async_tx: structify submission arguments, add scribble
[linux-2.6-block.git] / drivers / md / raid5.c
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *         Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *         Copyright (C) 1999, 2000 Ingo Molnar
5  *         Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->bm_write is the number of the last batch successfully written.
31  * conf->bm_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is bm_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/seq_file.h>
51 #include "md.h"
52 #include "raid5.h"
53 #include "bitmap.h"
54
55 /*
56  * Stripe cache
57  */
58
59 #define NR_STRIPES              256
60 #define STRIPE_SIZE             PAGE_SIZE
61 #define STRIPE_SHIFT            (PAGE_SHIFT - 9)
62 #define STRIPE_SECTORS          (STRIPE_SIZE>>9)
63 #define IO_THRESHOLD            1
64 #define BYPASS_THRESHOLD        1
65 #define NR_HASH                 (PAGE_SIZE / sizeof(struct hlist_head))
66 #define HASH_MASK               (NR_HASH - 1)
67
68 #define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
69
70 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
71  * order without overlap.  There may be several bio's per stripe+device, and
72  * a bio could span several devices.
73  * When walking this list for a particular stripe+device, we must never proceed
74  * beyond a bio that extends past this device, as the next bio might no longer
75  * be valid.
76  * This macro is used to determine the 'next' bio in the list, given the sector
77  * of the current stripe+device
78  */
79 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
80 /*
81  * The following can be used to debug the driver
82  */
83 #define RAID5_PARANOIA  1
84 #if RAID5_PARANOIA && defined(CONFIG_SMP)
85 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
86 #else
87 # define CHECK_DEVLOCK()
88 #endif
89
90 #ifdef DEBUG
91 #define inline
92 #define __inline__
93 #endif
94
95 #define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))
96
97 /*
98  * We maintain a biased count of active stripes in the bottom 16 bits of
99  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
100  */
101 static inline int raid5_bi_phys_segments(struct bio *bio)
102 {
103         return bio->bi_phys_segments & 0xffff;
104 }
105
106 static inline int raid5_bi_hw_segments(struct bio *bio)
107 {
108         return (bio->bi_phys_segments >> 16) & 0xffff;
109 }
110
111 static inline int raid5_dec_bi_phys_segments(struct bio *bio)
112 {
113         --bio->bi_phys_segments;
114         return raid5_bi_phys_segments(bio);
115 }
116
117 static inline int raid5_dec_bi_hw_segments(struct bio *bio)
118 {
119         unsigned short val = raid5_bi_hw_segments(bio);
120
121         --val;
122         bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
123         return val;
124 }
125
126 static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
127 {
128         bio->bi_phys_segments = raid5_bi_phys_segments(bio) || (cnt << 16);
129 }
130
131 /* Find first data disk in a raid6 stripe */
132 static inline int raid6_d0(struct stripe_head *sh)
133 {
134         if (sh->ddf_layout)
135                 /* ddf always start from first device */
136                 return 0;
137         /* md starts just after Q block */
138         if (sh->qd_idx == sh->disks - 1)
139                 return 0;
140         else
141                 return sh->qd_idx + 1;
142 }
143 static inline int raid6_next_disk(int disk, int raid_disks)
144 {
145         disk++;
146         return (disk < raid_disks) ? disk : 0;
147 }
148
149 /* When walking through the disks in a raid5, starting at raid6_d0,
150  * We need to map each disk to a 'slot', where the data disks are slot
151  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
152  * is raid_disks-1.  This help does that mapping.
153  */
154 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
155                              int *count, int syndrome_disks)
156 {
157         int slot;
158
159         if (idx == sh->pd_idx)
160                 return syndrome_disks;
161         if (idx == sh->qd_idx)
162                 return syndrome_disks + 1;
163         slot = (*count)++;
164         return slot;
165 }
166
167 static void return_io(struct bio *return_bi)
168 {
169         struct bio *bi = return_bi;
170         while (bi) {
171
172                 return_bi = bi->bi_next;
173                 bi->bi_next = NULL;
174                 bi->bi_size = 0;
175                 bio_endio(bi, 0);
176                 bi = return_bi;
177         }
178 }
179
180 static void print_raid5_conf (raid5_conf_t *conf);
181
182 static int stripe_operations_active(struct stripe_head *sh)
183 {
184         return sh->check_state || sh->reconstruct_state ||
185                test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
186                test_bit(STRIPE_COMPUTE_RUN, &sh->state);
187 }
188
189 static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
190 {
191         if (atomic_dec_and_test(&sh->count)) {
192                 BUG_ON(!list_empty(&sh->lru));
193                 BUG_ON(atomic_read(&conf->active_stripes)==0);
194                 if (test_bit(STRIPE_HANDLE, &sh->state)) {
195                         if (test_bit(STRIPE_DELAYED, &sh->state)) {
196                                 list_add_tail(&sh->lru, &conf->delayed_list);
197                                 blk_plug_device(conf->mddev->queue);
198                         } else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
199                                    sh->bm_seq - conf->seq_write > 0) {
200                                 list_add_tail(&sh->lru, &conf->bitmap_list);
201                                 blk_plug_device(conf->mddev->queue);
202                         } else {
203                                 clear_bit(STRIPE_BIT_DELAY, &sh->state);
204                                 list_add_tail(&sh->lru, &conf->handle_list);
205                         }
206                         md_wakeup_thread(conf->mddev->thread);
207                 } else {
208                         BUG_ON(stripe_operations_active(sh));
209                         if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
210                                 atomic_dec(&conf->preread_active_stripes);
211                                 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
212                                         md_wakeup_thread(conf->mddev->thread);
213                         }
214                         atomic_dec(&conf->active_stripes);
215                         if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
216                                 list_add_tail(&sh->lru, &conf->inactive_list);
217                                 wake_up(&conf->wait_for_stripe);
218                                 if (conf->retry_read_aligned)
219                                         md_wakeup_thread(conf->mddev->thread);
220                         }
221                 }
222         }
223 }
224
225 static void release_stripe(struct stripe_head *sh)
226 {
227         raid5_conf_t *conf = sh->raid_conf;
228         unsigned long flags;
229
230         spin_lock_irqsave(&conf->device_lock, flags);
231         __release_stripe(conf, sh);
232         spin_unlock_irqrestore(&conf->device_lock, flags);
233 }
234
235 static inline void remove_hash(struct stripe_head *sh)
236 {
237         pr_debug("remove_hash(), stripe %llu\n",
238                 (unsigned long long)sh->sector);
239
240         hlist_del_init(&sh->hash);
241 }
242
243 static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
244 {
245         struct hlist_head *hp = stripe_hash(conf, sh->sector);
246
247         pr_debug("insert_hash(), stripe %llu\n",
248                 (unsigned long long)sh->sector);
249
250         CHECK_DEVLOCK();
251         hlist_add_head(&sh->hash, hp);
252 }
253
254
255 /* find an idle stripe, make sure it is unhashed, and return it. */
256 static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
257 {
258         struct stripe_head *sh = NULL;
259         struct list_head *first;
260
261         CHECK_DEVLOCK();
262         if (list_empty(&conf->inactive_list))
263                 goto out;
264         first = conf->inactive_list.next;
265         sh = list_entry(first, struct stripe_head, lru);
266         list_del_init(first);
267         remove_hash(sh);
268         atomic_inc(&conf->active_stripes);
269 out:
270         return sh;
271 }
272
273 static void shrink_buffers(struct stripe_head *sh, int num)
274 {
275         struct page *p;
276         int i;
277
278         for (i=0; i<num ; i++) {
279                 p = sh->dev[i].page;
280                 if (!p)
281                         continue;
282                 sh->dev[i].page = NULL;
283                 put_page(p);
284         }
285 }
286
287 static int grow_buffers(struct stripe_head *sh, int num)
288 {
289         int i;
290
291         for (i=0; i<num; i++) {
292                 struct page *page;
293
294                 if (!(page = alloc_page(GFP_KERNEL))) {
295                         return 1;
296                 }
297                 sh->dev[i].page = page;
298         }
299         return 0;
300 }
301
302 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
303 static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
304                             struct stripe_head *sh);
305
306 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
307 {
308         raid5_conf_t *conf = sh->raid_conf;
309         int i;
310
311         BUG_ON(atomic_read(&sh->count) != 0);
312         BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
313         BUG_ON(stripe_operations_active(sh));
314
315         CHECK_DEVLOCK();
316         pr_debug("init_stripe called, stripe %llu\n",
317                 (unsigned long long)sh->sector);
318
319         remove_hash(sh);
320
321         sh->generation = conf->generation - previous;
322         sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
323         sh->sector = sector;
324         stripe_set_idx(sector, conf, previous, sh);
325         sh->state = 0;
326
327
328         for (i = sh->disks; i--; ) {
329                 struct r5dev *dev = &sh->dev[i];
330
331                 if (dev->toread || dev->read || dev->towrite || dev->written ||
332                     test_bit(R5_LOCKED, &dev->flags)) {
333                         printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
334                                (unsigned long long)sh->sector, i, dev->toread,
335                                dev->read, dev->towrite, dev->written,
336                                test_bit(R5_LOCKED, &dev->flags));
337                         BUG();
338                 }
339                 dev->flags = 0;
340                 raid5_build_block(sh, i, previous);
341         }
342         insert_hash(conf, sh);
343 }
344
345 static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector,
346                                          short generation)
347 {
348         struct stripe_head *sh;
349         struct hlist_node *hn;
350
351         CHECK_DEVLOCK();
352         pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
353         hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
354                 if (sh->sector == sector && sh->generation == generation)
355                         return sh;
356         pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
357         return NULL;
358 }
359
360 static void unplug_slaves(mddev_t *mddev);
361 static void raid5_unplug_device(struct request_queue *q);
362
363 static struct stripe_head *
364 get_active_stripe(raid5_conf_t *conf, sector_t sector,
365                   int previous, int noblock)
366 {
367         struct stripe_head *sh;
368
369         pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
370
371         spin_lock_irq(&conf->device_lock);
372
373         do {
374                 wait_event_lock_irq(conf->wait_for_stripe,
375                                     conf->quiesce == 0,
376                                     conf->device_lock, /* nothing */);
377                 sh = __find_stripe(conf, sector, conf->generation - previous);
378                 if (!sh) {
379                         if (!conf->inactive_blocked)
380                                 sh = get_free_stripe(conf);
381                         if (noblock && sh == NULL)
382                                 break;
383                         if (!sh) {
384                                 conf->inactive_blocked = 1;
385                                 wait_event_lock_irq(conf->wait_for_stripe,
386                                                     !list_empty(&conf->inactive_list) &&
387                                                     (atomic_read(&conf->active_stripes)
388                                                      < (conf->max_nr_stripes *3/4)
389                                                      || !conf->inactive_blocked),
390                                                     conf->device_lock,
391                                                     raid5_unplug_device(conf->mddev->queue)
392                                         );
393                                 conf->inactive_blocked = 0;
394                         } else
395                                 init_stripe(sh, sector, previous);
396                 } else {
397                         if (atomic_read(&sh->count)) {
398                                 BUG_ON(!list_empty(&sh->lru)
399                                     && !test_bit(STRIPE_EXPANDING, &sh->state));
400                         } else {
401                                 if (!test_bit(STRIPE_HANDLE, &sh->state))
402                                         atomic_inc(&conf->active_stripes);
403                                 if (list_empty(&sh->lru) &&
404                                     !test_bit(STRIPE_EXPANDING, &sh->state))
405                                         BUG();
406                                 list_del_init(&sh->lru);
407                         }
408                 }
409         } while (sh == NULL);
410
411         if (sh)
412                 atomic_inc(&sh->count);
413
414         spin_unlock_irq(&conf->device_lock);
415         return sh;
416 }
417
418 static void
419 raid5_end_read_request(struct bio *bi, int error);
420 static void
421 raid5_end_write_request(struct bio *bi, int error);
422
423 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
424 {
425         raid5_conf_t *conf = sh->raid_conf;
426         int i, disks = sh->disks;
427
428         might_sleep();
429
430         for (i = disks; i--; ) {
431                 int rw;
432                 struct bio *bi;
433                 mdk_rdev_t *rdev;
434                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
435                         rw = WRITE;
436                 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
437                         rw = READ;
438                 else
439                         continue;
440
441                 bi = &sh->dev[i].req;
442
443                 bi->bi_rw = rw;
444                 if (rw == WRITE)
445                         bi->bi_end_io = raid5_end_write_request;
446                 else
447                         bi->bi_end_io = raid5_end_read_request;
448
449                 rcu_read_lock();
450                 rdev = rcu_dereference(conf->disks[i].rdev);
451                 if (rdev && test_bit(Faulty, &rdev->flags))
452                         rdev = NULL;
453                 if (rdev)
454                         atomic_inc(&rdev->nr_pending);
455                 rcu_read_unlock();
456
457                 if (rdev) {
458                         if (s->syncing || s->expanding || s->expanded)
459                                 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
460
461                         set_bit(STRIPE_IO_STARTED, &sh->state);
462
463                         bi->bi_bdev = rdev->bdev;
464                         pr_debug("%s: for %llu schedule op %ld on disc %d\n",
465                                 __func__, (unsigned long long)sh->sector,
466                                 bi->bi_rw, i);
467                         atomic_inc(&sh->count);
468                         bi->bi_sector = sh->sector + rdev->data_offset;
469                         bi->bi_flags = 1 << BIO_UPTODATE;
470                         bi->bi_vcnt = 1;
471                         bi->bi_max_vecs = 1;
472                         bi->bi_idx = 0;
473                         bi->bi_io_vec = &sh->dev[i].vec;
474                         bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
475                         bi->bi_io_vec[0].bv_offset = 0;
476                         bi->bi_size = STRIPE_SIZE;
477                         bi->bi_next = NULL;
478                         if (rw == WRITE &&
479                             test_bit(R5_ReWrite, &sh->dev[i].flags))
480                                 atomic_add(STRIPE_SECTORS,
481                                         &rdev->corrected_errors);
482                         generic_make_request(bi);
483                 } else {
484                         if (rw == WRITE)
485                                 set_bit(STRIPE_DEGRADED, &sh->state);
486                         pr_debug("skip op %ld on disc %d for sector %llu\n",
487                                 bi->bi_rw, i, (unsigned long long)sh->sector);
488                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
489                         set_bit(STRIPE_HANDLE, &sh->state);
490                 }
491         }
492 }
493
494 static struct dma_async_tx_descriptor *
495 async_copy_data(int frombio, struct bio *bio, struct page *page,
496         sector_t sector, struct dma_async_tx_descriptor *tx)
497 {
498         struct bio_vec *bvl;
499         struct page *bio_page;
500         int i;
501         int page_offset;
502         struct async_submit_ctl submit;
503
504         if (bio->bi_sector >= sector)
505                 page_offset = (signed)(bio->bi_sector - sector) * 512;
506         else
507                 page_offset = (signed)(sector - bio->bi_sector) * -512;
508
509         init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
510         bio_for_each_segment(bvl, bio, i) {
511                 int len = bio_iovec_idx(bio, i)->bv_len;
512                 int clen;
513                 int b_offset = 0;
514
515                 if (page_offset < 0) {
516                         b_offset = -page_offset;
517                         page_offset += b_offset;
518                         len -= b_offset;
519                 }
520
521                 if (len > 0 && page_offset + len > STRIPE_SIZE)
522                         clen = STRIPE_SIZE - page_offset;
523                 else
524                         clen = len;
525
526                 if (clen > 0) {
527                         b_offset += bio_iovec_idx(bio, i)->bv_offset;
528                         bio_page = bio_iovec_idx(bio, i)->bv_page;
529                         if (frombio)
530                                 tx = async_memcpy(page, bio_page, page_offset,
531                                                   b_offset, clen, &submit);
532                         else
533                                 tx = async_memcpy(bio_page, page, b_offset,
534                                                   page_offset, clen, &submit);
535                 }
536                 /* chain the operations */
537                 submit.depend_tx = tx;
538
539                 if (clen < len) /* hit end of page */
540                         break;
541                 page_offset +=  len;
542         }
543
544         return tx;
545 }
546
547 static void ops_complete_biofill(void *stripe_head_ref)
548 {
549         struct stripe_head *sh = stripe_head_ref;
550         struct bio *return_bi = NULL;
551         raid5_conf_t *conf = sh->raid_conf;
552         int i;
553
554         pr_debug("%s: stripe %llu\n", __func__,
555                 (unsigned long long)sh->sector);
556
557         /* clear completed biofills */
558         spin_lock_irq(&conf->device_lock);
559         for (i = sh->disks; i--; ) {
560                 struct r5dev *dev = &sh->dev[i];
561
562                 /* acknowledge completion of a biofill operation */
563                 /* and check if we need to reply to a read request,
564                  * new R5_Wantfill requests are held off until
565                  * !STRIPE_BIOFILL_RUN
566                  */
567                 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
568                         struct bio *rbi, *rbi2;
569
570                         BUG_ON(!dev->read);
571                         rbi = dev->read;
572                         dev->read = NULL;
573                         while (rbi && rbi->bi_sector <
574                                 dev->sector + STRIPE_SECTORS) {
575                                 rbi2 = r5_next_bio(rbi, dev->sector);
576                                 if (!raid5_dec_bi_phys_segments(rbi)) {
577                                         rbi->bi_next = return_bi;
578                                         return_bi = rbi;
579                                 }
580                                 rbi = rbi2;
581                         }
582                 }
583         }
584         spin_unlock_irq(&conf->device_lock);
585         clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
586
587         return_io(return_bi);
588
589         set_bit(STRIPE_HANDLE, &sh->state);
590         release_stripe(sh);
591 }
592
593 static void ops_run_biofill(struct stripe_head *sh)
594 {
595         struct dma_async_tx_descriptor *tx = NULL;
596         raid5_conf_t *conf = sh->raid_conf;
597         struct async_submit_ctl submit;
598         int i;
599
600         pr_debug("%s: stripe %llu\n", __func__,
601                 (unsigned long long)sh->sector);
602
603         for (i = sh->disks; i--; ) {
604                 struct r5dev *dev = &sh->dev[i];
605                 if (test_bit(R5_Wantfill, &dev->flags)) {
606                         struct bio *rbi;
607                         spin_lock_irq(&conf->device_lock);
608                         dev->read = rbi = dev->toread;
609                         dev->toread = NULL;
610                         spin_unlock_irq(&conf->device_lock);
611                         while (rbi && rbi->bi_sector <
612                                 dev->sector + STRIPE_SECTORS) {
613                                 tx = async_copy_data(0, rbi, dev->page,
614                                         dev->sector, tx);
615                                 rbi = r5_next_bio(rbi, dev->sector);
616                         }
617                 }
618         }
619
620         atomic_inc(&sh->count);
621         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
622         async_trigger_callback(&submit);
623 }
624
625 static void ops_complete_compute5(void *stripe_head_ref)
626 {
627         struct stripe_head *sh = stripe_head_ref;
628         int target = sh->ops.target;
629         struct r5dev *tgt = &sh->dev[target];
630
631         pr_debug("%s: stripe %llu\n", __func__,
632                 (unsigned long long)sh->sector);
633
634         set_bit(R5_UPTODATE, &tgt->flags);
635         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
636         clear_bit(R5_Wantcompute, &tgt->flags);
637         clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
638         if (sh->check_state == check_state_compute_run)
639                 sh->check_state = check_state_compute_result;
640         set_bit(STRIPE_HANDLE, &sh->state);
641         release_stripe(sh);
642 }
643
644 static struct dma_async_tx_descriptor *ops_run_compute5(struct stripe_head *sh)
645 {
646         /* kernel stack size limits the total number of disks */
647         int disks = sh->disks;
648         struct page *xor_srcs[disks];
649         int target = sh->ops.target;
650         struct r5dev *tgt = &sh->dev[target];
651         struct page *xor_dest = tgt->page;
652         int count = 0;
653         struct dma_async_tx_descriptor *tx;
654         struct async_submit_ctl submit;
655         int i;
656
657         pr_debug("%s: stripe %llu block: %d\n",
658                 __func__, (unsigned long long)sh->sector, target);
659         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
660
661         for (i = disks; i--; )
662                 if (i != target)
663                         xor_srcs[count++] = sh->dev[i].page;
664
665         atomic_inc(&sh->count);
666
667         init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL,
668                           ops_complete_compute5, sh, NULL);
669         if (unlikely(count == 1))
670                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
671         else
672                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
673
674         return tx;
675 }
676
677 static void ops_complete_prexor(void *stripe_head_ref)
678 {
679         struct stripe_head *sh = stripe_head_ref;
680
681         pr_debug("%s: stripe %llu\n", __func__,
682                 (unsigned long long)sh->sector);
683 }
684
685 static struct dma_async_tx_descriptor *
686 ops_run_prexor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
687 {
688         /* kernel stack size limits the total number of disks */
689         int disks = sh->disks;
690         struct page *xor_srcs[disks];
691         int count = 0, pd_idx = sh->pd_idx, i;
692         struct async_submit_ctl submit;
693
694         /* existing parity data subtracted */
695         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
696
697         pr_debug("%s: stripe %llu\n", __func__,
698                 (unsigned long long)sh->sector);
699
700         for (i = disks; i--; ) {
701                 struct r5dev *dev = &sh->dev[i];
702                 /* Only process blocks that are known to be uptodate */
703                 if (test_bit(R5_Wantdrain, &dev->flags))
704                         xor_srcs[count++] = dev->page;
705         }
706
707         init_async_submit(&submit, ASYNC_TX_XOR_DROP_DST, tx,
708                           ops_complete_prexor, sh, NULL);
709         tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
710
711         return tx;
712 }
713
714 static struct dma_async_tx_descriptor *
715 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
716 {
717         int disks = sh->disks;
718         int i;
719
720         pr_debug("%s: stripe %llu\n", __func__,
721                 (unsigned long long)sh->sector);
722
723         for (i = disks; i--; ) {
724                 struct r5dev *dev = &sh->dev[i];
725                 struct bio *chosen;
726
727                 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
728                         struct bio *wbi;
729
730                         spin_lock(&sh->lock);
731                         chosen = dev->towrite;
732                         dev->towrite = NULL;
733                         BUG_ON(dev->written);
734                         wbi = dev->written = chosen;
735                         spin_unlock(&sh->lock);
736
737                         while (wbi && wbi->bi_sector <
738                                 dev->sector + STRIPE_SECTORS) {
739                                 tx = async_copy_data(1, wbi, dev->page,
740                                         dev->sector, tx);
741                                 wbi = r5_next_bio(wbi, dev->sector);
742                         }
743                 }
744         }
745
746         return tx;
747 }
748
749 static void ops_complete_postxor(void *stripe_head_ref)
750 {
751         struct stripe_head *sh = stripe_head_ref;
752         int disks = sh->disks, i, pd_idx = sh->pd_idx;
753
754         pr_debug("%s: stripe %llu\n", __func__,
755                 (unsigned long long)sh->sector);
756
757         for (i = disks; i--; ) {
758                 struct r5dev *dev = &sh->dev[i];
759                 if (dev->written || i == pd_idx)
760                         set_bit(R5_UPTODATE, &dev->flags);
761         }
762
763         if (sh->reconstruct_state == reconstruct_state_drain_run)
764                 sh->reconstruct_state = reconstruct_state_drain_result;
765         else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
766                 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
767         else {
768                 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
769                 sh->reconstruct_state = reconstruct_state_result;
770         }
771
772         set_bit(STRIPE_HANDLE, &sh->state);
773         release_stripe(sh);
774 }
775
776 static void
777 ops_run_postxor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
778 {
779         /* kernel stack size limits the total number of disks */
780         int disks = sh->disks;
781         struct page *xor_srcs[disks];
782         struct async_submit_ctl submit;
783         int count = 0, pd_idx = sh->pd_idx, i;
784         struct page *xor_dest;
785         int prexor = 0;
786         unsigned long flags;
787
788         pr_debug("%s: stripe %llu\n", __func__,
789                 (unsigned long long)sh->sector);
790
791         /* check if prexor is active which means only process blocks
792          * that are part of a read-modify-write (written)
793          */
794         if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
795                 prexor = 1;
796                 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
797                 for (i = disks; i--; ) {
798                         struct r5dev *dev = &sh->dev[i];
799                         if (dev->written)
800                                 xor_srcs[count++] = dev->page;
801                 }
802         } else {
803                 xor_dest = sh->dev[pd_idx].page;
804                 for (i = disks; i--; ) {
805                         struct r5dev *dev = &sh->dev[i];
806                         if (i != pd_idx)
807                                 xor_srcs[count++] = dev->page;
808                 }
809         }
810
811         /* 1/ if we prexor'd then the dest is reused as a source
812          * 2/ if we did not prexor then we are redoing the parity
813          * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
814          * for the synchronous xor case
815          */
816         flags = ASYNC_TX_ACK |
817                 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
818
819         atomic_inc(&sh->count);
820
821         init_async_submit(&submit, flags, tx, ops_complete_postxor, sh, NULL);
822         if (unlikely(count == 1))
823                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
824         else
825                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
826 }
827
828 static void ops_complete_check(void *stripe_head_ref)
829 {
830         struct stripe_head *sh = stripe_head_ref;
831
832         pr_debug("%s: stripe %llu\n", __func__,
833                 (unsigned long long)sh->sector);
834
835         sh->check_state = check_state_check_result;
836         set_bit(STRIPE_HANDLE, &sh->state);
837         release_stripe(sh);
838 }
839
840 static void ops_run_check(struct stripe_head *sh)
841 {
842         /* kernel stack size limits the total number of disks */
843         int disks = sh->disks;
844         struct page *xor_srcs[disks];
845         struct dma_async_tx_descriptor *tx;
846         struct async_submit_ctl submit;
847
848         int count = 0, pd_idx = sh->pd_idx, i;
849         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
850
851         pr_debug("%s: stripe %llu\n", __func__,
852                 (unsigned long long)sh->sector);
853
854         for (i = disks; i--; ) {
855                 struct r5dev *dev = &sh->dev[i];
856                 if (i != pd_idx)
857                         xor_srcs[count++] = dev->page;
858         }
859
860         init_async_submit(&submit, 0, NULL, NULL, NULL, NULL);
861         tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
862                            &sh->ops.zero_sum_result, &submit);
863
864         atomic_inc(&sh->count);
865         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
866         tx = async_trigger_callback(&submit);
867 }
868
869 static void raid5_run_ops(struct stripe_head *sh, unsigned long ops_request)
870 {
871         int overlap_clear = 0, i, disks = sh->disks;
872         struct dma_async_tx_descriptor *tx = NULL;
873
874         if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
875                 ops_run_biofill(sh);
876                 overlap_clear++;
877         }
878
879         if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
880                 tx = ops_run_compute5(sh);
881                 /* terminate the chain if postxor is not set to be run */
882                 if (tx && !test_bit(STRIPE_OP_POSTXOR, &ops_request))
883                         async_tx_ack(tx);
884         }
885
886         if (test_bit(STRIPE_OP_PREXOR, &ops_request))
887                 tx = ops_run_prexor(sh, tx);
888
889         if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
890                 tx = ops_run_biodrain(sh, tx);
891                 overlap_clear++;
892         }
893
894         if (test_bit(STRIPE_OP_POSTXOR, &ops_request))
895                 ops_run_postxor(sh, tx);
896
897         if (test_bit(STRIPE_OP_CHECK, &ops_request))
898                 ops_run_check(sh);
899
900         if (overlap_clear)
901                 for (i = disks; i--; ) {
902                         struct r5dev *dev = &sh->dev[i];
903                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
904                                 wake_up(&sh->raid_conf->wait_for_overlap);
905                 }
906 }
907
908 static int grow_one_stripe(raid5_conf_t *conf)
909 {
910         struct stripe_head *sh;
911         sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
912         if (!sh)
913                 return 0;
914         memset(sh, 0, sizeof(*sh) + (conf->raid_disks-1)*sizeof(struct r5dev));
915         sh->raid_conf = conf;
916         spin_lock_init(&sh->lock);
917
918         if (grow_buffers(sh, conf->raid_disks)) {
919                 shrink_buffers(sh, conf->raid_disks);
920                 kmem_cache_free(conf->slab_cache, sh);
921                 return 0;
922         }
923         sh->disks = conf->raid_disks;
924         /* we just created an active stripe so... */
925         atomic_set(&sh->count, 1);
926         atomic_inc(&conf->active_stripes);
927         INIT_LIST_HEAD(&sh->lru);
928         release_stripe(sh);
929         return 1;
930 }
931
932 static int grow_stripes(raid5_conf_t *conf, int num)
933 {
934         struct kmem_cache *sc;
935         int devs = conf->raid_disks;
936
937         sprintf(conf->cache_name[0],
938                 "raid%d-%s", conf->level, mdname(conf->mddev));
939         sprintf(conf->cache_name[1],
940                 "raid%d-%s-alt", conf->level, mdname(conf->mddev));
941         conf->active_name = 0;
942         sc = kmem_cache_create(conf->cache_name[conf->active_name],
943                                sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
944                                0, 0, NULL);
945         if (!sc)
946                 return 1;
947         conf->slab_cache = sc;
948         conf->pool_size = devs;
949         while (num--)
950                 if (!grow_one_stripe(conf))
951                         return 1;
952         return 0;
953 }
954
955 static int resize_stripes(raid5_conf_t *conf, int newsize)
956 {
957         /* Make all the stripes able to hold 'newsize' devices.
958          * New slots in each stripe get 'page' set to a new page.
959          *
960          * This happens in stages:
961          * 1/ create a new kmem_cache and allocate the required number of
962          *    stripe_heads.
963          * 2/ gather all the old stripe_heads and tranfer the pages across
964          *    to the new stripe_heads.  This will have the side effect of
965          *    freezing the array as once all stripe_heads have been collected,
966          *    no IO will be possible.  Old stripe heads are freed once their
967          *    pages have been transferred over, and the old kmem_cache is
968          *    freed when all stripes are done.
969          * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
970          *    we simple return a failre status - no need to clean anything up.
971          * 4/ allocate new pages for the new slots in the new stripe_heads.
972          *    If this fails, we don't bother trying the shrink the
973          *    stripe_heads down again, we just leave them as they are.
974          *    As each stripe_head is processed the new one is released into
975          *    active service.
976          *
977          * Once step2 is started, we cannot afford to wait for a write,
978          * so we use GFP_NOIO allocations.
979          */
980         struct stripe_head *osh, *nsh;
981         LIST_HEAD(newstripes);
982         struct disk_info *ndisks;
983         int err;
984         struct kmem_cache *sc;
985         int i;
986
987         if (newsize <= conf->pool_size)
988                 return 0; /* never bother to shrink */
989
990         err = md_allow_write(conf->mddev);
991         if (err)
992                 return err;
993
994         /* Step 1 */
995         sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
996                                sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
997                                0, 0, NULL);
998         if (!sc)
999                 return -ENOMEM;
1000
1001         for (i = conf->max_nr_stripes; i; i--) {
1002                 nsh = kmem_cache_alloc(sc, GFP_KERNEL);
1003                 if (!nsh)
1004                         break;
1005
1006                 memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));
1007
1008                 nsh->raid_conf = conf;
1009                 spin_lock_init(&nsh->lock);
1010
1011                 list_add(&nsh->lru, &newstripes);
1012         }
1013         if (i) {
1014                 /* didn't get enough, give up */
1015                 while (!list_empty(&newstripes)) {
1016                         nsh = list_entry(newstripes.next, struct stripe_head, lru);
1017                         list_del(&nsh->lru);
1018                         kmem_cache_free(sc, nsh);
1019                 }
1020                 kmem_cache_destroy(sc);
1021                 return -ENOMEM;
1022         }
1023         /* Step 2 - Must use GFP_NOIO now.
1024          * OK, we have enough stripes, start collecting inactive
1025          * stripes and copying them over
1026          */
1027         list_for_each_entry(nsh, &newstripes, lru) {
1028                 spin_lock_irq(&conf->device_lock);
1029                 wait_event_lock_irq(conf->wait_for_stripe,
1030                                     !list_empty(&conf->inactive_list),
1031                                     conf->device_lock,
1032                                     unplug_slaves(conf->mddev)
1033                         );
1034                 osh = get_free_stripe(conf);
1035                 spin_unlock_irq(&conf->device_lock);
1036                 atomic_set(&nsh->count, 1);
1037                 for(i=0; i<conf->pool_size; i++)
1038                         nsh->dev[i].page = osh->dev[i].page;
1039                 for( ; i<newsize; i++)
1040                         nsh->dev[i].page = NULL;
1041                 kmem_cache_free(conf->slab_cache, osh);
1042         }
1043         kmem_cache_destroy(conf->slab_cache);
1044
1045         /* Step 3.
1046          * At this point, we are holding all the stripes so the array
1047          * is completely stalled, so now is a good time to resize
1048          * conf->disks.
1049          */
1050         ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1051         if (ndisks) {
1052                 for (i=0; i<conf->raid_disks; i++)
1053                         ndisks[i] = conf->disks[i];
1054                 kfree(conf->disks);
1055                 conf->disks = ndisks;
1056         } else
1057                 err = -ENOMEM;
1058
1059         /* Step 4, return new stripes to service */
1060         while(!list_empty(&newstripes)) {
1061                 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1062                 list_del_init(&nsh->lru);
1063                 for (i=conf->raid_disks; i < newsize; i++)
1064                         if (nsh->dev[i].page == NULL) {
1065                                 struct page *p = alloc_page(GFP_NOIO);
1066                                 nsh->dev[i].page = p;
1067                                 if (!p)
1068                                         err = -ENOMEM;
1069                         }
1070                 release_stripe(nsh);
1071         }
1072         /* critical section pass, GFP_NOIO no longer needed */
1073
1074         conf->slab_cache = sc;
1075         conf->active_name = 1-conf->active_name;
1076         conf->pool_size = newsize;
1077         return err;
1078 }
1079
1080 static int drop_one_stripe(raid5_conf_t *conf)
1081 {
1082         struct stripe_head *sh;
1083
1084         spin_lock_irq(&conf->device_lock);
1085         sh = get_free_stripe(conf);
1086         spin_unlock_irq(&conf->device_lock);
1087         if (!sh)
1088                 return 0;
1089         BUG_ON(atomic_read(&sh->count));
1090         shrink_buffers(sh, conf->pool_size);
1091         kmem_cache_free(conf->slab_cache, sh);
1092         atomic_dec(&conf->active_stripes);
1093         return 1;
1094 }
1095
1096 static void shrink_stripes(raid5_conf_t *conf)
1097 {
1098         while (drop_one_stripe(conf))
1099                 ;
1100
1101         if (conf->slab_cache)
1102                 kmem_cache_destroy(conf->slab_cache);
1103         conf->slab_cache = NULL;
1104 }
1105
1106 static void raid5_end_read_request(struct bio * bi, int error)
1107 {
1108         struct stripe_head *sh = bi->bi_private;
1109         raid5_conf_t *conf = sh->raid_conf;
1110         int disks = sh->disks, i;
1111         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1112         char b[BDEVNAME_SIZE];
1113         mdk_rdev_t *rdev;
1114
1115
1116         for (i=0 ; i<disks; i++)
1117                 if (bi == &sh->dev[i].req)
1118                         break;
1119
1120         pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1121                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1122                 uptodate);
1123         if (i == disks) {
1124                 BUG();
1125                 return;
1126         }
1127
1128         if (uptodate) {
1129                 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1130                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1131                         rdev = conf->disks[i].rdev;
1132                         printk_rl(KERN_INFO "raid5:%s: read error corrected"
1133                                   " (%lu sectors at %llu on %s)\n",
1134                                   mdname(conf->mddev), STRIPE_SECTORS,
1135                                   (unsigned long long)(sh->sector
1136                                                        + rdev->data_offset),
1137                                   bdevname(rdev->bdev, b));
1138                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1139                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1140                 }
1141                 if (atomic_read(&conf->disks[i].rdev->read_errors))
1142                         atomic_set(&conf->disks[i].rdev->read_errors, 0);
1143         } else {
1144                 const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1145                 int retry = 0;
1146                 rdev = conf->disks[i].rdev;
1147
1148                 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1149                 atomic_inc(&rdev->read_errors);
1150                 if (conf->mddev->degraded)
1151                         printk_rl(KERN_WARNING
1152                                   "raid5:%s: read error not correctable "
1153                                   "(sector %llu on %s).\n",
1154                                   mdname(conf->mddev),
1155                                   (unsigned long long)(sh->sector
1156                                                        + rdev->data_offset),
1157                                   bdn);
1158                 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1159                         /* Oh, no!!! */
1160                         printk_rl(KERN_WARNING
1161                                   "raid5:%s: read error NOT corrected!! "
1162                                   "(sector %llu on %s).\n",
1163                                   mdname(conf->mddev),
1164                                   (unsigned long long)(sh->sector
1165                                                        + rdev->data_offset),
1166                                   bdn);
1167                 else if (atomic_read(&rdev->read_errors)
1168                          > conf->max_nr_stripes)
1169                         printk(KERN_WARNING
1170                                "raid5:%s: Too many read errors, failing device %s.\n",
1171                                mdname(conf->mddev), bdn);
1172                 else
1173                         retry = 1;
1174                 if (retry)
1175                         set_bit(R5_ReadError, &sh->dev[i].flags);
1176                 else {
1177                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1178                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1179                         md_error(conf->mddev, rdev);
1180                 }
1181         }
1182         rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1183         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1184         set_bit(STRIPE_HANDLE, &sh->state);
1185         release_stripe(sh);
1186 }
1187
1188 static void raid5_end_write_request(struct bio *bi, int error)
1189 {
1190         struct stripe_head *sh = bi->bi_private;
1191         raid5_conf_t *conf = sh->raid_conf;
1192         int disks = sh->disks, i;
1193         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1194
1195         for (i=0 ; i<disks; i++)
1196                 if (bi == &sh->dev[i].req)
1197                         break;
1198
1199         pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1200                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1201                 uptodate);
1202         if (i == disks) {
1203                 BUG();
1204                 return;
1205         }
1206
1207         if (!uptodate)
1208                 md_error(conf->mddev, conf->disks[i].rdev);
1209
1210         rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1211         
1212         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1213         set_bit(STRIPE_HANDLE, &sh->state);
1214         release_stripe(sh);
1215 }
1216
1217
1218 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1219         
1220 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1221 {
1222         struct r5dev *dev = &sh->dev[i];
1223
1224         bio_init(&dev->req);
1225         dev->req.bi_io_vec = &dev->vec;
1226         dev->req.bi_vcnt++;
1227         dev->req.bi_max_vecs++;
1228         dev->vec.bv_page = dev->page;
1229         dev->vec.bv_len = STRIPE_SIZE;
1230         dev->vec.bv_offset = 0;
1231
1232         dev->req.bi_sector = sh->sector;
1233         dev->req.bi_private = sh;
1234
1235         dev->flags = 0;
1236         dev->sector = compute_blocknr(sh, i, previous);
1237 }
1238
1239 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1240 {
1241         char b[BDEVNAME_SIZE];
1242         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
1243         pr_debug("raid5: error called\n");
1244
1245         if (!test_bit(Faulty, &rdev->flags)) {
1246                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1247                 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1248                         unsigned long flags;
1249                         spin_lock_irqsave(&conf->device_lock, flags);
1250                         mddev->degraded++;
1251                         spin_unlock_irqrestore(&conf->device_lock, flags);
1252                         /*
1253                          * if recovery was running, make sure it aborts.
1254                          */
1255                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1256                 }
1257                 set_bit(Faulty, &rdev->flags);
1258                 printk(KERN_ALERT
1259                        "raid5: Disk failure on %s, disabling device.\n"
1260                        "raid5: Operation continuing on %d devices.\n",
1261                        bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1262         }
1263 }
1264
1265 /*
1266  * Input: a 'big' sector number,
1267  * Output: index of the data and parity disk, and the sector # in them.
1268  */
1269 static sector_t raid5_compute_sector(raid5_conf_t *conf, sector_t r_sector,
1270                                      int previous, int *dd_idx,
1271                                      struct stripe_head *sh)
1272 {
1273         long stripe;
1274         unsigned long chunk_number;
1275         unsigned int chunk_offset;
1276         int pd_idx, qd_idx;
1277         int ddf_layout = 0;
1278         sector_t new_sector;
1279         int algorithm = previous ? conf->prev_algo
1280                                  : conf->algorithm;
1281         int sectors_per_chunk = previous ? (conf->prev_chunk >> 9)
1282                                          : (conf->chunk_size >> 9);
1283         int raid_disks = previous ? conf->previous_raid_disks
1284                                   : conf->raid_disks;
1285         int data_disks = raid_disks - conf->max_degraded;
1286
1287         /* First compute the information on this sector */
1288
1289         /*
1290          * Compute the chunk number and the sector offset inside the chunk
1291          */
1292         chunk_offset = sector_div(r_sector, sectors_per_chunk);
1293         chunk_number = r_sector;
1294         BUG_ON(r_sector != chunk_number);
1295
1296         /*
1297          * Compute the stripe number
1298          */
1299         stripe = chunk_number / data_disks;
1300
1301         /*
1302          * Compute the data disk and parity disk indexes inside the stripe
1303          */
1304         *dd_idx = chunk_number % data_disks;
1305
1306         /*
1307          * Select the parity disk based on the user selected algorithm.
1308          */
1309         pd_idx = qd_idx = ~0;
1310         switch(conf->level) {
1311         case 4:
1312                 pd_idx = data_disks;
1313                 break;
1314         case 5:
1315                 switch (algorithm) {
1316                 case ALGORITHM_LEFT_ASYMMETRIC:
1317                         pd_idx = data_disks - stripe % raid_disks;
1318                         if (*dd_idx >= pd_idx)
1319                                 (*dd_idx)++;
1320                         break;
1321                 case ALGORITHM_RIGHT_ASYMMETRIC:
1322                         pd_idx = stripe % raid_disks;
1323                         if (*dd_idx >= pd_idx)
1324                                 (*dd_idx)++;
1325                         break;
1326                 case ALGORITHM_LEFT_SYMMETRIC:
1327                         pd_idx = data_disks - stripe % raid_disks;
1328                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1329                         break;
1330                 case ALGORITHM_RIGHT_SYMMETRIC:
1331                         pd_idx = stripe % raid_disks;
1332                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1333                         break;
1334                 case ALGORITHM_PARITY_0:
1335                         pd_idx = 0;
1336                         (*dd_idx)++;
1337                         break;
1338                 case ALGORITHM_PARITY_N:
1339                         pd_idx = data_disks;
1340                         break;
1341                 default:
1342                         printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1343                                 algorithm);
1344                         BUG();
1345                 }
1346                 break;
1347         case 6:
1348
1349                 switch (algorithm) {
1350                 case ALGORITHM_LEFT_ASYMMETRIC:
1351                         pd_idx = raid_disks - 1 - (stripe % raid_disks);
1352                         qd_idx = pd_idx + 1;
1353                         if (pd_idx == raid_disks-1) {
1354                                 (*dd_idx)++;    /* Q D D D P */
1355                                 qd_idx = 0;
1356                         } else if (*dd_idx >= pd_idx)
1357                                 (*dd_idx) += 2; /* D D P Q D */
1358                         break;
1359                 case ALGORITHM_RIGHT_ASYMMETRIC:
1360                         pd_idx = stripe % raid_disks;
1361                         qd_idx = pd_idx + 1;
1362                         if (pd_idx == raid_disks-1) {
1363                                 (*dd_idx)++;    /* Q D D D P */
1364                                 qd_idx = 0;
1365                         } else if (*dd_idx >= pd_idx)
1366                                 (*dd_idx) += 2; /* D D P Q D */
1367                         break;
1368                 case ALGORITHM_LEFT_SYMMETRIC:
1369                         pd_idx = raid_disks - 1 - (stripe % raid_disks);
1370                         qd_idx = (pd_idx + 1) % raid_disks;
1371                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1372                         break;
1373                 case ALGORITHM_RIGHT_SYMMETRIC:
1374                         pd_idx = stripe % raid_disks;
1375                         qd_idx = (pd_idx + 1) % raid_disks;
1376                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1377                         break;
1378
1379                 case ALGORITHM_PARITY_0:
1380                         pd_idx = 0;
1381                         qd_idx = 1;
1382                         (*dd_idx) += 2;
1383                         break;
1384                 case ALGORITHM_PARITY_N:
1385                         pd_idx = data_disks;
1386                         qd_idx = data_disks + 1;
1387                         break;
1388
1389                 case ALGORITHM_ROTATING_ZERO_RESTART:
1390                         /* Exactly the same as RIGHT_ASYMMETRIC, but or
1391                          * of blocks for computing Q is different.
1392                          */
1393                         pd_idx = stripe % raid_disks;
1394                         qd_idx = pd_idx + 1;
1395                         if (pd_idx == raid_disks-1) {
1396                                 (*dd_idx)++;    /* Q D D D P */
1397                                 qd_idx = 0;
1398                         } else if (*dd_idx >= pd_idx)
1399                                 (*dd_idx) += 2; /* D D P Q D */
1400                         ddf_layout = 1;
1401                         break;
1402
1403                 case ALGORITHM_ROTATING_N_RESTART:
1404                         /* Same a left_asymmetric, by first stripe is
1405                          * D D D P Q  rather than
1406                          * Q D D D P
1407                          */
1408                         pd_idx = raid_disks - 1 - ((stripe + 1) % raid_disks);
1409                         qd_idx = pd_idx + 1;
1410                         if (pd_idx == raid_disks-1) {
1411                                 (*dd_idx)++;    /* Q D D D P */
1412                                 qd_idx = 0;
1413                         } else if (*dd_idx >= pd_idx)
1414                                 (*dd_idx) += 2; /* D D P Q D */
1415                         ddf_layout = 1;
1416                         break;
1417
1418                 case ALGORITHM_ROTATING_N_CONTINUE:
1419                         /* Same as left_symmetric but Q is before P */
1420                         pd_idx = raid_disks - 1 - (stripe % raid_disks);
1421                         qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
1422                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1423                         ddf_layout = 1;
1424                         break;
1425
1426                 case ALGORITHM_LEFT_ASYMMETRIC_6:
1427                         /* RAID5 left_asymmetric, with Q on last device */
1428                         pd_idx = data_disks - stripe % (raid_disks-1);
1429                         if (*dd_idx >= pd_idx)
1430                                 (*dd_idx)++;
1431                         qd_idx = raid_disks - 1;
1432                         break;
1433
1434                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
1435                         pd_idx = stripe % (raid_disks-1);
1436                         if (*dd_idx >= pd_idx)
1437                                 (*dd_idx)++;
1438                         qd_idx = raid_disks - 1;
1439                         break;
1440
1441                 case ALGORITHM_LEFT_SYMMETRIC_6:
1442                         pd_idx = data_disks - stripe % (raid_disks-1);
1443                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1444                         qd_idx = raid_disks - 1;
1445                         break;
1446
1447                 case ALGORITHM_RIGHT_SYMMETRIC_6:
1448                         pd_idx = stripe % (raid_disks-1);
1449                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1450                         qd_idx = raid_disks - 1;
1451                         break;
1452
1453                 case ALGORITHM_PARITY_0_6:
1454                         pd_idx = 0;
1455                         (*dd_idx)++;
1456                         qd_idx = raid_disks - 1;
1457                         break;
1458
1459
1460                 default:
1461                         printk(KERN_CRIT "raid6: unsupported algorithm %d\n",
1462                                algorithm);
1463                         BUG();
1464                 }
1465                 break;
1466         }
1467
1468         if (sh) {
1469                 sh->pd_idx = pd_idx;
1470                 sh->qd_idx = qd_idx;
1471                 sh->ddf_layout = ddf_layout;
1472         }
1473         /*
1474          * Finally, compute the new sector number
1475          */
1476         new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1477         return new_sector;
1478 }
1479
1480
1481 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
1482 {
1483         raid5_conf_t *conf = sh->raid_conf;
1484         int raid_disks = sh->disks;
1485         int data_disks = raid_disks - conf->max_degraded;
1486         sector_t new_sector = sh->sector, check;
1487         int sectors_per_chunk = previous ? (conf->prev_chunk >> 9)
1488                                          : (conf->chunk_size >> 9);
1489         int algorithm = previous ? conf->prev_algo
1490                                  : conf->algorithm;
1491         sector_t stripe;
1492         int chunk_offset;
1493         int chunk_number, dummy1, dd_idx = i;
1494         sector_t r_sector;
1495         struct stripe_head sh2;
1496
1497
1498         chunk_offset = sector_div(new_sector, sectors_per_chunk);
1499         stripe = new_sector;
1500         BUG_ON(new_sector != stripe);
1501
1502         if (i == sh->pd_idx)
1503                 return 0;
1504         switch(conf->level) {
1505         case 4: break;
1506         case 5:
1507                 switch (algorithm) {
1508                 case ALGORITHM_LEFT_ASYMMETRIC:
1509                 case ALGORITHM_RIGHT_ASYMMETRIC:
1510                         if (i > sh->pd_idx)
1511                                 i--;
1512                         break;
1513                 case ALGORITHM_LEFT_SYMMETRIC:
1514                 case ALGORITHM_RIGHT_SYMMETRIC:
1515                         if (i < sh->pd_idx)
1516                                 i += raid_disks;
1517                         i -= (sh->pd_idx + 1);
1518                         break;
1519                 case ALGORITHM_PARITY_0:
1520                         i -= 1;
1521                         break;
1522                 case ALGORITHM_PARITY_N:
1523                         break;
1524                 default:
1525                         printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1526                                algorithm);
1527                         BUG();
1528                 }
1529                 break;
1530         case 6:
1531                 if (i == sh->qd_idx)
1532                         return 0; /* It is the Q disk */
1533                 switch (algorithm) {
1534                 case ALGORITHM_LEFT_ASYMMETRIC:
1535                 case ALGORITHM_RIGHT_ASYMMETRIC:
1536                 case ALGORITHM_ROTATING_ZERO_RESTART:
1537                 case ALGORITHM_ROTATING_N_RESTART:
1538                         if (sh->pd_idx == raid_disks-1)
1539                                 i--;    /* Q D D D P */
1540                         else if (i > sh->pd_idx)
1541                                 i -= 2; /* D D P Q D */
1542                         break;
1543                 case ALGORITHM_LEFT_SYMMETRIC:
1544                 case ALGORITHM_RIGHT_SYMMETRIC:
1545                         if (sh->pd_idx == raid_disks-1)
1546                                 i--; /* Q D D D P */
1547                         else {
1548                                 /* D D P Q D */
1549                                 if (i < sh->pd_idx)
1550                                         i += raid_disks;
1551                                 i -= (sh->pd_idx + 2);
1552                         }
1553                         break;
1554                 case ALGORITHM_PARITY_0:
1555                         i -= 2;
1556                         break;
1557                 case ALGORITHM_PARITY_N:
1558                         break;
1559                 case ALGORITHM_ROTATING_N_CONTINUE:
1560                         if (sh->pd_idx == 0)
1561                                 i--;    /* P D D D Q */
1562                         else if (i > sh->pd_idx)
1563                                 i -= 2; /* D D Q P D */
1564                         break;
1565                 case ALGORITHM_LEFT_ASYMMETRIC_6:
1566                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
1567                         if (i > sh->pd_idx)
1568                                 i--;
1569                         break;
1570                 case ALGORITHM_LEFT_SYMMETRIC_6:
1571                 case ALGORITHM_RIGHT_SYMMETRIC_6:
1572                         if (i < sh->pd_idx)
1573                                 i += data_disks + 1;
1574                         i -= (sh->pd_idx + 1);
1575                         break;
1576                 case ALGORITHM_PARITY_0_6:
1577                         i -= 1;
1578                         break;
1579                 default:
1580                         printk(KERN_CRIT "raid6: unsupported algorithm %d\n",
1581                                algorithm);
1582                         BUG();
1583                 }
1584                 break;
1585         }
1586
1587         chunk_number = stripe * data_disks + i;
1588         r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset;
1589
1590         check = raid5_compute_sector(conf, r_sector,
1591                                      previous, &dummy1, &sh2);
1592         if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
1593                 || sh2.qd_idx != sh->qd_idx) {
1594                 printk(KERN_ERR "compute_blocknr: map not correct\n");
1595                 return 0;
1596         }
1597         return r_sector;
1598 }
1599
1600
1601
1602 /*
1603  * Copy data between a page in the stripe cache, and one or more bion
1604  * The page could align with the middle of the bio, or there could be
1605  * several bion, each with several bio_vecs, which cover part of the page
1606  * Multiple bion are linked together on bi_next.  There may be extras
1607  * at the end of this list.  We ignore them.
1608  */
1609 static void copy_data(int frombio, struct bio *bio,
1610                      struct page *page,
1611                      sector_t sector)
1612 {
1613         char *pa = page_address(page);
1614         struct bio_vec *bvl;
1615         int i;
1616         int page_offset;
1617
1618         if (bio->bi_sector >= sector)
1619                 page_offset = (signed)(bio->bi_sector - sector) * 512;
1620         else
1621                 page_offset = (signed)(sector - bio->bi_sector) * -512;
1622         bio_for_each_segment(bvl, bio, i) {
1623                 int len = bio_iovec_idx(bio,i)->bv_len;
1624                 int clen;
1625                 int b_offset = 0;
1626
1627                 if (page_offset < 0) {
1628                         b_offset = -page_offset;
1629                         page_offset += b_offset;
1630                         len -= b_offset;
1631                 }
1632
1633                 if (len > 0 && page_offset + len > STRIPE_SIZE)
1634                         clen = STRIPE_SIZE - page_offset;
1635                 else clen = len;
1636
1637                 if (clen > 0) {
1638                         char *ba = __bio_kmap_atomic(bio, i, KM_USER0);
1639                         if (frombio)
1640                                 memcpy(pa+page_offset, ba+b_offset, clen);
1641                         else
1642                                 memcpy(ba+b_offset, pa+page_offset, clen);
1643                         __bio_kunmap_atomic(ba, KM_USER0);
1644                 }
1645                 if (clen < len) /* hit end of page */
1646                         break;
1647                 page_offset +=  len;
1648         }
1649 }
1650
1651 #define check_xor()     do {                                              \
1652                                 if (count == MAX_XOR_BLOCKS) {            \
1653                                 xor_blocks(count, STRIPE_SIZE, dest, ptr);\
1654                                 count = 0;                                \
1655                            }                                              \
1656                         } while(0)
1657
1658 static void compute_parity6(struct stripe_head *sh, int method)
1659 {
1660         raid5_conf_t *conf = sh->raid_conf;
1661         int i, pd_idx, qd_idx, d0_idx, disks = sh->disks, count;
1662         int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1663         struct bio *chosen;
1664         /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1665         void *ptrs[syndrome_disks+2];
1666
1667         pd_idx = sh->pd_idx;
1668         qd_idx = sh->qd_idx;
1669         d0_idx = raid6_d0(sh);
1670
1671         pr_debug("compute_parity, stripe %llu, method %d\n",
1672                 (unsigned long long)sh->sector, method);
1673
1674         switch(method) {
1675         case READ_MODIFY_WRITE:
1676                 BUG();          /* READ_MODIFY_WRITE N/A for RAID-6 */
1677         case RECONSTRUCT_WRITE:
1678                 for (i= disks; i-- ;)
1679                         if ( i != pd_idx && i != qd_idx && sh->dev[i].towrite ) {
1680                                 chosen = sh->dev[i].towrite;
1681                                 sh->dev[i].towrite = NULL;
1682
1683                                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1684                                         wake_up(&conf->wait_for_overlap);
1685
1686                                 BUG_ON(sh->dev[i].written);
1687                                 sh->dev[i].written = chosen;
1688                         }
1689                 break;
1690         case CHECK_PARITY:
1691                 BUG();          /* Not implemented yet */
1692         }
1693
1694         for (i = disks; i--;)
1695                 if (sh->dev[i].written) {
1696                         sector_t sector = sh->dev[i].sector;
1697                         struct bio *wbi = sh->dev[i].written;
1698                         while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) {
1699                                 copy_data(1, wbi, sh->dev[i].page, sector);
1700                                 wbi = r5_next_bio(wbi, sector);
1701                         }
1702
1703                         set_bit(R5_LOCKED, &sh->dev[i].flags);
1704                         set_bit(R5_UPTODATE, &sh->dev[i].flags);
1705                 }
1706
1707         /* Note that unlike RAID-5, the ordering of the disks matters greatly.*/
1708
1709         for (i = 0; i < disks; i++)
1710                 ptrs[i] = (void *)raid6_empty_zero_page;
1711
1712         count = 0;
1713         i = d0_idx;
1714         do {
1715                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1716
1717                 ptrs[slot] = page_address(sh->dev[i].page);
1718                 if (slot < syndrome_disks &&
1719                     !test_bit(R5_UPTODATE, &sh->dev[i].flags)) {
1720                         printk(KERN_ERR "block %d/%d not uptodate "
1721                                "on parity calc\n", i, count);
1722                         BUG();
1723                 }
1724
1725                 i = raid6_next_disk(i, disks);
1726         } while (i != d0_idx);
1727         BUG_ON(count != syndrome_disks);
1728
1729         raid6_call.gen_syndrome(syndrome_disks+2, STRIPE_SIZE, ptrs);
1730
1731         switch(method) {
1732         case RECONSTRUCT_WRITE:
1733                 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1734                 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1735                 set_bit(R5_LOCKED,   &sh->dev[pd_idx].flags);
1736                 set_bit(R5_LOCKED,   &sh->dev[qd_idx].flags);
1737                 break;
1738         case UPDATE_PARITY:
1739                 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1740                 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1741                 break;
1742         }
1743 }
1744
1745
1746 /* Compute one missing block */
1747 static void compute_block_1(struct stripe_head *sh, int dd_idx, int nozero)
1748 {
1749         int i, count, disks = sh->disks;
1750         void *ptr[MAX_XOR_BLOCKS], *dest, *p;
1751         int qd_idx = sh->qd_idx;
1752
1753         pr_debug("compute_block_1, stripe %llu, idx %d\n",
1754                 (unsigned long long)sh->sector, dd_idx);
1755
1756         if ( dd_idx == qd_idx ) {
1757                 /* We're actually computing the Q drive */
1758                 compute_parity6(sh, UPDATE_PARITY);
1759         } else {
1760                 dest = page_address(sh->dev[dd_idx].page);
1761                 if (!nozero) memset(dest, 0, STRIPE_SIZE);
1762                 count = 0;
1763                 for (i = disks ; i--; ) {
1764                         if (i == dd_idx || i == qd_idx)
1765                                 continue;
1766                         p = page_address(sh->dev[i].page);
1767                         if (test_bit(R5_UPTODATE, &sh->dev[i].flags))
1768                                 ptr[count++] = p;
1769                         else
1770                                 printk("compute_block() %d, stripe %llu, %d"
1771                                        " not present\n", dd_idx,
1772                                        (unsigned long long)sh->sector, i);
1773
1774                         check_xor();
1775                 }
1776                 if (count)
1777                         xor_blocks(count, STRIPE_SIZE, dest, ptr);
1778                 if (!nozero) set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1779                 else clear_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1780         }
1781 }
1782
1783 /* Compute two missing blocks */
1784 static void compute_block_2(struct stripe_head *sh, int dd_idx1, int dd_idx2)
1785 {
1786         int i, count, disks = sh->disks;
1787         int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1788         int d0_idx = raid6_d0(sh);
1789         int faila = -1, failb = -1;
1790         /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1791         void *ptrs[syndrome_disks+2];
1792
1793         for (i = 0; i < disks ; i++)
1794                 ptrs[i] = (void *)raid6_empty_zero_page;
1795         count = 0;
1796         i = d0_idx;
1797         do {
1798                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1799
1800                 ptrs[slot] = page_address(sh->dev[i].page);
1801
1802                 if (i == dd_idx1)
1803                         faila = slot;
1804                 if (i == dd_idx2)
1805                         failb = slot;
1806                 i = raid6_next_disk(i, disks);
1807         } while (i != d0_idx);
1808         BUG_ON(count != syndrome_disks);
1809
1810         BUG_ON(faila == failb);
1811         if ( failb < faila ) { int tmp = faila; faila = failb; failb = tmp; }
1812
1813         pr_debug("compute_block_2, stripe %llu, idx %d,%d (%d,%d)\n",
1814                  (unsigned long long)sh->sector, dd_idx1, dd_idx2,
1815                  faila, failb);
1816
1817         if (failb == syndrome_disks+1) {
1818                 /* Q disk is one of the missing disks */
1819                 if (faila == syndrome_disks) {
1820                         /* Missing P+Q, just recompute */
1821                         compute_parity6(sh, UPDATE_PARITY);
1822                         return;
1823                 } else {
1824                         /* We're missing D+Q; recompute D from P */
1825                         compute_block_1(sh, ((dd_idx1 == sh->qd_idx) ?
1826                                              dd_idx2 : dd_idx1),
1827                                         0);
1828                         compute_parity6(sh, UPDATE_PARITY); /* Is this necessary? */
1829                         return;
1830                 }
1831         }
1832
1833         /* We're missing D+P or D+D; */
1834         if (failb == syndrome_disks) {
1835                 /* We're missing D+P. */
1836                 raid6_datap_recov(syndrome_disks+2, STRIPE_SIZE, faila, ptrs);
1837         } else {
1838                 /* We're missing D+D. */
1839                 raid6_2data_recov(syndrome_disks+2, STRIPE_SIZE, faila, failb,
1840                                   ptrs);
1841         }
1842
1843         /* Both the above update both missing blocks */
1844         set_bit(R5_UPTODATE, &sh->dev[dd_idx1].flags);
1845         set_bit(R5_UPTODATE, &sh->dev[dd_idx2].flags);
1846 }
1847
1848 static void
1849 schedule_reconstruction5(struct stripe_head *sh, struct stripe_head_state *s,
1850                          int rcw, int expand)
1851 {
1852         int i, pd_idx = sh->pd_idx, disks = sh->disks;
1853
1854         if (rcw) {
1855                 /* if we are not expanding this is a proper write request, and
1856                  * there will be bios with new data to be drained into the
1857                  * stripe cache
1858                  */
1859                 if (!expand) {
1860                         sh->reconstruct_state = reconstruct_state_drain_run;
1861                         set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
1862                 } else
1863                         sh->reconstruct_state = reconstruct_state_run;
1864
1865                 set_bit(STRIPE_OP_POSTXOR, &s->ops_request);
1866
1867                 for (i = disks; i--; ) {
1868                         struct r5dev *dev = &sh->dev[i];
1869
1870                         if (dev->towrite) {
1871                                 set_bit(R5_LOCKED, &dev->flags);
1872                                 set_bit(R5_Wantdrain, &dev->flags);
1873                                 if (!expand)
1874                                         clear_bit(R5_UPTODATE, &dev->flags);
1875                                 s->locked++;
1876                         }
1877                 }
1878                 if (s->locked + 1 == disks)
1879                         if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
1880                                 atomic_inc(&sh->raid_conf->pending_full_writes);
1881         } else {
1882                 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
1883                         test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
1884
1885                 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
1886                 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
1887                 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
1888                 set_bit(STRIPE_OP_POSTXOR, &s->ops_request);
1889
1890                 for (i = disks; i--; ) {
1891                         struct r5dev *dev = &sh->dev[i];
1892                         if (i == pd_idx)
1893                                 continue;
1894
1895                         if (dev->towrite &&
1896                             (test_bit(R5_UPTODATE, &dev->flags) ||
1897                              test_bit(R5_Wantcompute, &dev->flags))) {
1898                                 set_bit(R5_Wantdrain, &dev->flags);
1899                                 set_bit(R5_LOCKED, &dev->flags);
1900                                 clear_bit(R5_UPTODATE, &dev->flags);
1901                                 s->locked++;
1902                         }
1903                 }
1904         }
1905
1906         /* keep the parity disk locked while asynchronous operations
1907          * are in flight
1908          */
1909         set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
1910         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1911         s->locked++;
1912
1913         pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
1914                 __func__, (unsigned long long)sh->sector,
1915                 s->locked, s->ops_request);
1916 }
1917
1918 /*
1919  * Each stripe/dev can have one or more bion attached.
1920  * toread/towrite point to the first in a chain.
1921  * The bi_next chain must be in order.
1922  */
1923 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
1924 {
1925         struct bio **bip;
1926         raid5_conf_t *conf = sh->raid_conf;
1927         int firstwrite=0;
1928
1929         pr_debug("adding bh b#%llu to stripe s#%llu\n",
1930                 (unsigned long long)bi->bi_sector,
1931                 (unsigned long long)sh->sector);
1932
1933
1934         spin_lock(&sh->lock);
1935         spin_lock_irq(&conf->device_lock);
1936         if (forwrite) {
1937                 bip = &sh->dev[dd_idx].towrite;
1938                 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
1939                         firstwrite = 1;
1940         } else
1941                 bip = &sh->dev[dd_idx].toread;
1942         while (*bip && (*bip)->bi_sector < bi->bi_sector) {
1943                 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
1944                         goto overlap;
1945                 bip = & (*bip)->bi_next;
1946         }
1947         if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
1948                 goto overlap;
1949
1950         BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
1951         if (*bip)
1952                 bi->bi_next = *bip;
1953         *bip = bi;
1954         bi->bi_phys_segments++;
1955         spin_unlock_irq(&conf->device_lock);
1956         spin_unlock(&sh->lock);
1957
1958         pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
1959                 (unsigned long long)bi->bi_sector,
1960                 (unsigned long long)sh->sector, dd_idx);
1961
1962         if (conf->mddev->bitmap && firstwrite) {
1963                 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
1964                                   STRIPE_SECTORS, 0);
1965                 sh->bm_seq = conf->seq_flush+1;
1966                 set_bit(STRIPE_BIT_DELAY, &sh->state);
1967         }
1968
1969         if (forwrite) {
1970                 /* check if page is covered */
1971                 sector_t sector = sh->dev[dd_idx].sector;
1972                 for (bi=sh->dev[dd_idx].towrite;
1973                      sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
1974                              bi && bi->bi_sector <= sector;
1975                      bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
1976                         if (bi->bi_sector + (bi->bi_size>>9) >= sector)
1977                                 sector = bi->bi_sector + (bi->bi_size>>9);
1978                 }
1979                 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
1980                         set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
1981         }
1982         return 1;
1983
1984  overlap:
1985         set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
1986         spin_unlock_irq(&conf->device_lock);
1987         spin_unlock(&sh->lock);
1988         return 0;
1989 }
1990
1991 static void end_reshape(raid5_conf_t *conf);
1992
1993 static int page_is_zero(struct page *p)
1994 {
1995         char *a = page_address(p);
1996         return ((*(u32*)a) == 0 &&
1997                 memcmp(a, a+4, STRIPE_SIZE-4)==0);
1998 }
1999
2000 static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
2001                             struct stripe_head *sh)
2002 {
2003         int sectors_per_chunk =
2004                 previous ? (conf->prev_chunk >> 9)
2005                          : (conf->chunk_size >> 9);
2006         int dd_idx;
2007         int chunk_offset = sector_div(stripe, sectors_per_chunk);
2008         int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2009
2010         raid5_compute_sector(conf,
2011                              stripe * (disks - conf->max_degraded)
2012                              *sectors_per_chunk + chunk_offset,
2013                              previous,
2014                              &dd_idx, sh);
2015 }
2016
2017 static void
2018 handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh,
2019                                 struct stripe_head_state *s, int disks,
2020                                 struct bio **return_bi)
2021 {
2022         int i;
2023         for (i = disks; i--; ) {
2024                 struct bio *bi;
2025                 int bitmap_end = 0;
2026
2027                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2028                         mdk_rdev_t *rdev;
2029                         rcu_read_lock();
2030                         rdev = rcu_dereference(conf->disks[i].rdev);
2031                         if (rdev && test_bit(In_sync, &rdev->flags))
2032                                 /* multiple read failures in one stripe */
2033                                 md_error(conf->mddev, rdev);
2034                         rcu_read_unlock();
2035                 }
2036                 spin_lock_irq(&conf->device_lock);
2037                 /* fail all writes first */
2038                 bi = sh->dev[i].towrite;
2039                 sh->dev[i].towrite = NULL;
2040                 if (bi) {
2041                         s->to_write--;
2042                         bitmap_end = 1;
2043                 }
2044
2045                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2046                         wake_up(&conf->wait_for_overlap);
2047
2048                 while (bi && bi->bi_sector <
2049                         sh->dev[i].sector + STRIPE_SECTORS) {
2050                         struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2051                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2052                         if (!raid5_dec_bi_phys_segments(bi)) {
2053                                 md_write_end(conf->mddev);
2054                                 bi->bi_next = *return_bi;
2055                                 *return_bi = bi;
2056                         }
2057                         bi = nextbi;
2058                 }
2059                 /* and fail all 'written' */
2060                 bi = sh->dev[i].written;
2061                 sh->dev[i].written = NULL;
2062                 if (bi) bitmap_end = 1;
2063                 while (bi && bi->bi_sector <
2064                        sh->dev[i].sector + STRIPE_SECTORS) {
2065                         struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2066                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2067                         if (!raid5_dec_bi_phys_segments(bi)) {
2068                                 md_write_end(conf->mddev);
2069                                 bi->bi_next = *return_bi;
2070                                 *return_bi = bi;
2071                         }
2072                         bi = bi2;
2073                 }
2074
2075                 /* fail any reads if this device is non-operational and
2076                  * the data has not reached the cache yet.
2077                  */
2078                 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2079                     (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2080                       test_bit(R5_ReadError, &sh->dev[i].flags))) {
2081                         bi = sh->dev[i].toread;
2082                         sh->dev[i].toread = NULL;
2083                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2084                                 wake_up(&conf->wait_for_overlap);
2085                         if (bi) s->to_read--;
2086                         while (bi && bi->bi_sector <
2087                                sh->dev[i].sector + STRIPE_SECTORS) {
2088                                 struct bio *nextbi =
2089                                         r5_next_bio(bi, sh->dev[i].sector);
2090                                 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2091                                 if (!raid5_dec_bi_phys_segments(bi)) {
2092                                         bi->bi_next = *return_bi;
2093                                         *return_bi = bi;
2094                                 }
2095                                 bi = nextbi;
2096                         }
2097                 }
2098                 spin_unlock_irq(&conf->device_lock);
2099                 if (bitmap_end)
2100                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2101                                         STRIPE_SECTORS, 0, 0);
2102         }
2103
2104         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2105                 if (atomic_dec_and_test(&conf->pending_full_writes))
2106                         md_wakeup_thread(conf->mddev->thread);
2107 }
2108
2109 /* fetch_block5 - checks the given member device to see if its data needs
2110  * to be read or computed to satisfy a request.
2111  *
2112  * Returns 1 when no more member devices need to be checked, otherwise returns
2113  * 0 to tell the loop in handle_stripe_fill5 to continue
2114  */
2115 static int fetch_block5(struct stripe_head *sh, struct stripe_head_state *s,
2116                         int disk_idx, int disks)
2117 {
2118         struct r5dev *dev = &sh->dev[disk_idx];
2119         struct r5dev *failed_dev = &sh->dev[s->failed_num];
2120
2121         /* is the data in this block needed, and can we get it? */
2122         if (!test_bit(R5_LOCKED, &dev->flags) &&
2123             !test_bit(R5_UPTODATE, &dev->flags) &&
2124             (dev->toread ||
2125              (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2126              s->syncing || s->expanding ||
2127              (s->failed &&
2128               (failed_dev->toread ||
2129                (failed_dev->towrite &&
2130                 !test_bit(R5_OVERWRITE, &failed_dev->flags)))))) {
2131                 /* We would like to get this block, possibly by computing it,
2132                  * otherwise read it if the backing disk is insync
2133                  */
2134                 if ((s->uptodate == disks - 1) &&
2135                     (s->failed && disk_idx == s->failed_num)) {
2136                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2137                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2138                         set_bit(R5_Wantcompute, &dev->flags);
2139                         sh->ops.target = disk_idx;
2140                         s->req_compute = 1;
2141                         /* Careful: from this point on 'uptodate' is in the eye
2142                          * of raid5_run_ops which services 'compute' operations
2143                          * before writes. R5_Wantcompute flags a block that will
2144                          * be R5_UPTODATE by the time it is needed for a
2145                          * subsequent operation.
2146                          */
2147                         s->uptodate++;
2148                         return 1; /* uptodate + compute == disks */
2149                 } else if (test_bit(R5_Insync, &dev->flags)) {
2150                         set_bit(R5_LOCKED, &dev->flags);
2151                         set_bit(R5_Wantread, &dev->flags);
2152                         s->locked++;
2153                         pr_debug("Reading block %d (sync=%d)\n", disk_idx,
2154                                 s->syncing);
2155                 }
2156         }
2157
2158         return 0;
2159 }
2160
2161 /**
2162  * handle_stripe_fill5 - read or compute data to satisfy pending requests.
2163  */
2164 static void handle_stripe_fill5(struct stripe_head *sh,
2165                         struct stripe_head_state *s, int disks)
2166 {
2167         int i;
2168
2169         /* look for blocks to read/compute, skip this if a compute
2170          * is already in flight, or if the stripe contents are in the
2171          * midst of changing due to a write
2172          */
2173         if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2174             !sh->reconstruct_state)
2175                 for (i = disks; i--; )
2176                         if (fetch_block5(sh, s, i, disks))
2177                                 break;
2178         set_bit(STRIPE_HANDLE, &sh->state);
2179 }
2180
2181 static void handle_stripe_fill6(struct stripe_head *sh,
2182                         struct stripe_head_state *s, struct r6_state *r6s,
2183                         int disks)
2184 {
2185         int i;
2186         for (i = disks; i--; ) {
2187                 struct r5dev *dev = &sh->dev[i];
2188                 if (!test_bit(R5_LOCKED, &dev->flags) &&
2189                     !test_bit(R5_UPTODATE, &dev->flags) &&
2190                     (dev->toread || (dev->towrite &&
2191                      !test_bit(R5_OVERWRITE, &dev->flags)) ||
2192                      s->syncing || s->expanding ||
2193                      (s->failed >= 1 &&
2194                       (sh->dev[r6s->failed_num[0]].toread ||
2195                        s->to_write)) ||
2196                      (s->failed >= 2 &&
2197                       (sh->dev[r6s->failed_num[1]].toread ||
2198                        s->to_write)))) {
2199                         /* we would like to get this block, possibly
2200                          * by computing it, but we might not be able to
2201                          */
2202                         if ((s->uptodate == disks - 1) &&
2203                             (s->failed && (i == r6s->failed_num[0] ||
2204                                            i == r6s->failed_num[1]))) {
2205                                 pr_debug("Computing stripe %llu block %d\n",
2206                                        (unsigned long long)sh->sector, i);
2207                                 compute_block_1(sh, i, 0);
2208                                 s->uptodate++;
2209                         } else if ( s->uptodate == disks-2 && s->failed >= 2 ) {
2210                                 /* Computing 2-failure is *very* expensive; only
2211                                  * do it if failed >= 2
2212                                  */
2213                                 int other;
2214                                 for (other = disks; other--; ) {
2215                                         if (other == i)
2216                                                 continue;
2217                                         if (!test_bit(R5_UPTODATE,
2218                                               &sh->dev[other].flags))
2219                                                 break;
2220                                 }
2221                                 BUG_ON(other < 0);
2222                                 pr_debug("Computing stripe %llu blocks %d,%d\n",
2223                                        (unsigned long long)sh->sector,
2224                                        i, other);
2225                                 compute_block_2(sh, i, other);
2226                                 s->uptodate += 2;
2227                         } else if (test_bit(R5_Insync, &dev->flags)) {
2228                                 set_bit(R5_LOCKED, &dev->flags);
2229                                 set_bit(R5_Wantread, &dev->flags);
2230                                 s->locked++;
2231                                 pr_debug("Reading block %d (sync=%d)\n",
2232                                         i, s->syncing);
2233                         }
2234                 }
2235         }
2236         set_bit(STRIPE_HANDLE, &sh->state);
2237 }
2238
2239
2240 /* handle_stripe_clean_event
2241  * any written block on an uptodate or failed drive can be returned.
2242  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2243  * never LOCKED, so we don't need to test 'failed' directly.
2244  */
2245 static void handle_stripe_clean_event(raid5_conf_t *conf,
2246         struct stripe_head *sh, int disks, struct bio **return_bi)
2247 {
2248         int i;
2249         struct r5dev *dev;
2250
2251         for (i = disks; i--; )
2252                 if (sh->dev[i].written) {
2253                         dev = &sh->dev[i];
2254                         if (!test_bit(R5_LOCKED, &dev->flags) &&
2255                                 test_bit(R5_UPTODATE, &dev->flags)) {
2256                                 /* We can return any write requests */
2257                                 struct bio *wbi, *wbi2;
2258                                 int bitmap_end = 0;
2259                                 pr_debug("Return write for disc %d\n", i);
2260                                 spin_lock_irq(&conf->device_lock);
2261                                 wbi = dev->written;
2262                                 dev->written = NULL;
2263                                 while (wbi && wbi->bi_sector <
2264                                         dev->sector + STRIPE_SECTORS) {
2265                                         wbi2 = r5_next_bio(wbi, dev->sector);
2266                                         if (!raid5_dec_bi_phys_segments(wbi)) {
2267                                                 md_write_end(conf->mddev);
2268                                                 wbi->bi_next = *return_bi;
2269                                                 *return_bi = wbi;
2270                                         }
2271                                         wbi = wbi2;
2272                                 }
2273                                 if (dev->towrite == NULL)
2274                                         bitmap_end = 1;
2275                                 spin_unlock_irq(&conf->device_lock);
2276                                 if (bitmap_end)
2277                                         bitmap_endwrite(conf->mddev->bitmap,
2278                                                         sh->sector,
2279                                                         STRIPE_SECTORS,
2280                                          !test_bit(STRIPE_DEGRADED, &sh->state),
2281                                                         0);
2282                         }
2283                 }
2284
2285         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2286                 if (atomic_dec_and_test(&conf->pending_full_writes))
2287                         md_wakeup_thread(conf->mddev->thread);
2288 }
2289
2290 static void handle_stripe_dirtying5(raid5_conf_t *conf,
2291                 struct stripe_head *sh, struct stripe_head_state *s, int disks)
2292 {
2293         int rmw = 0, rcw = 0, i;
2294         for (i = disks; i--; ) {
2295                 /* would I have to read this buffer for read_modify_write */
2296                 struct r5dev *dev = &sh->dev[i];
2297                 if ((dev->towrite || i == sh->pd_idx) &&
2298                     !test_bit(R5_LOCKED, &dev->flags) &&
2299                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2300                       test_bit(R5_Wantcompute, &dev->flags))) {
2301                         if (test_bit(R5_Insync, &dev->flags))
2302                                 rmw++;
2303                         else
2304                                 rmw += 2*disks;  /* cannot read it */
2305                 }
2306                 /* Would I have to read this buffer for reconstruct_write */
2307                 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2308                     !test_bit(R5_LOCKED, &dev->flags) &&
2309                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2310                     test_bit(R5_Wantcompute, &dev->flags))) {
2311                         if (test_bit(R5_Insync, &dev->flags)) rcw++;
2312                         else
2313                                 rcw += 2*disks;
2314                 }
2315         }
2316         pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2317                 (unsigned long long)sh->sector, rmw, rcw);
2318         set_bit(STRIPE_HANDLE, &sh->state);
2319         if (rmw < rcw && rmw > 0)
2320                 /* prefer read-modify-write, but need to get some data */
2321                 for (i = disks; i--; ) {
2322                         struct r5dev *dev = &sh->dev[i];
2323                         if ((dev->towrite || i == sh->pd_idx) &&
2324                             !test_bit(R5_LOCKED, &dev->flags) &&
2325                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2326                             test_bit(R5_Wantcompute, &dev->flags)) &&
2327                             test_bit(R5_Insync, &dev->flags)) {
2328                                 if (
2329                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2330                                         pr_debug("Read_old block "
2331                                                 "%d for r-m-w\n", i);
2332                                         set_bit(R5_LOCKED, &dev->flags);
2333                                         set_bit(R5_Wantread, &dev->flags);
2334                                         s->locked++;
2335                                 } else {
2336                                         set_bit(STRIPE_DELAYED, &sh->state);
2337                                         set_bit(STRIPE_HANDLE, &sh->state);
2338                                 }
2339                         }
2340                 }
2341         if (rcw <= rmw && rcw > 0)
2342                 /* want reconstruct write, but need to get some data */
2343                 for (i = disks; i--; ) {
2344                         struct r5dev *dev = &sh->dev[i];
2345                         if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2346                             i != sh->pd_idx &&
2347                             !test_bit(R5_LOCKED, &dev->flags) &&
2348                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2349                             test_bit(R5_Wantcompute, &dev->flags)) &&
2350                             test_bit(R5_Insync, &dev->flags)) {
2351                                 if (
2352                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2353                                         pr_debug("Read_old block "
2354                                                 "%d for Reconstruct\n", i);
2355                                         set_bit(R5_LOCKED, &dev->flags);
2356                                         set_bit(R5_Wantread, &dev->flags);
2357                                         s->locked++;
2358                                 } else {
2359                                         set_bit(STRIPE_DELAYED, &sh->state);
2360                                         set_bit(STRIPE_HANDLE, &sh->state);
2361                                 }
2362                         }
2363                 }
2364         /* now if nothing is locked, and if we have enough data,
2365          * we can start a write request
2366          */
2367         /* since handle_stripe can be called at any time we need to handle the
2368          * case where a compute block operation has been submitted and then a
2369          * subsequent call wants to start a write request.  raid5_run_ops only
2370          * handles the case where compute block and postxor are requested
2371          * simultaneously.  If this is not the case then new writes need to be
2372          * held off until the compute completes.
2373          */
2374         if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2375             (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2376             !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2377                 schedule_reconstruction5(sh, s, rcw == 0, 0);
2378 }
2379
2380 static void handle_stripe_dirtying6(raid5_conf_t *conf,
2381                 struct stripe_head *sh, struct stripe_head_state *s,
2382                 struct r6_state *r6s, int disks)
2383 {
2384         int rcw = 0, must_compute = 0, pd_idx = sh->pd_idx, i;
2385         int qd_idx = sh->qd_idx;
2386         for (i = disks; i--; ) {
2387                 struct r5dev *dev = &sh->dev[i];
2388                 /* Would I have to read this buffer for reconstruct_write */
2389                 if (!test_bit(R5_OVERWRITE, &dev->flags)
2390                     && i != pd_idx && i != qd_idx
2391                     && (!test_bit(R5_LOCKED, &dev->flags)
2392                             ) &&
2393                     !test_bit(R5_UPTODATE, &dev->flags)) {
2394                         if (test_bit(R5_Insync, &dev->flags)) rcw++;
2395                         else {
2396                                 pr_debug("raid6: must_compute: "
2397                                         "disk %d flags=%#lx\n", i, dev->flags);
2398                                 must_compute++;
2399                         }
2400                 }
2401         }
2402         pr_debug("for sector %llu, rcw=%d, must_compute=%d\n",
2403                (unsigned long long)sh->sector, rcw, must_compute);
2404         set_bit(STRIPE_HANDLE, &sh->state);
2405
2406         if (rcw > 0)
2407                 /* want reconstruct write, but need to get some data */
2408                 for (i = disks; i--; ) {
2409                         struct r5dev *dev = &sh->dev[i];
2410                         if (!test_bit(R5_OVERWRITE, &dev->flags)
2411                             && !(s->failed == 0 && (i == pd_idx || i == qd_idx))
2412                             && !test_bit(R5_LOCKED, &dev->flags) &&
2413                             !test_bit(R5_UPTODATE, &dev->flags) &&
2414                             test_bit(R5_Insync, &dev->flags)) {
2415                                 if (
2416                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2417                                         pr_debug("Read_old stripe %llu "
2418                                                 "block %d for Reconstruct\n",
2419                                              (unsigned long long)sh->sector, i);
2420                                         set_bit(R5_LOCKED, &dev->flags);
2421                                         set_bit(R5_Wantread, &dev->flags);
2422                                         s->locked++;
2423                                 } else {
2424                                         pr_debug("Request delayed stripe %llu "
2425                                                 "block %d for Reconstruct\n",
2426                                              (unsigned long long)sh->sector, i);
2427                                         set_bit(STRIPE_DELAYED, &sh->state);
2428                                         set_bit(STRIPE_HANDLE, &sh->state);
2429                                 }
2430                         }
2431                 }
2432         /* now if nothing is locked, and if we have enough data, we can start a
2433          * write request
2434          */
2435         if (s->locked == 0 && rcw == 0 &&
2436             !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2437                 if (must_compute > 0) {
2438                         /* We have failed blocks and need to compute them */
2439                         switch (s->failed) {
2440                         case 0:
2441                                 BUG();
2442                         case 1:
2443                                 compute_block_1(sh, r6s->failed_num[0], 0);
2444                                 break;
2445                         case 2:
2446                                 compute_block_2(sh, r6s->failed_num[0],
2447                                                 r6s->failed_num[1]);
2448                                 break;
2449                         default: /* This request should have been failed? */
2450                                 BUG();
2451                         }
2452                 }
2453
2454                 pr_debug("Computing parity for stripe %llu\n",
2455                         (unsigned long long)sh->sector);
2456                 compute_parity6(sh, RECONSTRUCT_WRITE);
2457                 /* now every locked buffer is ready to be written */
2458                 for (i = disks; i--; )
2459                         if (test_bit(R5_LOCKED, &sh->dev[i].flags)) {
2460                                 pr_debug("Writing stripe %llu block %d\n",
2461                                        (unsigned long long)sh->sector, i);
2462                                 s->locked++;
2463                                 set_bit(R5_Wantwrite, &sh->dev[i].flags);
2464                         }
2465                 if (s->locked == disks)
2466                         if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2467                                 atomic_inc(&conf->pending_full_writes);
2468                 /* after a RECONSTRUCT_WRITE, the stripe MUST be in-sync */
2469                 set_bit(STRIPE_INSYNC, &sh->state);
2470
2471                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2472                         atomic_dec(&conf->preread_active_stripes);
2473                         if (atomic_read(&conf->preread_active_stripes) <
2474                             IO_THRESHOLD)
2475                                 md_wakeup_thread(conf->mddev->thread);
2476                 }
2477         }
2478 }
2479
2480 static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2481                                 struct stripe_head_state *s, int disks)
2482 {
2483         struct r5dev *dev = NULL;
2484
2485         set_bit(STRIPE_HANDLE, &sh->state);
2486
2487         switch (sh->check_state) {
2488         case check_state_idle:
2489                 /* start a new check operation if there are no failures */
2490                 if (s->failed == 0) {
2491                         BUG_ON(s->uptodate != disks);
2492                         sh->check_state = check_state_run;
2493                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
2494                         clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2495                         s->uptodate--;
2496                         break;
2497                 }
2498                 dev = &sh->dev[s->failed_num];
2499                 /* fall through */
2500         case check_state_compute_result:
2501                 sh->check_state = check_state_idle;
2502                 if (!dev)
2503                         dev = &sh->dev[sh->pd_idx];
2504
2505                 /* check that a write has not made the stripe insync */
2506                 if (test_bit(STRIPE_INSYNC, &sh->state))
2507                         break;
2508
2509                 /* either failed parity check, or recovery is happening */
2510                 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2511                 BUG_ON(s->uptodate != disks);
2512
2513                 set_bit(R5_LOCKED, &dev->flags);
2514                 s->locked++;
2515                 set_bit(R5_Wantwrite, &dev->flags);
2516
2517                 clear_bit(STRIPE_DEGRADED, &sh->state);
2518                 set_bit(STRIPE_INSYNC, &sh->state);
2519                 break;
2520         case check_state_run:
2521                 break; /* we will be called again upon completion */
2522         case check_state_check_result:
2523                 sh->check_state = check_state_idle;
2524
2525                 /* if a failure occurred during the check operation, leave
2526                  * STRIPE_INSYNC not set and let the stripe be handled again
2527                  */
2528                 if (s->failed)
2529                         break;
2530
2531                 /* handle a successful check operation, if parity is correct
2532                  * we are done.  Otherwise update the mismatch count and repair
2533                  * parity if !MD_RECOVERY_CHECK
2534                  */
2535                 if (sh->ops.zero_sum_result == 0)
2536                         /* parity is correct (on disc,
2537                          * not in buffer any more)
2538                          */
2539                         set_bit(STRIPE_INSYNC, &sh->state);
2540                 else {
2541                         conf->mddev->resync_mismatches += STRIPE_SECTORS;
2542                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2543                                 /* don't try to repair!! */
2544                                 set_bit(STRIPE_INSYNC, &sh->state);
2545                         else {
2546                                 sh->check_state = check_state_compute_run;
2547                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2548                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2549                                 set_bit(R5_Wantcompute,
2550                                         &sh->dev[sh->pd_idx].flags);
2551                                 sh->ops.target = sh->pd_idx;
2552                                 s->uptodate++;
2553                         }
2554                 }
2555                 break;
2556         case check_state_compute_run:
2557                 break;
2558         default:
2559                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2560                        __func__, sh->check_state,
2561                        (unsigned long long) sh->sector);
2562                 BUG();
2563         }
2564 }
2565
2566
2567 static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2568                                 struct stripe_head_state *s,
2569                                 struct r6_state *r6s, struct page *tmp_page,
2570                                 int disks)
2571 {
2572         int update_p = 0, update_q = 0;
2573         struct r5dev *dev;
2574         int pd_idx = sh->pd_idx;
2575         int qd_idx = sh->qd_idx;
2576
2577         set_bit(STRIPE_HANDLE, &sh->state);
2578
2579         BUG_ON(s->failed > 2);
2580         BUG_ON(s->uptodate < disks);
2581         /* Want to check and possibly repair P and Q.
2582          * However there could be one 'failed' device, in which
2583          * case we can only check one of them, possibly using the
2584          * other to generate missing data
2585          */
2586
2587         /* If !tmp_page, we cannot do the calculations,
2588          * but as we have set STRIPE_HANDLE, we will soon be called
2589          * by stripe_handle with a tmp_page - just wait until then.
2590          */
2591         if (tmp_page) {
2592                 if (s->failed == r6s->q_failed) {
2593                         /* The only possible failed device holds 'Q', so it
2594                          * makes sense to check P (If anything else were failed,
2595                          * we would have used P to recreate it).
2596                          */
2597                         compute_block_1(sh, pd_idx, 1);
2598                         if (!page_is_zero(sh->dev[pd_idx].page)) {
2599                                 compute_block_1(sh, pd_idx, 0);
2600                                 update_p = 1;
2601                         }
2602                 }
2603                 if (!r6s->q_failed && s->failed < 2) {
2604                         /* q is not failed, and we didn't use it to generate
2605                          * anything, so it makes sense to check it
2606                          */
2607                         memcpy(page_address(tmp_page),
2608                                page_address(sh->dev[qd_idx].page),
2609                                STRIPE_SIZE);
2610                         compute_parity6(sh, UPDATE_PARITY);
2611                         if (memcmp(page_address(tmp_page),
2612                                    page_address(sh->dev[qd_idx].page),
2613                                    STRIPE_SIZE) != 0) {
2614                                 clear_bit(STRIPE_INSYNC, &sh->state);
2615                                 update_q = 1;
2616                         }
2617                 }
2618                 if (update_p || update_q) {
2619                         conf->mddev->resync_mismatches += STRIPE_SECTORS;
2620                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2621                                 /* don't try to repair!! */
2622                                 update_p = update_q = 0;
2623                 }
2624
2625                 /* now write out any block on a failed drive,
2626                  * or P or Q if they need it
2627                  */
2628
2629                 if (s->failed == 2) {
2630                         dev = &sh->dev[r6s->failed_num[1]];
2631                         s->locked++;
2632                         set_bit(R5_LOCKED, &dev->flags);
2633                         set_bit(R5_Wantwrite, &dev->flags);
2634                 }
2635                 if (s->failed >= 1) {
2636                         dev = &sh->dev[r6s->failed_num[0]];
2637                         s->locked++;
2638                         set_bit(R5_LOCKED, &dev->flags);
2639                         set_bit(R5_Wantwrite, &dev->flags);
2640                 }
2641
2642                 if (update_p) {
2643                         dev = &sh->dev[pd_idx];
2644                         s->locked++;
2645                         set_bit(R5_LOCKED, &dev->flags);
2646                         set_bit(R5_Wantwrite, &dev->flags);
2647                 }
2648                 if (update_q) {
2649                         dev = &sh->dev[qd_idx];
2650                         s->locked++;
2651                         set_bit(R5_LOCKED, &dev->flags);
2652                         set_bit(R5_Wantwrite, &dev->flags);
2653                 }
2654                 clear_bit(STRIPE_DEGRADED, &sh->state);
2655
2656                 set_bit(STRIPE_INSYNC, &sh->state);
2657         }
2658 }
2659
2660 static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
2661                                 struct r6_state *r6s)
2662 {
2663         int i;
2664
2665         /* We have read all the blocks in this stripe and now we need to
2666          * copy some of them into a target stripe for expand.
2667          */
2668         struct dma_async_tx_descriptor *tx = NULL;
2669         clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2670         for (i = 0; i < sh->disks; i++)
2671                 if (i != sh->pd_idx && i != sh->qd_idx) {
2672                         int dd_idx, j;
2673                         struct stripe_head *sh2;
2674                         struct async_submit_ctl submit;
2675
2676                         sector_t bn = compute_blocknr(sh, i, 1);
2677                         sector_t s = raid5_compute_sector(conf, bn, 0,
2678                                                           &dd_idx, NULL);
2679                         sh2 = get_active_stripe(conf, s, 0, 1);
2680                         if (sh2 == NULL)
2681                                 /* so far only the early blocks of this stripe
2682                                  * have been requested.  When later blocks
2683                                  * get requested, we will try again
2684                                  */
2685                                 continue;
2686                         if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2687                            test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2688                                 /* must have already done this block */
2689                                 release_stripe(sh2);
2690                                 continue;
2691                         }
2692
2693                         /* place all the copies on one channel */
2694                         init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
2695                         tx = async_memcpy(sh2->dev[dd_idx].page,
2696                                           sh->dev[i].page, 0, 0, STRIPE_SIZE,
2697                                           &submit);
2698
2699                         set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2700                         set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2701                         for (j = 0; j < conf->raid_disks; j++)
2702                                 if (j != sh2->pd_idx &&
2703                                     (!r6s || j != sh2->qd_idx) &&
2704                                     !test_bit(R5_Expanded, &sh2->dev[j].flags))
2705                                         break;
2706                         if (j == conf->raid_disks) {
2707                                 set_bit(STRIPE_EXPAND_READY, &sh2->state);
2708                                 set_bit(STRIPE_HANDLE, &sh2->state);
2709                         }
2710                         release_stripe(sh2);
2711
2712                 }
2713         /* done submitting copies, wait for them to complete */
2714         if (tx) {
2715                 async_tx_ack(tx);
2716                 dma_wait_for_async_tx(tx);
2717         }
2718 }
2719
2720
2721 /*
2722  * handle_stripe - do things to a stripe.
2723  *
2724  * We lock the stripe and then examine the state of various bits
2725  * to see what needs to be done.
2726  * Possible results:
2727  *    return some read request which now have data
2728  *    return some write requests which are safely on disc
2729  *    schedule a read on some buffers
2730  *    schedule a write of some buffers
2731  *    return confirmation of parity correctness
2732  *
2733  * buffers are taken off read_list or write_list, and bh_cache buffers
2734  * get BH_Lock set before the stripe lock is released.
2735  *
2736  */
2737
2738 static bool handle_stripe5(struct stripe_head *sh)
2739 {
2740         raid5_conf_t *conf = sh->raid_conf;
2741         int disks = sh->disks, i;
2742         struct bio *return_bi = NULL;
2743         struct stripe_head_state s;
2744         struct r5dev *dev;
2745         mdk_rdev_t *blocked_rdev = NULL;
2746         int prexor;
2747
2748         memset(&s, 0, sizeof(s));
2749         pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d check:%d "
2750                  "reconstruct:%d\n", (unsigned long long)sh->sector, sh->state,
2751                  atomic_read(&sh->count), sh->pd_idx, sh->check_state,
2752                  sh->reconstruct_state);
2753
2754         spin_lock(&sh->lock);
2755         clear_bit(STRIPE_HANDLE, &sh->state);
2756         clear_bit(STRIPE_DELAYED, &sh->state);
2757
2758         s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2759         s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2760         s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2761
2762         /* Now to look around and see what can be done */
2763         rcu_read_lock();
2764         for (i=disks; i--; ) {
2765                 mdk_rdev_t *rdev;
2766                 struct r5dev *dev = &sh->dev[i];
2767                 clear_bit(R5_Insync, &dev->flags);
2768
2769                 pr_debug("check %d: state 0x%lx toread %p read %p write %p "
2770                         "written %p\n", i, dev->flags, dev->toread, dev->read,
2771                         dev->towrite, dev->written);
2772
2773                 /* maybe we can request a biofill operation
2774                  *
2775                  * new wantfill requests are only permitted while
2776                  * ops_complete_biofill is guaranteed to be inactive
2777                  */
2778                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
2779                     !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
2780                         set_bit(R5_Wantfill, &dev->flags);
2781
2782                 /* now count some things */
2783                 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
2784                 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
2785                 if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
2786
2787                 if (test_bit(R5_Wantfill, &dev->flags))
2788                         s.to_fill++;
2789                 else if (dev->toread)
2790                         s.to_read++;
2791                 if (dev->towrite) {
2792                         s.to_write++;
2793                         if (!test_bit(R5_OVERWRITE, &dev->flags))
2794                                 s.non_overwrite++;
2795                 }
2796                 if (dev->written)
2797                         s.written++;
2798                 rdev = rcu_dereference(conf->disks[i].rdev);
2799                 if (blocked_rdev == NULL &&
2800                     rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
2801                         blocked_rdev = rdev;
2802                         atomic_inc(&rdev->nr_pending);
2803                 }
2804                 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
2805                         /* The ReadError flag will just be confusing now */
2806                         clear_bit(R5_ReadError, &dev->flags);
2807                         clear_bit(R5_ReWrite, &dev->flags);
2808                 }
2809                 if (!rdev || !test_bit(In_sync, &rdev->flags)
2810                     || test_bit(R5_ReadError, &dev->flags)) {
2811                         s.failed++;
2812                         s.failed_num = i;
2813                 } else
2814                         set_bit(R5_Insync, &dev->flags);
2815         }
2816         rcu_read_unlock();
2817
2818         if (unlikely(blocked_rdev)) {
2819                 if (s.syncing || s.expanding || s.expanded ||
2820                     s.to_write || s.written) {
2821                         set_bit(STRIPE_HANDLE, &sh->state);
2822                         goto unlock;
2823                 }
2824                 /* There is nothing for the blocked_rdev to block */
2825                 rdev_dec_pending(blocked_rdev, conf->mddev);
2826                 blocked_rdev = NULL;
2827         }
2828
2829         if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
2830                 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
2831                 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
2832         }
2833
2834         pr_debug("locked=%d uptodate=%d to_read=%d"
2835                 " to_write=%d failed=%d failed_num=%d\n",
2836                 s.locked, s.uptodate, s.to_read, s.to_write,
2837                 s.failed, s.failed_num);
2838         /* check if the array has lost two devices and, if so, some requests might
2839          * need to be failed
2840          */
2841         if (s.failed > 1 && s.to_read+s.to_write+s.written)
2842                 handle_failed_stripe(conf, sh, &s, disks, &return_bi);
2843         if (s.failed > 1 && s.syncing) {
2844                 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
2845                 clear_bit(STRIPE_SYNCING, &sh->state);
2846                 s.syncing = 0;
2847         }
2848
2849         /* might be able to return some write requests if the parity block
2850          * is safe, or on a failed drive
2851          */
2852         dev = &sh->dev[sh->pd_idx];
2853         if ( s.written &&
2854              ((test_bit(R5_Insync, &dev->flags) &&
2855                !test_bit(R5_LOCKED, &dev->flags) &&
2856                test_bit(R5_UPTODATE, &dev->flags)) ||
2857                (s.failed == 1 && s.failed_num == sh->pd_idx)))
2858                 handle_stripe_clean_event(conf, sh, disks, &return_bi);
2859
2860         /* Now we might consider reading some blocks, either to check/generate
2861          * parity, or to satisfy requests
2862          * or to load a block that is being partially written.
2863          */
2864         if (s.to_read || s.non_overwrite ||
2865             (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
2866                 handle_stripe_fill5(sh, &s, disks);
2867
2868         /* Now we check to see if any write operations have recently
2869          * completed
2870          */
2871         prexor = 0;
2872         if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
2873                 prexor = 1;
2874         if (sh->reconstruct_state == reconstruct_state_drain_result ||
2875             sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
2876                 sh->reconstruct_state = reconstruct_state_idle;
2877
2878                 /* All the 'written' buffers and the parity block are ready to
2879                  * be written back to disk
2880                  */
2881                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
2882                 for (i = disks; i--; ) {
2883                         dev = &sh->dev[i];
2884                         if (test_bit(R5_LOCKED, &dev->flags) &&
2885                                 (i == sh->pd_idx || dev->written)) {
2886                                 pr_debug("Writing block %d\n", i);
2887                                 set_bit(R5_Wantwrite, &dev->flags);
2888                                 if (prexor)
2889                                         continue;
2890                                 if (!test_bit(R5_Insync, &dev->flags) ||
2891                                     (i == sh->pd_idx && s.failed == 0))
2892                                         set_bit(STRIPE_INSYNC, &sh->state);
2893                         }
2894                 }
2895                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2896                         atomic_dec(&conf->preread_active_stripes);
2897                         if (atomic_read(&conf->preread_active_stripes) <
2898                                 IO_THRESHOLD)
2899                                 md_wakeup_thread(conf->mddev->thread);
2900                 }
2901         }
2902
2903         /* Now to consider new write requests and what else, if anything
2904          * should be read.  We do not handle new writes when:
2905          * 1/ A 'write' operation (copy+xor) is already in flight.
2906          * 2/ A 'check' operation is in flight, as it may clobber the parity
2907          *    block.
2908          */
2909         if (s.to_write && !sh->reconstruct_state && !sh->check_state)
2910                 handle_stripe_dirtying5(conf, sh, &s, disks);
2911
2912         /* maybe we need to check and possibly fix the parity for this stripe
2913          * Any reads will already have been scheduled, so we just see if enough
2914          * data is available.  The parity check is held off while parity
2915          * dependent operations are in flight.
2916          */
2917         if (sh->check_state ||
2918             (s.syncing && s.locked == 0 &&
2919              !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
2920              !test_bit(STRIPE_INSYNC, &sh->state)))
2921                 handle_parity_checks5(conf, sh, &s, disks);
2922
2923         if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
2924                 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
2925                 clear_bit(STRIPE_SYNCING, &sh->state);
2926         }
2927
2928         /* If the failed drive is just a ReadError, then we might need to progress
2929          * the repair/check process
2930          */
2931         if (s.failed == 1 && !conf->mddev->ro &&
2932             test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
2933             && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
2934             && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
2935                 ) {
2936                 dev = &sh->dev[s.failed_num];
2937                 if (!test_bit(R5_ReWrite, &dev->flags)) {
2938                         set_bit(R5_Wantwrite, &dev->flags);
2939                         set_bit(R5_ReWrite, &dev->flags);
2940                         set_bit(R5_LOCKED, &dev->flags);
2941                         s.locked++;
2942                 } else {
2943                         /* let's read it back */
2944                         set_bit(R5_Wantread, &dev->flags);
2945                         set_bit(R5_LOCKED, &dev->flags);
2946                         s.locked++;
2947                 }
2948         }
2949
2950         /* Finish reconstruct operations initiated by the expansion process */
2951         if (sh->reconstruct_state == reconstruct_state_result) {
2952                 struct stripe_head *sh2
2953                         = get_active_stripe(conf, sh->sector, 1, 1);
2954                 if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
2955                         /* sh cannot be written until sh2 has been read.
2956                          * so arrange for sh to be delayed a little
2957                          */
2958                         set_bit(STRIPE_DELAYED, &sh->state);
2959                         set_bit(STRIPE_HANDLE, &sh->state);
2960                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
2961                                               &sh2->state))
2962                                 atomic_inc(&conf->preread_active_stripes);
2963                         release_stripe(sh2);
2964                         goto unlock;
2965                 }
2966                 if (sh2)
2967                         release_stripe(sh2);
2968
2969                 sh->reconstruct_state = reconstruct_state_idle;
2970                 clear_bit(STRIPE_EXPANDING, &sh->state);
2971                 for (i = conf->raid_disks; i--; ) {
2972                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
2973                         set_bit(R5_LOCKED, &sh->dev[i].flags);
2974                         s.locked++;
2975                 }
2976         }
2977
2978         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
2979             !sh->reconstruct_state) {
2980                 /* Need to write out all blocks after computing parity */
2981                 sh->disks = conf->raid_disks;
2982                 stripe_set_idx(sh->sector, conf, 0, sh);
2983                 schedule_reconstruction5(sh, &s, 1, 1);
2984         } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
2985                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
2986                 atomic_dec(&conf->reshape_stripes);
2987                 wake_up(&conf->wait_for_overlap);
2988                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
2989         }
2990
2991         if (s.expanding && s.locked == 0 &&
2992             !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
2993                 handle_stripe_expansion(conf, sh, NULL);
2994
2995  unlock:
2996         spin_unlock(&sh->lock);
2997
2998         /* wait for this device to become unblocked */
2999         if (unlikely(blocked_rdev))
3000                 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3001
3002         if (s.ops_request)
3003                 raid5_run_ops(sh, s.ops_request);
3004
3005         ops_run_io(sh, &s);
3006
3007         return_io(return_bi);
3008
3009         return blocked_rdev == NULL;
3010 }
3011
3012 static bool handle_stripe6(struct stripe_head *sh, struct page *tmp_page)
3013 {
3014         raid5_conf_t *conf = sh->raid_conf;
3015         int disks = sh->disks;
3016         struct bio *return_bi = NULL;
3017         int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx;
3018         struct stripe_head_state s;
3019         struct r6_state r6s;
3020         struct r5dev *dev, *pdev, *qdev;
3021         mdk_rdev_t *blocked_rdev = NULL;
3022
3023         pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3024                 "pd_idx=%d, qd_idx=%d\n",
3025                (unsigned long long)sh->sector, sh->state,
3026                atomic_read(&sh->count), pd_idx, qd_idx);
3027         memset(&s, 0, sizeof(s));
3028
3029         spin_lock(&sh->lock);
3030         clear_bit(STRIPE_HANDLE, &sh->state);
3031         clear_bit(STRIPE_DELAYED, &sh->state);
3032
3033         s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
3034         s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3035         s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3036         /* Now to look around and see what can be done */
3037
3038         rcu_read_lock();
3039         for (i=disks; i--; ) {
3040                 mdk_rdev_t *rdev;
3041                 dev = &sh->dev[i];
3042                 clear_bit(R5_Insync, &dev->flags);
3043
3044                 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3045                         i, dev->flags, dev->toread, dev->towrite, dev->written);
3046                 /* maybe we can reply to a read */
3047                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) {
3048                         struct bio *rbi, *rbi2;
3049                         pr_debug("Return read for disc %d\n", i);
3050                         spin_lock_irq(&conf->device_lock);
3051                         rbi = dev->toread;
3052                         dev->toread = NULL;
3053                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
3054                                 wake_up(&conf->wait_for_overlap);
3055                         spin_unlock_irq(&conf->device_lock);
3056                         while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) {
3057                                 copy_data(0, rbi, dev->page, dev->sector);
3058                                 rbi2 = r5_next_bio(rbi, dev->sector);
3059                                 spin_lock_irq(&conf->device_lock);
3060                                 if (!raid5_dec_bi_phys_segments(rbi)) {
3061                                         rbi->bi_next = return_bi;
3062                                         return_bi = rbi;
3063                                 }
3064                                 spin_unlock_irq(&conf->device_lock);
3065                                 rbi = rbi2;
3066                         }
3067                 }
3068
3069                 /* now count some things */
3070                 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
3071                 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
3072
3073
3074                 if (dev->toread)
3075                         s.to_read++;
3076                 if (dev->towrite) {
3077                         s.to_write++;
3078                         if (!test_bit(R5_OVERWRITE, &dev->flags))
3079                                 s.non_overwrite++;
3080                 }
3081                 if (dev->written)
3082                         s.written++;
3083                 rdev = rcu_dereference(conf->disks[i].rdev);
3084                 if (blocked_rdev == NULL &&
3085                     rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3086                         blocked_rdev = rdev;
3087                         atomic_inc(&rdev->nr_pending);
3088                 }
3089                 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
3090                         /* The ReadError flag will just be confusing now */
3091                         clear_bit(R5_ReadError, &dev->flags);
3092                         clear_bit(R5_ReWrite, &dev->flags);
3093                 }
3094                 if (!rdev || !test_bit(In_sync, &rdev->flags)
3095                     || test_bit(R5_ReadError, &dev->flags)) {
3096                         if (s.failed < 2)
3097                                 r6s.failed_num[s.failed] = i;
3098                         s.failed++;
3099                 } else
3100                         set_bit(R5_Insync, &dev->flags);
3101         }
3102         rcu_read_unlock();
3103
3104         if (unlikely(blocked_rdev)) {
3105                 if (s.syncing || s.expanding || s.expanded ||
3106                     s.to_write || s.written) {
3107                         set_bit(STRIPE_HANDLE, &sh->state);
3108                         goto unlock;
3109                 }
3110                 /* There is nothing for the blocked_rdev to block */
3111                 rdev_dec_pending(blocked_rdev, conf->mddev);
3112                 blocked_rdev = NULL;
3113         }
3114
3115         pr_debug("locked=%d uptodate=%d to_read=%d"
3116                " to_write=%d failed=%d failed_num=%d,%d\n",
3117                s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3118                r6s.failed_num[0], r6s.failed_num[1]);
3119         /* check if the array has lost >2 devices and, if so, some requests
3120          * might need to be failed
3121          */
3122         if (s.failed > 2 && s.to_read+s.to_write+s.written)
3123                 handle_failed_stripe(conf, sh, &s, disks, &return_bi);
3124         if (s.failed > 2 && s.syncing) {
3125                 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3126                 clear_bit(STRIPE_SYNCING, &sh->state);
3127                 s.syncing = 0;
3128         }
3129
3130         /*
3131          * might be able to return some write requests if the parity blocks
3132          * are safe, or on a failed drive
3133          */
3134         pdev = &sh->dev[pd_idx];
3135         r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
3136                 || (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
3137         qdev = &sh->dev[qd_idx];
3138         r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == qd_idx)
3139                 || (s.failed >= 2 && r6s.failed_num[1] == qd_idx);
3140
3141         if ( s.written &&
3142              ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3143                              && !test_bit(R5_LOCKED, &pdev->flags)
3144                              && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3145              ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3146                              && !test_bit(R5_LOCKED, &qdev->flags)
3147                              && test_bit(R5_UPTODATE, &qdev->flags)))))
3148                 handle_stripe_clean_event(conf, sh, disks, &return_bi);
3149
3150         /* Now we might consider reading some blocks, either to check/generate
3151          * parity, or to satisfy requests
3152          * or to load a block that is being partially written.
3153          */
3154         if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
3155             (s.syncing && (s.uptodate < disks)) || s.expanding)
3156                 handle_stripe_fill6(sh, &s, &r6s, disks);
3157
3158         /* now to consider writing and what else, if anything should be read */
3159         if (s.to_write)
3160                 handle_stripe_dirtying6(conf, sh, &s, &r6s, disks);
3161
3162         /* maybe we need to check and possibly fix the parity for this stripe
3163          * Any reads will already have been scheduled, so we just see if enough
3164          * data is available
3165          */
3166         if (s.syncing && s.locked == 0 && !test_bit(STRIPE_INSYNC, &sh->state))
3167                 handle_parity_checks6(conf, sh, &s, &r6s, tmp_page, disks);
3168
3169         if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3170                 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3171                 clear_bit(STRIPE_SYNCING, &sh->state);
3172         }
3173
3174         /* If the failed drives are just a ReadError, then we might need
3175          * to progress the repair/check process
3176          */
3177         if (s.failed <= 2 && !conf->mddev->ro)
3178                 for (i = 0; i < s.failed; i++) {
3179                         dev = &sh->dev[r6s.failed_num[i]];
3180                         if (test_bit(R5_ReadError, &dev->flags)
3181                             && !test_bit(R5_LOCKED, &dev->flags)
3182                             && test_bit(R5_UPTODATE, &dev->flags)
3183                                 ) {
3184                                 if (!test_bit(R5_ReWrite, &dev->flags)) {
3185                                         set_bit(R5_Wantwrite, &dev->flags);
3186                                         set_bit(R5_ReWrite, &dev->flags);
3187                                         set_bit(R5_LOCKED, &dev->flags);
3188                                 } else {
3189                                         /* let's read it back */
3190                                         set_bit(R5_Wantread, &dev->flags);
3191                                         set_bit(R5_LOCKED, &dev->flags);
3192                                 }
3193                         }
3194                 }
3195
3196         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state)) {
3197                 struct stripe_head *sh2
3198                         = get_active_stripe(conf, sh->sector, 1, 1);
3199                 if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
3200                         /* sh cannot be written until sh2 has been read.
3201                          * so arrange for sh to be delayed a little
3202                          */
3203                         set_bit(STRIPE_DELAYED, &sh->state);
3204                         set_bit(STRIPE_HANDLE, &sh->state);
3205                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3206                                               &sh2->state))
3207                                 atomic_inc(&conf->preread_active_stripes);
3208                         release_stripe(sh2);
3209                         goto unlock;
3210                 }
3211                 if (sh2)
3212                         release_stripe(sh2);
3213
3214                 /* Need to write out all blocks after computing P&Q */
3215                 sh->disks = conf->raid_disks;
3216                 stripe_set_idx(sh->sector, conf, 0, sh);
3217                 compute_parity6(sh, RECONSTRUCT_WRITE);
3218                 for (i = conf->raid_disks ; i-- ;  ) {
3219                         set_bit(R5_LOCKED, &sh->dev[i].flags);
3220                         s.locked++;
3221                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
3222                 }
3223                 clear_bit(STRIPE_EXPANDING, &sh->state);
3224         } else if (s.expanded) {
3225                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3226                 atomic_dec(&conf->reshape_stripes);
3227                 wake_up(&conf->wait_for_overlap);
3228                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3229         }
3230
3231         if (s.expanding && s.locked == 0 &&
3232             !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3233                 handle_stripe_expansion(conf, sh, &r6s);
3234
3235  unlock:
3236         spin_unlock(&sh->lock);
3237
3238         /* wait for this device to become unblocked */
3239         if (unlikely(blocked_rdev))
3240                 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3241
3242         ops_run_io(sh, &s);
3243
3244         return_io(return_bi);
3245
3246         return blocked_rdev == NULL;
3247 }
3248
3249 /* returns true if the stripe was handled */
3250 static bool handle_stripe(struct stripe_head *sh, struct page *tmp_page)
3251 {
3252         if (sh->raid_conf->level == 6)
3253                 return handle_stripe6(sh, tmp_page);
3254         else
3255                 return handle_stripe5(sh);
3256 }
3257
3258
3259
3260 static void raid5_activate_delayed(raid5_conf_t *conf)
3261 {
3262         if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3263                 while (!list_empty(&conf->delayed_list)) {
3264                         struct list_head *l = conf->delayed_list.next;
3265                         struct stripe_head *sh;
3266                         sh = list_entry(l, struct stripe_head, lru);
3267                         list_del_init(l);
3268                         clear_bit(STRIPE_DELAYED, &sh->state);
3269                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3270                                 atomic_inc(&conf->preread_active_stripes);
3271                         list_add_tail(&sh->lru, &conf->hold_list);
3272                 }
3273         } else
3274                 blk_plug_device(conf->mddev->queue);
3275 }
3276
3277 static void activate_bit_delay(raid5_conf_t *conf)
3278 {
3279         /* device_lock is held */
3280         struct list_head head;
3281         list_add(&head, &conf->bitmap_list);
3282         list_del_init(&conf->bitmap_list);
3283         while (!list_empty(&head)) {
3284                 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3285                 list_del_init(&sh->lru);
3286                 atomic_inc(&sh->count);
3287                 __release_stripe(conf, sh);
3288         }
3289 }
3290
3291 static void unplug_slaves(mddev_t *mddev)
3292 {
3293         raid5_conf_t *conf = mddev_to_conf(mddev);
3294         int i;
3295
3296         rcu_read_lock();
3297         for (i=0; i<mddev->raid_disks; i++) {
3298                 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
3299                 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
3300                         struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
3301
3302                         atomic_inc(&rdev->nr_pending);
3303                         rcu_read_unlock();
3304
3305                         blk_unplug(r_queue);
3306
3307                         rdev_dec_pending(rdev, mddev);
3308                         rcu_read_lock();
3309                 }
3310         }
3311         rcu_read_unlock();
3312 }
3313
3314 static void raid5_unplug_device(struct request_queue *q)
3315 {
3316         mddev_t *mddev = q->queuedata;
3317         raid5_conf_t *conf = mddev_to_conf(mddev);
3318         unsigned long flags;
3319
3320         spin_lock_irqsave(&conf->device_lock, flags);
3321
3322         if (blk_remove_plug(q)) {
3323                 conf->seq_flush++;
3324                 raid5_activate_delayed(conf);
3325         }
3326         md_wakeup_thread(mddev->thread);
3327
3328         spin_unlock_irqrestore(&conf->device_lock, flags);
3329
3330         unplug_slaves(mddev);
3331 }
3332
3333 static int raid5_congested(void *data, int bits)
3334 {
3335         mddev_t *mddev = data;
3336         raid5_conf_t *conf = mddev_to_conf(mddev);
3337
3338         /* No difference between reads and writes.  Just check
3339          * how busy the stripe_cache is
3340          */
3341         if (conf->inactive_blocked)
3342                 return 1;
3343         if (conf->quiesce)
3344                 return 1;
3345         if (list_empty_careful(&conf->inactive_list))
3346                 return 1;
3347
3348         return 0;
3349 }
3350
3351 /* We want read requests to align with chunks where possible,
3352  * but write requests don't need to.
3353  */
3354 static int raid5_mergeable_bvec(struct request_queue *q,
3355                                 struct bvec_merge_data *bvm,
3356                                 struct bio_vec *biovec)
3357 {
3358         mddev_t *mddev = q->queuedata;
3359         sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3360         int max;
3361         unsigned int chunk_sectors = mddev->chunk_size >> 9;
3362         unsigned int bio_sectors = bvm->bi_size >> 9;
3363
3364         if ((bvm->bi_rw & 1) == WRITE)
3365                 return biovec->bv_len; /* always allow writes to be mergeable */
3366
3367         if (mddev->new_chunk < mddev->chunk_size)
3368                 chunk_sectors = mddev->new_chunk >> 9;
3369         max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3370         if (max < 0) max = 0;
3371         if (max <= biovec->bv_len && bio_sectors == 0)
3372                 return biovec->bv_len;
3373         else
3374                 return max;
3375 }
3376
3377
3378 static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3379 {
3380         sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3381         unsigned int chunk_sectors = mddev->chunk_size >> 9;
3382         unsigned int bio_sectors = bio->bi_size >> 9;
3383
3384         if (mddev->new_chunk < mddev->chunk_size)
3385                 chunk_sectors = mddev->new_chunk >> 9;
3386         return  chunk_sectors >=
3387                 ((sector & (chunk_sectors - 1)) + bio_sectors);
3388 }
3389
3390 /*
3391  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
3392  *  later sampled by raid5d.
3393  */
3394 static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3395 {
3396         unsigned long flags;
3397
3398         spin_lock_irqsave(&conf->device_lock, flags);
3399
3400         bi->bi_next = conf->retry_read_aligned_list;
3401         conf->retry_read_aligned_list = bi;
3402
3403         spin_unlock_irqrestore(&conf->device_lock, flags);
3404         md_wakeup_thread(conf->mddev->thread);
3405 }
3406
3407
3408 static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3409 {
3410         struct bio *bi;
3411
3412         bi = conf->retry_read_aligned;
3413         if (bi) {
3414                 conf->retry_read_aligned = NULL;
3415                 return bi;
3416         }
3417         bi = conf->retry_read_aligned_list;
3418         if(bi) {
3419                 conf->retry_read_aligned_list = bi->bi_next;
3420                 bi->bi_next = NULL;
3421                 /*
3422                  * this sets the active strip count to 1 and the processed
3423                  * strip count to zero (upper 8 bits)
3424                  */
3425                 bi->bi_phys_segments = 1; /* biased count of active stripes */
3426         }
3427
3428         return bi;
3429 }
3430
3431
3432 /*
3433  *  The "raid5_align_endio" should check if the read succeeded and if it
3434  *  did, call bio_endio on the original bio (having bio_put the new bio
3435  *  first).
3436  *  If the read failed..
3437  */
3438 static void raid5_align_endio(struct bio *bi, int error)
3439 {
3440         struct bio* raid_bi  = bi->bi_private;
3441         mddev_t *mddev;
3442         raid5_conf_t *conf;
3443         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3444         mdk_rdev_t *rdev;
3445
3446         bio_put(bi);
3447
3448         mddev = raid_bi->bi_bdev->bd_disk->queue->queuedata;
3449         conf = mddev_to_conf(mddev);
3450         rdev = (void*)raid_bi->bi_next;
3451         raid_bi->bi_next = NULL;
3452
3453         rdev_dec_pending(rdev, conf->mddev);
3454
3455         if (!error && uptodate) {
3456                 bio_endio(raid_bi, 0);
3457                 if (atomic_dec_and_test(&conf->active_aligned_reads))
3458                         wake_up(&conf->wait_for_stripe);
3459                 return;
3460         }
3461
3462
3463         pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3464
3465         add_bio_to_retry(raid_bi, conf);
3466 }
3467
3468 static int bio_fits_rdev(struct bio *bi)
3469 {
3470         struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3471
3472         if ((bi->bi_size>>9) > q->max_sectors)
3473                 return 0;
3474         blk_recount_segments(q, bi);
3475         if (bi->bi_phys_segments > q->max_phys_segments)
3476                 return 0;
3477
3478         if (q->merge_bvec_fn)
3479                 /* it's too hard to apply the merge_bvec_fn at this stage,
3480                  * just just give up
3481                  */
3482                 return 0;
3483
3484         return 1;
3485 }
3486
3487
3488 static int chunk_aligned_read(struct request_queue *q, struct bio * raid_bio)
3489 {
3490         mddev_t *mddev = q->queuedata;
3491         raid5_conf_t *conf = mddev_to_conf(mddev);
3492         unsigned int dd_idx;
3493         struct bio* align_bi;
3494         mdk_rdev_t *rdev;
3495
3496         if (!in_chunk_boundary(mddev, raid_bio)) {
3497                 pr_debug("chunk_aligned_read : non aligned\n");
3498                 return 0;
3499         }
3500         /*
3501          * use bio_clone to make a copy of the bio
3502          */
3503         align_bi = bio_clone(raid_bio, GFP_NOIO);
3504         if (!align_bi)
3505                 return 0;
3506         /*
3507          *   set bi_end_io to a new function, and set bi_private to the
3508          *     original bio.
3509          */
3510         align_bi->bi_end_io  = raid5_align_endio;
3511         align_bi->bi_private = raid_bio;
3512         /*
3513          *      compute position
3514          */
3515         align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
3516                                                     0,
3517                                                     &dd_idx, NULL);
3518
3519         rcu_read_lock();
3520         rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3521         if (rdev && test_bit(In_sync, &rdev->flags)) {
3522                 atomic_inc(&rdev->nr_pending);
3523                 rcu_read_unlock();
3524                 raid_bio->bi_next = (void*)rdev;
3525                 align_bi->bi_bdev =  rdev->bdev;
3526                 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3527                 align_bi->bi_sector += rdev->data_offset;
3528
3529                 if (!bio_fits_rdev(align_bi)) {
3530                         /* too big in some way */
3531                         bio_put(align_bi);
3532                         rdev_dec_pending(rdev, mddev);
3533                         return 0;
3534                 }
3535
3536                 spin_lock_irq(&conf->device_lock);
3537                 wait_event_lock_irq(conf->wait_for_stripe,
3538                                     conf->quiesce == 0,
3539                                     conf->device_lock, /* nothing */);
3540                 atomic_inc(&conf->active_aligned_reads);
3541                 spin_unlock_irq(&conf->device_lock);
3542
3543                 generic_make_request(align_bi);
3544                 return 1;
3545         } else {
3546                 rcu_read_unlock();
3547                 bio_put(align_bi);
3548                 return 0;
3549         }
3550 }
3551
3552 /* __get_priority_stripe - get the next stripe to process
3553  *
3554  * Full stripe writes are allowed to pass preread active stripes up until
3555  * the bypass_threshold is exceeded.  In general the bypass_count
3556  * increments when the handle_list is handled before the hold_list; however, it
3557  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3558  * stripe with in flight i/o.  The bypass_count will be reset when the
3559  * head of the hold_list has changed, i.e. the head was promoted to the
3560  * handle_list.
3561  */
3562 static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
3563 {
3564         struct stripe_head *sh;
3565
3566         pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3567                   __func__,
3568                   list_empty(&conf->handle_list) ? "empty" : "busy",
3569                   list_empty(&conf->hold_list) ? "empty" : "busy",
3570                   atomic_read(&conf->pending_full_writes), conf->bypass_count);
3571
3572         if (!list_empty(&conf->handle_list)) {
3573                 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3574
3575                 if (list_empty(&conf->hold_list))
3576                         conf->bypass_count = 0;
3577                 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3578                         if (conf->hold_list.next == conf->last_hold)
3579                                 conf->bypass_count++;
3580                         else {
3581                                 conf->last_hold = conf->hold_list.next;
3582                                 conf->bypass_count -= conf->bypass_threshold;
3583                                 if (conf->bypass_count < 0)
3584                                         conf->bypass_count = 0;
3585                         }
3586                 }
3587         } else if (!list_empty(&conf->hold_list) &&
3588                    ((conf->bypass_threshold &&
3589                      conf->bypass_count > conf->bypass_threshold) ||
3590                     atomic_read(&conf->pending_full_writes) == 0)) {
3591                 sh = list_entry(conf->hold_list.next,
3592                                 typeof(*sh), lru);
3593                 conf->bypass_count -= conf->bypass_threshold;
3594                 if (conf->bypass_count < 0)
3595                         conf->bypass_count = 0;
3596         } else
3597                 return NULL;
3598
3599         list_del_init(&sh->lru);
3600         atomic_inc(&sh->count);
3601         BUG_ON(atomic_read(&sh->count) != 1);
3602         return sh;
3603 }
3604
3605 static int make_request(struct request_queue *q, struct bio * bi)
3606 {
3607         mddev_t *mddev = q->queuedata;
3608         raid5_conf_t *conf = mddev_to_conf(mddev);
3609         int dd_idx;
3610         sector_t new_sector;
3611         sector_t logical_sector, last_sector;
3612         struct stripe_head *sh;
3613         const int rw = bio_data_dir(bi);
3614         int cpu, remaining;
3615
3616         if (unlikely(bio_barrier(bi))) {
3617                 bio_endio(bi, -EOPNOTSUPP);
3618                 return 0;
3619         }
3620
3621         md_write_start(mddev, bi);
3622
3623         cpu = part_stat_lock();
3624         part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
3625         part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw],
3626                       bio_sectors(bi));
3627         part_stat_unlock();
3628
3629         if (rw == READ &&
3630              mddev->reshape_position == MaxSector &&
3631              chunk_aligned_read(q,bi))
3632                 return 0;
3633
3634         logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3635         last_sector = bi->bi_sector + (bi->bi_size>>9);
3636         bi->bi_next = NULL;
3637         bi->bi_phys_segments = 1;       /* over-loaded to count active stripes */
3638
3639         for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3640                 DEFINE_WAIT(w);
3641                 int disks, data_disks;
3642                 int previous;
3643
3644         retry:
3645                 previous = 0;
3646                 disks = conf->raid_disks;
3647                 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3648                 if (unlikely(conf->reshape_progress != MaxSector)) {
3649                         /* spinlock is needed as reshape_progress may be
3650                          * 64bit on a 32bit platform, and so it might be
3651                          * possible to see a half-updated value
3652                          * Ofcourse reshape_progress could change after
3653                          * the lock is dropped, so once we get a reference
3654                          * to the stripe that we think it is, we will have
3655                          * to check again.
3656                          */
3657                         spin_lock_irq(&conf->device_lock);
3658                         if (mddev->delta_disks < 0
3659                             ? logical_sector < conf->reshape_progress
3660                             : logical_sector >= conf->reshape_progress) {
3661                                 disks = conf->previous_raid_disks;
3662                                 previous = 1;
3663                         } else {
3664                                 if (mddev->delta_disks < 0
3665                                     ? logical_sector < conf->reshape_safe
3666                                     : logical_sector >= conf->reshape_safe) {
3667                                         spin_unlock_irq(&conf->device_lock);
3668                                         schedule();
3669                                         goto retry;
3670                                 }
3671                         }
3672                         spin_unlock_irq(&conf->device_lock);
3673                 }
3674                 data_disks = disks - conf->max_degraded;
3675
3676                 new_sector = raid5_compute_sector(conf, logical_sector,
3677                                                   previous,
3678                                                   &dd_idx, NULL);
3679                 pr_debug("raid5: make_request, sector %llu logical %llu\n",
3680                         (unsigned long long)new_sector, 
3681                         (unsigned long long)logical_sector);
3682
3683                 sh = get_active_stripe(conf, new_sector, previous,
3684                                        (bi->bi_rw&RWA_MASK));
3685                 if (sh) {
3686                         if (unlikely(previous)) {
3687                                 /* expansion might have moved on while waiting for a
3688                                  * stripe, so we must do the range check again.
3689                                  * Expansion could still move past after this
3690                                  * test, but as we are holding a reference to
3691                                  * 'sh', we know that if that happens,
3692                                  *  STRIPE_EXPANDING will get set and the expansion
3693                                  * won't proceed until we finish with the stripe.
3694                                  */
3695                                 int must_retry = 0;
3696                                 spin_lock_irq(&conf->device_lock);
3697                                 if (mddev->delta_disks < 0
3698                                     ? logical_sector >= conf->reshape_progress
3699                                     : logical_sector < conf->reshape_progress)
3700                                         /* mismatch, need to try again */
3701                                         must_retry = 1;
3702                                 spin_unlock_irq(&conf->device_lock);
3703                                 if (must_retry) {
3704                                         release_stripe(sh);
3705                                         goto retry;
3706                                 }
3707                         }
3708                         /* FIXME what if we get a false positive because these
3709                          * are being updated.
3710                          */
3711                         if (logical_sector >= mddev->suspend_lo &&
3712                             logical_sector < mddev->suspend_hi) {
3713                                 release_stripe(sh);
3714                                 schedule();
3715                                 goto retry;
3716                         }
3717
3718                         if (test_bit(STRIPE_EXPANDING, &sh->state) ||
3719                             !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
3720                                 /* Stripe is busy expanding or
3721                                  * add failed due to overlap.  Flush everything
3722                                  * and wait a while
3723                                  */
3724                                 raid5_unplug_device(mddev->queue);
3725                                 release_stripe(sh);
3726                                 schedule();
3727                                 goto retry;
3728                         }
3729                         finish_wait(&conf->wait_for_overlap, &w);
3730                         set_bit(STRIPE_HANDLE, &sh->state);
3731                         clear_bit(STRIPE_DELAYED, &sh->state);
3732                         release_stripe(sh);
3733                 } else {
3734                         /* cannot get stripe for read-ahead, just give-up */
3735                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
3736                         finish_wait(&conf->wait_for_overlap, &w);
3737                         break;
3738                 }
3739                         
3740         }
3741         spin_lock_irq(&conf->device_lock);
3742         remaining = raid5_dec_bi_phys_segments(bi);
3743         spin_unlock_irq(&conf->device_lock);
3744         if (remaining == 0) {
3745
3746                 if ( rw == WRITE )
3747                         md_write_end(mddev);
3748
3749                 bio_endio(bi, 0);
3750         }
3751         return 0;
3752 }
3753
3754 static sector_t raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks);
3755
3756 static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
3757 {
3758         /* reshaping is quite different to recovery/resync so it is
3759          * handled quite separately ... here.
3760          *
3761          * On each call to sync_request, we gather one chunk worth of
3762          * destination stripes and flag them as expanding.
3763          * Then we find all the source stripes and request reads.
3764          * As the reads complete, handle_stripe will copy the data
3765          * into the destination stripe and release that stripe.
3766          */
3767         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3768         struct stripe_head *sh;
3769         sector_t first_sector, last_sector;
3770         int raid_disks = conf->previous_raid_disks;
3771         int data_disks = raid_disks - conf->max_degraded;
3772         int new_data_disks = conf->raid_disks - conf->max_degraded;
3773         int i;
3774         int dd_idx;
3775         sector_t writepos, readpos, safepos;
3776         sector_t stripe_addr;
3777         int reshape_sectors;
3778         struct list_head stripes;
3779
3780         if (sector_nr == 0) {
3781                 /* If restarting in the middle, skip the initial sectors */
3782                 if (mddev->delta_disks < 0 &&
3783                     conf->reshape_progress < raid5_size(mddev, 0, 0)) {
3784                         sector_nr = raid5_size(mddev, 0, 0)
3785                                 - conf->reshape_progress;
3786                 } else if (mddev->delta_disks > 0 &&
3787                            conf->reshape_progress > 0)
3788                         sector_nr = conf->reshape_progress;
3789                 sector_div(sector_nr, new_data_disks);
3790                 if (sector_nr) {
3791                         *skipped = 1;
3792                         return sector_nr;
3793                 }
3794         }
3795
3796         /* We need to process a full chunk at a time.
3797          * If old and new chunk sizes differ, we need to process the
3798          * largest of these
3799          */
3800         if (mddev->new_chunk > mddev->chunk_size)
3801                 reshape_sectors = mddev->new_chunk / 512;
3802         else
3803                 reshape_sectors = mddev->chunk_size / 512;
3804
3805         /* we update the metadata when there is more than 3Meg
3806          * in the block range (that is rather arbitrary, should
3807          * probably be time based) or when the data about to be
3808          * copied would over-write the source of the data at
3809          * the front of the range.
3810          * i.e. one new_stripe along from reshape_progress new_maps
3811          * to after where reshape_safe old_maps to
3812          */
3813         writepos = conf->reshape_progress;
3814         sector_div(writepos, new_data_disks);
3815         readpos = conf->reshape_progress;
3816         sector_div(readpos, data_disks);
3817         safepos = conf->reshape_safe;
3818         sector_div(safepos, data_disks);
3819         if (mddev->delta_disks < 0) {
3820                 writepos -= reshape_sectors;
3821                 readpos += reshape_sectors;
3822                 safepos += reshape_sectors;
3823         } else {
3824                 writepos += reshape_sectors;
3825                 readpos -= reshape_sectors;
3826                 safepos -= reshape_sectors;
3827         }
3828
3829         /* 'writepos' is the most advanced device address we might write.
3830          * 'readpos' is the least advanced device address we might read.
3831          * 'safepos' is the least address recorded in the metadata as having
3832          *     been reshaped.
3833          * If 'readpos' is behind 'writepos', then there is no way that we can
3834          * ensure safety in the face of a crash - that must be done by userspace
3835          * making a backup of the data.  So in that case there is no particular
3836          * rush to update metadata.
3837          * Otherwise if 'safepos' is behind 'writepos', then we really need to
3838          * update the metadata to advance 'safepos' to match 'readpos' so that
3839          * we can be safe in the event of a crash.
3840          * So we insist on updating metadata if safepos is behind writepos and
3841          * readpos is beyond writepos.
3842          * In any case, update the metadata every 10 seconds.
3843          * Maybe that number should be configurable, but I'm not sure it is
3844          * worth it.... maybe it could be a multiple of safemode_delay???
3845          */
3846         if ((mddev->delta_disks < 0
3847              ? (safepos > writepos && readpos < writepos)
3848              : (safepos < writepos && readpos > writepos)) ||
3849             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
3850                 /* Cannot proceed until we've updated the superblock... */
3851                 wait_event(conf->wait_for_overlap,
3852                            atomic_read(&conf->reshape_stripes)==0);
3853                 mddev->reshape_position = conf->reshape_progress;
3854                 conf->reshape_checkpoint = jiffies;
3855                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3856                 md_wakeup_thread(mddev->thread);
3857                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
3858                            kthread_should_stop());
3859                 spin_lock_irq(&conf->device_lock);
3860                 conf->reshape_safe = mddev->reshape_position;
3861                 spin_unlock_irq(&conf->device_lock);
3862                 wake_up(&conf->wait_for_overlap);
3863         }
3864
3865         if (mddev->delta_disks < 0) {
3866                 BUG_ON(conf->reshape_progress == 0);
3867                 stripe_addr = writepos;
3868                 BUG_ON((mddev->dev_sectors &
3869                         ~((sector_t)reshape_sectors - 1))
3870                        - reshape_sectors - stripe_addr
3871                        != sector_nr);
3872         } else {
3873                 BUG_ON(writepos != sector_nr + reshape_sectors);
3874                 stripe_addr = sector_nr;
3875         }
3876         INIT_LIST_HEAD(&stripes);
3877         for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
3878                 int j;
3879                 int skipped = 0;
3880                 sh = get_active_stripe(conf, stripe_addr+i, 0, 0);
3881                 set_bit(STRIPE_EXPANDING, &sh->state);
3882                 atomic_inc(&conf->reshape_stripes);
3883                 /* If any of this stripe is beyond the end of the old
3884                  * array, then we need to zero those blocks
3885                  */
3886                 for (j=sh->disks; j--;) {
3887                         sector_t s;
3888                         if (j == sh->pd_idx)
3889                                 continue;
3890                         if (conf->level == 6 &&
3891                             j == sh->qd_idx)
3892                                 continue;
3893                         s = compute_blocknr(sh, j, 0);
3894                         if (s < raid5_size(mddev, 0, 0)) {
3895                                 skipped = 1;
3896                                 continue;
3897                         }
3898                         memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
3899                         set_bit(R5_Expanded, &sh->dev[j].flags);
3900                         set_bit(R5_UPTODATE, &sh->dev[j].flags);
3901                 }
3902                 if (!skipped) {
3903                         set_bit(STRIPE_EXPAND_READY, &sh->state);
3904                         set_bit(STRIPE_HANDLE, &sh->state);
3905                 }
3906                 list_add(&sh->lru, &stripes);
3907         }
3908         spin_lock_irq(&conf->device_lock);
3909         if (mddev->delta_disks < 0)
3910                 conf->reshape_progress -= reshape_sectors * new_data_disks;
3911         else
3912                 conf->reshape_progress += reshape_sectors * new_data_disks;
3913         spin_unlock_irq(&conf->device_lock);
3914         /* Ok, those stripe are ready. We can start scheduling
3915          * reads on the source stripes.
3916          * The source stripes are determined by mapping the first and last
3917          * block on the destination stripes.
3918          */
3919         first_sector =
3920                 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
3921                                      1, &dd_idx, NULL);
3922         last_sector =
3923                 raid5_compute_sector(conf, ((stripe_addr+conf->chunk_size/512)
3924                                             *(new_data_disks) - 1),
3925                                      1, &dd_idx, NULL);
3926         if (last_sector >= mddev->dev_sectors)
3927                 last_sector = mddev->dev_sectors - 1;
3928         while (first_sector <= last_sector) {
3929                 sh = get_active_stripe(conf, first_sector, 1, 0);
3930                 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3931                 set_bit(STRIPE_HANDLE, &sh->state);
3932                 release_stripe(sh);
3933                 first_sector += STRIPE_SECTORS;
3934         }
3935         /* Now that the sources are clearly marked, we can release
3936          * the destination stripes
3937          */
3938         while (!list_empty(&stripes)) {
3939                 sh = list_entry(stripes.next, struct stripe_head, lru);
3940                 list_del_init(&sh->lru);
3941                 release_stripe(sh);
3942         }
3943         /* If this takes us to the resync_max point where we have to pause,
3944          * then we need to write out the superblock.
3945          */
3946         sector_nr += reshape_sectors;
3947         if (sector_nr >= mddev->resync_max) {
3948                 /* Cannot proceed until we've updated the superblock... */
3949                 wait_event(conf->wait_for_overlap,
3950                            atomic_read(&conf->reshape_stripes) == 0);
3951                 mddev->reshape_position = conf->reshape_progress;
3952                 conf->reshape_checkpoint = jiffies;
3953                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3954                 md_wakeup_thread(mddev->thread);
3955                 wait_event(mddev->sb_wait,
3956                            !test_bit(MD_CHANGE_DEVS, &mddev->flags)
3957                            || kthread_should_stop());
3958                 spin_lock_irq(&conf->device_lock);
3959                 conf->reshape_safe = mddev->reshape_position;
3960                 spin_unlock_irq(&conf->device_lock);
3961                 wake_up(&conf->wait_for_overlap);
3962         }
3963         return reshape_sectors;
3964 }
3965
3966 /* FIXME go_faster isn't used */
3967 static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
3968 {
3969         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3970         struct stripe_head *sh;
3971         sector_t max_sector = mddev->dev_sectors;
3972         int sync_blocks;
3973         int still_degraded = 0;
3974         int i;
3975
3976         if (sector_nr >= max_sector) {
3977                 /* just being told to finish up .. nothing much to do */
3978                 unplug_slaves(mddev);
3979
3980                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
3981                         end_reshape(conf);
3982                         return 0;
3983                 }
3984
3985                 if (mddev->curr_resync < max_sector) /* aborted */
3986                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
3987                                         &sync_blocks, 1);
3988                 else /* completed sync */
3989                         conf->fullsync = 0;
3990                 bitmap_close_sync(mddev->bitmap);
3991
3992                 return 0;
3993         }
3994
3995         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3996                 return reshape_request(mddev, sector_nr, skipped);
3997
3998         /* No need to check resync_max as we never do more than one
3999          * stripe, and as resync_max will always be on a chunk boundary,
4000          * if the check in md_do_sync didn't fire, there is no chance
4001          * of overstepping resync_max here
4002          */
4003
4004         /* if there is too many failed drives and we are trying
4005          * to resync, then assert that we are finished, because there is
4006          * nothing we can do.
4007          */
4008         if (mddev->degraded >= conf->max_degraded &&
4009             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4010                 sector_t rv = mddev->dev_sectors - sector_nr;
4011                 *skipped = 1;
4012                 return rv;
4013         }
4014         if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4015             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4016             !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
4017                 /* we can skip this block, and probably more */
4018                 sync_blocks /= STRIPE_SECTORS;
4019                 *skipped = 1;
4020                 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4021         }
4022
4023
4024         bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4025
4026         sh = get_active_stripe(conf, sector_nr, 0, 1);
4027         if (sh == NULL) {
4028                 sh = get_active_stripe(conf, sector_nr, 0, 0);
4029                 /* make sure we don't swamp the stripe cache if someone else
4030                  * is trying to get access
4031                  */
4032                 schedule_timeout_uninterruptible(1);
4033         }
4034         /* Need to check if array will still be degraded after recovery/resync
4035          * We don't need to check the 'failed' flag as when that gets set,
4036          * recovery aborts.
4037          */
4038         for (i=0; i<mddev->raid_disks; i++)
4039                 if (conf->disks[i].rdev == NULL)
4040                         still_degraded = 1;
4041
4042         bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4043
4044         spin_lock(&sh->lock);
4045         set_bit(STRIPE_SYNCING, &sh->state);
4046         clear_bit(STRIPE_INSYNC, &sh->state);
4047         spin_unlock(&sh->lock);
4048
4049         /* wait for any blocked device to be handled */
4050         while(unlikely(!handle_stripe(sh, NULL)))
4051                 ;
4052         release_stripe(sh);
4053
4054         return STRIPE_SECTORS;
4055 }
4056
4057 static int  retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
4058 {
4059         /* We may not be able to submit a whole bio at once as there
4060          * may not be enough stripe_heads available.
4061          * We cannot pre-allocate enough stripe_heads as we may need
4062          * more than exist in the cache (if we allow ever large chunks).
4063          * So we do one stripe head at a time and record in
4064          * ->bi_hw_segments how many have been done.
4065          *
4066          * We *know* that this entire raid_bio is in one chunk, so
4067          * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4068          */
4069         struct stripe_head *sh;
4070         int dd_idx;
4071         sector_t sector, logical_sector, last_sector;
4072         int scnt = 0;
4073         int remaining;
4074         int handled = 0;
4075
4076         logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4077         sector = raid5_compute_sector(conf, logical_sector,
4078                                       0, &dd_idx, NULL);
4079         last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4080
4081         for (; logical_sector < last_sector;
4082              logical_sector += STRIPE_SECTORS,
4083                      sector += STRIPE_SECTORS,
4084                      scnt++) {
4085
4086                 if (scnt < raid5_bi_hw_segments(raid_bio))
4087                         /* already done this stripe */
4088                         continue;
4089
4090                 sh = get_active_stripe(conf, sector, 0, 1);
4091
4092                 if (!sh) {
4093                         /* failed to get a stripe - must wait */
4094                         raid5_set_bi_hw_segments(raid_bio, scnt);
4095                         conf->retry_read_aligned = raid_bio;
4096                         return handled;
4097                 }
4098
4099                 set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
4100                 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4101                         release_stripe(sh);
4102                         raid5_set_bi_hw_segments(raid_bio, scnt);
4103                         conf->retry_read_aligned = raid_bio;
4104                         return handled;
4105                 }
4106
4107                 handle_stripe(sh, NULL);
4108                 release_stripe(sh);
4109                 handled++;
4110         }
4111         spin_lock_irq(&conf->device_lock);
4112         remaining = raid5_dec_bi_phys_segments(raid_bio);
4113         spin_unlock_irq(&conf->device_lock);
4114         if (remaining == 0)
4115                 bio_endio(raid_bio, 0);
4116         if (atomic_dec_and_test(&conf->active_aligned_reads))
4117                 wake_up(&conf->wait_for_stripe);
4118         return handled;
4119 }
4120
4121
4122
4123 /*
4124  * This is our raid5 kernel thread.
4125  *
4126  * We scan the hash table for stripes which can be handled now.
4127  * During the scan, completed stripes are saved for us by the interrupt
4128  * handler, so that they will not have to wait for our next wakeup.
4129  */
4130 static void raid5d(mddev_t *mddev)
4131 {
4132         struct stripe_head *sh;
4133         raid5_conf_t *conf = mddev_to_conf(mddev);
4134         int handled;
4135
4136         pr_debug("+++ raid5d active\n");
4137
4138         md_check_recovery(mddev);
4139
4140         handled = 0;
4141         spin_lock_irq(&conf->device_lock);
4142         while (1) {
4143                 struct bio *bio;
4144
4145                 if (conf->seq_flush != conf->seq_write) {
4146                         int seq = conf->seq_flush;
4147                         spin_unlock_irq(&conf->device_lock);
4148                         bitmap_unplug(mddev->bitmap);
4149                         spin_lock_irq(&conf->device_lock);
4150                         conf->seq_write = seq;
4151                         activate_bit_delay(conf);
4152                 }
4153
4154                 while ((bio = remove_bio_from_retry(conf))) {
4155                         int ok;
4156                         spin_unlock_irq(&conf->device_lock);
4157                         ok = retry_aligned_read(conf, bio);
4158                         spin_lock_irq(&conf->device_lock);
4159                         if (!ok)
4160                                 break;
4161                         handled++;
4162                 }
4163
4164                 sh = __get_priority_stripe(conf);
4165
4166                 if (!sh)
4167                         break;
4168                 spin_unlock_irq(&conf->device_lock);
4169                 
4170                 handled++;
4171                 handle_stripe(sh, conf->spare_page);
4172                 release_stripe(sh);
4173
4174                 spin_lock_irq(&conf->device_lock);
4175         }
4176         pr_debug("%d stripes handled\n", handled);
4177
4178         spin_unlock_irq(&conf->device_lock);
4179
4180         async_tx_issue_pending_all();
4181         unplug_slaves(mddev);
4182
4183         pr_debug("--- raid5d inactive\n");
4184 }
4185
4186 static ssize_t
4187 raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
4188 {
4189         raid5_conf_t *conf = mddev_to_conf(mddev);
4190         if (conf)
4191                 return sprintf(page, "%d\n", conf->max_nr_stripes);
4192         else
4193                 return 0;
4194 }
4195
4196 static ssize_t
4197 raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
4198 {
4199         raid5_conf_t *conf = mddev_to_conf(mddev);
4200         unsigned long new;
4201         int err;
4202
4203         if (len >= PAGE_SIZE)
4204                 return -EINVAL;
4205         if (!conf)
4206                 return -ENODEV;
4207
4208         if (strict_strtoul(page, 10, &new))
4209                 return -EINVAL;
4210         if (new <= 16 || new > 32768)
4211                 return -EINVAL;
4212         while (new < conf->max_nr_stripes) {
4213                 if (drop_one_stripe(conf))
4214                         conf->max_nr_stripes--;
4215                 else
4216                         break;
4217         }
4218         err = md_allow_write(mddev);
4219         if (err)
4220                 return err;
4221         while (new > conf->max_nr_stripes) {
4222                 if (grow_one_stripe(conf))
4223                         conf->max_nr_stripes++;
4224                 else break;
4225         }
4226         return len;
4227 }
4228
4229 static struct md_sysfs_entry
4230 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4231                                 raid5_show_stripe_cache_size,
4232                                 raid5_store_stripe_cache_size);
4233
4234 static ssize_t
4235 raid5_show_preread_threshold(mddev_t *mddev, char *page)
4236 {
4237         raid5_conf_t *conf = mddev_to_conf(mddev);
4238         if (conf)
4239                 return sprintf(page, "%d\n", conf->bypass_threshold);
4240         else
4241                 return 0;
4242 }
4243
4244 static ssize_t
4245 raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
4246 {
4247         raid5_conf_t *conf = mddev_to_conf(mddev);
4248         unsigned long new;
4249         if (len >= PAGE_SIZE)
4250                 return -EINVAL;
4251         if (!conf)
4252                 return -ENODEV;
4253
4254         if (strict_strtoul(page, 10, &new))
4255                 return -EINVAL;
4256         if (new > conf->max_nr_stripes)
4257                 return -EINVAL;
4258         conf->bypass_threshold = new;
4259         return len;
4260 }
4261
4262 static struct md_sysfs_entry
4263 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4264                                         S_IRUGO | S_IWUSR,
4265                                         raid5_show_preread_threshold,
4266                                         raid5_store_preread_threshold);
4267
4268 static ssize_t
4269 stripe_cache_active_show(mddev_t *mddev, char *page)
4270 {
4271         raid5_conf_t *conf = mddev_to_conf(mddev);
4272         if (conf)
4273                 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4274         else
4275                 return 0;
4276 }
4277
4278 static struct md_sysfs_entry
4279 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4280
4281 static struct attribute *raid5_attrs[] =  {
4282         &raid5_stripecache_size.attr,
4283         &raid5_stripecache_active.attr,
4284         &raid5_preread_bypass_threshold.attr,
4285         NULL,
4286 };
4287 static struct attribute_group raid5_attrs_group = {
4288         .name = NULL,
4289         .attrs = raid5_attrs,
4290 };
4291
4292 static sector_t
4293 raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks)
4294 {
4295         raid5_conf_t *conf = mddev_to_conf(mddev);
4296
4297         if (!sectors)
4298                 sectors = mddev->dev_sectors;
4299         if (!raid_disks) {
4300                 /* size is defined by the smallest of previous and new size */
4301                 if (conf->raid_disks < conf->previous_raid_disks)
4302                         raid_disks = conf->raid_disks;
4303                 else
4304                         raid_disks = conf->previous_raid_disks;
4305         }
4306
4307         sectors &= ~((sector_t)mddev->chunk_size/512 - 1);
4308         sectors &= ~((sector_t)mddev->new_chunk/512 - 1);
4309         return sectors * (raid_disks - conf->max_degraded);
4310 }
4311
4312 static raid5_conf_t *setup_conf(mddev_t *mddev)
4313 {
4314         raid5_conf_t *conf;
4315         int raid_disk, memory;
4316         mdk_rdev_t *rdev;
4317         struct disk_info *disk;
4318
4319         if (mddev->new_level != 5
4320             && mddev->new_level != 4
4321             && mddev->new_level != 6) {
4322                 printk(KERN_ERR "raid5: %s: raid level not set to 4/5/6 (%d)\n",
4323                        mdname(mddev), mddev->new_level);
4324                 return ERR_PTR(-EIO);
4325         }
4326         if ((mddev->new_level == 5
4327              && !algorithm_valid_raid5(mddev->new_layout)) ||
4328             (mddev->new_level == 6
4329              && !algorithm_valid_raid6(mddev->new_layout))) {
4330                 printk(KERN_ERR "raid5: %s: layout %d not supported\n",
4331                        mdname(mddev), mddev->new_layout);
4332                 return ERR_PTR(-EIO);
4333         }
4334         if (mddev->new_level == 6 && mddev->raid_disks < 4) {
4335                 printk(KERN_ERR "raid6: not enough configured devices for %s (%d, minimum 4)\n",
4336                        mdname(mddev), mddev->raid_disks);
4337                 return ERR_PTR(-EINVAL);
4338         }
4339
4340         if (!mddev->new_chunk || mddev->new_chunk % PAGE_SIZE) {
4341                 printk(KERN_ERR "raid5: invalid chunk size %d for %s\n",
4342                         mddev->new_chunk, mdname(mddev));
4343                 return ERR_PTR(-EINVAL);
4344         }
4345
4346         conf = kzalloc(sizeof(raid5_conf_t), GFP_KERNEL);
4347         if (conf == NULL)
4348                 goto abort;
4349
4350         conf->raid_disks = mddev->raid_disks;
4351         if (mddev->reshape_position == MaxSector)
4352                 conf->previous_raid_disks = mddev->raid_disks;
4353         else
4354                 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4355
4356         conf->disks = kzalloc(conf->raid_disks * sizeof(struct disk_info),
4357                               GFP_KERNEL);
4358         if (!conf->disks)
4359                 goto abort;
4360
4361         conf->mddev = mddev;
4362
4363         if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4364                 goto abort;
4365
4366         if (mddev->new_level == 6) {
4367                 conf->spare_page = alloc_page(GFP_KERNEL);
4368                 if (!conf->spare_page)
4369                         goto abort;
4370         }
4371         spin_lock_init(&conf->device_lock);
4372         init_waitqueue_head(&conf->wait_for_stripe);
4373         init_waitqueue_head(&conf->wait_for_overlap);
4374         INIT_LIST_HEAD(&conf->handle_list);
4375         INIT_LIST_HEAD(&conf->hold_list);
4376         INIT_LIST_HEAD(&conf->delayed_list);
4377         INIT_LIST_HEAD(&conf->bitmap_list);
4378         INIT_LIST_HEAD(&conf->inactive_list);
4379         atomic_set(&conf->active_stripes, 0);
4380         atomic_set(&conf->preread_active_stripes, 0);
4381         atomic_set(&conf->active_aligned_reads, 0);
4382         conf->bypass_threshold = BYPASS_THRESHOLD;
4383
4384         pr_debug("raid5: run(%s) called.\n", mdname(mddev));
4385
4386         list_for_each_entry(rdev, &mddev->disks, same_set) {
4387                 raid_disk = rdev->raid_disk;
4388                 if (raid_disk >= conf->raid_disks
4389                     || raid_disk < 0)
4390                         continue;
4391                 disk = conf->disks + raid_disk;
4392
4393                 disk->rdev = rdev;
4394
4395                 if (test_bit(In_sync, &rdev->flags)) {
4396                         char b[BDEVNAME_SIZE];
4397                         printk(KERN_INFO "raid5: device %s operational as raid"
4398                                 " disk %d\n", bdevname(rdev->bdev,b),
4399                                 raid_disk);
4400                 } else
4401                         /* Cannot rely on bitmap to complete recovery */
4402                         conf->fullsync = 1;
4403         }
4404
4405         conf->chunk_size = mddev->new_chunk;
4406         conf->level = mddev->new_level;
4407         if (conf->level == 6)
4408                 conf->max_degraded = 2;
4409         else
4410                 conf->max_degraded = 1;
4411         conf->algorithm = mddev->new_layout;
4412         conf->max_nr_stripes = NR_STRIPES;
4413         conf->reshape_progress = mddev->reshape_position;
4414         if (conf->reshape_progress != MaxSector) {
4415                 conf->prev_chunk = mddev->chunk_size;
4416                 conf->prev_algo = mddev->layout;
4417         }
4418
4419         memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4420                  conf->raid_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4421         if (grow_stripes(conf, conf->max_nr_stripes)) {
4422                 printk(KERN_ERR
4423                         "raid5: couldn't allocate %dkB for buffers\n", memory);
4424                 goto abort;
4425         } else
4426                 printk(KERN_INFO "raid5: allocated %dkB for %s\n",
4427                         memory, mdname(mddev));
4428
4429         conf->thread = md_register_thread(raid5d, mddev, "%s_raid5");
4430         if (!conf->thread) {
4431                 printk(KERN_ERR
4432                        "raid5: couldn't allocate thread for %s\n",
4433                        mdname(mddev));
4434                 goto abort;
4435         }
4436
4437         return conf;
4438
4439  abort:
4440         if (conf) {
4441                 shrink_stripes(conf);
4442                 safe_put_page(conf->spare_page);
4443                 kfree(conf->disks);
4444                 kfree(conf->stripe_hashtbl);
4445                 kfree(conf);
4446                 return ERR_PTR(-EIO);
4447         } else
4448                 return ERR_PTR(-ENOMEM);
4449 }
4450
4451 static int run(mddev_t *mddev)
4452 {
4453         raid5_conf_t *conf;
4454         int working_disks = 0;
4455         mdk_rdev_t *rdev;
4456
4457         if (mddev->reshape_position != MaxSector) {
4458                 /* Check that we can continue the reshape.
4459                  * Currently only disks can change, it must
4460                  * increase, and we must be past the point where
4461                  * a stripe over-writes itself
4462                  */
4463                 sector_t here_new, here_old;
4464                 int old_disks;
4465                 int max_degraded = (mddev->level == 6 ? 2 : 1);
4466
4467                 if (mddev->new_level != mddev->level) {
4468                         printk(KERN_ERR "raid5: %s: unsupported reshape "
4469                                "required - aborting.\n",
4470                                mdname(mddev));
4471                         return -EINVAL;
4472                 }
4473                 old_disks = mddev->raid_disks - mddev->delta_disks;
4474                 /* reshape_position must be on a new-stripe boundary, and one
4475                  * further up in new geometry must map after here in old
4476                  * geometry.
4477                  */
4478                 here_new = mddev->reshape_position;
4479                 if (sector_div(here_new, (mddev->new_chunk>>9)*
4480                                (mddev->raid_disks - max_degraded))) {
4481                         printk(KERN_ERR "raid5: reshape_position not "
4482                                "on a stripe boundary\n");
4483                         return -EINVAL;
4484                 }
4485                 /* here_new is the stripe we will write to */
4486                 here_old = mddev->reshape_position;
4487                 sector_div(here_old, (mddev->chunk_size>>9)*
4488                            (old_disks-max_degraded));
4489                 /* here_old is the first stripe that we might need to read
4490                  * from */
4491                 if (here_new >= here_old) {
4492                         /* Reading from the same stripe as writing to - bad */
4493                         printk(KERN_ERR "raid5: reshape_position too early for "
4494                                "auto-recovery - aborting.\n");
4495                         return -EINVAL;
4496                 }
4497                 printk(KERN_INFO "raid5: reshape will continue\n");
4498                 /* OK, we should be able to continue; */
4499         } else {
4500                 BUG_ON(mddev->level != mddev->new_level);
4501                 BUG_ON(mddev->layout != mddev->new_layout);
4502                 BUG_ON(mddev->chunk_size != mddev->new_chunk);
4503                 BUG_ON(mddev->delta_disks != 0);
4504         }
4505
4506         if (mddev->private == NULL)
4507                 conf = setup_conf(mddev);
4508         else
4509                 conf = mddev->private;
4510
4511         if (IS_ERR(conf))
4512                 return PTR_ERR(conf);
4513
4514         mddev->thread = conf->thread;
4515         conf->thread = NULL;
4516         mddev->private = conf;
4517
4518         /*
4519          * 0 for a fully functional array, 1 or 2 for a degraded array.
4520          */
4521         list_for_each_entry(rdev, &mddev->disks, same_set)
4522                 if (rdev->raid_disk >= 0 &&
4523                     test_bit(In_sync, &rdev->flags))
4524                         working_disks++;
4525
4526         mddev->degraded = conf->raid_disks - working_disks;
4527
4528         if (mddev->degraded > conf->max_degraded) {
4529                 printk(KERN_ERR "raid5: not enough operational devices for %s"
4530                         " (%d/%d failed)\n",
4531                         mdname(mddev), mddev->degraded, conf->raid_disks);
4532                 goto abort;
4533         }
4534
4535         /* device size must be a multiple of chunk size */
4536         mddev->dev_sectors &= ~(mddev->chunk_size / 512 - 1);
4537         mddev->resync_max_sectors = mddev->dev_sectors;
4538
4539         if (mddev->degraded > 0 &&
4540             mddev->recovery_cp != MaxSector) {
4541                 if (mddev->ok_start_degraded)
4542                         printk(KERN_WARNING
4543                                "raid5: starting dirty degraded array: %s"
4544                                "- data corruption possible.\n",
4545                                mdname(mddev));
4546                 else {
4547                         printk(KERN_ERR
4548                                "raid5: cannot start dirty degraded array for %s\n",
4549                                mdname(mddev));
4550                         goto abort;
4551                 }
4552         }
4553
4554         if (mddev->degraded == 0)
4555                 printk("raid5: raid level %d set %s active with %d out of %d"
4556                        " devices, algorithm %d\n", conf->level, mdname(mddev),
4557                        mddev->raid_disks-mddev->degraded, mddev->raid_disks,
4558                        mddev->new_layout);
4559         else
4560                 printk(KERN_ALERT "raid5: raid level %d set %s active with %d"
4561                         " out of %d devices, algorithm %d\n", conf->level,
4562                         mdname(mddev), mddev->raid_disks - mddev->degraded,
4563                         mddev->raid_disks, mddev->new_layout);
4564
4565         print_raid5_conf(conf);
4566
4567         if (conf->reshape_progress != MaxSector) {
4568                 printk("...ok start reshape thread\n");
4569                 conf->reshape_safe = conf->reshape_progress;
4570                 atomic_set(&conf->reshape_stripes, 0);
4571                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4572                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4573                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4574                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4575                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4576                                                         "%s_reshape");
4577         }
4578
4579         /* read-ahead size must cover two whole stripes, which is
4580          * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4581          */
4582         {
4583                 int data_disks = conf->previous_raid_disks - conf->max_degraded;
4584                 int stripe = data_disks *
4585                         (mddev->chunk_size / PAGE_SIZE);
4586                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4587                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4588         }
4589
4590         /* Ok, everything is just fine now */
4591         if (sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
4592                 printk(KERN_WARNING
4593                        "raid5: failed to create sysfs attributes for %s\n",
4594                        mdname(mddev));
4595
4596         mddev->queue->queue_lock = &conf->device_lock;
4597
4598         mddev->queue->unplug_fn = raid5_unplug_device;
4599         mddev->queue->backing_dev_info.congested_data = mddev;
4600         mddev->queue->backing_dev_info.congested_fn = raid5_congested;
4601
4602         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
4603
4604         blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
4605
4606         return 0;
4607 abort:
4608         md_unregister_thread(mddev->thread);
4609         mddev->thread = NULL;
4610         if (conf) {
4611                 shrink_stripes(conf);
4612                 print_raid5_conf(conf);
4613                 safe_put_page(conf->spare_page);
4614                 kfree(conf->disks);
4615                 kfree(conf->stripe_hashtbl);
4616                 kfree(conf);
4617         }
4618         mddev->private = NULL;
4619         printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev));
4620         return -EIO;
4621 }
4622
4623
4624
4625 static int stop(mddev_t *mddev)
4626 {
4627         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4628
4629         md_unregister_thread(mddev->thread);
4630         mddev->thread = NULL;
4631         shrink_stripes(conf);
4632         kfree(conf->stripe_hashtbl);
4633         mddev->queue->backing_dev_info.congested_fn = NULL;
4634         blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
4635         sysfs_remove_group(&mddev->kobj, &raid5_attrs_group);
4636         kfree(conf->disks);
4637         kfree(conf);
4638         mddev->private = NULL;
4639         return 0;
4640 }
4641
4642 #ifdef DEBUG
4643 static void print_sh(struct seq_file *seq, struct stripe_head *sh)
4644 {
4645         int i;
4646
4647         seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
4648                    (unsigned long long)sh->sector, sh->pd_idx, sh->state);
4649         seq_printf(seq, "sh %llu,  count %d.\n",
4650                    (unsigned long long)sh->sector, atomic_read(&sh->count));
4651         seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
4652         for (i = 0; i < sh->disks; i++) {
4653                 seq_printf(seq, "(cache%d: %p %ld) ",
4654                            i, sh->dev[i].page, sh->dev[i].flags);
4655         }
4656         seq_printf(seq, "\n");
4657 }
4658
4659 static void printall(struct seq_file *seq, raid5_conf_t *conf)
4660 {
4661         struct stripe_head *sh;
4662         struct hlist_node *hn;
4663         int i;
4664
4665         spin_lock_irq(&conf->device_lock);
4666         for (i = 0; i < NR_HASH; i++) {
4667                 hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
4668                         if (sh->raid_conf != conf)
4669                                 continue;
4670                         print_sh(seq, sh);
4671                 }
4672         }
4673         spin_unlock_irq(&conf->device_lock);
4674 }
4675 #endif
4676
4677 static void status(struct seq_file *seq, mddev_t *mddev)
4678 {
4679         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4680         int i;
4681
4682         seq_printf (seq, " level %d, %dk chunk, algorithm %d", mddev->level, mddev->chunk_size >> 10, mddev->layout);
4683         seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
4684         for (i = 0; i < conf->raid_disks; i++)
4685                 seq_printf (seq, "%s",
4686                                conf->disks[i].rdev &&
4687                                test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
4688         seq_printf (seq, "]");
4689 #ifdef DEBUG
4690         seq_printf (seq, "\n");
4691         printall(seq, conf);
4692 #endif
4693 }
4694
4695 static void print_raid5_conf (raid5_conf_t *conf)
4696 {
4697         int i;
4698         struct disk_info *tmp;
4699
4700         printk("RAID5 conf printout:\n");
4701         if (!conf) {
4702                 printk("(conf==NULL)\n");
4703                 return;
4704         }
4705         printk(" --- rd:%d wd:%d\n", conf->raid_disks,
4706                  conf->raid_disks - conf->mddev->degraded);
4707
4708         for (i = 0; i < conf->raid_disks; i++) {
4709                 char b[BDEVNAME_SIZE];
4710                 tmp = conf->disks + i;
4711                 if (tmp->rdev)
4712                 printk(" disk %d, o:%d, dev:%s\n",
4713                         i, !test_bit(Faulty, &tmp->rdev->flags),
4714                         bdevname(tmp->rdev->bdev,b));
4715         }
4716 }
4717
4718 static int raid5_spare_active(mddev_t *mddev)
4719 {
4720         int i;
4721         raid5_conf_t *conf = mddev->private;
4722         struct disk_info *tmp;
4723
4724         for (i = 0; i < conf->raid_disks; i++) {
4725                 tmp = conf->disks + i;
4726                 if (tmp->rdev
4727                     && !test_bit(Faulty, &tmp->rdev->flags)
4728                     && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
4729                         unsigned long flags;
4730                         spin_lock_irqsave(&conf->device_lock, flags);
4731                         mddev->degraded--;
4732                         spin_unlock_irqrestore(&conf->device_lock, flags);
4733                 }
4734         }
4735         print_raid5_conf(conf);
4736         return 0;
4737 }
4738
4739 static int raid5_remove_disk(mddev_t *mddev, int number)
4740 {
4741         raid5_conf_t *conf = mddev->private;
4742         int err = 0;
4743         mdk_rdev_t *rdev;
4744         struct disk_info *p = conf->disks + number;
4745
4746         print_raid5_conf(conf);
4747         rdev = p->rdev;
4748         if (rdev) {
4749                 if (number >= conf->raid_disks &&
4750                     conf->reshape_progress == MaxSector)
4751                         clear_bit(In_sync, &rdev->flags);
4752
4753                 if (test_bit(In_sync, &rdev->flags) ||
4754                     atomic_read(&rdev->nr_pending)) {
4755                         err = -EBUSY;
4756                         goto abort;
4757                 }
4758                 /* Only remove non-faulty devices if recovery
4759                  * isn't possible.
4760                  */
4761                 if (!test_bit(Faulty, &rdev->flags) &&
4762                     mddev->degraded <= conf->max_degraded &&
4763                     number < conf->raid_disks) {
4764                         err = -EBUSY;
4765                         goto abort;
4766                 }
4767                 p->rdev = NULL;
4768                 synchronize_rcu();
4769                 if (atomic_read(&rdev->nr_pending)) {
4770                         /* lost the race, try later */
4771                         err = -EBUSY;
4772                         p->rdev = rdev;
4773                 }
4774         }
4775 abort:
4776
4777         print_raid5_conf(conf);
4778         return err;
4779 }
4780
4781 static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
4782 {
4783         raid5_conf_t *conf = mddev->private;
4784         int err = -EEXIST;
4785         int disk;
4786         struct disk_info *p;
4787         int first = 0;
4788         int last = conf->raid_disks - 1;
4789
4790         if (mddev->degraded > conf->max_degraded)
4791                 /* no point adding a device */
4792                 return -EINVAL;
4793
4794         if (rdev->raid_disk >= 0)
4795                 first = last = rdev->raid_disk;
4796
4797         /*
4798          * find the disk ... but prefer rdev->saved_raid_disk
4799          * if possible.
4800          */
4801         if (rdev->saved_raid_disk >= 0 &&
4802             rdev->saved_raid_disk >= first &&
4803             conf->disks[rdev->saved_raid_disk].rdev == NULL)
4804                 disk = rdev->saved_raid_disk;
4805         else
4806                 disk = first;
4807         for ( ; disk <= last ; disk++)
4808                 if ((p=conf->disks + disk)->rdev == NULL) {
4809                         clear_bit(In_sync, &rdev->flags);
4810                         rdev->raid_disk = disk;
4811                         err = 0;
4812                         if (rdev->saved_raid_disk != disk)
4813                                 conf->fullsync = 1;
4814                         rcu_assign_pointer(p->rdev, rdev);
4815                         break;
4816                 }
4817         print_raid5_conf(conf);
4818         return err;
4819 }
4820
4821 static int raid5_resize(mddev_t *mddev, sector_t sectors)
4822 {
4823         /* no resync is happening, and there is enough space
4824          * on all devices, so we can resize.
4825          * We need to make sure resync covers any new space.
4826          * If the array is shrinking we should possibly wait until
4827          * any io in the removed space completes, but it hardly seems
4828          * worth it.
4829          */
4830         sectors &= ~((sector_t)mddev->chunk_size/512 - 1);
4831         md_set_array_sectors(mddev, raid5_size(mddev, sectors,
4832                                                mddev->raid_disks));
4833         if (mddev->array_sectors >
4834             raid5_size(mddev, sectors, mddev->raid_disks))
4835                 return -EINVAL;
4836         set_capacity(mddev->gendisk, mddev->array_sectors);
4837         mddev->changed = 1;
4838         if (sectors > mddev->dev_sectors && mddev->recovery_cp == MaxSector) {
4839                 mddev->recovery_cp = mddev->dev_sectors;
4840                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4841         }
4842         mddev->dev_sectors = sectors;
4843         mddev->resync_max_sectors = sectors;
4844         return 0;
4845 }
4846
4847 static int raid5_check_reshape(mddev_t *mddev)
4848 {
4849         raid5_conf_t *conf = mddev_to_conf(mddev);
4850
4851         if (mddev->delta_disks == 0 &&
4852             mddev->new_layout == mddev->layout &&
4853             mddev->new_chunk == mddev->chunk_size)
4854                 return -EINVAL; /* nothing to do */
4855         if (mddev->bitmap)
4856                 /* Cannot grow a bitmap yet */
4857                 return -EBUSY;
4858         if (mddev->degraded > conf->max_degraded)
4859                 return -EINVAL;
4860         if (mddev->delta_disks < 0) {
4861                 /* We might be able to shrink, but the devices must
4862                  * be made bigger first.
4863                  * For raid6, 4 is the minimum size.
4864                  * Otherwise 2 is the minimum
4865                  */
4866                 int min = 2;
4867                 if (mddev->level == 6)
4868                         min = 4;
4869                 if (mddev->raid_disks + mddev->delta_disks < min)
4870                         return -EINVAL;
4871         }
4872
4873         /* Can only proceed if there are plenty of stripe_heads.
4874          * We need a minimum of one full stripe,, and for sensible progress
4875          * it is best to have about 4 times that.
4876          * If we require 4 times, then the default 256 4K stripe_heads will
4877          * allow for chunk sizes up to 256K, which is probably OK.
4878          * If the chunk size is greater, user-space should request more
4879          * stripe_heads first.
4880          */
4881         if ((mddev->chunk_size / STRIPE_SIZE) * 4 > conf->max_nr_stripes ||
4882             (mddev->new_chunk / STRIPE_SIZE) * 4 > conf->max_nr_stripes) {
4883                 printk(KERN_WARNING "raid5: reshape: not enough stripes.  Needed %lu\n",
4884                        (max(mddev->chunk_size, mddev->new_chunk)
4885                         / STRIPE_SIZE)*4);
4886                 return -ENOSPC;
4887         }
4888
4889         return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
4890 }
4891
4892 static int raid5_start_reshape(mddev_t *mddev)
4893 {
4894         raid5_conf_t *conf = mddev_to_conf(mddev);
4895         mdk_rdev_t *rdev;
4896         int spares = 0;
4897         int added_devices = 0;
4898         unsigned long flags;
4899
4900         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4901                 return -EBUSY;
4902
4903         list_for_each_entry(rdev, &mddev->disks, same_set)
4904                 if (rdev->raid_disk < 0 &&
4905                     !test_bit(Faulty, &rdev->flags))
4906                         spares++;
4907
4908         if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
4909                 /* Not enough devices even to make a degraded array
4910                  * of that size
4911                  */
4912                 return -EINVAL;
4913
4914         /* Refuse to reduce size of the array.  Any reductions in
4915          * array size must be through explicit setting of array_size
4916          * attribute.
4917          */
4918         if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
4919             < mddev->array_sectors) {
4920                 printk(KERN_ERR "md: %s: array size must be reduced "
4921                        "before number of disks\n", mdname(mddev));
4922                 return -EINVAL;
4923         }
4924
4925         atomic_set(&conf->reshape_stripes, 0);
4926         spin_lock_irq(&conf->device_lock);
4927         conf->previous_raid_disks = conf->raid_disks;
4928         conf->raid_disks += mddev->delta_disks;
4929         conf->prev_chunk = conf->chunk_size;
4930         conf->chunk_size = mddev->new_chunk;
4931         conf->prev_algo = conf->algorithm;
4932         conf->algorithm = mddev->new_layout;
4933         if (mddev->delta_disks < 0)
4934                 conf->reshape_progress = raid5_size(mddev, 0, 0);
4935         else
4936                 conf->reshape_progress = 0;
4937         conf->reshape_safe = conf->reshape_progress;
4938         conf->generation++;
4939         spin_unlock_irq(&conf->device_lock);
4940
4941         /* Add some new drives, as many as will fit.
4942          * We know there are enough to make the newly sized array work.
4943          */
4944         list_for_each_entry(rdev, &mddev->disks, same_set)
4945                 if (rdev->raid_disk < 0 &&
4946                     !test_bit(Faulty, &rdev->flags)) {
4947                         if (raid5_add_disk(mddev, rdev) == 0) {
4948                                 char nm[20];
4949                                 set_bit(In_sync, &rdev->flags);
4950                                 added_devices++;
4951                                 rdev->recovery_offset = 0;
4952                                 sprintf(nm, "rd%d", rdev->raid_disk);
4953                                 if (sysfs_create_link(&mddev->kobj,
4954                                                       &rdev->kobj, nm))
4955                                         printk(KERN_WARNING
4956                                                "raid5: failed to create "
4957                                                " link %s for %s\n",
4958                                                nm, mdname(mddev));
4959                         } else
4960                                 break;
4961                 }
4962
4963         if (mddev->delta_disks > 0) {
4964                 spin_lock_irqsave(&conf->device_lock, flags);
4965                 mddev->degraded = (conf->raid_disks - conf->previous_raid_disks)
4966                         - added_devices;
4967                 spin_unlock_irqrestore(&conf->device_lock, flags);
4968         }
4969         mddev->raid_disks = conf->raid_disks;
4970         mddev->reshape_position = 0;
4971         set_bit(MD_CHANGE_DEVS, &mddev->flags);
4972
4973         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4974         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4975         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4976         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4977         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4978                                                 "%s_reshape");
4979         if (!mddev->sync_thread) {
4980                 mddev->recovery = 0;
4981                 spin_lock_irq(&conf->device_lock);
4982                 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
4983                 conf->reshape_progress = MaxSector;
4984                 spin_unlock_irq(&conf->device_lock);
4985                 return -EAGAIN;
4986         }
4987         conf->reshape_checkpoint = jiffies;
4988         md_wakeup_thread(mddev->sync_thread);
4989         md_new_event(mddev);
4990         return 0;
4991 }
4992
4993 /* This is called from the reshape thread and should make any
4994  * changes needed in 'conf'
4995  */
4996 static void end_reshape(raid5_conf_t *conf)
4997 {
4998
4999         if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
5000
5001                 spin_lock_irq(&conf->device_lock);
5002                 conf->previous_raid_disks = conf->raid_disks;
5003                 conf->reshape_progress = MaxSector;
5004                 spin_unlock_irq(&conf->device_lock);
5005                 wake_up(&conf->wait_for_overlap);
5006
5007                 /* read-ahead size must cover two whole stripes, which is
5008                  * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5009                  */
5010                 {
5011                         int data_disks = conf->raid_disks - conf->max_degraded;
5012                         int stripe = data_disks * (conf->chunk_size
5013                                                    / PAGE_SIZE);
5014                         if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5015                                 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5016                 }
5017         }
5018 }
5019
5020 /* This is called from the raid5d thread with mddev_lock held.
5021  * It makes config changes to the device.
5022  */
5023 static void raid5_finish_reshape(mddev_t *mddev)
5024 {
5025         struct block_device *bdev;
5026         raid5_conf_t *conf = mddev_to_conf(mddev);
5027
5028         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5029
5030                 if (mddev->delta_disks > 0) {
5031                         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5032                         set_capacity(mddev->gendisk, mddev->array_sectors);
5033                         mddev->changed = 1;
5034
5035                         bdev = bdget_disk(mddev->gendisk, 0);
5036                         if (bdev) {
5037                                 mutex_lock(&bdev->bd_inode->i_mutex);
5038                                 i_size_write(bdev->bd_inode,
5039                                              (loff_t)mddev->array_sectors << 9);
5040                                 mutex_unlock(&bdev->bd_inode->i_mutex);
5041                                 bdput(bdev);
5042                         }
5043                 } else {
5044                         int d;
5045                         mddev->degraded = conf->raid_disks;
5046                         for (d = 0; d < conf->raid_disks ; d++)
5047                                 if (conf->disks[d].rdev &&
5048                                     test_bit(In_sync,
5049                                              &conf->disks[d].rdev->flags))
5050                                         mddev->degraded--;
5051                         for (d = conf->raid_disks ;
5052                              d < conf->raid_disks - mddev->delta_disks;
5053                              d++)
5054                                 raid5_remove_disk(mddev, d);
5055                 }
5056                 mddev->layout = conf->algorithm;
5057                 mddev->chunk_size = conf->chunk_size;
5058                 mddev->reshape_position = MaxSector;
5059                 mddev->delta_disks = 0;
5060         }
5061 }
5062
5063 static void raid5_quiesce(mddev_t *mddev, int state)
5064 {
5065         raid5_conf_t *conf = mddev_to_conf(mddev);
5066
5067         switch(state) {
5068         case 2: /* resume for a suspend */
5069                 wake_up(&conf->wait_for_overlap);
5070                 break;
5071
5072         case 1: /* stop all writes */
5073                 spin_lock_irq(&conf->device_lock);
5074                 conf->quiesce = 1;
5075                 wait_event_lock_irq(conf->wait_for_stripe,
5076                                     atomic_read(&conf->active_stripes) == 0 &&
5077                                     atomic_read(&conf->active_aligned_reads) == 0,
5078                                     conf->device_lock, /* nothing */);
5079                 spin_unlock_irq(&conf->device_lock);
5080                 break;
5081
5082         case 0: /* re-enable writes */
5083                 spin_lock_irq(&conf->device_lock);
5084                 conf->quiesce = 0;
5085                 wake_up(&conf->wait_for_stripe);
5086                 wake_up(&conf->wait_for_overlap);
5087                 spin_unlock_irq(&conf->device_lock);
5088                 break;
5089         }
5090 }
5091
5092
5093 static void *raid5_takeover_raid1(mddev_t *mddev)
5094 {
5095         int chunksect;
5096
5097         if (mddev->raid_disks != 2 ||
5098             mddev->degraded > 1)
5099                 return ERR_PTR(-EINVAL);
5100
5101         /* Should check if there are write-behind devices? */
5102
5103         chunksect = 64*2; /* 64K by default */
5104
5105         /* The array must be an exact multiple of chunksize */
5106         while (chunksect && (mddev->array_sectors & (chunksect-1)))
5107                 chunksect >>= 1;
5108
5109         if ((chunksect<<9) < STRIPE_SIZE)
5110                 /* array size does not allow a suitable chunk size */
5111                 return ERR_PTR(-EINVAL);
5112
5113         mddev->new_level = 5;
5114         mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5115         mddev->new_chunk = chunksect << 9;
5116
5117         return setup_conf(mddev);
5118 }
5119
5120 static void *raid5_takeover_raid6(mddev_t *mddev)
5121 {
5122         int new_layout;
5123
5124         switch (mddev->layout) {
5125         case ALGORITHM_LEFT_ASYMMETRIC_6:
5126                 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
5127                 break;
5128         case ALGORITHM_RIGHT_ASYMMETRIC_6:
5129                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
5130                 break;
5131         case ALGORITHM_LEFT_SYMMETRIC_6:
5132                 new_layout = ALGORITHM_LEFT_SYMMETRIC;
5133                 break;
5134         case ALGORITHM_RIGHT_SYMMETRIC_6:
5135                 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
5136                 break;
5137         case ALGORITHM_PARITY_0_6:
5138                 new_layout = ALGORITHM_PARITY_0;
5139                 break;
5140         case ALGORITHM_PARITY_N:
5141                 new_layout = ALGORITHM_PARITY_N;
5142                 break;
5143         default:
5144                 return ERR_PTR(-EINVAL);
5145         }
5146         mddev->new_level = 5;
5147         mddev->new_layout = new_layout;
5148         mddev->delta_disks = -1;
5149         mddev->raid_disks -= 1;
5150         return setup_conf(mddev);
5151 }
5152
5153
5154 static int raid5_reconfig(mddev_t *mddev, int new_layout, int new_chunk)
5155 {
5156         /* For a 2-drive array, the layout and chunk size can be changed
5157          * immediately as not restriping is needed.
5158          * For larger arrays we record the new value - after validation
5159          * to be used by a reshape pass.
5160          */
5161         raid5_conf_t *conf = mddev_to_conf(mddev);
5162
5163         if (new_layout >= 0 && !algorithm_valid_raid5(new_layout))
5164                 return -EINVAL;
5165         if (new_chunk > 0) {
5166                 if (new_chunk & (new_chunk-1))
5167                         /* not a power of 2 */
5168                         return -EINVAL;
5169                 if (new_chunk < PAGE_SIZE)
5170                         return -EINVAL;
5171                 if (mddev->array_sectors & ((new_chunk>>9)-1))
5172                         /* not factor of array size */
5173                         return -EINVAL;
5174         }
5175
5176         /* They look valid */
5177
5178         if (mddev->raid_disks == 2) {
5179
5180                 if (new_layout >= 0) {
5181                         conf->algorithm = new_layout;
5182                         mddev->layout = mddev->new_layout = new_layout;
5183                 }
5184                 if (new_chunk > 0) {
5185                         conf->chunk_size = new_chunk;
5186                         mddev->chunk_size = mddev->new_chunk = new_chunk;
5187                 }
5188                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5189                 md_wakeup_thread(mddev->thread);
5190         } else {
5191                 if (new_layout >= 0)
5192                         mddev->new_layout = new_layout;
5193                 if (new_chunk > 0)
5194                         mddev->new_chunk = new_chunk;
5195         }
5196         return 0;
5197 }
5198
5199 static int raid6_reconfig(mddev_t *mddev, int new_layout, int new_chunk)
5200 {
5201         if (new_layout >= 0 && !algorithm_valid_raid6(new_layout))
5202                 return -EINVAL;
5203         if (new_chunk > 0) {
5204                 if (new_chunk & (new_chunk-1))
5205                         /* not a power of 2 */
5206                         return -EINVAL;
5207                 if (new_chunk < PAGE_SIZE)
5208                         return -EINVAL;
5209                 if (mddev->array_sectors & ((new_chunk>>9)-1))
5210                         /* not factor of array size */
5211                         return -EINVAL;
5212         }
5213
5214         /* They look valid */
5215
5216         if (new_layout >= 0)
5217                 mddev->new_layout = new_layout;
5218         if (new_chunk > 0)
5219                 mddev->new_chunk = new_chunk;
5220
5221         return 0;
5222 }
5223
5224 static void *raid5_takeover(mddev_t *mddev)
5225 {
5226         /* raid5 can take over:
5227          *  raid0 - if all devices are the same - make it a raid4 layout
5228          *  raid1 - if there are two drives.  We need to know the chunk size
5229          *  raid4 - trivial - just use a raid4 layout.
5230          *  raid6 - Providing it is a *_6 layout
5231          *
5232          * For now, just do raid1
5233          */
5234
5235         if (mddev->level == 1)
5236                 return raid5_takeover_raid1(mddev);
5237         if (mddev->level == 4) {
5238                 mddev->new_layout = ALGORITHM_PARITY_N;
5239                 mddev->new_level = 5;
5240                 return setup_conf(mddev);
5241         }
5242         if (mddev->level == 6)
5243                 return raid5_takeover_raid6(mddev);
5244
5245         return ERR_PTR(-EINVAL);
5246 }
5247
5248
5249 static struct mdk_personality raid5_personality;
5250
5251 static void *raid6_takeover(mddev_t *mddev)
5252 {
5253         /* Currently can only take over a raid5.  We map the
5254          * personality to an equivalent raid6 personality
5255          * with the Q block at the end.
5256          */
5257         int new_layout;
5258
5259         if (mddev->pers != &raid5_personality)
5260                 return ERR_PTR(-EINVAL);
5261         if (mddev->degraded > 1)
5262                 return ERR_PTR(-EINVAL);
5263         if (mddev->raid_disks > 253)
5264                 return ERR_PTR(-EINVAL);
5265         if (mddev->raid_disks < 3)
5266                 return ERR_PTR(-EINVAL);
5267
5268         switch (mddev->layout) {
5269         case ALGORITHM_LEFT_ASYMMETRIC:
5270                 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
5271                 break;
5272         case ALGORITHM_RIGHT_ASYMMETRIC:
5273                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
5274                 break;
5275         case ALGORITHM_LEFT_SYMMETRIC:
5276                 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
5277                 break;
5278         case ALGORITHM_RIGHT_SYMMETRIC:
5279                 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
5280                 break;
5281         case ALGORITHM_PARITY_0:
5282                 new_layout = ALGORITHM_PARITY_0_6;
5283                 break;
5284         case ALGORITHM_PARITY_N:
5285                 new_layout = ALGORITHM_PARITY_N;
5286                 break;
5287         default:
5288                 return ERR_PTR(-EINVAL);
5289         }
5290         mddev->new_level = 6;
5291         mddev->new_layout = new_layout;
5292         mddev->delta_disks = 1;
5293         mddev->raid_disks += 1;
5294         return setup_conf(mddev);
5295 }
5296
5297
5298 static struct mdk_personality raid6_personality =
5299 {
5300         .name           = "raid6",
5301         .level          = 6,
5302         .owner          = THIS_MODULE,
5303         .make_request   = make_request,
5304         .run            = run,
5305         .stop           = stop,
5306         .status         = status,
5307         .error_handler  = error,
5308         .hot_add_disk   = raid5_add_disk,
5309         .hot_remove_disk= raid5_remove_disk,
5310         .spare_active   = raid5_spare_active,
5311         .sync_request   = sync_request,
5312         .resize         = raid5_resize,
5313         .size           = raid5_size,
5314         .check_reshape  = raid5_check_reshape,
5315         .start_reshape  = raid5_start_reshape,
5316         .finish_reshape = raid5_finish_reshape,
5317         .quiesce        = raid5_quiesce,
5318         .takeover       = raid6_takeover,
5319         .reconfig       = raid6_reconfig,
5320 };
5321 static struct mdk_personality raid5_personality =
5322 {
5323         .name           = "raid5",
5324         .level          = 5,
5325         .owner          = THIS_MODULE,
5326         .make_request   = make_request,
5327         .run            = run,
5328         .stop           = stop,
5329         .status         = status,
5330         .error_handler  = error,
5331         .hot_add_disk   = raid5_add_disk,
5332         .hot_remove_disk= raid5_remove_disk,
5333         .spare_active   = raid5_spare_active,
5334         .sync_request   = sync_request,
5335         .resize         = raid5_resize,
5336         .size           = raid5_size,
5337         .check_reshape  = raid5_check_reshape,
5338         .start_reshape  = raid5_start_reshape,
5339         .finish_reshape = raid5_finish_reshape,
5340         .quiesce        = raid5_quiesce,
5341         .takeover       = raid5_takeover,
5342         .reconfig       = raid5_reconfig,
5343 };
5344
5345 static struct mdk_personality raid4_personality =
5346 {
5347         .name           = "raid4",
5348         .level          = 4,
5349         .owner          = THIS_MODULE,
5350         .make_request   = make_request,
5351         .run            = run,
5352         .stop           = stop,
5353         .status         = status,
5354         .error_handler  = error,
5355         .hot_add_disk   = raid5_add_disk,
5356         .hot_remove_disk= raid5_remove_disk,
5357         .spare_active   = raid5_spare_active,
5358         .sync_request   = sync_request,
5359         .resize         = raid5_resize,
5360         .size           = raid5_size,
5361         .check_reshape  = raid5_check_reshape,
5362         .start_reshape  = raid5_start_reshape,
5363         .finish_reshape = raid5_finish_reshape,
5364         .quiesce        = raid5_quiesce,
5365 };
5366
5367 static int __init raid5_init(void)
5368 {
5369         register_md_personality(&raid6_personality);
5370         register_md_personality(&raid5_personality);
5371         register_md_personality(&raid4_personality);
5372         return 0;
5373 }
5374
5375 static void raid5_exit(void)
5376 {
5377         unregister_md_personality(&raid6_personality);
5378         unregister_md_personality(&raid5_personality);
5379         unregister_md_personality(&raid4_personality);
5380 }
5381
5382 module_init(raid5_init);
5383 module_exit(raid5_exit);
5384 MODULE_LICENSE("GPL");
5385 MODULE_ALIAS("md-personality-4"); /* RAID5 */
5386 MODULE_ALIAS("md-raid5");
5387 MODULE_ALIAS("md-raid4");
5388 MODULE_ALIAS("md-level-5");
5389 MODULE_ALIAS("md-level-4");
5390 MODULE_ALIAS("md-personality-8"); /* RAID6 */
5391 MODULE_ALIAS("md-raid6");
5392 MODULE_ALIAS("md-level-6");
5393
5394 /* This used to be two separate modules, they were: */
5395 MODULE_ALIAS("raid5");
5396 MODULE_ALIAS("raid6");