Merge tag 'media/v6.1-1' of git://git.kernel.org/pub/scm/linux/kernel/git/mchehab...
[linux-2.6-block.git] / drivers / media / i2c / adv7604.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * adv7604 - Analog Devices ADV7604 video decoder driver
4  *
5  * Copyright 2012 Cisco Systems, Inc. and/or its affiliates. All rights reserved.
6  *
7  */
8
9 /*
10  * References (c = chapter, p = page):
11  * REF_01 - Analog devices, ADV7604, Register Settings Recommendations,
12  *              Revision 2.5, June 2010
13  * REF_02 - Analog devices, Register map documentation, Documentation of
14  *              the register maps, Software manual, Rev. F, June 2010
15  * REF_03 - Analog devices, ADV7604, Hardware Manual, Rev. F, August 2010
16  */
17
18 #include <linux/delay.h>
19 #include <linux/gpio/consumer.h>
20 #include <linux/hdmi.h>
21 #include <linux/i2c.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/of_graph.h>
25 #include <linux/slab.h>
26 #include <linux/v4l2-dv-timings.h>
27 #include <linux/videodev2.h>
28 #include <linux/workqueue.h>
29 #include <linux/regmap.h>
30 #include <linux/interrupt.h>
31
32 #include <media/i2c/adv7604.h>
33 #include <media/cec.h>
34 #include <media/v4l2-ctrls.h>
35 #include <media/v4l2-device.h>
36 #include <media/v4l2-event.h>
37 #include <media/v4l2-dv-timings.h>
38 #include <media/v4l2-fwnode.h>
39
40 static int debug;
41 module_param(debug, int, 0644);
42 MODULE_PARM_DESC(debug, "debug level (0-2)");
43
44 MODULE_DESCRIPTION("Analog Devices ADV7604/10/11/12 video decoder driver");
45 MODULE_AUTHOR("Hans Verkuil <hans.verkuil@cisco.com>");
46 MODULE_AUTHOR("Mats Randgaard <mats.randgaard@cisco.com>");
47 MODULE_LICENSE("GPL");
48
49 /* ADV7604 system clock frequency */
50 #define ADV76XX_FSC (28636360)
51
52 #define ADV76XX_RGB_OUT                                 (1 << 1)
53
54 #define ADV76XX_OP_FORMAT_SEL_8BIT                      (0 << 0)
55 #define ADV7604_OP_FORMAT_SEL_10BIT                     (1 << 0)
56 #define ADV76XX_OP_FORMAT_SEL_12BIT                     (2 << 0)
57
58 #define ADV76XX_OP_MODE_SEL_SDR_422                     (0 << 5)
59 #define ADV7604_OP_MODE_SEL_DDR_422                     (1 << 5)
60 #define ADV76XX_OP_MODE_SEL_SDR_444                     (2 << 5)
61 #define ADV7604_OP_MODE_SEL_DDR_444                     (3 << 5)
62 #define ADV76XX_OP_MODE_SEL_SDR_422_2X                  (4 << 5)
63 #define ADV7604_OP_MODE_SEL_ADI_CM                      (5 << 5)
64
65 #define ADV76XX_OP_CH_SEL_GBR                           (0 << 5)
66 #define ADV76XX_OP_CH_SEL_GRB                           (1 << 5)
67 #define ADV76XX_OP_CH_SEL_BGR                           (2 << 5)
68 #define ADV76XX_OP_CH_SEL_RGB                           (3 << 5)
69 #define ADV76XX_OP_CH_SEL_BRG                           (4 << 5)
70 #define ADV76XX_OP_CH_SEL_RBG                           (5 << 5)
71
72 #define ADV76XX_OP_SWAP_CB_CR                           (1 << 0)
73
74 #define ADV76XX_MAX_ADDRS (3)
75
76 #define ADV76XX_MAX_EDID_BLOCKS 4
77
78 enum adv76xx_type {
79         ADV7604,
80         ADV7611, // including ADV7610
81         ADV7612,
82 };
83
84 struct adv76xx_reg_seq {
85         unsigned int reg;
86         u8 val;
87 };
88
89 struct adv76xx_format_info {
90         u32 code;
91         u8 op_ch_sel;
92         bool rgb_out;
93         bool swap_cb_cr;
94         u8 op_format_sel;
95 };
96
97 struct adv76xx_cfg_read_infoframe {
98         const char *desc;
99         u8 present_mask;
100         u8 head_addr;
101         u8 payload_addr;
102 };
103
104 struct adv76xx_chip_info {
105         enum adv76xx_type type;
106
107         bool has_afe;
108         unsigned int max_port;
109         unsigned int num_dv_ports;
110
111         unsigned int edid_enable_reg;
112         unsigned int edid_status_reg;
113         unsigned int edid_segment_reg;
114         unsigned int edid_segment_mask;
115         unsigned int edid_spa_loc_reg;
116         unsigned int edid_spa_loc_msb_mask;
117         unsigned int edid_spa_port_b_reg;
118         unsigned int lcf_reg;
119
120         unsigned int cable_det_mask;
121         unsigned int tdms_lock_mask;
122         unsigned int fmt_change_digital_mask;
123         unsigned int cp_csc;
124
125         unsigned int cec_irq_status;
126         unsigned int cec_rx_enable;
127         unsigned int cec_rx_enable_mask;
128         bool cec_irq_swap;
129
130         const struct adv76xx_format_info *formats;
131         unsigned int nformats;
132
133         void (*set_termination)(struct v4l2_subdev *sd, bool enable);
134         void (*setup_irqs)(struct v4l2_subdev *sd);
135         unsigned int (*read_hdmi_pixelclock)(struct v4l2_subdev *sd);
136         unsigned int (*read_cable_det)(struct v4l2_subdev *sd);
137
138         /* 0 = AFE, 1 = HDMI */
139         const struct adv76xx_reg_seq *recommended_settings[2];
140         unsigned int num_recommended_settings[2];
141
142         unsigned long page_mask;
143
144         /* Masks for timings */
145         unsigned int linewidth_mask;
146         unsigned int field0_height_mask;
147         unsigned int field1_height_mask;
148         unsigned int hfrontporch_mask;
149         unsigned int hsync_mask;
150         unsigned int hbackporch_mask;
151         unsigned int field0_vfrontporch_mask;
152         unsigned int field1_vfrontporch_mask;
153         unsigned int field0_vsync_mask;
154         unsigned int field1_vsync_mask;
155         unsigned int field0_vbackporch_mask;
156         unsigned int field1_vbackporch_mask;
157 };
158
159 /*
160  **********************************************************************
161  *
162  *  Arrays with configuration parameters for the ADV7604
163  *
164  **********************************************************************
165  */
166
167 struct adv76xx_state {
168         const struct adv76xx_chip_info *info;
169         struct adv76xx_platform_data pdata;
170
171         struct gpio_desc *hpd_gpio[4];
172         struct gpio_desc *reset_gpio;
173
174         struct v4l2_subdev sd;
175         struct media_pad pads[ADV76XX_PAD_MAX];
176         unsigned int source_pad;
177
178         struct v4l2_ctrl_handler hdl;
179
180         enum adv76xx_pad selected_input;
181
182         struct v4l2_dv_timings timings;
183         const struct adv76xx_format_info *format;
184
185         struct {
186                 u8 edid[ADV76XX_MAX_EDID_BLOCKS * 128];
187                 u32 present;
188                 unsigned blocks;
189         } edid;
190         u16 spa_port_a[2];
191         struct v4l2_fract aspect_ratio;
192         u32 rgb_quantization_range;
193         struct delayed_work delayed_work_enable_hotplug;
194         bool restart_stdi_once;
195
196         /* CEC */
197         struct cec_adapter *cec_adap;
198         u8   cec_addr[ADV76XX_MAX_ADDRS];
199         u8   cec_valid_addrs;
200         bool cec_enabled_adap;
201
202         /* i2c clients */
203         struct i2c_client *i2c_clients[ADV76XX_PAGE_MAX];
204
205         /* Regmaps */
206         struct regmap *regmap[ADV76XX_PAGE_MAX];
207
208         /* controls */
209         struct v4l2_ctrl *detect_tx_5v_ctrl;
210         struct v4l2_ctrl *analog_sampling_phase_ctrl;
211         struct v4l2_ctrl *free_run_color_manual_ctrl;
212         struct v4l2_ctrl *free_run_color_ctrl;
213         struct v4l2_ctrl *rgb_quantization_range_ctrl;
214 };
215
216 static bool adv76xx_has_afe(struct adv76xx_state *state)
217 {
218         return state->info->has_afe;
219 }
220
221 /* Unsupported timings. This device cannot support 720p30. */
222 static const struct v4l2_dv_timings adv76xx_timings_exceptions[] = {
223         V4L2_DV_BT_CEA_1280X720P30,
224         { }
225 };
226
227 static bool adv76xx_check_dv_timings(const struct v4l2_dv_timings *t, void *hdl)
228 {
229         int i;
230
231         for (i = 0; adv76xx_timings_exceptions[i].bt.width; i++)
232                 if (v4l2_match_dv_timings(t, adv76xx_timings_exceptions + i, 0, false))
233                         return false;
234         return true;
235 }
236
237 struct adv76xx_video_standards {
238         struct v4l2_dv_timings timings;
239         u8 vid_std;
240         u8 v_freq;
241 };
242
243 /* sorted by number of lines */
244 static const struct adv76xx_video_standards adv7604_prim_mode_comp[] = {
245         /* { V4L2_DV_BT_CEA_720X480P59_94, 0x0a, 0x00 }, TODO flickering */
246         { V4L2_DV_BT_CEA_720X576P50, 0x0b, 0x00 },
247         { V4L2_DV_BT_CEA_1280X720P50, 0x19, 0x01 },
248         { V4L2_DV_BT_CEA_1280X720P60, 0x19, 0x00 },
249         { V4L2_DV_BT_CEA_1920X1080P24, 0x1e, 0x04 },
250         { V4L2_DV_BT_CEA_1920X1080P25, 0x1e, 0x03 },
251         { V4L2_DV_BT_CEA_1920X1080P30, 0x1e, 0x02 },
252         { V4L2_DV_BT_CEA_1920X1080P50, 0x1e, 0x01 },
253         { V4L2_DV_BT_CEA_1920X1080P60, 0x1e, 0x00 },
254         /* TODO add 1920x1080P60_RB (CVT timing) */
255         { },
256 };
257
258 /* sorted by number of lines */
259 static const struct adv76xx_video_standards adv7604_prim_mode_gr[] = {
260         { V4L2_DV_BT_DMT_640X480P60, 0x08, 0x00 },
261         { V4L2_DV_BT_DMT_640X480P72, 0x09, 0x00 },
262         { V4L2_DV_BT_DMT_640X480P75, 0x0a, 0x00 },
263         { V4L2_DV_BT_DMT_640X480P85, 0x0b, 0x00 },
264         { V4L2_DV_BT_DMT_800X600P56, 0x00, 0x00 },
265         { V4L2_DV_BT_DMT_800X600P60, 0x01, 0x00 },
266         { V4L2_DV_BT_DMT_800X600P72, 0x02, 0x00 },
267         { V4L2_DV_BT_DMT_800X600P75, 0x03, 0x00 },
268         { V4L2_DV_BT_DMT_800X600P85, 0x04, 0x00 },
269         { V4L2_DV_BT_DMT_1024X768P60, 0x0c, 0x00 },
270         { V4L2_DV_BT_DMT_1024X768P70, 0x0d, 0x00 },
271         { V4L2_DV_BT_DMT_1024X768P75, 0x0e, 0x00 },
272         { V4L2_DV_BT_DMT_1024X768P85, 0x0f, 0x00 },
273         { V4L2_DV_BT_DMT_1280X1024P60, 0x05, 0x00 },
274         { V4L2_DV_BT_DMT_1280X1024P75, 0x06, 0x00 },
275         { V4L2_DV_BT_DMT_1360X768P60, 0x12, 0x00 },
276         { V4L2_DV_BT_DMT_1366X768P60, 0x13, 0x00 },
277         { V4L2_DV_BT_DMT_1400X1050P60, 0x14, 0x00 },
278         { V4L2_DV_BT_DMT_1400X1050P75, 0x15, 0x00 },
279         { V4L2_DV_BT_DMT_1600X1200P60, 0x16, 0x00 }, /* TODO not tested */
280         /* TODO add 1600X1200P60_RB (not a DMT timing) */
281         { V4L2_DV_BT_DMT_1680X1050P60, 0x18, 0x00 },
282         { V4L2_DV_BT_DMT_1920X1200P60_RB, 0x19, 0x00 }, /* TODO not tested */
283         { },
284 };
285
286 /* sorted by number of lines */
287 static const struct adv76xx_video_standards adv76xx_prim_mode_hdmi_comp[] = {
288         { V4L2_DV_BT_CEA_720X480P59_94, 0x0a, 0x00 },
289         { V4L2_DV_BT_CEA_720X576P50, 0x0b, 0x00 },
290         { V4L2_DV_BT_CEA_1280X720P50, 0x13, 0x01 },
291         { V4L2_DV_BT_CEA_1280X720P60, 0x13, 0x00 },
292         { V4L2_DV_BT_CEA_1920X1080P24, 0x1e, 0x04 },
293         { V4L2_DV_BT_CEA_1920X1080P25, 0x1e, 0x03 },
294         { V4L2_DV_BT_CEA_1920X1080P30, 0x1e, 0x02 },
295         { V4L2_DV_BT_CEA_1920X1080P50, 0x1e, 0x01 },
296         { V4L2_DV_BT_CEA_1920X1080P60, 0x1e, 0x00 },
297         { },
298 };
299
300 /* sorted by number of lines */
301 static const struct adv76xx_video_standards adv76xx_prim_mode_hdmi_gr[] = {
302         { V4L2_DV_BT_DMT_640X480P60, 0x08, 0x00 },
303         { V4L2_DV_BT_DMT_640X480P72, 0x09, 0x00 },
304         { V4L2_DV_BT_DMT_640X480P75, 0x0a, 0x00 },
305         { V4L2_DV_BT_DMT_640X480P85, 0x0b, 0x00 },
306         { V4L2_DV_BT_DMT_800X600P56, 0x00, 0x00 },
307         { V4L2_DV_BT_DMT_800X600P60, 0x01, 0x00 },
308         { V4L2_DV_BT_DMT_800X600P72, 0x02, 0x00 },
309         { V4L2_DV_BT_DMT_800X600P75, 0x03, 0x00 },
310         { V4L2_DV_BT_DMT_800X600P85, 0x04, 0x00 },
311         { V4L2_DV_BT_DMT_1024X768P60, 0x0c, 0x00 },
312         { V4L2_DV_BT_DMT_1024X768P70, 0x0d, 0x00 },
313         { V4L2_DV_BT_DMT_1024X768P75, 0x0e, 0x00 },
314         { V4L2_DV_BT_DMT_1024X768P85, 0x0f, 0x00 },
315         { V4L2_DV_BT_DMT_1280X1024P60, 0x05, 0x00 },
316         { V4L2_DV_BT_DMT_1280X1024P75, 0x06, 0x00 },
317         { },
318 };
319
320 static const struct v4l2_event adv76xx_ev_fmt = {
321         .type = V4L2_EVENT_SOURCE_CHANGE,
322         .u.src_change.changes = V4L2_EVENT_SRC_CH_RESOLUTION,
323 };
324
325 /* ----------------------------------------------------------------------- */
326
327 static inline struct adv76xx_state *to_state(struct v4l2_subdev *sd)
328 {
329         return container_of(sd, struct adv76xx_state, sd);
330 }
331
332 static inline unsigned htotal(const struct v4l2_bt_timings *t)
333 {
334         return V4L2_DV_BT_FRAME_WIDTH(t);
335 }
336
337 static inline unsigned vtotal(const struct v4l2_bt_timings *t)
338 {
339         return V4L2_DV_BT_FRAME_HEIGHT(t);
340 }
341
342 /* ----------------------------------------------------------------------- */
343
344 static int adv76xx_read_check(struct adv76xx_state *state,
345                              int client_page, u8 reg)
346 {
347         struct i2c_client *client = state->i2c_clients[client_page];
348         int err;
349         unsigned int val;
350
351         err = regmap_read(state->regmap[client_page], reg, &val);
352
353         if (err) {
354                 v4l_err(client, "error reading %02x, %02x\n",
355                                 client->addr, reg);
356                 return err;
357         }
358         return val;
359 }
360
361 /* adv76xx_write_block(): Write raw data with a maximum of I2C_SMBUS_BLOCK_MAX
362  * size to one or more registers.
363  *
364  * A value of zero will be returned on success, a negative errno will
365  * be returned in error cases.
366  */
367 static int adv76xx_write_block(struct adv76xx_state *state, int client_page,
368                               unsigned int init_reg, const void *val,
369                               size_t val_len)
370 {
371         struct regmap *regmap = state->regmap[client_page];
372
373         if (val_len > I2C_SMBUS_BLOCK_MAX)
374                 val_len = I2C_SMBUS_BLOCK_MAX;
375
376         return regmap_raw_write(regmap, init_reg, val, val_len);
377 }
378
379 /* ----------------------------------------------------------------------- */
380
381 static inline int io_read(struct v4l2_subdev *sd, u8 reg)
382 {
383         struct adv76xx_state *state = to_state(sd);
384
385         return adv76xx_read_check(state, ADV76XX_PAGE_IO, reg);
386 }
387
388 static inline int io_write(struct v4l2_subdev *sd, u8 reg, u8 val)
389 {
390         struct adv76xx_state *state = to_state(sd);
391
392         return regmap_write(state->regmap[ADV76XX_PAGE_IO], reg, val);
393 }
394
395 static inline int io_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask,
396                                    u8 val)
397 {
398         return io_write(sd, reg, (io_read(sd, reg) & ~mask) | val);
399 }
400
401 static inline int __always_unused avlink_read(struct v4l2_subdev *sd, u8 reg)
402 {
403         struct adv76xx_state *state = to_state(sd);
404
405         return adv76xx_read_check(state, ADV7604_PAGE_AVLINK, reg);
406 }
407
408 static inline int __always_unused avlink_write(struct v4l2_subdev *sd, u8 reg, u8 val)
409 {
410         struct adv76xx_state *state = to_state(sd);
411
412         return regmap_write(state->regmap[ADV7604_PAGE_AVLINK], reg, val);
413 }
414
415 static inline int cec_read(struct v4l2_subdev *sd, u8 reg)
416 {
417         struct adv76xx_state *state = to_state(sd);
418
419         return adv76xx_read_check(state, ADV76XX_PAGE_CEC, reg);
420 }
421
422 static inline int cec_write(struct v4l2_subdev *sd, u8 reg, u8 val)
423 {
424         struct adv76xx_state *state = to_state(sd);
425
426         return regmap_write(state->regmap[ADV76XX_PAGE_CEC], reg, val);
427 }
428
429 static inline int cec_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask,
430                                    u8 val)
431 {
432         return cec_write(sd, reg, (cec_read(sd, reg) & ~mask) | val);
433 }
434
435 static inline int infoframe_read(struct v4l2_subdev *sd, u8 reg)
436 {
437         struct adv76xx_state *state = to_state(sd);
438
439         return adv76xx_read_check(state, ADV76XX_PAGE_INFOFRAME, reg);
440 }
441
442 static inline int __always_unused infoframe_write(struct v4l2_subdev *sd, u8 reg, u8 val)
443 {
444         struct adv76xx_state *state = to_state(sd);
445
446         return regmap_write(state->regmap[ADV76XX_PAGE_INFOFRAME], reg, val);
447 }
448
449 static inline int __always_unused afe_read(struct v4l2_subdev *sd, u8 reg)
450 {
451         struct adv76xx_state *state = to_state(sd);
452
453         return adv76xx_read_check(state, ADV76XX_PAGE_AFE, reg);
454 }
455
456 static inline int afe_write(struct v4l2_subdev *sd, u8 reg, u8 val)
457 {
458         struct adv76xx_state *state = to_state(sd);
459
460         return regmap_write(state->regmap[ADV76XX_PAGE_AFE], reg, val);
461 }
462
463 static inline int rep_read(struct v4l2_subdev *sd, u8 reg)
464 {
465         struct adv76xx_state *state = to_state(sd);
466
467         return adv76xx_read_check(state, ADV76XX_PAGE_REP, reg);
468 }
469
470 static inline int rep_write(struct v4l2_subdev *sd, u8 reg, u8 val)
471 {
472         struct adv76xx_state *state = to_state(sd);
473
474         return regmap_write(state->regmap[ADV76XX_PAGE_REP], reg, val);
475 }
476
477 static inline int rep_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
478 {
479         return rep_write(sd, reg, (rep_read(sd, reg) & ~mask) | val);
480 }
481
482 static inline int __always_unused edid_read(struct v4l2_subdev *sd, u8 reg)
483 {
484         struct adv76xx_state *state = to_state(sd);
485
486         return adv76xx_read_check(state, ADV76XX_PAGE_EDID, reg);
487 }
488
489 static inline int __always_unused edid_write(struct v4l2_subdev *sd, u8 reg, u8 val)
490 {
491         struct adv76xx_state *state = to_state(sd);
492
493         return regmap_write(state->regmap[ADV76XX_PAGE_EDID], reg, val);
494 }
495
496 static inline int edid_write_block(struct v4l2_subdev *sd,
497                                         unsigned int total_len, const u8 *val)
498 {
499         struct adv76xx_state *state = to_state(sd);
500         int err = 0;
501         int i = 0;
502         int len = 0;
503
504         v4l2_dbg(2, debug, sd, "%s: write EDID block (%d byte)\n",
505                                 __func__, total_len);
506
507         while (!err && i < total_len) {
508                 len = (total_len - i) > I2C_SMBUS_BLOCK_MAX ?
509                                 I2C_SMBUS_BLOCK_MAX :
510                                 (total_len - i);
511
512                 err = adv76xx_write_block(state, ADV76XX_PAGE_EDID,
513                                 i, val + i, len);
514                 i += len;
515         }
516
517         return err;
518 }
519
520 static void adv76xx_set_hpd(struct adv76xx_state *state, unsigned int hpd)
521 {
522         const struct adv76xx_chip_info *info = state->info;
523         unsigned int i;
524
525         if (info->type == ADV7604) {
526                 for (i = 0; i < state->info->num_dv_ports; ++i)
527                         gpiod_set_value_cansleep(state->hpd_gpio[i], hpd & BIT(i));
528         } else {
529                 for (i = 0; i < state->info->num_dv_ports; ++i)
530                         io_write_clr_set(&state->sd, 0x20, 0x80 >> i,
531                                          (!!(hpd & BIT(i))) << (7 - i));
532         }
533
534         v4l2_subdev_notify(&state->sd, ADV76XX_HOTPLUG, &hpd);
535 }
536
537 static void adv76xx_delayed_work_enable_hotplug(struct work_struct *work)
538 {
539         struct delayed_work *dwork = to_delayed_work(work);
540         struct adv76xx_state *state = container_of(dwork, struct adv76xx_state,
541                                                 delayed_work_enable_hotplug);
542         struct v4l2_subdev *sd = &state->sd;
543
544         v4l2_dbg(2, debug, sd, "%s: enable hotplug\n", __func__);
545
546         adv76xx_set_hpd(state, state->edid.present);
547 }
548
549 static inline int hdmi_read(struct v4l2_subdev *sd, u8 reg)
550 {
551         struct adv76xx_state *state = to_state(sd);
552
553         return adv76xx_read_check(state, ADV76XX_PAGE_HDMI, reg);
554 }
555
556 static u16 hdmi_read16(struct v4l2_subdev *sd, u8 reg, u16 mask)
557 {
558         return ((hdmi_read(sd, reg) << 8) | hdmi_read(sd, reg + 1)) & mask;
559 }
560
561 static inline int hdmi_write(struct v4l2_subdev *sd, u8 reg, u8 val)
562 {
563         struct adv76xx_state *state = to_state(sd);
564
565         return regmap_write(state->regmap[ADV76XX_PAGE_HDMI], reg, val);
566 }
567
568 static inline int hdmi_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
569 {
570         return hdmi_write(sd, reg, (hdmi_read(sd, reg) & ~mask) | val);
571 }
572
573 static inline int __always_unused test_write(struct v4l2_subdev *sd, u8 reg, u8 val)
574 {
575         struct adv76xx_state *state = to_state(sd);
576
577         return regmap_write(state->regmap[ADV76XX_PAGE_TEST], reg, val);
578 }
579
580 static inline int cp_read(struct v4l2_subdev *sd, u8 reg)
581 {
582         struct adv76xx_state *state = to_state(sd);
583
584         return adv76xx_read_check(state, ADV76XX_PAGE_CP, reg);
585 }
586
587 static u16 cp_read16(struct v4l2_subdev *sd, u8 reg, u16 mask)
588 {
589         return ((cp_read(sd, reg) << 8) | cp_read(sd, reg + 1)) & mask;
590 }
591
592 static inline int cp_write(struct v4l2_subdev *sd, u8 reg, u8 val)
593 {
594         struct adv76xx_state *state = to_state(sd);
595
596         return regmap_write(state->regmap[ADV76XX_PAGE_CP], reg, val);
597 }
598
599 static inline int cp_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
600 {
601         return cp_write(sd, reg, (cp_read(sd, reg) & ~mask) | val);
602 }
603
604 static inline int __always_unused vdp_read(struct v4l2_subdev *sd, u8 reg)
605 {
606         struct adv76xx_state *state = to_state(sd);
607
608         return adv76xx_read_check(state, ADV7604_PAGE_VDP, reg);
609 }
610
611 static inline int __always_unused vdp_write(struct v4l2_subdev *sd, u8 reg, u8 val)
612 {
613         struct adv76xx_state *state = to_state(sd);
614
615         return regmap_write(state->regmap[ADV7604_PAGE_VDP], reg, val);
616 }
617
618 #define ADV76XX_REG(page, offset)       (((page) << 8) | (offset))
619 #define ADV76XX_REG_SEQ_TERM            0xffff
620
621 #ifdef CONFIG_VIDEO_ADV_DEBUG
622 static int adv76xx_read_reg(struct v4l2_subdev *sd, unsigned int reg)
623 {
624         struct adv76xx_state *state = to_state(sd);
625         unsigned int page = reg >> 8;
626         unsigned int val;
627         int err;
628
629         if (page >= ADV76XX_PAGE_MAX || !(BIT(page) & state->info->page_mask))
630                 return -EINVAL;
631
632         reg &= 0xff;
633         err = regmap_read(state->regmap[page], reg, &val);
634
635         return err ? err : val;
636 }
637 #endif
638
639 static int adv76xx_write_reg(struct v4l2_subdev *sd, unsigned int reg, u8 val)
640 {
641         struct adv76xx_state *state = to_state(sd);
642         unsigned int page = reg >> 8;
643
644         if (page >= ADV76XX_PAGE_MAX || !(BIT(page) & state->info->page_mask))
645                 return -EINVAL;
646
647         reg &= 0xff;
648
649         return regmap_write(state->regmap[page], reg, val);
650 }
651
652 static void adv76xx_write_reg_seq(struct v4l2_subdev *sd,
653                                   const struct adv76xx_reg_seq *reg_seq)
654 {
655         unsigned int i;
656
657         for (i = 0; reg_seq[i].reg != ADV76XX_REG_SEQ_TERM; i++)
658                 adv76xx_write_reg(sd, reg_seq[i].reg, reg_seq[i].val);
659 }
660
661 /* -----------------------------------------------------------------------------
662  * Format helpers
663  */
664
665 static const struct adv76xx_format_info adv7604_formats[] = {
666         { MEDIA_BUS_FMT_RGB888_1X24, ADV76XX_OP_CH_SEL_RGB, true, false,
667           ADV76XX_OP_MODE_SEL_SDR_444 | ADV76XX_OP_FORMAT_SEL_8BIT },
668         { MEDIA_BUS_FMT_YUYV8_2X8, ADV76XX_OP_CH_SEL_RGB, false, false,
669           ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
670         { MEDIA_BUS_FMT_YVYU8_2X8, ADV76XX_OP_CH_SEL_RGB, false, true,
671           ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
672         { MEDIA_BUS_FMT_YUYV10_2X10, ADV76XX_OP_CH_SEL_RGB, false, false,
673           ADV76XX_OP_MODE_SEL_SDR_422 | ADV7604_OP_FORMAT_SEL_10BIT },
674         { MEDIA_BUS_FMT_YVYU10_2X10, ADV76XX_OP_CH_SEL_RGB, false, true,
675           ADV76XX_OP_MODE_SEL_SDR_422 | ADV7604_OP_FORMAT_SEL_10BIT },
676         { MEDIA_BUS_FMT_YUYV12_2X12, ADV76XX_OP_CH_SEL_RGB, false, false,
677           ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
678         { MEDIA_BUS_FMT_YVYU12_2X12, ADV76XX_OP_CH_SEL_RGB, false, true,
679           ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
680         { MEDIA_BUS_FMT_UYVY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, false,
681           ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
682         { MEDIA_BUS_FMT_VYUY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, true,
683           ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
684         { MEDIA_BUS_FMT_YUYV8_1X16, ADV76XX_OP_CH_SEL_RGB, false, false,
685           ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
686         { MEDIA_BUS_FMT_YVYU8_1X16, ADV76XX_OP_CH_SEL_RGB, false, true,
687           ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
688         { MEDIA_BUS_FMT_UYVY10_1X20, ADV76XX_OP_CH_SEL_RBG, false, false,
689           ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
690         { MEDIA_BUS_FMT_VYUY10_1X20, ADV76XX_OP_CH_SEL_RBG, false, true,
691           ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
692         { MEDIA_BUS_FMT_YUYV10_1X20, ADV76XX_OP_CH_SEL_RGB, false, false,
693           ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
694         { MEDIA_BUS_FMT_YVYU10_1X20, ADV76XX_OP_CH_SEL_RGB, false, true,
695           ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
696         { MEDIA_BUS_FMT_UYVY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, false,
697           ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
698         { MEDIA_BUS_FMT_VYUY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, true,
699           ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
700         { MEDIA_BUS_FMT_YUYV12_1X24, ADV76XX_OP_CH_SEL_RGB, false, false,
701           ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
702         { MEDIA_BUS_FMT_YVYU12_1X24, ADV76XX_OP_CH_SEL_RGB, false, true,
703           ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
704 };
705
706 static const struct adv76xx_format_info adv7611_formats[] = {
707         { MEDIA_BUS_FMT_RGB888_1X24, ADV76XX_OP_CH_SEL_RGB, true, false,
708           ADV76XX_OP_MODE_SEL_SDR_444 | ADV76XX_OP_FORMAT_SEL_8BIT },
709         { MEDIA_BUS_FMT_YUYV8_2X8, ADV76XX_OP_CH_SEL_RGB, false, false,
710           ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
711         { MEDIA_BUS_FMT_YVYU8_2X8, ADV76XX_OP_CH_SEL_RGB, false, true,
712           ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
713         { MEDIA_BUS_FMT_YUYV12_2X12, ADV76XX_OP_CH_SEL_RGB, false, false,
714           ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
715         { MEDIA_BUS_FMT_YVYU12_2X12, ADV76XX_OP_CH_SEL_RGB, false, true,
716           ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
717         { MEDIA_BUS_FMT_UYVY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, false,
718           ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
719         { MEDIA_BUS_FMT_VYUY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, true,
720           ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
721         { MEDIA_BUS_FMT_YUYV8_1X16, ADV76XX_OP_CH_SEL_RGB, false, false,
722           ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
723         { MEDIA_BUS_FMT_YVYU8_1X16, ADV76XX_OP_CH_SEL_RGB, false, true,
724           ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
725         { MEDIA_BUS_FMT_UYVY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, false,
726           ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
727         { MEDIA_BUS_FMT_VYUY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, true,
728           ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
729         { MEDIA_BUS_FMT_YUYV12_1X24, ADV76XX_OP_CH_SEL_RGB, false, false,
730           ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
731         { MEDIA_BUS_FMT_YVYU12_1X24, ADV76XX_OP_CH_SEL_RGB, false, true,
732           ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
733 };
734
735 static const struct adv76xx_format_info adv7612_formats[] = {
736         { MEDIA_BUS_FMT_RGB888_1X24, ADV76XX_OP_CH_SEL_RGB, true, false,
737           ADV76XX_OP_MODE_SEL_SDR_444 | ADV76XX_OP_FORMAT_SEL_8BIT },
738         { MEDIA_BUS_FMT_YUYV8_2X8, ADV76XX_OP_CH_SEL_RGB, false, false,
739           ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
740         { MEDIA_BUS_FMT_YVYU8_2X8, ADV76XX_OP_CH_SEL_RGB, false, true,
741           ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
742         { MEDIA_BUS_FMT_UYVY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, false,
743           ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
744         { MEDIA_BUS_FMT_VYUY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, true,
745           ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
746         { MEDIA_BUS_FMT_YUYV8_1X16, ADV76XX_OP_CH_SEL_RGB, false, false,
747           ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
748         { MEDIA_BUS_FMT_YVYU8_1X16, ADV76XX_OP_CH_SEL_RGB, false, true,
749           ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
750 };
751
752 static const struct adv76xx_format_info *
753 adv76xx_format_info(struct adv76xx_state *state, u32 code)
754 {
755         unsigned int i;
756
757         for (i = 0; i < state->info->nformats; ++i) {
758                 if (state->info->formats[i].code == code)
759                         return &state->info->formats[i];
760         }
761
762         return NULL;
763 }
764
765 /* ----------------------------------------------------------------------- */
766
767 static inline bool is_analog_input(struct v4l2_subdev *sd)
768 {
769         struct adv76xx_state *state = to_state(sd);
770
771         return state->selected_input == ADV7604_PAD_VGA_RGB ||
772                state->selected_input == ADV7604_PAD_VGA_COMP;
773 }
774
775 static inline bool is_digital_input(struct v4l2_subdev *sd)
776 {
777         struct adv76xx_state *state = to_state(sd);
778
779         return state->selected_input == ADV76XX_PAD_HDMI_PORT_A ||
780                state->selected_input == ADV7604_PAD_HDMI_PORT_B ||
781                state->selected_input == ADV7604_PAD_HDMI_PORT_C ||
782                state->selected_input == ADV7604_PAD_HDMI_PORT_D;
783 }
784
785 static const struct v4l2_dv_timings_cap adv7604_timings_cap_analog = {
786         .type = V4L2_DV_BT_656_1120,
787         /* keep this initialization for compatibility with GCC < 4.4.6 */
788         .reserved = { 0 },
789         V4L2_INIT_BT_TIMINGS(640, 1920, 350, 1200, 25000000, 170000000,
790                 V4L2_DV_BT_STD_CEA861 | V4L2_DV_BT_STD_DMT |
791                         V4L2_DV_BT_STD_GTF | V4L2_DV_BT_STD_CVT,
792                 V4L2_DV_BT_CAP_PROGRESSIVE | V4L2_DV_BT_CAP_REDUCED_BLANKING |
793                         V4L2_DV_BT_CAP_CUSTOM)
794 };
795
796 static const struct v4l2_dv_timings_cap adv76xx_timings_cap_digital = {
797         .type = V4L2_DV_BT_656_1120,
798         /* keep this initialization for compatibility with GCC < 4.4.6 */
799         .reserved = { 0 },
800         V4L2_INIT_BT_TIMINGS(640, 1920, 350, 1200, 25000000, 225000000,
801                 V4L2_DV_BT_STD_CEA861 | V4L2_DV_BT_STD_DMT |
802                         V4L2_DV_BT_STD_GTF | V4L2_DV_BT_STD_CVT,
803                 V4L2_DV_BT_CAP_PROGRESSIVE | V4L2_DV_BT_CAP_REDUCED_BLANKING |
804                         V4L2_DV_BT_CAP_CUSTOM)
805 };
806
807 /*
808  * Return the DV timings capabilities for the requested sink pad. As a special
809  * case, pad value -1 returns the capabilities for the currently selected input.
810  */
811 static const struct v4l2_dv_timings_cap *
812 adv76xx_get_dv_timings_cap(struct v4l2_subdev *sd, int pad)
813 {
814         if (pad == -1) {
815                 struct adv76xx_state *state = to_state(sd);
816
817                 pad = state->selected_input;
818         }
819
820         switch (pad) {
821         case ADV76XX_PAD_HDMI_PORT_A:
822         case ADV7604_PAD_HDMI_PORT_B:
823         case ADV7604_PAD_HDMI_PORT_C:
824         case ADV7604_PAD_HDMI_PORT_D:
825                 return &adv76xx_timings_cap_digital;
826
827         case ADV7604_PAD_VGA_RGB:
828         case ADV7604_PAD_VGA_COMP:
829         default:
830                 return &adv7604_timings_cap_analog;
831         }
832 }
833
834
835 /* ----------------------------------------------------------------------- */
836
837 #ifdef CONFIG_VIDEO_ADV_DEBUG
838 static void adv76xx_inv_register(struct v4l2_subdev *sd)
839 {
840         v4l2_info(sd, "0x000-0x0ff: IO Map\n");
841         v4l2_info(sd, "0x100-0x1ff: AVLink Map\n");
842         v4l2_info(sd, "0x200-0x2ff: CEC Map\n");
843         v4l2_info(sd, "0x300-0x3ff: InfoFrame Map\n");
844         v4l2_info(sd, "0x400-0x4ff: ESDP Map\n");
845         v4l2_info(sd, "0x500-0x5ff: DPP Map\n");
846         v4l2_info(sd, "0x600-0x6ff: AFE Map\n");
847         v4l2_info(sd, "0x700-0x7ff: Repeater Map\n");
848         v4l2_info(sd, "0x800-0x8ff: EDID Map\n");
849         v4l2_info(sd, "0x900-0x9ff: HDMI Map\n");
850         v4l2_info(sd, "0xa00-0xaff: Test Map\n");
851         v4l2_info(sd, "0xb00-0xbff: CP Map\n");
852         v4l2_info(sd, "0xc00-0xcff: VDP Map\n");
853 }
854
855 static int adv76xx_g_register(struct v4l2_subdev *sd,
856                                         struct v4l2_dbg_register *reg)
857 {
858         int ret;
859
860         ret = adv76xx_read_reg(sd, reg->reg);
861         if (ret < 0) {
862                 v4l2_info(sd, "Register %03llx not supported\n", reg->reg);
863                 adv76xx_inv_register(sd);
864                 return ret;
865         }
866
867         reg->size = 1;
868         reg->val = ret;
869
870         return 0;
871 }
872
873 static int adv76xx_s_register(struct v4l2_subdev *sd,
874                                         const struct v4l2_dbg_register *reg)
875 {
876         int ret;
877
878         ret = adv76xx_write_reg(sd, reg->reg, reg->val);
879         if (ret < 0) {
880                 v4l2_info(sd, "Register %03llx not supported\n", reg->reg);
881                 adv76xx_inv_register(sd);
882                 return ret;
883         }
884
885         return 0;
886 }
887 #endif
888
889 static unsigned int adv7604_read_cable_det(struct v4l2_subdev *sd)
890 {
891         u8 value = io_read(sd, 0x6f);
892
893         return ((value & 0x10) >> 4)
894              | ((value & 0x08) >> 2)
895              | ((value & 0x04) << 0)
896              | ((value & 0x02) << 2);
897 }
898
899 static unsigned int adv7611_read_cable_det(struct v4l2_subdev *sd)
900 {
901         u8 value = io_read(sd, 0x6f);
902
903         return value & 1;
904 }
905
906 static unsigned int adv7612_read_cable_det(struct v4l2_subdev *sd)
907 {
908         /*  Reads CABLE_DET_A_RAW. For input B support, need to
909          *  account for bit 7 [MSB] of 0x6a (ie. CABLE_DET_B_RAW)
910          */
911         u8 value = io_read(sd, 0x6f);
912
913         return value & 1;
914 }
915
916 static int adv76xx_s_detect_tx_5v_ctrl(struct v4l2_subdev *sd)
917 {
918         struct adv76xx_state *state = to_state(sd);
919         const struct adv76xx_chip_info *info = state->info;
920         u16 cable_det = info->read_cable_det(sd);
921
922         return v4l2_ctrl_s_ctrl(state->detect_tx_5v_ctrl, cable_det);
923 }
924
925 static int find_and_set_predefined_video_timings(struct v4l2_subdev *sd,
926                 u8 prim_mode,
927                 const struct adv76xx_video_standards *predef_vid_timings,
928                 const struct v4l2_dv_timings *timings)
929 {
930         int i;
931
932         for (i = 0; predef_vid_timings[i].timings.bt.width; i++) {
933                 if (!v4l2_match_dv_timings(timings, &predef_vid_timings[i].timings,
934                                 is_digital_input(sd) ? 250000 : 1000000, false))
935                         continue;
936                 io_write(sd, 0x00, predef_vid_timings[i].vid_std); /* video std */
937                 io_write(sd, 0x01, (predef_vid_timings[i].v_freq << 4) +
938                                 prim_mode); /* v_freq and prim mode */
939                 return 0;
940         }
941
942         return -1;
943 }
944
945 static int configure_predefined_video_timings(struct v4l2_subdev *sd,
946                 struct v4l2_dv_timings *timings)
947 {
948         struct adv76xx_state *state = to_state(sd);
949         int err;
950
951         v4l2_dbg(1, debug, sd, "%s", __func__);
952
953         if (adv76xx_has_afe(state)) {
954                 /* reset to default values */
955                 io_write(sd, 0x16, 0x43);
956                 io_write(sd, 0x17, 0x5a);
957         }
958         /* disable embedded syncs for auto graphics mode */
959         cp_write_clr_set(sd, 0x81, 0x10, 0x00);
960         cp_write(sd, 0x8f, 0x00);
961         cp_write(sd, 0x90, 0x00);
962         cp_write(sd, 0xa2, 0x00);
963         cp_write(sd, 0xa3, 0x00);
964         cp_write(sd, 0xa4, 0x00);
965         cp_write(sd, 0xa5, 0x00);
966         cp_write(sd, 0xa6, 0x00);
967         cp_write(sd, 0xa7, 0x00);
968         cp_write(sd, 0xab, 0x00);
969         cp_write(sd, 0xac, 0x00);
970
971         if (is_analog_input(sd)) {
972                 err = find_and_set_predefined_video_timings(sd,
973                                 0x01, adv7604_prim_mode_comp, timings);
974                 if (err)
975                         err = find_and_set_predefined_video_timings(sd,
976                                         0x02, adv7604_prim_mode_gr, timings);
977         } else if (is_digital_input(sd)) {
978                 err = find_and_set_predefined_video_timings(sd,
979                                 0x05, adv76xx_prim_mode_hdmi_comp, timings);
980                 if (err)
981                         err = find_and_set_predefined_video_timings(sd,
982                                         0x06, adv76xx_prim_mode_hdmi_gr, timings);
983         } else {
984                 v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
985                                 __func__, state->selected_input);
986                 err = -1;
987         }
988
989
990         return err;
991 }
992
993 static void configure_custom_video_timings(struct v4l2_subdev *sd,
994                 const struct v4l2_bt_timings *bt)
995 {
996         struct adv76xx_state *state = to_state(sd);
997         u32 width = htotal(bt);
998         u32 height = vtotal(bt);
999         u16 cp_start_sav = bt->hsync + bt->hbackporch - 4;
1000         u16 cp_start_eav = width - bt->hfrontporch;
1001         u16 cp_start_vbi = height - bt->vfrontporch;
1002         u16 cp_end_vbi = bt->vsync + bt->vbackporch;
1003         u16 ch1_fr_ll = (((u32)bt->pixelclock / 100) > 0) ?
1004                 ((width * (ADV76XX_FSC / 100)) / ((u32)bt->pixelclock / 100)) : 0;
1005         const u8 pll[2] = {
1006                 0xc0 | ((width >> 8) & 0x1f),
1007                 width & 0xff
1008         };
1009
1010         v4l2_dbg(2, debug, sd, "%s\n", __func__);
1011
1012         if (is_analog_input(sd)) {
1013                 /* auto graphics */
1014                 io_write(sd, 0x00, 0x07); /* video std */
1015                 io_write(sd, 0x01, 0x02); /* prim mode */
1016                 /* enable embedded syncs for auto graphics mode */
1017                 cp_write_clr_set(sd, 0x81, 0x10, 0x10);
1018
1019                 /* Should only be set in auto-graphics mode [REF_02, p. 91-92] */
1020                 /* setup PLL_DIV_MAN_EN and PLL_DIV_RATIO */
1021                 /* IO-map reg. 0x16 and 0x17 should be written in sequence */
1022                 if (regmap_raw_write(state->regmap[ADV76XX_PAGE_IO],
1023                                         0x16, pll, 2))
1024                         v4l2_err(sd, "writing to reg 0x16 and 0x17 failed\n");
1025
1026                 /* active video - horizontal timing */
1027                 cp_write(sd, 0xa2, (cp_start_sav >> 4) & 0xff);
1028                 cp_write(sd, 0xa3, ((cp_start_sav & 0x0f) << 4) |
1029                                    ((cp_start_eav >> 8) & 0x0f));
1030                 cp_write(sd, 0xa4, cp_start_eav & 0xff);
1031
1032                 /* active video - vertical timing */
1033                 cp_write(sd, 0xa5, (cp_start_vbi >> 4) & 0xff);
1034                 cp_write(sd, 0xa6, ((cp_start_vbi & 0xf) << 4) |
1035                                    ((cp_end_vbi >> 8) & 0xf));
1036                 cp_write(sd, 0xa7, cp_end_vbi & 0xff);
1037         } else if (is_digital_input(sd)) {
1038                 /* set default prim_mode/vid_std for HDMI
1039                    according to [REF_03, c. 4.2] */
1040                 io_write(sd, 0x00, 0x02); /* video std */
1041                 io_write(sd, 0x01, 0x06); /* prim mode */
1042         } else {
1043                 v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
1044                                 __func__, state->selected_input);
1045         }
1046
1047         cp_write(sd, 0x8f, (ch1_fr_ll >> 8) & 0x7);
1048         cp_write(sd, 0x90, ch1_fr_ll & 0xff);
1049         cp_write(sd, 0xab, (height >> 4) & 0xff);
1050         cp_write(sd, 0xac, (height & 0x0f) << 4);
1051 }
1052
1053 static void adv76xx_set_offset(struct v4l2_subdev *sd, bool auto_offset, u16 offset_a, u16 offset_b, u16 offset_c)
1054 {
1055         struct adv76xx_state *state = to_state(sd);
1056         u8 offset_buf[4];
1057
1058         if (auto_offset) {
1059                 offset_a = 0x3ff;
1060                 offset_b = 0x3ff;
1061                 offset_c = 0x3ff;
1062         }
1063
1064         v4l2_dbg(2, debug, sd, "%s: %s offset: a = 0x%x, b = 0x%x, c = 0x%x\n",
1065                         __func__, auto_offset ? "Auto" : "Manual",
1066                         offset_a, offset_b, offset_c);
1067
1068         offset_buf[0] = (cp_read(sd, 0x77) & 0xc0) | ((offset_a & 0x3f0) >> 4);
1069         offset_buf[1] = ((offset_a & 0x00f) << 4) | ((offset_b & 0x3c0) >> 6);
1070         offset_buf[2] = ((offset_b & 0x03f) << 2) | ((offset_c & 0x300) >> 8);
1071         offset_buf[3] = offset_c & 0x0ff;
1072
1073         /* Registers must be written in this order with no i2c access in between */
1074         if (regmap_raw_write(state->regmap[ADV76XX_PAGE_CP],
1075                         0x77, offset_buf, 4))
1076                 v4l2_err(sd, "%s: i2c error writing to CP reg 0x77, 0x78, 0x79, 0x7a\n", __func__);
1077 }
1078
1079 static void adv76xx_set_gain(struct v4l2_subdev *sd, bool auto_gain, u16 gain_a, u16 gain_b, u16 gain_c)
1080 {
1081         struct adv76xx_state *state = to_state(sd);
1082         u8 gain_buf[4];
1083         u8 gain_man = 1;
1084         u8 agc_mode_man = 1;
1085
1086         if (auto_gain) {
1087                 gain_man = 0;
1088                 agc_mode_man = 0;
1089                 gain_a = 0x100;
1090                 gain_b = 0x100;
1091                 gain_c = 0x100;
1092         }
1093
1094         v4l2_dbg(2, debug, sd, "%s: %s gain: a = 0x%x, b = 0x%x, c = 0x%x\n",
1095                         __func__, auto_gain ? "Auto" : "Manual",
1096                         gain_a, gain_b, gain_c);
1097
1098         gain_buf[0] = ((gain_man << 7) | (agc_mode_man << 6) | ((gain_a & 0x3f0) >> 4));
1099         gain_buf[1] = (((gain_a & 0x00f) << 4) | ((gain_b & 0x3c0) >> 6));
1100         gain_buf[2] = (((gain_b & 0x03f) << 2) | ((gain_c & 0x300) >> 8));
1101         gain_buf[3] = ((gain_c & 0x0ff));
1102
1103         /* Registers must be written in this order with no i2c access in between */
1104         if (regmap_raw_write(state->regmap[ADV76XX_PAGE_CP],
1105                              0x73, gain_buf, 4))
1106                 v4l2_err(sd, "%s: i2c error writing to CP reg 0x73, 0x74, 0x75, 0x76\n", __func__);
1107 }
1108
1109 static void set_rgb_quantization_range(struct v4l2_subdev *sd)
1110 {
1111         struct adv76xx_state *state = to_state(sd);
1112         bool rgb_output = io_read(sd, 0x02) & 0x02;
1113         bool hdmi_signal = hdmi_read(sd, 0x05) & 0x80;
1114         u8 y = HDMI_COLORSPACE_RGB;
1115
1116         if (hdmi_signal && (io_read(sd, 0x60) & 1))
1117                 y = infoframe_read(sd, 0x01) >> 5;
1118
1119         v4l2_dbg(2, debug, sd, "%s: RGB quantization range: %d, RGB out: %d, HDMI: %d\n",
1120                         __func__, state->rgb_quantization_range,
1121                         rgb_output, hdmi_signal);
1122
1123         adv76xx_set_gain(sd, true, 0x0, 0x0, 0x0);
1124         adv76xx_set_offset(sd, true, 0x0, 0x0, 0x0);
1125         io_write_clr_set(sd, 0x02, 0x04, rgb_output ? 0 : 4);
1126
1127         switch (state->rgb_quantization_range) {
1128         case V4L2_DV_RGB_RANGE_AUTO:
1129                 if (state->selected_input == ADV7604_PAD_VGA_RGB) {
1130                         /* Receiving analog RGB signal
1131                          * Set RGB full range (0-255) */
1132                         io_write_clr_set(sd, 0x02, 0xf0, 0x10);
1133                         break;
1134                 }
1135
1136                 if (state->selected_input == ADV7604_PAD_VGA_COMP) {
1137                         /* Receiving analog YPbPr signal
1138                          * Set automode */
1139                         io_write_clr_set(sd, 0x02, 0xf0, 0xf0);
1140                         break;
1141                 }
1142
1143                 if (hdmi_signal) {
1144                         /* Receiving HDMI signal
1145                          * Set automode */
1146                         io_write_clr_set(sd, 0x02, 0xf0, 0xf0);
1147                         break;
1148                 }
1149
1150                 /* Receiving DVI-D signal
1151                  * ADV7604 selects RGB limited range regardless of
1152                  * input format (CE/IT) in automatic mode */
1153                 if (state->timings.bt.flags & V4L2_DV_FL_IS_CE_VIDEO) {
1154                         /* RGB limited range (16-235) */
1155                         io_write_clr_set(sd, 0x02, 0xf0, 0x00);
1156                 } else {
1157                         /* RGB full range (0-255) */
1158                         io_write_clr_set(sd, 0x02, 0xf0, 0x10);
1159
1160                         if (is_digital_input(sd) && rgb_output) {
1161                                 adv76xx_set_offset(sd, false, 0x40, 0x40, 0x40);
1162                         } else {
1163                                 adv76xx_set_gain(sd, false, 0xe0, 0xe0, 0xe0);
1164                                 adv76xx_set_offset(sd, false, 0x70, 0x70, 0x70);
1165                         }
1166                 }
1167                 break;
1168         case V4L2_DV_RGB_RANGE_LIMITED:
1169                 if (state->selected_input == ADV7604_PAD_VGA_COMP) {
1170                         /* YCrCb limited range (16-235) */
1171                         io_write_clr_set(sd, 0x02, 0xf0, 0x20);
1172                         break;
1173                 }
1174
1175                 if (y != HDMI_COLORSPACE_RGB)
1176                         break;
1177
1178                 /* RGB limited range (16-235) */
1179                 io_write_clr_set(sd, 0x02, 0xf0, 0x00);
1180
1181                 break;
1182         case V4L2_DV_RGB_RANGE_FULL:
1183                 if (state->selected_input == ADV7604_PAD_VGA_COMP) {
1184                         /* YCrCb full range (0-255) */
1185                         io_write_clr_set(sd, 0x02, 0xf0, 0x60);
1186                         break;
1187                 }
1188
1189                 if (y != HDMI_COLORSPACE_RGB)
1190                         break;
1191
1192                 /* RGB full range (0-255) */
1193                 io_write_clr_set(sd, 0x02, 0xf0, 0x10);
1194
1195                 if (is_analog_input(sd) || hdmi_signal)
1196                         break;
1197
1198                 /* Adjust gain/offset for DVI-D signals only */
1199                 if (rgb_output) {
1200                         adv76xx_set_offset(sd, false, 0x40, 0x40, 0x40);
1201                 } else {
1202                         adv76xx_set_gain(sd, false, 0xe0, 0xe0, 0xe0);
1203                         adv76xx_set_offset(sd, false, 0x70, 0x70, 0x70);
1204                 }
1205                 break;
1206         }
1207 }
1208
1209 static int adv76xx_s_ctrl(struct v4l2_ctrl *ctrl)
1210 {
1211         struct v4l2_subdev *sd =
1212                 &container_of(ctrl->handler, struct adv76xx_state, hdl)->sd;
1213
1214         struct adv76xx_state *state = to_state(sd);
1215
1216         switch (ctrl->id) {
1217         case V4L2_CID_BRIGHTNESS:
1218                 cp_write(sd, 0x3c, ctrl->val);
1219                 return 0;
1220         case V4L2_CID_CONTRAST:
1221                 cp_write(sd, 0x3a, ctrl->val);
1222                 return 0;
1223         case V4L2_CID_SATURATION:
1224                 cp_write(sd, 0x3b, ctrl->val);
1225                 return 0;
1226         case V4L2_CID_HUE:
1227                 cp_write(sd, 0x3d, ctrl->val);
1228                 return 0;
1229         case  V4L2_CID_DV_RX_RGB_RANGE:
1230                 state->rgb_quantization_range = ctrl->val;
1231                 set_rgb_quantization_range(sd);
1232                 return 0;
1233         case V4L2_CID_ADV_RX_ANALOG_SAMPLING_PHASE:
1234                 if (!adv76xx_has_afe(state))
1235                         return -EINVAL;
1236                 /* Set the analog sampling phase. This is needed to find the
1237                    best sampling phase for analog video: an application or
1238                    driver has to try a number of phases and analyze the picture
1239                    quality before settling on the best performing phase. */
1240                 afe_write(sd, 0xc8, ctrl->val);
1241                 return 0;
1242         case V4L2_CID_ADV_RX_FREE_RUN_COLOR_MANUAL:
1243                 /* Use the default blue color for free running mode,
1244                    or supply your own. */
1245                 cp_write_clr_set(sd, 0xbf, 0x04, ctrl->val << 2);
1246                 return 0;
1247         case V4L2_CID_ADV_RX_FREE_RUN_COLOR:
1248                 cp_write(sd, 0xc0, (ctrl->val & 0xff0000) >> 16);
1249                 cp_write(sd, 0xc1, (ctrl->val & 0x00ff00) >> 8);
1250                 cp_write(sd, 0xc2, (u8)(ctrl->val & 0x0000ff));
1251                 return 0;
1252         }
1253         return -EINVAL;
1254 }
1255
1256 static int adv76xx_g_volatile_ctrl(struct v4l2_ctrl *ctrl)
1257 {
1258         struct v4l2_subdev *sd =
1259                 &container_of(ctrl->handler, struct adv76xx_state, hdl)->sd;
1260
1261         if (ctrl->id == V4L2_CID_DV_RX_IT_CONTENT_TYPE) {
1262                 ctrl->val = V4L2_DV_IT_CONTENT_TYPE_NO_ITC;
1263                 if ((io_read(sd, 0x60) & 1) && (infoframe_read(sd, 0x03) & 0x80))
1264                         ctrl->val = (infoframe_read(sd, 0x05) >> 4) & 3;
1265                 return 0;
1266         }
1267         return -EINVAL;
1268 }
1269
1270 /* ----------------------------------------------------------------------- */
1271
1272 static inline bool no_power(struct v4l2_subdev *sd)
1273 {
1274         /* Entire chip or CP powered off */
1275         return io_read(sd, 0x0c) & 0x24;
1276 }
1277
1278 static inline bool no_signal_tmds(struct v4l2_subdev *sd)
1279 {
1280         struct adv76xx_state *state = to_state(sd);
1281
1282         return !(io_read(sd, 0x6a) & (0x10 >> state->selected_input));
1283 }
1284
1285 static inline bool no_lock_tmds(struct v4l2_subdev *sd)
1286 {
1287         struct adv76xx_state *state = to_state(sd);
1288         const struct adv76xx_chip_info *info = state->info;
1289
1290         return (io_read(sd, 0x6a) & info->tdms_lock_mask) != info->tdms_lock_mask;
1291 }
1292
1293 static inline bool is_hdmi(struct v4l2_subdev *sd)
1294 {
1295         return hdmi_read(sd, 0x05) & 0x80;
1296 }
1297
1298 static inline bool no_lock_sspd(struct v4l2_subdev *sd)
1299 {
1300         struct adv76xx_state *state = to_state(sd);
1301
1302         /*
1303          * Chips without a AFE don't expose registers for the SSPD, so just assume
1304          * that we have a lock.
1305          */
1306         if (adv76xx_has_afe(state))
1307                 return false;
1308
1309         /* TODO channel 2 */
1310         return ((cp_read(sd, 0xb5) & 0xd0) != 0xd0);
1311 }
1312
1313 static inline bool no_lock_stdi(struct v4l2_subdev *sd)
1314 {
1315         /* TODO channel 2 */
1316         return !(cp_read(sd, 0xb1) & 0x80);
1317 }
1318
1319 static inline bool no_signal(struct v4l2_subdev *sd)
1320 {
1321         bool ret;
1322
1323         ret = no_power(sd);
1324
1325         ret |= no_lock_stdi(sd);
1326         ret |= no_lock_sspd(sd);
1327
1328         if (is_digital_input(sd)) {
1329                 ret |= no_lock_tmds(sd);
1330                 ret |= no_signal_tmds(sd);
1331         }
1332
1333         return ret;
1334 }
1335
1336 static inline bool no_lock_cp(struct v4l2_subdev *sd)
1337 {
1338         struct adv76xx_state *state = to_state(sd);
1339
1340         if (!adv76xx_has_afe(state))
1341                 return false;
1342
1343         /* CP has detected a non standard number of lines on the incoming
1344            video compared to what it is configured to receive by s_dv_timings */
1345         return io_read(sd, 0x12) & 0x01;
1346 }
1347
1348 static inline bool in_free_run(struct v4l2_subdev *sd)
1349 {
1350         return cp_read(sd, 0xff) & 0x10;
1351 }
1352
1353 static int adv76xx_g_input_status(struct v4l2_subdev *sd, u32 *status)
1354 {
1355         *status = 0;
1356         *status |= no_power(sd) ? V4L2_IN_ST_NO_POWER : 0;
1357         *status |= no_signal(sd) ? V4L2_IN_ST_NO_SIGNAL : 0;
1358         if (!in_free_run(sd) && no_lock_cp(sd))
1359                 *status |= is_digital_input(sd) ?
1360                            V4L2_IN_ST_NO_SYNC : V4L2_IN_ST_NO_H_LOCK;
1361
1362         v4l2_dbg(1, debug, sd, "%s: status = 0x%x\n", __func__, *status);
1363
1364         return 0;
1365 }
1366
1367 /* ----------------------------------------------------------------------- */
1368
1369 struct stdi_readback {
1370         u16 bl, lcf, lcvs;
1371         u8 hs_pol, vs_pol;
1372         bool interlaced;
1373 };
1374
1375 static int stdi2dv_timings(struct v4l2_subdev *sd,
1376                 struct stdi_readback *stdi,
1377                 struct v4l2_dv_timings *timings)
1378 {
1379         struct adv76xx_state *state = to_state(sd);
1380         u32 hfreq = (ADV76XX_FSC * 8) / stdi->bl;
1381         u32 pix_clk;
1382         int i;
1383
1384         for (i = 0; v4l2_dv_timings_presets[i].bt.width; i++) {
1385                 const struct v4l2_bt_timings *bt = &v4l2_dv_timings_presets[i].bt;
1386
1387                 if (!v4l2_valid_dv_timings(&v4l2_dv_timings_presets[i],
1388                                            adv76xx_get_dv_timings_cap(sd, -1),
1389                                            adv76xx_check_dv_timings, NULL))
1390                         continue;
1391                 if (vtotal(bt) != stdi->lcf + 1)
1392                         continue;
1393                 if (bt->vsync != stdi->lcvs)
1394                         continue;
1395
1396                 pix_clk = hfreq * htotal(bt);
1397
1398                 if ((pix_clk < bt->pixelclock + 1000000) &&
1399                     (pix_clk > bt->pixelclock - 1000000)) {
1400                         *timings = v4l2_dv_timings_presets[i];
1401                         return 0;
1402                 }
1403         }
1404
1405         if (v4l2_detect_cvt(stdi->lcf + 1, hfreq, stdi->lcvs, 0,
1406                         (stdi->hs_pol == '+' ? V4L2_DV_HSYNC_POS_POL : 0) |
1407                         (stdi->vs_pol == '+' ? V4L2_DV_VSYNC_POS_POL : 0),
1408                         false, timings))
1409                 return 0;
1410         if (v4l2_detect_gtf(stdi->lcf + 1, hfreq, stdi->lcvs,
1411                         (stdi->hs_pol == '+' ? V4L2_DV_HSYNC_POS_POL : 0) |
1412                         (stdi->vs_pol == '+' ? V4L2_DV_VSYNC_POS_POL : 0),
1413                         false, state->aspect_ratio, timings))
1414                 return 0;
1415
1416         v4l2_dbg(2, debug, sd,
1417                 "%s: No format candidate found for lcvs = %d, lcf=%d, bl = %d, %chsync, %cvsync\n",
1418                 __func__, stdi->lcvs, stdi->lcf, stdi->bl,
1419                 stdi->hs_pol, stdi->vs_pol);
1420         return -1;
1421 }
1422
1423
1424 static int read_stdi(struct v4l2_subdev *sd, struct stdi_readback *stdi)
1425 {
1426         struct adv76xx_state *state = to_state(sd);
1427         const struct adv76xx_chip_info *info = state->info;
1428         u8 polarity;
1429
1430         if (no_lock_stdi(sd) || no_lock_sspd(sd)) {
1431                 v4l2_dbg(2, debug, sd, "%s: STDI and/or SSPD not locked\n", __func__);
1432                 return -1;
1433         }
1434
1435         /* read STDI */
1436         stdi->bl = cp_read16(sd, 0xb1, 0x3fff);
1437         stdi->lcf = cp_read16(sd, info->lcf_reg, 0x7ff);
1438         stdi->lcvs = cp_read(sd, 0xb3) >> 3;
1439         stdi->interlaced = io_read(sd, 0x12) & 0x10;
1440
1441         if (adv76xx_has_afe(state)) {
1442                 /* read SSPD */
1443                 polarity = cp_read(sd, 0xb5);
1444                 if ((polarity & 0x03) == 0x01) {
1445                         stdi->hs_pol = polarity & 0x10
1446                                      ? (polarity & 0x08 ? '+' : '-') : 'x';
1447                         stdi->vs_pol = polarity & 0x40
1448                                      ? (polarity & 0x20 ? '+' : '-') : 'x';
1449                 } else {
1450                         stdi->hs_pol = 'x';
1451                         stdi->vs_pol = 'x';
1452                 }
1453         } else {
1454                 polarity = hdmi_read(sd, 0x05);
1455                 stdi->hs_pol = polarity & 0x20 ? '+' : '-';
1456                 stdi->vs_pol = polarity & 0x10 ? '+' : '-';
1457         }
1458
1459         if (no_lock_stdi(sd) || no_lock_sspd(sd)) {
1460                 v4l2_dbg(2, debug, sd,
1461                         "%s: signal lost during readout of STDI/SSPD\n", __func__);
1462                 return -1;
1463         }
1464
1465         if (stdi->lcf < 239 || stdi->bl < 8 || stdi->bl == 0x3fff) {
1466                 v4l2_dbg(2, debug, sd, "%s: invalid signal\n", __func__);
1467                 memset(stdi, 0, sizeof(struct stdi_readback));
1468                 return -1;
1469         }
1470
1471         v4l2_dbg(2, debug, sd,
1472                 "%s: lcf (frame height - 1) = %d, bl = %d, lcvs (vsync) = %d, %chsync, %cvsync, %s\n",
1473                 __func__, stdi->lcf, stdi->bl, stdi->lcvs,
1474                 stdi->hs_pol, stdi->vs_pol,
1475                 stdi->interlaced ? "interlaced" : "progressive");
1476
1477         return 0;
1478 }
1479
1480 static int adv76xx_enum_dv_timings(struct v4l2_subdev *sd,
1481                         struct v4l2_enum_dv_timings *timings)
1482 {
1483         struct adv76xx_state *state = to_state(sd);
1484
1485         if (timings->pad >= state->source_pad)
1486                 return -EINVAL;
1487
1488         return v4l2_enum_dv_timings_cap(timings,
1489                 adv76xx_get_dv_timings_cap(sd, timings->pad),
1490                 adv76xx_check_dv_timings, NULL);
1491 }
1492
1493 static int adv76xx_dv_timings_cap(struct v4l2_subdev *sd,
1494                         struct v4l2_dv_timings_cap *cap)
1495 {
1496         struct adv76xx_state *state = to_state(sd);
1497         unsigned int pad = cap->pad;
1498
1499         if (cap->pad >= state->source_pad)
1500                 return -EINVAL;
1501
1502         *cap = *adv76xx_get_dv_timings_cap(sd, pad);
1503         cap->pad = pad;
1504
1505         return 0;
1506 }
1507
1508 /* Fill the optional fields .standards and .flags in struct v4l2_dv_timings
1509    if the format is listed in adv76xx_timings[] */
1510 static void adv76xx_fill_optional_dv_timings_fields(struct v4l2_subdev *sd,
1511                 struct v4l2_dv_timings *timings)
1512 {
1513         v4l2_find_dv_timings_cap(timings, adv76xx_get_dv_timings_cap(sd, -1),
1514                                  is_digital_input(sd) ? 250000 : 1000000,
1515                                  adv76xx_check_dv_timings, NULL);
1516 }
1517
1518 static unsigned int adv7604_read_hdmi_pixelclock(struct v4l2_subdev *sd)
1519 {
1520         int a, b;
1521
1522         a = hdmi_read(sd, 0x06);
1523         b = hdmi_read(sd, 0x3b);
1524         if (a < 0 || b < 0)
1525                 return 0;
1526
1527         return a * 1000000 + ((b & 0x30) >> 4) * 250000;
1528 }
1529
1530 static unsigned int adv7611_read_hdmi_pixelclock(struct v4l2_subdev *sd)
1531 {
1532         int a, b;
1533
1534         a = hdmi_read(sd, 0x51);
1535         b = hdmi_read(sd, 0x52);
1536         if (a < 0 || b < 0)
1537                 return 0;
1538
1539         return ((a << 1) | (b >> 7)) * 1000000 + (b & 0x7f) * 1000000 / 128;
1540 }
1541
1542 static unsigned int adv76xx_read_hdmi_pixelclock(struct v4l2_subdev *sd)
1543 {
1544         struct adv76xx_state *state = to_state(sd);
1545         const struct adv76xx_chip_info *info = state->info;
1546         unsigned int freq, bits_per_channel, pixelrepetition;
1547
1548         freq = info->read_hdmi_pixelclock(sd);
1549         if (is_hdmi(sd)) {
1550                 /* adjust for deep color mode and pixel repetition */
1551                 bits_per_channel = ((hdmi_read(sd, 0x0b) & 0x60) >> 4) + 8;
1552                 pixelrepetition = (hdmi_read(sd, 0x05) & 0x0f) + 1;
1553
1554                 freq = freq * 8 / bits_per_channel / pixelrepetition;
1555         }
1556
1557         return freq;
1558 }
1559
1560 static int adv76xx_query_dv_timings(struct v4l2_subdev *sd,
1561                         struct v4l2_dv_timings *timings)
1562 {
1563         struct adv76xx_state *state = to_state(sd);
1564         const struct adv76xx_chip_info *info = state->info;
1565         struct v4l2_bt_timings *bt = &timings->bt;
1566         struct stdi_readback stdi;
1567
1568         if (!timings)
1569                 return -EINVAL;
1570
1571         memset(timings, 0, sizeof(struct v4l2_dv_timings));
1572
1573         if (no_signal(sd)) {
1574                 state->restart_stdi_once = true;
1575                 v4l2_dbg(1, debug, sd, "%s: no valid signal\n", __func__);
1576                 return -ENOLINK;
1577         }
1578
1579         /* read STDI */
1580         if (read_stdi(sd, &stdi)) {
1581                 v4l2_dbg(1, debug, sd, "%s: STDI/SSPD not locked\n", __func__);
1582                 return -ENOLINK;
1583         }
1584         bt->interlaced = stdi.interlaced ?
1585                 V4L2_DV_INTERLACED : V4L2_DV_PROGRESSIVE;
1586
1587         if (is_digital_input(sd)) {
1588                 bool hdmi_signal = hdmi_read(sd, 0x05) & 0x80;
1589                 u8 vic = 0;
1590                 u32 w, h;
1591
1592                 w = hdmi_read16(sd, 0x07, info->linewidth_mask);
1593                 h = hdmi_read16(sd, 0x09, info->field0_height_mask);
1594
1595                 if (hdmi_signal && (io_read(sd, 0x60) & 1))
1596                         vic = infoframe_read(sd, 0x04);
1597
1598                 if (vic && v4l2_find_dv_timings_cea861_vic(timings, vic) &&
1599                     bt->width == w && bt->height == h)
1600                         goto found;
1601
1602                 timings->type = V4L2_DV_BT_656_1120;
1603
1604                 bt->width = w;
1605                 bt->height = h;
1606                 bt->pixelclock = adv76xx_read_hdmi_pixelclock(sd);
1607                 bt->hfrontporch = hdmi_read16(sd, 0x20, info->hfrontporch_mask);
1608                 bt->hsync = hdmi_read16(sd, 0x22, info->hsync_mask);
1609                 bt->hbackporch = hdmi_read16(sd, 0x24, info->hbackporch_mask);
1610                 bt->vfrontporch = hdmi_read16(sd, 0x2a,
1611                         info->field0_vfrontporch_mask) / 2;
1612                 bt->vsync = hdmi_read16(sd, 0x2e, info->field0_vsync_mask) / 2;
1613                 bt->vbackporch = hdmi_read16(sd, 0x32,
1614                         info->field0_vbackporch_mask) / 2;
1615                 bt->polarities = ((hdmi_read(sd, 0x05) & 0x10) ? V4L2_DV_VSYNC_POS_POL : 0) |
1616                         ((hdmi_read(sd, 0x05) & 0x20) ? V4L2_DV_HSYNC_POS_POL : 0);
1617                 if (bt->interlaced == V4L2_DV_INTERLACED) {
1618                         bt->height += hdmi_read16(sd, 0x0b,
1619                                 info->field1_height_mask);
1620                         bt->il_vfrontporch = hdmi_read16(sd, 0x2c,
1621                                 info->field1_vfrontporch_mask) / 2;
1622                         bt->il_vsync = hdmi_read16(sd, 0x30,
1623                                 info->field1_vsync_mask) / 2;
1624                         bt->il_vbackporch = hdmi_read16(sd, 0x34,
1625                                 info->field1_vbackporch_mask) / 2;
1626                 }
1627                 adv76xx_fill_optional_dv_timings_fields(sd, timings);
1628         } else {
1629                 /* find format
1630                  * Since LCVS values are inaccurate [REF_03, p. 275-276],
1631                  * stdi2dv_timings() is called with lcvs +-1 if the first attempt fails.
1632                  */
1633                 if (!stdi2dv_timings(sd, &stdi, timings))
1634                         goto found;
1635                 stdi.lcvs += 1;
1636                 v4l2_dbg(1, debug, sd, "%s: lcvs + 1 = %d\n", __func__, stdi.lcvs);
1637                 if (!stdi2dv_timings(sd, &stdi, timings))
1638                         goto found;
1639                 stdi.lcvs -= 2;
1640                 v4l2_dbg(1, debug, sd, "%s: lcvs - 1 = %d\n", __func__, stdi.lcvs);
1641                 if (stdi2dv_timings(sd, &stdi, timings)) {
1642                         /*
1643                          * The STDI block may measure wrong values, especially
1644                          * for lcvs and lcf. If the driver can not find any
1645                          * valid timing, the STDI block is restarted to measure
1646                          * the video timings again. The function will return an
1647                          * error, but the restart of STDI will generate a new
1648                          * STDI interrupt and the format detection process will
1649                          * restart.
1650                          */
1651                         if (state->restart_stdi_once) {
1652                                 v4l2_dbg(1, debug, sd, "%s: restart STDI\n", __func__);
1653                                 /* TODO restart STDI for Sync Channel 2 */
1654                                 /* enter one-shot mode */
1655                                 cp_write_clr_set(sd, 0x86, 0x06, 0x00);
1656                                 /* trigger STDI restart */
1657                                 cp_write_clr_set(sd, 0x86, 0x06, 0x04);
1658                                 /* reset to continuous mode */
1659                                 cp_write_clr_set(sd, 0x86, 0x06, 0x02);
1660                                 state->restart_stdi_once = false;
1661                                 return -ENOLINK;
1662                         }
1663                         v4l2_dbg(1, debug, sd, "%s: format not supported\n", __func__);
1664                         return -ERANGE;
1665                 }
1666                 state->restart_stdi_once = true;
1667         }
1668 found:
1669
1670         if (no_signal(sd)) {
1671                 v4l2_dbg(1, debug, sd, "%s: signal lost during readout\n", __func__);
1672                 memset(timings, 0, sizeof(struct v4l2_dv_timings));
1673                 return -ENOLINK;
1674         }
1675
1676         if ((is_analog_input(sd) && bt->pixelclock > 170000000) ||
1677                         (is_digital_input(sd) && bt->pixelclock > 225000000)) {
1678                 v4l2_dbg(1, debug, sd, "%s: pixelclock out of range %d\n",
1679                                 __func__, (u32)bt->pixelclock);
1680                 return -ERANGE;
1681         }
1682
1683         if (debug > 1)
1684                 v4l2_print_dv_timings(sd->name, "adv76xx_query_dv_timings: ",
1685                                       timings, true);
1686
1687         return 0;
1688 }
1689
1690 static int adv76xx_s_dv_timings(struct v4l2_subdev *sd,
1691                 struct v4l2_dv_timings *timings)
1692 {
1693         struct adv76xx_state *state = to_state(sd);
1694         struct v4l2_bt_timings *bt;
1695         int err;
1696
1697         if (!timings)
1698                 return -EINVAL;
1699
1700         if (v4l2_match_dv_timings(&state->timings, timings, 0, false)) {
1701                 v4l2_dbg(1, debug, sd, "%s: no change\n", __func__);
1702                 return 0;
1703         }
1704
1705         bt = &timings->bt;
1706
1707         if (!v4l2_valid_dv_timings(timings, adv76xx_get_dv_timings_cap(sd, -1),
1708                                    adv76xx_check_dv_timings, NULL))
1709                 return -ERANGE;
1710
1711         adv76xx_fill_optional_dv_timings_fields(sd, timings);
1712
1713         state->timings = *timings;
1714
1715         cp_write_clr_set(sd, 0x91, 0x40, bt->interlaced ? 0x40 : 0x00);
1716
1717         /* Use prim_mode and vid_std when available */
1718         err = configure_predefined_video_timings(sd, timings);
1719         if (err) {
1720                 /* custom settings when the video format
1721                  does not have prim_mode/vid_std */
1722                 configure_custom_video_timings(sd, bt);
1723         }
1724
1725         set_rgb_quantization_range(sd);
1726
1727         if (debug > 1)
1728                 v4l2_print_dv_timings(sd->name, "adv76xx_s_dv_timings: ",
1729                                       timings, true);
1730         return 0;
1731 }
1732
1733 static int adv76xx_g_dv_timings(struct v4l2_subdev *sd,
1734                 struct v4l2_dv_timings *timings)
1735 {
1736         struct adv76xx_state *state = to_state(sd);
1737
1738         *timings = state->timings;
1739         return 0;
1740 }
1741
1742 static void adv7604_set_termination(struct v4l2_subdev *sd, bool enable)
1743 {
1744         hdmi_write(sd, 0x01, enable ? 0x00 : 0x78);
1745 }
1746
1747 static void adv7611_set_termination(struct v4l2_subdev *sd, bool enable)
1748 {
1749         hdmi_write(sd, 0x83, enable ? 0xfe : 0xff);
1750 }
1751
1752 static void enable_input(struct v4l2_subdev *sd)
1753 {
1754         struct adv76xx_state *state = to_state(sd);
1755
1756         if (is_analog_input(sd)) {
1757                 io_write(sd, 0x15, 0xb0);   /* Disable Tristate of Pins (no audio) */
1758         } else if (is_digital_input(sd)) {
1759                 hdmi_write_clr_set(sd, 0x00, 0x03, state->selected_input);
1760                 state->info->set_termination(sd, true);
1761                 io_write(sd, 0x15, 0xa0);   /* Disable Tristate of Pins */
1762                 hdmi_write_clr_set(sd, 0x1a, 0x10, 0x00); /* Unmute audio */
1763         } else {
1764                 v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
1765                                 __func__, state->selected_input);
1766         }
1767 }
1768
1769 static void disable_input(struct v4l2_subdev *sd)
1770 {
1771         struct adv76xx_state *state = to_state(sd);
1772
1773         hdmi_write_clr_set(sd, 0x1a, 0x10, 0x10); /* Mute audio */
1774         msleep(16); /* 512 samples with >= 32 kHz sample rate [REF_03, c. 7.16.10] */
1775         io_write(sd, 0x15, 0xbe);   /* Tristate all outputs from video core */
1776         state->info->set_termination(sd, false);
1777 }
1778
1779 static void select_input(struct v4l2_subdev *sd)
1780 {
1781         struct adv76xx_state *state = to_state(sd);
1782         const struct adv76xx_chip_info *info = state->info;
1783
1784         if (is_analog_input(sd)) {
1785                 adv76xx_write_reg_seq(sd, info->recommended_settings[0]);
1786
1787                 afe_write(sd, 0x00, 0x08); /* power up ADC */
1788                 afe_write(sd, 0x01, 0x06); /* power up Analog Front End */
1789                 afe_write(sd, 0xc8, 0x00); /* phase control */
1790         } else if (is_digital_input(sd)) {
1791                 hdmi_write(sd, 0x00, state->selected_input & 0x03);
1792
1793                 adv76xx_write_reg_seq(sd, info->recommended_settings[1]);
1794
1795                 if (adv76xx_has_afe(state)) {
1796                         afe_write(sd, 0x00, 0xff); /* power down ADC */
1797                         afe_write(sd, 0x01, 0xfe); /* power down Analog Front End */
1798                         afe_write(sd, 0xc8, 0x40); /* phase control */
1799                 }
1800
1801                 cp_write(sd, 0x3e, 0x00); /* CP core pre-gain control */
1802                 cp_write(sd, 0xc3, 0x39); /* CP coast control. Graphics mode */
1803                 cp_write(sd, 0x40, 0x80); /* CP core pre-gain control. Graphics mode */
1804         } else {
1805                 v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
1806                                 __func__, state->selected_input);
1807         }
1808 }
1809
1810 static int adv76xx_s_routing(struct v4l2_subdev *sd,
1811                 u32 input, u32 output, u32 config)
1812 {
1813         struct adv76xx_state *state = to_state(sd);
1814
1815         v4l2_dbg(2, debug, sd, "%s: input %d, selected input %d",
1816                         __func__, input, state->selected_input);
1817
1818         if (input == state->selected_input)
1819                 return 0;
1820
1821         if (input > state->info->max_port)
1822                 return -EINVAL;
1823
1824         state->selected_input = input;
1825
1826         disable_input(sd);
1827         select_input(sd);
1828         enable_input(sd);
1829
1830         v4l2_subdev_notify_event(sd, &adv76xx_ev_fmt);
1831
1832         return 0;
1833 }
1834
1835 static int adv76xx_enum_mbus_code(struct v4l2_subdev *sd,
1836                                   struct v4l2_subdev_state *sd_state,
1837                                   struct v4l2_subdev_mbus_code_enum *code)
1838 {
1839         struct adv76xx_state *state = to_state(sd);
1840
1841         if (code->index >= state->info->nformats)
1842                 return -EINVAL;
1843
1844         code->code = state->info->formats[code->index].code;
1845
1846         return 0;
1847 }
1848
1849 static void adv76xx_fill_format(struct adv76xx_state *state,
1850                                 struct v4l2_mbus_framefmt *format)
1851 {
1852         memset(format, 0, sizeof(*format));
1853
1854         format->width = state->timings.bt.width;
1855         format->height = state->timings.bt.height;
1856         format->field = V4L2_FIELD_NONE;
1857         format->colorspace = V4L2_COLORSPACE_SRGB;
1858
1859         if (state->timings.bt.flags & V4L2_DV_FL_IS_CE_VIDEO)
1860                 format->colorspace = (state->timings.bt.height <= 576) ?
1861                         V4L2_COLORSPACE_SMPTE170M : V4L2_COLORSPACE_REC709;
1862 }
1863
1864 /*
1865  * Compute the op_ch_sel value required to obtain on the bus the component order
1866  * corresponding to the selected format taking into account bus reordering
1867  * applied by the board at the output of the device.
1868  *
1869  * The following table gives the op_ch_value from the format component order
1870  * (expressed as op_ch_sel value in column) and the bus reordering (expressed as
1871  * adv76xx_bus_order value in row).
1872  *
1873  *           |  GBR(0)  GRB(1)  BGR(2)  RGB(3)  BRG(4)  RBG(5)
1874  * ----------+-------------------------------------------------
1875  * RGB (NOP) |  GBR     GRB     BGR     RGB     BRG     RBG
1876  * GRB (1-2) |  BGR     RGB     GBR     GRB     RBG     BRG
1877  * RBG (2-3) |  GRB     GBR     BRG     RBG     BGR     RGB
1878  * BGR (1-3) |  RBG     BRG     RGB     BGR     GRB     GBR
1879  * BRG (ROR) |  BRG     RBG     GRB     GBR     RGB     BGR
1880  * GBR (ROL) |  RGB     BGR     RBG     BRG     GBR     GRB
1881  */
1882 static unsigned int adv76xx_op_ch_sel(struct adv76xx_state *state)
1883 {
1884 #define _SEL(a,b,c,d,e,f)       { \
1885         ADV76XX_OP_CH_SEL_##a, ADV76XX_OP_CH_SEL_##b, ADV76XX_OP_CH_SEL_##c, \
1886         ADV76XX_OP_CH_SEL_##d, ADV76XX_OP_CH_SEL_##e, ADV76XX_OP_CH_SEL_##f }
1887 #define _BUS(x)                 [ADV7604_BUS_ORDER_##x]
1888
1889         static const unsigned int op_ch_sel[6][6] = {
1890                 _BUS(RGB) /* NOP */ = _SEL(GBR, GRB, BGR, RGB, BRG, RBG),
1891                 _BUS(GRB) /* 1-2 */ = _SEL(BGR, RGB, GBR, GRB, RBG, BRG),
1892                 _BUS(RBG) /* 2-3 */ = _SEL(GRB, GBR, BRG, RBG, BGR, RGB),
1893                 _BUS(BGR) /* 1-3 */ = _SEL(RBG, BRG, RGB, BGR, GRB, GBR),
1894                 _BUS(BRG) /* ROR */ = _SEL(BRG, RBG, GRB, GBR, RGB, BGR),
1895                 _BUS(GBR) /* ROL */ = _SEL(RGB, BGR, RBG, BRG, GBR, GRB),
1896         };
1897
1898         return op_ch_sel[state->pdata.bus_order][state->format->op_ch_sel >> 5];
1899 }
1900
1901 static void adv76xx_setup_format(struct adv76xx_state *state)
1902 {
1903         struct v4l2_subdev *sd = &state->sd;
1904
1905         io_write_clr_set(sd, 0x02, 0x02,
1906                         state->format->rgb_out ? ADV76XX_RGB_OUT : 0);
1907         io_write(sd, 0x03, state->format->op_format_sel |
1908                  state->pdata.op_format_mode_sel);
1909         io_write_clr_set(sd, 0x04, 0xe0, adv76xx_op_ch_sel(state));
1910         io_write_clr_set(sd, 0x05, 0x01,
1911                         state->format->swap_cb_cr ? ADV76XX_OP_SWAP_CB_CR : 0);
1912         set_rgb_quantization_range(sd);
1913 }
1914
1915 static int adv76xx_get_format(struct v4l2_subdev *sd,
1916                               struct v4l2_subdev_state *sd_state,
1917                               struct v4l2_subdev_format *format)
1918 {
1919         struct adv76xx_state *state = to_state(sd);
1920
1921         if (format->pad != state->source_pad)
1922                 return -EINVAL;
1923
1924         adv76xx_fill_format(state, &format->format);
1925
1926         if (format->which == V4L2_SUBDEV_FORMAT_TRY) {
1927                 struct v4l2_mbus_framefmt *fmt;
1928
1929                 fmt = v4l2_subdev_get_try_format(sd, sd_state, format->pad);
1930                 format->format.code = fmt->code;
1931         } else {
1932                 format->format.code = state->format->code;
1933         }
1934
1935         return 0;
1936 }
1937
1938 static int adv76xx_get_selection(struct v4l2_subdev *sd,
1939                                  struct v4l2_subdev_state *sd_state,
1940                                  struct v4l2_subdev_selection *sel)
1941 {
1942         struct adv76xx_state *state = to_state(sd);
1943
1944         if (sel->which != V4L2_SUBDEV_FORMAT_ACTIVE)
1945                 return -EINVAL;
1946         /* Only CROP, CROP_DEFAULT and CROP_BOUNDS are supported */
1947         if (sel->target > V4L2_SEL_TGT_CROP_BOUNDS)
1948                 return -EINVAL;
1949
1950         sel->r.left     = 0;
1951         sel->r.top      = 0;
1952         sel->r.width    = state->timings.bt.width;
1953         sel->r.height   = state->timings.bt.height;
1954
1955         return 0;
1956 }
1957
1958 static int adv76xx_set_format(struct v4l2_subdev *sd,
1959                               struct v4l2_subdev_state *sd_state,
1960                               struct v4l2_subdev_format *format)
1961 {
1962         struct adv76xx_state *state = to_state(sd);
1963         const struct adv76xx_format_info *info;
1964
1965         if (format->pad != state->source_pad)
1966                 return -EINVAL;
1967
1968         info = adv76xx_format_info(state, format->format.code);
1969         if (!info)
1970                 info = adv76xx_format_info(state, MEDIA_BUS_FMT_YUYV8_2X8);
1971
1972         adv76xx_fill_format(state, &format->format);
1973         format->format.code = info->code;
1974
1975         if (format->which == V4L2_SUBDEV_FORMAT_TRY) {
1976                 struct v4l2_mbus_framefmt *fmt;
1977
1978                 fmt = v4l2_subdev_get_try_format(sd, sd_state, format->pad);
1979                 fmt->code = format->format.code;
1980         } else {
1981                 state->format = info;
1982                 adv76xx_setup_format(state);
1983         }
1984
1985         return 0;
1986 }
1987
1988 #if IS_ENABLED(CONFIG_VIDEO_ADV7604_CEC)
1989 static void adv76xx_cec_tx_raw_status(struct v4l2_subdev *sd, u8 tx_raw_status)
1990 {
1991         struct adv76xx_state *state = to_state(sd);
1992
1993         if ((cec_read(sd, 0x11) & 0x01) == 0) {
1994                 v4l2_dbg(1, debug, sd, "%s: tx raw: tx disabled\n", __func__);
1995                 return;
1996         }
1997
1998         if (tx_raw_status & 0x02) {
1999                 v4l2_dbg(1, debug, sd, "%s: tx raw: arbitration lost\n",
2000                          __func__);
2001                 cec_transmit_done(state->cec_adap, CEC_TX_STATUS_ARB_LOST,
2002                                   1, 0, 0, 0);
2003                 return;
2004         }
2005         if (tx_raw_status & 0x04) {
2006                 u8 status;
2007                 u8 nack_cnt;
2008                 u8 low_drive_cnt;
2009
2010                 v4l2_dbg(1, debug, sd, "%s: tx raw: retry failed\n", __func__);
2011                 /*
2012                  * We set this status bit since this hardware performs
2013                  * retransmissions.
2014                  */
2015                 status = CEC_TX_STATUS_MAX_RETRIES;
2016                 nack_cnt = cec_read(sd, 0x14) & 0xf;
2017                 if (nack_cnt)
2018                         status |= CEC_TX_STATUS_NACK;
2019                 low_drive_cnt = cec_read(sd, 0x14) >> 4;
2020                 if (low_drive_cnt)
2021                         status |= CEC_TX_STATUS_LOW_DRIVE;
2022                 cec_transmit_done(state->cec_adap, status,
2023                                   0, nack_cnt, low_drive_cnt, 0);
2024                 return;
2025         }
2026         if (tx_raw_status & 0x01) {
2027                 v4l2_dbg(1, debug, sd, "%s: tx raw: ready ok\n", __func__);
2028                 cec_transmit_done(state->cec_adap, CEC_TX_STATUS_OK, 0, 0, 0, 0);
2029                 return;
2030         }
2031 }
2032
2033 static void adv76xx_cec_isr(struct v4l2_subdev *sd, bool *handled)
2034 {
2035         struct adv76xx_state *state = to_state(sd);
2036         const struct adv76xx_chip_info *info = state->info;
2037         u8 cec_irq;
2038
2039         /* cec controller */
2040         cec_irq = io_read(sd, info->cec_irq_status) & 0x0f;
2041         if (!cec_irq)
2042                 return;
2043
2044         v4l2_dbg(1, debug, sd, "%s: cec: irq 0x%x\n", __func__, cec_irq);
2045         adv76xx_cec_tx_raw_status(sd, cec_irq);
2046         if (cec_irq & 0x08) {
2047                 struct cec_msg msg;
2048
2049                 msg.len = cec_read(sd, 0x25) & 0x1f;
2050                 if (msg.len > CEC_MAX_MSG_SIZE)
2051                         msg.len = CEC_MAX_MSG_SIZE;
2052
2053                 if (msg.len) {
2054                         u8 i;
2055
2056                         for (i = 0; i < msg.len; i++)
2057                                 msg.msg[i] = cec_read(sd, i + 0x15);
2058                         cec_write(sd, info->cec_rx_enable,
2059                                   info->cec_rx_enable_mask); /* re-enable rx */
2060                         cec_received_msg(state->cec_adap, &msg);
2061                 }
2062         }
2063
2064         if (info->cec_irq_swap) {
2065                 /*
2066                  * Note: the bit order is swapped between 0x4d and 0x4e
2067                  * on adv7604
2068                  */
2069                 cec_irq = ((cec_irq & 0x08) >> 3) | ((cec_irq & 0x04) >> 1) |
2070                           ((cec_irq & 0x02) << 1) | ((cec_irq & 0x01) << 3);
2071         }
2072         io_write(sd, info->cec_irq_status + 1, cec_irq);
2073
2074         if (handled)
2075                 *handled = true;
2076 }
2077
2078 static int adv76xx_cec_adap_enable(struct cec_adapter *adap, bool enable)
2079 {
2080         struct adv76xx_state *state = cec_get_drvdata(adap);
2081         const struct adv76xx_chip_info *info = state->info;
2082         struct v4l2_subdev *sd = &state->sd;
2083
2084         if (!state->cec_enabled_adap && enable) {
2085                 cec_write_clr_set(sd, 0x2a, 0x01, 0x01); /* power up cec */
2086                 cec_write(sd, 0x2c, 0x01);      /* cec soft reset */
2087                 cec_write_clr_set(sd, 0x11, 0x01, 0); /* initially disable tx */
2088                 /* enabled irqs: */
2089                 /* tx: ready */
2090                 /* tx: arbitration lost */
2091                 /* tx: retry timeout */
2092                 /* rx: ready */
2093                 io_write_clr_set(sd, info->cec_irq_status + 3, 0x0f, 0x0f);
2094                 cec_write(sd, info->cec_rx_enable, info->cec_rx_enable_mask);
2095         } else if (state->cec_enabled_adap && !enable) {
2096                 /* disable cec interrupts */
2097                 io_write_clr_set(sd, info->cec_irq_status + 3, 0x0f, 0x00);
2098                 /* disable address mask 1-3 */
2099                 cec_write_clr_set(sd, 0x27, 0x70, 0x00);
2100                 /* power down cec section */
2101                 cec_write_clr_set(sd, 0x2a, 0x01, 0x00);
2102                 state->cec_valid_addrs = 0;
2103         }
2104         state->cec_enabled_adap = enable;
2105         adv76xx_s_detect_tx_5v_ctrl(sd);
2106         return 0;
2107 }
2108
2109 static int adv76xx_cec_adap_log_addr(struct cec_adapter *adap, u8 addr)
2110 {
2111         struct adv76xx_state *state = cec_get_drvdata(adap);
2112         struct v4l2_subdev *sd = &state->sd;
2113         unsigned int i, free_idx = ADV76XX_MAX_ADDRS;
2114
2115         if (!state->cec_enabled_adap)
2116                 return addr == CEC_LOG_ADDR_INVALID ? 0 : -EIO;
2117
2118         if (addr == CEC_LOG_ADDR_INVALID) {
2119                 cec_write_clr_set(sd, 0x27, 0x70, 0);
2120                 state->cec_valid_addrs = 0;
2121                 return 0;
2122         }
2123
2124         for (i = 0; i < ADV76XX_MAX_ADDRS; i++) {
2125                 bool is_valid = state->cec_valid_addrs & (1 << i);
2126
2127                 if (free_idx == ADV76XX_MAX_ADDRS && !is_valid)
2128                         free_idx = i;
2129                 if (is_valid && state->cec_addr[i] == addr)
2130                         return 0;
2131         }
2132         if (i == ADV76XX_MAX_ADDRS) {
2133                 i = free_idx;
2134                 if (i == ADV76XX_MAX_ADDRS)
2135                         return -ENXIO;
2136         }
2137         state->cec_addr[i] = addr;
2138         state->cec_valid_addrs |= 1 << i;
2139
2140         switch (i) {
2141         case 0:
2142                 /* enable address mask 0 */
2143                 cec_write_clr_set(sd, 0x27, 0x10, 0x10);
2144                 /* set address for mask 0 */
2145                 cec_write_clr_set(sd, 0x28, 0x0f, addr);
2146                 break;
2147         case 1:
2148                 /* enable address mask 1 */
2149                 cec_write_clr_set(sd, 0x27, 0x20, 0x20);
2150                 /* set address for mask 1 */
2151                 cec_write_clr_set(sd, 0x28, 0xf0, addr << 4);
2152                 break;
2153         case 2:
2154                 /* enable address mask 2 */
2155                 cec_write_clr_set(sd, 0x27, 0x40, 0x40);
2156                 /* set address for mask 1 */
2157                 cec_write_clr_set(sd, 0x29, 0x0f, addr);
2158                 break;
2159         }
2160         return 0;
2161 }
2162
2163 static int adv76xx_cec_adap_transmit(struct cec_adapter *adap, u8 attempts,
2164                                      u32 signal_free_time, struct cec_msg *msg)
2165 {
2166         struct adv76xx_state *state = cec_get_drvdata(adap);
2167         struct v4l2_subdev *sd = &state->sd;
2168         u8 len = msg->len;
2169         unsigned int i;
2170
2171         /*
2172          * The number of retries is the number of attempts - 1, but retry
2173          * at least once. It's not clear if a value of 0 is allowed, so
2174          * let's do at least one retry.
2175          */
2176         cec_write_clr_set(sd, 0x12, 0x70, max(1, attempts - 1) << 4);
2177
2178         if (len > 16) {
2179                 v4l2_err(sd, "%s: len exceeded 16 (%d)\n", __func__, len);
2180                 return -EINVAL;
2181         }
2182
2183         /* write data */
2184         for (i = 0; i < len; i++)
2185                 cec_write(sd, i, msg->msg[i]);
2186
2187         /* set length (data + header) */
2188         cec_write(sd, 0x10, len);
2189         /* start transmit, enable tx */
2190         cec_write(sd, 0x11, 0x01);
2191         return 0;
2192 }
2193
2194 static const struct cec_adap_ops adv76xx_cec_adap_ops = {
2195         .adap_enable = adv76xx_cec_adap_enable,
2196         .adap_log_addr = adv76xx_cec_adap_log_addr,
2197         .adap_transmit = adv76xx_cec_adap_transmit,
2198 };
2199 #endif
2200
2201 static int adv76xx_isr(struct v4l2_subdev *sd, u32 status, bool *handled)
2202 {
2203         struct adv76xx_state *state = to_state(sd);
2204         const struct adv76xx_chip_info *info = state->info;
2205         const u8 irq_reg_0x43 = io_read(sd, 0x43);
2206         const u8 irq_reg_0x6b = io_read(sd, 0x6b);
2207         const u8 irq_reg_0x70 = io_read(sd, 0x70);
2208         u8 fmt_change_digital;
2209         u8 fmt_change;
2210         u8 tx_5v;
2211
2212         if (irq_reg_0x43)
2213                 io_write(sd, 0x44, irq_reg_0x43);
2214         if (irq_reg_0x70)
2215                 io_write(sd, 0x71, irq_reg_0x70);
2216         if (irq_reg_0x6b)
2217                 io_write(sd, 0x6c, irq_reg_0x6b);
2218
2219         v4l2_dbg(2, debug, sd, "%s: ", __func__);
2220
2221         /* format change */
2222         fmt_change = irq_reg_0x43 & 0x98;
2223         fmt_change_digital = is_digital_input(sd)
2224                            ? irq_reg_0x6b & info->fmt_change_digital_mask
2225                            : 0;
2226
2227         if (fmt_change || fmt_change_digital) {
2228                 v4l2_dbg(1, debug, sd,
2229                         "%s: fmt_change = 0x%x, fmt_change_digital = 0x%x\n",
2230                         __func__, fmt_change, fmt_change_digital);
2231
2232                 v4l2_subdev_notify_event(sd, &adv76xx_ev_fmt);
2233
2234                 if (handled)
2235                         *handled = true;
2236         }
2237         /* HDMI/DVI mode */
2238         if (irq_reg_0x6b & 0x01) {
2239                 v4l2_dbg(1, debug, sd, "%s: irq %s mode\n", __func__,
2240                         (io_read(sd, 0x6a) & 0x01) ? "HDMI" : "DVI");
2241                 set_rgb_quantization_range(sd);
2242                 if (handled)
2243                         *handled = true;
2244         }
2245
2246 #if IS_ENABLED(CONFIG_VIDEO_ADV7604_CEC)
2247         /* cec */
2248         adv76xx_cec_isr(sd, handled);
2249 #endif
2250
2251         /* tx 5v detect */
2252         tx_5v = irq_reg_0x70 & info->cable_det_mask;
2253         if (tx_5v) {
2254                 v4l2_dbg(1, debug, sd, "%s: tx_5v: 0x%x\n", __func__, tx_5v);
2255                 adv76xx_s_detect_tx_5v_ctrl(sd);
2256                 if (handled)
2257                         *handled = true;
2258         }
2259         return 0;
2260 }
2261
2262 static irqreturn_t adv76xx_irq_handler(int irq, void *dev_id)
2263 {
2264         struct adv76xx_state *state = dev_id;
2265         bool handled = false;
2266
2267         adv76xx_isr(&state->sd, 0, &handled);
2268
2269         return handled ? IRQ_HANDLED : IRQ_NONE;
2270 }
2271
2272 static int adv76xx_get_edid(struct v4l2_subdev *sd, struct v4l2_edid *edid)
2273 {
2274         struct adv76xx_state *state = to_state(sd);
2275         u8 *data = NULL;
2276
2277         memset(edid->reserved, 0, sizeof(edid->reserved));
2278
2279         switch (edid->pad) {
2280         case ADV76XX_PAD_HDMI_PORT_A:
2281         case ADV7604_PAD_HDMI_PORT_B:
2282         case ADV7604_PAD_HDMI_PORT_C:
2283         case ADV7604_PAD_HDMI_PORT_D:
2284                 if (state->edid.present & (1 << edid->pad))
2285                         data = state->edid.edid;
2286                 break;
2287         default:
2288                 return -EINVAL;
2289         }
2290
2291         if (edid->start_block == 0 && edid->blocks == 0) {
2292                 edid->blocks = data ? state->edid.blocks : 0;
2293                 return 0;
2294         }
2295
2296         if (!data)
2297                 return -ENODATA;
2298
2299         if (edid->start_block >= state->edid.blocks)
2300                 return -EINVAL;
2301
2302         if (edid->start_block + edid->blocks > state->edid.blocks)
2303                 edid->blocks = state->edid.blocks - edid->start_block;
2304
2305         memcpy(edid->edid, data + edid->start_block * 128, edid->blocks * 128);
2306
2307         return 0;
2308 }
2309
2310 static int adv76xx_set_edid(struct v4l2_subdev *sd, struct v4l2_edid *edid)
2311 {
2312         struct adv76xx_state *state = to_state(sd);
2313         const struct adv76xx_chip_info *info = state->info;
2314         unsigned int spa_loc;
2315         u16 pa, parent_pa;
2316         int err;
2317         int i;
2318
2319         memset(edid->reserved, 0, sizeof(edid->reserved));
2320
2321         if (edid->pad > ADV7604_PAD_HDMI_PORT_D)
2322                 return -EINVAL;
2323         if (edid->start_block != 0)
2324                 return -EINVAL;
2325         if (edid->blocks == 0) {
2326                 /* Disable hotplug and I2C access to EDID RAM from DDC port */
2327                 state->edid.present &= ~(1 << edid->pad);
2328                 adv76xx_set_hpd(state, state->edid.present);
2329                 rep_write_clr_set(sd, info->edid_enable_reg, 0x0f, state->edid.present);
2330
2331                 /* Fall back to a 16:9 aspect ratio */
2332                 state->aspect_ratio.numerator = 16;
2333                 state->aspect_ratio.denominator = 9;
2334
2335                 if (!state->edid.present) {
2336                         state->edid.blocks = 0;
2337                         cec_phys_addr_invalidate(state->cec_adap);
2338                 }
2339
2340                 v4l2_dbg(2, debug, sd, "%s: clear EDID pad %d, edid.present = 0x%x\n",
2341                                 __func__, edid->pad, state->edid.present);
2342                 return 0;
2343         }
2344         if (edid->blocks > ADV76XX_MAX_EDID_BLOCKS) {
2345                 edid->blocks = ADV76XX_MAX_EDID_BLOCKS;
2346                 return -E2BIG;
2347         }
2348
2349         pa = v4l2_get_edid_phys_addr(edid->edid, edid->blocks * 128, &spa_loc);
2350         err = v4l2_phys_addr_validate(pa, &parent_pa, NULL);
2351         if (err)
2352                 return err;
2353
2354         if (!spa_loc) {
2355                 /*
2356                  * There is no SPA, so just set spa_loc to 128 and pa to whatever
2357                  * data is there.
2358                  */
2359                 spa_loc = 128;
2360                 pa = (edid->edid[spa_loc] << 8) | edid->edid[spa_loc + 1];
2361         }
2362
2363         v4l2_dbg(2, debug, sd, "%s: write EDID pad %d, edid.present = 0x%x\n",
2364                         __func__, edid->pad, state->edid.present);
2365
2366         /* Disable hotplug and I2C access to EDID RAM from DDC port */
2367         cancel_delayed_work_sync(&state->delayed_work_enable_hotplug);
2368         adv76xx_set_hpd(state, 0);
2369         rep_write_clr_set(sd, info->edid_enable_reg, 0x0f, 0x00);
2370
2371         switch (edid->pad) {
2372         case ADV76XX_PAD_HDMI_PORT_A:
2373                 state->spa_port_a[0] = pa >> 8;
2374                 state->spa_port_a[1] = pa & 0xff;
2375                 break;
2376         case ADV7604_PAD_HDMI_PORT_B:
2377                 rep_write(sd, info->edid_spa_port_b_reg, pa >> 8);
2378                 rep_write(sd, info->edid_spa_port_b_reg + 1, pa & 0xff);
2379                 break;
2380         case ADV7604_PAD_HDMI_PORT_C:
2381                 rep_write(sd, info->edid_spa_port_b_reg + 2, pa >> 8);
2382                 rep_write(sd, info->edid_spa_port_b_reg + 3, pa & 0xff);
2383                 break;
2384         case ADV7604_PAD_HDMI_PORT_D:
2385                 rep_write(sd, info->edid_spa_port_b_reg + 4, pa >> 8);
2386                 rep_write(sd, info->edid_spa_port_b_reg + 5, pa & 0xff);
2387                 break;
2388         default:
2389                 return -EINVAL;
2390         }
2391
2392         if (info->edid_spa_loc_reg) {
2393                 u8 mask = info->edid_spa_loc_msb_mask;
2394
2395                 rep_write(sd, info->edid_spa_loc_reg, spa_loc & 0xff);
2396                 rep_write_clr_set(sd, info->edid_spa_loc_reg + 1,
2397                                   mask, (spa_loc & 0x100) ? mask : 0);
2398         }
2399
2400         edid->edid[spa_loc] = state->spa_port_a[0];
2401         edid->edid[spa_loc + 1] = state->spa_port_a[1];
2402
2403         memcpy(state->edid.edid, edid->edid, 128 * edid->blocks);
2404         state->edid.blocks = edid->blocks;
2405         state->aspect_ratio = v4l2_calc_aspect_ratio(edid->edid[0x15],
2406                         edid->edid[0x16]);
2407         state->edid.present |= 1 << edid->pad;
2408
2409         rep_write_clr_set(sd, info->edid_segment_reg,
2410                           info->edid_segment_mask, 0);
2411         err = edid_write_block(sd, 128 * min(edid->blocks, 2U), state->edid.edid);
2412         if (err < 0) {
2413                 v4l2_err(sd, "error %d writing edid pad %d\n", err, edid->pad);
2414                 return err;
2415         }
2416         if (edid->blocks > 2) {
2417                 rep_write_clr_set(sd, info->edid_segment_reg,
2418                                   info->edid_segment_mask,
2419                                   info->edid_segment_mask);
2420                 err = edid_write_block(sd, 128 * (edid->blocks - 2),
2421                                        state->edid.edid + 256);
2422                 if (err < 0) {
2423                         v4l2_err(sd, "error %d writing edid pad %d\n",
2424                                  err, edid->pad);
2425                         return err;
2426                 }
2427         }
2428
2429         /* adv76xx calculates the checksums and enables I2C access to internal
2430            EDID RAM from DDC port. */
2431         rep_write_clr_set(sd, info->edid_enable_reg, 0x0f, state->edid.present);
2432
2433         for (i = 0; i < 1000; i++) {
2434                 if (rep_read(sd, info->edid_status_reg) & state->edid.present)
2435                         break;
2436                 mdelay(1);
2437         }
2438         if (i == 1000) {
2439                 v4l2_err(sd, "error enabling edid (0x%x)\n", state->edid.present);
2440                 return -EIO;
2441         }
2442         cec_s_phys_addr(state->cec_adap, parent_pa, false);
2443
2444         /* enable hotplug after 100 ms */
2445         schedule_delayed_work(&state->delayed_work_enable_hotplug, HZ / 10);
2446         return 0;
2447 }
2448
2449 /*********** avi info frame CEA-861-E **************/
2450
2451 static const struct adv76xx_cfg_read_infoframe adv76xx_cri[] = {
2452         { "AVI", 0x01, 0xe0, 0x00 },
2453         { "Audio", 0x02, 0xe3, 0x1c },
2454         { "SDP", 0x04, 0xe6, 0x2a },
2455         { "Vendor", 0x10, 0xec, 0x54 }
2456 };
2457
2458 static int adv76xx_read_infoframe(struct v4l2_subdev *sd, int index,
2459                                   union hdmi_infoframe *frame)
2460 {
2461         uint8_t buffer[32];
2462         u8 len;
2463         int i;
2464
2465         if (!(io_read(sd, 0x60) & adv76xx_cri[index].present_mask)) {
2466                 v4l2_info(sd, "%s infoframe not received\n",
2467                           adv76xx_cri[index].desc);
2468                 return -ENOENT;
2469         }
2470
2471         for (i = 0; i < 3; i++)
2472                 buffer[i] = infoframe_read(sd,
2473                                            adv76xx_cri[index].head_addr + i);
2474
2475         len = buffer[2] + 1;
2476
2477         if (len + 3 > sizeof(buffer)) {
2478                 v4l2_err(sd, "%s: invalid %s infoframe length %d\n", __func__,
2479                          adv76xx_cri[index].desc, len);
2480                 return -ENOENT;
2481         }
2482
2483         for (i = 0; i < len; i++)
2484                 buffer[i + 3] = infoframe_read(sd,
2485                                        adv76xx_cri[index].payload_addr + i);
2486
2487         if (hdmi_infoframe_unpack(frame, buffer, len + 3) < 0) {
2488                 v4l2_err(sd, "%s: unpack of %s infoframe failed\n", __func__,
2489                          adv76xx_cri[index].desc);
2490                 return -ENOENT;
2491         }
2492         return 0;
2493 }
2494
2495 static void adv76xx_log_infoframes(struct v4l2_subdev *sd)
2496 {
2497         int i;
2498
2499         if (!is_hdmi(sd)) {
2500                 v4l2_info(sd, "receive DVI-D signal, no infoframes\n");
2501                 return;
2502         }
2503
2504         for (i = 0; i < ARRAY_SIZE(adv76xx_cri); i++) {
2505                 union hdmi_infoframe frame;
2506                 struct i2c_client *client = v4l2_get_subdevdata(sd);
2507
2508                 if (!adv76xx_read_infoframe(sd, i, &frame))
2509                         hdmi_infoframe_log(KERN_INFO, &client->dev, &frame);
2510         }
2511 }
2512
2513 static int adv76xx_log_status(struct v4l2_subdev *sd)
2514 {
2515         struct adv76xx_state *state = to_state(sd);
2516         const struct adv76xx_chip_info *info = state->info;
2517         struct v4l2_dv_timings timings;
2518         struct stdi_readback stdi;
2519         u8 reg_io_0x02 = io_read(sd, 0x02);
2520         u8 edid_enabled;
2521         u8 cable_det;
2522
2523         static const char * const csc_coeff_sel_rb[16] = {
2524                 "bypassed", "YPbPr601 -> RGB", "reserved", "YPbPr709 -> RGB",
2525                 "reserved", "RGB -> YPbPr601", "reserved", "RGB -> YPbPr709",
2526                 "reserved", "YPbPr709 -> YPbPr601", "YPbPr601 -> YPbPr709",
2527                 "reserved", "reserved", "reserved", "reserved", "manual"
2528         };
2529         static const char * const input_color_space_txt[16] = {
2530                 "RGB limited range (16-235)", "RGB full range (0-255)",
2531                 "YCbCr Bt.601 (16-235)", "YCbCr Bt.709 (16-235)",
2532                 "xvYCC Bt.601", "xvYCC Bt.709",
2533                 "YCbCr Bt.601 (0-255)", "YCbCr Bt.709 (0-255)",
2534                 "invalid", "invalid", "invalid", "invalid", "invalid",
2535                 "invalid", "invalid", "automatic"
2536         };
2537         static const char * const hdmi_color_space_txt[16] = {
2538                 "RGB limited range (16-235)", "RGB full range (0-255)",
2539                 "YCbCr Bt.601 (16-235)", "YCbCr Bt.709 (16-235)",
2540                 "xvYCC Bt.601", "xvYCC Bt.709",
2541                 "YCbCr Bt.601 (0-255)", "YCbCr Bt.709 (0-255)",
2542                 "sYCC", "opYCC 601", "opRGB", "invalid", "invalid",
2543                 "invalid", "invalid", "invalid"
2544         };
2545         static const char * const rgb_quantization_range_txt[] = {
2546                 "Automatic",
2547                 "RGB limited range (16-235)",
2548                 "RGB full range (0-255)",
2549         };
2550         static const char * const deep_color_mode_txt[4] = {
2551                 "8-bits per channel",
2552                 "10-bits per channel",
2553                 "12-bits per channel",
2554                 "16-bits per channel (not supported)"
2555         };
2556
2557         v4l2_info(sd, "-----Chip status-----\n");
2558         v4l2_info(sd, "Chip power: %s\n", no_power(sd) ? "off" : "on");
2559         edid_enabled = rep_read(sd, info->edid_status_reg);
2560         v4l2_info(sd, "EDID enabled port A: %s, B: %s, C: %s, D: %s\n",
2561                         ((edid_enabled & 0x01) ? "Yes" : "No"),
2562                         ((edid_enabled & 0x02) ? "Yes" : "No"),
2563                         ((edid_enabled & 0x04) ? "Yes" : "No"),
2564                         ((edid_enabled & 0x08) ? "Yes" : "No"));
2565         v4l2_info(sd, "CEC: %s\n", state->cec_enabled_adap ?
2566                         "enabled" : "disabled");
2567         if (state->cec_enabled_adap) {
2568                 int i;
2569
2570                 for (i = 0; i < ADV76XX_MAX_ADDRS; i++) {
2571                         bool is_valid = state->cec_valid_addrs & (1 << i);
2572
2573                         if (is_valid)
2574                                 v4l2_info(sd, "CEC Logical Address: 0x%x\n",
2575                                           state->cec_addr[i]);
2576                 }
2577         }
2578
2579         v4l2_info(sd, "-----Signal status-----\n");
2580         cable_det = info->read_cable_det(sd);
2581         v4l2_info(sd, "Cable detected (+5V power) port A: %s, B: %s, C: %s, D: %s\n",
2582                         ((cable_det & 0x01) ? "Yes" : "No"),
2583                         ((cable_det & 0x02) ? "Yes" : "No"),
2584                         ((cable_det & 0x04) ? "Yes" : "No"),
2585                         ((cable_det & 0x08) ? "Yes" : "No"));
2586         v4l2_info(sd, "TMDS signal detected: %s\n",
2587                         no_signal_tmds(sd) ? "false" : "true");
2588         v4l2_info(sd, "TMDS signal locked: %s\n",
2589                         no_lock_tmds(sd) ? "false" : "true");
2590         v4l2_info(sd, "SSPD locked: %s\n", no_lock_sspd(sd) ? "false" : "true");
2591         v4l2_info(sd, "STDI locked: %s\n", no_lock_stdi(sd) ? "false" : "true");
2592         v4l2_info(sd, "CP locked: %s\n", no_lock_cp(sd) ? "false" : "true");
2593         v4l2_info(sd, "CP free run: %s\n",
2594                         (in_free_run(sd)) ? "on" : "off");
2595         v4l2_info(sd, "Prim-mode = 0x%x, video std = 0x%x, v_freq = 0x%x\n",
2596                         io_read(sd, 0x01) & 0x0f, io_read(sd, 0x00) & 0x3f,
2597                         (io_read(sd, 0x01) & 0x70) >> 4);
2598
2599         v4l2_info(sd, "-----Video Timings-----\n");
2600         if (read_stdi(sd, &stdi))
2601                 v4l2_info(sd, "STDI: not locked\n");
2602         else
2603                 v4l2_info(sd, "STDI: lcf (frame height - 1) = %d, bl = %d, lcvs (vsync) = %d, %s, %chsync, %cvsync\n",
2604                                 stdi.lcf, stdi.bl, stdi.lcvs,
2605                                 stdi.interlaced ? "interlaced" : "progressive",
2606                                 stdi.hs_pol, stdi.vs_pol);
2607         if (adv76xx_query_dv_timings(sd, &timings))
2608                 v4l2_info(sd, "No video detected\n");
2609         else
2610                 v4l2_print_dv_timings(sd->name, "Detected format: ",
2611                                       &timings, true);
2612         v4l2_print_dv_timings(sd->name, "Configured format: ",
2613                               &state->timings, true);
2614
2615         if (no_signal(sd))
2616                 return 0;
2617
2618         v4l2_info(sd, "-----Color space-----\n");
2619         v4l2_info(sd, "RGB quantization range ctrl: %s\n",
2620                         rgb_quantization_range_txt[state->rgb_quantization_range]);
2621         v4l2_info(sd, "Input color space: %s\n",
2622                         input_color_space_txt[reg_io_0x02 >> 4]);
2623         v4l2_info(sd, "Output color space: %s %s, alt-gamma %s\n",
2624                         (reg_io_0x02 & 0x02) ? "RGB" : "YCbCr",
2625                         (((reg_io_0x02 >> 2) & 0x01) ^ (reg_io_0x02 & 0x01)) ?
2626                                 "(16-235)" : "(0-255)",
2627                         (reg_io_0x02 & 0x08) ? "enabled" : "disabled");
2628         v4l2_info(sd, "Color space conversion: %s\n",
2629                         csc_coeff_sel_rb[cp_read(sd, info->cp_csc) >> 4]);
2630
2631         if (!is_digital_input(sd))
2632                 return 0;
2633
2634         v4l2_info(sd, "-----%s status-----\n", is_hdmi(sd) ? "HDMI" : "DVI-D");
2635         v4l2_info(sd, "Digital video port selected: %c\n",
2636                         (hdmi_read(sd, 0x00) & 0x03) + 'A');
2637         v4l2_info(sd, "HDCP encrypted content: %s\n",
2638                         (hdmi_read(sd, 0x05) & 0x40) ? "true" : "false");
2639         v4l2_info(sd, "HDCP keys read: %s%s\n",
2640                         (hdmi_read(sd, 0x04) & 0x20) ? "yes" : "no",
2641                         (hdmi_read(sd, 0x04) & 0x10) ? "ERROR" : "");
2642         if (is_hdmi(sd)) {
2643                 bool audio_pll_locked = hdmi_read(sd, 0x04) & 0x01;
2644                 bool audio_sample_packet_detect = hdmi_read(sd, 0x18) & 0x01;
2645                 bool audio_mute = io_read(sd, 0x65) & 0x40;
2646
2647                 v4l2_info(sd, "Audio: pll %s, samples %s, %s\n",
2648                                 audio_pll_locked ? "locked" : "not locked",
2649                                 audio_sample_packet_detect ? "detected" : "not detected",
2650                                 audio_mute ? "muted" : "enabled");
2651                 if (audio_pll_locked && audio_sample_packet_detect) {
2652                         v4l2_info(sd, "Audio format: %s\n",
2653                                         (hdmi_read(sd, 0x07) & 0x20) ? "multi-channel" : "stereo");
2654                 }
2655                 v4l2_info(sd, "Audio CTS: %u\n", (hdmi_read(sd, 0x5b) << 12) +
2656                                 (hdmi_read(sd, 0x5c) << 8) +
2657                                 (hdmi_read(sd, 0x5d) & 0xf0));
2658                 v4l2_info(sd, "Audio N: %u\n", ((hdmi_read(sd, 0x5d) & 0x0f) << 16) +
2659                                 (hdmi_read(sd, 0x5e) << 8) +
2660                                 hdmi_read(sd, 0x5f));
2661                 v4l2_info(sd, "AV Mute: %s\n", (hdmi_read(sd, 0x04) & 0x40) ? "on" : "off");
2662
2663                 v4l2_info(sd, "Deep color mode: %s\n", deep_color_mode_txt[(hdmi_read(sd, 0x0b) & 0x60) >> 5]);
2664                 v4l2_info(sd, "HDMI colorspace: %s\n", hdmi_color_space_txt[hdmi_read(sd, 0x53) & 0xf]);
2665
2666                 adv76xx_log_infoframes(sd);
2667         }
2668
2669         return 0;
2670 }
2671
2672 static int adv76xx_subscribe_event(struct v4l2_subdev *sd,
2673                                    struct v4l2_fh *fh,
2674                                    struct v4l2_event_subscription *sub)
2675 {
2676         switch (sub->type) {
2677         case V4L2_EVENT_SOURCE_CHANGE:
2678                 return v4l2_src_change_event_subdev_subscribe(sd, fh, sub);
2679         case V4L2_EVENT_CTRL:
2680                 return v4l2_ctrl_subdev_subscribe_event(sd, fh, sub);
2681         default:
2682                 return -EINVAL;
2683         }
2684 }
2685
2686 static int adv76xx_registered(struct v4l2_subdev *sd)
2687 {
2688         struct adv76xx_state *state = to_state(sd);
2689         struct i2c_client *client = v4l2_get_subdevdata(sd);
2690         int err;
2691
2692         err = cec_register_adapter(state->cec_adap, &client->dev);
2693         if (err)
2694                 cec_delete_adapter(state->cec_adap);
2695         return err;
2696 }
2697
2698 static void adv76xx_unregistered(struct v4l2_subdev *sd)
2699 {
2700         struct adv76xx_state *state = to_state(sd);
2701
2702         cec_unregister_adapter(state->cec_adap);
2703 }
2704
2705 /* ----------------------------------------------------------------------- */
2706
2707 static const struct v4l2_ctrl_ops adv76xx_ctrl_ops = {
2708         .s_ctrl = adv76xx_s_ctrl,
2709         .g_volatile_ctrl = adv76xx_g_volatile_ctrl,
2710 };
2711
2712 static const struct v4l2_subdev_core_ops adv76xx_core_ops = {
2713         .log_status = adv76xx_log_status,
2714         .interrupt_service_routine = adv76xx_isr,
2715         .subscribe_event = adv76xx_subscribe_event,
2716         .unsubscribe_event = v4l2_event_subdev_unsubscribe,
2717 #ifdef CONFIG_VIDEO_ADV_DEBUG
2718         .g_register = adv76xx_g_register,
2719         .s_register = adv76xx_s_register,
2720 #endif
2721 };
2722
2723 static const struct v4l2_subdev_video_ops adv76xx_video_ops = {
2724         .s_routing = adv76xx_s_routing,
2725         .g_input_status = adv76xx_g_input_status,
2726         .s_dv_timings = adv76xx_s_dv_timings,
2727         .g_dv_timings = adv76xx_g_dv_timings,
2728         .query_dv_timings = adv76xx_query_dv_timings,
2729 };
2730
2731 static const struct v4l2_subdev_pad_ops adv76xx_pad_ops = {
2732         .enum_mbus_code = adv76xx_enum_mbus_code,
2733         .get_selection = adv76xx_get_selection,
2734         .get_fmt = adv76xx_get_format,
2735         .set_fmt = adv76xx_set_format,
2736         .get_edid = adv76xx_get_edid,
2737         .set_edid = adv76xx_set_edid,
2738         .dv_timings_cap = adv76xx_dv_timings_cap,
2739         .enum_dv_timings = adv76xx_enum_dv_timings,
2740 };
2741
2742 static const struct v4l2_subdev_ops adv76xx_ops = {
2743         .core = &adv76xx_core_ops,
2744         .video = &adv76xx_video_ops,
2745         .pad = &adv76xx_pad_ops,
2746 };
2747
2748 static const struct v4l2_subdev_internal_ops adv76xx_int_ops = {
2749         .registered = adv76xx_registered,
2750         .unregistered = adv76xx_unregistered,
2751 };
2752
2753 /* -------------------------- custom ctrls ---------------------------------- */
2754
2755 static const struct v4l2_ctrl_config adv7604_ctrl_analog_sampling_phase = {
2756         .ops = &adv76xx_ctrl_ops,
2757         .id = V4L2_CID_ADV_RX_ANALOG_SAMPLING_PHASE,
2758         .name = "Analog Sampling Phase",
2759         .type = V4L2_CTRL_TYPE_INTEGER,
2760         .min = 0,
2761         .max = 0x1f,
2762         .step = 1,
2763         .def = 0,
2764 };
2765
2766 static const struct v4l2_ctrl_config adv76xx_ctrl_free_run_color_manual = {
2767         .ops = &adv76xx_ctrl_ops,
2768         .id = V4L2_CID_ADV_RX_FREE_RUN_COLOR_MANUAL,
2769         .name = "Free Running Color, Manual",
2770         .type = V4L2_CTRL_TYPE_BOOLEAN,
2771         .min = false,
2772         .max = true,
2773         .step = 1,
2774         .def = false,
2775 };
2776
2777 static const struct v4l2_ctrl_config adv76xx_ctrl_free_run_color = {
2778         .ops = &adv76xx_ctrl_ops,
2779         .id = V4L2_CID_ADV_RX_FREE_RUN_COLOR,
2780         .name = "Free Running Color",
2781         .type = V4L2_CTRL_TYPE_INTEGER,
2782         .min = 0x0,
2783         .max = 0xffffff,
2784         .step = 0x1,
2785         .def = 0x0,
2786 };
2787
2788 /* ----------------------------------------------------------------------- */
2789
2790 struct adv76xx_register_map {
2791         const char *name;
2792         u8 default_addr;
2793 };
2794
2795 static const struct adv76xx_register_map adv76xx_default_addresses[] = {
2796         [ADV76XX_PAGE_IO] = { "main", 0x4c },
2797         [ADV7604_PAGE_AVLINK] = { "avlink", 0x42 },
2798         [ADV76XX_PAGE_CEC] = { "cec", 0x40 },
2799         [ADV76XX_PAGE_INFOFRAME] = { "infoframe", 0x3e },
2800         [ADV7604_PAGE_ESDP] = { "esdp", 0x38 },
2801         [ADV7604_PAGE_DPP] = { "dpp", 0x3c },
2802         [ADV76XX_PAGE_AFE] = { "afe", 0x26 },
2803         [ADV76XX_PAGE_REP] = { "rep", 0x32 },
2804         [ADV76XX_PAGE_EDID] = { "edid", 0x36 },
2805         [ADV76XX_PAGE_HDMI] = { "hdmi", 0x34 },
2806         [ADV76XX_PAGE_TEST] = { "test", 0x30 },
2807         [ADV76XX_PAGE_CP] = { "cp", 0x22 },
2808         [ADV7604_PAGE_VDP] = { "vdp", 0x24 },
2809 };
2810
2811 static int adv76xx_core_init(struct v4l2_subdev *sd)
2812 {
2813         struct adv76xx_state *state = to_state(sd);
2814         const struct adv76xx_chip_info *info = state->info;
2815         struct adv76xx_platform_data *pdata = &state->pdata;
2816
2817         hdmi_write(sd, 0x48,
2818                 (pdata->disable_pwrdnb ? 0x80 : 0) |
2819                 (pdata->disable_cable_det_rst ? 0x40 : 0));
2820
2821         disable_input(sd);
2822
2823         if (pdata->default_input >= 0 &&
2824             pdata->default_input < state->source_pad) {
2825                 state->selected_input = pdata->default_input;
2826                 select_input(sd);
2827                 enable_input(sd);
2828         }
2829
2830         /* power */
2831         io_write(sd, 0x0c, 0x42);   /* Power up part and power down VDP */
2832         io_write(sd, 0x0b, 0x44);   /* Power down ESDP block */
2833         cp_write(sd, 0xcf, 0x01);   /* Power down macrovision */
2834
2835         /* HPD */
2836         if (info->type != ADV7604) {
2837                 /* Set manual HPD values to 0 */
2838                 io_write_clr_set(sd, 0x20, 0xc0, 0);
2839                 /*
2840                  * Set HPA_DELAY to 200 ms and set automatic HPD control
2841                  * to: internal EDID is active AND a cable is detected
2842                  * AND the manual HPD control is set to 1.
2843                  */
2844                 hdmi_write_clr_set(sd, 0x6c, 0xf6, 0x26);
2845         }
2846
2847         /* video format */
2848         io_write_clr_set(sd, 0x02, 0x0f, pdata->alt_gamma << 3);
2849         io_write_clr_set(sd, 0x05, 0x0e, pdata->blank_data << 3 |
2850                         pdata->insert_av_codes << 2 |
2851                         pdata->replicate_av_codes << 1);
2852         adv76xx_setup_format(state);
2853
2854         cp_write(sd, 0x69, 0x30);   /* Enable CP CSC */
2855
2856         /* VS, HS polarities */
2857         io_write(sd, 0x06, 0xa0 | pdata->inv_vs_pol << 2 |
2858                  pdata->inv_hs_pol << 1 | pdata->inv_llc_pol);
2859
2860         /* Adjust drive strength */
2861         io_write(sd, 0x14, 0x40 | pdata->dr_str_data << 4 |
2862                                 pdata->dr_str_clk << 2 |
2863                                 pdata->dr_str_sync);
2864
2865         cp_write(sd, 0xba, (pdata->hdmi_free_run_mode << 1) | 0x01); /* HDMI free run */
2866         cp_write(sd, 0xf3, 0xdc); /* Low threshold to enter/exit free run mode */
2867         cp_write(sd, 0xf9, 0x23); /*  STDI ch. 1 - LCVS change threshold -
2868                                       ADI recommended setting [REF_01, c. 2.3.3] */
2869         cp_write(sd, 0x45, 0x23); /*  STDI ch. 2 - LCVS change threshold -
2870                                       ADI recommended setting [REF_01, c. 2.3.3] */
2871         cp_write(sd, 0xc9, 0x2d); /* use prim_mode and vid_std as free run resolution
2872                                      for digital formats */
2873
2874         /* HDMI audio */
2875         hdmi_write_clr_set(sd, 0x15, 0x03, 0x03); /* Mute on FIFO over-/underflow [REF_01, c. 1.2.18] */
2876         hdmi_write_clr_set(sd, 0x1a, 0x0e, 0x08); /* Wait 1 s before unmute */
2877         hdmi_write_clr_set(sd, 0x68, 0x06, 0x06); /* FIFO reset on over-/underflow [REF_01, c. 1.2.19] */
2878
2879         /* TODO from platform data */
2880         afe_write(sd, 0xb5, 0x01);  /* Setting MCLK to 256Fs */
2881
2882         if (adv76xx_has_afe(state)) {
2883                 afe_write(sd, 0x02, pdata->ain_sel); /* Select analog input muxing mode */
2884                 io_write_clr_set(sd, 0x30, 1 << 4, pdata->output_bus_lsb_to_msb << 4);
2885         }
2886
2887         /* interrupts */
2888         io_write(sd, 0x40, 0xc0 | pdata->int1_config); /* Configure INT1 */
2889         io_write(sd, 0x46, 0x98); /* Enable SSPD, STDI and CP unlocked interrupts */
2890         io_write(sd, 0x6e, info->fmt_change_digital_mask); /* Enable V_LOCKED and DE_REGEN_LCK interrupts */
2891         io_write(sd, 0x73, info->cable_det_mask); /* Enable cable detection (+5v) interrupts */
2892         info->setup_irqs(sd);
2893
2894         return v4l2_ctrl_handler_setup(sd->ctrl_handler);
2895 }
2896
2897 static void adv7604_setup_irqs(struct v4l2_subdev *sd)
2898 {
2899         io_write(sd, 0x41, 0xd7); /* STDI irq for any change, disable INT2 */
2900 }
2901
2902 static void adv7611_setup_irqs(struct v4l2_subdev *sd)
2903 {
2904         io_write(sd, 0x41, 0xd0); /* STDI irq for any change, disable INT2 */
2905 }
2906
2907 static void adv7612_setup_irqs(struct v4l2_subdev *sd)
2908 {
2909         io_write(sd, 0x41, 0xd0); /* disable INT2 */
2910 }
2911
2912 static void adv76xx_unregister_clients(struct adv76xx_state *state)
2913 {
2914         unsigned int i;
2915
2916         for (i = 1; i < ARRAY_SIZE(state->i2c_clients); ++i)
2917                 i2c_unregister_device(state->i2c_clients[i]);
2918 }
2919
2920 static struct i2c_client *adv76xx_dummy_client(struct v4l2_subdev *sd,
2921                                                unsigned int page)
2922 {
2923         struct i2c_client *client = v4l2_get_subdevdata(sd);
2924         struct adv76xx_state *state = to_state(sd);
2925         struct adv76xx_platform_data *pdata = &state->pdata;
2926         unsigned int io_reg = 0xf2 + page;
2927         struct i2c_client *new_client;
2928
2929         if (pdata && pdata->i2c_addresses[page])
2930                 new_client = i2c_new_dummy_device(client->adapter,
2931                                            pdata->i2c_addresses[page]);
2932         else
2933                 new_client = i2c_new_ancillary_device(client,
2934                                 adv76xx_default_addresses[page].name,
2935                                 adv76xx_default_addresses[page].default_addr);
2936
2937         if (!IS_ERR(new_client))
2938                 io_write(sd, io_reg, new_client->addr << 1);
2939
2940         return new_client;
2941 }
2942
2943 static const struct adv76xx_reg_seq adv7604_recommended_settings_afe[] = {
2944         /* reset ADI recommended settings for HDMI: */
2945         /* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 4. */
2946         { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x0d), 0x04 }, /* HDMI filter optimization */
2947         { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x0d), 0x04 }, /* HDMI filter optimization */
2948         { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3d), 0x00 }, /* DDC bus active pull-up control */
2949         { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3e), 0x74 }, /* TMDS PLL optimization */
2950         { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4e), 0x3b }, /* TMDS PLL optimization */
2951         { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0x74 }, /* TMDS PLL optimization */
2952         { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x63 }, /* TMDS PLL optimization */
2953         { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8d), 0x18 }, /* equaliser */
2954         { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8e), 0x34 }, /* equaliser */
2955         { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x93), 0x88 }, /* equaliser */
2956         { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x94), 0x2e }, /* equaliser */
2957         { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x96), 0x00 }, /* enable automatic EQ changing */
2958
2959         /* set ADI recommended settings for digitizer */
2960         /* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 17. */
2961         { ADV76XX_REG(ADV76XX_PAGE_AFE, 0x12), 0x7b }, /* ADC noise shaping filter controls */
2962         { ADV76XX_REG(ADV76XX_PAGE_AFE, 0x0c), 0x1f }, /* CP core gain controls */
2963         { ADV76XX_REG(ADV76XX_PAGE_CP, 0x3e), 0x04 }, /* CP core pre-gain control */
2964         { ADV76XX_REG(ADV76XX_PAGE_CP, 0xc3), 0x39 }, /* CP coast control. Graphics mode */
2965         { ADV76XX_REG(ADV76XX_PAGE_CP, 0x40), 0x5c }, /* CP core pre-gain control. Graphics mode */
2966
2967         { ADV76XX_REG_SEQ_TERM, 0 },
2968 };
2969
2970 static const struct adv76xx_reg_seq adv7604_recommended_settings_hdmi[] = {
2971         /* set ADI recommended settings for HDMI: */
2972         /* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 4. */
2973         { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x0d), 0x84 }, /* HDMI filter optimization */
2974         { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3d), 0x10 }, /* DDC bus active pull-up control */
2975         { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3e), 0x39 }, /* TMDS PLL optimization */
2976         { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4e), 0x3b }, /* TMDS PLL optimization */
2977         { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0xb6 }, /* TMDS PLL optimization */
2978         { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x03 }, /* TMDS PLL optimization */
2979         { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8d), 0x18 }, /* equaliser */
2980         { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8e), 0x34 }, /* equaliser */
2981         { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x93), 0x8b }, /* equaliser */
2982         { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x94), 0x2d }, /* equaliser */
2983         { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x96), 0x01 }, /* enable automatic EQ changing */
2984
2985         /* reset ADI recommended settings for digitizer */
2986         /* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 17. */
2987         { ADV76XX_REG(ADV76XX_PAGE_AFE, 0x12), 0xfb }, /* ADC noise shaping filter controls */
2988         { ADV76XX_REG(ADV76XX_PAGE_AFE, 0x0c), 0x0d }, /* CP core gain controls */
2989
2990         { ADV76XX_REG_SEQ_TERM, 0 },
2991 };
2992
2993 static const struct adv76xx_reg_seq adv7611_recommended_settings_hdmi[] = {
2994         /* ADV7611 Register Settings Recommendations Rev 1.5, May 2014 */
2995         { ADV76XX_REG(ADV76XX_PAGE_CP, 0x6c), 0x00 },
2996         { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x9b), 0x03 },
2997         { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x6f), 0x08 },
2998         { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x85), 0x1f },
2999         { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x87), 0x70 },
3000         { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0xda },
3001         { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x01 },
3002         { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x03), 0x98 },
3003         { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4c), 0x44 },
3004         { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8d), 0x04 },
3005         { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8e), 0x1e },
3006
3007         { ADV76XX_REG_SEQ_TERM, 0 },
3008 };
3009
3010 static const struct adv76xx_reg_seq adv7612_recommended_settings_hdmi[] = {
3011         { ADV76XX_REG(ADV76XX_PAGE_CP, 0x6c), 0x00 },
3012         { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x9b), 0x03 },
3013         { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x6f), 0x08 },
3014         { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x85), 0x1f },
3015         { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x87), 0x70 },
3016         { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0xda },
3017         { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x01 },
3018         { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x03), 0x98 },
3019         { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4c), 0x44 },
3020         { ADV76XX_REG_SEQ_TERM, 0 },
3021 };
3022
3023 static const struct adv76xx_chip_info adv76xx_chip_info[] = {
3024         [ADV7604] = {
3025                 .type = ADV7604,
3026                 .has_afe = true,
3027                 .max_port = ADV7604_PAD_VGA_COMP,
3028                 .num_dv_ports = 4,
3029                 .edid_enable_reg = 0x77,
3030                 .edid_status_reg = 0x7d,
3031                 .edid_segment_reg = 0x77,
3032                 .edid_segment_mask = 0x10,
3033                 .edid_spa_loc_reg = 0x76,
3034                 .edid_spa_loc_msb_mask = 0x40,
3035                 .edid_spa_port_b_reg = 0x70,
3036                 .lcf_reg = 0xb3,
3037                 .tdms_lock_mask = 0xe0,
3038                 .cable_det_mask = 0x1e,
3039                 .fmt_change_digital_mask = 0xc1,
3040                 .cp_csc = 0xfc,
3041                 .cec_irq_status = 0x4d,
3042                 .cec_rx_enable = 0x26,
3043                 .cec_rx_enable_mask = 0x01,
3044                 .cec_irq_swap = true,
3045                 .formats = adv7604_formats,
3046                 .nformats = ARRAY_SIZE(adv7604_formats),
3047                 .set_termination = adv7604_set_termination,
3048                 .setup_irqs = adv7604_setup_irqs,
3049                 .read_hdmi_pixelclock = adv7604_read_hdmi_pixelclock,
3050                 .read_cable_det = adv7604_read_cable_det,
3051                 .recommended_settings = {
3052                     [0] = adv7604_recommended_settings_afe,
3053                     [1] = adv7604_recommended_settings_hdmi,
3054                 },
3055                 .num_recommended_settings = {
3056                     [0] = ARRAY_SIZE(adv7604_recommended_settings_afe),
3057                     [1] = ARRAY_SIZE(adv7604_recommended_settings_hdmi),
3058                 },
3059                 .page_mask = BIT(ADV76XX_PAGE_IO) | BIT(ADV7604_PAGE_AVLINK) |
3060                         BIT(ADV76XX_PAGE_CEC) | BIT(ADV76XX_PAGE_INFOFRAME) |
3061                         BIT(ADV7604_PAGE_ESDP) | BIT(ADV7604_PAGE_DPP) |
3062                         BIT(ADV76XX_PAGE_AFE) | BIT(ADV76XX_PAGE_REP) |
3063                         BIT(ADV76XX_PAGE_EDID) | BIT(ADV76XX_PAGE_HDMI) |
3064                         BIT(ADV76XX_PAGE_TEST) | BIT(ADV76XX_PAGE_CP) |
3065                         BIT(ADV7604_PAGE_VDP),
3066                 .linewidth_mask = 0xfff,
3067                 .field0_height_mask = 0xfff,
3068                 .field1_height_mask = 0xfff,
3069                 .hfrontporch_mask = 0x3ff,
3070                 .hsync_mask = 0x3ff,
3071                 .hbackporch_mask = 0x3ff,
3072                 .field0_vfrontporch_mask = 0x1fff,
3073                 .field0_vsync_mask = 0x1fff,
3074                 .field0_vbackporch_mask = 0x1fff,
3075                 .field1_vfrontporch_mask = 0x1fff,
3076                 .field1_vsync_mask = 0x1fff,
3077                 .field1_vbackporch_mask = 0x1fff,
3078         },
3079         [ADV7611] = {
3080                 .type = ADV7611,
3081                 .has_afe = false,
3082                 .max_port = ADV76XX_PAD_HDMI_PORT_A,
3083                 .num_dv_ports = 1,
3084                 .edid_enable_reg = 0x74,
3085                 .edid_status_reg = 0x76,
3086                 .edid_segment_reg = 0x7a,
3087                 .edid_segment_mask = 0x01,
3088                 .lcf_reg = 0xa3,
3089                 .tdms_lock_mask = 0x43,
3090                 .cable_det_mask = 0x01,
3091                 .fmt_change_digital_mask = 0x03,
3092                 .cp_csc = 0xf4,
3093                 .cec_irq_status = 0x93,
3094                 .cec_rx_enable = 0x2c,
3095                 .cec_rx_enable_mask = 0x02,
3096                 .formats = adv7611_formats,
3097                 .nformats = ARRAY_SIZE(adv7611_formats),
3098                 .set_termination = adv7611_set_termination,
3099                 .setup_irqs = adv7611_setup_irqs,
3100                 .read_hdmi_pixelclock = adv7611_read_hdmi_pixelclock,
3101                 .read_cable_det = adv7611_read_cable_det,
3102                 .recommended_settings = {
3103                     [1] = adv7611_recommended_settings_hdmi,
3104                 },
3105                 .num_recommended_settings = {
3106                     [1] = ARRAY_SIZE(adv7611_recommended_settings_hdmi),
3107                 },
3108                 .page_mask = BIT(ADV76XX_PAGE_IO) | BIT(ADV76XX_PAGE_CEC) |
3109                         BIT(ADV76XX_PAGE_INFOFRAME) | BIT(ADV76XX_PAGE_AFE) |
3110                         BIT(ADV76XX_PAGE_REP) |  BIT(ADV76XX_PAGE_EDID) |
3111                         BIT(ADV76XX_PAGE_HDMI) | BIT(ADV76XX_PAGE_CP),
3112                 .linewidth_mask = 0x1fff,
3113                 .field0_height_mask = 0x1fff,
3114                 .field1_height_mask = 0x1fff,
3115                 .hfrontporch_mask = 0x1fff,
3116                 .hsync_mask = 0x1fff,
3117                 .hbackporch_mask = 0x1fff,
3118                 .field0_vfrontporch_mask = 0x3fff,
3119                 .field0_vsync_mask = 0x3fff,
3120                 .field0_vbackporch_mask = 0x3fff,
3121                 .field1_vfrontporch_mask = 0x3fff,
3122                 .field1_vsync_mask = 0x3fff,
3123                 .field1_vbackporch_mask = 0x3fff,
3124         },
3125         [ADV7612] = {
3126                 .type = ADV7612,
3127                 .has_afe = false,
3128                 .max_port = ADV76XX_PAD_HDMI_PORT_A,    /* B not supported */
3129                 .num_dv_ports = 1,                      /* normally 2 */
3130                 .edid_enable_reg = 0x74,
3131                 .edid_status_reg = 0x76,
3132                 .edid_segment_reg = 0x7a,
3133                 .edid_segment_mask = 0x01,
3134                 .edid_spa_loc_reg = 0x70,
3135                 .edid_spa_loc_msb_mask = 0x01,
3136                 .edid_spa_port_b_reg = 0x52,
3137                 .lcf_reg = 0xa3,
3138                 .tdms_lock_mask = 0x43,
3139                 .cable_det_mask = 0x01,
3140                 .fmt_change_digital_mask = 0x03,
3141                 .cp_csc = 0xf4,
3142                 .cec_irq_status = 0x93,
3143                 .cec_rx_enable = 0x2c,
3144                 .cec_rx_enable_mask = 0x02,
3145                 .formats = adv7612_formats,
3146                 .nformats = ARRAY_SIZE(adv7612_formats),
3147                 .set_termination = adv7611_set_termination,
3148                 .setup_irqs = adv7612_setup_irqs,
3149                 .read_hdmi_pixelclock = adv7611_read_hdmi_pixelclock,
3150                 .read_cable_det = adv7612_read_cable_det,
3151                 .recommended_settings = {
3152                     [1] = adv7612_recommended_settings_hdmi,
3153                 },
3154                 .num_recommended_settings = {
3155                     [1] = ARRAY_SIZE(adv7612_recommended_settings_hdmi),
3156                 },
3157                 .page_mask = BIT(ADV76XX_PAGE_IO) | BIT(ADV76XX_PAGE_CEC) |
3158                         BIT(ADV76XX_PAGE_INFOFRAME) | BIT(ADV76XX_PAGE_AFE) |
3159                         BIT(ADV76XX_PAGE_REP) |  BIT(ADV76XX_PAGE_EDID) |
3160                         BIT(ADV76XX_PAGE_HDMI) | BIT(ADV76XX_PAGE_CP),
3161                 .linewidth_mask = 0x1fff,
3162                 .field0_height_mask = 0x1fff,
3163                 .field1_height_mask = 0x1fff,
3164                 .hfrontporch_mask = 0x1fff,
3165                 .hsync_mask = 0x1fff,
3166                 .hbackporch_mask = 0x1fff,
3167                 .field0_vfrontporch_mask = 0x3fff,
3168                 .field0_vsync_mask = 0x3fff,
3169                 .field0_vbackporch_mask = 0x3fff,
3170                 .field1_vfrontporch_mask = 0x3fff,
3171                 .field1_vsync_mask = 0x3fff,
3172                 .field1_vbackporch_mask = 0x3fff,
3173         },
3174 };
3175
3176 static const struct i2c_device_id adv76xx_i2c_id[] = {
3177         { "adv7604", (kernel_ulong_t)&adv76xx_chip_info[ADV7604] },
3178         { "adv7610", (kernel_ulong_t)&adv76xx_chip_info[ADV7611] },
3179         { "adv7611", (kernel_ulong_t)&adv76xx_chip_info[ADV7611] },
3180         { "adv7612", (kernel_ulong_t)&adv76xx_chip_info[ADV7612] },
3181         { }
3182 };
3183 MODULE_DEVICE_TABLE(i2c, adv76xx_i2c_id);
3184
3185 static const struct of_device_id adv76xx_of_id[] __maybe_unused = {
3186         { .compatible = "adi,adv7610", .data = &adv76xx_chip_info[ADV7611] },
3187         { .compatible = "adi,adv7611", .data = &adv76xx_chip_info[ADV7611] },
3188         { .compatible = "adi,adv7612", .data = &adv76xx_chip_info[ADV7612] },
3189         { }
3190 };
3191 MODULE_DEVICE_TABLE(of, adv76xx_of_id);
3192
3193 static int adv76xx_parse_dt(struct adv76xx_state *state)
3194 {
3195         struct v4l2_fwnode_endpoint bus_cfg = { .bus_type = 0 };
3196         struct device_node *endpoint;
3197         struct device_node *np;
3198         unsigned int flags;
3199         int ret;
3200         u32 v;
3201
3202         np = state->i2c_clients[ADV76XX_PAGE_IO]->dev.of_node;
3203
3204         /* Parse the endpoint. */
3205         endpoint = of_graph_get_next_endpoint(np, NULL);
3206         if (!endpoint)
3207                 return -EINVAL;
3208
3209         ret = v4l2_fwnode_endpoint_parse(of_fwnode_handle(endpoint), &bus_cfg);
3210         of_node_put(endpoint);
3211         if (ret)
3212                 return ret;
3213
3214         if (!of_property_read_u32(np, "default-input", &v))
3215                 state->pdata.default_input = v;
3216         else
3217                 state->pdata.default_input = -1;
3218
3219         flags = bus_cfg.bus.parallel.flags;
3220
3221         if (flags & V4L2_MBUS_HSYNC_ACTIVE_HIGH)
3222                 state->pdata.inv_hs_pol = 1;
3223
3224         if (flags & V4L2_MBUS_VSYNC_ACTIVE_HIGH)
3225                 state->pdata.inv_vs_pol = 1;
3226
3227         if (flags & V4L2_MBUS_PCLK_SAMPLE_RISING)
3228                 state->pdata.inv_llc_pol = 1;
3229
3230         if (bus_cfg.bus_type == V4L2_MBUS_BT656)
3231                 state->pdata.insert_av_codes = 1;
3232
3233         /* Disable the interrupt for now as no DT-based board uses it. */
3234         state->pdata.int1_config = ADV76XX_INT1_CONFIG_ACTIVE_HIGH;
3235
3236         /* Hardcode the remaining platform data fields. */
3237         state->pdata.disable_pwrdnb = 0;
3238         state->pdata.disable_cable_det_rst = 0;
3239         state->pdata.blank_data = 1;
3240         state->pdata.op_format_mode_sel = ADV7604_OP_FORMAT_MODE0;
3241         state->pdata.bus_order = ADV7604_BUS_ORDER_RGB;
3242         state->pdata.dr_str_data = ADV76XX_DR_STR_MEDIUM_HIGH;
3243         state->pdata.dr_str_clk = ADV76XX_DR_STR_MEDIUM_HIGH;
3244         state->pdata.dr_str_sync = ADV76XX_DR_STR_MEDIUM_HIGH;
3245
3246         return 0;
3247 }
3248
3249 static const struct regmap_config adv76xx_regmap_cnf[] = {
3250         {
3251                 .name                   = "io",
3252                 .reg_bits               = 8,
3253                 .val_bits               = 8,
3254
3255                 .max_register           = 0xff,
3256                 .cache_type             = REGCACHE_NONE,
3257         },
3258         {
3259                 .name                   = "avlink",
3260                 .reg_bits               = 8,
3261                 .val_bits               = 8,
3262
3263                 .max_register           = 0xff,
3264                 .cache_type             = REGCACHE_NONE,
3265         },
3266         {
3267                 .name                   = "cec",
3268                 .reg_bits               = 8,
3269                 .val_bits               = 8,
3270
3271                 .max_register           = 0xff,
3272                 .cache_type             = REGCACHE_NONE,
3273         },
3274         {
3275                 .name                   = "infoframe",
3276                 .reg_bits               = 8,
3277                 .val_bits               = 8,
3278
3279                 .max_register           = 0xff,
3280                 .cache_type             = REGCACHE_NONE,
3281         },
3282         {
3283                 .name                   = "esdp",
3284                 .reg_bits               = 8,
3285                 .val_bits               = 8,
3286
3287                 .max_register           = 0xff,
3288                 .cache_type             = REGCACHE_NONE,
3289         },
3290         {
3291                 .name                   = "epp",
3292                 .reg_bits               = 8,
3293                 .val_bits               = 8,
3294
3295                 .max_register           = 0xff,
3296                 .cache_type             = REGCACHE_NONE,
3297         },
3298         {
3299                 .name                   = "afe",
3300                 .reg_bits               = 8,
3301                 .val_bits               = 8,
3302
3303                 .max_register           = 0xff,
3304                 .cache_type             = REGCACHE_NONE,
3305         },
3306         {
3307                 .name                   = "rep",
3308                 .reg_bits               = 8,
3309                 .val_bits               = 8,
3310
3311                 .max_register           = 0xff,
3312                 .cache_type             = REGCACHE_NONE,
3313         },
3314         {
3315                 .name                   = "edid",
3316                 .reg_bits               = 8,
3317                 .val_bits               = 8,
3318
3319                 .max_register           = 0xff,
3320                 .cache_type             = REGCACHE_NONE,
3321         },
3322
3323         {
3324                 .name                   = "hdmi",
3325                 .reg_bits               = 8,
3326                 .val_bits               = 8,
3327
3328                 .max_register           = 0xff,
3329                 .cache_type             = REGCACHE_NONE,
3330         },
3331         {
3332                 .name                   = "test",
3333                 .reg_bits               = 8,
3334                 .val_bits               = 8,
3335
3336                 .max_register           = 0xff,
3337                 .cache_type             = REGCACHE_NONE,
3338         },
3339         {
3340                 .name                   = "cp",
3341                 .reg_bits               = 8,
3342                 .val_bits               = 8,
3343
3344                 .max_register           = 0xff,
3345                 .cache_type             = REGCACHE_NONE,
3346         },
3347         {
3348                 .name                   = "vdp",
3349                 .reg_bits               = 8,
3350                 .val_bits               = 8,
3351
3352                 .max_register           = 0xff,
3353                 .cache_type             = REGCACHE_NONE,
3354         },
3355 };
3356
3357 static int configure_regmap(struct adv76xx_state *state, int region)
3358 {
3359         int err;
3360
3361         if (!state->i2c_clients[region])
3362                 return -ENODEV;
3363
3364         state->regmap[region] =
3365                 devm_regmap_init_i2c(state->i2c_clients[region],
3366                                      &adv76xx_regmap_cnf[region]);
3367
3368         if (IS_ERR(state->regmap[region])) {
3369                 err = PTR_ERR(state->regmap[region]);
3370                 v4l_err(state->i2c_clients[region],
3371                         "Error initializing regmap %d with error %d\n",
3372                         region, err);
3373                 return -EINVAL;
3374         }
3375
3376         return 0;
3377 }
3378
3379 static int configure_regmaps(struct adv76xx_state *state)
3380 {
3381         int i, err;
3382
3383         for (i = ADV7604_PAGE_AVLINK ; i < ADV76XX_PAGE_MAX; i++) {
3384                 err = configure_regmap(state, i);
3385                 if (err && (err != -ENODEV))
3386                         return err;
3387         }
3388         return 0;
3389 }
3390
3391 static void adv76xx_reset(struct adv76xx_state *state)
3392 {
3393         if (state->reset_gpio) {
3394                 /* ADV76XX can be reset by a low reset pulse of minimum 5 ms. */
3395                 gpiod_set_value_cansleep(state->reset_gpio, 0);
3396                 usleep_range(5000, 10000);
3397                 gpiod_set_value_cansleep(state->reset_gpio, 1);
3398                 /* It is recommended to wait 5 ms after the low pulse before */
3399                 /* an I2C write is performed to the ADV76XX. */
3400                 usleep_range(5000, 10000);
3401         }
3402 }
3403
3404 static int adv76xx_probe(struct i2c_client *client,
3405                          const struct i2c_device_id *id)
3406 {
3407         static const struct v4l2_dv_timings cea640x480 =
3408                 V4L2_DV_BT_CEA_640X480P59_94;
3409         struct adv76xx_state *state;
3410         struct v4l2_ctrl_handler *hdl;
3411         struct v4l2_ctrl *ctrl;
3412         struct v4l2_subdev *sd;
3413         unsigned int i;
3414         unsigned int val, val2;
3415         int err;
3416
3417         /* Check if the adapter supports the needed features */
3418         if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_BYTE_DATA))
3419                 return -EIO;
3420         v4l_dbg(1, debug, client, "detecting adv76xx client on address 0x%x\n",
3421                         client->addr << 1);
3422
3423         state = devm_kzalloc(&client->dev, sizeof(*state), GFP_KERNEL);
3424         if (!state)
3425                 return -ENOMEM;
3426
3427         state->i2c_clients[ADV76XX_PAGE_IO] = client;
3428
3429         /* initialize variables */
3430         state->restart_stdi_once = true;
3431         state->selected_input = ~0;
3432
3433         if (IS_ENABLED(CONFIG_OF) && client->dev.of_node) {
3434                 const struct of_device_id *oid;
3435
3436                 oid = of_match_node(adv76xx_of_id, client->dev.of_node);
3437                 state->info = oid->data;
3438
3439                 err = adv76xx_parse_dt(state);
3440                 if (err < 0) {
3441                         v4l_err(client, "DT parsing error\n");
3442                         return err;
3443                 }
3444         } else if (client->dev.platform_data) {
3445                 struct adv76xx_platform_data *pdata = client->dev.platform_data;
3446
3447                 state->info = (const struct adv76xx_chip_info *)id->driver_data;
3448                 state->pdata = *pdata;
3449         } else {
3450                 v4l_err(client, "No platform data!\n");
3451                 return -ENODEV;
3452         }
3453
3454         /* Request GPIOs. */
3455         for (i = 0; i < state->info->num_dv_ports; ++i) {
3456                 state->hpd_gpio[i] =
3457                         devm_gpiod_get_index_optional(&client->dev, "hpd", i,
3458                                                       GPIOD_OUT_LOW);
3459                 if (IS_ERR(state->hpd_gpio[i]))
3460                         return PTR_ERR(state->hpd_gpio[i]);
3461
3462                 if (state->hpd_gpio[i])
3463                         v4l_info(client, "Handling HPD %u GPIO\n", i);
3464         }
3465         state->reset_gpio = devm_gpiod_get_optional(&client->dev, "reset",
3466                                                                 GPIOD_OUT_HIGH);
3467         if (IS_ERR(state->reset_gpio))
3468                 return PTR_ERR(state->reset_gpio);
3469
3470         adv76xx_reset(state);
3471
3472         state->timings = cea640x480;
3473         state->format = adv76xx_format_info(state, MEDIA_BUS_FMT_YUYV8_2X8);
3474
3475         sd = &state->sd;
3476         v4l2_i2c_subdev_init(sd, client, &adv76xx_ops);
3477         snprintf(sd->name, sizeof(sd->name), "%s %d-%04x",
3478                 id->name, i2c_adapter_id(client->adapter),
3479                 client->addr);
3480         sd->flags |= V4L2_SUBDEV_FL_HAS_DEVNODE | V4L2_SUBDEV_FL_HAS_EVENTS;
3481         sd->internal_ops = &adv76xx_int_ops;
3482
3483         /* Configure IO Regmap region */
3484         err = configure_regmap(state, ADV76XX_PAGE_IO);
3485
3486         if (err) {
3487                 v4l2_err(sd, "Error configuring IO regmap region\n");
3488                 return -ENODEV;
3489         }
3490
3491         /*
3492          * Verify that the chip is present. On ADV7604 the RD_INFO register only
3493          * identifies the revision, while on ADV7611 it identifies the model as
3494          * well. Use the HDMI slave address on ADV7604 and RD_INFO on ADV7611.
3495          */
3496         switch (state->info->type) {
3497         case ADV7604:
3498                 err = regmap_read(state->regmap[ADV76XX_PAGE_IO], 0xfb, &val);
3499                 if (err) {
3500                         v4l2_err(sd, "Error %d reading IO Regmap\n", err);
3501                         return -ENODEV;
3502                 }
3503                 if (val != 0x68) {
3504                         v4l2_err(sd, "not an ADV7604 on address 0x%x\n",
3505                                  client->addr << 1);
3506                         return -ENODEV;
3507                 }
3508                 break;
3509         case ADV7611:
3510         case ADV7612:
3511                 err = regmap_read(state->regmap[ADV76XX_PAGE_IO],
3512                                 0xea,
3513                                 &val);
3514                 if (err) {
3515                         v4l2_err(sd, "Error %d reading IO Regmap\n", err);
3516                         return -ENODEV;
3517                 }
3518                 val2 = val << 8;
3519                 err = regmap_read(state->regmap[ADV76XX_PAGE_IO],
3520                             0xeb,
3521                             &val);
3522                 if (err) {
3523                         v4l2_err(sd, "Error %d reading IO Regmap\n", err);
3524                         return -ENODEV;
3525                 }
3526                 val |= val2;
3527                 if ((state->info->type == ADV7611 && val != 0x2051) ||
3528                         (state->info->type == ADV7612 && val != 0x2041)) {
3529                         v4l2_err(sd, "not an %s on address 0x%x\n",
3530                                  state->info->type == ADV7611 ? "ADV7610/11" : "ADV7612",
3531                                  client->addr << 1);
3532                         return -ENODEV;
3533                 }
3534                 break;
3535         }
3536
3537         /* control handlers */
3538         hdl = &state->hdl;
3539         v4l2_ctrl_handler_init(hdl, adv76xx_has_afe(state) ? 9 : 8);
3540
3541         v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
3542                         V4L2_CID_BRIGHTNESS, -128, 127, 1, 0);
3543         v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
3544                         V4L2_CID_CONTRAST, 0, 255, 1, 128);
3545         v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
3546                         V4L2_CID_SATURATION, 0, 255, 1, 128);
3547         v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
3548                         V4L2_CID_HUE, 0, 128, 1, 0);
3549         ctrl = v4l2_ctrl_new_std_menu(hdl, &adv76xx_ctrl_ops,
3550                         V4L2_CID_DV_RX_IT_CONTENT_TYPE, V4L2_DV_IT_CONTENT_TYPE_NO_ITC,
3551                         0, V4L2_DV_IT_CONTENT_TYPE_NO_ITC);
3552         if (ctrl)
3553                 ctrl->flags |= V4L2_CTRL_FLAG_VOLATILE;
3554
3555         state->detect_tx_5v_ctrl = v4l2_ctrl_new_std(hdl, NULL,
3556                         V4L2_CID_DV_RX_POWER_PRESENT, 0,
3557                         (1 << state->info->num_dv_ports) - 1, 0, 0);
3558         state->rgb_quantization_range_ctrl =
3559                 v4l2_ctrl_new_std_menu(hdl, &adv76xx_ctrl_ops,
3560                         V4L2_CID_DV_RX_RGB_RANGE, V4L2_DV_RGB_RANGE_FULL,
3561                         0, V4L2_DV_RGB_RANGE_AUTO);
3562
3563         /* custom controls */
3564         if (adv76xx_has_afe(state))
3565                 state->analog_sampling_phase_ctrl =
3566                         v4l2_ctrl_new_custom(hdl, &adv7604_ctrl_analog_sampling_phase, NULL);
3567         state->free_run_color_manual_ctrl =
3568                 v4l2_ctrl_new_custom(hdl, &adv76xx_ctrl_free_run_color_manual, NULL);
3569         state->free_run_color_ctrl =
3570                 v4l2_ctrl_new_custom(hdl, &adv76xx_ctrl_free_run_color, NULL);
3571
3572         sd->ctrl_handler = hdl;
3573         if (hdl->error) {
3574                 err = hdl->error;
3575                 goto err_hdl;
3576         }
3577         if (adv76xx_s_detect_tx_5v_ctrl(sd)) {
3578                 err = -ENODEV;
3579                 goto err_hdl;
3580         }
3581
3582         for (i = 1; i < ADV76XX_PAGE_MAX; ++i) {
3583                 struct i2c_client *dummy_client;
3584
3585                 if (!(BIT(i) & state->info->page_mask))
3586                         continue;
3587
3588                 dummy_client = adv76xx_dummy_client(sd, i);
3589                 if (IS_ERR(dummy_client)) {
3590                         err = PTR_ERR(dummy_client);
3591                         v4l2_err(sd, "failed to create i2c client %u\n", i);
3592                         goto err_i2c;
3593                 }
3594
3595                 state->i2c_clients[i] = dummy_client;
3596         }
3597
3598         INIT_DELAYED_WORK(&state->delayed_work_enable_hotplug,
3599                         adv76xx_delayed_work_enable_hotplug);
3600
3601         state->source_pad = state->info->num_dv_ports
3602                           + (state->info->has_afe ? 2 : 0);
3603         for (i = 0; i < state->source_pad; ++i)
3604                 state->pads[i].flags = MEDIA_PAD_FL_SINK;
3605         state->pads[state->source_pad].flags = MEDIA_PAD_FL_SOURCE;
3606         sd->entity.function = MEDIA_ENT_F_DV_DECODER;
3607
3608         err = media_entity_pads_init(&sd->entity, state->source_pad + 1,
3609                                 state->pads);
3610         if (err)
3611                 goto err_work_queues;
3612
3613         /* Configure regmaps */
3614         err = configure_regmaps(state);
3615         if (err)
3616                 goto err_entity;
3617
3618         err = adv76xx_core_init(sd);
3619         if (err)
3620                 goto err_entity;
3621
3622         if (client->irq) {
3623                 err = devm_request_threaded_irq(&client->dev,
3624                                                 client->irq,
3625                                                 NULL, adv76xx_irq_handler,
3626                                                 IRQF_TRIGGER_HIGH | IRQF_ONESHOT,
3627                                                 client->name, state);
3628                 if (err)
3629                         goto err_entity;
3630         }
3631
3632 #if IS_ENABLED(CONFIG_VIDEO_ADV7604_CEC)
3633         state->cec_adap = cec_allocate_adapter(&adv76xx_cec_adap_ops,
3634                 state, dev_name(&client->dev),
3635                 CEC_CAP_DEFAULTS, ADV76XX_MAX_ADDRS);
3636         err = PTR_ERR_OR_ZERO(state->cec_adap);
3637         if (err)
3638                 goto err_entity;
3639 #endif
3640
3641         v4l2_info(sd, "%s found @ 0x%x (%s)\n", client->name,
3642                         client->addr << 1, client->adapter->name);
3643
3644         err = v4l2_async_register_subdev(sd);
3645         if (err)
3646                 goto err_entity;
3647
3648         return 0;
3649
3650 err_entity:
3651         media_entity_cleanup(&sd->entity);
3652 err_work_queues:
3653         cancel_delayed_work(&state->delayed_work_enable_hotplug);
3654 err_i2c:
3655         adv76xx_unregister_clients(state);
3656 err_hdl:
3657         v4l2_ctrl_handler_free(hdl);
3658         return err;
3659 }
3660
3661 /* ----------------------------------------------------------------------- */
3662
3663 static void adv76xx_remove(struct i2c_client *client)
3664 {
3665         struct v4l2_subdev *sd = i2c_get_clientdata(client);
3666         struct adv76xx_state *state = to_state(sd);
3667
3668         /* disable interrupts */
3669         io_write(sd, 0x40, 0);
3670         io_write(sd, 0x41, 0);
3671         io_write(sd, 0x46, 0);
3672         io_write(sd, 0x6e, 0);
3673         io_write(sd, 0x73, 0);
3674
3675         cancel_delayed_work_sync(&state->delayed_work_enable_hotplug);
3676         v4l2_async_unregister_subdev(sd);
3677         media_entity_cleanup(&sd->entity);
3678         adv76xx_unregister_clients(to_state(sd));
3679         v4l2_ctrl_handler_free(sd->ctrl_handler);
3680 }
3681
3682 /* ----------------------------------------------------------------------- */
3683
3684 static struct i2c_driver adv76xx_driver = {
3685         .driver = {
3686                 .name = "adv7604",
3687                 .of_match_table = of_match_ptr(adv76xx_of_id),
3688         },
3689         .probe = adv76xx_probe,
3690         .remove = adv76xx_remove,
3691         .id_table = adv76xx_i2c_id,
3692 };
3693
3694 module_i2c_driver(adv76xx_driver);