kdebug.h>
53 #include <linux/kthread.h>
54 #include "xpc.h"
55
56 #ifdef CONFIG_X86_64
57 #include <asm/traps.h>
58 #endif
59
60 /* define two XPC debug device structures to be used with dev_dbg() et al */
61
62 struct device_driver xpc_dbg_name = {
63         .name = "xpc"
64 };
65
66 struct device xpc_part_dbg_subname = {
67         .init_name = "",        /* set to "part" at xpc_init() time */
68         .driver = &xpc_dbg_name
69 };
70
71 struct device xpc_chan_dbg_subname = {
72         .init_name = "",        /* set to "chan" at xpc_init() time */
73         .driver = &xpc_dbg_name
74 };
75
76 struct device *xpc_part = &xpc_part_dbg_subname;
77 struct device *xpc_chan = &xpc_chan_dbg_subname;
78
79 static int xpc_kdebug_ignore;
80
81 /* systune related variables for /proc/sys directories */
82
83 static int xpc_hb_interval = XPC_HB_DEFAULT_INTERVAL;
84 static int xpc_hb_min_interval = 1;
85 static int xpc_hb_max_interval = 10;
86
87 static int xpc_hb_check_interval = XPC_HB_CHECK_DEFAULT_INTERVAL;
88 static int xpc_hb_check_min_interval = 10;
89 static int xpc_hb_check_max_interval = 120;
90
91 int xpc_disengage_timelimit = XPC_DISENGAGE_DEFAULT_TIMELIMIT;
92 static int xpc_disengage_min_timelimit; /* = 0 */
93 static int xpc_disengage_max_timelimit = 120;
94
95 static struct ctl_table xpc_sys_xpc_hb_dir[] = {
96         {
97          .procname = "hb_interval",
98          .data = &xpc_hb_interval,
99          .maxlen = sizeof(int),
100          .mode = 0644,
101          .proc_handler = proc_dointvec_minmax,
102          .extra1 = &xpc_hb_min_interval,
103          .extra2 = &xpc_hb_max_interval},
104         {
105          .procname = "hb_check_interval",
106          .data = &xpc_hb_check_interval,
107          .maxlen = sizeof(int),
108          .mode = 0644,
109          .proc_handler = proc_dointvec_minmax,
110          .extra1 = &xpc_hb_check_min_interval,
111          .extra2 = &xpc_hb_check_max_interval},
112         {}
113 };
114 static struct ctl_table xpc_sys_xpc_dir[] = {
115         {
116          .procname = "hb",
117          .mode = 0555,
118          .child = xpc_sys_xpc_hb_dir},
119         {
120          .procname = "disengage_timelimit",
121          .data = &xpc_disengage_timelimit,
122          .maxlen = sizeof(int),
123          .mode = 0644,
124          .proc_handler = proc_dointvec_minmax,
125          .extra1 = &xpc_disengage_min_timelimit,
126          .extra2 = &xpc_disengage_max_timelimit},
127         {}
128 };
129 static struct ctl_table xpc_sys_dir[] = {
130         {
131          .procname = "xpc",
132          .mode = 0555,
133          .child = xpc_sys_xpc_dir},
134         {}
135 };
136 static struct ctl_table_header *xpc_sysctl;
137
138 /* non-zero if any remote partition disengage was timed out */
139 int xpc_disengage_timedout;
140
141 /* #of activate IRQs received and not yet processed */
142 int xpc_activate_IRQ_rcvd;
143 DEFINE_SPINLOCK(xpc_activate_IRQ_rcvd_lock);
144
145 /* IRQ handler notifies this wait queue on receipt of an IRQ */
146 DECLARE_WAIT_QUEUE_HEAD(xpc_activate_IRQ_wq);
147
148 static unsigned long xpc_hb_check_timeout;
149 static struct timer_list xpc_hb_timer;
150
151 /* notification that the xpc_hb_checker thread has exited */
152 static DECLARE_COMPLETION(xpc_hb_checker_exited);
153
154 /* notification that the xpc_discovery thread has exited */
155 static DECLARE_COMPLETION(xpc_discovery_exited);
156
157 static void xpc_kthread_waitmsgs(struct xpc_partition *, struct xpc_channel *);
158
159 static int xpc_system_reboot(struct notifier_block *, unsigned long, void *);
160 static struct notifier_block xpc_reboot_notifier = {
161         .notifier_call = xpc_system_reboot,
162 };
163
164 static int xpc_system_die(struct notifier_block *, unsigned long, void *);
165 static struct notifier_block xpc_die_notifier = {
166         .notifier_call = xpc_system_die,
167 };
168
169 struct xpc_arch_operations xpc_arch_ops;
170
171 /*
172  * Timer function to enforce the timelimit on the partition disengage.
173  */
174 static void
175 xpc_timeout_partition_disengage(struct timer_list *t)
176 {
177         struct xpc_partition *part = from_timer(part, t, disengage_timer);
178
179         DBUG_ON(time_is_after_jiffies(part->disengage_timeout));
180
181         (void)xpc_partition_disengaged(part);
182
183         DBUG_ON(part->disengage_timeout != 0);
184         DBUG_ON(xpc_arch_ops.partition_engaged(XPC_PARTID(part)));
185 }
186
187 /*
188  * Timer to produce the heartbeat.  The timer structures function is
189  * already set when this is initially called.  A tunable is used to
190  * specify when the next timeout should occur.
191  */
192 static void
193 xpc_hb_beater(struct timer_list *unused)
194 {
195         xpc_arch_ops.increment_heartbeat();
196
197         if (time_is_before_eq_jiffies(xpc_hb_check_timeout))
198                 wake_up_interruptible(&xpc_activate_IRQ_wq);
199
200         xpc_hb_timer.expires = jiffies + (xpc_hb_interval * HZ);
201         add_timer(&xpc_hb_timer);
202 }
203
204 static void
205 xpc_start_hb_beater(void)
206 {
207         xpc_arch_ops.heartbeat_init();
208         timer_setup(&xpc_hb_timer, xpc_hb_beater, 0);
209         xpc_hb_beater(0);
210 }
211
212 static void
213 xpc_stop_hb_beater(void)
214 {
215         del_timer_sync(&xpc_hb_timer);
216         xpc_arch_ops.heartbeat_exit();
217 }
218
219 /*
220  * At periodic intervals, scan through all active partitions and ensure
221  * their heartbeat is still active.  If not, the partition is deactivated.
222  */
223 static void
224 xpc_check_remote_hb(void)
225 {
226         struct xpc_partition *part;
227         short partid;
228         enum xp_retval ret;
229
230         for (partid = 0; partid < xp_max_npartitions; partid++) {
231
232                 if (xpc_exiting)
233                         break;
234
235                 if (partid == xp_partition_id)
236                         continue;
237
238                 part = &xpc_partitions[partid];
239
240                 if (part->act_state == XPC_P_AS_INACTIVE ||
241                     part->act_state == XPC_P_AS_DEACTIVATING) {
242                         continue;
243                 }
244
245                 ret = xpc_arch_ops.get_remote_heartbeat(part);
246                 if (ret != xpSuccess)
247                         XPC_DEACTIVATE_PARTITION(part, ret);
248         }
249 }
250
251 /*
252  * This thread is responsible for nearly all of the partition
253  * activation/deactivation.
254  */
255 static int
256 xpc_hb_checker(void *ignore)
257 {
258         int force_IRQ = 0;
259
260         /* this thread was marked active by xpc_hb_init() */
261
262         set_cpus_allowed_ptr(current, cpumask_of(XPC_HB_CHECK_CPU));
263
264         /* set our heartbeating to other partitions into motion */
265         xpc_hb_check_timeout = jiffies + (xpc_hb_check_interval * HZ);
266         xpc_start_hb_beater();
267
268         while (!xpc_exiting) {
269
270                 dev_dbg(xpc_part, "woke up with %d ticks rem; %d IRQs have "
271                         "been received\n",
272                         (int)(xpc_hb_check_timeout - jiffies),
273                         xpc_activate_IRQ_rcvd);
274
275                 /* checking of remote heartbeats is skewed by IRQ handling */
276                 if (time_is_before_eq_jiffies(xpc_hb_check_timeout)) {
277                         xpc_hb_check_timeout = jiffies +
278                             (xpc_hb_check_interval * HZ);
279
280                         dev_dbg(xpc_part, "checking remote heartbeats\n");
281                         xpc_check_remote_hb();
282
283                         /*
284                          * On sn2 we need to periodically recheck to ensure no
285                          * IRQ/amo pairs have been missed.
286                          */
287                         if (is_shub())
288                                 force_IRQ = 1;
289                 }
290
291                 /* check for outstanding IRQs */
292                 if (xpc_activate_IRQ_rcvd > 0 || force_IRQ != 0) {
293                         force_IRQ = 0;
294                         dev_dbg(xpc_part, "processing activate IRQs "
295                                 "received\n");
296                         xpc_arch_ops.process_activate_IRQ_rcvd();
297                 }
298
299                 /* wait for IRQ or timeout */
300                 (void)wait_event_interruptible(xpc_activate_IRQ_wq,
301                                                (time_is_before_eq_jiffies(
302                                                 xpc_hb_check_timeout) ||
303                                                 xpc_activate_IRQ_rcvd > 0 ||
304                                                 xpc_exiting));
305         }
306
307         xpc_stop_hb_beater();
308
309         dev_dbg(xpc_part, "heartbeat checker is exiting\n");
310
311         /* mark this thread as having exited */
312         complete(&xpc_hb_checker_exited);
313         return 0;
314 }
315
316 /*
317  * This thread will attempt to discover other partitions to activate
318  * based on info provided by SAL. This new thread is short lived and
319  * will exit once discovery is complete.
320  */
321 static int
322 xpc_initiate_discovery(void *ignore)
323 {
324         xpc_discovery();
325
326         dev_dbg(xpc_part, "discovery thread is exiting\n");
327
328         /* mark this thread as having exited */
329         complete(&xpc_discovery_exited);
330         return 0;
331 }
332
333 /*
334  * The first kthread assigned to a newly activated partition is the one
335  * created by XPC HB with which it calls xpc_activating(). XPC hangs on to
336  * that kthread until the partition is brought down, at which time that kthread
337  * returns back to XPC HB. (The return of that kthread will signify to XPC HB
338  * that XPC has dismantled all communication infrastructure for the associated
339  * partition.) This kthread becomes the channel manager for that partition.
340  *
341  * Each active partition has a channel manager, who, besides connecting and
342  * disconnecting channels, will ensure that each of the partition's connected
343  * channels has the required number of assigned kthreads to get the work done.
344  */
345 static void
346 xpc_channel_mgr(struct xpc_partition *part)
347 {
348         while (part->act_state != XPC_P_AS_DEACTIVATING ||
349                atomic_read(&part->nchannels_active) > 0 ||
350                !xpc_partition_disengaged(part)) {
351
352                 xpc_process_sent_chctl_flags(part);
353
354                 /*
355                  * Wait until we've been requested to activate kthreads or
356                  * all of the channel's message queues have been torn down or
357                  * a signal is pending.
358                  *
359                  * The channel_mgr_requests is set to 1 after being awakened,
360                  * This is done to prevent the channel mgr from making one pass
361                  * through the loop for each request, since he will
362                  * be servicing all the requests in one pass. The reason it's
363                  * set to 1 instead of 0 is so that other kthreads will know
364                  * that the channel mgr is running and won't bother trying to
365                  * wake him up.
366                  */
367                 atomic_dec(&part->channel_mgr_requests);
368                 (void)wait_event_interruptible(part->channel_mgr_wq,
369                                 (atomic_read(&part->channel_mgr_requests) > 0 ||
370                                  part->chctl.all_flags != 0 ||
371                                  (part->act_state == XPC_P_AS_DEACTIVATING &&
372                                  atomic_read(&part->nchannels_active) == 0 &&
373                                  xpc_partition_disengaged(part))));
374                 atomic_set(&part->channel_mgr_requests, 1);
375         }
376 }
377
378 /*
379  * Guarantee that the kzalloc'd memory is cacheline aligned.
380  */
381 void *
382 xpc_kzalloc_cacheline_aligned(size_t size, gfp_t flags, void **base)
383 {
384         /* see if kzalloc will give us cachline aligned memory by default */
385         *base = kzalloc(size, flags);
386         if (*base == NULL)
387                 return NULL;
388
389         if ((u64)*base == L1_CACHE_ALIGN((u64)*base))
390                 return *base;
391
392         kfree(*base);
393
394         /* nope, we'll have to do it ourselves */
395         *base = kzalloc(size + L1_CACHE_BYTES, flags);
396         if (*base == NULL)
397                 return NULL;
398
399         return (void *)L1_CACHE_ALIGN((u64)*base);
400 }
401
402 /*
403  * Setup the channel structures necessary to support XPartition Communication
404  * between the specified remote partition and the local one.
405  */
406 static enum xp_retval
407 xpc_setup_ch_structures(struct xpc_partition *part)
408 {
409         enum xp_retval ret;
410         int ch_number;
411         struct xpc_channel *ch;
412         short partid = XPC_PARTID(part);
413
414         /*
415          * Allocate all of the channel structures as a contiguous chunk of
416          * memory.
417          */
418         DBUG_ON(part->channels != NULL);
419         part->channels = kcalloc(XPC_MAX_NCHANNELS,
420                                  sizeof(struct xpc_channel),
421                                  GFP_KERNEL);
422         if (part->channels == NULL) {
423                 dev_err(xpc_chan, "can't get memory for channels\n");
424                 return xpNoMemory;
425         }
426
427         /* allocate the remote open and close args */
428
429         part->remote_openclose_args =
430             xpc_kzalloc_cacheline_aligned(XPC_OPENCLOSE_ARGS_SIZE,
431                                           GFP_KERNEL, &part->
432                                           remote_openclose_args_base);
433         if (part->remote_openclose_args == NULL) {
434                 dev_err(xpc_chan, "can't get memory for remote connect args\n");
435                 ret = xpNoMemory;
436                 goto out_1;
437         }
438
439         part->chctl.all_flags = 0;
440         spin_lock_init(&part->chctl_lock);
441
442         atomic_set(&part->channel_mgr_requests, 1);
443         init_waitqueue_head(&part->channel_mgr_wq);
444
445         part->nchannels = XPC_MAX_NCHANNELS;
446
447         atomic_set(&part->nchannels_active, 0);
448         atomic_set(&part->nchannels_engaged, 0);
449
450         for (ch_number = 0; ch_number < part->nchannels; ch_number++) {
451                 ch = &part->channels[ch_number];
452
453                 ch->partid = partid;
454                 ch->number = ch_number;
455                 ch->flags = XPC_C_DISCONNECTED;
456
457                 atomic_set(&ch->kthreads_assigned, 0);
458                 atomic_set(&ch->kthreads_idle, 0);
459                 atomic_set(&ch->kthreads_active, 0);
460
461                 atomic_set(&ch->references, 0);
462                 atomic_set(&ch->n_to_notify, 0);
463
464                 spin_lock_init(&ch->lock);
465                 init_completion(&ch->wdisconnect_wait);
466
467                 atomic_set(&ch->n_on_msg_allocate_wq, 0);
468                 init_waitqueue_head(&ch->msg_allocate_wq);
469                 init_waitqueue_head(&ch->idle_wq);
470         }
471
472         ret = xpc_arch_ops.setup_ch_structures(part);
473         if (ret != xpSuccess)
474                 goto out_2;
475
476         /*
477          * With the setting of the partition setup_state to XPC_P_SS_SETUP,
478          * we're declaring that this partition is ready to go.
479          */
480         part->setup_state = XPC_P_SS_SETUP;
481
482         return xpSuccess;
483
484         /* setup of ch structures failed */
485 out_2:
486         kfree(part->remote_openclose_args_base);
487         part->remote_openclose_args = NULL;
488 out_1:
489         kfree(part->channels);
490         part->channels = NULL;
491         return ret;
492 }
493
494 /*
495  * Teardown the channel structures necessary to support XPartition Communication
496  * between the specified remote partition and the local one.
497  */
498 static void
499 xpc_teardown_ch_structures(struct xpc_partition *part)
500 {
501         DBUG_ON(atomic_read(&part->nchannels_engaged) != 0);
502         DBUG_ON(atomic_read(&part->nchannels_active) != 0);
503
504         /*
505          * Make this partition inaccessible to local processes by marking it
506          * as no longer setup. Then wait before proceeding with the teardown
507          * until all existing references cease.
508          */
509         DBUG_ON(part->setup_state != XPC_P_SS_SETUP);
510         part->setup_state = XPC_P_SS_WTEARDOWN;
511
512         wait_event(part->teardown_wq, (atomic_read(&part->references) == 0));
513
514         /* now we can begin tearing down the infrastructure */
515
516         xpc_arch_ops.teardown_ch_structures(part);
517
518         kfree(part->remote_openclose_args_base);
519         part->remote_openclose_args = NULL;
520         kfree(part->channels);
521         part->channels = NULL;
522
523         part->setup_state = XPC_P_SS_TORNDOWN;
524 }
525
526 /*
527  * When XPC HB determines that a partition has come up, it will create a new
528  * kthread and that kthread will call this function to attempt to set up the
529  * basic infrastructure used for Cross Partition Communication with the newly
530  * upped partition.
531  *
532  * The kthread that was created by XPC HB and which setup the XPC
533  * infrastructure will remain assigned to the partition becoming the channel
534  * manager for that partition until the partition is deactivating, at which
535  * time the kthread will teardown the XPC infrastructure and then exit.
536  */
537 static int
538 xpc_activating(void *__partid)
539 {
540         short partid = (u64)__partid;
541         struct xpc_partition *part = &xpc_partitions[partid];
542         unsigned long irq_flags;
543
544         DBUG_ON(partid < 0 || partid >= xp_max_npartitions);
545
546         spin_lock_irqsave(&part->act_lock, irq_flags);
547
548         if (part->act_state == XPC_P_AS_DEACTIVATING) {
549                 part->act_state = XPC_P_AS_INACTIVE;
550                 spin_unlock_irqrestore(&part->act_lock, irq_flags);
551                 part->remote_rp_pa = 0;
552                 return 0;
553         }
554
555         /* indicate the thread is activating */
556         DBUG_ON(part->act_state != XPC_P_AS_ACTIVATION_REQ);
557         part->act_state = XPC_P_AS_ACTIVATING;
558
559         XPC_SET_REASON(part, 0, 0);
560         spin_unlock_irqrestore(&part->act_lock, irq_flags);
561
562         dev_dbg(xpc_part, "activating partition %d\n", partid);
563
564         xpc_arch_ops.allow_hb(partid);
565
566         if (xpc_setup_ch_structures(part) == xpSuccess) {
567                 (void)xpc_part_ref(part);       /* this will always succeed */
568
569                 if (xpc_arch_ops.make_first_contact(part) == xpSuccess) {
570                         xpc_mark_partition_active(part);
571                         xpc_channel_mgr(part);
572                         /* won't return until partition is deactivating */
573                 }
574
575                 xpc_part_deref(part);
576                 xpc_teardown_ch_structures(part);
577         }
578
579         xpc_arch_ops.disallow_hb(partid);
580         xpc_mark_partition_inactive(part);
581
582         if (part->reason == xpReactivating) {
583                 /* interrupting ourselves results in activating partition */
584                 xpc_arch_ops.request_partition_reactivation(part);
585         }
586
587         return 0;
588 }
589
590 void
591 xpc_activate_partition(struct xpc_partition *part)
592 {
593         short partid = XPC_PARTID(part);
594         unsigned long irq_flags;
595         struct task_struct *kthread;
596
597         spin_lock_irqsave(&part->act_lock, irq_flags);
598
599         DBUG_ON(part->act_state != XPC_P_AS_INACTIVE);
600
601         part->act_state = XPC_P_AS_ACTIVATION_REQ;
602         XPC_SET_REASON(part, xpCloneKThread, __LINE__);
603
604         spin_unlock_irqrestore(&part->act_lock, irq_flags);
605
606         kthread = kthread_run(xpc_activating, (void *)((u64)partid), "xpc%02d",
607                               partid);
608         if (IS_ERR(kthread)) {
609                 spin_lock_irqsave(&part->act_lock, irq_flags);
610                 part->act_state = XPC_P_AS_INACTIVE;
611                 XPC_SET_REASON(part, xpCloneKThreadFailed, __LINE__);
612                 spin_unlock_irqrestore(&part->act_lock, irq_flags);
613         }
614 }
615
616 void
617 xpc_activate_kthreads(struct xpc_channel *ch, int needed)
618 {
619         int idle = atomic_read(&ch->kthreads_idle);
620         int assigned = atomic_read(&ch->kthreads_assigned);
621         int wakeup;
622
623         DBUG_ON(needed <= 0);
624
625         if (idle > 0) {
626                 wakeup = (needed > idle) ? idle : needed;
627                 needed -= wakeup;
628
629                 dev_dbg(xpc_chan, "wakeup %d idle kthreads, partid=%d, "
630                         "channel=%d\n", wakeup, ch->partid, ch->number);
631
632                 /* only wakeup the requested number of kthreads */
633                 wake_up_nr(&ch->idle_wq, wakeup);
634         }
635
636         if (needed <= 0)
637                 return;
638
639         if (needed + assigned > ch->kthreads_assigned_limit) {
640                 needed = ch->kthreads_assigned_limit - assigned;
641                 if (needed <= 0)
642                         return;
643         }
644
645         dev_dbg(xpc_chan, "create %d new kthreads, partid=%d, channel=%d\n",
646                 needed, ch->partid, ch->number);
647
648         xpc_create_kthreads(ch, needed, 0);
649 }
650
651 /*
652  * This function is where XPC's kthreads wait for messages to deliver.
653  */
654 static void
655 xpc_kthread_waitmsgs(struct xpc_partition *part, struct xpc_channel *ch)
656 {
657         int (*n_of_deliverable_payloads) (struct xpc_channel *) =
658                 xpc_arch_ops.n_of_deliverable_payloads;
659
660         do {
661                 /* deliver messages to their intended recipients */
662
663                 while (n_of_deliverable_payloads(ch) > 0 &&
664                        !(ch->flags & XPC_C_DISCONNECTING)) {
665                         xpc_deliver_payload(ch);
666                 }
667
668                 if (atomic_inc_return(&ch->kthreads_idle) >
669                     ch->kthreads_idle_limit) {
670                         /* too many idle kthreads on this channel */
671                         atomic_dec(&ch->kthreads_idle);
672                         break;
673                 }
674
675                 dev_dbg(xpc_chan, "idle kthread calling "
676                         "wait_event_interruptible_exclusive()\n");
677
678                 (void)wait_event_interruptible_exclusive(ch->idle_wq,
679                                 (n_of_deliverable_payloads(ch) > 0 ||
680                                  (ch->flags & XPC_C_DISCONNECTING)));
681
682                 atomic_dec(&ch->kthreads_idle);
683
684         } while (!(ch->flags & XPC_C_DISCONNECTING));
685 }
686
687 static int
688 xpc_kthread_start(void *args)
689 {
690         short partid = XPC_UNPACK_ARG1(args);
691         u16 ch_number = XPC_UNPACK_ARG2(args);
692         struct xpc_partition *part = &xpc_partitions[partid];
693         struct xpc_channel *ch;
694         int n_needed;
695         unsigned long irq_flags;
696         int (*n_of_deliverable_payloads) (struct xpc_channel *) =
697                 xpc_arch_ops.n_of_deliverable_payloads;
698
699         dev_dbg(xpc_chan, "kthread starting, partid=%d, channel=%d\n",
700                 partid, ch_number);
701
702         ch = &part->channels[ch_number];
703
704         if (!(ch->flags & XPC_C_DISCONNECTING)) {
705
706                 /* let registerer know that connection has been established */
707
708                 spin_lock_irqsave(&ch->lock, irq_flags);
709                 if (!(ch->flags & XPC_C_CONNECTEDCALLOUT)) {
710                         ch->flags |= XPC_C_CONNECTEDCALLOUT;
711                         spin_unlock_irqrestore(&ch->lock, irq_flags);
712
713                         xpc_connected_callout(ch);
714
715                         spin_lock_irqsave(&ch->lock, irq_flags);
716                         ch->flags |= XPC_C_CONNECTEDCALLOUT_MADE;
717                         spin_unlock_irqrestore(&ch->lock, irq_flags);
718
719                         /*
720                          * It is possible that while the callout was being
721                          * made that the remote partition sent some messages.
722                          * If that is the case, we may need to activate
723                          * additional kthreads to help deliver them. We only
724                          * need one less than total #of messages to deliver.
725                          */
726                         n_needed = n_of_deliverable_payloads(ch) - 1;
727                         if (n_needed > 0 && !(ch->flags & XPC_C_DISCONNECTING))
728                                 xpc_activate_kthreads(ch, n_needed);
729
730                 } else {
731                         spin_unlock_irqrestore(&ch->lock, irq_flags);
732                 }
733
734                 xpc_kthread_waitmsgs(part, ch);
735         }
736
737         /* let registerer know that connection is disconnecting */
738
739         spin_lock_irqsave(&ch->lock, irq_flags);
740         if ((ch->flags & XPC_C_CONNECTEDCALLOUT_MADE) &&
741             !(ch->flags & XPC_C_DISCONNECTINGCALLOUT)) {
742                 ch->flags |= XPC_C_DISCONNECTINGCALLOUT;
743                 spin_unlock_irqrestore(&ch->lock, irq_flags);
744
745                 xpc_disconnect_callout(ch, xpDisconnecting);
746
747                 spin_lock_irqsave(&ch->lock, irq_flags);
748                 ch->flags |= XPC_C_DISCONNECTINGCALLOUT_MADE;
749         }
750         spin_unlock_irqrestore(&ch->lock, irq_flags);
751
752         if (atomic_dec_return(&ch->kthreads_assigned) == 0 &&
753             atomic_dec_return(&part->nchannels_engaged) == 0) {
754                 xpc_arch_ops.indicate_partition_disengaged(part);
755         }
756
757         xpc_msgqueue_deref(ch);
758
759         dev_dbg(xpc_chan, "kthread exiting, partid=%d, channel=%d\n",
760                 partid, ch_number);
761
762         xpc_part_deref(part);
763         return 0;
764 }
765
766 /*
767  * For each partition that XPC has established communications with, there is
768  * a minimum of one kernel thread assigned to perform any operation that
769  * may potentially sleep or block (basically the callouts to the asynchronous
770  * functions registered via xpc_connect()).
771  *
772  * Additional kthreads are created and destroyed by XPC as the workload
773  * demands.
774  *
775  * A kthread is assigned to one of the active channels that exists for a given
776  * partition.
777  */
778 void
779 xpc_create_kthreads(struct xpc_channel *ch, int needed,
780                     int ignore_disconnecting)
781 {
782         unsigned long irq_flags;
783         u64 args = XPC_PACK_ARGS(ch->partid, ch->number);
784         struct xpc_partition *part = &xpc_partitions[ch->partid];
785         struct task_struct *kthread;
786         void (*indicate_partition_disengaged) (struct xpc_partition *) =
787                 xpc_arch_ops.indicate_partition_disengaged;
788
789         while (needed-- > 0) {
790
791                 /*
792                  * The following is done on behalf of the newly created
793                  * kthread. That kthread is responsible for doing the
794                  * counterpart to the following before it exits.
795                  */
796                 if (ignore_disconnecting) {
797                         if (!atomic_inc_not_zero(&ch->kthreads_assigned)) {
798                                 /* kthreads assigned had gone to zero */
799                                 BUG_ON(!(ch->flags &
800                                          XPC_C_DISCONNECTINGCALLOUT_MADE));
801                                 break;
802                         }
803
804                 } else if (ch->flags & XPC_C_DISCONNECTING) {
805                         break;
806
807                 } else if (atomic_inc_return(&ch->kthreads_assigned) == 1 &&
808                            atomic_inc_return(&part->nchannels_engaged) == 1) {
809                         xpc_arch_ops.indicate_partition_engaged(part);
810                 }
811                 (void)xpc_part_ref(part);
812                 xpc_msgqueue_ref(ch);
813
814                 kthread = kthread_run(xpc_kthread_start, (void *)args,
815                                       "xpc%02dc%d", ch->partid, ch->number);
816                 if (IS_ERR(kthread)) {
817                         /* the fork failed */
818
819                         /*
820                          * NOTE: if (ignore_disconnecting &&
821                          * !(ch->flags & XPC_C_DISCONNECTINGCALLOUT)) is true,
822                          * then we'll deadlock if all other kthreads assigned
823                          * to this channel are blocked in the channel's
824                          * registerer, because the only thing that will unblock
825                          * them is the xpDisconnecting callout that this
826                          * failed kthread_run() would have made.
827                          */
828
829                         if (atomic_dec_return(&ch->kthreads_assigned) == 0 &&
830                             atomic_dec_return(&part->nchannels_engaged) == 0) {
831                                 indicate_partition_disengaged(part);
832                         }
833                         xpc_msgqueue_deref(ch);
834                         xpc_part_deref(part);
835
836                         if (atomic_read(&ch->kthreads_assigned) <
837                             ch->kthreads_idle_limit) {
838                                 /*
839                                  * Flag this as an error only if we have an
840                                  * insufficient #of kthreads for the channel
841                                  * to function.
842                                  */
843                                 spin_lock_irqsave(&ch->lock, irq_flags);
844                                 XPC_DISCONNECT_CHANNEL(ch, xpLackOfResources,
845                                                        &irq_flags);
846                                 spin_unlock_irqrestore(&ch->lock, irq_flags);
847                         }
848                         break;
849                 }
850         }
851 }
852
853 void
854 xpc_disconnect_wait(int ch_number)
855 {
856         unsigned long irq_flags;
857         short partid;
858         struct xpc_partition *part;
859         struct xpc_channel *ch;
860         int wakeup_channel_mgr;
861
862         /* now wait for all callouts to the caller's function to cease */
863         for (partid = 0; partid < xp_max_npartitions; partid++) {
864                 part = &xpc_partitions[partid];
865
866                 if (!xpc_part_ref(part))
867                         continue;
868
869                 ch = &part->channels[ch_number];
870
871                 if (!(ch->flags & XPC_C_WDISCONNECT)) {
872                         xpc_part_deref(part);
873                         continue;
874                 }
875
876                 wait_for_completion(&ch->wdisconnect_wait);
877
878                 spin_lock_irqsave(&ch->lock, irq_flags);
879                 DBUG_ON(!(ch->flags & XPC_C_DISCONNECTED));
880                 wakeup_channel_mgr = 0;
881
882                 if (ch->delayed_chctl_flags) {
883                         if (part->act_state != XPC_P_AS_DEACTIVATING) {
884                                 spin_lock(&part->chctl_lock);
885                                 part->chctl.flags[ch->number] |=
886                                     ch->delayed_chctl_flags;
887                                 spin_unlock(&part->chctl_lock);
888                                 wakeup_channel_mgr = 1;
889                         }
890                         ch->delayed_chctl_flags = 0;
891                 }
892
893                 ch->flags &= ~XPC_C_WDISCONNECT;
894                 spin_unlock_irqrestore(&ch->lock, irq_flags);
895
896                 if (wakeup_channel_mgr)
897                         xpc_wakeup_channel_mgr(part);
898
899                 xpc_part_deref(part);
900         }
901 }
902
903 static int
904 xpc_setup_partitions(void)
905 {
906         short partid;
907         struct xpc_partition *part;
908
909         xpc_partitions = kcalloc(xp_max_npartitions,
910                                  sizeof(struct xpc_partition),
911                                  GFP_KERNEL);
912         if (xpc_partitions == NULL) {
913                 dev_err(xpc_part, "can't get memory for partition structure\n");
914                 return -ENOMEM;
915         }
916
917         /*
918          * The first few fields of each entry of xpc_partitions[] need to
919          * be initialized now so that calls to xpc_connect() and
920          * xpc_disconnect() can be made prior to the activation of any remote
921          * partition. NOTE THAT NONE OF THE OTHER FIELDS BELONGING TO THESE
922          * ENTRIES ARE MEANINGFUL UNTIL AFTER AN ENTRY'S CORRESPONDING
923          * PARTITION HAS BEEN ACTIVATED.
924          */
925         for (partid = 0; partid < xp_max_npartitions; partid++) {
926                 part = &xpc_partitions[partid];
927
928                 DBUG_ON((u64)part != L1_CACHE_ALIGN((u64)part));
929
930                 part->activate_IRQ_rcvd = 0;
931                 spin_lock_init(&part->act_lock);
932                 part->act_state = XPC_P_AS_INACTIVE;
933                 XPC_SET_REASON(part, 0, 0);
934
935                 timer_setup(&part->disengage_timer,
936                             xpc_timeout_partition_disengage, 0);
937
938                 part->setup_state = XPC_P_SS_UNSET;
939                 init_waitqueue_head(&part->teardown_wq);
940                 atomic_set(&part->references, 0);
941         }
942
943         return xpc_arch_ops.setup_partitions();
944 }
945
946 static void
947 xpc_teardown_partitions(void)
948 {
949         xpc_arch_ops.teardown_partitions();
950         kfree(xpc_partitions);
951 }
952
953 static void
954 xpc_do_exit(enum xp_retval reason)
955 {
956         short partid;
957         int active_part_count, printed_waiting_msg = 0;
958         struct xpc_partition *part;
959         unsigned long printmsg_time, disengage_timeout = 0;
960
961         /* a 'rmmod XPC' and a 'reboot' cannot both end up here together */
962         DBUG_ON(xpc_exiting == 1);
963
964         /*
965          * Let the heartbeat checker thread and the discovery thread
966          * (if one is running) know that they should exit. Also wake up
967          * the heartbeat checker thread in case it's sleeping.
968          */
969         xpc_exiting = 1;
970         wake_up_interruptible(&xpc_activate_IRQ_wq);
971
972         /* wait for the discovery thread to exit */
973         wait_for_completion(&xpc_discovery_exited);
974
975         /* wait for the heartbeat checker thread to exit */
976         wait_for_completion(&xpc_hb_checker_exited);
977
978         /* sleep for a 1/3 of a second or so */
979         (void)msleep_interruptible(300);
980
981         /* wait for all partitions to become inactive */
982
983         printmsg_time = jiffies + (XPC_DEACTIVATE_PRINTMSG_INTERVAL * HZ);
984         xpc_disengage_timedout = 0;
985
986         do {
987                 active_part_count = 0;
988
989                 for (partid = 0; partid < xp_max_npartitions; partid++) {
990                         part = &xpc_partitions[partid];
991
992                         if (xpc_partition_disengaged(part) &&
993                             part->act_state == XPC_P_AS_INACTIVE) {
994                                 continue;
995                         }
996
997                         active_part_count++;
998
999                         XPC_DEACTIVATE_PARTITION(part, reason);
1000
1001                         if (part->disengage_timeout > disengage_timeout)
1002                                 disengage_timeout = part->disengage_timeout;
1003                 }
1004
1005                 if (xpc_arch_ops.any_partition_engaged()) {
1006                         if (time_is_before_jiffies(printmsg_time)) {
1007                                 dev_info(xpc_part, "waiting for remote "
1008                                          "partitions to deactivate, timeout in "
1009                                          "%ld seconds\n", (disengage_timeout -
1010                                          jiffies) / HZ);
1011                                 printmsg_time = jiffies +
1012                                     (XPC_DEACTIVATE_PRINTMSG_INTERVAL * HZ);
1013                                 printed_waiting_msg = 1;
1014                         }
1015
1016                 } else if (active_part_count > 0) {
1017                         if (printed_waiting_msg) {
1018                                 dev_info(xpc_part, "waiting for local partition"
1019                                          " to deactivate\n");
1020                                 printed_waiting_msg = 0;
1021                         }
1022
1023                 } else {
1024                         if (!xpc_disengage_timedout) {
1025                                 dev_info(xpc_part, "all partitions have "
1026                                          "deactivated\n");
1027                         }
1028                         break;
1029                 }
1030
1031                 /* sleep for a 1/3 of a second or so */
1032                 (void)msleep_interruptible(300);
1033
1034         } while (1);
1035
1036         DBUG_ON(xpc_arch_ops.any_partition_engaged());
1037
1038         xpc_teardown_rsvd_page();
1039
1040         if (reason == xpUnloading) {
1041                 (void)unregister_die_notifier(&xpc_die_notifier);
1042                 (void)unregister_reboot_notifier(&xpc_reboot_notifier);
1043         }
1044
1045         /* clear the interface to XPC's functions */
1046         xpc_clear_interface();
1047
1048         if (xpc_sysctl)
1049                 unregister_sysctl_table(xpc_sysctl);
1050
1051         xpc_teardown_partitions();
1052
1053         if (is_shub())
1054                 xpc_exit_sn2();
1055         else if (is_uv())
1056                 xpc_exit_uv();
1057 }
1058
1059 /*
1060  * This function is called when the system is being rebooted.
1061  */
1062 static int
1063 xpc_system_reboot(struct notifier_block *nb, unsigned long event, void *unused)
1064 {
1065         enum xp_retval reason;
1066
1067         switch (event) {
1068         case SYS_RESTART:
1069                 reason = xpSystemReboot;
1070                 break;
1071         case SYS_HALT:
1072                 reason = xpSystemHalt;
1073                 break;
1074         case SYS_POWER_OFF:
1075                 reason = xpSystemPoweroff;
1076                 break;
1077         default:
1078                 reason = xpSystemGoingDown;
1079         }
1080
1081         xpc_do_exit(reason);
1082         return NOTIFY_DONE;
1083 }
1084
1085 /* Used to only allow one cpu to complete disconnect */
1086 static unsigned int xpc_die_disconnecting;
1087
1088 /*
1089  * Notify other partitions to deactivate from us by first disengaging from all
1090  * references to our memory.
1091  */
1092 static void
1093 xpc_die_deactivate(void)
1094 {
1095         struct xpc_partition *part;
1096         short partid;
1097         int any_engaged;
1098         long keep_waiting;
1099         long wait_to_print;
1100
1101         if (cmpxchg(&xpc_die_disconnecting, 0, 1))
1102                 return;
1103
1104         /* keep xpc_hb_checker thread from doing anything (just in case) */
1105         xpc_exiting = 1;
1106
1107         xpc_arch_ops.disallow_all_hbs();   /*indicate we're deactivated */
1108
1109         for (partid = 0; partid < xp_max_npartitions; partid++) {
1110                 part = &xpc_partitions[partid];
1111
1112                 if (xpc_arch_ops.partition_engaged(partid) ||
1113                     part->act_state != XPC_P_AS_INACTIVE) {
1114                         xpc_arch_ops.request_partition_deactivation(part);
1115                         xpc_arch_ops.indicate_partition_disengaged(part);
1116                 }
1117         }
1118
1119         /*
1120          * Though we requested that all other partitions deactivate from us,
1121          * we only wait until they've all disengaged or we've reached the
1122          * defined timelimit.
1123          *
1124          * Given that one iteration through the following while-loop takes
1125          * approximately 200 microseconds, calculate the #of loops to take
1126          * before bailing and the #of loops before printing a waiting message.
1127          */
1128         keep_waiting = xpc_disengage_timelimit * 1000 * 5;
1129         wait_to_print = XPC_DEACTIVATE_PRINTMSG_INTERVAL * 1000 * 5;
1130
1131         while (1) {
1132                 any_engaged = xpc_arch_ops.any_partition_engaged();
1133                 if (!any_engaged) {
1134                         dev_info(xpc_part, "all partitions have deactivated\n");
1135                         break;
1136                 }
1137
1138                 if (!keep_waiting--) {
1139                         for (partid = 0; partid < xp_max_npartitions;
1140                              partid++) {
1141                                 if (xpc_arch_ops.partition_engaged(partid)) {
1142                                         dev_info(xpc_part, "deactivate from "
1143                                                  "remote partition %d timed "
1144                                                  "out\n", partid);
1145                                 }
1146                         }
1147                         break;
1148                 }
1149
1150                 if (!wait_to_print--) {
1151                         dev_info(xpc_part, "waiting for remote partitions to "
1152                                  "deactivate, timeout in %ld seconds\n",
1153                                  keep_waiting / (1000 * 5));
1154                         wait_to_print = XPC_DEACTIVATE_PRINTMSG_INTERVAL *
1155                             1000 * 5;
1156                 }
1157
1158                 udelay(200);
1159         }
1160 }
1161
1162 /*
1163  * This function is called when the system is being restarted or halted due
1164  * to some sort of system failure. If this is the case we need to notify the
1165  * other partitions to disengage from all references to our memory.
1166  * This function can also be called when our heartbeater could be offlined
1167  * for a time. In this case we need to notify other partitions to not worry
1168  * about the lack of a heartbeat.
1169  */
1170 static int
1171 xpc_system_die(struct notifier_block *nb, unsigned long event, void *_die_args)
1172 {
1173 #ifdef CONFIG_IA64              /* !!! temporary kludge */
1174         switch (event) {
1175         case DIE_MACHINE_RESTART:
1176         case DIE_MACHINE_HALT:
1177                 xpc_die_deactivate();
1178                 break;
1179
1180         case DIE_KDEBUG_ENTER:
1181                 /* Should lack of heartbeat be ignored by other partitions? */
1182                 if (!xpc_kdebug_ignore)
1183                         break;
1184
1185                 /* fall through */
1186         case DIE_MCA_MONARCH_ENTER:
1187         case DIE_INIT_MONARCH_ENTER:
1188                 xpc_arch_ops.offline_heartbeat();
1189                 break;
1190
1191         case DIE_KDEBUG_LEAVE:
1192                 /* Is lack of heartbeat being ignored by other partitions? */
1193                 if (!xpc_kdebug_ignore)
1194                         break;
1195
1196                 /* fall through */
1197         case DIE_MCA_MONARCH_LEAVE:
1198         case DIE_INIT_MONARCH_LEAVE:
1199                 xpc_arch_ops.online_heartbeat();
1200                 break;
1201         }
1202 #else
1203         struct die_args *die_args = _die_args;
1204
1205         switch (event) {
1206         case DIE_TRAP:
1207                 if (die_args->trapnr == X86_TRAP_DF)
1208                         xpc_die_deactivate();
1209
1210                 if (((die_args->trapnr == X86_TRAP_MF) ||
1211                      (die_args->trapnr == X86_TRAP_XF)) &&
1212                     !user_mode(die_args->regs))
1213                         xpc_die_deactivate();
1214
1215                 break;
1216         case DIE_INT3:
1217         case DIE_DEBUG:
1218                 break;
1219         case DIE_OOPS:
1220         case DIE_GPF:
1221         default:
1222                 xpc_die_deactivate();
1223         }
1224 #endif
1225
1226         return NOTIFY_DONE;
1227 }
1228
1229 int __init
1230 xpc_init(void)
1231 {
1232         int ret;
1233         struct task_struct *kthread;
1234
1235         dev_set_name(xpc_part, "part");
1236         dev_set_name(xpc_chan, "chan");
1237
1238         if (is_shub()) {
1239                 /*
1240                  * The ia64-sn2 architecture supports at most 64 partitions.
1241                  * And the inability to unregister remote amos restricts us
1242                  * further to only support exactly 64 partitions on this
1243                  * architecture, no less.
1244                  */
1245                 if (xp_max_npartitions != 64) {
1246                         dev_err(xpc_part, "max #of partitions not set to 64\n");
1247                         ret = -EINVAL;
1248                 } else {
1249                         ret = xpc_init_sn2();
1250                 }
1251
1252         } else if (is_uv()) {
1253                 ret = xpc_init_uv();
1254
1255         } else {
1256                 ret = -ENODEV;
1257         }
1258
1259         if (ret != 0)
1260                 return ret;
1261
1262         ret = xpc_setup_partitions();
1263         if (ret != 0) {
1264                 dev_err(xpc_part, "can't get memory for partition structure\n");
1265                 goto out_1;
1266         }
1267
1268         xpc_sysctl = register_sysctl_table(xpc_sys_dir);
1269
1270         /*
1271          * Fill the partition reserved page with the information needed by
1272          * other partitions to discover we are alive and establish initial
1273          * communications.
1274          */
1275         ret = xpc_setup_rsvd_page();
1276         if (ret != 0) {
1277                 dev_err(xpc_part, "can't setup our reserved page\n");
1278                 goto out_2;
1279         }
1280
1281         /* add ourselves to the reboot_notifier_list */
1282         ret = register_reboot_notifier(&xpc_reboot_notifier);
1283         if (ret != 0)
1284                 dev_warn(xpc_part, "can't register reboot notifier\n");
1285
1286         /* add ourselves to the die_notifier list */
1287         ret = register_die_notifier(&xpc_die_notifier);
1288         if (ret != 0)
1289                 dev_warn(xpc_part, "can't register die notifier\n");
1290
1291         /*
1292          * The real work-horse behind xpc.  This processes incoming
1293          * interrupts and monitors remote heartbeats.
1294          */
1295         kthread = kthread_run(xpc_hb_checker, NULL, XPC_HB_CHECK_THREAD_NAME);
1296         if (IS_ERR(kthread)) {
1297                 dev_err(xpc_part, "failed while forking hb check thread\n");
1298                 ret = -EBUSY;
1299                 goto out_3;
1300         }
1301
1302         /*
1303          * Startup a thread that will attempt to discover other partitions to
1304          * activate based on info provided by SAL. This new thread is short
1305          * lived and will exit once discovery is complete.
1306          */
1307         kthread = kthread_run(xpc_initiate_discovery, NULL,
1308                               XPC_DISCOVERY_THREAD_NAME);
1309         if (IS_ERR(kthread)) {
1310                 dev_err(xpc_part, "failed while forking discovery thread\n");
1311
1312                 /* mark this new thread as a non-starter */
1313                 complete(&xpc_discovery_exited);
1314
1315                 xpc_do_exit(xpUnloading);
1316                 return -EBUSY;
1317         }
1318
1319         /* set the interface to point at XPC's functions */
1320         xpc_set_interface(xpc_initiate_connect, xpc_initiate_disconnect,
1321                           xpc_initiate_send, xpc_initiate_send_notify,
1322                           xpc_initiate_received, xpc_initiate_partid_to_nasids);
1323
1324         return 0;
1325
1326         /* initialization was not successful */
1327 out_3:
1328         xpc_teardown_rsvd_page();
1329
1330         (void)unregister_die_notifier(&xpc_die_notifier);
1331         (void)unregister_reboot_notifier(&xpc_reboot_notifier);
1332 out_2:
1333         if (xpc_sysctl)
1334                 unregister_sysctl_table(xpc_sysctl);
1335
1336         xpc_teardown_partitions();
1337 out_1:
1338         if (is_shub())
1339                 xpc_exit_sn2();
1340         else if (is_uv())
1341                 xpc_exit_uv();
1342         return ret;
1343 }
1344
1345 module_init(xpc_init);
1346
1347 void __exit
1348 xpc_exit(void)
1349 {
1350         xpc_do_exit(xpUnloading);
1351 }
1352
1353 module_exit(xpc_exit);
1354
1355 MODULE_AUTHOR("Silicon Graphics, Inc.");
1356 MODULE_DESCRIPTION("Cross Partition Communication (XPC) support");
1357 MODULE_LICENSE("GPL");
1358
1359 module_param(xpc_hb_interval, int, 0);
1360 MODULE_PARM_DESC(xpc_hb_interval, "Number of seconds between "
1361                  "heartbeat increments.");
1362
1363 module_param(xpc_hb_check_interval, int, 0);
1364 MODULE_PARM_DESC(xpc_hb_check_interval, "Number of seconds between "
1365                  "heartbeat checks.");
1366
1367 module_param(xpc_disengage_timelimit, int, 0);
1368 MODULE_PARM_DESC(xpc_disengage_timelimit, "Number of seconds to wait "
1369                  "for disengage to complete.");
1370
1371 module_param(xpc_kdebug_ignore, int, 0);
1372 MODULE_PARM_DESC(xpc_kdebug_ignore, "Should lack of heartbeat be ignored by "
1373                  "other partitions when dropping into kdebug.");