block: Abstract out bvec iterator
[linux-2.6-block.git] / drivers / md / raid5.c
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *         Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *         Copyright (C) 1999, 2000 Ingo Molnar
5  *         Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 #include <trace/events/block.h>
58
59 #include "md.h"
60 #include "raid5.h"
61 #include "raid0.h"
62 #include "bitmap.h"
63
64 #define cpu_to_group(cpu) cpu_to_node(cpu)
65 #define ANY_GROUP NUMA_NO_NODE
66
67 static struct workqueue_struct *raid5_wq;
68 /*
69  * Stripe cache
70  */
71
72 #define NR_STRIPES              256
73 #define STRIPE_SIZE             PAGE_SIZE
74 #define STRIPE_SHIFT            (PAGE_SHIFT - 9)
75 #define STRIPE_SECTORS          (STRIPE_SIZE>>9)
76 #define IO_THRESHOLD            1
77 #define BYPASS_THRESHOLD        1
78 #define NR_HASH                 (PAGE_SIZE / sizeof(struct hlist_head))
79 #define HASH_MASK               (NR_HASH - 1)
80 #define MAX_STRIPE_BATCH        8
81
82 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
83 {
84         int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
85         return &conf->stripe_hashtbl[hash];
86 }
87
88 static inline int stripe_hash_locks_hash(sector_t sect)
89 {
90         return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
91 }
92
93 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
94 {
95         spin_lock_irq(conf->hash_locks + hash);
96         spin_lock(&conf->device_lock);
97 }
98
99 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
100 {
101         spin_unlock(&conf->device_lock);
102         spin_unlock_irq(conf->hash_locks + hash);
103 }
104
105 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
106 {
107         int i;
108         local_irq_disable();
109         spin_lock(conf->hash_locks);
110         for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
111                 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
112         spin_lock(&conf->device_lock);
113 }
114
115 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
116 {
117         int i;
118         spin_unlock(&conf->device_lock);
119         for (i = NR_STRIPE_HASH_LOCKS; i; i--)
120                 spin_unlock(conf->hash_locks + i - 1);
121         local_irq_enable();
122 }
123
124 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
125  * order without overlap.  There may be several bio's per stripe+device, and
126  * a bio could span several devices.
127  * When walking this list for a particular stripe+device, we must never proceed
128  * beyond a bio that extends past this device, as the next bio might no longer
129  * be valid.
130  * This function is used to determine the 'next' bio in the list, given the sector
131  * of the current stripe+device
132  */
133 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
134 {
135         int sectors = bio_sectors(bio);
136         if (bio->bi_iter.bi_sector + sectors < sector + STRIPE_SECTORS)
137                 return bio->bi_next;
138         else
139                 return NULL;
140 }
141
142 /*
143  * We maintain a biased count of active stripes in the bottom 16 bits of
144  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
145  */
146 static inline int raid5_bi_processed_stripes(struct bio *bio)
147 {
148         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
149         return (atomic_read(segments) >> 16) & 0xffff;
150 }
151
152 static inline int raid5_dec_bi_active_stripes(struct bio *bio)
153 {
154         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
155         return atomic_sub_return(1, segments) & 0xffff;
156 }
157
158 static inline void raid5_inc_bi_active_stripes(struct bio *bio)
159 {
160         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
161         atomic_inc(segments);
162 }
163
164 static inline void raid5_set_bi_processed_stripes(struct bio *bio,
165         unsigned int cnt)
166 {
167         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
168         int old, new;
169
170         do {
171                 old = atomic_read(segments);
172                 new = (old & 0xffff) | (cnt << 16);
173         } while (atomic_cmpxchg(segments, old, new) != old);
174 }
175
176 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
177 {
178         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
179         atomic_set(segments, cnt);
180 }
181
182 /* Find first data disk in a raid6 stripe */
183 static inline int raid6_d0(struct stripe_head *sh)
184 {
185         if (sh->ddf_layout)
186                 /* ddf always start from first device */
187                 return 0;
188         /* md starts just after Q block */
189         if (sh->qd_idx == sh->disks - 1)
190                 return 0;
191         else
192                 return sh->qd_idx + 1;
193 }
194 static inline int raid6_next_disk(int disk, int raid_disks)
195 {
196         disk++;
197         return (disk < raid_disks) ? disk : 0;
198 }
199
200 /* When walking through the disks in a raid5, starting at raid6_d0,
201  * We need to map each disk to a 'slot', where the data disks are slot
202  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
203  * is raid_disks-1.  This help does that mapping.
204  */
205 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
206                              int *count, int syndrome_disks)
207 {
208         int slot = *count;
209
210         if (sh->ddf_layout)
211                 (*count)++;
212         if (idx == sh->pd_idx)
213                 return syndrome_disks;
214         if (idx == sh->qd_idx)
215                 return syndrome_disks + 1;
216         if (!sh->ddf_layout)
217                 (*count)++;
218         return slot;
219 }
220
221 static void return_io(struct bio *return_bi)
222 {
223         struct bio *bi = return_bi;
224         while (bi) {
225
226                 return_bi = bi->bi_next;
227                 bi->bi_next = NULL;
228                 bi->bi_iter.bi_size = 0;
229                 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
230                                          bi, 0);
231                 bio_endio(bi, 0);
232                 bi = return_bi;
233         }
234 }
235
236 static void print_raid5_conf (struct r5conf *conf);
237
238 static int stripe_operations_active(struct stripe_head *sh)
239 {
240         return sh->check_state || sh->reconstruct_state ||
241                test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
242                test_bit(STRIPE_COMPUTE_RUN, &sh->state);
243 }
244
245 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
246 {
247         struct r5conf *conf = sh->raid_conf;
248         struct r5worker_group *group;
249         int thread_cnt;
250         int i, cpu = sh->cpu;
251
252         if (!cpu_online(cpu)) {
253                 cpu = cpumask_any(cpu_online_mask);
254                 sh->cpu = cpu;
255         }
256
257         if (list_empty(&sh->lru)) {
258                 struct r5worker_group *group;
259                 group = conf->worker_groups + cpu_to_group(cpu);
260                 list_add_tail(&sh->lru, &group->handle_list);
261                 group->stripes_cnt++;
262                 sh->group = group;
263         }
264
265         if (conf->worker_cnt_per_group == 0) {
266                 md_wakeup_thread(conf->mddev->thread);
267                 return;
268         }
269
270         group = conf->worker_groups + cpu_to_group(sh->cpu);
271
272         group->workers[0].working = true;
273         /* at least one worker should run to avoid race */
274         queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
275
276         thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
277         /* wakeup more workers */
278         for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
279                 if (group->workers[i].working == false) {
280                         group->workers[i].working = true;
281                         queue_work_on(sh->cpu, raid5_wq,
282                                       &group->workers[i].work);
283                         thread_cnt--;
284                 }
285         }
286 }
287
288 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
289                               struct list_head *temp_inactive_list)
290 {
291         BUG_ON(!list_empty(&sh->lru));
292         BUG_ON(atomic_read(&conf->active_stripes)==0);
293         if (test_bit(STRIPE_HANDLE, &sh->state)) {
294                 if (test_bit(STRIPE_DELAYED, &sh->state) &&
295                     !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
296                         list_add_tail(&sh->lru, &conf->delayed_list);
297                 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
298                            sh->bm_seq - conf->seq_write > 0)
299                         list_add_tail(&sh->lru, &conf->bitmap_list);
300                 else {
301                         clear_bit(STRIPE_DELAYED, &sh->state);
302                         clear_bit(STRIPE_BIT_DELAY, &sh->state);
303                         if (conf->worker_cnt_per_group == 0) {
304                                 list_add_tail(&sh->lru, &conf->handle_list);
305                         } else {
306                                 raid5_wakeup_stripe_thread(sh);
307                                 return;
308                         }
309                 }
310                 md_wakeup_thread(conf->mddev->thread);
311         } else {
312                 BUG_ON(stripe_operations_active(sh));
313                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
314                         if (atomic_dec_return(&conf->preread_active_stripes)
315                             < IO_THRESHOLD)
316                                 md_wakeup_thread(conf->mddev->thread);
317                 atomic_dec(&conf->active_stripes);
318                 if (!test_bit(STRIPE_EXPANDING, &sh->state))
319                         list_add_tail(&sh->lru, temp_inactive_list);
320         }
321 }
322
323 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
324                              struct list_head *temp_inactive_list)
325 {
326         if (atomic_dec_and_test(&sh->count))
327                 do_release_stripe(conf, sh, temp_inactive_list);
328 }
329
330 /*
331  * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
332  *
333  * Be careful: Only one task can add/delete stripes from temp_inactive_list at
334  * given time. Adding stripes only takes device lock, while deleting stripes
335  * only takes hash lock.
336  */
337 static void release_inactive_stripe_list(struct r5conf *conf,
338                                          struct list_head *temp_inactive_list,
339                                          int hash)
340 {
341         int size;
342         bool do_wakeup = false;
343         unsigned long flags;
344
345         if (hash == NR_STRIPE_HASH_LOCKS) {
346                 size = NR_STRIPE_HASH_LOCKS;
347                 hash = NR_STRIPE_HASH_LOCKS - 1;
348         } else
349                 size = 1;
350         while (size) {
351                 struct list_head *list = &temp_inactive_list[size - 1];
352
353                 /*
354                  * We don't hold any lock here yet, get_active_stripe() might
355                  * remove stripes from the list
356                  */
357                 if (!list_empty_careful(list)) {
358                         spin_lock_irqsave(conf->hash_locks + hash, flags);
359                         if (list_empty(conf->inactive_list + hash) &&
360                             !list_empty(list))
361                                 atomic_dec(&conf->empty_inactive_list_nr);
362                         list_splice_tail_init(list, conf->inactive_list + hash);
363                         do_wakeup = true;
364                         spin_unlock_irqrestore(conf->hash_locks + hash, flags);
365                 }
366                 size--;
367                 hash--;
368         }
369
370         if (do_wakeup) {
371                 wake_up(&conf->wait_for_stripe);
372                 if (conf->retry_read_aligned)
373                         md_wakeup_thread(conf->mddev->thread);
374         }
375 }
376
377 /* should hold conf->device_lock already */
378 static int release_stripe_list(struct r5conf *conf,
379                                struct list_head *temp_inactive_list)
380 {
381         struct stripe_head *sh;
382         int count = 0;
383         struct llist_node *head;
384
385         head = llist_del_all(&conf->released_stripes);
386         head = llist_reverse_order(head);
387         while (head) {
388                 int hash;
389
390                 sh = llist_entry(head, struct stripe_head, release_list);
391                 head = llist_next(head);
392                 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
393                 smp_mb();
394                 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
395                 /*
396                  * Don't worry the bit is set here, because if the bit is set
397                  * again, the count is always > 1. This is true for
398                  * STRIPE_ON_UNPLUG_LIST bit too.
399                  */
400                 hash = sh->hash_lock_index;
401                 __release_stripe(conf, sh, &temp_inactive_list[hash]);
402                 count++;
403         }
404
405         return count;
406 }
407
408 static void release_stripe(struct stripe_head *sh)
409 {
410         struct r5conf *conf = sh->raid_conf;
411         unsigned long flags;
412         struct list_head list;
413         int hash;
414         bool wakeup;
415
416         if (unlikely(!conf->mddev->thread) ||
417                 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
418                 goto slow_path;
419         wakeup = llist_add(&sh->release_list, &conf->released_stripes);
420         if (wakeup)
421                 md_wakeup_thread(conf->mddev->thread);
422         return;
423 slow_path:
424         local_irq_save(flags);
425         /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
426         if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
427                 INIT_LIST_HEAD(&list);
428                 hash = sh->hash_lock_index;
429                 do_release_stripe(conf, sh, &list);
430                 spin_unlock(&conf->device_lock);
431                 release_inactive_stripe_list(conf, &list, hash);
432         }
433         local_irq_restore(flags);
434 }
435
436 static inline void remove_hash(struct stripe_head *sh)
437 {
438         pr_debug("remove_hash(), stripe %llu\n",
439                 (unsigned long long)sh->sector);
440
441         hlist_del_init(&sh->hash);
442 }
443
444 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
445 {
446         struct hlist_head *hp = stripe_hash(conf, sh->sector);
447
448         pr_debug("insert_hash(), stripe %llu\n",
449                 (unsigned long long)sh->sector);
450
451         hlist_add_head(&sh->hash, hp);
452 }
453
454
455 /* find an idle stripe, make sure it is unhashed, and return it. */
456 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
457 {
458         struct stripe_head *sh = NULL;
459         struct list_head *first;
460
461         if (list_empty(conf->inactive_list + hash))
462                 goto out;
463         first = (conf->inactive_list + hash)->next;
464         sh = list_entry(first, struct stripe_head, lru);
465         list_del_init(first);
466         remove_hash(sh);
467         atomic_inc(&conf->active_stripes);
468         BUG_ON(hash != sh->hash_lock_index);
469         if (list_empty(conf->inactive_list + hash))
470                 atomic_inc(&conf->empty_inactive_list_nr);
471 out:
472         return sh;
473 }
474
475 static void shrink_buffers(struct stripe_head *sh)
476 {
477         struct page *p;
478         int i;
479         int num = sh->raid_conf->pool_size;
480
481         for (i = 0; i < num ; i++) {
482                 p = sh->dev[i].page;
483                 if (!p)
484                         continue;
485                 sh->dev[i].page = NULL;
486                 put_page(p);
487         }
488 }
489
490 static int grow_buffers(struct stripe_head *sh)
491 {
492         int i;
493         int num = sh->raid_conf->pool_size;
494
495         for (i = 0; i < num; i++) {
496                 struct page *page;
497
498                 if (!(page = alloc_page(GFP_KERNEL))) {
499                         return 1;
500                 }
501                 sh->dev[i].page = page;
502         }
503         return 0;
504 }
505
506 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
507 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
508                             struct stripe_head *sh);
509
510 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
511 {
512         struct r5conf *conf = sh->raid_conf;
513         int i, seq;
514
515         BUG_ON(atomic_read(&sh->count) != 0);
516         BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
517         BUG_ON(stripe_operations_active(sh));
518
519         pr_debug("init_stripe called, stripe %llu\n",
520                 (unsigned long long)sh->sector);
521
522         remove_hash(sh);
523 retry:
524         seq = read_seqcount_begin(&conf->gen_lock);
525         sh->generation = conf->generation - previous;
526         sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
527         sh->sector = sector;
528         stripe_set_idx(sector, conf, previous, sh);
529         sh->state = 0;
530
531
532         for (i = sh->disks; i--; ) {
533                 struct r5dev *dev = &sh->dev[i];
534
535                 if (dev->toread || dev->read || dev->towrite || dev->written ||
536                     test_bit(R5_LOCKED, &dev->flags)) {
537                         printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
538                                (unsigned long long)sh->sector, i, dev->toread,
539                                dev->read, dev->towrite, dev->written,
540                                test_bit(R5_LOCKED, &dev->flags));
541                         WARN_ON(1);
542                 }
543                 dev->flags = 0;
544                 raid5_build_block(sh, i, previous);
545         }
546         if (read_seqcount_retry(&conf->gen_lock, seq))
547                 goto retry;
548         insert_hash(conf, sh);
549         sh->cpu = smp_processor_id();
550 }
551
552 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
553                                          short generation)
554 {
555         struct stripe_head *sh;
556
557         pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
558         hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
559                 if (sh->sector == sector && sh->generation == generation)
560                         return sh;
561         pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
562         return NULL;
563 }
564
565 /*
566  * Need to check if array has failed when deciding whether to:
567  *  - start an array
568  *  - remove non-faulty devices
569  *  - add a spare
570  *  - allow a reshape
571  * This determination is simple when no reshape is happening.
572  * However if there is a reshape, we need to carefully check
573  * both the before and after sections.
574  * This is because some failed devices may only affect one
575  * of the two sections, and some non-in_sync devices may
576  * be insync in the section most affected by failed devices.
577  */
578 static int calc_degraded(struct r5conf *conf)
579 {
580         int degraded, degraded2;
581         int i;
582
583         rcu_read_lock();
584         degraded = 0;
585         for (i = 0; i < conf->previous_raid_disks; i++) {
586                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
587                 if (rdev && test_bit(Faulty, &rdev->flags))
588                         rdev = rcu_dereference(conf->disks[i].replacement);
589                 if (!rdev || test_bit(Faulty, &rdev->flags))
590                         degraded++;
591                 else if (test_bit(In_sync, &rdev->flags))
592                         ;
593                 else
594                         /* not in-sync or faulty.
595                          * If the reshape increases the number of devices,
596                          * this is being recovered by the reshape, so
597                          * this 'previous' section is not in_sync.
598                          * If the number of devices is being reduced however,
599                          * the device can only be part of the array if
600                          * we are reverting a reshape, so this section will
601                          * be in-sync.
602                          */
603                         if (conf->raid_disks >= conf->previous_raid_disks)
604                                 degraded++;
605         }
606         rcu_read_unlock();
607         if (conf->raid_disks == conf->previous_raid_disks)
608                 return degraded;
609         rcu_read_lock();
610         degraded2 = 0;
611         for (i = 0; i < conf->raid_disks; i++) {
612                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
613                 if (rdev && test_bit(Faulty, &rdev->flags))
614                         rdev = rcu_dereference(conf->disks[i].replacement);
615                 if (!rdev || test_bit(Faulty, &rdev->flags))
616                         degraded2++;
617                 else if (test_bit(In_sync, &rdev->flags))
618                         ;
619                 else
620                         /* not in-sync or faulty.
621                          * If reshape increases the number of devices, this
622                          * section has already been recovered, else it
623                          * almost certainly hasn't.
624                          */
625                         if (conf->raid_disks <= conf->previous_raid_disks)
626                                 degraded2++;
627         }
628         rcu_read_unlock();
629         if (degraded2 > degraded)
630                 return degraded2;
631         return degraded;
632 }
633
634 static int has_failed(struct r5conf *conf)
635 {
636         int degraded;
637
638         if (conf->mddev->reshape_position == MaxSector)
639                 return conf->mddev->degraded > conf->max_degraded;
640
641         degraded = calc_degraded(conf);
642         if (degraded > conf->max_degraded)
643                 return 1;
644         return 0;
645 }
646
647 static struct stripe_head *
648 get_active_stripe(struct r5conf *conf, sector_t sector,
649                   int previous, int noblock, int noquiesce)
650 {
651         struct stripe_head *sh;
652         int hash = stripe_hash_locks_hash(sector);
653
654         pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
655
656         spin_lock_irq(conf->hash_locks + hash);
657
658         do {
659                 wait_event_lock_irq(conf->wait_for_stripe,
660                                     conf->quiesce == 0 || noquiesce,
661                                     *(conf->hash_locks + hash));
662                 sh = __find_stripe(conf, sector, conf->generation - previous);
663                 if (!sh) {
664                         if (!conf->inactive_blocked)
665                                 sh = get_free_stripe(conf, hash);
666                         if (noblock && sh == NULL)
667                                 break;
668                         if (!sh) {
669                                 conf->inactive_blocked = 1;
670                                 wait_event_lock_irq(
671                                         conf->wait_for_stripe,
672                                         !list_empty(conf->inactive_list + hash) &&
673                                         (atomic_read(&conf->active_stripes)
674                                          < (conf->max_nr_stripes * 3 / 4)
675                                          || !conf->inactive_blocked),
676                                         *(conf->hash_locks + hash));
677                                 conf->inactive_blocked = 0;
678                         } else
679                                 init_stripe(sh, sector, previous);
680                 } else {
681                         if (atomic_read(&sh->count)) {
682                                 BUG_ON(!list_empty(&sh->lru)
683                                     && !test_bit(STRIPE_EXPANDING, &sh->state)
684                                     && !test_bit(STRIPE_ON_UNPLUG_LIST, &sh->state)
685                                     && !test_bit(STRIPE_ON_RELEASE_LIST, &sh->state));
686                         } else {
687                                 spin_lock(&conf->device_lock);
688                                 if (!test_bit(STRIPE_HANDLE, &sh->state))
689                                         atomic_inc(&conf->active_stripes);
690                                 if (list_empty(&sh->lru) &&
691                                     !test_bit(STRIPE_ON_RELEASE_LIST, &sh->state) &&
692                                     !test_bit(STRIPE_EXPANDING, &sh->state))
693                                         BUG();
694                                 list_del_init(&sh->lru);
695                                 if (sh->group) {
696                                         sh->group->stripes_cnt--;
697                                         sh->group = NULL;
698                                 }
699                                 spin_unlock(&conf->device_lock);
700                         }
701                 }
702         } while (sh == NULL);
703
704         if (sh)
705                 atomic_inc(&sh->count);
706
707         spin_unlock_irq(conf->hash_locks + hash);
708         return sh;
709 }
710
711 /* Determine if 'data_offset' or 'new_data_offset' should be used
712  * in this stripe_head.
713  */
714 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
715 {
716         sector_t progress = conf->reshape_progress;
717         /* Need a memory barrier to make sure we see the value
718          * of conf->generation, or ->data_offset that was set before
719          * reshape_progress was updated.
720          */
721         smp_rmb();
722         if (progress == MaxSector)
723                 return 0;
724         if (sh->generation == conf->generation - 1)
725                 return 0;
726         /* We are in a reshape, and this is a new-generation stripe,
727          * so use new_data_offset.
728          */
729         return 1;
730 }
731
732 static void
733 raid5_end_read_request(struct bio *bi, int error);
734 static void
735 raid5_end_write_request(struct bio *bi, int error);
736
737 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
738 {
739         struct r5conf *conf = sh->raid_conf;
740         int i, disks = sh->disks;
741
742         might_sleep();
743
744         for (i = disks; i--; ) {
745                 int rw;
746                 int replace_only = 0;
747                 struct bio *bi, *rbi;
748                 struct md_rdev *rdev, *rrdev = NULL;
749                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
750                         if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
751                                 rw = WRITE_FUA;
752                         else
753                                 rw = WRITE;
754                         if (test_bit(R5_Discard, &sh->dev[i].flags))
755                                 rw |= REQ_DISCARD;
756                 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
757                         rw = READ;
758                 else if (test_and_clear_bit(R5_WantReplace,
759                                             &sh->dev[i].flags)) {
760                         rw = WRITE;
761                         replace_only = 1;
762                 } else
763                         continue;
764                 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
765                         rw |= REQ_SYNC;
766
767                 bi = &sh->dev[i].req;
768                 rbi = &sh->dev[i].rreq; /* For writing to replacement */
769
770                 rcu_read_lock();
771                 rrdev = rcu_dereference(conf->disks[i].replacement);
772                 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
773                 rdev = rcu_dereference(conf->disks[i].rdev);
774                 if (!rdev) {
775                         rdev = rrdev;
776                         rrdev = NULL;
777                 }
778                 if (rw & WRITE) {
779                         if (replace_only)
780                                 rdev = NULL;
781                         if (rdev == rrdev)
782                                 /* We raced and saw duplicates */
783                                 rrdev = NULL;
784                 } else {
785                         if (test_bit(R5_ReadRepl, &sh->dev[i].flags) && rrdev)
786                                 rdev = rrdev;
787                         rrdev = NULL;
788                 }
789
790                 if (rdev && test_bit(Faulty, &rdev->flags))
791                         rdev = NULL;
792                 if (rdev)
793                         atomic_inc(&rdev->nr_pending);
794                 if (rrdev && test_bit(Faulty, &rrdev->flags))
795                         rrdev = NULL;
796                 if (rrdev)
797                         atomic_inc(&rrdev->nr_pending);
798                 rcu_read_unlock();
799
800                 /* We have already checked bad blocks for reads.  Now
801                  * need to check for writes.  We never accept write errors
802                  * on the replacement, so we don't to check rrdev.
803                  */
804                 while ((rw & WRITE) && rdev &&
805                        test_bit(WriteErrorSeen, &rdev->flags)) {
806                         sector_t first_bad;
807                         int bad_sectors;
808                         int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
809                                               &first_bad, &bad_sectors);
810                         if (!bad)
811                                 break;
812
813                         if (bad < 0) {
814                                 set_bit(BlockedBadBlocks, &rdev->flags);
815                                 if (!conf->mddev->external &&
816                                     conf->mddev->flags) {
817                                         /* It is very unlikely, but we might
818                                          * still need to write out the
819                                          * bad block log - better give it
820                                          * a chance*/
821                                         md_check_recovery(conf->mddev);
822                                 }
823                                 /*
824                                  * Because md_wait_for_blocked_rdev
825                                  * will dec nr_pending, we must
826                                  * increment it first.
827                                  */
828                                 atomic_inc(&rdev->nr_pending);
829                                 md_wait_for_blocked_rdev(rdev, conf->mddev);
830                         } else {
831                                 /* Acknowledged bad block - skip the write */
832                                 rdev_dec_pending(rdev, conf->mddev);
833                                 rdev = NULL;
834                         }
835                 }
836
837                 if (rdev) {
838                         if (s->syncing || s->expanding || s->expanded
839                             || s->replacing)
840                                 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
841
842                         set_bit(STRIPE_IO_STARTED, &sh->state);
843
844                         bio_reset(bi);
845                         bi->bi_bdev = rdev->bdev;
846                         bi->bi_rw = rw;
847                         bi->bi_end_io = (rw & WRITE)
848                                 ? raid5_end_write_request
849                                 : raid5_end_read_request;
850                         bi->bi_private = sh;
851
852                         pr_debug("%s: for %llu schedule op %ld on disc %d\n",
853                                 __func__, (unsigned long long)sh->sector,
854                                 bi->bi_rw, i);
855                         atomic_inc(&sh->count);
856                         if (use_new_offset(conf, sh))
857                                 bi->bi_iter.bi_sector = (sh->sector
858                                                  + rdev->new_data_offset);
859                         else
860                                 bi->bi_iter.bi_sector = (sh->sector
861                                                  + rdev->data_offset);
862                         if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
863                                 bi->bi_rw |= REQ_NOMERGE;
864
865                         bi->bi_vcnt = 1;
866                         bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
867                         bi->bi_io_vec[0].bv_offset = 0;
868                         bi->bi_iter.bi_size = STRIPE_SIZE;
869                         /*
870                          * If this is discard request, set bi_vcnt 0. We don't
871                          * want to confuse SCSI because SCSI will replace payload
872                          */
873                         if (rw & REQ_DISCARD)
874                                 bi->bi_vcnt = 0;
875                         if (rrdev)
876                                 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
877
878                         if (conf->mddev->gendisk)
879                                 trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
880                                                       bi, disk_devt(conf->mddev->gendisk),
881                                                       sh->dev[i].sector);
882                         generic_make_request(bi);
883                 }
884                 if (rrdev) {
885                         if (s->syncing || s->expanding || s->expanded
886                             || s->replacing)
887                                 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
888
889                         set_bit(STRIPE_IO_STARTED, &sh->state);
890
891                         bio_reset(rbi);
892                         rbi->bi_bdev = rrdev->bdev;
893                         rbi->bi_rw = rw;
894                         BUG_ON(!(rw & WRITE));
895                         rbi->bi_end_io = raid5_end_write_request;
896                         rbi->bi_private = sh;
897
898                         pr_debug("%s: for %llu schedule op %ld on "
899                                  "replacement disc %d\n",
900                                 __func__, (unsigned long long)sh->sector,
901                                 rbi->bi_rw, i);
902                         atomic_inc(&sh->count);
903                         if (use_new_offset(conf, sh))
904                                 rbi->bi_iter.bi_sector = (sh->sector
905                                                   + rrdev->new_data_offset);
906                         else
907                                 rbi->bi_iter.bi_sector = (sh->sector
908                                                   + rrdev->data_offset);
909                         rbi->bi_vcnt = 1;
910                         rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
911                         rbi->bi_io_vec[0].bv_offset = 0;
912                         rbi->bi_iter.bi_size = STRIPE_SIZE;
913                         /*
914                          * If this is discard request, set bi_vcnt 0. We don't
915                          * want to confuse SCSI because SCSI will replace payload
916                          */
917                         if (rw & REQ_DISCARD)
918                                 rbi->bi_vcnt = 0;
919                         if (conf->mddev->gendisk)
920                                 trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
921                                                       rbi, disk_devt(conf->mddev->gendisk),
922                                                       sh->dev[i].sector);
923                         generic_make_request(rbi);
924                 }
925                 if (!rdev && !rrdev) {
926                         if (rw & WRITE)
927                                 set_bit(STRIPE_DEGRADED, &sh->state);
928                         pr_debug("skip op %ld on disc %d for sector %llu\n",
929                                 bi->bi_rw, i, (unsigned long long)sh->sector);
930                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
931                         set_bit(STRIPE_HANDLE, &sh->state);
932                 }
933         }
934 }
935
936 static struct dma_async_tx_descriptor *
937 async_copy_data(int frombio, struct bio *bio, struct page *page,
938         sector_t sector, struct dma_async_tx_descriptor *tx)
939 {
940         struct bio_vec *bvl;
941         struct page *bio_page;
942         int i;
943         int page_offset;
944         struct async_submit_ctl submit;
945         enum async_tx_flags flags = 0;
946
947         if (bio->bi_iter.bi_sector >= sector)
948                 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
949         else
950                 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
951
952         if (frombio)
953                 flags |= ASYNC_TX_FENCE;
954         init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
955
956         bio_for_each_segment(bvl, bio, i) {
957                 int len = bvl->bv_len;
958                 int clen;
959                 int b_offset = 0;
960
961                 if (page_offset < 0) {
962                         b_offset = -page_offset;
963                         page_offset += b_offset;
964                         len -= b_offset;
965                 }
966
967                 if (len > 0 && page_offset + len > STRIPE_SIZE)
968                         clen = STRIPE_SIZE - page_offset;
969                 else
970                         clen = len;
971
972                 if (clen > 0) {
973                         b_offset += bvl->bv_offset;
974                         bio_page = bvl->bv_page;
975                         if (frombio)
976                                 tx = async_memcpy(page, bio_page, page_offset,
977                                                   b_offset, clen, &submit);
978                         else
979                                 tx = async_memcpy(bio_page, page, b_offset,
980                                                   page_offset, clen, &submit);
981                 }
982                 /* chain the operations */
983                 submit.depend_tx = tx;
984
985                 if (clen < len) /* hit end of page */
986                         break;
987                 page_offset +=  len;
988         }
989
990         return tx;
991 }
992
993 static void ops_complete_biofill(void *stripe_head_ref)
994 {
995         struct stripe_head *sh = stripe_head_ref;
996         struct bio *return_bi = NULL;
997         int i;
998
999         pr_debug("%s: stripe %llu\n", __func__,
1000                 (unsigned long long)sh->sector);
1001
1002         /* clear completed biofills */
1003         for (i = sh->disks; i--; ) {
1004                 struct r5dev *dev = &sh->dev[i];
1005
1006                 /* acknowledge completion of a biofill operation */
1007                 /* and check if we need to reply to a read request,
1008                  * new R5_Wantfill requests are held off until
1009                  * !STRIPE_BIOFILL_RUN
1010                  */
1011                 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1012                         struct bio *rbi, *rbi2;
1013
1014                         BUG_ON(!dev->read);
1015                         rbi = dev->read;
1016                         dev->read = NULL;
1017                         while (rbi && rbi->bi_iter.bi_sector <
1018                                 dev->sector + STRIPE_SECTORS) {
1019                                 rbi2 = r5_next_bio(rbi, dev->sector);
1020                                 if (!raid5_dec_bi_active_stripes(rbi)) {
1021                                         rbi->bi_next = return_bi;
1022                                         return_bi = rbi;
1023                                 }
1024                                 rbi = rbi2;
1025                         }
1026                 }
1027         }
1028         clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1029
1030         return_io(return_bi);
1031
1032         set_bit(STRIPE_HANDLE, &sh->state);
1033         release_stripe(sh);
1034 }
1035
1036 static void ops_run_biofill(struct stripe_head *sh)
1037 {
1038         struct dma_async_tx_descriptor *tx = NULL;
1039         struct async_submit_ctl submit;
1040         int i;
1041
1042         pr_debug("%s: stripe %llu\n", __func__,
1043                 (unsigned long long)sh->sector);
1044
1045         for (i = sh->disks; i--; ) {
1046                 struct r5dev *dev = &sh->dev[i];
1047                 if (test_bit(R5_Wantfill, &dev->flags)) {
1048                         struct bio *rbi;
1049                         spin_lock_irq(&sh->stripe_lock);
1050                         dev->read = rbi = dev->toread;
1051                         dev->toread = NULL;
1052                         spin_unlock_irq(&sh->stripe_lock);
1053                         while (rbi && rbi->bi_iter.bi_sector <
1054                                 dev->sector + STRIPE_SECTORS) {
1055                                 tx = async_copy_data(0, rbi, dev->page,
1056                                         dev->sector, tx);
1057                                 rbi = r5_next_bio(rbi, dev->sector);
1058                         }
1059                 }
1060         }
1061
1062         atomic_inc(&sh->count);
1063         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1064         async_trigger_callback(&submit);
1065 }
1066
1067 static void mark_target_uptodate(struct stripe_head *sh, int target)
1068 {
1069         struct r5dev *tgt;
1070
1071         if (target < 0)
1072                 return;
1073
1074         tgt = &sh->dev[target];
1075         set_bit(R5_UPTODATE, &tgt->flags);
1076         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1077         clear_bit(R5_Wantcompute, &tgt->flags);
1078 }
1079
1080 static void ops_complete_compute(void *stripe_head_ref)
1081 {
1082         struct stripe_head *sh = stripe_head_ref;
1083
1084         pr_debug("%s: stripe %llu\n", __func__,
1085                 (unsigned long long)sh->sector);
1086
1087         /* mark the computed target(s) as uptodate */
1088         mark_target_uptodate(sh, sh->ops.target);
1089         mark_target_uptodate(sh, sh->ops.target2);
1090
1091         clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1092         if (sh->check_state == check_state_compute_run)
1093                 sh->check_state = check_state_compute_result;
1094         set_bit(STRIPE_HANDLE, &sh->state);
1095         release_stripe(sh);
1096 }
1097
1098 /* return a pointer to the address conversion region of the scribble buffer */
1099 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1100                                  struct raid5_percpu *percpu)
1101 {
1102         return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
1103 }
1104
1105 static struct dma_async_tx_descriptor *
1106 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1107 {
1108         int disks = sh->disks;
1109         struct page **xor_srcs = percpu->scribble;
1110         int target = sh->ops.target;
1111         struct r5dev *tgt = &sh->dev[target];
1112         struct page *xor_dest = tgt->page;
1113         int count = 0;
1114         struct dma_async_tx_descriptor *tx;
1115         struct async_submit_ctl submit;
1116         int i;
1117
1118         pr_debug("%s: stripe %llu block: %d\n",
1119                 __func__, (unsigned long long)sh->sector, target);
1120         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1121
1122         for (i = disks; i--; )
1123                 if (i != target)
1124                         xor_srcs[count++] = sh->dev[i].page;
1125
1126         atomic_inc(&sh->count);
1127
1128         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1129                           ops_complete_compute, sh, to_addr_conv(sh, percpu));
1130         if (unlikely(count == 1))
1131                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1132         else
1133                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1134
1135         return tx;
1136 }
1137
1138 /* set_syndrome_sources - populate source buffers for gen_syndrome
1139  * @srcs - (struct page *) array of size sh->disks
1140  * @sh - stripe_head to parse
1141  *
1142  * Populates srcs in proper layout order for the stripe and returns the
1143  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
1144  * destination buffer is recorded in srcs[count] and the Q destination
1145  * is recorded in srcs[count+1]].
1146  */
1147 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
1148 {
1149         int disks = sh->disks;
1150         int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1151         int d0_idx = raid6_d0(sh);
1152         int count;
1153         int i;
1154
1155         for (i = 0; i < disks; i++)
1156                 srcs[i] = NULL;
1157
1158         count = 0;
1159         i = d0_idx;
1160         do {
1161                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1162
1163                 srcs[slot] = sh->dev[i].page;
1164                 i = raid6_next_disk(i, disks);
1165         } while (i != d0_idx);
1166
1167         return syndrome_disks;
1168 }
1169
1170 static struct dma_async_tx_descriptor *
1171 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1172 {
1173         int disks = sh->disks;
1174         struct page **blocks = percpu->scribble;
1175         int target;
1176         int qd_idx = sh->qd_idx;
1177         struct dma_async_tx_descriptor *tx;
1178         struct async_submit_ctl submit;
1179         struct r5dev *tgt;
1180         struct page *dest;
1181         int i;
1182         int count;
1183
1184         if (sh->ops.target < 0)
1185                 target = sh->ops.target2;
1186         else if (sh->ops.target2 < 0)
1187                 target = sh->ops.target;
1188         else
1189                 /* we should only have one valid target */
1190                 BUG();
1191         BUG_ON(target < 0);
1192         pr_debug("%s: stripe %llu block: %d\n",
1193                 __func__, (unsigned long long)sh->sector, target);
1194
1195         tgt = &sh->dev[target];
1196         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1197         dest = tgt->page;
1198
1199         atomic_inc(&sh->count);
1200
1201         if (target == qd_idx) {
1202                 count = set_syndrome_sources(blocks, sh);
1203                 blocks[count] = NULL; /* regenerating p is not necessary */
1204                 BUG_ON(blocks[count+1] != dest); /* q should already be set */
1205                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1206                                   ops_complete_compute, sh,
1207                                   to_addr_conv(sh, percpu));
1208                 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1209         } else {
1210                 /* Compute any data- or p-drive using XOR */
1211                 count = 0;
1212                 for (i = disks; i-- ; ) {
1213                         if (i == target || i == qd_idx)
1214                                 continue;
1215                         blocks[count++] = sh->dev[i].page;
1216                 }
1217
1218                 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1219                                   NULL, ops_complete_compute, sh,
1220                                   to_addr_conv(sh, percpu));
1221                 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1222         }
1223
1224         return tx;
1225 }
1226
1227 static struct dma_async_tx_descriptor *
1228 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1229 {
1230         int i, count, disks = sh->disks;
1231         int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1232         int d0_idx = raid6_d0(sh);
1233         int faila = -1, failb = -1;
1234         int target = sh->ops.target;
1235         int target2 = sh->ops.target2;
1236         struct r5dev *tgt = &sh->dev[target];
1237         struct r5dev *tgt2 = &sh->dev[target2];
1238         struct dma_async_tx_descriptor *tx;
1239         struct page **blocks = percpu->scribble;
1240         struct async_submit_ctl submit;
1241
1242         pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1243                  __func__, (unsigned long long)sh->sector, target, target2);
1244         BUG_ON(target < 0 || target2 < 0);
1245         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1246         BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1247
1248         /* we need to open-code set_syndrome_sources to handle the
1249          * slot number conversion for 'faila' and 'failb'
1250          */
1251         for (i = 0; i < disks ; i++)
1252                 blocks[i] = NULL;
1253         count = 0;
1254         i = d0_idx;
1255         do {
1256                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1257
1258                 blocks[slot] = sh->dev[i].page;
1259
1260                 if (i == target)
1261                         faila = slot;
1262                 if (i == target2)
1263                         failb = slot;
1264                 i = raid6_next_disk(i, disks);
1265         } while (i != d0_idx);
1266
1267         BUG_ON(faila == failb);
1268         if (failb < faila)
1269                 swap(faila, failb);
1270         pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1271                  __func__, (unsigned long long)sh->sector, faila, failb);
1272
1273         atomic_inc(&sh->count);
1274
1275         if (failb == syndrome_disks+1) {
1276                 /* Q disk is one of the missing disks */
1277                 if (faila == syndrome_disks) {
1278                         /* Missing P+Q, just recompute */
1279                         init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1280                                           ops_complete_compute, sh,
1281                                           to_addr_conv(sh, percpu));
1282                         return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1283                                                   STRIPE_SIZE, &submit);
1284                 } else {
1285                         struct page *dest;
1286                         int data_target;
1287                         int qd_idx = sh->qd_idx;
1288
1289                         /* Missing D+Q: recompute D from P, then recompute Q */
1290                         if (target == qd_idx)
1291                                 data_target = target2;
1292                         else
1293                                 data_target = target;
1294
1295                         count = 0;
1296                         for (i = disks; i-- ; ) {
1297                                 if (i == data_target || i == qd_idx)
1298                                         continue;
1299                                 blocks[count++] = sh->dev[i].page;
1300                         }
1301                         dest = sh->dev[data_target].page;
1302                         init_async_submit(&submit,
1303                                           ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1304                                           NULL, NULL, NULL,
1305                                           to_addr_conv(sh, percpu));
1306                         tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1307                                        &submit);
1308
1309                         count = set_syndrome_sources(blocks, sh);
1310                         init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1311                                           ops_complete_compute, sh,
1312                                           to_addr_conv(sh, percpu));
1313                         return async_gen_syndrome(blocks, 0, count+2,
1314                                                   STRIPE_SIZE, &submit);
1315                 }
1316         } else {
1317                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1318                                   ops_complete_compute, sh,
1319                                   to_addr_conv(sh, percpu));
1320                 if (failb == syndrome_disks) {
1321                         /* We're missing D+P. */
1322                         return async_raid6_datap_recov(syndrome_disks+2,
1323                                                        STRIPE_SIZE, faila,
1324                                                        blocks, &submit);
1325                 } else {
1326                         /* We're missing D+D. */
1327                         return async_raid6_2data_recov(syndrome_disks+2,
1328                                                        STRIPE_SIZE, faila, failb,
1329                                                        blocks, &submit);
1330                 }
1331         }
1332 }
1333
1334
1335 static void ops_complete_prexor(void *stripe_head_ref)
1336 {
1337         struct stripe_head *sh = stripe_head_ref;
1338
1339         pr_debug("%s: stripe %llu\n", __func__,
1340                 (unsigned long long)sh->sector);
1341 }
1342
1343 static struct dma_async_tx_descriptor *
1344 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
1345                struct dma_async_tx_descriptor *tx)
1346 {
1347         int disks = sh->disks;
1348         struct page **xor_srcs = percpu->scribble;
1349         int count = 0, pd_idx = sh->pd_idx, i;
1350         struct async_submit_ctl submit;
1351
1352         /* existing parity data subtracted */
1353         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1354
1355         pr_debug("%s: stripe %llu\n", __func__,
1356                 (unsigned long long)sh->sector);
1357
1358         for (i = disks; i--; ) {
1359                 struct r5dev *dev = &sh->dev[i];
1360                 /* Only process blocks that are known to be uptodate */
1361                 if (test_bit(R5_Wantdrain, &dev->flags))
1362                         xor_srcs[count++] = dev->page;
1363         }
1364
1365         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1366                           ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1367         tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1368
1369         return tx;
1370 }
1371
1372 static struct dma_async_tx_descriptor *
1373 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1374 {
1375         int disks = sh->disks;
1376         int i;
1377
1378         pr_debug("%s: stripe %llu\n", __func__,
1379                 (unsigned long long)sh->sector);
1380
1381         for (i = disks; i--; ) {
1382                 struct r5dev *dev = &sh->dev[i];
1383                 struct bio *chosen;
1384
1385                 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1386                         struct bio *wbi;
1387
1388                         spin_lock_irq(&sh->stripe_lock);
1389                         chosen = dev->towrite;
1390                         dev->towrite = NULL;
1391                         BUG_ON(dev->written);
1392                         wbi = dev->written = chosen;
1393                         spin_unlock_irq(&sh->stripe_lock);
1394
1395                         while (wbi && wbi->bi_iter.bi_sector <
1396                                 dev->sector + STRIPE_SECTORS) {
1397                                 if (wbi->bi_rw & REQ_FUA)
1398                                         set_bit(R5_WantFUA, &dev->flags);
1399                                 if (wbi->bi_rw & REQ_SYNC)
1400                                         set_bit(R5_SyncIO, &dev->flags);
1401                                 if (wbi->bi_rw & REQ_DISCARD)
1402                                         set_bit(R5_Discard, &dev->flags);
1403                                 else
1404                                         tx = async_copy_data(1, wbi, dev->page,
1405                                                 dev->sector, tx);
1406                                 wbi = r5_next_bio(wbi, dev->sector);
1407                         }
1408                 }
1409         }
1410
1411         return tx;
1412 }
1413
1414 static void ops_complete_reconstruct(void *stripe_head_ref)
1415 {
1416         struct stripe_head *sh = stripe_head_ref;
1417         int disks = sh->disks;
1418         int pd_idx = sh->pd_idx;
1419         int qd_idx = sh->qd_idx;
1420         int i;
1421         bool fua = false, sync = false, discard = false;
1422
1423         pr_debug("%s: stripe %llu\n", __func__,
1424                 (unsigned long long)sh->sector);
1425
1426         for (i = disks; i--; ) {
1427                 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1428                 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1429                 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1430         }
1431
1432         for (i = disks; i--; ) {
1433                 struct r5dev *dev = &sh->dev[i];
1434
1435                 if (dev->written || i == pd_idx || i == qd_idx) {
1436                         if (!discard)
1437                                 set_bit(R5_UPTODATE, &dev->flags);
1438                         if (fua)
1439                                 set_bit(R5_WantFUA, &dev->flags);
1440                         if (sync)
1441                                 set_bit(R5_SyncIO, &dev->flags);
1442                 }
1443         }
1444
1445         if (sh->reconstruct_state == reconstruct_state_drain_run)
1446                 sh->reconstruct_state = reconstruct_state_drain_result;
1447         else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1448                 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1449         else {
1450                 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1451                 sh->reconstruct_state = reconstruct_state_result;
1452         }
1453
1454         set_bit(STRIPE_HANDLE, &sh->state);
1455         release_stripe(sh);
1456 }
1457
1458 static void
1459 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1460                      struct dma_async_tx_descriptor *tx)
1461 {
1462         int disks = sh->disks;
1463         struct page **xor_srcs = percpu->scribble;
1464         struct async_submit_ctl submit;
1465         int count = 0, pd_idx = sh->pd_idx, i;
1466         struct page *xor_dest;
1467         int prexor = 0;
1468         unsigned long flags;
1469
1470         pr_debug("%s: stripe %llu\n", __func__,
1471                 (unsigned long long)sh->sector);
1472
1473         for (i = 0; i < sh->disks; i++) {
1474                 if (pd_idx == i)
1475                         continue;
1476                 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1477                         break;
1478         }
1479         if (i >= sh->disks) {
1480                 atomic_inc(&sh->count);
1481                 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1482                 ops_complete_reconstruct(sh);
1483                 return;
1484         }
1485         /* check if prexor is active which means only process blocks
1486          * that are part of a read-modify-write (written)
1487          */
1488         if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1489                 prexor = 1;
1490                 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1491                 for (i = disks; i--; ) {
1492                         struct r5dev *dev = &sh->dev[i];
1493                         if (dev->written)
1494                                 xor_srcs[count++] = dev->page;
1495                 }
1496         } else {
1497                 xor_dest = sh->dev[pd_idx].page;
1498                 for (i = disks; i--; ) {
1499                         struct r5dev *dev = &sh->dev[i];
1500                         if (i != pd_idx)
1501                                 xor_srcs[count++] = dev->page;
1502                 }
1503         }
1504
1505         /* 1/ if we prexor'd then the dest is reused as a source
1506          * 2/ if we did not prexor then we are redoing the parity
1507          * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1508          * for the synchronous xor case
1509          */
1510         flags = ASYNC_TX_ACK |
1511                 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1512
1513         atomic_inc(&sh->count);
1514
1515         init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1516                           to_addr_conv(sh, percpu));
1517         if (unlikely(count == 1))
1518                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1519         else
1520                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1521 }
1522
1523 static void
1524 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1525                      struct dma_async_tx_descriptor *tx)
1526 {
1527         struct async_submit_ctl submit;
1528         struct page **blocks = percpu->scribble;
1529         int count, i;
1530
1531         pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1532
1533         for (i = 0; i < sh->disks; i++) {
1534                 if (sh->pd_idx == i || sh->qd_idx == i)
1535                         continue;
1536                 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1537                         break;
1538         }
1539         if (i >= sh->disks) {
1540                 atomic_inc(&sh->count);
1541                 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1542                 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1543                 ops_complete_reconstruct(sh);
1544                 return;
1545         }
1546
1547         count = set_syndrome_sources(blocks, sh);
1548
1549         atomic_inc(&sh->count);
1550
1551         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1552                           sh, to_addr_conv(sh, percpu));
1553         async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1554 }
1555
1556 static void ops_complete_check(void *stripe_head_ref)
1557 {
1558         struct stripe_head *sh = stripe_head_ref;
1559
1560         pr_debug("%s: stripe %llu\n", __func__,
1561                 (unsigned long long)sh->sector);
1562
1563         sh->check_state = check_state_check_result;
1564         set_bit(STRIPE_HANDLE, &sh->state);
1565         release_stripe(sh);
1566 }
1567
1568 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1569 {
1570         int disks = sh->disks;
1571         int pd_idx = sh->pd_idx;
1572         int qd_idx = sh->qd_idx;
1573         struct page *xor_dest;
1574         struct page **xor_srcs = percpu->scribble;
1575         struct dma_async_tx_descriptor *tx;
1576         struct async_submit_ctl submit;
1577         int count;
1578         int i;
1579
1580         pr_debug("%s: stripe %llu\n", __func__,
1581                 (unsigned long long)sh->sector);
1582
1583         count = 0;
1584         xor_dest = sh->dev[pd_idx].page;
1585         xor_srcs[count++] = xor_dest;
1586         for (i = disks; i--; ) {
1587                 if (i == pd_idx || i == qd_idx)
1588                         continue;
1589                 xor_srcs[count++] = sh->dev[i].page;
1590         }
1591
1592         init_async_submit(&submit, 0, NULL, NULL, NULL,
1593                           to_addr_conv(sh, percpu));
1594         tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1595                            &sh->ops.zero_sum_result, &submit);
1596
1597         atomic_inc(&sh->count);
1598         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1599         tx = async_trigger_callback(&submit);
1600 }
1601
1602 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1603 {
1604         struct page **srcs = percpu->scribble;
1605         struct async_submit_ctl submit;
1606         int count;
1607
1608         pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1609                 (unsigned long long)sh->sector, checkp);
1610
1611         count = set_syndrome_sources(srcs, sh);
1612         if (!checkp)
1613                 srcs[count] = NULL;
1614
1615         atomic_inc(&sh->count);
1616         init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1617                           sh, to_addr_conv(sh, percpu));
1618         async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1619                            &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1620 }
1621
1622 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1623 {
1624         int overlap_clear = 0, i, disks = sh->disks;
1625         struct dma_async_tx_descriptor *tx = NULL;
1626         struct r5conf *conf = sh->raid_conf;
1627         int level = conf->level;
1628         struct raid5_percpu *percpu;
1629         unsigned long cpu;
1630
1631         cpu = get_cpu();
1632         percpu = per_cpu_ptr(conf->percpu, cpu);
1633         if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1634                 ops_run_biofill(sh);
1635                 overlap_clear++;
1636         }
1637
1638         if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1639                 if (level < 6)
1640                         tx = ops_run_compute5(sh, percpu);
1641                 else {
1642                         if (sh->ops.target2 < 0 || sh->ops.target < 0)
1643                                 tx = ops_run_compute6_1(sh, percpu);
1644                         else
1645                                 tx = ops_run_compute6_2(sh, percpu);
1646                 }
1647                 /* terminate the chain if reconstruct is not set to be run */
1648                 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1649                         async_tx_ack(tx);
1650         }
1651
1652         if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1653                 tx = ops_run_prexor(sh, percpu, tx);
1654
1655         if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1656                 tx = ops_run_biodrain(sh, tx);
1657                 overlap_clear++;
1658         }
1659
1660         if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1661                 if (level < 6)
1662                         ops_run_reconstruct5(sh, percpu, tx);
1663                 else
1664                         ops_run_reconstruct6(sh, percpu, tx);
1665         }
1666
1667         if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1668                 if (sh->check_state == check_state_run)
1669                         ops_run_check_p(sh, percpu);
1670                 else if (sh->check_state == check_state_run_q)
1671                         ops_run_check_pq(sh, percpu, 0);
1672                 else if (sh->check_state == check_state_run_pq)
1673                         ops_run_check_pq(sh, percpu, 1);
1674                 else
1675                         BUG();
1676         }
1677
1678         if (overlap_clear)
1679                 for (i = disks; i--; ) {
1680                         struct r5dev *dev = &sh->dev[i];
1681                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
1682                                 wake_up(&sh->raid_conf->wait_for_overlap);
1683                 }
1684         put_cpu();
1685 }
1686
1687 static int grow_one_stripe(struct r5conf *conf, int hash)
1688 {
1689         struct stripe_head *sh;
1690         sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
1691         if (!sh)
1692                 return 0;
1693
1694         sh->raid_conf = conf;
1695
1696         spin_lock_init(&sh->stripe_lock);
1697
1698         if (grow_buffers(sh)) {
1699                 shrink_buffers(sh);
1700                 kmem_cache_free(conf->slab_cache, sh);
1701                 return 0;
1702         }
1703         sh->hash_lock_index = hash;
1704         /* we just created an active stripe so... */
1705         atomic_set(&sh->count, 1);
1706         atomic_inc(&conf->active_stripes);
1707         INIT_LIST_HEAD(&sh->lru);
1708         release_stripe(sh);
1709         return 1;
1710 }
1711
1712 static int grow_stripes(struct r5conf *conf, int num)
1713 {
1714         struct kmem_cache *sc;
1715         int devs = max(conf->raid_disks, conf->previous_raid_disks);
1716         int hash;
1717
1718         if (conf->mddev->gendisk)
1719                 sprintf(conf->cache_name[0],
1720                         "raid%d-%s", conf->level, mdname(conf->mddev));
1721         else
1722                 sprintf(conf->cache_name[0],
1723                         "raid%d-%p", conf->level, conf->mddev);
1724         sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1725
1726         conf->active_name = 0;
1727         sc = kmem_cache_create(conf->cache_name[conf->active_name],
1728                                sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1729                                0, 0, NULL);
1730         if (!sc)
1731                 return 1;
1732         conf->slab_cache = sc;
1733         conf->pool_size = devs;
1734         hash = conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
1735         while (num--) {
1736                 if (!grow_one_stripe(conf, hash))
1737                         return 1;
1738                 conf->max_nr_stripes++;
1739                 hash = (hash + 1) % NR_STRIPE_HASH_LOCKS;
1740         }
1741         return 0;
1742 }
1743
1744 /**
1745  * scribble_len - return the required size of the scribble region
1746  * @num - total number of disks in the array
1747  *
1748  * The size must be enough to contain:
1749  * 1/ a struct page pointer for each device in the array +2
1750  * 2/ room to convert each entry in (1) to its corresponding dma
1751  *    (dma_map_page()) or page (page_address()) address.
1752  *
1753  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1754  * calculate over all devices (not just the data blocks), using zeros in place
1755  * of the P and Q blocks.
1756  */
1757 static size_t scribble_len(int num)
1758 {
1759         size_t len;
1760
1761         len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1762
1763         return len;
1764 }
1765
1766 static int resize_stripes(struct r5conf *conf, int newsize)
1767 {
1768         /* Make all the stripes able to hold 'newsize' devices.
1769          * New slots in each stripe get 'page' set to a new page.
1770          *
1771          * This happens in stages:
1772          * 1/ create a new kmem_cache and allocate the required number of
1773          *    stripe_heads.
1774          * 2/ gather all the old stripe_heads and transfer the pages across
1775          *    to the new stripe_heads.  This will have the side effect of
1776          *    freezing the array as once all stripe_heads have been collected,
1777          *    no IO will be possible.  Old stripe heads are freed once their
1778          *    pages have been transferred over, and the old kmem_cache is
1779          *    freed when all stripes are done.
1780          * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
1781          *    we simple return a failre status - no need to clean anything up.
1782          * 4/ allocate new pages for the new slots in the new stripe_heads.
1783          *    If this fails, we don't bother trying the shrink the
1784          *    stripe_heads down again, we just leave them as they are.
1785          *    As each stripe_head is processed the new one is released into
1786          *    active service.
1787          *
1788          * Once step2 is started, we cannot afford to wait for a write,
1789          * so we use GFP_NOIO allocations.
1790          */
1791         struct stripe_head *osh, *nsh;
1792         LIST_HEAD(newstripes);
1793         struct disk_info *ndisks;
1794         unsigned long cpu;
1795         int err;
1796         struct kmem_cache *sc;
1797         int i;
1798         int hash, cnt;
1799
1800         if (newsize <= conf->pool_size)
1801                 return 0; /* never bother to shrink */
1802
1803         err = md_allow_write(conf->mddev);
1804         if (err)
1805                 return err;
1806
1807         /* Step 1 */
1808         sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1809                                sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1810                                0, 0, NULL);
1811         if (!sc)
1812                 return -ENOMEM;
1813
1814         for (i = conf->max_nr_stripes; i; i--) {
1815                 nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
1816                 if (!nsh)
1817                         break;
1818
1819                 nsh->raid_conf = conf;
1820                 spin_lock_init(&nsh->stripe_lock);
1821
1822                 list_add(&nsh->lru, &newstripes);
1823         }
1824         if (i) {
1825                 /* didn't get enough, give up */
1826                 while (!list_empty(&newstripes)) {
1827                         nsh = list_entry(newstripes.next, struct stripe_head, lru);
1828                         list_del(&nsh->lru);
1829                         kmem_cache_free(sc, nsh);
1830                 }
1831                 kmem_cache_destroy(sc);
1832                 return -ENOMEM;
1833         }
1834         /* Step 2 - Must use GFP_NOIO now.
1835          * OK, we have enough stripes, start collecting inactive
1836          * stripes and copying them over
1837          */
1838         hash = 0;
1839         cnt = 0;
1840         list_for_each_entry(nsh, &newstripes, lru) {
1841                 lock_device_hash_lock(conf, hash);
1842                 wait_event_cmd(conf->wait_for_stripe,
1843                                     !list_empty(conf->inactive_list + hash),
1844                                     unlock_device_hash_lock(conf, hash),
1845                                     lock_device_hash_lock(conf, hash));
1846                 osh = get_free_stripe(conf, hash);
1847                 unlock_device_hash_lock(conf, hash);
1848                 atomic_set(&nsh->count, 1);
1849                 for(i=0; i<conf->pool_size; i++)
1850                         nsh->dev[i].page = osh->dev[i].page;
1851                 for( ; i<newsize; i++)
1852                         nsh->dev[i].page = NULL;
1853                 nsh->hash_lock_index = hash;
1854                 kmem_cache_free(conf->slab_cache, osh);
1855                 cnt++;
1856                 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
1857                     !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
1858                         hash++;
1859                         cnt = 0;
1860                 }
1861         }
1862         kmem_cache_destroy(conf->slab_cache);
1863
1864         /* Step 3.
1865          * At this point, we are holding all the stripes so the array
1866          * is completely stalled, so now is a good time to resize
1867          * conf->disks and the scribble region
1868          */
1869         ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1870         if (ndisks) {
1871                 for (i=0; i<conf->raid_disks; i++)
1872                         ndisks[i] = conf->disks[i];
1873                 kfree(conf->disks);
1874                 conf->disks = ndisks;
1875         } else
1876                 err = -ENOMEM;
1877
1878         get_online_cpus();
1879         conf->scribble_len = scribble_len(newsize);
1880         for_each_present_cpu(cpu) {
1881                 struct raid5_percpu *percpu;
1882                 void *scribble;
1883
1884                 percpu = per_cpu_ptr(conf->percpu, cpu);
1885                 scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1886
1887                 if (scribble) {
1888                         kfree(percpu->scribble);
1889                         percpu->scribble = scribble;
1890                 } else {
1891                         err = -ENOMEM;
1892                         break;
1893                 }
1894         }
1895         put_online_cpus();
1896
1897         /* Step 4, return new stripes to service */
1898         while(!list_empty(&newstripes)) {
1899                 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1900                 list_del_init(&nsh->lru);
1901
1902                 for (i=conf->raid_disks; i < newsize; i++)
1903                         if (nsh->dev[i].page == NULL) {
1904                                 struct page *p = alloc_page(GFP_NOIO);
1905                                 nsh->dev[i].page = p;
1906                                 if (!p)
1907                                         err = -ENOMEM;
1908                         }
1909                 release_stripe(nsh);
1910         }
1911         /* critical section pass, GFP_NOIO no longer needed */
1912
1913         conf->slab_cache = sc;
1914         conf->active_name = 1-conf->active_name;
1915         conf->pool_size = newsize;
1916         return err;
1917 }
1918
1919 static int drop_one_stripe(struct r5conf *conf, int hash)
1920 {
1921         struct stripe_head *sh;
1922
1923         spin_lock_irq(conf->hash_locks + hash);
1924         sh = get_free_stripe(conf, hash);
1925         spin_unlock_irq(conf->hash_locks + hash);
1926         if (!sh)
1927                 return 0;
1928         BUG_ON(atomic_read(&sh->count));
1929         shrink_buffers(sh);
1930         kmem_cache_free(conf->slab_cache, sh);
1931         atomic_dec(&conf->active_stripes);
1932         return 1;
1933 }
1934
1935 static void shrink_stripes(struct r5conf *conf)
1936 {
1937         int hash;
1938         for (hash = 0; hash < NR_STRIPE_HASH_LOCKS; hash++)
1939                 while (drop_one_stripe(conf, hash))
1940                         ;
1941
1942         if (conf->slab_cache)
1943                 kmem_cache_destroy(conf->slab_cache);
1944         conf->slab_cache = NULL;
1945 }
1946
1947 static void raid5_end_read_request(struct bio * bi, int error)
1948 {
1949         struct stripe_head *sh = bi->bi_private;
1950         struct r5conf *conf = sh->raid_conf;
1951         int disks = sh->disks, i;
1952         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1953         char b[BDEVNAME_SIZE];
1954         struct md_rdev *rdev = NULL;
1955         sector_t s;
1956
1957         for (i=0 ; i<disks; i++)
1958                 if (bi == &sh->dev[i].req)
1959                         break;
1960
1961         pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1962                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1963                 uptodate);
1964         if (i == disks) {
1965                 BUG();
1966                 return;
1967         }
1968         if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1969                 /* If replacement finished while this request was outstanding,
1970                  * 'replacement' might be NULL already.
1971                  * In that case it moved down to 'rdev'.
1972                  * rdev is not removed until all requests are finished.
1973                  */
1974                 rdev = conf->disks[i].replacement;
1975         if (!rdev)
1976                 rdev = conf->disks[i].rdev;
1977
1978         if (use_new_offset(conf, sh))
1979                 s = sh->sector + rdev->new_data_offset;
1980         else
1981                 s = sh->sector + rdev->data_offset;
1982         if (uptodate) {
1983                 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1984                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1985                         /* Note that this cannot happen on a
1986                          * replacement device.  We just fail those on
1987                          * any error
1988                          */
1989                         printk_ratelimited(
1990                                 KERN_INFO
1991                                 "md/raid:%s: read error corrected"
1992                                 " (%lu sectors at %llu on %s)\n",
1993                                 mdname(conf->mddev), STRIPE_SECTORS,
1994                                 (unsigned long long)s,
1995                                 bdevname(rdev->bdev, b));
1996                         atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
1997                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1998                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1999                 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2000                         clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2001
2002                 if (atomic_read(&rdev->read_errors))
2003                         atomic_set(&rdev->read_errors, 0);
2004         } else {
2005                 const char *bdn = bdevname(rdev->bdev, b);
2006                 int retry = 0;
2007                 int set_bad = 0;
2008
2009                 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2010                 atomic_inc(&rdev->read_errors);
2011                 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2012                         printk_ratelimited(
2013                                 KERN_WARNING
2014                                 "md/raid:%s: read error on replacement device "
2015                                 "(sector %llu on %s).\n",
2016                                 mdname(conf->mddev),
2017                                 (unsigned long long)s,
2018                                 bdn);
2019                 else if (conf->mddev->degraded >= conf->max_degraded) {
2020                         set_bad = 1;
2021                         printk_ratelimited(
2022                                 KERN_WARNING
2023                                 "md/raid:%s: read error not correctable "
2024                                 "(sector %llu on %s).\n",
2025                                 mdname(conf->mddev),
2026                                 (unsigned long long)s,
2027                                 bdn);
2028                 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2029                         /* Oh, no!!! */
2030                         set_bad = 1;
2031                         printk_ratelimited(
2032                                 KERN_WARNING
2033                                 "md/raid:%s: read error NOT corrected!! "
2034                                 "(sector %llu on %s).\n",
2035                                 mdname(conf->mddev),
2036                                 (unsigned long long)s,
2037                                 bdn);
2038                 } else if (atomic_read(&rdev->read_errors)
2039                          > conf->max_nr_stripes)
2040                         printk(KERN_WARNING
2041                                "md/raid:%s: Too many read errors, failing device %s.\n",
2042                                mdname(conf->mddev), bdn);
2043                 else
2044                         retry = 1;
2045                 if (set_bad && test_bit(In_sync, &rdev->flags)
2046                     && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2047                         retry = 1;
2048                 if (retry)
2049                         if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2050                                 set_bit(R5_ReadError, &sh->dev[i].flags);
2051                                 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2052                         } else
2053                                 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2054                 else {
2055                         clear_bit(R5_ReadError, &sh->dev[i].flags);
2056                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
2057                         if (!(set_bad
2058                               && test_bit(In_sync, &rdev->flags)
2059                               && rdev_set_badblocks(
2060                                       rdev, sh->sector, STRIPE_SECTORS, 0)))
2061                                 md_error(conf->mddev, rdev);
2062                 }
2063         }
2064         rdev_dec_pending(rdev, conf->mddev);
2065         clear_bit(R5_LOCKED, &sh->dev[i].flags);
2066         set_bit(STRIPE_HANDLE, &sh->state);
2067         release_stripe(sh);
2068 }
2069
2070 static void raid5_end_write_request(struct bio *bi, int error)
2071 {
2072         struct stripe_head *sh = bi->bi_private;
2073         struct r5conf *conf = sh->raid_conf;
2074         int disks = sh->disks, i;
2075         struct md_rdev *uninitialized_var(rdev);
2076         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
2077         sector_t first_bad;
2078         int bad_sectors;
2079         int replacement = 0;
2080
2081         for (i = 0 ; i < disks; i++) {
2082                 if (bi == &sh->dev[i].req) {
2083                         rdev = conf->disks[i].rdev;
2084                         break;
2085                 }
2086                 if (bi == &sh->dev[i].rreq) {
2087                         rdev = conf->disks[i].replacement;
2088                         if (rdev)
2089                                 replacement = 1;
2090                         else
2091                                 /* rdev was removed and 'replacement'
2092                                  * replaced it.  rdev is not removed
2093                                  * until all requests are finished.
2094                                  */
2095                                 rdev = conf->disks[i].rdev;
2096                         break;
2097                 }
2098         }
2099         pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
2100                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2101                 uptodate);
2102         if (i == disks) {
2103                 BUG();
2104                 return;
2105         }
2106
2107         if (replacement) {
2108                 if (!uptodate)
2109                         md_error(conf->mddev, rdev);
2110                 else if (is_badblock(rdev, sh->sector,
2111                                      STRIPE_SECTORS,
2112                                      &first_bad, &bad_sectors))
2113                         set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2114         } else {
2115                 if (!uptodate) {
2116                         set_bit(WriteErrorSeen, &rdev->flags);
2117                         set_bit(R5_WriteError, &sh->dev[i].flags);
2118                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
2119                                 set_bit(MD_RECOVERY_NEEDED,
2120                                         &rdev->mddev->recovery);
2121                 } else if (is_badblock(rdev, sh->sector,
2122                                        STRIPE_SECTORS,
2123                                        &first_bad, &bad_sectors)) {
2124                         set_bit(R5_MadeGood, &sh->dev[i].flags);
2125                         if (test_bit(R5_ReadError, &sh->dev[i].flags))
2126                                 /* That was a successful write so make
2127                                  * sure it looks like we already did
2128                                  * a re-write.
2129                                  */
2130                                 set_bit(R5_ReWrite, &sh->dev[i].flags);
2131                 }
2132         }
2133         rdev_dec_pending(rdev, conf->mddev);
2134
2135         if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2136                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2137         set_bit(STRIPE_HANDLE, &sh->state);
2138         release_stripe(sh);
2139 }
2140
2141 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
2142         
2143 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
2144 {
2145         struct r5dev *dev = &sh->dev[i];
2146
2147         bio_init(&dev->req);
2148         dev->req.bi_io_vec = &dev->vec;
2149         dev->req.bi_vcnt++;
2150         dev->req.bi_max_vecs++;
2151         dev->req.bi_private = sh;
2152         dev->vec.bv_page = dev->page;
2153
2154         bio_init(&dev->rreq);
2155         dev->rreq.bi_io_vec = &dev->rvec;
2156         dev->rreq.bi_vcnt++;
2157         dev->rreq.bi_max_vecs++;
2158         dev->rreq.bi_private = sh;
2159         dev->rvec.bv_page = dev->page;
2160
2161         dev->flags = 0;
2162         dev->sector = compute_blocknr(sh, i, previous);
2163 }
2164
2165 static void error(struct mddev *mddev, struct md_rdev *rdev)
2166 {
2167         char b[BDEVNAME_SIZE];
2168         struct r5conf *conf = mddev->private;
2169         unsigned long flags;
2170         pr_debug("raid456: error called\n");
2171
2172         spin_lock_irqsave(&conf->device_lock, flags);
2173         clear_bit(In_sync, &rdev->flags);
2174         mddev->degraded = calc_degraded(conf);
2175         spin_unlock_irqrestore(&conf->device_lock, flags);
2176         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2177
2178         set_bit(Blocked, &rdev->flags);
2179         set_bit(Faulty, &rdev->flags);
2180         set_bit(MD_CHANGE_DEVS, &mddev->flags);
2181         printk(KERN_ALERT
2182                "md/raid:%s: Disk failure on %s, disabling device.\n"
2183                "md/raid:%s: Operation continuing on %d devices.\n",
2184                mdname(mddev),
2185                bdevname(rdev->bdev, b),
2186                mdname(mddev),
2187                conf->raid_disks - mddev->degraded);
2188 }
2189
2190 /*
2191  * Input: a 'big' sector number,
2192  * Output: index of the data and parity disk, and the sector # in them.
2193  */
2194 static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2195                                      int previous, int *dd_idx,
2196                                      struct stripe_head *sh)
2197 {
2198         sector_t stripe, stripe2;
2199         sector_t chunk_number;
2200         unsigned int chunk_offset;
2201         int pd_idx, qd_idx;
2202         int ddf_layout = 0;
2203         sector_t new_sector;
2204         int algorithm = previous ? conf->prev_algo
2205                                  : conf->algorithm;
2206         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2207                                          : conf->chunk_sectors;
2208         int raid_disks = previous ? conf->previous_raid_disks
2209                                   : conf->raid_disks;
2210         int data_disks = raid_disks - conf->max_degraded;
2211
2212         /* First compute the information on this sector */
2213
2214         /*
2215          * Compute the chunk number and the sector offset inside the chunk
2216          */
2217         chunk_offset = sector_div(r_sector, sectors_per_chunk);
2218         chunk_number = r_sector;
2219
2220         /*
2221          * Compute the stripe number
2222          */
2223         stripe = chunk_number;
2224         *dd_idx = sector_div(stripe, data_disks);
2225         stripe2 = stripe;
2226         /*
2227          * Select the parity disk based on the user selected algorithm.
2228          */
2229         pd_idx = qd_idx = -1;
2230         switch(conf->level) {
2231         case 4:
2232                 pd_idx = data_disks;
2233                 break;
2234         case 5:
2235                 switch (algorithm) {
2236                 case ALGORITHM_LEFT_ASYMMETRIC:
2237                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
2238                         if (*dd_idx >= pd_idx)
2239                                 (*dd_idx)++;
2240                         break;
2241                 case ALGORITHM_RIGHT_ASYMMETRIC:
2242                         pd_idx = sector_div(stripe2, raid_disks);
2243                         if (*dd_idx >= pd_idx)
2244                                 (*dd_idx)++;
2245                         break;
2246                 case ALGORITHM_LEFT_SYMMETRIC:
2247                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
2248                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2249                         break;
2250                 case ALGORITHM_RIGHT_SYMMETRIC:
2251                         pd_idx = sector_div(stripe2, raid_disks);
2252                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2253                         break;
2254                 case ALGORITHM_PARITY_0:
2255                         pd_idx = 0;
2256                         (*dd_idx)++;
2257                         break;
2258                 case ALGORITHM_PARITY_N:
2259                         pd_idx = data_disks;
2260                         break;
2261                 default:
2262                         BUG();
2263                 }
2264                 break;
2265         case 6:
2266
2267                 switch (algorithm) {
2268                 case ALGORITHM_LEFT_ASYMMETRIC:
2269                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2270                         qd_idx = pd_idx + 1;
2271                         if (pd_idx == raid_disks-1) {
2272                                 (*dd_idx)++;    /* Q D D D P */
2273                                 qd_idx = 0;
2274                         } else if (*dd_idx >= pd_idx)
2275                                 (*dd_idx) += 2; /* D D P Q D */
2276                         break;
2277                 case ALGORITHM_RIGHT_ASYMMETRIC:
2278                         pd_idx = sector_div(stripe2, raid_disks);
2279                         qd_idx = pd_idx + 1;
2280                         if (pd_idx == raid_disks-1) {
2281                                 (*dd_idx)++;    /* Q D D D P */
2282                                 qd_idx = 0;
2283                         } else if (*dd_idx >= pd_idx)
2284                                 (*dd_idx) += 2; /* D D P Q D */
2285                         break;
2286                 case ALGORITHM_LEFT_SYMMETRIC:
2287                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2288                         qd_idx = (pd_idx + 1) % raid_disks;
2289                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2290                         break;
2291                 case ALGORITHM_RIGHT_SYMMETRIC:
2292                         pd_idx = sector_div(stripe2, raid_disks);
2293                         qd_idx = (pd_idx + 1) % raid_disks;
2294                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2295                         break;
2296
2297                 case ALGORITHM_PARITY_0:
2298                         pd_idx = 0;
2299                         qd_idx = 1;
2300                         (*dd_idx) += 2;
2301                         break;
2302                 case ALGORITHM_PARITY_N:
2303                         pd_idx = data_disks;
2304                         qd_idx = data_disks + 1;
2305                         break;
2306
2307                 case ALGORITHM_ROTATING_ZERO_RESTART:
2308                         /* Exactly the same as RIGHT_ASYMMETRIC, but or
2309                          * of blocks for computing Q is different.
2310                          */
2311                         pd_idx = sector_div(stripe2, raid_disks);
2312                         qd_idx = pd_idx + 1;
2313                         if (pd_idx == raid_disks-1) {
2314                                 (*dd_idx)++;    /* Q D D D P */
2315                                 qd_idx = 0;
2316                         } else if (*dd_idx >= pd_idx)
2317                                 (*dd_idx) += 2; /* D D P Q D */
2318                         ddf_layout = 1;
2319                         break;
2320
2321                 case ALGORITHM_ROTATING_N_RESTART:
2322                         /* Same a left_asymmetric, by first stripe is
2323                          * D D D P Q  rather than
2324                          * Q D D D P
2325                          */
2326                         stripe2 += 1;
2327                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2328                         qd_idx = pd_idx + 1;
2329                         if (pd_idx == raid_disks-1) {
2330                                 (*dd_idx)++;    /* Q D D D P */
2331                                 qd_idx = 0;
2332                         } else if (*dd_idx >= pd_idx)
2333                                 (*dd_idx) += 2; /* D D P Q D */
2334                         ddf_layout = 1;
2335                         break;
2336
2337                 case ALGORITHM_ROTATING_N_CONTINUE:
2338                         /* Same as left_symmetric but Q is before P */
2339                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2340                         qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2341                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2342                         ddf_layout = 1;
2343                         break;
2344
2345                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2346                         /* RAID5 left_asymmetric, with Q on last device */
2347                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2348                         if (*dd_idx >= pd_idx)
2349                                 (*dd_idx)++;
2350                         qd_idx = raid_disks - 1;
2351                         break;
2352
2353                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2354                         pd_idx = sector_div(stripe2, raid_disks-1);
2355                         if (*dd_idx >= pd_idx)
2356                                 (*dd_idx)++;
2357                         qd_idx = raid_disks - 1;
2358                         break;
2359
2360                 case ALGORITHM_LEFT_SYMMETRIC_6:
2361                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2362                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2363                         qd_idx = raid_disks - 1;
2364                         break;
2365
2366                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2367                         pd_idx = sector_div(stripe2, raid_disks-1);
2368                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2369                         qd_idx = raid_disks - 1;
2370                         break;
2371
2372                 case ALGORITHM_PARITY_0_6:
2373                         pd_idx = 0;
2374                         (*dd_idx)++;
2375                         qd_idx = raid_disks - 1;
2376                         break;
2377
2378                 default:
2379                         BUG();
2380                 }
2381                 break;
2382         }
2383
2384         if (sh) {
2385                 sh->pd_idx = pd_idx;
2386                 sh->qd_idx = qd_idx;
2387                 sh->ddf_layout = ddf_layout;
2388         }
2389         /*
2390          * Finally, compute the new sector number
2391          */
2392         new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2393         return new_sector;
2394 }
2395
2396
2397 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
2398 {
2399         struct r5conf *conf = sh->raid_conf;
2400         int raid_disks = sh->disks;
2401         int data_disks = raid_disks - conf->max_degraded;
2402         sector_t new_sector = sh->sector, check;
2403         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2404                                          : conf->chunk_sectors;
2405         int algorithm = previous ? conf->prev_algo
2406                                  : conf->algorithm;
2407         sector_t stripe;
2408         int chunk_offset;
2409         sector_t chunk_number;
2410         int dummy1, dd_idx = i;
2411         sector_t r_sector;
2412         struct stripe_head sh2;
2413
2414
2415         chunk_offset = sector_div(new_sector, sectors_per_chunk);
2416         stripe = new_sector;
2417
2418         if (i == sh->pd_idx)
2419                 return 0;
2420         switch(conf->level) {
2421         case 4: break;
2422         case 5:
2423                 switch (algorithm) {
2424                 case ALGORITHM_LEFT_ASYMMETRIC:
2425                 case ALGORITHM_RIGHT_ASYMMETRIC:
2426                         if (i > sh->pd_idx)
2427                                 i--;
2428                         break;
2429                 case ALGORITHM_LEFT_SYMMETRIC:
2430                 case ALGORITHM_RIGHT_SYMMETRIC:
2431                         if (i < sh->pd_idx)
2432                                 i += raid_disks;
2433                         i -= (sh->pd_idx + 1);
2434                         break;
2435                 case ALGORITHM_PARITY_0:
2436                         i -= 1;
2437                         break;
2438                 case ALGORITHM_PARITY_N:
2439                         break;
2440                 default:
2441                         BUG();
2442                 }
2443                 break;
2444         case 6:
2445                 if (i == sh->qd_idx)
2446                         return 0; /* It is the Q disk */
2447                 switch (algorithm) {
2448                 case ALGORITHM_LEFT_ASYMMETRIC:
2449                 case ALGORITHM_RIGHT_ASYMMETRIC:
2450                 case ALGORITHM_ROTATING_ZERO_RESTART:
2451                 case ALGORITHM_ROTATING_N_RESTART:
2452                         if (sh->pd_idx == raid_disks-1)
2453                                 i--;    /* Q D D D P */
2454                         else if (i > sh->pd_idx)
2455                                 i -= 2; /* D D P Q D */
2456                         break;
2457                 case ALGORITHM_LEFT_SYMMETRIC:
2458                 case ALGORITHM_RIGHT_SYMMETRIC:
2459                         if (sh->pd_idx == raid_disks-1)
2460                                 i--; /* Q D D D P */
2461                         else {
2462                                 /* D D P Q D */
2463                                 if (i < sh->pd_idx)
2464                                         i += raid_disks;
2465                                 i -= (sh->pd_idx + 2);
2466                         }
2467                         break;
2468                 case ALGORITHM_PARITY_0:
2469                         i -= 2;
2470                         break;
2471                 case ALGORITHM_PARITY_N:
2472                         break;
2473                 case ALGORITHM_ROTATING_N_CONTINUE:
2474                         /* Like left_symmetric, but P is before Q */
2475                         if (sh->pd_idx == 0)
2476                                 i--;    /* P D D D Q */
2477                         else {
2478                                 /* D D Q P D */
2479                                 if (i < sh->pd_idx)
2480                                         i += raid_disks;
2481                                 i -= (sh->pd_idx + 1);
2482                         }
2483                         break;
2484                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2485                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2486                         if (i > sh->pd_idx)
2487                                 i--;
2488                         break;
2489                 case ALGORITHM_LEFT_SYMMETRIC_6:
2490                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2491                         if (i < sh->pd_idx)
2492                                 i += data_disks + 1;
2493                         i -= (sh->pd_idx + 1);
2494                         break;
2495                 case ALGORITHM_PARITY_0_6:
2496                         i -= 1;
2497                         break;
2498                 default:
2499                         BUG();
2500                 }
2501                 break;
2502         }
2503
2504         chunk_number = stripe * data_disks + i;
2505         r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2506
2507         check = raid5_compute_sector(conf, r_sector,
2508                                      previous, &dummy1, &sh2);
2509         if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2510                 || sh2.qd_idx != sh->qd_idx) {
2511                 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2512                        mdname(conf->mddev));
2513                 return 0;
2514         }
2515         return r_sector;
2516 }
2517
2518
2519 static void
2520 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2521                          int rcw, int expand)
2522 {
2523         int i, pd_idx = sh->pd_idx, disks = sh->disks;
2524         struct r5conf *conf = sh->raid_conf;
2525         int level = conf->level;
2526
2527         if (rcw) {
2528
2529                 for (i = disks; i--; ) {
2530                         struct r5dev *dev = &sh->dev[i];
2531
2532                         if (dev->towrite) {
2533                                 set_bit(R5_LOCKED, &dev->flags);
2534                                 set_bit(R5_Wantdrain, &dev->flags);
2535                                 if (!expand)
2536                                         clear_bit(R5_UPTODATE, &dev->flags);
2537                                 s->locked++;
2538                         }
2539                 }
2540                 /* if we are not expanding this is a proper write request, and
2541                  * there will be bios with new data to be drained into the
2542                  * stripe cache
2543                  */
2544                 if (!expand) {
2545                         if (!s->locked)
2546                                 /* False alarm, nothing to do */
2547                                 return;
2548                         sh->reconstruct_state = reconstruct_state_drain_run;
2549                         set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2550                 } else
2551                         sh->reconstruct_state = reconstruct_state_run;
2552
2553                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2554
2555                 if (s->locked + conf->max_degraded == disks)
2556                         if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2557                                 atomic_inc(&conf->pending_full_writes);
2558         } else {
2559                 BUG_ON(level == 6);
2560                 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2561                         test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2562
2563                 for (i = disks; i--; ) {
2564                         struct r5dev *dev = &sh->dev[i];
2565                         if (i == pd_idx)
2566                                 continue;
2567
2568                         if (dev->towrite &&
2569                             (test_bit(R5_UPTODATE, &dev->flags) ||
2570                              test_bit(R5_Wantcompute, &dev->flags))) {
2571                                 set_bit(R5_Wantdrain, &dev->flags);
2572                                 set_bit(R5_LOCKED, &dev->flags);
2573                                 clear_bit(R5_UPTODATE, &dev->flags);
2574                                 s->locked++;
2575                         }
2576                 }
2577                 if (!s->locked)
2578                         /* False alarm - nothing to do */
2579                         return;
2580                 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2581                 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2582                 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2583                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2584         }
2585
2586         /* keep the parity disk(s) locked while asynchronous operations
2587          * are in flight
2588          */
2589         set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2590         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2591         s->locked++;
2592
2593         if (level == 6) {
2594                 int qd_idx = sh->qd_idx;
2595                 struct r5dev *dev = &sh->dev[qd_idx];
2596
2597                 set_bit(R5_LOCKED, &dev->flags);
2598                 clear_bit(R5_UPTODATE, &dev->flags);
2599                 s->locked++;
2600         }
2601
2602         pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2603                 __func__, (unsigned long long)sh->sector,
2604                 s->locked, s->ops_request);
2605 }
2606
2607 /*
2608  * Each stripe/dev can have one or more bion attached.
2609  * toread/towrite point to the first in a chain.
2610  * The bi_next chain must be in order.
2611  */
2612 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2613 {
2614         struct bio **bip;
2615         struct r5conf *conf = sh->raid_conf;
2616         int firstwrite=0;
2617
2618         pr_debug("adding bi b#%llu to stripe s#%llu\n",
2619                 (unsigned long long)bi->bi_iter.bi_sector,
2620                 (unsigned long long)sh->sector);
2621
2622         /*
2623          * If several bio share a stripe. The bio bi_phys_segments acts as a
2624          * reference count to avoid race. The reference count should already be
2625          * increased before this function is called (for example, in
2626          * make_request()), so other bio sharing this stripe will not free the
2627          * stripe. If a stripe is owned by one stripe, the stripe lock will
2628          * protect it.
2629          */
2630         spin_lock_irq(&sh->stripe_lock);
2631         if (forwrite) {
2632                 bip = &sh->dev[dd_idx].towrite;
2633                 if (*bip == NULL)
2634                         firstwrite = 1;
2635         } else
2636                 bip = &sh->dev[dd_idx].toread;
2637         while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
2638                 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
2639                         goto overlap;
2640                 bip = & (*bip)->bi_next;
2641         }
2642         if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
2643                 goto overlap;
2644
2645         BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2646         if (*bip)
2647                 bi->bi_next = *bip;
2648         *bip = bi;
2649         raid5_inc_bi_active_stripes(bi);
2650
2651         if (forwrite) {
2652                 /* check if page is covered */
2653                 sector_t sector = sh->dev[dd_idx].sector;
2654                 for (bi=sh->dev[dd_idx].towrite;
2655                      sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2656                              bi && bi->bi_iter.bi_sector <= sector;
2657                      bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2658                         if (bio_end_sector(bi) >= sector)
2659                                 sector = bio_end_sector(bi);
2660                 }
2661                 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2662                         set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2663         }
2664
2665         pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2666                 (unsigned long long)(*bip)->bi_iter.bi_sector,
2667                 (unsigned long long)sh->sector, dd_idx);
2668         spin_unlock_irq(&sh->stripe_lock);
2669
2670         if (conf->mddev->bitmap && firstwrite) {
2671                 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2672                                   STRIPE_SECTORS, 0);
2673                 sh->bm_seq = conf->seq_flush+1;
2674                 set_bit(STRIPE_BIT_DELAY, &sh->state);
2675         }
2676         return 1;
2677
2678  overlap:
2679         set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2680         spin_unlock_irq(&sh->stripe_lock);
2681         return 0;
2682 }
2683
2684 static void end_reshape(struct r5conf *conf);
2685
2686 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
2687                             struct stripe_head *sh)
2688 {
2689         int sectors_per_chunk =
2690                 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2691         int dd_idx;
2692         int chunk_offset = sector_div(stripe, sectors_per_chunk);
2693         int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2694
2695         raid5_compute_sector(conf,
2696                              stripe * (disks - conf->max_degraded)
2697                              *sectors_per_chunk + chunk_offset,
2698                              previous,
2699                              &dd_idx, sh);
2700 }
2701
2702 static void
2703 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
2704                                 struct stripe_head_state *s, int disks,
2705                                 struct bio **return_bi)
2706 {
2707         int i;
2708         for (i = disks; i--; ) {
2709                 struct bio *bi;
2710                 int bitmap_end = 0;
2711
2712                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2713                         struct md_rdev *rdev;
2714                         rcu_read_lock();
2715                         rdev = rcu_dereference(conf->disks[i].rdev);
2716                         if (rdev && test_bit(In_sync, &rdev->flags))
2717                                 atomic_inc(&rdev->nr_pending);
2718                         else
2719                                 rdev = NULL;
2720                         rcu_read_unlock();
2721                         if (rdev) {
2722                                 if (!rdev_set_badblocks(
2723                                             rdev,
2724                                             sh->sector,
2725                                             STRIPE_SECTORS, 0))
2726                                         md_error(conf->mddev, rdev);
2727                                 rdev_dec_pending(rdev, conf->mddev);
2728                         }
2729                 }
2730                 spin_lock_irq(&sh->stripe_lock);
2731                 /* fail all writes first */
2732                 bi = sh->dev[i].towrite;
2733                 sh->dev[i].towrite = NULL;
2734                 spin_unlock_irq(&sh->stripe_lock);
2735                 if (bi)
2736                         bitmap_end = 1;
2737
2738                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2739                         wake_up(&conf->wait_for_overlap);
2740
2741                 while (bi && bi->bi_iter.bi_sector <
2742                         sh->dev[i].sector + STRIPE_SECTORS) {
2743                         struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2744                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2745                         if (!raid5_dec_bi_active_stripes(bi)) {
2746                                 md_write_end(conf->mddev);
2747                                 bi->bi_next = *return_bi;
2748                                 *return_bi = bi;
2749                         }
2750                         bi = nextbi;
2751                 }
2752                 if (bitmap_end)
2753                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2754                                 STRIPE_SECTORS, 0, 0);
2755                 bitmap_end = 0;
2756                 /* and fail all 'written' */
2757                 bi = sh->dev[i].written;
2758                 sh->dev[i].written = NULL;
2759                 if (bi) bitmap_end = 1;
2760                 while (bi && bi->bi_iter.bi_sector <
2761                        sh->dev[i].sector + STRIPE_SECTORS) {
2762                         struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2763                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2764                         if (!raid5_dec_bi_active_stripes(bi)) {
2765                                 md_write_end(conf->mddev);
2766                                 bi->bi_next = *return_bi;
2767                                 *return_bi = bi;
2768                         }
2769                         bi = bi2;
2770                 }
2771
2772                 /* fail any reads if this device is non-operational and
2773                  * the data has not reached the cache yet.
2774                  */
2775                 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2776                     (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2777                       test_bit(R5_ReadError, &sh->dev[i].flags))) {
2778                         spin_lock_irq(&sh->stripe_lock);
2779                         bi = sh->dev[i].toread;
2780                         sh->dev[i].toread = NULL;
2781                         spin_unlock_irq(&sh->stripe_lock);
2782                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2783                                 wake_up(&conf->wait_for_overlap);
2784                         while (bi && bi->bi_iter.bi_sector <
2785                                sh->dev[i].sector + STRIPE_SECTORS) {
2786                                 struct bio *nextbi =
2787                                         r5_next_bio(bi, sh->dev[i].sector);
2788                                 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2789                                 if (!raid5_dec_bi_active_stripes(bi)) {
2790                                         bi->bi_next = *return_bi;
2791                                         *return_bi = bi;
2792                                 }
2793                                 bi = nextbi;
2794                         }
2795                 }
2796                 if (bitmap_end)
2797                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2798                                         STRIPE_SECTORS, 0, 0);
2799                 /* If we were in the middle of a write the parity block might
2800                  * still be locked - so just clear all R5_LOCKED flags
2801                  */
2802                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2803         }
2804
2805         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2806                 if (atomic_dec_and_test(&conf->pending_full_writes))
2807                         md_wakeup_thread(conf->mddev->thread);
2808 }
2809
2810 static void
2811 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
2812                    struct stripe_head_state *s)
2813 {
2814         int abort = 0;
2815         int i;
2816
2817         clear_bit(STRIPE_SYNCING, &sh->state);
2818         if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
2819                 wake_up(&conf->wait_for_overlap);
2820         s->syncing = 0;
2821         s->replacing = 0;
2822         /* There is nothing more to do for sync/check/repair.
2823          * Don't even need to abort as that is handled elsewhere
2824          * if needed, and not always wanted e.g. if there is a known
2825          * bad block here.
2826          * For recover/replace we need to record a bad block on all
2827          * non-sync devices, or abort the recovery
2828          */
2829         if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
2830                 /* During recovery devices cannot be removed, so
2831                  * locking and refcounting of rdevs is not needed
2832                  */
2833                 for (i = 0; i < conf->raid_disks; i++) {
2834                         struct md_rdev *rdev = conf->disks[i].rdev;
2835                         if (rdev
2836                             && !test_bit(Faulty, &rdev->flags)
2837                             && !test_bit(In_sync, &rdev->flags)
2838                             && !rdev_set_badblocks(rdev, sh->sector,
2839                                                    STRIPE_SECTORS, 0))
2840                                 abort = 1;
2841                         rdev = conf->disks[i].replacement;
2842                         if (rdev
2843                             && !test_bit(Faulty, &rdev->flags)
2844                             && !test_bit(In_sync, &rdev->flags)
2845                             && !rdev_set_badblocks(rdev, sh->sector,
2846                                                    STRIPE_SECTORS, 0))
2847                                 abort = 1;
2848                 }
2849                 if (abort)
2850                         conf->recovery_disabled =
2851                                 conf->mddev->recovery_disabled;
2852         }
2853         md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
2854 }
2855
2856 static int want_replace(struct stripe_head *sh, int disk_idx)
2857 {
2858         struct md_rdev *rdev;
2859         int rv = 0;
2860         /* Doing recovery so rcu locking not required */
2861         rdev = sh->raid_conf->disks[disk_idx].replacement;
2862         if (rdev
2863             && !test_bit(Faulty, &rdev->flags)
2864             && !test_bit(In_sync, &rdev->flags)
2865             && (rdev->recovery_offset <= sh->sector
2866                 || rdev->mddev->recovery_cp <= sh->sector))
2867                 rv = 1;
2868
2869         return rv;
2870 }
2871
2872 /* fetch_block - checks the given member device to see if its data needs
2873  * to be read or computed to satisfy a request.
2874  *
2875  * Returns 1 when no more member devices need to be checked, otherwise returns
2876  * 0 to tell the loop in handle_stripe_fill to continue
2877  */
2878 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
2879                        int disk_idx, int disks)
2880 {
2881         struct r5dev *dev = &sh->dev[disk_idx];
2882         struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
2883                                   &sh->dev[s->failed_num[1]] };
2884
2885         /* is the data in this block needed, and can we get it? */
2886         if (!test_bit(R5_LOCKED, &dev->flags) &&
2887             !test_bit(R5_UPTODATE, &dev->flags) &&
2888             (dev->toread ||
2889              (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2890              s->syncing || s->expanding ||
2891              (s->replacing && want_replace(sh, disk_idx)) ||
2892              (s->failed >= 1 && fdev[0]->toread) ||
2893              (s->failed >= 2 && fdev[1]->toread) ||
2894              (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
2895               !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
2896              (sh->raid_conf->level == 6 && s->failed && s->to_write))) {
2897                 /* we would like to get this block, possibly by computing it,
2898                  * otherwise read it if the backing disk is insync
2899                  */
2900                 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2901                 BUG_ON(test_bit(R5_Wantread, &dev->flags));
2902                 if ((s->uptodate == disks - 1) &&
2903                     (s->failed && (disk_idx == s->failed_num[0] ||
2904                                    disk_idx == s->failed_num[1]))) {
2905                         /* have disk failed, and we're requested to fetch it;
2906                          * do compute it
2907                          */
2908                         pr_debug("Computing stripe %llu block %d\n",
2909                                (unsigned long long)sh->sector, disk_idx);
2910                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2911                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2912                         set_bit(R5_Wantcompute, &dev->flags);
2913                         sh->ops.target = disk_idx;
2914                         sh->ops.target2 = -1; /* no 2nd target */
2915                         s->req_compute = 1;
2916                         /* Careful: from this point on 'uptodate' is in the eye
2917                          * of raid_run_ops which services 'compute' operations
2918                          * before writes. R5_Wantcompute flags a block that will
2919                          * be R5_UPTODATE by the time it is needed for a
2920                          * subsequent operation.
2921                          */
2922                         s->uptodate++;
2923                         return 1;
2924                 } else if (s->uptodate == disks-2 && s->failed >= 2) {
2925                         /* Computing 2-failure is *very* expensive; only
2926                          * do it if failed >= 2
2927                          */
2928                         int other;
2929                         for (other = disks; other--; ) {
2930                                 if (other == disk_idx)
2931                                         continue;
2932                                 if (!test_bit(R5_UPTODATE,
2933                                       &sh->dev[other].flags))
2934                                         break;
2935                         }
2936                         BUG_ON(other < 0);
2937                         pr_debug("Computing stripe %llu blocks %d,%d\n",
2938                                (unsigned long long)sh->sector,
2939                                disk_idx, other);
2940                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2941                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2942                         set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2943                         set_bit(R5_Wantcompute, &sh->dev[other].flags);
2944                         sh->ops.target = disk_idx;
2945                         sh->ops.target2 = other;
2946                         s->uptodate += 2;
2947                         s->req_compute = 1;
2948                         return 1;
2949                 } else if (test_bit(R5_Insync, &dev->flags)) {
2950                         set_bit(R5_LOCKED, &dev->flags);
2951                         set_bit(R5_Wantread, &dev->flags);
2952                         s->locked++;
2953                         pr_debug("Reading block %d (sync=%d)\n",
2954                                 disk_idx, s->syncing);
2955                 }
2956         }
2957
2958         return 0;
2959 }
2960
2961 /**
2962  * handle_stripe_fill - read or compute data to satisfy pending requests.
2963  */
2964 static void handle_stripe_fill(struct stripe_head *sh,
2965                                struct stripe_head_state *s,
2966                                int disks)
2967 {
2968         int i;
2969
2970         /* look for blocks to read/compute, skip this if a compute
2971          * is already in flight, or if the stripe contents are in the
2972          * midst of changing due to a write
2973          */
2974         if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2975             !sh->reconstruct_state)
2976                 for (i = disks; i--; )
2977                         if (fetch_block(sh, s, i, disks))
2978                                 break;
2979         set_bit(STRIPE_HANDLE, &sh->state);
2980 }
2981
2982
2983 /* handle_stripe_clean_event
2984  * any written block on an uptodate or failed drive can be returned.
2985  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2986  * never LOCKED, so we don't need to test 'failed' directly.
2987  */
2988 static void handle_stripe_clean_event(struct r5conf *conf,
2989         struct stripe_head *sh, int disks, struct bio **return_bi)
2990 {
2991         int i;
2992         struct r5dev *dev;
2993         int discard_pending = 0;
2994
2995         for (i = disks; i--; )
2996                 if (sh->dev[i].written) {
2997                         dev = &sh->dev[i];
2998                         if (!test_bit(R5_LOCKED, &dev->flags) &&
2999                             (test_bit(R5_UPTODATE, &dev->flags) ||
3000                              test_bit(R5_Discard, &dev->flags))) {
3001                                 /* We can return any write requests */
3002                                 struct bio *wbi, *wbi2;
3003                                 pr_debug("Return write for disc %d\n", i);
3004                                 if (test_and_clear_bit(R5_Discard, &dev->flags))
3005                                         clear_bit(R5_UPTODATE, &dev->flags);
3006                                 wbi = dev->written;
3007                                 dev->written = NULL;
3008                                 while (wbi && wbi->bi_iter.bi_sector <
3009                                         dev->sector + STRIPE_SECTORS) {
3010                                         wbi2 = r5_next_bio(wbi, dev->sector);
3011                                         if (!raid5_dec_bi_active_stripes(wbi)) {
3012                                                 md_write_end(conf->mddev);
3013                                                 wbi->bi_next = *return_bi;
3014                                                 *return_bi = wbi;
3015                                         }
3016                                         wbi = wbi2;
3017                                 }
3018                                 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3019                                                 STRIPE_SECTORS,
3020                                          !test_bit(STRIPE_DEGRADED, &sh->state),
3021                                                 0);
3022                         } else if (test_bit(R5_Discard, &dev->flags))
3023                                 discard_pending = 1;
3024                 }
3025         if (!discard_pending &&
3026             test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3027                 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3028                 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3029                 if (sh->qd_idx >= 0) {
3030                         clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3031                         clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3032                 }
3033                 /* now that discard is done we can proceed with any sync */
3034                 clear_bit(STRIPE_DISCARD, &sh->state);
3035                 /*
3036                  * SCSI discard will change some bio fields and the stripe has
3037                  * no updated data, so remove it from hash list and the stripe
3038                  * will be reinitialized
3039                  */
3040                 spin_lock_irq(&conf->device_lock);
3041                 remove_hash(sh);
3042                 spin_unlock_irq(&conf->device_lock);
3043                 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3044                         set_bit(STRIPE_HANDLE, &sh->state);
3045
3046         }
3047
3048         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3049                 if (atomic_dec_and_test(&conf->pending_full_writes))
3050                         md_wakeup_thread(conf->mddev->thread);
3051 }
3052
3053 static void handle_stripe_dirtying(struct r5conf *conf,
3054                                    struct stripe_head *sh,
3055                                    struct stripe_head_state *s,
3056                                    int disks)
3057 {
3058         int rmw = 0, rcw = 0, i;
3059         sector_t recovery_cp = conf->mddev->recovery_cp;
3060
3061         /* RAID6 requires 'rcw' in current implementation.
3062          * Otherwise, check whether resync is now happening or should start.
3063          * If yes, then the array is dirty (after unclean shutdown or
3064          * initial creation), so parity in some stripes might be inconsistent.
3065          * In this case, we need to always do reconstruct-write, to ensure
3066          * that in case of drive failure or read-error correction, we
3067          * generate correct data from the parity.
3068          */
3069         if (conf->max_degraded == 2 ||
3070             (recovery_cp < MaxSector && sh->sector >= recovery_cp)) {
3071                 /* Calculate the real rcw later - for now make it
3072                  * look like rcw is cheaper
3073                  */
3074                 rcw = 1; rmw = 2;
3075                 pr_debug("force RCW max_degraded=%u, recovery_cp=%llu sh->sector=%llu\n",
3076                          conf->max_degraded, (unsigned long long)recovery_cp,
3077                          (unsigned long long)sh->sector);
3078         } else for (i = disks; i--; ) {
3079                 /* would I have to read this buffer for read_modify_write */
3080                 struct r5dev *dev = &sh->dev[i];
3081                 if ((dev->towrite || i == sh->pd_idx) &&
3082                     !test_bit(R5_LOCKED, &dev->flags) &&
3083                     !(test_bit(R5_UPTODATE, &dev->flags) ||
3084                       test_bit(R5_Wantcompute, &dev->flags))) {
3085                         if (test_bit(R5_Insync, &dev->flags))
3086                                 rmw++;
3087                         else
3088                                 rmw += 2*disks;  /* cannot read it */
3089                 }
3090                 /* Would I have to read this buffer for reconstruct_write */
3091                 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
3092                     !test_bit(R5_LOCKED, &dev->flags) &&
3093                     !(test_bit(R5_UPTODATE, &dev->flags) ||
3094                     test_bit(R5_Wantcompute, &dev->flags))) {
3095                         if (test_bit(R5_Insync, &dev->flags)) rcw++;
3096                         else
3097                                 rcw += 2*disks;
3098                 }
3099         }
3100         pr_debug("for sector %llu, rmw=%d rcw=%d\n",
3101                 (unsigned long long)sh->sector, rmw, rcw);
3102         set_bit(STRIPE_HANDLE, &sh->state);
3103         if (rmw < rcw && rmw > 0) {
3104                 /* prefer read-modify-write, but need to get some data */
3105                 if (conf->mddev->queue)
3106                         blk_add_trace_msg(conf->mddev->queue,
3107                                           "raid5 rmw %llu %d",
3108                                           (unsigned long long)sh->sector, rmw);
3109                 for (i = disks; i--; ) {
3110                         struct r5dev *dev = &sh->dev[i];
3111                         if ((dev->towrite || i == sh->pd_idx) &&
3112                             !test_bit(R5_LOCKED, &dev->flags) &&
3113                             !(test_bit(R5_UPTODATE, &dev->flags) ||
3114                             test_bit(R5_Wantcompute, &dev->flags)) &&
3115                             test_bit(R5_Insync, &dev->flags)) {
3116                                 if (
3117                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
3118                                         pr_debug("Read_old block "
3119                                                  "%d for r-m-w\n", i);
3120                                         set_bit(R5_LOCKED, &dev->flags);
3121                                         set_bit(R5_Wantread, &dev->flags);
3122                                         s->locked++;
3123                                 } else {
3124                                         set_bit(STRIPE_DELAYED, &sh->state);
3125                                         set_bit(STRIPE_HANDLE, &sh->state);
3126                                 }
3127                         }
3128                 }
3129         }
3130         if (rcw <= rmw && rcw > 0) {
3131                 /* want reconstruct write, but need to get some data */
3132                 int qread =0;
3133                 rcw = 0;
3134                 for (i = disks; i--; ) {
3135                         struct r5dev *dev = &sh->dev[i];
3136                         if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3137                             i != sh->pd_idx && i != sh->qd_idx &&
3138                             !test_bit(R5_LOCKED, &dev->flags) &&
3139                             !(test_bit(R5_UPTODATE, &dev->flags) ||
3140                               test_bit(R5_Wantcompute, &dev->flags))) {
3141                                 rcw++;
3142                                 if (!test_bit(R5_Insync, &dev->flags))
3143                                         continue; /* it's a failed drive */
3144                                 if (
3145                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
3146                                         pr_debug("Read_old block "
3147                                                 "%d for Reconstruct\n", i);
3148                                         set_bit(R5_LOCKED, &dev->flags);
3149                                         set_bit(R5_Wantread, &dev->flags);
3150                                         s->locked++;
3151                                         qread++;
3152                                 } else {
3153                                         set_bit(STRIPE_DELAYED, &sh->state);
3154                                         set_bit(STRIPE_HANDLE, &sh->state);
3155                                 }
3156                         }
3157                 }
3158                 if (rcw && conf->mddev->queue)
3159                         blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3160                                           (unsigned long long)sh->sector,
3161                                           rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
3162         }
3163         /* now if nothing is locked, and if we have enough data,
3164          * we can start a write request
3165          */
3166         /* since handle_stripe can be called at any time we need to handle the
3167          * case where a compute block operation has been submitted and then a
3168          * subsequent call wants to start a write request.  raid_run_ops only
3169          * handles the case where compute block and reconstruct are requested
3170          * simultaneously.  If this is not the case then new writes need to be
3171          * held off until the compute completes.
3172          */
3173         if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
3174             (s->locked == 0 && (rcw == 0 || rmw == 0) &&
3175             !test_bit(STRIPE_BIT_DELAY, &sh->state)))
3176                 schedule_reconstruction(sh, s, rcw == 0, 0);
3177 }
3178
3179 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
3180                                 struct stripe_head_state *s, int disks)
3181 {
3182         struct r5dev *dev = NULL;
3183
3184         set_bit(STRIPE_HANDLE, &sh->state);
3185
3186         switch (sh->check_state) {
3187         case check_state_idle:
3188                 /* start a new check operation if there are no failures */
3189                 if (s->failed == 0) {
3190                         BUG_ON(s->uptodate != disks);
3191                         sh->check_state = check_state_run;
3192                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
3193                         clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3194                         s->uptodate--;
3195                         break;
3196                 }
3197                 dev = &sh->dev[s->failed_num[0]];
3198                 /* fall through */
3199         case check_state_compute_result:
3200                 sh->check_state = check_state_idle;
3201                 if (!dev)
3202                         dev = &sh->dev[sh->pd_idx];
3203
3204                 /* check that a write has not made the stripe insync */
3205                 if (test_bit(STRIPE_INSYNC, &sh->state))
3206                         break;
3207
3208                 /* either failed parity check, or recovery is happening */
3209                 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3210                 BUG_ON(s->uptodate != disks);
3211
3212                 set_bit(R5_LOCKED, &dev->flags);
3213                 s->locked++;
3214                 set_bit(R5_Wantwrite, &dev->flags);
3215
3216                 clear_bit(STRIPE_DEGRADED, &sh->state);
3217                 set_bit(STRIPE_INSYNC, &sh->state);
3218                 break;
3219         case check_state_run:
3220                 break; /* we will be called again upon completion */
3221         case check_state_check_result:
3222                 sh->check_state = check_state_idle;
3223
3224                 /* if a failure occurred during the check operation, leave
3225                  * STRIPE_INSYNC not set and let the stripe be handled again
3226                  */
3227                 if (s->failed)
3228                         break;
3229
3230                 /* handle a successful check operation, if parity is correct
3231                  * we are done.  Otherwise update the mismatch count and repair
3232                  * parity if !MD_RECOVERY_CHECK
3233                  */
3234                 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
3235                         /* parity is correct (on disc,
3236                          * not in buffer any more)
3237                          */
3238                         set_bit(STRIPE_INSYNC, &sh->state);
3239                 else {
3240                         atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3241                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3242                                 /* don't try to repair!! */
3243                                 set_bit(STRIPE_INSYNC, &sh->state);
3244                         else {
3245                                 sh->check_state = check_state_compute_run;
3246                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3247                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3248                                 set_bit(R5_Wantcompute,
3249                                         &sh->dev[sh->pd_idx].flags);
3250                                 sh->ops.target = sh->pd_idx;
3251                                 sh->ops.target2 = -1;
3252                                 s->uptodate++;
3253                         }
3254                 }
3255                 break;
3256         case check_state_compute_run:
3257                 break;
3258         default:
3259                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3260                        __func__, sh->check_state,
3261                        (unsigned long long) sh->sector);
3262                 BUG();
3263         }
3264 }
3265
3266
3267 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3268                                   struct stripe_head_state *s,
3269                                   int disks)
3270 {
3271         int pd_idx = sh->pd_idx;
3272         int qd_idx = sh->qd_idx;
3273         struct r5dev *dev;
3274
3275         set_bit(STRIPE_HANDLE, &sh->state);
3276
3277         BUG_ON(s->failed > 2);
3278
3279         /* Want to check and possibly repair P and Q.
3280          * However there could be one 'failed' device, in which
3281          * case we can only check one of them, possibly using the
3282          * other to generate missing data
3283          */
3284
3285         switch (sh->check_state) {
3286         case check_state_idle:
3287                 /* start a new check operation if there are < 2 failures */
3288                 if (s->failed == s->q_failed) {
3289                         /* The only possible failed device holds Q, so it
3290                          * makes sense to check P (If anything else were failed,
3291                          * we would have used P to recreate it).
3292                          */
3293                         sh->check_state = check_state_run;
3294                 }
3295                 if (!s->q_failed && s->failed < 2) {
3296                         /* Q is not failed, and we didn't use it to generate
3297                          * anything, so it makes sense to check it
3298                          */
3299                         if (sh->check_state == check_state_run)
3300                                 sh->check_state = check_state_run_pq;
3301                         else
3302                                 sh->check_state = check_state_run_q;
3303                 }
3304
3305                 /* discard potentially stale zero_sum_result */
3306                 sh->ops.zero_sum_result = 0;
3307
3308                 if (sh->check_state == check_state_run) {
3309                         /* async_xor_zero_sum destroys the contents of P */
3310                         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3311                         s->uptodate--;
3312                 }
3313                 if (sh->check_state >= check_state_run &&
3314                     sh->check_state <= check_state_run_pq) {
3315                         /* async_syndrome_zero_sum preserves P and Q, so
3316                          * no need to mark them !uptodate here
3317                          */
3318                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
3319                         break;
3320                 }
3321
3322                 /* we have 2-disk failure */
3323                 BUG_ON(s->failed != 2);
3324                 /* fall through */
3325         case check_state_compute_result:
3326                 sh->check_state = check_state_idle;
3327
3328                 /* check that a write has not made the stripe insync */
3329                 if (test_bit(STRIPE_INSYNC, &sh->state))
3330                         break;
3331
3332                 /* now write out any block on a failed drive,
3333                  * or P or Q if they were recomputed
3334                  */
3335                 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3336                 if (s->failed == 2) {
3337                         dev = &sh->dev[s->failed_num[1]];
3338                         s->locked++;
3339                         set_bit(R5_LOCKED, &dev->flags);
3340                         set_bit(R5_Wantwrite, &dev->flags);
3341                 }
3342                 if (s->failed >= 1) {
3343                         dev = &sh->dev[s->failed_num[0]];
3344                         s->locked++;
3345                         set_bit(R5_LOCKED, &dev->flags);
3346                         set_bit(R5_Wantwrite, &dev->flags);
3347                 }
3348                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3349                         dev = &sh->dev[pd_idx];
3350                         s->locked++;
3351                         set_bit(R5_LOCKED, &dev->flags);
3352                         set_bit(R5_Wantwrite, &dev->flags);
3353                 }
3354                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3355                         dev = &sh->dev[qd_idx];
3356                         s->locked++;
3357                         set_bit(R5_LOCKED, &dev->flags);
3358                         set_bit(R5_Wantwrite, &dev->flags);
3359                 }
3360                 clear_bit(STRIPE_DEGRADED, &sh->state);
3361
3362                 set_bit(STRIPE_INSYNC, &sh->state);
3363                 break;
3364         case check_state_run:
3365         case check_state_run_q:
3366         case check_state_run_pq:
3367                 break; /* we will be called again upon completion */
3368         case check_state_check_result:
3369                 sh->check_state = check_state_idle;
3370
3371                 /* handle a successful check operation, if parity is correct
3372                  * we are done.  Otherwise update the mismatch count and repair
3373                  * parity if !MD_RECOVERY_CHECK
3374                  */
3375                 if (sh->ops.zero_sum_result == 0) {
3376                         /* both parities are correct */
3377                         if (!s->failed)
3378                                 set_bit(STRIPE_INSYNC, &sh->state);
3379                         else {
3380                                 /* in contrast to the raid5 case we can validate
3381                                  * parity, but still have a failure to write
3382                                  * back
3383                                  */
3384                                 sh->check_state = check_state_compute_result;
3385                                 /* Returning at this point means that we may go
3386                                  * off and bring p and/or q uptodate again so
3387                                  * we make sure to check zero_sum_result again
3388                                  * to verify if p or q need writeback
3389                                  */
3390                         }
3391                 } else {
3392                         atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3393                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3394                                 /* don't try to repair!! */
3395                                 set_bit(STRIPE_INSYNC, &sh->state);
3396                         else {
3397                                 int *target = &sh->ops.target;
3398
3399                                 sh->ops.target = -1;
3400                                 sh->ops.target2 = -1;
3401                                 sh->check_state = check_state_compute_run;
3402                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3403                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3404                                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3405                                         set_bit(R5_Wantcompute,
3406                                                 &sh->dev[pd_idx].flags);
3407                                         *target = pd_idx;
3408                                         target = &sh->ops.target2;
3409                                         s->uptodate++;
3410                                 }
3411                                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3412                                         set_bit(R5_Wantcompute,
3413                                                 &sh->dev[qd_idx].flags);
3414                                         *target = qd_idx;
3415                                         s->uptodate++;
3416                                 }
3417                         }
3418                 }
3419                 break;
3420         case check_state_compute_run:
3421                 break;
3422         default:
3423                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3424                        __func__, sh->check_state,
3425                        (unsigned long long) sh->sector);
3426                 BUG();
3427         }
3428 }
3429
3430 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3431 {
3432         int i;
3433
3434         /* We have read all the blocks in this stripe and now we need to
3435          * copy some of them into a target stripe for expand.
3436          */
3437         struct dma_async_tx_descriptor *tx = NULL;
3438         clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3439         for (i = 0; i < sh->disks; i++)
3440                 if (i != sh->pd_idx && i != sh->qd_idx) {
3441                         int dd_idx, j;
3442                         struct stripe_head *sh2;
3443                         struct async_submit_ctl submit;
3444
3445                         sector_t bn = compute_blocknr(sh, i, 1);
3446                         sector_t s = raid5_compute_sector(conf, bn, 0,
3447                                                           &dd_idx, NULL);
3448                         sh2 = get_active_stripe(conf, s, 0, 1, 1);
3449                         if (sh2 == NULL)
3450                                 /* so far only the early blocks of this stripe
3451                                  * have been requested.  When later blocks
3452                                  * get requested, we will try again
3453                                  */
3454                                 continue;
3455                         if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3456                            test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3457                                 /* must have already done this block */
3458                                 release_stripe(sh2);
3459                                 continue;
3460                         }
3461
3462                         /* place all the copies on one channel */
3463                         init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3464                         tx = async_memcpy(sh2->dev[dd_idx].page,
3465                                           sh->dev[i].page, 0, 0, STRIPE_SIZE,
3466                                           &submit);
3467
3468                         set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3469                         set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3470                         for (j = 0; j < conf->raid_disks; j++)
3471                                 if (j != sh2->pd_idx &&
3472                                     j != sh2->qd_idx &&
3473                                     !test_bit(R5_Expanded, &sh2->dev[j].flags))
3474                                         break;
3475                         if (j == conf->raid_disks) {
3476                                 set_bit(STRIPE_EXPAND_READY, &sh2->state);
3477                                 set_bit(STRIPE_HANDLE, &sh2->state);
3478                         }
3479                         release_stripe(sh2);
3480
3481                 }
3482         /* done submitting copies, wait for them to complete */
3483         async_tx_quiesce(&tx);
3484 }
3485
3486 /*
3487  * handle_stripe - do things to a stripe.
3488  *
3489  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3490  * state of various bits to see what needs to be done.
3491  * Possible results:
3492  *    return some read requests which now have data
3493  *    return some write requests which are safely on storage
3494  *    schedule a read on some buffers
3495  *    schedule a write of some buffers
3496  *    return confirmation of parity correctness
3497  *
3498  */
3499
3500 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
3501 {
3502         struct r5conf *conf = sh->raid_conf;
3503         int disks = sh->disks;
3504         struct r5dev *dev;
3505         int i;
3506         int do_recovery = 0;
3507
3508         memset(s, 0, sizeof(*s));
3509
3510         s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3511         s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3512         s->failed_num[0] = -1;
3513         s->failed_num[1] = -1;
3514
3515         /* Now to look around and see what can be done */
3516         rcu_read_lock();
3517         for (i=disks; i--; ) {
3518                 struct md_rdev *rdev;
3519                 sector_t first_bad;
3520                 int bad_sectors;
3521                 int is_bad = 0;
3522
3523                 dev = &sh->dev[i];
3524
3525                 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3526                          i, dev->flags,
3527                          dev->toread, dev->towrite, dev->written);
3528                 /* maybe we can reply to a read
3529                  *
3530                  * new wantfill requests are only permitted while
3531                  * ops_complete_biofill is guaranteed to be inactive
3532                  */
3533                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3534                     !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3535                         set_bit(R5_Wantfill, &dev->flags);
3536
3537                 /* now count some things */
3538                 if (test_bit(R5_LOCKED, &dev->flags))
3539                         s->locked++;
3540                 if (test_bit(R5_UPTODATE, &dev->flags))
3541                         s->uptodate++;
3542                 if (test_bit(R5_Wantcompute, &dev->flags)) {
3543                         s->compute++;
3544                         BUG_ON(s->compute > 2);
3545                 }
3546
3547                 if (test_bit(R5_Wantfill, &dev->flags))
3548                         s->to_fill++;
3549                 else if (dev->toread)
3550                         s->to_read++;
3551                 if (dev->towrite) {
3552                         s->to_write++;
3553                         if (!test_bit(R5_OVERWRITE, &dev->flags))
3554                                 s->non_overwrite++;
3555                 }
3556                 if (dev->written)
3557                         s->written++;
3558                 /* Prefer to use the replacement for reads, but only
3559                  * if it is recovered enough and has no bad blocks.
3560                  */
3561                 rdev = rcu_dereference(conf->disks[i].replacement);
3562                 if (rdev && !test_bit(Faulty, &rdev->flags) &&
3563                     rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
3564                     !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3565                                  &first_bad, &bad_sectors))
3566                         set_bit(R5_ReadRepl, &dev->flags);
3567                 else {
3568                         if (rdev)
3569                                 set_bit(R5_NeedReplace, &dev->flags);
3570                         rdev = rcu_dereference(conf->disks[i].rdev);
3571                         clear_bit(R5_ReadRepl, &dev->flags);
3572                 }
3573                 if (rdev && test_bit(Faulty, &rdev->flags))
3574                         rdev = NULL;
3575                 if (rdev) {
3576                         is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3577                                              &first_bad, &bad_sectors);
3578                         if (s->blocked_rdev == NULL
3579                             && (test_bit(Blocked, &rdev->flags)
3580                                 || is_bad < 0)) {
3581                                 if (is_bad < 0)
3582                                         set_bit(BlockedBadBlocks,
3583                                                 &rdev->flags);
3584                                 s->blocked_rdev = rdev;
3585                                 atomic_inc(&rdev->nr_pending);
3586                         }
3587                 }
3588                 clear_bit(R5_Insync, &dev->flags);
3589                 if (!rdev)
3590                         /* Not in-sync */;
3591                 else if (is_bad) {
3592                         /* also not in-sync */
3593                         if (!test_bit(WriteErrorSeen, &rdev->flags) &&
3594                             test_bit(R5_UPTODATE, &dev->flags)) {
3595                                 /* treat as in-sync, but with a read error
3596                                  * which we can now try to correct
3597                                  */
3598                                 set_bit(R5_Insync, &dev->flags);
3599                                 set_bit(R5_ReadError, &dev->flags);
3600                         }
3601                 } else if (test_bit(In_sync, &rdev->flags))
3602                         set_bit(R5_Insync, &dev->flags);
3603                 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3604                         /* in sync if before recovery_offset */
3605                         set_bit(R5_Insync, &dev->flags);
3606                 else if (test_bit(R5_UPTODATE, &dev->flags) &&
3607                          test_bit(R5_Expanded, &dev->flags))
3608                         /* If we've reshaped into here, we assume it is Insync.
3609                          * We will shortly update recovery_offset to make
3610                          * it official.
3611                          */
3612                         set_bit(R5_Insync, &dev->flags);
3613
3614                 if (rdev && test_bit(R5_WriteError, &dev->flags)) {
3615                         /* This flag does not apply to '.replacement'
3616                          * only to .rdev, so make sure to check that*/
3617                         struct md_rdev *rdev2 = rcu_dereference(
3618                                 conf->disks[i].rdev);
3619                         if (rdev2 == rdev)
3620                                 clear_bit(R5_Insync, &dev->flags);
3621                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3622                                 s->handle_bad_blocks = 1;
3623                                 atomic_inc(&rdev2->nr_pending);
3624                         } else
3625                                 clear_bit(R5_WriteError, &dev->flags);
3626                 }
3627                 if (rdev && test_bit(R5_MadeGood, &dev->flags)) {
3628                         /* This flag does not apply to '.replacement'
3629                          * only to .rdev, so make sure to check that*/
3630                         struct md_rdev *rdev2 = rcu_dereference(
3631                                 conf->disks[i].rdev);
3632                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3633                                 s->handle_bad_blocks = 1;
3634                                 atomic_inc(&rdev2->nr_pending);
3635                         } else
3636                                 clear_bit(R5_MadeGood, &dev->flags);
3637                 }
3638                 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
3639                         struct md_rdev *rdev2 = rcu_dereference(
3640                                 conf->disks[i].replacement);
3641                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3642                                 s->handle_bad_blocks = 1;
3643                                 atomic_inc(&rdev2->nr_pending);
3644                         } else
3645                                 clear_bit(R5_MadeGoodRepl, &dev->flags);
3646                 }
3647                 if (!test_bit(R5_Insync, &dev->flags)) {
3648                         /* The ReadError flag will just be confusing now */
3649                         clear_bit(R5_ReadError, &dev->flags);
3650                         clear_bit(R5_ReWrite, &dev->flags);
3651                 }
3652                 if (test_bit(R5_ReadError, &dev->flags))
3653                         clear_bit(R5_Insync, &dev->flags);
3654                 if (!test_bit(R5_Insync, &dev->flags)) {
3655                         if (s->failed < 2)
3656                                 s->failed_num[s->failed] = i;
3657                         s->failed++;
3658                         if (rdev && !test_bit(Faulty, &rdev->flags))
3659                                 do_recovery = 1;
3660                 }
3661         }
3662         if (test_bit(STRIPE_SYNCING, &sh->state)) {
3663                 /* If there is a failed device being replaced,
3664                  *     we must be recovering.
3665                  * else if we are after recovery_cp, we must be syncing
3666                  * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
3667                  * else we can only be replacing
3668                  * sync and recovery both need to read all devices, and so
3669                  * use the same flag.
3670                  */
3671                 if (do_recovery ||
3672                     sh->sector >= conf->mddev->recovery_cp ||
3673                     test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
3674                         s->syncing = 1;
3675                 else
3676                         s->replacing = 1;
3677         }
3678         rcu_read_unlock();
3679 }
3680
3681 static void handle_stripe(struct stripe_head *sh)
3682 {
3683         struct stripe_head_state s;
3684         struct r5conf *conf = sh->raid_conf;
3685         int i;
3686         int prexor;
3687         int disks = sh->disks;
3688         struct r5dev *pdev, *qdev;
3689
3690         clear_bit(STRIPE_HANDLE, &sh->state);
3691         if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
3692                 /* already being handled, ensure it gets handled
3693                  * again when current action finishes */
3694                 set_bit(STRIPE_HANDLE, &sh->state);
3695                 return;
3696         }
3697
3698         if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3699                 spin_lock(&sh->stripe_lock);
3700                 /* Cannot process 'sync' concurrently with 'discard' */
3701                 if (!test_bit(STRIPE_DISCARD, &sh->state) &&
3702                     test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3703                         set_bit(STRIPE_SYNCING, &sh->state);
3704                         clear_bit(STRIPE_INSYNC, &sh->state);
3705                         clear_bit(STRIPE_REPLACED, &sh->state);
3706                 }
3707                 spin_unlock(&sh->stripe_lock);
3708         }
3709         clear_bit(STRIPE_DELAYED, &sh->state);
3710
3711         pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3712                 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3713                (unsigned long long)sh->sector, sh->state,
3714                atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
3715                sh->check_state, sh->reconstruct_state);
3716
3717         analyse_stripe(sh, &s);
3718
3719         if (s.handle_bad_blocks) {
3720                 set_bit(STRIPE_HANDLE, &sh->state);
3721                 goto finish;
3722         }
3723
3724         if (unlikely(s.blocked_rdev)) {
3725                 if (s.syncing || s.expanding || s.expanded ||
3726                     s.replacing || s.to_write || s.written) {
3727                         set_bit(STRIPE_HANDLE, &sh->state);
3728                         goto finish;
3729                 }
3730                 /* There is nothing for the blocked_rdev to block */
3731                 rdev_dec_pending(s.blocked_rdev, conf->mddev);
3732                 s.blocked_rdev = NULL;
3733         }
3734
3735         if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3736                 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3737                 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3738         }
3739
3740         pr_debug("locked=%d uptodate=%d to_read=%d"
3741                " to_write=%d failed=%d failed_num=%d,%d\n",
3742                s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3743                s.failed_num[0], s.failed_num[1]);
3744         /* check if the array has lost more than max_degraded devices and,
3745          * if so, some requests might need to be failed.
3746          */
3747         if (s.failed > conf->max_degraded) {
3748                 sh->check_state = 0;
3749                 sh->reconstruct_state = 0;
3750                 if (s.to_read+s.to_write+s.written)
3751                         handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
3752                 if (s.syncing + s.replacing)
3753                         handle_failed_sync(conf, sh, &s);
3754         }
3755
3756         /* Now we check to see if any write operations have recently
3757          * completed
3758          */
3759         prexor = 0;
3760         if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3761                 prexor = 1;
3762         if (sh->reconstruct_state == reconstruct_state_drain_result ||
3763             sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3764                 sh->reconstruct_state = reconstruct_state_idle;
3765
3766                 /* All the 'written' buffers and the parity block are ready to
3767                  * be written back to disk
3768                  */
3769                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
3770                        !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
3771                 BUG_ON(sh->qd_idx >= 0 &&
3772                        !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
3773                        !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
3774                 for (i = disks; i--; ) {
3775                         struct r5dev *dev = &sh->dev[i];
3776                         if (test_bit(R5_LOCKED, &dev->flags) &&
3777                                 (i == sh->pd_idx || i == sh->qd_idx ||
3778                                  dev->written)) {
3779                                 pr_debug("Writing block %d\n", i);
3780                                 set_bit(R5_Wantwrite, &dev->flags);
3781                                 if (prexor)
3782                                         continue;
3783                                 if (!test_bit(R5_Insync, &dev->flags) ||
3784                                     ((i == sh->pd_idx || i == sh->qd_idx)  &&
3785                                      s.failed == 0))
3786                                         set_bit(STRIPE_INSYNC, &sh->state);
3787                         }
3788                 }
3789                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3790                         s.dec_preread_active = 1;
3791         }
3792
3793         /*
3794          * might be able to return some write requests if the parity blocks
3795          * are safe, or on a failed drive
3796          */
3797         pdev = &sh->dev[sh->pd_idx];
3798         s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
3799                 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
3800         qdev = &sh->dev[sh->qd_idx];
3801         s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
3802                 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
3803                 || conf->level < 6;
3804
3805         if (s.written &&
3806             (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3807                              && !test_bit(R5_LOCKED, &pdev->flags)
3808                              && (test_bit(R5_UPTODATE, &pdev->flags) ||
3809                                  test_bit(R5_Discard, &pdev->flags))))) &&
3810             (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3811                              && !test_bit(R5_LOCKED, &qdev->flags)
3812                              && (test_bit(R5_UPTODATE, &qdev->flags) ||
3813                                  test_bit(R5_Discard, &qdev->flags))))))
3814                 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
3815
3816         /* Now we might consider reading some blocks, either to check/generate
3817          * parity, or to satisfy requests
3818          * or to load a block that is being partially written.
3819          */
3820         if (s.to_read || s.non_overwrite
3821             || (conf->level == 6 && s.to_write && s.failed)
3822             || (s.syncing && (s.uptodate + s.compute < disks))
3823             || s.replacing
3824             || s.expanding)
3825                 handle_stripe_fill(sh, &s, disks);
3826
3827         /* Now to consider new write requests and what else, if anything
3828          * should be read.  We do not handle new writes when:
3829          * 1/ A 'write' operation (copy+xor) is already in flight.
3830          * 2/ A 'check' operation is in flight, as it may clobber the parity
3831          *    block.
3832          */
3833         if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3834                 handle_stripe_dirtying(conf, sh, &s, disks);
3835
3836         /* maybe we need to check and possibly fix the parity for this stripe
3837          * Any reads will already have been scheduled, so we just see if enough
3838          * data is available.  The parity check is held off while parity
3839          * dependent operations are in flight.
3840          */
3841         if (sh->check_state ||
3842             (s.syncing && s.locked == 0 &&
3843              !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3844              !test_bit(STRIPE_INSYNC, &sh->state))) {
3845                 if (conf->level == 6)
3846                         handle_parity_checks6(conf, sh, &s, disks);
3847                 else
3848                         handle_parity_checks5(conf, sh, &s, disks);
3849         }
3850
3851         if ((s.replacing || s.syncing) && s.locked == 0
3852             && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
3853             && !test_bit(STRIPE_REPLACED, &sh->state)) {
3854                 /* Write out to replacement devices where possible */
3855                 for (i = 0; i < conf->raid_disks; i++)
3856                         if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
3857                                 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
3858                                 set_bit(R5_WantReplace, &sh->dev[i].flags);
3859                                 set_bit(R5_LOCKED, &sh->dev[i].flags);
3860                                 s.locked++;
3861                         }
3862                 if (s.replacing)
3863                         set_bit(STRIPE_INSYNC, &sh->state);
3864                 set_bit(STRIPE_REPLACED, &sh->state);
3865         }
3866         if ((s.syncing || s.replacing) && s.locked == 0 &&
3867             !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3868             test_bit(STRIPE_INSYNC, &sh->state)) {
3869                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3870                 clear_bit(STRIPE_SYNCING, &sh->state);
3871                 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3872                         wake_up(&conf->wait_for_overlap);
3873         }
3874
3875         /* If the failed drives are just a ReadError, then we might need
3876          * to progress the repair/check process
3877          */
3878         if (s.failed <= conf->max_degraded && !conf->mddev->ro)
3879                 for (i = 0; i < s.failed; i++) {
3880                         struct r5dev *dev = &sh->dev[s.failed_num[i]];
3881                         if (test_bit(R5_ReadError, &dev->flags)
3882                             && !test_bit(R5_LOCKED, &dev->flags)
3883                             && test_bit(R5_UPTODATE, &dev->flags)
3884                                 ) {
3885                                 if (!test_bit(R5_ReWrite, &dev->flags)) {
3886                                         set_bit(R5_Wantwrite, &dev->flags);
3887                                         set_bit(R5_ReWrite, &dev->flags);
3888                                         set_bit(R5_LOCKED, &dev->flags);
3889                                         s.locked++;
3890                                 } else {
3891                                         /* let's read it back */
3892                                         set_bit(R5_Wantread, &dev->flags);
3893                                         set_bit(R5_LOCKED, &dev->flags);
3894                                         s.locked++;
3895                                 }
3896                         }
3897                 }
3898
3899
3900         /* Finish reconstruct operations initiated by the expansion process */
3901         if (sh->reconstruct_state == reconstruct_state_result) {
3902                 struct stripe_head *sh_src
3903                         = get_active_stripe(conf, sh->sector, 1, 1, 1);
3904                 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
3905                         /* sh cannot be written until sh_src has been read.
3906                          * so arrange for sh to be delayed a little
3907                          */
3908                         set_bit(STRIPE_DELAYED, &sh->state);
3909                         set_bit(STRIPE_HANDLE, &sh->state);
3910                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3911                                               &sh_src->state))
3912                                 atomic_inc(&conf->preread_active_stripes);
3913                         release_stripe(sh_src);
3914                         goto finish;
3915                 }
3916                 if (sh_src)
3917                         release_stripe(sh_src);
3918
3919                 sh->reconstruct_state = reconstruct_state_idle;
3920                 clear_bit(STRIPE_EXPANDING, &sh->state);
3921                 for (i = conf->raid_disks; i--; ) {
3922                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
3923                         set_bit(R5_LOCKED, &sh->dev[i].flags);
3924                         s.locked++;
3925                 }
3926         }
3927
3928         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3929             !sh->reconstruct_state) {
3930                 /* Need to write out all blocks after computing parity */
3931                 sh->disks = conf->raid_disks;
3932                 stripe_set_idx(sh->sector, conf, 0, sh);
3933                 schedule_reconstruction(sh, &s, 1, 1);
3934         } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3935                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3936                 atomic_dec(&conf->reshape_stripes);
3937                 wake_up(&conf->wait_for_overlap);
3938                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3939         }
3940
3941         if (s.expanding && s.locked == 0 &&
3942             !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3943                 handle_stripe_expansion(conf, sh);
3944
3945 finish:
3946         /* wait for this device to become unblocked */
3947         if (unlikely(s.blocked_rdev)) {
3948                 if (conf->mddev->external)
3949                         md_wait_for_blocked_rdev(s.blocked_rdev,
3950                                                  conf->mddev);
3951                 else
3952                         /* Internal metadata will immediately
3953                          * be written by raid5d, so we don't
3954                          * need to wait here.
3955                          */
3956                         rdev_dec_pending(s.blocked_rdev,
3957                                          conf->mddev);
3958         }
3959
3960         if (s.handle_bad_blocks)
3961                 for (i = disks; i--; ) {
3962                         struct md_rdev *rdev;
3963                         struct r5dev *dev = &sh->dev[i];
3964                         if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
3965                                 /* We own a safe reference to the rdev */
3966                                 rdev = conf->disks[i].rdev;
3967                                 if (!rdev_set_badblocks(rdev, sh->sector,
3968                                                         STRIPE_SECTORS, 0))
3969                                         md_error(conf->mddev, rdev);
3970                                 rdev_dec_pending(rdev, conf->mddev);
3971                         }
3972                         if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
3973                                 rdev = conf->disks[i].rdev;
3974                                 rdev_clear_badblocks(rdev, sh->sector,
3975                                                      STRIPE_SECTORS, 0);
3976                                 rdev_dec_pending(rdev, conf->mddev);
3977                         }
3978                         if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
3979                                 rdev = conf->disks[i].replacement;
3980                                 if (!rdev)
3981                                         /* rdev have been moved down */
3982                                         rdev = conf->disks[i].rdev;
3983                                 rdev_clear_badblocks(rdev, sh->sector,
3984                                                      STRIPE_SECTORS, 0);
3985                                 rdev_dec_pending(rdev, conf->mddev);
3986                         }
3987                 }
3988
3989         if (s.ops_request)
3990                 raid_run_ops(sh, s.ops_request);
3991
3992         ops_run_io(sh, &s);
3993
3994         if (s.dec_preread_active) {
3995                 /* We delay this until after ops_run_io so that if make_request
3996                  * is waiting on a flush, it won't continue until the writes
3997                  * have actually been submitted.
3998                  */
3999                 atomic_dec(&conf->preread_active_stripes);
4000                 if (atomic_read(&conf->preread_active_stripes) <
4001                     IO_THRESHOLD)
4002                         md_wakeup_thread(conf->mddev->thread);
4003         }
4004
4005         return_io(s.return_bi);
4006
4007         clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4008 }
4009
4010 static void raid5_activate_delayed(struct r5conf *conf)
4011 {
4012         if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
4013                 while (!list_empty(&conf->delayed_list)) {
4014                         struct list_head *l = conf->delayed_list.next;
4015                         struct stripe_head *sh;
4016                         sh = list_entry(l, struct stripe_head, lru);
4017                         list_del_init(l);
4018                         clear_bit(STRIPE_DELAYED, &sh->state);
4019                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4020                                 atomic_inc(&conf->preread_active_stripes);
4021                         list_add_tail(&sh->lru, &conf->hold_list);
4022                         raid5_wakeup_stripe_thread(sh);
4023                 }
4024         }
4025 }
4026
4027 static void activate_bit_delay(struct r5conf *conf,
4028         struct list_head *temp_inactive_list)
4029 {
4030         /* device_lock is held */
4031         struct list_head head;
4032         list_add(&head, &conf->bitmap_list);
4033         list_del_init(&conf->bitmap_list);
4034         while (!list_empty(&head)) {
4035                 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
4036                 int hash;
4037                 list_del_init(&sh->lru);
4038                 atomic_inc(&sh->count);
4039                 hash = sh->hash_lock_index;
4040                 __release_stripe(conf, sh, &temp_inactive_list[hash]);
4041         }
4042 }
4043
4044 int md_raid5_congested(struct mddev *mddev, int bits)
4045 {
4046         struct r5conf *conf = mddev->private;
4047
4048         /* No difference between reads and writes.  Just check
4049          * how busy the stripe_cache is
4050          */
4051
4052         if (conf->inactive_blocked)
4053                 return 1;
4054         if (conf->quiesce)
4055                 return 1;
4056         if (atomic_read(&conf->empty_inactive_list_nr))
4057                 return 1;
4058
4059         return 0;
4060 }
4061 EXPORT_SYMBOL_GPL(md_raid5_congested);
4062
4063 static int raid5_congested(void *data, int bits)
4064 {
4065         struct mddev *mddev = data;
4066
4067         return mddev_congested(mddev, bits) ||
4068                 md_raid5_congested(mddev, bits);
4069 }
4070
4071 /* We want read requests to align with chunks where possible,
4072  * but write requests don't need to.
4073  */
4074 static int raid5_mergeable_bvec(struct request_queue *q,
4075                                 struct bvec_merge_data *bvm,
4076                                 struct bio_vec *biovec)
4077 {
4078         struct mddev *mddev = q->queuedata;
4079         sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
4080         int max;
4081         unsigned int chunk_sectors = mddev->chunk_sectors;
4082         unsigned int bio_sectors = bvm->bi_size >> 9;
4083
4084         if ((bvm->bi_rw & 1) == WRITE)
4085                 return biovec->bv_len; /* always allow writes to be mergeable */
4086
4087         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4088                 chunk_sectors = mddev->new_chunk_sectors;
4089         max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
4090         if (max < 0) max = 0;
4091         if (max <= biovec->bv_len && bio_sectors == 0)
4092                 return biovec->bv_len;
4093         else
4094                 return max;
4095 }
4096
4097
4098 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
4099 {
4100         sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev);
4101         unsigned int chunk_sectors = mddev->chunk_sectors;
4102         unsigned int bio_sectors = bio_sectors(bio);
4103
4104         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4105                 chunk_sectors = mddev->new_chunk_sectors;
4106         return  chunk_sectors >=
4107                 ((sector & (chunk_sectors - 1)) + bio_sectors);
4108 }
4109
4110 /*
4111  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
4112  *  later sampled by raid5d.
4113  */
4114 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
4115 {
4116         unsigned long flags;
4117
4118         spin_lock_irqsave(&conf->device_lock, flags);
4119
4120         bi->bi_next = conf->retry_read_aligned_list;
4121         conf->retry_read_aligned_list = bi;
4122
4123         spin_unlock_irqrestore(&conf->device_lock, flags);
4124         md_wakeup_thread(conf->mddev->thread);
4125 }
4126
4127
4128 static struct bio *remove_bio_from_retry(struct r5conf *conf)
4129 {
4130         struct bio *bi;
4131
4132         bi = conf->retry_read_aligned;
4133         if (bi) {
4134                 conf->retry_read_aligned = NULL;
4135                 return bi;
4136         }
4137         bi = conf->retry_read_aligned_list;
4138         if(bi) {
4139                 conf->retry_read_aligned_list = bi->bi_next;
4140                 bi->bi_next = NULL;
4141                 /*
4142                  * this sets the active strip count to 1 and the processed
4143                  * strip count to zero (upper 8 bits)
4144                  */
4145                 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
4146         }
4147
4148         return bi;
4149 }
4150
4151
4152 /*
4153  *  The "raid5_align_endio" should check if the read succeeded and if it
4154  *  did, call bio_endio on the original bio (having bio_put the new bio
4155  *  first).
4156  *  If the read failed..
4157  */
4158 static void raid5_align_endio(struct bio *bi, int error)
4159 {
4160         struct bio* raid_bi  = bi->bi_private;
4161         struct mddev *mddev;
4162         struct r5conf *conf;
4163         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
4164         struct md_rdev *rdev;
4165
4166         bio_put(bi);
4167
4168         rdev = (void*)raid_bi->bi_next;
4169         raid_bi->bi_next = NULL;
4170         mddev = rdev->mddev;
4171         conf = mddev->private;
4172
4173         rdev_dec_pending(rdev, conf->mddev);
4174
4175         if (!error && uptodate) {
4176                 trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
4177                                          raid_bi, 0);
4178                 bio_endio(raid_bi, 0);
4179                 if (atomic_dec_and_test(&conf->active_aligned_reads))
4180                         wake_up(&conf->wait_for_stripe);
4181                 return;
4182         }
4183
4184
4185         pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
4186
4187         add_bio_to_retry(raid_bi, conf);
4188 }
4189
4190 static int bio_fits_rdev(struct bio *bi)
4191 {
4192         struct request_queue *q = bdev_get_queue(bi->bi_bdev);
4193
4194         if (bio_sectors(bi) > queue_max_sectors(q))
4195                 return 0;
4196         blk_recount_segments(q, bi);
4197         if (bi->bi_phys_segments > queue_max_segments(q))
4198                 return 0;
4199
4200         if (q->merge_bvec_fn)
4201                 /* it's too hard to apply the merge_bvec_fn at this stage,
4202                  * just just give up
4203                  */
4204                 return 0;
4205
4206         return 1;
4207 }
4208
4209
4210 static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
4211 {
4212         struct r5conf *conf = mddev->private;
4213         int dd_idx;
4214         struct bio* align_bi;
4215         struct md_rdev *rdev;
4216         sector_t end_sector;
4217
4218         if (!in_chunk_boundary(mddev, raid_bio)) {
4219                 pr_debug("chunk_aligned_read : non aligned\n");
4220                 return 0;
4221         }
4222         /*
4223          * use bio_clone_mddev to make a copy of the bio
4224          */
4225         align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
4226         if (!align_bi)
4227                 return 0;
4228         /*
4229          *   set bi_end_io to a new function, and set bi_private to the
4230          *     original bio.
4231          */
4232         align_bi->bi_end_io  = raid5_align_endio;
4233         align_bi->bi_private = raid_bio;
4234         /*
4235          *      compute position
4236          */
4237         align_bi->bi_iter.bi_sector =
4238                 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
4239                                      0, &dd_idx, NULL);
4240
4241         end_sector = bio_end_sector(align_bi);
4242         rcu_read_lock();
4243         rdev = rcu_dereference(conf->disks[dd_idx].replacement);
4244         if (!rdev || test_bit(Faulty, &rdev->flags) ||
4245             rdev->recovery_offset < end_sector) {
4246                 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
4247                 if (rdev &&
4248                     (test_bit(Faulty, &rdev->flags) ||
4249                     !(test_bit(In_sync, &rdev->flags) ||
4250                       rdev->recovery_offset >= end_sector)))
4251                         rdev = NULL;
4252         }
4253         if (rdev) {
4254                 sector_t first_bad;
4255                 int bad_sectors;
4256
4257                 atomic_inc(&rdev->nr_pending);
4258                 rcu_read_unlock();
4259                 raid_bio->bi_next = (void*)rdev;
4260                 align_bi->bi_bdev =  rdev->bdev;
4261                 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
4262
4263                 if (!bio_fits_rdev(align_bi) ||
4264                     is_badblock(rdev, align_bi->bi_iter.bi_sector,
4265                                 bio_sectors(align_bi),
4266                                 &first_bad, &bad_sectors)) {
4267                         /* too big in some way, or has a known bad block */
4268                         bio_put(align_bi);
4269                         rdev_dec_pending(rdev, mddev);
4270                         return 0;
4271                 }
4272
4273                 /* No reshape active, so we can trust rdev->data_offset */
4274                 align_bi->bi_iter.bi_sector += rdev->data_offset;
4275
4276                 spin_lock_irq(&conf->device_lock);
4277                 wait_event_lock_irq(conf->wait_for_stripe,
4278                                     conf->quiesce == 0,
4279                                     conf->device_lock);
4280                 atomic_inc(&conf->active_aligned_reads);
4281                 spin_unlock_irq(&conf->device_lock);
4282
4283                 if (mddev->gendisk)
4284                         trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
4285                                               align_bi, disk_devt(mddev->gendisk),
4286                                               raid_bio->bi_iter.bi_sector);
4287                 generic_make_request(align_bi);
4288                 return 1;
4289         } else {
4290                 rcu_read_unlock();
4291                 bio_put(align_bi);
4292                 return 0;
4293         }
4294 }
4295
4296 /* __get_priority_stripe - get the next stripe to process
4297  *
4298  * Full stripe writes are allowed to pass preread active stripes up until
4299  * the bypass_threshold is exceeded.  In general the bypass_count
4300  * increments when the handle_list is handled before the hold_list; however, it
4301  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4302  * stripe with in flight i/o.  The bypass_count will be reset when the
4303  * head of the hold_list has changed, i.e. the head was promoted to the
4304  * handle_list.
4305  */
4306 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
4307 {
4308         struct stripe_head *sh = NULL, *tmp;
4309         struct list_head *handle_list = NULL;
4310         struct r5worker_group *wg = NULL;
4311
4312         if (conf->worker_cnt_per_group == 0) {
4313                 handle_list = &conf->handle_list;
4314         } else if (group != ANY_GROUP) {
4315                 handle_list = &conf->worker_groups[group].handle_list;
4316                 wg = &conf->worker_groups[group];
4317         } else {
4318                 int i;
4319                 for (i = 0; i < conf->group_cnt; i++) {
4320                         handle_list = &conf->worker_groups[i].handle_list;
4321                         wg = &conf->worker_groups[i];
4322                         if (!list_empty(handle_list))
4323                                 break;
4324                 }
4325         }
4326
4327         pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4328                   __func__,
4329                   list_empty(handle_list) ? "empty" : "busy",
4330                   list_empty(&conf->hold_list) ? "empty" : "busy",
4331                   atomic_read(&conf->pending_full_writes), conf->bypass_count);
4332
4333         if (!list_empty(handle_list)) {
4334                 sh = list_entry(handle_list->next, typeof(*sh), lru);
4335
4336                 if (list_empty(&conf->hold_list))
4337                         conf->bypass_count = 0;
4338                 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4339                         if (conf->hold_list.next == conf->last_hold)
4340                                 conf->bypass_count++;
4341                         else {
4342                                 conf->last_hold = conf->hold_list.next;
4343                                 conf->bypass_count -= conf->bypass_threshold;
4344                                 if (conf->bypass_count < 0)
4345                                         conf->bypass_count = 0;
4346                         }
4347                 }
4348         } else if (!list_empty(&conf->hold_list) &&
4349                    ((conf->bypass_threshold &&
4350                      conf->bypass_count > conf->bypass_threshold) ||
4351                     atomic_read(&conf->pending_full_writes) == 0)) {
4352
4353                 list_for_each_entry(tmp, &conf->hold_list,  lru) {
4354                         if (conf->worker_cnt_per_group == 0 ||
4355                             group == ANY_GROUP ||
4356                             !cpu_online(tmp->cpu) ||
4357                             cpu_to_group(tmp->cpu) == group) {
4358                                 sh = tmp;
4359                                 break;
4360                         }
4361                 }
4362
4363                 if (sh) {
4364                         conf->bypass_count -= conf->bypass_threshold;
4365                         if (conf->bypass_count < 0)
4366                                 conf->bypass_count = 0;
4367                 }
4368                 wg = NULL;
4369         }
4370
4371         if (!sh)
4372                 return NULL;
4373
4374         if (wg) {
4375                 wg->stripes_cnt--;
4376                 sh->group = NULL;
4377         }
4378         list_del_init(&sh->lru);
4379         atomic_inc(&sh->count);
4380         BUG_ON(atomic_read(&sh->count) != 1);
4381         return sh;
4382 }
4383
4384 struct raid5_plug_cb {
4385         struct blk_plug_cb      cb;
4386         struct list_head        list;
4387         struct list_head        temp_inactive_list[NR_STRIPE_HASH_LOCKS];
4388 };
4389
4390 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
4391 {
4392         struct raid5_plug_cb *cb = container_of(
4393                 blk_cb, struct raid5_plug_cb, cb);
4394         struct stripe_head *sh;
4395         struct mddev *mddev = cb->cb.data;
4396         struct r5conf *conf = mddev->private;
4397         int cnt = 0;
4398         int hash;
4399
4400         if (cb->list.next && !list_empty(&cb->list)) {
4401                 spin_lock_irq(&conf->device_lock);
4402                 while (!list_empty(&cb->list)) {
4403                         sh = list_first_entry(&cb->list, struct stripe_head, lru);
4404                         list_del_init(&sh->lru);
4405                         /*
4406                          * avoid race release_stripe_plug() sees
4407                          * STRIPE_ON_UNPLUG_LIST clear but the stripe
4408                          * is still in our list
4409                          */
4410                         smp_mb__before_clear_bit();
4411                         clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
4412                         /*
4413                          * STRIPE_ON_RELEASE_LIST could be set here. In that
4414                          * case, the count is always > 1 here
4415                          */
4416                         hash = sh->hash_lock_index;
4417                         __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
4418                         cnt++;
4419                 }
4420                 spin_unlock_irq(&conf->device_lock);
4421         }
4422         release_inactive_stripe_list(conf, cb->temp_inactive_list,
4423                                      NR_STRIPE_HASH_LOCKS);
4424         if (mddev->queue)
4425                 trace_block_unplug(mddev->queue, cnt, !from_schedule);
4426         kfree(cb);
4427 }
4428
4429 static void release_stripe_plug(struct mddev *mddev,
4430                                 struct stripe_head *sh)
4431 {
4432         struct blk_plug_cb *blk_cb = blk_check_plugged(
4433                 raid5_unplug, mddev,
4434                 sizeof(struct raid5_plug_cb));
4435         struct raid5_plug_cb *cb;
4436
4437         if (!blk_cb) {
4438                 release_stripe(sh);
4439                 return;
4440         }
4441
4442         cb = container_of(blk_cb, struct raid5_plug_cb, cb);
4443
4444         if (cb->list.next == NULL) {
4445                 int i;
4446                 INIT_LIST_HEAD(&cb->list);
4447                 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
4448                         INIT_LIST_HEAD(cb->temp_inactive_list + i);
4449         }
4450
4451         if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
4452                 list_add_tail(&sh->lru, &cb->list);
4453         else
4454                 release_stripe(sh);
4455 }
4456
4457 static void make_discard_request(struct mddev *mddev, struct bio *bi)
4458 {
4459         struct r5conf *conf = mddev->private;
4460         sector_t logical_sector, last_sector;
4461         struct stripe_head *sh;
4462         int remaining;
4463         int stripe_sectors;
4464
4465         if (mddev->reshape_position != MaxSector)
4466                 /* Skip discard while reshape is happening */
4467                 return;
4468
4469         logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4470         last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
4471
4472         bi->bi_next = NULL;
4473         bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
4474
4475         stripe_sectors = conf->chunk_sectors *
4476                 (conf->raid_disks - conf->max_degraded);
4477         logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
4478                                                stripe_sectors);
4479         sector_div(last_sector, stripe_sectors);
4480
4481         logical_sector *= conf->chunk_sectors;
4482         last_sector *= conf->chunk_sectors;
4483
4484         for (; logical_sector < last_sector;
4485              logical_sector += STRIPE_SECTORS) {
4486                 DEFINE_WAIT(w);
4487                 int d;
4488         again:
4489                 sh = get_active_stripe(conf, logical_sector, 0, 0, 0);
4490                 prepare_to_wait(&conf->wait_for_overlap, &w,
4491                                 TASK_UNINTERRUPTIBLE);
4492                 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
4493                 if (test_bit(STRIPE_SYNCING, &sh->state)) {
4494                         release_stripe(sh);
4495                         schedule();
4496                         goto again;
4497                 }
4498                 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
4499                 spin_lock_irq(&sh->stripe_lock);
4500                 for (d = 0; d < conf->raid_disks; d++) {
4501                         if (d == sh->pd_idx || d == sh->qd_idx)
4502                                 continue;
4503                         if (sh->dev[d].towrite || sh->dev[d].toread) {
4504                                 set_bit(R5_Overlap, &sh->dev[d].flags);
4505                                 spin_unlock_irq(&sh->stripe_lock);
4506                                 release_stripe(sh);
4507                                 schedule();
4508                                 goto again;
4509                         }
4510                 }
4511                 set_bit(STRIPE_DISCARD, &sh->state);
4512                 finish_wait(&conf->wait_for_overlap, &w);
4513                 for (d = 0; d < conf->raid_disks; d++) {
4514                         if (d == sh->pd_idx || d == sh->qd_idx)
4515                                 continue;
4516                         sh->dev[d].towrite = bi;
4517                         set_bit(R5_OVERWRITE, &sh->dev[d].flags);
4518                         raid5_inc_bi_active_stripes(bi);
4519                 }
4520                 spin_unlock_irq(&sh->stripe_lock);
4521                 if (conf->mddev->bitmap) {
4522                         for (d = 0;
4523                              d < conf->raid_disks - conf->max_degraded;
4524                              d++)
4525                                 bitmap_startwrite(mddev->bitmap,
4526                                                   sh->sector,
4527                                                   STRIPE_SECTORS,
4528                                                   0);
4529                         sh->bm_seq = conf->seq_flush + 1;
4530                         set_bit(STRIPE_BIT_DELAY, &sh->state);
4531                 }
4532
4533                 set_bit(STRIPE_HANDLE, &sh->state);
4534                 clear_bit(STRIPE_DELAYED, &sh->state);
4535                 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4536                         atomic_inc(&conf->preread_active_stripes);
4537                 release_stripe_plug(mddev, sh);
4538         }
4539
4540         remaining = raid5_dec_bi_active_stripes(bi);
4541         if (remaining == 0) {
4542                 md_write_end(mddev);
4543                 bio_endio(bi, 0);
4544         }
4545 }
4546
4547 static void make_request(struct mddev *mddev, struct bio * bi)
4548 {
4549         struct r5conf *conf = mddev->private;
4550         int dd_idx;
4551         sector_t new_sector;
4552         sector_t logical_sector, last_sector;
4553         struct stripe_head *sh;
4554         const int rw = bio_data_dir(bi);
4555         int remaining;
4556
4557         if (unlikely(bi->bi_rw & REQ_FLUSH)) {
4558                 md_flush_request(mddev, bi);
4559                 return;
4560         }
4561
4562         md_write_start(mddev, bi);
4563
4564         if (rw == READ &&
4565              mddev->reshape_position == MaxSector &&
4566              chunk_aligned_read(mddev,bi))
4567                 return;
4568
4569         if (unlikely(bi->bi_rw & REQ_DISCARD)) {
4570                 make_discard_request(mddev, bi);
4571                 return;
4572         }
4573
4574         logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4575         last_sector = bio_end_sector(bi);
4576         bi->bi_next = NULL;
4577         bi->bi_phys_segments = 1;       /* over-loaded to count active stripes */
4578
4579         for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
4580                 DEFINE_WAIT(w);
4581                 int previous;
4582                 int seq;
4583
4584         retry:
4585                 seq = read_seqcount_begin(&conf->gen_lock);
4586                 previous = 0;
4587                 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
4588                 if (unlikely(conf->reshape_progress != MaxSector)) {
4589                         /* spinlock is needed as reshape_progress may be
4590                          * 64bit on a 32bit platform, and so it might be
4591                          * possible to see a half-updated value
4592                          * Of course reshape_progress could change after
4593                          * the lock is dropped, so once we get a reference
4594                          * to the stripe that we think it is, we will have
4595                          * to check again.
4596                          */
4597                         spin_lock_irq(&conf->device_lock);
4598                         if (mddev->reshape_backwards
4599                             ? logical_sector < conf->reshape_progress
4600                             : logical_sector >= conf->reshape_progress) {
4601                                 previous = 1;
4602                         } else {
4603                                 if (mddev->reshape_backwards
4604                                     ? logical_sector < conf->reshape_safe
4605                                     : logical_sector >= conf->reshape_safe) {
4606                                         spin_unlock_irq(&conf->device_lock);
4607                                         schedule();
4608                                         goto retry;
4609                                 }
4610                         }
4611                         spin_unlock_irq(&conf->device_lock);
4612                 }
4613
4614                 new_sector = raid5_compute_sector(conf, logical_sector,
4615                                                   previous,
4616                                                   &dd_idx, NULL);
4617                 pr_debug("raid456: make_request, sector %llu logical %llu\n",
4618                         (unsigned long long)new_sector,
4619                         (unsigned long long)logical_sector);
4620
4621                 sh = get_active_stripe(conf, new_sector, previous,
4622                                        (bi->bi_rw&RWA_MASK), 0);
4623                 if (sh) {
4624                         if (unlikely(previous)) {
4625                                 /* expansion might have moved on while waiting for a
4626                                  * stripe, so we must do the range check again.
4627                                  * Expansion could still move past after this
4628                                  * test, but as we are holding a reference to
4629                                  * 'sh', we know that if that happens,
4630                                  *  STRIPE_EXPANDING will get set and the expansion
4631                                  * won't proceed until we finish with the stripe.
4632                                  */
4633                                 int must_retry = 0;
4634                                 spin_lock_irq(&conf->device_lock);
4635                                 if (mddev->reshape_backwards
4636                                     ? logical_sector >= conf->reshape_progress
4637                                     : logical_sector < conf->reshape_progress)
4638                                         /* mismatch, need to try again */
4639                                         must_retry = 1;
4640                                 spin_unlock_irq(&conf->device_lock);
4641                                 if (must_retry) {
4642                                         release_stripe(sh);
4643                                         schedule();
4644                                         goto retry;
4645                                 }
4646                         }
4647                         if (read_seqcount_retry(&conf->gen_lock, seq)) {
4648                                 /* Might have got the wrong stripe_head
4649                                  * by accident
4650                                  */
4651                                 release_stripe(sh);
4652                                 goto retry;
4653                         }
4654
4655                         if (rw == WRITE &&
4656                             logical_sector >= mddev->suspend_lo &&
4657                             logical_sector < mddev->suspend_hi) {
4658                                 release_stripe(sh);
4659                                 /* As the suspend_* range is controlled by
4660                                  * userspace, we want an interruptible
4661                                  * wait.
4662                                  */
4663                                 flush_signals(current);
4664                                 prepare_to_wait(&conf->wait_for_overlap,
4665                                                 &w, TASK_INTERRUPTIBLE);
4666                                 if (logical_sector >= mddev->suspend_lo &&
4667                                     logical_sector < mddev->suspend_hi)
4668                                         schedule();
4669                                 goto retry;
4670                         }
4671
4672                         if (test_bit(STRIPE_EXPANDING, &sh->state) ||
4673                             !add_stripe_bio(sh, bi, dd_idx, rw)) {
4674                                 /* Stripe is busy expanding or
4675                                  * add failed due to overlap.  Flush everything
4676                                  * and wait a while
4677                                  */
4678                                 md_wakeup_thread(mddev->thread);
4679                                 release_stripe(sh);
4680                                 schedule();
4681                                 goto retry;
4682                         }
4683                         finish_wait(&conf->wait_for_overlap, &w);
4684                         set_bit(STRIPE_HANDLE, &sh->state);
4685                         clear_bit(STRIPE_DELAYED, &sh->state);
4686                         if ((bi->bi_rw & REQ_SYNC) &&
4687                             !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4688                                 atomic_inc(&conf->preread_active_stripes);
4689                         release_stripe_plug(mddev, sh);
4690                 } else {
4691                         /* cannot get stripe for read-ahead, just give-up */
4692                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
4693                         finish_wait(&conf->wait_for_overlap, &w);
4694                         break;
4695                 }
4696         }
4697
4698         remaining = raid5_dec_bi_active_stripes(bi);
4699         if (remaining == 0) {
4700
4701                 if ( rw == WRITE )
4702                         md_write_end(mddev);
4703
4704                 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
4705                                          bi, 0);
4706                 bio_endio(bi, 0);
4707         }
4708 }
4709
4710 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
4711
4712 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
4713 {
4714         /* reshaping is quite different to recovery/resync so it is
4715          * handled quite separately ... here.
4716          *
4717          * On each call to sync_request, we gather one chunk worth of
4718          * destination stripes and flag them as expanding.
4719          * Then we find all the source stripes and request reads.
4720          * As the reads complete, handle_stripe will copy the data
4721          * into the destination stripe and release that stripe.
4722          */
4723         struct r5conf *conf = mddev->private;
4724         struct stripe_head *sh;
4725         sector_t first_sector, last_sector;
4726         int raid_disks = conf->previous_raid_disks;
4727         int data_disks = raid_disks - conf->max_degraded;
4728         int new_data_disks = conf->raid_disks - conf->max_degraded;
4729         int i;
4730         int dd_idx;
4731         sector_t writepos, readpos, safepos;
4732         sector_t stripe_addr;
4733         int reshape_sectors;
4734         struct list_head stripes;
4735
4736         if (sector_nr == 0) {
4737                 /* If restarting in the middle, skip the initial sectors */
4738                 if (mddev->reshape_backwards &&
4739                     conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4740                         sector_nr = raid5_size(mddev, 0, 0)
4741                                 - conf->reshape_progress;
4742                 } else if (!mddev->reshape_backwards &&
4743                            conf->reshape_progress > 0)
4744                         sector_nr = conf->reshape_progress;
4745                 sector_div(sector_nr, new_data_disks);
4746                 if (sector_nr) {
4747                         mddev->curr_resync_completed = sector_nr;
4748                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4749                         *skipped = 1;
4750                         return sector_nr;
4751                 }
4752         }
4753
4754         /* We need to process a full chunk at a time.
4755          * If old and new chunk sizes differ, we need to process the
4756          * largest of these
4757          */
4758         if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4759                 reshape_sectors = mddev->new_chunk_sectors;
4760         else
4761                 reshape_sectors = mddev->chunk_sectors;
4762
4763         /* We update the metadata at least every 10 seconds, or when
4764          * the data about to be copied would over-write the source of
4765          * the data at the front of the range.  i.e. one new_stripe
4766          * along from reshape_progress new_maps to after where
4767          * reshape_safe old_maps to
4768          */
4769         writepos = conf->reshape_progress;
4770         sector_div(writepos, new_data_disks);
4771         readpos = conf->reshape_progress;
4772         sector_div(readpos, data_disks);
4773         safepos = conf->reshape_safe;
4774         sector_div(safepos, data_disks);
4775         if (mddev->reshape_backwards) {
4776                 writepos -= min_t(sector_t, reshape_sectors, writepos);
4777                 readpos += reshape_sectors;
4778                 safepos += reshape_sectors;
4779         } else {
4780                 writepos += reshape_sectors;
4781                 readpos -= min_t(sector_t, reshape_sectors, readpos);
4782                 safepos -= min_t(sector_t, reshape_sectors, safepos);
4783         }
4784
4785         /* Having calculated the 'writepos' possibly use it
4786          * to set 'stripe_addr' which is where we will write to.
4787          */
4788         if (mddev->reshape_backwards) {
4789                 BUG_ON(conf->reshape_progress == 0);
4790                 stripe_addr = writepos;
4791                 BUG_ON((mddev->dev_sectors &
4792                         ~((sector_t)reshape_sectors - 1))
4793                        - reshape_sectors - stripe_addr
4794                        != sector_nr);
4795         } else {
4796                 BUG_ON(writepos != sector_nr + reshape_sectors);
4797                 stripe_addr = sector_nr;
4798         }
4799
4800         /* 'writepos' is the most advanced device address we might write.
4801          * 'readpos' is the least advanced device address we might read.
4802          * 'safepos' is the least address recorded in the metadata as having
4803          *     been reshaped.
4804          * If there is a min_offset_diff, these are adjusted either by
4805          * increasing the safepos/readpos if diff is negative, or
4806          * increasing writepos if diff is positive.
4807          * If 'readpos' is then behind 'writepos', there is no way that we can
4808          * ensure safety in the face of a crash - that must be done by userspace
4809          * making a backup of the data.  So in that case there is no particular
4810          * rush to update metadata.
4811          * Otherwise if 'safepos' is behind 'writepos', then we really need to
4812          * update the metadata to advance 'safepos' to match 'readpos' so that
4813          * we can be safe in the event of a crash.
4814          * So we insist on updating metadata if safepos is behind writepos and
4815          * readpos is beyond writepos.
4816          * In any case, update the metadata every 10 seconds.
4817          * Maybe that number should be configurable, but I'm not sure it is
4818          * worth it.... maybe it could be a multiple of safemode_delay???
4819          */
4820         if (conf->min_offset_diff < 0) {
4821                 safepos += -conf->min_offset_diff;
4822                 readpos += -conf->min_offset_diff;
4823         } else
4824                 writepos += conf->min_offset_diff;
4825
4826         if ((mddev->reshape_backwards
4827              ? (safepos > writepos && readpos < writepos)
4828              : (safepos < writepos && readpos > writepos)) ||
4829             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4830                 /* Cannot proceed until we've updated the superblock... */
4831                 wait_event(conf->wait_for_overlap,
4832                            atomic_read(&conf->reshape_stripes)==0
4833                            || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4834                 if (atomic_read(&conf->reshape_stripes) != 0)
4835                         return 0;
4836                 mddev->reshape_position = conf->reshape_progress;
4837                 mddev->curr_resync_completed = sector_nr;
4838                 conf->reshape_checkpoint = jiffies;
4839                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4840                 md_wakeup_thread(mddev->thread);
4841                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4842                            test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4843                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4844                         return 0;
4845                 spin_lock_irq(&conf->device_lock);
4846                 conf->reshape_safe = mddev->reshape_position;
4847                 spin_unlock_irq(&conf->device_lock);
4848                 wake_up(&conf->wait_for_overlap);
4849                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4850         }
4851
4852         INIT_LIST_HEAD(&stripes);
4853         for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4854                 int j;
4855                 int skipped_disk = 0;
4856                 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4857                 set_bit(STRIPE_EXPANDING, &sh->state);
4858                 atomic_inc(&conf->reshape_stripes);
4859                 /* If any of this stripe is beyond the end of the old
4860                  * array, then we need to zero those blocks
4861                  */
4862                 for (j=sh->disks; j--;) {
4863                         sector_t s;
4864                         if (j == sh->pd_idx)
4865                                 continue;
4866                         if (conf->level == 6 &&
4867                             j == sh->qd_idx)
4868                                 continue;
4869                         s = compute_blocknr(sh, j, 0);
4870                         if (s < raid5_size(mddev, 0, 0)) {
4871                                 skipped_disk = 1;
4872                                 continue;
4873                         }
4874                         memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4875                         set_bit(R5_Expanded, &sh->dev[j].flags);
4876                         set_bit(R5_UPTODATE, &sh->dev[j].flags);
4877                 }
4878                 if (!skipped_disk) {
4879                         set_bit(STRIPE_EXPAND_READY, &sh->state);
4880                         set_bit(STRIPE_HANDLE, &sh->state);
4881                 }
4882                 list_add(&sh->lru, &stripes);
4883         }
4884         spin_lock_irq(&conf->device_lock);
4885         if (mddev->reshape_backwards)
4886                 conf->reshape_progress -= reshape_sectors * new_data_disks;
4887         else
4888                 conf->reshape_progress += reshape_sectors * new_data_disks;
4889         spin_unlock_irq(&conf->device_lock);
4890         /* Ok, those stripe are ready. We can start scheduling
4891          * reads on the source stripes.
4892          * The source stripes are determined by mapping the first and last
4893          * block on the destination stripes.
4894          */
4895         first_sector =
4896                 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4897                                      1, &dd_idx, NULL);
4898         last_sector =
4899                 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4900                                             * new_data_disks - 1),
4901                                      1, &dd_idx, NULL);
4902         if (last_sector >= mddev->dev_sectors)
4903                 last_sector = mddev->dev_sectors - 1;
4904         while (first_sector <= last_sector) {
4905                 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4906                 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4907                 set_bit(STRIPE_HANDLE, &sh->state);
4908                 release_stripe(sh);
4909                 first_sector += STRIPE_SECTORS;
4910         }
4911         /* Now that the sources are clearly marked, we can release
4912          * the destination stripes
4913          */
4914         while (!list_empty(&stripes)) {
4915                 sh = list_entry(stripes.next, struct stripe_head, lru);
4916                 list_del_init(&sh->lru);
4917                 release_stripe(sh);
4918         }
4919         /* If this takes us to the resync_max point where we have to pause,
4920          * then we need to write out the superblock.
4921          */
4922         sector_nr += reshape_sectors;
4923         if ((sector_nr - mddev->curr_resync_completed) * 2
4924             >= mddev->resync_max - mddev->curr_resync_completed) {
4925                 /* Cannot proceed until we've updated the superblock... */
4926                 wait_event(conf->wait_for_overlap,
4927                            atomic_read(&conf->reshape_stripes) == 0
4928                            || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4929                 if (atomic_read(&conf->reshape_stripes) != 0)
4930                         goto ret;
4931                 mddev->reshape_position = conf->reshape_progress;
4932                 mddev->curr_resync_completed = sector_nr;
4933                 conf->reshape_checkpoint = jiffies;
4934                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4935                 md_wakeup_thread(mddev->thread);
4936                 wait_event(mddev->sb_wait,
4937                            !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4938                            || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4939                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4940                         goto ret;
4941                 spin_lock_irq(&conf->device_lock);
4942                 conf->reshape_safe = mddev->reshape_position;
4943                 spin_unlock_irq(&conf->device_lock);
4944                 wake_up(&conf->wait_for_overlap);
4945                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4946         }
4947 ret:
4948         return reshape_sectors;
4949 }
4950
4951 /* FIXME go_faster isn't used */
4952 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
4953 {
4954         struct r5conf *conf = mddev->private;
4955         struct stripe_head *sh;
4956         sector_t max_sector = mddev->dev_sectors;
4957         sector_t sync_blocks;
4958         int still_degraded = 0;
4959         int i;
4960
4961         if (sector_nr >= max_sector) {
4962                 /* just being told to finish up .. nothing much to do */
4963
4964                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4965                         end_reshape(conf);
4966                         return 0;
4967                 }
4968
4969                 if (mddev->curr_resync < max_sector) /* aborted */
4970                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4971                                         &sync_blocks, 1);
4972                 else /* completed sync */
4973                         conf->fullsync = 0;
4974                 bitmap_close_sync(mddev->bitmap);
4975
4976                 return 0;
4977         }
4978
4979         /* Allow raid5_quiesce to complete */
4980         wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4981
4982         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4983                 return reshape_request(mddev, sector_nr, skipped);
4984
4985         /* No need to check resync_max as we never do more than one
4986          * stripe, and as resync_max will always be on a chunk boundary,
4987          * if the check in md_do_sync didn't fire, there is no chance
4988          * of overstepping resync_max here
4989          */
4990
4991         /* if there is too many failed drives and we are trying
4992          * to resync, then assert that we are finished, because there is
4993          * nothing we can do.
4994          */
4995         if (mddev->degraded >= conf->max_degraded &&
4996             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4997                 sector_t rv = mddev->dev_sectors - sector_nr;
4998                 *skipped = 1;
4999                 return rv;
5000         }
5001         if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
5002             !conf->fullsync &&
5003             !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
5004             sync_blocks >= STRIPE_SECTORS) {
5005                 /* we can skip this block, and probably more */
5006                 sync_blocks /= STRIPE_SECTORS;
5007                 *skipped = 1;
5008                 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
5009         }
5010
5011         bitmap_cond_end_sync(mddev->bitmap, sector_nr);
5012
5013         sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
5014         if (sh == NULL) {
5015                 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
5016                 /* make sure we don't swamp the stripe cache if someone else
5017                  * is trying to get access
5018                  */
5019                 schedule_timeout_uninterruptible(1);
5020         }
5021         /* Need to check if array will still be degraded after recovery/resync
5022          * We don't need to check the 'failed' flag as when that gets set,
5023          * recovery aborts.
5024          */
5025         for (i = 0; i < conf->raid_disks; i++)
5026                 if (conf->disks[i].rdev == NULL)
5027                         still_degraded = 1;
5028
5029         bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
5030
5031         set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
5032
5033         handle_stripe(sh);
5034         release_stripe(sh);
5035
5036         return STRIPE_SECTORS;
5037 }
5038
5039 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
5040 {
5041         /* We may not be able to submit a whole bio at once as there
5042          * may not be enough stripe_heads available.
5043          * We cannot pre-allocate enough stripe_heads as we may need
5044          * more than exist in the cache (if we allow ever large chunks).
5045          * So we do one stripe head at a time and record in
5046          * ->bi_hw_segments how many have been done.
5047          *
5048          * We *know* that this entire raid_bio is in one chunk, so
5049          * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
5050          */
5051         struct stripe_head *sh;
5052         int dd_idx;
5053         sector_t sector, logical_sector, last_sector;
5054         int scnt = 0;
5055         int remaining;
5056         int handled = 0;
5057
5058         logical_sector = raid_bio->bi_iter.bi_sector &
5059                 ~((sector_t)STRIPE_SECTORS-1);
5060         sector = raid5_compute_sector(conf, logical_sector,
5061                                       0, &dd_idx, NULL);
5062         last_sector = bio_end_sector(raid_bio);
5063
5064         for (; logical_sector < last_sector;
5065              logical_sector += STRIPE_SECTORS,
5066                      sector += STRIPE_SECTORS,
5067                      scnt++) {
5068
5069                 if (scnt < raid5_bi_processed_stripes(raid_bio))
5070                         /* already done this stripe */
5071                         continue;
5072
5073                 sh = get_active_stripe(conf, sector, 0, 1, 0);
5074
5075                 if (!sh) {
5076                         /* failed to get a stripe - must wait */
5077                         raid5_set_bi_processed_stripes(raid_bio, scnt);
5078                         conf->retry_read_aligned = raid_bio;
5079                         return handled;
5080                 }
5081
5082                 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
5083                         release_stripe(sh);
5084                         raid5_set_bi_processed_stripes(raid_bio, scnt);
5085                         conf->retry_read_aligned = raid_bio;
5086                         return handled;
5087                 }
5088
5089                 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
5090                 handle_stripe(sh);
5091                 release_stripe(sh);
5092                 handled++;
5093         }
5094         remaining = raid5_dec_bi_active_stripes(raid_bio);
5095         if (remaining == 0) {
5096                 trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
5097                                          raid_bio, 0);
5098                 bio_endio(raid_bio, 0);
5099         }
5100         if (atomic_dec_and_test(&conf->active_aligned_reads))
5101                 wake_up(&conf->wait_for_stripe);
5102         return handled;
5103 }
5104
5105 static int handle_active_stripes(struct r5conf *conf, int group,
5106                                  struct r5worker *worker,
5107                                  struct list_head *temp_inactive_list)
5108 {
5109         struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
5110         int i, batch_size = 0, hash;
5111         bool release_inactive = false;
5112
5113         while (batch_size < MAX_STRIPE_BATCH &&
5114                         (sh = __get_priority_stripe(conf, group)) != NULL)
5115                 batch[batch_size++] = sh;
5116
5117         if (batch_size == 0) {
5118                 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5119                         if (!list_empty(temp_inactive_list + i))
5120                                 break;
5121                 if (i == NR_STRIPE_HASH_LOCKS)
5122                         return batch_size;
5123                 release_inactive = true;
5124         }
5125         spin_unlock_irq(&conf->device_lock);
5126
5127         release_inactive_stripe_list(conf, temp_inactive_list,
5128                                      NR_STRIPE_HASH_LOCKS);
5129
5130         if (release_inactive) {
5131                 spin_lock_irq(&conf->device_lock);
5132                 return 0;
5133         }
5134
5135         for (i = 0; i < batch_size; i++)
5136                 handle_stripe(batch[i]);
5137
5138         cond_resched();
5139
5140         spin_lock_irq(&conf->device_lock);
5141         for (i = 0; i < batch_size; i++) {
5142                 hash = batch[i]->hash_lock_index;
5143                 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
5144         }
5145         return batch_size;
5146 }
5147
5148 static void raid5_do_work(struct work_struct *work)
5149 {
5150         struct r5worker *worker = container_of(work, struct r5worker, work);
5151         struct r5worker_group *group = worker->group;
5152         struct r5conf *conf = group->conf;
5153         int group_id = group - conf->worker_groups;
5154         int handled;
5155         struct blk_plug plug;
5156
5157         pr_debug("+++ raid5worker active\n");
5158
5159         blk_start_plug(&plug);
5160         handled = 0;
5161         spin_lock_irq(&conf->device_lock);
5162         while (1) {
5163                 int batch_size, released;
5164
5165                 released = release_stripe_list(conf, worker->temp_inactive_list);
5166
5167                 batch_size = handle_active_stripes(conf, group_id, worker,
5168                                                    worker->temp_inactive_list);
5169                 worker->working = false;
5170                 if (!batch_size && !released)
5171                         break;
5172                 handled += batch_size;
5173         }
5174         pr_debug("%d stripes handled\n", handled);
5175
5176         spin_unlock_irq(&conf->device_lock);
5177         blk_finish_plug(&plug);
5178
5179         pr_debug("--- raid5worker inactive\n");
5180 }
5181
5182 /*
5183  * This is our raid5 kernel thread.
5184  *
5185  * We scan the hash table for stripes which can be handled now.
5186  * During the scan, completed stripes are saved for us by the interrupt
5187  * handler, so that they will not have to wait for our next wakeup.
5188  */
5189 static void raid5d(struct md_thread *thread)
5190 {
5191         struct mddev *mddev = thread->mddev;
5192         struct r5conf *conf = mddev->private;
5193         int handled;
5194         struct blk_plug plug;
5195
5196         pr_debug("+++ raid5d active\n");
5197
5198         md_check_recovery(mddev);
5199
5200         blk_start_plug(&plug);
5201         handled = 0;
5202         spin_lock_irq(&conf->device_lock);
5203         while (1) {
5204                 struct bio *bio;
5205                 int batch_size, released;
5206
5207                 released = release_stripe_list(conf, conf->temp_inactive_list);
5208
5209                 if (
5210                     !list_empty(&conf->bitmap_list)) {
5211                         /* Now is a good time to flush some bitmap updates */
5212                         conf->seq_flush++;
5213                         spin_unlock_irq(&conf->device_lock);
5214                         bitmap_unplug(mddev->bitmap);
5215                         spin_lock_irq(&conf->device_lock);
5216                         conf->seq_write = conf->seq_flush;
5217                         activate_bit_delay(conf, conf->temp_inactive_list);
5218                 }
5219                 raid5_activate_delayed(conf);
5220
5221                 while ((bio = remove_bio_from_retry(conf))) {
5222                         int ok;
5223                         spin_unlock_irq(&conf->device_lock);
5224                         ok = retry_aligned_read(conf, bio);
5225                         spin_lock_irq(&conf->device_lock);
5226                         if (!ok)
5227                                 break;
5228                         handled++;
5229                 }
5230
5231                 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
5232                                                    conf->temp_inactive_list);
5233                 if (!batch_size && !released)
5234                         break;
5235                 handled += batch_size;
5236
5237                 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
5238                         spin_unlock_irq(&conf->device_lock);
5239                         md_check_recovery(mddev);
5240                         spin_lock_irq(&conf->device_lock);
5241                 }
5242         }
5243         pr_debug("%d stripes handled\n", handled);
5244
5245         spin_unlock_irq(&conf->device_lock);
5246
5247         async_tx_issue_pending_all();
5248         blk_finish_plug(&plug);
5249
5250         pr_debug("--- raid5d inactive\n");
5251 }
5252
5253 static ssize_t
5254 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
5255 {
5256         struct r5conf *conf = mddev->private;
5257         if (conf)
5258                 return sprintf(page, "%d\n", conf->max_nr_stripes);
5259         else
5260                 return 0;
5261 }
5262
5263 int
5264 raid5_set_cache_size(struct mddev *mddev, int size)
5265 {
5266         struct r5conf *conf = mddev->private;
5267         int err;
5268         int hash;
5269
5270         if (size <= 16 || size > 32768)
5271                 return -EINVAL;
5272         hash = (conf->max_nr_stripes - 1) % NR_STRIPE_HASH_LOCKS;
5273         while (size < conf->max_nr_stripes) {
5274                 if (drop_one_stripe(conf, hash))
5275                         conf->max_nr_stripes--;
5276                 else
5277                         break;
5278                 hash--;
5279                 if (hash < 0)
5280                         hash = NR_STRIPE_HASH_LOCKS - 1;
5281         }
5282         err = md_allow_write(mddev);
5283         if (err)
5284                 return err;
5285         hash = conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
5286         while (size > conf->max_nr_stripes) {
5287                 if (grow_one_stripe(conf, hash))
5288                         conf->max_nr_stripes++;
5289                 else break;
5290                 hash = (hash + 1) % NR_STRIPE_HASH_LOCKS;
5291         }
5292         return 0;
5293 }
5294 EXPORT_SYMBOL(raid5_set_cache_size);
5295
5296 static ssize_t
5297 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
5298 {
5299         struct r5conf *conf = mddev->private;
5300         unsigned long new;
5301         int err;
5302
5303         if (len >= PAGE_SIZE)
5304                 return -EINVAL;
5305         if (!conf)
5306                 return -ENODEV;
5307
5308         if (kstrtoul(page, 10, &new))
5309                 return -EINVAL;
5310         err = raid5_set_cache_size(mddev, new);
5311         if (err)
5312                 return err;
5313         return len;
5314 }
5315
5316 static struct md_sysfs_entry
5317 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
5318                                 raid5_show_stripe_cache_size,
5319                                 raid5_store_stripe_cache_size);
5320
5321 static ssize_t
5322 raid5_show_preread_threshold(struct mddev *mddev, char *page)
5323 {
5324         struct r5conf *conf = mddev->private;
5325         if (conf)
5326                 return sprintf(page, "%d\n", conf->bypass_threshold);
5327         else
5328                 return 0;
5329 }
5330
5331 static ssize_t
5332 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
5333 {
5334         struct r5conf *conf = mddev->private;
5335         unsigned long new;
5336         if (len >= PAGE_SIZE)
5337                 return -EINVAL;
5338         if (!conf)
5339                 return -ENODEV;
5340
5341         if (kstrtoul(page, 10, &new))
5342                 return -EINVAL;
5343         if (new > conf->max_nr_stripes)
5344                 return -EINVAL;
5345         conf->bypass_threshold = new;
5346         return len;
5347 }
5348
5349 static struct md_sysfs_entry
5350 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
5351                                         S_IRUGO | S_IWUSR,
5352                                         raid5_show_preread_threshold,
5353                                         raid5_store_preread_threshold);
5354
5355 static ssize_t
5356 stripe_cache_active_show(struct mddev *mddev, char *page)
5357 {
5358         struct r5conf *conf = mddev->private;
5359         if (conf)
5360                 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
5361         else
5362                 return 0;
5363 }
5364
5365 static struct md_sysfs_entry
5366 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
5367
5368 static ssize_t
5369 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
5370 {
5371         struct r5conf *conf = mddev->private;
5372         if (conf)
5373                 return sprintf(page, "%d\n", conf->worker_cnt_per_group);
5374         else
5375                 return 0;
5376 }
5377
5378 static int alloc_thread_groups(struct r5conf *conf, int cnt,
5379                                int *group_cnt,
5380                                int *worker_cnt_per_group,
5381                                struct r5worker_group **worker_groups);
5382 static ssize_t
5383 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
5384 {
5385         struct r5conf *conf = mddev->private;
5386         unsigned long new;
5387         int err;
5388         struct r5worker_group *new_groups, *old_groups;
5389         int group_cnt, worker_cnt_per_group;
5390
5391         if (len >= PAGE_SIZE)
5392                 return -EINVAL;
5393         if (!conf)
5394                 return -ENODEV;
5395
5396         if (kstrtoul(page, 10, &new))
5397                 return -EINVAL;
5398
5399         if (new == conf->worker_cnt_per_group)
5400                 return len;
5401
5402         mddev_suspend(mddev);
5403
5404         old_groups = conf->worker_groups;
5405         if (old_groups)
5406                 flush_workqueue(raid5_wq);
5407
5408         err = alloc_thread_groups(conf, new,
5409                                   &group_cnt, &worker_cnt_per_group,
5410                                   &new_groups);
5411         if (!err) {
5412                 spin_lock_irq(&conf->device_lock);
5413                 conf->group_cnt = group_cnt;
5414                 conf->worker_cnt_per_group = worker_cnt_per_group;
5415                 conf->worker_groups = new_groups;
5416                 spin_unlock_irq(&conf->device_lock);
5417
5418                 if (old_groups)
5419                         kfree(old_groups[0].workers);
5420                 kfree(old_groups);
5421         }
5422
5423         mddev_resume(mddev);
5424
5425         if (err)
5426                 return err;
5427         return len;
5428 }
5429
5430 static struct md_sysfs_entry
5431 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
5432                                 raid5_show_group_thread_cnt,
5433                                 raid5_store_group_thread_cnt);
5434
5435 static struct attribute *raid5_attrs[] =  {
5436         &raid5_stripecache_size.attr,
5437         &raid5_stripecache_active.attr,
5438         &raid5_preread_bypass_threshold.attr,
5439         &raid5_group_thread_cnt.attr,
5440         NULL,
5441 };
5442 static struct attribute_group raid5_attrs_group = {
5443         .name = NULL,
5444         .attrs = raid5_attrs,
5445 };
5446
5447 static int alloc_thread_groups(struct r5conf *conf, int cnt,
5448                                int *group_cnt,
5449                                int *worker_cnt_per_group,
5450                                struct r5worker_group **worker_groups)
5451 {
5452         int i, j, k;
5453         ssize_t size;
5454         struct r5worker *workers;
5455
5456         *worker_cnt_per_group = cnt;
5457         if (cnt == 0) {
5458                 *group_cnt = 0;
5459                 *worker_groups = NULL;
5460                 return 0;
5461         }
5462         *group_cnt = num_possible_nodes();
5463         size = sizeof(struct r5worker) * cnt;
5464         workers = kzalloc(size * *group_cnt, GFP_NOIO);
5465         *worker_groups = kzalloc(sizeof(struct r5worker_group) *
5466                                 *group_cnt, GFP_NOIO);
5467         if (!*worker_groups || !workers) {
5468                 kfree(workers);
5469                 kfree(*worker_groups);
5470                 return -ENOMEM;
5471         }
5472
5473         for (i = 0; i < *group_cnt; i++) {
5474                 struct r5worker_group *group;
5475
5476                 group = worker_groups[i];
5477                 INIT_LIST_HEAD(&group->handle_list);
5478                 group->conf = conf;
5479                 group->workers = workers + i * cnt;
5480
5481                 for (j = 0; j < cnt; j++) {
5482                         struct r5worker *worker = group->workers + j;
5483                         worker->group = group;
5484                         INIT_WORK(&worker->work, raid5_do_work);
5485
5486                         for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
5487                                 INIT_LIST_HEAD(worker->temp_inactive_list + k);
5488                 }
5489         }
5490
5491         return 0;
5492 }
5493
5494 static void free_thread_groups(struct r5conf *conf)
5495 {
5496         if (conf->worker_groups)
5497                 kfree(conf->worker_groups[0].workers);
5498         kfree(conf->worker_groups);
5499         conf->worker_groups = NULL;
5500 }
5501
5502 static sector_t
5503 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
5504 {
5505         struct r5conf *conf = mddev->private;
5506
5507         if (!sectors)
5508                 sectors = mddev->dev_sectors;
5509         if (!raid_disks)
5510                 /* size is defined by the smallest of previous and new size */
5511                 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
5512
5513         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5514         sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
5515         return sectors * (raid_disks - conf->max_degraded);
5516 }
5517
5518 static void raid5_free_percpu(struct r5conf *conf)
5519 {
5520         struct raid5_percpu *percpu;
5521         unsigned long cpu;
5522
5523         if (!conf->percpu)
5524                 return;
5525
5526         get_online_cpus();
5527         for_each_possible_cpu(cpu) {
5528                 percpu = per_cpu_ptr(conf->percpu, cpu);
5529                 safe_put_page(percpu->spare_page);
5530                 kfree(percpu->scribble);
5531         }
5532 #ifdef CONFIG_HOTPLUG_CPU
5533         unregister_cpu_notifier(&conf->cpu_notify);
5534 #endif
5535         put_online_cpus();
5536
5537         free_percpu(conf->percpu);
5538 }
5539
5540 static void free_conf(struct r5conf *conf)
5541 {
5542         free_thread_groups(conf);
5543         shrink_stripes(conf);
5544         raid5_free_percpu(conf);
5545         kfree(conf->disks);
5546         kfree(conf->stripe_hashtbl);
5547         kfree(conf);
5548 }
5549
5550 #ifdef CONFIG_HOTPLUG_CPU
5551 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
5552                               void *hcpu)
5553 {
5554         struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
5555         long cpu = (long)hcpu;
5556         struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
5557
5558         switch (action) {
5559         case CPU_UP_PREPARE:
5560         case CPU_UP_PREPARE_FROZEN:
5561                 if (conf->level == 6 && !percpu->spare_page)
5562                         percpu->spare_page = alloc_page(GFP_KERNEL);
5563                 if (!percpu->scribble)
5564                         percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
5565
5566                 if (!percpu->scribble ||
5567                     (conf->level == 6 && !percpu->spare_page)) {
5568                         safe_put_page(percpu->spare_page);
5569                         kfree(percpu->scribble);
5570                         pr_err("%s: failed memory allocation for cpu%ld\n",
5571                                __func__, cpu);
5572                         return notifier_from_errno(-ENOMEM);
5573                 }
5574                 break;
5575         case CPU_DEAD:
5576         case CPU_DEAD_FROZEN:
5577                 safe_put_page(percpu->spare_page);
5578                 kfree(percpu->scribble);
5579                 percpu->spare_page = NULL;
5580                 percpu->scribble = NULL;
5581                 break;
5582         default:
5583                 break;
5584         }
5585         return NOTIFY_OK;
5586 }
5587 #endif
5588
5589 static int raid5_alloc_percpu(struct r5conf *conf)
5590 {
5591         unsigned long cpu;
5592         struct page *spare_page;
5593         struct raid5_percpu __percpu *allcpus;
5594         void *scribble;
5595         int err;
5596
5597         allcpus = alloc_percpu(struct raid5_percpu);
5598         if (!allcpus)
5599                 return -ENOMEM;
5600         conf->percpu = allcpus;
5601
5602         get_online_cpus();
5603         err = 0;
5604         for_each_present_cpu(cpu) {
5605                 if (conf->level == 6) {
5606                         spare_page = alloc_page(GFP_KERNEL);
5607                         if (!spare_page) {
5608                                 err = -ENOMEM;
5609                                 break;
5610                         }
5611                         per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
5612                 }
5613                 scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
5614                 if (!scribble) {
5615                         err = -ENOMEM;
5616                         break;
5617                 }
5618                 per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
5619         }
5620 #ifdef CONFIG_HOTPLUG_CPU
5621         conf->cpu_notify.notifier_call = raid456_cpu_notify;
5622         conf->cpu_notify.priority = 0;
5623         if (err == 0)
5624                 err = register_cpu_notifier(&conf->cpu_notify);
5625 #endif
5626         put_online_cpus();
5627
5628         return err;
5629 }
5630
5631 static struct r5conf *setup_conf(struct mddev *mddev)
5632 {
5633         struct r5conf *conf;
5634         int raid_disk, memory, max_disks;
5635         struct md_rdev *rdev;
5636         struct disk_info *disk;
5637         char pers_name[6];
5638         int i;
5639         int group_cnt, worker_cnt_per_group;
5640         struct r5worker_group *new_group;
5641
5642         if (mddev->new_level != 5
5643             && mddev->new_level != 4
5644             && mddev->new_level != 6) {
5645                 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
5646                        mdname(mddev), mddev->new_level);
5647                 return ERR_PTR(-EIO);
5648         }
5649         if ((mddev->new_level == 5
5650              && !algorithm_valid_raid5(mddev->new_layout)) ||
5651             (mddev->new_level == 6
5652              && !algorithm_valid_raid6(mddev->new_layout))) {
5653                 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
5654                        mdname(mddev), mddev->new_layout);
5655                 return ERR_PTR(-EIO);
5656         }
5657         if (mddev->new_level == 6 && mddev->raid_disks < 4) {
5658                 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
5659                        mdname(mddev), mddev->raid_disks);
5660                 return ERR_PTR(-EINVAL);
5661         }
5662
5663         if (!mddev->new_chunk_sectors ||
5664             (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
5665             !is_power_of_2(mddev->new_chunk_sectors)) {
5666                 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
5667                        mdname(mddev), mddev->new_chunk_sectors << 9);
5668                 return ERR_PTR(-EINVAL);
5669         }
5670
5671         conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
5672         if (conf == NULL)
5673                 goto abort;
5674         /* Don't enable multi-threading by default*/
5675         if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
5676                                  &new_group)) {
5677                 conf->group_cnt = group_cnt;
5678                 conf->worker_cnt_per_group = worker_cnt_per_group;
5679                 conf->worker_groups = new_group;
5680         } else
5681                 goto abort;
5682         spin_lock_init(&conf->device_lock);
5683         seqcount_init(&conf->gen_lock);
5684         init_waitqueue_head(&conf->wait_for_stripe);
5685         init_waitqueue_head(&conf->wait_for_overlap);
5686         INIT_LIST_HEAD(&conf->handle_list);
5687         INIT_LIST_HEAD(&conf->hold_list);
5688         INIT_LIST_HEAD(&conf->delayed_list);
5689         INIT_LIST_HEAD(&conf->bitmap_list);
5690         init_llist_head(&conf->released_stripes);
5691         atomic_set(&conf->active_stripes, 0);
5692         atomic_set(&conf->preread_active_stripes, 0);
5693         atomic_set(&conf->active_aligned_reads, 0);
5694         conf->bypass_threshold = BYPASS_THRESHOLD;
5695         conf->recovery_disabled = mddev->recovery_disabled - 1;
5696
5697         conf->raid_disks = mddev->raid_disks;
5698         if (mddev->reshape_position == MaxSector)
5699                 conf->previous_raid_disks = mddev->raid_disks;
5700         else
5701                 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
5702         max_disks = max(conf->raid_disks, conf->previous_raid_disks);
5703         conf->scribble_len = scribble_len(max_disks);
5704
5705         conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
5706                               GFP_KERNEL);
5707         if (!conf->disks)
5708                 goto abort;
5709
5710         conf->mddev = mddev;
5711
5712         if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
5713                 goto abort;
5714
5715         /* We init hash_locks[0] separately to that it can be used
5716          * as the reference lock in the spin_lock_nest_lock() call
5717          * in lock_all_device_hash_locks_irq in order to convince
5718          * lockdep that we know what we are doing.
5719          */
5720         spin_lock_init(conf->hash_locks);
5721         for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
5722                 spin_lock_init(conf->hash_locks + i);
5723
5724         for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5725                 INIT_LIST_HEAD(conf->inactive_list + i);
5726
5727         for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5728                 INIT_LIST_HEAD(conf->temp_inactive_list + i);
5729
5730         conf->level = mddev->new_level;
5731         if (raid5_alloc_percpu(conf) != 0)
5732                 goto abort;
5733
5734         pr_debug("raid456: run(%s) called.\n", mdname(mddev));
5735
5736         rdev_for_each(rdev, mddev) {
5737                 raid_disk = rdev->raid_disk;
5738                 if (raid_disk >= max_disks
5739                     || raid_disk < 0)
5740                         continue;
5741                 disk = conf->disks + raid_disk;
5742
5743                 if (test_bit(Replacement, &rdev->flags)) {
5744                         if (disk->replacement)
5745                                 goto abort;
5746                         disk->replacement = rdev;
5747                 } else {
5748                         if (disk->rdev)
5749                                 goto abort;
5750                         disk->rdev = rdev;
5751                 }
5752
5753                 if (test_bit(In_sync, &rdev->flags)) {
5754                         char b[BDEVNAME_SIZE];
5755                         printk(KERN_INFO "md/raid:%s: device %s operational as raid"
5756                                " disk %d\n",
5757                                mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
5758                 } else if (rdev->saved_raid_disk != raid_disk)
5759                         /* Cannot rely on bitmap to complete recovery */
5760                         conf->fullsync = 1;
5761         }
5762
5763         conf->chunk_sectors = mddev->new_chunk_sectors;
5764         conf->level = mddev->new_level;
5765         if (conf->level == 6)
5766                 conf->max_degraded = 2;
5767         else
5768                 conf->max_degraded = 1;
5769         conf->algorithm = mddev->new_layout;
5770         conf->reshape_progress = mddev->reshape_position;
5771         if (conf->reshape_progress != MaxSector) {
5772                 conf->prev_chunk_sectors = mddev->chunk_sectors;
5773                 conf->prev_algo = mddev->layout;
5774         }
5775
5776         memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
5777                  max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
5778         atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
5779         if (grow_stripes(conf, NR_STRIPES)) {
5780                 printk(KERN_ERR
5781                        "md/raid:%s: couldn't allocate %dkB for buffers\n",
5782                        mdname(mddev), memory);
5783                 goto abort;
5784         } else
5785                 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
5786                        mdname(mddev), memory);
5787
5788         sprintf(pers_name, "raid%d", mddev->new_level);
5789         conf->thread = md_register_thread(raid5d, mddev, pers_name);
5790         if (!conf->thread) {
5791                 printk(KERN_ERR
5792                        "md/raid:%s: couldn't allocate thread.\n",
5793                        mdname(mddev));
5794                 goto abort;
5795         }
5796
5797         return conf;
5798
5799  abort:
5800         if (conf) {
5801                 free_conf(conf);
5802                 return ERR_PTR(-EIO);
5803         } else
5804                 return ERR_PTR(-ENOMEM);
5805 }
5806
5807
5808 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
5809 {
5810         switch (algo) {
5811         case ALGORITHM_PARITY_0:
5812                 if (raid_disk < max_degraded)
5813                         return 1;
5814                 break;
5815         case ALGORITHM_PARITY_N:
5816                 if (raid_disk >= raid_disks - max_degraded)
5817                         return 1;
5818                 break;
5819         case ALGORITHM_PARITY_0_6:
5820                 if (raid_disk == 0 || 
5821                     raid_disk == raid_disks - 1)
5822                         return 1;
5823                 break;
5824         case ALGORITHM_LEFT_ASYMMETRIC_6:
5825         case ALGORITHM_RIGHT_ASYMMETRIC_6:
5826         case ALGORITHM_LEFT_SYMMETRIC_6:
5827         case ALGORITHM_RIGHT_SYMMETRIC_6:
5828                 if (raid_disk == raid_disks - 1)
5829                         return 1;
5830         }
5831         return 0;
5832 }
5833
5834 static int run(struct mddev *mddev)
5835 {
5836         struct r5conf *conf;
5837         int working_disks = 0;
5838         int dirty_parity_disks = 0;
5839         struct md_rdev *rdev;
5840         sector_t reshape_offset = 0;
5841         int i;
5842         long long min_offset_diff = 0;
5843         int first = 1;
5844
5845         if (mddev->recovery_cp != MaxSector)
5846                 printk(KERN_NOTICE "md/raid:%s: not clean"
5847                        " -- starting background reconstruction\n",
5848                        mdname(mddev));
5849
5850         rdev_for_each(rdev, mddev) {
5851                 long long diff;
5852                 if (rdev->raid_disk < 0)
5853                         continue;
5854                 diff = (rdev->new_data_offset - rdev->data_offset);
5855                 if (first) {
5856                         min_offset_diff = diff;
5857                         first = 0;
5858                 } else if (mddev->reshape_backwards &&
5859                          diff < min_offset_diff)
5860                         min_offset_diff = diff;
5861                 else if (!mddev->reshape_backwards &&
5862                          diff > min_offset_diff)
5863                         min_offset_diff = diff;
5864         }
5865
5866         if (mddev->reshape_position != MaxSector) {
5867                 /* Check that we can continue the reshape.
5868                  * Difficulties arise if the stripe we would write to
5869                  * next is at or after the stripe we would read from next.
5870                  * For a reshape that changes the number of devices, this
5871                  * is only possible for a very short time, and mdadm makes
5872                  * sure that time appears to have past before assembling
5873                  * the array.  So we fail if that time hasn't passed.
5874                  * For a reshape that keeps the number of devices the same
5875                  * mdadm must be monitoring the reshape can keeping the
5876                  * critical areas read-only and backed up.  It will start
5877                  * the array in read-only mode, so we check for that.
5878                  */
5879                 sector_t here_new, here_old;
5880                 int old_disks;
5881                 int max_degraded = (mddev->level == 6 ? 2 : 1);
5882
5883                 if (mddev->new_level != mddev->level) {
5884                         printk(KERN_ERR "md/raid:%s: unsupported reshape "
5885                                "required - aborting.\n",
5886                                mdname(mddev));
5887                         return -EINVAL;
5888                 }
5889                 old_disks = mddev->raid_disks - mddev->delta_disks;
5890                 /* reshape_position must be on a new-stripe boundary, and one
5891                  * further up in new geometry must map after here in old
5892                  * geometry.
5893                  */
5894                 here_new = mddev->reshape_position;
5895                 if (sector_div(here_new, mddev->new_chunk_sectors *
5896                                (mddev->raid_disks - max_degraded))) {
5897                         printk(KERN_ERR "md/raid:%s: reshape_position not "
5898                                "on a stripe boundary\n", mdname(mddev));
5899                         return -EINVAL;
5900                 }
5901                 reshape_offset = here_new * mddev->new_chunk_sectors;
5902                 /* here_new is the stripe we will write to */
5903                 here_old = mddev->reshape_position;
5904                 sector_div(here_old, mddev->chunk_sectors *
5905                            (old_disks-max_degraded));
5906                 /* here_old is the first stripe that we might need to read
5907                  * from */
5908                 if (mddev->delta_disks == 0) {
5909                         if ((here_new * mddev->new_chunk_sectors !=
5910                              here_old * mddev->chunk_sectors)) {
5911                                 printk(KERN_ERR "md/raid:%s: reshape position is"
5912                                        " confused - aborting\n", mdname(mddev));
5913                                 return -EINVAL;
5914                         }
5915                         /* We cannot be sure it is safe to start an in-place
5916                          * reshape.  It is only safe if user-space is monitoring
5917                          * and taking constant backups.
5918                          * mdadm always starts a situation like this in
5919                          * readonly mode so it can take control before
5920                          * allowing any writes.  So just check for that.
5921                          */
5922                         if (abs(min_offset_diff) >= mddev->chunk_sectors &&
5923                             abs(min_offset_diff) >= mddev->new_chunk_sectors)
5924                                 /* not really in-place - so OK */;
5925                         else if (mddev->ro == 0) {
5926                                 printk(KERN_ERR "md/raid:%s: in-place reshape "
5927                                        "must be started in read-only mode "
5928                                        "- aborting\n",
5929                                        mdname(mddev));
5930                                 return -EINVAL;
5931                         }
5932                 } else if (mddev->reshape_backwards
5933                     ? (here_new * mddev->new_chunk_sectors + min_offset_diff <=
5934                        here_old * mddev->chunk_sectors)
5935                     : (here_new * mddev->new_chunk_sectors >=
5936                        here_old * mddev->chunk_sectors + (-min_offset_diff))) {
5937                         /* Reading from the same stripe as writing to - bad */
5938                         printk(KERN_ERR "md/raid:%s: reshape_position too early for "
5939                                "auto-recovery - aborting.\n",
5940                                mdname(mddev));
5941                         return -EINVAL;
5942                 }
5943                 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
5944                        mdname(mddev));
5945                 /* OK, we should be able to continue; */
5946         } else {
5947                 BUG_ON(mddev->level != mddev->new_level);
5948                 BUG_ON(mddev->layout != mddev->new_layout);
5949                 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
5950                 BUG_ON(mddev->delta_disks != 0);
5951         }
5952
5953         if (mddev->private == NULL)
5954                 conf = setup_conf(mddev);
5955         else
5956                 conf = mddev->private;
5957
5958         if (IS_ERR(conf))
5959                 return PTR_ERR(conf);
5960
5961         conf->min_offset_diff = min_offset_diff;
5962         mddev->thread = conf->thread;
5963         conf->thread = NULL;
5964         mddev->private = conf;
5965
5966         for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
5967              i++) {
5968                 rdev = conf->disks[i].rdev;
5969                 if (!rdev && conf->disks[i].replacement) {
5970                         /* The replacement is all we have yet */
5971                         rdev = conf->disks[i].replacement;
5972                         conf->disks[i].replacement = NULL;
5973                         clear_bit(Replacement, &rdev->flags);
5974                         conf->disks[i].rdev = rdev;
5975                 }
5976                 if (!rdev)
5977                         continue;
5978                 if (conf->disks[i].replacement &&
5979                     conf->reshape_progress != MaxSector) {
5980                         /* replacements and reshape simply do not mix. */
5981                         printk(KERN_ERR "md: cannot handle concurrent "
5982                                "replacement and reshape.\n");
5983                         goto abort;
5984                 }
5985                 if (test_bit(In_sync, &rdev->flags)) {
5986                         working_disks++;
5987                         continue;
5988                 }
5989                 /* This disc is not fully in-sync.  However if it
5990                  * just stored parity (beyond the recovery_offset),
5991                  * when we don't need to be concerned about the
5992                  * array being dirty.
5993                  * When reshape goes 'backwards', we never have
5994                  * partially completed devices, so we only need
5995                  * to worry about reshape going forwards.
5996                  */
5997                 /* Hack because v0.91 doesn't store recovery_offset properly. */
5998                 if (mddev->major_version == 0 &&
5999                     mddev->minor_version > 90)
6000                         rdev->recovery_offset = reshape_offset;
6001
6002                 if (rdev->recovery_offset < reshape_offset) {
6003                         /* We need to check old and new layout */
6004                         if (!only_parity(rdev->raid_disk,
6005                                          conf->algorithm,
6006                                          conf->raid_disks,
6007                                          conf->max_degraded))
6008                                 continue;
6009                 }
6010                 if (!only_parity(rdev->raid_disk,
6011                                  conf->prev_algo,
6012                                  conf->previous_raid_disks,
6013                                  conf->max_degraded))
6014                         continue;
6015                 dirty_parity_disks++;
6016         }
6017
6018         /*
6019          * 0 for a fully functional array, 1 or 2 for a degraded array.
6020          */
6021         mddev->degraded = calc_degraded(conf);
6022
6023         if (has_failed(conf)) {
6024                 printk(KERN_ERR "md/raid:%s: not enough operational devices"
6025                         " (%d/%d failed)\n",
6026                         mdname(mddev), mddev->degraded, conf->raid_disks);
6027                 goto abort;
6028         }
6029
6030         /* device size must be a multiple of chunk size */
6031         mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
6032         mddev->resync_max_sectors = mddev->dev_sectors;
6033
6034         if (mddev->degraded > dirty_parity_disks &&
6035             mddev->recovery_cp != MaxSector) {
6036                 if (mddev->ok_start_degraded)
6037                         printk(KERN_WARNING
6038                                "md/raid:%s: starting dirty degraded array"
6039                                " - data corruption possible.\n",
6040                                mdname(mddev));
6041                 else {
6042                         printk(KERN_ERR
6043                                "md/raid:%s: cannot start dirty degraded array.\n",
6044                                mdname(mddev));
6045                         goto abort;
6046                 }
6047         }
6048
6049         if (mddev->degraded == 0)
6050                 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
6051                        " devices, algorithm %d\n", mdname(mddev), conf->level,
6052                        mddev->raid_disks-mddev->degraded, mddev->raid_disks,
6053                        mddev->new_layout);
6054         else
6055                 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
6056                        " out of %d devices, algorithm %d\n",
6057                        mdname(mddev), conf->level,
6058                        mddev->raid_disks - mddev->degraded,
6059                        mddev->raid_disks, mddev->new_layout);
6060
6061         print_raid5_conf(conf);
6062
6063         if (conf->reshape_progress != MaxSector) {
6064                 conf->reshape_safe = conf->reshape_progress;
6065                 atomic_set(&conf->reshape_stripes, 0);
6066                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6067                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6068                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6069                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6070                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6071                                                         "reshape");
6072         }
6073
6074
6075         /* Ok, everything is just fine now */
6076         if (mddev->to_remove == &raid5_attrs_group)
6077                 mddev->to_remove = NULL;
6078         else if (mddev->kobj.sd &&
6079             sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
6080                 printk(KERN_WARNING
6081                        "raid5: failed to create sysfs attributes for %s\n",
6082                        mdname(mddev));
6083         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6084
6085         if (mddev->queue) {
6086                 int chunk_size;
6087                 bool discard_supported = true;
6088                 /* read-ahead size must cover two whole stripes, which
6089                  * is 2 * (datadisks) * chunksize where 'n' is the
6090                  * number of raid devices
6091                  */
6092                 int data_disks = conf->previous_raid_disks - conf->max_degraded;
6093                 int stripe = data_disks *
6094                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
6095                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6096                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6097
6098                 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
6099
6100                 mddev->queue->backing_dev_info.congested_data = mddev;
6101                 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
6102
6103                 chunk_size = mddev->chunk_sectors << 9;
6104                 blk_queue_io_min(mddev->queue, chunk_size);
6105                 blk_queue_io_opt(mddev->queue, chunk_size *
6106                                  (conf->raid_disks - conf->max_degraded));
6107                 /*
6108                  * We can only discard a whole stripe. It doesn't make sense to
6109                  * discard data disk but write parity disk
6110                  */
6111                 stripe = stripe * PAGE_SIZE;
6112                 /* Round up to power of 2, as discard handling
6113                  * currently assumes that */
6114                 while ((stripe-1) & stripe)
6115                         stripe = (stripe | (stripe-1)) + 1;
6116                 mddev->queue->limits.discard_alignment = stripe;
6117                 mddev->queue->limits.discard_granularity = stripe;
6118                 /*
6119                  * unaligned part of discard request will be ignored, so can't
6120                  * guarantee discard_zerors_data
6121                  */
6122                 mddev->queue->limits.discard_zeroes_data = 0;
6123
6124                 blk_queue_max_write_same_sectors(mddev->queue, 0);
6125
6126                 rdev_for_each(rdev, mddev) {
6127                         disk_stack_limits(mddev->gendisk, rdev->bdev,
6128                                           rdev->data_offset << 9);
6129                         disk_stack_limits(mddev->gendisk, rdev->bdev,
6130                                           rdev->new_data_offset << 9);
6131                         /*
6132                          * discard_zeroes_data is required, otherwise data
6133                          * could be lost. Consider a scenario: discard a stripe
6134                          * (the stripe could be inconsistent if
6135                          * discard_zeroes_data is 0); write one disk of the
6136                          * stripe (the stripe could be inconsistent again
6137                          * depending on which disks are used to calculate
6138                          * parity); the disk is broken; The stripe data of this
6139                          * disk is lost.
6140                          */
6141                         if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
6142                             !bdev_get_queue(rdev->bdev)->
6143                                                 limits.discard_zeroes_data)
6144                                 discard_supported = false;
6145                 }
6146
6147                 if (discard_supported &&
6148                    mddev->queue->limits.max_discard_sectors >= stripe &&
6149                    mddev->queue->limits.discard_granularity >= stripe)
6150                         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
6151                                                 mddev->queue);
6152                 else
6153                         queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
6154                                                 mddev->queue);
6155         }
6156
6157         return 0;
6158 abort:
6159         md_unregister_thread(&mddev->thread);
6160         print_raid5_conf(conf);
6161         free_conf(conf);
6162         mddev->private = NULL;
6163         printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
6164         return -EIO;
6165 }
6166
6167 static int stop(struct mddev *mddev)
6168 {
6169         struct r5conf *conf = mddev->private;
6170
6171         md_unregister_thread(&mddev->thread);
6172         if (mddev->queue)
6173                 mddev->queue->backing_dev_info.congested_fn = NULL;
6174         free_conf(conf);
6175         mddev->private = NULL;
6176         mddev->to_remove = &raid5_attrs_group;
6177         return 0;
6178 }
6179
6180 static void status(struct seq_file *seq, struct mddev *mddev)
6181 {
6182         struct r5conf *conf = mddev->private;
6183         int i;
6184
6185         seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
6186                 mddev->chunk_sectors / 2, mddev->layout);
6187         seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
6188         for (i = 0; i < conf->raid_disks; i++)
6189                 seq_printf (seq, "%s",
6190                                conf->disks[i].rdev &&
6191                                test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
6192         seq_printf (seq, "]");
6193 }
6194
6195 static void print_raid5_conf (struct r5conf *conf)
6196 {
6197         int i;
6198         struct disk_info *tmp;
6199
6200         printk(KERN_DEBUG "RAID conf printout:\n");
6201         if (!conf) {
6202                 printk("(conf==NULL)\n");
6203                 return;
6204         }
6205         printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
6206                conf->raid_disks,
6207                conf->raid_disks - conf->mddev->degraded);
6208
6209         for (i = 0; i < conf->raid_disks; i++) {
6210                 char b[BDEVNAME_SIZE];
6211                 tmp = conf->disks + i;
6212                 if (tmp->rdev)
6213                         printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
6214                                i, !test_bit(Faulty, &tmp->rdev->flags),
6215                                bdevname(tmp->rdev->bdev, b));
6216         }
6217 }
6218
6219 static int raid5_spare_active(struct mddev *mddev)
6220 {
6221         int i;
6222         struct r5conf *conf = mddev->private;
6223         struct disk_info *tmp;
6224         int count = 0;
6225         unsigned long flags;
6226
6227         for (i = 0; i < conf->raid_disks; i++) {
6228                 tmp = conf->disks + i;
6229                 if (tmp->replacement
6230                     && tmp->replacement->recovery_offset == MaxSector
6231                     && !test_bit(Faulty, &tmp->replacement->flags)
6232                     && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
6233                         /* Replacement has just become active. */
6234                         if (!tmp->rdev
6235                             || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
6236                                 count++;
6237                         if (tmp->rdev) {
6238                                 /* Replaced device not technically faulty,
6239                                  * but we need to be sure it gets removed
6240                                  * and never re-added.
6241                                  */
6242                                 set_bit(Faulty, &tmp->rdev->flags);
6243                                 sysfs_notify_dirent_safe(
6244                                         tmp->rdev->sysfs_state);
6245                         }
6246                         sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
6247                 } else if (tmp->rdev
6248                     && tmp->rdev->recovery_offset == MaxSector
6249                     && !test_bit(Faulty, &tmp->rdev->flags)
6250                     && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
6251                         count++;
6252                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
6253                 }
6254         }
6255         spin_lock_irqsave(&conf->device_lock, flags);
6256         mddev->degraded = calc_degraded(conf);
6257         spin_unlock_irqrestore(&conf->device_lock, flags);
6258         print_raid5_conf(conf);
6259         return count;
6260 }
6261
6262 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
6263 {
6264         struct r5conf *conf = mddev->private;
6265         int err = 0;
6266         int number = rdev->raid_disk;
6267         struct md_rdev **rdevp;
6268         struct disk_info *p = conf->disks + number;
6269
6270         print_raid5_conf(conf);
6271         if (rdev == p->rdev)
6272                 rdevp = &p->rdev;
6273         else if (rdev == p->replacement)
6274                 rdevp = &p->replacement;
6275         else
6276                 return 0;
6277
6278         if (number >= conf->raid_disks &&
6279             conf->reshape_progress == MaxSector)
6280                 clear_bit(In_sync, &rdev->flags);
6281
6282         if (test_bit(In_sync, &rdev->flags) ||
6283             atomic_read(&rdev->nr_pending)) {
6284                 err = -EBUSY;
6285                 goto abort;
6286         }
6287         /* Only remove non-faulty devices if recovery
6288          * isn't possible.
6289          */
6290         if (!test_bit(Faulty, &rdev->flags) &&
6291             mddev->recovery_disabled != conf->recovery_disabled &&
6292             !has_failed(conf) &&
6293             (!p->replacement || p->replacement == rdev) &&
6294             number < conf->raid_disks) {
6295                 err = -EBUSY;
6296                 goto abort;
6297         }
6298         *rdevp = NULL;
6299         synchronize_rcu();
6300         if (atomic_read(&rdev->nr_pending)) {
6301                 /* lost the race, try later */
6302                 err = -EBUSY;
6303                 *rdevp = rdev;
6304         } else if (p->replacement) {
6305                 /* We must have just cleared 'rdev' */
6306                 p->rdev = p->replacement;
6307                 clear_bit(Replacement, &p->replacement->flags);
6308                 smp_mb(); /* Make sure other CPUs may see both as identical
6309                            * but will never see neither - if they are careful
6310                            */
6311                 p->replacement = NULL;
6312                 clear_bit(WantReplacement, &rdev->flags);
6313         } else
6314                 /* We might have just removed the Replacement as faulty-
6315                  * clear the bit just in case
6316                  */
6317                 clear_bit(WantReplacement, &rdev->flags);
6318 abort:
6319
6320         print_raid5_conf(conf);
6321         return err;
6322 }
6323
6324 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
6325 {
6326         struct r5conf *conf = mddev->private;
6327         int err = -EEXIST;
6328         int disk;
6329         struct disk_info *p;
6330         int first = 0;
6331         int last = conf->raid_disks - 1;
6332
6333         if (mddev->recovery_disabled == conf->recovery_disabled)
6334                 return -EBUSY;
6335
6336         if (rdev->saved_raid_disk < 0 && has_failed(conf))
6337                 /* no point adding a device */
6338                 return -EINVAL;
6339
6340         if (rdev->raid_disk >= 0)
6341                 first = last = rdev->raid_disk;
6342
6343         /*
6344          * find the disk ... but prefer rdev->saved_raid_disk
6345          * if possible.
6346          */
6347         if (rdev->saved_raid_disk >= 0 &&
6348             rdev->saved_raid_disk >= first &&
6349             conf->disks[rdev->saved_raid_disk].rdev == NULL)
6350                 first = rdev->saved_raid_disk;
6351
6352         for (disk = first; disk <= last; disk++) {
6353                 p = conf->disks + disk;
6354                 if (p->rdev == NULL) {
6355                         clear_bit(In_sync, &rdev->flags);
6356                         rdev->raid_disk = disk;
6357                         err = 0;
6358                         if (rdev->saved_raid_disk != disk)
6359                                 conf->fullsync = 1;
6360                         rcu_assign_pointer(p->rdev, rdev);
6361                         goto out;
6362                 }
6363         }
6364         for (disk = first; disk <= last; disk++) {
6365                 p = conf->disks + disk;
6366                 if (test_bit(WantReplacement, &p->rdev->flags) &&
6367                     p->replacement == NULL) {
6368                         clear_bit(In_sync, &rdev->flags);
6369                         set_bit(Replacement, &rdev->flags);
6370                         rdev->raid_disk = disk;
6371                         err = 0;
6372                         conf->fullsync = 1;
6373                         rcu_assign_pointer(p->replacement, rdev);
6374                         break;
6375                 }
6376         }
6377 out:
6378         print_raid5_conf(conf);
6379         return err;
6380 }
6381
6382 static int raid5_resize(struct mddev *mddev, sector_t sectors)
6383 {
6384         /* no resync is happening, and there is enough space
6385          * on all devices, so we can resize.
6386          * We need to make sure resync covers any new space.
6387          * If the array is shrinking we should possibly wait until
6388          * any io in the removed space completes, but it hardly seems
6389          * worth it.
6390          */
6391         sector_t newsize;
6392         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
6393         newsize = raid5_size(mddev, sectors, mddev->raid_disks);
6394         if (mddev->external_size &&
6395             mddev->array_sectors > newsize)
6396                 return -EINVAL;
6397         if (mddev->bitmap) {
6398                 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
6399                 if (ret)
6400                         return ret;
6401         }
6402         md_set_array_sectors(mddev, newsize);
6403         set_capacity(mddev->gendisk, mddev->array_sectors);
6404         revalidate_disk(mddev->gendisk);
6405         if (sectors > mddev->dev_sectors &&
6406             mddev->recovery_cp > mddev->dev_sectors) {
6407                 mddev->recovery_cp = mddev->dev_sectors;
6408                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6409         }
6410         mddev->dev_sectors = sectors;
6411         mddev->resync_max_sectors = sectors;
6412         return 0;
6413 }
6414
6415 static int check_stripe_cache(struct mddev *mddev)
6416 {
6417         /* Can only proceed if there are plenty of stripe_heads.
6418          * We need a minimum of one full stripe,, and for sensible progress
6419          * it is best to have about 4 times that.
6420          * If we require 4 times, then the default 256 4K stripe_heads will
6421          * allow for chunk sizes up to 256K, which is probably OK.
6422          * If the chunk size is greater, user-space should request more
6423          * stripe_heads first.
6424          */
6425         struct r5conf *conf = mddev->private;
6426         if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
6427             > conf->max_nr_stripes ||
6428             ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
6429             > conf->max_nr_stripes) {
6430                 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
6431                        mdname(mddev),
6432                        ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
6433                         / STRIPE_SIZE)*4);
6434                 return 0;
6435         }
6436         return 1;
6437 }
6438
6439 static int check_reshape(struct mddev *mddev)
6440 {
6441         struct r5conf *conf = mddev->private;
6442
6443         if (mddev->delta_disks == 0 &&
6444             mddev->new_layout == mddev->layout &&
6445             mddev->new_chunk_sectors == mddev->chunk_sectors)
6446                 return 0; /* nothing to do */
6447         if (has_failed(conf))
6448                 return -EINVAL;
6449         if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
6450                 /* We might be able to shrink, but the devices must
6451                  * be made bigger first.
6452                  * For raid6, 4 is the minimum size.
6453                  * Otherwise 2 is the minimum
6454                  */
6455                 int min = 2;
6456                 if (mddev->level == 6)
6457                         min = 4;
6458                 if (mddev->raid_disks + mddev->delta_disks < min)
6459                         return -EINVAL;
6460         }
6461
6462         if (!check_stripe_cache(mddev))
6463                 return -ENOSPC;
6464
6465         return resize_stripes(conf, (conf->previous_raid_disks
6466                                      + mddev->delta_disks));
6467 }
6468
6469 static int raid5_start_reshape(struct mddev *mddev)
6470 {
6471         struct r5conf *conf = mddev->private;
6472         struct md_rdev *rdev;
6473         int spares = 0;
6474         unsigned long flags;
6475
6476         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
6477                 return -EBUSY;
6478
6479         if (!check_stripe_cache(mddev))
6480                 return -ENOSPC;
6481
6482         if (has_failed(conf))
6483                 return -EINVAL;
6484
6485         rdev_for_each(rdev, mddev) {
6486                 if (!test_bit(In_sync, &rdev->flags)
6487                     && !test_bit(Faulty, &rdev->flags))
6488                         spares++;
6489         }
6490
6491         if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
6492                 /* Not enough devices even to make a degraded array
6493                  * of that size
6494                  */
6495                 return -EINVAL;
6496
6497         /* Refuse to reduce size of the array.  Any reductions in
6498          * array size must be through explicit setting of array_size
6499          * attribute.
6500          */
6501         if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
6502             < mddev->array_sectors) {
6503                 printk(KERN_ERR "md/raid:%s: array size must be reduced "
6504                        "before number of disks\n", mdname(mddev));
6505                 return -EINVAL;
6506         }
6507
6508         atomic_set(&conf->reshape_stripes, 0);
6509         spin_lock_irq(&conf->device_lock);
6510         write_seqcount_begin(&conf->gen_lock);
6511         conf->previous_raid_disks = conf->raid_disks;
6512         conf->raid_disks += mddev->delta_disks;
6513         conf->prev_chunk_sectors = conf->chunk_sectors;
6514         conf->chunk_sectors = mddev->new_chunk_sectors;
6515         conf->prev_algo = conf->algorithm;
6516         conf->algorithm = mddev->new_layout;
6517         conf->generation++;
6518         /* Code that selects data_offset needs to see the generation update
6519          * if reshape_progress has been set - so a memory barrier needed.
6520          */
6521         smp_mb();
6522         if (mddev->reshape_backwards)
6523                 conf->reshape_progress = raid5_size(mddev, 0, 0);
6524         else
6525                 conf->reshape_progress = 0;
6526         conf->reshape_safe = conf->reshape_progress;
6527         write_seqcount_end(&conf->gen_lock);
6528         spin_unlock_irq(&conf->device_lock);
6529
6530         /* Now make sure any requests that proceeded on the assumption
6531          * the reshape wasn't running - like Discard or Read - have
6532          * completed.
6533          */
6534         mddev_suspend(mddev);
6535         mddev_resume(mddev);
6536
6537         /* Add some new drives, as many as will fit.
6538          * We know there are enough to make the newly sized array work.
6539          * Don't add devices if we are reducing the number of
6540          * devices in the array.  This is because it is not possible
6541          * to correctly record the "partially reconstructed" state of
6542          * such devices during the reshape and confusion could result.
6543          */
6544         if (mddev->delta_disks >= 0) {
6545                 rdev_for_each(rdev, mddev)
6546                         if (rdev->raid_disk < 0 &&
6547                             !test_bit(Faulty, &rdev->flags)) {
6548                                 if (raid5_add_disk(mddev, rdev) == 0) {
6549                                         if (rdev->raid_disk
6550                                             >= conf->previous_raid_disks)
6551                                                 set_bit(In_sync, &rdev->flags);
6552                                         else
6553                                                 rdev->recovery_offset = 0;
6554
6555                                         if (sysfs_link_rdev(mddev, rdev))
6556                                                 /* Failure here is OK */;
6557                                 }
6558                         } else if (rdev->raid_disk >= conf->previous_raid_disks
6559                                    && !test_bit(Faulty, &rdev->flags)) {
6560                                 /* This is a spare that was manually added */
6561                                 set_bit(In_sync, &rdev->flags);
6562                         }
6563
6564                 /* When a reshape changes the number of devices,
6565                  * ->degraded is measured against the larger of the
6566                  * pre and post number of devices.
6567                  */
6568                 spin_lock_irqsave(&conf->device_lock, flags);
6569                 mddev->degraded = calc_degraded(conf);
6570                 spin_unlock_irqrestore(&conf->device_lock, flags);
6571         }
6572         mddev->raid_disks = conf->raid_disks;
6573         mddev->reshape_position = conf->reshape_progress;
6574         set_bit(MD_CHANGE_DEVS, &mddev->flags);
6575
6576         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6577         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6578         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6579         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6580         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6581                                                 "reshape");
6582         if (!mddev->sync_thread) {
6583                 mddev->recovery = 0;
6584                 spin_lock_irq(&conf->device_lock);
6585                 write_seqcount_begin(&conf->gen_lock);
6586                 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
6587                 mddev->new_chunk_sectors =
6588                         conf->chunk_sectors = conf->prev_chunk_sectors;
6589                 mddev->new_layout = conf->algorithm = conf->prev_algo;
6590                 rdev_for_each(rdev, mddev)
6591                         rdev->new_data_offset = rdev->data_offset;
6592                 smp_wmb();
6593                 conf->generation --;
6594                 conf->reshape_progress = MaxSector;
6595                 mddev->reshape_position = MaxSector;
6596                 write_seqcount_end(&conf->gen_lock);
6597                 spin_unlock_irq(&conf->device_lock);
6598                 return -EAGAIN;
6599         }
6600         conf->reshape_checkpoint = jiffies;
6601         md_wakeup_thread(mddev->sync_thread);
6602         md_new_event(mddev);
6603         return 0;
6604 }
6605
6606 /* This is called from the reshape thread and should make any
6607  * changes needed in 'conf'
6608  */
6609 static void end_reshape(struct r5conf *conf)
6610 {
6611
6612         if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
6613                 struct md_rdev *rdev;
6614
6615                 spin_lock_irq(&conf->device_lock);
6616                 conf->previous_raid_disks = conf->raid_disks;
6617                 rdev_for_each(rdev, conf->mddev)
6618                         rdev->data_offset = rdev->new_data_offset;
6619                 smp_wmb();
6620                 conf->reshape_progress = MaxSector;
6621                 spin_unlock_irq(&conf->device_lock);
6622                 wake_up(&conf->wait_for_overlap);
6623
6624                 /* read-ahead size must cover two whole stripes, which is
6625                  * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
6626                  */
6627                 if (conf->mddev->queue) {
6628                         int data_disks = conf->raid_disks - conf->max_degraded;
6629                         int stripe = data_disks * ((conf->chunk_sectors << 9)
6630                                                    / PAGE_SIZE);
6631                         if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6632                                 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6633                 }
6634         }
6635 }
6636
6637 /* This is called from the raid5d thread with mddev_lock held.
6638  * It makes config changes to the device.
6639  */
6640 static void raid5_finish_reshape(struct mddev *mddev)
6641 {
6642         struct r5conf *conf = mddev->private;
6643
6644         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
6645
6646                 if (mddev->delta_disks > 0) {
6647                         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6648                         set_capacity(mddev->gendisk, mddev->array_sectors);
6649                         revalidate_disk(mddev->gendisk);
6650                 } else {
6651                         int d;
6652                         spin_lock_irq(&conf->device_lock);
6653                         mddev->degraded = calc_degraded(conf);
6654                         spin_unlock_irq(&conf->device_lock);
6655                         for (d = conf->raid_disks ;
6656                              d < conf->raid_disks - mddev->delta_disks;
6657                              d++) {
6658                                 struct md_rdev *rdev = conf->disks[d].rdev;
6659                                 if (rdev)
6660                                         clear_bit(In_sync, &rdev->flags);
6661                                 rdev = conf->disks[d].replacement;
6662                                 if (rdev)
6663                                         clear_bit(In_sync, &rdev->flags);
6664                         }
6665                 }
6666                 mddev->layout = conf->algorithm;
6667                 mddev->chunk_sectors = conf->chunk_sectors;
6668                 mddev->reshape_position = MaxSector;
6669                 mddev->delta_disks = 0;
6670                 mddev->reshape_backwards = 0;
6671         }
6672 }
6673
6674 static void raid5_quiesce(struct mddev *mddev, int state)
6675 {
6676         struct r5conf *conf = mddev->private;
6677
6678         switch(state) {
6679         case 2: /* resume for a suspend */
6680                 wake_up(&conf->wait_for_overlap);
6681                 break;
6682
6683         case 1: /* stop all writes */
6684                 lock_all_device_hash_locks_irq(conf);
6685                 /* '2' tells resync/reshape to pause so that all
6686                  * active stripes can drain
6687                  */
6688                 conf->quiesce = 2;
6689                 wait_event_cmd(conf->wait_for_stripe,
6690                                     atomic_read(&conf->active_stripes) == 0 &&
6691                                     atomic_read(&conf->active_aligned_reads) == 0,
6692                                     unlock_all_device_hash_locks_irq(conf),
6693                                     lock_all_device_hash_locks_irq(conf));
6694                 conf->quiesce = 1;
6695                 unlock_all_device_hash_locks_irq(conf);
6696                 /* allow reshape to continue */
6697                 wake_up(&conf->wait_for_overlap);
6698                 break;
6699
6700         case 0: /* re-enable writes */
6701                 lock_all_device_hash_locks_irq(conf);
6702                 conf->quiesce = 0;
6703                 wake_up(&conf->wait_for_stripe);
6704                 wake_up(&conf->wait_for_overlap);
6705                 unlock_all_device_hash_locks_irq(conf);
6706                 break;
6707         }
6708 }
6709
6710
6711 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
6712 {
6713         struct r0conf *raid0_conf = mddev->private;
6714         sector_t sectors;
6715
6716         /* for raid0 takeover only one zone is supported */
6717         if (raid0_conf->nr_strip_zones > 1) {
6718                 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
6719                        mdname(mddev));
6720                 return ERR_PTR(-EINVAL);
6721         }
6722
6723         sectors = raid0_conf->strip_zone[0].zone_end;
6724         sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
6725         mddev->dev_sectors = sectors;
6726         mddev->new_level = level;
6727         mddev->new_layout = ALGORITHM_PARITY_N;
6728         mddev->new_chunk_sectors = mddev->chunk_sectors;
6729         mddev->raid_disks += 1;
6730         mddev->delta_disks = 1;
6731         /* make sure it will be not marked as dirty */
6732         mddev->recovery_cp = MaxSector;
6733
6734         return setup_conf(mddev);
6735 }
6736
6737
6738 static void *raid5_takeover_raid1(struct mddev *mddev)
6739 {
6740         int chunksect;
6741
6742         if (mddev->raid_disks != 2 ||
6743             mddev->degraded > 1)
6744                 return ERR_PTR(-EINVAL);
6745
6746         /* Should check if there are write-behind devices? */
6747
6748         chunksect = 64*2; /* 64K by default */
6749
6750         /* The array must be an exact multiple of chunksize */
6751         while (chunksect && (mddev->array_sectors & (chunksect-1)))
6752                 chunksect >>= 1;
6753
6754         if ((chunksect<<9) < STRIPE_SIZE)
6755                 /* array size does not allow a suitable chunk size */
6756                 return ERR_PTR(-EINVAL);
6757
6758         mddev->new_level = 5;
6759         mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
6760         mddev->new_chunk_sectors = chunksect;
6761
6762         return setup_conf(mddev);
6763 }
6764
6765 static void *raid5_takeover_raid6(struct mddev *mddev)
6766 {
6767         int new_layout;
6768
6769         switch (mddev->layout) {
6770         case ALGORITHM_LEFT_ASYMMETRIC_6:
6771                 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
6772                 break;
6773         case ALGORITHM_RIGHT_ASYMMETRIC_6:
6774                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
6775                 break;
6776         case ALGORITHM_LEFT_SYMMETRIC_6:
6777                 new_layout = ALGORITHM_LEFT_SYMMETRIC;
6778                 break;
6779         case ALGORITHM_RIGHT_SYMMETRIC_6:
6780                 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
6781                 break;
6782         case ALGORITHM_PARITY_0_6:
6783                 new_layout = ALGORITHM_PARITY_0;
6784                 break;
6785         case ALGORITHM_PARITY_N:
6786                 new_layout = ALGORITHM_PARITY_N;
6787                 break;
6788         default:
6789                 return ERR_PTR(-EINVAL);
6790         }
6791         mddev->new_level = 5;
6792         mddev->new_layout = new_layout;
6793         mddev->delta_disks = -1;
6794         mddev->raid_disks -= 1;
6795         return setup_conf(mddev);
6796 }
6797
6798
6799 static int raid5_check_reshape(struct mddev *mddev)
6800 {
6801         /* For a 2-drive array, the layout and chunk size can be changed
6802          * immediately as not restriping is needed.
6803          * For larger arrays we record the new value - after validation
6804          * to be used by a reshape pass.
6805          */
6806         struct r5conf *conf = mddev->private;
6807         int new_chunk = mddev->new_chunk_sectors;
6808
6809         if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
6810                 return -EINVAL;
6811         if (new_chunk > 0) {
6812                 if (!is_power_of_2(new_chunk))
6813                         return -EINVAL;
6814                 if (new_chunk < (PAGE_SIZE>>9))
6815                         return -EINVAL;
6816                 if (mddev->array_sectors & (new_chunk-1))
6817                         /* not factor of array size */
6818                         return -EINVAL;
6819         }
6820
6821         /* They look valid */
6822
6823         if (mddev->raid_disks == 2) {
6824                 /* can make the change immediately */
6825                 if (mddev->new_layout >= 0) {
6826                         conf->algorithm = mddev->new_layout;
6827                         mddev->layout = mddev->new_layout;
6828                 }
6829                 if (new_chunk > 0) {
6830                         conf->chunk_sectors = new_chunk ;
6831                         mddev->chunk_sectors = new_chunk;
6832                 }
6833                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
6834                 md_wakeup_thread(mddev->thread);
6835         }
6836         return check_reshape(mddev);
6837 }
6838
6839 static int raid6_check_reshape(struct mddev *mddev)
6840 {
6841         int new_chunk = mddev->new_chunk_sectors;
6842
6843         if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
6844                 return -EINVAL;
6845         if (new_chunk > 0) {
6846                 if (!is_power_of_2(new_chunk))
6847                         return -EINVAL;
6848                 if (new_chunk < (PAGE_SIZE >> 9))
6849                         return -EINVAL;
6850                 if (mddev->array_sectors & (new_chunk-1))
6851                         /* not factor of array size */
6852                         return -EINVAL;
6853         }
6854
6855         /* They look valid */
6856         return check_reshape(mddev);
6857 }
6858
6859 static void *raid5_takeover(struct mddev *mddev)
6860 {
6861         /* raid5 can take over:
6862          *  raid0 - if there is only one strip zone - make it a raid4 layout
6863          *  raid1 - if there are two drives.  We need to know the chunk size
6864          *  raid4 - trivial - just use a raid4 layout.
6865          *  raid6 - Providing it is a *_6 layout
6866          */
6867         if (mddev->level == 0)
6868                 return raid45_takeover_raid0(mddev, 5);
6869         if (mddev->level == 1)
6870                 return raid5_takeover_raid1(mddev);
6871         if (mddev->level == 4) {
6872                 mddev->new_layout = ALGORITHM_PARITY_N;
6873                 mddev->new_level = 5;
6874                 return setup_conf(mddev);
6875         }
6876         if (mddev->level == 6)
6877                 return raid5_takeover_raid6(mddev);
6878
6879         return ERR_PTR(-EINVAL);
6880 }
6881
6882 static void *raid4_takeover(struct mddev *mddev)
6883 {
6884         /* raid4 can take over:
6885          *  raid0 - if there is only one strip zone
6886          *  raid5 - if layout is right
6887          */
6888         if (mddev->level == 0)
6889                 return raid45_takeover_raid0(mddev, 4);
6890         if (mddev->level == 5 &&
6891             mddev->layout == ALGORITHM_PARITY_N) {
6892                 mddev->new_layout = 0;
6893                 mddev->new_level = 4;
6894                 return setup_conf(mddev);
6895         }
6896         return ERR_PTR(-EINVAL);
6897 }
6898
6899 static struct md_personality raid5_personality;
6900
6901 static void *raid6_takeover(struct mddev *mddev)
6902 {
6903         /* Currently can only take over a raid5.  We map the
6904          * personality to an equivalent raid6 personality
6905          * with the Q block at the end.
6906          */
6907         int new_layout;
6908
6909         if (mddev->pers != &raid5_personality)
6910                 return ERR_PTR(-EINVAL);
6911         if (mddev->degraded > 1)
6912                 return ERR_PTR(-EINVAL);
6913         if (mddev->raid_disks > 253)
6914                 return ERR_PTR(-EINVAL);
6915         if (mddev->raid_disks < 3)
6916                 return ERR_PTR(-EINVAL);
6917
6918         switch (mddev->layout) {
6919         case ALGORITHM_LEFT_ASYMMETRIC:
6920                 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
6921                 break;
6922         case ALGORITHM_RIGHT_ASYMMETRIC:
6923                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
6924                 break;
6925         case ALGORITHM_LEFT_SYMMETRIC:
6926                 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
6927                 break;
6928         case ALGORITHM_RIGHT_SYMMETRIC:
6929                 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
6930                 break;
6931         case ALGORITHM_PARITY_0:
6932                 new_layout = ALGORITHM_PARITY_0_6;
6933                 break;
6934         case ALGORITHM_PARITY_N:
6935                 new_layout = ALGORITHM_PARITY_N;
6936                 break;
6937         default:
6938                 return ERR_PTR(-EINVAL);
6939         }
6940         mddev->new_level = 6;
6941         mddev->new_layout = new_layout;
6942         mddev->delta_disks = 1;
6943         mddev->raid_disks += 1;
6944         return setup_conf(mddev);
6945 }
6946
6947
6948 static struct md_personality raid6_personality =
6949 {
6950         .name           = "raid6",
6951         .level          = 6,
6952         .owner          = THIS_MODULE,
6953         .make_request   = make_request,
6954         .run            = run,
6955         .stop           = stop,
6956         .status         = status,
6957         .error_handler  = error,
6958         .hot_add_disk   = raid5_add_disk,
6959         .hot_remove_disk= raid5_remove_disk,
6960         .spare_active   = raid5_spare_active,
6961         .sync_request   = sync_request,
6962         .resize         = raid5_resize,
6963         .size           = raid5_size,
6964         .check_reshape  = raid6_check_reshape,
6965         .start_reshape  = raid5_start_reshape,
6966         .finish_reshape = raid5_finish_reshape,
6967         .quiesce        = raid5_quiesce,
6968         .takeover       = raid6_takeover,
6969 };
6970 static struct md_personality raid5_personality =
6971 {
6972         .name           = "raid5",
6973         .level          = 5,
6974         .owner          = THIS_MODULE,
6975         .make_request   = make_request,
6976         .run            = run,
6977         .stop           = stop,
6978         .status         = status,
6979         .error_handler  = error,
6980         .hot_add_disk   = raid5_add_disk,
6981         .hot_remove_disk= raid5_remove_disk,
6982         .spare_active   = raid5_spare_active,
6983         .sync_request   = sync_request,
6984         .resize         = raid5_resize,
6985         .size           = raid5_size,
6986         .check_reshape  = raid5_check_reshape,
6987         .start_reshape  = raid5_start_reshape,
6988         .finish_reshape = raid5_finish_reshape,
6989         .quiesce        = raid5_quiesce,
6990         .takeover       = raid5_takeover,
6991 };
6992
6993 static struct md_personality raid4_personality =
6994 {
6995         .name           = "raid4",
6996         .level          = 4,
6997         .owner          = THIS_MODULE,
6998         .make_request   = make_request,
6999         .run            = run,
7000         .stop           = stop,
7001         .status         = status,
7002         .error_handler  = error,
7003         .hot_add_disk   = raid5_add_disk,
7004         .hot_remove_disk= raid5_remove_disk,
7005         .spare_active   = raid5_spare_active,
7006         .sync_request   = sync_request,
7007         .resize         = raid5_resize,
7008         .size           = raid5_size,
7009         .check_reshape  = raid5_check_reshape,
7010         .start_reshape  = raid5_start_reshape,
7011         .finish_reshape = raid5_finish_reshape,
7012         .quiesce        = raid5_quiesce,
7013         .takeover       = raid4_takeover,
7014 };
7015
7016 static int __init raid5_init(void)
7017 {
7018         raid5_wq = alloc_workqueue("raid5wq",
7019                 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
7020         if (!raid5_wq)
7021                 return -ENOMEM;
7022         register_md_personality(&raid6_personality);
7023         register_md_personality(&raid5_personality);
7024         register_md_personality(&raid4_personality);
7025         return 0;
7026 }
7027
7028 static void raid5_exit(void)
7029 {
7030         unregister_md_personality(&raid6_personality);
7031         unregister_md_personality(&raid5_personality);
7032         unregister_md_personality(&raid4_personality);
7033         destroy_workqueue(raid5_wq);
7034 }
7035
7036 module_init(raid5_init);
7037 module_exit(raid5_exit);
7038 MODULE_LICENSE("GPL");
7039 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
7040 MODULE_ALIAS("md-personality-4"); /* RAID5 */
7041 MODULE_ALIAS("md-raid5");
7042 MODULE_ALIAS("md-raid4");
7043 MODULE_ALIAS("md-level-5");
7044 MODULE_ALIAS("md-level-4");
7045 MODULE_ALIAS("md-personality-8"); /* RAID6 */
7046 MODULE_ALIAS("md-raid6");
7047 MODULE_ALIAS("md-level-6");
7048
7049 /* This used to be two separate modules, they were: */
7050 MODULE_ALIAS("raid5");
7051 MODULE_ALIAS("raid6");