b74780af4c220db77d1c3d502366faed9fb71590
[linux-2.6-block.git] / drivers / md / raid10.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * raid10.c : Multiple Devices driver for Linux
4  *
5  * Copyright (C) 2000-2004 Neil Brown
6  *
7  * RAID-10 support for md.
8  *
9  * Base on code in raid1.c.  See raid1.c for further copyright information.
10  */
11
12 #include <linux/slab.h>
13 #include <linux/delay.h>
14 #include <linux/blkdev.h>
15 #include <linux/module.h>
16 #include <linux/seq_file.h>
17 #include <linux/ratelimit.h>
18 #include <linux/kthread.h>
19 #include <linux/raid/md_p.h>
20 #include <trace/events/block.h>
21 #include "md.h"
22
23 #define RAID_1_10_NAME "raid10"
24 #include "raid10.h"
25 #include "raid0.h"
26 #include "md-bitmap.h"
27 #include "md-cluster.h"
28
29 /*
30  * RAID10 provides a combination of RAID0 and RAID1 functionality.
31  * The layout of data is defined by
32  *    chunk_size
33  *    raid_disks
34  *    near_copies (stored in low byte of layout)
35  *    far_copies (stored in second byte of layout)
36  *    far_offset (stored in bit 16 of layout )
37  *    use_far_sets (stored in bit 17 of layout )
38  *    use_far_sets_bugfixed (stored in bit 18 of layout )
39  *
40  * The data to be stored is divided into chunks using chunksize.  Each device
41  * is divided into far_copies sections.   In each section, chunks are laid out
42  * in a style similar to raid0, but near_copies copies of each chunk is stored
43  * (each on a different drive).  The starting device for each section is offset
44  * near_copies from the starting device of the previous section.  Thus there
45  * are (near_copies * far_copies) of each chunk, and each is on a different
46  * drive.  near_copies and far_copies must be at least one, and their product
47  * is at most raid_disks.
48  *
49  * If far_offset is true, then the far_copies are handled a bit differently.
50  * The copies are still in different stripes, but instead of being very far
51  * apart on disk, there are adjacent stripes.
52  *
53  * The far and offset algorithms are handled slightly differently if
54  * 'use_far_sets' is true.  In this case, the array's devices are grouped into
55  * sets that are (near_copies * far_copies) in size.  The far copied stripes
56  * are still shifted by 'near_copies' devices, but this shifting stays confined
57  * to the set rather than the entire array.  This is done to improve the number
58  * of device combinations that can fail without causing the array to fail.
59  * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
60  * on a device):
61  *    A B C D    A B C D E
62  *      ...         ...
63  *    D A B C    E A B C D
64  * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
65  *    [A B] [C D]    [A B] [C D E]
66  *    |...| |...|    |...| | ... |
67  *    [B A] [D C]    [B A] [E C D]
68  */
69
70 static void allow_barrier(struct r10conf *conf);
71 static void lower_barrier(struct r10conf *conf);
72 static int _enough(struct r10conf *conf, int previous, int ignore);
73 static int enough(struct r10conf *conf, int ignore);
74 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
75                                 int *skipped);
76 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
77 static void end_reshape_write(struct bio *bio);
78 static void end_reshape(struct r10conf *conf);
79
80 #include "raid1-10.c"
81
82 #define NULL_CMD
83 #define cmd_before(conf, cmd) \
84         do { \
85                 write_sequnlock_irq(&(conf)->resync_lock); \
86                 cmd; \
87         } while (0)
88 #define cmd_after(conf) write_seqlock_irq(&(conf)->resync_lock)
89
90 #define wait_event_barrier_cmd(conf, cond, cmd) \
91         wait_event_cmd((conf)->wait_barrier, cond, cmd_before(conf, cmd), \
92                        cmd_after(conf))
93
94 #define wait_event_barrier(conf, cond) \
95         wait_event_barrier_cmd(conf, cond, NULL_CMD)
96
97 /*
98  * for resync bio, r10bio pointer can be retrieved from the per-bio
99  * 'struct resync_pages'.
100  */
101 static inline struct r10bio *get_resync_r10bio(struct bio *bio)
102 {
103         return get_resync_pages(bio)->raid_bio;
104 }
105
106 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
107 {
108         struct r10conf *conf = data;
109         int size = offsetof(struct r10bio, devs[conf->geo.raid_disks]);
110
111         /* allocate a r10bio with room for raid_disks entries in the
112          * bios array */
113         return kzalloc(size, gfp_flags);
114 }
115
116 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
117 /* amount of memory to reserve for resync requests */
118 #define RESYNC_WINDOW (1024*1024)
119 /* maximum number of concurrent requests, memory permitting */
120 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
121 #define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW)
122 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
123
124 /*
125  * When performing a resync, we need to read and compare, so
126  * we need as many pages are there are copies.
127  * When performing a recovery, we need 2 bios, one for read,
128  * one for write (we recover only one drive per r10buf)
129  *
130  */
131 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
132 {
133         struct r10conf *conf = data;
134         struct r10bio *r10_bio;
135         struct bio *bio;
136         int j;
137         int nalloc, nalloc_rp;
138         struct resync_pages *rps;
139
140         r10_bio = r10bio_pool_alloc(gfp_flags, conf);
141         if (!r10_bio)
142                 return NULL;
143
144         if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
145             test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
146                 nalloc = conf->copies; /* resync */
147         else
148                 nalloc = 2; /* recovery */
149
150         /* allocate once for all bios */
151         if (!conf->have_replacement)
152                 nalloc_rp = nalloc;
153         else
154                 nalloc_rp = nalloc * 2;
155         rps = kmalloc_array(nalloc_rp, sizeof(struct resync_pages), gfp_flags);
156         if (!rps)
157                 goto out_free_r10bio;
158
159         /*
160          * Allocate bios.
161          */
162         for (j = nalloc ; j-- ; ) {
163                 bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
164                 if (!bio)
165                         goto out_free_bio;
166                 bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0);
167                 r10_bio->devs[j].bio = bio;
168                 if (!conf->have_replacement)
169                         continue;
170                 bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
171                 if (!bio)
172                         goto out_free_bio;
173                 bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0);
174                 r10_bio->devs[j].repl_bio = bio;
175         }
176         /*
177          * Allocate RESYNC_PAGES data pages and attach them
178          * where needed.
179          */
180         for (j = 0; j < nalloc; j++) {
181                 struct bio *rbio = r10_bio->devs[j].repl_bio;
182                 struct resync_pages *rp, *rp_repl;
183
184                 rp = &rps[j];
185                 if (rbio)
186                         rp_repl = &rps[nalloc + j];
187
188                 bio = r10_bio->devs[j].bio;
189
190                 if (!j || test_bit(MD_RECOVERY_SYNC,
191                                    &conf->mddev->recovery)) {
192                         if (resync_alloc_pages(rp, gfp_flags))
193                                 goto out_free_pages;
194                 } else {
195                         memcpy(rp, &rps[0], sizeof(*rp));
196                         resync_get_all_pages(rp);
197                 }
198
199                 rp->raid_bio = r10_bio;
200                 bio->bi_private = rp;
201                 if (rbio) {
202                         memcpy(rp_repl, rp, sizeof(*rp));
203                         rbio->bi_private = rp_repl;
204                 }
205         }
206
207         return r10_bio;
208
209 out_free_pages:
210         while (--j >= 0)
211                 resync_free_pages(&rps[j]);
212
213         j = 0;
214 out_free_bio:
215         for ( ; j < nalloc; j++) {
216                 if (r10_bio->devs[j].bio)
217                         bio_uninit(r10_bio->devs[j].bio);
218                 kfree(r10_bio->devs[j].bio);
219                 if (r10_bio->devs[j].repl_bio)
220                         bio_uninit(r10_bio->devs[j].repl_bio);
221                 kfree(r10_bio->devs[j].repl_bio);
222         }
223         kfree(rps);
224 out_free_r10bio:
225         rbio_pool_free(r10_bio, conf);
226         return NULL;
227 }
228
229 static void r10buf_pool_free(void *__r10_bio, void *data)
230 {
231         struct r10conf *conf = data;
232         struct r10bio *r10bio = __r10_bio;
233         int j;
234         struct resync_pages *rp = NULL;
235
236         for (j = conf->copies; j--; ) {
237                 struct bio *bio = r10bio->devs[j].bio;
238
239                 if (bio) {
240                         rp = get_resync_pages(bio);
241                         resync_free_pages(rp);
242                         bio_uninit(bio);
243                         kfree(bio);
244                 }
245
246                 bio = r10bio->devs[j].repl_bio;
247                 if (bio) {
248                         bio_uninit(bio);
249                         kfree(bio);
250                 }
251         }
252
253         /* resync pages array stored in the 1st bio's .bi_private */
254         kfree(rp);
255
256         rbio_pool_free(r10bio, conf);
257 }
258
259 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
260 {
261         int i;
262
263         for (i = 0; i < conf->geo.raid_disks; i++) {
264                 struct bio **bio = & r10_bio->devs[i].bio;
265                 if (!BIO_SPECIAL(*bio))
266                         bio_put(*bio);
267                 *bio = NULL;
268                 bio = &r10_bio->devs[i].repl_bio;
269                 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
270                         bio_put(*bio);
271                 *bio = NULL;
272         }
273 }
274
275 static void free_r10bio(struct r10bio *r10_bio)
276 {
277         struct r10conf *conf = r10_bio->mddev->private;
278
279         put_all_bios(conf, r10_bio);
280         mempool_free(r10_bio, &conf->r10bio_pool);
281 }
282
283 static void put_buf(struct r10bio *r10_bio)
284 {
285         struct r10conf *conf = r10_bio->mddev->private;
286
287         mempool_free(r10_bio, &conf->r10buf_pool);
288
289         lower_barrier(conf);
290 }
291
292 static void wake_up_barrier(struct r10conf *conf)
293 {
294         if (wq_has_sleeper(&conf->wait_barrier))
295                 wake_up(&conf->wait_barrier);
296 }
297
298 static void reschedule_retry(struct r10bio *r10_bio)
299 {
300         unsigned long flags;
301         struct mddev *mddev = r10_bio->mddev;
302         struct r10conf *conf = mddev->private;
303
304         spin_lock_irqsave(&conf->device_lock, flags);
305         list_add(&r10_bio->retry_list, &conf->retry_list);
306         conf->nr_queued ++;
307         spin_unlock_irqrestore(&conf->device_lock, flags);
308
309         /* wake up frozen array... */
310         wake_up(&conf->wait_barrier);
311
312         md_wakeup_thread(mddev->thread);
313 }
314
315 /*
316  * raid_end_bio_io() is called when we have finished servicing a mirrored
317  * operation and are ready to return a success/failure code to the buffer
318  * cache layer.
319  */
320 static void raid_end_bio_io(struct r10bio *r10_bio)
321 {
322         struct bio *bio = r10_bio->master_bio;
323         struct r10conf *conf = r10_bio->mddev->private;
324
325         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
326                 bio->bi_status = BLK_STS_IOERR;
327
328         bio_endio(bio);
329         /*
330          * Wake up any possible resync thread that waits for the device
331          * to go idle.
332          */
333         allow_barrier(conf);
334
335         free_r10bio(r10_bio);
336 }
337
338 /*
339  * Update disk head position estimator based on IRQ completion info.
340  */
341 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
342 {
343         struct r10conf *conf = r10_bio->mddev->private;
344
345         conf->mirrors[r10_bio->devs[slot].devnum].head_position =
346                 r10_bio->devs[slot].addr + (r10_bio->sectors);
347 }
348
349 /*
350  * Find the disk number which triggered given bio
351  */
352 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
353                          struct bio *bio, int *slotp, int *replp)
354 {
355         int slot;
356         int repl = 0;
357
358         for (slot = 0; slot < conf->geo.raid_disks; slot++) {
359                 if (r10_bio->devs[slot].bio == bio)
360                         break;
361                 if (r10_bio->devs[slot].repl_bio == bio) {
362                         repl = 1;
363                         break;
364                 }
365         }
366
367         update_head_pos(slot, r10_bio);
368
369         if (slotp)
370                 *slotp = slot;
371         if (replp)
372                 *replp = repl;
373         return r10_bio->devs[slot].devnum;
374 }
375
376 static void raid10_end_read_request(struct bio *bio)
377 {
378         int uptodate = !bio->bi_status;
379         struct r10bio *r10_bio = bio->bi_private;
380         int slot;
381         struct md_rdev *rdev;
382         struct r10conf *conf = r10_bio->mddev->private;
383
384         slot = r10_bio->read_slot;
385         rdev = r10_bio->devs[slot].rdev;
386         /*
387          * this branch is our 'one mirror IO has finished' event handler:
388          */
389         update_head_pos(slot, r10_bio);
390
391         if (uptodate) {
392                 /*
393                  * Set R10BIO_Uptodate in our master bio, so that
394                  * we will return a good error code to the higher
395                  * levels even if IO on some other mirrored buffer fails.
396                  *
397                  * The 'master' represents the composite IO operation to
398                  * user-side. So if something waits for IO, then it will
399                  * wait for the 'master' bio.
400                  */
401                 set_bit(R10BIO_Uptodate, &r10_bio->state);
402         } else if (!raid1_should_handle_error(bio)) {
403                 uptodate = 1;
404         } else {
405                 /* If all other devices that store this block have
406                  * failed, we want to return the error upwards rather
407                  * than fail the last device.  Here we redefine
408                  * "uptodate" to mean "Don't want to retry"
409                  */
410                 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
411                              rdev->raid_disk))
412                         uptodate = 1;
413         }
414         if (uptodate) {
415                 raid_end_bio_io(r10_bio);
416                 rdev_dec_pending(rdev, conf->mddev);
417         } else {
418                 /*
419                  * oops, read error - keep the refcount on the rdev
420                  */
421                 pr_err_ratelimited("md/raid10:%s: %pg: rescheduling sector %llu\n",
422                                    mdname(conf->mddev),
423                                    rdev->bdev,
424                                    (unsigned long long)r10_bio->sector);
425                 set_bit(R10BIO_ReadError, &r10_bio->state);
426                 reschedule_retry(r10_bio);
427         }
428 }
429
430 static void close_write(struct r10bio *r10_bio)
431 {
432         struct mddev *mddev = r10_bio->mddev;
433
434         md_write_end(mddev);
435 }
436
437 static void one_write_done(struct r10bio *r10_bio)
438 {
439         if (atomic_dec_and_test(&r10_bio->remaining)) {
440                 if (test_bit(R10BIO_WriteError, &r10_bio->state))
441                         reschedule_retry(r10_bio);
442                 else {
443                         close_write(r10_bio);
444                         if (test_bit(R10BIO_MadeGood, &r10_bio->state))
445                                 reschedule_retry(r10_bio);
446                         else
447                                 raid_end_bio_io(r10_bio);
448                 }
449         }
450 }
451
452 static void raid10_end_write_request(struct bio *bio)
453 {
454         struct r10bio *r10_bio = bio->bi_private;
455         int dev;
456         int dec_rdev = 1;
457         struct r10conf *conf = r10_bio->mddev->private;
458         int slot, repl;
459         struct md_rdev *rdev = NULL;
460         struct bio *to_put = NULL;
461         bool ignore_error = !raid1_should_handle_error(bio) ||
462                 (bio->bi_status && bio_op(bio) == REQ_OP_DISCARD);
463
464         dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
465
466         if (repl)
467                 rdev = conf->mirrors[dev].replacement;
468         if (!rdev) {
469                 smp_rmb();
470                 repl = 0;
471                 rdev = conf->mirrors[dev].rdev;
472         }
473         /*
474          * this branch is our 'one mirror IO has finished' event handler:
475          */
476         if (bio->bi_status && !ignore_error) {
477                 if (repl)
478                         /* Never record new bad blocks to replacement,
479                          * just fail it.
480                          */
481                         md_error(rdev->mddev, rdev);
482                 else {
483                         set_bit(WriteErrorSeen, &rdev->flags);
484                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
485                                 set_bit(MD_RECOVERY_NEEDED,
486                                         &rdev->mddev->recovery);
487
488                         dec_rdev = 0;
489                         if (test_bit(FailFast, &rdev->flags) &&
490                             (bio->bi_opf & MD_FAILFAST)) {
491                                 md_error(rdev->mddev, rdev);
492                         }
493
494                         /*
495                          * When the device is faulty, it is not necessary to
496                          * handle write error.
497                          */
498                         if (!test_bit(Faulty, &rdev->flags))
499                                 set_bit(R10BIO_WriteError, &r10_bio->state);
500                         else {
501                                 /* Fail the request */
502                                 r10_bio->devs[slot].bio = NULL;
503                                 to_put = bio;
504                                 dec_rdev = 1;
505                         }
506                 }
507         } else {
508                 /*
509                  * Set R10BIO_Uptodate in our master bio, so that
510                  * we will return a good error code for to the higher
511                  * levels even if IO on some other mirrored buffer fails.
512                  *
513                  * The 'master' represents the composite IO operation to
514                  * user-side. So if something waits for IO, then it will
515                  * wait for the 'master' bio.
516                  *
517                  * Do not set R10BIO_Uptodate if the current device is
518                  * rebuilding or Faulty. This is because we cannot use
519                  * such device for properly reading the data back (we could
520                  * potentially use it, if the current write would have felt
521                  * before rdev->recovery_offset, but for simplicity we don't
522                  * check this here.
523                  */
524                 if (test_bit(In_sync, &rdev->flags) &&
525                     !test_bit(Faulty, &rdev->flags))
526                         set_bit(R10BIO_Uptodate, &r10_bio->state);
527
528                 /* Maybe we can clear some bad blocks. */
529                 if (rdev_has_badblock(rdev, r10_bio->devs[slot].addr,
530                                       r10_bio->sectors) &&
531                     !ignore_error) {
532                         bio_put(bio);
533                         if (repl)
534                                 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
535                         else
536                                 r10_bio->devs[slot].bio = IO_MADE_GOOD;
537                         dec_rdev = 0;
538                         set_bit(R10BIO_MadeGood, &r10_bio->state);
539                 }
540         }
541
542         /*
543          *
544          * Let's see if all mirrored write operations have finished
545          * already.
546          */
547         one_write_done(r10_bio);
548         if (dec_rdev)
549                 rdev_dec_pending(rdev, conf->mddev);
550         if (to_put)
551                 bio_put(to_put);
552 }
553
554 /*
555  * RAID10 layout manager
556  * As well as the chunksize and raid_disks count, there are two
557  * parameters: near_copies and far_copies.
558  * near_copies * far_copies must be <= raid_disks.
559  * Normally one of these will be 1.
560  * If both are 1, we get raid0.
561  * If near_copies == raid_disks, we get raid1.
562  *
563  * Chunks are laid out in raid0 style with near_copies copies of the
564  * first chunk, followed by near_copies copies of the next chunk and
565  * so on.
566  * If far_copies > 1, then after 1/far_copies of the array has been assigned
567  * as described above, we start again with a device offset of near_copies.
568  * So we effectively have another copy of the whole array further down all
569  * the drives, but with blocks on different drives.
570  * With this layout, and block is never stored twice on the one device.
571  *
572  * raid10_find_phys finds the sector offset of a given virtual sector
573  * on each device that it is on.
574  *
575  * raid10_find_virt does the reverse mapping, from a device and a
576  * sector offset to a virtual address
577  */
578
579 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
580 {
581         int n,f;
582         sector_t sector;
583         sector_t chunk;
584         sector_t stripe;
585         int dev;
586         int slot = 0;
587         int last_far_set_start, last_far_set_size;
588
589         last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
590         last_far_set_start *= geo->far_set_size;
591
592         last_far_set_size = geo->far_set_size;
593         last_far_set_size += (geo->raid_disks % geo->far_set_size);
594
595         /* now calculate first sector/dev */
596         chunk = r10bio->sector >> geo->chunk_shift;
597         sector = r10bio->sector & geo->chunk_mask;
598
599         chunk *= geo->near_copies;
600         stripe = chunk;
601         dev = sector_div(stripe, geo->raid_disks);
602         if (geo->far_offset)
603                 stripe *= geo->far_copies;
604
605         sector += stripe << geo->chunk_shift;
606
607         /* and calculate all the others */
608         for (n = 0; n < geo->near_copies; n++) {
609                 int d = dev;
610                 int set;
611                 sector_t s = sector;
612                 r10bio->devs[slot].devnum = d;
613                 r10bio->devs[slot].addr = s;
614                 slot++;
615
616                 for (f = 1; f < geo->far_copies; f++) {
617                         set = d / geo->far_set_size;
618                         d += geo->near_copies;
619
620                         if ((geo->raid_disks % geo->far_set_size) &&
621                             (d > last_far_set_start)) {
622                                 d -= last_far_set_start;
623                                 d %= last_far_set_size;
624                                 d += last_far_set_start;
625                         } else {
626                                 d %= geo->far_set_size;
627                                 d += geo->far_set_size * set;
628                         }
629                         s += geo->stride;
630                         r10bio->devs[slot].devnum = d;
631                         r10bio->devs[slot].addr = s;
632                         slot++;
633                 }
634                 dev++;
635                 if (dev >= geo->raid_disks) {
636                         dev = 0;
637                         sector += (geo->chunk_mask + 1);
638                 }
639         }
640 }
641
642 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
643 {
644         struct geom *geo = &conf->geo;
645
646         if (conf->reshape_progress != MaxSector &&
647             ((r10bio->sector >= conf->reshape_progress) !=
648              conf->mddev->reshape_backwards)) {
649                 set_bit(R10BIO_Previous, &r10bio->state);
650                 geo = &conf->prev;
651         } else
652                 clear_bit(R10BIO_Previous, &r10bio->state);
653
654         __raid10_find_phys(geo, r10bio);
655 }
656
657 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
658 {
659         sector_t offset, chunk, vchunk;
660         /* Never use conf->prev as this is only called during resync
661          * or recovery, so reshape isn't happening
662          */
663         struct geom *geo = &conf->geo;
664         int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
665         int far_set_size = geo->far_set_size;
666         int last_far_set_start;
667
668         if (geo->raid_disks % geo->far_set_size) {
669                 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
670                 last_far_set_start *= geo->far_set_size;
671
672                 if (dev >= last_far_set_start) {
673                         far_set_size = geo->far_set_size;
674                         far_set_size += (geo->raid_disks % geo->far_set_size);
675                         far_set_start = last_far_set_start;
676                 }
677         }
678
679         offset = sector & geo->chunk_mask;
680         if (geo->far_offset) {
681                 int fc;
682                 chunk = sector >> geo->chunk_shift;
683                 fc = sector_div(chunk, geo->far_copies);
684                 dev -= fc * geo->near_copies;
685                 if (dev < far_set_start)
686                         dev += far_set_size;
687         } else {
688                 while (sector >= geo->stride) {
689                         sector -= geo->stride;
690                         if (dev < (geo->near_copies + far_set_start))
691                                 dev += far_set_size - geo->near_copies;
692                         else
693                                 dev -= geo->near_copies;
694                 }
695                 chunk = sector >> geo->chunk_shift;
696         }
697         vchunk = chunk * geo->raid_disks + dev;
698         sector_div(vchunk, geo->near_copies);
699         return (vchunk << geo->chunk_shift) + offset;
700 }
701
702 /*
703  * This routine returns the disk from which the requested read should
704  * be done. There is a per-array 'next expected sequential IO' sector
705  * number - if this matches on the next IO then we use the last disk.
706  * There is also a per-disk 'last know head position' sector that is
707  * maintained from IRQ contexts, both the normal and the resync IO
708  * completion handlers update this position correctly. If there is no
709  * perfect sequential match then we pick the disk whose head is closest.
710  *
711  * If there are 2 mirrors in the same 2 devices, performance degrades
712  * because position is mirror, not device based.
713  *
714  * The rdev for the device selected will have nr_pending incremented.
715  */
716
717 /*
718  * FIXME: possibly should rethink readbalancing and do it differently
719  * depending on near_copies / far_copies geometry.
720  */
721 static struct md_rdev *read_balance(struct r10conf *conf,
722                                     struct r10bio *r10_bio,
723                                     int *max_sectors)
724 {
725         const sector_t this_sector = r10_bio->sector;
726         int disk, slot;
727         int sectors = r10_bio->sectors;
728         int best_good_sectors;
729         sector_t new_distance, best_dist;
730         struct md_rdev *best_dist_rdev, *best_pending_rdev, *rdev = NULL;
731         int do_balance;
732         int best_dist_slot, best_pending_slot;
733         bool has_nonrot_disk = false;
734         unsigned int min_pending;
735         struct geom *geo = &conf->geo;
736
737         raid10_find_phys(conf, r10_bio);
738         best_dist_slot = -1;
739         min_pending = UINT_MAX;
740         best_dist_rdev = NULL;
741         best_pending_rdev = NULL;
742         best_dist = MaxSector;
743         best_good_sectors = 0;
744         do_balance = 1;
745         clear_bit(R10BIO_FailFast, &r10_bio->state);
746
747         if (raid1_should_read_first(conf->mddev, this_sector, sectors))
748                 do_balance = 0;
749
750         for (slot = 0; slot < conf->copies ; slot++) {
751                 sector_t first_bad;
752                 sector_t bad_sectors;
753                 sector_t dev_sector;
754                 unsigned int pending;
755                 bool nonrot;
756
757                 if (r10_bio->devs[slot].bio == IO_BLOCKED)
758                         continue;
759                 disk = r10_bio->devs[slot].devnum;
760                 rdev = conf->mirrors[disk].replacement;
761                 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
762                     r10_bio->devs[slot].addr + sectors >
763                     rdev->recovery_offset)
764                         rdev = conf->mirrors[disk].rdev;
765                 if (rdev == NULL ||
766                     test_bit(Faulty, &rdev->flags))
767                         continue;
768                 if (!test_bit(In_sync, &rdev->flags) &&
769                     r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
770                         continue;
771
772                 dev_sector = r10_bio->devs[slot].addr;
773                 if (is_badblock(rdev, dev_sector, sectors,
774                                 &first_bad, &bad_sectors)) {
775                         if (best_dist < MaxSector)
776                                 /* Already have a better slot */
777                                 continue;
778                         if (first_bad <= dev_sector) {
779                                 /* Cannot read here.  If this is the
780                                  * 'primary' device, then we must not read
781                                  * beyond 'bad_sectors' from another device.
782                                  */
783                                 bad_sectors -= (dev_sector - first_bad);
784                                 if (!do_balance && sectors > bad_sectors)
785                                         sectors = bad_sectors;
786                                 if (best_good_sectors > sectors)
787                                         best_good_sectors = sectors;
788                         } else {
789                                 sector_t good_sectors =
790                                         first_bad - dev_sector;
791                                 if (good_sectors > best_good_sectors) {
792                                         best_good_sectors = good_sectors;
793                                         best_dist_slot = slot;
794                                         best_dist_rdev = rdev;
795                                 }
796                                 if (!do_balance)
797                                         /* Must read from here */
798                                         break;
799                         }
800                         continue;
801                 } else
802                         best_good_sectors = sectors;
803
804                 if (!do_balance)
805                         break;
806
807                 nonrot = bdev_nonrot(rdev->bdev);
808                 has_nonrot_disk |= nonrot;
809                 pending = atomic_read(&rdev->nr_pending);
810                 if (min_pending > pending && nonrot) {
811                         min_pending = pending;
812                         best_pending_slot = slot;
813                         best_pending_rdev = rdev;
814                 }
815
816                 if (best_dist_slot >= 0)
817                         /* At least 2 disks to choose from so failfast is OK */
818                         set_bit(R10BIO_FailFast, &r10_bio->state);
819                 /* This optimisation is debatable, and completely destroys
820                  * sequential read speed for 'far copies' arrays.  So only
821                  * keep it for 'near' arrays, and review those later.
822                  */
823                 if (geo->near_copies > 1 && !pending)
824                         new_distance = 0;
825
826                 /* for far > 1 always use the lowest address */
827                 else if (geo->far_copies > 1)
828                         new_distance = r10_bio->devs[slot].addr;
829                 else
830                         new_distance = abs(r10_bio->devs[slot].addr -
831                                            conf->mirrors[disk].head_position);
832
833                 if (new_distance < best_dist) {
834                         best_dist = new_distance;
835                         best_dist_slot = slot;
836                         best_dist_rdev = rdev;
837                 }
838         }
839         if (slot >= conf->copies) {
840                 if (has_nonrot_disk) {
841                         slot = best_pending_slot;
842                         rdev = best_pending_rdev;
843                 } else {
844                         slot = best_dist_slot;
845                         rdev = best_dist_rdev;
846                 }
847         }
848
849         if (slot >= 0) {
850                 atomic_inc(&rdev->nr_pending);
851                 r10_bio->read_slot = slot;
852         } else
853                 rdev = NULL;
854         *max_sectors = best_good_sectors;
855
856         return rdev;
857 }
858
859 static void flush_pending_writes(struct r10conf *conf)
860 {
861         /* Any writes that have been queued but are awaiting
862          * bitmap updates get flushed here.
863          */
864         spin_lock_irq(&conf->device_lock);
865
866         if (conf->pending_bio_list.head) {
867                 struct blk_plug plug;
868                 struct bio *bio;
869
870                 bio = bio_list_get(&conf->pending_bio_list);
871                 spin_unlock_irq(&conf->device_lock);
872
873                 /*
874                  * As this is called in a wait_event() loop (see freeze_array),
875                  * current->state might be TASK_UNINTERRUPTIBLE which will
876                  * cause a warning when we prepare to wait again.  As it is
877                  * rare that this path is taken, it is perfectly safe to force
878                  * us to go around the wait_event() loop again, so the warning
879                  * is a false-positive. Silence the warning by resetting
880                  * thread state
881                  */
882                 __set_current_state(TASK_RUNNING);
883
884                 blk_start_plug(&plug);
885                 raid1_prepare_flush_writes(conf->mddev);
886                 wake_up(&conf->wait_barrier);
887
888                 while (bio) { /* submit pending writes */
889                         struct bio *next = bio->bi_next;
890
891                         raid1_submit_write(bio);
892                         bio = next;
893                         cond_resched();
894                 }
895                 blk_finish_plug(&plug);
896         } else
897                 spin_unlock_irq(&conf->device_lock);
898 }
899
900 /* Barriers....
901  * Sometimes we need to suspend IO while we do something else,
902  * either some resync/recovery, or reconfigure the array.
903  * To do this we raise a 'barrier'.
904  * The 'barrier' is a counter that can be raised multiple times
905  * to count how many activities are happening which preclude
906  * normal IO.
907  * We can only raise the barrier if there is no pending IO.
908  * i.e. if nr_pending == 0.
909  * We choose only to raise the barrier if no-one is waiting for the
910  * barrier to go down.  This means that as soon as an IO request
911  * is ready, no other operations which require a barrier will start
912  * until the IO request has had a chance.
913  *
914  * So: regular IO calls 'wait_barrier'.  When that returns there
915  *    is no backgroup IO happening,  It must arrange to call
916  *    allow_barrier when it has finished its IO.
917  * backgroup IO calls must call raise_barrier.  Once that returns
918  *    there is no normal IO happeing.  It must arrange to call
919  *    lower_barrier when the particular background IO completes.
920  */
921
922 static void raise_barrier(struct r10conf *conf, int force)
923 {
924         write_seqlock_irq(&conf->resync_lock);
925
926         if (WARN_ON_ONCE(force && !conf->barrier))
927                 force = false;
928
929         /* Wait until no block IO is waiting (unless 'force') */
930         wait_event_barrier(conf, force || !conf->nr_waiting);
931
932         /* block any new IO from starting */
933         WRITE_ONCE(conf->barrier, conf->barrier + 1);
934
935         /* Now wait for all pending IO to complete */
936         wait_event_barrier(conf, !atomic_read(&conf->nr_pending) &&
937                                  conf->barrier < RESYNC_DEPTH);
938
939         write_sequnlock_irq(&conf->resync_lock);
940 }
941
942 static void lower_barrier(struct r10conf *conf)
943 {
944         unsigned long flags;
945
946         write_seqlock_irqsave(&conf->resync_lock, flags);
947         WRITE_ONCE(conf->barrier, conf->barrier - 1);
948         write_sequnlock_irqrestore(&conf->resync_lock, flags);
949         wake_up(&conf->wait_barrier);
950 }
951
952 static bool stop_waiting_barrier(struct r10conf *conf)
953 {
954         struct bio_list *bio_list = current->bio_list;
955         struct md_thread *thread;
956
957         /* barrier is dropped */
958         if (!conf->barrier)
959                 return true;
960
961         /*
962          * If there are already pending requests (preventing the barrier from
963          * rising completely), and the pre-process bio queue isn't empty, then
964          * don't wait, as we need to empty that queue to get the nr_pending
965          * count down.
966          */
967         if (atomic_read(&conf->nr_pending) && bio_list &&
968             (!bio_list_empty(&bio_list[0]) || !bio_list_empty(&bio_list[1])))
969                 return true;
970
971         /* daemon thread must exist while handling io */
972         thread = rcu_dereference_protected(conf->mddev->thread, true);
973         /*
974          * move on if io is issued from raid10d(), nr_pending is not released
975          * from original io(see handle_read_error()). All raise barrier is
976          * blocked until this io is done.
977          */
978         if (thread->tsk == current) {
979                 WARN_ON_ONCE(atomic_read(&conf->nr_pending) == 0);
980                 return true;
981         }
982
983         return false;
984 }
985
986 static bool wait_barrier_nolock(struct r10conf *conf)
987 {
988         unsigned int seq = read_seqbegin(&conf->resync_lock);
989
990         if (READ_ONCE(conf->barrier))
991                 return false;
992
993         atomic_inc(&conf->nr_pending);
994         if (!read_seqretry(&conf->resync_lock, seq))
995                 return true;
996
997         if (atomic_dec_and_test(&conf->nr_pending))
998                 wake_up_barrier(conf);
999
1000         return false;
1001 }
1002
1003 static bool wait_barrier(struct r10conf *conf, bool nowait)
1004 {
1005         bool ret = true;
1006
1007         if (wait_barrier_nolock(conf))
1008                 return true;
1009
1010         write_seqlock_irq(&conf->resync_lock);
1011         if (conf->barrier) {
1012                 /* Return false when nowait flag is set */
1013                 if (nowait) {
1014                         ret = false;
1015                 } else {
1016                         conf->nr_waiting++;
1017                         mddev_add_trace_msg(conf->mddev, "raid10 wait barrier");
1018                         wait_event_barrier(conf, stop_waiting_barrier(conf));
1019                         conf->nr_waiting--;
1020                 }
1021                 if (!conf->nr_waiting)
1022                         wake_up(&conf->wait_barrier);
1023         }
1024         /* Only increment nr_pending when we wait */
1025         if (ret)
1026                 atomic_inc(&conf->nr_pending);
1027         write_sequnlock_irq(&conf->resync_lock);
1028         return ret;
1029 }
1030
1031 static void allow_barrier(struct r10conf *conf)
1032 {
1033         if ((atomic_dec_and_test(&conf->nr_pending)) ||
1034                         (conf->array_freeze_pending))
1035                 wake_up_barrier(conf);
1036 }
1037
1038 static void freeze_array(struct r10conf *conf, int extra)
1039 {
1040         /* stop syncio and normal IO and wait for everything to
1041          * go quiet.
1042          * We increment barrier and nr_waiting, and then
1043          * wait until nr_pending match nr_queued+extra
1044          * This is called in the context of one normal IO request
1045          * that has failed. Thus any sync request that might be pending
1046          * will be blocked by nr_pending, and we need to wait for
1047          * pending IO requests to complete or be queued for re-try.
1048          * Thus the number queued (nr_queued) plus this request (extra)
1049          * must match the number of pending IOs (nr_pending) before
1050          * we continue.
1051          */
1052         write_seqlock_irq(&conf->resync_lock);
1053         conf->array_freeze_pending++;
1054         WRITE_ONCE(conf->barrier, conf->barrier + 1);
1055         conf->nr_waiting++;
1056         wait_event_barrier_cmd(conf, atomic_read(&conf->nr_pending) ==
1057                         conf->nr_queued + extra, flush_pending_writes(conf));
1058         conf->array_freeze_pending--;
1059         write_sequnlock_irq(&conf->resync_lock);
1060 }
1061
1062 static void unfreeze_array(struct r10conf *conf)
1063 {
1064         /* reverse the effect of the freeze */
1065         write_seqlock_irq(&conf->resync_lock);
1066         WRITE_ONCE(conf->barrier, conf->barrier - 1);
1067         conf->nr_waiting--;
1068         wake_up(&conf->wait_barrier);
1069         write_sequnlock_irq(&conf->resync_lock);
1070 }
1071
1072 static sector_t choose_data_offset(struct r10bio *r10_bio,
1073                                    struct md_rdev *rdev)
1074 {
1075         if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1076             test_bit(R10BIO_Previous, &r10_bio->state))
1077                 return rdev->data_offset;
1078         else
1079                 return rdev->new_data_offset;
1080 }
1081
1082 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1083 {
1084         struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb, cb);
1085         struct mddev *mddev = plug->cb.data;
1086         struct r10conf *conf = mddev->private;
1087         struct bio *bio;
1088
1089         if (from_schedule) {
1090                 spin_lock_irq(&conf->device_lock);
1091                 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1092                 spin_unlock_irq(&conf->device_lock);
1093                 wake_up_barrier(conf);
1094                 md_wakeup_thread(mddev->thread);
1095                 kfree(plug);
1096                 return;
1097         }
1098
1099         /* we aren't scheduling, so we can do the write-out directly. */
1100         bio = bio_list_get(&plug->pending);
1101         raid1_prepare_flush_writes(mddev);
1102         wake_up_barrier(conf);
1103
1104         while (bio) { /* submit pending writes */
1105                 struct bio *next = bio->bi_next;
1106
1107                 raid1_submit_write(bio);
1108                 bio = next;
1109                 cond_resched();
1110         }
1111         kfree(plug);
1112 }
1113
1114 /*
1115  * 1. Register the new request and wait if the reconstruction thread has put
1116  * up a bar for new requests. Continue immediately if no resync is active
1117  * currently.
1118  * 2. If IO spans the reshape position.  Need to wait for reshape to pass.
1119  */
1120 static bool regular_request_wait(struct mddev *mddev, struct r10conf *conf,
1121                                  struct bio *bio, sector_t sectors)
1122 {
1123         /* Bail out if REQ_NOWAIT is set for the bio */
1124         if (!wait_barrier(conf, bio->bi_opf & REQ_NOWAIT)) {
1125                 bio_wouldblock_error(bio);
1126                 return false;
1127         }
1128         while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1129             bio->bi_iter.bi_sector < conf->reshape_progress &&
1130             bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1131                 allow_barrier(conf);
1132                 if (bio->bi_opf & REQ_NOWAIT) {
1133                         bio_wouldblock_error(bio);
1134                         return false;
1135                 }
1136                 mddev_add_trace_msg(conf->mddev, "raid10 wait reshape");
1137                 wait_event(conf->wait_barrier,
1138                            conf->reshape_progress <= bio->bi_iter.bi_sector ||
1139                            conf->reshape_progress >= bio->bi_iter.bi_sector +
1140                            sectors);
1141                 wait_barrier(conf, false);
1142         }
1143         return true;
1144 }
1145
1146 static void raid10_read_request(struct mddev *mddev, struct bio *bio,
1147                                 struct r10bio *r10_bio, bool io_accounting)
1148 {
1149         struct r10conf *conf = mddev->private;
1150         struct bio *read_bio;
1151         int max_sectors;
1152         struct md_rdev *rdev;
1153         char b[BDEVNAME_SIZE];
1154         int slot = r10_bio->read_slot;
1155         struct md_rdev *err_rdev = NULL;
1156         gfp_t gfp = GFP_NOIO;
1157         int error;
1158
1159         if (slot >= 0 && r10_bio->devs[slot].rdev) {
1160                 /*
1161                  * This is an error retry, but we cannot
1162                  * safely dereference the rdev in the r10_bio,
1163                  * we must use the one in conf.
1164                  * If it has already been disconnected (unlikely)
1165                  * we lose the device name in error messages.
1166                  */
1167                 int disk;
1168                 /*
1169                  * As we are blocking raid10, it is a little safer to
1170                  * use __GFP_HIGH.
1171                  */
1172                 gfp = GFP_NOIO | __GFP_HIGH;
1173
1174                 disk = r10_bio->devs[slot].devnum;
1175                 err_rdev = conf->mirrors[disk].rdev;
1176                 if (err_rdev)
1177                         snprintf(b, sizeof(b), "%pg", err_rdev->bdev);
1178                 else {
1179                         strcpy(b, "???");
1180                         /* This never gets dereferenced */
1181                         err_rdev = r10_bio->devs[slot].rdev;
1182                 }
1183         }
1184
1185         if (!regular_request_wait(mddev, conf, bio, r10_bio->sectors))
1186                 return;
1187         rdev = read_balance(conf, r10_bio, &max_sectors);
1188         if (!rdev) {
1189                 if (err_rdev) {
1190                         pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
1191                                             mdname(mddev), b,
1192                                             (unsigned long long)r10_bio->sector);
1193                 }
1194                 raid_end_bio_io(r10_bio);
1195                 return;
1196         }
1197         if (err_rdev)
1198                 pr_err_ratelimited("md/raid10:%s: %pg: redirecting sector %llu to another mirror\n",
1199                                    mdname(mddev),
1200                                    rdev->bdev,
1201                                    (unsigned long long)r10_bio->sector);
1202         if (max_sectors < bio_sectors(bio)) {
1203                 struct bio *split = bio_split(bio, max_sectors,
1204                                               gfp, &conf->bio_split);
1205                 if (IS_ERR(split)) {
1206                         error = PTR_ERR(split);
1207                         goto err_handle;
1208                 }
1209                 bio_chain(split, bio);
1210                 allow_barrier(conf);
1211                 submit_bio_noacct(bio);
1212                 wait_barrier(conf, false);
1213                 bio = split;
1214                 r10_bio->master_bio = bio;
1215                 r10_bio->sectors = max_sectors;
1216         }
1217         slot = r10_bio->read_slot;
1218
1219         if (io_accounting) {
1220                 md_account_bio(mddev, &bio);
1221                 r10_bio->master_bio = bio;
1222         }
1223         read_bio = bio_alloc_clone(rdev->bdev, bio, gfp, &mddev->bio_set);
1224
1225         r10_bio->devs[slot].bio = read_bio;
1226         r10_bio->devs[slot].rdev = rdev;
1227
1228         read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1229                 choose_data_offset(r10_bio, rdev);
1230         read_bio->bi_end_io = raid10_end_read_request;
1231         if (test_bit(FailFast, &rdev->flags) &&
1232             test_bit(R10BIO_FailFast, &r10_bio->state))
1233                 read_bio->bi_opf |= MD_FAILFAST;
1234         read_bio->bi_private = r10_bio;
1235         mddev_trace_remap(mddev, read_bio, r10_bio->sector);
1236         submit_bio_noacct(read_bio);
1237         return;
1238 err_handle:
1239         atomic_dec(&rdev->nr_pending);
1240         bio->bi_status = errno_to_blk_status(error);
1241         set_bit(R10BIO_Uptodate, &r10_bio->state);
1242         raid_end_bio_io(r10_bio);
1243 }
1244
1245 static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio,
1246                                   struct bio *bio, bool replacement,
1247                                   int n_copy)
1248 {
1249         unsigned long flags;
1250         struct r10conf *conf = mddev->private;
1251         struct md_rdev *rdev;
1252         int devnum = r10_bio->devs[n_copy].devnum;
1253         struct bio *mbio;
1254
1255         rdev = replacement ? conf->mirrors[devnum].replacement :
1256                              conf->mirrors[devnum].rdev;
1257
1258         mbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO, &mddev->bio_set);
1259         if (replacement)
1260                 r10_bio->devs[n_copy].repl_bio = mbio;
1261         else
1262                 r10_bio->devs[n_copy].bio = mbio;
1263
1264         mbio->bi_iter.bi_sector = (r10_bio->devs[n_copy].addr +
1265                                    choose_data_offset(r10_bio, rdev));
1266         mbio->bi_end_io = raid10_end_write_request;
1267         if (!replacement && test_bit(FailFast,
1268                                      &conf->mirrors[devnum].rdev->flags)
1269                          && enough(conf, devnum))
1270                 mbio->bi_opf |= MD_FAILFAST;
1271         mbio->bi_private = r10_bio;
1272         mddev_trace_remap(mddev, mbio, r10_bio->sector);
1273         /* flush_pending_writes() needs access to the rdev so...*/
1274         mbio->bi_bdev = (void *)rdev;
1275
1276         atomic_inc(&r10_bio->remaining);
1277
1278         if (!raid1_add_bio_to_plug(mddev, mbio, raid10_unplug, conf->copies)) {
1279                 spin_lock_irqsave(&conf->device_lock, flags);
1280                 bio_list_add(&conf->pending_bio_list, mbio);
1281                 spin_unlock_irqrestore(&conf->device_lock, flags);
1282                 md_wakeup_thread(mddev->thread);
1283         }
1284 }
1285
1286 static void wait_blocked_dev(struct mddev *mddev, struct r10bio *r10_bio)
1287 {
1288         struct r10conf *conf = mddev->private;
1289         struct md_rdev *blocked_rdev;
1290         int i;
1291
1292 retry_wait:
1293         blocked_rdev = NULL;
1294         for (i = 0; i < conf->copies; i++) {
1295                 struct md_rdev *rdev, *rrdev;
1296
1297                 rdev = conf->mirrors[i].rdev;
1298                 if (rdev) {
1299                         sector_t dev_sector = r10_bio->devs[i].addr;
1300
1301                         /*
1302                          * Discard request doesn't care the write result
1303                          * so it doesn't need to wait blocked disk here.
1304                          */
1305                         if (test_bit(WriteErrorSeen, &rdev->flags) &&
1306                             r10_bio->sectors &&
1307                             rdev_has_badblock(rdev, dev_sector,
1308                                               r10_bio->sectors) < 0)
1309                                 /*
1310                                  * Mustn't write here until the bad
1311                                  * block is acknowledged
1312                                  */
1313                                 set_bit(BlockedBadBlocks, &rdev->flags);
1314
1315                         if (rdev_blocked(rdev)) {
1316                                 blocked_rdev = rdev;
1317                                 atomic_inc(&rdev->nr_pending);
1318                                 break;
1319                         }
1320                 }
1321
1322                 rrdev = conf->mirrors[i].replacement;
1323                 if (rrdev && rdev_blocked(rrdev)) {
1324                         atomic_inc(&rrdev->nr_pending);
1325                         blocked_rdev = rrdev;
1326                         break;
1327                 }
1328         }
1329
1330         if (unlikely(blocked_rdev)) {
1331                 /* Have to wait for this device to get unblocked, then retry */
1332                 allow_barrier(conf);
1333                 mddev_add_trace_msg(conf->mddev,
1334                         "raid10 %s wait rdev %d blocked",
1335                         __func__, blocked_rdev->raid_disk);
1336                 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1337                 wait_barrier(conf, false);
1338                 goto retry_wait;
1339         }
1340 }
1341
1342 static void raid10_write_request(struct mddev *mddev, struct bio *bio,
1343                                  struct r10bio *r10_bio)
1344 {
1345         struct r10conf *conf = mddev->private;
1346         int i, k;
1347         sector_t sectors;
1348         int max_sectors;
1349         int error;
1350
1351         if ((mddev_is_clustered(mddev) &&
1352              mddev->cluster_ops->area_resyncing(mddev, WRITE,
1353                                                 bio->bi_iter.bi_sector,
1354                                                 bio_end_sector(bio)))) {
1355                 DEFINE_WAIT(w);
1356                 /* Bail out if REQ_NOWAIT is set for the bio */
1357                 if (bio->bi_opf & REQ_NOWAIT) {
1358                         bio_wouldblock_error(bio);
1359                         return;
1360                 }
1361                 for (;;) {
1362                         prepare_to_wait(&conf->wait_barrier,
1363                                         &w, TASK_IDLE);
1364                         if (!mddev->cluster_ops->area_resyncing(mddev, WRITE,
1365                                  bio->bi_iter.bi_sector, bio_end_sector(bio)))
1366                                 break;
1367                         schedule();
1368                 }
1369                 finish_wait(&conf->wait_barrier, &w);
1370         }
1371
1372         sectors = r10_bio->sectors;
1373         if (!regular_request_wait(mddev, conf, bio, sectors))
1374                 return;
1375         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1376             (mddev->reshape_backwards
1377              ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1378                 bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1379              : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1380                 bio->bi_iter.bi_sector < conf->reshape_progress))) {
1381                 /* Need to update reshape_position in metadata */
1382                 mddev->reshape_position = conf->reshape_progress;
1383                 set_mask_bits(&mddev->sb_flags, 0,
1384                               BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1385                 md_wakeup_thread(mddev->thread);
1386                 if (bio->bi_opf & REQ_NOWAIT) {
1387                         allow_barrier(conf);
1388                         bio_wouldblock_error(bio);
1389                         return;
1390                 }
1391                 mddev_add_trace_msg(conf->mddev,
1392                         "raid10 wait reshape metadata");
1393                 wait_event(mddev->sb_wait,
1394                            !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
1395
1396                 conf->reshape_safe = mddev->reshape_position;
1397         }
1398
1399         /* first select target devices under rcu_lock and
1400          * inc refcount on their rdev.  Record them by setting
1401          * bios[x] to bio
1402          * If there are known/acknowledged bad blocks on any device
1403          * on which we have seen a write error, we want to avoid
1404          * writing to those blocks.  This potentially requires several
1405          * writes to write around the bad blocks.  Each set of writes
1406          * gets its own r10_bio with a set of bios attached.
1407          */
1408
1409         r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1410         raid10_find_phys(conf, r10_bio);
1411
1412         wait_blocked_dev(mddev, r10_bio);
1413
1414         max_sectors = r10_bio->sectors;
1415
1416         for (i = 0;  i < conf->copies; i++) {
1417                 int d = r10_bio->devs[i].devnum;
1418                 struct md_rdev *rdev, *rrdev;
1419
1420                 rdev = conf->mirrors[d].rdev;
1421                 rrdev = conf->mirrors[d].replacement;
1422                 if (rdev && (test_bit(Faulty, &rdev->flags)))
1423                         rdev = NULL;
1424                 if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1425                         rrdev = NULL;
1426
1427                 r10_bio->devs[i].bio = NULL;
1428                 r10_bio->devs[i].repl_bio = NULL;
1429
1430                 if (!rdev && !rrdev)
1431                         continue;
1432                 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1433                         sector_t first_bad;
1434                         sector_t dev_sector = r10_bio->devs[i].addr;
1435                         sector_t bad_sectors;
1436                         int is_bad;
1437
1438                         is_bad = is_badblock(rdev, dev_sector, max_sectors,
1439                                              &first_bad, &bad_sectors);
1440                         if (is_bad && first_bad <= dev_sector) {
1441                                 /* Cannot write here at all */
1442                                 bad_sectors -= (dev_sector - first_bad);
1443                                 if (bad_sectors < max_sectors)
1444                                         /* Mustn't write more than bad_sectors
1445                                          * to other devices yet
1446                                          */
1447                                         max_sectors = bad_sectors;
1448                                 continue;
1449                         }
1450                         if (is_bad) {
1451                                 int good_sectors;
1452
1453                                 /*
1454                                  * We cannot atomically write this, so just
1455                                  * error in that case. It could be possible to
1456                                  * atomically write other mirrors, but the
1457                                  * complexity of supporting that is not worth
1458                                  * the benefit.
1459                                  */
1460                                 if (bio->bi_opf & REQ_ATOMIC) {
1461                                         error = -EIO;
1462                                         goto err_handle;
1463                                 }
1464
1465                                 good_sectors = first_bad - dev_sector;
1466                                 if (good_sectors < max_sectors)
1467                                         max_sectors = good_sectors;
1468                         }
1469                 }
1470                 if (rdev) {
1471                         r10_bio->devs[i].bio = bio;
1472                         atomic_inc(&rdev->nr_pending);
1473                 }
1474                 if (rrdev) {
1475                         r10_bio->devs[i].repl_bio = bio;
1476                         atomic_inc(&rrdev->nr_pending);
1477                 }
1478         }
1479
1480         if (max_sectors < r10_bio->sectors)
1481                 r10_bio->sectors = max_sectors;
1482
1483         if (r10_bio->sectors < bio_sectors(bio)) {
1484                 struct bio *split = bio_split(bio, r10_bio->sectors,
1485                                               GFP_NOIO, &conf->bio_split);
1486                 if (IS_ERR(split)) {
1487                         error = PTR_ERR(split);
1488                         goto err_handle;
1489                 }
1490                 bio_chain(split, bio);
1491                 allow_barrier(conf);
1492                 submit_bio_noacct(bio);
1493                 wait_barrier(conf, false);
1494                 bio = split;
1495                 r10_bio->master_bio = bio;
1496         }
1497
1498         md_account_bio(mddev, &bio);
1499         r10_bio->master_bio = bio;
1500         atomic_set(&r10_bio->remaining, 1);
1501
1502         for (i = 0; i < conf->copies; i++) {
1503                 if (r10_bio->devs[i].bio)
1504                         raid10_write_one_disk(mddev, r10_bio, bio, false, i);
1505                 if (r10_bio->devs[i].repl_bio)
1506                         raid10_write_one_disk(mddev, r10_bio, bio, true, i);
1507         }
1508         one_write_done(r10_bio);
1509         return;
1510 err_handle:
1511         for (k = 0;  k < i; k++) {
1512                 int d = r10_bio->devs[k].devnum;
1513                 struct md_rdev *rdev = conf->mirrors[d].rdev;
1514                 struct md_rdev *rrdev = conf->mirrors[d].replacement;
1515
1516                 if (r10_bio->devs[k].bio) {
1517                         rdev_dec_pending(rdev, mddev);
1518                         r10_bio->devs[k].bio = NULL;
1519                 }
1520                 if (r10_bio->devs[k].repl_bio) {
1521                         rdev_dec_pending(rrdev, mddev);
1522                         r10_bio->devs[k].repl_bio = NULL;
1523                 }
1524         }
1525
1526         bio->bi_status = errno_to_blk_status(error);
1527         set_bit(R10BIO_Uptodate, &r10_bio->state);
1528         raid_end_bio_io(r10_bio);
1529 }
1530
1531 static void __make_request(struct mddev *mddev, struct bio *bio, int sectors)
1532 {
1533         struct r10conf *conf = mddev->private;
1534         struct r10bio *r10_bio;
1535
1536         r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1537
1538         r10_bio->master_bio = bio;
1539         r10_bio->sectors = sectors;
1540
1541         r10_bio->mddev = mddev;
1542         r10_bio->sector = bio->bi_iter.bi_sector;
1543         r10_bio->state = 0;
1544         r10_bio->read_slot = -1;
1545         memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) *
1546                         conf->geo.raid_disks);
1547
1548         if (bio_data_dir(bio) == READ)
1549                 raid10_read_request(mddev, bio, r10_bio, true);
1550         else
1551                 raid10_write_request(mddev, bio, r10_bio);
1552 }
1553
1554 static void raid_end_discard_bio(struct r10bio *r10bio)
1555 {
1556         struct r10conf *conf = r10bio->mddev->private;
1557         struct r10bio *first_r10bio;
1558
1559         while (atomic_dec_and_test(&r10bio->remaining)) {
1560
1561                 allow_barrier(conf);
1562
1563                 if (!test_bit(R10BIO_Discard, &r10bio->state)) {
1564                         first_r10bio = (struct r10bio *)r10bio->master_bio;
1565                         free_r10bio(r10bio);
1566                         r10bio = first_r10bio;
1567                 } else {
1568                         md_write_end(r10bio->mddev);
1569                         bio_endio(r10bio->master_bio);
1570                         free_r10bio(r10bio);
1571                         break;
1572                 }
1573         }
1574 }
1575
1576 static void raid10_end_discard_request(struct bio *bio)
1577 {
1578         struct r10bio *r10_bio = bio->bi_private;
1579         struct r10conf *conf = r10_bio->mddev->private;
1580         struct md_rdev *rdev = NULL;
1581         int dev;
1582         int slot, repl;
1583
1584         /*
1585          * We don't care the return value of discard bio
1586          */
1587         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
1588                 set_bit(R10BIO_Uptodate, &r10_bio->state);
1589
1590         dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1591         rdev = repl ? conf->mirrors[dev].replacement :
1592                       conf->mirrors[dev].rdev;
1593
1594         raid_end_discard_bio(r10_bio);
1595         rdev_dec_pending(rdev, conf->mddev);
1596 }
1597
1598 /*
1599  * There are some limitations to handle discard bio
1600  * 1st, the discard size is bigger than stripe_size*2.
1601  * 2st, if the discard bio spans reshape progress, we use the old way to
1602  * handle discard bio
1603  */
1604 static int raid10_handle_discard(struct mddev *mddev, struct bio *bio)
1605 {
1606         struct r10conf *conf = mddev->private;
1607         struct geom *geo = &conf->geo;
1608         int far_copies = geo->far_copies;
1609         bool first_copy = true;
1610         struct r10bio *r10_bio, *first_r10bio;
1611         struct bio *split;
1612         int disk;
1613         sector_t chunk;
1614         unsigned int stripe_size;
1615         unsigned int stripe_data_disks;
1616         sector_t split_size;
1617         sector_t bio_start, bio_end;
1618         sector_t first_stripe_index, last_stripe_index;
1619         sector_t start_disk_offset;
1620         unsigned int start_disk_index;
1621         sector_t end_disk_offset;
1622         unsigned int end_disk_index;
1623         unsigned int remainder;
1624
1625         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1626                 return -EAGAIN;
1627
1628         if (!wait_barrier(conf, bio->bi_opf & REQ_NOWAIT)) {
1629                 bio_wouldblock_error(bio);
1630                 return 0;
1631         }
1632
1633         /*
1634          * Check reshape again to avoid reshape happens after checking
1635          * MD_RECOVERY_RESHAPE and before wait_barrier
1636          */
1637         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1638                 goto out;
1639
1640         if (geo->near_copies)
1641                 stripe_data_disks = geo->raid_disks / geo->near_copies +
1642                                         geo->raid_disks % geo->near_copies;
1643         else
1644                 stripe_data_disks = geo->raid_disks;
1645
1646         stripe_size = stripe_data_disks << geo->chunk_shift;
1647
1648         bio_start = bio->bi_iter.bi_sector;
1649         bio_end = bio_end_sector(bio);
1650
1651         /*
1652          * Maybe one discard bio is smaller than strip size or across one
1653          * stripe and discard region is larger than one stripe size. For far
1654          * offset layout, if the discard region is not aligned with stripe
1655          * size, there is hole when we submit discard bio to member disk.
1656          * For simplicity, we only handle discard bio which discard region
1657          * is bigger than stripe_size * 2
1658          */
1659         if (bio_sectors(bio) < stripe_size*2)
1660                 goto out;
1661
1662         /*
1663          * Keep bio aligned with strip size.
1664          */
1665         div_u64_rem(bio_start, stripe_size, &remainder);
1666         if (remainder) {
1667                 split_size = stripe_size - remainder;
1668                 split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split);
1669                 if (IS_ERR(split)) {
1670                         bio->bi_status = errno_to_blk_status(PTR_ERR(split));
1671                         bio_endio(bio);
1672                         return 0;
1673                 }
1674                 bio_chain(split, bio);
1675                 allow_barrier(conf);
1676                 /* Resend the fist split part */
1677                 submit_bio_noacct(split);
1678                 wait_barrier(conf, false);
1679         }
1680         div_u64_rem(bio_end, stripe_size, &remainder);
1681         if (remainder) {
1682                 split_size = bio_sectors(bio) - remainder;
1683                 split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split);
1684                 if (IS_ERR(split)) {
1685                         bio->bi_status = errno_to_blk_status(PTR_ERR(split));
1686                         bio_endio(bio);
1687                         return 0;
1688                 }
1689                 bio_chain(split, bio);
1690                 allow_barrier(conf);
1691                 /* Resend the second split part */
1692                 submit_bio_noacct(bio);
1693                 bio = split;
1694                 wait_barrier(conf, false);
1695         }
1696
1697         bio_start = bio->bi_iter.bi_sector;
1698         bio_end = bio_end_sector(bio);
1699
1700         /*
1701          * Raid10 uses chunk as the unit to store data. It's similar like raid0.
1702          * One stripe contains the chunks from all member disk (one chunk from
1703          * one disk at the same HBA address). For layout detail, see 'man md 4'
1704          */
1705         chunk = bio_start >> geo->chunk_shift;
1706         chunk *= geo->near_copies;
1707         first_stripe_index = chunk;
1708         start_disk_index = sector_div(first_stripe_index, geo->raid_disks);
1709         if (geo->far_offset)
1710                 first_stripe_index *= geo->far_copies;
1711         start_disk_offset = (bio_start & geo->chunk_mask) +
1712                                 (first_stripe_index << geo->chunk_shift);
1713
1714         chunk = bio_end >> geo->chunk_shift;
1715         chunk *= geo->near_copies;
1716         last_stripe_index = chunk;
1717         end_disk_index = sector_div(last_stripe_index, geo->raid_disks);
1718         if (geo->far_offset)
1719                 last_stripe_index *= geo->far_copies;
1720         end_disk_offset = (bio_end & geo->chunk_mask) +
1721                                 (last_stripe_index << geo->chunk_shift);
1722
1723 retry_discard:
1724         r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1725         r10_bio->mddev = mddev;
1726         r10_bio->state = 0;
1727         r10_bio->sectors = 0;
1728         memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * geo->raid_disks);
1729         wait_blocked_dev(mddev, r10_bio);
1730
1731         /*
1732          * For far layout it needs more than one r10bio to cover all regions.
1733          * Inspired by raid10_sync_request, we can use the first r10bio->master_bio
1734          * to record the discard bio. Other r10bio->master_bio record the first
1735          * r10bio. The first r10bio only release after all other r10bios finish.
1736          * The discard bio returns only first r10bio finishes
1737          */
1738         if (first_copy) {
1739                 md_account_bio(mddev, &bio);
1740                 r10_bio->master_bio = bio;
1741                 set_bit(R10BIO_Discard, &r10_bio->state);
1742                 first_copy = false;
1743                 first_r10bio = r10_bio;
1744         } else
1745                 r10_bio->master_bio = (struct bio *)first_r10bio;
1746
1747         /*
1748          * first select target devices under rcu_lock and
1749          * inc refcount on their rdev.  Record them by setting
1750          * bios[x] to bio
1751          */
1752         for (disk = 0; disk < geo->raid_disks; disk++) {
1753                 struct md_rdev *rdev, *rrdev;
1754
1755                 rdev = conf->mirrors[disk].rdev;
1756                 rrdev = conf->mirrors[disk].replacement;
1757                 r10_bio->devs[disk].bio = NULL;
1758                 r10_bio->devs[disk].repl_bio = NULL;
1759
1760                 if (rdev && (test_bit(Faulty, &rdev->flags)))
1761                         rdev = NULL;
1762                 if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1763                         rrdev = NULL;
1764                 if (!rdev && !rrdev)
1765                         continue;
1766
1767                 if (rdev) {
1768                         r10_bio->devs[disk].bio = bio;
1769                         atomic_inc(&rdev->nr_pending);
1770                 }
1771                 if (rrdev) {
1772                         r10_bio->devs[disk].repl_bio = bio;
1773                         atomic_inc(&rrdev->nr_pending);
1774                 }
1775         }
1776
1777         atomic_set(&r10_bio->remaining, 1);
1778         for (disk = 0; disk < geo->raid_disks; disk++) {
1779                 sector_t dev_start, dev_end;
1780                 struct bio *mbio, *rbio = NULL;
1781
1782                 /*
1783                  * Now start to calculate the start and end address for each disk.
1784                  * The space between dev_start and dev_end is the discard region.
1785                  *
1786                  * For dev_start, it needs to consider three conditions:
1787                  * 1st, the disk is before start_disk, you can imagine the disk in
1788                  * the next stripe. So the dev_start is the start address of next
1789                  * stripe.
1790                  * 2st, the disk is after start_disk, it means the disk is at the
1791                  * same stripe of first disk
1792                  * 3st, the first disk itself, we can use start_disk_offset directly
1793                  */
1794                 if (disk < start_disk_index)
1795                         dev_start = (first_stripe_index + 1) * mddev->chunk_sectors;
1796                 else if (disk > start_disk_index)
1797                         dev_start = first_stripe_index * mddev->chunk_sectors;
1798                 else
1799                         dev_start = start_disk_offset;
1800
1801                 if (disk < end_disk_index)
1802                         dev_end = (last_stripe_index + 1) * mddev->chunk_sectors;
1803                 else if (disk > end_disk_index)
1804                         dev_end = last_stripe_index * mddev->chunk_sectors;
1805                 else
1806                         dev_end = end_disk_offset;
1807
1808                 /*
1809                  * It only handles discard bio which size is >= stripe size, so
1810                  * dev_end > dev_start all the time.
1811                  * It doesn't need to use rcu lock to get rdev here. We already
1812                  * add rdev->nr_pending in the first loop.
1813                  */
1814                 if (r10_bio->devs[disk].bio) {
1815                         struct md_rdev *rdev = conf->mirrors[disk].rdev;
1816                         mbio = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO,
1817                                                &mddev->bio_set);
1818                         mbio->bi_end_io = raid10_end_discard_request;
1819                         mbio->bi_private = r10_bio;
1820                         r10_bio->devs[disk].bio = mbio;
1821                         r10_bio->devs[disk].devnum = disk;
1822                         atomic_inc(&r10_bio->remaining);
1823                         md_submit_discard_bio(mddev, rdev, mbio,
1824                                         dev_start + choose_data_offset(r10_bio, rdev),
1825                                         dev_end - dev_start);
1826                         bio_endio(mbio);
1827                 }
1828                 if (r10_bio->devs[disk].repl_bio) {
1829                         struct md_rdev *rrdev = conf->mirrors[disk].replacement;
1830                         rbio = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO,
1831                                                &mddev->bio_set);
1832                         rbio->bi_end_io = raid10_end_discard_request;
1833                         rbio->bi_private = r10_bio;
1834                         r10_bio->devs[disk].repl_bio = rbio;
1835                         r10_bio->devs[disk].devnum = disk;
1836                         atomic_inc(&r10_bio->remaining);
1837                         md_submit_discard_bio(mddev, rrdev, rbio,
1838                                         dev_start + choose_data_offset(r10_bio, rrdev),
1839                                         dev_end - dev_start);
1840                         bio_endio(rbio);
1841                 }
1842         }
1843
1844         if (!geo->far_offset && --far_copies) {
1845                 first_stripe_index += geo->stride >> geo->chunk_shift;
1846                 start_disk_offset += geo->stride;
1847                 last_stripe_index += geo->stride >> geo->chunk_shift;
1848                 end_disk_offset += geo->stride;
1849                 atomic_inc(&first_r10bio->remaining);
1850                 raid_end_discard_bio(r10_bio);
1851                 wait_barrier(conf, false);
1852                 goto retry_discard;
1853         }
1854
1855         raid_end_discard_bio(r10_bio);
1856
1857         return 0;
1858 out:
1859         allow_barrier(conf);
1860         return -EAGAIN;
1861 }
1862
1863 static bool raid10_make_request(struct mddev *mddev, struct bio *bio)
1864 {
1865         struct r10conf *conf = mddev->private;
1866         sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1867         int chunk_sects = chunk_mask + 1;
1868         int sectors = bio_sectors(bio);
1869
1870         if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1871             && md_flush_request(mddev, bio))
1872                 return true;
1873
1874         md_write_start(mddev, bio);
1875
1876         if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
1877                 if (!raid10_handle_discard(mddev, bio))
1878                         return true;
1879
1880         /*
1881          * If this request crosses a chunk boundary, we need to split
1882          * it.
1883          */
1884         if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1885                      sectors > chunk_sects
1886                      && (conf->geo.near_copies < conf->geo.raid_disks
1887                          || conf->prev.near_copies <
1888                          conf->prev.raid_disks)))
1889                 sectors = chunk_sects -
1890                         (bio->bi_iter.bi_sector &
1891                          (chunk_sects - 1));
1892         __make_request(mddev, bio, sectors);
1893
1894         /* In case raid10d snuck in to freeze_array */
1895         wake_up_barrier(conf);
1896         return true;
1897 }
1898
1899 static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1900 {
1901         struct r10conf *conf = mddev->private;
1902         int i;
1903
1904         lockdep_assert_held(&mddev->lock);
1905
1906         if (conf->geo.near_copies < conf->geo.raid_disks)
1907                 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1908         if (conf->geo.near_copies > 1)
1909                 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1910         if (conf->geo.far_copies > 1) {
1911                 if (conf->geo.far_offset)
1912                         seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1913                 else
1914                         seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1915                 if (conf->geo.far_set_size != conf->geo.raid_disks)
1916                         seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1917         }
1918         seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1919                                         conf->geo.raid_disks - mddev->degraded);
1920         for (i = 0; i < conf->geo.raid_disks; i++) {
1921                 struct md_rdev *rdev = READ_ONCE(conf->mirrors[i].rdev);
1922
1923                 seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1924         }
1925         seq_printf(seq, "]");
1926 }
1927
1928 /* check if there are enough drives for
1929  * every block to appear on atleast one.
1930  * Don't consider the device numbered 'ignore'
1931  * as we might be about to remove it.
1932  */
1933 static int _enough(struct r10conf *conf, int previous, int ignore)
1934 {
1935         int first = 0;
1936         int has_enough = 0;
1937         int disks, ncopies;
1938         if (previous) {
1939                 disks = conf->prev.raid_disks;
1940                 ncopies = conf->prev.near_copies;
1941         } else {
1942                 disks = conf->geo.raid_disks;
1943                 ncopies = conf->geo.near_copies;
1944         }
1945
1946         do {
1947                 int n = conf->copies;
1948                 int cnt = 0;
1949                 int this = first;
1950                 while (n--) {
1951                         struct md_rdev *rdev;
1952                         if (this != ignore &&
1953                             (rdev = conf->mirrors[this].rdev) &&
1954                             test_bit(In_sync, &rdev->flags))
1955                                 cnt++;
1956                         this = (this+1) % disks;
1957                 }
1958                 if (cnt == 0)
1959                         goto out;
1960                 first = (first + ncopies) % disks;
1961         } while (first != 0);
1962         has_enough = 1;
1963 out:
1964         return has_enough;
1965 }
1966
1967 static int enough(struct r10conf *conf, int ignore)
1968 {
1969         /* when calling 'enough', both 'prev' and 'geo' must
1970          * be stable.
1971          * This is ensured if ->reconfig_mutex or ->device_lock
1972          * is held.
1973          */
1974         return _enough(conf, 0, ignore) &&
1975                 _enough(conf, 1, ignore);
1976 }
1977
1978 /**
1979  * raid10_error() - RAID10 error handler.
1980  * @mddev: affected md device.
1981  * @rdev: member device to fail.
1982  *
1983  * The routine acknowledges &rdev failure and determines new @mddev state.
1984  * If it failed, then:
1985  *      - &MD_BROKEN flag is set in &mddev->flags.
1986  * Otherwise, it must be degraded:
1987  *      - recovery is interrupted.
1988  *      - &mddev->degraded is bumped.
1989  *
1990  * @rdev is marked as &Faulty excluding case when array is failed and
1991  * &mddev->fail_last_dev is off.
1992  */
1993 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
1994 {
1995         struct r10conf *conf = mddev->private;
1996         unsigned long flags;
1997
1998         spin_lock_irqsave(&conf->device_lock, flags);
1999
2000         if (test_bit(In_sync, &rdev->flags) && !enough(conf, rdev->raid_disk)) {
2001                 set_bit(MD_BROKEN, &mddev->flags);
2002
2003                 if (!mddev->fail_last_dev) {
2004                         spin_unlock_irqrestore(&conf->device_lock, flags);
2005                         return;
2006                 }
2007         }
2008         if (test_and_clear_bit(In_sync, &rdev->flags))
2009                 mddev->degraded++;
2010
2011         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2012         set_bit(Blocked, &rdev->flags);
2013         set_bit(Faulty, &rdev->flags);
2014         set_mask_bits(&mddev->sb_flags, 0,
2015                       BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
2016         spin_unlock_irqrestore(&conf->device_lock, flags);
2017         pr_crit("md/raid10:%s: Disk failure on %pg, disabling device.\n"
2018                 "md/raid10:%s: Operation continuing on %d devices.\n",
2019                 mdname(mddev), rdev->bdev,
2020                 mdname(mddev), conf->geo.raid_disks - mddev->degraded);
2021 }
2022
2023 static void print_conf(struct r10conf *conf)
2024 {
2025         int i;
2026         struct md_rdev *rdev;
2027
2028         pr_debug("RAID10 conf printout:\n");
2029         if (!conf) {
2030                 pr_debug("(!conf)\n");
2031                 return;
2032         }
2033         pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
2034                  conf->geo.raid_disks);
2035
2036         lockdep_assert_held(&conf->mddev->reconfig_mutex);
2037         for (i = 0; i < conf->geo.raid_disks; i++) {
2038                 rdev = conf->mirrors[i].rdev;
2039                 if (rdev)
2040                         pr_debug(" disk %d, wo:%d, o:%d, dev:%pg\n",
2041                                  i, !test_bit(In_sync, &rdev->flags),
2042                                  !test_bit(Faulty, &rdev->flags),
2043                                  rdev->bdev);
2044         }
2045 }
2046
2047 static void close_sync(struct r10conf *conf)
2048 {
2049         wait_barrier(conf, false);
2050         allow_barrier(conf);
2051
2052         mempool_exit(&conf->r10buf_pool);
2053 }
2054
2055 static int raid10_spare_active(struct mddev *mddev)
2056 {
2057         int i;
2058         struct r10conf *conf = mddev->private;
2059         struct raid10_info *tmp;
2060         int count = 0;
2061         unsigned long flags;
2062
2063         /*
2064          * Find all non-in_sync disks within the RAID10 configuration
2065          * and mark them in_sync
2066          */
2067         for (i = 0; i < conf->geo.raid_disks; i++) {
2068                 tmp = conf->mirrors + i;
2069                 if (tmp->replacement
2070                     && tmp->replacement->recovery_offset == MaxSector
2071                     && !test_bit(Faulty, &tmp->replacement->flags)
2072                     && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
2073                         /* Replacement has just become active */
2074                         if (!tmp->rdev
2075                             || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
2076                                 count++;
2077                         if (tmp->rdev) {
2078                                 /* Replaced device not technically faulty,
2079                                  * but we need to be sure it gets removed
2080                                  * and never re-added.
2081                                  */
2082                                 set_bit(Faulty, &tmp->rdev->flags);
2083                                 sysfs_notify_dirent_safe(
2084                                         tmp->rdev->sysfs_state);
2085                         }
2086                         sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
2087                 } else if (tmp->rdev
2088                            && tmp->rdev->recovery_offset == MaxSector
2089                            && !test_bit(Faulty, &tmp->rdev->flags)
2090                            && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
2091                         count++;
2092                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
2093                 }
2094         }
2095         spin_lock_irqsave(&conf->device_lock, flags);
2096         mddev->degraded -= count;
2097         spin_unlock_irqrestore(&conf->device_lock, flags);
2098
2099         print_conf(conf);
2100         return count;
2101 }
2102
2103 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
2104 {
2105         struct r10conf *conf = mddev->private;
2106         int err = -EEXIST;
2107         int mirror, repl_slot = -1;
2108         int first = 0;
2109         int last = conf->geo.raid_disks - 1;
2110         struct raid10_info *p;
2111
2112         if (mddev->recovery_cp < MaxSector)
2113                 /* only hot-add to in-sync arrays, as recovery is
2114                  * very different from resync
2115                  */
2116                 return -EBUSY;
2117         if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
2118                 return -EINVAL;
2119
2120         if (rdev->raid_disk >= 0)
2121                 first = last = rdev->raid_disk;
2122
2123         if (rdev->saved_raid_disk >= first &&
2124             rdev->saved_raid_disk < conf->geo.raid_disks &&
2125             conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
2126                 mirror = rdev->saved_raid_disk;
2127         else
2128                 mirror = first;
2129         for ( ; mirror <= last ; mirror++) {
2130                 p = &conf->mirrors[mirror];
2131                 if (p->recovery_disabled == mddev->recovery_disabled)
2132                         continue;
2133                 if (p->rdev) {
2134                         if (test_bit(WantReplacement, &p->rdev->flags) &&
2135                             p->replacement == NULL && repl_slot < 0)
2136                                 repl_slot = mirror;
2137                         continue;
2138                 }
2139
2140                 err = mddev_stack_new_rdev(mddev, rdev);
2141                 if (err)
2142                         return err;
2143                 p->head_position = 0;
2144                 p->recovery_disabled = mddev->recovery_disabled - 1;
2145                 rdev->raid_disk = mirror;
2146                 err = 0;
2147                 if (rdev->saved_raid_disk != mirror)
2148                         conf->fullsync = 1;
2149                 WRITE_ONCE(p->rdev, rdev);
2150                 break;
2151         }
2152
2153         if (err && repl_slot >= 0) {
2154                 p = &conf->mirrors[repl_slot];
2155                 clear_bit(In_sync, &rdev->flags);
2156                 set_bit(Replacement, &rdev->flags);
2157                 rdev->raid_disk = repl_slot;
2158                 err = mddev_stack_new_rdev(mddev, rdev);
2159                 if (err)
2160                         return err;
2161                 conf->fullsync = 1;
2162                 WRITE_ONCE(p->replacement, rdev);
2163         }
2164
2165         print_conf(conf);
2166         return err;
2167 }
2168
2169 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
2170 {
2171         struct r10conf *conf = mddev->private;
2172         int err = 0;
2173         int number = rdev->raid_disk;
2174         struct md_rdev **rdevp;
2175         struct raid10_info *p;
2176
2177         print_conf(conf);
2178         if (unlikely(number >= mddev->raid_disks))
2179                 return 0;
2180         p = conf->mirrors + number;
2181         if (rdev == p->rdev)
2182                 rdevp = &p->rdev;
2183         else if (rdev == p->replacement)
2184                 rdevp = &p->replacement;
2185         else
2186                 return 0;
2187
2188         if (test_bit(In_sync, &rdev->flags) ||
2189             atomic_read(&rdev->nr_pending)) {
2190                 err = -EBUSY;
2191                 goto abort;
2192         }
2193         /* Only remove non-faulty devices if recovery
2194          * is not possible.
2195          */
2196         if (!test_bit(Faulty, &rdev->flags) &&
2197             mddev->recovery_disabled != p->recovery_disabled &&
2198             (!p->replacement || p->replacement == rdev) &&
2199             number < conf->geo.raid_disks &&
2200             enough(conf, -1)) {
2201                 err = -EBUSY;
2202                 goto abort;
2203         }
2204         WRITE_ONCE(*rdevp, NULL);
2205         if (p->replacement) {
2206                 /* We must have just cleared 'rdev' */
2207                 WRITE_ONCE(p->rdev, p->replacement);
2208                 clear_bit(Replacement, &p->replacement->flags);
2209                 WRITE_ONCE(p->replacement, NULL);
2210         }
2211
2212         clear_bit(WantReplacement, &rdev->flags);
2213         err = md_integrity_register(mddev);
2214
2215 abort:
2216
2217         print_conf(conf);
2218         return err;
2219 }
2220
2221 static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d)
2222 {
2223         struct r10conf *conf = r10_bio->mddev->private;
2224
2225         if (!bio->bi_status)
2226                 set_bit(R10BIO_Uptodate, &r10_bio->state);
2227         else
2228                 /* The write handler will notice the lack of
2229                  * R10BIO_Uptodate and record any errors etc
2230                  */
2231                 atomic_add(r10_bio->sectors,
2232                            &conf->mirrors[d].rdev->corrected_errors);
2233
2234         /* for reconstruct, we always reschedule after a read.
2235          * for resync, only after all reads
2236          */
2237         rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
2238         if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
2239             atomic_dec_and_test(&r10_bio->remaining)) {
2240                 /* we have read all the blocks,
2241                  * do the comparison in process context in raid10d
2242                  */
2243                 reschedule_retry(r10_bio);
2244         }
2245 }
2246
2247 static void end_sync_read(struct bio *bio)
2248 {
2249         struct r10bio *r10_bio = get_resync_r10bio(bio);
2250         struct r10conf *conf = r10_bio->mddev->private;
2251         int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
2252
2253         __end_sync_read(r10_bio, bio, d);
2254 }
2255
2256 static void end_reshape_read(struct bio *bio)
2257 {
2258         /* reshape read bio isn't allocated from r10buf_pool */
2259         struct r10bio *r10_bio = bio->bi_private;
2260
2261         __end_sync_read(r10_bio, bio, r10_bio->read_slot);
2262 }
2263
2264 static void end_sync_request(struct r10bio *r10_bio)
2265 {
2266         struct mddev *mddev = r10_bio->mddev;
2267
2268         while (atomic_dec_and_test(&r10_bio->remaining)) {
2269                 if (r10_bio->master_bio == NULL) {
2270                         /* the primary of several recovery bios */
2271                         sector_t s = r10_bio->sectors;
2272                         if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2273                             test_bit(R10BIO_WriteError, &r10_bio->state))
2274                                 reschedule_retry(r10_bio);
2275                         else
2276                                 put_buf(r10_bio);
2277                         md_done_sync(mddev, s, 1);
2278                         break;
2279                 } else {
2280                         struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
2281                         if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2282                             test_bit(R10BIO_WriteError, &r10_bio->state))
2283                                 reschedule_retry(r10_bio);
2284                         else
2285                                 put_buf(r10_bio);
2286                         r10_bio = r10_bio2;
2287                 }
2288         }
2289 }
2290
2291 static void end_sync_write(struct bio *bio)
2292 {
2293         struct r10bio *r10_bio = get_resync_r10bio(bio);
2294         struct mddev *mddev = r10_bio->mddev;
2295         struct r10conf *conf = mddev->private;
2296         int d;
2297         int slot;
2298         int repl;
2299         struct md_rdev *rdev = NULL;
2300
2301         d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
2302         if (repl)
2303                 rdev = conf->mirrors[d].replacement;
2304         else
2305                 rdev = conf->mirrors[d].rdev;
2306
2307         if (bio->bi_status) {
2308                 if (repl)
2309                         md_error(mddev, rdev);
2310                 else {
2311                         set_bit(WriteErrorSeen, &rdev->flags);
2312                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
2313                                 set_bit(MD_RECOVERY_NEEDED,
2314                                         &rdev->mddev->recovery);
2315                         set_bit(R10BIO_WriteError, &r10_bio->state);
2316                 }
2317         } else if (rdev_has_badblock(rdev, r10_bio->devs[slot].addr,
2318                                      r10_bio->sectors)) {
2319                 set_bit(R10BIO_MadeGood, &r10_bio->state);
2320         }
2321
2322         rdev_dec_pending(rdev, mddev);
2323
2324         end_sync_request(r10_bio);
2325 }
2326
2327 /*
2328  * Note: sync and recover and handled very differently for raid10
2329  * This code is for resync.
2330  * For resync, we read through virtual addresses and read all blocks.
2331  * If there is any error, we schedule a write.  The lowest numbered
2332  * drive is authoritative.
2333  * However requests come for physical address, so we need to map.
2334  * For every physical address there are raid_disks/copies virtual addresses,
2335  * which is always are least one, but is not necessarly an integer.
2336  * This means that a physical address can span multiple chunks, so we may
2337  * have to submit multiple io requests for a single sync request.
2338  */
2339 /*
2340  * We check if all blocks are in-sync and only write to blocks that
2341  * aren't in sync
2342  */
2343 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2344 {
2345         struct r10conf *conf = mddev->private;
2346         int i, first;
2347         struct bio *tbio, *fbio;
2348         int vcnt;
2349         struct page **tpages, **fpages;
2350
2351         atomic_set(&r10_bio->remaining, 1);
2352
2353         /* find the first device with a block */
2354         for (i=0; i<conf->copies; i++)
2355                 if (!r10_bio->devs[i].bio->bi_status)
2356                         break;
2357
2358         if (i == conf->copies)
2359                 goto done;
2360
2361         first = i;
2362         fbio = r10_bio->devs[i].bio;
2363         fbio->bi_iter.bi_size = r10_bio->sectors << 9;
2364         fbio->bi_iter.bi_idx = 0;
2365         fpages = get_resync_pages(fbio)->pages;
2366
2367         vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2368         /* now find blocks with errors */
2369         for (i=0 ; i < conf->copies ; i++) {
2370                 int  j, d;
2371                 struct md_rdev *rdev;
2372                 struct resync_pages *rp;
2373
2374                 tbio = r10_bio->devs[i].bio;
2375
2376                 if (tbio->bi_end_io != end_sync_read)
2377                         continue;
2378                 if (i == first)
2379                         continue;
2380
2381                 tpages = get_resync_pages(tbio)->pages;
2382                 d = r10_bio->devs[i].devnum;
2383                 rdev = conf->mirrors[d].rdev;
2384                 if (!r10_bio->devs[i].bio->bi_status) {
2385                         /* We know that the bi_io_vec layout is the same for
2386                          * both 'first' and 'i', so we just compare them.
2387                          * All vec entries are PAGE_SIZE;
2388                          */
2389                         int sectors = r10_bio->sectors;
2390                         for (j = 0; j < vcnt; j++) {
2391                                 int len = PAGE_SIZE;
2392                                 if (sectors < (len / 512))
2393                                         len = sectors * 512;
2394                                 if (memcmp(page_address(fpages[j]),
2395                                            page_address(tpages[j]),
2396                                            len))
2397                                         break;
2398                                 sectors -= len/512;
2399                         }
2400                         if (j == vcnt)
2401                                 continue;
2402                         atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2403                         if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2404                                 /* Don't fix anything. */
2405                                 continue;
2406                 } else if (test_bit(FailFast, &rdev->flags)) {
2407                         /* Just give up on this device */
2408                         md_error(rdev->mddev, rdev);
2409                         continue;
2410                 }
2411                 /* Ok, we need to write this bio, either to correct an
2412                  * inconsistency or to correct an unreadable block.
2413                  * First we need to fixup bv_offset, bv_len and
2414                  * bi_vecs, as the read request might have corrupted these
2415                  */
2416                 rp = get_resync_pages(tbio);
2417                 bio_reset(tbio, conf->mirrors[d].rdev->bdev, REQ_OP_WRITE);
2418
2419                 md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size);
2420
2421                 rp->raid_bio = r10_bio;
2422                 tbio->bi_private = rp;
2423                 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2424                 tbio->bi_end_io = end_sync_write;
2425
2426                 bio_copy_data(tbio, fbio);
2427
2428                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2429                 atomic_inc(&r10_bio->remaining);
2430
2431                 if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
2432                         tbio->bi_opf |= MD_FAILFAST;
2433                 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2434                 submit_bio_noacct(tbio);
2435         }
2436
2437         /* Now write out to any replacement devices
2438          * that are active
2439          */
2440         for (i = 0; i < conf->copies; i++) {
2441                 int d;
2442
2443                 tbio = r10_bio->devs[i].repl_bio;
2444                 if (!tbio || !tbio->bi_end_io)
2445                         continue;
2446                 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2447                     && r10_bio->devs[i].bio != fbio)
2448                         bio_copy_data(tbio, fbio);
2449                 d = r10_bio->devs[i].devnum;
2450                 atomic_inc(&r10_bio->remaining);
2451                 submit_bio_noacct(tbio);
2452         }
2453
2454 done:
2455         if (atomic_dec_and_test(&r10_bio->remaining)) {
2456                 md_done_sync(mddev, r10_bio->sectors, 1);
2457                 put_buf(r10_bio);
2458         }
2459 }
2460
2461 /*
2462  * Now for the recovery code.
2463  * Recovery happens across physical sectors.
2464  * We recover all non-is_sync drives by finding the virtual address of
2465  * each, and then choose a working drive that also has that virt address.
2466  * There is a separate r10_bio for each non-in_sync drive.
2467  * Only the first two slots are in use. The first for reading,
2468  * The second for writing.
2469  *
2470  */
2471 static void fix_recovery_read_error(struct r10bio *r10_bio)
2472 {
2473         /* We got a read error during recovery.
2474          * We repeat the read in smaller page-sized sections.
2475          * If a read succeeds, write it to the new device or record
2476          * a bad block if we cannot.
2477          * If a read fails, record a bad block on both old and
2478          * new devices.
2479          */
2480         struct mddev *mddev = r10_bio->mddev;
2481         struct r10conf *conf = mddev->private;
2482         struct bio *bio = r10_bio->devs[0].bio;
2483         sector_t sect = 0;
2484         int sectors = r10_bio->sectors;
2485         int idx = 0;
2486         int dr = r10_bio->devs[0].devnum;
2487         int dw = r10_bio->devs[1].devnum;
2488         struct page **pages = get_resync_pages(bio)->pages;
2489
2490         while (sectors) {
2491                 int s = sectors;
2492                 struct md_rdev *rdev;
2493                 sector_t addr;
2494                 int ok;
2495
2496                 if (s > (PAGE_SIZE>>9))
2497                         s = PAGE_SIZE >> 9;
2498
2499                 rdev = conf->mirrors[dr].rdev;
2500                 addr = r10_bio->devs[0].addr + sect;
2501                 ok = sync_page_io(rdev,
2502                                   addr,
2503                                   s << 9,
2504                                   pages[idx],
2505                                   REQ_OP_READ, false);
2506                 if (ok) {
2507                         rdev = conf->mirrors[dw].rdev;
2508                         addr = r10_bio->devs[1].addr + sect;
2509                         ok = sync_page_io(rdev,
2510                                           addr,
2511                                           s << 9,
2512                                           pages[idx],
2513                                           REQ_OP_WRITE, false);
2514                         if (!ok) {
2515                                 set_bit(WriteErrorSeen, &rdev->flags);
2516                                 if (!test_and_set_bit(WantReplacement,
2517                                                       &rdev->flags))
2518                                         set_bit(MD_RECOVERY_NEEDED,
2519                                                 &rdev->mddev->recovery);
2520                         }
2521                 }
2522                 if (!ok) {
2523                         /* We don't worry if we cannot set a bad block -
2524                          * it really is bad so there is no loss in not
2525                          * recording it yet
2526                          */
2527                         rdev_set_badblocks(rdev, addr, s, 0);
2528
2529                         if (rdev != conf->mirrors[dw].rdev) {
2530                                 /* need bad block on destination too */
2531                                 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2532                                 addr = r10_bio->devs[1].addr + sect;
2533                                 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2534                                 if (!ok) {
2535                                         /* just abort the recovery */
2536                                         pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2537                                                   mdname(mddev));
2538
2539                                         conf->mirrors[dw].recovery_disabled
2540                                                 = mddev->recovery_disabled;
2541                                         set_bit(MD_RECOVERY_INTR,
2542                                                 &mddev->recovery);
2543                                         break;
2544                                 }
2545                         }
2546                 }
2547
2548                 sectors -= s;
2549                 sect += s;
2550                 idx++;
2551         }
2552 }
2553
2554 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2555 {
2556         struct r10conf *conf = mddev->private;
2557         int d;
2558         struct bio *wbio = r10_bio->devs[1].bio;
2559         struct bio *wbio2 = r10_bio->devs[1].repl_bio;
2560
2561         /* Need to test wbio2->bi_end_io before we call
2562          * submit_bio_noacct as if the former is NULL,
2563          * the latter is free to free wbio2.
2564          */
2565         if (wbio2 && !wbio2->bi_end_io)
2566                 wbio2 = NULL;
2567
2568         if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2569                 fix_recovery_read_error(r10_bio);
2570                 if (wbio->bi_end_io)
2571                         end_sync_request(r10_bio);
2572                 if (wbio2)
2573                         end_sync_request(r10_bio);
2574                 return;
2575         }
2576
2577         /*
2578          * share the pages with the first bio
2579          * and submit the write request
2580          */
2581         d = r10_bio->devs[1].devnum;
2582         if (wbio->bi_end_io) {
2583                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2584                 submit_bio_noacct(wbio);
2585         }
2586         if (wbio2) {
2587                 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2588                 submit_bio_noacct(wbio2);
2589         }
2590 }
2591
2592 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2593                             int sectors, struct page *page, enum req_op op)
2594 {
2595         if (rdev_has_badblock(rdev, sector, sectors) &&
2596             (op == REQ_OP_READ || test_bit(WriteErrorSeen, &rdev->flags)))
2597                 return -1;
2598         if (sync_page_io(rdev, sector, sectors << 9, page, op, false))
2599                 /* success */
2600                 return 1;
2601         if (op == REQ_OP_WRITE) {
2602                 set_bit(WriteErrorSeen, &rdev->flags);
2603                 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2604                         set_bit(MD_RECOVERY_NEEDED,
2605                                 &rdev->mddev->recovery);
2606         }
2607         /* need to record an error - either for the block or the device */
2608         if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2609                 md_error(rdev->mddev, rdev);
2610         return 0;
2611 }
2612
2613 /*
2614  * This is a kernel thread which:
2615  *
2616  *      1.      Retries failed read operations on working mirrors.
2617  *      2.      Updates the raid superblock when problems encounter.
2618  *      3.      Performs writes following reads for array synchronising.
2619  */
2620
2621 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2622 {
2623         int sect = 0; /* Offset from r10_bio->sector */
2624         int sectors = r10_bio->sectors, slot = r10_bio->read_slot;
2625         struct md_rdev *rdev;
2626         int d = r10_bio->devs[slot].devnum;
2627
2628         /* still own a reference to this rdev, so it cannot
2629          * have been cleared recently.
2630          */
2631         rdev = conf->mirrors[d].rdev;
2632
2633         if (test_bit(Faulty, &rdev->flags))
2634                 /* drive has already been failed, just ignore any
2635                    more fix_read_error() attempts */
2636                 return;
2637
2638         if (exceed_read_errors(mddev, rdev)) {
2639                 r10_bio->devs[slot].bio = IO_BLOCKED;
2640                 return;
2641         }
2642
2643         while(sectors) {
2644                 int s = sectors;
2645                 int sl = slot;
2646                 int success = 0;
2647                 int start;
2648
2649                 if (s > (PAGE_SIZE>>9))
2650                         s = PAGE_SIZE >> 9;
2651
2652                 do {
2653                         d = r10_bio->devs[sl].devnum;
2654                         rdev = conf->mirrors[d].rdev;
2655                         if (rdev &&
2656                             test_bit(In_sync, &rdev->flags) &&
2657                             !test_bit(Faulty, &rdev->flags) &&
2658                             rdev_has_badblock(rdev,
2659                                               r10_bio->devs[sl].addr + sect,
2660                                               s) == 0) {
2661                                 atomic_inc(&rdev->nr_pending);
2662                                 success = sync_page_io(rdev,
2663                                                        r10_bio->devs[sl].addr +
2664                                                        sect,
2665                                                        s<<9,
2666                                                        conf->tmppage,
2667                                                        REQ_OP_READ, false);
2668                                 rdev_dec_pending(rdev, mddev);
2669                                 if (success)
2670                                         break;
2671                         }
2672                         sl++;
2673                         if (sl == conf->copies)
2674                                 sl = 0;
2675                 } while (sl != slot);
2676
2677                 if (!success) {
2678                         /* Cannot read from anywhere, just mark the block
2679                          * as bad on the first device to discourage future
2680                          * reads.
2681                          */
2682                         int dn = r10_bio->devs[slot].devnum;
2683                         rdev = conf->mirrors[dn].rdev;
2684
2685                         if (!rdev_set_badblocks(
2686                                     rdev,
2687                                     r10_bio->devs[slot].addr
2688                                     + sect,
2689                                     s, 0)) {
2690                                 md_error(mddev, rdev);
2691                                 r10_bio->devs[slot].bio
2692                                         = IO_BLOCKED;
2693                         }
2694                         break;
2695                 }
2696
2697                 start = sl;
2698                 /* write it back and re-read */
2699                 while (sl != slot) {
2700                         if (sl==0)
2701                                 sl = conf->copies;
2702                         sl--;
2703                         d = r10_bio->devs[sl].devnum;
2704                         rdev = conf->mirrors[d].rdev;
2705                         if (!rdev ||
2706                             test_bit(Faulty, &rdev->flags) ||
2707                             !test_bit(In_sync, &rdev->flags))
2708                                 continue;
2709
2710                         atomic_inc(&rdev->nr_pending);
2711                         if (r10_sync_page_io(rdev,
2712                                              r10_bio->devs[sl].addr +
2713                                              sect,
2714                                              s, conf->tmppage, REQ_OP_WRITE)
2715                             == 0) {
2716                                 /* Well, this device is dead */
2717                                 pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %pg)\n",
2718                                           mdname(mddev), s,
2719                                           (unsigned long long)(
2720                                                   sect +
2721                                                   choose_data_offset(r10_bio,
2722                                                                      rdev)),
2723                                           rdev->bdev);
2724                                 pr_notice("md/raid10:%s: %pg: failing drive\n",
2725                                           mdname(mddev),
2726                                           rdev->bdev);
2727                         }
2728                         rdev_dec_pending(rdev, mddev);
2729                 }
2730                 sl = start;
2731                 while (sl != slot) {
2732                         if (sl==0)
2733                                 sl = conf->copies;
2734                         sl--;
2735                         d = r10_bio->devs[sl].devnum;
2736                         rdev = conf->mirrors[d].rdev;
2737                         if (!rdev ||
2738                             test_bit(Faulty, &rdev->flags) ||
2739                             !test_bit(In_sync, &rdev->flags))
2740                                 continue;
2741
2742                         atomic_inc(&rdev->nr_pending);
2743                         switch (r10_sync_page_io(rdev,
2744                                              r10_bio->devs[sl].addr +
2745                                              sect,
2746                                              s, conf->tmppage, REQ_OP_READ)) {
2747                         case 0:
2748                                 /* Well, this device is dead */
2749                                 pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %pg)\n",
2750                                        mdname(mddev), s,
2751                                        (unsigned long long)(
2752                                                sect +
2753                                                choose_data_offset(r10_bio, rdev)),
2754                                        rdev->bdev);
2755                                 pr_notice("md/raid10:%s: %pg: failing drive\n",
2756                                        mdname(mddev),
2757                                        rdev->bdev);
2758                                 break;
2759                         case 1:
2760                                 pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %pg)\n",
2761                                        mdname(mddev), s,
2762                                        (unsigned long long)(
2763                                                sect +
2764                                                choose_data_offset(r10_bio, rdev)),
2765                                        rdev->bdev);
2766                                 atomic_add(s, &rdev->corrected_errors);
2767                         }
2768
2769                         rdev_dec_pending(rdev, mddev);
2770                 }
2771
2772                 sectors -= s;
2773                 sect += s;
2774         }
2775 }
2776
2777 static bool narrow_write_error(struct r10bio *r10_bio, int i)
2778 {
2779         struct bio *bio = r10_bio->master_bio;
2780         struct mddev *mddev = r10_bio->mddev;
2781         struct r10conf *conf = mddev->private;
2782         struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2783         /* bio has the data to be written to slot 'i' where
2784          * we just recently had a write error.
2785          * We repeatedly clone the bio and trim down to one block,
2786          * then try the write.  Where the write fails we record
2787          * a bad block.
2788          * It is conceivable that the bio doesn't exactly align with
2789          * blocks.  We must handle this.
2790          *
2791          * We currently own a reference to the rdev.
2792          */
2793
2794         int block_sectors;
2795         sector_t sector;
2796         int sectors;
2797         int sect_to_write = r10_bio->sectors;
2798         bool ok = true;
2799
2800         if (rdev->badblocks.shift < 0)
2801                 return false;
2802
2803         block_sectors = roundup(1 << rdev->badblocks.shift,
2804                                 bdev_logical_block_size(rdev->bdev) >> 9);
2805         sector = r10_bio->sector;
2806         sectors = ((r10_bio->sector + block_sectors)
2807                    & ~(sector_t)(block_sectors - 1))
2808                 - sector;
2809
2810         while (sect_to_write) {
2811                 struct bio *wbio;
2812                 sector_t wsector;
2813                 if (sectors > sect_to_write)
2814                         sectors = sect_to_write;
2815                 /* Write at 'sector' for 'sectors' */
2816                 wbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO,
2817                                        &mddev->bio_set);
2818                 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2819                 wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2820                 wbio->bi_iter.bi_sector = wsector +
2821                                    choose_data_offset(r10_bio, rdev);
2822                 wbio->bi_opf = REQ_OP_WRITE;
2823
2824                 if (submit_bio_wait(wbio) < 0)
2825                         /* Failure! */
2826                         ok = rdev_set_badblocks(rdev, wsector,
2827                                                 sectors, 0)
2828                                 && ok;
2829
2830                 bio_put(wbio);
2831                 sect_to_write -= sectors;
2832                 sector += sectors;
2833                 sectors = block_sectors;
2834         }
2835         return ok;
2836 }
2837
2838 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2839 {
2840         int slot = r10_bio->read_slot;
2841         struct bio *bio;
2842         struct r10conf *conf = mddev->private;
2843         struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2844
2845         /* we got a read error. Maybe the drive is bad.  Maybe just
2846          * the block and we can fix it.
2847          * We freeze all other IO, and try reading the block from
2848          * other devices.  When we find one, we re-write
2849          * and check it that fixes the read error.
2850          * This is all done synchronously while the array is
2851          * frozen.
2852          */
2853         bio = r10_bio->devs[slot].bio;
2854         bio_put(bio);
2855         r10_bio->devs[slot].bio = NULL;
2856
2857         if (mddev->ro)
2858                 r10_bio->devs[slot].bio = IO_BLOCKED;
2859         else if (!test_bit(FailFast, &rdev->flags)) {
2860                 freeze_array(conf, 1);
2861                 fix_read_error(conf, mddev, r10_bio);
2862                 unfreeze_array(conf);
2863         } else
2864                 md_error(mddev, rdev);
2865
2866         rdev_dec_pending(rdev, mddev);
2867         r10_bio->state = 0;
2868         raid10_read_request(mddev, r10_bio->master_bio, r10_bio, false);
2869         /*
2870          * allow_barrier after re-submit to ensure no sync io
2871          * can be issued while regular io pending.
2872          */
2873         allow_barrier(conf);
2874 }
2875
2876 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2877 {
2878         /* Some sort of write request has finished and it
2879          * succeeded in writing where we thought there was a
2880          * bad block.  So forget the bad block.
2881          * Or possibly if failed and we need to record
2882          * a bad block.
2883          */
2884         int m;
2885         struct md_rdev *rdev;
2886
2887         if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2888             test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2889                 for (m = 0; m < conf->copies; m++) {
2890                         int dev = r10_bio->devs[m].devnum;
2891                         rdev = conf->mirrors[dev].rdev;
2892                         if (r10_bio->devs[m].bio == NULL ||
2893                                 r10_bio->devs[m].bio->bi_end_io == NULL)
2894                                 continue;
2895                         if (!r10_bio->devs[m].bio->bi_status) {
2896                                 rdev_clear_badblocks(
2897                                         rdev,
2898                                         r10_bio->devs[m].addr,
2899                                         r10_bio->sectors, 0);
2900                         } else {
2901                                 if (!rdev_set_badblocks(
2902                                             rdev,
2903                                             r10_bio->devs[m].addr,
2904                                             r10_bio->sectors, 0))
2905                                         md_error(conf->mddev, rdev);
2906                         }
2907                         rdev = conf->mirrors[dev].replacement;
2908                         if (r10_bio->devs[m].repl_bio == NULL ||
2909                                 r10_bio->devs[m].repl_bio->bi_end_io == NULL)
2910                                 continue;
2911
2912                         if (!r10_bio->devs[m].repl_bio->bi_status) {
2913                                 rdev_clear_badblocks(
2914                                         rdev,
2915                                         r10_bio->devs[m].addr,
2916                                         r10_bio->sectors, 0);
2917                         } else {
2918                                 if (!rdev_set_badblocks(
2919                                             rdev,
2920                                             r10_bio->devs[m].addr,
2921                                             r10_bio->sectors, 0))
2922                                         md_error(conf->mddev, rdev);
2923                         }
2924                 }
2925                 put_buf(r10_bio);
2926         } else {
2927                 bool fail = false;
2928                 for (m = 0; m < conf->copies; m++) {
2929                         int dev = r10_bio->devs[m].devnum;
2930                         struct bio *bio = r10_bio->devs[m].bio;
2931                         rdev = conf->mirrors[dev].rdev;
2932                         if (bio == IO_MADE_GOOD) {
2933                                 rdev_clear_badblocks(
2934                                         rdev,
2935                                         r10_bio->devs[m].addr,
2936                                         r10_bio->sectors, 0);
2937                                 rdev_dec_pending(rdev, conf->mddev);
2938                         } else if (bio != NULL && bio->bi_status) {
2939                                 fail = true;
2940                                 if (!narrow_write_error(r10_bio, m))
2941                                         md_error(conf->mddev, rdev);
2942                                 rdev_dec_pending(rdev, conf->mddev);
2943                         }
2944                         bio = r10_bio->devs[m].repl_bio;
2945                         rdev = conf->mirrors[dev].replacement;
2946                         if (rdev && bio == IO_MADE_GOOD) {
2947                                 rdev_clear_badblocks(
2948                                         rdev,
2949                                         r10_bio->devs[m].addr,
2950                                         r10_bio->sectors, 0);
2951                                 rdev_dec_pending(rdev, conf->mddev);
2952                         }
2953                 }
2954                 if (fail) {
2955                         spin_lock_irq(&conf->device_lock);
2956                         list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
2957                         conf->nr_queued++;
2958                         spin_unlock_irq(&conf->device_lock);
2959                         /*
2960                          * In case freeze_array() is waiting for condition
2961                          * nr_pending == nr_queued + extra to be true.
2962                          */
2963                         wake_up(&conf->wait_barrier);
2964                         md_wakeup_thread(conf->mddev->thread);
2965                 } else {
2966                         if (test_bit(R10BIO_WriteError,
2967                                      &r10_bio->state))
2968                                 close_write(r10_bio);
2969                         raid_end_bio_io(r10_bio);
2970                 }
2971         }
2972 }
2973
2974 static void raid10d(struct md_thread *thread)
2975 {
2976         struct mddev *mddev = thread->mddev;
2977         struct r10bio *r10_bio;
2978         unsigned long flags;
2979         struct r10conf *conf = mddev->private;
2980         struct list_head *head = &conf->retry_list;
2981         struct blk_plug plug;
2982
2983         md_check_recovery(mddev);
2984
2985         if (!list_empty_careful(&conf->bio_end_io_list) &&
2986             !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2987                 LIST_HEAD(tmp);
2988                 spin_lock_irqsave(&conf->device_lock, flags);
2989                 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2990                         while (!list_empty(&conf->bio_end_io_list)) {
2991                                 list_move(conf->bio_end_io_list.prev, &tmp);
2992                                 conf->nr_queued--;
2993                         }
2994                 }
2995                 spin_unlock_irqrestore(&conf->device_lock, flags);
2996                 while (!list_empty(&tmp)) {
2997                         r10_bio = list_first_entry(&tmp, struct r10bio,
2998                                                    retry_list);
2999                         list_del(&r10_bio->retry_list);
3000
3001                         if (test_bit(R10BIO_WriteError,
3002                                      &r10_bio->state))
3003                                 close_write(r10_bio);
3004                         raid_end_bio_io(r10_bio);
3005                 }
3006         }
3007
3008         blk_start_plug(&plug);
3009         for (;;) {
3010
3011                 flush_pending_writes(conf);
3012
3013                 spin_lock_irqsave(&conf->device_lock, flags);
3014                 if (list_empty(head)) {
3015                         spin_unlock_irqrestore(&conf->device_lock, flags);
3016                         break;
3017                 }
3018                 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
3019                 list_del(head->prev);
3020                 conf->nr_queued--;
3021                 spin_unlock_irqrestore(&conf->device_lock, flags);
3022
3023                 mddev = r10_bio->mddev;
3024                 conf = mddev->private;
3025                 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
3026                     test_bit(R10BIO_WriteError, &r10_bio->state))
3027                         handle_write_completed(conf, r10_bio);
3028                 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
3029                         reshape_request_write(mddev, r10_bio);
3030                 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
3031                         sync_request_write(mddev, r10_bio);
3032                 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
3033                         recovery_request_write(mddev, r10_bio);
3034                 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
3035                         handle_read_error(mddev, r10_bio);
3036                 else
3037                         WARN_ON_ONCE(1);
3038
3039                 cond_resched();
3040                 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
3041                         md_check_recovery(mddev);
3042         }
3043         blk_finish_plug(&plug);
3044 }
3045
3046 static int init_resync(struct r10conf *conf)
3047 {
3048         int ret, buffs, i;
3049
3050         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
3051         BUG_ON(mempool_initialized(&conf->r10buf_pool));
3052         conf->have_replacement = 0;
3053         for (i = 0; i < conf->geo.raid_disks; i++)
3054                 if (conf->mirrors[i].replacement)
3055                         conf->have_replacement = 1;
3056         ret = mempool_init(&conf->r10buf_pool, buffs,
3057                            r10buf_pool_alloc, r10buf_pool_free, conf);
3058         if (ret)
3059                 return ret;
3060         conf->next_resync = 0;
3061         return 0;
3062 }
3063
3064 static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf)
3065 {
3066         struct r10bio *r10bio = mempool_alloc(&conf->r10buf_pool, GFP_NOIO);
3067         struct rsync_pages *rp;
3068         struct bio *bio;
3069         int nalloc;
3070         int i;
3071
3072         if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
3073             test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
3074                 nalloc = conf->copies; /* resync */
3075         else
3076                 nalloc = 2; /* recovery */
3077
3078         for (i = 0; i < nalloc; i++) {
3079                 bio = r10bio->devs[i].bio;
3080                 rp = bio->bi_private;
3081                 bio_reset(bio, NULL, 0);
3082                 bio->bi_private = rp;
3083                 bio = r10bio->devs[i].repl_bio;
3084                 if (bio) {
3085                         rp = bio->bi_private;
3086                         bio_reset(bio, NULL, 0);
3087                         bio->bi_private = rp;
3088                 }
3089         }
3090         return r10bio;
3091 }
3092
3093 /*
3094  * Set cluster_sync_high since we need other nodes to add the
3095  * range [cluster_sync_low, cluster_sync_high] to suspend list.
3096  */
3097 static void raid10_set_cluster_sync_high(struct r10conf *conf)
3098 {
3099         sector_t window_size;
3100         int extra_chunk, chunks;
3101
3102         /*
3103          * First, here we define "stripe" as a unit which across
3104          * all member devices one time, so we get chunks by use
3105          * raid_disks / near_copies. Otherwise, if near_copies is
3106          * close to raid_disks, then resync window could increases
3107          * linearly with the increase of raid_disks, which means
3108          * we will suspend a really large IO window while it is not
3109          * necessary. If raid_disks is not divisible by near_copies,
3110          * an extra chunk is needed to ensure the whole "stripe" is
3111          * covered.
3112          */
3113
3114         chunks = conf->geo.raid_disks / conf->geo.near_copies;
3115         if (conf->geo.raid_disks % conf->geo.near_copies == 0)
3116                 extra_chunk = 0;
3117         else
3118                 extra_chunk = 1;
3119         window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors;
3120
3121         /*
3122          * At least use a 32M window to align with raid1's resync window
3123          */
3124         window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ?
3125                         CLUSTER_RESYNC_WINDOW_SECTORS : window_size;
3126
3127         conf->cluster_sync_high = conf->cluster_sync_low + window_size;
3128 }
3129
3130 /*
3131  * perform a "sync" on one "block"
3132  *
3133  * We need to make sure that no normal I/O request - particularly write
3134  * requests - conflict with active sync requests.
3135  *
3136  * This is achieved by tracking pending requests and a 'barrier' concept
3137  * that can be installed to exclude normal IO requests.
3138  *
3139  * Resync and recovery are handled very differently.
3140  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
3141  *
3142  * For resync, we iterate over virtual addresses, read all copies,
3143  * and update if there are differences.  If only one copy is live,
3144  * skip it.
3145  * For recovery, we iterate over physical addresses, read a good
3146  * value for each non-in_sync drive, and over-write.
3147  *
3148  * So, for recovery we may have several outstanding complex requests for a
3149  * given address, one for each out-of-sync device.  We model this by allocating
3150  * a number of r10_bio structures, one for each out-of-sync device.
3151  * As we setup these structures, we collect all bio's together into a list
3152  * which we then process collectively to add pages, and then process again
3153  * to pass to submit_bio_noacct.
3154  *
3155  * The r10_bio structures are linked using a borrowed master_bio pointer.
3156  * This link is counted in ->remaining.  When the r10_bio that points to NULL
3157  * has its remaining count decremented to 0, the whole complex operation
3158  * is complete.
3159  *
3160  */
3161
3162 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
3163                                     sector_t max_sector, int *skipped)
3164 {
3165         struct r10conf *conf = mddev->private;
3166         struct r10bio *r10_bio;
3167         struct bio *biolist = NULL, *bio;
3168         sector_t nr_sectors;
3169         int i;
3170         int max_sync;
3171         sector_t sync_blocks;
3172         sector_t sectors_skipped = 0;
3173         int chunks_skipped = 0;
3174         sector_t chunk_mask = conf->geo.chunk_mask;
3175         int page_idx = 0;
3176         int error_disk = -1;
3177
3178         /*
3179          * Allow skipping a full rebuild for incremental assembly
3180          * of a clean array, like RAID1 does.
3181          */
3182         if (mddev->bitmap == NULL &&
3183             mddev->recovery_cp == MaxSector &&
3184             mddev->reshape_position == MaxSector &&
3185             !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
3186             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
3187             !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
3188             conf->fullsync == 0) {
3189                 *skipped = 1;
3190                 return mddev->dev_sectors - sector_nr;
3191         }
3192
3193         if (!mempool_initialized(&conf->r10buf_pool))
3194                 if (init_resync(conf))
3195                         return 0;
3196
3197  skipped:
3198         if (sector_nr >= max_sector) {
3199                 conf->cluster_sync_low = 0;
3200                 conf->cluster_sync_high = 0;
3201
3202                 /* If we aborted, we need to abort the
3203                  * sync on the 'current' bitmap chucks (there can
3204                  * be several when recovering multiple devices).
3205                  * as we may have started syncing it but not finished.
3206                  * We can find the current address in
3207                  * mddev->curr_resync, but for recovery,
3208                  * we need to convert that to several
3209                  * virtual addresses.
3210                  */
3211                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
3212                         end_reshape(conf);
3213                         close_sync(conf);
3214                         return 0;
3215                 }
3216
3217                 if (mddev->curr_resync < max_sector) { /* aborted */
3218                         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3219                                 mddev->bitmap_ops->end_sync(mddev,
3220                                                             mddev->curr_resync,
3221                                                             &sync_blocks);
3222                         else for (i = 0; i < conf->geo.raid_disks; i++) {
3223                                 sector_t sect =
3224                                         raid10_find_virt(conf, mddev->curr_resync, i);
3225
3226                                 mddev->bitmap_ops->end_sync(mddev, sect,
3227                                                             &sync_blocks);
3228                         }
3229                 } else {
3230                         /* completed sync */
3231                         if ((!mddev->bitmap || conf->fullsync)
3232                             && conf->have_replacement
3233                             && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3234                                 /* Completed a full sync so the replacements
3235                                  * are now fully recovered.
3236                                  */
3237                                 for (i = 0; i < conf->geo.raid_disks; i++) {
3238                                         struct md_rdev *rdev =
3239                                                 conf->mirrors[i].replacement;
3240
3241                                         if (rdev)
3242                                                 rdev->recovery_offset = MaxSector;
3243                                 }
3244                         }
3245                         conf->fullsync = 0;
3246                 }
3247                 mddev->bitmap_ops->close_sync(mddev);
3248                 close_sync(conf);
3249                 *skipped = 1;
3250                 return sectors_skipped;
3251         }
3252
3253         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3254                 return reshape_request(mddev, sector_nr, skipped);
3255
3256         if (chunks_skipped >= conf->geo.raid_disks) {
3257                 pr_err("md/raid10:%s: %s fails\n", mdname(mddev),
3258                         test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?  "resync" : "recovery");
3259                 if (error_disk >= 0 &&
3260                     !test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3261                         /*
3262                          * recovery fails, set mirrors.recovery_disabled,
3263                          * device shouldn't be added to there.
3264                          */
3265                         conf->mirrors[error_disk].recovery_disabled =
3266                                                 mddev->recovery_disabled;
3267                         return 0;
3268                 }
3269                 /*
3270                  * if there has been nothing to do on any drive,
3271                  * then there is nothing to do at all.
3272                  */
3273                 *skipped = 1;
3274                 return (max_sector - sector_nr) + sectors_skipped;
3275         }
3276
3277         if (max_sector > mddev->resync_max)
3278                 max_sector = mddev->resync_max; /* Don't do IO beyond here */
3279
3280         /* make sure whole request will fit in a chunk - if chunks
3281          * are meaningful
3282          */
3283         if (conf->geo.near_copies < conf->geo.raid_disks &&
3284             max_sector > (sector_nr | chunk_mask))
3285                 max_sector = (sector_nr | chunk_mask) + 1;
3286
3287         /*
3288          * If there is non-resync activity waiting for a turn, then let it
3289          * though before starting on this new sync request.
3290          */
3291         if (conf->nr_waiting)
3292                 schedule_timeout_uninterruptible(1);
3293
3294         /* Again, very different code for resync and recovery.
3295          * Both must result in an r10bio with a list of bios that
3296          * have bi_end_io, bi_sector, bi_bdev set,
3297          * and bi_private set to the r10bio.
3298          * For recovery, we may actually create several r10bios
3299          * with 2 bios in each, that correspond to the bios in the main one.
3300          * In this case, the subordinate r10bios link back through a
3301          * borrowed master_bio pointer, and the counter in the master
3302          * includes a ref from each subordinate.
3303          */
3304         /* First, we decide what to do and set ->bi_end_io
3305          * To end_sync_read if we want to read, and
3306          * end_sync_write if we will want to write.
3307          */
3308
3309         max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3310         if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3311                 /* recovery... the complicated one */
3312                 int j;
3313                 r10_bio = NULL;
3314
3315                 for (i = 0 ; i < conf->geo.raid_disks; i++) {
3316                         bool still_degraded;
3317                         struct r10bio *rb2;
3318                         sector_t sect;
3319                         bool must_sync;
3320                         int any_working;
3321                         struct raid10_info *mirror = &conf->mirrors[i];
3322                         struct md_rdev *mrdev, *mreplace;
3323
3324                         mrdev = mirror->rdev;
3325                         mreplace = mirror->replacement;
3326
3327                         if (mrdev && (test_bit(Faulty, &mrdev->flags) ||
3328                             test_bit(In_sync, &mrdev->flags)))
3329                                 mrdev = NULL;
3330                         if (mreplace && test_bit(Faulty, &mreplace->flags))
3331                                 mreplace = NULL;
3332
3333                         if (!mrdev && !mreplace)
3334                                 continue;
3335
3336                         still_degraded = false;
3337                         /* want to reconstruct this device */
3338                         rb2 = r10_bio;
3339                         sect = raid10_find_virt(conf, sector_nr, i);
3340                         if (sect >= mddev->resync_max_sectors)
3341                                 /* last stripe is not complete - don't
3342                                  * try to recover this sector.
3343                                  */
3344                                 continue;
3345                         /* Unless we are doing a full sync, or a replacement
3346                          * we only need to recover the block if it is set in
3347                          * the bitmap
3348                          */
3349                         must_sync = mddev->bitmap_ops->start_sync(mddev, sect,
3350                                                                   &sync_blocks,
3351                                                                   true);
3352                         if (sync_blocks < max_sync)
3353                                 max_sync = sync_blocks;
3354                         if (!must_sync &&
3355                             mreplace == NULL &&
3356                             !conf->fullsync) {
3357                                 /* yep, skip the sync_blocks here, but don't assume
3358                                  * that there will never be anything to do here
3359                                  */
3360                                 chunks_skipped = -1;
3361                                 continue;
3362                         }
3363                         if (mrdev)
3364                                 atomic_inc(&mrdev->nr_pending);
3365                         if (mreplace)
3366                                 atomic_inc(&mreplace->nr_pending);
3367
3368                         r10_bio = raid10_alloc_init_r10buf(conf);
3369                         r10_bio->state = 0;
3370                         raise_barrier(conf, rb2 != NULL);
3371                         atomic_set(&r10_bio->remaining, 0);
3372
3373                         r10_bio->master_bio = (struct bio*)rb2;
3374                         if (rb2)
3375                                 atomic_inc(&rb2->remaining);
3376                         r10_bio->mddev = mddev;
3377                         set_bit(R10BIO_IsRecover, &r10_bio->state);
3378                         r10_bio->sector = sect;
3379
3380                         raid10_find_phys(conf, r10_bio);
3381
3382                         /* Need to check if the array will still be
3383                          * degraded
3384                          */
3385                         for (j = 0; j < conf->geo.raid_disks; j++) {
3386                                 struct md_rdev *rdev = conf->mirrors[j].rdev;
3387
3388                                 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3389                                         still_degraded = false;
3390                                         break;
3391                                 }
3392                         }
3393
3394                         must_sync = mddev->bitmap_ops->start_sync(mddev, sect,
3395                                                 &sync_blocks, still_degraded);
3396
3397                         any_working = 0;
3398                         for (j=0; j<conf->copies;j++) {
3399                                 int k;
3400                                 int d = r10_bio->devs[j].devnum;
3401                                 sector_t from_addr, to_addr;
3402                                 struct md_rdev *rdev = conf->mirrors[d].rdev;
3403                                 sector_t sector, first_bad;
3404                                 sector_t bad_sectors;
3405                                 if (!rdev ||
3406                                     !test_bit(In_sync, &rdev->flags))
3407                                         continue;
3408                                 /* This is where we read from */
3409                                 any_working = 1;
3410                                 sector = r10_bio->devs[j].addr;
3411
3412                                 if (is_badblock(rdev, sector, max_sync,
3413                                                 &first_bad, &bad_sectors)) {
3414                                         if (first_bad > sector)
3415                                                 max_sync = first_bad - sector;
3416                                         else {
3417                                                 bad_sectors -= (sector
3418                                                                 - first_bad);
3419                                                 if (max_sync > bad_sectors)
3420                                                         max_sync = bad_sectors;
3421                                                 continue;
3422                                         }
3423                                 }
3424                                 bio = r10_bio->devs[0].bio;
3425                                 bio->bi_next = biolist;
3426                                 biolist = bio;
3427                                 bio->bi_end_io = end_sync_read;
3428                                 bio->bi_opf = REQ_OP_READ;
3429                                 if (test_bit(FailFast, &rdev->flags))
3430                                         bio->bi_opf |= MD_FAILFAST;
3431                                 from_addr = r10_bio->devs[j].addr;
3432                                 bio->bi_iter.bi_sector = from_addr +
3433                                         rdev->data_offset;
3434                                 bio_set_dev(bio, rdev->bdev);
3435                                 atomic_inc(&rdev->nr_pending);
3436                                 /* and we write to 'i' (if not in_sync) */
3437
3438                                 for (k=0; k<conf->copies; k++)
3439                                         if (r10_bio->devs[k].devnum == i)
3440                                                 break;
3441                                 BUG_ON(k == conf->copies);
3442                                 to_addr = r10_bio->devs[k].addr;
3443                                 r10_bio->devs[0].devnum = d;
3444                                 r10_bio->devs[0].addr = from_addr;
3445                                 r10_bio->devs[1].devnum = i;
3446                                 r10_bio->devs[1].addr = to_addr;
3447
3448                                 if (mrdev) {
3449                                         bio = r10_bio->devs[1].bio;
3450                                         bio->bi_next = biolist;
3451                                         biolist = bio;
3452                                         bio->bi_end_io = end_sync_write;
3453                                         bio->bi_opf = REQ_OP_WRITE;
3454                                         bio->bi_iter.bi_sector = to_addr
3455                                                 + mrdev->data_offset;
3456                                         bio_set_dev(bio, mrdev->bdev);
3457                                         atomic_inc(&r10_bio->remaining);
3458                                 } else
3459                                         r10_bio->devs[1].bio->bi_end_io = NULL;
3460
3461                                 /* and maybe write to replacement */
3462                                 bio = r10_bio->devs[1].repl_bio;
3463                                 if (bio)
3464                                         bio->bi_end_io = NULL;
3465                                 /* Note: if replace is not NULL, then bio
3466                                  * cannot be NULL as r10buf_pool_alloc will
3467                                  * have allocated it.
3468                                  */
3469                                 if (!mreplace)
3470                                         break;
3471                                 bio->bi_next = biolist;
3472                                 biolist = bio;
3473                                 bio->bi_end_io = end_sync_write;
3474                                 bio->bi_opf = REQ_OP_WRITE;
3475                                 bio->bi_iter.bi_sector = to_addr +
3476                                         mreplace->data_offset;
3477                                 bio_set_dev(bio, mreplace->bdev);
3478                                 atomic_inc(&r10_bio->remaining);
3479                                 break;
3480                         }
3481                         if (j == conf->copies) {
3482                                 /* Cannot recover, so abort the recovery or
3483                                  * record a bad block */
3484                                 if (any_working) {
3485                                         /* problem is that there are bad blocks
3486                                          * on other device(s)
3487                                          */
3488                                         int k;
3489                                         for (k = 0; k < conf->copies; k++)
3490                                                 if (r10_bio->devs[k].devnum == i)
3491                                                         break;
3492                                         if (mrdev && !test_bit(In_sync,
3493                                                       &mrdev->flags)
3494                                             && !rdev_set_badblocks(
3495                                                     mrdev,
3496                                                     r10_bio->devs[k].addr,
3497                                                     max_sync, 0))
3498                                                 any_working = 0;
3499                                         if (mreplace &&
3500                                             !rdev_set_badblocks(
3501                                                     mreplace,
3502                                                     r10_bio->devs[k].addr,
3503                                                     max_sync, 0))
3504                                                 any_working = 0;
3505                                 }
3506                                 if (!any_working)  {
3507                                         if (!test_and_set_bit(MD_RECOVERY_INTR,
3508                                                               &mddev->recovery))
3509                                                 pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
3510                                                        mdname(mddev));
3511                                         mirror->recovery_disabled
3512                                                 = mddev->recovery_disabled;
3513                                 } else {
3514                                         error_disk = i;
3515                                 }
3516                                 put_buf(r10_bio);
3517                                 if (rb2)
3518                                         atomic_dec(&rb2->remaining);
3519                                 r10_bio = rb2;
3520                                 if (mrdev)
3521                                         rdev_dec_pending(mrdev, mddev);
3522                                 if (mreplace)
3523                                         rdev_dec_pending(mreplace, mddev);
3524                                 break;
3525                         }
3526                         if (mrdev)
3527                                 rdev_dec_pending(mrdev, mddev);
3528                         if (mreplace)
3529                                 rdev_dec_pending(mreplace, mddev);
3530                         if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) {
3531                                 /* Only want this if there is elsewhere to
3532                                  * read from. 'j' is currently the first
3533                                  * readable copy.
3534                                  */
3535                                 int targets = 1;
3536                                 for (; j < conf->copies; j++) {
3537                                         int d = r10_bio->devs[j].devnum;
3538                                         if (conf->mirrors[d].rdev &&
3539                                             test_bit(In_sync,
3540                                                       &conf->mirrors[d].rdev->flags))
3541                                                 targets++;
3542                                 }
3543                                 if (targets == 1)
3544                                         r10_bio->devs[0].bio->bi_opf
3545                                                 &= ~MD_FAILFAST;
3546                         }
3547                 }
3548                 if (biolist == NULL) {
3549                         while (r10_bio) {
3550                                 struct r10bio *rb2 = r10_bio;
3551                                 r10_bio = (struct r10bio*) rb2->master_bio;
3552                                 rb2->master_bio = NULL;
3553                                 put_buf(rb2);
3554                         }
3555                         goto giveup;
3556                 }
3557         } else {
3558                 /* resync. Schedule a read for every block at this virt offset */
3559                 int count = 0;
3560
3561                 /*
3562                  * Since curr_resync_completed could probably not update in
3563                  * time, and we will set cluster_sync_low based on it.
3564                  * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for
3565                  * safety reason, which ensures curr_resync_completed is
3566                  * updated in bitmap_cond_end_sync.
3567                  */
3568                 mddev->bitmap_ops->cond_end_sync(mddev, sector_nr,
3569                                         mddev_is_clustered(mddev) &&
3570                                         (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
3571
3572                 if (!mddev->bitmap_ops->start_sync(mddev, sector_nr,
3573                                                    &sync_blocks,
3574                                                    mddev->degraded) &&
3575                     !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3576                                                  &mddev->recovery)) {
3577                         /* We can skip this block */
3578                         *skipped = 1;
3579                         return sync_blocks + sectors_skipped;
3580                 }
3581                 if (sync_blocks < max_sync)
3582                         max_sync = sync_blocks;
3583                 r10_bio = raid10_alloc_init_r10buf(conf);
3584                 r10_bio->state = 0;
3585
3586                 r10_bio->mddev = mddev;
3587                 atomic_set(&r10_bio->remaining, 0);
3588                 raise_barrier(conf, 0);
3589                 conf->next_resync = sector_nr;
3590
3591                 r10_bio->master_bio = NULL;
3592                 r10_bio->sector = sector_nr;
3593                 set_bit(R10BIO_IsSync, &r10_bio->state);
3594                 raid10_find_phys(conf, r10_bio);
3595                 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3596
3597                 for (i = 0; i < conf->copies; i++) {
3598                         int d = r10_bio->devs[i].devnum;
3599                         sector_t first_bad, sector;
3600                         sector_t bad_sectors;
3601                         struct md_rdev *rdev;
3602
3603                         if (r10_bio->devs[i].repl_bio)
3604                                 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3605
3606                         bio = r10_bio->devs[i].bio;
3607                         bio->bi_status = BLK_STS_IOERR;
3608                         rdev = conf->mirrors[d].rdev;
3609                         if (rdev == NULL || test_bit(Faulty, &rdev->flags))
3610                                 continue;
3611
3612                         sector = r10_bio->devs[i].addr;
3613                         if (is_badblock(rdev, sector, max_sync,
3614                                         &first_bad, &bad_sectors)) {
3615                                 if (first_bad > sector)
3616                                         max_sync = first_bad - sector;
3617                                 else {
3618                                         bad_sectors -= (sector - first_bad);
3619                                         if (max_sync > bad_sectors)
3620                                                 max_sync = bad_sectors;
3621                                         continue;
3622                                 }
3623                         }
3624                         atomic_inc(&rdev->nr_pending);
3625                         atomic_inc(&r10_bio->remaining);
3626                         bio->bi_next = biolist;
3627                         biolist = bio;
3628                         bio->bi_end_io = end_sync_read;
3629                         bio->bi_opf = REQ_OP_READ;
3630                         if (test_bit(FailFast, &rdev->flags))
3631                                 bio->bi_opf |= MD_FAILFAST;
3632                         bio->bi_iter.bi_sector = sector + rdev->data_offset;
3633                         bio_set_dev(bio, rdev->bdev);
3634                         count++;
3635
3636                         rdev = conf->mirrors[d].replacement;
3637                         if (rdev == NULL || test_bit(Faulty, &rdev->flags))
3638                                 continue;
3639
3640                         atomic_inc(&rdev->nr_pending);
3641
3642                         /* Need to set up for writing to the replacement */
3643                         bio = r10_bio->devs[i].repl_bio;
3644                         bio->bi_status = BLK_STS_IOERR;
3645
3646                         sector = r10_bio->devs[i].addr;
3647                         bio->bi_next = biolist;
3648                         biolist = bio;
3649                         bio->bi_end_io = end_sync_write;
3650                         bio->bi_opf = REQ_OP_WRITE;
3651                         if (test_bit(FailFast, &rdev->flags))
3652                                 bio->bi_opf |= MD_FAILFAST;
3653                         bio->bi_iter.bi_sector = sector + rdev->data_offset;
3654                         bio_set_dev(bio, rdev->bdev);
3655                         count++;
3656                 }
3657
3658                 if (count < 2) {
3659                         for (i=0; i<conf->copies; i++) {
3660                                 int d = r10_bio->devs[i].devnum;
3661                                 if (r10_bio->devs[i].bio->bi_end_io)
3662                                         rdev_dec_pending(conf->mirrors[d].rdev,
3663                                                          mddev);
3664                                 if (r10_bio->devs[i].repl_bio &&
3665                                     r10_bio->devs[i].repl_bio->bi_end_io)
3666                                         rdev_dec_pending(
3667                                                 conf->mirrors[d].replacement,
3668                                                 mddev);
3669                         }
3670                         put_buf(r10_bio);
3671                         biolist = NULL;
3672                         goto giveup;
3673                 }
3674         }
3675
3676         nr_sectors = 0;
3677         if (sector_nr + max_sync < max_sector)
3678                 max_sector = sector_nr + max_sync;
3679         do {
3680                 struct page *page;
3681                 int len = PAGE_SIZE;
3682                 if (sector_nr + (len>>9) > max_sector)
3683                         len = (max_sector - sector_nr) << 9;
3684                 if (len == 0)
3685                         break;
3686                 for (bio= biolist ; bio ; bio=bio->bi_next) {
3687                         struct resync_pages *rp = get_resync_pages(bio);
3688                         page = resync_fetch_page(rp, page_idx);
3689                         if (WARN_ON(!bio_add_page(bio, page, len, 0))) {
3690                                 bio->bi_status = BLK_STS_RESOURCE;
3691                                 bio_endio(bio);
3692                                 goto giveup;
3693                         }
3694                 }
3695                 nr_sectors += len>>9;
3696                 sector_nr += len>>9;
3697         } while (++page_idx < RESYNC_PAGES);
3698         r10_bio->sectors = nr_sectors;
3699
3700         if (mddev_is_clustered(mddev) &&
3701             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3702                 /* It is resync not recovery */
3703                 if (conf->cluster_sync_high < sector_nr + nr_sectors) {
3704                         conf->cluster_sync_low = mddev->curr_resync_completed;
3705                         raid10_set_cluster_sync_high(conf);
3706                         /* Send resync message */
3707                         mddev->cluster_ops->resync_info_update(mddev,
3708                                                 conf->cluster_sync_low,
3709                                                 conf->cluster_sync_high);
3710                 }
3711         } else if (mddev_is_clustered(mddev)) {
3712                 /* This is recovery not resync */
3713                 sector_t sect_va1, sect_va2;
3714                 bool broadcast_msg = false;
3715
3716                 for (i = 0; i < conf->geo.raid_disks; i++) {
3717                         /*
3718                          * sector_nr is a device address for recovery, so we
3719                          * need translate it to array address before compare
3720                          * with cluster_sync_high.
3721                          */
3722                         sect_va1 = raid10_find_virt(conf, sector_nr, i);
3723
3724                         if (conf->cluster_sync_high < sect_va1 + nr_sectors) {
3725                                 broadcast_msg = true;
3726                                 /*
3727                                  * curr_resync_completed is similar as
3728                                  * sector_nr, so make the translation too.
3729                                  */
3730                                 sect_va2 = raid10_find_virt(conf,
3731                                         mddev->curr_resync_completed, i);
3732
3733                                 if (conf->cluster_sync_low == 0 ||
3734                                     conf->cluster_sync_low > sect_va2)
3735                                         conf->cluster_sync_low = sect_va2;
3736                         }
3737                 }
3738                 if (broadcast_msg) {
3739                         raid10_set_cluster_sync_high(conf);
3740                         mddev->cluster_ops->resync_info_update(mddev,
3741                                                 conf->cluster_sync_low,
3742                                                 conf->cluster_sync_high);
3743                 }
3744         }
3745
3746         while (biolist) {
3747                 bio = biolist;
3748                 biolist = biolist->bi_next;
3749
3750                 bio->bi_next = NULL;
3751                 r10_bio = get_resync_r10bio(bio);
3752                 r10_bio->sectors = nr_sectors;
3753
3754                 if (bio->bi_end_io == end_sync_read) {
3755                         bio->bi_status = 0;
3756                         submit_bio_noacct(bio);
3757                 }
3758         }
3759
3760         if (sectors_skipped)
3761                 /* pretend they weren't skipped, it makes
3762                  * no important difference in this case
3763                  */
3764                 md_done_sync(mddev, sectors_skipped, 1);
3765
3766         return sectors_skipped + nr_sectors;
3767  giveup:
3768         /* There is nowhere to write, so all non-sync
3769          * drives must be failed or in resync, all drives
3770          * have a bad block, so try the next chunk...
3771          */
3772         if (sector_nr + max_sync < max_sector)
3773                 max_sector = sector_nr + max_sync;
3774
3775         sectors_skipped += (max_sector - sector_nr);
3776         chunks_skipped ++;
3777         sector_nr = max_sector;
3778         goto skipped;
3779 }
3780
3781 static sector_t
3782 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3783 {
3784         sector_t size;
3785         struct r10conf *conf = mddev->private;
3786
3787         if (!raid_disks)
3788                 raid_disks = min(conf->geo.raid_disks,
3789                                  conf->prev.raid_disks);
3790         if (!sectors)
3791                 sectors = conf->dev_sectors;
3792
3793         size = sectors >> conf->geo.chunk_shift;
3794         sector_div(size, conf->geo.far_copies);
3795         size = size * raid_disks;
3796         sector_div(size, conf->geo.near_copies);
3797
3798         return size << conf->geo.chunk_shift;
3799 }
3800
3801 static void calc_sectors(struct r10conf *conf, sector_t size)
3802 {
3803         /* Calculate the number of sectors-per-device that will
3804          * actually be used, and set conf->dev_sectors and
3805          * conf->stride
3806          */
3807
3808         size = size >> conf->geo.chunk_shift;
3809         sector_div(size, conf->geo.far_copies);
3810         size = size * conf->geo.raid_disks;
3811         sector_div(size, conf->geo.near_copies);
3812         /* 'size' is now the number of chunks in the array */
3813         /* calculate "used chunks per device" */
3814         size = size * conf->copies;
3815
3816         /* We need to round up when dividing by raid_disks to
3817          * get the stride size.
3818          */
3819         size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3820
3821         conf->dev_sectors = size << conf->geo.chunk_shift;
3822
3823         if (conf->geo.far_offset)
3824                 conf->geo.stride = 1 << conf->geo.chunk_shift;
3825         else {
3826                 sector_div(size, conf->geo.far_copies);
3827                 conf->geo.stride = size << conf->geo.chunk_shift;
3828         }
3829 }
3830
3831 enum geo_type {geo_new, geo_old, geo_start};
3832 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3833 {
3834         int nc, fc, fo;
3835         int layout, chunk, disks;
3836         switch (new) {
3837         case geo_old:
3838                 layout = mddev->layout;
3839                 chunk = mddev->chunk_sectors;
3840                 disks = mddev->raid_disks - mddev->delta_disks;
3841                 break;
3842         case geo_new:
3843                 layout = mddev->new_layout;
3844                 chunk = mddev->new_chunk_sectors;
3845                 disks = mddev->raid_disks;
3846                 break;
3847         default: /* avoid 'may be unused' warnings */
3848         case geo_start: /* new when starting reshape - raid_disks not
3849                          * updated yet. */
3850                 layout = mddev->new_layout;
3851                 chunk = mddev->new_chunk_sectors;
3852                 disks = mddev->raid_disks + mddev->delta_disks;
3853                 break;
3854         }
3855         if (layout >> 19)
3856                 return -1;
3857         if (chunk < (PAGE_SIZE >> 9) ||
3858             !is_power_of_2(chunk))
3859                 return -2;
3860         nc = layout & 255;
3861         fc = (layout >> 8) & 255;
3862         fo = layout & (1<<16);
3863         geo->raid_disks = disks;
3864         geo->near_copies = nc;
3865         geo->far_copies = fc;
3866         geo->far_offset = fo;
3867         switch (layout >> 17) {
3868         case 0: /* original layout.  simple but not always optimal */
3869                 geo->far_set_size = disks;
3870                 break;
3871         case 1: /* "improved" layout which was buggy.  Hopefully no-one is
3872                  * actually using this, but leave code here just in case.*/
3873                 geo->far_set_size = disks/fc;
3874                 WARN(geo->far_set_size < fc,
3875                      "This RAID10 layout does not provide data safety - please backup and create new array\n");
3876                 break;
3877         case 2: /* "improved" layout fixed to match documentation */
3878                 geo->far_set_size = fc * nc;
3879                 break;
3880         default: /* Not a valid layout */
3881                 return -1;
3882         }
3883         geo->chunk_mask = chunk - 1;
3884         geo->chunk_shift = ffz(~chunk);
3885         return nc*fc;
3886 }
3887
3888 static void raid10_free_conf(struct r10conf *conf)
3889 {
3890         if (!conf)
3891                 return;
3892
3893         mempool_exit(&conf->r10bio_pool);
3894         kfree(conf->mirrors);
3895         kfree(conf->mirrors_old);
3896         kfree(conf->mirrors_new);
3897         safe_put_page(conf->tmppage);
3898         bioset_exit(&conf->bio_split);
3899         kfree(conf);
3900 }
3901
3902 static struct r10conf *setup_conf(struct mddev *mddev)
3903 {
3904         struct r10conf *conf = NULL;
3905         int err = -EINVAL;
3906         struct geom geo;
3907         int copies;
3908
3909         copies = setup_geo(&geo, mddev, geo_new);
3910
3911         if (copies == -2) {
3912                 pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
3913                         mdname(mddev), PAGE_SIZE);
3914                 goto out;
3915         }
3916
3917         if (copies < 2 || copies > mddev->raid_disks) {
3918                 pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3919                         mdname(mddev), mddev->new_layout);
3920                 goto out;
3921         }
3922
3923         err = -ENOMEM;
3924         conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3925         if (!conf)
3926                 goto out;
3927
3928         /* FIXME calc properly */
3929         conf->mirrors = kcalloc(mddev->raid_disks + max(0, -mddev->delta_disks),
3930                                 sizeof(struct raid10_info),
3931                                 GFP_KERNEL);
3932         if (!conf->mirrors)
3933                 goto out;
3934
3935         conf->tmppage = alloc_page(GFP_KERNEL);
3936         if (!conf->tmppage)
3937                 goto out;
3938
3939         conf->geo = geo;
3940         conf->copies = copies;
3941         err = mempool_init(&conf->r10bio_pool, NR_RAID_BIOS, r10bio_pool_alloc,
3942                            rbio_pool_free, conf);
3943         if (err)
3944                 goto out;
3945
3946         err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
3947         if (err)
3948                 goto out;
3949
3950         calc_sectors(conf, mddev->dev_sectors);
3951         if (mddev->reshape_position == MaxSector) {
3952                 conf->prev = conf->geo;
3953                 conf->reshape_progress = MaxSector;
3954         } else {
3955                 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3956                         err = -EINVAL;
3957                         goto out;
3958                 }
3959                 conf->reshape_progress = mddev->reshape_position;
3960                 if (conf->prev.far_offset)
3961                         conf->prev.stride = 1 << conf->prev.chunk_shift;
3962                 else
3963                         /* far_copies must be 1 */
3964                         conf->prev.stride = conf->dev_sectors;
3965         }
3966         conf->reshape_safe = conf->reshape_progress;
3967         spin_lock_init(&conf->device_lock);
3968         INIT_LIST_HEAD(&conf->retry_list);
3969         INIT_LIST_HEAD(&conf->bio_end_io_list);
3970
3971         seqlock_init(&conf->resync_lock);
3972         init_waitqueue_head(&conf->wait_barrier);
3973         atomic_set(&conf->nr_pending, 0);
3974
3975         err = -ENOMEM;
3976         rcu_assign_pointer(conf->thread,
3977                            md_register_thread(raid10d, mddev, "raid10"));
3978         if (!conf->thread)
3979                 goto out;
3980
3981         conf->mddev = mddev;
3982         return conf;
3983
3984  out:
3985         raid10_free_conf(conf);
3986         return ERR_PTR(err);
3987 }
3988
3989 static unsigned int raid10_nr_stripes(struct r10conf *conf)
3990 {
3991         unsigned int raid_disks = conf->geo.raid_disks;
3992
3993         if (conf->geo.raid_disks % conf->geo.near_copies)
3994                 return raid_disks;
3995         return raid_disks / conf->geo.near_copies;
3996 }
3997
3998 static int raid10_set_queue_limits(struct mddev *mddev)
3999 {
4000         struct r10conf *conf = mddev->private;
4001         struct queue_limits lim;
4002         int err;
4003
4004         md_init_stacking_limits(&lim);
4005         lim.max_write_zeroes_sectors = 0;
4006         lim.io_min = mddev->chunk_sectors << 9;
4007         lim.io_opt = lim.io_min * raid10_nr_stripes(conf);
4008         lim.features |= BLK_FEAT_ATOMIC_WRITES;
4009         err = mddev_stack_rdev_limits(mddev, &lim, MDDEV_STACK_INTEGRITY);
4010         if (err)
4011                 return err;
4012         return queue_limits_set(mddev->gendisk->queue, &lim);
4013 }
4014
4015 static int raid10_run(struct mddev *mddev)
4016 {
4017         struct r10conf *conf;
4018         int i, disk_idx;
4019         struct raid10_info *disk;
4020         struct md_rdev *rdev;
4021         sector_t size;
4022         sector_t min_offset_diff = 0;
4023         int first = 1;
4024         int ret = -EIO;
4025
4026         if (mddev->private == NULL) {
4027                 conf = setup_conf(mddev);
4028                 if (IS_ERR(conf))
4029                         return PTR_ERR(conf);
4030                 mddev->private = conf;
4031         }
4032         conf = mddev->private;
4033         if (!conf)
4034                 goto out;
4035
4036         rcu_assign_pointer(mddev->thread, conf->thread);
4037         rcu_assign_pointer(conf->thread, NULL);
4038
4039         if (mddev_is_clustered(conf->mddev)) {
4040                 int fc, fo;
4041
4042                 fc = (mddev->layout >> 8) & 255;
4043                 fo = mddev->layout & (1<<16);
4044                 if (fc > 1 || fo > 0) {
4045                         pr_err("only near layout is supported by clustered"
4046                                 " raid10\n");
4047                         goto out_free_conf;
4048                 }
4049         }
4050
4051         rdev_for_each(rdev, mddev) {
4052                 long long diff;
4053
4054                 disk_idx = rdev->raid_disk;
4055                 if (disk_idx < 0)
4056                         continue;
4057                 if (disk_idx >= conf->geo.raid_disks &&
4058                     disk_idx >= conf->prev.raid_disks)
4059                         continue;
4060                 disk = conf->mirrors + disk_idx;
4061
4062                 if (test_bit(Replacement, &rdev->flags)) {
4063                         if (disk->replacement)
4064                                 goto out_free_conf;
4065                         disk->replacement = rdev;
4066                 } else {
4067                         if (disk->rdev)
4068                                 goto out_free_conf;
4069                         disk->rdev = rdev;
4070                 }
4071                 diff = (rdev->new_data_offset - rdev->data_offset);
4072                 if (!mddev->reshape_backwards)
4073                         diff = -diff;
4074                 if (diff < 0)
4075                         diff = 0;
4076                 if (first || diff < min_offset_diff)
4077                         min_offset_diff = diff;
4078
4079                 disk->head_position = 0;
4080                 first = 0;
4081         }
4082
4083         if (!mddev_is_dm(conf->mddev)) {
4084                 int err = raid10_set_queue_limits(mddev);
4085
4086                 if (err) {
4087                         ret = err;
4088                         goto out_free_conf;
4089                 }
4090         }
4091
4092         /* need to check that every block has at least one working mirror */
4093         if (!enough(conf, -1)) {
4094                 pr_err("md/raid10:%s: not enough operational mirrors.\n",
4095                        mdname(mddev));
4096                 goto out_free_conf;
4097         }
4098
4099         if (conf->reshape_progress != MaxSector) {
4100                 /* must ensure that shape change is supported */
4101                 if (conf->geo.far_copies != 1 &&
4102                     conf->geo.far_offset == 0)
4103                         goto out_free_conf;
4104                 if (conf->prev.far_copies != 1 &&
4105                     conf->prev.far_offset == 0)
4106                         goto out_free_conf;
4107         }
4108
4109         mddev->degraded = 0;
4110         for (i = 0;
4111              i < conf->geo.raid_disks
4112                      || i < conf->prev.raid_disks;
4113              i++) {
4114
4115                 disk = conf->mirrors + i;
4116
4117                 if (!disk->rdev && disk->replacement) {
4118                         /* The replacement is all we have - use it */
4119                         disk->rdev = disk->replacement;
4120                         disk->replacement = NULL;
4121                         clear_bit(Replacement, &disk->rdev->flags);
4122                 }
4123
4124                 if (!disk->rdev ||
4125                     !test_bit(In_sync, &disk->rdev->flags)) {
4126                         disk->head_position = 0;
4127                         mddev->degraded++;
4128                         if (disk->rdev &&
4129                             disk->rdev->saved_raid_disk < 0)
4130                                 conf->fullsync = 1;
4131                 }
4132
4133                 if (disk->replacement &&
4134                     !test_bit(In_sync, &disk->replacement->flags) &&
4135                     disk->replacement->saved_raid_disk < 0) {
4136                         conf->fullsync = 1;
4137                 }
4138
4139                 disk->recovery_disabled = mddev->recovery_disabled - 1;
4140         }
4141
4142         if (mddev->recovery_cp != MaxSector)
4143                 pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
4144                           mdname(mddev));
4145         pr_info("md/raid10:%s: active with %d out of %d devices\n",
4146                 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
4147                 conf->geo.raid_disks);
4148         /*
4149          * Ok, everything is just fine now
4150          */
4151         mddev->dev_sectors = conf->dev_sectors;
4152         size = raid10_size(mddev, 0, 0);
4153         md_set_array_sectors(mddev, size);
4154         mddev->resync_max_sectors = size;
4155         set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
4156
4157         if (md_integrity_register(mddev))
4158                 goto out_free_conf;
4159
4160         if (conf->reshape_progress != MaxSector) {
4161                 unsigned long before_length, after_length;
4162
4163                 before_length = ((1 << conf->prev.chunk_shift) *
4164                                  conf->prev.far_copies);
4165                 after_length = ((1 << conf->geo.chunk_shift) *
4166                                 conf->geo.far_copies);
4167
4168                 if (max(before_length, after_length) > min_offset_diff) {
4169                         /* This cannot work */
4170                         pr_warn("md/raid10: offset difference not enough to continue reshape\n");
4171                         goto out_free_conf;
4172                 }
4173                 conf->offset_diff = min_offset_diff;
4174
4175                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4176                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4177                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4178                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4179         }
4180
4181         return 0;
4182
4183 out_free_conf:
4184         md_unregister_thread(mddev, &mddev->thread);
4185         raid10_free_conf(conf);
4186         mddev->private = NULL;
4187 out:
4188         return ret;
4189 }
4190
4191 static void raid10_free(struct mddev *mddev, void *priv)
4192 {
4193         raid10_free_conf(priv);
4194 }
4195
4196 static void raid10_quiesce(struct mddev *mddev, int quiesce)
4197 {
4198         struct r10conf *conf = mddev->private;
4199
4200         if (quiesce)
4201                 raise_barrier(conf, 0);
4202         else
4203                 lower_barrier(conf);
4204 }
4205
4206 static int raid10_resize(struct mddev *mddev, sector_t sectors)
4207 {
4208         /* Resize of 'far' arrays is not supported.
4209          * For 'near' and 'offset' arrays we can set the
4210          * number of sectors used to be an appropriate multiple
4211          * of the chunk size.
4212          * For 'offset', this is far_copies*chunksize.
4213          * For 'near' the multiplier is the LCM of
4214          * near_copies and raid_disks.
4215          * So if far_copies > 1 && !far_offset, fail.
4216          * Else find LCM(raid_disks, near_copy)*far_copies and
4217          * multiply by chunk_size.  Then round to this number.
4218          * This is mostly done by raid10_size()
4219          */
4220         struct r10conf *conf = mddev->private;
4221         sector_t oldsize, size;
4222         int ret;
4223
4224         if (mddev->reshape_position != MaxSector)
4225                 return -EBUSY;
4226
4227         if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
4228                 return -EINVAL;
4229
4230         oldsize = raid10_size(mddev, 0, 0);
4231         size = raid10_size(mddev, sectors, 0);
4232         if (mddev->external_size &&
4233             mddev->array_sectors > size)
4234                 return -EINVAL;
4235
4236         ret = mddev->bitmap_ops->resize(mddev, size, 0, false);
4237         if (ret)
4238                 return ret;
4239
4240         md_set_array_sectors(mddev, size);
4241         if (sectors > mddev->dev_sectors &&
4242             mddev->recovery_cp > oldsize) {
4243                 mddev->recovery_cp = oldsize;
4244                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4245         }
4246         calc_sectors(conf, sectors);
4247         mddev->dev_sectors = conf->dev_sectors;
4248         mddev->resync_max_sectors = size;
4249         return 0;
4250 }
4251
4252 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
4253 {
4254         struct md_rdev *rdev;
4255         struct r10conf *conf;
4256
4257         if (mddev->degraded > 0) {
4258                 pr_warn("md/raid10:%s: Error: degraded raid0!\n",
4259                         mdname(mddev));
4260                 return ERR_PTR(-EINVAL);
4261         }
4262         sector_div(size, devs);
4263
4264         /* Set new parameters */
4265         mddev->new_level = 10;
4266         /* new layout: far_copies = 1, near_copies = 2 */
4267         mddev->new_layout = (1<<8) + 2;
4268         mddev->new_chunk_sectors = mddev->chunk_sectors;
4269         mddev->delta_disks = mddev->raid_disks;
4270         mddev->raid_disks *= 2;
4271         /* make sure it will be not marked as dirty */
4272         mddev->recovery_cp = MaxSector;
4273         mddev->dev_sectors = size;
4274
4275         conf = setup_conf(mddev);
4276         if (!IS_ERR(conf)) {
4277                 rdev_for_each(rdev, mddev)
4278                         if (rdev->raid_disk >= 0) {
4279                                 rdev->new_raid_disk = rdev->raid_disk * 2;
4280                                 rdev->sectors = size;
4281                         }
4282         }
4283
4284         return conf;
4285 }
4286
4287 static void *raid10_takeover(struct mddev *mddev)
4288 {
4289         struct r0conf *raid0_conf;
4290
4291         /* raid10 can take over:
4292          *  raid0 - providing it has only two drives
4293          */
4294         if (mddev->level == 0) {
4295                 /* for raid0 takeover only one zone is supported */
4296                 raid0_conf = mddev->private;
4297                 if (raid0_conf->nr_strip_zones > 1) {
4298                         pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
4299                                 mdname(mddev));
4300                         return ERR_PTR(-EINVAL);
4301                 }
4302                 return raid10_takeover_raid0(mddev,
4303                         raid0_conf->strip_zone->zone_end,
4304                         raid0_conf->strip_zone->nb_dev);
4305         }
4306         return ERR_PTR(-EINVAL);
4307 }
4308
4309 static int raid10_check_reshape(struct mddev *mddev)
4310 {
4311         /* Called when there is a request to change
4312          * - layout (to ->new_layout)
4313          * - chunk size (to ->new_chunk_sectors)
4314          * - raid_disks (by delta_disks)
4315          * or when trying to restart a reshape that was ongoing.
4316          *
4317          * We need to validate the request and possibly allocate
4318          * space if that might be an issue later.
4319          *
4320          * Currently we reject any reshape of a 'far' mode array,
4321          * allow chunk size to change if new is generally acceptable,
4322          * allow raid_disks to increase, and allow
4323          * a switch between 'near' mode and 'offset' mode.
4324          */
4325         struct r10conf *conf = mddev->private;
4326         struct geom geo;
4327
4328         if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
4329                 return -EINVAL;
4330
4331         if (setup_geo(&geo, mddev, geo_start) != conf->copies)
4332                 /* mustn't change number of copies */
4333                 return -EINVAL;
4334         if (geo.far_copies > 1 && !geo.far_offset)
4335                 /* Cannot switch to 'far' mode */
4336                 return -EINVAL;
4337
4338         if (mddev->array_sectors & geo.chunk_mask)
4339                         /* not factor of array size */
4340                         return -EINVAL;
4341
4342         if (!enough(conf, -1))
4343                 return -EINVAL;
4344
4345         kfree(conf->mirrors_new);
4346         conf->mirrors_new = NULL;
4347         if (mddev->delta_disks > 0) {
4348                 /* allocate new 'mirrors' list */
4349                 conf->mirrors_new =
4350                         kcalloc(mddev->raid_disks + mddev->delta_disks,
4351                                 sizeof(struct raid10_info),
4352                                 GFP_KERNEL);
4353                 if (!conf->mirrors_new)
4354                         return -ENOMEM;
4355         }
4356         return 0;
4357 }
4358
4359 /*
4360  * Need to check if array has failed when deciding whether to:
4361  *  - start an array
4362  *  - remove non-faulty devices
4363  *  - add a spare
4364  *  - allow a reshape
4365  * This determination is simple when no reshape is happening.
4366  * However if there is a reshape, we need to carefully check
4367  * both the before and after sections.
4368  * This is because some failed devices may only affect one
4369  * of the two sections, and some non-in_sync devices may
4370  * be insync in the section most affected by failed devices.
4371  */
4372 static int calc_degraded(struct r10conf *conf)
4373 {
4374         int degraded, degraded2;
4375         int i;
4376
4377         degraded = 0;
4378         /* 'prev' section first */
4379         for (i = 0; i < conf->prev.raid_disks; i++) {
4380                 struct md_rdev *rdev = conf->mirrors[i].rdev;
4381
4382                 if (!rdev || test_bit(Faulty, &rdev->flags))
4383                         degraded++;
4384                 else if (!test_bit(In_sync, &rdev->flags))
4385                         /* When we can reduce the number of devices in
4386                          * an array, this might not contribute to
4387                          * 'degraded'.  It does now.
4388                          */
4389                         degraded++;
4390         }
4391         if (conf->geo.raid_disks == conf->prev.raid_disks)
4392                 return degraded;
4393         degraded2 = 0;
4394         for (i = 0; i < conf->geo.raid_disks; i++) {
4395                 struct md_rdev *rdev = conf->mirrors[i].rdev;
4396
4397                 if (!rdev || test_bit(Faulty, &rdev->flags))
4398                         degraded2++;
4399                 else if (!test_bit(In_sync, &rdev->flags)) {
4400                         /* If reshape is increasing the number of devices,
4401                          * this section has already been recovered, so
4402                          * it doesn't contribute to degraded.
4403                          * else it does.
4404                          */
4405                         if (conf->geo.raid_disks <= conf->prev.raid_disks)
4406                                 degraded2++;
4407                 }
4408         }
4409         if (degraded2 > degraded)
4410                 return degraded2;
4411         return degraded;
4412 }
4413
4414 static int raid10_start_reshape(struct mddev *mddev)
4415 {
4416         /* A 'reshape' has been requested. This commits
4417          * the various 'new' fields and sets MD_RECOVER_RESHAPE
4418          * This also checks if there are enough spares and adds them
4419          * to the array.
4420          * We currently require enough spares to make the final
4421          * array non-degraded.  We also require that the difference
4422          * between old and new data_offset - on each device - is
4423          * enough that we never risk over-writing.
4424          */
4425
4426         unsigned long before_length, after_length;
4427         sector_t min_offset_diff = 0;
4428         int first = 1;
4429         struct geom new;
4430         struct r10conf *conf = mddev->private;
4431         struct md_rdev *rdev;
4432         int spares = 0;
4433         int ret;
4434
4435         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4436                 return -EBUSY;
4437
4438         if (setup_geo(&new, mddev, geo_start) != conf->copies)
4439                 return -EINVAL;
4440
4441         before_length = ((1 << conf->prev.chunk_shift) *
4442                          conf->prev.far_copies);
4443         after_length = ((1 << conf->geo.chunk_shift) *
4444                         conf->geo.far_copies);
4445
4446         rdev_for_each(rdev, mddev) {
4447                 if (!test_bit(In_sync, &rdev->flags)
4448                     && !test_bit(Faulty, &rdev->flags))
4449                         spares++;
4450                 if (rdev->raid_disk >= 0) {
4451                         long long diff = (rdev->new_data_offset
4452                                           - rdev->data_offset);
4453                         if (!mddev->reshape_backwards)
4454                                 diff = -diff;
4455                         if (diff < 0)
4456                                 diff = 0;
4457                         if (first || diff < min_offset_diff)
4458                                 min_offset_diff = diff;
4459                         first = 0;
4460                 }
4461         }
4462
4463         if (max(before_length, after_length) > min_offset_diff)
4464                 return -EINVAL;
4465
4466         if (spares < mddev->delta_disks)
4467                 return -EINVAL;
4468
4469         conf->offset_diff = min_offset_diff;
4470         spin_lock_irq(&conf->device_lock);
4471         if (conf->mirrors_new) {
4472                 memcpy(conf->mirrors_new, conf->mirrors,
4473                        sizeof(struct raid10_info)*conf->prev.raid_disks);
4474                 smp_mb();
4475                 kfree(conf->mirrors_old);
4476                 conf->mirrors_old = conf->mirrors;
4477                 conf->mirrors = conf->mirrors_new;
4478                 conf->mirrors_new = NULL;
4479         }
4480         setup_geo(&conf->geo, mddev, geo_start);
4481         smp_mb();
4482         if (mddev->reshape_backwards) {
4483                 sector_t size = raid10_size(mddev, 0, 0);
4484                 if (size < mddev->array_sectors) {
4485                         spin_unlock_irq(&conf->device_lock);
4486                         pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4487                                 mdname(mddev));
4488                         return -EINVAL;
4489                 }
4490                 mddev->resync_max_sectors = size;
4491                 conf->reshape_progress = size;
4492         } else
4493                 conf->reshape_progress = 0;
4494         conf->reshape_safe = conf->reshape_progress;
4495         spin_unlock_irq(&conf->device_lock);
4496
4497         if (mddev->delta_disks && mddev->bitmap) {
4498                 struct mdp_superblock_1 *sb = NULL;
4499                 sector_t oldsize, newsize;
4500
4501                 oldsize = raid10_size(mddev, 0, 0);
4502                 newsize = raid10_size(mddev, 0, conf->geo.raid_disks);
4503
4504                 if (!mddev_is_clustered(mddev)) {
4505                         ret = mddev->bitmap_ops->resize(mddev, newsize, 0, false);
4506                         if (ret)
4507                                 goto abort;
4508                         else
4509                                 goto out;
4510                 }
4511
4512                 rdev_for_each(rdev, mddev) {
4513                         if (rdev->raid_disk > -1 &&
4514                             !test_bit(Faulty, &rdev->flags))
4515                                 sb = page_address(rdev->sb_page);
4516                 }
4517
4518                 /*
4519                  * some node is already performing reshape, and no need to
4520                  * call bitmap_ops->resize again since it should be called when
4521                  * receiving BITMAP_RESIZE msg
4522                  */
4523                 if ((sb && (le32_to_cpu(sb->feature_map) &
4524                             MD_FEATURE_RESHAPE_ACTIVE)) || (oldsize == newsize))
4525                         goto out;
4526
4527                 ret = mddev->bitmap_ops->resize(mddev, newsize, 0, false);
4528                 if (ret)
4529                         goto abort;
4530
4531                 ret = mddev->cluster_ops->resize_bitmaps(mddev, newsize, oldsize);
4532                 if (ret) {
4533                         mddev->bitmap_ops->resize(mddev, oldsize, 0, false);
4534                         goto abort;
4535                 }
4536         }
4537 out:
4538         if (mddev->delta_disks > 0) {
4539                 rdev_for_each(rdev, mddev)
4540                         if (rdev->raid_disk < 0 &&
4541                             !test_bit(Faulty, &rdev->flags)) {
4542                                 if (raid10_add_disk(mddev, rdev) == 0) {
4543                                         if (rdev->raid_disk >=
4544                                             conf->prev.raid_disks)
4545                                                 set_bit(In_sync, &rdev->flags);
4546                                         else
4547                                                 rdev->recovery_offset = 0;
4548
4549                                         /* Failure here is OK */
4550                                         sysfs_link_rdev(mddev, rdev);
4551                                 }
4552                         } else if (rdev->raid_disk >= conf->prev.raid_disks
4553                                    && !test_bit(Faulty, &rdev->flags)) {
4554                                 /* This is a spare that was manually added */
4555                                 set_bit(In_sync, &rdev->flags);
4556                         }
4557         }
4558         /* When a reshape changes the number of devices,
4559          * ->degraded is measured against the larger of the
4560          * pre and  post numbers.
4561          */
4562         spin_lock_irq(&conf->device_lock);
4563         mddev->degraded = calc_degraded(conf);
4564         spin_unlock_irq(&conf->device_lock);
4565         mddev->raid_disks = conf->geo.raid_disks;
4566         mddev->reshape_position = conf->reshape_progress;
4567         set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4568
4569         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4570         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4571         clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4572         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4573         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4574         conf->reshape_checkpoint = jiffies;
4575         md_new_event();
4576         return 0;
4577
4578 abort:
4579         mddev->recovery = 0;
4580         spin_lock_irq(&conf->device_lock);
4581         conf->geo = conf->prev;
4582         mddev->raid_disks = conf->geo.raid_disks;
4583         rdev_for_each(rdev, mddev)
4584                 rdev->new_data_offset = rdev->data_offset;
4585         smp_wmb();
4586         conf->reshape_progress = MaxSector;
4587         conf->reshape_safe = MaxSector;
4588         mddev->reshape_position = MaxSector;
4589         spin_unlock_irq(&conf->device_lock);
4590         return ret;
4591 }
4592
4593 /* Calculate the last device-address that could contain
4594  * any block from the chunk that includes the array-address 's'
4595  * and report the next address.
4596  * i.e. the address returned will be chunk-aligned and after
4597  * any data that is in the chunk containing 's'.
4598  */
4599 static sector_t last_dev_address(sector_t s, struct geom *geo)
4600 {
4601         s = (s | geo->chunk_mask) + 1;
4602         s >>= geo->chunk_shift;
4603         s *= geo->near_copies;
4604         s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4605         s *= geo->far_copies;
4606         s <<= geo->chunk_shift;
4607         return s;
4608 }
4609
4610 /* Calculate the first device-address that could contain
4611  * any block from the chunk that includes the array-address 's'.
4612  * This too will be the start of a chunk
4613  */
4614 static sector_t first_dev_address(sector_t s, struct geom *geo)
4615 {
4616         s >>= geo->chunk_shift;
4617         s *= geo->near_copies;
4618         sector_div(s, geo->raid_disks);
4619         s *= geo->far_copies;
4620         s <<= geo->chunk_shift;
4621         return s;
4622 }
4623
4624 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4625                                 int *skipped)
4626 {
4627         /* We simply copy at most one chunk (smallest of old and new)
4628          * at a time, possibly less if that exceeds RESYNC_PAGES,
4629          * or we hit a bad block or something.
4630          * This might mean we pause for normal IO in the middle of
4631          * a chunk, but that is not a problem as mddev->reshape_position
4632          * can record any location.
4633          *
4634          * If we will want to write to a location that isn't
4635          * yet recorded as 'safe' (i.e. in metadata on disk) then
4636          * we need to flush all reshape requests and update the metadata.
4637          *
4638          * When reshaping forwards (e.g. to more devices), we interpret
4639          * 'safe' as the earliest block which might not have been copied
4640          * down yet.  We divide this by previous stripe size and multiply
4641          * by previous stripe length to get lowest device offset that we
4642          * cannot write to yet.
4643          * We interpret 'sector_nr' as an address that we want to write to.
4644          * From this we use last_device_address() to find where we might
4645          * write to, and first_device_address on the  'safe' position.
4646          * If this 'next' write position is after the 'safe' position,
4647          * we must update the metadata to increase the 'safe' position.
4648          *
4649          * When reshaping backwards, we round in the opposite direction
4650          * and perform the reverse test:  next write position must not be
4651          * less than current safe position.
4652          *
4653          * In all this the minimum difference in data offsets
4654          * (conf->offset_diff - always positive) allows a bit of slack,
4655          * so next can be after 'safe', but not by more than offset_diff
4656          *
4657          * We need to prepare all the bios here before we start any IO
4658          * to ensure the size we choose is acceptable to all devices.
4659          * The means one for each copy for write-out and an extra one for
4660          * read-in.
4661          * We store the read-in bio in ->master_bio and the others in
4662          * ->devs[x].bio and ->devs[x].repl_bio.
4663          */
4664         struct r10conf *conf = mddev->private;
4665         struct r10bio *r10_bio;
4666         sector_t next, safe, last;
4667         int max_sectors;
4668         int nr_sectors;
4669         int s;
4670         struct md_rdev *rdev;
4671         int need_flush = 0;
4672         struct bio *blist;
4673         struct bio *bio, *read_bio;
4674         int sectors_done = 0;
4675         struct page **pages;
4676
4677         if (sector_nr == 0) {
4678                 /* If restarting in the middle, skip the initial sectors */
4679                 if (mddev->reshape_backwards &&
4680                     conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4681                         sector_nr = (raid10_size(mddev, 0, 0)
4682                                      - conf->reshape_progress);
4683                 } else if (!mddev->reshape_backwards &&
4684                            conf->reshape_progress > 0)
4685                         sector_nr = conf->reshape_progress;
4686                 if (sector_nr) {
4687                         mddev->curr_resync_completed = sector_nr;
4688                         sysfs_notify_dirent_safe(mddev->sysfs_completed);
4689                         *skipped = 1;
4690                         return sector_nr;
4691                 }
4692         }
4693
4694         /* We don't use sector_nr to track where we are up to
4695          * as that doesn't work well for ->reshape_backwards.
4696          * So just use ->reshape_progress.
4697          */
4698         if (mddev->reshape_backwards) {
4699                 /* 'next' is the earliest device address that we might
4700                  * write to for this chunk in the new layout
4701                  */
4702                 next = first_dev_address(conf->reshape_progress - 1,
4703                                          &conf->geo);
4704
4705                 /* 'safe' is the last device address that we might read from
4706                  * in the old layout after a restart
4707                  */
4708                 safe = last_dev_address(conf->reshape_safe - 1,
4709                                         &conf->prev);
4710
4711                 if (next + conf->offset_diff < safe)
4712                         need_flush = 1;
4713
4714                 last = conf->reshape_progress - 1;
4715                 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4716                                                & conf->prev.chunk_mask);
4717                 if (sector_nr + RESYNC_SECTORS < last)
4718                         sector_nr = last + 1 - RESYNC_SECTORS;
4719         } else {
4720                 /* 'next' is after the last device address that we
4721                  * might write to for this chunk in the new layout
4722                  */
4723                 next = last_dev_address(conf->reshape_progress, &conf->geo);
4724
4725                 /* 'safe' is the earliest device address that we might
4726                  * read from in the old layout after a restart
4727                  */
4728                 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4729
4730                 /* Need to update metadata if 'next' might be beyond 'safe'
4731                  * as that would possibly corrupt data
4732                  */
4733                 if (next > safe + conf->offset_diff)
4734                         need_flush = 1;
4735
4736                 sector_nr = conf->reshape_progress;
4737                 last  = sector_nr | (conf->geo.chunk_mask
4738                                      & conf->prev.chunk_mask);
4739
4740                 if (sector_nr + RESYNC_SECTORS <= last)
4741                         last = sector_nr + RESYNC_SECTORS - 1;
4742         }
4743
4744         if (need_flush ||
4745             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4746                 /* Need to update reshape_position in metadata */
4747                 wait_barrier(conf, false);
4748                 mddev->reshape_position = conf->reshape_progress;
4749                 if (mddev->reshape_backwards)
4750                         mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4751                                 - conf->reshape_progress;
4752                 else
4753                         mddev->curr_resync_completed = conf->reshape_progress;
4754                 conf->reshape_checkpoint = jiffies;
4755                 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4756                 md_wakeup_thread(mddev->thread);
4757                 wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
4758                            test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4759                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4760                         allow_barrier(conf);
4761                         return sectors_done;
4762                 }
4763                 conf->reshape_safe = mddev->reshape_position;
4764                 allow_barrier(conf);
4765         }
4766
4767         raise_barrier(conf, 0);
4768 read_more:
4769         /* Now schedule reads for blocks from sector_nr to last */
4770         r10_bio = raid10_alloc_init_r10buf(conf);
4771         r10_bio->state = 0;
4772         raise_barrier(conf, 1);
4773         atomic_set(&r10_bio->remaining, 0);
4774         r10_bio->mddev = mddev;
4775         r10_bio->sector = sector_nr;
4776         set_bit(R10BIO_IsReshape, &r10_bio->state);
4777         r10_bio->sectors = last - sector_nr + 1;
4778         rdev = read_balance(conf, r10_bio, &max_sectors);
4779         BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4780
4781         if (!rdev) {
4782                 /* Cannot read from here, so need to record bad blocks
4783                  * on all the target devices.
4784                  */
4785                 // FIXME
4786                 mempool_free(r10_bio, &conf->r10buf_pool);
4787                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4788                 return sectors_done;
4789         }
4790
4791         read_bio = bio_alloc_bioset(rdev->bdev, RESYNC_PAGES, REQ_OP_READ,
4792                                     GFP_KERNEL, &mddev->bio_set);
4793         read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4794                                + rdev->data_offset);
4795         read_bio->bi_private = r10_bio;
4796         read_bio->bi_end_io = end_reshape_read;
4797         r10_bio->master_bio = read_bio;
4798         r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4799
4800         /*
4801          * Broadcast RESYNC message to other nodes, so all nodes would not
4802          * write to the region to avoid conflict.
4803         */
4804         if (mddev_is_clustered(mddev) && conf->cluster_sync_high <= sector_nr) {
4805                 struct mdp_superblock_1 *sb = NULL;
4806                 int sb_reshape_pos = 0;
4807
4808                 conf->cluster_sync_low = sector_nr;
4809                 conf->cluster_sync_high = sector_nr + CLUSTER_RESYNC_WINDOW_SECTORS;
4810                 sb = page_address(rdev->sb_page);
4811                 if (sb) {
4812                         sb_reshape_pos = le64_to_cpu(sb->reshape_position);
4813                         /*
4814                          * Set cluster_sync_low again if next address for array
4815                          * reshape is less than cluster_sync_low. Since we can't
4816                          * update cluster_sync_low until it has finished reshape.
4817                          */
4818                         if (sb_reshape_pos < conf->cluster_sync_low)
4819                                 conf->cluster_sync_low = sb_reshape_pos;
4820                 }
4821
4822                 mddev->cluster_ops->resync_info_update(mddev, conf->cluster_sync_low,
4823                                                           conf->cluster_sync_high);
4824         }
4825
4826         /* Now find the locations in the new layout */
4827         __raid10_find_phys(&conf->geo, r10_bio);
4828
4829         blist = read_bio;
4830         read_bio->bi_next = NULL;
4831
4832         for (s = 0; s < conf->copies*2; s++) {
4833                 struct bio *b;
4834                 int d = r10_bio->devs[s/2].devnum;
4835                 struct md_rdev *rdev2;
4836                 if (s&1) {
4837                         rdev2 = conf->mirrors[d].replacement;
4838                         b = r10_bio->devs[s/2].repl_bio;
4839                 } else {
4840                         rdev2 = conf->mirrors[d].rdev;
4841                         b = r10_bio->devs[s/2].bio;
4842                 }
4843                 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4844                         continue;
4845
4846                 bio_set_dev(b, rdev2->bdev);
4847                 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4848                         rdev2->new_data_offset;
4849                 b->bi_end_io = end_reshape_write;
4850                 b->bi_opf = REQ_OP_WRITE;
4851                 b->bi_next = blist;
4852                 blist = b;
4853         }
4854
4855         /* Now add as many pages as possible to all of these bios. */
4856
4857         nr_sectors = 0;
4858         pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4859         for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4860                 struct page *page = pages[s / (PAGE_SIZE >> 9)];
4861                 int len = (max_sectors - s) << 9;
4862                 if (len > PAGE_SIZE)
4863                         len = PAGE_SIZE;
4864                 for (bio = blist; bio ; bio = bio->bi_next) {
4865                         if (WARN_ON(!bio_add_page(bio, page, len, 0))) {
4866                                 bio->bi_status = BLK_STS_RESOURCE;
4867                                 bio_endio(bio);
4868                                 return sectors_done;
4869                         }
4870                 }
4871                 sector_nr += len >> 9;
4872                 nr_sectors += len >> 9;
4873         }
4874         r10_bio->sectors = nr_sectors;
4875
4876         /* Now submit the read */
4877         atomic_inc(&r10_bio->remaining);
4878         read_bio->bi_next = NULL;
4879         submit_bio_noacct(read_bio);
4880         sectors_done += nr_sectors;
4881         if (sector_nr <= last)
4882                 goto read_more;
4883
4884         lower_barrier(conf);
4885
4886         /* Now that we have done the whole section we can
4887          * update reshape_progress
4888          */
4889         if (mddev->reshape_backwards)
4890                 conf->reshape_progress -= sectors_done;
4891         else
4892                 conf->reshape_progress += sectors_done;
4893
4894         return sectors_done;
4895 }
4896
4897 static void end_reshape_request(struct r10bio *r10_bio);
4898 static int handle_reshape_read_error(struct mddev *mddev,
4899                                      struct r10bio *r10_bio);
4900 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4901 {
4902         /* Reshape read completed.  Hopefully we have a block
4903          * to write out.
4904          * If we got a read error then we do sync 1-page reads from
4905          * elsewhere until we find the data - or give up.
4906          */
4907         struct r10conf *conf = mddev->private;
4908         int s;
4909
4910         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4911                 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4912                         /* Reshape has been aborted */
4913                         md_done_sync(mddev, r10_bio->sectors, 0);
4914                         return;
4915                 }
4916
4917         /* We definitely have the data in the pages, schedule the
4918          * writes.
4919          */
4920         atomic_set(&r10_bio->remaining, 1);
4921         for (s = 0; s < conf->copies*2; s++) {
4922                 struct bio *b;
4923                 int d = r10_bio->devs[s/2].devnum;
4924                 struct md_rdev *rdev;
4925                 if (s&1) {
4926                         rdev = conf->mirrors[d].replacement;
4927                         b = r10_bio->devs[s/2].repl_bio;
4928                 } else {
4929                         rdev = conf->mirrors[d].rdev;
4930                         b = r10_bio->devs[s/2].bio;
4931                 }
4932                 if (!rdev || test_bit(Faulty, &rdev->flags))
4933                         continue;
4934
4935                 atomic_inc(&rdev->nr_pending);
4936                 atomic_inc(&r10_bio->remaining);
4937                 b->bi_next = NULL;
4938                 submit_bio_noacct(b);
4939         }
4940         end_reshape_request(r10_bio);
4941 }
4942
4943 static void end_reshape(struct r10conf *conf)
4944 {
4945         if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4946                 return;
4947
4948         spin_lock_irq(&conf->device_lock);
4949         conf->prev = conf->geo;
4950         md_finish_reshape(conf->mddev);
4951         smp_wmb();
4952         conf->reshape_progress = MaxSector;
4953         conf->reshape_safe = MaxSector;
4954         spin_unlock_irq(&conf->device_lock);
4955
4956         mddev_update_io_opt(conf->mddev, raid10_nr_stripes(conf));
4957         conf->fullsync = 0;
4958 }
4959
4960 static void raid10_update_reshape_pos(struct mddev *mddev)
4961 {
4962         struct r10conf *conf = mddev->private;
4963         sector_t lo, hi;
4964
4965         mddev->cluster_ops->resync_info_get(mddev, &lo, &hi);
4966         if (((mddev->reshape_position <= hi) && (mddev->reshape_position >= lo))
4967             || mddev->reshape_position == MaxSector)
4968                 conf->reshape_progress = mddev->reshape_position;
4969         else
4970                 WARN_ON_ONCE(1);
4971 }
4972
4973 static int handle_reshape_read_error(struct mddev *mddev,
4974                                      struct r10bio *r10_bio)
4975 {
4976         /* Use sync reads to get the blocks from somewhere else */
4977         int sectors = r10_bio->sectors;
4978         struct r10conf *conf = mddev->private;
4979         struct r10bio *r10b;
4980         int slot = 0;
4981         int idx = 0;
4982         struct page **pages;
4983
4984         r10b = kmalloc(struct_size(r10b, devs, conf->copies), GFP_NOIO);
4985         if (!r10b) {
4986                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4987                 return -ENOMEM;
4988         }
4989
4990         /* reshape IOs share pages from .devs[0].bio */
4991         pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4992
4993         r10b->sector = r10_bio->sector;
4994         __raid10_find_phys(&conf->prev, r10b);
4995
4996         while (sectors) {
4997                 int s = sectors;
4998                 int success = 0;
4999                 int first_slot = slot;
5000
5001                 if (s > (PAGE_SIZE >> 9))
5002                         s = PAGE_SIZE >> 9;
5003
5004                 while (!success) {
5005                         int d = r10b->devs[slot].devnum;
5006                         struct md_rdev *rdev = conf->mirrors[d].rdev;
5007                         sector_t addr;
5008                         if (rdev == NULL ||
5009                             test_bit(Faulty, &rdev->flags) ||
5010                             !test_bit(In_sync, &rdev->flags))
5011                                 goto failed;
5012
5013                         addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
5014                         atomic_inc(&rdev->nr_pending);
5015                         success = sync_page_io(rdev,
5016                                                addr,
5017                                                s << 9,
5018                                                pages[idx],
5019                                                REQ_OP_READ, false);
5020                         rdev_dec_pending(rdev, mddev);
5021                         if (success)
5022                                 break;
5023                 failed:
5024                         slot++;
5025                         if (slot >= conf->copies)
5026                                 slot = 0;
5027                         if (slot == first_slot)
5028                                 break;
5029                 }
5030                 if (!success) {
5031                         /* couldn't read this block, must give up */
5032                         set_bit(MD_RECOVERY_INTR,
5033                                 &mddev->recovery);
5034                         kfree(r10b);
5035                         return -EIO;
5036                 }
5037                 sectors -= s;
5038                 idx++;
5039         }
5040         kfree(r10b);
5041         return 0;
5042 }
5043
5044 static void end_reshape_write(struct bio *bio)
5045 {
5046         struct r10bio *r10_bio = get_resync_r10bio(bio);
5047         struct mddev *mddev = r10_bio->mddev;
5048         struct r10conf *conf = mddev->private;
5049         int d;
5050         int slot;
5051         int repl;
5052         struct md_rdev *rdev = NULL;
5053
5054         d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
5055         rdev = repl ? conf->mirrors[d].replacement :
5056                       conf->mirrors[d].rdev;
5057
5058         if (bio->bi_status) {
5059                 /* FIXME should record badblock */
5060                 md_error(mddev, rdev);
5061         }
5062
5063         rdev_dec_pending(rdev, mddev);
5064         end_reshape_request(r10_bio);
5065 }
5066
5067 static void end_reshape_request(struct r10bio *r10_bio)
5068 {
5069         if (!atomic_dec_and_test(&r10_bio->remaining))
5070                 return;
5071         md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
5072         bio_put(r10_bio->master_bio);
5073         put_buf(r10_bio);
5074 }
5075
5076 static void raid10_finish_reshape(struct mddev *mddev)
5077 {
5078         struct r10conf *conf = mddev->private;
5079
5080         if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5081                 return;
5082
5083         if (mddev->delta_disks > 0) {
5084                 if (mddev->recovery_cp > mddev->resync_max_sectors) {
5085                         mddev->recovery_cp = mddev->resync_max_sectors;
5086                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5087                 }
5088                 mddev->resync_max_sectors = mddev->array_sectors;
5089         } else {
5090                 int d;
5091                 for (d = conf->geo.raid_disks ;
5092                      d < conf->geo.raid_disks - mddev->delta_disks;
5093                      d++) {
5094                         struct md_rdev *rdev = conf->mirrors[d].rdev;
5095                         if (rdev)
5096                                 clear_bit(In_sync, &rdev->flags);
5097                         rdev = conf->mirrors[d].replacement;
5098                         if (rdev)
5099                                 clear_bit(In_sync, &rdev->flags);
5100                 }
5101         }
5102         mddev->layout = mddev->new_layout;
5103         mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
5104         mddev->reshape_position = MaxSector;
5105         mddev->delta_disks = 0;
5106         mddev->reshape_backwards = 0;
5107 }
5108
5109 static struct md_personality raid10_personality =
5110 {
5111         .head = {
5112                 .type   = MD_PERSONALITY,
5113                 .id     = ID_RAID10,
5114                 .name   = "raid10",
5115                 .owner  = THIS_MODULE,
5116         },
5117
5118         .make_request   = raid10_make_request,
5119         .run            = raid10_run,
5120         .free           = raid10_free,
5121         .status         = raid10_status,
5122         .error_handler  = raid10_error,
5123         .hot_add_disk   = raid10_add_disk,
5124         .hot_remove_disk= raid10_remove_disk,
5125         .spare_active   = raid10_spare_active,
5126         .sync_request   = raid10_sync_request,
5127         .quiesce        = raid10_quiesce,
5128         .size           = raid10_size,
5129         .resize         = raid10_resize,
5130         .takeover       = raid10_takeover,
5131         .check_reshape  = raid10_check_reshape,
5132         .start_reshape  = raid10_start_reshape,
5133         .finish_reshape = raid10_finish_reshape,
5134         .update_reshape_pos = raid10_update_reshape_pos,
5135 };
5136
5137 static int __init raid10_init(void)
5138 {
5139         return register_md_submodule(&raid10_personality.head);
5140 }
5141
5142 static void __exit raid10_exit(void)
5143 {
5144         unregister_md_submodule(&raid10_personality.head);
5145 }
5146
5147 module_init(raid10_init);
5148 module_exit(raid10_exit);
5149 MODULE_LICENSE("GPL");
5150 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
5151 MODULE_ALIAS("md-personality-9"); /* RAID10 */
5152 MODULE_ALIAS("md-raid10");
5153 MODULE_ALIAS("md-level-10");