Merge tag 'upstream-5.3-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rw...
[linux-2.6-block.git] / drivers / mfd / db8500-prcmu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * DB8500 PRCM Unit driver
4  *
5  * Copyright (C) STMicroelectronics 2009
6  * Copyright (C) ST-Ericsson SA 2010
7  *
8  * Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com>
9  * Author: Sundar Iyer <sundar.iyer@stericsson.com>
10  * Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com>
11  *
12  * U8500 PRCM Unit interface driver
13  */
14 #include <linux/init.h>
15 #include <linux/export.h>
16 #include <linux/kernel.h>
17 #include <linux/delay.h>
18 #include <linux/errno.h>
19 #include <linux/err.h>
20 #include <linux/spinlock.h>
21 #include <linux/io.h>
22 #include <linux/slab.h>
23 #include <linux/mutex.h>
24 #include <linux/completion.h>
25 #include <linux/irq.h>
26 #include <linux/jiffies.h>
27 #include <linux/bitops.h>
28 #include <linux/fs.h>
29 #include <linux/of.h>
30 #include <linux/of_irq.h>
31 #include <linux/platform_device.h>
32 #include <linux/uaccess.h>
33 #include <linux/mfd/core.h>
34 #include <linux/mfd/dbx500-prcmu.h>
35 #include <linux/mfd/abx500/ab8500.h>
36 #include <linux/regulator/db8500-prcmu.h>
37 #include <linux/regulator/machine.h>
38 #include <linux/platform_data/ux500_wdt.h>
39 #include <linux/platform_data/db8500_thermal.h>
40 #include "dbx500-prcmu-regs.h"
41
42 /* Index of different voltages to be used when accessing AVSData */
43 #define PRCM_AVS_BASE           0x2FC
44 #define PRCM_AVS_VBB_RET        (PRCM_AVS_BASE + 0x0)
45 #define PRCM_AVS_VBB_MAX_OPP    (PRCM_AVS_BASE + 0x1)
46 #define PRCM_AVS_VBB_100_OPP    (PRCM_AVS_BASE + 0x2)
47 #define PRCM_AVS_VBB_50_OPP     (PRCM_AVS_BASE + 0x3)
48 #define PRCM_AVS_VARM_MAX_OPP   (PRCM_AVS_BASE + 0x4)
49 #define PRCM_AVS_VARM_100_OPP   (PRCM_AVS_BASE + 0x5)
50 #define PRCM_AVS_VARM_50_OPP    (PRCM_AVS_BASE + 0x6)
51 #define PRCM_AVS_VARM_RET       (PRCM_AVS_BASE + 0x7)
52 #define PRCM_AVS_VAPE_100_OPP   (PRCM_AVS_BASE + 0x8)
53 #define PRCM_AVS_VAPE_50_OPP    (PRCM_AVS_BASE + 0x9)
54 #define PRCM_AVS_VMOD_100_OPP   (PRCM_AVS_BASE + 0xA)
55 #define PRCM_AVS_VMOD_50_OPP    (PRCM_AVS_BASE + 0xB)
56 #define PRCM_AVS_VSAFE          (PRCM_AVS_BASE + 0xC)
57
58 #define PRCM_AVS_VOLTAGE                0
59 #define PRCM_AVS_VOLTAGE_MASK           0x3f
60 #define PRCM_AVS_ISSLOWSTARTUP          6
61 #define PRCM_AVS_ISSLOWSTARTUP_MASK     (1 << PRCM_AVS_ISSLOWSTARTUP)
62 #define PRCM_AVS_ISMODEENABLE           7
63 #define PRCM_AVS_ISMODEENABLE_MASK      (1 << PRCM_AVS_ISMODEENABLE)
64
65 #define PRCM_BOOT_STATUS        0xFFF
66 #define PRCM_ROMCODE_A2P        0xFFE
67 #define PRCM_ROMCODE_P2A        0xFFD
68 #define PRCM_XP70_CUR_PWR_STATE 0xFFC      /* 4 BYTES */
69
70 #define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */
71
72 #define _PRCM_MBOX_HEADER               0xFE8 /* 16 bytes */
73 #define PRCM_MBOX_HEADER_REQ_MB0        (_PRCM_MBOX_HEADER + 0x0)
74 #define PRCM_MBOX_HEADER_REQ_MB1        (_PRCM_MBOX_HEADER + 0x1)
75 #define PRCM_MBOX_HEADER_REQ_MB2        (_PRCM_MBOX_HEADER + 0x2)
76 #define PRCM_MBOX_HEADER_REQ_MB3        (_PRCM_MBOX_HEADER + 0x3)
77 #define PRCM_MBOX_HEADER_REQ_MB4        (_PRCM_MBOX_HEADER + 0x4)
78 #define PRCM_MBOX_HEADER_REQ_MB5        (_PRCM_MBOX_HEADER + 0x5)
79 #define PRCM_MBOX_HEADER_ACK_MB0        (_PRCM_MBOX_HEADER + 0x8)
80
81 /* Req Mailboxes */
82 #define PRCM_REQ_MB0 0xFDC /* 12 bytes  */
83 #define PRCM_REQ_MB1 0xFD0 /* 12 bytes  */
84 #define PRCM_REQ_MB2 0xFC0 /* 16 bytes  */
85 #define PRCM_REQ_MB3 0xE4C /* 372 bytes  */
86 #define PRCM_REQ_MB4 0xE48 /* 4 bytes  */
87 #define PRCM_REQ_MB5 0xE44 /* 4 bytes  */
88
89 /* Ack Mailboxes */
90 #define PRCM_ACK_MB0 0xE08 /* 52 bytes  */
91 #define PRCM_ACK_MB1 0xE04 /* 4 bytes */
92 #define PRCM_ACK_MB2 0xE00 /* 4 bytes */
93 #define PRCM_ACK_MB3 0xDFC /* 4 bytes */
94 #define PRCM_ACK_MB4 0xDF8 /* 4 bytes */
95 #define PRCM_ACK_MB5 0xDF4 /* 4 bytes */
96
97 /* Mailbox 0 headers */
98 #define MB0H_POWER_STATE_TRANS          0
99 #define MB0H_CONFIG_WAKEUPS_EXE         1
100 #define MB0H_READ_WAKEUP_ACK            3
101 #define MB0H_CONFIG_WAKEUPS_SLEEP       4
102
103 #define MB0H_WAKEUP_EXE 2
104 #define MB0H_WAKEUP_SLEEP 5
105
106 /* Mailbox 0 REQs */
107 #define PRCM_REQ_MB0_AP_POWER_STATE     (PRCM_REQ_MB0 + 0x0)
108 #define PRCM_REQ_MB0_AP_PLL_STATE       (PRCM_REQ_MB0 + 0x1)
109 #define PRCM_REQ_MB0_ULP_CLOCK_STATE    (PRCM_REQ_MB0 + 0x2)
110 #define PRCM_REQ_MB0_DO_NOT_WFI         (PRCM_REQ_MB0 + 0x3)
111 #define PRCM_REQ_MB0_WAKEUP_8500        (PRCM_REQ_MB0 + 0x4)
112 #define PRCM_REQ_MB0_WAKEUP_4500        (PRCM_REQ_MB0 + 0x8)
113
114 /* Mailbox 0 ACKs */
115 #define PRCM_ACK_MB0_AP_PWRSTTR_STATUS  (PRCM_ACK_MB0 + 0x0)
116 #define PRCM_ACK_MB0_READ_POINTER       (PRCM_ACK_MB0 + 0x1)
117 #define PRCM_ACK_MB0_WAKEUP_0_8500      (PRCM_ACK_MB0 + 0x4)
118 #define PRCM_ACK_MB0_WAKEUP_0_4500      (PRCM_ACK_MB0 + 0x8)
119 #define PRCM_ACK_MB0_WAKEUP_1_8500      (PRCM_ACK_MB0 + 0x1C)
120 #define PRCM_ACK_MB0_WAKEUP_1_4500      (PRCM_ACK_MB0 + 0x20)
121 #define PRCM_ACK_MB0_EVENT_4500_NUMBERS 20
122
123 /* Mailbox 1 headers */
124 #define MB1H_ARM_APE_OPP 0x0
125 #define MB1H_RESET_MODEM 0x2
126 #define MB1H_REQUEST_APE_OPP_100_VOLT 0x3
127 #define MB1H_RELEASE_APE_OPP_100_VOLT 0x4
128 #define MB1H_RELEASE_USB_WAKEUP 0x5
129 #define MB1H_PLL_ON_OFF 0x6
130
131 /* Mailbox 1 Requests */
132 #define PRCM_REQ_MB1_ARM_OPP                    (PRCM_REQ_MB1 + 0x0)
133 #define PRCM_REQ_MB1_APE_OPP                    (PRCM_REQ_MB1 + 0x1)
134 #define PRCM_REQ_MB1_PLL_ON_OFF                 (PRCM_REQ_MB1 + 0x4)
135 #define PLL_SOC0_OFF    0x1
136 #define PLL_SOC0_ON     0x2
137 #define PLL_SOC1_OFF    0x4
138 #define PLL_SOC1_ON     0x8
139
140 /* Mailbox 1 ACKs */
141 #define PRCM_ACK_MB1_CURRENT_ARM_OPP    (PRCM_ACK_MB1 + 0x0)
142 #define PRCM_ACK_MB1_CURRENT_APE_OPP    (PRCM_ACK_MB1 + 0x1)
143 #define PRCM_ACK_MB1_APE_VOLTAGE_STATUS (PRCM_ACK_MB1 + 0x2)
144 #define PRCM_ACK_MB1_DVFS_STATUS        (PRCM_ACK_MB1 + 0x3)
145
146 /* Mailbox 2 headers */
147 #define MB2H_DPS        0x0
148 #define MB2H_AUTO_PWR   0x1
149
150 /* Mailbox 2 REQs */
151 #define PRCM_REQ_MB2_SVA_MMDSP          (PRCM_REQ_MB2 + 0x0)
152 #define PRCM_REQ_MB2_SVA_PIPE           (PRCM_REQ_MB2 + 0x1)
153 #define PRCM_REQ_MB2_SIA_MMDSP          (PRCM_REQ_MB2 + 0x2)
154 #define PRCM_REQ_MB2_SIA_PIPE           (PRCM_REQ_MB2 + 0x3)
155 #define PRCM_REQ_MB2_SGA                (PRCM_REQ_MB2 + 0x4)
156 #define PRCM_REQ_MB2_B2R2_MCDE          (PRCM_REQ_MB2 + 0x5)
157 #define PRCM_REQ_MB2_ESRAM12            (PRCM_REQ_MB2 + 0x6)
158 #define PRCM_REQ_MB2_ESRAM34            (PRCM_REQ_MB2 + 0x7)
159 #define PRCM_REQ_MB2_AUTO_PM_SLEEP      (PRCM_REQ_MB2 + 0x8)
160 #define PRCM_REQ_MB2_AUTO_PM_IDLE       (PRCM_REQ_MB2 + 0xC)
161
162 /* Mailbox 2 ACKs */
163 #define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0)
164 #define HWACC_PWR_ST_OK 0xFE
165
166 /* Mailbox 3 headers */
167 #define MB3H_ANC        0x0
168 #define MB3H_SIDETONE   0x1
169 #define MB3H_SYSCLK     0xE
170
171 /* Mailbox 3 Requests */
172 #define PRCM_REQ_MB3_ANC_FIR_COEFF      (PRCM_REQ_MB3 + 0x0)
173 #define PRCM_REQ_MB3_ANC_IIR_COEFF      (PRCM_REQ_MB3 + 0x20)
174 #define PRCM_REQ_MB3_ANC_SHIFTER        (PRCM_REQ_MB3 + 0x60)
175 #define PRCM_REQ_MB3_ANC_WARP           (PRCM_REQ_MB3 + 0x64)
176 #define PRCM_REQ_MB3_SIDETONE_FIR_GAIN  (PRCM_REQ_MB3 + 0x68)
177 #define PRCM_REQ_MB3_SIDETONE_FIR_COEFF (PRCM_REQ_MB3 + 0x6C)
178 #define PRCM_REQ_MB3_SYSCLK_MGT         (PRCM_REQ_MB3 + 0x16C)
179
180 /* Mailbox 4 headers */
181 #define MB4H_DDR_INIT   0x0
182 #define MB4H_MEM_ST     0x1
183 #define MB4H_HOTDOG     0x12
184 #define MB4H_HOTMON     0x13
185 #define MB4H_HOT_PERIOD 0x14
186 #define MB4H_A9WDOG_CONF 0x16
187 #define MB4H_A9WDOG_EN   0x17
188 #define MB4H_A9WDOG_DIS  0x18
189 #define MB4H_A9WDOG_LOAD 0x19
190 #define MB4H_A9WDOG_KICK 0x20
191
192 /* Mailbox 4 Requests */
193 #define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE       (PRCM_REQ_MB4 + 0x0)
194 #define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE        (PRCM_REQ_MB4 + 0x1)
195 #define PRCM_REQ_MB4_ESRAM0_ST                  (PRCM_REQ_MB4 + 0x3)
196 #define PRCM_REQ_MB4_HOTDOG_THRESHOLD           (PRCM_REQ_MB4 + 0x0)
197 #define PRCM_REQ_MB4_HOTMON_LOW                 (PRCM_REQ_MB4 + 0x0)
198 #define PRCM_REQ_MB4_HOTMON_HIGH                (PRCM_REQ_MB4 + 0x1)
199 #define PRCM_REQ_MB4_HOTMON_CONFIG              (PRCM_REQ_MB4 + 0x2)
200 #define PRCM_REQ_MB4_HOT_PERIOD                 (PRCM_REQ_MB4 + 0x0)
201 #define HOTMON_CONFIG_LOW                       BIT(0)
202 #define HOTMON_CONFIG_HIGH                      BIT(1)
203 #define PRCM_REQ_MB4_A9WDOG_0                   (PRCM_REQ_MB4 + 0x0)
204 #define PRCM_REQ_MB4_A9WDOG_1                   (PRCM_REQ_MB4 + 0x1)
205 #define PRCM_REQ_MB4_A9WDOG_2                   (PRCM_REQ_MB4 + 0x2)
206 #define PRCM_REQ_MB4_A9WDOG_3                   (PRCM_REQ_MB4 + 0x3)
207 #define A9WDOG_AUTO_OFF_EN                      BIT(7)
208 #define A9WDOG_AUTO_OFF_DIS                     0
209 #define A9WDOG_ID_MASK                          0xf
210
211 /* Mailbox 5 Requests */
212 #define PRCM_REQ_MB5_I2C_SLAVE_OP       (PRCM_REQ_MB5 + 0x0)
213 #define PRCM_REQ_MB5_I2C_HW_BITS        (PRCM_REQ_MB5 + 0x1)
214 #define PRCM_REQ_MB5_I2C_REG            (PRCM_REQ_MB5 + 0x2)
215 #define PRCM_REQ_MB5_I2C_VAL            (PRCM_REQ_MB5 + 0x3)
216 #define PRCMU_I2C_WRITE(slave) (((slave) << 1) | BIT(6))
217 #define PRCMU_I2C_READ(slave) (((slave) << 1) | BIT(0) | BIT(6))
218 #define PRCMU_I2C_STOP_EN               BIT(3)
219
220 /* Mailbox 5 ACKs */
221 #define PRCM_ACK_MB5_I2C_STATUS (PRCM_ACK_MB5 + 0x1)
222 #define PRCM_ACK_MB5_I2C_VAL    (PRCM_ACK_MB5 + 0x3)
223 #define I2C_WR_OK 0x1
224 #define I2C_RD_OK 0x2
225
226 #define NUM_MB 8
227 #define MBOX_BIT BIT
228 #define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1)
229
230 /*
231  * Wakeups/IRQs
232  */
233
234 #define WAKEUP_BIT_RTC BIT(0)
235 #define WAKEUP_BIT_RTT0 BIT(1)
236 #define WAKEUP_BIT_RTT1 BIT(2)
237 #define WAKEUP_BIT_HSI0 BIT(3)
238 #define WAKEUP_BIT_HSI1 BIT(4)
239 #define WAKEUP_BIT_CA_WAKE BIT(5)
240 #define WAKEUP_BIT_USB BIT(6)
241 #define WAKEUP_BIT_ABB BIT(7)
242 #define WAKEUP_BIT_ABB_FIFO BIT(8)
243 #define WAKEUP_BIT_SYSCLK_OK BIT(9)
244 #define WAKEUP_BIT_CA_SLEEP BIT(10)
245 #define WAKEUP_BIT_AC_WAKE_ACK BIT(11)
246 #define WAKEUP_BIT_SIDE_TONE_OK BIT(12)
247 #define WAKEUP_BIT_ANC_OK BIT(13)
248 #define WAKEUP_BIT_SW_ERROR BIT(14)
249 #define WAKEUP_BIT_AC_SLEEP_ACK BIT(15)
250 #define WAKEUP_BIT_ARM BIT(17)
251 #define WAKEUP_BIT_HOTMON_LOW BIT(18)
252 #define WAKEUP_BIT_HOTMON_HIGH BIT(19)
253 #define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20)
254 #define WAKEUP_BIT_GPIO0 BIT(23)
255 #define WAKEUP_BIT_GPIO1 BIT(24)
256 #define WAKEUP_BIT_GPIO2 BIT(25)
257 #define WAKEUP_BIT_GPIO3 BIT(26)
258 #define WAKEUP_BIT_GPIO4 BIT(27)
259 #define WAKEUP_BIT_GPIO5 BIT(28)
260 #define WAKEUP_BIT_GPIO6 BIT(29)
261 #define WAKEUP_BIT_GPIO7 BIT(30)
262 #define WAKEUP_BIT_GPIO8 BIT(31)
263
264 static struct {
265         bool valid;
266         struct prcmu_fw_version version;
267 } fw_info;
268
269 static struct irq_domain *db8500_irq_domain;
270
271 /*
272  * This vector maps irq numbers to the bits in the bit field used in
273  * communication with the PRCMU firmware.
274  *
275  * The reason for having this is to keep the irq numbers contiguous even though
276  * the bits in the bit field are not. (The bits also have a tendency to move
277  * around, to further complicate matters.)
278  */
279 #define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name))
280 #define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name)
281
282 #define IRQ_PRCMU_RTC 0
283 #define IRQ_PRCMU_RTT0 1
284 #define IRQ_PRCMU_RTT1 2
285 #define IRQ_PRCMU_HSI0 3
286 #define IRQ_PRCMU_HSI1 4
287 #define IRQ_PRCMU_CA_WAKE 5
288 #define IRQ_PRCMU_USB 6
289 #define IRQ_PRCMU_ABB 7
290 #define IRQ_PRCMU_ABB_FIFO 8
291 #define IRQ_PRCMU_ARM 9
292 #define IRQ_PRCMU_MODEM_SW_RESET_REQ 10
293 #define IRQ_PRCMU_GPIO0 11
294 #define IRQ_PRCMU_GPIO1 12
295 #define IRQ_PRCMU_GPIO2 13
296 #define IRQ_PRCMU_GPIO3 14
297 #define IRQ_PRCMU_GPIO4 15
298 #define IRQ_PRCMU_GPIO5 16
299 #define IRQ_PRCMU_GPIO6 17
300 #define IRQ_PRCMU_GPIO7 18
301 #define IRQ_PRCMU_GPIO8 19
302 #define IRQ_PRCMU_CA_SLEEP 20
303 #define IRQ_PRCMU_HOTMON_LOW 21
304 #define IRQ_PRCMU_HOTMON_HIGH 22
305 #define NUM_PRCMU_WAKEUPS 23
306
307 static u32 prcmu_irq_bit[NUM_PRCMU_WAKEUPS] = {
308         IRQ_ENTRY(RTC),
309         IRQ_ENTRY(RTT0),
310         IRQ_ENTRY(RTT1),
311         IRQ_ENTRY(HSI0),
312         IRQ_ENTRY(HSI1),
313         IRQ_ENTRY(CA_WAKE),
314         IRQ_ENTRY(USB),
315         IRQ_ENTRY(ABB),
316         IRQ_ENTRY(ABB_FIFO),
317         IRQ_ENTRY(CA_SLEEP),
318         IRQ_ENTRY(ARM),
319         IRQ_ENTRY(HOTMON_LOW),
320         IRQ_ENTRY(HOTMON_HIGH),
321         IRQ_ENTRY(MODEM_SW_RESET_REQ),
322         IRQ_ENTRY(GPIO0),
323         IRQ_ENTRY(GPIO1),
324         IRQ_ENTRY(GPIO2),
325         IRQ_ENTRY(GPIO3),
326         IRQ_ENTRY(GPIO4),
327         IRQ_ENTRY(GPIO5),
328         IRQ_ENTRY(GPIO6),
329         IRQ_ENTRY(GPIO7),
330         IRQ_ENTRY(GPIO8)
331 };
332
333 #define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1)
334 #define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name)
335 static u32 prcmu_wakeup_bit[NUM_PRCMU_WAKEUP_INDICES] = {
336         WAKEUP_ENTRY(RTC),
337         WAKEUP_ENTRY(RTT0),
338         WAKEUP_ENTRY(RTT1),
339         WAKEUP_ENTRY(HSI0),
340         WAKEUP_ENTRY(HSI1),
341         WAKEUP_ENTRY(USB),
342         WAKEUP_ENTRY(ABB),
343         WAKEUP_ENTRY(ABB_FIFO),
344         WAKEUP_ENTRY(ARM)
345 };
346
347 /*
348  * mb0_transfer - state needed for mailbox 0 communication.
349  * @lock:               The transaction lock.
350  * @dbb_events_lock:    A lock used to handle concurrent access to (parts of)
351  *                      the request data.
352  * @mask_work:          Work structure used for (un)masking wakeup interrupts.
353  * @req:                Request data that need to persist between requests.
354  */
355 static struct {
356         spinlock_t lock;
357         spinlock_t dbb_irqs_lock;
358         struct work_struct mask_work;
359         struct mutex ac_wake_lock;
360         struct completion ac_wake_work;
361         struct {
362                 u32 dbb_irqs;
363                 u32 dbb_wakeups;
364                 u32 abb_events;
365         } req;
366 } mb0_transfer;
367
368 /*
369  * mb1_transfer - state needed for mailbox 1 communication.
370  * @lock:       The transaction lock.
371  * @work:       The transaction completion structure.
372  * @ape_opp:    The current APE OPP.
373  * @ack:        Reply ("acknowledge") data.
374  */
375 static struct {
376         struct mutex lock;
377         struct completion work;
378         u8 ape_opp;
379         struct {
380                 u8 header;
381                 u8 arm_opp;
382                 u8 ape_opp;
383                 u8 ape_voltage_status;
384         } ack;
385 } mb1_transfer;
386
387 /*
388  * mb2_transfer - state needed for mailbox 2 communication.
389  * @lock:            The transaction lock.
390  * @work:            The transaction completion structure.
391  * @auto_pm_lock:    The autonomous power management configuration lock.
392  * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled.
393  * @req:             Request data that need to persist between requests.
394  * @ack:             Reply ("acknowledge") data.
395  */
396 static struct {
397         struct mutex lock;
398         struct completion work;
399         spinlock_t auto_pm_lock;
400         bool auto_pm_enabled;
401         struct {
402                 u8 status;
403         } ack;
404 } mb2_transfer;
405
406 /*
407  * mb3_transfer - state needed for mailbox 3 communication.
408  * @lock:               The request lock.
409  * @sysclk_lock:        A lock used to handle concurrent sysclk requests.
410  * @sysclk_work:        Work structure used for sysclk requests.
411  */
412 static struct {
413         spinlock_t lock;
414         struct mutex sysclk_lock;
415         struct completion sysclk_work;
416 } mb3_transfer;
417
418 /*
419  * mb4_transfer - state needed for mailbox 4 communication.
420  * @lock:       The transaction lock.
421  * @work:       The transaction completion structure.
422  */
423 static struct {
424         struct mutex lock;
425         struct completion work;
426 } mb4_transfer;
427
428 /*
429  * mb5_transfer - state needed for mailbox 5 communication.
430  * @lock:       The transaction lock.
431  * @work:       The transaction completion structure.
432  * @ack:        Reply ("acknowledge") data.
433  */
434 static struct {
435         struct mutex lock;
436         struct completion work;
437         struct {
438                 u8 status;
439                 u8 value;
440         } ack;
441 } mb5_transfer;
442
443 static atomic_t ac_wake_req_state = ATOMIC_INIT(0);
444
445 /* Spinlocks */
446 static DEFINE_SPINLOCK(prcmu_lock);
447 static DEFINE_SPINLOCK(clkout_lock);
448
449 /* Global var to runtime determine TCDM base for v2 or v1 */
450 static __iomem void *tcdm_base;
451 static __iomem void *prcmu_base;
452
453 struct clk_mgt {
454         u32 offset;
455         u32 pllsw;
456         int branch;
457         bool clk38div;
458 };
459
460 enum {
461         PLL_RAW,
462         PLL_FIX,
463         PLL_DIV
464 };
465
466 static DEFINE_SPINLOCK(clk_mgt_lock);
467
468 #define CLK_MGT_ENTRY(_name, _branch, _clk38div)[PRCMU_##_name] = \
469         { (PRCM_##_name##_MGT), 0 , _branch, _clk38div}
470 static struct clk_mgt clk_mgt[PRCMU_NUM_REG_CLOCKS] = {
471         CLK_MGT_ENTRY(SGACLK, PLL_DIV, false),
472         CLK_MGT_ENTRY(UARTCLK, PLL_FIX, true),
473         CLK_MGT_ENTRY(MSP02CLK, PLL_FIX, true),
474         CLK_MGT_ENTRY(MSP1CLK, PLL_FIX, true),
475         CLK_MGT_ENTRY(I2CCLK, PLL_FIX, true),
476         CLK_MGT_ENTRY(SDMMCCLK, PLL_DIV, true),
477         CLK_MGT_ENTRY(SLIMCLK, PLL_FIX, true),
478         CLK_MGT_ENTRY(PER1CLK, PLL_DIV, true),
479         CLK_MGT_ENTRY(PER2CLK, PLL_DIV, true),
480         CLK_MGT_ENTRY(PER3CLK, PLL_DIV, true),
481         CLK_MGT_ENTRY(PER5CLK, PLL_DIV, true),
482         CLK_MGT_ENTRY(PER6CLK, PLL_DIV, true),
483         CLK_MGT_ENTRY(PER7CLK, PLL_DIV, true),
484         CLK_MGT_ENTRY(LCDCLK, PLL_FIX, true),
485         CLK_MGT_ENTRY(BMLCLK, PLL_DIV, true),
486         CLK_MGT_ENTRY(HSITXCLK, PLL_DIV, true),
487         CLK_MGT_ENTRY(HSIRXCLK, PLL_DIV, true),
488         CLK_MGT_ENTRY(HDMICLK, PLL_FIX, false),
489         CLK_MGT_ENTRY(APEATCLK, PLL_DIV, true),
490         CLK_MGT_ENTRY(APETRACECLK, PLL_DIV, true),
491         CLK_MGT_ENTRY(MCDECLK, PLL_DIV, true),
492         CLK_MGT_ENTRY(IPI2CCLK, PLL_FIX, true),
493         CLK_MGT_ENTRY(DSIALTCLK, PLL_FIX, false),
494         CLK_MGT_ENTRY(DMACLK, PLL_DIV, true),
495         CLK_MGT_ENTRY(B2R2CLK, PLL_DIV, true),
496         CLK_MGT_ENTRY(TVCLK, PLL_FIX, true),
497         CLK_MGT_ENTRY(SSPCLK, PLL_FIX, true),
498         CLK_MGT_ENTRY(RNGCLK, PLL_FIX, true),
499         CLK_MGT_ENTRY(UICCCLK, PLL_FIX, false),
500 };
501
502 struct dsiclk {
503         u32 divsel_mask;
504         u32 divsel_shift;
505         u32 divsel;
506 };
507
508 static struct dsiclk dsiclk[2] = {
509         {
510                 .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_MASK,
511                 .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_SHIFT,
512                 .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
513         },
514         {
515                 .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_MASK,
516                 .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_SHIFT,
517                 .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
518         }
519 };
520
521 struct dsiescclk {
522         u32 en;
523         u32 div_mask;
524         u32 div_shift;
525 };
526
527 static struct dsiescclk dsiescclk[3] = {
528         {
529                 .en = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_EN,
530                 .div_mask = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_MASK,
531                 .div_shift = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_SHIFT,
532         },
533         {
534                 .en = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_EN,
535                 .div_mask = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_MASK,
536                 .div_shift = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_SHIFT,
537         },
538         {
539                 .en = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_EN,
540                 .div_mask = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_MASK,
541                 .div_shift = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_SHIFT,
542         }
543 };
544
545
546 /*
547 * Used by MCDE to setup all necessary PRCMU registers
548 */
549 #define PRCMU_RESET_DSIPLL              0x00004000
550 #define PRCMU_UNCLAMP_DSIPLL            0x00400800
551
552 #define PRCMU_CLK_PLL_DIV_SHIFT         0
553 #define PRCMU_CLK_PLL_SW_SHIFT          5
554 #define PRCMU_CLK_38                    (1 << 9)
555 #define PRCMU_CLK_38_SRC                (1 << 10)
556 #define PRCMU_CLK_38_DIV                (1 << 11)
557
558 /* PLLDIV=12, PLLSW=4 (PLLDDR) */
559 #define PRCMU_DSI_CLOCK_SETTING         0x0000008C
560
561 /* DPI 50000000 Hz */
562 #define PRCMU_DPI_CLOCK_SETTING         ((1 << PRCMU_CLK_PLL_SW_SHIFT) | \
563                                           (16 << PRCMU_CLK_PLL_DIV_SHIFT))
564 #define PRCMU_DSI_LP_CLOCK_SETTING      0x00000E00
565
566 /* D=101, N=1, R=4, SELDIV2=0 */
567 #define PRCMU_PLLDSI_FREQ_SETTING       0x00040165
568
569 #define PRCMU_ENABLE_PLLDSI             0x00000001
570 #define PRCMU_DISABLE_PLLDSI            0x00000000
571 #define PRCMU_RELEASE_RESET_DSS         0x0000400C
572 #define PRCMU_DSI_PLLOUT_SEL_SETTING    0x00000202
573 /* ESC clk, div0=1, div1=1, div2=3 */
574 #define PRCMU_ENABLE_ESCAPE_CLOCK_DIV   0x07030101
575 #define PRCMU_DISABLE_ESCAPE_CLOCK_DIV  0x00030101
576 #define PRCMU_DSI_RESET_SW              0x00000007
577
578 #define PRCMU_PLLDSI_LOCKP_LOCKED       0x3
579
580 int db8500_prcmu_enable_dsipll(void)
581 {
582         int i;
583
584         /* Clear DSIPLL_RESETN */
585         writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_CLR);
586         /* Unclamp DSIPLL in/out */
587         writel(PRCMU_UNCLAMP_DSIPLL, PRCM_MMIP_LS_CLAMP_CLR);
588
589         /* Set DSI PLL FREQ */
590         writel(PRCMU_PLLDSI_FREQ_SETTING, PRCM_PLLDSI_FREQ);
591         writel(PRCMU_DSI_PLLOUT_SEL_SETTING, PRCM_DSI_PLLOUT_SEL);
592         /* Enable Escape clocks */
593         writel(PRCMU_ENABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
594
595         /* Start DSI PLL */
596         writel(PRCMU_ENABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
597         /* Reset DSI PLL */
598         writel(PRCMU_DSI_RESET_SW, PRCM_DSI_SW_RESET);
599         for (i = 0; i < 10; i++) {
600                 if ((readl(PRCM_PLLDSI_LOCKP) & PRCMU_PLLDSI_LOCKP_LOCKED)
601                                         == PRCMU_PLLDSI_LOCKP_LOCKED)
602                         break;
603                 udelay(100);
604         }
605         /* Set DSIPLL_RESETN */
606         writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_SET);
607         return 0;
608 }
609
610 int db8500_prcmu_disable_dsipll(void)
611 {
612         /* Disable dsi pll */
613         writel(PRCMU_DISABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
614         /* Disable  escapeclock */
615         writel(PRCMU_DISABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
616         return 0;
617 }
618
619 int db8500_prcmu_set_display_clocks(void)
620 {
621         unsigned long flags;
622
623         spin_lock_irqsave(&clk_mgt_lock, flags);
624
625         /* Grab the HW semaphore. */
626         while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
627                 cpu_relax();
628
629         writel(PRCMU_DSI_CLOCK_SETTING, prcmu_base + PRCM_HDMICLK_MGT);
630         writel(PRCMU_DSI_LP_CLOCK_SETTING, prcmu_base + PRCM_TVCLK_MGT);
631         writel(PRCMU_DPI_CLOCK_SETTING, prcmu_base + PRCM_LCDCLK_MGT);
632
633         /* Release the HW semaphore. */
634         writel(0, PRCM_SEM);
635
636         spin_unlock_irqrestore(&clk_mgt_lock, flags);
637
638         return 0;
639 }
640
641 u32 db8500_prcmu_read(unsigned int reg)
642 {
643         return readl(prcmu_base + reg);
644 }
645
646 void db8500_prcmu_write(unsigned int reg, u32 value)
647 {
648         unsigned long flags;
649
650         spin_lock_irqsave(&prcmu_lock, flags);
651         writel(value, (prcmu_base + reg));
652         spin_unlock_irqrestore(&prcmu_lock, flags);
653 }
654
655 void db8500_prcmu_write_masked(unsigned int reg, u32 mask, u32 value)
656 {
657         u32 val;
658         unsigned long flags;
659
660         spin_lock_irqsave(&prcmu_lock, flags);
661         val = readl(prcmu_base + reg);
662         val = ((val & ~mask) | (value & mask));
663         writel(val, (prcmu_base + reg));
664         spin_unlock_irqrestore(&prcmu_lock, flags);
665 }
666
667 struct prcmu_fw_version *prcmu_get_fw_version(void)
668 {
669         return fw_info.valid ? &fw_info.version : NULL;
670 }
671
672 bool prcmu_has_arm_maxopp(void)
673 {
674         return (readb(tcdm_base + PRCM_AVS_VARM_MAX_OPP) &
675                 PRCM_AVS_ISMODEENABLE_MASK) == PRCM_AVS_ISMODEENABLE_MASK;
676 }
677
678 /**
679  * prcmu_set_rc_a2p - This function is used to run few power state sequences
680  * @val: Value to be set, i.e. transition requested
681  * Returns: 0 on success, -EINVAL on invalid argument
682  *
683  * This function is used to run the following power state sequences -
684  * any state to ApReset,  ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
685  */
686 int prcmu_set_rc_a2p(enum romcode_write val)
687 {
688         if (val < RDY_2_DS || val > RDY_2_XP70_RST)
689                 return -EINVAL;
690         writeb(val, (tcdm_base + PRCM_ROMCODE_A2P));
691         return 0;
692 }
693
694 /**
695  * prcmu_get_rc_p2a - This function is used to get power state sequences
696  * Returns: the power transition that has last happened
697  *
698  * This function can return the following transitions-
699  * any state to ApReset,  ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
700  */
701 enum romcode_read prcmu_get_rc_p2a(void)
702 {
703         return readb(tcdm_base + PRCM_ROMCODE_P2A);
704 }
705
706 /**
707  * prcmu_get_current_mode - Return the current XP70 power mode
708  * Returns: Returns the current AP(ARM) power mode: init,
709  * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset
710  */
711 enum ap_pwrst prcmu_get_xp70_current_state(void)
712 {
713         return readb(tcdm_base + PRCM_XP70_CUR_PWR_STATE);
714 }
715
716 /**
717  * prcmu_config_clkout - Configure one of the programmable clock outputs.
718  * @clkout:     The CLKOUT number (0 or 1).
719  * @source:     The clock to be used (one of the PRCMU_CLKSRC_*).
720  * @div:        The divider to be applied.
721  *
722  * Configures one of the programmable clock outputs (CLKOUTs).
723  * @div should be in the range [1,63] to request a configuration, or 0 to
724  * inform that the configuration is no longer requested.
725  */
726 int prcmu_config_clkout(u8 clkout, u8 source, u8 div)
727 {
728         static int requests[2];
729         int r = 0;
730         unsigned long flags;
731         u32 val;
732         u32 bits;
733         u32 mask;
734         u32 div_mask;
735
736         BUG_ON(clkout > 1);
737         BUG_ON(div > 63);
738         BUG_ON((clkout == 0) && (source > PRCMU_CLKSRC_CLK009));
739
740         if (!div && !requests[clkout])
741                 return -EINVAL;
742
743         if (clkout == 0) {
744                 div_mask = PRCM_CLKOCR_CLKODIV0_MASK;
745                 mask = (PRCM_CLKOCR_CLKODIV0_MASK | PRCM_CLKOCR_CLKOSEL0_MASK);
746                 bits = ((source << PRCM_CLKOCR_CLKOSEL0_SHIFT) |
747                         (div << PRCM_CLKOCR_CLKODIV0_SHIFT));
748         } else {
749                 div_mask = PRCM_CLKOCR_CLKODIV1_MASK;
750                 mask = (PRCM_CLKOCR_CLKODIV1_MASK | PRCM_CLKOCR_CLKOSEL1_MASK |
751                         PRCM_CLKOCR_CLK1TYPE);
752                 bits = ((source << PRCM_CLKOCR_CLKOSEL1_SHIFT) |
753                         (div << PRCM_CLKOCR_CLKODIV1_SHIFT));
754         }
755         bits &= mask;
756
757         spin_lock_irqsave(&clkout_lock, flags);
758
759         val = readl(PRCM_CLKOCR);
760         if (val & div_mask) {
761                 if (div) {
762                         if ((val & mask) != bits) {
763                                 r = -EBUSY;
764                                 goto unlock_and_return;
765                         }
766                 } else {
767                         if ((val & mask & ~div_mask) != bits) {
768                                 r = -EINVAL;
769                                 goto unlock_and_return;
770                         }
771                 }
772         }
773         writel((bits | (val & ~mask)), PRCM_CLKOCR);
774         requests[clkout] += (div ? 1 : -1);
775
776 unlock_and_return:
777         spin_unlock_irqrestore(&clkout_lock, flags);
778
779         return r;
780 }
781
782 int db8500_prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll)
783 {
784         unsigned long flags;
785
786         BUG_ON((state < PRCMU_AP_SLEEP) || (PRCMU_AP_DEEP_IDLE < state));
787
788         spin_lock_irqsave(&mb0_transfer.lock, flags);
789
790         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
791                 cpu_relax();
792
793         writeb(MB0H_POWER_STATE_TRANS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
794         writeb(state, (tcdm_base + PRCM_REQ_MB0_AP_POWER_STATE));
795         writeb((keep_ap_pll ? 1 : 0), (tcdm_base + PRCM_REQ_MB0_AP_PLL_STATE));
796         writeb((keep_ulp_clk ? 1 : 0),
797                 (tcdm_base + PRCM_REQ_MB0_ULP_CLOCK_STATE));
798         writeb(0, (tcdm_base + PRCM_REQ_MB0_DO_NOT_WFI));
799         writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
800
801         spin_unlock_irqrestore(&mb0_transfer.lock, flags);
802
803         return 0;
804 }
805
806 u8 db8500_prcmu_get_power_state_result(void)
807 {
808         return readb(tcdm_base + PRCM_ACK_MB0_AP_PWRSTTR_STATUS);
809 }
810
811 /* This function should only be called while mb0_transfer.lock is held. */
812 static void config_wakeups(void)
813 {
814         const u8 header[2] = {
815                 MB0H_CONFIG_WAKEUPS_EXE,
816                 MB0H_CONFIG_WAKEUPS_SLEEP
817         };
818         static u32 last_dbb_events;
819         static u32 last_abb_events;
820         u32 dbb_events;
821         u32 abb_events;
822         unsigned int i;
823
824         dbb_events = mb0_transfer.req.dbb_irqs | mb0_transfer.req.dbb_wakeups;
825         dbb_events |= (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK);
826
827         abb_events = mb0_transfer.req.abb_events;
828
829         if ((dbb_events == last_dbb_events) && (abb_events == last_abb_events))
830                 return;
831
832         for (i = 0; i < 2; i++) {
833                 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
834                         cpu_relax();
835                 writel(dbb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_8500));
836                 writel(abb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_4500));
837                 writeb(header[i], (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
838                 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
839         }
840         last_dbb_events = dbb_events;
841         last_abb_events = abb_events;
842 }
843
844 void db8500_prcmu_enable_wakeups(u32 wakeups)
845 {
846         unsigned long flags;
847         u32 bits;
848         int i;
849
850         BUG_ON(wakeups != (wakeups & VALID_WAKEUPS));
851
852         for (i = 0, bits = 0; i < NUM_PRCMU_WAKEUP_INDICES; i++) {
853                 if (wakeups & BIT(i))
854                         bits |= prcmu_wakeup_bit[i];
855         }
856
857         spin_lock_irqsave(&mb0_transfer.lock, flags);
858
859         mb0_transfer.req.dbb_wakeups = bits;
860         config_wakeups();
861
862         spin_unlock_irqrestore(&mb0_transfer.lock, flags);
863 }
864
865 void db8500_prcmu_config_abb_event_readout(u32 abb_events)
866 {
867         unsigned long flags;
868
869         spin_lock_irqsave(&mb0_transfer.lock, flags);
870
871         mb0_transfer.req.abb_events = abb_events;
872         config_wakeups();
873
874         spin_unlock_irqrestore(&mb0_transfer.lock, flags);
875 }
876
877 void db8500_prcmu_get_abb_event_buffer(void __iomem **buf)
878 {
879         if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
880                 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_1_4500);
881         else
882                 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_0_4500);
883 }
884
885 /**
886  * db8500_prcmu_set_arm_opp - set the appropriate ARM OPP
887  * @opp: The new ARM operating point to which transition is to be made
888  * Returns: 0 on success, non-zero on failure
889  *
890  * This function sets the the operating point of the ARM.
891  */
892 int db8500_prcmu_set_arm_opp(u8 opp)
893 {
894         int r;
895
896         if (opp < ARM_NO_CHANGE || opp > ARM_EXTCLK)
897                 return -EINVAL;
898
899         r = 0;
900
901         mutex_lock(&mb1_transfer.lock);
902
903         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
904                 cpu_relax();
905
906         writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
907         writeb(opp, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
908         writeb(APE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_APE_OPP));
909
910         writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
911         wait_for_completion(&mb1_transfer.work);
912
913         if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
914                 (mb1_transfer.ack.arm_opp != opp))
915                 r = -EIO;
916
917         mutex_unlock(&mb1_transfer.lock);
918
919         return r;
920 }
921
922 /**
923  * db8500_prcmu_get_arm_opp - get the current ARM OPP
924  *
925  * Returns: the current ARM OPP
926  */
927 int db8500_prcmu_get_arm_opp(void)
928 {
929         return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP);
930 }
931
932 /**
933  * db8500_prcmu_get_ddr_opp - get the current DDR OPP
934  *
935  * Returns: the current DDR OPP
936  */
937 int db8500_prcmu_get_ddr_opp(void)
938 {
939         return readb(PRCM_DDR_SUBSYS_APE_MINBW);
940 }
941
942 /* Divide the frequency of certain clocks by 2 for APE_50_PARTLY_25_OPP. */
943 static void request_even_slower_clocks(bool enable)
944 {
945         u32 clock_reg[] = {
946                 PRCM_ACLK_MGT,
947                 PRCM_DMACLK_MGT
948         };
949         unsigned long flags;
950         unsigned int i;
951
952         spin_lock_irqsave(&clk_mgt_lock, flags);
953
954         /* Grab the HW semaphore. */
955         while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
956                 cpu_relax();
957
958         for (i = 0; i < ARRAY_SIZE(clock_reg); i++) {
959                 u32 val;
960                 u32 div;
961
962                 val = readl(prcmu_base + clock_reg[i]);
963                 div = (val & PRCM_CLK_MGT_CLKPLLDIV_MASK);
964                 if (enable) {
965                         if ((div <= 1) || (div > 15)) {
966                                 pr_err("prcmu: Bad clock divider %d in %s\n",
967                                         div, __func__);
968                                 goto unlock_and_return;
969                         }
970                         div <<= 1;
971                 } else {
972                         if (div <= 2)
973                                 goto unlock_and_return;
974                         div >>= 1;
975                 }
976                 val = ((val & ~PRCM_CLK_MGT_CLKPLLDIV_MASK) |
977                         (div & PRCM_CLK_MGT_CLKPLLDIV_MASK));
978                 writel(val, prcmu_base + clock_reg[i]);
979         }
980
981 unlock_and_return:
982         /* Release the HW semaphore. */
983         writel(0, PRCM_SEM);
984
985         spin_unlock_irqrestore(&clk_mgt_lock, flags);
986 }
987
988 /**
989  * db8500_set_ape_opp - set the appropriate APE OPP
990  * @opp: The new APE operating point to which transition is to be made
991  * Returns: 0 on success, non-zero on failure
992  *
993  * This function sets the operating point of the APE.
994  */
995 int db8500_prcmu_set_ape_opp(u8 opp)
996 {
997         int r = 0;
998
999         if (opp == mb1_transfer.ape_opp)
1000                 return 0;
1001
1002         mutex_lock(&mb1_transfer.lock);
1003
1004         if (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)
1005                 request_even_slower_clocks(false);
1006
1007         if ((opp != APE_100_OPP) && (mb1_transfer.ape_opp != APE_100_OPP))
1008                 goto skip_message;
1009
1010         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1011                 cpu_relax();
1012
1013         writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1014         writeb(ARM_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
1015         writeb(((opp == APE_50_PARTLY_25_OPP) ? APE_50_OPP : opp),
1016                 (tcdm_base + PRCM_REQ_MB1_APE_OPP));
1017
1018         writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1019         wait_for_completion(&mb1_transfer.work);
1020
1021         if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
1022                 (mb1_transfer.ack.ape_opp != opp))
1023                 r = -EIO;
1024
1025 skip_message:
1026         if ((!r && (opp == APE_50_PARTLY_25_OPP)) ||
1027                 (r && (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)))
1028                 request_even_slower_clocks(true);
1029         if (!r)
1030                 mb1_transfer.ape_opp = opp;
1031
1032         mutex_unlock(&mb1_transfer.lock);
1033
1034         return r;
1035 }
1036
1037 /**
1038  * db8500_prcmu_get_ape_opp - get the current APE OPP
1039  *
1040  * Returns: the current APE OPP
1041  */
1042 int db8500_prcmu_get_ape_opp(void)
1043 {
1044         return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP);
1045 }
1046
1047 /**
1048  * db8500_prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage
1049  * @enable: true to request the higher voltage, false to drop a request.
1050  *
1051  * Calls to this function to enable and disable requests must be balanced.
1052  */
1053 int db8500_prcmu_request_ape_opp_100_voltage(bool enable)
1054 {
1055         int r = 0;
1056         u8 header;
1057         static unsigned int requests;
1058
1059         mutex_lock(&mb1_transfer.lock);
1060
1061         if (enable) {
1062                 if (0 != requests++)
1063                         goto unlock_and_return;
1064                 header = MB1H_REQUEST_APE_OPP_100_VOLT;
1065         } else {
1066                 if (requests == 0) {
1067                         r = -EIO;
1068                         goto unlock_and_return;
1069                 } else if (1 != requests--) {
1070                         goto unlock_and_return;
1071                 }
1072                 header = MB1H_RELEASE_APE_OPP_100_VOLT;
1073         }
1074
1075         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1076                 cpu_relax();
1077
1078         writeb(header, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1079
1080         writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1081         wait_for_completion(&mb1_transfer.work);
1082
1083         if ((mb1_transfer.ack.header != header) ||
1084                 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1085                 r = -EIO;
1086
1087 unlock_and_return:
1088         mutex_unlock(&mb1_transfer.lock);
1089
1090         return r;
1091 }
1092
1093 /**
1094  * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup
1095  *
1096  * This function releases the power state requirements of a USB wakeup.
1097  */
1098 int prcmu_release_usb_wakeup_state(void)
1099 {
1100         int r = 0;
1101
1102         mutex_lock(&mb1_transfer.lock);
1103
1104         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1105                 cpu_relax();
1106
1107         writeb(MB1H_RELEASE_USB_WAKEUP,
1108                 (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1109
1110         writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1111         wait_for_completion(&mb1_transfer.work);
1112
1113         if ((mb1_transfer.ack.header != MB1H_RELEASE_USB_WAKEUP) ||
1114                 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1115                 r = -EIO;
1116
1117         mutex_unlock(&mb1_transfer.lock);
1118
1119         return r;
1120 }
1121
1122 static int request_pll(u8 clock, bool enable)
1123 {
1124         int r = 0;
1125
1126         if (clock == PRCMU_PLLSOC0)
1127                 clock = (enable ? PLL_SOC0_ON : PLL_SOC0_OFF);
1128         else if (clock == PRCMU_PLLSOC1)
1129                 clock = (enable ? PLL_SOC1_ON : PLL_SOC1_OFF);
1130         else
1131                 return -EINVAL;
1132
1133         mutex_lock(&mb1_transfer.lock);
1134
1135         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1136                 cpu_relax();
1137
1138         writeb(MB1H_PLL_ON_OFF, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1139         writeb(clock, (tcdm_base + PRCM_REQ_MB1_PLL_ON_OFF));
1140
1141         writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1142         wait_for_completion(&mb1_transfer.work);
1143
1144         if (mb1_transfer.ack.header != MB1H_PLL_ON_OFF)
1145                 r = -EIO;
1146
1147         mutex_unlock(&mb1_transfer.lock);
1148
1149         return r;
1150 }
1151
1152 /**
1153  * db8500_prcmu_set_epod - set the state of a EPOD (power domain)
1154  * @epod_id: The EPOD to set
1155  * @epod_state: The new EPOD state
1156  *
1157  * This function sets the state of a EPOD (power domain). It may not be called
1158  * from interrupt context.
1159  */
1160 int db8500_prcmu_set_epod(u16 epod_id, u8 epod_state)
1161 {
1162         int r = 0;
1163         bool ram_retention = false;
1164         int i;
1165
1166         /* check argument */
1167         BUG_ON(epod_id >= NUM_EPOD_ID);
1168
1169         /* set flag if retention is possible */
1170         switch (epod_id) {
1171         case EPOD_ID_SVAMMDSP:
1172         case EPOD_ID_SIAMMDSP:
1173         case EPOD_ID_ESRAM12:
1174         case EPOD_ID_ESRAM34:
1175                 ram_retention = true;
1176                 break;
1177         }
1178
1179         /* check argument */
1180         BUG_ON(epod_state > EPOD_STATE_ON);
1181         BUG_ON(epod_state == EPOD_STATE_RAMRET && !ram_retention);
1182
1183         /* get lock */
1184         mutex_lock(&mb2_transfer.lock);
1185
1186         /* wait for mailbox */
1187         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(2))
1188                 cpu_relax();
1189
1190         /* fill in mailbox */
1191         for (i = 0; i < NUM_EPOD_ID; i++)
1192                 writeb(EPOD_STATE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB2 + i));
1193         writeb(epod_state, (tcdm_base + PRCM_REQ_MB2 + epod_id));
1194
1195         writeb(MB2H_DPS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB2));
1196
1197         writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET);
1198
1199         /*
1200          * The current firmware version does not handle errors correctly,
1201          * and we cannot recover if there is an error.
1202          * This is expected to change when the firmware is updated.
1203          */
1204         if (!wait_for_completion_timeout(&mb2_transfer.work,
1205                         msecs_to_jiffies(20000))) {
1206                 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1207                         __func__);
1208                 r = -EIO;
1209                 goto unlock_and_return;
1210         }
1211
1212         if (mb2_transfer.ack.status != HWACC_PWR_ST_OK)
1213                 r = -EIO;
1214
1215 unlock_and_return:
1216         mutex_unlock(&mb2_transfer.lock);
1217         return r;
1218 }
1219
1220 /**
1221  * prcmu_configure_auto_pm - Configure autonomous power management.
1222  * @sleep: Configuration for ApSleep.
1223  * @idle:  Configuration for ApIdle.
1224  */
1225 void prcmu_configure_auto_pm(struct prcmu_auto_pm_config *sleep,
1226         struct prcmu_auto_pm_config *idle)
1227 {
1228         u32 sleep_cfg;
1229         u32 idle_cfg;
1230         unsigned long flags;
1231
1232         BUG_ON((sleep == NULL) || (idle == NULL));
1233
1234         sleep_cfg = (sleep->sva_auto_pm_enable & 0xF);
1235         sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_auto_pm_enable & 0xF));
1236         sleep_cfg = ((sleep_cfg << 8) | (sleep->sva_power_on & 0xFF));
1237         sleep_cfg = ((sleep_cfg << 8) | (sleep->sia_power_on & 0xFF));
1238         sleep_cfg = ((sleep_cfg << 4) | (sleep->sva_policy & 0xF));
1239         sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_policy & 0xF));
1240
1241         idle_cfg = (idle->sva_auto_pm_enable & 0xF);
1242         idle_cfg = ((idle_cfg << 4) | (idle->sia_auto_pm_enable & 0xF));
1243         idle_cfg = ((idle_cfg << 8) | (idle->sva_power_on & 0xFF));
1244         idle_cfg = ((idle_cfg << 8) | (idle->sia_power_on & 0xFF));
1245         idle_cfg = ((idle_cfg << 4) | (idle->sva_policy & 0xF));
1246         idle_cfg = ((idle_cfg << 4) | (idle->sia_policy & 0xF));
1247
1248         spin_lock_irqsave(&mb2_transfer.auto_pm_lock, flags);
1249
1250         /*
1251          * The autonomous power management configuration is done through
1252          * fields in mailbox 2, but these fields are only used as shared
1253          * variables - i.e. there is no need to send a message.
1254          */
1255         writel(sleep_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_SLEEP));
1256         writel(idle_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_IDLE));
1257
1258         mb2_transfer.auto_pm_enabled =
1259                 ((sleep->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1260                  (sleep->sia_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1261                  (idle->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1262                  (idle->sia_auto_pm_enable == PRCMU_AUTO_PM_ON));
1263
1264         spin_unlock_irqrestore(&mb2_transfer.auto_pm_lock, flags);
1265 }
1266 EXPORT_SYMBOL(prcmu_configure_auto_pm);
1267
1268 bool prcmu_is_auto_pm_enabled(void)
1269 {
1270         return mb2_transfer.auto_pm_enabled;
1271 }
1272
1273 static int request_sysclk(bool enable)
1274 {
1275         int r;
1276         unsigned long flags;
1277
1278         r = 0;
1279
1280         mutex_lock(&mb3_transfer.sysclk_lock);
1281
1282         spin_lock_irqsave(&mb3_transfer.lock, flags);
1283
1284         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(3))
1285                 cpu_relax();
1286
1287         writeb((enable ? ON : OFF), (tcdm_base + PRCM_REQ_MB3_SYSCLK_MGT));
1288
1289         writeb(MB3H_SYSCLK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB3));
1290         writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET);
1291
1292         spin_unlock_irqrestore(&mb3_transfer.lock, flags);
1293
1294         /*
1295          * The firmware only sends an ACK if we want to enable the
1296          * SysClk, and it succeeds.
1297          */
1298         if (enable && !wait_for_completion_timeout(&mb3_transfer.sysclk_work,
1299                         msecs_to_jiffies(20000))) {
1300                 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1301                         __func__);
1302                 r = -EIO;
1303         }
1304
1305         mutex_unlock(&mb3_transfer.sysclk_lock);
1306
1307         return r;
1308 }
1309
1310 static int request_timclk(bool enable)
1311 {
1312         u32 val = (PRCM_TCR_DOZE_MODE | PRCM_TCR_TENSEL_MASK);
1313
1314         if (!enable)
1315                 val |= PRCM_TCR_STOP_TIMERS;
1316         writel(val, PRCM_TCR);
1317
1318         return 0;
1319 }
1320
1321 static int request_clock(u8 clock, bool enable)
1322 {
1323         u32 val;
1324         unsigned long flags;
1325
1326         spin_lock_irqsave(&clk_mgt_lock, flags);
1327
1328         /* Grab the HW semaphore. */
1329         while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1330                 cpu_relax();
1331
1332         val = readl(prcmu_base + clk_mgt[clock].offset);
1333         if (enable) {
1334                 val |= (PRCM_CLK_MGT_CLKEN | clk_mgt[clock].pllsw);
1335         } else {
1336                 clk_mgt[clock].pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1337                 val &= ~(PRCM_CLK_MGT_CLKEN | PRCM_CLK_MGT_CLKPLLSW_MASK);
1338         }
1339         writel(val, prcmu_base + clk_mgt[clock].offset);
1340
1341         /* Release the HW semaphore. */
1342         writel(0, PRCM_SEM);
1343
1344         spin_unlock_irqrestore(&clk_mgt_lock, flags);
1345
1346         return 0;
1347 }
1348
1349 static int request_sga_clock(u8 clock, bool enable)
1350 {
1351         u32 val;
1352         int ret;
1353
1354         if (enable) {
1355                 val = readl(PRCM_CGATING_BYPASS);
1356                 writel(val | PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1357         }
1358
1359         ret = request_clock(clock, enable);
1360
1361         if (!ret && !enable) {
1362                 val = readl(PRCM_CGATING_BYPASS);
1363                 writel(val & ~PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1364         }
1365
1366         return ret;
1367 }
1368
1369 static inline bool plldsi_locked(void)
1370 {
1371         return (readl(PRCM_PLLDSI_LOCKP) &
1372                 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1373                  PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3)) ==
1374                 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1375                  PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3);
1376 }
1377
1378 static int request_plldsi(bool enable)
1379 {
1380         int r = 0;
1381         u32 val;
1382
1383         writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1384                 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI), (enable ?
1385                 PRCM_MMIP_LS_CLAMP_CLR : PRCM_MMIP_LS_CLAMP_SET));
1386
1387         val = readl(PRCM_PLLDSI_ENABLE);
1388         if (enable)
1389                 val |= PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1390         else
1391                 val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1392         writel(val, PRCM_PLLDSI_ENABLE);
1393
1394         if (enable) {
1395                 unsigned int i;
1396                 bool locked = plldsi_locked();
1397
1398                 for (i = 10; !locked && (i > 0); --i) {
1399                         udelay(100);
1400                         locked = plldsi_locked();
1401                 }
1402                 if (locked) {
1403                         writel(PRCM_APE_RESETN_DSIPLL_RESETN,
1404                                 PRCM_APE_RESETN_SET);
1405                 } else {
1406                         writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1407                                 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI),
1408                                 PRCM_MMIP_LS_CLAMP_SET);
1409                         val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1410                         writel(val, PRCM_PLLDSI_ENABLE);
1411                         r = -EAGAIN;
1412                 }
1413         } else {
1414                 writel(PRCM_APE_RESETN_DSIPLL_RESETN, PRCM_APE_RESETN_CLR);
1415         }
1416         return r;
1417 }
1418
1419 static int request_dsiclk(u8 n, bool enable)
1420 {
1421         u32 val;
1422
1423         val = readl(PRCM_DSI_PLLOUT_SEL);
1424         val &= ~dsiclk[n].divsel_mask;
1425         val |= ((enable ? dsiclk[n].divsel : PRCM_DSI_PLLOUT_SEL_OFF) <<
1426                 dsiclk[n].divsel_shift);
1427         writel(val, PRCM_DSI_PLLOUT_SEL);
1428         return 0;
1429 }
1430
1431 static int request_dsiescclk(u8 n, bool enable)
1432 {
1433         u32 val;
1434
1435         val = readl(PRCM_DSITVCLK_DIV);
1436         enable ? (val |= dsiescclk[n].en) : (val &= ~dsiescclk[n].en);
1437         writel(val, PRCM_DSITVCLK_DIV);
1438         return 0;
1439 }
1440
1441 /**
1442  * db8500_prcmu_request_clock() - Request for a clock to be enabled or disabled.
1443  * @clock:      The clock for which the request is made.
1444  * @enable:     Whether the clock should be enabled (true) or disabled (false).
1445  *
1446  * This function should only be used by the clock implementation.
1447  * Do not use it from any other place!
1448  */
1449 int db8500_prcmu_request_clock(u8 clock, bool enable)
1450 {
1451         if (clock == PRCMU_SGACLK)
1452                 return request_sga_clock(clock, enable);
1453         else if (clock < PRCMU_NUM_REG_CLOCKS)
1454                 return request_clock(clock, enable);
1455         else if (clock == PRCMU_TIMCLK)
1456                 return request_timclk(enable);
1457         else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1458                 return request_dsiclk((clock - PRCMU_DSI0CLK), enable);
1459         else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1460                 return request_dsiescclk((clock - PRCMU_DSI0ESCCLK), enable);
1461         else if (clock == PRCMU_PLLDSI)
1462                 return request_plldsi(enable);
1463         else if (clock == PRCMU_SYSCLK)
1464                 return request_sysclk(enable);
1465         else if ((clock == PRCMU_PLLSOC0) || (clock == PRCMU_PLLSOC1))
1466                 return request_pll(clock, enable);
1467         else
1468                 return -EINVAL;
1469 }
1470
1471 static unsigned long pll_rate(void __iomem *reg, unsigned long src_rate,
1472         int branch)
1473 {
1474         u64 rate;
1475         u32 val;
1476         u32 d;
1477         u32 div = 1;
1478
1479         val = readl(reg);
1480
1481         rate = src_rate;
1482         rate *= ((val & PRCM_PLL_FREQ_D_MASK) >> PRCM_PLL_FREQ_D_SHIFT);
1483
1484         d = ((val & PRCM_PLL_FREQ_N_MASK) >> PRCM_PLL_FREQ_N_SHIFT);
1485         if (d > 1)
1486                 div *= d;
1487
1488         d = ((val & PRCM_PLL_FREQ_R_MASK) >> PRCM_PLL_FREQ_R_SHIFT);
1489         if (d > 1)
1490                 div *= d;
1491
1492         if (val & PRCM_PLL_FREQ_SELDIV2)
1493                 div *= 2;
1494
1495         if ((branch == PLL_FIX) || ((branch == PLL_DIV) &&
1496                 (val & PRCM_PLL_FREQ_DIV2EN) &&
1497                 ((reg == PRCM_PLLSOC0_FREQ) ||
1498                  (reg == PRCM_PLLARM_FREQ) ||
1499                  (reg == PRCM_PLLDDR_FREQ))))
1500                 div *= 2;
1501
1502         (void)do_div(rate, div);
1503
1504         return (unsigned long)rate;
1505 }
1506
1507 #define ROOT_CLOCK_RATE 38400000
1508
1509 static unsigned long clock_rate(u8 clock)
1510 {
1511         u32 val;
1512         u32 pllsw;
1513         unsigned long rate = ROOT_CLOCK_RATE;
1514
1515         val = readl(prcmu_base + clk_mgt[clock].offset);
1516
1517         if (val & PRCM_CLK_MGT_CLK38) {
1518                 if (clk_mgt[clock].clk38div && (val & PRCM_CLK_MGT_CLK38DIV))
1519                         rate /= 2;
1520                 return rate;
1521         }
1522
1523         val |= clk_mgt[clock].pllsw;
1524         pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1525
1526         if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1527                 rate = pll_rate(PRCM_PLLSOC0_FREQ, rate, clk_mgt[clock].branch);
1528         else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1529                 rate = pll_rate(PRCM_PLLSOC1_FREQ, rate, clk_mgt[clock].branch);
1530         else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_DDR)
1531                 rate = pll_rate(PRCM_PLLDDR_FREQ, rate, clk_mgt[clock].branch);
1532         else
1533                 return 0;
1534
1535         if ((clock == PRCMU_SGACLK) &&
1536                 (val & PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN)) {
1537                 u64 r = (rate * 10);
1538
1539                 (void)do_div(r, 25);
1540                 return (unsigned long)r;
1541         }
1542         val &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1543         if (val)
1544                 return rate / val;
1545         else
1546                 return 0;
1547 }
1548
1549 static unsigned long armss_rate(void)
1550 {
1551         u32 r;
1552         unsigned long rate;
1553
1554         r = readl(PRCM_ARM_CHGCLKREQ);
1555
1556         if (r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_CHGCLKREQ) {
1557                 /* External ARMCLKFIX clock */
1558
1559                 rate = pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_FIX);
1560
1561                 /* Check PRCM_ARM_CHGCLKREQ divider */
1562                 if (!(r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_DIVSEL))
1563                         rate /= 2;
1564
1565                 /* Check PRCM_ARMCLKFIX_MGT divider */
1566                 r = readl(PRCM_ARMCLKFIX_MGT);
1567                 r &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1568                 rate /= r;
1569
1570         } else {/* ARM PLL */
1571                 rate = pll_rate(PRCM_PLLARM_FREQ, ROOT_CLOCK_RATE, PLL_DIV);
1572         }
1573
1574         return rate;
1575 }
1576
1577 static unsigned long dsiclk_rate(u8 n)
1578 {
1579         u32 divsel;
1580         u32 div = 1;
1581
1582         divsel = readl(PRCM_DSI_PLLOUT_SEL);
1583         divsel = ((divsel & dsiclk[n].divsel_mask) >> dsiclk[n].divsel_shift);
1584
1585         if (divsel == PRCM_DSI_PLLOUT_SEL_OFF)
1586                 divsel = dsiclk[n].divsel;
1587         else
1588                 dsiclk[n].divsel = divsel;
1589
1590         switch (divsel) {
1591         case PRCM_DSI_PLLOUT_SEL_PHI_4:
1592                 div *= 2;
1593         case PRCM_DSI_PLLOUT_SEL_PHI_2:
1594                 div *= 2;
1595         case PRCM_DSI_PLLOUT_SEL_PHI:
1596                 return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1597                         PLL_RAW) / div;
1598         default:
1599                 return 0;
1600         }
1601 }
1602
1603 static unsigned long dsiescclk_rate(u8 n)
1604 {
1605         u32 div;
1606
1607         div = readl(PRCM_DSITVCLK_DIV);
1608         div = ((div & dsiescclk[n].div_mask) >> (dsiescclk[n].div_shift));
1609         return clock_rate(PRCMU_TVCLK) / max((u32)1, div);
1610 }
1611
1612 unsigned long prcmu_clock_rate(u8 clock)
1613 {
1614         if (clock < PRCMU_NUM_REG_CLOCKS)
1615                 return clock_rate(clock);
1616         else if (clock == PRCMU_TIMCLK)
1617                 return ROOT_CLOCK_RATE / 16;
1618         else if (clock == PRCMU_SYSCLK)
1619                 return ROOT_CLOCK_RATE;
1620         else if (clock == PRCMU_PLLSOC0)
1621                 return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1622         else if (clock == PRCMU_PLLSOC1)
1623                 return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1624         else if (clock == PRCMU_ARMSS)
1625                 return armss_rate();
1626         else if (clock == PRCMU_PLLDDR)
1627                 return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1628         else if (clock == PRCMU_PLLDSI)
1629                 return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1630                         PLL_RAW);
1631         else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1632                 return dsiclk_rate(clock - PRCMU_DSI0CLK);
1633         else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1634                 return dsiescclk_rate(clock - PRCMU_DSI0ESCCLK);
1635         else
1636                 return 0;
1637 }
1638
1639 static unsigned long clock_source_rate(u32 clk_mgt_val, int branch)
1640 {
1641         if (clk_mgt_val & PRCM_CLK_MGT_CLK38)
1642                 return ROOT_CLOCK_RATE;
1643         clk_mgt_val &= PRCM_CLK_MGT_CLKPLLSW_MASK;
1644         if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1645                 return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, branch);
1646         else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1647                 return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, branch);
1648         else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_DDR)
1649                 return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, branch);
1650         else
1651                 return 0;
1652 }
1653
1654 static u32 clock_divider(unsigned long src_rate, unsigned long rate)
1655 {
1656         u32 div;
1657
1658         div = (src_rate / rate);
1659         if (div == 0)
1660                 return 1;
1661         if (rate < (src_rate / div))
1662                 div++;
1663         return div;
1664 }
1665
1666 static long round_clock_rate(u8 clock, unsigned long rate)
1667 {
1668         u32 val;
1669         u32 div;
1670         unsigned long src_rate;
1671         long rounded_rate;
1672
1673         val = readl(prcmu_base + clk_mgt[clock].offset);
1674         src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1675                 clk_mgt[clock].branch);
1676         div = clock_divider(src_rate, rate);
1677         if (val & PRCM_CLK_MGT_CLK38) {
1678                 if (clk_mgt[clock].clk38div) {
1679                         if (div > 2)
1680                                 div = 2;
1681                 } else {
1682                         div = 1;
1683                 }
1684         } else if ((clock == PRCMU_SGACLK) && (div == 3)) {
1685                 u64 r = (src_rate * 10);
1686
1687                 (void)do_div(r, 25);
1688                 if (r <= rate)
1689                         return (unsigned long)r;
1690         }
1691         rounded_rate = (src_rate / min(div, (u32)31));
1692
1693         return rounded_rate;
1694 }
1695
1696 static const unsigned long armss_freqs[] = {
1697         200000000,
1698         400000000,
1699         800000000,
1700         998400000
1701 };
1702
1703 static long round_armss_rate(unsigned long rate)
1704 {
1705         unsigned long freq = 0;
1706         int i;
1707
1708         /* Find the corresponding arm opp from the cpufreq table. */
1709         for (i = 0; i < ARRAY_SIZE(armss_freqs); i++) {
1710                 freq = armss_freqs[i];
1711                 if (rate <= freq)
1712                         break;
1713         }
1714
1715         /* Return the last valid value, even if a match was not found. */
1716         return freq;
1717 }
1718
1719 #define MIN_PLL_VCO_RATE 600000000ULL
1720 #define MAX_PLL_VCO_RATE 1680640000ULL
1721
1722 static long round_plldsi_rate(unsigned long rate)
1723 {
1724         long rounded_rate = 0;
1725         unsigned long src_rate;
1726         unsigned long rem;
1727         u32 r;
1728
1729         src_rate = clock_rate(PRCMU_HDMICLK);
1730         rem = rate;
1731
1732         for (r = 7; (rem > 0) && (r > 0); r--) {
1733                 u64 d;
1734
1735                 d = (r * rate);
1736                 (void)do_div(d, src_rate);
1737                 if (d < 6)
1738                         d = 6;
1739                 else if (d > 255)
1740                         d = 255;
1741                 d *= src_rate;
1742                 if (((2 * d) < (r * MIN_PLL_VCO_RATE)) ||
1743                         ((r * MAX_PLL_VCO_RATE) < (2 * d)))
1744                         continue;
1745                 (void)do_div(d, r);
1746                 if (rate < d) {
1747                         if (rounded_rate == 0)
1748                                 rounded_rate = (long)d;
1749                         break;
1750                 }
1751                 if ((rate - d) < rem) {
1752                         rem = (rate - d);
1753                         rounded_rate = (long)d;
1754                 }
1755         }
1756         return rounded_rate;
1757 }
1758
1759 static long round_dsiclk_rate(unsigned long rate)
1760 {
1761         u32 div;
1762         unsigned long src_rate;
1763         long rounded_rate;
1764
1765         src_rate = pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1766                 PLL_RAW);
1767         div = clock_divider(src_rate, rate);
1768         rounded_rate = (src_rate / ((div > 2) ? 4 : div));
1769
1770         return rounded_rate;
1771 }
1772
1773 static long round_dsiescclk_rate(unsigned long rate)
1774 {
1775         u32 div;
1776         unsigned long src_rate;
1777         long rounded_rate;
1778
1779         src_rate = clock_rate(PRCMU_TVCLK);
1780         div = clock_divider(src_rate, rate);
1781         rounded_rate = (src_rate / min(div, (u32)255));
1782
1783         return rounded_rate;
1784 }
1785
1786 long prcmu_round_clock_rate(u8 clock, unsigned long rate)
1787 {
1788         if (clock < PRCMU_NUM_REG_CLOCKS)
1789                 return round_clock_rate(clock, rate);
1790         else if (clock == PRCMU_ARMSS)
1791                 return round_armss_rate(rate);
1792         else if (clock == PRCMU_PLLDSI)
1793                 return round_plldsi_rate(rate);
1794         else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1795                 return round_dsiclk_rate(rate);
1796         else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1797                 return round_dsiescclk_rate(rate);
1798         else
1799                 return (long)prcmu_clock_rate(clock);
1800 }
1801
1802 static void set_clock_rate(u8 clock, unsigned long rate)
1803 {
1804         u32 val;
1805         u32 div;
1806         unsigned long src_rate;
1807         unsigned long flags;
1808
1809         spin_lock_irqsave(&clk_mgt_lock, flags);
1810
1811         /* Grab the HW semaphore. */
1812         while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1813                 cpu_relax();
1814
1815         val = readl(prcmu_base + clk_mgt[clock].offset);
1816         src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1817                 clk_mgt[clock].branch);
1818         div = clock_divider(src_rate, rate);
1819         if (val & PRCM_CLK_MGT_CLK38) {
1820                 if (clk_mgt[clock].clk38div) {
1821                         if (div > 1)
1822                                 val |= PRCM_CLK_MGT_CLK38DIV;
1823                         else
1824                                 val &= ~PRCM_CLK_MGT_CLK38DIV;
1825                 }
1826         } else if (clock == PRCMU_SGACLK) {
1827                 val &= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK |
1828                         PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN);
1829                 if (div == 3) {
1830                         u64 r = (src_rate * 10);
1831
1832                         (void)do_div(r, 25);
1833                         if (r <= rate) {
1834                                 val |= PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN;
1835                                 div = 0;
1836                         }
1837                 }
1838                 val |= min(div, (u32)31);
1839         } else {
1840                 val &= ~PRCM_CLK_MGT_CLKPLLDIV_MASK;
1841                 val |= min(div, (u32)31);
1842         }
1843         writel(val, prcmu_base + clk_mgt[clock].offset);
1844
1845         /* Release the HW semaphore. */
1846         writel(0, PRCM_SEM);
1847
1848         spin_unlock_irqrestore(&clk_mgt_lock, flags);
1849 }
1850
1851 static int set_armss_rate(unsigned long rate)
1852 {
1853         unsigned long freq;
1854         u8 opps[] = { ARM_EXTCLK, ARM_50_OPP, ARM_100_OPP, ARM_MAX_OPP };
1855         int i;
1856
1857         /* Find the corresponding arm opp from the cpufreq table. */
1858         for (i = 0; i < ARRAY_SIZE(armss_freqs); i++) {
1859                 freq = armss_freqs[i];
1860                 if (rate == freq)
1861                         break;
1862         }
1863
1864         if (rate != freq)
1865                 return -EINVAL;
1866
1867         /* Set the new arm opp. */
1868         pr_debug("SET ARM OPP 0x%02x\n", opps[i]);
1869         return db8500_prcmu_set_arm_opp(opps[i]);
1870 }
1871
1872 static int set_plldsi_rate(unsigned long rate)
1873 {
1874         unsigned long src_rate;
1875         unsigned long rem;
1876         u32 pll_freq = 0;
1877         u32 r;
1878
1879         src_rate = clock_rate(PRCMU_HDMICLK);
1880         rem = rate;
1881
1882         for (r = 7; (rem > 0) && (r > 0); r--) {
1883                 u64 d;
1884                 u64 hwrate;
1885
1886                 d = (r * rate);
1887                 (void)do_div(d, src_rate);
1888                 if (d < 6)
1889                         d = 6;
1890                 else if (d > 255)
1891                         d = 255;
1892                 hwrate = (d * src_rate);
1893                 if (((2 * hwrate) < (r * MIN_PLL_VCO_RATE)) ||
1894                         ((r * MAX_PLL_VCO_RATE) < (2 * hwrate)))
1895                         continue;
1896                 (void)do_div(hwrate, r);
1897                 if (rate < hwrate) {
1898                         if (pll_freq == 0)
1899                                 pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1900                                         (r << PRCM_PLL_FREQ_R_SHIFT));
1901                         break;
1902                 }
1903                 if ((rate - hwrate) < rem) {
1904                         rem = (rate - hwrate);
1905                         pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1906                                 (r << PRCM_PLL_FREQ_R_SHIFT));
1907                 }
1908         }
1909         if (pll_freq == 0)
1910                 return -EINVAL;
1911
1912         pll_freq |= (1 << PRCM_PLL_FREQ_N_SHIFT);
1913         writel(pll_freq, PRCM_PLLDSI_FREQ);
1914
1915         return 0;
1916 }
1917
1918 static void set_dsiclk_rate(u8 n, unsigned long rate)
1919 {
1920         u32 val;
1921         u32 div;
1922
1923         div = clock_divider(pll_rate(PRCM_PLLDSI_FREQ,
1924                         clock_rate(PRCMU_HDMICLK), PLL_RAW), rate);
1925
1926         dsiclk[n].divsel = (div == 1) ? PRCM_DSI_PLLOUT_SEL_PHI :
1927                            (div == 2) ? PRCM_DSI_PLLOUT_SEL_PHI_2 :
1928                            /* else */   PRCM_DSI_PLLOUT_SEL_PHI_4;
1929
1930         val = readl(PRCM_DSI_PLLOUT_SEL);
1931         val &= ~dsiclk[n].divsel_mask;
1932         val |= (dsiclk[n].divsel << dsiclk[n].divsel_shift);
1933         writel(val, PRCM_DSI_PLLOUT_SEL);
1934 }
1935
1936 static void set_dsiescclk_rate(u8 n, unsigned long rate)
1937 {
1938         u32 val;
1939         u32 div;
1940
1941         div = clock_divider(clock_rate(PRCMU_TVCLK), rate);
1942         val = readl(PRCM_DSITVCLK_DIV);
1943         val &= ~dsiescclk[n].div_mask;
1944         val |= (min(div, (u32)255) << dsiescclk[n].div_shift);
1945         writel(val, PRCM_DSITVCLK_DIV);
1946 }
1947
1948 int prcmu_set_clock_rate(u8 clock, unsigned long rate)
1949 {
1950         if (clock < PRCMU_NUM_REG_CLOCKS)
1951                 set_clock_rate(clock, rate);
1952         else if (clock == PRCMU_ARMSS)
1953                 return set_armss_rate(rate);
1954         else if (clock == PRCMU_PLLDSI)
1955                 return set_plldsi_rate(rate);
1956         else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1957                 set_dsiclk_rate((clock - PRCMU_DSI0CLK), rate);
1958         else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1959                 set_dsiescclk_rate((clock - PRCMU_DSI0ESCCLK), rate);
1960         return 0;
1961 }
1962
1963 int db8500_prcmu_config_esram0_deep_sleep(u8 state)
1964 {
1965         if ((state > ESRAM0_DEEP_SLEEP_STATE_RET) ||
1966             (state < ESRAM0_DEEP_SLEEP_STATE_OFF))
1967                 return -EINVAL;
1968
1969         mutex_lock(&mb4_transfer.lock);
1970
1971         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1972                 cpu_relax();
1973
1974         writeb(MB4H_MEM_ST, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1975         writeb(((DDR_PWR_STATE_OFFHIGHLAT << 4) | DDR_PWR_STATE_ON),
1976                (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE));
1977         writeb(DDR_PWR_STATE_ON,
1978                (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE));
1979         writeb(state, (tcdm_base + PRCM_REQ_MB4_ESRAM0_ST));
1980
1981         writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
1982         wait_for_completion(&mb4_transfer.work);
1983
1984         mutex_unlock(&mb4_transfer.lock);
1985
1986         return 0;
1987 }
1988
1989 int db8500_prcmu_config_hotdog(u8 threshold)
1990 {
1991         mutex_lock(&mb4_transfer.lock);
1992
1993         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1994                 cpu_relax();
1995
1996         writeb(threshold, (tcdm_base + PRCM_REQ_MB4_HOTDOG_THRESHOLD));
1997         writeb(MB4H_HOTDOG, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1998
1999         writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2000         wait_for_completion(&mb4_transfer.work);
2001
2002         mutex_unlock(&mb4_transfer.lock);
2003
2004         return 0;
2005 }
2006
2007 int db8500_prcmu_config_hotmon(u8 low, u8 high)
2008 {
2009         mutex_lock(&mb4_transfer.lock);
2010
2011         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2012                 cpu_relax();
2013
2014         writeb(low, (tcdm_base + PRCM_REQ_MB4_HOTMON_LOW));
2015         writeb(high, (tcdm_base + PRCM_REQ_MB4_HOTMON_HIGH));
2016         writeb((HOTMON_CONFIG_LOW | HOTMON_CONFIG_HIGH),
2017                 (tcdm_base + PRCM_REQ_MB4_HOTMON_CONFIG));
2018         writeb(MB4H_HOTMON, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2019
2020         writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2021         wait_for_completion(&mb4_transfer.work);
2022
2023         mutex_unlock(&mb4_transfer.lock);
2024
2025         return 0;
2026 }
2027 EXPORT_SYMBOL_GPL(db8500_prcmu_config_hotmon);
2028
2029 static int config_hot_period(u16 val)
2030 {
2031         mutex_lock(&mb4_transfer.lock);
2032
2033         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2034                 cpu_relax();
2035
2036         writew(val, (tcdm_base + PRCM_REQ_MB4_HOT_PERIOD));
2037         writeb(MB4H_HOT_PERIOD, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2038
2039         writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2040         wait_for_completion(&mb4_transfer.work);
2041
2042         mutex_unlock(&mb4_transfer.lock);
2043
2044         return 0;
2045 }
2046
2047 int db8500_prcmu_start_temp_sense(u16 cycles32k)
2048 {
2049         if (cycles32k == 0xFFFF)
2050                 return -EINVAL;
2051
2052         return config_hot_period(cycles32k);
2053 }
2054 EXPORT_SYMBOL_GPL(db8500_prcmu_start_temp_sense);
2055
2056 int db8500_prcmu_stop_temp_sense(void)
2057 {
2058         return config_hot_period(0xFFFF);
2059 }
2060 EXPORT_SYMBOL_GPL(db8500_prcmu_stop_temp_sense);
2061
2062 static int prcmu_a9wdog(u8 cmd, u8 d0, u8 d1, u8 d2, u8 d3)
2063 {
2064
2065         mutex_lock(&mb4_transfer.lock);
2066
2067         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2068                 cpu_relax();
2069
2070         writeb(d0, (tcdm_base + PRCM_REQ_MB4_A9WDOG_0));
2071         writeb(d1, (tcdm_base + PRCM_REQ_MB4_A9WDOG_1));
2072         writeb(d2, (tcdm_base + PRCM_REQ_MB4_A9WDOG_2));
2073         writeb(d3, (tcdm_base + PRCM_REQ_MB4_A9WDOG_3));
2074
2075         writeb(cmd, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2076
2077         writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2078         wait_for_completion(&mb4_transfer.work);
2079
2080         mutex_unlock(&mb4_transfer.lock);
2081
2082         return 0;
2083
2084 }
2085
2086 int db8500_prcmu_config_a9wdog(u8 num, bool sleep_auto_off)
2087 {
2088         BUG_ON(num == 0 || num > 0xf);
2089         return prcmu_a9wdog(MB4H_A9WDOG_CONF, num, 0, 0,
2090                             sleep_auto_off ? A9WDOG_AUTO_OFF_EN :
2091                             A9WDOG_AUTO_OFF_DIS);
2092 }
2093 EXPORT_SYMBOL(db8500_prcmu_config_a9wdog);
2094
2095 int db8500_prcmu_enable_a9wdog(u8 id)
2096 {
2097         return prcmu_a9wdog(MB4H_A9WDOG_EN, id, 0, 0, 0);
2098 }
2099 EXPORT_SYMBOL(db8500_prcmu_enable_a9wdog);
2100
2101 int db8500_prcmu_disable_a9wdog(u8 id)
2102 {
2103         return prcmu_a9wdog(MB4H_A9WDOG_DIS, id, 0, 0, 0);
2104 }
2105 EXPORT_SYMBOL(db8500_prcmu_disable_a9wdog);
2106
2107 int db8500_prcmu_kick_a9wdog(u8 id)
2108 {
2109         return prcmu_a9wdog(MB4H_A9WDOG_KICK, id, 0, 0, 0);
2110 }
2111 EXPORT_SYMBOL(db8500_prcmu_kick_a9wdog);
2112
2113 /*
2114  * timeout is 28 bit, in ms.
2115  */
2116 int db8500_prcmu_load_a9wdog(u8 id, u32 timeout)
2117 {
2118         return prcmu_a9wdog(MB4H_A9WDOG_LOAD,
2119                             (id & A9WDOG_ID_MASK) |
2120                             /*
2121                              * Put the lowest 28 bits of timeout at
2122                              * offset 4. Four first bits are used for id.
2123                              */
2124                             (u8)((timeout << 4) & 0xf0),
2125                             (u8)((timeout >> 4) & 0xff),
2126                             (u8)((timeout >> 12) & 0xff),
2127                             (u8)((timeout >> 20) & 0xff));
2128 }
2129 EXPORT_SYMBOL(db8500_prcmu_load_a9wdog);
2130
2131 /**
2132  * prcmu_abb_read() - Read register value(s) from the ABB.
2133  * @slave:      The I2C slave address.
2134  * @reg:        The (start) register address.
2135  * @value:      The read out value(s).
2136  * @size:       The number of registers to read.
2137  *
2138  * Reads register value(s) from the ABB.
2139  * @size has to be 1 for the current firmware version.
2140  */
2141 int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size)
2142 {
2143         int r;
2144
2145         if (size != 1)
2146                 return -EINVAL;
2147
2148         mutex_lock(&mb5_transfer.lock);
2149
2150         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2151                 cpu_relax();
2152
2153         writeb(0, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2154         writeb(PRCMU_I2C_READ(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2155         writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2156         writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2157         writeb(0, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2158
2159         writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2160
2161         if (!wait_for_completion_timeout(&mb5_transfer.work,
2162                                 msecs_to_jiffies(20000))) {
2163                 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2164                         __func__);
2165                 r = -EIO;
2166         } else {
2167                 r = ((mb5_transfer.ack.status == I2C_RD_OK) ? 0 : -EIO);
2168         }
2169
2170         if (!r)
2171                 *value = mb5_transfer.ack.value;
2172
2173         mutex_unlock(&mb5_transfer.lock);
2174
2175         return r;
2176 }
2177
2178 /**
2179  * prcmu_abb_write_masked() - Write masked register value(s) to the ABB.
2180  * @slave:      The I2C slave address.
2181  * @reg:        The (start) register address.
2182  * @value:      The value(s) to write.
2183  * @mask:       The mask(s) to use.
2184  * @size:       The number of registers to write.
2185  *
2186  * Writes masked register value(s) to the ABB.
2187  * For each @value, only the bits set to 1 in the corresponding @mask
2188  * will be written. The other bits are not changed.
2189  * @size has to be 1 for the current firmware version.
2190  */
2191 int prcmu_abb_write_masked(u8 slave, u8 reg, u8 *value, u8 *mask, u8 size)
2192 {
2193         int r;
2194
2195         if (size != 1)
2196                 return -EINVAL;
2197
2198         mutex_lock(&mb5_transfer.lock);
2199
2200         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2201                 cpu_relax();
2202
2203         writeb(~*mask, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2204         writeb(PRCMU_I2C_WRITE(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2205         writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2206         writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2207         writeb(*value, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2208
2209         writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2210
2211         if (!wait_for_completion_timeout(&mb5_transfer.work,
2212                                 msecs_to_jiffies(20000))) {
2213                 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2214                         __func__);
2215                 r = -EIO;
2216         } else {
2217                 r = ((mb5_transfer.ack.status == I2C_WR_OK) ? 0 : -EIO);
2218         }
2219
2220         mutex_unlock(&mb5_transfer.lock);
2221
2222         return r;
2223 }
2224
2225 /**
2226  * prcmu_abb_write() - Write register value(s) to the ABB.
2227  * @slave:      The I2C slave address.
2228  * @reg:        The (start) register address.
2229  * @value:      The value(s) to write.
2230  * @size:       The number of registers to write.
2231  *
2232  * Writes register value(s) to the ABB.
2233  * @size has to be 1 for the current firmware version.
2234  */
2235 int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size)
2236 {
2237         u8 mask = ~0;
2238
2239         return prcmu_abb_write_masked(slave, reg, value, &mask, size);
2240 }
2241
2242 /**
2243  * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem
2244  */
2245 int prcmu_ac_wake_req(void)
2246 {
2247         u32 val;
2248         int ret = 0;
2249
2250         mutex_lock(&mb0_transfer.ac_wake_lock);
2251
2252         val = readl(PRCM_HOSTACCESS_REQ);
2253         if (val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ)
2254                 goto unlock_and_return;
2255
2256         atomic_set(&ac_wake_req_state, 1);
2257
2258         /*
2259          * Force Modem Wake-up before hostaccess_req ping-pong.
2260          * It prevents Modem to enter in Sleep while acking the hostaccess
2261          * request. The 31us delay has been calculated by HWI.
2262          */
2263         val |= PRCM_HOSTACCESS_REQ_WAKE_REQ;
2264         writel(val, PRCM_HOSTACCESS_REQ);
2265
2266         udelay(31);
2267
2268         val |= PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ;
2269         writel(val, PRCM_HOSTACCESS_REQ);
2270
2271         if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2272                         msecs_to_jiffies(5000))) {
2273                 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2274                         __func__);
2275                 ret = -EFAULT;
2276         }
2277
2278 unlock_and_return:
2279         mutex_unlock(&mb0_transfer.ac_wake_lock);
2280         return ret;
2281 }
2282
2283 /**
2284  * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem
2285  */
2286 void prcmu_ac_sleep_req(void)
2287 {
2288         u32 val;
2289
2290         mutex_lock(&mb0_transfer.ac_wake_lock);
2291
2292         val = readl(PRCM_HOSTACCESS_REQ);
2293         if (!(val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ))
2294                 goto unlock_and_return;
2295
2296         writel((val & ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ),
2297                 PRCM_HOSTACCESS_REQ);
2298
2299         if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2300                         msecs_to_jiffies(5000))) {
2301                 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2302                         __func__);
2303         }
2304
2305         atomic_set(&ac_wake_req_state, 0);
2306
2307 unlock_and_return:
2308         mutex_unlock(&mb0_transfer.ac_wake_lock);
2309 }
2310
2311 bool db8500_prcmu_is_ac_wake_requested(void)
2312 {
2313         return (atomic_read(&ac_wake_req_state) != 0);
2314 }
2315
2316 /**
2317  * db8500_prcmu_system_reset - System reset
2318  *
2319  * Saves the reset reason code and then sets the APE_SOFTRST register which
2320  * fires interrupt to fw
2321  */
2322 void db8500_prcmu_system_reset(u16 reset_code)
2323 {
2324         writew(reset_code, (tcdm_base + PRCM_SW_RST_REASON));
2325         writel(1, PRCM_APE_SOFTRST);
2326 }
2327
2328 /**
2329  * db8500_prcmu_get_reset_code - Retrieve SW reset reason code
2330  *
2331  * Retrieves the reset reason code stored by prcmu_system_reset() before
2332  * last restart.
2333  */
2334 u16 db8500_prcmu_get_reset_code(void)
2335 {
2336         return readw(tcdm_base + PRCM_SW_RST_REASON);
2337 }
2338
2339 /**
2340  * db8500_prcmu_reset_modem - ask the PRCMU to reset modem
2341  */
2342 void db8500_prcmu_modem_reset(void)
2343 {
2344         mutex_lock(&mb1_transfer.lock);
2345
2346         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
2347                 cpu_relax();
2348
2349         writeb(MB1H_RESET_MODEM, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
2350         writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
2351         wait_for_completion(&mb1_transfer.work);
2352
2353         /*
2354          * No need to check return from PRCMU as modem should go in reset state
2355          * This state is already managed by upper layer
2356          */
2357
2358         mutex_unlock(&mb1_transfer.lock);
2359 }
2360
2361 static void ack_dbb_wakeup(void)
2362 {
2363         unsigned long flags;
2364
2365         spin_lock_irqsave(&mb0_transfer.lock, flags);
2366
2367         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
2368                 cpu_relax();
2369
2370         writeb(MB0H_READ_WAKEUP_ACK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
2371         writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
2372
2373         spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2374 }
2375
2376 static inline void print_unknown_header_warning(u8 n, u8 header)
2377 {
2378         pr_warn("prcmu: Unknown message header (%d) in mailbox %d\n",
2379                 header, n);
2380 }
2381
2382 static bool read_mailbox_0(void)
2383 {
2384         bool r;
2385         u32 ev;
2386         unsigned int n;
2387         u8 header;
2388
2389         header = readb(tcdm_base + PRCM_MBOX_HEADER_ACK_MB0);
2390         switch (header) {
2391         case MB0H_WAKEUP_EXE:
2392         case MB0H_WAKEUP_SLEEP:
2393                 if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
2394                         ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_1_8500);
2395                 else
2396                         ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_0_8500);
2397
2398                 if (ev & (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK))
2399                         complete(&mb0_transfer.ac_wake_work);
2400                 if (ev & WAKEUP_BIT_SYSCLK_OK)
2401                         complete(&mb3_transfer.sysclk_work);
2402
2403                 ev &= mb0_transfer.req.dbb_irqs;
2404
2405                 for (n = 0; n < NUM_PRCMU_WAKEUPS; n++) {
2406                         if (ev & prcmu_irq_bit[n])
2407                                 generic_handle_irq(irq_find_mapping(db8500_irq_domain, n));
2408                 }
2409                 r = true;
2410                 break;
2411         default:
2412                 print_unknown_header_warning(0, header);
2413                 r = false;
2414                 break;
2415         }
2416         writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR);
2417         return r;
2418 }
2419
2420 static bool read_mailbox_1(void)
2421 {
2422         mb1_transfer.ack.header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1);
2423         mb1_transfer.ack.arm_opp = readb(tcdm_base +
2424                 PRCM_ACK_MB1_CURRENT_ARM_OPP);
2425         mb1_transfer.ack.ape_opp = readb(tcdm_base +
2426                 PRCM_ACK_MB1_CURRENT_APE_OPP);
2427         mb1_transfer.ack.ape_voltage_status = readb(tcdm_base +
2428                 PRCM_ACK_MB1_APE_VOLTAGE_STATUS);
2429         writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR);
2430         complete(&mb1_transfer.work);
2431         return false;
2432 }
2433
2434 static bool read_mailbox_2(void)
2435 {
2436         mb2_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB2_DPS_STATUS);
2437         writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR);
2438         complete(&mb2_transfer.work);
2439         return false;
2440 }
2441
2442 static bool read_mailbox_3(void)
2443 {
2444         writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR);
2445         return false;
2446 }
2447
2448 static bool read_mailbox_4(void)
2449 {
2450         u8 header;
2451         bool do_complete = true;
2452
2453         header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB4);
2454         switch (header) {
2455         case MB4H_MEM_ST:
2456         case MB4H_HOTDOG:
2457         case MB4H_HOTMON:
2458         case MB4H_HOT_PERIOD:
2459         case MB4H_A9WDOG_CONF:
2460         case MB4H_A9WDOG_EN:
2461         case MB4H_A9WDOG_DIS:
2462         case MB4H_A9WDOG_LOAD:
2463         case MB4H_A9WDOG_KICK:
2464                 break;
2465         default:
2466                 print_unknown_header_warning(4, header);
2467                 do_complete = false;
2468                 break;
2469         }
2470
2471         writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR);
2472
2473         if (do_complete)
2474                 complete(&mb4_transfer.work);
2475
2476         return false;
2477 }
2478
2479 static bool read_mailbox_5(void)
2480 {
2481         mb5_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB5_I2C_STATUS);
2482         mb5_transfer.ack.value = readb(tcdm_base + PRCM_ACK_MB5_I2C_VAL);
2483         writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR);
2484         complete(&mb5_transfer.work);
2485         return false;
2486 }
2487
2488 static bool read_mailbox_6(void)
2489 {
2490         writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR);
2491         return false;
2492 }
2493
2494 static bool read_mailbox_7(void)
2495 {
2496         writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR);
2497         return false;
2498 }
2499
2500 static bool (* const read_mailbox[NUM_MB])(void) = {
2501         read_mailbox_0,
2502         read_mailbox_1,
2503         read_mailbox_2,
2504         read_mailbox_3,
2505         read_mailbox_4,
2506         read_mailbox_5,
2507         read_mailbox_6,
2508         read_mailbox_7
2509 };
2510
2511 static irqreturn_t prcmu_irq_handler(int irq, void *data)
2512 {
2513         u32 bits;
2514         u8 n;
2515         irqreturn_t r;
2516
2517         bits = (readl(PRCM_ARM_IT1_VAL) & ALL_MBOX_BITS);
2518         if (unlikely(!bits))
2519                 return IRQ_NONE;
2520
2521         r = IRQ_HANDLED;
2522         for (n = 0; bits; n++) {
2523                 if (bits & MBOX_BIT(n)) {
2524                         bits -= MBOX_BIT(n);
2525                         if (read_mailbox[n]())
2526                                 r = IRQ_WAKE_THREAD;
2527                 }
2528         }
2529         return r;
2530 }
2531
2532 static irqreturn_t prcmu_irq_thread_fn(int irq, void *data)
2533 {
2534         ack_dbb_wakeup();
2535         return IRQ_HANDLED;
2536 }
2537
2538 static void prcmu_mask_work(struct work_struct *work)
2539 {
2540         unsigned long flags;
2541
2542         spin_lock_irqsave(&mb0_transfer.lock, flags);
2543
2544         config_wakeups();
2545
2546         spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2547 }
2548
2549 static void prcmu_irq_mask(struct irq_data *d)
2550 {
2551         unsigned long flags;
2552
2553         spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2554
2555         mb0_transfer.req.dbb_irqs &= ~prcmu_irq_bit[d->hwirq];
2556
2557         spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2558
2559         if (d->irq != IRQ_PRCMU_CA_SLEEP)
2560                 schedule_work(&mb0_transfer.mask_work);
2561 }
2562
2563 static void prcmu_irq_unmask(struct irq_data *d)
2564 {
2565         unsigned long flags;
2566
2567         spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2568
2569         mb0_transfer.req.dbb_irqs |= prcmu_irq_bit[d->hwirq];
2570
2571         spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2572
2573         if (d->irq != IRQ_PRCMU_CA_SLEEP)
2574                 schedule_work(&mb0_transfer.mask_work);
2575 }
2576
2577 static void noop(struct irq_data *d)
2578 {
2579 }
2580
2581 static struct irq_chip prcmu_irq_chip = {
2582         .name           = "prcmu",
2583         .irq_disable    = prcmu_irq_mask,
2584         .irq_ack        = noop,
2585         .irq_mask       = prcmu_irq_mask,
2586         .irq_unmask     = prcmu_irq_unmask,
2587 };
2588
2589 static char *fw_project_name(u32 project)
2590 {
2591         switch (project) {
2592         case PRCMU_FW_PROJECT_U8500:
2593                 return "U8500";
2594         case PRCMU_FW_PROJECT_U8400:
2595                 return "U8400";
2596         case PRCMU_FW_PROJECT_U9500:
2597                 return "U9500";
2598         case PRCMU_FW_PROJECT_U8500_MBB:
2599                 return "U8500 MBB";
2600         case PRCMU_FW_PROJECT_U8500_C1:
2601                 return "U8500 C1";
2602         case PRCMU_FW_PROJECT_U8500_C2:
2603                 return "U8500 C2";
2604         case PRCMU_FW_PROJECT_U8500_C3:
2605                 return "U8500 C3";
2606         case PRCMU_FW_PROJECT_U8500_C4:
2607                 return "U8500 C4";
2608         case PRCMU_FW_PROJECT_U9500_MBL:
2609                 return "U9500 MBL";
2610         case PRCMU_FW_PROJECT_U8500_MBL:
2611                 return "U8500 MBL";
2612         case PRCMU_FW_PROJECT_U8500_MBL2:
2613                 return "U8500 MBL2";
2614         case PRCMU_FW_PROJECT_U8520:
2615                 return "U8520 MBL";
2616         case PRCMU_FW_PROJECT_U8420:
2617                 return "U8420";
2618         case PRCMU_FW_PROJECT_U9540:
2619                 return "U9540";
2620         case PRCMU_FW_PROJECT_A9420:
2621                 return "A9420";
2622         case PRCMU_FW_PROJECT_L8540:
2623                 return "L8540";
2624         case PRCMU_FW_PROJECT_L8580:
2625                 return "L8580";
2626         default:
2627                 return "Unknown";
2628         }
2629 }
2630
2631 static int db8500_irq_map(struct irq_domain *d, unsigned int virq,
2632                                 irq_hw_number_t hwirq)
2633 {
2634         irq_set_chip_and_handler(virq, &prcmu_irq_chip,
2635                                 handle_simple_irq);
2636
2637         return 0;
2638 }
2639
2640 static const struct irq_domain_ops db8500_irq_ops = {
2641         .map    = db8500_irq_map,
2642         .xlate  = irq_domain_xlate_twocell,
2643 };
2644
2645 static int db8500_irq_init(struct device_node *np)
2646 {
2647         int i;
2648
2649         db8500_irq_domain = irq_domain_add_simple(
2650                 np, NUM_PRCMU_WAKEUPS, 0,
2651                 &db8500_irq_ops, NULL);
2652
2653         if (!db8500_irq_domain) {
2654                 pr_err("Failed to create irqdomain\n");
2655                 return -ENOSYS;
2656         }
2657
2658         /* All wakeups will be used, so create mappings for all */
2659         for (i = 0; i < NUM_PRCMU_WAKEUPS; i++)
2660                 irq_create_mapping(db8500_irq_domain, i);
2661
2662         return 0;
2663 }
2664
2665 static void dbx500_fw_version_init(struct platform_device *pdev,
2666                             u32 version_offset)
2667 {
2668         struct resource *res;
2669         void __iomem *tcpm_base;
2670         u32 version;
2671
2672         res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
2673                                            "prcmu-tcpm");
2674         if (!res) {
2675                 dev_err(&pdev->dev,
2676                         "Error: no prcmu tcpm memory region provided\n");
2677                 return;
2678         }
2679         tcpm_base = ioremap(res->start, resource_size(res));
2680         if (!tcpm_base) {
2681                 dev_err(&pdev->dev, "no prcmu tcpm mem region provided\n");
2682                 return;
2683         }
2684
2685         version = readl(tcpm_base + version_offset);
2686         fw_info.version.project = (version & 0xFF);
2687         fw_info.version.api_version = (version >> 8) & 0xFF;
2688         fw_info.version.func_version = (version >> 16) & 0xFF;
2689         fw_info.version.errata = (version >> 24) & 0xFF;
2690         strncpy(fw_info.version.project_name,
2691                 fw_project_name(fw_info.version.project),
2692                 PRCMU_FW_PROJECT_NAME_LEN);
2693         fw_info.valid = true;
2694         pr_info("PRCMU firmware: %s(%d), version %d.%d.%d\n",
2695                 fw_info.version.project_name,
2696                 fw_info.version.project,
2697                 fw_info.version.api_version,
2698                 fw_info.version.func_version,
2699                 fw_info.version.errata);
2700         iounmap(tcpm_base);
2701 }
2702
2703 void __init db8500_prcmu_early_init(u32 phy_base, u32 size)
2704 {
2705         /*
2706          * This is a temporary remap to bring up the clocks. It is
2707          * subsequently replaces with a real remap. After the merge of
2708          * the mailbox subsystem all of this early code goes away, and the
2709          * clock driver can probe independently. An early initcall will
2710          * still be needed, but it can be diverted into drivers/clk/ux500.
2711          */
2712         prcmu_base = ioremap(phy_base, size);
2713         if (!prcmu_base)
2714                 pr_err("%s: ioremap() of prcmu registers failed!\n", __func__);
2715
2716         spin_lock_init(&mb0_transfer.lock);
2717         spin_lock_init(&mb0_transfer.dbb_irqs_lock);
2718         mutex_init(&mb0_transfer.ac_wake_lock);
2719         init_completion(&mb0_transfer.ac_wake_work);
2720         mutex_init(&mb1_transfer.lock);
2721         init_completion(&mb1_transfer.work);
2722         mb1_transfer.ape_opp = APE_NO_CHANGE;
2723         mutex_init(&mb2_transfer.lock);
2724         init_completion(&mb2_transfer.work);
2725         spin_lock_init(&mb2_transfer.auto_pm_lock);
2726         spin_lock_init(&mb3_transfer.lock);
2727         mutex_init(&mb3_transfer.sysclk_lock);
2728         init_completion(&mb3_transfer.sysclk_work);
2729         mutex_init(&mb4_transfer.lock);
2730         init_completion(&mb4_transfer.work);
2731         mutex_init(&mb5_transfer.lock);
2732         init_completion(&mb5_transfer.work);
2733
2734         INIT_WORK(&mb0_transfer.mask_work, prcmu_mask_work);
2735 }
2736
2737 static void init_prcm_registers(void)
2738 {
2739         u32 val;
2740
2741         val = readl(PRCM_A9PL_FORCE_CLKEN);
2742         val &= ~(PRCM_A9PL_FORCE_CLKEN_PRCM_A9PL_FORCE_CLKEN |
2743                 PRCM_A9PL_FORCE_CLKEN_PRCM_A9AXI_FORCE_CLKEN);
2744         writel(val, (PRCM_A9PL_FORCE_CLKEN));
2745 }
2746
2747 /*
2748  * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC
2749  */
2750 static struct regulator_consumer_supply db8500_vape_consumers[] = {
2751         REGULATOR_SUPPLY("v-ape", NULL),
2752         REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"),
2753         REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"),
2754         REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"),
2755         REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"),
2756         REGULATOR_SUPPLY("v-i2c", "nmk-i2c.4"),
2757         /* "v-mmc" changed to "vcore" in the mainline kernel */
2758         REGULATOR_SUPPLY("vcore", "sdi0"),
2759         REGULATOR_SUPPLY("vcore", "sdi1"),
2760         REGULATOR_SUPPLY("vcore", "sdi2"),
2761         REGULATOR_SUPPLY("vcore", "sdi3"),
2762         REGULATOR_SUPPLY("vcore", "sdi4"),
2763         REGULATOR_SUPPLY("v-dma", "dma40.0"),
2764         REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"),
2765         /* "v-uart" changed to "vcore" in the mainline kernel */
2766         REGULATOR_SUPPLY("vcore", "uart0"),
2767         REGULATOR_SUPPLY("vcore", "uart1"),
2768         REGULATOR_SUPPLY("vcore", "uart2"),
2769         REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"),
2770         REGULATOR_SUPPLY("v-hsi", "ste_hsi.0"),
2771         REGULATOR_SUPPLY("vddvario", "smsc911x.0"),
2772 };
2773
2774 static struct regulator_consumer_supply db8500_vsmps2_consumers[] = {
2775         REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"),
2776         /* AV8100 regulator */
2777         REGULATOR_SUPPLY("hdmi_1v8", "0-0070"),
2778 };
2779
2780 static struct regulator_consumer_supply db8500_b2r2_mcde_consumers[] = {
2781         REGULATOR_SUPPLY("vsupply", "b2r2_bus"),
2782         REGULATOR_SUPPLY("vsupply", "mcde"),
2783 };
2784
2785 /* SVA MMDSP regulator switch */
2786 static struct regulator_consumer_supply db8500_svammdsp_consumers[] = {
2787         REGULATOR_SUPPLY("sva-mmdsp", "cm_control"),
2788 };
2789
2790 /* SVA pipe regulator switch */
2791 static struct regulator_consumer_supply db8500_svapipe_consumers[] = {
2792         REGULATOR_SUPPLY("sva-pipe", "cm_control"),
2793 };
2794
2795 /* SIA MMDSP regulator switch */
2796 static struct regulator_consumer_supply db8500_siammdsp_consumers[] = {
2797         REGULATOR_SUPPLY("sia-mmdsp", "cm_control"),
2798 };
2799
2800 /* SIA pipe regulator switch */
2801 static struct regulator_consumer_supply db8500_siapipe_consumers[] = {
2802         REGULATOR_SUPPLY("sia-pipe", "cm_control"),
2803 };
2804
2805 static struct regulator_consumer_supply db8500_sga_consumers[] = {
2806         REGULATOR_SUPPLY("v-mali", NULL),
2807 };
2808
2809 /* ESRAM1 and 2 regulator switch */
2810 static struct regulator_consumer_supply db8500_esram12_consumers[] = {
2811         REGULATOR_SUPPLY("esram12", "cm_control"),
2812 };
2813
2814 /* ESRAM3 and 4 regulator switch */
2815 static struct regulator_consumer_supply db8500_esram34_consumers[] = {
2816         REGULATOR_SUPPLY("v-esram34", "mcde"),
2817         REGULATOR_SUPPLY("esram34", "cm_control"),
2818         REGULATOR_SUPPLY("lcla_esram", "dma40.0"),
2819 };
2820
2821 static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = {
2822         [DB8500_REGULATOR_VAPE] = {
2823                 .constraints = {
2824                         .name = "db8500-vape",
2825                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2826                         .always_on = true,
2827                 },
2828                 .consumer_supplies = db8500_vape_consumers,
2829                 .num_consumer_supplies = ARRAY_SIZE(db8500_vape_consumers),
2830         },
2831         [DB8500_REGULATOR_VARM] = {
2832                 .constraints = {
2833                         .name = "db8500-varm",
2834                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2835                 },
2836         },
2837         [DB8500_REGULATOR_VMODEM] = {
2838                 .constraints = {
2839                         .name = "db8500-vmodem",
2840                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2841                 },
2842         },
2843         [DB8500_REGULATOR_VPLL] = {
2844                 .constraints = {
2845                         .name = "db8500-vpll",
2846                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2847                 },
2848         },
2849         [DB8500_REGULATOR_VSMPS1] = {
2850                 .constraints = {
2851                         .name = "db8500-vsmps1",
2852                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2853                 },
2854         },
2855         [DB8500_REGULATOR_VSMPS2] = {
2856                 .constraints = {
2857                         .name = "db8500-vsmps2",
2858                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2859                 },
2860                 .consumer_supplies = db8500_vsmps2_consumers,
2861                 .num_consumer_supplies = ARRAY_SIZE(db8500_vsmps2_consumers),
2862         },
2863         [DB8500_REGULATOR_VSMPS3] = {
2864                 .constraints = {
2865                         .name = "db8500-vsmps3",
2866                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2867                 },
2868         },
2869         [DB8500_REGULATOR_VRF1] = {
2870                 .constraints = {
2871                         .name = "db8500-vrf1",
2872                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2873                 },
2874         },
2875         [DB8500_REGULATOR_SWITCH_SVAMMDSP] = {
2876                 /* dependency to u8500-vape is handled outside regulator framework */
2877                 .constraints = {
2878                         .name = "db8500-sva-mmdsp",
2879                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2880                 },
2881                 .consumer_supplies = db8500_svammdsp_consumers,
2882                 .num_consumer_supplies = ARRAY_SIZE(db8500_svammdsp_consumers),
2883         },
2884         [DB8500_REGULATOR_SWITCH_SVAMMDSPRET] = {
2885                 .constraints = {
2886                         /* "ret" means "retention" */
2887                         .name = "db8500-sva-mmdsp-ret",
2888                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2889                 },
2890         },
2891         [DB8500_REGULATOR_SWITCH_SVAPIPE] = {
2892                 /* dependency to u8500-vape is handled outside regulator framework */
2893                 .constraints = {
2894                         .name = "db8500-sva-pipe",
2895                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2896                 },
2897                 .consumer_supplies = db8500_svapipe_consumers,
2898                 .num_consumer_supplies = ARRAY_SIZE(db8500_svapipe_consumers),
2899         },
2900         [DB8500_REGULATOR_SWITCH_SIAMMDSP] = {
2901                 /* dependency to u8500-vape is handled outside regulator framework */
2902                 .constraints = {
2903                         .name = "db8500-sia-mmdsp",
2904                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2905                 },
2906                 .consumer_supplies = db8500_siammdsp_consumers,
2907                 .num_consumer_supplies = ARRAY_SIZE(db8500_siammdsp_consumers),
2908         },
2909         [DB8500_REGULATOR_SWITCH_SIAMMDSPRET] = {
2910                 .constraints = {
2911                         .name = "db8500-sia-mmdsp-ret",
2912                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2913                 },
2914         },
2915         [DB8500_REGULATOR_SWITCH_SIAPIPE] = {
2916                 /* dependency to u8500-vape is handled outside regulator framework */
2917                 .constraints = {
2918                         .name = "db8500-sia-pipe",
2919                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2920                 },
2921                 .consumer_supplies = db8500_siapipe_consumers,
2922                 .num_consumer_supplies = ARRAY_SIZE(db8500_siapipe_consumers),
2923         },
2924         [DB8500_REGULATOR_SWITCH_SGA] = {
2925                 .supply_regulator = "db8500-vape",
2926                 .constraints = {
2927                         .name = "db8500-sga",
2928                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2929                 },
2930                 .consumer_supplies = db8500_sga_consumers,
2931                 .num_consumer_supplies = ARRAY_SIZE(db8500_sga_consumers),
2932
2933         },
2934         [DB8500_REGULATOR_SWITCH_B2R2_MCDE] = {
2935                 .supply_regulator = "db8500-vape",
2936                 .constraints = {
2937                         .name = "db8500-b2r2-mcde",
2938                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2939                 },
2940                 .consumer_supplies = db8500_b2r2_mcde_consumers,
2941                 .num_consumer_supplies = ARRAY_SIZE(db8500_b2r2_mcde_consumers),
2942         },
2943         [DB8500_REGULATOR_SWITCH_ESRAM12] = {
2944                 /*
2945                  * esram12 is set in retention and supplied by Vsafe when Vape is off,
2946                  * no need to hold Vape
2947                  */
2948                 .constraints = {
2949                         .name = "db8500-esram12",
2950                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2951                 },
2952                 .consumer_supplies = db8500_esram12_consumers,
2953                 .num_consumer_supplies = ARRAY_SIZE(db8500_esram12_consumers),
2954         },
2955         [DB8500_REGULATOR_SWITCH_ESRAM12RET] = {
2956                 .constraints = {
2957                         .name = "db8500-esram12-ret",
2958                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2959                 },
2960         },
2961         [DB8500_REGULATOR_SWITCH_ESRAM34] = {
2962                 /*
2963                  * esram34 is set in retention and supplied by Vsafe when Vape is off,
2964                  * no need to hold Vape
2965                  */
2966                 .constraints = {
2967                         .name = "db8500-esram34",
2968                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2969                 },
2970                 .consumer_supplies = db8500_esram34_consumers,
2971                 .num_consumer_supplies = ARRAY_SIZE(db8500_esram34_consumers),
2972         },
2973         [DB8500_REGULATOR_SWITCH_ESRAM34RET] = {
2974                 .constraints = {
2975                         .name = "db8500-esram34-ret",
2976                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2977                 },
2978         },
2979 };
2980
2981 static struct ux500_wdt_data db8500_wdt_pdata = {
2982         .timeout = 600, /* 10 minutes */
2983         .has_28_bits_resolution = true,
2984 };
2985 /*
2986  * Thermal Sensor
2987  */
2988
2989 static struct resource db8500_thsens_resources[] = {
2990         {
2991                 .name = "IRQ_HOTMON_LOW",
2992                 .start  = IRQ_PRCMU_HOTMON_LOW,
2993                 .end    = IRQ_PRCMU_HOTMON_LOW,
2994                 .flags  = IORESOURCE_IRQ,
2995         },
2996         {
2997                 .name = "IRQ_HOTMON_HIGH",
2998                 .start  = IRQ_PRCMU_HOTMON_HIGH,
2999                 .end    = IRQ_PRCMU_HOTMON_HIGH,
3000                 .flags  = IORESOURCE_IRQ,
3001         },
3002 };
3003
3004 static struct db8500_thsens_platform_data db8500_thsens_data = {
3005         .trip_points[0] = {
3006                 .temp = 70000,
3007                 .type = THERMAL_TRIP_ACTIVE,
3008                 .cdev_name = {
3009                         [0] = "thermal-cpufreq-0",
3010                 },
3011         },
3012         .trip_points[1] = {
3013                 .temp = 75000,
3014                 .type = THERMAL_TRIP_ACTIVE,
3015                 .cdev_name = {
3016                         [0] = "thermal-cpufreq-0",
3017                 },
3018         },
3019         .trip_points[2] = {
3020                 .temp = 80000,
3021                 .type = THERMAL_TRIP_ACTIVE,
3022                 .cdev_name = {
3023                         [0] = "thermal-cpufreq-0",
3024                 },
3025         },
3026         .trip_points[3] = {
3027                 .temp = 85000,
3028                 .type = THERMAL_TRIP_CRITICAL,
3029         },
3030         .num_trips = 4,
3031 };
3032
3033 static const struct mfd_cell common_prcmu_devs[] = {
3034         {
3035                 .name = "ux500_wdt",
3036                 .platform_data = &db8500_wdt_pdata,
3037                 .pdata_size = sizeof(db8500_wdt_pdata),
3038                 .id = -1,
3039         },
3040 };
3041
3042 static const struct mfd_cell db8500_prcmu_devs[] = {
3043         {
3044                 .name = "db8500-prcmu-regulators",
3045                 .of_compatible = "stericsson,db8500-prcmu-regulator",
3046                 .platform_data = &db8500_regulators,
3047                 .pdata_size = sizeof(db8500_regulators),
3048         },
3049         {
3050                 .name = "cpuidle-dbx500",
3051                 .of_compatible = "stericsson,cpuidle-dbx500",
3052         },
3053         {
3054                 .name = "db8500-thermal",
3055                 .num_resources = ARRAY_SIZE(db8500_thsens_resources),
3056                 .resources = db8500_thsens_resources,
3057                 .platform_data = &db8500_thsens_data,
3058                 .pdata_size = sizeof(db8500_thsens_data),
3059         },
3060 };
3061
3062 static int db8500_prcmu_register_ab8500(struct device *parent)
3063 {
3064         struct device_node *np;
3065         struct resource ab8500_resource;
3066         const struct mfd_cell ab8500_cell = {
3067                 .name = "ab8500-core",
3068                 .of_compatible = "stericsson,ab8500",
3069                 .id = AB8500_VERSION_AB8500,
3070                 .resources = &ab8500_resource,
3071                 .num_resources = 1,
3072         };
3073
3074         if (!parent->of_node)
3075                 return -ENODEV;
3076
3077         /* Look up the device node, sneak the IRQ out of it */
3078         for_each_child_of_node(parent->of_node, np) {
3079                 if (of_device_is_compatible(np, ab8500_cell.of_compatible))
3080                         break;
3081         }
3082         if (!np) {
3083                 dev_info(parent, "could not find AB8500 node in the device tree\n");
3084                 return -ENODEV;
3085         }
3086         of_irq_to_resource_table(np, &ab8500_resource, 1);
3087
3088         return mfd_add_devices(parent, 0, &ab8500_cell, 1, NULL, 0, NULL);
3089 }
3090
3091 /**
3092  * prcmu_fw_init - arch init call for the Linux PRCMU fw init logic
3093  *
3094  */
3095 static int db8500_prcmu_probe(struct platform_device *pdev)
3096 {
3097         struct device_node *np = pdev->dev.of_node;
3098         int irq = 0, err = 0;
3099         struct resource *res;
3100
3101         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu");
3102         if (!res) {
3103                 dev_err(&pdev->dev, "no prcmu memory region provided\n");
3104                 return -EINVAL;
3105         }
3106         prcmu_base = devm_ioremap(&pdev->dev, res->start, resource_size(res));
3107         if (!prcmu_base) {
3108                 dev_err(&pdev->dev,
3109                         "failed to ioremap prcmu register memory\n");
3110                 return -ENOMEM;
3111         }
3112         init_prcm_registers();
3113         dbx500_fw_version_init(pdev, DB8500_PRCMU_FW_VERSION_OFFSET);
3114         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu-tcdm");
3115         if (!res) {
3116                 dev_err(&pdev->dev, "no prcmu tcdm region provided\n");
3117                 return -EINVAL;
3118         }
3119         tcdm_base = devm_ioremap(&pdev->dev, res->start,
3120                         resource_size(res));
3121         if (!tcdm_base) {
3122                 dev_err(&pdev->dev,
3123                         "failed to ioremap prcmu-tcdm register memory\n");
3124                 return -ENOMEM;
3125         }
3126
3127         /* Clean up the mailbox interrupts after pre-kernel code. */
3128         writel(ALL_MBOX_BITS, PRCM_ARM_IT1_CLR);
3129
3130         irq = platform_get_irq(pdev, 0);
3131         if (irq <= 0) {
3132                 dev_err(&pdev->dev, "no prcmu irq provided\n");
3133                 return irq;
3134         }
3135
3136         err = request_threaded_irq(irq, prcmu_irq_handler,
3137                 prcmu_irq_thread_fn, IRQF_NO_SUSPEND, "prcmu", NULL);
3138         if (err < 0) {
3139                 pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n");
3140                 return err;
3141         }
3142
3143         db8500_irq_init(np);
3144
3145         prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET);
3146
3147         err = mfd_add_devices(&pdev->dev, 0, common_prcmu_devs,
3148                               ARRAY_SIZE(common_prcmu_devs), NULL, 0, db8500_irq_domain);
3149         if (err) {
3150                 pr_err("prcmu: Failed to add subdevices\n");
3151                 return err;
3152         }
3153
3154         /* TODO: Remove restriction when clk definitions are available. */
3155         if (!of_machine_is_compatible("st-ericsson,u8540")) {
3156                 err = mfd_add_devices(&pdev->dev, 0, db8500_prcmu_devs,
3157                                       ARRAY_SIZE(db8500_prcmu_devs), NULL, 0,
3158                                       db8500_irq_domain);
3159                 if (err) {
3160                         mfd_remove_devices(&pdev->dev);
3161                         pr_err("prcmu: Failed to add subdevices\n");
3162                         return err;
3163                 }
3164         }
3165
3166         err = db8500_prcmu_register_ab8500(&pdev->dev);
3167         if (err) {
3168                 mfd_remove_devices(&pdev->dev);
3169                 pr_err("prcmu: Failed to add ab8500 subdevice\n");
3170                 return err;
3171         }
3172
3173         pr_info("DB8500 PRCMU initialized\n");
3174         return err;
3175 }
3176 static const struct of_device_id db8500_prcmu_match[] = {
3177         { .compatible = "stericsson,db8500-prcmu"},
3178         { },
3179 };
3180
3181 static struct platform_driver db8500_prcmu_driver = {
3182         .driver = {
3183                 .name = "db8500-prcmu",
3184                 .of_match_table = db8500_prcmu_match,
3185         },
3186         .probe = db8500_prcmu_probe,
3187 };
3188
3189 static int __init db8500_prcmu_init(void)
3190 {
3191         return platform_driver_register(&db8500_prcmu_driver);
3192 }
3193 core_initcall(db8500_prcmu_init);