1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * raid5.c : Multiple Devices driver for Linux
4 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
5 * Copyright (C) 1999, 2000 Ingo Molnar
6 * Copyright (C) 2002, 2003 H. Peter Anvin
8 * RAID-4/5/6 management functions.
9 * Thanks to Penguin Computing for making the RAID-6 development possible
10 * by donating a test server!
16 * The sequencing for updating the bitmap reliably is a little
17 * subtle (and I got it wrong the first time) so it deserves some
20 * We group bitmap updates into batches. Each batch has a number.
21 * We may write out several batches at once, but that isn't very important.
22 * conf->seq_write is the number of the last batch successfully written.
23 * conf->seq_flush is the number of the last batch that was closed to
25 * When we discover that we will need to write to any block in a stripe
26 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
27 * the number of the batch it will be in. This is seq_flush+1.
28 * When we are ready to do a write, if that batch hasn't been written yet,
29 * we plug the array and queue the stripe for later.
30 * When an unplug happens, we increment bm_flush, thus closing the current
32 * When we notice that bm_flush > bm_write, we write out all pending updates
33 * to the bitmap, and advance bm_write to where bm_flush was.
34 * This may occasionally write a bit out twice, but is sure never to
38 #include <linux/blkdev.h>
39 #include <linux/kthread.h>
40 #include <linux/raid/pq.h>
41 #include <linux/async_tx.h>
42 #include <linux/module.h>
43 #include <linux/async.h>
44 #include <linux/seq_file.h>
45 #include <linux/cpu.h>
46 #include <linux/slab.h>
47 #include <linux/ratelimit.h>
48 #include <linux/nodemask.h>
50 #include <trace/events/block.h>
51 #include <linux/list_sort.h>
56 #include "md-bitmap.h"
57 #include "raid5-log.h"
59 #define UNSUPPORTED_MDDEV_FLAGS (1L << MD_FAILFAST_SUPPORTED)
61 #define cpu_to_group(cpu) cpu_to_node(cpu)
62 #define ANY_GROUP NUMA_NO_NODE
64 #define RAID5_MAX_REQ_STRIPES 256
66 static bool devices_handle_discard_safely = false;
67 module_param(devices_handle_discard_safely, bool, 0644);
68 MODULE_PARM_DESC(devices_handle_discard_safely,
69 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
70 static struct workqueue_struct *raid5_wq;
72 static void raid5_quiesce(struct mddev *mddev, int quiesce);
74 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
76 int hash = (sect >> RAID5_STRIPE_SHIFT(conf)) & HASH_MASK;
77 return &conf->stripe_hashtbl[hash];
80 static inline int stripe_hash_locks_hash(struct r5conf *conf, sector_t sect)
82 return (sect >> RAID5_STRIPE_SHIFT(conf)) & STRIPE_HASH_LOCKS_MASK;
85 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
86 __acquires(&conf->device_lock)
88 spin_lock_irq(conf->hash_locks + hash);
89 spin_lock(&conf->device_lock);
92 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
93 __releases(&conf->device_lock)
95 spin_unlock(&conf->device_lock);
96 spin_unlock_irq(conf->hash_locks + hash);
99 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
100 __acquires(&conf->device_lock)
103 spin_lock_irq(conf->hash_locks);
104 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
105 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
106 spin_lock(&conf->device_lock);
109 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
110 __releases(&conf->device_lock)
113 spin_unlock(&conf->device_lock);
114 for (i = NR_STRIPE_HASH_LOCKS - 1; i; i--)
115 spin_unlock(conf->hash_locks + i);
116 spin_unlock_irq(conf->hash_locks);
119 /* Find first data disk in a raid6 stripe */
120 static inline int raid6_d0(struct stripe_head *sh)
123 /* ddf always start from first device */
125 /* md starts just after Q block */
126 if (sh->qd_idx == sh->disks - 1)
129 return sh->qd_idx + 1;
131 static inline int raid6_next_disk(int disk, int raid_disks)
134 return (disk < raid_disks) ? disk : 0;
137 /* When walking through the disks in a raid5, starting at raid6_d0,
138 * We need to map each disk to a 'slot', where the data disks are slot
139 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
140 * is raid_disks-1. This help does that mapping.
142 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
143 int *count, int syndrome_disks)
149 if (idx == sh->pd_idx)
150 return syndrome_disks;
151 if (idx == sh->qd_idx)
152 return syndrome_disks + 1;
158 static void print_raid5_conf(struct r5conf *conf);
160 static int stripe_operations_active(struct stripe_head *sh)
162 return sh->check_state || sh->reconstruct_state ||
163 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
164 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
167 static bool stripe_is_lowprio(struct stripe_head *sh)
169 return (test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) ||
170 test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) &&
171 !test_bit(STRIPE_R5C_CACHING, &sh->state);
174 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
175 __must_hold(&sh->raid_conf->device_lock)
177 struct r5conf *conf = sh->raid_conf;
178 struct r5worker_group *group;
180 int i, cpu = sh->cpu;
182 if (!cpu_online(cpu)) {
183 cpu = cpumask_any(cpu_online_mask);
187 if (list_empty(&sh->lru)) {
188 struct r5worker_group *group;
189 group = conf->worker_groups + cpu_to_group(cpu);
190 if (stripe_is_lowprio(sh))
191 list_add_tail(&sh->lru, &group->loprio_list);
193 list_add_tail(&sh->lru, &group->handle_list);
194 group->stripes_cnt++;
198 if (conf->worker_cnt_per_group == 0) {
199 md_wakeup_thread(conf->mddev->thread);
203 group = conf->worker_groups + cpu_to_group(sh->cpu);
205 group->workers[0].working = true;
206 /* at least one worker should run to avoid race */
207 queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
209 thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
210 /* wakeup more workers */
211 for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
212 if (group->workers[i].working == false) {
213 group->workers[i].working = true;
214 queue_work_on(sh->cpu, raid5_wq,
215 &group->workers[i].work);
221 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
222 struct list_head *temp_inactive_list)
223 __must_hold(&conf->device_lock)
226 int injournal = 0; /* number of date pages with R5_InJournal */
228 BUG_ON(!list_empty(&sh->lru));
229 BUG_ON(atomic_read(&conf->active_stripes)==0);
231 if (r5c_is_writeback(conf->log))
232 for (i = sh->disks; i--; )
233 if (test_bit(R5_InJournal, &sh->dev[i].flags))
236 * In the following cases, the stripe cannot be released to cached
237 * lists. Therefore, we make the stripe write out and set
239 * 1. when quiesce in r5c write back;
240 * 2. when resync is requested fot the stripe.
242 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) ||
243 (conf->quiesce && r5c_is_writeback(conf->log) &&
244 !test_bit(STRIPE_HANDLE, &sh->state) && injournal != 0)) {
245 if (test_bit(STRIPE_R5C_CACHING, &sh->state))
246 r5c_make_stripe_write_out(sh);
247 set_bit(STRIPE_HANDLE, &sh->state);
250 if (test_bit(STRIPE_HANDLE, &sh->state)) {
251 if (test_bit(STRIPE_DELAYED, &sh->state) &&
252 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
253 list_add_tail(&sh->lru, &conf->delayed_list);
254 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
255 sh->bm_seq - conf->seq_write > 0)
256 list_add_tail(&sh->lru, &conf->bitmap_list);
258 clear_bit(STRIPE_DELAYED, &sh->state);
259 clear_bit(STRIPE_BIT_DELAY, &sh->state);
260 if (conf->worker_cnt_per_group == 0) {
261 if (stripe_is_lowprio(sh))
262 list_add_tail(&sh->lru,
265 list_add_tail(&sh->lru,
268 raid5_wakeup_stripe_thread(sh);
272 md_wakeup_thread(conf->mddev->thread);
274 BUG_ON(stripe_operations_active(sh));
275 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
276 if (atomic_dec_return(&conf->preread_active_stripes)
278 md_wakeup_thread(conf->mddev->thread);
279 atomic_dec(&conf->active_stripes);
280 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
281 if (!r5c_is_writeback(conf->log))
282 list_add_tail(&sh->lru, temp_inactive_list);
284 WARN_ON(test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags));
286 list_add_tail(&sh->lru, temp_inactive_list);
287 else if (injournal == conf->raid_disks - conf->max_degraded) {
289 if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE, &sh->state))
290 atomic_inc(&conf->r5c_cached_full_stripes);
291 if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
292 atomic_dec(&conf->r5c_cached_partial_stripes);
293 list_add_tail(&sh->lru, &conf->r5c_full_stripe_list);
294 r5c_check_cached_full_stripe(conf);
297 * STRIPE_R5C_PARTIAL_STRIPE is set in
298 * r5c_try_caching_write(). No need to
301 list_add_tail(&sh->lru, &conf->r5c_partial_stripe_list);
307 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
308 struct list_head *temp_inactive_list)
309 __must_hold(&conf->device_lock)
311 if (atomic_dec_and_test(&sh->count))
312 do_release_stripe(conf, sh, temp_inactive_list);
316 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
318 * Be careful: Only one task can add/delete stripes from temp_inactive_list at
319 * given time. Adding stripes only takes device lock, while deleting stripes
320 * only takes hash lock.
322 static void release_inactive_stripe_list(struct r5conf *conf,
323 struct list_head *temp_inactive_list,
327 bool do_wakeup = false;
330 if (hash == NR_STRIPE_HASH_LOCKS) {
331 size = NR_STRIPE_HASH_LOCKS;
332 hash = NR_STRIPE_HASH_LOCKS - 1;
336 struct list_head *list = &temp_inactive_list[size - 1];
339 * We don't hold any lock here yet, raid5_get_active_stripe() might
340 * remove stripes from the list
342 if (!list_empty_careful(list)) {
343 spin_lock_irqsave(conf->hash_locks + hash, flags);
344 if (list_empty(conf->inactive_list + hash) &&
346 atomic_dec(&conf->empty_inactive_list_nr);
347 list_splice_tail_init(list, conf->inactive_list + hash);
349 spin_unlock_irqrestore(conf->hash_locks + hash, flags);
356 wake_up(&conf->wait_for_stripe);
357 if (atomic_read(&conf->active_stripes) == 0)
358 wake_up(&conf->wait_for_quiescent);
359 if (conf->retry_read_aligned)
360 md_wakeup_thread(conf->mddev->thread);
364 static int release_stripe_list(struct r5conf *conf,
365 struct list_head *temp_inactive_list)
366 __must_hold(&conf->device_lock)
368 struct stripe_head *sh, *t;
370 struct llist_node *head;
372 head = llist_del_all(&conf->released_stripes);
373 head = llist_reverse_order(head);
374 llist_for_each_entry_safe(sh, t, head, release_list) {
377 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
379 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
381 * Don't worry the bit is set here, because if the bit is set
382 * again, the count is always > 1. This is true for
383 * STRIPE_ON_UNPLUG_LIST bit too.
385 hash = sh->hash_lock_index;
386 __release_stripe(conf, sh, &temp_inactive_list[hash]);
393 void raid5_release_stripe(struct stripe_head *sh)
395 struct r5conf *conf = sh->raid_conf;
397 struct list_head list;
401 /* Avoid release_list until the last reference.
403 if (atomic_add_unless(&sh->count, -1, 1))
406 if (unlikely(!conf->mddev->thread) ||
407 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
409 wakeup = llist_add(&sh->release_list, &conf->released_stripes);
411 md_wakeup_thread(conf->mddev->thread);
414 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
415 if (atomic_dec_and_lock_irqsave(&sh->count, &conf->device_lock, flags)) {
416 INIT_LIST_HEAD(&list);
417 hash = sh->hash_lock_index;
418 do_release_stripe(conf, sh, &list);
419 spin_unlock_irqrestore(&conf->device_lock, flags);
420 release_inactive_stripe_list(conf, &list, hash);
424 static inline void remove_hash(struct stripe_head *sh)
426 pr_debug("remove_hash(), stripe %llu\n",
427 (unsigned long long)sh->sector);
429 hlist_del_init(&sh->hash);
432 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
434 struct hlist_head *hp = stripe_hash(conf, sh->sector);
436 pr_debug("insert_hash(), stripe %llu\n",
437 (unsigned long long)sh->sector);
439 hlist_add_head(&sh->hash, hp);
442 /* find an idle stripe, make sure it is unhashed, and return it. */
443 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
445 struct stripe_head *sh = NULL;
446 struct list_head *first;
448 if (list_empty(conf->inactive_list + hash))
450 first = (conf->inactive_list + hash)->next;
451 sh = list_entry(first, struct stripe_head, lru);
452 list_del_init(first);
454 atomic_inc(&conf->active_stripes);
455 BUG_ON(hash != sh->hash_lock_index);
456 if (list_empty(conf->inactive_list + hash))
457 atomic_inc(&conf->empty_inactive_list_nr);
462 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
463 static void free_stripe_pages(struct stripe_head *sh)
468 /* Have not allocate page pool */
472 for (i = 0; i < sh->nr_pages; i++) {
480 static int alloc_stripe_pages(struct stripe_head *sh, gfp_t gfp)
485 for (i = 0; i < sh->nr_pages; i++) {
486 /* The page have allocated. */
492 free_stripe_pages(sh);
501 init_stripe_shared_pages(struct stripe_head *sh, struct r5conf *conf, int disks)
508 /* Each of the sh->dev[i] need one conf->stripe_size */
509 cnt = PAGE_SIZE / conf->stripe_size;
510 nr_pages = (disks + cnt - 1) / cnt;
512 sh->pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
515 sh->nr_pages = nr_pages;
516 sh->stripes_per_page = cnt;
521 static void shrink_buffers(struct stripe_head *sh)
524 int num = sh->raid_conf->pool_size;
526 #if PAGE_SIZE == DEFAULT_STRIPE_SIZE
527 for (i = 0; i < num ; i++) {
530 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
534 sh->dev[i].page = NULL;
538 for (i = 0; i < num; i++)
539 sh->dev[i].page = NULL;
540 free_stripe_pages(sh); /* Free pages */
544 static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
547 int num = sh->raid_conf->pool_size;
549 #if PAGE_SIZE == DEFAULT_STRIPE_SIZE
550 for (i = 0; i < num; i++) {
553 if (!(page = alloc_page(gfp))) {
556 sh->dev[i].page = page;
557 sh->dev[i].orig_page = page;
558 sh->dev[i].offset = 0;
561 if (alloc_stripe_pages(sh, gfp))
564 for (i = 0; i < num; i++) {
565 sh->dev[i].page = raid5_get_dev_page(sh, i);
566 sh->dev[i].orig_page = sh->dev[i].page;
567 sh->dev[i].offset = raid5_get_page_offset(sh, i);
573 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
574 struct stripe_head *sh);
576 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
578 struct r5conf *conf = sh->raid_conf;
581 BUG_ON(atomic_read(&sh->count) != 0);
582 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
583 BUG_ON(stripe_operations_active(sh));
584 BUG_ON(sh->batch_head);
586 pr_debug("init_stripe called, stripe %llu\n",
587 (unsigned long long)sector);
589 seq = read_seqcount_begin(&conf->gen_lock);
590 sh->generation = conf->generation - previous;
591 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
593 stripe_set_idx(sector, conf, previous, sh);
596 for (i = sh->disks; i--; ) {
597 struct r5dev *dev = &sh->dev[i];
599 if (dev->toread || dev->read || dev->towrite || dev->written ||
600 test_bit(R5_LOCKED, &dev->flags)) {
601 pr_err("sector=%llx i=%d %p %p %p %p %d\n",
602 (unsigned long long)sh->sector, i, dev->toread,
603 dev->read, dev->towrite, dev->written,
604 test_bit(R5_LOCKED, &dev->flags));
608 dev->sector = raid5_compute_blocknr(sh, i, previous);
610 if (read_seqcount_retry(&conf->gen_lock, seq))
612 sh->overwrite_disks = 0;
613 insert_hash(conf, sh);
614 sh->cpu = smp_processor_id();
615 set_bit(STRIPE_BATCH_READY, &sh->state);
618 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
621 struct stripe_head *sh;
623 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
624 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
625 if (sh->sector == sector && sh->generation == generation)
627 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
631 static struct stripe_head *find_get_stripe(struct r5conf *conf,
632 sector_t sector, short generation, int hash)
634 int inc_empty_inactive_list_flag;
635 struct stripe_head *sh;
637 sh = __find_stripe(conf, sector, generation);
641 if (atomic_inc_not_zero(&sh->count))
645 * Slow path. The reference count is zero which means the stripe must
646 * be on a list (sh->lru). Must remove the stripe from the list that
647 * references it with the device_lock held.
650 spin_lock(&conf->device_lock);
651 if (!atomic_read(&sh->count)) {
652 if (!test_bit(STRIPE_HANDLE, &sh->state))
653 atomic_inc(&conf->active_stripes);
654 BUG_ON(list_empty(&sh->lru) &&
655 !test_bit(STRIPE_EXPANDING, &sh->state));
656 inc_empty_inactive_list_flag = 0;
657 if (!list_empty(conf->inactive_list + hash))
658 inc_empty_inactive_list_flag = 1;
659 list_del_init(&sh->lru);
660 if (list_empty(conf->inactive_list + hash) &&
661 inc_empty_inactive_list_flag)
662 atomic_inc(&conf->empty_inactive_list_nr);
664 sh->group->stripes_cnt--;
668 atomic_inc(&sh->count);
669 spin_unlock(&conf->device_lock);
675 * Need to check if array has failed when deciding whether to:
677 * - remove non-faulty devices
680 * This determination is simple when no reshape is happening.
681 * However if there is a reshape, we need to carefully check
682 * both the before and after sections.
683 * This is because some failed devices may only affect one
684 * of the two sections, and some non-in_sync devices may
685 * be insync in the section most affected by failed devices.
687 * Most calls to this function hold &conf->device_lock. Calls
688 * in raid5_run() do not require the lock as no other threads
689 * have been started yet.
691 int raid5_calc_degraded(struct r5conf *conf)
693 int degraded, degraded2;
697 for (i = 0; i < conf->previous_raid_disks; i++) {
698 struct md_rdev *rdev = READ_ONCE(conf->disks[i].rdev);
700 if (rdev && test_bit(Faulty, &rdev->flags))
701 rdev = READ_ONCE(conf->disks[i].replacement);
702 if (!rdev || test_bit(Faulty, &rdev->flags))
704 else if (test_bit(In_sync, &rdev->flags))
707 /* not in-sync or faulty.
708 * If the reshape increases the number of devices,
709 * this is being recovered by the reshape, so
710 * this 'previous' section is not in_sync.
711 * If the number of devices is being reduced however,
712 * the device can only be part of the array if
713 * we are reverting a reshape, so this section will
716 if (conf->raid_disks >= conf->previous_raid_disks)
719 if (conf->raid_disks == conf->previous_raid_disks)
722 for (i = 0; i < conf->raid_disks; i++) {
723 struct md_rdev *rdev = READ_ONCE(conf->disks[i].rdev);
725 if (rdev && test_bit(Faulty, &rdev->flags))
726 rdev = READ_ONCE(conf->disks[i].replacement);
727 if (!rdev || test_bit(Faulty, &rdev->flags))
729 else if (test_bit(In_sync, &rdev->flags))
732 /* not in-sync or faulty.
733 * If reshape increases the number of devices, this
734 * section has already been recovered, else it
735 * almost certainly hasn't.
737 if (conf->raid_disks <= conf->previous_raid_disks)
740 if (degraded2 > degraded)
745 static bool has_failed(struct r5conf *conf)
747 int degraded = conf->mddev->degraded;
749 if (test_bit(MD_BROKEN, &conf->mddev->flags))
752 if (conf->mddev->reshape_position != MaxSector)
753 degraded = raid5_calc_degraded(conf);
755 return degraded > conf->max_degraded;
761 STRIPE_SCHEDULE_AND_RETRY,
766 struct stripe_request_ctx {
767 /* a reference to the last stripe_head for batching */
768 struct stripe_head *batch_last;
770 /* first sector in the request */
771 sector_t first_sector;
773 /* last sector in the request */
774 sector_t last_sector;
777 * bitmap to track stripe sectors that have been added to stripes
778 * add one to account for unaligned requests
780 DECLARE_BITMAP(sectors_to_do, RAID5_MAX_REQ_STRIPES + 1);
782 /* the request had REQ_PREFLUSH, cleared after the first stripe_head */
787 * Block until another thread clears R5_INACTIVE_BLOCKED or
788 * there are fewer than 3/4 the maximum number of active stripes
789 * and there is an inactive stripe available.
791 static bool is_inactive_blocked(struct r5conf *conf, int hash)
793 if (list_empty(conf->inactive_list + hash))
796 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
799 return (atomic_read(&conf->active_stripes) <
800 (conf->max_nr_stripes * 3 / 4));
803 struct stripe_head *raid5_get_active_stripe(struct r5conf *conf,
804 struct stripe_request_ctx *ctx, sector_t sector,
807 struct stripe_head *sh;
808 int hash = stripe_hash_locks_hash(conf, sector);
809 int previous = !!(flags & R5_GAS_PREVIOUS);
811 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
813 spin_lock_irq(conf->hash_locks + hash);
816 if (!(flags & R5_GAS_NOQUIESCE) && conf->quiesce) {
818 * Must release the reference to batch_last before
819 * waiting, on quiesce, otherwise the batch_last will
820 * hold a reference to a stripe and raid5_quiesce()
821 * will deadlock waiting for active_stripes to go to
824 if (ctx && ctx->batch_last) {
825 raid5_release_stripe(ctx->batch_last);
826 ctx->batch_last = NULL;
829 wait_event_lock_irq(conf->wait_for_quiescent,
831 *(conf->hash_locks + hash));
834 sh = find_get_stripe(conf, sector, conf->generation - previous,
839 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
840 sh = get_free_stripe(conf, hash);
842 r5c_check_stripe_cache_usage(conf);
843 init_stripe(sh, sector, previous);
844 atomic_inc(&sh->count);
848 if (!test_bit(R5_DID_ALLOC, &conf->cache_state))
849 set_bit(R5_ALLOC_MORE, &conf->cache_state);
852 if (flags & R5_GAS_NOBLOCK)
855 set_bit(R5_INACTIVE_BLOCKED, &conf->cache_state);
856 r5l_wake_reclaim(conf->log, 0);
858 /* release batch_last before wait to avoid risk of deadlock */
859 if (ctx && ctx->batch_last) {
860 raid5_release_stripe(ctx->batch_last);
861 ctx->batch_last = NULL;
864 wait_event_lock_irq(conf->wait_for_stripe,
865 is_inactive_blocked(conf, hash),
866 *(conf->hash_locks + hash));
867 clear_bit(R5_INACTIVE_BLOCKED, &conf->cache_state);
870 spin_unlock_irq(conf->hash_locks + hash);
874 static bool is_full_stripe_write(struct stripe_head *sh)
876 BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
877 return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
880 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
881 __acquires(&sh1->stripe_lock)
882 __acquires(&sh2->stripe_lock)
885 spin_lock_irq(&sh2->stripe_lock);
886 spin_lock_nested(&sh1->stripe_lock, 1);
888 spin_lock_irq(&sh1->stripe_lock);
889 spin_lock_nested(&sh2->stripe_lock, 1);
893 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
894 __releases(&sh1->stripe_lock)
895 __releases(&sh2->stripe_lock)
897 spin_unlock(&sh1->stripe_lock);
898 spin_unlock_irq(&sh2->stripe_lock);
901 /* Only freshly new full stripe normal write stripe can be added to a batch list */
902 static bool stripe_can_batch(struct stripe_head *sh)
904 struct r5conf *conf = sh->raid_conf;
906 if (raid5_has_log(conf) || raid5_has_ppl(conf))
908 return test_bit(STRIPE_BATCH_READY, &sh->state) &&
909 is_full_stripe_write(sh);
912 /* we only do back search */
913 static void stripe_add_to_batch_list(struct r5conf *conf,
914 struct stripe_head *sh, struct stripe_head *last_sh)
916 struct stripe_head *head;
917 sector_t head_sector, tmp_sec;
921 /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
922 tmp_sec = sh->sector;
923 if (!sector_div(tmp_sec, conf->chunk_sectors))
925 head_sector = sh->sector - RAID5_STRIPE_SECTORS(conf);
927 if (last_sh && head_sector == last_sh->sector) {
929 atomic_inc(&head->count);
931 hash = stripe_hash_locks_hash(conf, head_sector);
932 spin_lock_irq(conf->hash_locks + hash);
933 head = find_get_stripe(conf, head_sector, conf->generation,
935 spin_unlock_irq(conf->hash_locks + hash);
938 if (!stripe_can_batch(head))
942 lock_two_stripes(head, sh);
943 /* clear_batch_ready clear the flag */
944 if (!stripe_can_batch(head) || !stripe_can_batch(sh))
951 while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
953 if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf ||
954 bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite))
957 if (head->batch_head) {
958 spin_lock(&head->batch_head->batch_lock);
959 /* This batch list is already running */
960 if (!stripe_can_batch(head)) {
961 spin_unlock(&head->batch_head->batch_lock);
965 * We must assign batch_head of this stripe within the
966 * batch_lock, otherwise clear_batch_ready of batch head
967 * stripe could clear BATCH_READY bit of this stripe and
968 * this stripe->batch_head doesn't get assigned, which
969 * could confuse clear_batch_ready for this stripe
971 sh->batch_head = head->batch_head;
974 * at this point, head's BATCH_READY could be cleared, but we
975 * can still add the stripe to batch list
977 list_add(&sh->batch_list, &head->batch_list);
978 spin_unlock(&head->batch_head->batch_lock);
980 head->batch_head = head;
981 sh->batch_head = head->batch_head;
982 spin_lock(&head->batch_lock);
983 list_add_tail(&sh->batch_list, &head->batch_list);
984 spin_unlock(&head->batch_lock);
987 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
988 if (atomic_dec_return(&conf->preread_active_stripes)
990 md_wakeup_thread(conf->mddev->thread);
992 if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
993 int seq = sh->bm_seq;
994 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
995 sh->batch_head->bm_seq > seq)
996 seq = sh->batch_head->bm_seq;
997 set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
998 sh->batch_head->bm_seq = seq;
1001 atomic_inc(&sh->count);
1003 unlock_two_stripes(head, sh);
1005 raid5_release_stripe(head);
1008 /* Determine if 'data_offset' or 'new_data_offset' should be used
1009 * in this stripe_head.
1011 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
1013 sector_t progress = conf->reshape_progress;
1014 /* Need a memory barrier to make sure we see the value
1015 * of conf->generation, or ->data_offset that was set before
1016 * reshape_progress was updated.
1019 if (progress == MaxSector)
1021 if (sh->generation == conf->generation - 1)
1023 /* We are in a reshape, and this is a new-generation stripe,
1024 * so use new_data_offset.
1029 static void dispatch_bio_list(struct bio_list *tmp)
1033 while ((bio = bio_list_pop(tmp)))
1034 submit_bio_noacct(bio);
1037 static int cmp_stripe(void *priv, const struct list_head *a,
1038 const struct list_head *b)
1040 const struct r5pending_data *da = list_entry(a,
1041 struct r5pending_data, sibling);
1042 const struct r5pending_data *db = list_entry(b,
1043 struct r5pending_data, sibling);
1044 if (da->sector > db->sector)
1046 if (da->sector < db->sector)
1051 static void dispatch_defer_bios(struct r5conf *conf, int target,
1052 struct bio_list *list)
1054 struct r5pending_data *data;
1055 struct list_head *first, *next = NULL;
1058 if (conf->pending_data_cnt == 0)
1061 list_sort(NULL, &conf->pending_list, cmp_stripe);
1063 first = conf->pending_list.next;
1065 /* temporarily move the head */
1066 if (conf->next_pending_data)
1067 list_move_tail(&conf->pending_list,
1068 &conf->next_pending_data->sibling);
1070 while (!list_empty(&conf->pending_list)) {
1071 data = list_first_entry(&conf->pending_list,
1072 struct r5pending_data, sibling);
1073 if (&data->sibling == first)
1074 first = data->sibling.next;
1075 next = data->sibling.next;
1077 bio_list_merge(list, &data->bios);
1078 list_move(&data->sibling, &conf->free_list);
1083 conf->pending_data_cnt -= cnt;
1084 BUG_ON(conf->pending_data_cnt < 0 || cnt < target);
1086 if (next != &conf->pending_list)
1087 conf->next_pending_data = list_entry(next,
1088 struct r5pending_data, sibling);
1090 conf->next_pending_data = NULL;
1091 /* list isn't empty */
1092 if (first != &conf->pending_list)
1093 list_move_tail(&conf->pending_list, first);
1096 static void flush_deferred_bios(struct r5conf *conf)
1098 struct bio_list tmp = BIO_EMPTY_LIST;
1100 if (conf->pending_data_cnt == 0)
1103 spin_lock(&conf->pending_bios_lock);
1104 dispatch_defer_bios(conf, conf->pending_data_cnt, &tmp);
1105 BUG_ON(conf->pending_data_cnt != 0);
1106 spin_unlock(&conf->pending_bios_lock);
1108 dispatch_bio_list(&tmp);
1111 static void defer_issue_bios(struct r5conf *conf, sector_t sector,
1112 struct bio_list *bios)
1114 struct bio_list tmp = BIO_EMPTY_LIST;
1115 struct r5pending_data *ent;
1117 spin_lock(&conf->pending_bios_lock);
1118 ent = list_first_entry(&conf->free_list, struct r5pending_data,
1120 list_move_tail(&ent->sibling, &conf->pending_list);
1121 ent->sector = sector;
1122 bio_list_init(&ent->bios);
1123 bio_list_merge(&ent->bios, bios);
1124 conf->pending_data_cnt++;
1125 if (conf->pending_data_cnt >= PENDING_IO_MAX)
1126 dispatch_defer_bios(conf, PENDING_IO_ONE_FLUSH, &tmp);
1128 spin_unlock(&conf->pending_bios_lock);
1130 dispatch_bio_list(&tmp);
1134 raid5_end_read_request(struct bio *bi);
1136 raid5_end_write_request(struct bio *bi);
1138 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
1140 struct r5conf *conf = sh->raid_conf;
1141 int i, disks = sh->disks;
1142 struct stripe_head *head_sh = sh;
1143 struct bio_list pending_bios = BIO_EMPTY_LIST;
1149 if (log_stripe(sh, s) == 0)
1152 should_defer = conf->batch_bio_dispatch && conf->group_cnt;
1154 for (i = disks; i--; ) {
1156 blk_opf_t op_flags = 0;
1157 int replace_only = 0;
1158 struct bio *bi, *rbi;
1159 struct md_rdev *rdev, *rrdev = NULL;
1162 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
1164 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
1166 if (test_bit(R5_Discard, &sh->dev[i].flags))
1167 op = REQ_OP_DISCARD;
1168 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
1170 else if (test_and_clear_bit(R5_WantReplace,
1171 &sh->dev[i].flags)) {
1176 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
1177 op_flags |= REQ_SYNC;
1182 rbi = &dev->rreq; /* For writing to replacement */
1184 rdev = conf->disks[i].rdev;
1185 rrdev = conf->disks[i].replacement;
1186 if (op_is_write(op)) {
1190 /* We raced and saw duplicates */
1193 if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
1198 if (rdev && test_bit(Faulty, &rdev->flags))
1201 atomic_inc(&rdev->nr_pending);
1202 if (rrdev && test_bit(Faulty, &rrdev->flags))
1205 atomic_inc(&rrdev->nr_pending);
1207 /* We have already checked bad blocks for reads. Now
1208 * need to check for writes. We never accept write errors
1209 * on the replacement, so we don't to check rrdev.
1211 while (op_is_write(op) && rdev &&
1212 test_bit(WriteErrorSeen, &rdev->flags)) {
1213 int bad = rdev_has_badblock(rdev, sh->sector,
1214 RAID5_STRIPE_SECTORS(conf));
1219 set_bit(BlockedBadBlocks, &rdev->flags);
1220 if (!conf->mddev->external &&
1221 conf->mddev->sb_flags) {
1222 /* It is very unlikely, but we might
1223 * still need to write out the
1224 * bad block log - better give it
1226 md_check_recovery(conf->mddev);
1229 * Because md_wait_for_blocked_rdev
1230 * will dec nr_pending, we must
1231 * increment it first.
1233 atomic_inc(&rdev->nr_pending);
1234 md_wait_for_blocked_rdev(rdev, conf->mddev);
1236 /* Acknowledged bad block - skip the write */
1237 rdev_dec_pending(rdev, conf->mddev);
1243 set_bit(STRIPE_IO_STARTED, &sh->state);
1245 bio_init(bi, rdev->bdev, &dev->vec, 1, op | op_flags);
1246 bi->bi_end_io = op_is_write(op)
1247 ? raid5_end_write_request
1248 : raid5_end_read_request;
1249 bi->bi_private = sh;
1251 pr_debug("%s: for %llu schedule op %d on disc %d\n",
1252 __func__, (unsigned long long)sh->sector,
1254 atomic_inc(&sh->count);
1256 atomic_inc(&head_sh->count);
1257 if (use_new_offset(conf, sh))
1258 bi->bi_iter.bi_sector = (sh->sector
1259 + rdev->new_data_offset);
1261 bi->bi_iter.bi_sector = (sh->sector
1262 + rdev->data_offset);
1263 if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1264 bi->bi_opf |= REQ_NOMERGE;
1266 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1267 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1269 if (!op_is_write(op) &&
1270 test_bit(R5_InJournal, &sh->dev[i].flags))
1272 * issuing read for a page in journal, this
1273 * must be preparing for prexor in rmw; read
1274 * the data into orig_page
1276 sh->dev[i].vec.bv_page = sh->dev[i].orig_page;
1278 sh->dev[i].vec.bv_page = sh->dev[i].page;
1280 bi->bi_io_vec[0].bv_len = RAID5_STRIPE_SIZE(conf);
1281 bi->bi_io_vec[0].bv_offset = sh->dev[i].offset;
1282 bi->bi_iter.bi_size = RAID5_STRIPE_SIZE(conf);
1284 * If this is discard request, set bi_vcnt 0. We don't
1285 * want to confuse SCSI because SCSI will replace payload
1287 if (op == REQ_OP_DISCARD)
1290 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1292 mddev_trace_remap(conf->mddev, bi, sh->dev[i].sector);
1293 if (should_defer && op_is_write(op))
1294 bio_list_add(&pending_bios, bi);
1296 submit_bio_noacct(bi);
1299 set_bit(STRIPE_IO_STARTED, &sh->state);
1301 bio_init(rbi, rrdev->bdev, &dev->rvec, 1, op | op_flags);
1302 BUG_ON(!op_is_write(op));
1303 rbi->bi_end_io = raid5_end_write_request;
1304 rbi->bi_private = sh;
1306 pr_debug("%s: for %llu schedule op %d on "
1307 "replacement disc %d\n",
1308 __func__, (unsigned long long)sh->sector,
1310 atomic_inc(&sh->count);
1312 atomic_inc(&head_sh->count);
1313 if (use_new_offset(conf, sh))
1314 rbi->bi_iter.bi_sector = (sh->sector
1315 + rrdev->new_data_offset);
1317 rbi->bi_iter.bi_sector = (sh->sector
1318 + rrdev->data_offset);
1319 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1320 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1321 sh->dev[i].rvec.bv_page = sh->dev[i].page;
1323 rbi->bi_io_vec[0].bv_len = RAID5_STRIPE_SIZE(conf);
1324 rbi->bi_io_vec[0].bv_offset = sh->dev[i].offset;
1325 rbi->bi_iter.bi_size = RAID5_STRIPE_SIZE(conf);
1327 * If this is discard request, set bi_vcnt 0. We don't
1328 * want to confuse SCSI because SCSI will replace payload
1330 if (op == REQ_OP_DISCARD)
1332 mddev_trace_remap(conf->mddev, rbi, sh->dev[i].sector);
1333 if (should_defer && op_is_write(op))
1334 bio_list_add(&pending_bios, rbi);
1336 submit_bio_noacct(rbi);
1338 if (!rdev && !rrdev) {
1339 pr_debug("skip op %d on disc %d for sector %llu\n",
1340 bi->bi_opf, i, (unsigned long long)sh->sector);
1341 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1342 set_bit(STRIPE_HANDLE, &sh->state);
1345 if (!head_sh->batch_head)
1347 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1353 if (should_defer && !bio_list_empty(&pending_bios))
1354 defer_issue_bios(conf, head_sh->sector, &pending_bios);
1357 static struct dma_async_tx_descriptor *
1358 async_copy_data(int frombio, struct bio *bio, struct page **page,
1359 unsigned int poff, sector_t sector, struct dma_async_tx_descriptor *tx,
1360 struct stripe_head *sh, int no_skipcopy)
1363 struct bvec_iter iter;
1364 struct page *bio_page;
1366 struct async_submit_ctl submit;
1367 enum async_tx_flags flags = 0;
1368 struct r5conf *conf = sh->raid_conf;
1370 if (bio->bi_iter.bi_sector >= sector)
1371 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1373 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1376 flags |= ASYNC_TX_FENCE;
1377 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1379 bio_for_each_segment(bvl, bio, iter) {
1380 int len = bvl.bv_len;
1384 if (page_offset < 0) {
1385 b_offset = -page_offset;
1386 page_offset += b_offset;
1390 if (len > 0 && page_offset + len > RAID5_STRIPE_SIZE(conf))
1391 clen = RAID5_STRIPE_SIZE(conf) - page_offset;
1396 b_offset += bvl.bv_offset;
1397 bio_page = bvl.bv_page;
1399 if (conf->skip_copy &&
1400 b_offset == 0 && page_offset == 0 &&
1401 clen == RAID5_STRIPE_SIZE(conf) &&
1405 tx = async_memcpy(*page, bio_page, page_offset + poff,
1406 b_offset, clen, &submit);
1408 tx = async_memcpy(bio_page, *page, b_offset,
1409 page_offset + poff, clen, &submit);
1411 /* chain the operations */
1412 submit.depend_tx = tx;
1414 if (clen < len) /* hit end of page */
1422 static void ops_complete_biofill(void *stripe_head_ref)
1424 struct stripe_head *sh = stripe_head_ref;
1426 struct r5conf *conf = sh->raid_conf;
1428 pr_debug("%s: stripe %llu\n", __func__,
1429 (unsigned long long)sh->sector);
1431 /* clear completed biofills */
1432 for (i = sh->disks; i--; ) {
1433 struct r5dev *dev = &sh->dev[i];
1435 /* acknowledge completion of a biofill operation */
1436 /* and check if we need to reply to a read request,
1437 * new R5_Wantfill requests are held off until
1438 * !STRIPE_BIOFILL_RUN
1440 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1441 struct bio *rbi, *rbi2;
1446 while (rbi && rbi->bi_iter.bi_sector <
1447 dev->sector + RAID5_STRIPE_SECTORS(conf)) {
1448 rbi2 = r5_next_bio(conf, rbi, dev->sector);
1454 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1456 set_bit(STRIPE_HANDLE, &sh->state);
1457 raid5_release_stripe(sh);
1460 static void ops_run_biofill(struct stripe_head *sh)
1462 struct dma_async_tx_descriptor *tx = NULL;
1463 struct async_submit_ctl submit;
1465 struct r5conf *conf = sh->raid_conf;
1467 BUG_ON(sh->batch_head);
1468 pr_debug("%s: stripe %llu\n", __func__,
1469 (unsigned long long)sh->sector);
1471 for (i = sh->disks; i--; ) {
1472 struct r5dev *dev = &sh->dev[i];
1473 if (test_bit(R5_Wantfill, &dev->flags)) {
1475 spin_lock_irq(&sh->stripe_lock);
1476 dev->read = rbi = dev->toread;
1478 spin_unlock_irq(&sh->stripe_lock);
1479 while (rbi && rbi->bi_iter.bi_sector <
1480 dev->sector + RAID5_STRIPE_SECTORS(conf)) {
1481 tx = async_copy_data(0, rbi, &dev->page,
1483 dev->sector, tx, sh, 0);
1484 rbi = r5_next_bio(conf, rbi, dev->sector);
1489 atomic_inc(&sh->count);
1490 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1491 async_trigger_callback(&submit);
1494 static void mark_target_uptodate(struct stripe_head *sh, int target)
1501 tgt = &sh->dev[target];
1502 set_bit(R5_UPTODATE, &tgt->flags);
1503 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1504 clear_bit(R5_Wantcompute, &tgt->flags);
1507 static void ops_complete_compute(void *stripe_head_ref)
1509 struct stripe_head *sh = stripe_head_ref;
1511 pr_debug("%s: stripe %llu\n", __func__,
1512 (unsigned long long)sh->sector);
1514 /* mark the computed target(s) as uptodate */
1515 mark_target_uptodate(sh, sh->ops.target);
1516 mark_target_uptodate(sh, sh->ops.target2);
1518 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1519 if (sh->check_state == check_state_compute_run)
1520 sh->check_state = check_state_compute_result;
1521 set_bit(STRIPE_HANDLE, &sh->state);
1522 raid5_release_stripe(sh);
1525 /* return a pointer to the address conversion region of the scribble buffer */
1526 static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1528 return percpu->scribble + i * percpu->scribble_obj_size;
1531 /* return a pointer to the address conversion region of the scribble buffer */
1532 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1533 struct raid5_percpu *percpu, int i)
1535 return (void *) (to_addr_page(percpu, i) + sh->disks + 2);
1539 * Return a pointer to record offset address.
1541 static unsigned int *
1542 to_addr_offs(struct stripe_head *sh, struct raid5_percpu *percpu)
1544 return (unsigned int *) (to_addr_conv(sh, percpu, 0) + sh->disks + 2);
1547 static struct dma_async_tx_descriptor *
1548 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1550 int disks = sh->disks;
1551 struct page **xor_srcs = to_addr_page(percpu, 0);
1552 unsigned int *off_srcs = to_addr_offs(sh, percpu);
1553 int target = sh->ops.target;
1554 struct r5dev *tgt = &sh->dev[target];
1555 struct page *xor_dest = tgt->page;
1556 unsigned int off_dest = tgt->offset;
1558 struct dma_async_tx_descriptor *tx;
1559 struct async_submit_ctl submit;
1562 BUG_ON(sh->batch_head);
1564 pr_debug("%s: stripe %llu block: %d\n",
1565 __func__, (unsigned long long)sh->sector, target);
1566 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1568 for (i = disks; i--; ) {
1570 off_srcs[count] = sh->dev[i].offset;
1571 xor_srcs[count++] = sh->dev[i].page;
1575 atomic_inc(&sh->count);
1577 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1578 ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1579 if (unlikely(count == 1))
1580 tx = async_memcpy(xor_dest, xor_srcs[0], off_dest, off_srcs[0],
1581 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1583 tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
1584 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1589 /* set_syndrome_sources - populate source buffers for gen_syndrome
1590 * @srcs - (struct page *) array of size sh->disks
1591 * @offs - (unsigned int) array of offset for each page
1592 * @sh - stripe_head to parse
1594 * Populates srcs in proper layout order for the stripe and returns the
1595 * 'count' of sources to be used in a call to async_gen_syndrome. The P
1596 * destination buffer is recorded in srcs[count] and the Q destination
1597 * is recorded in srcs[count+1]].
1599 static int set_syndrome_sources(struct page **srcs,
1601 struct stripe_head *sh,
1604 int disks = sh->disks;
1605 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1606 int d0_idx = raid6_d0(sh);
1610 for (i = 0; i < disks; i++)
1616 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1617 struct r5dev *dev = &sh->dev[i];
1619 if (i == sh->qd_idx || i == sh->pd_idx ||
1620 (srctype == SYNDROME_SRC_ALL) ||
1621 (srctype == SYNDROME_SRC_WANT_DRAIN &&
1622 (test_bit(R5_Wantdrain, &dev->flags) ||
1623 test_bit(R5_InJournal, &dev->flags))) ||
1624 (srctype == SYNDROME_SRC_WRITTEN &&
1626 test_bit(R5_InJournal, &dev->flags)))) {
1627 if (test_bit(R5_InJournal, &dev->flags))
1628 srcs[slot] = sh->dev[i].orig_page;
1630 srcs[slot] = sh->dev[i].page;
1632 * For R5_InJournal, PAGE_SIZE must be 4KB and will
1633 * not shared page. In that case, dev[i].offset
1636 offs[slot] = sh->dev[i].offset;
1638 i = raid6_next_disk(i, disks);
1639 } while (i != d0_idx);
1641 return syndrome_disks;
1644 static struct dma_async_tx_descriptor *
1645 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1647 int disks = sh->disks;
1648 struct page **blocks = to_addr_page(percpu, 0);
1649 unsigned int *offs = to_addr_offs(sh, percpu);
1651 int qd_idx = sh->qd_idx;
1652 struct dma_async_tx_descriptor *tx;
1653 struct async_submit_ctl submit;
1656 unsigned int dest_off;
1660 BUG_ON(sh->batch_head);
1661 if (sh->ops.target < 0)
1662 target = sh->ops.target2;
1663 else if (sh->ops.target2 < 0)
1664 target = sh->ops.target;
1666 /* we should only have one valid target */
1669 pr_debug("%s: stripe %llu block: %d\n",
1670 __func__, (unsigned long long)sh->sector, target);
1672 tgt = &sh->dev[target];
1673 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1675 dest_off = tgt->offset;
1677 atomic_inc(&sh->count);
1679 if (target == qd_idx) {
1680 count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_ALL);
1681 blocks[count] = NULL; /* regenerating p is not necessary */
1682 BUG_ON(blocks[count+1] != dest); /* q should already be set */
1683 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1684 ops_complete_compute, sh,
1685 to_addr_conv(sh, percpu, 0));
1686 tx = async_gen_syndrome(blocks, offs, count+2,
1687 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1689 /* Compute any data- or p-drive using XOR */
1691 for (i = disks; i-- ; ) {
1692 if (i == target || i == qd_idx)
1694 offs[count] = sh->dev[i].offset;
1695 blocks[count++] = sh->dev[i].page;
1698 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1699 NULL, ops_complete_compute, sh,
1700 to_addr_conv(sh, percpu, 0));
1701 tx = async_xor_offs(dest, dest_off, blocks, offs, count,
1702 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1708 static struct dma_async_tx_descriptor *
1709 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1711 int i, count, disks = sh->disks;
1712 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1713 int d0_idx = raid6_d0(sh);
1714 int faila = -1, failb = -1;
1715 int target = sh->ops.target;
1716 int target2 = sh->ops.target2;
1717 struct r5dev *tgt = &sh->dev[target];
1718 struct r5dev *tgt2 = &sh->dev[target2];
1719 struct dma_async_tx_descriptor *tx;
1720 struct page **blocks = to_addr_page(percpu, 0);
1721 unsigned int *offs = to_addr_offs(sh, percpu);
1722 struct async_submit_ctl submit;
1724 BUG_ON(sh->batch_head);
1725 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1726 __func__, (unsigned long long)sh->sector, target, target2);
1727 BUG_ON(target < 0 || target2 < 0);
1728 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1729 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1731 /* we need to open-code set_syndrome_sources to handle the
1732 * slot number conversion for 'faila' and 'failb'
1734 for (i = 0; i < disks ; i++) {
1741 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1743 offs[slot] = sh->dev[i].offset;
1744 blocks[slot] = sh->dev[i].page;
1750 i = raid6_next_disk(i, disks);
1751 } while (i != d0_idx);
1753 BUG_ON(faila == failb);
1756 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1757 __func__, (unsigned long long)sh->sector, faila, failb);
1759 atomic_inc(&sh->count);
1761 if (failb == syndrome_disks+1) {
1762 /* Q disk is one of the missing disks */
1763 if (faila == syndrome_disks) {
1764 /* Missing P+Q, just recompute */
1765 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1766 ops_complete_compute, sh,
1767 to_addr_conv(sh, percpu, 0));
1768 return async_gen_syndrome(blocks, offs, syndrome_disks+2,
1769 RAID5_STRIPE_SIZE(sh->raid_conf),
1773 unsigned int dest_off;
1775 int qd_idx = sh->qd_idx;
1777 /* Missing D+Q: recompute D from P, then recompute Q */
1778 if (target == qd_idx)
1779 data_target = target2;
1781 data_target = target;
1784 for (i = disks; i-- ; ) {
1785 if (i == data_target || i == qd_idx)
1787 offs[count] = sh->dev[i].offset;
1788 blocks[count++] = sh->dev[i].page;
1790 dest = sh->dev[data_target].page;
1791 dest_off = sh->dev[data_target].offset;
1792 init_async_submit(&submit,
1793 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1795 to_addr_conv(sh, percpu, 0));
1796 tx = async_xor_offs(dest, dest_off, blocks, offs, count,
1797 RAID5_STRIPE_SIZE(sh->raid_conf),
1800 count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_ALL);
1801 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1802 ops_complete_compute, sh,
1803 to_addr_conv(sh, percpu, 0));
1804 return async_gen_syndrome(blocks, offs, count+2,
1805 RAID5_STRIPE_SIZE(sh->raid_conf),
1809 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1810 ops_complete_compute, sh,
1811 to_addr_conv(sh, percpu, 0));
1812 if (failb == syndrome_disks) {
1813 /* We're missing D+P. */
1814 return async_raid6_datap_recov(syndrome_disks+2,
1815 RAID5_STRIPE_SIZE(sh->raid_conf),
1817 blocks, offs, &submit);
1819 /* We're missing D+D. */
1820 return async_raid6_2data_recov(syndrome_disks+2,
1821 RAID5_STRIPE_SIZE(sh->raid_conf),
1823 blocks, offs, &submit);
1828 static void ops_complete_prexor(void *stripe_head_ref)
1830 struct stripe_head *sh = stripe_head_ref;
1832 pr_debug("%s: stripe %llu\n", __func__,
1833 (unsigned long long)sh->sector);
1835 if (r5c_is_writeback(sh->raid_conf->log))
1837 * raid5-cache write back uses orig_page during prexor.
1838 * After prexor, it is time to free orig_page
1840 r5c_release_extra_page(sh);
1843 static struct dma_async_tx_descriptor *
1844 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1845 struct dma_async_tx_descriptor *tx)
1847 int disks = sh->disks;
1848 struct page **xor_srcs = to_addr_page(percpu, 0);
1849 unsigned int *off_srcs = to_addr_offs(sh, percpu);
1850 int count = 0, pd_idx = sh->pd_idx, i;
1851 struct async_submit_ctl submit;
1853 /* existing parity data subtracted */
1854 unsigned int off_dest = off_srcs[count] = sh->dev[pd_idx].offset;
1855 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1857 BUG_ON(sh->batch_head);
1858 pr_debug("%s: stripe %llu\n", __func__,
1859 (unsigned long long)sh->sector);
1861 for (i = disks; i--; ) {
1862 struct r5dev *dev = &sh->dev[i];
1863 /* Only process blocks that are known to be uptodate */
1864 if (test_bit(R5_InJournal, &dev->flags)) {
1866 * For this case, PAGE_SIZE must be equal to 4KB and
1867 * page offset is zero.
1869 off_srcs[count] = dev->offset;
1870 xor_srcs[count++] = dev->orig_page;
1871 } else if (test_bit(R5_Wantdrain, &dev->flags)) {
1872 off_srcs[count] = dev->offset;
1873 xor_srcs[count++] = dev->page;
1877 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1878 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1879 tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
1880 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1885 static struct dma_async_tx_descriptor *
1886 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1887 struct dma_async_tx_descriptor *tx)
1889 struct page **blocks = to_addr_page(percpu, 0);
1890 unsigned int *offs = to_addr_offs(sh, percpu);
1892 struct async_submit_ctl submit;
1894 pr_debug("%s: stripe %llu\n", __func__,
1895 (unsigned long long)sh->sector);
1897 count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_WANT_DRAIN);
1899 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1900 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1901 tx = async_gen_syndrome(blocks, offs, count+2,
1902 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1907 static struct dma_async_tx_descriptor *
1908 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1910 struct r5conf *conf = sh->raid_conf;
1911 int disks = sh->disks;
1913 struct stripe_head *head_sh = sh;
1915 pr_debug("%s: stripe %llu\n", __func__,
1916 (unsigned long long)sh->sector);
1918 for (i = disks; i--; ) {
1923 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1929 * clear R5_InJournal, so when rewriting a page in
1930 * journal, it is not skipped by r5l_log_stripe()
1932 clear_bit(R5_InJournal, &dev->flags);
1933 spin_lock_irq(&sh->stripe_lock);
1934 chosen = dev->towrite;
1935 dev->towrite = NULL;
1936 sh->overwrite_disks = 0;
1937 BUG_ON(dev->written);
1938 wbi = dev->written = chosen;
1939 spin_unlock_irq(&sh->stripe_lock);
1940 WARN_ON(dev->page != dev->orig_page);
1942 while (wbi && wbi->bi_iter.bi_sector <
1943 dev->sector + RAID5_STRIPE_SECTORS(conf)) {
1944 if (wbi->bi_opf & REQ_FUA)
1945 set_bit(R5_WantFUA, &dev->flags);
1946 if (wbi->bi_opf & REQ_SYNC)
1947 set_bit(R5_SyncIO, &dev->flags);
1948 if (bio_op(wbi) == REQ_OP_DISCARD)
1949 set_bit(R5_Discard, &dev->flags);
1951 tx = async_copy_data(1, wbi, &dev->page,
1953 dev->sector, tx, sh,
1954 r5c_is_writeback(conf->log));
1955 if (dev->page != dev->orig_page &&
1956 !r5c_is_writeback(conf->log)) {
1957 set_bit(R5_SkipCopy, &dev->flags);
1958 clear_bit(R5_UPTODATE, &dev->flags);
1959 clear_bit(R5_OVERWRITE, &dev->flags);
1962 wbi = r5_next_bio(conf, wbi, dev->sector);
1965 if (head_sh->batch_head) {
1966 sh = list_first_entry(&sh->batch_list,
1979 static void ops_complete_reconstruct(void *stripe_head_ref)
1981 struct stripe_head *sh = stripe_head_ref;
1982 int disks = sh->disks;
1983 int pd_idx = sh->pd_idx;
1984 int qd_idx = sh->qd_idx;
1986 bool fua = false, sync = false, discard = false;
1988 pr_debug("%s: stripe %llu\n", __func__,
1989 (unsigned long long)sh->sector);
1991 for (i = disks; i--; ) {
1992 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1993 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1994 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1997 for (i = disks; i--; ) {
1998 struct r5dev *dev = &sh->dev[i];
2000 if (dev->written || i == pd_idx || i == qd_idx) {
2001 if (!discard && !test_bit(R5_SkipCopy, &dev->flags)) {
2002 set_bit(R5_UPTODATE, &dev->flags);
2003 if (test_bit(STRIPE_EXPAND_READY, &sh->state))
2004 set_bit(R5_Expanded, &dev->flags);
2007 set_bit(R5_WantFUA, &dev->flags);
2009 set_bit(R5_SyncIO, &dev->flags);
2013 if (sh->reconstruct_state == reconstruct_state_drain_run)
2014 sh->reconstruct_state = reconstruct_state_drain_result;
2015 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
2016 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
2018 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
2019 sh->reconstruct_state = reconstruct_state_result;
2022 set_bit(STRIPE_HANDLE, &sh->state);
2023 raid5_release_stripe(sh);
2027 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
2028 struct dma_async_tx_descriptor *tx)
2030 int disks = sh->disks;
2031 struct page **xor_srcs;
2032 unsigned int *off_srcs;
2033 struct async_submit_ctl submit;
2034 int count, pd_idx = sh->pd_idx, i;
2035 struct page *xor_dest;
2036 unsigned int off_dest;
2038 unsigned long flags;
2040 struct stripe_head *head_sh = sh;
2043 pr_debug("%s: stripe %llu\n", __func__,
2044 (unsigned long long)sh->sector);
2046 for (i = 0; i < sh->disks; i++) {
2049 if (!test_bit(R5_Discard, &sh->dev[i].flags))
2052 if (i >= sh->disks) {
2053 atomic_inc(&sh->count);
2054 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
2055 ops_complete_reconstruct(sh);
2060 xor_srcs = to_addr_page(percpu, j);
2061 off_srcs = to_addr_offs(sh, percpu);
2062 /* check if prexor is active which means only process blocks
2063 * that are part of a read-modify-write (written)
2065 if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
2067 off_dest = off_srcs[count] = sh->dev[pd_idx].offset;
2068 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
2069 for (i = disks; i--; ) {
2070 struct r5dev *dev = &sh->dev[i];
2071 if (head_sh->dev[i].written ||
2072 test_bit(R5_InJournal, &head_sh->dev[i].flags)) {
2073 off_srcs[count] = dev->offset;
2074 xor_srcs[count++] = dev->page;
2078 xor_dest = sh->dev[pd_idx].page;
2079 off_dest = sh->dev[pd_idx].offset;
2080 for (i = disks; i--; ) {
2081 struct r5dev *dev = &sh->dev[i];
2083 off_srcs[count] = dev->offset;
2084 xor_srcs[count++] = dev->page;
2089 /* 1/ if we prexor'd then the dest is reused as a source
2090 * 2/ if we did not prexor then we are redoing the parity
2091 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
2092 * for the synchronous xor case
2094 last_stripe = !head_sh->batch_head ||
2095 list_first_entry(&sh->batch_list,
2096 struct stripe_head, batch_list) == head_sh;
2098 flags = ASYNC_TX_ACK |
2099 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
2101 atomic_inc(&head_sh->count);
2102 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
2103 to_addr_conv(sh, percpu, j));
2105 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
2106 init_async_submit(&submit, flags, tx, NULL, NULL,
2107 to_addr_conv(sh, percpu, j));
2110 if (unlikely(count == 1))
2111 tx = async_memcpy(xor_dest, xor_srcs[0], off_dest, off_srcs[0],
2112 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
2114 tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
2115 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
2118 sh = list_first_entry(&sh->batch_list, struct stripe_head,
2125 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
2126 struct dma_async_tx_descriptor *tx)
2128 struct async_submit_ctl submit;
2129 struct page **blocks;
2131 int count, i, j = 0;
2132 struct stripe_head *head_sh = sh;
2135 unsigned long txflags;
2137 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
2139 for (i = 0; i < sh->disks; i++) {
2140 if (sh->pd_idx == i || sh->qd_idx == i)
2142 if (!test_bit(R5_Discard, &sh->dev[i].flags))
2145 if (i >= sh->disks) {
2146 atomic_inc(&sh->count);
2147 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
2148 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
2149 ops_complete_reconstruct(sh);
2154 blocks = to_addr_page(percpu, j);
2155 offs = to_addr_offs(sh, percpu);
2157 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
2158 synflags = SYNDROME_SRC_WRITTEN;
2159 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
2161 synflags = SYNDROME_SRC_ALL;
2162 txflags = ASYNC_TX_ACK;
2165 count = set_syndrome_sources(blocks, offs, sh, synflags);
2166 last_stripe = !head_sh->batch_head ||
2167 list_first_entry(&sh->batch_list,
2168 struct stripe_head, batch_list) == head_sh;
2171 atomic_inc(&head_sh->count);
2172 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
2173 head_sh, to_addr_conv(sh, percpu, j));
2175 init_async_submit(&submit, 0, tx, NULL, NULL,
2176 to_addr_conv(sh, percpu, j));
2177 tx = async_gen_syndrome(blocks, offs, count+2,
2178 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
2181 sh = list_first_entry(&sh->batch_list, struct stripe_head,
2187 static void ops_complete_check(void *stripe_head_ref)
2189 struct stripe_head *sh = stripe_head_ref;
2191 pr_debug("%s: stripe %llu\n", __func__,
2192 (unsigned long long)sh->sector);
2194 sh->check_state = check_state_check_result;
2195 set_bit(STRIPE_HANDLE, &sh->state);
2196 raid5_release_stripe(sh);
2199 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
2201 int disks = sh->disks;
2202 int pd_idx = sh->pd_idx;
2203 int qd_idx = sh->qd_idx;
2204 struct page *xor_dest;
2205 unsigned int off_dest;
2206 struct page **xor_srcs = to_addr_page(percpu, 0);
2207 unsigned int *off_srcs = to_addr_offs(sh, percpu);
2208 struct dma_async_tx_descriptor *tx;
2209 struct async_submit_ctl submit;
2213 pr_debug("%s: stripe %llu\n", __func__,
2214 (unsigned long long)sh->sector);
2216 BUG_ON(sh->batch_head);
2218 xor_dest = sh->dev[pd_idx].page;
2219 off_dest = sh->dev[pd_idx].offset;
2220 off_srcs[count] = off_dest;
2221 xor_srcs[count++] = xor_dest;
2222 for (i = disks; i--; ) {
2223 if (i == pd_idx || i == qd_idx)
2225 off_srcs[count] = sh->dev[i].offset;
2226 xor_srcs[count++] = sh->dev[i].page;
2229 init_async_submit(&submit, 0, NULL, NULL, NULL,
2230 to_addr_conv(sh, percpu, 0));
2231 tx = async_xor_val_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
2232 RAID5_STRIPE_SIZE(sh->raid_conf),
2233 &sh->ops.zero_sum_result, &submit);
2235 atomic_inc(&sh->count);
2236 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
2237 tx = async_trigger_callback(&submit);
2240 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
2242 struct page **srcs = to_addr_page(percpu, 0);
2243 unsigned int *offs = to_addr_offs(sh, percpu);
2244 struct async_submit_ctl submit;
2247 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
2248 (unsigned long long)sh->sector, checkp);
2250 BUG_ON(sh->batch_head);
2251 count = set_syndrome_sources(srcs, offs, sh, SYNDROME_SRC_ALL);
2255 atomic_inc(&sh->count);
2256 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
2257 sh, to_addr_conv(sh, percpu, 0));
2258 async_syndrome_val(srcs, offs, count+2,
2259 RAID5_STRIPE_SIZE(sh->raid_conf),
2260 &sh->ops.zero_sum_result, percpu->spare_page, 0, &submit);
2263 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
2265 int overlap_clear = 0, i, disks = sh->disks;
2266 struct dma_async_tx_descriptor *tx = NULL;
2267 struct r5conf *conf = sh->raid_conf;
2268 int level = conf->level;
2269 struct raid5_percpu *percpu;
2271 local_lock(&conf->percpu->lock);
2272 percpu = this_cpu_ptr(conf->percpu);
2273 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
2274 ops_run_biofill(sh);
2278 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
2280 tx = ops_run_compute5(sh, percpu);
2282 if (sh->ops.target2 < 0 || sh->ops.target < 0)
2283 tx = ops_run_compute6_1(sh, percpu);
2285 tx = ops_run_compute6_2(sh, percpu);
2287 /* terminate the chain if reconstruct is not set to be run */
2288 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
2292 if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
2294 tx = ops_run_prexor5(sh, percpu, tx);
2296 tx = ops_run_prexor6(sh, percpu, tx);
2299 if (test_bit(STRIPE_OP_PARTIAL_PARITY, &ops_request))
2300 tx = ops_run_partial_parity(sh, percpu, tx);
2302 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
2303 tx = ops_run_biodrain(sh, tx);
2307 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
2309 ops_run_reconstruct5(sh, percpu, tx);
2311 ops_run_reconstruct6(sh, percpu, tx);
2314 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
2315 if (sh->check_state == check_state_run)
2316 ops_run_check_p(sh, percpu);
2317 else if (sh->check_state == check_state_run_q)
2318 ops_run_check_pq(sh, percpu, 0);
2319 else if (sh->check_state == check_state_run_pq)
2320 ops_run_check_pq(sh, percpu, 1);
2325 if (overlap_clear && !sh->batch_head) {
2326 for (i = disks; i--; ) {
2327 struct r5dev *dev = &sh->dev[i];
2328 if (test_and_clear_bit(R5_Overlap, &dev->flags))
2329 wake_up_bit(&dev->flags, R5_Overlap);
2332 local_unlock(&conf->percpu->lock);
2335 static void free_stripe(struct kmem_cache *sc, struct stripe_head *sh)
2337 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2341 __free_page(sh->ppl_page);
2342 kmem_cache_free(sc, sh);
2345 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp,
2346 int disks, struct r5conf *conf)
2348 struct stripe_head *sh;
2350 sh = kmem_cache_zalloc(sc, gfp);
2352 spin_lock_init(&sh->stripe_lock);
2353 spin_lock_init(&sh->batch_lock);
2354 INIT_LIST_HEAD(&sh->batch_list);
2355 INIT_LIST_HEAD(&sh->lru);
2356 INIT_LIST_HEAD(&sh->r5c);
2357 INIT_LIST_HEAD(&sh->log_list);
2358 atomic_set(&sh->count, 1);
2359 sh->raid_conf = conf;
2360 sh->log_start = MaxSector;
2362 if (raid5_has_ppl(conf)) {
2363 sh->ppl_page = alloc_page(gfp);
2364 if (!sh->ppl_page) {
2365 free_stripe(sc, sh);
2369 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2370 if (init_stripe_shared_pages(sh, conf, disks)) {
2371 free_stripe(sc, sh);
2378 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
2380 struct stripe_head *sh;
2382 sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size, conf);
2386 if (grow_buffers(sh, gfp)) {
2388 free_stripe(conf->slab_cache, sh);
2391 sh->hash_lock_index =
2392 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2393 /* we just created an active stripe so... */
2394 atomic_inc(&conf->active_stripes);
2396 raid5_release_stripe(sh);
2397 WRITE_ONCE(conf->max_nr_stripes, conf->max_nr_stripes + 1);
2401 static int grow_stripes(struct r5conf *conf, int num)
2403 struct kmem_cache *sc;
2404 size_t namelen = sizeof(conf->cache_name[0]);
2405 int devs = max(conf->raid_disks, conf->previous_raid_disks);
2407 if (mddev_is_dm(conf->mddev))
2408 snprintf(conf->cache_name[0], namelen,
2409 "raid%d-%p", conf->level, conf->mddev);
2411 snprintf(conf->cache_name[0], namelen,
2412 "raid%d-%s", conf->level, mdname(conf->mddev));
2413 snprintf(conf->cache_name[1], namelen, "%.27s-alt", conf->cache_name[0]);
2415 conf->active_name = 0;
2416 sc = kmem_cache_create(conf->cache_name[conf->active_name],
2417 struct_size_t(struct stripe_head, dev, devs),
2421 conf->slab_cache = sc;
2422 conf->pool_size = devs;
2424 if (!grow_one_stripe(conf, GFP_KERNEL))
2431 * scribble_alloc - allocate percpu scribble buffer for required size
2432 * of the scribble region
2433 * @percpu: from for_each_present_cpu() of the caller
2434 * @num: total number of disks in the array
2435 * @cnt: scribble objs count for required size of the scribble region
2437 * The scribble buffer size must be enough to contain:
2438 * 1/ a struct page pointer for each device in the array +2
2439 * 2/ room to convert each entry in (1) to its corresponding dma
2440 * (dma_map_page()) or page (page_address()) address.
2442 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2443 * calculate over all devices (not just the data blocks), using zeros in place
2444 * of the P and Q blocks.
2446 static int scribble_alloc(struct raid5_percpu *percpu,
2450 sizeof(struct page *) * (num + 2) +
2451 sizeof(addr_conv_t) * (num + 2) +
2452 sizeof(unsigned int) * (num + 2);
2456 * If here is in raid array suspend context, it is in memalloc noio
2457 * context as well, there is no potential recursive memory reclaim
2458 * I/Os with the GFP_KERNEL flag.
2460 scribble = kvmalloc_array(cnt, obj_size, GFP_KERNEL);
2464 kvfree(percpu->scribble);
2466 percpu->scribble = scribble;
2467 percpu->scribble_obj_size = obj_size;
2471 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2477 if (conf->scribble_disks >= new_disks &&
2478 conf->scribble_sectors >= new_sectors)
2481 raid5_quiesce(conf->mddev, true);
2484 for_each_present_cpu(cpu) {
2485 struct raid5_percpu *percpu;
2487 percpu = per_cpu_ptr(conf->percpu, cpu);
2488 err = scribble_alloc(percpu, new_disks,
2489 new_sectors / RAID5_STRIPE_SECTORS(conf));
2495 raid5_quiesce(conf->mddev, false);
2498 conf->scribble_disks = new_disks;
2499 conf->scribble_sectors = new_sectors;
2504 static int resize_stripes(struct r5conf *conf, int newsize)
2506 /* Make all the stripes able to hold 'newsize' devices.
2507 * New slots in each stripe get 'page' set to a new page.
2509 * This happens in stages:
2510 * 1/ create a new kmem_cache and allocate the required number of
2512 * 2/ gather all the old stripe_heads and transfer the pages across
2513 * to the new stripe_heads. This will have the side effect of
2514 * freezing the array as once all stripe_heads have been collected,
2515 * no IO will be possible. Old stripe heads are freed once their
2516 * pages have been transferred over, and the old kmem_cache is
2517 * freed when all stripes are done.
2518 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
2519 * we simple return a failure status - no need to clean anything up.
2520 * 4/ allocate new pages for the new slots in the new stripe_heads.
2521 * If this fails, we don't bother trying the shrink the
2522 * stripe_heads down again, we just leave them as they are.
2523 * As each stripe_head is processed the new one is released into
2526 * Once step2 is started, we cannot afford to wait for a write,
2527 * so we use GFP_NOIO allocations.
2529 struct stripe_head *osh, *nsh;
2530 LIST_HEAD(newstripes);
2531 struct disk_info *ndisks;
2533 struct kmem_cache *sc;
2537 md_allow_write(conf->mddev);
2540 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2541 struct_size_t(struct stripe_head, dev, newsize),
2546 /* Need to ensure auto-resizing doesn't interfere */
2547 mutex_lock(&conf->cache_size_mutex);
2549 for (i = conf->max_nr_stripes; i; i--) {
2550 nsh = alloc_stripe(sc, GFP_KERNEL, newsize, conf);
2554 list_add(&nsh->lru, &newstripes);
2557 /* didn't get enough, give up */
2558 while (!list_empty(&newstripes)) {
2559 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2560 list_del(&nsh->lru);
2561 free_stripe(sc, nsh);
2563 kmem_cache_destroy(sc);
2564 mutex_unlock(&conf->cache_size_mutex);
2567 /* Step 2 - Must use GFP_NOIO now.
2568 * OK, we have enough stripes, start collecting inactive
2569 * stripes and copying them over
2573 list_for_each_entry(nsh, &newstripes, lru) {
2574 lock_device_hash_lock(conf, hash);
2575 wait_event_cmd(conf->wait_for_stripe,
2576 !list_empty(conf->inactive_list + hash),
2577 unlock_device_hash_lock(conf, hash),
2578 lock_device_hash_lock(conf, hash));
2579 osh = get_free_stripe(conf, hash);
2580 unlock_device_hash_lock(conf, hash);
2582 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2583 for (i = 0; i < osh->nr_pages; i++) {
2584 nsh->pages[i] = osh->pages[i];
2585 osh->pages[i] = NULL;
2588 for(i=0; i<conf->pool_size; i++) {
2589 nsh->dev[i].page = osh->dev[i].page;
2590 nsh->dev[i].orig_page = osh->dev[i].page;
2591 nsh->dev[i].offset = osh->dev[i].offset;
2593 nsh->hash_lock_index = hash;
2594 free_stripe(conf->slab_cache, osh);
2596 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2597 !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2602 kmem_cache_destroy(conf->slab_cache);
2605 * At this point, we are holding all the stripes so the array
2606 * is completely stalled, so now is a good time to resize
2607 * conf->disks and the scribble region
2609 ndisks = kcalloc(newsize, sizeof(struct disk_info), GFP_NOIO);
2611 for (i = 0; i < conf->pool_size; i++)
2612 ndisks[i] = conf->disks[i];
2614 for (i = conf->pool_size; i < newsize; i++) {
2615 ndisks[i].extra_page = alloc_page(GFP_NOIO);
2616 if (!ndisks[i].extra_page)
2621 for (i = conf->pool_size; i < newsize; i++)
2622 if (ndisks[i].extra_page)
2623 put_page(ndisks[i].extra_page);
2627 conf->disks = ndisks;
2632 conf->slab_cache = sc;
2633 conf->active_name = 1-conf->active_name;
2635 /* Step 4, return new stripes to service */
2636 while(!list_empty(&newstripes)) {
2637 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2638 list_del_init(&nsh->lru);
2640 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2641 for (i = 0; i < nsh->nr_pages; i++) {
2644 nsh->pages[i] = alloc_page(GFP_NOIO);
2649 for (i = conf->raid_disks; i < newsize; i++) {
2650 if (nsh->dev[i].page)
2652 nsh->dev[i].page = raid5_get_dev_page(nsh, i);
2653 nsh->dev[i].orig_page = nsh->dev[i].page;
2654 nsh->dev[i].offset = raid5_get_page_offset(nsh, i);
2657 for (i=conf->raid_disks; i < newsize; i++)
2658 if (nsh->dev[i].page == NULL) {
2659 struct page *p = alloc_page(GFP_NOIO);
2660 nsh->dev[i].page = p;
2661 nsh->dev[i].orig_page = p;
2662 nsh->dev[i].offset = 0;
2667 raid5_release_stripe(nsh);
2669 /* critical section pass, GFP_NOIO no longer needed */
2672 conf->pool_size = newsize;
2673 mutex_unlock(&conf->cache_size_mutex);
2678 static int drop_one_stripe(struct r5conf *conf)
2680 struct stripe_head *sh;
2681 int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
2683 spin_lock_irq(conf->hash_locks + hash);
2684 sh = get_free_stripe(conf, hash);
2685 spin_unlock_irq(conf->hash_locks + hash);
2688 BUG_ON(atomic_read(&sh->count));
2690 free_stripe(conf->slab_cache, sh);
2691 atomic_dec(&conf->active_stripes);
2692 WRITE_ONCE(conf->max_nr_stripes, conf->max_nr_stripes - 1);
2696 static void shrink_stripes(struct r5conf *conf)
2698 while (conf->max_nr_stripes &&
2699 drop_one_stripe(conf))
2702 kmem_cache_destroy(conf->slab_cache);
2703 conf->slab_cache = NULL;
2706 static void raid5_end_read_request(struct bio * bi)
2708 struct stripe_head *sh = bi->bi_private;
2709 struct r5conf *conf = sh->raid_conf;
2710 int disks = sh->disks, i;
2711 struct md_rdev *rdev = NULL;
2714 for (i=0 ; i<disks; i++)
2715 if (bi == &sh->dev[i].req)
2718 pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
2719 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2725 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2726 /* If replacement finished while this request was outstanding,
2727 * 'replacement' might be NULL already.
2728 * In that case it moved down to 'rdev'.
2729 * rdev is not removed until all requests are finished.
2731 rdev = conf->disks[i].replacement;
2733 rdev = conf->disks[i].rdev;
2735 if (use_new_offset(conf, sh))
2736 s = sh->sector + rdev->new_data_offset;
2738 s = sh->sector + rdev->data_offset;
2739 if (!bi->bi_status) {
2740 set_bit(R5_UPTODATE, &sh->dev[i].flags);
2741 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2742 /* Note that this cannot happen on a
2743 * replacement device. We just fail those on
2746 pr_info_ratelimited(
2747 "md/raid:%s: read error corrected (%lu sectors at %llu on %pg)\n",
2748 mdname(conf->mddev), RAID5_STRIPE_SECTORS(conf),
2749 (unsigned long long)s,
2751 atomic_add(RAID5_STRIPE_SECTORS(conf), &rdev->corrected_errors);
2752 clear_bit(R5_ReadError, &sh->dev[i].flags);
2753 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2754 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2755 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2757 if (test_bit(R5_InJournal, &sh->dev[i].flags))
2759 * end read for a page in journal, this
2760 * must be preparing for prexor in rmw
2762 set_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2764 if (atomic_read(&rdev->read_errors))
2765 atomic_set(&rdev->read_errors, 0);
2770 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2771 if (!(bi->bi_status == BLK_STS_PROTECTION))
2772 atomic_inc(&rdev->read_errors);
2773 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2774 pr_warn_ratelimited(
2775 "md/raid:%s: read error on replacement device (sector %llu on %pg).\n",
2776 mdname(conf->mddev),
2777 (unsigned long long)s,
2779 else if (conf->mddev->degraded >= conf->max_degraded) {
2781 pr_warn_ratelimited(
2782 "md/raid:%s: read error not correctable (sector %llu on %pg).\n",
2783 mdname(conf->mddev),
2784 (unsigned long long)s,
2786 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2789 pr_warn_ratelimited(
2790 "md/raid:%s: read error NOT corrected!! (sector %llu on %pg).\n",
2791 mdname(conf->mddev),
2792 (unsigned long long)s,
2794 } else if (atomic_read(&rdev->read_errors)
2795 > conf->max_nr_stripes) {
2796 if (!test_bit(Faulty, &rdev->flags)) {
2797 pr_warn("md/raid:%s: %d read_errors > %d stripes\n",
2798 mdname(conf->mddev),
2799 atomic_read(&rdev->read_errors),
2800 conf->max_nr_stripes);
2801 pr_warn("md/raid:%s: Too many read errors, failing device %pg.\n",
2802 mdname(conf->mddev), rdev->bdev);
2806 if (set_bad && test_bit(In_sync, &rdev->flags)
2807 && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2810 if (sh->qd_idx >= 0 && sh->pd_idx == i)
2811 set_bit(R5_ReadError, &sh->dev[i].flags);
2812 else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2813 set_bit(R5_ReadError, &sh->dev[i].flags);
2814 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2816 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2818 clear_bit(R5_ReadError, &sh->dev[i].flags);
2819 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2821 && test_bit(In_sync, &rdev->flags)
2822 && rdev_set_badblocks(
2823 rdev, sh->sector, RAID5_STRIPE_SECTORS(conf), 0)))
2824 md_error(conf->mddev, rdev);
2827 rdev_dec_pending(rdev, conf->mddev);
2829 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2830 set_bit(STRIPE_HANDLE, &sh->state);
2831 raid5_release_stripe(sh);
2834 static void raid5_end_write_request(struct bio *bi)
2836 struct stripe_head *sh = bi->bi_private;
2837 struct r5conf *conf = sh->raid_conf;
2838 int disks = sh->disks, i;
2839 struct md_rdev *rdev;
2840 int replacement = 0;
2842 for (i = 0 ; i < disks; i++) {
2843 if (bi == &sh->dev[i].req) {
2844 rdev = conf->disks[i].rdev;
2847 if (bi == &sh->dev[i].rreq) {
2848 rdev = conf->disks[i].replacement;
2852 /* rdev was removed and 'replacement'
2853 * replaced it. rdev is not removed
2854 * until all requests are finished.
2856 rdev = conf->disks[i].rdev;
2860 pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
2861 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2870 md_error(conf->mddev, rdev);
2871 else if (rdev_has_badblock(rdev, sh->sector,
2872 RAID5_STRIPE_SECTORS(conf)))
2873 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2875 if (bi->bi_status) {
2876 set_bit(WriteErrorSeen, &rdev->flags);
2877 set_bit(R5_WriteError, &sh->dev[i].flags);
2878 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2879 set_bit(MD_RECOVERY_NEEDED,
2880 &rdev->mddev->recovery);
2881 } else if (rdev_has_badblock(rdev, sh->sector,
2882 RAID5_STRIPE_SECTORS(conf))) {
2883 set_bit(R5_MadeGood, &sh->dev[i].flags);
2884 if (test_bit(R5_ReadError, &sh->dev[i].flags))
2885 /* That was a successful write so make
2886 * sure it looks like we already did
2889 set_bit(R5_ReWrite, &sh->dev[i].flags);
2892 rdev_dec_pending(rdev, conf->mddev);
2894 if (sh->batch_head && bi->bi_status && !replacement)
2895 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2898 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2899 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2900 set_bit(STRIPE_HANDLE, &sh->state);
2902 if (sh->batch_head && sh != sh->batch_head)
2903 raid5_release_stripe(sh->batch_head);
2904 raid5_release_stripe(sh);
2907 static void raid5_error(struct mddev *mddev, struct md_rdev *rdev)
2909 struct r5conf *conf = mddev->private;
2910 unsigned long flags;
2911 pr_debug("raid456: error called\n");
2913 pr_crit("md/raid:%s: Disk failure on %pg, disabling device.\n",
2914 mdname(mddev), rdev->bdev);
2916 spin_lock_irqsave(&conf->device_lock, flags);
2917 set_bit(Faulty, &rdev->flags);
2918 clear_bit(In_sync, &rdev->flags);
2919 mddev->degraded = raid5_calc_degraded(conf);
2921 if (has_failed(conf)) {
2922 set_bit(MD_BROKEN, &conf->mddev->flags);
2923 conf->recovery_disabled = mddev->recovery_disabled;
2925 pr_crit("md/raid:%s: Cannot continue operation (%d/%d failed).\n",
2926 mdname(mddev), mddev->degraded, conf->raid_disks);
2928 pr_crit("md/raid:%s: Operation continuing on %d devices.\n",
2929 mdname(mddev), conf->raid_disks - mddev->degraded);
2932 spin_unlock_irqrestore(&conf->device_lock, flags);
2933 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2935 set_bit(Blocked, &rdev->flags);
2936 set_mask_bits(&mddev->sb_flags, 0,
2937 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
2938 r5c_update_on_rdev_error(mddev, rdev);
2942 * Input: a 'big' sector number,
2943 * Output: index of the data and parity disk, and the sector # in them.
2945 sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2946 int previous, int *dd_idx,
2947 struct stripe_head *sh)
2949 sector_t stripe, stripe2;
2950 sector_t chunk_number;
2951 unsigned int chunk_offset;
2954 sector_t new_sector;
2955 int algorithm = previous ? conf->prev_algo
2957 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2958 : conf->chunk_sectors;
2959 int raid_disks = previous ? conf->previous_raid_disks
2961 int data_disks = raid_disks - conf->max_degraded;
2963 /* First compute the information on this sector */
2966 * Compute the chunk number and the sector offset inside the chunk
2968 chunk_offset = sector_div(r_sector, sectors_per_chunk);
2969 chunk_number = r_sector;
2972 * Compute the stripe number
2974 stripe = chunk_number;
2975 *dd_idx = sector_div(stripe, data_disks);
2978 * Select the parity disk based on the user selected algorithm.
2980 pd_idx = qd_idx = -1;
2981 switch(conf->level) {
2983 pd_idx = data_disks;
2986 switch (algorithm) {
2987 case ALGORITHM_LEFT_ASYMMETRIC:
2988 pd_idx = data_disks - sector_div(stripe2, raid_disks);
2989 if (*dd_idx >= pd_idx)
2992 case ALGORITHM_RIGHT_ASYMMETRIC:
2993 pd_idx = sector_div(stripe2, raid_disks);
2994 if (*dd_idx >= pd_idx)
2997 case ALGORITHM_LEFT_SYMMETRIC:
2998 pd_idx = data_disks - sector_div(stripe2, raid_disks);
2999 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
3001 case ALGORITHM_RIGHT_SYMMETRIC:
3002 pd_idx = sector_div(stripe2, raid_disks);
3003 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
3005 case ALGORITHM_PARITY_0:
3009 case ALGORITHM_PARITY_N:
3010 pd_idx = data_disks;
3018 switch (algorithm) {
3019 case ALGORITHM_LEFT_ASYMMETRIC:
3020 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
3021 qd_idx = pd_idx + 1;
3022 if (pd_idx == raid_disks-1) {
3023 (*dd_idx)++; /* Q D D D P */
3025 } else if (*dd_idx >= pd_idx)
3026 (*dd_idx) += 2; /* D D P Q D */
3028 case ALGORITHM_RIGHT_ASYMMETRIC:
3029 pd_idx = sector_div(stripe2, raid_disks);
3030 qd_idx = pd_idx + 1;
3031 if (pd_idx == raid_disks-1) {
3032 (*dd_idx)++; /* Q D D D P */
3034 } else if (*dd_idx >= pd_idx)
3035 (*dd_idx) += 2; /* D D P Q D */
3037 case ALGORITHM_LEFT_SYMMETRIC:
3038 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
3039 qd_idx = (pd_idx + 1) % raid_disks;
3040 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
3042 case ALGORITHM_RIGHT_SYMMETRIC:
3043 pd_idx = sector_div(stripe2, raid_disks);
3044 qd_idx = (pd_idx + 1) % raid_disks;
3045 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
3048 case ALGORITHM_PARITY_0:
3053 case ALGORITHM_PARITY_N:
3054 pd_idx = data_disks;
3055 qd_idx = data_disks + 1;
3058 case ALGORITHM_ROTATING_ZERO_RESTART:
3059 /* Exactly the same as RIGHT_ASYMMETRIC, but or
3060 * of blocks for computing Q is different.
3062 pd_idx = sector_div(stripe2, raid_disks);
3063 qd_idx = pd_idx + 1;
3064 if (pd_idx == raid_disks-1) {
3065 (*dd_idx)++; /* Q D D D P */
3067 } else if (*dd_idx >= pd_idx)
3068 (*dd_idx) += 2; /* D D P Q D */
3072 case ALGORITHM_ROTATING_N_RESTART:
3073 /* Same a left_asymmetric, by first stripe is
3074 * D D D P Q rather than
3078 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
3079 qd_idx = pd_idx + 1;
3080 if (pd_idx == raid_disks-1) {
3081 (*dd_idx)++; /* Q D D D P */
3083 } else if (*dd_idx >= pd_idx)
3084 (*dd_idx) += 2; /* D D P Q D */
3088 case ALGORITHM_ROTATING_N_CONTINUE:
3089 /* Same as left_symmetric but Q is before P */
3090 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
3091 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
3092 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
3096 case ALGORITHM_LEFT_ASYMMETRIC_6:
3097 /* RAID5 left_asymmetric, with Q on last device */
3098 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
3099 if (*dd_idx >= pd_idx)
3101 qd_idx = raid_disks - 1;
3104 case ALGORITHM_RIGHT_ASYMMETRIC_6:
3105 pd_idx = sector_div(stripe2, raid_disks-1);
3106 if (*dd_idx >= pd_idx)
3108 qd_idx = raid_disks - 1;
3111 case ALGORITHM_LEFT_SYMMETRIC_6:
3112 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
3113 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
3114 qd_idx = raid_disks - 1;
3117 case ALGORITHM_RIGHT_SYMMETRIC_6:
3118 pd_idx = sector_div(stripe2, raid_disks-1);
3119 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
3120 qd_idx = raid_disks - 1;
3123 case ALGORITHM_PARITY_0_6:
3126 qd_idx = raid_disks - 1;
3136 sh->pd_idx = pd_idx;
3137 sh->qd_idx = qd_idx;
3138 sh->ddf_layout = ddf_layout;
3141 * Finally, compute the new sector number
3143 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
3147 sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
3149 struct r5conf *conf = sh->raid_conf;
3150 int raid_disks = sh->disks;
3151 int data_disks = raid_disks - conf->max_degraded;
3152 sector_t new_sector = sh->sector, check;
3153 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
3154 : conf->chunk_sectors;
3155 int algorithm = previous ? conf->prev_algo
3159 sector_t chunk_number;
3160 int dummy1, dd_idx = i;
3162 struct stripe_head sh2;
3164 chunk_offset = sector_div(new_sector, sectors_per_chunk);
3165 stripe = new_sector;
3167 if (i == sh->pd_idx)
3169 switch(conf->level) {
3172 switch (algorithm) {
3173 case ALGORITHM_LEFT_ASYMMETRIC:
3174 case ALGORITHM_RIGHT_ASYMMETRIC:
3178 case ALGORITHM_LEFT_SYMMETRIC:
3179 case ALGORITHM_RIGHT_SYMMETRIC:
3182 i -= (sh->pd_idx + 1);
3184 case ALGORITHM_PARITY_0:
3187 case ALGORITHM_PARITY_N:
3194 if (i == sh->qd_idx)
3195 return 0; /* It is the Q disk */
3196 switch (algorithm) {
3197 case ALGORITHM_LEFT_ASYMMETRIC:
3198 case ALGORITHM_RIGHT_ASYMMETRIC:
3199 case ALGORITHM_ROTATING_ZERO_RESTART:
3200 case ALGORITHM_ROTATING_N_RESTART:
3201 if (sh->pd_idx == raid_disks-1)
3202 i--; /* Q D D D P */
3203 else if (i > sh->pd_idx)
3204 i -= 2; /* D D P Q D */
3206 case ALGORITHM_LEFT_SYMMETRIC:
3207 case ALGORITHM_RIGHT_SYMMETRIC:
3208 if (sh->pd_idx == raid_disks-1)
3209 i--; /* Q D D D P */
3214 i -= (sh->pd_idx + 2);
3217 case ALGORITHM_PARITY_0:
3220 case ALGORITHM_PARITY_N:
3222 case ALGORITHM_ROTATING_N_CONTINUE:
3223 /* Like left_symmetric, but P is before Q */
3224 if (sh->pd_idx == 0)
3225 i--; /* P D D D Q */
3230 i -= (sh->pd_idx + 1);
3233 case ALGORITHM_LEFT_ASYMMETRIC_6:
3234 case ALGORITHM_RIGHT_ASYMMETRIC_6:
3238 case ALGORITHM_LEFT_SYMMETRIC_6:
3239 case ALGORITHM_RIGHT_SYMMETRIC_6:
3241 i += data_disks + 1;
3242 i -= (sh->pd_idx + 1);
3244 case ALGORITHM_PARITY_0_6:
3253 chunk_number = stripe * data_disks + i;
3254 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
3256 check = raid5_compute_sector(conf, r_sector,
3257 previous, &dummy1, &sh2);
3258 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
3259 || sh2.qd_idx != sh->qd_idx) {
3260 pr_warn("md/raid:%s: compute_blocknr: map not correct\n",
3261 mdname(conf->mddev));
3268 * There are cases where we want handle_stripe_dirtying() and
3269 * schedule_reconstruction() to delay towrite to some dev of a stripe.
3271 * This function checks whether we want to delay the towrite. Specifically,
3272 * we delay the towrite when:
3274 * 1. degraded stripe has a non-overwrite to the missing dev, AND this
3275 * stripe has data in journal (for other devices).
3277 * In this case, when reading data for the non-overwrite dev, it is
3278 * necessary to handle complex rmw of write back cache (prexor with
3279 * orig_page, and xor with page). To keep read path simple, we would
3280 * like to flush data in journal to RAID disks first, so complex rmw
3281 * is handled in the write patch (handle_stripe_dirtying).
3283 * 2. when journal space is critical (R5C_LOG_CRITICAL=1)
3285 * It is important to be able to flush all stripes in raid5-cache.
3286 * Therefore, we need reserve some space on the journal device for
3287 * these flushes. If flush operation includes pending writes to the
3288 * stripe, we need to reserve (conf->raid_disk + 1) pages per stripe
3289 * for the flush out. If we exclude these pending writes from flush
3290 * operation, we only need (conf->max_degraded + 1) pages per stripe.
3291 * Therefore, excluding pending writes in these cases enables more
3292 * efficient use of the journal device.
3294 * Note: To make sure the stripe makes progress, we only delay
3295 * towrite for stripes with data already in journal (injournal > 0).
3296 * When LOG_CRITICAL, stripes with injournal == 0 will be sent to
3297 * no_space_stripes list.
3299 * 3. during journal failure
3300 * In journal failure, we try to flush all cached data to raid disks
3301 * based on data in stripe cache. The array is read-only to upper
3302 * layers, so we would skip all pending writes.
3305 static inline bool delay_towrite(struct r5conf *conf,
3307 struct stripe_head_state *s)
3310 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3311 !test_bit(R5_Insync, &dev->flags) && s->injournal)
3314 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
3318 if (s->log_failed && s->injournal)
3324 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
3325 int rcw, int expand)
3327 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
3328 struct r5conf *conf = sh->raid_conf;
3329 int level = conf->level;
3333 * In some cases, handle_stripe_dirtying initially decided to
3334 * run rmw and allocates extra page for prexor. However, rcw is
3335 * cheaper later on. We need to free the extra page now,
3336 * because we won't be able to do that in ops_complete_prexor().
3338 r5c_release_extra_page(sh);
3340 for (i = disks; i--; ) {
3341 struct r5dev *dev = &sh->dev[i];
3343 if (dev->towrite && !delay_towrite(conf, dev, s)) {
3344 set_bit(R5_LOCKED, &dev->flags);
3345 set_bit(R5_Wantdrain, &dev->flags);
3347 clear_bit(R5_UPTODATE, &dev->flags);
3349 } else if (test_bit(R5_InJournal, &dev->flags)) {
3350 set_bit(R5_LOCKED, &dev->flags);
3354 /* if we are not expanding this is a proper write request, and
3355 * there will be bios with new data to be drained into the
3360 /* False alarm, nothing to do */
3362 sh->reconstruct_state = reconstruct_state_drain_run;
3363 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3365 sh->reconstruct_state = reconstruct_state_run;
3367 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3369 if (s->locked + conf->max_degraded == disks)
3370 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
3371 atomic_inc(&conf->pending_full_writes);
3373 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
3374 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
3375 BUG_ON(level == 6 &&
3376 (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
3377 test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
3379 for (i = disks; i--; ) {
3380 struct r5dev *dev = &sh->dev[i];
3381 if (i == pd_idx || i == qd_idx)
3385 (test_bit(R5_UPTODATE, &dev->flags) ||
3386 test_bit(R5_Wantcompute, &dev->flags))) {
3387 set_bit(R5_Wantdrain, &dev->flags);
3388 set_bit(R5_LOCKED, &dev->flags);
3389 clear_bit(R5_UPTODATE, &dev->flags);
3391 } else if (test_bit(R5_InJournal, &dev->flags)) {
3392 set_bit(R5_LOCKED, &dev->flags);
3397 /* False alarm - nothing to do */
3399 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
3400 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
3401 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3402 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3405 /* keep the parity disk(s) locked while asynchronous operations
3408 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
3409 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3413 int qd_idx = sh->qd_idx;
3414 struct r5dev *dev = &sh->dev[qd_idx];
3416 set_bit(R5_LOCKED, &dev->flags);
3417 clear_bit(R5_UPTODATE, &dev->flags);
3421 if (raid5_has_ppl(sh->raid_conf) && sh->ppl_page &&
3422 test_bit(STRIPE_OP_BIODRAIN, &s->ops_request) &&
3423 !test_bit(STRIPE_FULL_WRITE, &sh->state) &&
3424 test_bit(R5_Insync, &sh->dev[pd_idx].flags))
3425 set_bit(STRIPE_OP_PARTIAL_PARITY, &s->ops_request);
3427 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
3428 __func__, (unsigned long long)sh->sector,
3429 s->locked, s->ops_request);
3432 static bool stripe_bio_overlaps(struct stripe_head *sh, struct bio *bi,
3433 int dd_idx, int forwrite)
3435 struct r5conf *conf = sh->raid_conf;
3438 pr_debug("checking bi b#%llu to stripe s#%llu\n",
3439 bi->bi_iter.bi_sector, sh->sector);
3441 /* Don't allow new IO added to stripes in batch list */
3446 bip = &sh->dev[dd_idx].towrite;
3448 bip = &sh->dev[dd_idx].toread;
3450 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
3451 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
3453 bip = &(*bip)->bi_next;
3456 if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
3459 if (forwrite && raid5_has_ppl(conf)) {
3461 * With PPL only writes to consecutive data chunks within a
3462 * stripe are allowed because for a single stripe_head we can
3463 * only have one PPL entry at a time, which describes one data
3464 * range. Not really an overlap, but R5_Overlap can be
3465 * used to handle this.
3473 for (i = 0; i < sh->disks; i++) {
3474 if (i != sh->pd_idx &&
3475 (i == dd_idx || sh->dev[i].towrite)) {
3476 sector = sh->dev[i].sector;
3477 if (count == 0 || sector < first)
3485 if (first + conf->chunk_sectors * (count - 1) != last)
3492 static void __add_stripe_bio(struct stripe_head *sh, struct bio *bi,
3493 int dd_idx, int forwrite, int previous)
3495 struct r5conf *conf = sh->raid_conf;
3500 bip = &sh->dev[dd_idx].towrite;
3504 bip = &sh->dev[dd_idx].toread;
3507 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector)
3508 bip = &(*bip)->bi_next;
3510 if (!forwrite || previous)
3511 clear_bit(STRIPE_BATCH_READY, &sh->state);
3513 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
3517 bio_inc_remaining(bi);
3518 md_write_inc(conf->mddev, bi);
3521 /* check if page is covered */
3522 sector_t sector = sh->dev[dd_idx].sector;
3523 for (bi=sh->dev[dd_idx].towrite;
3524 sector < sh->dev[dd_idx].sector + RAID5_STRIPE_SECTORS(conf) &&
3525 bi && bi->bi_iter.bi_sector <= sector;
3526 bi = r5_next_bio(conf, bi, sh->dev[dd_idx].sector)) {
3527 if (bio_end_sector(bi) >= sector)
3528 sector = bio_end_sector(bi);
3530 if (sector >= sh->dev[dd_idx].sector + RAID5_STRIPE_SECTORS(conf))
3531 if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3532 sh->overwrite_disks++;
3535 pr_debug("added bi b#%llu to stripe s#%llu, disk %d, logical %llu\n",
3536 (*bip)->bi_iter.bi_sector, sh->sector, dd_idx,
3537 sh->dev[dd_idx].sector);
3539 if (conf->mddev->bitmap && firstwrite && !sh->batch_head) {
3540 sh->bm_seq = conf->seq_flush+1;
3541 set_bit(STRIPE_BIT_DELAY, &sh->state);
3546 * Each stripe/dev can have one or more bios attached.
3547 * toread/towrite point to the first in a chain.
3548 * The bi_next chain must be in order.
3550 static bool add_stripe_bio(struct stripe_head *sh, struct bio *bi,
3551 int dd_idx, int forwrite, int previous)
3553 spin_lock_irq(&sh->stripe_lock);
3555 if (stripe_bio_overlaps(sh, bi, dd_idx, forwrite)) {
3556 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
3557 spin_unlock_irq(&sh->stripe_lock);
3561 __add_stripe_bio(sh, bi, dd_idx, forwrite, previous);
3562 spin_unlock_irq(&sh->stripe_lock);
3566 static void end_reshape(struct r5conf *conf);
3568 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3569 struct stripe_head *sh)
3571 int sectors_per_chunk =
3572 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3574 int chunk_offset = sector_div(stripe, sectors_per_chunk);
3575 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3577 raid5_compute_sector(conf,
3578 stripe * (disks - conf->max_degraded)
3579 *sectors_per_chunk + chunk_offset,
3585 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3586 struct stripe_head_state *s, int disks)
3589 BUG_ON(sh->batch_head);
3590 for (i = disks; i--; ) {
3593 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3594 struct md_rdev *rdev = conf->disks[i].rdev;
3596 if (rdev && test_bit(In_sync, &rdev->flags) &&
3597 !test_bit(Faulty, &rdev->flags))
3598 atomic_inc(&rdev->nr_pending);
3602 if (!rdev_set_badblocks(
3605 RAID5_STRIPE_SECTORS(conf), 0))
3606 md_error(conf->mddev, rdev);
3607 rdev_dec_pending(rdev, conf->mddev);
3610 spin_lock_irq(&sh->stripe_lock);
3611 /* fail all writes first */
3612 bi = sh->dev[i].towrite;
3613 sh->dev[i].towrite = NULL;
3614 sh->overwrite_disks = 0;
3615 spin_unlock_irq(&sh->stripe_lock);
3617 log_stripe_write_finished(sh);
3619 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3620 wake_up_bit(&sh->dev[i].flags, R5_Overlap);
3622 while (bi && bi->bi_iter.bi_sector <
3623 sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
3624 struct bio *nextbi = r5_next_bio(conf, bi, sh->dev[i].sector);
3626 md_write_end(conf->mddev);
3630 /* and fail all 'written' */
3631 bi = sh->dev[i].written;
3632 sh->dev[i].written = NULL;
3633 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3634 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3635 sh->dev[i].page = sh->dev[i].orig_page;
3638 while (bi && bi->bi_iter.bi_sector <
3639 sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
3640 struct bio *bi2 = r5_next_bio(conf, bi, sh->dev[i].sector);
3642 md_write_end(conf->mddev);
3647 /* fail any reads if this device is non-operational and
3648 * the data has not reached the cache yet.
3650 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3651 s->failed > conf->max_degraded &&
3652 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3653 test_bit(R5_ReadError, &sh->dev[i].flags))) {
3654 spin_lock_irq(&sh->stripe_lock);
3655 bi = sh->dev[i].toread;
3656 sh->dev[i].toread = NULL;
3657 spin_unlock_irq(&sh->stripe_lock);
3658 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3659 wake_up_bit(&sh->dev[i].flags, R5_Overlap);
3662 while (bi && bi->bi_iter.bi_sector <
3663 sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
3664 struct bio *nextbi =
3665 r5_next_bio(conf, bi, sh->dev[i].sector);
3671 /* If we were in the middle of a write the parity block might
3672 * still be locked - so just clear all R5_LOCKED flags
3674 clear_bit(R5_LOCKED, &sh->dev[i].flags);
3679 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3680 if (atomic_dec_and_test(&conf->pending_full_writes))
3681 md_wakeup_thread(conf->mddev->thread);
3685 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3686 struct stripe_head_state *s)
3691 BUG_ON(sh->batch_head);
3692 clear_bit(STRIPE_SYNCING, &sh->state);
3693 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3694 wake_up_bit(&sh->dev[sh->pd_idx].flags, R5_Overlap);
3697 /* There is nothing more to do for sync/check/repair.
3698 * Don't even need to abort as that is handled elsewhere
3699 * if needed, and not always wanted e.g. if there is a known
3701 * For recover/replace we need to record a bad block on all
3702 * non-sync devices, or abort the recovery
3704 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3705 /* During recovery devices cannot be removed, so
3706 * locking and refcounting of rdevs is not needed
3708 for (i = 0; i < conf->raid_disks; i++) {
3709 struct md_rdev *rdev = conf->disks[i].rdev;
3712 && !test_bit(Faulty, &rdev->flags)
3713 && !test_bit(In_sync, &rdev->flags)
3714 && !rdev_set_badblocks(rdev, sh->sector,
3715 RAID5_STRIPE_SECTORS(conf), 0))
3717 rdev = conf->disks[i].replacement;
3720 && !test_bit(Faulty, &rdev->flags)
3721 && !test_bit(In_sync, &rdev->flags)
3722 && !rdev_set_badblocks(rdev, sh->sector,
3723 RAID5_STRIPE_SECTORS(conf), 0))
3727 conf->recovery_disabled =
3728 conf->mddev->recovery_disabled;
3730 md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), !abort);
3733 static int want_replace(struct stripe_head *sh, int disk_idx)
3735 struct md_rdev *rdev;
3738 rdev = sh->raid_conf->disks[disk_idx].replacement;
3740 && !test_bit(Faulty, &rdev->flags)
3741 && !test_bit(In_sync, &rdev->flags)
3742 && (rdev->recovery_offset <= sh->sector
3743 || rdev->mddev->recovery_cp <= sh->sector))
3748 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3749 int disk_idx, int disks)
3751 struct r5dev *dev = &sh->dev[disk_idx];
3752 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3753 &sh->dev[s->failed_num[1]] };
3755 bool force_rcw = (sh->raid_conf->rmw_level == PARITY_DISABLE_RMW);
3758 if (test_bit(R5_LOCKED, &dev->flags) ||
3759 test_bit(R5_UPTODATE, &dev->flags))
3760 /* No point reading this as we already have it or have
3761 * decided to get it.
3766 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3767 /* We need this block to directly satisfy a request */
3770 if (s->syncing || s->expanding ||
3771 (s->replacing && want_replace(sh, disk_idx)))
3772 /* When syncing, or expanding we read everything.
3773 * When replacing, we need the replaced block.
3777 if ((s->failed >= 1 && fdev[0]->toread) ||
3778 (s->failed >= 2 && fdev[1]->toread))
3779 /* If we want to read from a failed device, then
3780 * we need to actually read every other device.
3784 /* Sometimes neither read-modify-write nor reconstruct-write
3785 * cycles can work. In those cases we read every block we
3786 * can. Then the parity-update is certain to have enough to
3788 * This can only be a problem when we need to write something,
3789 * and some device has failed. If either of those tests
3790 * fail we need look no further.
3792 if (!s->failed || !s->to_write)
3795 if (test_bit(R5_Insync, &dev->flags) &&
3796 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3797 /* Pre-reads at not permitted until after short delay
3798 * to gather multiple requests. However if this
3799 * device is no Insync, the block could only be computed
3800 * and there is no need to delay that.
3804 for (i = 0; i < s->failed && i < 2; i++) {
3805 if (fdev[i]->towrite &&
3806 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3807 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3808 /* If we have a partial write to a failed
3809 * device, then we will need to reconstruct
3810 * the content of that device, so all other
3811 * devices must be read.
3815 if (s->failed >= 2 &&
3816 (fdev[i]->towrite ||
3817 s->failed_num[i] == sh->pd_idx ||
3818 s->failed_num[i] == sh->qd_idx) &&
3819 !test_bit(R5_UPTODATE, &fdev[i]->flags))
3820 /* In max degraded raid6, If the failed disk is P, Q,
3821 * or we want to read the failed disk, we need to do
3822 * reconstruct-write.
3827 /* If we are forced to do a reconstruct-write, because parity
3828 * cannot be trusted and we are currently recovering it, there
3829 * is extra need to be careful.
3830 * If one of the devices that we would need to read, because
3831 * it is not being overwritten (and maybe not written at all)
3832 * is missing/faulty, then we need to read everything we can.
3835 sh->sector < sh->raid_conf->mddev->recovery_cp)
3836 /* reconstruct-write isn't being forced */
3838 for (i = 0; i < s->failed && i < 2; i++) {
3839 if (s->failed_num[i] != sh->pd_idx &&
3840 s->failed_num[i] != sh->qd_idx &&
3841 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3842 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3849 /* fetch_block - checks the given member device to see if its data needs
3850 * to be read or computed to satisfy a request.
3852 * Returns 1 when no more member devices need to be checked, otherwise returns
3853 * 0 to tell the loop in handle_stripe_fill to continue
3855 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3856 int disk_idx, int disks)
3858 struct r5dev *dev = &sh->dev[disk_idx];
3860 /* is the data in this block needed, and can we get it? */
3861 if (need_this_block(sh, s, disk_idx, disks)) {
3862 /* we would like to get this block, possibly by computing it,
3863 * otherwise read it if the backing disk is insync
3865 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3866 BUG_ON(test_bit(R5_Wantread, &dev->flags));
3867 BUG_ON(sh->batch_head);
3870 * In the raid6 case if the only non-uptodate disk is P
3871 * then we already trusted P to compute the other failed
3872 * drives. It is safe to compute rather than re-read P.
3873 * In other cases we only compute blocks from failed
3874 * devices, otherwise check/repair might fail to detect
3875 * a real inconsistency.
3878 if ((s->uptodate == disks - 1) &&
3879 ((sh->qd_idx >= 0 && sh->pd_idx == disk_idx) ||
3880 (s->failed && (disk_idx == s->failed_num[0] ||
3881 disk_idx == s->failed_num[1])))) {
3882 /* have disk failed, and we're requested to fetch it;
3885 pr_debug("Computing stripe %llu block %d\n",
3886 (unsigned long long)sh->sector, disk_idx);
3887 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3888 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3889 set_bit(R5_Wantcompute, &dev->flags);
3890 sh->ops.target = disk_idx;
3891 sh->ops.target2 = -1; /* no 2nd target */
3893 /* Careful: from this point on 'uptodate' is in the eye
3894 * of raid_run_ops which services 'compute' operations
3895 * before writes. R5_Wantcompute flags a block that will
3896 * be R5_UPTODATE by the time it is needed for a
3897 * subsequent operation.
3901 } else if (s->uptodate == disks-2 && s->failed >= 2) {
3902 /* Computing 2-failure is *very* expensive; only
3903 * do it if failed >= 2
3906 for (other = disks; other--; ) {
3907 if (other == disk_idx)
3909 if (!test_bit(R5_UPTODATE,
3910 &sh->dev[other].flags))
3914 pr_debug("Computing stripe %llu blocks %d,%d\n",
3915 (unsigned long long)sh->sector,
3917 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3918 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3919 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3920 set_bit(R5_Wantcompute, &sh->dev[other].flags);
3921 sh->ops.target = disk_idx;
3922 sh->ops.target2 = other;
3926 } else if (test_bit(R5_Insync, &dev->flags)) {
3927 set_bit(R5_LOCKED, &dev->flags);
3928 set_bit(R5_Wantread, &dev->flags);
3930 pr_debug("Reading block %d (sync=%d)\n",
3931 disk_idx, s->syncing);
3939 * handle_stripe_fill - read or compute data to satisfy pending requests.
3941 static void handle_stripe_fill(struct stripe_head *sh,
3942 struct stripe_head_state *s,
3947 /* look for blocks to read/compute, skip this if a compute
3948 * is already in flight, or if the stripe contents are in the
3949 * midst of changing due to a write
3951 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3952 !sh->reconstruct_state) {
3955 * For degraded stripe with data in journal, do not handle
3956 * read requests yet, instead, flush the stripe to raid
3957 * disks first, this avoids handling complex rmw of write
3958 * back cache (prexor with orig_page, and then xor with
3959 * page) in the read path
3961 if (s->to_read && s->injournal && s->failed) {
3962 if (test_bit(STRIPE_R5C_CACHING, &sh->state))
3963 r5c_make_stripe_write_out(sh);
3967 for (i = disks; i--; )
3968 if (fetch_block(sh, s, i, disks))
3972 set_bit(STRIPE_HANDLE, &sh->state);
3975 static void break_stripe_batch_list(struct stripe_head *head_sh,
3976 unsigned long handle_flags);
3977 /* handle_stripe_clean_event
3978 * any written block on an uptodate or failed drive can be returned.
3979 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3980 * never LOCKED, so we don't need to test 'failed' directly.
3982 static void handle_stripe_clean_event(struct r5conf *conf,
3983 struct stripe_head *sh, int disks)
3987 int discard_pending = 0;
3988 struct stripe_head *head_sh = sh;
3989 bool do_endio = false;
3991 for (i = disks; i--; )
3992 if (sh->dev[i].written) {
3994 if (!test_bit(R5_LOCKED, &dev->flags) &&
3995 (test_bit(R5_UPTODATE, &dev->flags) ||
3996 test_bit(R5_Discard, &dev->flags) ||
3997 test_bit(R5_SkipCopy, &dev->flags))) {
3998 /* We can return any write requests */
3999 struct bio *wbi, *wbi2;
4000 pr_debug("Return write for disc %d\n", i);
4001 if (test_and_clear_bit(R5_Discard, &dev->flags))
4002 clear_bit(R5_UPTODATE, &dev->flags);
4003 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
4004 WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
4009 dev->page = dev->orig_page;
4011 dev->written = NULL;
4012 while (wbi && wbi->bi_iter.bi_sector <
4013 dev->sector + RAID5_STRIPE_SECTORS(conf)) {
4014 wbi2 = r5_next_bio(conf, wbi, dev->sector);
4015 md_write_end(conf->mddev);
4020 if (head_sh->batch_head) {
4021 sh = list_first_entry(&sh->batch_list,
4024 if (sh != head_sh) {
4031 } else if (test_bit(R5_Discard, &dev->flags))
4032 discard_pending = 1;
4035 log_stripe_write_finished(sh);
4037 if (!discard_pending &&
4038 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
4040 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
4041 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
4042 if (sh->qd_idx >= 0) {
4043 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
4044 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
4046 /* now that discard is done we can proceed with any sync */
4047 clear_bit(STRIPE_DISCARD, &sh->state);
4049 * SCSI discard will change some bio fields and the stripe has
4050 * no updated data, so remove it from hash list and the stripe
4051 * will be reinitialized
4054 hash = sh->hash_lock_index;
4055 spin_lock_irq(conf->hash_locks + hash);
4057 spin_unlock_irq(conf->hash_locks + hash);
4058 if (head_sh->batch_head) {
4059 sh = list_first_entry(&sh->batch_list,
4060 struct stripe_head, batch_list);
4066 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
4067 set_bit(STRIPE_HANDLE, &sh->state);
4071 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
4072 if (atomic_dec_and_test(&conf->pending_full_writes))
4073 md_wakeup_thread(conf->mddev->thread);
4075 if (head_sh->batch_head && do_endio)
4076 break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
4080 * For RMW in write back cache, we need extra page in prexor to store the
4081 * old data. This page is stored in dev->orig_page.
4083 * This function checks whether we have data for prexor. The exact logic
4085 * R5_UPTODATE && (!R5_InJournal || R5_OrigPageUPTDODATE)
4087 static inline bool uptodate_for_rmw(struct r5dev *dev)
4089 return (test_bit(R5_UPTODATE, &dev->flags)) &&
4090 (!test_bit(R5_InJournal, &dev->flags) ||
4091 test_bit(R5_OrigPageUPTDODATE, &dev->flags));
4094 static int handle_stripe_dirtying(struct r5conf *conf,
4095 struct stripe_head *sh,
4096 struct stripe_head_state *s,
4099 int rmw = 0, rcw = 0, i;
4100 sector_t recovery_cp = conf->mddev->recovery_cp;
4102 /* Check whether resync is now happening or should start.
4103 * If yes, then the array is dirty (after unclean shutdown or
4104 * initial creation), so parity in some stripes might be inconsistent.
4105 * In this case, we need to always do reconstruct-write, to ensure
4106 * that in case of drive failure or read-error correction, we
4107 * generate correct data from the parity.
4109 if (conf->rmw_level == PARITY_DISABLE_RMW ||
4110 (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
4112 /* Calculate the real rcw later - for now make it
4113 * look like rcw is cheaper
4116 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
4117 conf->rmw_level, (unsigned long long)recovery_cp,
4118 (unsigned long long)sh->sector);
4119 } else for (i = disks; i--; ) {
4120 /* would I have to read this buffer for read_modify_write */
4121 struct r5dev *dev = &sh->dev[i];
4122 if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
4123 i == sh->pd_idx || i == sh->qd_idx ||
4124 test_bit(R5_InJournal, &dev->flags)) &&
4125 !test_bit(R5_LOCKED, &dev->flags) &&
4126 !(uptodate_for_rmw(dev) ||
4127 test_bit(R5_Wantcompute, &dev->flags))) {
4128 if (test_bit(R5_Insync, &dev->flags))
4131 rmw += 2*disks; /* cannot read it */
4133 /* Would I have to read this buffer for reconstruct_write */
4134 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
4135 i != sh->pd_idx && i != sh->qd_idx &&
4136 !test_bit(R5_LOCKED, &dev->flags) &&
4137 !(test_bit(R5_UPTODATE, &dev->flags) ||
4138 test_bit(R5_Wantcompute, &dev->flags))) {
4139 if (test_bit(R5_Insync, &dev->flags))
4146 pr_debug("for sector %llu state 0x%lx, rmw=%d rcw=%d\n",
4147 (unsigned long long)sh->sector, sh->state, rmw, rcw);
4148 set_bit(STRIPE_HANDLE, &sh->state);
4149 if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) {
4150 /* prefer read-modify-write, but need to get some data */
4151 mddev_add_trace_msg(conf->mddev, "raid5 rmw %llu %d",
4154 for (i = disks; i--; ) {
4155 struct r5dev *dev = &sh->dev[i];
4156 if (test_bit(R5_InJournal, &dev->flags) &&
4157 dev->page == dev->orig_page &&
4158 !test_bit(R5_LOCKED, &sh->dev[sh->pd_idx].flags)) {
4159 /* alloc page for prexor */
4160 struct page *p = alloc_page(GFP_NOIO);
4168 * alloc_page() failed, try use
4169 * disk_info->extra_page
4171 if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE,
4172 &conf->cache_state)) {
4173 r5c_use_extra_page(sh);
4177 /* extra_page in use, add to delayed_list */
4178 set_bit(STRIPE_DELAYED, &sh->state);
4179 s->waiting_extra_page = 1;
4184 for (i = disks; i--; ) {
4185 struct r5dev *dev = &sh->dev[i];
4186 if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
4187 i == sh->pd_idx || i == sh->qd_idx ||
4188 test_bit(R5_InJournal, &dev->flags)) &&
4189 !test_bit(R5_LOCKED, &dev->flags) &&
4190 !(uptodate_for_rmw(dev) ||
4191 test_bit(R5_Wantcompute, &dev->flags)) &&
4192 test_bit(R5_Insync, &dev->flags)) {
4193 if (test_bit(STRIPE_PREREAD_ACTIVE,
4195 pr_debug("Read_old block %d for r-m-w\n",
4197 set_bit(R5_LOCKED, &dev->flags);
4198 set_bit(R5_Wantread, &dev->flags);
4201 set_bit(STRIPE_DELAYED, &sh->state);
4205 if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) {
4206 /* want reconstruct write, but need to get some data */
4209 for (i = disks; i--; ) {
4210 struct r5dev *dev = &sh->dev[i];
4211 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
4212 i != sh->pd_idx && i != sh->qd_idx &&
4213 !test_bit(R5_LOCKED, &dev->flags) &&
4214 !(test_bit(R5_UPTODATE, &dev->flags) ||
4215 test_bit(R5_Wantcompute, &dev->flags))) {
4217 if (test_bit(R5_Insync, &dev->flags) &&
4218 test_bit(STRIPE_PREREAD_ACTIVE,
4220 pr_debug("Read_old block "
4221 "%d for Reconstruct\n", i);
4222 set_bit(R5_LOCKED, &dev->flags);
4223 set_bit(R5_Wantread, &dev->flags);
4227 set_bit(STRIPE_DELAYED, &sh->state);
4230 if (rcw && !mddev_is_dm(conf->mddev))
4231 blk_add_trace_msg(conf->mddev->gendisk->queue,
4232 "raid5 rcw %llu %d %d %d",
4233 (unsigned long long)sh->sector, rcw, qread,
4234 test_bit(STRIPE_DELAYED, &sh->state));
4237 if (rcw > disks && rmw > disks &&
4238 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4239 set_bit(STRIPE_DELAYED, &sh->state);
4241 /* now if nothing is locked, and if we have enough data,
4242 * we can start a write request
4244 /* since handle_stripe can be called at any time we need to handle the
4245 * case where a compute block operation has been submitted and then a
4246 * subsequent call wants to start a write request. raid_run_ops only
4247 * handles the case where compute block and reconstruct are requested
4248 * simultaneously. If this is not the case then new writes need to be
4249 * held off until the compute completes.
4251 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
4252 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
4253 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
4254 schedule_reconstruction(sh, s, rcw == 0, 0);
4258 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
4259 struct stripe_head_state *s, int disks)
4261 struct r5dev *dev = NULL;
4263 BUG_ON(sh->batch_head);
4264 set_bit(STRIPE_HANDLE, &sh->state);
4266 switch (sh->check_state) {
4267 case check_state_idle:
4268 /* start a new check operation if there are no failures */
4269 if (s->failed == 0) {
4270 BUG_ON(s->uptodate != disks);
4271 sh->check_state = check_state_run;
4272 set_bit(STRIPE_OP_CHECK, &s->ops_request);
4273 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
4277 dev = &sh->dev[s->failed_num[0]];
4279 case check_state_compute_result:
4280 sh->check_state = check_state_idle;
4282 dev = &sh->dev[sh->pd_idx];
4284 /* check that a write has not made the stripe insync */
4285 if (test_bit(STRIPE_INSYNC, &sh->state))
4288 /* either failed parity check, or recovery is happening */
4289 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
4290 BUG_ON(s->uptodate != disks);
4292 set_bit(R5_LOCKED, &dev->flags);
4294 set_bit(R5_Wantwrite, &dev->flags);
4296 set_bit(STRIPE_INSYNC, &sh->state);
4298 case check_state_run:
4299 break; /* we will be called again upon completion */
4300 case check_state_check_result:
4301 sh->check_state = check_state_idle;
4303 /* if a failure occurred during the check operation, leave
4304 * STRIPE_INSYNC not set and let the stripe be handled again
4309 /* handle a successful check operation, if parity is correct
4310 * we are done. Otherwise update the mismatch count and repair
4311 * parity if !MD_RECOVERY_CHECK
4313 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
4314 /* parity is correct (on disc,
4315 * not in buffer any more)
4317 set_bit(STRIPE_INSYNC, &sh->state);
4319 atomic64_add(RAID5_STRIPE_SECTORS(conf), &conf->mddev->resync_mismatches);
4320 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4321 /* don't try to repair!! */
4322 set_bit(STRIPE_INSYNC, &sh->state);
4323 pr_warn_ratelimited("%s: mismatch sector in range "
4324 "%llu-%llu\n", mdname(conf->mddev),
4325 (unsigned long long) sh->sector,
4326 (unsigned long long) sh->sector +
4327 RAID5_STRIPE_SECTORS(conf));
4329 sh->check_state = check_state_compute_run;
4330 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4331 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4332 set_bit(R5_Wantcompute,
4333 &sh->dev[sh->pd_idx].flags);
4334 sh->ops.target = sh->pd_idx;
4335 sh->ops.target2 = -1;
4340 case check_state_compute_run:
4343 pr_err("%s: unknown check_state: %d sector: %llu\n",
4344 __func__, sh->check_state,
4345 (unsigned long long) sh->sector);
4350 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
4351 struct stripe_head_state *s,
4354 int pd_idx = sh->pd_idx;
4355 int qd_idx = sh->qd_idx;
4358 BUG_ON(sh->batch_head);
4359 set_bit(STRIPE_HANDLE, &sh->state);
4361 BUG_ON(s->failed > 2);
4363 /* Want to check and possibly repair P and Q.
4364 * However there could be one 'failed' device, in which
4365 * case we can only check one of them, possibly using the
4366 * other to generate missing data
4369 switch (sh->check_state) {
4370 case check_state_idle:
4371 /* start a new check operation if there are < 2 failures */
4372 if (s->failed == s->q_failed) {
4373 /* The only possible failed device holds Q, so it
4374 * makes sense to check P (If anything else were failed,
4375 * we would have used P to recreate it).
4377 sh->check_state = check_state_run;
4379 if (!s->q_failed && s->failed < 2) {
4380 /* Q is not failed, and we didn't use it to generate
4381 * anything, so it makes sense to check it
4383 if (sh->check_state == check_state_run)
4384 sh->check_state = check_state_run_pq;
4386 sh->check_state = check_state_run_q;
4389 /* discard potentially stale zero_sum_result */
4390 sh->ops.zero_sum_result = 0;
4392 if (sh->check_state == check_state_run) {
4393 /* async_xor_zero_sum destroys the contents of P */
4394 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
4397 if (sh->check_state >= check_state_run &&
4398 sh->check_state <= check_state_run_pq) {
4399 /* async_syndrome_zero_sum preserves P and Q, so
4400 * no need to mark them !uptodate here
4402 set_bit(STRIPE_OP_CHECK, &s->ops_request);
4406 /* we have 2-disk failure */
4407 BUG_ON(s->failed != 2);
4409 case check_state_compute_result:
4410 sh->check_state = check_state_idle;
4412 /* check that a write has not made the stripe insync */
4413 if (test_bit(STRIPE_INSYNC, &sh->state))
4416 /* now write out any block on a failed drive,
4417 * or P or Q if they were recomputed
4420 if (s->failed == 2) {
4421 dev = &sh->dev[s->failed_num[1]];
4423 set_bit(R5_LOCKED, &dev->flags);
4424 set_bit(R5_Wantwrite, &dev->flags);
4426 if (s->failed >= 1) {
4427 dev = &sh->dev[s->failed_num[0]];
4429 set_bit(R5_LOCKED, &dev->flags);
4430 set_bit(R5_Wantwrite, &dev->flags);
4432 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4433 dev = &sh->dev[pd_idx];
4435 set_bit(R5_LOCKED, &dev->flags);
4436 set_bit(R5_Wantwrite, &dev->flags);
4438 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4439 dev = &sh->dev[qd_idx];
4441 set_bit(R5_LOCKED, &dev->flags);
4442 set_bit(R5_Wantwrite, &dev->flags);
4444 if (WARN_ONCE(dev && !test_bit(R5_UPTODATE, &dev->flags),
4445 "%s: disk%td not up to date\n",
4446 mdname(conf->mddev),
4447 dev - (struct r5dev *) &sh->dev)) {
4448 clear_bit(R5_LOCKED, &dev->flags);
4449 clear_bit(R5_Wantwrite, &dev->flags);
4453 set_bit(STRIPE_INSYNC, &sh->state);
4455 case check_state_run:
4456 case check_state_run_q:
4457 case check_state_run_pq:
4458 break; /* we will be called again upon completion */
4459 case check_state_check_result:
4460 sh->check_state = check_state_idle;
4462 /* handle a successful check operation, if parity is correct
4463 * we are done. Otherwise update the mismatch count and repair
4464 * parity if !MD_RECOVERY_CHECK
4466 if (sh->ops.zero_sum_result == 0) {
4467 /* both parities are correct */
4469 set_bit(STRIPE_INSYNC, &sh->state);
4471 /* in contrast to the raid5 case we can validate
4472 * parity, but still have a failure to write
4475 sh->check_state = check_state_compute_result;
4476 /* Returning at this point means that we may go
4477 * off and bring p and/or q uptodate again so
4478 * we make sure to check zero_sum_result again
4479 * to verify if p or q need writeback
4483 atomic64_add(RAID5_STRIPE_SECTORS(conf), &conf->mddev->resync_mismatches);
4484 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4485 /* don't try to repair!! */
4486 set_bit(STRIPE_INSYNC, &sh->state);
4487 pr_warn_ratelimited("%s: mismatch sector in range "
4488 "%llu-%llu\n", mdname(conf->mddev),
4489 (unsigned long long) sh->sector,
4490 (unsigned long long) sh->sector +
4491 RAID5_STRIPE_SECTORS(conf));
4493 int *target = &sh->ops.target;
4495 sh->ops.target = -1;
4496 sh->ops.target2 = -1;
4497 sh->check_state = check_state_compute_run;
4498 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4499 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4500 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4501 set_bit(R5_Wantcompute,
4502 &sh->dev[pd_idx].flags);
4504 target = &sh->ops.target2;
4507 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4508 set_bit(R5_Wantcompute,
4509 &sh->dev[qd_idx].flags);
4516 case check_state_compute_run:
4519 pr_warn("%s: unknown check_state: %d sector: %llu\n",
4520 __func__, sh->check_state,
4521 (unsigned long long) sh->sector);
4526 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
4530 /* We have read all the blocks in this stripe and now we need to
4531 * copy some of them into a target stripe for expand.
4533 struct dma_async_tx_descriptor *tx = NULL;
4534 BUG_ON(sh->batch_head);
4535 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4536 for (i = 0; i < sh->disks; i++)
4537 if (i != sh->pd_idx && i != sh->qd_idx) {
4539 struct stripe_head *sh2;
4540 struct async_submit_ctl submit;
4542 sector_t bn = raid5_compute_blocknr(sh, i, 1);
4543 sector_t s = raid5_compute_sector(conf, bn, 0,
4545 sh2 = raid5_get_active_stripe(conf, NULL, s,
4546 R5_GAS_NOBLOCK | R5_GAS_NOQUIESCE);
4548 /* so far only the early blocks of this stripe
4549 * have been requested. When later blocks
4550 * get requested, we will try again
4553 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
4554 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
4555 /* must have already done this block */
4556 raid5_release_stripe(sh2);
4560 /* place all the copies on one channel */
4561 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
4562 tx = async_memcpy(sh2->dev[dd_idx].page,
4563 sh->dev[i].page, sh2->dev[dd_idx].offset,
4564 sh->dev[i].offset, RAID5_STRIPE_SIZE(conf),
4567 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
4568 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
4569 for (j = 0; j < conf->raid_disks; j++)
4570 if (j != sh2->pd_idx &&
4572 !test_bit(R5_Expanded, &sh2->dev[j].flags))
4574 if (j == conf->raid_disks) {
4575 set_bit(STRIPE_EXPAND_READY, &sh2->state);
4576 set_bit(STRIPE_HANDLE, &sh2->state);
4578 raid5_release_stripe(sh2);
4581 /* done submitting copies, wait for them to complete */
4582 async_tx_quiesce(&tx);
4586 * handle_stripe - do things to a stripe.
4588 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
4589 * state of various bits to see what needs to be done.
4591 * return some read requests which now have data
4592 * return some write requests which are safely on storage
4593 * schedule a read on some buffers
4594 * schedule a write of some buffers
4595 * return confirmation of parity correctness
4599 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
4601 struct r5conf *conf = sh->raid_conf;
4602 int disks = sh->disks;
4605 int do_recovery = 0;
4607 memset(s, 0, sizeof(*s));
4609 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4610 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
4611 s->failed_num[0] = -1;
4612 s->failed_num[1] = -1;
4613 s->log_failed = r5l_log_disk_error(conf);
4615 /* Now to look around and see what can be done */
4616 for (i=disks; i--; ) {
4617 struct md_rdev *rdev;
4622 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4624 dev->toread, dev->towrite, dev->written);
4625 /* maybe we can reply to a read
4627 * new wantfill requests are only permitted while
4628 * ops_complete_biofill is guaranteed to be inactive
4630 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4631 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4632 set_bit(R5_Wantfill, &dev->flags);
4634 /* now count some things */
4635 if (test_bit(R5_LOCKED, &dev->flags))
4637 if (test_bit(R5_UPTODATE, &dev->flags))
4639 if (test_bit(R5_Wantcompute, &dev->flags)) {
4641 BUG_ON(s->compute > 2);
4644 if (test_bit(R5_Wantfill, &dev->flags))
4646 else if (dev->toread)
4650 if (!test_bit(R5_OVERWRITE, &dev->flags))
4655 /* Prefer to use the replacement for reads, but only
4656 * if it is recovered enough and has no bad blocks.
4658 rdev = conf->disks[i].replacement;
4659 if (rdev && !test_bit(Faulty, &rdev->flags) &&
4660 rdev->recovery_offset >= sh->sector + RAID5_STRIPE_SECTORS(conf) &&
4661 !rdev_has_badblock(rdev, sh->sector,
4662 RAID5_STRIPE_SECTORS(conf)))
4663 set_bit(R5_ReadRepl, &dev->flags);
4665 if (rdev && !test_bit(Faulty, &rdev->flags))
4666 set_bit(R5_NeedReplace, &dev->flags);
4668 clear_bit(R5_NeedReplace, &dev->flags);
4669 rdev = conf->disks[i].rdev;
4670 clear_bit(R5_ReadRepl, &dev->flags);
4672 if (rdev && test_bit(Faulty, &rdev->flags))
4675 is_bad = rdev_has_badblock(rdev, sh->sector,
4676 RAID5_STRIPE_SECTORS(conf));
4677 if (s->blocked_rdev == NULL) {
4679 set_bit(BlockedBadBlocks, &rdev->flags);
4680 if (rdev_blocked(rdev)) {
4681 s->blocked_rdev = rdev;
4682 atomic_inc(&rdev->nr_pending);
4686 clear_bit(R5_Insync, &dev->flags);
4690 /* also not in-sync */
4691 if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4692 test_bit(R5_UPTODATE, &dev->flags)) {
4693 /* treat as in-sync, but with a read error
4694 * which we can now try to correct
4696 set_bit(R5_Insync, &dev->flags);
4697 set_bit(R5_ReadError, &dev->flags);
4699 } else if (test_bit(In_sync, &rdev->flags))
4700 set_bit(R5_Insync, &dev->flags);
4701 else if (sh->sector + RAID5_STRIPE_SECTORS(conf) <= rdev->recovery_offset)
4702 /* in sync if before recovery_offset */
4703 set_bit(R5_Insync, &dev->flags);
4704 else if (test_bit(R5_UPTODATE, &dev->flags) &&
4705 test_bit(R5_Expanded, &dev->flags))
4706 /* If we've reshaped into here, we assume it is Insync.
4707 * We will shortly update recovery_offset to make
4710 set_bit(R5_Insync, &dev->flags);
4712 if (test_bit(R5_WriteError, &dev->flags)) {
4713 /* This flag does not apply to '.replacement'
4714 * only to .rdev, so make sure to check that*/
4715 struct md_rdev *rdev2 = conf->disks[i].rdev;
4718 clear_bit(R5_Insync, &dev->flags);
4719 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4720 s->handle_bad_blocks = 1;
4721 atomic_inc(&rdev2->nr_pending);
4723 clear_bit(R5_WriteError, &dev->flags);
4725 if (test_bit(R5_MadeGood, &dev->flags)) {
4726 /* This flag does not apply to '.replacement'
4727 * only to .rdev, so make sure to check that*/
4728 struct md_rdev *rdev2 = conf->disks[i].rdev;
4730 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4731 s->handle_bad_blocks = 1;
4732 atomic_inc(&rdev2->nr_pending);
4734 clear_bit(R5_MadeGood, &dev->flags);
4736 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4737 struct md_rdev *rdev2 = conf->disks[i].replacement;
4739 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4740 s->handle_bad_blocks = 1;
4741 atomic_inc(&rdev2->nr_pending);
4743 clear_bit(R5_MadeGoodRepl, &dev->flags);
4745 if (!test_bit(R5_Insync, &dev->flags)) {
4746 /* The ReadError flag will just be confusing now */
4747 clear_bit(R5_ReadError, &dev->flags);
4748 clear_bit(R5_ReWrite, &dev->flags);
4750 if (test_bit(R5_ReadError, &dev->flags))
4751 clear_bit(R5_Insync, &dev->flags);
4752 if (!test_bit(R5_Insync, &dev->flags)) {
4754 s->failed_num[s->failed] = i;
4756 if (rdev && !test_bit(Faulty, &rdev->flags))
4759 rdev = conf->disks[i].replacement;
4760 if (rdev && !test_bit(Faulty, &rdev->flags))
4765 if (test_bit(R5_InJournal, &dev->flags))
4767 if (test_bit(R5_InJournal, &dev->flags) && dev->written)
4770 if (test_bit(STRIPE_SYNCING, &sh->state)) {
4771 /* If there is a failed device being replaced,
4772 * we must be recovering.
4773 * else if we are after recovery_cp, we must be syncing
4774 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4775 * else we can only be replacing
4776 * sync and recovery both need to read all devices, and so
4777 * use the same flag.
4780 sh->sector >= conf->mddev->recovery_cp ||
4781 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4789 * Return '1' if this is a member of batch, or '0' if it is a lone stripe or
4790 * a head which can now be handled.
4792 static int clear_batch_ready(struct stripe_head *sh)
4794 struct stripe_head *tmp;
4795 if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4796 return (sh->batch_head && sh->batch_head != sh);
4797 spin_lock(&sh->stripe_lock);
4798 if (!sh->batch_head) {
4799 spin_unlock(&sh->stripe_lock);
4804 * this stripe could be added to a batch list before we check
4805 * BATCH_READY, skips it
4807 if (sh->batch_head != sh) {
4808 spin_unlock(&sh->stripe_lock);
4811 spin_lock(&sh->batch_lock);
4812 list_for_each_entry(tmp, &sh->batch_list, batch_list)
4813 clear_bit(STRIPE_BATCH_READY, &tmp->state);
4814 spin_unlock(&sh->batch_lock);
4815 spin_unlock(&sh->stripe_lock);
4818 * BATCH_READY is cleared, no new stripes can be added.
4819 * batch_list can be accessed without lock
4824 static void break_stripe_batch_list(struct stripe_head *head_sh,
4825 unsigned long handle_flags)
4827 struct stripe_head *sh, *next;
4830 list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4832 list_del_init(&sh->batch_list);
4834 WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4835 (1 << STRIPE_SYNCING) |
4836 (1 << STRIPE_REPLACED) |
4837 (1 << STRIPE_DELAYED) |
4838 (1 << STRIPE_BIT_DELAY) |
4839 (1 << STRIPE_FULL_WRITE) |
4840 (1 << STRIPE_BIOFILL_RUN) |
4841 (1 << STRIPE_COMPUTE_RUN) |
4842 (1 << STRIPE_DISCARD) |
4843 (1 << STRIPE_BATCH_READY) |
4844 (1 << STRIPE_BATCH_ERR)),
4845 "stripe state: %lx\n", sh->state);
4846 WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4847 (1 << STRIPE_REPLACED)),
4848 "head stripe state: %lx\n", head_sh->state);
4850 set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4851 (1 << STRIPE_PREREAD_ACTIVE) |
4852 (1 << STRIPE_ON_UNPLUG_LIST)),
4853 head_sh->state & (1 << STRIPE_INSYNC));
4855 sh->check_state = head_sh->check_state;
4856 sh->reconstruct_state = head_sh->reconstruct_state;
4857 spin_lock_irq(&sh->stripe_lock);
4858 sh->batch_head = NULL;
4859 spin_unlock_irq(&sh->stripe_lock);
4860 for (i = 0; i < sh->disks; i++) {
4861 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4862 wake_up_bit(&sh->dev[i].flags, R5_Overlap);
4863 sh->dev[i].flags = head_sh->dev[i].flags &
4864 (~((1 << R5_WriteError) | (1 << R5_Overlap)));
4866 if (handle_flags == 0 ||
4867 sh->state & handle_flags)
4868 set_bit(STRIPE_HANDLE, &sh->state);
4869 raid5_release_stripe(sh);
4871 spin_lock_irq(&head_sh->stripe_lock);
4872 head_sh->batch_head = NULL;
4873 spin_unlock_irq(&head_sh->stripe_lock);
4874 for (i = 0; i < head_sh->disks; i++)
4875 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4876 wake_up_bit(&head_sh->dev[i].flags, R5_Overlap);
4877 if (head_sh->state & handle_flags)
4878 set_bit(STRIPE_HANDLE, &head_sh->state);
4881 static void handle_stripe(struct stripe_head *sh)
4883 struct stripe_head_state s;
4884 struct r5conf *conf = sh->raid_conf;
4887 int disks = sh->disks;
4888 struct r5dev *pdev, *qdev;
4890 clear_bit(STRIPE_HANDLE, &sh->state);
4893 * handle_stripe should not continue handle the batched stripe, only
4894 * the head of batch list or lone stripe can continue. Otherwise we
4895 * could see break_stripe_batch_list warns about the STRIPE_ACTIVE
4896 * is set for the batched stripe.
4898 if (clear_batch_ready(sh))
4901 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4902 /* already being handled, ensure it gets handled
4903 * again when current action finishes */
4904 set_bit(STRIPE_HANDLE, &sh->state);
4908 if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4909 break_stripe_batch_list(sh, 0);
4911 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4912 spin_lock(&sh->stripe_lock);
4914 * Cannot process 'sync' concurrently with 'discard'.
4915 * Flush data in r5cache before 'sync'.
4917 if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) &&
4918 !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) &&
4919 !test_bit(STRIPE_DISCARD, &sh->state) &&
4920 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4921 set_bit(STRIPE_SYNCING, &sh->state);
4922 clear_bit(STRIPE_INSYNC, &sh->state);
4923 clear_bit(STRIPE_REPLACED, &sh->state);
4925 spin_unlock(&sh->stripe_lock);
4927 clear_bit(STRIPE_DELAYED, &sh->state);
4929 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4930 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4931 (unsigned long long)sh->sector, sh->state,
4932 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4933 sh->check_state, sh->reconstruct_state);
4935 analyse_stripe(sh, &s);
4937 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
4940 if (s.handle_bad_blocks ||
4941 test_bit(MD_SB_CHANGE_PENDING, &conf->mddev->sb_flags)) {
4942 set_bit(STRIPE_HANDLE, &sh->state);
4946 if (unlikely(s.blocked_rdev)) {
4947 if (s.syncing || s.expanding || s.expanded ||
4948 s.replacing || s.to_write || s.written) {
4949 set_bit(STRIPE_HANDLE, &sh->state);
4952 /* There is nothing for the blocked_rdev to block */
4953 rdev_dec_pending(s.blocked_rdev, conf->mddev);
4954 s.blocked_rdev = NULL;
4957 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4958 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4959 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4962 pr_debug("locked=%d uptodate=%d to_read=%d"
4963 " to_write=%d failed=%d failed_num=%d,%d\n",
4964 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4965 s.failed_num[0], s.failed_num[1]);
4967 * check if the array has lost more than max_degraded devices and,
4968 * if so, some requests might need to be failed.
4970 * When journal device failed (log_failed), we will only process
4971 * the stripe if there is data need write to raid disks
4973 if (s.failed > conf->max_degraded ||
4974 (s.log_failed && s.injournal == 0)) {
4975 sh->check_state = 0;
4976 sh->reconstruct_state = 0;
4977 break_stripe_batch_list(sh, 0);
4978 if (s.to_read+s.to_write+s.written)
4979 handle_failed_stripe(conf, sh, &s, disks);
4980 if (s.syncing + s.replacing)
4981 handle_failed_sync(conf, sh, &s);
4984 /* Now we check to see if any write operations have recently
4988 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4990 if (sh->reconstruct_state == reconstruct_state_drain_result ||
4991 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4992 sh->reconstruct_state = reconstruct_state_idle;
4994 /* All the 'written' buffers and the parity block are ready to
4995 * be written back to disk
4997 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4998 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
4999 BUG_ON(sh->qd_idx >= 0 &&
5000 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
5001 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
5002 for (i = disks; i--; ) {
5003 struct r5dev *dev = &sh->dev[i];
5004 if (test_bit(R5_LOCKED, &dev->flags) &&
5005 (i == sh->pd_idx || i == sh->qd_idx ||
5006 dev->written || test_bit(R5_InJournal,
5008 pr_debug("Writing block %d\n", i);
5009 set_bit(R5_Wantwrite, &dev->flags);
5014 if (!test_bit(R5_Insync, &dev->flags) ||
5015 ((i == sh->pd_idx || i == sh->qd_idx) &&
5017 set_bit(STRIPE_INSYNC, &sh->state);
5020 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5021 s.dec_preread_active = 1;
5025 * might be able to return some write requests if the parity blocks
5026 * are safe, or on a failed drive
5028 pdev = &sh->dev[sh->pd_idx];
5029 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
5030 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
5031 qdev = &sh->dev[sh->qd_idx];
5032 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
5033 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
5037 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
5038 && !test_bit(R5_LOCKED, &pdev->flags)
5039 && (test_bit(R5_UPTODATE, &pdev->flags) ||
5040 test_bit(R5_Discard, &pdev->flags))))) &&
5041 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
5042 && !test_bit(R5_LOCKED, &qdev->flags)
5043 && (test_bit(R5_UPTODATE, &qdev->flags) ||
5044 test_bit(R5_Discard, &qdev->flags))))))
5045 handle_stripe_clean_event(conf, sh, disks);
5048 r5c_handle_cached_data_endio(conf, sh, disks);
5049 log_stripe_write_finished(sh);
5051 /* Now we might consider reading some blocks, either to check/generate
5052 * parity, or to satisfy requests
5053 * or to load a block that is being partially written.
5055 if (s.to_read || s.non_overwrite
5056 || (s.to_write && s.failed)
5057 || (s.syncing && (s.uptodate + s.compute < disks))
5060 handle_stripe_fill(sh, &s, disks);
5063 * When the stripe finishes full journal write cycle (write to journal
5064 * and raid disk), this is the clean up procedure so it is ready for
5067 r5c_finish_stripe_write_out(conf, sh, &s);
5070 * Now to consider new write requests, cache write back and what else,
5071 * if anything should be read. We do not handle new writes when:
5072 * 1/ A 'write' operation (copy+xor) is already in flight.
5073 * 2/ A 'check' operation is in flight, as it may clobber the parity
5075 * 3/ A r5c cache log write is in flight.
5078 if (!sh->reconstruct_state && !sh->check_state && !sh->log_io) {
5079 if (!r5c_is_writeback(conf->log)) {
5081 handle_stripe_dirtying(conf, sh, &s, disks);
5082 } else { /* write back cache */
5085 /* First, try handle writes in caching phase */
5087 ret = r5c_try_caching_write(conf, sh, &s,
5090 * If caching phase failed: ret == -EAGAIN
5092 * stripe under reclaim: !caching && injournal
5094 * fall back to handle_stripe_dirtying()
5096 if (ret == -EAGAIN ||
5097 /* stripe under reclaim: !caching && injournal */
5098 (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
5100 ret = handle_stripe_dirtying(conf, sh, &s,
5108 /* maybe we need to check and possibly fix the parity for this stripe
5109 * Any reads will already have been scheduled, so we just see if enough
5110 * data is available. The parity check is held off while parity
5111 * dependent operations are in flight.
5113 if (sh->check_state ||
5114 (s.syncing && s.locked == 0 &&
5115 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
5116 !test_bit(STRIPE_INSYNC, &sh->state))) {
5117 if (conf->level == 6)
5118 handle_parity_checks6(conf, sh, &s, disks);
5120 handle_parity_checks5(conf, sh, &s, disks);
5123 if ((s.replacing || s.syncing) && s.locked == 0
5124 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
5125 && !test_bit(STRIPE_REPLACED, &sh->state)) {
5126 /* Write out to replacement devices where possible */
5127 for (i = 0; i < conf->raid_disks; i++)
5128 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
5129 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
5130 set_bit(R5_WantReplace, &sh->dev[i].flags);
5131 set_bit(R5_LOCKED, &sh->dev[i].flags);
5135 set_bit(STRIPE_INSYNC, &sh->state);
5136 set_bit(STRIPE_REPLACED, &sh->state);
5138 if ((s.syncing || s.replacing) && s.locked == 0 &&
5139 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
5140 test_bit(STRIPE_INSYNC, &sh->state)) {
5141 md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), 1);
5142 clear_bit(STRIPE_SYNCING, &sh->state);
5143 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
5144 wake_up_bit(&sh->dev[sh->pd_idx].flags, R5_Overlap);
5147 /* If the failed drives are just a ReadError, then we might need
5148 * to progress the repair/check process
5150 if (s.failed <= conf->max_degraded && !conf->mddev->ro)
5151 for (i = 0; i < s.failed; i++) {
5152 struct r5dev *dev = &sh->dev[s.failed_num[i]];
5153 if (test_bit(R5_ReadError, &dev->flags)
5154 && !test_bit(R5_LOCKED, &dev->flags)
5155 && test_bit(R5_UPTODATE, &dev->flags)
5157 if (!test_bit(R5_ReWrite, &dev->flags)) {
5158 set_bit(R5_Wantwrite, &dev->flags);
5159 set_bit(R5_ReWrite, &dev->flags);
5161 /* let's read it back */
5162 set_bit(R5_Wantread, &dev->flags);
5163 set_bit(R5_LOCKED, &dev->flags);
5168 /* Finish reconstruct operations initiated by the expansion process */
5169 if (sh->reconstruct_state == reconstruct_state_result) {
5170 struct stripe_head *sh_src
5171 = raid5_get_active_stripe(conf, NULL, sh->sector,
5172 R5_GAS_PREVIOUS | R5_GAS_NOBLOCK |
5174 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
5175 /* sh cannot be written until sh_src has been read.
5176 * so arrange for sh to be delayed a little
5178 set_bit(STRIPE_DELAYED, &sh->state);
5179 set_bit(STRIPE_HANDLE, &sh->state);
5180 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
5182 atomic_inc(&conf->preread_active_stripes);
5183 raid5_release_stripe(sh_src);
5187 raid5_release_stripe(sh_src);
5189 sh->reconstruct_state = reconstruct_state_idle;
5190 clear_bit(STRIPE_EXPANDING, &sh->state);
5191 for (i = conf->raid_disks; i--; ) {
5192 set_bit(R5_Wantwrite, &sh->dev[i].flags);
5193 set_bit(R5_LOCKED, &sh->dev[i].flags);
5198 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
5199 !sh->reconstruct_state) {
5200 /* Need to write out all blocks after computing parity */
5201 sh->disks = conf->raid_disks;
5202 stripe_set_idx(sh->sector, conf, 0, sh);
5203 schedule_reconstruction(sh, &s, 1, 1);
5204 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
5205 clear_bit(STRIPE_EXPAND_READY, &sh->state);
5206 atomic_dec(&conf->reshape_stripes);
5207 wake_up(&conf->wait_for_reshape);
5208 md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), 1);
5211 if (s.expanding && s.locked == 0 &&
5212 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
5213 handle_stripe_expansion(conf, sh);
5216 /* wait for this device to become unblocked */
5217 if (unlikely(s.blocked_rdev)) {
5218 if (conf->mddev->external)
5219 md_wait_for_blocked_rdev(s.blocked_rdev,
5222 /* Internal metadata will immediately
5223 * be written by raid5d, so we don't
5224 * need to wait here.
5226 rdev_dec_pending(s.blocked_rdev,
5230 if (s.handle_bad_blocks)
5231 for (i = disks; i--; ) {
5232 struct md_rdev *rdev;
5233 struct r5dev *dev = &sh->dev[i];
5234 if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
5235 /* We own a safe reference to the rdev */
5236 rdev = conf->disks[i].rdev;
5237 if (!rdev_set_badblocks(rdev, sh->sector,
5238 RAID5_STRIPE_SECTORS(conf), 0))
5239 md_error(conf->mddev, rdev);
5240 rdev_dec_pending(rdev, conf->mddev);
5242 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
5243 rdev = conf->disks[i].rdev;
5244 rdev_clear_badblocks(rdev, sh->sector,
5245 RAID5_STRIPE_SECTORS(conf), 0);
5246 rdev_dec_pending(rdev, conf->mddev);
5248 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
5249 rdev = conf->disks[i].replacement;
5251 /* rdev have been moved down */
5252 rdev = conf->disks[i].rdev;
5253 rdev_clear_badblocks(rdev, sh->sector,
5254 RAID5_STRIPE_SECTORS(conf), 0);
5255 rdev_dec_pending(rdev, conf->mddev);
5260 raid_run_ops(sh, s.ops_request);
5264 if (s.dec_preread_active) {
5265 /* We delay this until after ops_run_io so that if make_request
5266 * is waiting on a flush, it won't continue until the writes
5267 * have actually been submitted.
5269 atomic_dec(&conf->preread_active_stripes);
5270 if (atomic_read(&conf->preread_active_stripes) <
5272 md_wakeup_thread(conf->mddev->thread);
5275 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
5278 static void raid5_activate_delayed(struct r5conf *conf)
5279 __must_hold(&conf->device_lock)
5281 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
5282 while (!list_empty(&conf->delayed_list)) {
5283 struct list_head *l = conf->delayed_list.next;
5284 struct stripe_head *sh;
5285 sh = list_entry(l, struct stripe_head, lru);
5287 clear_bit(STRIPE_DELAYED, &sh->state);
5288 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5289 atomic_inc(&conf->preread_active_stripes);
5290 list_add_tail(&sh->lru, &conf->hold_list);
5291 raid5_wakeup_stripe_thread(sh);
5296 static void activate_bit_delay(struct r5conf *conf,
5297 struct list_head *temp_inactive_list)
5298 __must_hold(&conf->device_lock)
5300 struct list_head head;
5301 list_add(&head, &conf->bitmap_list);
5302 list_del_init(&conf->bitmap_list);
5303 while (!list_empty(&head)) {
5304 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
5306 list_del_init(&sh->lru);
5307 atomic_inc(&sh->count);
5308 hash = sh->hash_lock_index;
5309 __release_stripe(conf, sh, &temp_inactive_list[hash]);
5313 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
5315 struct r5conf *conf = mddev->private;
5316 sector_t sector = bio->bi_iter.bi_sector;
5317 unsigned int chunk_sectors;
5318 unsigned int bio_sectors = bio_sectors(bio);
5320 chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
5321 return chunk_sectors >=
5322 ((sector & (chunk_sectors - 1)) + bio_sectors);
5326 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
5327 * later sampled by raid5d.
5329 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
5331 unsigned long flags;
5333 spin_lock_irqsave(&conf->device_lock, flags);
5335 bi->bi_next = conf->retry_read_aligned_list;
5336 conf->retry_read_aligned_list = bi;
5338 spin_unlock_irqrestore(&conf->device_lock, flags);
5339 md_wakeup_thread(conf->mddev->thread);
5342 static struct bio *remove_bio_from_retry(struct r5conf *conf,
5343 unsigned int *offset)
5347 bi = conf->retry_read_aligned;
5349 *offset = conf->retry_read_offset;
5350 conf->retry_read_aligned = NULL;
5353 bi = conf->retry_read_aligned_list;
5355 conf->retry_read_aligned_list = bi->bi_next;
5364 * The "raid5_align_endio" should check if the read succeeded and if it
5365 * did, call bio_endio on the original bio (having bio_put the new bio
5367 * If the read failed..
5369 static void raid5_align_endio(struct bio *bi)
5371 struct bio *raid_bi = bi->bi_private;
5372 struct md_rdev *rdev = (void *)raid_bi->bi_next;
5373 struct mddev *mddev = rdev->mddev;
5374 struct r5conf *conf = mddev->private;
5375 blk_status_t error = bi->bi_status;
5378 raid_bi->bi_next = NULL;
5379 rdev_dec_pending(rdev, conf->mddev);
5383 if (atomic_dec_and_test(&conf->active_aligned_reads))
5384 wake_up(&conf->wait_for_quiescent);
5388 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
5390 add_bio_to_retry(raid_bi, conf);
5393 static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
5395 struct r5conf *conf = mddev->private;
5396 struct bio *align_bio;
5397 struct md_rdev *rdev;
5398 sector_t sector, end_sector;
5402 if (!in_chunk_boundary(mddev, raid_bio)) {
5403 pr_debug("%s: non aligned\n", __func__);
5407 sector = raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector, 0,
5409 end_sector = sector + bio_sectors(raid_bio);
5411 if (r5c_big_stripe_cached(conf, sector))
5414 rdev = conf->disks[dd_idx].replacement;
5415 if (!rdev || test_bit(Faulty, &rdev->flags) ||
5416 rdev->recovery_offset < end_sector) {
5417 rdev = conf->disks[dd_idx].rdev;
5420 if (test_bit(Faulty, &rdev->flags) ||
5421 !(test_bit(In_sync, &rdev->flags) ||
5422 rdev->recovery_offset >= end_sector))
5426 atomic_inc(&rdev->nr_pending);
5428 if (rdev_has_badblock(rdev, sector, bio_sectors(raid_bio))) {
5429 rdev_dec_pending(rdev, mddev);
5433 md_account_bio(mddev, &raid_bio);
5434 raid_bio->bi_next = (void *)rdev;
5436 align_bio = bio_alloc_clone(rdev->bdev, raid_bio, GFP_NOIO,
5438 align_bio->bi_end_io = raid5_align_endio;
5439 align_bio->bi_private = raid_bio;
5440 align_bio->bi_iter.bi_sector = sector;
5442 /* No reshape active, so we can trust rdev->data_offset */
5443 align_bio->bi_iter.bi_sector += rdev->data_offset;
5446 if (conf->quiesce == 0) {
5447 atomic_inc(&conf->active_aligned_reads);
5450 /* need a memory barrier to detect the race with raid5_quiesce() */
5451 if (!did_inc || smp_load_acquire(&conf->quiesce) != 0) {
5452 /* quiesce is in progress, so we need to undo io activation and wait
5455 if (did_inc && atomic_dec_and_test(&conf->active_aligned_reads))
5456 wake_up(&conf->wait_for_quiescent);
5457 spin_lock_irq(&conf->device_lock);
5458 wait_event_lock_irq(conf->wait_for_quiescent, conf->quiesce == 0,
5460 atomic_inc(&conf->active_aligned_reads);
5461 spin_unlock_irq(&conf->device_lock);
5464 mddev_trace_remap(mddev, align_bio, raid_bio->bi_iter.bi_sector);
5465 submit_bio_noacct(align_bio);
5469 static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
5472 sector_t sector = raid_bio->bi_iter.bi_sector;
5473 unsigned chunk_sects = mddev->chunk_sectors;
5474 unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
5476 if (sectors < bio_sectors(raid_bio)) {
5477 struct r5conf *conf = mddev->private;
5478 split = bio_split(raid_bio, sectors, GFP_NOIO, &conf->bio_split);
5479 bio_chain(split, raid_bio);
5480 submit_bio_noacct(raid_bio);
5484 if (!raid5_read_one_chunk(mddev, raid_bio))
5490 /* __get_priority_stripe - get the next stripe to process
5492 * Full stripe writes are allowed to pass preread active stripes up until
5493 * the bypass_threshold is exceeded. In general the bypass_count
5494 * increments when the handle_list is handled before the hold_list; however, it
5495 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
5496 * stripe with in flight i/o. The bypass_count will be reset when the
5497 * head of the hold_list has changed, i.e. the head was promoted to the
5500 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
5501 __must_hold(&conf->device_lock)
5503 struct stripe_head *sh, *tmp;
5504 struct list_head *handle_list = NULL;
5505 struct r5worker_group *wg;
5506 bool second_try = !r5c_is_writeback(conf->log) &&
5507 !r5l_log_disk_error(conf);
5508 bool try_loprio = test_bit(R5C_LOG_TIGHT, &conf->cache_state) ||
5509 r5l_log_disk_error(conf);
5514 if (conf->worker_cnt_per_group == 0) {
5515 handle_list = try_loprio ? &conf->loprio_list :
5517 } else if (group != ANY_GROUP) {
5518 handle_list = try_loprio ? &conf->worker_groups[group].loprio_list :
5519 &conf->worker_groups[group].handle_list;
5520 wg = &conf->worker_groups[group];
5523 for (i = 0; i < conf->group_cnt; i++) {
5524 handle_list = try_loprio ? &conf->worker_groups[i].loprio_list :
5525 &conf->worker_groups[i].handle_list;
5526 wg = &conf->worker_groups[i];
5527 if (!list_empty(handle_list))
5532 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
5534 list_empty(handle_list) ? "empty" : "busy",
5535 list_empty(&conf->hold_list) ? "empty" : "busy",
5536 atomic_read(&conf->pending_full_writes), conf->bypass_count);
5538 if (!list_empty(handle_list)) {
5539 sh = list_entry(handle_list->next, typeof(*sh), lru);
5541 if (list_empty(&conf->hold_list))
5542 conf->bypass_count = 0;
5543 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
5544 if (conf->hold_list.next == conf->last_hold)
5545 conf->bypass_count++;
5547 conf->last_hold = conf->hold_list.next;
5548 conf->bypass_count -= conf->bypass_threshold;
5549 if (conf->bypass_count < 0)
5550 conf->bypass_count = 0;
5553 } else if (!list_empty(&conf->hold_list) &&
5554 ((conf->bypass_threshold &&
5555 conf->bypass_count > conf->bypass_threshold) ||
5556 atomic_read(&conf->pending_full_writes) == 0)) {
5558 list_for_each_entry(tmp, &conf->hold_list, lru) {
5559 if (conf->worker_cnt_per_group == 0 ||
5560 group == ANY_GROUP ||
5561 !cpu_online(tmp->cpu) ||
5562 cpu_to_group(tmp->cpu) == group) {
5569 conf->bypass_count -= conf->bypass_threshold;
5570 if (conf->bypass_count < 0)
5571 conf->bypass_count = 0;
5580 try_loprio = !try_loprio;
5588 list_del_init(&sh->lru);
5589 BUG_ON(atomic_inc_return(&sh->count) != 1);
5593 struct raid5_plug_cb {
5594 struct blk_plug_cb cb;
5595 struct list_head list;
5596 struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS];
5599 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
5601 struct raid5_plug_cb *cb = container_of(
5602 blk_cb, struct raid5_plug_cb, cb);
5603 struct stripe_head *sh;
5604 struct mddev *mddev = cb->cb.data;
5605 struct r5conf *conf = mddev->private;
5609 if (cb->list.next && !list_empty(&cb->list)) {
5610 spin_lock_irq(&conf->device_lock);
5611 while (!list_empty(&cb->list)) {
5612 sh = list_first_entry(&cb->list, struct stripe_head, lru);
5613 list_del_init(&sh->lru);
5615 * avoid race release_stripe_plug() sees
5616 * STRIPE_ON_UNPLUG_LIST clear but the stripe
5617 * is still in our list
5619 smp_mb__before_atomic();
5620 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
5622 * STRIPE_ON_RELEASE_LIST could be set here. In that
5623 * case, the count is always > 1 here
5625 hash = sh->hash_lock_index;
5626 __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
5629 spin_unlock_irq(&conf->device_lock);
5631 release_inactive_stripe_list(conf, cb->temp_inactive_list,
5632 NR_STRIPE_HASH_LOCKS);
5633 if (!mddev_is_dm(mddev))
5634 trace_block_unplug(mddev->gendisk->queue, cnt, !from_schedule);
5638 static void release_stripe_plug(struct mddev *mddev,
5639 struct stripe_head *sh)
5641 struct blk_plug_cb *blk_cb = blk_check_plugged(
5642 raid5_unplug, mddev,
5643 sizeof(struct raid5_plug_cb));
5644 struct raid5_plug_cb *cb;
5647 raid5_release_stripe(sh);
5651 cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5653 if (cb->list.next == NULL) {
5655 INIT_LIST_HEAD(&cb->list);
5656 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5657 INIT_LIST_HEAD(cb->temp_inactive_list + i);
5660 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5661 list_add_tail(&sh->lru, &cb->list);
5663 raid5_release_stripe(sh);
5666 static void make_discard_request(struct mddev *mddev, struct bio *bi)
5668 struct r5conf *conf = mddev->private;
5669 sector_t logical_sector, last_sector;
5670 struct stripe_head *sh;
5673 /* We need to handle this when io_uring supports discard/trim */
5674 if (WARN_ON_ONCE(bi->bi_opf & REQ_NOWAIT))
5677 if (mddev->reshape_position != MaxSector)
5678 /* Skip discard while reshape is happening */
5681 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
5682 last_sector = bio_end_sector(bi);
5686 stripe_sectors = conf->chunk_sectors *
5687 (conf->raid_disks - conf->max_degraded);
5688 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5690 sector_div(last_sector, stripe_sectors);
5692 logical_sector *= conf->chunk_sectors;
5693 last_sector *= conf->chunk_sectors;
5695 for (; logical_sector < last_sector;
5696 logical_sector += RAID5_STRIPE_SECTORS(conf)) {
5700 sh = raid5_get_active_stripe(conf, NULL, logical_sector, 0);
5701 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5702 if (test_bit(STRIPE_SYNCING, &sh->state)) {
5703 raid5_release_stripe(sh);
5704 wait_on_bit(&sh->dev[sh->pd_idx].flags, R5_Overlap,
5705 TASK_UNINTERRUPTIBLE);
5708 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5709 spin_lock_irq(&sh->stripe_lock);
5710 for (d = 0; d < conf->raid_disks; d++) {
5711 if (d == sh->pd_idx || d == sh->qd_idx)
5713 if (sh->dev[d].towrite || sh->dev[d].toread) {
5714 set_bit(R5_Overlap, &sh->dev[d].flags);
5715 spin_unlock_irq(&sh->stripe_lock);
5716 raid5_release_stripe(sh);
5717 wait_on_bit(&sh->dev[d].flags, R5_Overlap,
5718 TASK_UNINTERRUPTIBLE);
5722 set_bit(STRIPE_DISCARD, &sh->state);
5723 sh->overwrite_disks = 0;
5724 for (d = 0; d < conf->raid_disks; d++) {
5725 if (d == sh->pd_idx || d == sh->qd_idx)
5727 sh->dev[d].towrite = bi;
5728 set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5729 bio_inc_remaining(bi);
5730 md_write_inc(mddev, bi);
5731 sh->overwrite_disks++;
5733 spin_unlock_irq(&sh->stripe_lock);
5734 if (conf->mddev->bitmap) {
5735 sh->bm_seq = conf->seq_flush + 1;
5736 set_bit(STRIPE_BIT_DELAY, &sh->state);
5739 set_bit(STRIPE_HANDLE, &sh->state);
5740 clear_bit(STRIPE_DELAYED, &sh->state);
5741 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5742 atomic_inc(&conf->preread_active_stripes);
5743 release_stripe_plug(mddev, sh);
5749 static bool ahead_of_reshape(struct mddev *mddev, sector_t sector,
5750 sector_t reshape_sector)
5752 return mddev->reshape_backwards ? sector < reshape_sector :
5753 sector >= reshape_sector;
5756 static bool range_ahead_of_reshape(struct mddev *mddev, sector_t min,
5757 sector_t max, sector_t reshape_sector)
5759 return mddev->reshape_backwards ? max < reshape_sector :
5760 min >= reshape_sector;
5763 static bool stripe_ahead_of_reshape(struct mddev *mddev, struct r5conf *conf,
5764 struct stripe_head *sh)
5766 sector_t max_sector = 0, min_sector = MaxSector;
5770 for (dd_idx = 0; dd_idx < sh->disks; dd_idx++) {
5771 if (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
5774 min_sector = min(min_sector, sh->dev[dd_idx].sector);
5775 max_sector = max(max_sector, sh->dev[dd_idx].sector);
5778 spin_lock_irq(&conf->device_lock);
5780 if (!range_ahead_of_reshape(mddev, min_sector, max_sector,
5781 conf->reshape_progress))
5782 /* mismatch, need to try again */
5785 spin_unlock_irq(&conf->device_lock);
5790 static int add_all_stripe_bios(struct r5conf *conf,
5791 struct stripe_request_ctx *ctx, struct stripe_head *sh,
5792 struct bio *bi, int forwrite, int previous)
5796 spin_lock_irq(&sh->stripe_lock);
5798 for (dd_idx = 0; dd_idx < sh->disks; dd_idx++) {
5799 struct r5dev *dev = &sh->dev[dd_idx];
5801 if (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
5804 if (dev->sector < ctx->first_sector ||
5805 dev->sector >= ctx->last_sector)
5808 if (stripe_bio_overlaps(sh, bi, dd_idx, forwrite)) {
5809 set_bit(R5_Overlap, &dev->flags);
5810 spin_unlock_irq(&sh->stripe_lock);
5811 raid5_release_stripe(sh);
5812 /* release batch_last before wait to avoid risk of deadlock */
5813 if (ctx->batch_last) {
5814 raid5_release_stripe(ctx->batch_last);
5815 ctx->batch_last = NULL;
5817 md_wakeup_thread(conf->mddev->thread);
5818 wait_on_bit(&dev->flags, R5_Overlap, TASK_UNINTERRUPTIBLE);
5823 for (dd_idx = 0; dd_idx < sh->disks; dd_idx++) {
5824 struct r5dev *dev = &sh->dev[dd_idx];
5826 if (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
5829 if (dev->sector < ctx->first_sector ||
5830 dev->sector >= ctx->last_sector)
5833 __add_stripe_bio(sh, bi, dd_idx, forwrite, previous);
5834 clear_bit((dev->sector - ctx->first_sector) >>
5835 RAID5_STRIPE_SHIFT(conf), ctx->sectors_to_do);
5838 spin_unlock_irq(&sh->stripe_lock);
5844 LOC_AHEAD_OF_RESHAPE,
5849 static enum reshape_loc get_reshape_loc(struct mddev *mddev,
5850 struct r5conf *conf, sector_t logical_sector)
5852 sector_t reshape_progress, reshape_safe;
5854 if (likely(conf->reshape_progress == MaxSector))
5855 return LOC_NO_RESHAPE;
5857 * Spinlock is needed as reshape_progress may be
5858 * 64bit on a 32bit platform, and so it might be
5859 * possible to see a half-updated value
5860 * Of course reshape_progress could change after
5861 * the lock is dropped, so once we get a reference
5862 * to the stripe that we think it is, we will have
5865 spin_lock_irq(&conf->device_lock);
5866 reshape_progress = conf->reshape_progress;
5867 reshape_safe = conf->reshape_safe;
5868 spin_unlock_irq(&conf->device_lock);
5869 if (reshape_progress == MaxSector)
5870 return LOC_NO_RESHAPE;
5871 if (ahead_of_reshape(mddev, logical_sector, reshape_progress))
5872 return LOC_AHEAD_OF_RESHAPE;
5873 if (ahead_of_reshape(mddev, logical_sector, reshape_safe))
5874 return LOC_INSIDE_RESHAPE;
5875 return LOC_BEHIND_RESHAPE;
5878 static void raid5_bitmap_sector(struct mddev *mddev, sector_t *offset,
5879 unsigned long *sectors)
5881 struct r5conf *conf = mddev->private;
5882 sector_t start = *offset;
5883 sector_t end = start + *sectors;
5884 sector_t prev_start = start;
5885 sector_t prev_end = end;
5886 int sectors_per_chunk;
5887 enum reshape_loc loc;
5890 sectors_per_chunk = conf->chunk_sectors *
5891 (conf->raid_disks - conf->max_degraded);
5892 start = round_down(start, sectors_per_chunk);
5893 end = round_up(end, sectors_per_chunk);
5895 start = raid5_compute_sector(conf, start, 0, &dd_idx, NULL);
5896 end = raid5_compute_sector(conf, end, 0, &dd_idx, NULL);
5899 * For LOC_INSIDE_RESHAPE, this IO will wait for reshape to make
5900 * progress, hence it's the same as LOC_BEHIND_RESHAPE.
5902 loc = get_reshape_loc(mddev, conf, prev_start);
5903 if (likely(loc != LOC_AHEAD_OF_RESHAPE)) {
5905 *sectors = end - start;
5909 sectors_per_chunk = conf->prev_chunk_sectors *
5910 (conf->previous_raid_disks - conf->max_degraded);
5911 prev_start = round_down(prev_start, sectors_per_chunk);
5912 prev_end = round_down(prev_end, sectors_per_chunk);
5914 prev_start = raid5_compute_sector(conf, prev_start, 1, &dd_idx, NULL);
5915 prev_end = raid5_compute_sector(conf, prev_end, 1, &dd_idx, NULL);
5918 * for LOC_AHEAD_OF_RESHAPE, reshape can make progress before this IO
5919 * is handled in make_stripe_request(), we can't know this here hence
5920 * we set bits for both.
5922 *offset = min(start, prev_start);
5923 *sectors = max(end, prev_end) - *offset;
5926 static enum stripe_result make_stripe_request(struct mddev *mddev,
5927 struct r5conf *conf, struct stripe_request_ctx *ctx,
5928 sector_t logical_sector, struct bio *bi)
5930 const int rw = bio_data_dir(bi);
5931 enum stripe_result ret;
5932 struct stripe_head *sh;
5933 enum reshape_loc loc;
5934 sector_t new_sector;
5935 int previous = 0, flags = 0;
5938 seq = read_seqcount_begin(&conf->gen_lock);
5939 loc = get_reshape_loc(mddev, conf, logical_sector);
5940 if (loc == LOC_INSIDE_RESHAPE) {
5941 ret = STRIPE_SCHEDULE_AND_RETRY;
5944 if (loc == LOC_AHEAD_OF_RESHAPE)
5947 new_sector = raid5_compute_sector(conf, logical_sector, previous,
5949 pr_debug("raid456: %s, sector %llu logical %llu\n", __func__,
5950 new_sector, logical_sector);
5953 flags |= R5_GAS_PREVIOUS;
5954 if (bi->bi_opf & REQ_RAHEAD)
5955 flags |= R5_GAS_NOBLOCK;
5956 sh = raid5_get_active_stripe(conf, ctx, new_sector, flags);
5957 if (unlikely(!sh)) {
5958 /* cannot get stripe, just give-up */
5959 bi->bi_status = BLK_STS_IOERR;
5963 if (unlikely(previous) &&
5964 stripe_ahead_of_reshape(mddev, conf, sh)) {
5966 * Expansion moved on while waiting for a stripe.
5967 * Expansion could still move past after this
5968 * test, but as we are holding a reference to
5969 * 'sh', we know that if that happens,
5970 * STRIPE_EXPANDING will get set and the expansion
5971 * won't proceed until we finish with the stripe.
5973 ret = STRIPE_SCHEDULE_AND_RETRY;
5977 if (read_seqcount_retry(&conf->gen_lock, seq)) {
5978 /* Might have got the wrong stripe_head by accident */
5983 if (test_bit(STRIPE_EXPANDING, &sh->state)) {
5984 md_wakeup_thread(mddev->thread);
5985 ret = STRIPE_SCHEDULE_AND_RETRY;
5989 if (!add_all_stripe_bios(conf, ctx, sh, bi, rw, previous)) {
5994 if (stripe_can_batch(sh)) {
5995 stripe_add_to_batch_list(conf, sh, ctx->batch_last);
5996 if (ctx->batch_last)
5997 raid5_release_stripe(ctx->batch_last);
5998 atomic_inc(&sh->count);
5999 ctx->batch_last = sh;
6002 if (ctx->do_flush) {
6003 set_bit(STRIPE_R5C_PREFLUSH, &sh->state);
6004 /* we only need flush for one stripe */
6005 ctx->do_flush = false;
6008 set_bit(STRIPE_HANDLE, &sh->state);
6009 clear_bit(STRIPE_DELAYED, &sh->state);
6010 if ((!sh->batch_head || sh == sh->batch_head) &&
6011 (bi->bi_opf & REQ_SYNC) &&
6012 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
6013 atomic_inc(&conf->preread_active_stripes);
6015 release_stripe_plug(mddev, sh);
6016 return STRIPE_SUCCESS;
6019 raid5_release_stripe(sh);
6021 if (ret == STRIPE_SCHEDULE_AND_RETRY && reshape_interrupted(mddev)) {
6022 bi->bi_status = BLK_STS_RESOURCE;
6023 ret = STRIPE_WAIT_RESHAPE;
6024 pr_err_ratelimited("dm-raid456: io across reshape position while reshape can't make progress");
6030 * If the bio covers multiple data disks, find sector within the bio that has
6031 * the lowest chunk offset in the first chunk.
6033 static sector_t raid5_bio_lowest_chunk_sector(struct r5conf *conf,
6036 int sectors_per_chunk = conf->chunk_sectors;
6037 int raid_disks = conf->raid_disks;
6039 struct stripe_head sh;
6040 unsigned int chunk_offset;
6041 sector_t r_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
6044 /* We pass in fake stripe_head to get back parity disk numbers */
6045 sector = raid5_compute_sector(conf, r_sector, 0, &dd_idx, &sh);
6046 chunk_offset = sector_div(sector, sectors_per_chunk);
6047 if (sectors_per_chunk - chunk_offset >= bio_sectors(bi))
6050 * Bio crosses to the next data disk. Check whether it's in the same
6054 while (dd_idx == sh.pd_idx || dd_idx == sh.qd_idx)
6056 if (dd_idx >= raid_disks)
6058 return r_sector + sectors_per_chunk - chunk_offset;
6061 static bool raid5_make_request(struct mddev *mddev, struct bio * bi)
6063 DEFINE_WAIT_FUNC(wait, woken_wake_function);
6065 struct r5conf *conf = mddev->private;
6066 sector_t logical_sector;
6067 struct stripe_request_ctx ctx = {};
6068 const int rw = bio_data_dir(bi);
6069 enum stripe_result res;
6072 if (unlikely(bi->bi_opf & REQ_PREFLUSH)) {
6073 int ret = log_handle_flush_request(conf, bi);
6077 if (ret == -ENODEV) {
6078 if (md_flush_request(mddev, bi))
6081 /* ret == -EAGAIN, fallback */
6083 * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH,
6084 * we need to flush journal device
6086 ctx.do_flush = bi->bi_opf & REQ_PREFLUSH;
6089 md_write_start(mddev, bi);
6091 * If array is degraded, better not do chunk aligned read because
6092 * later we might have to read it again in order to reconstruct
6093 * data on failed drives.
6095 if (rw == READ && mddev->degraded == 0 &&
6096 mddev->reshape_position == MaxSector) {
6097 bi = chunk_aligned_read(mddev, bi);
6102 if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) {
6103 make_discard_request(mddev, bi);
6104 md_write_end(mddev);
6108 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
6109 ctx.first_sector = logical_sector;
6110 ctx.last_sector = bio_end_sector(bi);
6113 stripe_cnt = DIV_ROUND_UP_SECTOR_T(ctx.last_sector - logical_sector,
6114 RAID5_STRIPE_SECTORS(conf));
6115 bitmap_set(ctx.sectors_to_do, 0, stripe_cnt);
6117 pr_debug("raid456: %s, logical %llu to %llu\n", __func__,
6118 bi->bi_iter.bi_sector, ctx.last_sector);
6120 /* Bail out if conflicts with reshape and REQ_NOWAIT is set */
6121 if ((bi->bi_opf & REQ_NOWAIT) &&
6122 get_reshape_loc(mddev, conf, logical_sector) == LOC_INSIDE_RESHAPE) {
6123 bio_wouldblock_error(bi);
6125 md_write_end(mddev);
6128 md_account_bio(mddev, &bi);
6131 * Lets start with the stripe with the lowest chunk offset in the first
6132 * chunk. That has the best chances of creating IOs adjacent to
6133 * previous IOs in case of sequential IO and thus creates the most
6134 * sequential IO pattern. We don't bother with the optimization when
6135 * reshaping as the performance benefit is not worth the complexity.
6137 if (likely(conf->reshape_progress == MaxSector)) {
6138 logical_sector = raid5_bio_lowest_chunk_sector(conf, bi);
6141 add_wait_queue(&conf->wait_for_reshape, &wait);
6144 s = (logical_sector - ctx.first_sector) >> RAID5_STRIPE_SHIFT(conf);
6147 res = make_stripe_request(mddev, conf, &ctx, logical_sector,
6149 if (res == STRIPE_FAIL || res == STRIPE_WAIT_RESHAPE)
6152 if (res == STRIPE_RETRY)
6155 if (res == STRIPE_SCHEDULE_AND_RETRY) {
6156 WARN_ON_ONCE(!on_wq);
6158 * Must release the reference to batch_last before
6159 * scheduling and waiting for work to be done,
6160 * otherwise the batch_last stripe head could prevent
6161 * raid5_activate_delayed() from making progress
6162 * and thus deadlocking.
6164 if (ctx.batch_last) {
6165 raid5_release_stripe(ctx.batch_last);
6166 ctx.batch_last = NULL;
6169 wait_woken(&wait, TASK_UNINTERRUPTIBLE,
6170 MAX_SCHEDULE_TIMEOUT);
6174 s = find_next_bit_wrap(ctx.sectors_to_do, stripe_cnt, s);
6175 if (s == stripe_cnt)
6178 logical_sector = ctx.first_sector +
6179 (s << RAID5_STRIPE_SHIFT(conf));
6181 if (unlikely(on_wq))
6182 remove_wait_queue(&conf->wait_for_reshape, &wait);
6185 raid5_release_stripe(ctx.batch_last);
6188 md_write_end(mddev);
6189 if (res == STRIPE_WAIT_RESHAPE) {
6190 md_free_cloned_bio(bi);
6198 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
6200 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
6202 /* reshaping is quite different to recovery/resync so it is
6203 * handled quite separately ... here.
6205 * On each call to sync_request, we gather one chunk worth of
6206 * destination stripes and flag them as expanding.
6207 * Then we find all the source stripes and request reads.
6208 * As the reads complete, handle_stripe will copy the data
6209 * into the destination stripe and release that stripe.
6211 struct r5conf *conf = mddev->private;
6212 struct stripe_head *sh;
6213 struct md_rdev *rdev;
6214 sector_t first_sector, last_sector;
6215 int raid_disks = conf->previous_raid_disks;
6216 int data_disks = raid_disks - conf->max_degraded;
6217 int new_data_disks = conf->raid_disks - conf->max_degraded;
6220 sector_t writepos, readpos, safepos;
6221 sector_t stripe_addr;
6222 int reshape_sectors;
6223 struct list_head stripes;
6226 if (sector_nr == 0) {
6227 /* If restarting in the middle, skip the initial sectors */
6228 if (mddev->reshape_backwards &&
6229 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
6230 sector_nr = raid5_size(mddev, 0, 0)
6231 - conf->reshape_progress;
6232 } else if (mddev->reshape_backwards &&
6233 conf->reshape_progress == MaxSector) {
6234 /* shouldn't happen, but just in case, finish up.*/
6235 sector_nr = MaxSector;
6236 } else if (!mddev->reshape_backwards &&
6237 conf->reshape_progress > 0)
6238 sector_nr = conf->reshape_progress;
6239 sector_div(sector_nr, new_data_disks);
6241 mddev->curr_resync_completed = sector_nr;
6242 sysfs_notify_dirent_safe(mddev->sysfs_completed);
6249 /* We need to process a full chunk at a time.
6250 * If old and new chunk sizes differ, we need to process the
6254 reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
6256 /* We update the metadata at least every 10 seconds, or when
6257 * the data about to be copied would over-write the source of
6258 * the data at the front of the range. i.e. one new_stripe
6259 * along from reshape_progress new_maps to after where
6260 * reshape_safe old_maps to
6262 writepos = conf->reshape_progress;
6263 sector_div(writepos, new_data_disks);
6264 readpos = conf->reshape_progress;
6265 sector_div(readpos, data_disks);
6266 safepos = conf->reshape_safe;
6267 sector_div(safepos, data_disks);
6268 if (mddev->reshape_backwards) {
6269 if (WARN_ON(writepos < reshape_sectors))
6272 writepos -= reshape_sectors;
6273 readpos += reshape_sectors;
6274 safepos += reshape_sectors;
6276 writepos += reshape_sectors;
6277 /* readpos and safepos are worst-case calculations.
6278 * A negative number is overly pessimistic, and causes
6279 * obvious problems for unsigned storage. So clip to 0.
6281 readpos -= min_t(sector_t, reshape_sectors, readpos);
6282 safepos -= min_t(sector_t, reshape_sectors, safepos);
6285 /* Having calculated the 'writepos' possibly use it
6286 * to set 'stripe_addr' which is where we will write to.
6288 if (mddev->reshape_backwards) {
6289 if (WARN_ON(conf->reshape_progress == 0))
6292 stripe_addr = writepos;
6293 if (WARN_ON((mddev->dev_sectors &
6294 ~((sector_t)reshape_sectors - 1)) -
6295 reshape_sectors - stripe_addr != sector_nr))
6298 if (WARN_ON(writepos != sector_nr + reshape_sectors))
6301 stripe_addr = sector_nr;
6304 /* 'writepos' is the most advanced device address we might write.
6305 * 'readpos' is the least advanced device address we might read.
6306 * 'safepos' is the least address recorded in the metadata as having
6308 * If there is a min_offset_diff, these are adjusted either by
6309 * increasing the safepos/readpos if diff is negative, or
6310 * increasing writepos if diff is positive.
6311 * If 'readpos' is then behind 'writepos', there is no way that we can
6312 * ensure safety in the face of a crash - that must be done by userspace
6313 * making a backup of the data. So in that case there is no particular
6314 * rush to update metadata.
6315 * Otherwise if 'safepos' is behind 'writepos', then we really need to
6316 * update the metadata to advance 'safepos' to match 'readpos' so that
6317 * we can be safe in the event of a crash.
6318 * So we insist on updating metadata if safepos is behind writepos and
6319 * readpos is beyond writepos.
6320 * In any case, update the metadata every 10 seconds.
6321 * Maybe that number should be configurable, but I'm not sure it is
6322 * worth it.... maybe it could be a multiple of safemode_delay???
6324 if (conf->min_offset_diff < 0) {
6325 safepos += -conf->min_offset_diff;
6326 readpos += -conf->min_offset_diff;
6328 writepos += conf->min_offset_diff;
6330 if ((mddev->reshape_backwards
6331 ? (safepos > writepos && readpos < writepos)
6332 : (safepos < writepos && readpos > writepos)) ||
6333 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
6334 /* Cannot proceed until we've updated the superblock... */
6335 wait_event(conf->wait_for_reshape,
6336 atomic_read(&conf->reshape_stripes)==0
6337 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6338 if (atomic_read(&conf->reshape_stripes) != 0)
6340 mddev->reshape_position = conf->reshape_progress;
6341 mddev->curr_resync_completed = sector_nr;
6342 if (!mddev->reshape_backwards)
6343 /* Can update recovery_offset */
6344 rdev_for_each(rdev, mddev)
6345 if (rdev->raid_disk >= 0 &&
6346 !test_bit(Journal, &rdev->flags) &&
6347 !test_bit(In_sync, &rdev->flags) &&
6348 rdev->recovery_offset < sector_nr)
6349 rdev->recovery_offset = sector_nr;
6351 conf->reshape_checkpoint = jiffies;
6352 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6353 md_wakeup_thread(mddev->thread);
6354 wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
6355 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6356 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6358 spin_lock_irq(&conf->device_lock);
6359 conf->reshape_safe = mddev->reshape_position;
6360 spin_unlock_irq(&conf->device_lock);
6361 wake_up(&conf->wait_for_reshape);
6362 sysfs_notify_dirent_safe(mddev->sysfs_completed);
6365 INIT_LIST_HEAD(&stripes);
6366 for (i = 0; i < reshape_sectors; i += RAID5_STRIPE_SECTORS(conf)) {
6368 int skipped_disk = 0;
6369 sh = raid5_get_active_stripe(conf, NULL, stripe_addr+i,
6371 set_bit(STRIPE_EXPANDING, &sh->state);
6372 atomic_inc(&conf->reshape_stripes);
6373 /* If any of this stripe is beyond the end of the old
6374 * array, then we need to zero those blocks
6376 for (j=sh->disks; j--;) {
6378 if (j == sh->pd_idx)
6380 if (conf->level == 6 &&
6383 s = raid5_compute_blocknr(sh, j, 0);
6384 if (s < raid5_size(mddev, 0, 0)) {
6388 memset(page_address(sh->dev[j].page), 0, RAID5_STRIPE_SIZE(conf));
6389 set_bit(R5_Expanded, &sh->dev[j].flags);
6390 set_bit(R5_UPTODATE, &sh->dev[j].flags);
6392 if (!skipped_disk) {
6393 set_bit(STRIPE_EXPAND_READY, &sh->state);
6394 set_bit(STRIPE_HANDLE, &sh->state);
6396 list_add(&sh->lru, &stripes);
6398 spin_lock_irq(&conf->device_lock);
6399 if (mddev->reshape_backwards)
6400 conf->reshape_progress -= reshape_sectors * new_data_disks;
6402 conf->reshape_progress += reshape_sectors * new_data_disks;
6403 spin_unlock_irq(&conf->device_lock);
6404 /* Ok, those stripe are ready. We can start scheduling
6405 * reads on the source stripes.
6406 * The source stripes are determined by mapping the first and last
6407 * block on the destination stripes.
6410 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
6413 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
6414 * new_data_disks - 1),
6416 if (last_sector >= mddev->dev_sectors)
6417 last_sector = mddev->dev_sectors - 1;
6418 while (first_sector <= last_sector) {
6419 sh = raid5_get_active_stripe(conf, NULL, first_sector,
6420 R5_GAS_PREVIOUS | R5_GAS_NOQUIESCE);
6421 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
6422 set_bit(STRIPE_HANDLE, &sh->state);
6423 raid5_release_stripe(sh);
6424 first_sector += RAID5_STRIPE_SECTORS(conf);
6426 /* Now that the sources are clearly marked, we can release
6427 * the destination stripes
6429 while (!list_empty(&stripes)) {
6430 sh = list_entry(stripes.next, struct stripe_head, lru);
6431 list_del_init(&sh->lru);
6432 raid5_release_stripe(sh);
6434 /* If this takes us to the resync_max point where we have to pause,
6435 * then we need to write out the superblock.
6437 sector_nr += reshape_sectors;
6438 retn = reshape_sectors;
6440 if (mddev->curr_resync_completed > mddev->resync_max ||
6441 (sector_nr - mddev->curr_resync_completed) * 2
6442 >= mddev->resync_max - mddev->curr_resync_completed) {
6443 /* Cannot proceed until we've updated the superblock... */
6444 wait_event(conf->wait_for_reshape,
6445 atomic_read(&conf->reshape_stripes) == 0
6446 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6447 if (atomic_read(&conf->reshape_stripes) != 0)
6449 mddev->reshape_position = conf->reshape_progress;
6450 mddev->curr_resync_completed = sector_nr;
6451 if (!mddev->reshape_backwards)
6452 /* Can update recovery_offset */
6453 rdev_for_each(rdev, mddev)
6454 if (rdev->raid_disk >= 0 &&
6455 !test_bit(Journal, &rdev->flags) &&
6456 !test_bit(In_sync, &rdev->flags) &&
6457 rdev->recovery_offset < sector_nr)
6458 rdev->recovery_offset = sector_nr;
6459 conf->reshape_checkpoint = jiffies;
6460 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6461 md_wakeup_thread(mddev->thread);
6462 wait_event(mddev->sb_wait,
6463 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)
6464 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6465 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6467 spin_lock_irq(&conf->device_lock);
6468 conf->reshape_safe = mddev->reshape_position;
6469 spin_unlock_irq(&conf->device_lock);
6470 wake_up(&conf->wait_for_reshape);
6471 sysfs_notify_dirent_safe(mddev->sysfs_completed);
6477 static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr,
6478 sector_t max_sector, int *skipped)
6480 struct r5conf *conf = mddev->private;
6481 struct stripe_head *sh;
6482 sector_t sync_blocks;
6483 bool still_degraded = false;
6486 if (sector_nr >= max_sector) {
6487 /* just being told to finish up .. nothing much to do */
6489 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
6494 if (mddev->curr_resync < max_sector) /* aborted */
6495 mddev->bitmap_ops->end_sync(mddev, mddev->curr_resync,
6497 else /* completed sync */
6499 mddev->bitmap_ops->close_sync(mddev);
6504 /* Allow raid5_quiesce to complete */
6505 wait_event(conf->wait_for_reshape, conf->quiesce != 2);
6507 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6508 return reshape_request(mddev, sector_nr, skipped);
6510 /* No need to check resync_max as we never do more than one
6511 * stripe, and as resync_max will always be on a chunk boundary,
6512 * if the check in md_do_sync didn't fire, there is no chance
6513 * of overstepping resync_max here
6516 /* if there is too many failed drives and we are trying
6517 * to resync, then assert that we are finished, because there is
6518 * nothing we can do.
6520 if (mddev->degraded >= conf->max_degraded &&
6521 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6522 sector_t rv = mddev->dev_sectors - sector_nr;
6526 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
6528 !mddev->bitmap_ops->start_sync(mddev, sector_nr, &sync_blocks,
6530 sync_blocks >= RAID5_STRIPE_SECTORS(conf)) {
6531 /* we can skip this block, and probably more */
6532 do_div(sync_blocks, RAID5_STRIPE_SECTORS(conf));
6534 /* keep things rounded to whole stripes */
6535 return sync_blocks * RAID5_STRIPE_SECTORS(conf);
6538 mddev->bitmap_ops->cond_end_sync(mddev, sector_nr, false);
6540 sh = raid5_get_active_stripe(conf, NULL, sector_nr,
6543 sh = raid5_get_active_stripe(conf, NULL, sector_nr, 0);
6544 /* make sure we don't swamp the stripe cache if someone else
6545 * is trying to get access
6547 schedule_timeout_uninterruptible(1);
6549 /* Need to check if array will still be degraded after recovery/resync
6550 * Note in case of > 1 drive failures it's possible we're rebuilding
6551 * one drive while leaving another faulty drive in array.
6553 for (i = 0; i < conf->raid_disks; i++) {
6554 struct md_rdev *rdev = conf->disks[i].rdev;
6556 if (rdev == NULL || test_bit(Faulty, &rdev->flags))
6557 still_degraded = true;
6560 mddev->bitmap_ops->start_sync(mddev, sector_nr, &sync_blocks,
6563 set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
6564 set_bit(STRIPE_HANDLE, &sh->state);
6566 raid5_release_stripe(sh);
6568 return RAID5_STRIPE_SECTORS(conf);
6571 static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio,
6572 unsigned int offset)
6574 /* We may not be able to submit a whole bio at once as there
6575 * may not be enough stripe_heads available.
6576 * We cannot pre-allocate enough stripe_heads as we may need
6577 * more than exist in the cache (if we allow ever large chunks).
6578 * So we do one stripe head at a time and record in
6579 * ->bi_hw_segments how many have been done.
6581 * We *know* that this entire raid_bio is in one chunk, so
6582 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
6584 struct stripe_head *sh;
6586 sector_t sector, logical_sector, last_sector;
6590 logical_sector = raid_bio->bi_iter.bi_sector &
6591 ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
6592 sector = raid5_compute_sector(conf, logical_sector,
6594 last_sector = bio_end_sector(raid_bio);
6596 for (; logical_sector < last_sector;
6597 logical_sector += RAID5_STRIPE_SECTORS(conf),
6598 sector += RAID5_STRIPE_SECTORS(conf),
6602 /* already done this stripe */
6605 sh = raid5_get_active_stripe(conf, NULL, sector,
6606 R5_GAS_NOBLOCK | R5_GAS_NOQUIESCE);
6608 /* failed to get a stripe - must wait */
6609 conf->retry_read_aligned = raid_bio;
6610 conf->retry_read_offset = scnt;
6614 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
6615 raid5_release_stripe(sh);
6616 conf->retry_read_aligned = raid_bio;
6617 conf->retry_read_offset = scnt;
6621 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
6623 raid5_release_stripe(sh);
6627 bio_endio(raid_bio);
6629 if (atomic_dec_and_test(&conf->active_aligned_reads))
6630 wake_up(&conf->wait_for_quiescent);
6634 static int handle_active_stripes(struct r5conf *conf, int group,
6635 struct r5worker *worker,
6636 struct list_head *temp_inactive_list)
6637 __must_hold(&conf->device_lock)
6639 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
6640 int i, batch_size = 0, hash;
6641 bool release_inactive = false;
6643 while (batch_size < MAX_STRIPE_BATCH &&
6644 (sh = __get_priority_stripe(conf, group)) != NULL)
6645 batch[batch_size++] = sh;
6647 if (batch_size == 0) {
6648 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6649 if (!list_empty(temp_inactive_list + i))
6651 if (i == NR_STRIPE_HASH_LOCKS) {
6652 spin_unlock_irq(&conf->device_lock);
6653 log_flush_stripe_to_raid(conf);
6654 spin_lock_irq(&conf->device_lock);
6657 release_inactive = true;
6659 spin_unlock_irq(&conf->device_lock);
6661 release_inactive_stripe_list(conf, temp_inactive_list,
6662 NR_STRIPE_HASH_LOCKS);
6664 r5l_flush_stripe_to_raid(conf->log);
6665 if (release_inactive) {
6666 spin_lock_irq(&conf->device_lock);
6670 for (i = 0; i < batch_size; i++)
6671 handle_stripe(batch[i]);
6672 log_write_stripe_run(conf);
6676 spin_lock_irq(&conf->device_lock);
6677 for (i = 0; i < batch_size; i++) {
6678 hash = batch[i]->hash_lock_index;
6679 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
6684 static void raid5_do_work(struct work_struct *work)
6686 struct r5worker *worker = container_of(work, struct r5worker, work);
6687 struct r5worker_group *group = worker->group;
6688 struct r5conf *conf = group->conf;
6689 struct mddev *mddev = conf->mddev;
6690 int group_id = group - conf->worker_groups;
6692 struct blk_plug plug;
6694 pr_debug("+++ raid5worker active\n");
6696 blk_start_plug(&plug);
6698 spin_lock_irq(&conf->device_lock);
6700 int batch_size, released;
6702 released = release_stripe_list(conf, worker->temp_inactive_list);
6704 batch_size = handle_active_stripes(conf, group_id, worker,
6705 worker->temp_inactive_list);
6706 worker->working = false;
6707 if (!batch_size && !released)
6709 handled += batch_size;
6710 wait_event_lock_irq(mddev->sb_wait,
6711 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags),
6714 pr_debug("%d stripes handled\n", handled);
6716 spin_unlock_irq(&conf->device_lock);
6718 flush_deferred_bios(conf);
6720 r5l_flush_stripe_to_raid(conf->log);
6722 async_tx_issue_pending_all();
6723 blk_finish_plug(&plug);
6725 pr_debug("--- raid5worker inactive\n");
6729 * This is our raid5 kernel thread.
6731 * We scan the hash table for stripes which can be handled now.
6732 * During the scan, completed stripes are saved for us by the interrupt
6733 * handler, so that they will not have to wait for our next wakeup.
6735 static void raid5d(struct md_thread *thread)
6737 struct mddev *mddev = thread->mddev;
6738 struct r5conf *conf = mddev->private;
6740 struct blk_plug plug;
6742 pr_debug("+++ raid5d active\n");
6744 md_check_recovery(mddev);
6746 blk_start_plug(&plug);
6748 spin_lock_irq(&conf->device_lock);
6751 int batch_size, released;
6752 unsigned int offset;
6754 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
6757 released = release_stripe_list(conf, conf->temp_inactive_list);
6759 clear_bit(R5_DID_ALLOC, &conf->cache_state);
6762 !list_empty(&conf->bitmap_list)) {
6763 /* Now is a good time to flush some bitmap updates */
6765 spin_unlock_irq(&conf->device_lock);
6766 mddev->bitmap_ops->unplug(mddev, true);
6767 spin_lock_irq(&conf->device_lock);
6768 conf->seq_write = conf->seq_flush;
6769 activate_bit_delay(conf, conf->temp_inactive_list);
6771 raid5_activate_delayed(conf);
6773 while ((bio = remove_bio_from_retry(conf, &offset))) {
6775 spin_unlock_irq(&conf->device_lock);
6776 ok = retry_aligned_read(conf, bio, offset);
6777 spin_lock_irq(&conf->device_lock);
6783 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
6784 conf->temp_inactive_list);
6785 if (!batch_size && !released)
6787 handled += batch_size;
6789 if (mddev->sb_flags & ~(1 << MD_SB_CHANGE_PENDING)) {
6790 spin_unlock_irq(&conf->device_lock);
6791 md_check_recovery(mddev);
6792 spin_lock_irq(&conf->device_lock);
6795 pr_debug("%d stripes handled\n", handled);
6797 spin_unlock_irq(&conf->device_lock);
6798 if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
6799 mutex_trylock(&conf->cache_size_mutex)) {
6800 grow_one_stripe(conf, __GFP_NOWARN);
6801 /* Set flag even if allocation failed. This helps
6802 * slow down allocation requests when mem is short
6804 set_bit(R5_DID_ALLOC, &conf->cache_state);
6805 mutex_unlock(&conf->cache_size_mutex);
6808 flush_deferred_bios(conf);
6810 r5l_flush_stripe_to_raid(conf->log);
6812 async_tx_issue_pending_all();
6813 blk_finish_plug(&plug);
6815 pr_debug("--- raid5d inactive\n");
6819 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
6821 struct r5conf *conf;
6823 spin_lock(&mddev->lock);
6824 conf = mddev->private;
6826 ret = sprintf(page, "%d\n", conf->min_nr_stripes);
6827 spin_unlock(&mddev->lock);
6832 raid5_set_cache_size(struct mddev *mddev, int size)
6835 struct r5conf *conf = mddev->private;
6837 if (size <= 16 || size > 32768)
6840 WRITE_ONCE(conf->min_nr_stripes, size);
6841 mutex_lock(&conf->cache_size_mutex);
6842 while (size < conf->max_nr_stripes &&
6843 drop_one_stripe(conf))
6845 mutex_unlock(&conf->cache_size_mutex);
6847 md_allow_write(mddev);
6849 mutex_lock(&conf->cache_size_mutex);
6850 while (size > conf->max_nr_stripes)
6851 if (!grow_one_stripe(conf, GFP_KERNEL)) {
6852 WRITE_ONCE(conf->min_nr_stripes, conf->max_nr_stripes);
6856 mutex_unlock(&conf->cache_size_mutex);
6860 EXPORT_SYMBOL(raid5_set_cache_size);
6863 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
6865 struct r5conf *conf;
6869 if (len >= PAGE_SIZE)
6871 if (kstrtoul(page, 10, &new))
6873 err = mddev_lock(mddev);
6876 conf = mddev->private;
6880 err = raid5_set_cache_size(mddev, new);
6881 mddev_unlock(mddev);
6886 static struct md_sysfs_entry
6887 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
6888 raid5_show_stripe_cache_size,
6889 raid5_store_stripe_cache_size);
6892 raid5_show_rmw_level(struct mddev *mddev, char *page)
6894 struct r5conf *conf = mddev->private;
6896 return sprintf(page, "%d\n", conf->rmw_level);
6902 raid5_store_rmw_level(struct mddev *mddev, const char *page, size_t len)
6904 struct r5conf *conf = mddev->private;
6910 if (len >= PAGE_SIZE)
6913 if (kstrtoul(page, 10, &new))
6916 if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
6919 if (new != PARITY_DISABLE_RMW &&
6920 new != PARITY_ENABLE_RMW &&
6921 new != PARITY_PREFER_RMW)
6924 conf->rmw_level = new;
6928 static struct md_sysfs_entry
6929 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
6930 raid5_show_rmw_level,
6931 raid5_store_rmw_level);
6934 raid5_show_stripe_size(struct mddev *mddev, char *page)
6936 struct r5conf *conf;
6939 spin_lock(&mddev->lock);
6940 conf = mddev->private;
6942 ret = sprintf(page, "%lu\n", RAID5_STRIPE_SIZE(conf));
6943 spin_unlock(&mddev->lock);
6947 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
6949 raid5_store_stripe_size(struct mddev *mddev, const char *page, size_t len)
6951 struct r5conf *conf;
6956 if (len >= PAGE_SIZE)
6958 if (kstrtoul(page, 10, &new))
6962 * The value should not be bigger than PAGE_SIZE. It requires to
6963 * be multiple of DEFAULT_STRIPE_SIZE and the value should be power
6966 if (new % DEFAULT_STRIPE_SIZE != 0 ||
6967 new > PAGE_SIZE || new == 0 ||
6968 new != roundup_pow_of_two(new))
6971 err = mddev_suspend_and_lock(mddev);
6975 conf = mddev->private;
6981 if (new == conf->stripe_size)
6984 pr_debug("md/raid: change stripe_size from %lu to %lu\n",
6985 conf->stripe_size, new);
6987 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6988 mddev->reshape_position != MaxSector || mddev->sysfs_active) {
6993 mutex_lock(&conf->cache_size_mutex);
6994 size = conf->max_nr_stripes;
6996 shrink_stripes(conf);
6998 conf->stripe_size = new;
6999 conf->stripe_shift = ilog2(new) - 9;
7000 conf->stripe_sectors = new >> 9;
7001 if (grow_stripes(conf, size)) {
7002 pr_warn("md/raid:%s: couldn't allocate buffers\n",
7006 mutex_unlock(&conf->cache_size_mutex);
7009 mddev_unlock_and_resume(mddev);
7013 static struct md_sysfs_entry
7014 raid5_stripe_size = __ATTR(stripe_size, 0644,
7015 raid5_show_stripe_size,
7016 raid5_store_stripe_size);
7018 static struct md_sysfs_entry
7019 raid5_stripe_size = __ATTR(stripe_size, 0444,
7020 raid5_show_stripe_size,
7025 raid5_show_preread_threshold(struct mddev *mddev, char *page)
7027 struct r5conf *conf;
7029 spin_lock(&mddev->lock);
7030 conf = mddev->private;
7032 ret = sprintf(page, "%d\n", conf->bypass_threshold);
7033 spin_unlock(&mddev->lock);
7038 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
7040 struct r5conf *conf;
7044 if (len >= PAGE_SIZE)
7046 if (kstrtoul(page, 10, &new))
7049 err = mddev_lock(mddev);
7052 conf = mddev->private;
7055 else if (new > conf->min_nr_stripes)
7058 conf->bypass_threshold = new;
7059 mddev_unlock(mddev);
7063 static struct md_sysfs_entry
7064 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
7066 raid5_show_preread_threshold,
7067 raid5_store_preread_threshold);
7070 raid5_show_skip_copy(struct mddev *mddev, char *page)
7072 struct r5conf *conf;
7074 spin_lock(&mddev->lock);
7075 conf = mddev->private;
7077 ret = sprintf(page, "%d\n", conf->skip_copy);
7078 spin_unlock(&mddev->lock);
7083 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
7085 struct r5conf *conf;
7089 if (len >= PAGE_SIZE)
7091 if (kstrtoul(page, 10, &new))
7095 err = mddev_suspend_and_lock(mddev);
7098 conf = mddev->private;
7101 else if (new != conf->skip_copy) {
7102 struct request_queue *q = mddev->gendisk->queue;
7103 struct queue_limits lim = queue_limits_start_update(q);
7105 conf->skip_copy = new;
7107 lim.features |= BLK_FEAT_STABLE_WRITES;
7109 lim.features &= ~BLK_FEAT_STABLE_WRITES;
7110 err = queue_limits_commit_update(q, &lim);
7112 mddev_unlock_and_resume(mddev);
7116 static struct md_sysfs_entry
7117 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
7118 raid5_show_skip_copy,
7119 raid5_store_skip_copy);
7122 stripe_cache_active_show(struct mddev *mddev, char *page)
7124 struct r5conf *conf = mddev->private;
7126 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
7131 static struct md_sysfs_entry
7132 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
7135 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
7137 struct r5conf *conf;
7139 spin_lock(&mddev->lock);
7140 conf = mddev->private;
7142 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
7143 spin_unlock(&mddev->lock);
7147 static int alloc_thread_groups(struct r5conf *conf, int cnt,
7149 struct r5worker_group **worker_groups);
7151 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
7153 struct r5conf *conf;
7156 struct r5worker_group *new_groups, *old_groups;
7159 if (len >= PAGE_SIZE)
7161 if (kstrtouint(page, 10, &new))
7163 /* 8192 should be big enough */
7167 err = mddev_suspend_and_lock(mddev);
7170 raid5_quiesce(mddev, true);
7172 conf = mddev->private;
7175 else if (new != conf->worker_cnt_per_group) {
7176 old_groups = conf->worker_groups;
7178 flush_workqueue(raid5_wq);
7180 err = alloc_thread_groups(conf, new, &group_cnt, &new_groups);
7182 spin_lock_irq(&conf->device_lock);
7183 conf->group_cnt = group_cnt;
7184 conf->worker_cnt_per_group = new;
7185 conf->worker_groups = new_groups;
7186 spin_unlock_irq(&conf->device_lock);
7189 kfree(old_groups[0].workers);
7194 raid5_quiesce(mddev, false);
7195 mddev_unlock_and_resume(mddev);
7200 static struct md_sysfs_entry
7201 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
7202 raid5_show_group_thread_cnt,
7203 raid5_store_group_thread_cnt);
7205 static struct attribute *raid5_attrs[] = {
7206 &raid5_stripecache_size.attr,
7207 &raid5_stripecache_active.attr,
7208 &raid5_preread_bypass_threshold.attr,
7209 &raid5_group_thread_cnt.attr,
7210 &raid5_skip_copy.attr,
7211 &raid5_rmw_level.attr,
7212 &raid5_stripe_size.attr,
7213 &r5c_journal_mode.attr,
7214 &ppl_write_hint.attr,
7217 static const struct attribute_group raid5_attrs_group = {
7219 .attrs = raid5_attrs,
7222 static int alloc_thread_groups(struct r5conf *conf, int cnt, int *group_cnt,
7223 struct r5worker_group **worker_groups)
7227 struct r5worker *workers;
7231 *worker_groups = NULL;
7234 *group_cnt = num_possible_nodes();
7235 size = sizeof(struct r5worker) * cnt;
7236 workers = kcalloc(size, *group_cnt, GFP_NOIO);
7237 *worker_groups = kcalloc(*group_cnt, sizeof(struct r5worker_group),
7239 if (!*worker_groups || !workers) {
7241 kfree(*worker_groups);
7245 for (i = 0; i < *group_cnt; i++) {
7246 struct r5worker_group *group;
7248 group = &(*worker_groups)[i];
7249 INIT_LIST_HEAD(&group->handle_list);
7250 INIT_LIST_HEAD(&group->loprio_list);
7252 group->workers = workers + i * cnt;
7254 for (j = 0; j < cnt; j++) {
7255 struct r5worker *worker = group->workers + j;
7256 worker->group = group;
7257 INIT_WORK(&worker->work, raid5_do_work);
7259 for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
7260 INIT_LIST_HEAD(worker->temp_inactive_list + k);
7267 static void free_thread_groups(struct r5conf *conf)
7269 if (conf->worker_groups)
7270 kfree(conf->worker_groups[0].workers);
7271 kfree(conf->worker_groups);
7272 conf->worker_groups = NULL;
7276 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
7278 struct r5conf *conf = mddev->private;
7281 sectors = mddev->dev_sectors;
7283 /* size is defined by the smallest of previous and new size */
7284 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
7286 sectors &= ~((sector_t)conf->chunk_sectors - 1);
7287 sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
7288 return sectors * (raid_disks - conf->max_degraded);
7291 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
7293 safe_put_page(percpu->spare_page);
7294 percpu->spare_page = NULL;
7295 kvfree(percpu->scribble);
7296 percpu->scribble = NULL;
7299 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
7301 if (conf->level == 6 && !percpu->spare_page) {
7302 percpu->spare_page = alloc_page(GFP_KERNEL);
7303 if (!percpu->spare_page)
7307 if (scribble_alloc(percpu,
7308 max(conf->raid_disks,
7309 conf->previous_raid_disks),
7310 max(conf->chunk_sectors,
7311 conf->prev_chunk_sectors)
7312 / RAID5_STRIPE_SECTORS(conf))) {
7313 free_scratch_buffer(conf, percpu);
7317 local_lock_init(&percpu->lock);
7321 static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node)
7323 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
7325 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
7329 static void raid5_free_percpu(struct r5conf *conf)
7334 cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
7335 free_percpu(conf->percpu);
7338 static void free_conf(struct r5conf *conf)
7344 shrinker_free(conf->shrinker);
7345 free_thread_groups(conf);
7346 shrink_stripes(conf);
7347 raid5_free_percpu(conf);
7348 for (i = 0; i < conf->pool_size; i++)
7349 if (conf->disks[i].extra_page)
7350 put_page(conf->disks[i].extra_page);
7352 bioset_exit(&conf->bio_split);
7353 kfree(conf->stripe_hashtbl);
7354 kfree(conf->pending_data);
7358 static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node)
7360 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
7361 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
7363 if (alloc_scratch_buffer(conf, percpu)) {
7364 pr_warn("%s: failed memory allocation for cpu%u\n",
7371 static int raid5_alloc_percpu(struct r5conf *conf)
7375 conf->percpu = alloc_percpu(struct raid5_percpu);
7379 err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
7381 conf->scribble_disks = max(conf->raid_disks,
7382 conf->previous_raid_disks);
7383 conf->scribble_sectors = max(conf->chunk_sectors,
7384 conf->prev_chunk_sectors);
7389 static unsigned long raid5_cache_scan(struct shrinker *shrink,
7390 struct shrink_control *sc)
7392 struct r5conf *conf = shrink->private_data;
7393 unsigned long ret = SHRINK_STOP;
7395 if (mutex_trylock(&conf->cache_size_mutex)) {
7397 while (ret < sc->nr_to_scan &&
7398 conf->max_nr_stripes > conf->min_nr_stripes) {
7399 if (drop_one_stripe(conf) == 0) {
7405 mutex_unlock(&conf->cache_size_mutex);
7410 static unsigned long raid5_cache_count(struct shrinker *shrink,
7411 struct shrink_control *sc)
7413 struct r5conf *conf = shrink->private_data;
7414 int max_stripes = READ_ONCE(conf->max_nr_stripes);
7415 int min_stripes = READ_ONCE(conf->min_nr_stripes);
7417 if (max_stripes < min_stripes)
7418 /* unlikely, but not impossible */
7420 return max_stripes - min_stripes;
7423 static struct r5conf *setup_conf(struct mddev *mddev)
7425 struct r5conf *conf;
7426 int raid_disk, memory, max_disks;
7427 struct md_rdev *rdev;
7428 struct disk_info *disk;
7432 struct r5worker_group *new_group;
7435 if (mddev->new_level != 5
7436 && mddev->new_level != 4
7437 && mddev->new_level != 6) {
7438 pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n",
7439 mdname(mddev), mddev->new_level);
7440 return ERR_PTR(-EIO);
7442 if ((mddev->new_level == 5
7443 && !algorithm_valid_raid5(mddev->new_layout)) ||
7444 (mddev->new_level == 6
7445 && !algorithm_valid_raid6(mddev->new_layout))) {
7446 pr_warn("md/raid:%s: layout %d not supported\n",
7447 mdname(mddev), mddev->new_layout);
7448 return ERR_PTR(-EIO);
7450 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
7451 pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n",
7452 mdname(mddev), mddev->raid_disks);
7453 return ERR_PTR(-EINVAL);
7456 if (!mddev->new_chunk_sectors ||
7457 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
7458 !is_power_of_2(mddev->new_chunk_sectors)) {
7459 pr_warn("md/raid:%s: invalid chunk size %d\n",
7460 mdname(mddev), mddev->new_chunk_sectors << 9);
7461 return ERR_PTR(-EINVAL);
7464 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
7468 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
7469 conf->stripe_size = DEFAULT_STRIPE_SIZE;
7470 conf->stripe_shift = ilog2(DEFAULT_STRIPE_SIZE) - 9;
7471 conf->stripe_sectors = DEFAULT_STRIPE_SIZE >> 9;
7473 INIT_LIST_HEAD(&conf->free_list);
7474 INIT_LIST_HEAD(&conf->pending_list);
7475 conf->pending_data = kcalloc(PENDING_IO_MAX,
7476 sizeof(struct r5pending_data),
7478 if (!conf->pending_data)
7480 for (i = 0; i < PENDING_IO_MAX; i++)
7481 list_add(&conf->pending_data[i].sibling, &conf->free_list);
7482 /* Don't enable multi-threading by default*/
7483 if (!alloc_thread_groups(conf, 0, &group_cnt, &new_group)) {
7484 conf->group_cnt = group_cnt;
7485 conf->worker_cnt_per_group = 0;
7486 conf->worker_groups = new_group;
7489 spin_lock_init(&conf->device_lock);
7490 seqcount_spinlock_init(&conf->gen_lock, &conf->device_lock);
7491 mutex_init(&conf->cache_size_mutex);
7493 init_waitqueue_head(&conf->wait_for_quiescent);
7494 init_waitqueue_head(&conf->wait_for_stripe);
7495 init_waitqueue_head(&conf->wait_for_reshape);
7496 INIT_LIST_HEAD(&conf->handle_list);
7497 INIT_LIST_HEAD(&conf->loprio_list);
7498 INIT_LIST_HEAD(&conf->hold_list);
7499 INIT_LIST_HEAD(&conf->delayed_list);
7500 INIT_LIST_HEAD(&conf->bitmap_list);
7501 init_llist_head(&conf->released_stripes);
7502 atomic_set(&conf->active_stripes, 0);
7503 atomic_set(&conf->preread_active_stripes, 0);
7504 atomic_set(&conf->active_aligned_reads, 0);
7505 spin_lock_init(&conf->pending_bios_lock);
7506 conf->batch_bio_dispatch = true;
7507 rdev_for_each(rdev, mddev) {
7508 if (test_bit(Journal, &rdev->flags))
7510 if (bdev_nonrot(rdev->bdev)) {
7511 conf->batch_bio_dispatch = false;
7516 conf->bypass_threshold = BYPASS_THRESHOLD;
7517 conf->recovery_disabled = mddev->recovery_disabled - 1;
7519 conf->raid_disks = mddev->raid_disks;
7520 if (mddev->reshape_position == MaxSector)
7521 conf->previous_raid_disks = mddev->raid_disks;
7523 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
7524 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
7526 conf->disks = kcalloc(max_disks, sizeof(struct disk_info),
7532 for (i = 0; i < max_disks; i++) {
7533 conf->disks[i].extra_page = alloc_page(GFP_KERNEL);
7534 if (!conf->disks[i].extra_page)
7538 ret = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
7541 conf->mddev = mddev;
7544 conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL);
7545 if (!conf->stripe_hashtbl)
7548 /* We init hash_locks[0] separately to that it can be used
7549 * as the reference lock in the spin_lock_nest_lock() call
7550 * in lock_all_device_hash_locks_irq in order to convince
7551 * lockdep that we know what we are doing.
7553 spin_lock_init(conf->hash_locks);
7554 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
7555 spin_lock_init(conf->hash_locks + i);
7557 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
7558 INIT_LIST_HEAD(conf->inactive_list + i);
7560 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
7561 INIT_LIST_HEAD(conf->temp_inactive_list + i);
7563 atomic_set(&conf->r5c_cached_full_stripes, 0);
7564 INIT_LIST_HEAD(&conf->r5c_full_stripe_list);
7565 atomic_set(&conf->r5c_cached_partial_stripes, 0);
7566 INIT_LIST_HEAD(&conf->r5c_partial_stripe_list);
7567 atomic_set(&conf->r5c_flushing_full_stripes, 0);
7568 atomic_set(&conf->r5c_flushing_partial_stripes, 0);
7570 conf->level = mddev->new_level;
7571 conf->chunk_sectors = mddev->new_chunk_sectors;
7572 ret = raid5_alloc_percpu(conf);
7576 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
7579 rdev_for_each(rdev, mddev) {
7580 raid_disk = rdev->raid_disk;
7581 if (raid_disk >= max_disks
7582 || raid_disk < 0 || test_bit(Journal, &rdev->flags))
7584 disk = conf->disks + raid_disk;
7586 if (test_bit(Replacement, &rdev->flags)) {
7587 if (disk->replacement)
7589 disk->replacement = rdev;
7596 if (test_bit(In_sync, &rdev->flags)) {
7597 pr_info("md/raid:%s: device %pg operational as raid disk %d\n",
7598 mdname(mddev), rdev->bdev, raid_disk);
7599 } else if (rdev->saved_raid_disk != raid_disk)
7600 /* Cannot rely on bitmap to complete recovery */
7604 conf->level = mddev->new_level;
7605 if (conf->level == 6) {
7606 conf->max_degraded = 2;
7607 if (raid6_call.xor_syndrome)
7608 conf->rmw_level = PARITY_ENABLE_RMW;
7610 conf->rmw_level = PARITY_DISABLE_RMW;
7612 conf->max_degraded = 1;
7613 conf->rmw_level = PARITY_ENABLE_RMW;
7615 conf->algorithm = mddev->new_layout;
7616 conf->reshape_progress = mddev->reshape_position;
7617 if (conf->reshape_progress != MaxSector) {
7618 conf->prev_chunk_sectors = mddev->chunk_sectors;
7619 conf->prev_algo = mddev->layout;
7621 conf->prev_chunk_sectors = conf->chunk_sectors;
7622 conf->prev_algo = conf->algorithm;
7625 conf->min_nr_stripes = NR_STRIPES;
7626 if (mddev->reshape_position != MaxSector) {
7627 int stripes = max_t(int,
7628 ((mddev->chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4,
7629 ((mddev->new_chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4);
7630 conf->min_nr_stripes = max(NR_STRIPES, stripes);
7631 if (conf->min_nr_stripes != NR_STRIPES)
7632 pr_info("md/raid:%s: force stripe size %d for reshape\n",
7633 mdname(mddev), conf->min_nr_stripes);
7635 memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
7636 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
7637 atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
7638 if (grow_stripes(conf, conf->min_nr_stripes)) {
7639 pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n",
7640 mdname(mddev), memory);
7644 pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev), memory);
7646 * Losing a stripe head costs more than the time to refill it,
7647 * it reduces the queue depth and so can hurt throughput.
7648 * So set it rather large, scaled by number of devices.
7650 conf->shrinker = shrinker_alloc(0, "md-raid5:%s", mdname(mddev));
7651 if (!conf->shrinker) {
7653 pr_warn("md/raid:%s: couldn't allocate shrinker.\n",
7658 conf->shrinker->seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
7659 conf->shrinker->scan_objects = raid5_cache_scan;
7660 conf->shrinker->count_objects = raid5_cache_count;
7661 conf->shrinker->batch = 128;
7662 conf->shrinker->private_data = conf;
7664 shrinker_register(conf->shrinker);
7666 sprintf(pers_name, "raid%d", mddev->new_level);
7667 rcu_assign_pointer(conf->thread,
7668 md_register_thread(raid5d, mddev, pers_name));
7669 if (!conf->thread) {
7670 pr_warn("md/raid:%s: couldn't allocate thread.\n",
7681 return ERR_PTR(ret);
7684 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
7687 case ALGORITHM_PARITY_0:
7688 if (raid_disk < max_degraded)
7691 case ALGORITHM_PARITY_N:
7692 if (raid_disk >= raid_disks - max_degraded)
7695 case ALGORITHM_PARITY_0_6:
7696 if (raid_disk == 0 ||
7697 raid_disk == raid_disks - 1)
7700 case ALGORITHM_LEFT_ASYMMETRIC_6:
7701 case ALGORITHM_RIGHT_ASYMMETRIC_6:
7702 case ALGORITHM_LEFT_SYMMETRIC_6:
7703 case ALGORITHM_RIGHT_SYMMETRIC_6:
7704 if (raid_disk == raid_disks - 1)
7710 static int raid5_set_limits(struct mddev *mddev)
7712 struct r5conf *conf = mddev->private;
7713 struct queue_limits lim;
7714 int data_disks, stripe;
7715 struct md_rdev *rdev;
7718 * The read-ahead size must cover two whole stripes, which is
7719 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices.
7721 data_disks = conf->previous_raid_disks - conf->max_degraded;
7724 * We can only discard a whole stripe. It doesn't make sense to
7725 * discard data disk but write parity disk
7727 stripe = roundup_pow_of_two(data_disks * (mddev->chunk_sectors << 9));
7729 md_init_stacking_limits(&lim);
7730 lim.io_min = mddev->chunk_sectors << 9;
7731 lim.io_opt = lim.io_min * (conf->raid_disks - conf->max_degraded);
7732 lim.features |= BLK_FEAT_RAID_PARTIAL_STRIPES_EXPENSIVE;
7733 lim.discard_granularity = stripe;
7734 lim.max_write_zeroes_sectors = 0;
7735 mddev_stack_rdev_limits(mddev, &lim, 0);
7736 rdev_for_each(rdev, mddev)
7737 queue_limits_stack_bdev(&lim, rdev->bdev, rdev->new_data_offset,
7738 mddev->gendisk->disk_name);
7741 * Zeroing is required for discard, otherwise data could be lost.
7743 * Consider a scenario: discard a stripe (the stripe could be
7744 * inconsistent if discard_zeroes_data is 0); write one disk of the
7745 * stripe (the stripe could be inconsistent again depending on which
7746 * disks are used to calculate parity); the disk is broken; The stripe
7747 * data of this disk is lost.
7749 * We only allow DISCARD if the sysadmin has confirmed that only safe
7750 * devices are in use by setting a module parameter. A better idea
7751 * might be to turn DISCARD into WRITE_ZEROES requests, as that is
7752 * required to be safe.
7754 if (!devices_handle_discard_safely ||
7755 lim.max_discard_sectors < (stripe >> 9) ||
7756 lim.discard_granularity < stripe)
7757 lim.max_hw_discard_sectors = 0;
7760 * Requests require having a bitmap for each stripe.
7761 * Limit the max sectors based on this.
7763 lim.max_hw_sectors = RAID5_MAX_REQ_STRIPES << RAID5_STRIPE_SHIFT(conf);
7765 /* No restrictions on the number of segments in the request */
7766 lim.max_segments = USHRT_MAX;
7768 return queue_limits_set(mddev->gendisk->queue, &lim);
7771 static int raid5_run(struct mddev *mddev)
7773 struct r5conf *conf;
7774 int dirty_parity_disks = 0;
7775 struct md_rdev *rdev;
7776 struct md_rdev *journal_dev = NULL;
7777 sector_t reshape_offset = 0;
7779 long long min_offset_diff = 0;
7783 if (mddev->recovery_cp != MaxSector)
7784 pr_notice("md/raid:%s: not clean -- starting background reconstruction\n",
7787 rdev_for_each(rdev, mddev) {
7790 if (test_bit(Journal, &rdev->flags)) {
7794 if (rdev->raid_disk < 0)
7796 diff = (rdev->new_data_offset - rdev->data_offset);
7798 min_offset_diff = diff;
7800 } else if (mddev->reshape_backwards &&
7801 diff < min_offset_diff)
7802 min_offset_diff = diff;
7803 else if (!mddev->reshape_backwards &&
7804 diff > min_offset_diff)
7805 min_offset_diff = diff;
7808 if ((test_bit(MD_HAS_JOURNAL, &mddev->flags) || journal_dev) &&
7809 (mddev->bitmap_info.offset || mddev->bitmap_info.file)) {
7810 pr_notice("md/raid:%s: array cannot have both journal and bitmap\n",
7815 if (mddev->reshape_position != MaxSector) {
7816 /* Check that we can continue the reshape.
7817 * Difficulties arise if the stripe we would write to
7818 * next is at or after the stripe we would read from next.
7819 * For a reshape that changes the number of devices, this
7820 * is only possible for a very short time, and mdadm makes
7821 * sure that time appears to have past before assembling
7822 * the array. So we fail if that time hasn't passed.
7823 * For a reshape that keeps the number of devices the same
7824 * mdadm must be monitoring the reshape can keeping the
7825 * critical areas read-only and backed up. It will start
7826 * the array in read-only mode, so we check for that.
7828 sector_t here_new, here_old;
7830 int max_degraded = (mddev->level == 6 ? 2 : 1);
7835 pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n",
7840 if (mddev->new_level != mddev->level) {
7841 pr_warn("md/raid:%s: unsupported reshape required - aborting.\n",
7845 old_disks = mddev->raid_disks - mddev->delta_disks;
7846 /* reshape_position must be on a new-stripe boundary, and one
7847 * further up in new geometry must map after here in old
7849 * If the chunk sizes are different, then as we perform reshape
7850 * in units of the largest of the two, reshape_position needs
7851 * be a multiple of the largest chunk size times new data disks.
7853 here_new = mddev->reshape_position;
7854 chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
7855 new_data_disks = mddev->raid_disks - max_degraded;
7856 if (sector_div(here_new, chunk_sectors * new_data_disks)) {
7857 pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n",
7861 reshape_offset = here_new * chunk_sectors;
7862 /* here_new is the stripe we will write to */
7863 here_old = mddev->reshape_position;
7864 sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
7865 /* here_old is the first stripe that we might need to read
7867 if (mddev->delta_disks == 0) {
7868 /* We cannot be sure it is safe to start an in-place
7869 * reshape. It is only safe if user-space is monitoring
7870 * and taking constant backups.
7871 * mdadm always starts a situation like this in
7872 * readonly mode so it can take control before
7873 * allowing any writes. So just check for that.
7875 if (abs(min_offset_diff) >= mddev->chunk_sectors &&
7876 abs(min_offset_diff) >= mddev->new_chunk_sectors)
7877 /* not really in-place - so OK */;
7878 else if (mddev->ro == 0) {
7879 pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n",
7883 } else if (mddev->reshape_backwards
7884 ? (here_new * chunk_sectors + min_offset_diff <=
7885 here_old * chunk_sectors)
7886 : (here_new * chunk_sectors >=
7887 here_old * chunk_sectors + (-min_offset_diff))) {
7888 /* Reading from the same stripe as writing to - bad */
7889 pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n",
7893 pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev));
7894 /* OK, we should be able to continue; */
7896 BUG_ON(mddev->level != mddev->new_level);
7897 BUG_ON(mddev->layout != mddev->new_layout);
7898 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
7899 BUG_ON(mddev->delta_disks != 0);
7902 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) &&
7903 test_bit(MD_HAS_PPL, &mddev->flags)) {
7904 pr_warn("md/raid:%s: using journal device and PPL not allowed - disabling PPL\n",
7906 clear_bit(MD_HAS_PPL, &mddev->flags);
7907 clear_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags);
7910 if (mddev->private == NULL)
7911 conf = setup_conf(mddev);
7913 conf = mddev->private;
7916 return PTR_ERR(conf);
7918 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
7920 pr_warn("md/raid:%s: journal disk is missing, force array readonly\n",
7923 set_disk_ro(mddev->gendisk, 1);
7924 } else if (mddev->recovery_cp == MaxSector)
7925 set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
7928 conf->min_offset_diff = min_offset_diff;
7929 rcu_assign_pointer(mddev->thread, conf->thread);
7930 rcu_assign_pointer(conf->thread, NULL);
7931 mddev->private = conf;
7933 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
7935 rdev = conf->disks[i].rdev;
7938 if (conf->disks[i].replacement &&
7939 conf->reshape_progress != MaxSector) {
7940 /* replacements and reshape simply do not mix. */
7941 pr_warn("md: cannot handle concurrent replacement and reshape.\n");
7944 if (test_bit(In_sync, &rdev->flags))
7946 /* This disc is not fully in-sync. However if it
7947 * just stored parity (beyond the recovery_offset),
7948 * when we don't need to be concerned about the
7949 * array being dirty.
7950 * When reshape goes 'backwards', we never have
7951 * partially completed devices, so we only need
7952 * to worry about reshape going forwards.
7954 /* Hack because v0.91 doesn't store recovery_offset properly. */
7955 if (mddev->major_version == 0 &&
7956 mddev->minor_version > 90)
7957 rdev->recovery_offset = reshape_offset;
7959 if (rdev->recovery_offset < reshape_offset) {
7960 /* We need to check old and new layout */
7961 if (!only_parity(rdev->raid_disk,
7964 conf->max_degraded))
7967 if (!only_parity(rdev->raid_disk,
7969 conf->previous_raid_disks,
7970 conf->max_degraded))
7972 dirty_parity_disks++;
7976 * 0 for a fully functional array, 1 or 2 for a degraded array.
7978 mddev->degraded = raid5_calc_degraded(conf);
7980 if (has_failed(conf)) {
7981 pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n",
7982 mdname(mddev), mddev->degraded, conf->raid_disks);
7986 /* device size must be a multiple of chunk size */
7987 mddev->dev_sectors &= ~((sector_t)mddev->chunk_sectors - 1);
7988 mddev->resync_max_sectors = mddev->dev_sectors;
7990 if (mddev->degraded > dirty_parity_disks &&
7991 mddev->recovery_cp != MaxSector) {
7992 if (test_bit(MD_HAS_PPL, &mddev->flags))
7993 pr_crit("md/raid:%s: starting dirty degraded array with PPL.\n",
7995 else if (mddev->ok_start_degraded)
7996 pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n",
7999 pr_crit("md/raid:%s: cannot start dirty degraded array.\n",
8005 pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n",
8006 mdname(mddev), conf->level,
8007 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
8010 print_raid5_conf(conf);
8012 if (conf->reshape_progress != MaxSector) {
8013 conf->reshape_safe = conf->reshape_progress;
8014 atomic_set(&conf->reshape_stripes, 0);
8015 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8016 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8017 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8018 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8021 /* Ok, everything is just fine now */
8022 if (mddev->to_remove == &raid5_attrs_group)
8023 mddev->to_remove = NULL;
8024 else if (mddev->kobj.sd &&
8025 sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
8026 pr_warn("raid5: failed to create sysfs attributes for %s\n",
8028 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
8030 if (!mddev_is_dm(mddev)) {
8031 ret = raid5_set_limits(mddev);
8036 if (log_init(conf, journal_dev, raid5_has_ppl(conf)))
8041 md_unregister_thread(mddev, &mddev->thread);
8042 print_raid5_conf(conf);
8044 mddev->private = NULL;
8045 pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev));
8049 static void raid5_free(struct mddev *mddev, void *priv)
8051 struct r5conf *conf = priv;
8054 mddev->to_remove = &raid5_attrs_group;
8057 static void raid5_status(struct seq_file *seq, struct mddev *mddev)
8059 struct r5conf *conf = mddev->private;
8062 lockdep_assert_held(&mddev->lock);
8064 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
8065 conf->chunk_sectors / 2, mddev->layout);
8066 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
8067 for (i = 0; i < conf->raid_disks; i++) {
8068 struct md_rdev *rdev = READ_ONCE(conf->disks[i].rdev);
8070 seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
8072 seq_printf (seq, "]");
8075 static void print_raid5_conf(struct r5conf *conf)
8077 struct md_rdev *rdev;
8080 pr_debug("RAID conf printout:\n");
8082 pr_debug("(conf==NULL)\n");
8085 pr_debug(" --- level:%d rd:%d wd:%d\n", conf->level,
8087 conf->raid_disks - conf->mddev->degraded);
8089 for (i = 0; i < conf->raid_disks; i++) {
8090 rdev = conf->disks[i].rdev;
8092 pr_debug(" disk %d, o:%d, dev:%pg\n",
8093 i, !test_bit(Faulty, &rdev->flags),
8098 static int raid5_spare_active(struct mddev *mddev)
8101 struct r5conf *conf = mddev->private;
8102 struct md_rdev *rdev, *replacement;
8104 unsigned long flags;
8106 for (i = 0; i < conf->raid_disks; i++) {
8107 rdev = conf->disks[i].rdev;
8108 replacement = conf->disks[i].replacement;
8110 && replacement->recovery_offset == MaxSector
8111 && !test_bit(Faulty, &replacement->flags)
8112 && !test_and_set_bit(In_sync, &replacement->flags)) {
8113 /* Replacement has just become active. */
8115 || !test_and_clear_bit(In_sync, &rdev->flags))
8118 /* Replaced device not technically faulty,
8119 * but we need to be sure it gets removed
8120 * and never re-added.
8122 set_bit(Faulty, &rdev->flags);
8123 sysfs_notify_dirent_safe(
8126 sysfs_notify_dirent_safe(replacement->sysfs_state);
8128 && rdev->recovery_offset == MaxSector
8129 && !test_bit(Faulty, &rdev->flags)
8130 && !test_and_set_bit(In_sync, &rdev->flags)) {
8132 sysfs_notify_dirent_safe(rdev->sysfs_state);
8135 spin_lock_irqsave(&conf->device_lock, flags);
8136 mddev->degraded = raid5_calc_degraded(conf);
8137 spin_unlock_irqrestore(&conf->device_lock, flags);
8138 print_raid5_conf(conf);
8142 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
8144 struct r5conf *conf = mddev->private;
8146 int number = rdev->raid_disk;
8147 struct md_rdev **rdevp;
8148 struct disk_info *p;
8149 struct md_rdev *tmp;
8151 print_raid5_conf(conf);
8152 if (test_bit(Journal, &rdev->flags) && conf->log) {
8154 * we can't wait pending write here, as this is called in
8155 * raid5d, wait will deadlock.
8156 * neilb: there is no locking about new writes here,
8157 * so this cannot be safe.
8159 if (atomic_read(&conf->active_stripes) ||
8160 atomic_read(&conf->r5c_cached_full_stripes) ||
8161 atomic_read(&conf->r5c_cached_partial_stripes)) {
8167 if (unlikely(number >= conf->pool_size))
8169 p = conf->disks + number;
8170 if (rdev == p->rdev)
8172 else if (rdev == p->replacement)
8173 rdevp = &p->replacement;
8177 if (number >= conf->raid_disks &&
8178 conf->reshape_progress == MaxSector)
8179 clear_bit(In_sync, &rdev->flags);
8181 if (test_bit(In_sync, &rdev->flags) ||
8182 atomic_read(&rdev->nr_pending)) {
8186 /* Only remove non-faulty devices if recovery
8189 if (!test_bit(Faulty, &rdev->flags) &&
8190 mddev->recovery_disabled != conf->recovery_disabled &&
8191 !has_failed(conf) &&
8192 (!p->replacement || p->replacement == rdev) &&
8193 number < conf->raid_disks) {
8197 WRITE_ONCE(*rdevp, NULL);
8199 err = log_modify(conf, rdev, false);
8204 tmp = p->replacement;
8206 /* We must have just cleared 'rdev' */
8207 WRITE_ONCE(p->rdev, tmp);
8208 clear_bit(Replacement, &tmp->flags);
8209 WRITE_ONCE(p->replacement, NULL);
8212 err = log_modify(conf, tmp, true);
8215 clear_bit(WantReplacement, &rdev->flags);
8218 print_raid5_conf(conf);
8222 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
8224 struct r5conf *conf = mddev->private;
8225 int ret, err = -EEXIST;
8227 struct disk_info *p;
8228 struct md_rdev *tmp;
8230 int last = conf->raid_disks - 1;
8232 if (test_bit(Journal, &rdev->flags)) {
8236 rdev->raid_disk = 0;
8238 * The array is in readonly mode if journal is missing, so no
8239 * write requests running. We should be safe
8241 ret = log_init(conf, rdev, false);
8245 ret = r5l_start(conf->log);
8251 if (mddev->recovery_disabled == conf->recovery_disabled)
8254 if (rdev->saved_raid_disk < 0 && has_failed(conf))
8255 /* no point adding a device */
8258 if (rdev->raid_disk >= 0)
8259 first = last = rdev->raid_disk;
8262 * find the disk ... but prefer rdev->saved_raid_disk
8265 if (rdev->saved_raid_disk >= first &&
8266 rdev->saved_raid_disk <= last &&
8267 conf->disks[rdev->saved_raid_disk].rdev == NULL)
8268 first = rdev->saved_raid_disk;
8270 for (disk = first; disk <= last; disk++) {
8271 p = conf->disks + disk;
8272 if (p->rdev == NULL) {
8273 clear_bit(In_sync, &rdev->flags);
8274 rdev->raid_disk = disk;
8275 if (rdev->saved_raid_disk != disk)
8277 WRITE_ONCE(p->rdev, rdev);
8279 err = log_modify(conf, rdev, true);
8284 for (disk = first; disk <= last; disk++) {
8285 p = conf->disks + disk;
8287 if (test_bit(WantReplacement, &tmp->flags) &&
8288 mddev->reshape_position == MaxSector &&
8289 p->replacement == NULL) {
8290 clear_bit(In_sync, &rdev->flags);
8291 set_bit(Replacement, &rdev->flags);
8292 rdev->raid_disk = disk;
8295 WRITE_ONCE(p->replacement, rdev);
8300 print_raid5_conf(conf);
8304 static int raid5_resize(struct mddev *mddev, sector_t sectors)
8306 /* no resync is happening, and there is enough space
8307 * on all devices, so we can resize.
8308 * We need to make sure resync covers any new space.
8309 * If the array is shrinking we should possibly wait until
8310 * any io in the removed space completes, but it hardly seems
8314 struct r5conf *conf = mddev->private;
8317 if (raid5_has_log(conf) || raid5_has_ppl(conf))
8319 sectors &= ~((sector_t)conf->chunk_sectors - 1);
8320 newsize = raid5_size(mddev, sectors, mddev->raid_disks);
8321 if (mddev->external_size &&
8322 mddev->array_sectors > newsize)
8325 ret = mddev->bitmap_ops->resize(mddev, sectors, 0, false);
8329 md_set_array_sectors(mddev, newsize);
8330 if (sectors > mddev->dev_sectors &&
8331 mddev->recovery_cp > mddev->dev_sectors) {
8332 mddev->recovery_cp = mddev->dev_sectors;
8333 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8335 mddev->dev_sectors = sectors;
8336 mddev->resync_max_sectors = sectors;
8340 static int check_stripe_cache(struct mddev *mddev)
8342 /* Can only proceed if there are plenty of stripe_heads.
8343 * We need a minimum of one full stripe,, and for sensible progress
8344 * it is best to have about 4 times that.
8345 * If we require 4 times, then the default 256 4K stripe_heads will
8346 * allow for chunk sizes up to 256K, which is probably OK.
8347 * If the chunk size is greater, user-space should request more
8348 * stripe_heads first.
8350 struct r5conf *conf = mddev->private;
8351 if (((mddev->chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4
8352 > conf->min_nr_stripes ||
8353 ((mddev->new_chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4
8354 > conf->min_nr_stripes) {
8355 pr_warn("md/raid:%s: reshape: not enough stripes. Needed %lu\n",
8357 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
8358 / RAID5_STRIPE_SIZE(conf))*4);
8364 static int check_reshape(struct mddev *mddev)
8366 struct r5conf *conf = mddev->private;
8368 if (raid5_has_log(conf) || raid5_has_ppl(conf))
8370 if (mddev->delta_disks == 0 &&
8371 mddev->new_layout == mddev->layout &&
8372 mddev->new_chunk_sectors == mddev->chunk_sectors)
8373 return 0; /* nothing to do */
8374 if (has_failed(conf))
8376 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
8377 /* We might be able to shrink, but the devices must
8378 * be made bigger first.
8379 * For raid6, 4 is the minimum size.
8380 * Otherwise 2 is the minimum
8383 if (mddev->level == 6)
8385 if (mddev->raid_disks + mddev->delta_disks < min)
8389 if (!check_stripe_cache(mddev))
8392 if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
8393 mddev->delta_disks > 0)
8394 if (resize_chunks(conf,
8395 conf->previous_raid_disks
8396 + max(0, mddev->delta_disks),
8397 max(mddev->new_chunk_sectors,
8398 mddev->chunk_sectors)
8402 if (conf->previous_raid_disks + mddev->delta_disks <= conf->pool_size)
8403 return 0; /* never bother to shrink */
8404 return resize_stripes(conf, (conf->previous_raid_disks
8405 + mddev->delta_disks));
8408 static int raid5_start_reshape(struct mddev *mddev)
8410 struct r5conf *conf = mddev->private;
8411 struct md_rdev *rdev;
8414 unsigned long flags;
8416 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
8419 if (!check_stripe_cache(mddev))
8422 if (has_failed(conf))
8425 /* raid5 can't handle concurrent reshape and recovery */
8426 if (mddev->recovery_cp < MaxSector)
8428 for (i = 0; i < conf->raid_disks; i++)
8429 if (conf->disks[i].replacement)
8432 rdev_for_each(rdev, mddev) {
8433 if (!test_bit(In_sync, &rdev->flags)
8434 && !test_bit(Faulty, &rdev->flags))
8438 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
8439 /* Not enough devices even to make a degraded array
8444 /* Refuse to reduce size of the array. Any reductions in
8445 * array size must be through explicit setting of array_size
8448 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
8449 < mddev->array_sectors) {
8450 pr_warn("md/raid:%s: array size must be reduced before number of disks\n",
8455 atomic_set(&conf->reshape_stripes, 0);
8456 spin_lock_irq(&conf->device_lock);
8457 write_seqcount_begin(&conf->gen_lock);
8458 conf->previous_raid_disks = conf->raid_disks;
8459 conf->raid_disks += mddev->delta_disks;
8460 conf->prev_chunk_sectors = conf->chunk_sectors;
8461 conf->chunk_sectors = mddev->new_chunk_sectors;
8462 conf->prev_algo = conf->algorithm;
8463 conf->algorithm = mddev->new_layout;
8465 /* Code that selects data_offset needs to see the generation update
8466 * if reshape_progress has been set - so a memory barrier needed.
8469 if (mddev->reshape_backwards)
8470 conf->reshape_progress = raid5_size(mddev, 0, 0);
8472 conf->reshape_progress = 0;
8473 conf->reshape_safe = conf->reshape_progress;
8474 write_seqcount_end(&conf->gen_lock);
8475 spin_unlock_irq(&conf->device_lock);
8477 /* Now make sure any requests that proceeded on the assumption
8478 * the reshape wasn't running - like Discard or Read - have
8481 raid5_quiesce(mddev, true);
8482 raid5_quiesce(mddev, false);
8484 /* Add some new drives, as many as will fit.
8485 * We know there are enough to make the newly sized array work.
8486 * Don't add devices if we are reducing the number of
8487 * devices in the array. This is because it is not possible
8488 * to correctly record the "partially reconstructed" state of
8489 * such devices during the reshape and confusion could result.
8491 if (mddev->delta_disks >= 0) {
8492 rdev_for_each(rdev, mddev)
8493 if (rdev->raid_disk < 0 &&
8494 !test_bit(Faulty, &rdev->flags)) {
8495 if (raid5_add_disk(mddev, rdev) == 0) {
8497 >= conf->previous_raid_disks)
8498 set_bit(In_sync, &rdev->flags);
8500 rdev->recovery_offset = 0;
8502 /* Failure here is OK */
8503 sysfs_link_rdev(mddev, rdev);
8505 } else if (rdev->raid_disk >= conf->previous_raid_disks
8506 && !test_bit(Faulty, &rdev->flags)) {
8507 /* This is a spare that was manually added */
8508 set_bit(In_sync, &rdev->flags);
8511 /* When a reshape changes the number of devices,
8512 * ->degraded is measured against the larger of the
8513 * pre and post number of devices.
8515 spin_lock_irqsave(&conf->device_lock, flags);
8516 mddev->degraded = raid5_calc_degraded(conf);
8517 spin_unlock_irqrestore(&conf->device_lock, flags);
8519 mddev->raid_disks = conf->raid_disks;
8520 mddev->reshape_position = conf->reshape_progress;
8521 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8523 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8524 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8525 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8526 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8527 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8528 conf->reshape_checkpoint = jiffies;
8533 /* This is called from the reshape thread and should make any
8534 * changes needed in 'conf'
8536 static void end_reshape(struct r5conf *conf)
8539 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
8540 struct md_rdev *rdev;
8542 spin_lock_irq(&conf->device_lock);
8543 conf->previous_raid_disks = conf->raid_disks;
8544 md_finish_reshape(conf->mddev);
8546 conf->reshape_progress = MaxSector;
8547 conf->mddev->reshape_position = MaxSector;
8548 rdev_for_each(rdev, conf->mddev)
8549 if (rdev->raid_disk >= 0 &&
8550 !test_bit(Journal, &rdev->flags) &&
8551 !test_bit(In_sync, &rdev->flags))
8552 rdev->recovery_offset = MaxSector;
8553 spin_unlock_irq(&conf->device_lock);
8554 wake_up(&conf->wait_for_reshape);
8556 mddev_update_io_opt(conf->mddev,
8557 conf->raid_disks - conf->max_degraded);
8561 /* This is called from the raid5d thread with mddev_lock held.
8562 * It makes config changes to the device.
8564 static void raid5_finish_reshape(struct mddev *mddev)
8566 struct r5conf *conf = mddev->private;
8567 struct md_rdev *rdev;
8569 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8571 if (mddev->delta_disks <= 0) {
8573 spin_lock_irq(&conf->device_lock);
8574 mddev->degraded = raid5_calc_degraded(conf);
8575 spin_unlock_irq(&conf->device_lock);
8576 for (d = conf->raid_disks ;
8577 d < conf->raid_disks - mddev->delta_disks;
8579 rdev = conf->disks[d].rdev;
8581 clear_bit(In_sync, &rdev->flags);
8582 rdev = conf->disks[d].replacement;
8584 clear_bit(In_sync, &rdev->flags);
8587 mddev->layout = conf->algorithm;
8588 mddev->chunk_sectors = conf->chunk_sectors;
8589 mddev->reshape_position = MaxSector;
8590 mddev->delta_disks = 0;
8591 mddev->reshape_backwards = 0;
8595 static void raid5_quiesce(struct mddev *mddev, int quiesce)
8597 struct r5conf *conf = mddev->private;
8600 /* stop all writes */
8601 lock_all_device_hash_locks_irq(conf);
8602 /* '2' tells resync/reshape to pause so that all
8603 * active stripes can drain
8605 r5c_flush_cache(conf, INT_MAX);
8606 /* need a memory barrier to make sure read_one_chunk() sees
8607 * quiesce started and reverts to slow (locked) path.
8609 smp_store_release(&conf->quiesce, 2);
8610 wait_event_cmd(conf->wait_for_quiescent,
8611 atomic_read(&conf->active_stripes) == 0 &&
8612 atomic_read(&conf->active_aligned_reads) == 0,
8613 unlock_all_device_hash_locks_irq(conf),
8614 lock_all_device_hash_locks_irq(conf));
8616 unlock_all_device_hash_locks_irq(conf);
8617 /* allow reshape to continue */
8618 wake_up(&conf->wait_for_reshape);
8620 /* re-enable writes */
8621 lock_all_device_hash_locks_irq(conf);
8623 wake_up(&conf->wait_for_quiescent);
8624 wake_up(&conf->wait_for_reshape);
8625 unlock_all_device_hash_locks_irq(conf);
8627 log_quiesce(conf, quiesce);
8630 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
8632 struct r0conf *raid0_conf = mddev->private;
8635 /* for raid0 takeover only one zone is supported */
8636 if (raid0_conf->nr_strip_zones > 1) {
8637 pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n",
8639 return ERR_PTR(-EINVAL);
8642 sectors = raid0_conf->strip_zone[0].zone_end;
8643 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
8644 mddev->dev_sectors = sectors;
8645 mddev->new_level = level;
8646 mddev->new_layout = ALGORITHM_PARITY_N;
8647 mddev->new_chunk_sectors = mddev->chunk_sectors;
8648 mddev->raid_disks += 1;
8649 mddev->delta_disks = 1;
8650 /* make sure it will be not marked as dirty */
8651 mddev->recovery_cp = MaxSector;
8653 return setup_conf(mddev);
8656 static void *raid5_takeover_raid1(struct mddev *mddev)
8661 if (mddev->raid_disks != 2 ||
8662 mddev->degraded > 1)
8663 return ERR_PTR(-EINVAL);
8665 /* Should check if there are write-behind devices? */
8667 chunksect = 64*2; /* 64K by default */
8669 /* The array must be an exact multiple of chunksize */
8670 while (chunksect && (mddev->array_sectors & (chunksect-1)))
8673 if ((chunksect<<9) < RAID5_STRIPE_SIZE((struct r5conf *)mddev->private))
8674 /* array size does not allow a suitable chunk size */
8675 return ERR_PTR(-EINVAL);
8677 mddev->new_level = 5;
8678 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
8679 mddev->new_chunk_sectors = chunksect;
8681 ret = setup_conf(mddev);
8683 mddev_clear_unsupported_flags(mddev,
8684 UNSUPPORTED_MDDEV_FLAGS);
8688 static void *raid5_takeover_raid6(struct mddev *mddev)
8692 switch (mddev->layout) {
8693 case ALGORITHM_LEFT_ASYMMETRIC_6:
8694 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
8696 case ALGORITHM_RIGHT_ASYMMETRIC_6:
8697 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
8699 case ALGORITHM_LEFT_SYMMETRIC_6:
8700 new_layout = ALGORITHM_LEFT_SYMMETRIC;
8702 case ALGORITHM_RIGHT_SYMMETRIC_6:
8703 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
8705 case ALGORITHM_PARITY_0_6:
8706 new_layout = ALGORITHM_PARITY_0;
8708 case ALGORITHM_PARITY_N:
8709 new_layout = ALGORITHM_PARITY_N;
8712 return ERR_PTR(-EINVAL);
8714 mddev->new_level = 5;
8715 mddev->new_layout = new_layout;
8716 mddev->delta_disks = -1;
8717 mddev->raid_disks -= 1;
8718 return setup_conf(mddev);
8721 static int raid5_check_reshape(struct mddev *mddev)
8723 /* For a 2-drive array, the layout and chunk size can be changed
8724 * immediately as not restriping is needed.
8725 * For larger arrays we record the new value - after validation
8726 * to be used by a reshape pass.
8728 struct r5conf *conf = mddev->private;
8729 int new_chunk = mddev->new_chunk_sectors;
8731 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
8733 if (new_chunk > 0) {
8734 if (!is_power_of_2(new_chunk))
8736 if (new_chunk < (PAGE_SIZE>>9))
8738 if (mddev->array_sectors & (new_chunk-1))
8739 /* not factor of array size */
8743 /* They look valid */
8745 if (mddev->raid_disks == 2) {
8746 /* can make the change immediately */
8747 if (mddev->new_layout >= 0) {
8748 conf->algorithm = mddev->new_layout;
8749 mddev->layout = mddev->new_layout;
8751 if (new_chunk > 0) {
8752 conf->chunk_sectors = new_chunk ;
8753 mddev->chunk_sectors = new_chunk;
8755 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8756 md_wakeup_thread(mddev->thread);
8758 return check_reshape(mddev);
8761 static int raid6_check_reshape(struct mddev *mddev)
8763 int new_chunk = mddev->new_chunk_sectors;
8765 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
8767 if (new_chunk > 0) {
8768 if (!is_power_of_2(new_chunk))
8770 if (new_chunk < (PAGE_SIZE >> 9))
8772 if (mddev->array_sectors & (new_chunk-1))
8773 /* not factor of array size */
8777 /* They look valid */
8778 return check_reshape(mddev);
8781 static void *raid5_takeover(struct mddev *mddev)
8783 /* raid5 can take over:
8784 * raid0 - if there is only one strip zone - make it a raid4 layout
8785 * raid1 - if there are two drives. We need to know the chunk size
8786 * raid4 - trivial - just use a raid4 layout.
8787 * raid6 - Providing it is a *_6 layout
8789 if (mddev->level == 0)
8790 return raid45_takeover_raid0(mddev, 5);
8791 if (mddev->level == 1)
8792 return raid5_takeover_raid1(mddev);
8793 if (mddev->level == 4) {
8794 mddev->new_layout = ALGORITHM_PARITY_N;
8795 mddev->new_level = 5;
8796 return setup_conf(mddev);
8798 if (mddev->level == 6)
8799 return raid5_takeover_raid6(mddev);
8801 return ERR_PTR(-EINVAL);
8804 static void *raid4_takeover(struct mddev *mddev)
8806 /* raid4 can take over:
8807 * raid0 - if there is only one strip zone
8808 * raid5 - if layout is right
8810 if (mddev->level == 0)
8811 return raid45_takeover_raid0(mddev, 4);
8812 if (mddev->level == 5 &&
8813 mddev->layout == ALGORITHM_PARITY_N) {
8814 mddev->new_layout = 0;
8815 mddev->new_level = 4;
8816 return setup_conf(mddev);
8818 return ERR_PTR(-EINVAL);
8821 static struct md_personality raid5_personality;
8823 static void *raid6_takeover(struct mddev *mddev)
8825 /* Currently can only take over a raid5. We map the
8826 * personality to an equivalent raid6 personality
8827 * with the Q block at the end.
8831 if (mddev->pers != &raid5_personality)
8832 return ERR_PTR(-EINVAL);
8833 if (mddev->degraded > 1)
8834 return ERR_PTR(-EINVAL);
8835 if (mddev->raid_disks > 253)
8836 return ERR_PTR(-EINVAL);
8837 if (mddev->raid_disks < 3)
8838 return ERR_PTR(-EINVAL);
8840 switch (mddev->layout) {
8841 case ALGORITHM_LEFT_ASYMMETRIC:
8842 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
8844 case ALGORITHM_RIGHT_ASYMMETRIC:
8845 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
8847 case ALGORITHM_LEFT_SYMMETRIC:
8848 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
8850 case ALGORITHM_RIGHT_SYMMETRIC:
8851 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
8853 case ALGORITHM_PARITY_0:
8854 new_layout = ALGORITHM_PARITY_0_6;
8856 case ALGORITHM_PARITY_N:
8857 new_layout = ALGORITHM_PARITY_N;
8860 return ERR_PTR(-EINVAL);
8862 mddev->new_level = 6;
8863 mddev->new_layout = new_layout;
8864 mddev->delta_disks = 1;
8865 mddev->raid_disks += 1;
8866 return setup_conf(mddev);
8869 static int raid5_change_consistency_policy(struct mddev *mddev, const char *buf)
8871 struct r5conf *conf;
8874 err = mddev_suspend_and_lock(mddev);
8877 conf = mddev->private;
8879 mddev_unlock_and_resume(mddev);
8883 if (strncmp(buf, "ppl", 3) == 0) {
8884 /* ppl only works with RAID 5 */
8885 if (!raid5_has_ppl(conf) && conf->level == 5) {
8886 err = log_init(conf, NULL, true);
8888 err = resize_stripes(conf, conf->pool_size);
8894 } else if (strncmp(buf, "resync", 6) == 0) {
8895 if (raid5_has_ppl(conf)) {
8897 err = resize_stripes(conf, conf->pool_size);
8898 } else if (test_bit(MD_HAS_JOURNAL, &conf->mddev->flags) &&
8899 r5l_log_disk_error(conf)) {
8900 bool journal_dev_exists = false;
8901 struct md_rdev *rdev;
8903 rdev_for_each(rdev, mddev)
8904 if (test_bit(Journal, &rdev->flags)) {
8905 journal_dev_exists = true;
8909 if (!journal_dev_exists)
8910 clear_bit(MD_HAS_JOURNAL, &mddev->flags);
8911 else /* need remove journal device first */
8920 md_update_sb(mddev, 1);
8922 mddev_unlock_and_resume(mddev);
8927 static int raid5_start(struct mddev *mddev)
8929 struct r5conf *conf = mddev->private;
8931 return r5l_start(conf->log);
8935 * This is only used for dm-raid456, caller already frozen sync_thread, hence
8936 * if rehsape is still in progress, io that is waiting for reshape can never be
8937 * done now, hence wake up and handle those IO.
8939 static void raid5_prepare_suspend(struct mddev *mddev)
8941 struct r5conf *conf = mddev->private;
8943 wake_up(&conf->wait_for_reshape);
8946 static struct md_personality raid6_personality =
8949 .type = MD_PERSONALITY,
8952 .owner = THIS_MODULE,
8955 .make_request = raid5_make_request,
8957 .start = raid5_start,
8959 .status = raid5_status,
8960 .error_handler = raid5_error,
8961 .hot_add_disk = raid5_add_disk,
8962 .hot_remove_disk= raid5_remove_disk,
8963 .spare_active = raid5_spare_active,
8964 .sync_request = raid5_sync_request,
8965 .resize = raid5_resize,
8967 .check_reshape = raid6_check_reshape,
8968 .start_reshape = raid5_start_reshape,
8969 .finish_reshape = raid5_finish_reshape,
8970 .quiesce = raid5_quiesce,
8971 .takeover = raid6_takeover,
8972 .change_consistency_policy = raid5_change_consistency_policy,
8973 .prepare_suspend = raid5_prepare_suspend,
8974 .bitmap_sector = raid5_bitmap_sector,
8976 static struct md_personality raid5_personality =
8979 .type = MD_PERSONALITY,
8982 .owner = THIS_MODULE,
8985 .make_request = raid5_make_request,
8987 .start = raid5_start,
8989 .status = raid5_status,
8990 .error_handler = raid5_error,
8991 .hot_add_disk = raid5_add_disk,
8992 .hot_remove_disk= raid5_remove_disk,
8993 .spare_active = raid5_spare_active,
8994 .sync_request = raid5_sync_request,
8995 .resize = raid5_resize,
8997 .check_reshape = raid5_check_reshape,
8998 .start_reshape = raid5_start_reshape,
8999 .finish_reshape = raid5_finish_reshape,
9000 .quiesce = raid5_quiesce,
9001 .takeover = raid5_takeover,
9002 .change_consistency_policy = raid5_change_consistency_policy,
9003 .prepare_suspend = raid5_prepare_suspend,
9004 .bitmap_sector = raid5_bitmap_sector,
9007 static struct md_personality raid4_personality =
9010 .type = MD_PERSONALITY,
9013 .owner = THIS_MODULE,
9016 .make_request = raid5_make_request,
9018 .start = raid5_start,
9020 .status = raid5_status,
9021 .error_handler = raid5_error,
9022 .hot_add_disk = raid5_add_disk,
9023 .hot_remove_disk= raid5_remove_disk,
9024 .spare_active = raid5_spare_active,
9025 .sync_request = raid5_sync_request,
9026 .resize = raid5_resize,
9028 .check_reshape = raid5_check_reshape,
9029 .start_reshape = raid5_start_reshape,
9030 .finish_reshape = raid5_finish_reshape,
9031 .quiesce = raid5_quiesce,
9032 .takeover = raid4_takeover,
9033 .change_consistency_policy = raid5_change_consistency_policy,
9034 .prepare_suspend = raid5_prepare_suspend,
9035 .bitmap_sector = raid5_bitmap_sector,
9038 static int __init raid5_init(void)
9042 raid5_wq = alloc_workqueue("raid5wq",
9043 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
9047 ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE,
9049 raid456_cpu_up_prepare,
9052 goto err_destroy_wq;
9054 ret = register_md_submodule(&raid6_personality.head);
9056 goto err_cpuhp_remove;
9058 ret = register_md_submodule(&raid5_personality.head);
9060 goto err_unregister_raid6;
9062 ret = register_md_submodule(&raid4_personality.head);
9064 goto err_unregister_raid5;
9068 err_unregister_raid5:
9069 unregister_md_submodule(&raid5_personality.head);
9070 err_unregister_raid6:
9071 unregister_md_submodule(&raid6_personality.head);
9073 cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE);
9075 destroy_workqueue(raid5_wq);
9079 static void __exit raid5_exit(void)
9081 unregister_md_submodule(&raid6_personality.head);
9082 unregister_md_submodule(&raid5_personality.head);
9083 unregister_md_submodule(&raid4_personality.head);
9084 cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE);
9085 destroy_workqueue(raid5_wq);
9088 module_init(raid5_init);
9089 module_exit(raid5_exit);
9090 MODULE_LICENSE("GPL");
9091 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
9092 MODULE_ALIAS("md-personality-4"); /* RAID5 */
9093 MODULE_ALIAS("md-raid5");
9094 MODULE_ALIAS("md-raid4");
9095 MODULE_ALIAS("md-level-5");
9096 MODULE_ALIAS("md-level-4");
9097 MODULE_ALIAS("md-personality-8"); /* RAID6 */
9098 MODULE_ALIAS("md-raid6");
9099 MODULE_ALIAS("md-level-6");
9101 /* This used to be two separate modules, they were: */
9102 MODULE_ALIAS("raid5");
9103 MODULE_ALIAS("raid6");