Merge tag 'drivers-5.10-2020-10-12' of git://git.kernel.dk/linux-block
[linux-2.6-block.git] / drivers / media / radio / wl128x / fmdrv_common.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  FM Driver for Connectivity chip of Texas Instruments.
4  *
5  *  This sub-module of FM driver is common for FM RX and TX
6  *  functionality. This module is responsible for:
7  *  1) Forming group of Channel-8 commands to perform particular
8  *     functionality (eg., frequency set require more than
9  *     one Channel-8 command to be sent to the chip).
10  *  2) Sending each Channel-8 command to the chip and reading
11  *     response back over Shared Transport.
12  *  3) Managing TX and RX Queues and Tasklets.
13  *  4) Handling FM Interrupt packet and taking appropriate action.
14  *  5) Loading FM firmware to the chip (common, FM TX, and FM RX
15  *     firmware files based on mode selection)
16  *
17  *  Copyright (C) 2011 Texas Instruments
18  *  Author: Raja Mani <raja_mani@ti.com>
19  *  Author: Manjunatha Halli <manjunatha_halli@ti.com>
20  */
21
22 #include <linux/delay.h>
23 #include <linux/firmware.h>
24 #include <linux/module.h>
25 #include <linux/nospec.h>
26
27 #include "fmdrv.h"
28 #include "fmdrv_v4l2.h"
29 #include "fmdrv_common.h"
30 #include <linux/ti_wilink_st.h>
31 #include "fmdrv_rx.h"
32 #include "fmdrv_tx.h"
33
34 /* Region info */
35 static struct region_info region_configs[] = {
36         /* Europe/US */
37         {
38          .chanl_space = FM_CHANNEL_SPACING_200KHZ * FM_FREQ_MUL,
39          .bot_freq = 87500,     /* 87.5 MHz */
40          .top_freq = 108000,    /* 108 MHz */
41          .fm_band = 0,
42          },
43         /* Japan */
44         {
45          .chanl_space = FM_CHANNEL_SPACING_200KHZ * FM_FREQ_MUL,
46          .bot_freq = 76000,     /* 76 MHz */
47          .top_freq = 90000,     /* 90 MHz */
48          .fm_band = 1,
49          },
50 };
51
52 /* Band selection */
53 static u8 default_radio_region; /* Europe/US */
54 module_param(default_radio_region, byte, 0);
55 MODULE_PARM_DESC(default_radio_region, "Region: 0=Europe/US, 1=Japan");
56
57 /* RDS buffer blocks */
58 static u32 default_rds_buf = 300;
59 module_param(default_rds_buf, uint, 0444);
60 MODULE_PARM_DESC(default_rds_buf, "RDS buffer entries");
61
62 /* Radio Nr */
63 static u32 radio_nr = -1;
64 module_param(radio_nr, int, 0444);
65 MODULE_PARM_DESC(radio_nr, "Radio Nr");
66
67 /* FM irq handlers forward declaration */
68 static void fm_irq_send_flag_getcmd(struct fmdev *);
69 static void fm_irq_handle_flag_getcmd_resp(struct fmdev *);
70 static void fm_irq_handle_hw_malfunction(struct fmdev *);
71 static void fm_irq_handle_rds_start(struct fmdev *);
72 static void fm_irq_send_rdsdata_getcmd(struct fmdev *);
73 static void fm_irq_handle_rdsdata_getcmd_resp(struct fmdev *);
74 static void fm_irq_handle_rds_finish(struct fmdev *);
75 static void fm_irq_handle_tune_op_ended(struct fmdev *);
76 static void fm_irq_handle_power_enb(struct fmdev *);
77 static void fm_irq_handle_low_rssi_start(struct fmdev *);
78 static void fm_irq_afjump_set_pi(struct fmdev *);
79 static void fm_irq_handle_set_pi_resp(struct fmdev *);
80 static void fm_irq_afjump_set_pimask(struct fmdev *);
81 static void fm_irq_handle_set_pimask_resp(struct fmdev *);
82 static void fm_irq_afjump_setfreq(struct fmdev *);
83 static void fm_irq_handle_setfreq_resp(struct fmdev *);
84 static void fm_irq_afjump_enableint(struct fmdev *);
85 static void fm_irq_afjump_enableint_resp(struct fmdev *);
86 static void fm_irq_start_afjump(struct fmdev *);
87 static void fm_irq_handle_start_afjump_resp(struct fmdev *);
88 static void fm_irq_afjump_rd_freq(struct fmdev *);
89 static void fm_irq_afjump_rd_freq_resp(struct fmdev *);
90 static void fm_irq_handle_low_rssi_finish(struct fmdev *);
91 static void fm_irq_send_intmsk_cmd(struct fmdev *);
92 static void fm_irq_handle_intmsk_cmd_resp(struct fmdev *);
93
94 /*
95  * When FM common module receives interrupt packet, following handlers
96  * will be executed one after another to service the interrupt(s)
97  */
98 enum fmc_irq_handler_index {
99         FM_SEND_FLAG_GETCMD_IDX,
100         FM_HANDLE_FLAG_GETCMD_RESP_IDX,
101
102         /* HW malfunction irq handler */
103         FM_HW_MAL_FUNC_IDX,
104
105         /* RDS threshold reached irq handler */
106         FM_RDS_START_IDX,
107         FM_RDS_SEND_RDS_GETCMD_IDX,
108         FM_RDS_HANDLE_RDS_GETCMD_RESP_IDX,
109         FM_RDS_FINISH_IDX,
110
111         /* Tune operation ended irq handler */
112         FM_HW_TUNE_OP_ENDED_IDX,
113
114         /* TX power enable irq handler */
115         FM_HW_POWER_ENB_IDX,
116
117         /* Low RSSI irq handler */
118         FM_LOW_RSSI_START_IDX,
119         FM_AF_JUMP_SETPI_IDX,
120         FM_AF_JUMP_HANDLE_SETPI_RESP_IDX,
121         FM_AF_JUMP_SETPI_MASK_IDX,
122         FM_AF_JUMP_HANDLE_SETPI_MASK_RESP_IDX,
123         FM_AF_JUMP_SET_AF_FREQ_IDX,
124         FM_AF_JUMP_HANDLE_SET_AFFREQ_RESP_IDX,
125         FM_AF_JUMP_ENABLE_INT_IDX,
126         FM_AF_JUMP_ENABLE_INT_RESP_IDX,
127         FM_AF_JUMP_START_AFJUMP_IDX,
128         FM_AF_JUMP_HANDLE_START_AFJUMP_RESP_IDX,
129         FM_AF_JUMP_RD_FREQ_IDX,
130         FM_AF_JUMP_RD_FREQ_RESP_IDX,
131         FM_LOW_RSSI_FINISH_IDX,
132
133         /* Interrupt process post action */
134         FM_SEND_INTMSK_CMD_IDX,
135         FM_HANDLE_INTMSK_CMD_RESP_IDX,
136 };
137
138 /* FM interrupt handler table */
139 static int_handler_prototype int_handler_table[] = {
140         fm_irq_send_flag_getcmd,
141         fm_irq_handle_flag_getcmd_resp,
142         fm_irq_handle_hw_malfunction,
143         fm_irq_handle_rds_start, /* RDS threshold reached irq handler */
144         fm_irq_send_rdsdata_getcmd,
145         fm_irq_handle_rdsdata_getcmd_resp,
146         fm_irq_handle_rds_finish,
147         fm_irq_handle_tune_op_ended,
148         fm_irq_handle_power_enb, /* TX power enable irq handler */
149         fm_irq_handle_low_rssi_start,
150         fm_irq_afjump_set_pi,
151         fm_irq_handle_set_pi_resp,
152         fm_irq_afjump_set_pimask,
153         fm_irq_handle_set_pimask_resp,
154         fm_irq_afjump_setfreq,
155         fm_irq_handle_setfreq_resp,
156         fm_irq_afjump_enableint,
157         fm_irq_afjump_enableint_resp,
158         fm_irq_start_afjump,
159         fm_irq_handle_start_afjump_resp,
160         fm_irq_afjump_rd_freq,
161         fm_irq_afjump_rd_freq_resp,
162         fm_irq_handle_low_rssi_finish,
163         fm_irq_send_intmsk_cmd, /* Interrupt process post action */
164         fm_irq_handle_intmsk_cmd_resp
165 };
166
167 static long (*g_st_write) (struct sk_buff *skb);
168 static struct completion wait_for_fmdrv_reg_comp;
169
170 static inline void fm_irq_call(struct fmdev *fmdev)
171 {
172         fmdev->irq_info.handlers[fmdev->irq_info.stage](fmdev);
173 }
174
175 /* Continue next function in interrupt handler table */
176 static inline void fm_irq_call_stage(struct fmdev *fmdev, u8 stage)
177 {
178         fmdev->irq_info.stage = stage;
179         fm_irq_call(fmdev);
180 }
181
182 static inline void fm_irq_timeout_stage(struct fmdev *fmdev, u8 stage)
183 {
184         fmdev->irq_info.stage = stage;
185         mod_timer(&fmdev->irq_info.timer, jiffies + FM_DRV_TX_TIMEOUT);
186 }
187
188 #ifdef FM_DUMP_TXRX_PKT
189  /* To dump outgoing FM Channel-8 packets */
190 inline void dump_tx_skb_data(struct sk_buff *skb)
191 {
192         int len, len_org;
193         u8 index;
194         struct fm_cmd_msg_hdr *cmd_hdr;
195
196         cmd_hdr = (struct fm_cmd_msg_hdr *)skb->data;
197         printk(KERN_INFO "<<%shdr:%02x len:%02x opcode:%02x type:%s dlen:%02x",
198                fm_cb(skb)->completion ? " " : "*", cmd_hdr->hdr,
199                cmd_hdr->len, cmd_hdr->op,
200                cmd_hdr->rd_wr ? "RD" : "WR", cmd_hdr->dlen);
201
202         len_org = skb->len - FM_CMD_MSG_HDR_SIZE;
203         if (len_org > 0) {
204                 printk(KERN_CONT "\n   data(%d): ", cmd_hdr->dlen);
205                 len = min(len_org, 14);
206                 for (index = 0; index < len; index++)
207                         printk(KERN_CONT "%x ",
208                                skb->data[FM_CMD_MSG_HDR_SIZE + index]);
209                 printk(KERN_CONT "%s", (len_org > 14) ? ".." : "");
210         }
211         printk(KERN_CONT "\n");
212 }
213
214  /* To dump incoming FM Channel-8 packets */
215 inline void dump_rx_skb_data(struct sk_buff *skb)
216 {
217         int len, len_org;
218         u8 index;
219         struct fm_event_msg_hdr *evt_hdr;
220
221         evt_hdr = (struct fm_event_msg_hdr *)skb->data;
222         printk(KERN_INFO ">> hdr:%02x len:%02x sts:%02x numhci:%02x opcode:%02x type:%s dlen:%02x",
223                evt_hdr->hdr, evt_hdr->len,
224                evt_hdr->status, evt_hdr->num_fm_hci_cmds, evt_hdr->op,
225                (evt_hdr->rd_wr) ? "RD" : "WR", evt_hdr->dlen);
226
227         len_org = skb->len - FM_EVT_MSG_HDR_SIZE;
228         if (len_org > 0) {
229                 printk(KERN_CONT "\n   data(%d): ", evt_hdr->dlen);
230                 len = min(len_org, 14);
231                 for (index = 0; index < len; index++)
232                         printk(KERN_CONT "%x ",
233                                skb->data[FM_EVT_MSG_HDR_SIZE + index]);
234                 printk(KERN_CONT "%s", (len_org > 14) ? ".." : "");
235         }
236         printk(KERN_CONT "\n");
237 }
238 #endif
239
240 void fmc_update_region_info(struct fmdev *fmdev, u8 region_to_set)
241 {
242         fmdev->rx.region = region_configs[region_to_set];
243 }
244
245 /*
246  * FM common sub-module will schedule this tasklet whenever it receives
247  * FM packet from ST driver.
248  */
249 static void recv_tasklet(struct tasklet_struct *t)
250 {
251         struct fmdev *fmdev;
252         struct fm_irq *irq_info;
253         struct fm_event_msg_hdr *evt_hdr;
254         struct sk_buff *skb;
255         u8 num_fm_hci_cmds;
256         unsigned long flags;
257
258         fmdev = from_tasklet(fmdev, t, tx_task);
259         irq_info = &fmdev->irq_info;
260         /* Process all packets in the RX queue */
261         while ((skb = skb_dequeue(&fmdev->rx_q))) {
262                 if (skb->len < sizeof(struct fm_event_msg_hdr)) {
263                         fmerr("skb(%p) has only %d bytes, at least need %zu bytes to decode\n",
264                               skb,
265                               skb->len, sizeof(struct fm_event_msg_hdr));
266                         kfree_skb(skb);
267                         continue;
268                 }
269
270                 evt_hdr = (void *)skb->data;
271                 num_fm_hci_cmds = evt_hdr->num_fm_hci_cmds;
272
273                 /* FM interrupt packet? */
274                 if (evt_hdr->op == FM_INTERRUPT) {
275                         /* FM interrupt handler started already? */
276                         if (!test_bit(FM_INTTASK_RUNNING, &fmdev->flag)) {
277                                 set_bit(FM_INTTASK_RUNNING, &fmdev->flag);
278                                 if (irq_info->stage != 0) {
279                                         fmerr("Inval stage resetting to zero\n");
280                                         irq_info->stage = 0;
281                                 }
282
283                                 /*
284                                  * Execute first function in interrupt handler
285                                  * table.
286                                  */
287                                 irq_info->handlers[irq_info->stage](fmdev);
288                         } else {
289                                 set_bit(FM_INTTASK_SCHEDULE_PENDING, &fmdev->flag);
290                         }
291                         kfree_skb(skb);
292                 }
293                 /* Anyone waiting for this with completion handler? */
294                 else if (evt_hdr->op == fmdev->pre_op && fmdev->resp_comp != NULL) {
295
296                         spin_lock_irqsave(&fmdev->resp_skb_lock, flags);
297                         fmdev->resp_skb = skb;
298                         spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags);
299                         complete(fmdev->resp_comp);
300
301                         fmdev->resp_comp = NULL;
302                         atomic_set(&fmdev->tx_cnt, 1);
303                 }
304                 /* Is this for interrupt handler? */
305                 else if (evt_hdr->op == fmdev->pre_op && fmdev->resp_comp == NULL) {
306                         if (fmdev->resp_skb != NULL)
307                                 fmerr("Response SKB ptr not NULL\n");
308
309                         spin_lock_irqsave(&fmdev->resp_skb_lock, flags);
310                         fmdev->resp_skb = skb;
311                         spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags);
312
313                         /* Execute interrupt handler where state index points */
314                         irq_info->handlers[irq_info->stage](fmdev);
315
316                         kfree_skb(skb);
317                         atomic_set(&fmdev->tx_cnt, 1);
318                 } else {
319                         fmerr("Nobody claimed SKB(%p),purging\n", skb);
320                 }
321
322                 /*
323                  * Check flow control field. If Num_FM_HCI_Commands field is
324                  * not zero, schedule FM TX tasklet.
325                  */
326                 if (num_fm_hci_cmds && atomic_read(&fmdev->tx_cnt))
327                         if (!skb_queue_empty(&fmdev->tx_q))
328                                 tasklet_schedule(&fmdev->tx_task);
329         }
330 }
331
332 /* FM send tasklet: is scheduled when FM packet has to be sent to chip */
333 static void send_tasklet(struct tasklet_struct *t)
334 {
335         struct fmdev *fmdev;
336         struct sk_buff *skb;
337         int len;
338
339         fmdev = from_tasklet(fmdev, t, tx_task);
340
341         if (!atomic_read(&fmdev->tx_cnt))
342                 return;
343
344         /* Check, is there any timeout happened to last transmitted packet */
345         if ((jiffies - fmdev->last_tx_jiffies) > FM_DRV_TX_TIMEOUT) {
346                 fmerr("TX timeout occurred\n");
347                 atomic_set(&fmdev->tx_cnt, 1);
348         }
349
350         /* Send queued FM TX packets */
351         skb = skb_dequeue(&fmdev->tx_q);
352         if (!skb)
353                 return;
354
355         atomic_dec(&fmdev->tx_cnt);
356         fmdev->pre_op = fm_cb(skb)->fm_op;
357
358         if (fmdev->resp_comp != NULL)
359                 fmerr("Response completion handler is not NULL\n");
360
361         fmdev->resp_comp = fm_cb(skb)->completion;
362
363         /* Write FM packet to ST driver */
364         len = g_st_write(skb);
365         if (len < 0) {
366                 kfree_skb(skb);
367                 fmdev->resp_comp = NULL;
368                 fmerr("TX tasklet failed to send skb(%p)\n", skb);
369                 atomic_set(&fmdev->tx_cnt, 1);
370         } else {
371                 fmdev->last_tx_jiffies = jiffies;
372         }
373 }
374
375 /*
376  * Queues FM Channel-8 packet to FM TX queue and schedules FM TX tasklet for
377  * transmission
378  */
379 static int fm_send_cmd(struct fmdev *fmdev, u8 fm_op, u16 type, void *payload,
380                 int payload_len, struct completion *wait_completion)
381 {
382         struct sk_buff *skb;
383         struct fm_cmd_msg_hdr *hdr;
384         int size;
385
386         if (fm_op >= FM_INTERRUPT) {
387                 fmerr("Invalid fm opcode - %d\n", fm_op);
388                 return -EINVAL;
389         }
390         if (test_bit(FM_FW_DW_INPROGRESS, &fmdev->flag) && payload == NULL) {
391                 fmerr("Payload data is NULL during fw download\n");
392                 return -EINVAL;
393         }
394         if (!test_bit(FM_FW_DW_INPROGRESS, &fmdev->flag))
395                 size =
396                     FM_CMD_MSG_HDR_SIZE + ((payload == NULL) ? 0 : payload_len);
397         else
398                 size = payload_len;
399
400         skb = alloc_skb(size, GFP_ATOMIC);
401         if (!skb) {
402                 fmerr("No memory to create new SKB\n");
403                 return -ENOMEM;
404         }
405         /*
406          * Don't fill FM header info for the commands which come from
407          * FM firmware file.
408          */
409         if (!test_bit(FM_FW_DW_INPROGRESS, &fmdev->flag) ||
410                         test_bit(FM_INTTASK_RUNNING, &fmdev->flag)) {
411                 /* Fill command header info */
412                 hdr = skb_put(skb, FM_CMD_MSG_HDR_SIZE);
413                 hdr->hdr = FM_PKT_LOGICAL_CHAN_NUMBER;  /* 0x08 */
414
415                 /* 3 (fm_opcode,rd_wr,dlen) + payload len) */
416                 hdr->len = ((payload == NULL) ? 0 : payload_len) + 3;
417
418                 /* FM opcode */
419                 hdr->op = fm_op;
420
421                 /* read/write type */
422                 hdr->rd_wr = type;
423                 hdr->dlen = payload_len;
424                 fm_cb(skb)->fm_op = fm_op;
425
426                 /*
427                  * If firmware download has finished and the command is
428                  * not a read command then payload is != NULL - a write
429                  * command with u16 payload - convert to be16
430                  */
431                 if (payload != NULL)
432                         *(__be16 *)payload = cpu_to_be16(*(u16 *)payload);
433
434         } else if (payload != NULL) {
435                 fm_cb(skb)->fm_op = *((u8 *)payload + 2);
436         }
437         if (payload != NULL)
438                 skb_put_data(skb, payload, payload_len);
439
440         fm_cb(skb)->completion = wait_completion;
441         skb_queue_tail(&fmdev->tx_q, skb);
442         tasklet_schedule(&fmdev->tx_task);
443
444         return 0;
445 }
446
447 /* Sends FM Channel-8 command to the chip and waits for the response */
448 int fmc_send_cmd(struct fmdev *fmdev, u8 fm_op, u16 type, void *payload,
449                 unsigned int payload_len, void *response, int *response_len)
450 {
451         struct sk_buff *skb;
452         struct fm_event_msg_hdr *evt_hdr;
453         unsigned long flags;
454         int ret;
455
456         init_completion(&fmdev->maintask_comp);
457         ret = fm_send_cmd(fmdev, fm_op, type, payload, payload_len,
458                             &fmdev->maintask_comp);
459         if (ret)
460                 return ret;
461
462         if (!wait_for_completion_timeout(&fmdev->maintask_comp,
463                                          FM_DRV_TX_TIMEOUT)) {
464                 fmerr("Timeout(%d sec),didn't get regcompletion signal from RX tasklet\n",
465                            jiffies_to_msecs(FM_DRV_TX_TIMEOUT) / 1000);
466                 return -ETIMEDOUT;
467         }
468         if (!fmdev->resp_skb) {
469                 fmerr("Response SKB is missing\n");
470                 return -EFAULT;
471         }
472         spin_lock_irqsave(&fmdev->resp_skb_lock, flags);
473         skb = fmdev->resp_skb;
474         fmdev->resp_skb = NULL;
475         spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags);
476
477         evt_hdr = (void *)skb->data;
478         if (evt_hdr->status != 0) {
479                 fmerr("Received event pkt status(%d) is not zero\n",
480                            evt_hdr->status);
481                 kfree_skb(skb);
482                 return -EIO;
483         }
484         /* Send response data to caller */
485         if (response != NULL && response_len != NULL && evt_hdr->dlen &&
486             evt_hdr->dlen <= payload_len) {
487                 /* Skip header info and copy only response data */
488                 skb_pull(skb, sizeof(struct fm_event_msg_hdr));
489                 memcpy(response, skb->data, evt_hdr->dlen);
490                 *response_len = evt_hdr->dlen;
491         } else if (response_len != NULL && evt_hdr->dlen == 0) {
492                 *response_len = 0;
493         }
494         kfree_skb(skb);
495
496         return 0;
497 }
498
499 /* --- Helper functions used in FM interrupt handlers ---*/
500 static inline int check_cmdresp_status(struct fmdev *fmdev,
501                 struct sk_buff **skb)
502 {
503         struct fm_event_msg_hdr *fm_evt_hdr;
504         unsigned long flags;
505
506         del_timer(&fmdev->irq_info.timer);
507
508         spin_lock_irqsave(&fmdev->resp_skb_lock, flags);
509         *skb = fmdev->resp_skb;
510         fmdev->resp_skb = NULL;
511         spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags);
512
513         fm_evt_hdr = (void *)(*skb)->data;
514         if (fm_evt_hdr->status != 0) {
515                 fmerr("irq: opcode %x response status is not zero Initiating irq recovery process\n",
516                                 fm_evt_hdr->op);
517
518                 mod_timer(&fmdev->irq_info.timer, jiffies + FM_DRV_TX_TIMEOUT);
519                 return -1;
520         }
521
522         return 0;
523 }
524
525 static inline void fm_irq_common_cmd_resp_helper(struct fmdev *fmdev, u8 stage)
526 {
527         struct sk_buff *skb;
528
529         if (!check_cmdresp_status(fmdev, &skb))
530                 fm_irq_call_stage(fmdev, stage);
531 }
532
533 /*
534  * Interrupt process timeout handler.
535  * One of the irq handler did not get proper response from the chip. So take
536  * recovery action here. FM interrupts are disabled in the beginning of
537  * interrupt process. Therefore reset stage index to re-enable default
538  * interrupts. So that next interrupt will be processed as usual.
539  */
540 static void int_timeout_handler(struct timer_list *t)
541 {
542         struct fmdev *fmdev;
543         struct fm_irq *fmirq;
544
545         fmdbg("irq: timeout,trying to re-enable fm interrupts\n");
546         fmdev = from_timer(fmdev, t, irq_info.timer);
547         fmirq = &fmdev->irq_info;
548         fmirq->retry++;
549
550         if (fmirq->retry > FM_IRQ_TIMEOUT_RETRY_MAX) {
551                 /* Stop recovery action (interrupt reenable process) and
552                  * reset stage index & retry count values */
553                 fmirq->stage = 0;
554                 fmirq->retry = 0;
555                 fmerr("Recovery action failed duringirq processing, max retry reached\n");
556                 return;
557         }
558         fm_irq_call_stage(fmdev, FM_SEND_INTMSK_CMD_IDX);
559 }
560
561 /* --------- FM interrupt handlers ------------*/
562 static void fm_irq_send_flag_getcmd(struct fmdev *fmdev)
563 {
564         u16 flag;
565
566         /* Send FLAG_GET command , to know the source of interrupt */
567         if (!fm_send_cmd(fmdev, FLAG_GET, REG_RD, NULL, sizeof(flag), NULL))
568                 fm_irq_timeout_stage(fmdev, FM_HANDLE_FLAG_GETCMD_RESP_IDX);
569 }
570
571 static void fm_irq_handle_flag_getcmd_resp(struct fmdev *fmdev)
572 {
573         struct sk_buff *skb;
574         struct fm_event_msg_hdr *fm_evt_hdr;
575
576         if (check_cmdresp_status(fmdev, &skb))
577                 return;
578
579         fm_evt_hdr = (void *)skb->data;
580         if (fm_evt_hdr->dlen > sizeof(fmdev->irq_info.flag))
581                 return;
582
583         /* Skip header info and copy only response data */
584         skb_pull(skb, sizeof(struct fm_event_msg_hdr));
585         memcpy(&fmdev->irq_info.flag, skb->data, fm_evt_hdr->dlen);
586
587         fmdev->irq_info.flag = be16_to_cpu((__force __be16)fmdev->irq_info.flag);
588         fmdbg("irq: flag register(0x%x)\n", fmdev->irq_info.flag);
589
590         /* Continue next function in interrupt handler table */
591         fm_irq_call_stage(fmdev, FM_HW_MAL_FUNC_IDX);
592 }
593
594 static void fm_irq_handle_hw_malfunction(struct fmdev *fmdev)
595 {
596         if (fmdev->irq_info.flag & FM_MAL_EVENT & fmdev->irq_info.mask)
597                 fmerr("irq: HW MAL int received - do nothing\n");
598
599         /* Continue next function in interrupt handler table */
600         fm_irq_call_stage(fmdev, FM_RDS_START_IDX);
601 }
602
603 static void fm_irq_handle_rds_start(struct fmdev *fmdev)
604 {
605         if (fmdev->irq_info.flag & FM_RDS_EVENT & fmdev->irq_info.mask) {
606                 fmdbg("irq: rds threshold reached\n");
607                 fmdev->irq_info.stage = FM_RDS_SEND_RDS_GETCMD_IDX;
608         } else {
609                 /* Continue next function in interrupt handler table */
610                 fmdev->irq_info.stage = FM_HW_TUNE_OP_ENDED_IDX;
611         }
612
613         fm_irq_call(fmdev);
614 }
615
616 static void fm_irq_send_rdsdata_getcmd(struct fmdev *fmdev)
617 {
618         /* Send the command to read RDS data from the chip */
619         if (!fm_send_cmd(fmdev, RDS_DATA_GET, REG_RD, NULL,
620                             (FM_RX_RDS_FIFO_THRESHOLD * 3), NULL))
621                 fm_irq_timeout_stage(fmdev, FM_RDS_HANDLE_RDS_GETCMD_RESP_IDX);
622 }
623
624 /* Keeps track of current RX channel AF (Alternate Frequency) */
625 static void fm_rx_update_af_cache(struct fmdev *fmdev, u8 af)
626 {
627         struct tuned_station_info *stat_info = &fmdev->rx.stat_info;
628         u8 reg_idx = fmdev->rx.region.fm_band;
629         u8 index;
630         u32 freq;
631
632         /* First AF indicates the number of AF follows. Reset the list */
633         if ((af >= FM_RDS_1_AF_FOLLOWS) && (af <= FM_RDS_25_AF_FOLLOWS)) {
634                 fmdev->rx.stat_info.af_list_max = (af - FM_RDS_1_AF_FOLLOWS + 1);
635                 fmdev->rx.stat_info.afcache_size = 0;
636                 fmdbg("No of expected AF : %d\n", fmdev->rx.stat_info.af_list_max);
637                 return;
638         }
639
640         if (af < FM_RDS_MIN_AF)
641                 return;
642         if (reg_idx == FM_BAND_EUROPE_US && af > FM_RDS_MAX_AF)
643                 return;
644         if (reg_idx == FM_BAND_JAPAN && af > FM_RDS_MAX_AF_JAPAN)
645                 return;
646
647         freq = fmdev->rx.region.bot_freq + (af * 100);
648         if (freq == fmdev->rx.freq) {
649                 fmdbg("Current freq(%d) is matching with received AF(%d)\n",
650                                 fmdev->rx.freq, freq);
651                 return;
652         }
653         /* Do check in AF cache */
654         for (index = 0; index < stat_info->afcache_size; index++) {
655                 if (stat_info->af_cache[index] == freq)
656                         break;
657         }
658         /* Reached the limit of the list - ignore the next AF */
659         if (index == stat_info->af_list_max) {
660                 fmdbg("AF cache is full\n");
661                 return;
662         }
663         /*
664          * If we reached the end of the list then this AF is not
665          * in the list - add it.
666          */
667         if (index == stat_info->afcache_size) {
668                 fmdbg("Storing AF %d to cache index %d\n", freq, index);
669                 stat_info->af_cache[index] = freq;
670                 stat_info->afcache_size++;
671         }
672 }
673
674 /*
675  * Converts RDS buffer data from big endian format
676  * to little endian format.
677  */
678 static void fm_rdsparse_swapbytes(struct fmdev *fmdev,
679                 struct fm_rdsdata_format *rds_format)
680 {
681         u8 index = 0;
682         u8 *rds_buff;
683
684         /*
685          * Since in Orca the 2 RDS Data bytes are in little endian and
686          * in Dolphin they are in big endian, the parsing of the RDS data
687          * is chip dependent
688          */
689         if (fmdev->asci_id != 0x6350) {
690                 rds_buff = &rds_format->data.groupdatabuff.buff[0];
691                 while (index + 1 < FM_RX_RDS_INFO_FIELD_MAX) {
692                         swap(rds_buff[index], rds_buff[index + 1]);
693                         index += 2;
694                 }
695         }
696 }
697
698 static void fm_irq_handle_rdsdata_getcmd_resp(struct fmdev *fmdev)
699 {
700         struct sk_buff *skb;
701         struct fm_rdsdata_format rds_fmt;
702         struct fm_rds *rds = &fmdev->rx.rds;
703         unsigned long group_idx, flags;
704         u8 *rds_data, meta_data, tmpbuf[FM_RDS_BLK_SIZE];
705         u8 type, blk_idx, idx;
706         u16 cur_picode;
707         u32 rds_len;
708
709         if (check_cmdresp_status(fmdev, &skb))
710                 return;
711
712         /* Skip header info */
713         skb_pull(skb, sizeof(struct fm_event_msg_hdr));
714         rds_data = skb->data;
715         rds_len = skb->len;
716
717         /* Parse the RDS data */
718         while (rds_len >= FM_RDS_BLK_SIZE) {
719                 meta_data = rds_data[2];
720                 /* Get the type: 0=A, 1=B, 2=C, 3=C', 4=D, 5=E */
721                 type = (meta_data & 0x07);
722
723                 /* Transform the blk type into index sequence (0, 1, 2, 3, 4) */
724                 blk_idx = (type <= FM_RDS_BLOCK_C ? type : (type - 1));
725                 fmdbg("Block index:%d(%s)\n", blk_idx,
726                            (meta_data & FM_RDS_STATUS_ERR_MASK) ? "Bad" : "Ok");
727
728                 if ((meta_data & FM_RDS_STATUS_ERR_MASK) != 0)
729                         break;
730
731                 if (blk_idx > FM_RDS_BLK_IDX_D) {
732                         fmdbg("Block sequence mismatch\n");
733                         rds->last_blk_idx = -1;
734                         break;
735                 }
736
737                 /* Skip checkword (control) byte and copy only data byte */
738                 idx = array_index_nospec(blk_idx * (FM_RDS_BLK_SIZE - 1),
739                                          FM_RX_RDS_INFO_FIELD_MAX - (FM_RDS_BLK_SIZE - 1));
740
741                 memcpy(&rds_fmt.data.groupdatabuff.buff[idx], rds_data,
742                        FM_RDS_BLK_SIZE - 1);
743
744                 rds->last_blk_idx = blk_idx;
745
746                 /* If completed a whole group then handle it */
747                 if (blk_idx == FM_RDS_BLK_IDX_D) {
748                         fmdbg("Good block received\n");
749                         fm_rdsparse_swapbytes(fmdev, &rds_fmt);
750
751                         /*
752                          * Extract PI code and store in local cache.
753                          * We need this during AF switch processing.
754                          */
755                         cur_picode = be16_to_cpu((__force __be16)rds_fmt.data.groupgeneral.pidata);
756                         if (fmdev->rx.stat_info.picode != cur_picode)
757                                 fmdev->rx.stat_info.picode = cur_picode;
758
759                         fmdbg("picode:%d\n", cur_picode);
760
761                         group_idx = (rds_fmt.data.groupgeneral.blk_b[0] >> 3);
762                         fmdbg("(fmdrv):Group:%ld%s\n", group_idx/2,
763                                         (group_idx % 2) ? "B" : "A");
764
765                         group_idx = 1 << (rds_fmt.data.groupgeneral.blk_b[0] >> 3);
766                         if (group_idx == FM_RDS_GROUP_TYPE_MASK_0A) {
767                                 fm_rx_update_af_cache(fmdev, rds_fmt.data.group0A.af[0]);
768                                 fm_rx_update_af_cache(fmdev, rds_fmt.data.group0A.af[1]);
769                         }
770                 }
771                 rds_len -= FM_RDS_BLK_SIZE;
772                 rds_data += FM_RDS_BLK_SIZE;
773         }
774
775         /* Copy raw rds data to internal rds buffer */
776         rds_data = skb->data;
777         rds_len = skb->len;
778
779         spin_lock_irqsave(&fmdev->rds_buff_lock, flags);
780         while (rds_len > 0) {
781                 /*
782                  * Fill RDS buffer as per V4L2 specification.
783                  * Store control byte
784                  */
785                 type = (rds_data[2] & 0x07);
786                 blk_idx = (type <= FM_RDS_BLOCK_C ? type : (type - 1));
787                 tmpbuf[2] = blk_idx;    /* Offset name */
788                 tmpbuf[2] |= blk_idx << 3;      /* Received offset */
789
790                 /* Store data byte */
791                 tmpbuf[0] = rds_data[0];
792                 tmpbuf[1] = rds_data[1];
793
794                 memcpy(&rds->buff[rds->wr_idx], &tmpbuf, FM_RDS_BLK_SIZE);
795                 rds->wr_idx = (rds->wr_idx + FM_RDS_BLK_SIZE) % rds->buf_size;
796
797                 /* Check for overflow & start over */
798                 if (rds->wr_idx == rds->rd_idx) {
799                         fmdbg("RDS buffer overflow\n");
800                         rds->wr_idx = 0;
801                         rds->rd_idx = 0;
802                         break;
803                 }
804                 rds_len -= FM_RDS_BLK_SIZE;
805                 rds_data += FM_RDS_BLK_SIZE;
806         }
807         spin_unlock_irqrestore(&fmdev->rds_buff_lock, flags);
808
809         /* Wakeup read queue */
810         if (rds->wr_idx != rds->rd_idx)
811                 wake_up_interruptible(&rds->read_queue);
812
813         fm_irq_call_stage(fmdev, FM_RDS_FINISH_IDX);
814 }
815
816 static void fm_irq_handle_rds_finish(struct fmdev *fmdev)
817 {
818         fm_irq_call_stage(fmdev, FM_HW_TUNE_OP_ENDED_IDX);
819 }
820
821 static void fm_irq_handle_tune_op_ended(struct fmdev *fmdev)
822 {
823         if (fmdev->irq_info.flag & (FM_FR_EVENT | FM_BL_EVENT) & fmdev->
824             irq_info.mask) {
825                 fmdbg("irq: tune ended/bandlimit reached\n");
826                 if (test_and_clear_bit(FM_AF_SWITCH_INPROGRESS, &fmdev->flag)) {
827                         fmdev->irq_info.stage = FM_AF_JUMP_RD_FREQ_IDX;
828                 } else {
829                         complete(&fmdev->maintask_comp);
830                         fmdev->irq_info.stage = FM_HW_POWER_ENB_IDX;
831                 }
832         } else
833                 fmdev->irq_info.stage = FM_HW_POWER_ENB_IDX;
834
835         fm_irq_call(fmdev);
836 }
837
838 static void fm_irq_handle_power_enb(struct fmdev *fmdev)
839 {
840         if (fmdev->irq_info.flag & FM_POW_ENB_EVENT) {
841                 fmdbg("irq: Power Enabled/Disabled\n");
842                 complete(&fmdev->maintask_comp);
843         }
844
845         fm_irq_call_stage(fmdev, FM_LOW_RSSI_START_IDX);
846 }
847
848 static void fm_irq_handle_low_rssi_start(struct fmdev *fmdev)
849 {
850         if ((fmdev->rx.af_mode == FM_RX_RDS_AF_SWITCH_MODE_ON) &&
851             (fmdev->irq_info.flag & FM_LEV_EVENT & fmdev->irq_info.mask) &&
852             (fmdev->rx.freq != FM_UNDEFINED_FREQ) &&
853             (fmdev->rx.stat_info.afcache_size != 0)) {
854                 fmdbg("irq: rssi level has fallen below threshold level\n");
855
856                 /* Disable further low RSSI interrupts */
857                 fmdev->irq_info.mask &= ~FM_LEV_EVENT;
858
859                 fmdev->rx.afjump_idx = 0;
860                 fmdev->rx.freq_before_jump = fmdev->rx.freq;
861                 fmdev->irq_info.stage = FM_AF_JUMP_SETPI_IDX;
862         } else {
863                 /* Continue next function in interrupt handler table */
864                 fmdev->irq_info.stage = FM_SEND_INTMSK_CMD_IDX;
865         }
866
867         fm_irq_call(fmdev);
868 }
869
870 static void fm_irq_afjump_set_pi(struct fmdev *fmdev)
871 {
872         u16 payload;
873
874         /* Set PI code - must be updated if the AF list is not empty */
875         payload = fmdev->rx.stat_info.picode;
876         if (!fm_send_cmd(fmdev, RDS_PI_SET, REG_WR, &payload, sizeof(payload), NULL))
877                 fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_SETPI_RESP_IDX);
878 }
879
880 static void fm_irq_handle_set_pi_resp(struct fmdev *fmdev)
881 {
882         fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_SETPI_MASK_IDX);
883 }
884
885 /*
886  * Set PI mask.
887  * 0xFFFF = Enable PI code matching
888  * 0x0000 = Disable PI code matching
889  */
890 static void fm_irq_afjump_set_pimask(struct fmdev *fmdev)
891 {
892         u16 payload;
893
894         payload = 0x0000;
895         if (!fm_send_cmd(fmdev, RDS_PI_MASK_SET, REG_WR, &payload, sizeof(payload), NULL))
896                 fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_SETPI_MASK_RESP_IDX);
897 }
898
899 static void fm_irq_handle_set_pimask_resp(struct fmdev *fmdev)
900 {
901         fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_SET_AF_FREQ_IDX);
902 }
903
904 static void fm_irq_afjump_setfreq(struct fmdev *fmdev)
905 {
906         u16 frq_index;
907         u16 payload;
908
909         fmdbg("Switch to %d KHz\n", fmdev->rx.stat_info.af_cache[fmdev->rx.afjump_idx]);
910         frq_index = (fmdev->rx.stat_info.af_cache[fmdev->rx.afjump_idx] -
911              fmdev->rx.region.bot_freq) / FM_FREQ_MUL;
912
913         payload = frq_index;
914         if (!fm_send_cmd(fmdev, AF_FREQ_SET, REG_WR, &payload, sizeof(payload), NULL))
915                 fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_SET_AFFREQ_RESP_IDX);
916 }
917
918 static void fm_irq_handle_setfreq_resp(struct fmdev *fmdev)
919 {
920         fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_ENABLE_INT_IDX);
921 }
922
923 static void fm_irq_afjump_enableint(struct fmdev *fmdev)
924 {
925         u16 payload;
926
927         /* Enable FR (tuning operation ended) interrupt */
928         payload = FM_FR_EVENT;
929         if (!fm_send_cmd(fmdev, INT_MASK_SET, REG_WR, &payload, sizeof(payload), NULL))
930                 fm_irq_timeout_stage(fmdev, FM_AF_JUMP_ENABLE_INT_RESP_IDX);
931 }
932
933 static void fm_irq_afjump_enableint_resp(struct fmdev *fmdev)
934 {
935         fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_START_AFJUMP_IDX);
936 }
937
938 static void fm_irq_start_afjump(struct fmdev *fmdev)
939 {
940         u16 payload;
941
942         payload = FM_TUNER_AF_JUMP_MODE;
943         if (!fm_send_cmd(fmdev, TUNER_MODE_SET, REG_WR, &payload,
944                         sizeof(payload), NULL))
945                 fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_START_AFJUMP_RESP_IDX);
946 }
947
948 static void fm_irq_handle_start_afjump_resp(struct fmdev *fmdev)
949 {
950         struct sk_buff *skb;
951
952         if (check_cmdresp_status(fmdev, &skb))
953                 return;
954
955         fmdev->irq_info.stage = FM_SEND_FLAG_GETCMD_IDX;
956         set_bit(FM_AF_SWITCH_INPROGRESS, &fmdev->flag);
957         clear_bit(FM_INTTASK_RUNNING, &fmdev->flag);
958 }
959
960 static void fm_irq_afjump_rd_freq(struct fmdev *fmdev)
961 {
962         u16 payload;
963
964         if (!fm_send_cmd(fmdev, FREQ_SET, REG_RD, NULL, sizeof(payload), NULL))
965                 fm_irq_timeout_stage(fmdev, FM_AF_JUMP_RD_FREQ_RESP_IDX);
966 }
967
968 static void fm_irq_afjump_rd_freq_resp(struct fmdev *fmdev)
969 {
970         struct sk_buff *skb;
971         u16 read_freq;
972         u32 curr_freq, jumped_freq;
973
974         if (check_cmdresp_status(fmdev, &skb))
975                 return;
976
977         /* Skip header info and copy only response data */
978         skb_pull(skb, sizeof(struct fm_event_msg_hdr));
979         memcpy(&read_freq, skb->data, sizeof(read_freq));
980         read_freq = be16_to_cpu((__force __be16)read_freq);
981         curr_freq = fmdev->rx.region.bot_freq + ((u32)read_freq * FM_FREQ_MUL);
982
983         jumped_freq = fmdev->rx.stat_info.af_cache[fmdev->rx.afjump_idx];
984
985         /* If the frequency was changed the jump succeeded */
986         if ((curr_freq != fmdev->rx.freq_before_jump) && (curr_freq == jumped_freq)) {
987                 fmdbg("Successfully switched to alternate freq %d\n", curr_freq);
988                 fmdev->rx.freq = curr_freq;
989                 fm_rx_reset_rds_cache(fmdev);
990
991                 /* AF feature is on, enable low level RSSI interrupt */
992                 if (fmdev->rx.af_mode == FM_RX_RDS_AF_SWITCH_MODE_ON)
993                         fmdev->irq_info.mask |= FM_LEV_EVENT;
994
995                 fmdev->irq_info.stage = FM_LOW_RSSI_FINISH_IDX;
996         } else {                /* jump to the next freq in the AF list */
997                 fmdev->rx.afjump_idx++;
998
999                 /* If we reached the end of the list - stop searching */
1000                 if (fmdev->rx.afjump_idx >= fmdev->rx.stat_info.afcache_size) {
1001                         fmdbg("AF switch processing failed\n");
1002                         fmdev->irq_info.stage = FM_LOW_RSSI_FINISH_IDX;
1003                 } else {        /* AF List is not over - try next one */
1004
1005                         fmdbg("Trying next freq in AF cache\n");
1006                         fmdev->irq_info.stage = FM_AF_JUMP_SETPI_IDX;
1007                 }
1008         }
1009         fm_irq_call(fmdev);
1010 }
1011
1012 static void fm_irq_handle_low_rssi_finish(struct fmdev *fmdev)
1013 {
1014         fm_irq_call_stage(fmdev, FM_SEND_INTMSK_CMD_IDX);
1015 }
1016
1017 static void fm_irq_send_intmsk_cmd(struct fmdev *fmdev)
1018 {
1019         u16 payload;
1020
1021         /* Re-enable FM interrupts */
1022         payload = fmdev->irq_info.mask;
1023
1024         if (!fm_send_cmd(fmdev, INT_MASK_SET, REG_WR, &payload,
1025                         sizeof(payload), NULL))
1026                 fm_irq_timeout_stage(fmdev, FM_HANDLE_INTMSK_CMD_RESP_IDX);
1027 }
1028
1029 static void fm_irq_handle_intmsk_cmd_resp(struct fmdev *fmdev)
1030 {
1031         struct sk_buff *skb;
1032
1033         if (check_cmdresp_status(fmdev, &skb))
1034                 return;
1035         /*
1036          * This is last function in interrupt table to be executed.
1037          * So, reset stage index to 0.
1038          */
1039         fmdev->irq_info.stage = FM_SEND_FLAG_GETCMD_IDX;
1040
1041         /* Start processing any pending interrupt */
1042         if (test_and_clear_bit(FM_INTTASK_SCHEDULE_PENDING, &fmdev->flag))
1043                 fmdev->irq_info.handlers[fmdev->irq_info.stage](fmdev);
1044         else
1045                 clear_bit(FM_INTTASK_RUNNING, &fmdev->flag);
1046 }
1047
1048 /* Returns availability of RDS data in internal buffer */
1049 int fmc_is_rds_data_available(struct fmdev *fmdev, struct file *file,
1050                                 struct poll_table_struct *pts)
1051 {
1052         poll_wait(file, &fmdev->rx.rds.read_queue, pts);
1053         if (fmdev->rx.rds.rd_idx != fmdev->rx.rds.wr_idx)
1054                 return 0;
1055
1056         return -EAGAIN;
1057 }
1058
1059 /* Copies RDS data from internal buffer to user buffer */
1060 int fmc_transfer_rds_from_internal_buff(struct fmdev *fmdev, struct file *file,
1061                 u8 __user *buf, size_t count)
1062 {
1063         u32 block_count;
1064         u8 tmpbuf[FM_RDS_BLK_SIZE];
1065         unsigned long flags;
1066         int ret;
1067
1068         if (fmdev->rx.rds.wr_idx == fmdev->rx.rds.rd_idx) {
1069                 if (file->f_flags & O_NONBLOCK)
1070                         return -EWOULDBLOCK;
1071
1072                 ret = wait_event_interruptible(fmdev->rx.rds.read_queue,
1073                                 (fmdev->rx.rds.wr_idx != fmdev->rx.rds.rd_idx));
1074                 if (ret)
1075                         return -EINTR;
1076         }
1077
1078         /* Calculate block count from byte count */
1079         count /= FM_RDS_BLK_SIZE;
1080         block_count = 0;
1081         ret = 0;
1082
1083         while (block_count < count) {
1084                 spin_lock_irqsave(&fmdev->rds_buff_lock, flags);
1085
1086                 if (fmdev->rx.rds.wr_idx == fmdev->rx.rds.rd_idx) {
1087                         spin_unlock_irqrestore(&fmdev->rds_buff_lock, flags);
1088                         break;
1089                 }
1090                 memcpy(tmpbuf, &fmdev->rx.rds.buff[fmdev->rx.rds.rd_idx],
1091                                         FM_RDS_BLK_SIZE);
1092                 fmdev->rx.rds.rd_idx += FM_RDS_BLK_SIZE;
1093                 if (fmdev->rx.rds.rd_idx >= fmdev->rx.rds.buf_size)
1094                         fmdev->rx.rds.rd_idx = 0;
1095
1096                 spin_unlock_irqrestore(&fmdev->rds_buff_lock, flags);
1097
1098                 if (copy_to_user(buf, tmpbuf, FM_RDS_BLK_SIZE))
1099                         break;
1100
1101                 block_count++;
1102                 buf += FM_RDS_BLK_SIZE;
1103                 ret += FM_RDS_BLK_SIZE;
1104         }
1105         return ret;
1106 }
1107
1108 int fmc_set_freq(struct fmdev *fmdev, u32 freq_to_set)
1109 {
1110         switch (fmdev->curr_fmmode) {
1111         case FM_MODE_RX:
1112                 return fm_rx_set_freq(fmdev, freq_to_set);
1113
1114         case FM_MODE_TX:
1115                 return fm_tx_set_freq(fmdev, freq_to_set);
1116
1117         default:
1118                 return -EINVAL;
1119         }
1120 }
1121
1122 int fmc_get_freq(struct fmdev *fmdev, u32 *cur_tuned_frq)
1123 {
1124         if (fmdev->rx.freq == FM_UNDEFINED_FREQ) {
1125                 fmerr("RX frequency is not set\n");
1126                 return -EPERM;
1127         }
1128         if (cur_tuned_frq == NULL) {
1129                 fmerr("Invalid memory\n");
1130                 return -ENOMEM;
1131         }
1132
1133         switch (fmdev->curr_fmmode) {
1134         case FM_MODE_RX:
1135                 *cur_tuned_frq = fmdev->rx.freq;
1136                 return 0;
1137
1138         case FM_MODE_TX:
1139                 *cur_tuned_frq = 0;     /* TODO : Change this later */
1140                 return 0;
1141
1142         default:
1143                 return -EINVAL;
1144         }
1145
1146 }
1147
1148 int fmc_set_region(struct fmdev *fmdev, u8 region_to_set)
1149 {
1150         switch (fmdev->curr_fmmode) {
1151         case FM_MODE_RX:
1152                 return fm_rx_set_region(fmdev, region_to_set);
1153
1154         case FM_MODE_TX:
1155                 return fm_tx_set_region(fmdev, region_to_set);
1156
1157         default:
1158                 return -EINVAL;
1159         }
1160 }
1161
1162 int fmc_set_mute_mode(struct fmdev *fmdev, u8 mute_mode_toset)
1163 {
1164         switch (fmdev->curr_fmmode) {
1165         case FM_MODE_RX:
1166                 return fm_rx_set_mute_mode(fmdev, mute_mode_toset);
1167
1168         case FM_MODE_TX:
1169                 return fm_tx_set_mute_mode(fmdev, mute_mode_toset);
1170
1171         default:
1172                 return -EINVAL;
1173         }
1174 }
1175
1176 int fmc_set_stereo_mono(struct fmdev *fmdev, u16 mode)
1177 {
1178         switch (fmdev->curr_fmmode) {
1179         case FM_MODE_RX:
1180                 return fm_rx_set_stereo_mono(fmdev, mode);
1181
1182         case FM_MODE_TX:
1183                 return fm_tx_set_stereo_mono(fmdev, mode);
1184
1185         default:
1186                 return -EINVAL;
1187         }
1188 }
1189
1190 int fmc_set_rds_mode(struct fmdev *fmdev, u8 rds_en_dis)
1191 {
1192         switch (fmdev->curr_fmmode) {
1193         case FM_MODE_RX:
1194                 return fm_rx_set_rds_mode(fmdev, rds_en_dis);
1195
1196         case FM_MODE_TX:
1197                 return fm_tx_set_rds_mode(fmdev, rds_en_dis);
1198
1199         default:
1200                 return -EINVAL;
1201         }
1202 }
1203
1204 /* Sends power off command to the chip */
1205 static int fm_power_down(struct fmdev *fmdev)
1206 {
1207         u16 payload;
1208         int ret;
1209
1210         if (!test_bit(FM_CORE_READY, &fmdev->flag)) {
1211                 fmerr("FM core is not ready\n");
1212                 return -EPERM;
1213         }
1214         if (fmdev->curr_fmmode == FM_MODE_OFF) {
1215                 fmdbg("FM chip is already in OFF state\n");
1216                 return 0;
1217         }
1218
1219         payload = 0x0;
1220         ret = fmc_send_cmd(fmdev, FM_POWER_MODE, REG_WR, &payload,
1221                 sizeof(payload), NULL, NULL);
1222         if (ret < 0)
1223                 return ret;
1224
1225         return fmc_release(fmdev);
1226 }
1227
1228 /* Reads init command from FM firmware file and loads to the chip */
1229 static int fm_download_firmware(struct fmdev *fmdev, const u8 *fw_name)
1230 {
1231         const struct firmware *fw_entry;
1232         struct bts_header *fw_header;
1233         struct bts_action *action;
1234         struct bts_action_delay *delay;
1235         u8 *fw_data;
1236         int ret, fw_len, cmd_cnt;
1237
1238         cmd_cnt = 0;
1239         set_bit(FM_FW_DW_INPROGRESS, &fmdev->flag);
1240
1241         ret = request_firmware(&fw_entry, fw_name,
1242                                 &fmdev->radio_dev->dev);
1243         if (ret < 0) {
1244                 fmerr("Unable to read firmware(%s) content\n", fw_name);
1245                 return ret;
1246         }
1247         fmdbg("Firmware(%s) length : %zu bytes\n", fw_name, fw_entry->size);
1248
1249         fw_data = (void *)fw_entry->data;
1250         fw_len = fw_entry->size;
1251
1252         fw_header = (struct bts_header *)fw_data;
1253         if (fw_header->magic != FM_FW_FILE_HEADER_MAGIC) {
1254                 fmerr("%s not a legal TI firmware file\n", fw_name);
1255                 ret = -EINVAL;
1256                 goto rel_fw;
1257         }
1258         fmdbg("FW(%s) magic number : 0x%x\n", fw_name, fw_header->magic);
1259
1260         /* Skip file header info , we already verified it */
1261         fw_data += sizeof(struct bts_header);
1262         fw_len -= sizeof(struct bts_header);
1263
1264         while (fw_data && fw_len > 0) {
1265                 action = (struct bts_action *)fw_data;
1266
1267                 switch (action->type) {
1268                 case ACTION_SEND_COMMAND:       /* Send */
1269                         ret = fmc_send_cmd(fmdev, 0, 0, action->data,
1270                                            action->size, NULL, NULL);
1271                         if (ret)
1272                                 goto rel_fw;
1273
1274                         cmd_cnt++;
1275                         break;
1276
1277                 case ACTION_DELAY:      /* Delay */
1278                         delay = (struct bts_action_delay *)action->data;
1279                         mdelay(delay->msec);
1280                         break;
1281                 }
1282
1283                 fw_data += (sizeof(struct bts_action) + (action->size));
1284                 fw_len -= (sizeof(struct bts_action) + (action->size));
1285         }
1286         fmdbg("Firmware commands(%d) loaded to chip\n", cmd_cnt);
1287 rel_fw:
1288         release_firmware(fw_entry);
1289         clear_bit(FM_FW_DW_INPROGRESS, &fmdev->flag);
1290
1291         return ret;
1292 }
1293
1294 /* Loads default RX configuration to the chip */
1295 static int load_default_rx_configuration(struct fmdev *fmdev)
1296 {
1297         int ret;
1298
1299         ret = fm_rx_set_volume(fmdev, FM_DEFAULT_RX_VOLUME);
1300         if (ret < 0)
1301                 return ret;
1302
1303         return fm_rx_set_rssi_threshold(fmdev, FM_DEFAULT_RSSI_THRESHOLD);
1304 }
1305
1306 /* Does FM power on sequence */
1307 static int fm_power_up(struct fmdev *fmdev, u8 mode)
1308 {
1309         u16 payload;
1310         __be16 asic_id = 0, asic_ver = 0;
1311         int resp_len, ret;
1312         u8 fw_name[50];
1313
1314         if (mode >= FM_MODE_ENTRY_MAX) {
1315                 fmerr("Invalid firmware download option\n");
1316                 return -EINVAL;
1317         }
1318
1319         /*
1320          * Initialize FM common module. FM GPIO toggling is
1321          * taken care in Shared Transport driver.
1322          */
1323         ret = fmc_prepare(fmdev);
1324         if (ret < 0) {
1325                 fmerr("Unable to prepare FM Common\n");
1326                 return ret;
1327         }
1328
1329         payload = FM_ENABLE;
1330         if (fmc_send_cmd(fmdev, FM_POWER_MODE, REG_WR, &payload,
1331                         sizeof(payload), NULL, NULL))
1332                 goto rel;
1333
1334         /* Allow the chip to settle down in Channel-8 mode */
1335         msleep(20);
1336
1337         if (fmc_send_cmd(fmdev, ASIC_ID_GET, REG_RD, NULL,
1338                         sizeof(asic_id), &asic_id, &resp_len))
1339                 goto rel;
1340
1341         if (fmc_send_cmd(fmdev, ASIC_VER_GET, REG_RD, NULL,
1342                         sizeof(asic_ver), &asic_ver, &resp_len))
1343                 goto rel;
1344
1345         fmdbg("ASIC ID: 0x%x , ASIC Version: %d\n",
1346                 be16_to_cpu(asic_id), be16_to_cpu(asic_ver));
1347
1348         sprintf(fw_name, "%s_%x.%d.bts", FM_FMC_FW_FILE_START,
1349                 be16_to_cpu(asic_id), be16_to_cpu(asic_ver));
1350
1351         ret = fm_download_firmware(fmdev, fw_name);
1352         if (ret < 0) {
1353                 fmdbg("Failed to download firmware file %s\n", fw_name);
1354                 goto rel;
1355         }
1356         sprintf(fw_name, "%s_%x.%d.bts", (mode == FM_MODE_RX) ?
1357                         FM_RX_FW_FILE_START : FM_TX_FW_FILE_START,
1358                         be16_to_cpu(asic_id), be16_to_cpu(asic_ver));
1359
1360         ret = fm_download_firmware(fmdev, fw_name);
1361         if (ret < 0) {
1362                 fmdbg("Failed to download firmware file %s\n", fw_name);
1363                 goto rel;
1364         } else
1365                 return ret;
1366 rel:
1367         return fmc_release(fmdev);
1368 }
1369
1370 /* Set FM Modes(TX, RX, OFF) */
1371 int fmc_set_mode(struct fmdev *fmdev, u8 fm_mode)
1372 {
1373         int ret = 0;
1374
1375         if (fm_mode >= FM_MODE_ENTRY_MAX) {
1376                 fmerr("Invalid FM mode\n");
1377                 return -EINVAL;
1378         }
1379         if (fmdev->curr_fmmode == fm_mode) {
1380                 fmdbg("Already fm is in mode(%d)\n", fm_mode);
1381                 return ret;
1382         }
1383
1384         switch (fm_mode) {
1385         case FM_MODE_OFF:       /* OFF Mode */
1386                 ret = fm_power_down(fmdev);
1387                 if (ret < 0) {
1388                         fmerr("Failed to set OFF mode\n");
1389                         return ret;
1390                 }
1391                 break;
1392
1393         case FM_MODE_TX:        /* TX Mode */
1394         case FM_MODE_RX:        /* RX Mode */
1395                 /* Power down before switching to TX or RX mode */
1396                 if (fmdev->curr_fmmode != FM_MODE_OFF) {
1397                         ret = fm_power_down(fmdev);
1398                         if (ret < 0) {
1399                                 fmerr("Failed to set OFF mode\n");
1400                                 return ret;
1401                         }
1402                         msleep(30);
1403                 }
1404                 ret = fm_power_up(fmdev, fm_mode);
1405                 if (ret < 0) {
1406                         fmerr("Failed to load firmware\n");
1407                         return ret;
1408                 }
1409         }
1410         fmdev->curr_fmmode = fm_mode;
1411
1412         /* Set default configuration */
1413         if (fmdev->curr_fmmode == FM_MODE_RX) {
1414                 fmdbg("Loading default rx configuration..\n");
1415                 ret = load_default_rx_configuration(fmdev);
1416                 if (ret < 0)
1417                         fmerr("Failed to load default values\n");
1418         }
1419
1420         return ret;
1421 }
1422
1423 /* Returns current FM mode (TX, RX, OFF) */
1424 int fmc_get_mode(struct fmdev *fmdev, u8 *fmmode)
1425 {
1426         if (!test_bit(FM_CORE_READY, &fmdev->flag)) {
1427                 fmerr("FM core is not ready\n");
1428                 return -EPERM;
1429         }
1430         if (fmmode == NULL) {
1431                 fmerr("Invalid memory\n");
1432                 return -ENOMEM;
1433         }
1434
1435         *fmmode = fmdev->curr_fmmode;
1436         return 0;
1437 }
1438
1439 /* Called by ST layer when FM packet is available */
1440 static long fm_st_receive(void *arg, struct sk_buff *skb)
1441 {
1442         struct fmdev *fmdev;
1443
1444         fmdev = (struct fmdev *)arg;
1445
1446         if (skb == NULL) {
1447                 fmerr("Invalid SKB received from ST\n");
1448                 return -EFAULT;
1449         }
1450
1451         if (skb->cb[0] != FM_PKT_LOGICAL_CHAN_NUMBER) {
1452                 fmerr("Received SKB (%p) is not FM Channel 8 pkt\n", skb);
1453                 return -EINVAL;
1454         }
1455
1456         memcpy(skb_push(skb, 1), &skb->cb[0], 1);
1457         skb_queue_tail(&fmdev->rx_q, skb);
1458         tasklet_schedule(&fmdev->rx_task);
1459
1460         return 0;
1461 }
1462
1463 /*
1464  * Called by ST layer to indicate protocol registration completion
1465  * status.
1466  */
1467 static void fm_st_reg_comp_cb(void *arg, int data)
1468 {
1469         struct fmdev *fmdev;
1470
1471         fmdev = (struct fmdev *)arg;
1472         fmdev->streg_cbdata = data;
1473         complete(&wait_for_fmdrv_reg_comp);
1474 }
1475
1476 /*
1477  * This function will be called from FM V4L2 open function.
1478  * Register with ST driver and initialize driver data.
1479  */
1480 int fmc_prepare(struct fmdev *fmdev)
1481 {
1482         static struct st_proto_s fm_st_proto;
1483         int ret;
1484
1485         if (test_bit(FM_CORE_READY, &fmdev->flag)) {
1486                 fmdbg("FM Core is already up\n");
1487                 return 0;
1488         }
1489
1490         memset(&fm_st_proto, 0, sizeof(fm_st_proto));
1491         fm_st_proto.recv = fm_st_receive;
1492         fm_st_proto.match_packet = NULL;
1493         fm_st_proto.reg_complete_cb = fm_st_reg_comp_cb;
1494         fm_st_proto.write = NULL; /* TI ST driver will fill write pointer */
1495         fm_st_proto.priv_data = fmdev;
1496         fm_st_proto.chnl_id = 0x08;
1497         fm_st_proto.max_frame_size = 0xff;
1498         fm_st_proto.hdr_len = 1;
1499         fm_st_proto.offset_len_in_hdr = 0;
1500         fm_st_proto.len_size = 1;
1501         fm_st_proto.reserve = 1;
1502
1503         ret = st_register(&fm_st_proto);
1504         if (ret == -EINPROGRESS) {
1505                 init_completion(&wait_for_fmdrv_reg_comp);
1506                 fmdev->streg_cbdata = -EINPROGRESS;
1507                 fmdbg("%s waiting for ST reg completion signal\n", __func__);
1508
1509                 if (!wait_for_completion_timeout(&wait_for_fmdrv_reg_comp,
1510                                                  FM_ST_REG_TIMEOUT)) {
1511                         fmerr("Timeout(%d sec), didn't get reg completion signal from ST\n",
1512                                         jiffies_to_msecs(FM_ST_REG_TIMEOUT) / 1000);
1513                         return -ETIMEDOUT;
1514                 }
1515                 if (fmdev->streg_cbdata != 0) {
1516                         fmerr("ST reg comp CB called with error status %d\n",
1517                               fmdev->streg_cbdata);
1518                         return -EAGAIN;
1519                 }
1520
1521                 ret = 0;
1522         } else if (ret < 0) {
1523                 fmerr("st_register failed %d\n", ret);
1524                 return -EAGAIN;
1525         }
1526
1527         if (fm_st_proto.write != NULL) {
1528                 g_st_write = fm_st_proto.write;
1529         } else {
1530                 fmerr("Failed to get ST write func pointer\n");
1531                 ret = st_unregister(&fm_st_proto);
1532                 if (ret < 0)
1533                         fmerr("st_unregister failed %d\n", ret);
1534                 return -EAGAIN;
1535         }
1536
1537         spin_lock_init(&fmdev->rds_buff_lock);
1538         spin_lock_init(&fmdev->resp_skb_lock);
1539
1540         /* Initialize TX queue and TX tasklet */
1541         skb_queue_head_init(&fmdev->tx_q);
1542         tasklet_setup(&fmdev->tx_task, send_tasklet);
1543
1544         /* Initialize RX Queue and RX tasklet */
1545         skb_queue_head_init(&fmdev->rx_q);
1546         tasklet_setup(&fmdev->rx_task, recv_tasklet);
1547
1548         fmdev->irq_info.stage = 0;
1549         atomic_set(&fmdev->tx_cnt, 1);
1550         fmdev->resp_comp = NULL;
1551
1552         timer_setup(&fmdev->irq_info.timer, int_timeout_handler, 0);
1553         /*TODO: add FM_STIC_EVENT later */
1554         fmdev->irq_info.mask = FM_MAL_EVENT;
1555
1556         /* Region info */
1557         fmdev->rx.region = region_configs[default_radio_region];
1558
1559         fmdev->rx.mute_mode = FM_MUTE_OFF;
1560         fmdev->rx.rf_depend_mute = FM_RX_RF_DEPENDENT_MUTE_OFF;
1561         fmdev->rx.rds.flag = FM_RDS_DISABLE;
1562         fmdev->rx.freq = FM_UNDEFINED_FREQ;
1563         fmdev->rx.rds_mode = FM_RDS_SYSTEM_RDS;
1564         fmdev->rx.af_mode = FM_RX_RDS_AF_SWITCH_MODE_OFF;
1565         fmdev->irq_info.retry = 0;
1566
1567         fm_rx_reset_rds_cache(fmdev);
1568         init_waitqueue_head(&fmdev->rx.rds.read_queue);
1569
1570         fm_rx_reset_station_info(fmdev);
1571         set_bit(FM_CORE_READY, &fmdev->flag);
1572
1573         return ret;
1574 }
1575
1576 /*
1577  * This function will be called from FM V4L2 release function.
1578  * Unregister from ST driver.
1579  */
1580 int fmc_release(struct fmdev *fmdev)
1581 {
1582         static struct st_proto_s fm_st_proto;
1583         int ret;
1584
1585         if (!test_bit(FM_CORE_READY, &fmdev->flag)) {
1586                 fmdbg("FM Core is already down\n");
1587                 return 0;
1588         }
1589         /* Service pending read */
1590         wake_up_interruptible(&fmdev->rx.rds.read_queue);
1591
1592         tasklet_kill(&fmdev->tx_task);
1593         tasklet_kill(&fmdev->rx_task);
1594
1595         skb_queue_purge(&fmdev->tx_q);
1596         skb_queue_purge(&fmdev->rx_q);
1597
1598         fmdev->resp_comp = NULL;
1599         fmdev->rx.freq = 0;
1600
1601         memset(&fm_st_proto, 0, sizeof(fm_st_proto));
1602         fm_st_proto.chnl_id = 0x08;
1603
1604         ret = st_unregister(&fm_st_proto);
1605
1606         if (ret < 0)
1607                 fmerr("Failed to de-register FM from ST %d\n", ret);
1608         else
1609                 fmdbg("Successfully unregistered from ST\n");
1610
1611         clear_bit(FM_CORE_READY, &fmdev->flag);
1612         return ret;
1613 }
1614
1615 /*
1616  * Module init function. Ask FM V4L module to register video device.
1617  * Allocate memory for FM driver context and RX RDS buffer.
1618  */
1619 static int __init fm_drv_init(void)
1620 {
1621         struct fmdev *fmdev = NULL;
1622         int ret = -ENOMEM;
1623
1624         fmdbg("FM driver version %s\n", FM_DRV_VERSION);
1625
1626         fmdev = kzalloc(sizeof(struct fmdev), GFP_KERNEL);
1627         if (NULL == fmdev) {
1628                 fmerr("Can't allocate operation structure memory\n");
1629                 return ret;
1630         }
1631         fmdev->rx.rds.buf_size = default_rds_buf * FM_RDS_BLK_SIZE;
1632         fmdev->rx.rds.buff = kzalloc(fmdev->rx.rds.buf_size, GFP_KERNEL);
1633         if (NULL == fmdev->rx.rds.buff) {
1634                 fmerr("Can't allocate rds ring buffer\n");
1635                 goto rel_dev;
1636         }
1637
1638         ret = fm_v4l2_init_video_device(fmdev, radio_nr);
1639         if (ret < 0)
1640                 goto rel_rdsbuf;
1641
1642         fmdev->irq_info.handlers = int_handler_table;
1643         fmdev->curr_fmmode = FM_MODE_OFF;
1644         fmdev->tx_data.pwr_lvl = FM_PWR_LVL_DEF;
1645         fmdev->tx_data.preemph = FM_TX_PREEMPH_50US;
1646         return ret;
1647
1648 rel_rdsbuf:
1649         kfree(fmdev->rx.rds.buff);
1650 rel_dev:
1651         kfree(fmdev);
1652
1653         return ret;
1654 }
1655
1656 /* Module exit function. Ask FM V4L module to unregister video device */
1657 static void __exit fm_drv_exit(void)
1658 {
1659         struct fmdev *fmdev = NULL;
1660
1661         fmdev = fm_v4l2_deinit_video_device();
1662         if (fmdev != NULL) {
1663                 kfree(fmdev->rx.rds.buff);
1664                 kfree(fmdev);
1665         }
1666 }
1667
1668 module_init(fm_drv_init);
1669 module_exit(fm_drv_exit);
1670
1671 /* ------------- Module Info ------------- */
1672 MODULE_AUTHOR("Manjunatha Halli <manjunatha_halli@ti.com>");
1673 MODULE_DESCRIPTION("FM Driver for TI's Connectivity chip. " FM_DRV_VERSION);
1674 MODULE_VERSION(FM_DRV_VERSION);
1675 MODULE_LICENSE("GPL");