0c775d6fcf590d1b1691926d144237ff02c960e1
[linux-2.6-block.git] / drivers / misc / sgi-xp / xpc_main.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (c) 2004-2009 Silicon Graphics, Inc.  All Rights Reserved.
7  */
8
9 /*
10  * Cross Partition Communication (XPC) support - standard version.
11  *
12  *      XPC provides a message passing capability that crosses partition
13  *      boundaries. This module is made up of two parts:
14  *
15  *          partition   This part detects the presence/absence of other
16  *                      partitions. It provides a heartbeat and monitors
17  *                      the heartbeats of other partitions.
18  *
19  *          channel     This part manages the channels and sends/receives
20  *                      messages across them to/from other partitions.
21  *
22  *      There are a couple of additional functions residing in XP, which
23  *      provide an interface to XPC for its users.
24  *
25  *
26  *      Caveats:
27  *
28  *        . Currently on sn2, we have no way to determine which nasid an IRQ
29  *          came from. Thus, xpc_send_IRQ_sn2() does a remote amo write
30  *          followed by an IPI. The amo indicates where data is to be pulled
31  *          from, so after the IPI arrives, the remote partition checks the amo
32  *          word. The IPI can actually arrive before the amo however, so other
33  *          code must periodically check for this case. Also, remote amo
34  *          operations do not reliably time out. Thus we do a remote PIO read
35  *          solely to know whether the remote partition is down and whether we
36  *          should stop sending IPIs to it. This remote PIO read operation is
37  *          set up in a special nofault region so SAL knows to ignore (and
38  *          cleanup) any errors due to the remote amo write, PIO read, and/or
39  *          PIO write operations.
40  *
41  *          If/when new hardware solves this IPI problem, we should abandon
42  *          the current approach.
43  *
44  */
45
46 #include <linux/module.h>
47 #include <linux/slab.h>
48 #include <linux/sysctl.h>
49 #include <linux/device.h>
50 #include <linux/delay.h>
51 #include <linux/reboot.h>
52 #include <linux/kdebug.h>
53 #include <linux/kthread.h>
54 #include "xpc.h"
55
56 #ifdef CONFIG_X86_64
57 #include <asm/traps.h>
58 #endif
59
60 /* define two XPC debug device structures to be used with dev_dbg() et al */
61
62 struct device_driver xpc_dbg_name = {
63         .name = "xpc"
64 };
65
66 struct device xpc_part_dbg_subname = {
67         .init_name = "",        /* set to "part" at xpc_init() time */
68         .driver = &xpc_dbg_name
69 };
70
71 struct device xpc_chan_dbg_subname = {
72         .init_name = "",        /* set to "chan" at xpc_init() time */
73         .driver = &xpc_dbg_name
74 };
75
76 struct device *xpc_part = &xpc_part_dbg_subname;
77 struct device *xpc_chan = &xpc_chan_dbg_subname;
78
79 static int xpc_kdebug_ignore;
80
81 /* systune related variables for /proc/sys directories */
82
83 static int xpc_hb_interval = XPC_HB_DEFAULT_INTERVAL;
84 static int xpc_hb_min_interval = 1;
85 static int xpc_hb_max_interval = 10;
86
87 static int xpc_hb_check_interval = XPC_HB_CHECK_DEFAULT_INTERVAL;
88 static int xpc_hb_check_min_interval = 10;
89 static int xpc_hb_check_max_interval = 120;
90
91 int xpc_disengage_timelimit = XPC_DISENGAGE_DEFAULT_TIMELIMIT;
92 static int xpc_disengage_min_timelimit; /* = 0 */
93 static int xpc_disengage_max_timelimit = 120;
94
95 static struct ctl_table xpc_sys_xpc_hb_dir[] = {
96         {
97          .procname = "hb_interval",
98          .data = &xpc_hb_interval,
99          .maxlen = sizeof(int),
100          .mode = 0644,
101          .proc_handler = proc_dointvec_minmax,
102          .extra1 = &xpc_hb_min_interval,
103          .extra2 = &xpc_hb_max_interval},
104         {
105          .procname = "hb_check_interval",
106          .data = &xpc_hb_check_interval,
107          .maxlen = sizeof(int),
108          .mode = 0644,
109          .proc_handler = proc_dointvec_minmax,
110          .extra1 = &xpc_hb_check_min_interval,
111          .extra2 = &xpc_hb_check_max_interval},
112         {}
113 };
114 static struct ctl_table xpc_sys_xpc_dir[] = {
115         {
116          .procname = "hb",
117          .mode = 0555,
118          .child = xpc_sys_xpc_hb_dir},
119         {
120          .procname = "disengage_timelimit",
121          .data = &xpc_disengage_timelimit,
122          .maxlen = sizeof(int),
123          .mode = 0644,
124          .proc_handler = proc_dointvec_minmax,
125          .extra1 = &xpc_disengage_min_timelimit,
126          .extra2 = &xpc_disengage_max_timelimit},
127         {}
128 };
129 static struct ctl_table xpc_sys_dir[] = {
130         {
131          .procname = "xpc",
132          .mode = 0555,
133          .child = xpc_sys_xpc_dir},
134         {}
135 };
136 static struct ctl_table_header *xpc_sysctl;
137
138 /* non-zero if any remote partition disengage was timed out */
139 int xpc_disengage_timedout;
140
141 /* #of activate IRQs received and not yet processed */
142 int xpc_activate_IRQ_rcvd;
143 DEFINE_SPINLOCK(xpc_activate_IRQ_rcvd_lock);
144
145 /* IRQ handler notifies this wait queue on receipt of an IRQ */
146 DECLARE_WAIT_QUEUE_HEAD(xpc_activate_IRQ_wq);
147
148 static unsigned long xpc_hb_check_timeout;
149 static struct timer_list xpc_hb_timer;
150
151 /* notification that the xpc_hb_checker thread has exited */
152 static DECLARE_COMPLETION(xpc_hb_checker_exited);
153
154 /* notification that the xpc_discovery thread has exited */
155 static DECLARE_COMPLETION(xpc_discovery_exited);
156
157 static void xpc_kthread_waitmsgs(struct xpc_partition *, struct xpc_channel *);
158
159 static int xpc_system_reboot(struct notifier_block *, unsigned long, void *);
160 static struct notifier_block xpc_reboot_notifier = {
161         .notifier_call = xpc_system_reboot,
162 };
163
164 static int xpc_system_die(struct notifier_block *, unsigned long, void *);
165 static struct notifier_block xpc_die_notifier = {
166         .notifier_call = xpc_system_die,
167 };
168
169 struct xpc_arch_operations xpc_arch_ops;
170
171 /*
172  * Timer function to enforce the timelimit on the partition disengage.
173  */
174 static void
175 xpc_timeout_partition_disengage(struct timer_list *t)
176 {
177         struct xpc_partition *part = from_timer(part, t, disengage_timer);
178
179         DBUG_ON(time_is_after_jiffies(part->disengage_timeout));
180
181         (void)xpc_partition_disengaged(part);
182
183         DBUG_ON(part->disengage_timeout != 0);
184         DBUG_ON(xpc_arch_ops.partition_engaged(XPC_PARTID(part)));
185 }
186
187 /*
188  * Timer to produce the heartbeat.  The timer structures function is
189  * already set when this is initially called.  A tunable is used to
190  * specify when the next timeout should occur.
191  */
192 static void
193 xpc_hb_beater(struct timer_list *unused)
194 {
195         xpc_arch_ops.increment_heartbeat();
196
197         if (time_is_before_eq_jiffies(xpc_hb_check_timeout))
198                 wake_up_interruptible(&xpc_activate_IRQ_wq);
199
200         xpc_hb_timer.expires = jiffies + (xpc_hb_interval * HZ);
201         add_timer(&xpc_hb_timer);
202 }
203
204 static void
205 xpc_start_hb_beater(void)
206 {
207         xpc_arch_ops.heartbeat_init();
208         timer_setup(&xpc_hb_timer, xpc_hb_beater, 0);
209         xpc_hb_beater(0);
210 }
211
212 static void
213 xpc_stop_hb_beater(void)
214 {
215         del_timer_sync(&xpc_hb_timer);
216         xpc_arch_ops.heartbeat_exit();
217 }
218
219 /*
220  * At periodic intervals, scan through all active partitions and ensure
221  * their heartbeat is still active.  If not, the partition is deactivated.
222  */
223 static void
224 xpc_check_remote_hb(void)
225 {
226         struct xpc_partition *part;
227         short partid;
228         enum xp_retval ret;
229
230         for (partid = 0; partid < xp_max_npartitions; partid++) {
231
232                 if (xpc_exiting)
233                         break;
234
235                 if (partid == xp_partition_id)
236                         continue;
237
238                 part = &xpc_partitions[partid];
239
240                 if (part->act_state == XPC_P_AS_INACTIVE ||
241                     part->act_state == XPC_P_AS_DEACTIVATING) {
242                         continue;
243                 }
244
245                 ret = xpc_arch_ops.get_remote_heartbeat(part);
246                 if (ret != xpSuccess)
247                         XPC_DEACTIVATE_PARTITION(part, ret);
248         }
249 }
250
251 /*
252  * This thread is responsible for nearly all of the partition
253  * activation/deactivation.
254  */
255 static int
256 xpc_hb_checker(void *ignore)
257 {
258         int force_IRQ = 0;
259
260         /* this thread was marked active by xpc_hb_init() */
261
262         set_cpus_allowed_ptr(current, cpumask_of(XPC_HB_CHECK_CPU));
263
264         /* set our heartbeating to other partitions into motion */
265         xpc_hb_check_timeout = jiffies + (xpc_hb_check_interval * HZ);
266         xpc_start_hb_beater();
267
268         while (!xpc_exiting) {
269
270                 dev_dbg(xpc_part, "woke up with %d ticks rem; %d IRQs have "
271                         "been received\n",
272                         (int)(xpc_hb_check_timeout - jiffies),
273                         xpc_activate_IRQ_rcvd);
274
275                 /* checking of remote heartbeats is skewed by IRQ handling */
276                 if (time_is_before_eq_jiffies(xpc_hb_check_timeout)) {
277                         xpc_hb_check_timeout = jiffies +
278                             (xpc_hb_check_interval * HZ);
279
280                         dev_dbg(xpc_part, "checking remote heartbeats\n");
281                         xpc_check_remote_hb();
282
283                         /*
284                          * On sn2 we need to periodically recheck to ensure no
285                          * IRQ/amo pairs have been missed.
286                          */
287                         if (is_shub())
288                                 force_IRQ = 1;
289                 }
290
291                 /* check for outstanding IRQs */
292                 if (xpc_activate_IRQ_rcvd > 0 || force_IRQ != 0) {
293                         force_IRQ = 0;
294                         dev_dbg(xpc_part, "processing activate IRQs "
295                                 "received\n");
296                         xpc_arch_ops.process_activate_IRQ_rcvd();
297                 }
298
299                 /* wait for IRQ or timeout */
300                 (void)wait_event_interruptible(xpc_activate_IRQ_wq,
301                                                (time_is_before_eq_jiffies(
302                                                 xpc_hb_check_timeout) ||
303                                                 xpc_activate_IRQ_rcvd > 0 ||
304                                                 xpc_exiting));
305         }
306
307         xpc_stop_hb_beater();
308
309         dev_dbg(xpc_part, "heartbeat checker is exiting\n");
310
311         /* mark this thread as having exited */
312         complete(&xpc_hb_checker_exited);
313         return 0;
314 }
315
316 /*
317  * This thread will attempt to discover other partitions to activate
318  * based on info provided by SAL. This new thread is short lived and
319  * will exit once discovery is complete.
320  */
321 static int
322 xpc_initiate_discovery(void *ignore)
323 {
324         xpc_discovery();
325
326         dev_dbg(xpc_part, "discovery thread is exiting\n");
327
328         /* mark this thread as having exited */
329         complete(&xpc_discovery_exited);
330         return 0;
331 }
332
333 /*
334  * The first kthread assigned to a newly activated partition is the one
335  * created by XPC HB with which it calls xpc_activating(). XPC hangs on to
336  * that kthread until the partition is brought down, at which time that kthread
337  * returns back to XPC HB. (The return of that kthread will signify to XPC HB
338  * that XPC has dismantled all communication infrastructure for the associated
339  * partition.) This kthread becomes the channel manager for that partition.
340  *
341  * Each active partition has a channel manager, who, besides connecting and
342  * disconnecting channels, will ensure that each of the partition's connected
343  * channels has the required number of assigned kthreads to get the work done.
344  */
345 static void
346 xpc_channel_mgr(struct xpc_partition *part)
347 {
348         while (part->act_state != XPC_P_AS_DEACTIVATING ||
349                atomic_read(&part->nchannels_active) > 0 ||
350                !xpc_partition_disengaged(part)) {
351
352                 xpc_process_sent_chctl_flags(part);
353
354                 /*
355                  * Wait until we've been requested to activate kthreads or
356                  * all of the channel's message queues have been torn down or
357                  * a signal is pending.
358                  *
359                  * The channel_mgr_requests is set to 1 after being awakened,
360                  * This is done to prevent the channel mgr from making one pass
361                  * through the loop for each request, since he will
362                  * be servicing all the requests in one pass. The reason it's
363                  * set to 1 instead of 0 is so that other kthreads will know
364                  * that the channel mgr is running and won't bother trying to
365                  * wake him up.
366                  */
367                 atomic_dec(&part->channel_mgr_requests);
368                 (void)wait_event_interruptible(part->channel_mgr_wq,
369                                 (atomic_read(&part->channel_mgr_requests) > 0 ||
370                                  part->chctl.all_flags != 0 ||
371                                  (part->act_state == XPC_P_AS_DEACTIVATING &&
372                                  atomic_read(&part->nchannels_active) == 0 &&
373                                  xpc_partition_disengaged(part))));
374                 atomic_set(&part->channel_mgr_requests, 1);
375         }
376 }
377
378 /*
379  * Guarantee that the kzalloc'd memory is cacheline aligned.
380  */
381 void *
382 xpc_kzalloc_cacheline_aligned(size_t size, gfp_t flags, void **base)
383 {
384         /* see if kzalloc will give us cachline aligned memory by default */
385         *base = kzalloc(size, flags);
386         if (*base == NULL)
387                 return NULL;
388
389         if ((u64)*base == L1_CACHE_ALIGN((u64)*base))
390                 return *base;
391
392         kfree(*base);
393
394         /* nope, we'll have to do it ourselves */
395         *base = kzalloc(size + L1_CACHE_BYTES, flags);
396         if (*base == NULL)
397                 return NULL;
398
399         return (void *)L1_CACHE_ALIGN((u64)*base);
400 }
401
402 /*
403  * Setup the channel structures necessary to support XPartition Communication
404  * between the specified remote partition and the local one.
405  */
406 static enum xp_retval
407 xpc_setup_ch_structures(struct xpc_partition *part)
408 {
409         enum xp_retval ret;
410         int ch_number;
411         struct xpc_channel *ch;
412         short partid = XPC_PARTID(part);
413
414         /*
415          * Allocate all of the channel structures as a contiguous chunk of
416          * memory.
417          */
418         DBUG_ON(part->channels != NULL);
419         part->channels = kzalloc(sizeof(struct xpc_channel) * XPC_MAX_NCHANNELS,
420                                  GFP_KERNEL);
421         if (part->channels == NULL) {
422                 dev_err(xpc_chan, "can't get memory for channels\n");
423                 return xpNoMemory;
424         }
425
426         /* allocate the remote open and close args */
427
428         part->remote_openclose_args =
429             xpc_kzalloc_cacheline_aligned(XPC_OPENCLOSE_ARGS_SIZE,
430                                           GFP_KERNEL, &part->
431                                           remote_openclose_args_base);
432         if (part->remote_openclose_args == NULL) {
433                 dev_err(xpc_chan, "can't get memory for remote connect args\n");
434                 ret = xpNoMemory;
435                 goto out_1;
436         }
437
438         part->chctl.all_flags = 0;
439         spin_lock_init(&part->chctl_lock);
440
441         atomic_set(&part->channel_mgr_requests, 1);
442         init_waitqueue_head(&part->channel_mgr_wq);
443
444         part->nchannels = XPC_MAX_NCHANNELS;
445
446         atomic_set(&part->nchannels_active, 0);
447         atomic_set(&part->nchannels_engaged, 0);
448
449         for (ch_number = 0; ch_number < part->nchannels; ch_number++) {
450                 ch = &part->channels[ch_number];
451
452                 ch->partid = partid;
453                 ch->number = ch_number;
454                 ch->flags = XPC_C_DISCONNECTED;
455
456                 atomic_set(&ch->kthreads_assigned, 0);
457                 atomic_set(&ch->kthreads_idle, 0);
458                 atomic_set(&ch->kthreads_active, 0);
459
460                 atomic_set(&ch->references, 0);
461                 atomic_set(&ch->n_to_notify, 0);
462
463                 spin_lock_init(&ch->lock);
464                 init_completion(&ch->wdisconnect_wait);
465
466                 atomic_set(&ch->n_on_msg_allocate_wq, 0);
467                 init_waitqueue_head(&ch->msg_allocate_wq);
468                 init_waitqueue_head(&ch->idle_wq);
469         }
470
471         ret = xpc_arch_ops.setup_ch_structures(part);
472         if (ret != xpSuccess)
473                 goto out_2;
474
475         /*
476          * With the setting of the partition setup_state to XPC_P_SS_SETUP,
477          * we're declaring that this partition is ready to go.
478          */
479         part->setup_state = XPC_P_SS_SETUP;
480
481         return xpSuccess;
482
483         /* setup of ch structures failed */
484 out_2:
485         kfree(part->remote_openclose_args_base);
486         part->remote_openclose_args = NULL;
487 out_1:
488         kfree(part->channels);
489         part->channels = NULL;
490         return ret;
491 }
492
493 /*
494  * Teardown the channel structures necessary to support XPartition Communication
495  * between the specified remote partition and the local one.
496  */
497 static void
498 xpc_teardown_ch_structures(struct xpc_partition *part)
499 {
500         DBUG_ON(atomic_read(&part->nchannels_engaged) != 0);
501         DBUG_ON(atomic_read(&part->nchannels_active) != 0);
502
503         /*
504          * Make this partition inaccessible to local processes by marking it
505          * as no longer setup. Then wait before proceeding with the teardown
506          * until all existing references cease.
507          */
508         DBUG_ON(part->setup_state != XPC_P_SS_SETUP);
509         part->setup_state = XPC_P_SS_WTEARDOWN;
510
511         wait_event(part->teardown_wq, (atomic_read(&part->references) == 0));
512
513         /* now we can begin tearing down the infrastructure */
514
515         xpc_arch_ops.teardown_ch_structures(part);
516
517         kfree(part->remote_openclose_args_base);
518         part->remote_openclose_args = NULL;
519         kfree(part->channels);
520         part->channels = NULL;
521
522         part->setup_state = XPC_P_SS_TORNDOWN;
523 }
524
525 /*
526  * When XPC HB determines that a partition has come up, it will create a new
527  * kthread and that kthread will call this function to attempt to set up the
528  * basic infrastructure used for Cross Partition Communication with the newly
529  * upped partition.
530  *
531  * The kthread that was created by XPC HB and which setup the XPC
532  * infrastructure will remain assigned to the partition becoming the channel
533  * manager for that partition until the partition is deactivating, at which
534  * time the kthread will teardown the XPC infrastructure and then exit.
535  */
536 static int
537 xpc_activating(void *__partid)
538 {
539         short partid = (u64)__partid;
540         struct xpc_partition *part = &xpc_partitions[partid];
541         unsigned long irq_flags;
542
543         DBUG_ON(partid < 0 || partid >= xp_max_npartitions);
544
545         spin_lock_irqsave(&part->act_lock, irq_flags);
546
547         if (part->act_state == XPC_P_AS_DEACTIVATING) {
548                 part->act_state = XPC_P_AS_INACTIVE;
549                 spin_unlock_irqrestore(&part->act_lock, irq_flags);
550                 part->remote_rp_pa = 0;
551                 return 0;
552         }
553
554         /* indicate the thread is activating */
555         DBUG_ON(part->act_state != XPC_P_AS_ACTIVATION_REQ);
556         part->act_state = XPC_P_AS_ACTIVATING;
557
558         XPC_SET_REASON(part, 0, 0);
559         spin_unlock_irqrestore(&part->act_lock, irq_flags);
560
561         dev_dbg(xpc_part, "activating partition %d\n", partid);
562
563         xpc_arch_ops.allow_hb(partid);
564
565         if (xpc_setup_ch_structures(part) == xpSuccess) {
566                 (void)xpc_part_ref(part);       /* this will always succeed */
567
568                 if (xpc_arch_ops.make_first_contact(part) == xpSuccess) {
569                         xpc_mark_partition_active(part);
570                         xpc_channel_mgr(part);
571                         /* won't return until partition is deactivating */
572                 }
573
574                 xpc_part_deref(part);
575                 xpc_teardown_ch_structures(part);
576         }
577
578         xpc_arch_ops.disallow_hb(partid);
579         xpc_mark_partition_inactive(part);
580
581         if (part->reason == xpReactivating) {
582                 /* interrupting ourselves results in activating partition */
583                 xpc_arch_ops.request_partition_reactivation(part);
584         }
585
586         return 0;
587 }
588
589 void
590 xpc_activate_partition(struct xpc_partition *part)
591 {
592         short partid = XPC_PARTID(part);
593         unsigned long irq_flags;
594         struct task_struct *kthread;
595
596         spin_lock_irqsave(&part->act_lock, irq_flags);
597
598         DBUG_ON(part->act_state != XPC_P_AS_INACTIVE);
599
600         part->act_state = XPC_P_AS_ACTIVATION_REQ;
601         XPC_SET_REASON(part, xpCloneKThread, __LINE__);
602
603         spin_unlock_irqrestore(&part->act_lock, irq_flags);
604
605         kthread = kthread_run(xpc_activating, (void *)((u64)partid), "xpc%02d",
606                               partid);
607         if (IS_ERR(kthread)) {
608                 spin_lock_irqsave(&part->act_lock, irq_flags);
609                 part->act_state = XPC_P_AS_INACTIVE;
610                 XPC_SET_REASON(part, xpCloneKThreadFailed, __LINE__);
611                 spin_unlock_irqrestore(&part->act_lock, irq_flags);
612         }
613 }
614
615 void
616 xpc_activate_kthreads(struct xpc_channel *ch, int needed)
617 {
618         int idle = atomic_read(&ch->kthreads_idle);
619         int assigned = atomic_read(&ch->kthreads_assigned);
620         int wakeup;
621
622         DBUG_ON(needed <= 0);
623
624         if (idle > 0) {
625                 wakeup = (needed > idle) ? idle : needed;
626                 needed -= wakeup;
627
628                 dev_dbg(xpc_chan, "wakeup %d idle kthreads, partid=%d, "
629                         "channel=%d\n", wakeup, ch->partid, ch->number);
630
631                 /* only wakeup the requested number of kthreads */
632                 wake_up_nr(&ch->idle_wq, wakeup);
633         }
634
635         if (needed <= 0)
636                 return;
637
638         if (needed + assigned > ch->kthreads_assigned_limit) {
639                 needed = ch->kthreads_assigned_limit - assigned;
640                 if (needed <= 0)
641                         return;
642         }
643
644         dev_dbg(xpc_chan, "create %d new kthreads, partid=%d, channel=%d\n",
645                 needed, ch->partid, ch->number);
646
647         xpc_create_kthreads(ch, needed, 0);
648 }
649
650 /*
651  * This function is where XPC's kthreads wait for messages to deliver.
652  */
653 static void
654 xpc_kthread_waitmsgs(struct xpc_partition *part, struct xpc_channel *ch)
655 {
656         int (*n_of_deliverable_payloads) (struct xpc_channel *) =
657                 xpc_arch_ops.n_of_deliverable_payloads;
658
659         do {
660                 /* deliver messages to their intended recipients */
661
662                 while (n_of_deliverable_payloads(ch) > 0 &&
663                        !(ch->flags & XPC_C_DISCONNECTING)) {
664                         xpc_deliver_payload(ch);
665                 }
666
667                 if (atomic_inc_return(&ch->kthreads_idle) >
668                     ch->kthreads_idle_limit) {
669                         /* too many idle kthreads on this channel */
670                         atomic_dec(&ch->kthreads_idle);
671                         break;
672                 }
673
674                 dev_dbg(xpc_chan, "idle kthread calling "
675                         "wait_event_interruptible_exclusive()\n");
676
677                 (void)wait_event_interruptible_exclusive(ch->idle_wq,
678                                 (n_of_deliverable_payloads(ch) > 0 ||
679                                  (ch->flags & XPC_C_DISCONNECTING)));
680
681                 atomic_dec(&ch->kthreads_idle);
682
683         } while (!(ch->flags & XPC_C_DISCONNECTING));
684 }
685
686 static int
687 xpc_kthread_start(void *args)
688 {
689         short partid = XPC_UNPACK_ARG1(args);
690         u16 ch_number = XPC_UNPACK_ARG2(args);
691         struct xpc_partition *part = &xpc_partitions[partid];
692         struct xpc_channel *ch;
693         int n_needed;
694         unsigned long irq_flags;
695         int (*n_of_deliverable_payloads) (struct xpc_channel *) =
696                 xpc_arch_ops.n_of_deliverable_payloads;
697
698         dev_dbg(xpc_chan, "kthread starting, partid=%d, channel=%d\n",
699                 partid, ch_number);
700
701         ch = &part->channels[ch_number];
702
703         if (!(ch->flags & XPC_C_DISCONNECTING)) {
704
705                 /* let registerer know that connection has been established */
706
707                 spin_lock_irqsave(&ch->lock, irq_flags);
708                 if (!(ch->flags & XPC_C_CONNECTEDCALLOUT)) {
709                         ch->flags |= XPC_C_CONNECTEDCALLOUT;
710                         spin_unlock_irqrestore(&ch->lock, irq_flags);
711
712                         xpc_connected_callout(ch);
713
714                         spin_lock_irqsave(&ch->lock, irq_flags);
715                         ch->flags |= XPC_C_CONNECTEDCALLOUT_MADE;
716                         spin_unlock_irqrestore(&ch->lock, irq_flags);
717
718                         /*
719                          * It is possible that while the callout was being
720                          * made that the remote partition sent some messages.
721                          * If that is the case, we may need to activate
722                          * additional kthreads to help deliver them. We only
723                          * need one less than total #of messages to deliver.
724                          */
725                         n_needed = n_of_deliverable_payloads(ch) - 1;
726                         if (n_needed > 0 && !(ch->flags & XPC_C_DISCONNECTING))
727                                 xpc_activate_kthreads(ch, n_needed);
728
729                 } else {
730                         spin_unlock_irqrestore(&ch->lock, irq_flags);
731                 }
732
733                 xpc_kthread_waitmsgs(part, ch);
734         }
735
736         /* let registerer know that connection is disconnecting */
737
738         spin_lock_irqsave(&ch->lock, irq_flags);
739         if ((ch->flags & XPC_C_CONNECTEDCALLOUT_MADE) &&
740             !(ch->flags & XPC_C_DISCONNECTINGCALLOUT)) {
741                 ch->flags |= XPC_C_DISCONNECTINGCALLOUT;
742                 spin_unlock_irqrestore(&ch->lock, irq_flags);
743
744                 xpc_disconnect_callout(ch, xpDisconnecting);
745
746                 spin_lock_irqsave(&ch->lock, irq_flags);
747                 ch->flags |= XPC_C_DISCONNECTINGCALLOUT_MADE;
748         }
749         spin_unlock_irqrestore(&ch->lock, irq_flags);
750
751         if (atomic_dec_return(&ch->kthreads_assigned) == 0 &&
752             atomic_dec_return(&part->nchannels_engaged) == 0) {
753                 xpc_arch_ops.indicate_partition_disengaged(part);
754         }
755
756         xpc_msgqueue_deref(ch);
757
758         dev_dbg(xpc_chan, "kthread exiting, partid=%d, channel=%d\n",
759                 partid, ch_number);
760
761         xpc_part_deref(part);
762         return 0;
763 }
764
765 /*
766  * For each partition that XPC has established communications with, there is
767  * a minimum of one kernel thread assigned to perform any operation that
768  * may potentially sleep or block (basically the callouts to the asynchronous
769  * functions registered via xpc_connect()).
770  *
771  * Additional kthreads are created and destroyed by XPC as the workload
772  * demands.
773  *
774  * A kthread is assigned to one of the active channels that exists for a given
775  * partition.
776  */
777 void
778 xpc_create_kthreads(struct xpc_channel *ch, int needed,
779                     int ignore_disconnecting)
780 {
781         unsigned long irq_flags;
782         u64 args = XPC_PACK_ARGS(ch->partid, ch->number);
783         struct xpc_partition *part = &xpc_partitions[ch->partid];
784         struct task_struct *kthread;
785         void (*indicate_partition_disengaged) (struct xpc_partition *) =
786                 xpc_arch_ops.indicate_partition_disengaged;
787
788         while (needed-- > 0) {
789
790                 /*
791                  * The following is done on behalf of the newly created
792                  * kthread. That kthread is responsible for doing the
793                  * counterpart to the following before it exits.
794                  */
795                 if (ignore_disconnecting) {
796                         if (!atomic_inc_not_zero(&ch->kthreads_assigned)) {
797                                 /* kthreads assigned had gone to zero */
798                                 BUG_ON(!(ch->flags &
799                                          XPC_C_DISCONNECTINGCALLOUT_MADE));
800                                 break;
801                         }
802
803                 } else if (ch->flags & XPC_C_DISCONNECTING) {
804                         break;
805
806                 } else if (atomic_inc_return(&ch->kthreads_assigned) == 1 &&
807                            atomic_inc_return(&part->nchannels_engaged) == 1) {
808                         xpc_arch_ops.indicate_partition_engaged(part);
809                 }
810                 (void)xpc_part_ref(part);
811                 xpc_msgqueue_ref(ch);
812
813                 kthread = kthread_run(xpc_kthread_start, (void *)args,
814                                       "xpc%02dc%d", ch->partid, ch->number);
815                 if (IS_ERR(kthread)) {
816                         /* the fork failed */
817
818                         /*
819                          * NOTE: if (ignore_disconnecting &&
820                          * !(ch->flags & XPC_C_DISCONNECTINGCALLOUT)) is true,
821                          * then we'll deadlock if all other kthreads assigned
822                          * to this channel are blocked in the channel's
823                          * registerer, because the only thing that will unblock
824                          * them is the xpDisconnecting callout that this
825                          * failed kthread_run() would have made.
826                          */
827
828                         if (atomic_dec_return(&ch->kthreads_assigned) == 0 &&
829                             atomic_dec_return(&part->nchannels_engaged) == 0) {
830                                 indicate_partition_disengaged(part);
831                         }
832                         xpc_msgqueue_deref(ch);
833                         xpc_part_deref(part);
834
835                         if (atomic_read(&ch->kthreads_assigned) <
836                             ch->kthreads_idle_limit) {
837                                 /*
838                                  * Flag this as an error only if we have an
839                                  * insufficient #of kthreads for the channel
840                                  * to function.
841                                  */
842                                 spin_lock_irqsave(&ch->lock, irq_flags);
843                                 XPC_DISCONNECT_CHANNEL(ch, xpLackOfResources,
844                                                        &irq_flags);
845                                 spin_unlock_irqrestore(&ch->lock, irq_flags);
846                         }
847                         break;
848                 }
849         }
850 }
851
852 void
853 xpc_disconnect_wait(int ch_number)
854 {
855         unsigned long irq_flags;
856         short partid;
857         struct xpc_partition *part;
858         struct xpc_channel *ch;
859         int wakeup_channel_mgr;
860
861         /* now wait for all callouts to the caller's function to cease */
862         for (partid = 0; partid < xp_max_npartitions; partid++) {
863                 part = &xpc_partitions[partid];
864
865                 if (!xpc_part_ref(part))
866                         continue;
867
868                 ch = &part->channels[ch_number];
869
870                 if (!(ch->flags & XPC_C_WDISCONNECT)) {
871                         xpc_part_deref(part);
872                         continue;
873                 }
874
875                 wait_for_completion(&ch->wdisconnect_wait);
876
877                 spin_lock_irqsave(&ch->lock, irq_flags);
878                 DBUG_ON(!(ch->flags & XPC_C_DISCONNECTED));
879                 wakeup_channel_mgr = 0;
880
881                 if (ch->delayed_chctl_flags) {
882                         if (part->act_state != XPC_P_AS_DEACTIVATING) {
883                                 spin_lock(&part->chctl_lock);
884                                 part->chctl.flags[ch->number] |=
885                                     ch->delayed_chctl_flags;
886                                 spin_unlock(&part->chctl_lock);
887                                 wakeup_channel_mgr = 1;
888                         }
889                         ch->delayed_chctl_flags = 0;
890                 }
891
892                 ch->flags &= ~XPC_C_WDISCONNECT;
893                 spin_unlock_irqrestore(&ch->lock, irq_flags);
894
895                 if (wakeup_channel_mgr)
896                         xpc_wakeup_channel_mgr(part);
897
898                 xpc_part_deref(part);
899         }
900 }
901
902 static int
903 xpc_setup_partitions(void)
904 {
905         short partid;
906         struct xpc_partition *part;
907
908         xpc_partitions = kzalloc(sizeof(struct xpc_partition) *
909                                  xp_max_npartitions, GFP_KERNEL);
910         if (xpc_partitions == NULL) {
911                 dev_err(xpc_part, "can't get memory for partition structure\n");
912                 return -ENOMEM;
913         }
914
915         /*
916          * The first few fields of each entry of xpc_partitions[] need to
917          * be initialized now so that calls to xpc_connect() and
918          * xpc_disconnect() can be made prior to the activation of any remote
919          * partition. NOTE THAT NONE OF THE OTHER FIELDS BELONGING TO THESE
920          * ENTRIES ARE MEANINGFUL UNTIL AFTER AN ENTRY'S CORRESPONDING
921          * PARTITION HAS BEEN ACTIVATED.
922          */
923         for (partid = 0; partid < xp_max_npartitions; partid++) {
924                 part = &xpc_partitions[partid];
925
926                 DBUG_ON((u64)part != L1_CACHE_ALIGN((u64)part));
927
928                 part->activate_IRQ_rcvd = 0;
929                 spin_lock_init(&part->act_lock);
930                 part->act_state = XPC_P_AS_INACTIVE;
931                 XPC_SET_REASON(part, 0, 0);
932
933                 timer_setup(&part->disengage_timer,
934                             xpc_timeout_partition_disengage, 0);
935
936                 part->setup_state = XPC_P_SS_UNSET;
937                 init_waitqueue_head(&part->teardown_wq);
938                 atomic_set(&part->references, 0);
939         }
940
941         return xpc_arch_ops.setup_partitions();
942 }
943
944 static void
945 xpc_teardown_partitions(void)
946 {
947         xpc_arch_ops.teardown_partitions();
948         kfree(xpc_partitions);
949 }
950
951 static void
952 xpc_do_exit(enum xp_retval reason)
953 {
954         short partid;
955         int active_part_count, printed_waiting_msg = 0;
956         struct xpc_partition *part;
957         unsigned long printmsg_time, disengage_timeout = 0;
958
959         /* a 'rmmod XPC' and a 'reboot' cannot both end up here together */
960         DBUG_ON(xpc_exiting == 1);
961
962         /*
963          * Let the heartbeat checker thread and the discovery thread
964          * (if one is running) know that they should exit. Also wake up
965          * the heartbeat checker thread in case it's sleeping.
966          */
967         xpc_exiting = 1;
968         wake_up_interruptible(&xpc_activate_IRQ_wq);
969
970         /* wait for the discovery thread to exit */
971         wait_for_completion(&xpc_discovery_exited);
972
973         /* wait for the heartbeat checker thread to exit */
974         wait_for_completion(&xpc_hb_checker_exited);
975
976         /* sleep for a 1/3 of a second or so */
977         (void)msleep_interruptible(300);
978
979         /* wait for all partitions to become inactive */
980
981         printmsg_time = jiffies + (XPC_DEACTIVATE_PRINTMSG_INTERVAL * HZ);
982         xpc_disengage_timedout = 0;
983
984         do {
985                 active_part_count = 0;
986
987                 for (partid = 0; partid < xp_max_npartitions; partid++) {
988                         part = &xpc_partitions[partid];
989
990                         if (xpc_partition_disengaged(part) &&
991                             part->act_state == XPC_P_AS_INACTIVE) {
992                                 continue;
993                         }
994
995                         active_part_count++;
996
997                         XPC_DEACTIVATE_PARTITION(part, reason);
998
999                         if (part->disengage_timeout > disengage_timeout)
1000                                 disengage_timeout = part->disengage_timeout;
1001                 }
1002
1003                 if (xpc_arch_ops.any_partition_engaged()) {
1004                         if (time_is_before_jiffies(printmsg_time)) {
1005                                 dev_info(xpc_part, "waiting for remote "
1006                                          "partitions to deactivate, timeout in "
1007                                          "%ld seconds\n", (disengage_timeout -
1008                                          jiffies) / HZ);
1009                                 printmsg_time = jiffies +
1010                                     (XPC_DEACTIVATE_PRINTMSG_INTERVAL * HZ);
1011                                 printed_waiting_msg = 1;
1012                         }
1013
1014                 } else if (active_part_count > 0) {
1015                         if (printed_waiting_msg) {
1016                                 dev_info(xpc_part, "waiting for local partition"
1017                                          " to deactivate\n");
1018                                 printed_waiting_msg = 0;
1019                         }
1020
1021                 } else {
1022                         if (!xpc_disengage_timedout) {
1023                                 dev_info(xpc_part, "all partitions have "
1024                                          "deactivated\n");
1025                         }
1026                         break;
1027                 }
1028
1029                 /* sleep for a 1/3 of a second or so */
1030                 (void)msleep_interruptible(300);
1031
1032         } while (1);
1033
1034         DBUG_ON(xpc_arch_ops.any_partition_engaged());
1035
1036         xpc_teardown_rsvd_page();
1037
1038         if (reason == xpUnloading) {
1039                 (void)unregister_die_notifier(&xpc_die_notifier);
1040                 (void)unregister_reboot_notifier(&xpc_reboot_notifier);
1041         }
1042
1043         /* clear the interface to XPC's functions */
1044         xpc_clear_interface();
1045
1046         if (xpc_sysctl)
1047                 unregister_sysctl_table(xpc_sysctl);
1048
1049         xpc_teardown_partitions();
1050
1051         if (is_shub())
1052                 xpc_exit_sn2();
1053         else if (is_uv())
1054                 xpc_exit_uv();
1055 }
1056
1057 /*
1058  * This function is called when the system is being rebooted.
1059  */
1060 static int
1061 xpc_system_reboot(struct notifier_block *nb, unsigned long event, void *unused)
1062 {
1063         enum xp_retval reason;
1064
1065         switch (event) {
1066         case SYS_RESTART:
1067                 reason = xpSystemReboot;
1068                 break;
1069         case SYS_HALT:
1070                 reason = xpSystemHalt;
1071                 break;
1072         case SYS_POWER_OFF:
1073                 reason = xpSystemPoweroff;
1074                 break;
1075         default:
1076                 reason = xpSystemGoingDown;
1077         }
1078
1079         xpc_do_exit(reason);
1080         return NOTIFY_DONE;
1081 }
1082
1083 /* Used to only allow one cpu to complete disconnect */
1084 static unsigned int xpc_die_disconnecting;
1085
1086 /*
1087  * Notify other partitions to deactivate from us by first disengaging from all
1088  * references to our memory.
1089  */
1090 static void
1091 xpc_die_deactivate(void)
1092 {
1093         struct xpc_partition *part;
1094         short partid;
1095         int any_engaged;
1096         long keep_waiting;
1097         long wait_to_print;
1098
1099         if (cmpxchg(&xpc_die_disconnecting, 0, 1))
1100                 return;
1101
1102         /* keep xpc_hb_checker thread from doing anything (just in case) */
1103         xpc_exiting = 1;
1104
1105         xpc_arch_ops.disallow_all_hbs();   /*indicate we're deactivated */
1106
1107         for (partid = 0; partid < xp_max_npartitions; partid++) {
1108                 part = &xpc_partitions[partid];
1109
1110                 if (xpc_arch_ops.partition_engaged(partid) ||
1111                     part->act_state != XPC_P_AS_INACTIVE) {
1112                         xpc_arch_ops.request_partition_deactivation(part);
1113                         xpc_arch_ops.indicate_partition_disengaged(part);
1114                 }
1115         }
1116
1117         /*
1118          * Though we requested that all other partitions deactivate from us,
1119          * we only wait until they've all disengaged or we've reached the
1120          * defined timelimit.
1121          *
1122          * Given that one iteration through the following while-loop takes
1123          * approximately 200 microseconds, calculate the #of loops to take
1124          * before bailing and the #of loops before printing a waiting message.
1125          */
1126         keep_waiting = xpc_disengage_timelimit * 1000 * 5;
1127         wait_to_print = XPC_DEACTIVATE_PRINTMSG_INTERVAL * 1000 * 5;
1128
1129         while (1) {
1130                 any_engaged = xpc_arch_ops.any_partition_engaged();
1131                 if (!any_engaged) {
1132                         dev_info(xpc_part, "all partitions have deactivated\n");
1133                         break;
1134                 }
1135
1136                 if (!keep_waiting--) {
1137                         for (partid = 0; partid < xp_max_npartitions;
1138                              partid++) {
1139                                 if (xpc_arch_ops.partition_engaged(partid)) {
1140                                         dev_info(xpc_part, "deactivate from "
1141                                                  "remote partition %d timed "
1142                                                  "out\n", partid);
1143                                 }
1144                         }
1145                         break;
1146                 }
1147
1148                 if (!wait_to_print--) {
1149                         dev_info(xpc_part, "waiting for remote partitions to "
1150                                  "deactivate, timeout in %ld seconds\n",
1151                                  keep_waiting / (1000 * 5));
1152                         wait_to_print = XPC_DEACTIVATE_PRINTMSG_INTERVAL *
1153                             1000 * 5;
1154                 }
1155
1156                 udelay(200);
1157         }
1158 }
1159
1160 /*
1161  * This function is called when the system is being restarted or halted due
1162  * to some sort of system failure. If this is the case we need to notify the
1163  * other partitions to disengage from all references to our memory.
1164  * This function can also be called when our heartbeater could be offlined
1165  * for a time. In this case we need to notify other partitions to not worry
1166  * about the lack of a heartbeat.
1167  */
1168 static int
1169 xpc_system_die(struct notifier_block *nb, unsigned long event, void *_die_args)
1170 {
1171 #ifdef CONFIG_IA64              /* !!! temporary kludge */
1172         switch (event) {
1173         case DIE_MACHINE_RESTART:
1174         case DIE_MACHINE_HALT:
1175                 xpc_die_deactivate();
1176                 break;
1177
1178         case DIE_KDEBUG_ENTER:
1179                 /* Should lack of heartbeat be ignored by other partitions? */
1180                 if (!xpc_kdebug_ignore)
1181                         break;
1182
1183                 /* fall through */
1184         case DIE_MCA_MONARCH_ENTER:
1185         case DIE_INIT_MONARCH_ENTER:
1186                 xpc_arch_ops.offline_heartbeat();
1187                 break;
1188
1189         case DIE_KDEBUG_LEAVE:
1190                 /* Is lack of heartbeat being ignored by other partitions? */
1191                 if (!xpc_kdebug_ignore)
1192                         break;
1193
1194                 /* fall through */
1195         case DIE_MCA_MONARCH_LEAVE:
1196         case DIE_INIT_MONARCH_LEAVE:
1197                 xpc_arch_ops.online_heartbeat();
1198                 break;
1199         }
1200 #else
1201         struct die_args *die_args = _die_args;
1202
1203         switch (event) {
1204         case DIE_TRAP:
1205                 if (die_args->trapnr == X86_TRAP_DF)
1206                         xpc_die_deactivate();
1207
1208                 if (((die_args->trapnr == X86_TRAP_MF) ||
1209                      (die_args->trapnr == X86_TRAP_XF)) &&
1210                     !user_mode(die_args->regs))
1211                         xpc_die_deactivate();
1212
1213                 break;
1214         case DIE_INT3:
1215         case DIE_DEBUG:
1216                 break;
1217         case DIE_OOPS:
1218         case DIE_GPF:
1219         default:
1220                 xpc_die_deactivate();
1221         }
1222 #endif
1223
1224         return NOTIFY_DONE;
1225 }
1226
1227 int __init
1228 xpc_init(void)
1229 {
1230         int ret;
1231         struct task_struct *kthread;
1232
1233         dev_set_name(xpc_part, "part");
1234         dev_set_name(xpc_chan, "chan");
1235
1236         if (is_shub()) {
1237                 /*
1238                  * The ia64-sn2 architecture supports at most 64 partitions.
1239                  * And the inability to unregister remote amos restricts us
1240                  * further to only support exactly 64 partitions on this
1241                  * architecture, no less.
1242                  */
1243                 if (xp_max_npartitions != 64) {
1244                         dev_err(xpc_part, "max #of partitions not set to 64\n");
1245                         ret = -EINVAL;
1246                 } else {
1247                         ret = xpc_init_sn2();
1248                 }
1249
1250         } else if (is_uv()) {
1251                 ret = xpc_init_uv();
1252
1253         } else {
1254                 ret = -ENODEV;
1255         }
1256
1257         if (ret != 0)
1258                 return ret;
1259
1260         ret = xpc_setup_partitions();
1261         if (ret != 0) {
1262                 dev_err(xpc_part, "can't get memory for partition structure\n");
1263                 goto out_1;
1264         }
1265
1266         xpc_sysctl = register_sysctl_table(xpc_sys_dir);
1267
1268         /*
1269          * Fill the partition reserved page with the information needed by
1270          * other partitions to discover we are alive and establish initial
1271          * communications.
1272          */
1273         ret = xpc_setup_rsvd_page();
1274         if (ret != 0) {
1275                 dev_err(xpc_part, "can't setup our reserved page\n");
1276                 goto out_2;
1277         }
1278
1279         /* add ourselves to the reboot_notifier_list */
1280         ret = register_reboot_notifier(&xpc_reboot_notifier);
1281         if (ret != 0)
1282                 dev_warn(xpc_part, "can't register reboot notifier\n");
1283
1284         /* add ourselves to the die_notifier list */
1285         ret = register_die_notifier(&xpc_die_notifier);
1286         if (ret != 0)
1287                 dev_warn(xpc_part, "can't register die notifier\n");
1288
1289         /*
1290          * The real work-horse behind xpc.  This processes incoming
1291          * interrupts and monitors remote heartbeats.
1292          */
1293         kthread = kthread_run(xpc_hb_checker, NULL, XPC_HB_CHECK_THREAD_NAME);
1294         if (IS_ERR(kthread)) {
1295                 dev_err(xpc_part, "failed while forking hb check thread\n");
1296                 ret = -EBUSY;
1297                 goto out_3;
1298         }
1299
1300         /*
1301          * Startup a thread that will attempt to discover other partitions to
1302          * activate based on info provided by SAL. This new thread is short
1303          * lived and will exit once discovery is complete.
1304          */
1305         kthread = kthread_run(xpc_initiate_discovery, NULL,
1306                               XPC_DISCOVERY_THREAD_NAME);
1307         if (IS_ERR(kthread)) {
1308                 dev_err(xpc_part, "failed while forking discovery thread\n");
1309
1310                 /* mark this new thread as a non-starter */
1311                 complete(&xpc_discovery_exited);
1312
1313                 xpc_do_exit(xpUnloading);
1314                 return -EBUSY;
1315         }
1316
1317         /* set the interface to point at XPC's functions */
1318         xpc_set_interface(xpc_initiate_connect, xpc_initiate_disconnect,
1319                           xpc_initiate_send, xpc_initiate_send_notify,
1320                           xpc_initiate_received, xpc_initiate_partid_to_nasids);
1321
1322         return 0;
1323
1324         /* initialization was not successful */
1325 out_3:
1326         xpc_teardown_rsvd_page();
1327
1328         (void)unregister_die_notifier(&xpc_die_notifier);
1329         (void)unregister_reboot_notifier(&xpc_reboot_notifier);
1330 out_2:
1331         if (xpc_sysctl)
1332                 unregister_sysctl_table(xpc_sysctl);
1333
1334         xpc_teardown_partitions();
1335 out_1:
1336         if (is_shub())
1337                 xpc_exit_sn2();
1338         else if (is_uv())
1339                 xpc_exit_uv();
1340         return ret;
1341 }
1342
1343 module_init(xpc_init);
1344
1345 void __exit
1346 xpc_exit(void)
1347 {
1348         xpc_do_exit(xpUnloading);
1349 }
1350
1351 module_exit(xpc_exit);
1352
1353 MODULE_AUTHOR("Silicon Graphics, Inc.");
1354 MODULE_DESCRIPTION("Cross Partition Communication (XPC) support");
1355 MODULE_LICENSE("GPL");
1356
1357 module_param(xpc_hb_interval, int, 0);
1358 MODULE_PARM_DESC(xpc_hb_interval, "Number of seconds between "
1359                  "heartbeat increments.");
1360
1361 module_param(xpc_hb_check_interval, int, 0);
1362 MODULE_PARM_DESC(xpc_hb_check_interval, "Number of seconds between "
1363                  "heartbeat checks.");
1364
1365 module_param(xpc_disengage_timelimit, int, 0);
1366 MODULE_PARM_DESC(xpc_disengage_timelimit, "Number of seconds to wait "
1367                  "for disengage to complete.");
1368
1369 module_param(xpc_kdebug_ignore, int, 0);
1370 MODULE_PARM_DESC(xpc_kdebug_ignore, "Should lack of heartbeat be ignored by "
1371                  "other partitions when dropping into kdebug.");