Merge branch 'kbuild' of git://git.kernel.org/pub/scm/linux/kernel/git/mmarek/kbuild
[linux-2.6-block.git] / drivers / md / raid10.c
1 /*
2  * raid10.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 2000-2004 Neil Brown
5  *
6  * RAID-10 support for md.
7  *
8  * Base on code in raid1.c.  See raid1.c for further copyright information.
9  *
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include "md.h"
29 #include "raid10.h"
30 #include "raid0.h"
31 #include "bitmap.h"
32
33 /*
34  * RAID10 provides a combination of RAID0 and RAID1 functionality.
35  * The layout of data is defined by
36  *    chunk_size
37  *    raid_disks
38  *    near_copies (stored in low byte of layout)
39  *    far_copies (stored in second byte of layout)
40  *    far_offset (stored in bit 16 of layout )
41  *    use_far_sets (stored in bit 17 of layout )
42  *
43  * The data to be stored is divided into chunks using chunksize.  Each device
44  * is divided into far_copies sections.   In each section, chunks are laid out
45  * in a style similar to raid0, but near_copies copies of each chunk is stored
46  * (each on a different drive).  The starting device for each section is offset
47  * near_copies from the starting device of the previous section.  Thus there
48  * are (near_copies * far_copies) of each chunk, and each is on a different
49  * drive.  near_copies and far_copies must be at least one, and their product
50  * is at most raid_disks.
51  *
52  * If far_offset is true, then the far_copies are handled a bit differently.
53  * The copies are still in different stripes, but instead of being very far
54  * apart on disk, there are adjacent stripes.
55  *
56  * The far and offset algorithms are handled slightly differently if
57  * 'use_far_sets' is true.  In this case, the array's devices are grouped into
58  * sets that are (near_copies * far_copies) in size.  The far copied stripes
59  * are still shifted by 'near_copies' devices, but this shifting stays confined
60  * to the set rather than the entire array.  This is done to improve the number
61  * of device combinations that can fail without causing the array to fail.
62  * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
63  * on a device):
64  *    A B C D    A B C D E
65  *      ...         ...
66  *    D A B C    E A B C D
67  * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
68  *    [A B] [C D]    [A B] [C D E]
69  *    |...| |...|    |...| | ... |
70  *    [B A] [D C]    [B A] [E C D]
71  */
72
73 /*
74  * Number of guaranteed r10bios in case of extreme VM load:
75  */
76 #define NR_RAID10_BIOS 256
77
78 /* when we get a read error on a read-only array, we redirect to another
79  * device without failing the first device, or trying to over-write to
80  * correct the read error.  To keep track of bad blocks on a per-bio
81  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
82  */
83 #define IO_BLOCKED ((struct bio *)1)
84 /* When we successfully write to a known bad-block, we need to remove the
85  * bad-block marking which must be done from process context.  So we record
86  * the success by setting devs[n].bio to IO_MADE_GOOD
87  */
88 #define IO_MADE_GOOD ((struct bio *)2)
89
90 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
91
92 /* When there are this many requests queued to be written by
93  * the raid10 thread, we become 'congested' to provide back-pressure
94  * for writeback.
95  */
96 static int max_queued_requests = 1024;
97
98 static void allow_barrier(struct r10conf *conf);
99 static void lower_barrier(struct r10conf *conf);
100 static int enough(struct r10conf *conf, int ignore);
101 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
102                                 int *skipped);
103 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
104 static void end_reshape_write(struct bio *bio, int error);
105 static void end_reshape(struct r10conf *conf);
106
107 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
108 {
109         struct r10conf *conf = data;
110         int size = offsetof(struct r10bio, devs[conf->copies]);
111
112         /* allocate a r10bio with room for raid_disks entries in the
113          * bios array */
114         return kzalloc(size, gfp_flags);
115 }
116
117 static void r10bio_pool_free(void *r10_bio, void *data)
118 {
119         kfree(r10_bio);
120 }
121
122 /* Maximum size of each resync request */
123 #define RESYNC_BLOCK_SIZE (64*1024)
124 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
125 /* amount of memory to reserve for resync requests */
126 #define RESYNC_WINDOW (1024*1024)
127 /* maximum number of concurrent requests, memory permitting */
128 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
129
130 /*
131  * When performing a resync, we need to read and compare, so
132  * we need as many pages are there are copies.
133  * When performing a recovery, we need 2 bios, one for read,
134  * one for write (we recover only one drive per r10buf)
135  *
136  */
137 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
138 {
139         struct r10conf *conf = data;
140         struct page *page;
141         struct r10bio *r10_bio;
142         struct bio *bio;
143         int i, j;
144         int nalloc;
145
146         r10_bio = r10bio_pool_alloc(gfp_flags, conf);
147         if (!r10_bio)
148                 return NULL;
149
150         if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
151             test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
152                 nalloc = conf->copies; /* resync */
153         else
154                 nalloc = 2; /* recovery */
155
156         /*
157          * Allocate bios.
158          */
159         for (j = nalloc ; j-- ; ) {
160                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
161                 if (!bio)
162                         goto out_free_bio;
163                 r10_bio->devs[j].bio = bio;
164                 if (!conf->have_replacement)
165                         continue;
166                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
167                 if (!bio)
168                         goto out_free_bio;
169                 r10_bio->devs[j].repl_bio = bio;
170         }
171         /*
172          * Allocate RESYNC_PAGES data pages and attach them
173          * where needed.
174          */
175         for (j = 0 ; j < nalloc; j++) {
176                 struct bio *rbio = r10_bio->devs[j].repl_bio;
177                 bio = r10_bio->devs[j].bio;
178                 for (i = 0; i < RESYNC_PAGES; i++) {
179                         if (j > 0 && !test_bit(MD_RECOVERY_SYNC,
180                                                &conf->mddev->recovery)) {
181                                 /* we can share bv_page's during recovery
182                                  * and reshape */
183                                 struct bio *rbio = r10_bio->devs[0].bio;
184                                 page = rbio->bi_io_vec[i].bv_page;
185                                 get_page(page);
186                         } else
187                                 page = alloc_page(gfp_flags);
188                         if (unlikely(!page))
189                                 goto out_free_pages;
190
191                         bio->bi_io_vec[i].bv_page = page;
192                         if (rbio)
193                                 rbio->bi_io_vec[i].bv_page = page;
194                 }
195         }
196
197         return r10_bio;
198
199 out_free_pages:
200         for ( ; i > 0 ; i--)
201                 safe_put_page(bio->bi_io_vec[i-1].bv_page);
202         while (j--)
203                 for (i = 0; i < RESYNC_PAGES ; i++)
204                         safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
205         j = 0;
206 out_free_bio:
207         for ( ; j < nalloc; j++) {
208                 if (r10_bio->devs[j].bio)
209                         bio_put(r10_bio->devs[j].bio);
210                 if (r10_bio->devs[j].repl_bio)
211                         bio_put(r10_bio->devs[j].repl_bio);
212         }
213         r10bio_pool_free(r10_bio, conf);
214         return NULL;
215 }
216
217 static void r10buf_pool_free(void *__r10_bio, void *data)
218 {
219         int i;
220         struct r10conf *conf = data;
221         struct r10bio *r10bio = __r10_bio;
222         int j;
223
224         for (j=0; j < conf->copies; j++) {
225                 struct bio *bio = r10bio->devs[j].bio;
226                 if (bio) {
227                         for (i = 0; i < RESYNC_PAGES; i++) {
228                                 safe_put_page(bio->bi_io_vec[i].bv_page);
229                                 bio->bi_io_vec[i].bv_page = NULL;
230                         }
231                         bio_put(bio);
232                 }
233                 bio = r10bio->devs[j].repl_bio;
234                 if (bio)
235                         bio_put(bio);
236         }
237         r10bio_pool_free(r10bio, conf);
238 }
239
240 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
241 {
242         int i;
243
244         for (i = 0; i < conf->copies; i++) {
245                 struct bio **bio = & r10_bio->devs[i].bio;
246                 if (!BIO_SPECIAL(*bio))
247                         bio_put(*bio);
248                 *bio = NULL;
249                 bio = &r10_bio->devs[i].repl_bio;
250                 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
251                         bio_put(*bio);
252                 *bio = NULL;
253         }
254 }
255
256 static void free_r10bio(struct r10bio *r10_bio)
257 {
258         struct r10conf *conf = r10_bio->mddev->private;
259
260         put_all_bios(conf, r10_bio);
261         mempool_free(r10_bio, conf->r10bio_pool);
262 }
263
264 static void put_buf(struct r10bio *r10_bio)
265 {
266         struct r10conf *conf = r10_bio->mddev->private;
267
268         mempool_free(r10_bio, conf->r10buf_pool);
269
270         lower_barrier(conf);
271 }
272
273 static void reschedule_retry(struct r10bio *r10_bio)
274 {
275         unsigned long flags;
276         struct mddev *mddev = r10_bio->mddev;
277         struct r10conf *conf = mddev->private;
278
279         spin_lock_irqsave(&conf->device_lock, flags);
280         list_add(&r10_bio->retry_list, &conf->retry_list);
281         conf->nr_queued ++;
282         spin_unlock_irqrestore(&conf->device_lock, flags);
283
284         /* wake up frozen array... */
285         wake_up(&conf->wait_barrier);
286
287         md_wakeup_thread(mddev->thread);
288 }
289
290 /*
291  * raid_end_bio_io() is called when we have finished servicing a mirrored
292  * operation and are ready to return a success/failure code to the buffer
293  * cache layer.
294  */
295 static void raid_end_bio_io(struct r10bio *r10_bio)
296 {
297         struct bio *bio = r10_bio->master_bio;
298         int done;
299         struct r10conf *conf = r10_bio->mddev->private;
300
301         if (bio->bi_phys_segments) {
302                 unsigned long flags;
303                 spin_lock_irqsave(&conf->device_lock, flags);
304                 bio->bi_phys_segments--;
305                 done = (bio->bi_phys_segments == 0);
306                 spin_unlock_irqrestore(&conf->device_lock, flags);
307         } else
308                 done = 1;
309         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
310                 clear_bit(BIO_UPTODATE, &bio->bi_flags);
311         if (done) {
312                 bio_endio(bio, 0);
313                 /*
314                  * Wake up any possible resync thread that waits for the device
315                  * to go idle.
316                  */
317                 allow_barrier(conf);
318         }
319         free_r10bio(r10_bio);
320 }
321
322 /*
323  * Update disk head position estimator based on IRQ completion info.
324  */
325 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
326 {
327         struct r10conf *conf = r10_bio->mddev->private;
328
329         conf->mirrors[r10_bio->devs[slot].devnum].head_position =
330                 r10_bio->devs[slot].addr + (r10_bio->sectors);
331 }
332
333 /*
334  * Find the disk number which triggered given bio
335  */
336 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
337                          struct bio *bio, int *slotp, int *replp)
338 {
339         int slot;
340         int repl = 0;
341
342         for (slot = 0; slot < conf->copies; slot++) {
343                 if (r10_bio->devs[slot].bio == bio)
344                         break;
345                 if (r10_bio->devs[slot].repl_bio == bio) {
346                         repl = 1;
347                         break;
348                 }
349         }
350
351         BUG_ON(slot == conf->copies);
352         update_head_pos(slot, r10_bio);
353
354         if (slotp)
355                 *slotp = slot;
356         if (replp)
357                 *replp = repl;
358         return r10_bio->devs[slot].devnum;
359 }
360
361 static void raid10_end_read_request(struct bio *bio, int error)
362 {
363         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
364         struct r10bio *r10_bio = bio->bi_private;
365         int slot, dev;
366         struct md_rdev *rdev;
367         struct r10conf *conf = r10_bio->mddev->private;
368
369
370         slot = r10_bio->read_slot;
371         dev = r10_bio->devs[slot].devnum;
372         rdev = r10_bio->devs[slot].rdev;
373         /*
374          * this branch is our 'one mirror IO has finished' event handler:
375          */
376         update_head_pos(slot, r10_bio);
377
378         if (uptodate) {
379                 /*
380                  * Set R10BIO_Uptodate in our master bio, so that
381                  * we will return a good error code to the higher
382                  * levels even if IO on some other mirrored buffer fails.
383                  *
384                  * The 'master' represents the composite IO operation to
385                  * user-side. So if something waits for IO, then it will
386                  * wait for the 'master' bio.
387                  */
388                 set_bit(R10BIO_Uptodate, &r10_bio->state);
389         } else {
390                 /* If all other devices that store this block have
391                  * failed, we want to return the error upwards rather
392                  * than fail the last device.  Here we redefine
393                  * "uptodate" to mean "Don't want to retry"
394                  */
395                 unsigned long flags;
396                 spin_lock_irqsave(&conf->device_lock, flags);
397                 if (!enough(conf, rdev->raid_disk))
398                         uptodate = 1;
399                 spin_unlock_irqrestore(&conf->device_lock, flags);
400         }
401         if (uptodate) {
402                 raid_end_bio_io(r10_bio);
403                 rdev_dec_pending(rdev, conf->mddev);
404         } else {
405                 /*
406                  * oops, read error - keep the refcount on the rdev
407                  */
408                 char b[BDEVNAME_SIZE];
409                 printk_ratelimited(KERN_ERR
410                                    "md/raid10:%s: %s: rescheduling sector %llu\n",
411                                    mdname(conf->mddev),
412                                    bdevname(rdev->bdev, b),
413                                    (unsigned long long)r10_bio->sector);
414                 set_bit(R10BIO_ReadError, &r10_bio->state);
415                 reschedule_retry(r10_bio);
416         }
417 }
418
419 static void close_write(struct r10bio *r10_bio)
420 {
421         /* clear the bitmap if all writes complete successfully */
422         bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
423                         r10_bio->sectors,
424                         !test_bit(R10BIO_Degraded, &r10_bio->state),
425                         0);
426         md_write_end(r10_bio->mddev);
427 }
428
429 static void one_write_done(struct r10bio *r10_bio)
430 {
431         if (atomic_dec_and_test(&r10_bio->remaining)) {
432                 if (test_bit(R10BIO_WriteError, &r10_bio->state))
433                         reschedule_retry(r10_bio);
434                 else {
435                         close_write(r10_bio);
436                         if (test_bit(R10BIO_MadeGood, &r10_bio->state))
437                                 reschedule_retry(r10_bio);
438                         else
439                                 raid_end_bio_io(r10_bio);
440                 }
441         }
442 }
443
444 static void raid10_end_write_request(struct bio *bio, int error)
445 {
446         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
447         struct r10bio *r10_bio = bio->bi_private;
448         int dev;
449         int dec_rdev = 1;
450         struct r10conf *conf = r10_bio->mddev->private;
451         int slot, repl;
452         struct md_rdev *rdev = NULL;
453
454         dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
455
456         if (repl)
457                 rdev = conf->mirrors[dev].replacement;
458         if (!rdev) {
459                 smp_rmb();
460                 repl = 0;
461                 rdev = conf->mirrors[dev].rdev;
462         }
463         /*
464          * this branch is our 'one mirror IO has finished' event handler:
465          */
466         if (!uptodate) {
467                 if (repl)
468                         /* Never record new bad blocks to replacement,
469                          * just fail it.
470                          */
471                         md_error(rdev->mddev, rdev);
472                 else {
473                         set_bit(WriteErrorSeen, &rdev->flags);
474                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
475                                 set_bit(MD_RECOVERY_NEEDED,
476                                         &rdev->mddev->recovery);
477                         set_bit(R10BIO_WriteError, &r10_bio->state);
478                         dec_rdev = 0;
479                 }
480         } else {
481                 /*
482                  * Set R10BIO_Uptodate in our master bio, so that
483                  * we will return a good error code for to the higher
484                  * levels even if IO on some other mirrored buffer fails.
485                  *
486                  * The 'master' represents the composite IO operation to
487                  * user-side. So if something waits for IO, then it will
488                  * wait for the 'master' bio.
489                  */
490                 sector_t first_bad;
491                 int bad_sectors;
492
493                 set_bit(R10BIO_Uptodate, &r10_bio->state);
494
495                 /* Maybe we can clear some bad blocks. */
496                 if (is_badblock(rdev,
497                                 r10_bio->devs[slot].addr,
498                                 r10_bio->sectors,
499                                 &first_bad, &bad_sectors)) {
500                         bio_put(bio);
501                         if (repl)
502                                 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
503                         else
504                                 r10_bio->devs[slot].bio = IO_MADE_GOOD;
505                         dec_rdev = 0;
506                         set_bit(R10BIO_MadeGood, &r10_bio->state);
507                 }
508         }
509
510         /*
511          *
512          * Let's see if all mirrored write operations have finished
513          * already.
514          */
515         one_write_done(r10_bio);
516         if (dec_rdev)
517                 rdev_dec_pending(rdev, conf->mddev);
518 }
519
520 /*
521  * RAID10 layout manager
522  * As well as the chunksize and raid_disks count, there are two
523  * parameters: near_copies and far_copies.
524  * near_copies * far_copies must be <= raid_disks.
525  * Normally one of these will be 1.
526  * If both are 1, we get raid0.
527  * If near_copies == raid_disks, we get raid1.
528  *
529  * Chunks are laid out in raid0 style with near_copies copies of the
530  * first chunk, followed by near_copies copies of the next chunk and
531  * so on.
532  * If far_copies > 1, then after 1/far_copies of the array has been assigned
533  * as described above, we start again with a device offset of near_copies.
534  * So we effectively have another copy of the whole array further down all
535  * the drives, but with blocks on different drives.
536  * With this layout, and block is never stored twice on the one device.
537  *
538  * raid10_find_phys finds the sector offset of a given virtual sector
539  * on each device that it is on.
540  *
541  * raid10_find_virt does the reverse mapping, from a device and a
542  * sector offset to a virtual address
543  */
544
545 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
546 {
547         int n,f;
548         sector_t sector;
549         sector_t chunk;
550         sector_t stripe;
551         int dev;
552         int slot = 0;
553         int last_far_set_start, last_far_set_size;
554
555         last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
556         last_far_set_start *= geo->far_set_size;
557
558         last_far_set_size = geo->far_set_size;
559         last_far_set_size += (geo->raid_disks % geo->far_set_size);
560
561         /* now calculate first sector/dev */
562         chunk = r10bio->sector >> geo->chunk_shift;
563         sector = r10bio->sector & geo->chunk_mask;
564
565         chunk *= geo->near_copies;
566         stripe = chunk;
567         dev = sector_div(stripe, geo->raid_disks);
568         if (geo->far_offset)
569                 stripe *= geo->far_copies;
570
571         sector += stripe << geo->chunk_shift;
572
573         /* and calculate all the others */
574         for (n = 0; n < geo->near_copies; n++) {
575                 int d = dev;
576                 int set;
577                 sector_t s = sector;
578                 r10bio->devs[slot].devnum = d;
579                 r10bio->devs[slot].addr = s;
580                 slot++;
581
582                 for (f = 1; f < geo->far_copies; f++) {
583                         set = d / geo->far_set_size;
584                         d += geo->near_copies;
585
586                         if ((geo->raid_disks % geo->far_set_size) &&
587                             (d > last_far_set_start)) {
588                                 d -= last_far_set_start;
589                                 d %= last_far_set_size;
590                                 d += last_far_set_start;
591                         } else {
592                                 d %= geo->far_set_size;
593                                 d += geo->far_set_size * set;
594                         }
595                         s += geo->stride;
596                         r10bio->devs[slot].devnum = d;
597                         r10bio->devs[slot].addr = s;
598                         slot++;
599                 }
600                 dev++;
601                 if (dev >= geo->raid_disks) {
602                         dev = 0;
603                         sector += (geo->chunk_mask + 1);
604                 }
605         }
606 }
607
608 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
609 {
610         struct geom *geo = &conf->geo;
611
612         if (conf->reshape_progress != MaxSector &&
613             ((r10bio->sector >= conf->reshape_progress) !=
614              conf->mddev->reshape_backwards)) {
615                 set_bit(R10BIO_Previous, &r10bio->state);
616                 geo = &conf->prev;
617         } else
618                 clear_bit(R10BIO_Previous, &r10bio->state);
619
620         __raid10_find_phys(geo, r10bio);
621 }
622
623 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
624 {
625         sector_t offset, chunk, vchunk;
626         /* Never use conf->prev as this is only called during resync
627          * or recovery, so reshape isn't happening
628          */
629         struct geom *geo = &conf->geo;
630         int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
631         int far_set_size = geo->far_set_size;
632         int last_far_set_start;
633
634         if (geo->raid_disks % geo->far_set_size) {
635                 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
636                 last_far_set_start *= geo->far_set_size;
637
638                 if (dev >= last_far_set_start) {
639                         far_set_size = geo->far_set_size;
640                         far_set_size += (geo->raid_disks % geo->far_set_size);
641                         far_set_start = last_far_set_start;
642                 }
643         }
644
645         offset = sector & geo->chunk_mask;
646         if (geo->far_offset) {
647                 int fc;
648                 chunk = sector >> geo->chunk_shift;
649                 fc = sector_div(chunk, geo->far_copies);
650                 dev -= fc * geo->near_copies;
651                 if (dev < far_set_start)
652                         dev += far_set_size;
653         } else {
654                 while (sector >= geo->stride) {
655                         sector -= geo->stride;
656                         if (dev < (geo->near_copies + far_set_start))
657                                 dev += far_set_size - geo->near_copies;
658                         else
659                                 dev -= geo->near_copies;
660                 }
661                 chunk = sector >> geo->chunk_shift;
662         }
663         vchunk = chunk * geo->raid_disks + dev;
664         sector_div(vchunk, geo->near_copies);
665         return (vchunk << geo->chunk_shift) + offset;
666 }
667
668 /**
669  *      raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
670  *      @q: request queue
671  *      @bvm: properties of new bio
672  *      @biovec: the request that could be merged to it.
673  *
674  *      Return amount of bytes we can accept at this offset
675  *      This requires checking for end-of-chunk if near_copies != raid_disks,
676  *      and for subordinate merge_bvec_fns if merge_check_needed.
677  */
678 static int raid10_mergeable_bvec(struct request_queue *q,
679                                  struct bvec_merge_data *bvm,
680                                  struct bio_vec *biovec)
681 {
682         struct mddev *mddev = q->queuedata;
683         struct r10conf *conf = mddev->private;
684         sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
685         int max;
686         unsigned int chunk_sectors;
687         unsigned int bio_sectors = bvm->bi_size >> 9;
688         struct geom *geo = &conf->geo;
689
690         chunk_sectors = (conf->geo.chunk_mask & conf->prev.chunk_mask) + 1;
691         if (conf->reshape_progress != MaxSector &&
692             ((sector >= conf->reshape_progress) !=
693              conf->mddev->reshape_backwards))
694                 geo = &conf->prev;
695
696         if (geo->near_copies < geo->raid_disks) {
697                 max = (chunk_sectors - ((sector & (chunk_sectors - 1))
698                                         + bio_sectors)) << 9;
699                 if (max < 0)
700                         /* bio_add cannot handle a negative return */
701                         max = 0;
702                 if (max <= biovec->bv_len && bio_sectors == 0)
703                         return biovec->bv_len;
704         } else
705                 max = biovec->bv_len;
706
707         if (mddev->merge_check_needed) {
708                 struct {
709                         struct r10bio r10_bio;
710                         struct r10dev devs[conf->copies];
711                 } on_stack;
712                 struct r10bio *r10_bio = &on_stack.r10_bio;
713                 int s;
714                 if (conf->reshape_progress != MaxSector) {
715                         /* Cannot give any guidance during reshape */
716                         if (max <= biovec->bv_len && bio_sectors == 0)
717                                 return biovec->bv_len;
718                         return 0;
719                 }
720                 r10_bio->sector = sector;
721                 raid10_find_phys(conf, r10_bio);
722                 rcu_read_lock();
723                 for (s = 0; s < conf->copies; s++) {
724                         int disk = r10_bio->devs[s].devnum;
725                         struct md_rdev *rdev = rcu_dereference(
726                                 conf->mirrors[disk].rdev);
727                         if (rdev && !test_bit(Faulty, &rdev->flags)) {
728                                 struct request_queue *q =
729                                         bdev_get_queue(rdev->bdev);
730                                 if (q->merge_bvec_fn) {
731                                         bvm->bi_sector = r10_bio->devs[s].addr
732                                                 + rdev->data_offset;
733                                         bvm->bi_bdev = rdev->bdev;
734                                         max = min(max, q->merge_bvec_fn(
735                                                           q, bvm, biovec));
736                                 }
737                         }
738                         rdev = rcu_dereference(conf->mirrors[disk].replacement);
739                         if (rdev && !test_bit(Faulty, &rdev->flags)) {
740                                 struct request_queue *q =
741                                         bdev_get_queue(rdev->bdev);
742                                 if (q->merge_bvec_fn) {
743                                         bvm->bi_sector = r10_bio->devs[s].addr
744                                                 + rdev->data_offset;
745                                         bvm->bi_bdev = rdev->bdev;
746                                         max = min(max, q->merge_bvec_fn(
747                                                           q, bvm, biovec));
748                                 }
749                         }
750                 }
751                 rcu_read_unlock();
752         }
753         return max;
754 }
755
756 /*
757  * This routine returns the disk from which the requested read should
758  * be done. There is a per-array 'next expected sequential IO' sector
759  * number - if this matches on the next IO then we use the last disk.
760  * There is also a per-disk 'last know head position' sector that is
761  * maintained from IRQ contexts, both the normal and the resync IO
762  * completion handlers update this position correctly. If there is no
763  * perfect sequential match then we pick the disk whose head is closest.
764  *
765  * If there are 2 mirrors in the same 2 devices, performance degrades
766  * because position is mirror, not device based.
767  *
768  * The rdev for the device selected will have nr_pending incremented.
769  */
770
771 /*
772  * FIXME: possibly should rethink readbalancing and do it differently
773  * depending on near_copies / far_copies geometry.
774  */
775 static struct md_rdev *read_balance(struct r10conf *conf,
776                                     struct r10bio *r10_bio,
777                                     int *max_sectors)
778 {
779         const sector_t this_sector = r10_bio->sector;
780         int disk, slot;
781         int sectors = r10_bio->sectors;
782         int best_good_sectors;
783         sector_t new_distance, best_dist;
784         struct md_rdev *best_rdev, *rdev = NULL;
785         int do_balance;
786         int best_slot;
787         struct geom *geo = &conf->geo;
788
789         raid10_find_phys(conf, r10_bio);
790         rcu_read_lock();
791 retry:
792         sectors = r10_bio->sectors;
793         best_slot = -1;
794         best_rdev = NULL;
795         best_dist = MaxSector;
796         best_good_sectors = 0;
797         do_balance = 1;
798         /*
799          * Check if we can balance. We can balance on the whole
800          * device if no resync is going on (recovery is ok), or below
801          * the resync window. We take the first readable disk when
802          * above the resync window.
803          */
804         if (conf->mddev->recovery_cp < MaxSector
805             && (this_sector + sectors >= conf->next_resync))
806                 do_balance = 0;
807
808         for (slot = 0; slot < conf->copies ; slot++) {
809                 sector_t first_bad;
810                 int bad_sectors;
811                 sector_t dev_sector;
812
813                 if (r10_bio->devs[slot].bio == IO_BLOCKED)
814                         continue;
815                 disk = r10_bio->devs[slot].devnum;
816                 rdev = rcu_dereference(conf->mirrors[disk].replacement);
817                 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
818                     test_bit(Unmerged, &rdev->flags) ||
819                     r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
820                         rdev = rcu_dereference(conf->mirrors[disk].rdev);
821                 if (rdev == NULL ||
822                     test_bit(Faulty, &rdev->flags) ||
823                     test_bit(Unmerged, &rdev->flags))
824                         continue;
825                 if (!test_bit(In_sync, &rdev->flags) &&
826                     r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
827                         continue;
828
829                 dev_sector = r10_bio->devs[slot].addr;
830                 if (is_badblock(rdev, dev_sector, sectors,
831                                 &first_bad, &bad_sectors)) {
832                         if (best_dist < MaxSector)
833                                 /* Already have a better slot */
834                                 continue;
835                         if (first_bad <= dev_sector) {
836                                 /* Cannot read here.  If this is the
837                                  * 'primary' device, then we must not read
838                                  * beyond 'bad_sectors' from another device.
839                                  */
840                                 bad_sectors -= (dev_sector - first_bad);
841                                 if (!do_balance && sectors > bad_sectors)
842                                         sectors = bad_sectors;
843                                 if (best_good_sectors > sectors)
844                                         best_good_sectors = sectors;
845                         } else {
846                                 sector_t good_sectors =
847                                         first_bad - dev_sector;
848                                 if (good_sectors > best_good_sectors) {
849                                         best_good_sectors = good_sectors;
850                                         best_slot = slot;
851                                         best_rdev = rdev;
852                                 }
853                                 if (!do_balance)
854                                         /* Must read from here */
855                                         break;
856                         }
857                         continue;
858                 } else
859                         best_good_sectors = sectors;
860
861                 if (!do_balance)
862                         break;
863
864                 /* This optimisation is debatable, and completely destroys
865                  * sequential read speed for 'far copies' arrays.  So only
866                  * keep it for 'near' arrays, and review those later.
867                  */
868                 if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
869                         break;
870
871                 /* for far > 1 always use the lowest address */
872                 if (geo->far_copies > 1)
873                         new_distance = r10_bio->devs[slot].addr;
874                 else
875                         new_distance = abs(r10_bio->devs[slot].addr -
876                                            conf->mirrors[disk].head_position);
877                 if (new_distance < best_dist) {
878                         best_dist = new_distance;
879                         best_slot = slot;
880                         best_rdev = rdev;
881                 }
882         }
883         if (slot >= conf->copies) {
884                 slot = best_slot;
885                 rdev = best_rdev;
886         }
887
888         if (slot >= 0) {
889                 atomic_inc(&rdev->nr_pending);
890                 if (test_bit(Faulty, &rdev->flags)) {
891                         /* Cannot risk returning a device that failed
892                          * before we inc'ed nr_pending
893                          */
894                         rdev_dec_pending(rdev, conf->mddev);
895                         goto retry;
896                 }
897                 r10_bio->read_slot = slot;
898         } else
899                 rdev = NULL;
900         rcu_read_unlock();
901         *max_sectors = best_good_sectors;
902
903         return rdev;
904 }
905
906 int md_raid10_congested(struct mddev *mddev, int bits)
907 {
908         struct r10conf *conf = mddev->private;
909         int i, ret = 0;
910
911         if ((bits & (1 << BDI_async_congested)) &&
912             conf->pending_count >= max_queued_requests)
913                 return 1;
914
915         rcu_read_lock();
916         for (i = 0;
917              (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
918                      && ret == 0;
919              i++) {
920                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
921                 if (rdev && !test_bit(Faulty, &rdev->flags)) {
922                         struct request_queue *q = bdev_get_queue(rdev->bdev);
923
924                         ret |= bdi_congested(&q->backing_dev_info, bits);
925                 }
926         }
927         rcu_read_unlock();
928         return ret;
929 }
930 EXPORT_SYMBOL_GPL(md_raid10_congested);
931
932 static int raid10_congested(void *data, int bits)
933 {
934         struct mddev *mddev = data;
935
936         return mddev_congested(mddev, bits) ||
937                 md_raid10_congested(mddev, bits);
938 }
939
940 static void flush_pending_writes(struct r10conf *conf)
941 {
942         /* Any writes that have been queued but are awaiting
943          * bitmap updates get flushed here.
944          */
945         spin_lock_irq(&conf->device_lock);
946
947         if (conf->pending_bio_list.head) {
948                 struct bio *bio;
949                 bio = bio_list_get(&conf->pending_bio_list);
950                 conf->pending_count = 0;
951                 spin_unlock_irq(&conf->device_lock);
952                 /* flush any pending bitmap writes to disk
953                  * before proceeding w/ I/O */
954                 bitmap_unplug(conf->mddev->bitmap);
955                 wake_up(&conf->wait_barrier);
956
957                 while (bio) { /* submit pending writes */
958                         struct bio *next = bio->bi_next;
959                         bio->bi_next = NULL;
960                         if (unlikely((bio->bi_rw & REQ_DISCARD) &&
961                             !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
962                                 /* Just ignore it */
963                                 bio_endio(bio, 0);
964                         else
965                                 generic_make_request(bio);
966                         bio = next;
967                 }
968         } else
969                 spin_unlock_irq(&conf->device_lock);
970 }
971
972 /* Barriers....
973  * Sometimes we need to suspend IO while we do something else,
974  * either some resync/recovery, or reconfigure the array.
975  * To do this we raise a 'barrier'.
976  * The 'barrier' is a counter that can be raised multiple times
977  * to count how many activities are happening which preclude
978  * normal IO.
979  * We can only raise the barrier if there is no pending IO.
980  * i.e. if nr_pending == 0.
981  * We choose only to raise the barrier if no-one is waiting for the
982  * barrier to go down.  This means that as soon as an IO request
983  * is ready, no other operations which require a barrier will start
984  * until the IO request has had a chance.
985  *
986  * So: regular IO calls 'wait_barrier'.  When that returns there
987  *    is no backgroup IO happening,  It must arrange to call
988  *    allow_barrier when it has finished its IO.
989  * backgroup IO calls must call raise_barrier.  Once that returns
990  *    there is no normal IO happeing.  It must arrange to call
991  *    lower_barrier when the particular background IO completes.
992  */
993
994 static void raise_barrier(struct r10conf *conf, int force)
995 {
996         BUG_ON(force && !conf->barrier);
997         spin_lock_irq(&conf->resync_lock);
998
999         /* Wait until no block IO is waiting (unless 'force') */
1000         wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
1001                             conf->resync_lock);
1002
1003         /* block any new IO from starting */
1004         conf->barrier++;
1005
1006         /* Now wait for all pending IO to complete */
1007         wait_event_lock_irq(conf->wait_barrier,
1008                             !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
1009                             conf->resync_lock);
1010
1011         spin_unlock_irq(&conf->resync_lock);
1012 }
1013
1014 static void lower_barrier(struct r10conf *conf)
1015 {
1016         unsigned long flags;
1017         spin_lock_irqsave(&conf->resync_lock, flags);
1018         conf->barrier--;
1019         spin_unlock_irqrestore(&conf->resync_lock, flags);
1020         wake_up(&conf->wait_barrier);
1021 }
1022
1023 static void wait_barrier(struct r10conf *conf)
1024 {
1025         spin_lock_irq(&conf->resync_lock);
1026         if (conf->barrier) {
1027                 conf->nr_waiting++;
1028                 /* Wait for the barrier to drop.
1029                  * However if there are already pending
1030                  * requests (preventing the barrier from
1031                  * rising completely), and the
1032                  * pre-process bio queue isn't empty,
1033                  * then don't wait, as we need to empty
1034                  * that queue to get the nr_pending
1035                  * count down.
1036                  */
1037                 wait_event_lock_irq(conf->wait_barrier,
1038                                     !conf->barrier ||
1039                                     (conf->nr_pending &&
1040                                      current->bio_list &&
1041                                      !bio_list_empty(current->bio_list)),
1042                                     conf->resync_lock);
1043                 conf->nr_waiting--;
1044         }
1045         conf->nr_pending++;
1046         spin_unlock_irq(&conf->resync_lock);
1047 }
1048
1049 static void allow_barrier(struct r10conf *conf)
1050 {
1051         unsigned long flags;
1052         spin_lock_irqsave(&conf->resync_lock, flags);
1053         conf->nr_pending--;
1054         spin_unlock_irqrestore(&conf->resync_lock, flags);
1055         wake_up(&conf->wait_barrier);
1056 }
1057
1058 static void freeze_array(struct r10conf *conf)
1059 {
1060         /* stop syncio and normal IO and wait for everything to
1061          * go quiet.
1062          * We increment barrier and nr_waiting, and then
1063          * wait until nr_pending match nr_queued+1
1064          * This is called in the context of one normal IO request
1065          * that has failed. Thus any sync request that might be pending
1066          * will be blocked by nr_pending, and we need to wait for
1067          * pending IO requests to complete or be queued for re-try.
1068          * Thus the number queued (nr_queued) plus this request (1)
1069          * must match the number of pending IOs (nr_pending) before
1070          * we continue.
1071          */
1072         spin_lock_irq(&conf->resync_lock);
1073         conf->barrier++;
1074         conf->nr_waiting++;
1075         wait_event_lock_irq_cmd(conf->wait_barrier,
1076                                 conf->nr_pending == conf->nr_queued+1,
1077                                 conf->resync_lock,
1078                                 flush_pending_writes(conf));
1079
1080         spin_unlock_irq(&conf->resync_lock);
1081 }
1082
1083 static void unfreeze_array(struct r10conf *conf)
1084 {
1085         /* reverse the effect of the freeze */
1086         spin_lock_irq(&conf->resync_lock);
1087         conf->barrier--;
1088         conf->nr_waiting--;
1089         wake_up(&conf->wait_barrier);
1090         spin_unlock_irq(&conf->resync_lock);
1091 }
1092
1093 static sector_t choose_data_offset(struct r10bio *r10_bio,
1094                                    struct md_rdev *rdev)
1095 {
1096         if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1097             test_bit(R10BIO_Previous, &r10_bio->state))
1098                 return rdev->data_offset;
1099         else
1100                 return rdev->new_data_offset;
1101 }
1102
1103 struct raid10_plug_cb {
1104         struct blk_plug_cb      cb;
1105         struct bio_list         pending;
1106         int                     pending_cnt;
1107 };
1108
1109 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1110 {
1111         struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1112                                                    cb);
1113         struct mddev *mddev = plug->cb.data;
1114         struct r10conf *conf = mddev->private;
1115         struct bio *bio;
1116
1117         if (from_schedule || current->bio_list) {
1118                 spin_lock_irq(&conf->device_lock);
1119                 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1120                 conf->pending_count += plug->pending_cnt;
1121                 spin_unlock_irq(&conf->device_lock);
1122                 wake_up(&conf->wait_barrier);
1123                 md_wakeup_thread(mddev->thread);
1124                 kfree(plug);
1125                 return;
1126         }
1127
1128         /* we aren't scheduling, so we can do the write-out directly. */
1129         bio = bio_list_get(&plug->pending);
1130         bitmap_unplug(mddev->bitmap);
1131         wake_up(&conf->wait_barrier);
1132
1133         while (bio) { /* submit pending writes */
1134                 struct bio *next = bio->bi_next;
1135                 bio->bi_next = NULL;
1136                 generic_make_request(bio);
1137                 bio = next;
1138         }
1139         kfree(plug);
1140 }
1141
1142 static void make_request(struct mddev *mddev, struct bio * bio)
1143 {
1144         struct r10conf *conf = mddev->private;
1145         struct r10bio *r10_bio;
1146         struct bio *read_bio;
1147         int i;
1148         sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1149         int chunk_sects = chunk_mask + 1;
1150         const int rw = bio_data_dir(bio);
1151         const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1152         const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
1153         const unsigned long do_discard = (bio->bi_rw
1154                                           & (REQ_DISCARD | REQ_SECURE));
1155         const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
1156         unsigned long flags;
1157         struct md_rdev *blocked_rdev;
1158         struct blk_plug_cb *cb;
1159         struct raid10_plug_cb *plug = NULL;
1160         int sectors_handled;
1161         int max_sectors;
1162         int sectors;
1163
1164         if (unlikely(bio->bi_rw & REQ_FLUSH)) {
1165                 md_flush_request(mddev, bio);
1166                 return;
1167         }
1168
1169         /* If this request crosses a chunk boundary, we need to
1170          * split it.  This will only happen for 1 PAGE (or less) requests.
1171          */
1172         if (unlikely((bio->bi_sector & chunk_mask) + (bio->bi_size >> 9)
1173                      > chunk_sects
1174                      && (conf->geo.near_copies < conf->geo.raid_disks
1175                          || conf->prev.near_copies < conf->prev.raid_disks))) {
1176                 struct bio_pair *bp;
1177                 /* Sanity check -- queue functions should prevent this happening */
1178                 if ((bio->bi_vcnt != 1 && bio->bi_vcnt != 0) ||
1179                     bio->bi_idx != 0)
1180                         goto bad_map;
1181                 /* This is a one page bio that upper layers
1182                  * refuse to split for us, so we need to split it.
1183                  */
1184                 bp = bio_split(bio,
1185                                chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
1186
1187                 /* Each of these 'make_request' calls will call 'wait_barrier'.
1188                  * If the first succeeds but the second blocks due to the resync
1189                  * thread raising the barrier, we will deadlock because the
1190                  * IO to the underlying device will be queued in generic_make_request
1191                  * and will never complete, so will never reduce nr_pending.
1192                  * So increment nr_waiting here so no new raise_barriers will
1193                  * succeed, and so the second wait_barrier cannot block.
1194                  */
1195                 spin_lock_irq(&conf->resync_lock);
1196                 conf->nr_waiting++;
1197                 spin_unlock_irq(&conf->resync_lock);
1198
1199                 make_request(mddev, &bp->bio1);
1200                 make_request(mddev, &bp->bio2);
1201
1202                 spin_lock_irq(&conf->resync_lock);
1203                 conf->nr_waiting--;
1204                 wake_up(&conf->wait_barrier);
1205                 spin_unlock_irq(&conf->resync_lock);
1206
1207                 bio_pair_release(bp);
1208                 return;
1209         bad_map:
1210                 printk("md/raid10:%s: make_request bug: can't convert block across chunks"
1211                        " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2,
1212                        (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
1213
1214                 bio_io_error(bio);
1215                 return;
1216         }
1217
1218         md_write_start(mddev, bio);
1219
1220         /*
1221          * Register the new request and wait if the reconstruction
1222          * thread has put up a bar for new requests.
1223          * Continue immediately if no resync is active currently.
1224          */
1225         wait_barrier(conf);
1226
1227         sectors = bio->bi_size >> 9;
1228         while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1229             bio->bi_sector < conf->reshape_progress &&
1230             bio->bi_sector + sectors > conf->reshape_progress) {
1231                 /* IO spans the reshape position.  Need to wait for
1232                  * reshape to pass
1233                  */
1234                 allow_barrier(conf);
1235                 wait_event(conf->wait_barrier,
1236                            conf->reshape_progress <= bio->bi_sector ||
1237                            conf->reshape_progress >= bio->bi_sector + sectors);
1238                 wait_barrier(conf);
1239         }
1240         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1241             bio_data_dir(bio) == WRITE &&
1242             (mddev->reshape_backwards
1243              ? (bio->bi_sector < conf->reshape_safe &&
1244                 bio->bi_sector + sectors > conf->reshape_progress)
1245              : (bio->bi_sector + sectors > conf->reshape_safe &&
1246                 bio->bi_sector < conf->reshape_progress))) {
1247                 /* Need to update reshape_position in metadata */
1248                 mddev->reshape_position = conf->reshape_progress;
1249                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1250                 set_bit(MD_CHANGE_PENDING, &mddev->flags);
1251                 md_wakeup_thread(mddev->thread);
1252                 wait_event(mddev->sb_wait,
1253                            !test_bit(MD_CHANGE_PENDING, &mddev->flags));
1254
1255                 conf->reshape_safe = mddev->reshape_position;
1256         }
1257
1258         r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1259
1260         r10_bio->master_bio = bio;
1261         r10_bio->sectors = sectors;
1262
1263         r10_bio->mddev = mddev;
1264         r10_bio->sector = bio->bi_sector;
1265         r10_bio->state = 0;
1266
1267         /* We might need to issue multiple reads to different
1268          * devices if there are bad blocks around, so we keep
1269          * track of the number of reads in bio->bi_phys_segments.
1270          * If this is 0, there is only one r10_bio and no locking
1271          * will be needed when the request completes.  If it is
1272          * non-zero, then it is the number of not-completed requests.
1273          */
1274         bio->bi_phys_segments = 0;
1275         clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1276
1277         if (rw == READ) {
1278                 /*
1279                  * read balancing logic:
1280                  */
1281                 struct md_rdev *rdev;
1282                 int slot;
1283
1284 read_again:
1285                 rdev = read_balance(conf, r10_bio, &max_sectors);
1286                 if (!rdev) {
1287                         raid_end_bio_io(r10_bio);
1288                         return;
1289                 }
1290                 slot = r10_bio->read_slot;
1291
1292                 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1293                 md_trim_bio(read_bio, r10_bio->sector - bio->bi_sector,
1294                             max_sectors);
1295
1296                 r10_bio->devs[slot].bio = read_bio;
1297                 r10_bio->devs[slot].rdev = rdev;
1298
1299                 read_bio->bi_sector = r10_bio->devs[slot].addr +
1300                         choose_data_offset(r10_bio, rdev);
1301                 read_bio->bi_bdev = rdev->bdev;
1302                 read_bio->bi_end_io = raid10_end_read_request;
1303                 read_bio->bi_rw = READ | do_sync;
1304                 read_bio->bi_private = r10_bio;
1305
1306                 if (max_sectors < r10_bio->sectors) {
1307                         /* Could not read all from this device, so we will
1308                          * need another r10_bio.
1309                          */
1310                         sectors_handled = (r10_bio->sectors + max_sectors
1311                                            - bio->bi_sector);
1312                         r10_bio->sectors = max_sectors;
1313                         spin_lock_irq(&conf->device_lock);
1314                         if (bio->bi_phys_segments == 0)
1315                                 bio->bi_phys_segments = 2;
1316                         else
1317                                 bio->bi_phys_segments++;
1318                         spin_unlock(&conf->device_lock);
1319                         /* Cannot call generic_make_request directly
1320                          * as that will be queued in __generic_make_request
1321                          * and subsequent mempool_alloc might block
1322                          * waiting for it.  so hand bio over to raid10d.
1323                          */
1324                         reschedule_retry(r10_bio);
1325
1326                         r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1327
1328                         r10_bio->master_bio = bio;
1329                         r10_bio->sectors = ((bio->bi_size >> 9)
1330                                             - sectors_handled);
1331                         r10_bio->state = 0;
1332                         r10_bio->mddev = mddev;
1333                         r10_bio->sector = bio->bi_sector + sectors_handled;
1334                         goto read_again;
1335                 } else
1336                         generic_make_request(read_bio);
1337                 return;
1338         }
1339
1340         /*
1341          * WRITE:
1342          */
1343         if (conf->pending_count >= max_queued_requests) {
1344                 md_wakeup_thread(mddev->thread);
1345                 wait_event(conf->wait_barrier,
1346                            conf->pending_count < max_queued_requests);
1347         }
1348         /* first select target devices under rcu_lock and
1349          * inc refcount on their rdev.  Record them by setting
1350          * bios[x] to bio
1351          * If there are known/acknowledged bad blocks on any device
1352          * on which we have seen a write error, we want to avoid
1353          * writing to those blocks.  This potentially requires several
1354          * writes to write around the bad blocks.  Each set of writes
1355          * gets its own r10_bio with a set of bios attached.  The number
1356          * of r10_bios is recored in bio->bi_phys_segments just as with
1357          * the read case.
1358          */
1359
1360         r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1361         raid10_find_phys(conf, r10_bio);
1362 retry_write:
1363         blocked_rdev = NULL;
1364         rcu_read_lock();
1365         max_sectors = r10_bio->sectors;
1366
1367         for (i = 0;  i < conf->copies; i++) {
1368                 int d = r10_bio->devs[i].devnum;
1369                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1370                 struct md_rdev *rrdev = rcu_dereference(
1371                         conf->mirrors[d].replacement);
1372                 if (rdev == rrdev)
1373                         rrdev = NULL;
1374                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1375                         atomic_inc(&rdev->nr_pending);
1376                         blocked_rdev = rdev;
1377                         break;
1378                 }
1379                 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1380                         atomic_inc(&rrdev->nr_pending);
1381                         blocked_rdev = rrdev;
1382                         break;
1383                 }
1384                 if (rdev && (test_bit(Faulty, &rdev->flags)
1385                              || test_bit(Unmerged, &rdev->flags)))
1386                         rdev = NULL;
1387                 if (rrdev && (test_bit(Faulty, &rrdev->flags)
1388                               || test_bit(Unmerged, &rrdev->flags)))
1389                         rrdev = NULL;
1390
1391                 r10_bio->devs[i].bio = NULL;
1392                 r10_bio->devs[i].repl_bio = NULL;
1393
1394                 if (!rdev && !rrdev) {
1395                         set_bit(R10BIO_Degraded, &r10_bio->state);
1396                         continue;
1397                 }
1398                 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1399                         sector_t first_bad;
1400                         sector_t dev_sector = r10_bio->devs[i].addr;
1401                         int bad_sectors;
1402                         int is_bad;
1403
1404                         is_bad = is_badblock(rdev, dev_sector,
1405                                              max_sectors,
1406                                              &first_bad, &bad_sectors);
1407                         if (is_bad < 0) {
1408                                 /* Mustn't write here until the bad block
1409                                  * is acknowledged
1410                                  */
1411                                 atomic_inc(&rdev->nr_pending);
1412                                 set_bit(BlockedBadBlocks, &rdev->flags);
1413                                 blocked_rdev = rdev;
1414                                 break;
1415                         }
1416                         if (is_bad && first_bad <= dev_sector) {
1417                                 /* Cannot write here at all */
1418                                 bad_sectors -= (dev_sector - first_bad);
1419                                 if (bad_sectors < max_sectors)
1420                                         /* Mustn't write more than bad_sectors
1421                                          * to other devices yet
1422                                          */
1423                                         max_sectors = bad_sectors;
1424                                 /* We don't set R10BIO_Degraded as that
1425                                  * only applies if the disk is missing,
1426                                  * so it might be re-added, and we want to
1427                                  * know to recover this chunk.
1428                                  * In this case the device is here, and the
1429                                  * fact that this chunk is not in-sync is
1430                                  * recorded in the bad block log.
1431                                  */
1432                                 continue;
1433                         }
1434                         if (is_bad) {
1435                                 int good_sectors = first_bad - dev_sector;
1436                                 if (good_sectors < max_sectors)
1437                                         max_sectors = good_sectors;
1438                         }
1439                 }
1440                 if (rdev) {
1441                         r10_bio->devs[i].bio = bio;
1442                         atomic_inc(&rdev->nr_pending);
1443                 }
1444                 if (rrdev) {
1445                         r10_bio->devs[i].repl_bio = bio;
1446                         atomic_inc(&rrdev->nr_pending);
1447                 }
1448         }
1449         rcu_read_unlock();
1450
1451         if (unlikely(blocked_rdev)) {
1452                 /* Have to wait for this device to get unblocked, then retry */
1453                 int j;
1454                 int d;
1455
1456                 for (j = 0; j < i; j++) {
1457                         if (r10_bio->devs[j].bio) {
1458                                 d = r10_bio->devs[j].devnum;
1459                                 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1460                         }
1461                         if (r10_bio->devs[j].repl_bio) {
1462                                 struct md_rdev *rdev;
1463                                 d = r10_bio->devs[j].devnum;
1464                                 rdev = conf->mirrors[d].replacement;
1465                                 if (!rdev) {
1466                                         /* Race with remove_disk */
1467                                         smp_mb();
1468                                         rdev = conf->mirrors[d].rdev;
1469                                 }
1470                                 rdev_dec_pending(rdev, mddev);
1471                         }
1472                 }
1473                 allow_barrier(conf);
1474                 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1475                 wait_barrier(conf);
1476                 goto retry_write;
1477         }
1478
1479         if (max_sectors < r10_bio->sectors) {
1480                 /* We are splitting this into multiple parts, so
1481                  * we need to prepare for allocating another r10_bio.
1482                  */
1483                 r10_bio->sectors = max_sectors;
1484                 spin_lock_irq(&conf->device_lock);
1485                 if (bio->bi_phys_segments == 0)
1486                         bio->bi_phys_segments = 2;
1487                 else
1488                         bio->bi_phys_segments++;
1489                 spin_unlock_irq(&conf->device_lock);
1490         }
1491         sectors_handled = r10_bio->sector + max_sectors - bio->bi_sector;
1492
1493         atomic_set(&r10_bio->remaining, 1);
1494         bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1495
1496         for (i = 0; i < conf->copies; i++) {
1497                 struct bio *mbio;
1498                 int d = r10_bio->devs[i].devnum;
1499                 if (r10_bio->devs[i].bio) {
1500                         struct md_rdev *rdev = conf->mirrors[d].rdev;
1501                         mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1502                         md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1503                                     max_sectors);
1504                         r10_bio->devs[i].bio = mbio;
1505
1506                         mbio->bi_sector = (r10_bio->devs[i].addr+
1507                                            choose_data_offset(r10_bio,
1508                                                               rdev));
1509                         mbio->bi_bdev = rdev->bdev;
1510                         mbio->bi_end_io = raid10_end_write_request;
1511                         mbio->bi_rw =
1512                                 WRITE | do_sync | do_fua | do_discard | do_same;
1513                         mbio->bi_private = r10_bio;
1514
1515                         atomic_inc(&r10_bio->remaining);
1516
1517                         cb = blk_check_plugged(raid10_unplug, mddev,
1518                                                sizeof(*plug));
1519                         if (cb)
1520                                 plug = container_of(cb, struct raid10_plug_cb,
1521                                                     cb);
1522                         else
1523                                 plug = NULL;
1524                         spin_lock_irqsave(&conf->device_lock, flags);
1525                         if (plug) {
1526                                 bio_list_add(&plug->pending, mbio);
1527                                 plug->pending_cnt++;
1528                         } else {
1529                                 bio_list_add(&conf->pending_bio_list, mbio);
1530                                 conf->pending_count++;
1531                         }
1532                         spin_unlock_irqrestore(&conf->device_lock, flags);
1533                         if (!plug)
1534                                 md_wakeup_thread(mddev->thread);
1535                 }
1536
1537                 if (r10_bio->devs[i].repl_bio) {
1538                         struct md_rdev *rdev = conf->mirrors[d].replacement;
1539                         if (rdev == NULL) {
1540                                 /* Replacement just got moved to main 'rdev' */
1541                                 smp_mb();
1542                                 rdev = conf->mirrors[d].rdev;
1543                         }
1544                         mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1545                         md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1546                                     max_sectors);
1547                         r10_bio->devs[i].repl_bio = mbio;
1548
1549                         mbio->bi_sector = (r10_bio->devs[i].addr +
1550                                            choose_data_offset(
1551                                                    r10_bio, rdev));
1552                         mbio->bi_bdev = rdev->bdev;
1553                         mbio->bi_end_io = raid10_end_write_request;
1554                         mbio->bi_rw =
1555                                 WRITE | do_sync | do_fua | do_discard | do_same;
1556                         mbio->bi_private = r10_bio;
1557
1558                         atomic_inc(&r10_bio->remaining);
1559                         spin_lock_irqsave(&conf->device_lock, flags);
1560                         bio_list_add(&conf->pending_bio_list, mbio);
1561                         conf->pending_count++;
1562                         spin_unlock_irqrestore(&conf->device_lock, flags);
1563                         if (!mddev_check_plugged(mddev))
1564                                 md_wakeup_thread(mddev->thread);
1565                 }
1566         }
1567
1568         /* Don't remove the bias on 'remaining' (one_write_done) until
1569          * after checking if we need to go around again.
1570          */
1571
1572         if (sectors_handled < (bio->bi_size >> 9)) {
1573                 one_write_done(r10_bio);
1574                 /* We need another r10_bio.  It has already been counted
1575                  * in bio->bi_phys_segments.
1576                  */
1577                 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1578
1579                 r10_bio->master_bio = bio;
1580                 r10_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1581
1582                 r10_bio->mddev = mddev;
1583                 r10_bio->sector = bio->bi_sector + sectors_handled;
1584                 r10_bio->state = 0;
1585                 goto retry_write;
1586         }
1587         one_write_done(r10_bio);
1588
1589         /* In case raid10d snuck in to freeze_array */
1590         wake_up(&conf->wait_barrier);
1591 }
1592
1593 static void status(struct seq_file *seq, struct mddev *mddev)
1594 {
1595         struct r10conf *conf = mddev->private;
1596         int i;
1597
1598         if (conf->geo.near_copies < conf->geo.raid_disks)
1599                 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1600         if (conf->geo.near_copies > 1)
1601                 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1602         if (conf->geo.far_copies > 1) {
1603                 if (conf->geo.far_offset)
1604                         seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1605                 else
1606                         seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1607         }
1608         seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1609                                         conf->geo.raid_disks - mddev->degraded);
1610         for (i = 0; i < conf->geo.raid_disks; i++)
1611                 seq_printf(seq, "%s",
1612                               conf->mirrors[i].rdev &&
1613                               test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1614         seq_printf(seq, "]");
1615 }
1616
1617 /* check if there are enough drives for
1618  * every block to appear on atleast one.
1619  * Don't consider the device numbered 'ignore'
1620  * as we might be about to remove it.
1621  */
1622 static int _enough(struct r10conf *conf, struct geom *geo, int ignore)
1623 {
1624         int first = 0;
1625
1626         do {
1627                 int n = conf->copies;
1628                 int cnt = 0;
1629                 int this = first;
1630                 while (n--) {
1631                         if (conf->mirrors[this].rdev &&
1632                             this != ignore)
1633                                 cnt++;
1634                         this = (this+1) % geo->raid_disks;
1635                 }
1636                 if (cnt == 0)
1637                         return 0;
1638                 first = (first + geo->near_copies) % geo->raid_disks;
1639         } while (first != 0);
1640         return 1;
1641 }
1642
1643 static int enough(struct r10conf *conf, int ignore)
1644 {
1645         return _enough(conf, &conf->geo, ignore) &&
1646                 _enough(conf, &conf->prev, ignore);
1647 }
1648
1649 static void error(struct mddev *mddev, struct md_rdev *rdev)
1650 {
1651         char b[BDEVNAME_SIZE];
1652         struct r10conf *conf = mddev->private;
1653
1654         /*
1655          * If it is not operational, then we have already marked it as dead
1656          * else if it is the last working disks, ignore the error, let the
1657          * next level up know.
1658          * else mark the drive as failed
1659          */
1660         if (test_bit(In_sync, &rdev->flags)
1661             && !enough(conf, rdev->raid_disk))
1662                 /*
1663                  * Don't fail the drive, just return an IO error.
1664                  */
1665                 return;
1666         if (test_and_clear_bit(In_sync, &rdev->flags)) {
1667                 unsigned long flags;
1668                 spin_lock_irqsave(&conf->device_lock, flags);
1669                 mddev->degraded++;
1670                 spin_unlock_irqrestore(&conf->device_lock, flags);
1671                 /*
1672                  * if recovery is running, make sure it aborts.
1673                  */
1674                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1675         }
1676         set_bit(Blocked, &rdev->flags);
1677         set_bit(Faulty, &rdev->flags);
1678         set_bit(MD_CHANGE_DEVS, &mddev->flags);
1679         printk(KERN_ALERT
1680                "md/raid10:%s: Disk failure on %s, disabling device.\n"
1681                "md/raid10:%s: Operation continuing on %d devices.\n",
1682                mdname(mddev), bdevname(rdev->bdev, b),
1683                mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1684 }
1685
1686 static void print_conf(struct r10conf *conf)
1687 {
1688         int i;
1689         struct raid10_info *tmp;
1690
1691         printk(KERN_DEBUG "RAID10 conf printout:\n");
1692         if (!conf) {
1693                 printk(KERN_DEBUG "(!conf)\n");
1694                 return;
1695         }
1696         printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1697                 conf->geo.raid_disks);
1698
1699         for (i = 0; i < conf->geo.raid_disks; i++) {
1700                 char b[BDEVNAME_SIZE];
1701                 tmp = conf->mirrors + i;
1702                 if (tmp->rdev)
1703                         printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1704                                 i, !test_bit(In_sync, &tmp->rdev->flags),
1705                                 !test_bit(Faulty, &tmp->rdev->flags),
1706                                 bdevname(tmp->rdev->bdev,b));
1707         }
1708 }
1709
1710 static void close_sync(struct r10conf *conf)
1711 {
1712         wait_barrier(conf);
1713         allow_barrier(conf);
1714
1715         mempool_destroy(conf->r10buf_pool);
1716         conf->r10buf_pool = NULL;
1717 }
1718
1719 static int raid10_spare_active(struct mddev *mddev)
1720 {
1721         int i;
1722         struct r10conf *conf = mddev->private;
1723         struct raid10_info *tmp;
1724         int count = 0;
1725         unsigned long flags;
1726
1727         /*
1728          * Find all non-in_sync disks within the RAID10 configuration
1729          * and mark them in_sync
1730          */
1731         for (i = 0; i < conf->geo.raid_disks; i++) {
1732                 tmp = conf->mirrors + i;
1733                 if (tmp->replacement
1734                     && tmp->replacement->recovery_offset == MaxSector
1735                     && !test_bit(Faulty, &tmp->replacement->flags)
1736                     && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1737                         /* Replacement has just become active */
1738                         if (!tmp->rdev
1739                             || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1740                                 count++;
1741                         if (tmp->rdev) {
1742                                 /* Replaced device not technically faulty,
1743                                  * but we need to be sure it gets removed
1744                                  * and never re-added.
1745                                  */
1746                                 set_bit(Faulty, &tmp->rdev->flags);
1747                                 sysfs_notify_dirent_safe(
1748                                         tmp->rdev->sysfs_state);
1749                         }
1750                         sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1751                 } else if (tmp->rdev
1752                            && !test_bit(Faulty, &tmp->rdev->flags)
1753                            && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1754                         count++;
1755                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1756                 }
1757         }
1758         spin_lock_irqsave(&conf->device_lock, flags);
1759         mddev->degraded -= count;
1760         spin_unlock_irqrestore(&conf->device_lock, flags);
1761
1762         print_conf(conf);
1763         return count;
1764 }
1765
1766
1767 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1768 {
1769         struct r10conf *conf = mddev->private;
1770         int err = -EEXIST;
1771         int mirror;
1772         int first = 0;
1773         int last = conf->geo.raid_disks - 1;
1774         struct request_queue *q = bdev_get_queue(rdev->bdev);
1775
1776         if (mddev->recovery_cp < MaxSector)
1777                 /* only hot-add to in-sync arrays, as recovery is
1778                  * very different from resync
1779                  */
1780                 return -EBUSY;
1781         if (rdev->saved_raid_disk < 0 && !_enough(conf, &conf->prev, -1))
1782                 return -EINVAL;
1783
1784         if (rdev->raid_disk >= 0)
1785                 first = last = rdev->raid_disk;
1786
1787         if (q->merge_bvec_fn) {
1788                 set_bit(Unmerged, &rdev->flags);
1789                 mddev->merge_check_needed = 1;
1790         }
1791
1792         if (rdev->saved_raid_disk >= first &&
1793             conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1794                 mirror = rdev->saved_raid_disk;
1795         else
1796                 mirror = first;
1797         for ( ; mirror <= last ; mirror++) {
1798                 struct raid10_info *p = &conf->mirrors[mirror];
1799                 if (p->recovery_disabled == mddev->recovery_disabled)
1800                         continue;
1801                 if (p->rdev) {
1802                         if (!test_bit(WantReplacement, &p->rdev->flags) ||
1803                             p->replacement != NULL)
1804                                 continue;
1805                         clear_bit(In_sync, &rdev->flags);
1806                         set_bit(Replacement, &rdev->flags);
1807                         rdev->raid_disk = mirror;
1808                         err = 0;
1809                         disk_stack_limits(mddev->gendisk, rdev->bdev,
1810                                           rdev->data_offset << 9);
1811                         conf->fullsync = 1;
1812                         rcu_assign_pointer(p->replacement, rdev);
1813                         break;
1814                 }
1815
1816                 disk_stack_limits(mddev->gendisk, rdev->bdev,
1817                                   rdev->data_offset << 9);
1818
1819                 p->head_position = 0;
1820                 p->recovery_disabled = mddev->recovery_disabled - 1;
1821                 rdev->raid_disk = mirror;
1822                 err = 0;
1823                 if (rdev->saved_raid_disk != mirror)
1824                         conf->fullsync = 1;
1825                 rcu_assign_pointer(p->rdev, rdev);
1826                 break;
1827         }
1828         if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1829                 /* Some requests might not have seen this new
1830                  * merge_bvec_fn.  We must wait for them to complete
1831                  * before merging the device fully.
1832                  * First we make sure any code which has tested
1833                  * our function has submitted the request, then
1834                  * we wait for all outstanding requests to complete.
1835                  */
1836                 synchronize_sched();
1837                 raise_barrier(conf, 0);
1838                 lower_barrier(conf);
1839                 clear_bit(Unmerged, &rdev->flags);
1840         }
1841         md_integrity_add_rdev(rdev, mddev);
1842         if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1843                 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1844
1845         print_conf(conf);
1846         return err;
1847 }
1848
1849 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1850 {
1851         struct r10conf *conf = mddev->private;
1852         int err = 0;
1853         int number = rdev->raid_disk;
1854         struct md_rdev **rdevp;
1855         struct raid10_info *p = conf->mirrors + number;
1856
1857         print_conf(conf);
1858         if (rdev == p->rdev)
1859                 rdevp = &p->rdev;
1860         else if (rdev == p->replacement)
1861                 rdevp = &p->replacement;
1862         else
1863                 return 0;
1864
1865         if (test_bit(In_sync, &rdev->flags) ||
1866             atomic_read(&rdev->nr_pending)) {
1867                 err = -EBUSY;
1868                 goto abort;
1869         }
1870         /* Only remove faulty devices if recovery
1871          * is not possible.
1872          */
1873         if (!test_bit(Faulty, &rdev->flags) &&
1874             mddev->recovery_disabled != p->recovery_disabled &&
1875             (!p->replacement || p->replacement == rdev) &&
1876             number < conf->geo.raid_disks &&
1877             enough(conf, -1)) {
1878                 err = -EBUSY;
1879                 goto abort;
1880         }
1881         *rdevp = NULL;
1882         synchronize_rcu();
1883         if (atomic_read(&rdev->nr_pending)) {
1884                 /* lost the race, try later */
1885                 err = -EBUSY;
1886                 *rdevp = rdev;
1887                 goto abort;
1888         } else if (p->replacement) {
1889                 /* We must have just cleared 'rdev' */
1890                 p->rdev = p->replacement;
1891                 clear_bit(Replacement, &p->replacement->flags);
1892                 smp_mb(); /* Make sure other CPUs may see both as identical
1893                            * but will never see neither -- if they are careful.
1894                            */
1895                 p->replacement = NULL;
1896                 clear_bit(WantReplacement, &rdev->flags);
1897         } else
1898                 /* We might have just remove the Replacement as faulty
1899                  * Clear the flag just in case
1900                  */
1901                 clear_bit(WantReplacement, &rdev->flags);
1902
1903         err = md_integrity_register(mddev);
1904
1905 abort:
1906
1907         print_conf(conf);
1908         return err;
1909 }
1910
1911
1912 static void end_sync_read(struct bio *bio, int error)
1913 {
1914         struct r10bio *r10_bio = bio->bi_private;
1915         struct r10conf *conf = r10_bio->mddev->private;
1916         int d;
1917
1918         if (bio == r10_bio->master_bio) {
1919                 /* this is a reshape read */
1920                 d = r10_bio->read_slot; /* really the read dev */
1921         } else
1922                 d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1923
1924         if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1925                 set_bit(R10BIO_Uptodate, &r10_bio->state);
1926         else
1927                 /* The write handler will notice the lack of
1928                  * R10BIO_Uptodate and record any errors etc
1929                  */
1930                 atomic_add(r10_bio->sectors,
1931                            &conf->mirrors[d].rdev->corrected_errors);
1932
1933         /* for reconstruct, we always reschedule after a read.
1934          * for resync, only after all reads
1935          */
1936         rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1937         if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1938             atomic_dec_and_test(&r10_bio->remaining)) {
1939                 /* we have read all the blocks,
1940                  * do the comparison in process context in raid10d
1941                  */
1942                 reschedule_retry(r10_bio);
1943         }
1944 }
1945
1946 static void end_sync_request(struct r10bio *r10_bio)
1947 {
1948         struct mddev *mddev = r10_bio->mddev;
1949
1950         while (atomic_dec_and_test(&r10_bio->remaining)) {
1951                 if (r10_bio->master_bio == NULL) {
1952                         /* the primary of several recovery bios */
1953                         sector_t s = r10_bio->sectors;
1954                         if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1955                             test_bit(R10BIO_WriteError, &r10_bio->state))
1956                                 reschedule_retry(r10_bio);
1957                         else
1958                                 put_buf(r10_bio);
1959                         md_done_sync(mddev, s, 1);
1960                         break;
1961                 } else {
1962                         struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1963                         if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1964                             test_bit(R10BIO_WriteError, &r10_bio->state))
1965                                 reschedule_retry(r10_bio);
1966                         else
1967                                 put_buf(r10_bio);
1968                         r10_bio = r10_bio2;
1969                 }
1970         }
1971 }
1972
1973 static void end_sync_write(struct bio *bio, int error)
1974 {
1975         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1976         struct r10bio *r10_bio = bio->bi_private;
1977         struct mddev *mddev = r10_bio->mddev;
1978         struct r10conf *conf = mddev->private;
1979         int d;
1980         sector_t first_bad;
1981         int bad_sectors;
1982         int slot;
1983         int repl;
1984         struct md_rdev *rdev = NULL;
1985
1986         d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1987         if (repl)
1988                 rdev = conf->mirrors[d].replacement;
1989         else
1990                 rdev = conf->mirrors[d].rdev;
1991
1992         if (!uptodate) {
1993                 if (repl)
1994                         md_error(mddev, rdev);
1995                 else {
1996                         set_bit(WriteErrorSeen, &rdev->flags);
1997                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
1998                                 set_bit(MD_RECOVERY_NEEDED,
1999                                         &rdev->mddev->recovery);
2000                         set_bit(R10BIO_WriteError, &r10_bio->state);
2001                 }
2002         } else if (is_badblock(rdev,
2003                              r10_bio->devs[slot].addr,
2004                              r10_bio->sectors,
2005                              &first_bad, &bad_sectors))
2006                 set_bit(R10BIO_MadeGood, &r10_bio->state);
2007
2008         rdev_dec_pending(rdev, mddev);
2009
2010         end_sync_request(r10_bio);
2011 }
2012
2013 /*
2014  * Note: sync and recover and handled very differently for raid10
2015  * This code is for resync.
2016  * For resync, we read through virtual addresses and read all blocks.
2017  * If there is any error, we schedule a write.  The lowest numbered
2018  * drive is authoritative.
2019  * However requests come for physical address, so we need to map.
2020  * For every physical address there are raid_disks/copies virtual addresses,
2021  * which is always are least one, but is not necessarly an integer.
2022  * This means that a physical address can span multiple chunks, so we may
2023  * have to submit multiple io requests for a single sync request.
2024  */
2025 /*
2026  * We check if all blocks are in-sync and only write to blocks that
2027  * aren't in sync
2028  */
2029 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2030 {
2031         struct r10conf *conf = mddev->private;
2032         int i, first;
2033         struct bio *tbio, *fbio;
2034         int vcnt;
2035
2036         atomic_set(&r10_bio->remaining, 1);
2037
2038         /* find the first device with a block */
2039         for (i=0; i<conf->copies; i++)
2040                 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
2041                         break;
2042
2043         if (i == conf->copies)
2044                 goto done;
2045
2046         first = i;
2047         fbio = r10_bio->devs[i].bio;
2048
2049         vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2050         /* now find blocks with errors */
2051         for (i=0 ; i < conf->copies ; i++) {
2052                 int  j, d;
2053
2054                 tbio = r10_bio->devs[i].bio;
2055
2056                 if (tbio->bi_end_io != end_sync_read)
2057                         continue;
2058                 if (i == first)
2059                         continue;
2060                 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
2061                         /* We know that the bi_io_vec layout is the same for
2062                          * both 'first' and 'i', so we just compare them.
2063                          * All vec entries are PAGE_SIZE;
2064                          */
2065                         for (j = 0; j < vcnt; j++)
2066                                 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
2067                                            page_address(tbio->bi_io_vec[j].bv_page),
2068                                            fbio->bi_io_vec[j].bv_len))
2069                                         break;
2070                         if (j == vcnt)
2071                                 continue;
2072                         atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2073                         if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2074                                 /* Don't fix anything. */
2075                                 continue;
2076                 }
2077                 /* Ok, we need to write this bio, either to correct an
2078                  * inconsistency or to correct an unreadable block.
2079                  * First we need to fixup bv_offset, bv_len and
2080                  * bi_vecs, as the read request might have corrupted these
2081                  */
2082                 tbio->bi_vcnt = vcnt;
2083                 tbio->bi_size = r10_bio->sectors << 9;
2084                 tbio->bi_idx = 0;
2085                 tbio->bi_phys_segments = 0;
2086                 tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
2087                 tbio->bi_flags |= 1 << BIO_UPTODATE;
2088                 tbio->bi_next = NULL;
2089                 tbio->bi_rw = WRITE;
2090                 tbio->bi_private = r10_bio;
2091                 tbio->bi_sector = r10_bio->devs[i].addr;
2092
2093                 for (j=0; j < vcnt ; j++) {
2094                         tbio->bi_io_vec[j].bv_offset = 0;
2095                         tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
2096
2097                         memcpy(page_address(tbio->bi_io_vec[j].bv_page),
2098                                page_address(fbio->bi_io_vec[j].bv_page),
2099                                PAGE_SIZE);
2100                 }
2101                 tbio->bi_end_io = end_sync_write;
2102
2103                 d = r10_bio->devs[i].devnum;
2104                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2105                 atomic_inc(&r10_bio->remaining);
2106                 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
2107
2108                 tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
2109                 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
2110                 generic_make_request(tbio);
2111         }
2112
2113         /* Now write out to any replacement devices
2114          * that are active
2115          */
2116         for (i = 0; i < conf->copies; i++) {
2117                 int j, d;
2118
2119                 tbio = r10_bio->devs[i].repl_bio;
2120                 if (!tbio || !tbio->bi_end_io)
2121                         continue;
2122                 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2123                     && r10_bio->devs[i].bio != fbio)
2124                         for (j = 0; j < vcnt; j++)
2125                                 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
2126                                        page_address(fbio->bi_io_vec[j].bv_page),
2127                                        PAGE_SIZE);
2128                 d = r10_bio->devs[i].devnum;
2129                 atomic_inc(&r10_bio->remaining);
2130                 md_sync_acct(conf->mirrors[d].replacement->bdev,
2131                              tbio->bi_size >> 9);
2132                 generic_make_request(tbio);
2133         }
2134
2135 done:
2136         if (atomic_dec_and_test(&r10_bio->remaining)) {
2137                 md_done_sync(mddev, r10_bio->sectors, 1);
2138                 put_buf(r10_bio);
2139         }
2140 }
2141
2142 /*
2143  * Now for the recovery code.
2144  * Recovery happens across physical sectors.
2145  * We recover all non-is_sync drives by finding the virtual address of
2146  * each, and then choose a working drive that also has that virt address.
2147  * There is a separate r10_bio for each non-in_sync drive.
2148  * Only the first two slots are in use. The first for reading,
2149  * The second for writing.
2150  *
2151  */
2152 static void fix_recovery_read_error(struct r10bio *r10_bio)
2153 {
2154         /* We got a read error during recovery.
2155          * We repeat the read in smaller page-sized sections.
2156          * If a read succeeds, write it to the new device or record
2157          * a bad block if we cannot.
2158          * If a read fails, record a bad block on both old and
2159          * new devices.
2160          */
2161         struct mddev *mddev = r10_bio->mddev;
2162         struct r10conf *conf = mddev->private;
2163         struct bio *bio = r10_bio->devs[0].bio;
2164         sector_t sect = 0;
2165         int sectors = r10_bio->sectors;
2166         int idx = 0;
2167         int dr = r10_bio->devs[0].devnum;
2168         int dw = r10_bio->devs[1].devnum;
2169
2170         while (sectors) {
2171                 int s = sectors;
2172                 struct md_rdev *rdev;
2173                 sector_t addr;
2174                 int ok;
2175
2176                 if (s > (PAGE_SIZE>>9))
2177                         s = PAGE_SIZE >> 9;
2178
2179                 rdev = conf->mirrors[dr].rdev;
2180                 addr = r10_bio->devs[0].addr + sect,
2181                 ok = sync_page_io(rdev,
2182                                   addr,
2183                                   s << 9,
2184                                   bio->bi_io_vec[idx].bv_page,
2185                                   READ, false);
2186                 if (ok) {
2187                         rdev = conf->mirrors[dw].rdev;
2188                         addr = r10_bio->devs[1].addr + sect;
2189                         ok = sync_page_io(rdev,
2190                                           addr,
2191                                           s << 9,
2192                                           bio->bi_io_vec[idx].bv_page,
2193                                           WRITE, false);
2194                         if (!ok) {
2195                                 set_bit(WriteErrorSeen, &rdev->flags);
2196                                 if (!test_and_set_bit(WantReplacement,
2197                                                       &rdev->flags))
2198                                         set_bit(MD_RECOVERY_NEEDED,
2199                                                 &rdev->mddev->recovery);
2200                         }
2201                 }
2202                 if (!ok) {
2203                         /* We don't worry if we cannot set a bad block -
2204                          * it really is bad so there is no loss in not
2205                          * recording it yet
2206                          */
2207                         rdev_set_badblocks(rdev, addr, s, 0);
2208
2209                         if (rdev != conf->mirrors[dw].rdev) {
2210                                 /* need bad block on destination too */
2211                                 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2212                                 addr = r10_bio->devs[1].addr + sect;
2213                                 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2214                                 if (!ok) {
2215                                         /* just abort the recovery */
2216                                         printk(KERN_NOTICE
2217                                                "md/raid10:%s: recovery aborted"
2218                                                " due to read error\n",
2219                                                mdname(mddev));
2220
2221                                         conf->mirrors[dw].recovery_disabled
2222                                                 = mddev->recovery_disabled;
2223                                         set_bit(MD_RECOVERY_INTR,
2224                                                 &mddev->recovery);
2225                                         break;
2226                                 }
2227                         }
2228                 }
2229
2230                 sectors -= s;
2231                 sect += s;
2232                 idx++;
2233         }
2234 }
2235
2236 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2237 {
2238         struct r10conf *conf = mddev->private;
2239         int d;
2240         struct bio *wbio, *wbio2;
2241
2242         if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2243                 fix_recovery_read_error(r10_bio);
2244                 end_sync_request(r10_bio);
2245                 return;
2246         }
2247
2248         /*
2249          * share the pages with the first bio
2250          * and submit the write request
2251          */
2252         d = r10_bio->devs[1].devnum;
2253         wbio = r10_bio->devs[1].bio;
2254         wbio2 = r10_bio->devs[1].repl_bio;
2255         if (wbio->bi_end_io) {
2256                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2257                 md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
2258                 generic_make_request(wbio);
2259         }
2260         if (wbio2 && wbio2->bi_end_io) {
2261                 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2262                 md_sync_acct(conf->mirrors[d].replacement->bdev,
2263                              wbio2->bi_size >> 9);
2264                 generic_make_request(wbio2);
2265         }
2266 }
2267
2268
2269 /*
2270  * Used by fix_read_error() to decay the per rdev read_errors.
2271  * We halve the read error count for every hour that has elapsed
2272  * since the last recorded read error.
2273  *
2274  */
2275 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2276 {
2277         struct timespec cur_time_mon;
2278         unsigned long hours_since_last;
2279         unsigned int read_errors = atomic_read(&rdev->read_errors);
2280
2281         ktime_get_ts(&cur_time_mon);
2282
2283         if (rdev->last_read_error.tv_sec == 0 &&
2284             rdev->last_read_error.tv_nsec == 0) {
2285                 /* first time we've seen a read error */
2286                 rdev->last_read_error = cur_time_mon;
2287                 return;
2288         }
2289
2290         hours_since_last = (cur_time_mon.tv_sec -
2291                             rdev->last_read_error.tv_sec) / 3600;
2292
2293         rdev->last_read_error = cur_time_mon;
2294
2295         /*
2296          * if hours_since_last is > the number of bits in read_errors
2297          * just set read errors to 0. We do this to avoid
2298          * overflowing the shift of read_errors by hours_since_last.
2299          */
2300         if (hours_since_last >= 8 * sizeof(read_errors))
2301                 atomic_set(&rdev->read_errors, 0);
2302         else
2303                 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2304 }
2305
2306 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2307                             int sectors, struct page *page, int rw)
2308 {
2309         sector_t first_bad;
2310         int bad_sectors;
2311
2312         if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2313             && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2314                 return -1;
2315         if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
2316                 /* success */
2317                 return 1;
2318         if (rw == WRITE) {
2319                 set_bit(WriteErrorSeen, &rdev->flags);
2320                 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2321                         set_bit(MD_RECOVERY_NEEDED,
2322                                 &rdev->mddev->recovery);
2323         }
2324         /* need to record an error - either for the block or the device */
2325         if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2326                 md_error(rdev->mddev, rdev);
2327         return 0;
2328 }
2329
2330 /*
2331  * This is a kernel thread which:
2332  *
2333  *      1.      Retries failed read operations on working mirrors.
2334  *      2.      Updates the raid superblock when problems encounter.
2335  *      3.      Performs writes following reads for array synchronising.
2336  */
2337
2338 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2339 {
2340         int sect = 0; /* Offset from r10_bio->sector */
2341         int sectors = r10_bio->sectors;
2342         struct md_rdev*rdev;
2343         int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2344         int d = r10_bio->devs[r10_bio->read_slot].devnum;
2345
2346         /* still own a reference to this rdev, so it cannot
2347          * have been cleared recently.
2348          */
2349         rdev = conf->mirrors[d].rdev;
2350
2351         if (test_bit(Faulty, &rdev->flags))
2352                 /* drive has already been failed, just ignore any
2353                    more fix_read_error() attempts */
2354                 return;
2355
2356         check_decay_read_errors(mddev, rdev);
2357         atomic_inc(&rdev->read_errors);
2358         if (atomic_read(&rdev->read_errors) > max_read_errors) {
2359                 char b[BDEVNAME_SIZE];
2360                 bdevname(rdev->bdev, b);
2361
2362                 printk(KERN_NOTICE
2363                        "md/raid10:%s: %s: Raid device exceeded "
2364                        "read_error threshold [cur %d:max %d]\n",
2365                        mdname(mddev), b,
2366                        atomic_read(&rdev->read_errors), max_read_errors);
2367                 printk(KERN_NOTICE
2368                        "md/raid10:%s: %s: Failing raid device\n",
2369                        mdname(mddev), b);
2370                 md_error(mddev, conf->mirrors[d].rdev);
2371                 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2372                 return;
2373         }
2374
2375         while(sectors) {
2376                 int s = sectors;
2377                 int sl = r10_bio->read_slot;
2378                 int success = 0;
2379                 int start;
2380
2381                 if (s > (PAGE_SIZE>>9))
2382                         s = PAGE_SIZE >> 9;
2383
2384                 rcu_read_lock();
2385                 do {
2386                         sector_t first_bad;
2387                         int bad_sectors;
2388
2389                         d = r10_bio->devs[sl].devnum;
2390                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2391                         if (rdev &&
2392                             !test_bit(Unmerged, &rdev->flags) &&
2393                             test_bit(In_sync, &rdev->flags) &&
2394                             is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2395                                         &first_bad, &bad_sectors) == 0) {
2396                                 atomic_inc(&rdev->nr_pending);
2397                                 rcu_read_unlock();
2398                                 success = sync_page_io(rdev,
2399                                                        r10_bio->devs[sl].addr +
2400                                                        sect,
2401                                                        s<<9,
2402                                                        conf->tmppage, READ, false);
2403                                 rdev_dec_pending(rdev, mddev);
2404                                 rcu_read_lock();
2405                                 if (success)
2406                                         break;
2407                         }
2408                         sl++;
2409                         if (sl == conf->copies)
2410                                 sl = 0;
2411                 } while (!success && sl != r10_bio->read_slot);
2412                 rcu_read_unlock();
2413
2414                 if (!success) {
2415                         /* Cannot read from anywhere, just mark the block
2416                          * as bad on the first device to discourage future
2417                          * reads.
2418                          */
2419                         int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2420                         rdev = conf->mirrors[dn].rdev;
2421
2422                         if (!rdev_set_badblocks(
2423                                     rdev,
2424                                     r10_bio->devs[r10_bio->read_slot].addr
2425                                     + sect,
2426                                     s, 0)) {
2427                                 md_error(mddev, rdev);
2428                                 r10_bio->devs[r10_bio->read_slot].bio
2429                                         = IO_BLOCKED;
2430                         }
2431                         break;
2432                 }
2433
2434                 start = sl;
2435                 /* write it back and re-read */
2436                 rcu_read_lock();
2437                 while (sl != r10_bio->read_slot) {
2438                         char b[BDEVNAME_SIZE];
2439
2440                         if (sl==0)
2441                                 sl = conf->copies;
2442                         sl--;
2443                         d = r10_bio->devs[sl].devnum;
2444                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2445                         if (!rdev ||
2446                             test_bit(Unmerged, &rdev->flags) ||
2447                             !test_bit(In_sync, &rdev->flags))
2448                                 continue;
2449
2450                         atomic_inc(&rdev->nr_pending);
2451                         rcu_read_unlock();
2452                         if (r10_sync_page_io(rdev,
2453                                              r10_bio->devs[sl].addr +
2454                                              sect,
2455                                              s, conf->tmppage, WRITE)
2456                             == 0) {
2457                                 /* Well, this device is dead */
2458                                 printk(KERN_NOTICE
2459                                        "md/raid10:%s: read correction "
2460                                        "write failed"
2461                                        " (%d sectors at %llu on %s)\n",
2462                                        mdname(mddev), s,
2463                                        (unsigned long long)(
2464                                                sect +
2465                                                choose_data_offset(r10_bio,
2466                                                                   rdev)),
2467                                        bdevname(rdev->bdev, b));
2468                                 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2469                                        "drive\n",
2470                                        mdname(mddev),
2471                                        bdevname(rdev->bdev, b));
2472                         }
2473                         rdev_dec_pending(rdev, mddev);
2474                         rcu_read_lock();
2475                 }
2476                 sl = start;
2477                 while (sl != r10_bio->read_slot) {
2478                         char b[BDEVNAME_SIZE];
2479
2480                         if (sl==0)
2481                                 sl = conf->copies;
2482                         sl--;
2483                         d = r10_bio->devs[sl].devnum;
2484                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2485                         if (!rdev ||
2486                             !test_bit(In_sync, &rdev->flags))
2487                                 continue;
2488
2489                         atomic_inc(&rdev->nr_pending);
2490                         rcu_read_unlock();
2491                         switch (r10_sync_page_io(rdev,
2492                                              r10_bio->devs[sl].addr +
2493                                              sect,
2494                                              s, conf->tmppage,
2495                                                  READ)) {
2496                         case 0:
2497                                 /* Well, this device is dead */
2498                                 printk(KERN_NOTICE
2499                                        "md/raid10:%s: unable to read back "
2500                                        "corrected sectors"
2501                                        " (%d sectors at %llu on %s)\n",
2502                                        mdname(mddev), s,
2503                                        (unsigned long long)(
2504                                                sect +
2505                                                choose_data_offset(r10_bio, rdev)),
2506                                        bdevname(rdev->bdev, b));
2507                                 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2508                                        "drive\n",
2509                                        mdname(mddev),
2510                                        bdevname(rdev->bdev, b));
2511                                 break;
2512                         case 1:
2513                                 printk(KERN_INFO
2514                                        "md/raid10:%s: read error corrected"
2515                                        " (%d sectors at %llu on %s)\n",
2516                                        mdname(mddev), s,
2517                                        (unsigned long long)(
2518                                                sect +
2519                                                choose_data_offset(r10_bio, rdev)),
2520                                        bdevname(rdev->bdev, b));
2521                                 atomic_add(s, &rdev->corrected_errors);
2522                         }
2523
2524                         rdev_dec_pending(rdev, mddev);
2525                         rcu_read_lock();
2526                 }
2527                 rcu_read_unlock();
2528
2529                 sectors -= s;
2530                 sect += s;
2531         }
2532 }
2533
2534 static void bi_complete(struct bio *bio, int error)
2535 {
2536         complete((struct completion *)bio->bi_private);
2537 }
2538
2539 static int submit_bio_wait(int rw, struct bio *bio)
2540 {
2541         struct completion event;
2542         rw |= REQ_SYNC;
2543
2544         init_completion(&event);
2545         bio->bi_private = &event;
2546         bio->bi_end_io = bi_complete;
2547         submit_bio(rw, bio);
2548         wait_for_completion(&event);
2549
2550         return test_bit(BIO_UPTODATE, &bio->bi_flags);
2551 }
2552
2553 static int narrow_write_error(struct r10bio *r10_bio, int i)
2554 {
2555         struct bio *bio = r10_bio->master_bio;
2556         struct mddev *mddev = r10_bio->mddev;
2557         struct r10conf *conf = mddev->private;
2558         struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2559         /* bio has the data to be written to slot 'i' where
2560          * we just recently had a write error.
2561          * We repeatedly clone the bio and trim down to one block,
2562          * then try the write.  Where the write fails we record
2563          * a bad block.
2564          * It is conceivable that the bio doesn't exactly align with
2565          * blocks.  We must handle this.
2566          *
2567          * We currently own a reference to the rdev.
2568          */
2569
2570         int block_sectors;
2571         sector_t sector;
2572         int sectors;
2573         int sect_to_write = r10_bio->sectors;
2574         int ok = 1;
2575
2576         if (rdev->badblocks.shift < 0)
2577                 return 0;
2578
2579         block_sectors = 1 << rdev->badblocks.shift;
2580         sector = r10_bio->sector;
2581         sectors = ((r10_bio->sector + block_sectors)
2582                    & ~(sector_t)(block_sectors - 1))
2583                 - sector;
2584
2585         while (sect_to_write) {
2586                 struct bio *wbio;
2587                 if (sectors > sect_to_write)
2588                         sectors = sect_to_write;
2589                 /* Write at 'sector' for 'sectors' */
2590                 wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
2591                 md_trim_bio(wbio, sector - bio->bi_sector, sectors);
2592                 wbio->bi_sector = (r10_bio->devs[i].addr+
2593                                    choose_data_offset(r10_bio, rdev) +
2594                                    (sector - r10_bio->sector));
2595                 wbio->bi_bdev = rdev->bdev;
2596                 if (submit_bio_wait(WRITE, wbio) == 0)
2597                         /* Failure! */
2598                         ok = rdev_set_badblocks(rdev, sector,
2599                                                 sectors, 0)
2600                                 && ok;
2601
2602                 bio_put(wbio);
2603                 sect_to_write -= sectors;
2604                 sector += sectors;
2605                 sectors = block_sectors;
2606         }
2607         return ok;
2608 }
2609
2610 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2611 {
2612         int slot = r10_bio->read_slot;
2613         struct bio *bio;
2614         struct r10conf *conf = mddev->private;
2615         struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2616         char b[BDEVNAME_SIZE];
2617         unsigned long do_sync;
2618         int max_sectors;
2619
2620         /* we got a read error. Maybe the drive is bad.  Maybe just
2621          * the block and we can fix it.
2622          * We freeze all other IO, and try reading the block from
2623          * other devices.  When we find one, we re-write
2624          * and check it that fixes the read error.
2625          * This is all done synchronously while the array is
2626          * frozen.
2627          */
2628         bio = r10_bio->devs[slot].bio;
2629         bdevname(bio->bi_bdev, b);
2630         bio_put(bio);
2631         r10_bio->devs[slot].bio = NULL;
2632
2633         if (mddev->ro == 0) {
2634                 freeze_array(conf);
2635                 fix_read_error(conf, mddev, r10_bio);
2636                 unfreeze_array(conf);
2637         } else
2638                 r10_bio->devs[slot].bio = IO_BLOCKED;
2639
2640         rdev_dec_pending(rdev, mddev);
2641
2642 read_more:
2643         rdev = read_balance(conf, r10_bio, &max_sectors);
2644         if (rdev == NULL) {
2645                 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2646                        " read error for block %llu\n",
2647                        mdname(mddev), b,
2648                        (unsigned long long)r10_bio->sector);
2649                 raid_end_bio_io(r10_bio);
2650                 return;
2651         }
2652
2653         do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
2654         slot = r10_bio->read_slot;
2655         printk_ratelimited(
2656                 KERN_ERR
2657                 "md/raid10:%s: %s: redirecting "
2658                 "sector %llu to another mirror\n",
2659                 mdname(mddev),
2660                 bdevname(rdev->bdev, b),
2661                 (unsigned long long)r10_bio->sector);
2662         bio = bio_clone_mddev(r10_bio->master_bio,
2663                               GFP_NOIO, mddev);
2664         md_trim_bio(bio,
2665                     r10_bio->sector - bio->bi_sector,
2666                     max_sectors);
2667         r10_bio->devs[slot].bio = bio;
2668         r10_bio->devs[slot].rdev = rdev;
2669         bio->bi_sector = r10_bio->devs[slot].addr
2670                 + choose_data_offset(r10_bio, rdev);
2671         bio->bi_bdev = rdev->bdev;
2672         bio->bi_rw = READ | do_sync;
2673         bio->bi_private = r10_bio;
2674         bio->bi_end_io = raid10_end_read_request;
2675         if (max_sectors < r10_bio->sectors) {
2676                 /* Drat - have to split this up more */
2677                 struct bio *mbio = r10_bio->master_bio;
2678                 int sectors_handled =
2679                         r10_bio->sector + max_sectors
2680                         - mbio->bi_sector;
2681                 r10_bio->sectors = max_sectors;
2682                 spin_lock_irq(&conf->device_lock);
2683                 if (mbio->bi_phys_segments == 0)
2684                         mbio->bi_phys_segments = 2;
2685                 else
2686                         mbio->bi_phys_segments++;
2687                 spin_unlock_irq(&conf->device_lock);
2688                 generic_make_request(bio);
2689
2690                 r10_bio = mempool_alloc(conf->r10bio_pool,
2691                                         GFP_NOIO);
2692                 r10_bio->master_bio = mbio;
2693                 r10_bio->sectors = (mbio->bi_size >> 9)
2694                         - sectors_handled;
2695                 r10_bio->state = 0;
2696                 set_bit(R10BIO_ReadError,
2697                         &r10_bio->state);
2698                 r10_bio->mddev = mddev;
2699                 r10_bio->sector = mbio->bi_sector
2700                         + sectors_handled;
2701
2702                 goto read_more;
2703         } else
2704                 generic_make_request(bio);
2705 }
2706
2707 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2708 {
2709         /* Some sort of write request has finished and it
2710          * succeeded in writing where we thought there was a
2711          * bad block.  So forget the bad block.
2712          * Or possibly if failed and we need to record
2713          * a bad block.
2714          */
2715         int m;
2716         struct md_rdev *rdev;
2717
2718         if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2719             test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2720                 for (m = 0; m < conf->copies; m++) {
2721                         int dev = r10_bio->devs[m].devnum;
2722                         rdev = conf->mirrors[dev].rdev;
2723                         if (r10_bio->devs[m].bio == NULL)
2724                                 continue;
2725                         if (test_bit(BIO_UPTODATE,
2726                                      &r10_bio->devs[m].bio->bi_flags)) {
2727                                 rdev_clear_badblocks(
2728                                         rdev,
2729                                         r10_bio->devs[m].addr,
2730                                         r10_bio->sectors, 0);
2731                         } else {
2732                                 if (!rdev_set_badblocks(
2733                                             rdev,
2734                                             r10_bio->devs[m].addr,
2735                                             r10_bio->sectors, 0))
2736                                         md_error(conf->mddev, rdev);
2737                         }
2738                         rdev = conf->mirrors[dev].replacement;
2739                         if (r10_bio->devs[m].repl_bio == NULL)
2740                                 continue;
2741                         if (test_bit(BIO_UPTODATE,
2742                                      &r10_bio->devs[m].repl_bio->bi_flags)) {
2743                                 rdev_clear_badblocks(
2744                                         rdev,
2745                                         r10_bio->devs[m].addr,
2746                                         r10_bio->sectors, 0);
2747                         } else {
2748                                 if (!rdev_set_badblocks(
2749                                             rdev,
2750                                             r10_bio->devs[m].addr,
2751                                             r10_bio->sectors, 0))
2752                                         md_error(conf->mddev, rdev);
2753                         }
2754                 }
2755                 put_buf(r10_bio);
2756         } else {
2757                 for (m = 0; m < conf->copies; m++) {
2758                         int dev = r10_bio->devs[m].devnum;
2759                         struct bio *bio = r10_bio->devs[m].bio;
2760                         rdev = conf->mirrors[dev].rdev;
2761                         if (bio == IO_MADE_GOOD) {
2762                                 rdev_clear_badblocks(
2763                                         rdev,
2764                                         r10_bio->devs[m].addr,
2765                                         r10_bio->sectors, 0);
2766                                 rdev_dec_pending(rdev, conf->mddev);
2767                         } else if (bio != NULL &&
2768                                    !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2769                                 if (!narrow_write_error(r10_bio, m)) {
2770                                         md_error(conf->mddev, rdev);
2771                                         set_bit(R10BIO_Degraded,
2772                                                 &r10_bio->state);
2773                                 }
2774                                 rdev_dec_pending(rdev, conf->mddev);
2775                         }
2776                         bio = r10_bio->devs[m].repl_bio;
2777                         rdev = conf->mirrors[dev].replacement;
2778                         if (rdev && bio == IO_MADE_GOOD) {
2779                                 rdev_clear_badblocks(
2780                                         rdev,
2781                                         r10_bio->devs[m].addr,
2782                                         r10_bio->sectors, 0);
2783                                 rdev_dec_pending(rdev, conf->mddev);
2784                         }
2785                 }
2786                 if (test_bit(R10BIO_WriteError,
2787                              &r10_bio->state))
2788                         close_write(r10_bio);
2789                 raid_end_bio_io(r10_bio);
2790         }
2791 }
2792
2793 static void raid10d(struct md_thread *thread)
2794 {
2795         struct mddev *mddev = thread->mddev;
2796         struct r10bio *r10_bio;
2797         unsigned long flags;
2798         struct r10conf *conf = mddev->private;
2799         struct list_head *head = &conf->retry_list;
2800         struct blk_plug plug;
2801
2802         md_check_recovery(mddev);
2803
2804         blk_start_plug(&plug);
2805         for (;;) {
2806
2807                 flush_pending_writes(conf);
2808
2809                 spin_lock_irqsave(&conf->device_lock, flags);
2810                 if (list_empty(head)) {
2811                         spin_unlock_irqrestore(&conf->device_lock, flags);
2812                         break;
2813                 }
2814                 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2815                 list_del(head->prev);
2816                 conf->nr_queued--;
2817                 spin_unlock_irqrestore(&conf->device_lock, flags);
2818
2819                 mddev = r10_bio->mddev;
2820                 conf = mddev->private;
2821                 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2822                     test_bit(R10BIO_WriteError, &r10_bio->state))
2823                         handle_write_completed(conf, r10_bio);
2824                 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2825                         reshape_request_write(mddev, r10_bio);
2826                 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2827                         sync_request_write(mddev, r10_bio);
2828                 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2829                         recovery_request_write(mddev, r10_bio);
2830                 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2831                         handle_read_error(mddev, r10_bio);
2832                 else {
2833                         /* just a partial read to be scheduled from a
2834                          * separate context
2835                          */
2836                         int slot = r10_bio->read_slot;
2837                         generic_make_request(r10_bio->devs[slot].bio);
2838                 }
2839
2840                 cond_resched();
2841                 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2842                         md_check_recovery(mddev);
2843         }
2844         blk_finish_plug(&plug);
2845 }
2846
2847
2848 static int init_resync(struct r10conf *conf)
2849 {
2850         int buffs;
2851         int i;
2852
2853         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2854         BUG_ON(conf->r10buf_pool);
2855         conf->have_replacement = 0;
2856         for (i = 0; i < conf->geo.raid_disks; i++)
2857                 if (conf->mirrors[i].replacement)
2858                         conf->have_replacement = 1;
2859         conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2860         if (!conf->r10buf_pool)
2861                 return -ENOMEM;
2862         conf->next_resync = 0;
2863         return 0;
2864 }
2865
2866 /*
2867  * perform a "sync" on one "block"
2868  *
2869  * We need to make sure that no normal I/O request - particularly write
2870  * requests - conflict with active sync requests.
2871  *
2872  * This is achieved by tracking pending requests and a 'barrier' concept
2873  * that can be installed to exclude normal IO requests.
2874  *
2875  * Resync and recovery are handled very differently.
2876  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2877  *
2878  * For resync, we iterate over virtual addresses, read all copies,
2879  * and update if there are differences.  If only one copy is live,
2880  * skip it.
2881  * For recovery, we iterate over physical addresses, read a good
2882  * value for each non-in_sync drive, and over-write.
2883  *
2884  * So, for recovery we may have several outstanding complex requests for a
2885  * given address, one for each out-of-sync device.  We model this by allocating
2886  * a number of r10_bio structures, one for each out-of-sync device.
2887  * As we setup these structures, we collect all bio's together into a list
2888  * which we then process collectively to add pages, and then process again
2889  * to pass to generic_make_request.
2890  *
2891  * The r10_bio structures are linked using a borrowed master_bio pointer.
2892  * This link is counted in ->remaining.  When the r10_bio that points to NULL
2893  * has its remaining count decremented to 0, the whole complex operation
2894  * is complete.
2895  *
2896  */
2897
2898 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr,
2899                              int *skipped, int go_faster)
2900 {
2901         struct r10conf *conf = mddev->private;
2902         struct r10bio *r10_bio;
2903         struct bio *biolist = NULL, *bio;
2904         sector_t max_sector, nr_sectors;
2905         int i;
2906         int max_sync;
2907         sector_t sync_blocks;
2908         sector_t sectors_skipped = 0;
2909         int chunks_skipped = 0;
2910         sector_t chunk_mask = conf->geo.chunk_mask;
2911
2912         if (!conf->r10buf_pool)
2913                 if (init_resync(conf))
2914                         return 0;
2915
2916  skipped:
2917         max_sector = mddev->dev_sectors;
2918         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2919             test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2920                 max_sector = mddev->resync_max_sectors;
2921         if (sector_nr >= max_sector) {
2922                 /* If we aborted, we need to abort the
2923                  * sync on the 'current' bitmap chucks (there can
2924                  * be several when recovering multiple devices).
2925                  * as we may have started syncing it but not finished.
2926                  * We can find the current address in
2927                  * mddev->curr_resync, but for recovery,
2928                  * we need to convert that to several
2929                  * virtual addresses.
2930                  */
2931                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2932                         end_reshape(conf);
2933                         return 0;
2934                 }
2935
2936                 if (mddev->curr_resync < max_sector) { /* aborted */
2937                         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2938                                 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2939                                                 &sync_blocks, 1);
2940                         else for (i = 0; i < conf->geo.raid_disks; i++) {
2941                                 sector_t sect =
2942                                         raid10_find_virt(conf, mddev->curr_resync, i);
2943                                 bitmap_end_sync(mddev->bitmap, sect,
2944                                                 &sync_blocks, 1);
2945                         }
2946                 } else {
2947                         /* completed sync */
2948                         if ((!mddev->bitmap || conf->fullsync)
2949                             && conf->have_replacement
2950                             && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2951                                 /* Completed a full sync so the replacements
2952                                  * are now fully recovered.
2953                                  */
2954                                 for (i = 0; i < conf->geo.raid_disks; i++)
2955                                         if (conf->mirrors[i].replacement)
2956                                                 conf->mirrors[i].replacement
2957                                                         ->recovery_offset
2958                                                         = MaxSector;
2959                         }
2960                         conf->fullsync = 0;
2961                 }
2962                 bitmap_close_sync(mddev->bitmap);
2963                 close_sync(conf);
2964                 *skipped = 1;
2965                 return sectors_skipped;
2966         }
2967
2968         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2969                 return reshape_request(mddev, sector_nr, skipped);
2970
2971         if (chunks_skipped >= conf->geo.raid_disks) {
2972                 /* if there has been nothing to do on any drive,
2973                  * then there is nothing to do at all..
2974                  */
2975                 *skipped = 1;
2976                 return (max_sector - sector_nr) + sectors_skipped;
2977         }
2978
2979         if (max_sector > mddev->resync_max)
2980                 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2981
2982         /* make sure whole request will fit in a chunk - if chunks
2983          * are meaningful
2984          */
2985         if (conf->geo.near_copies < conf->geo.raid_disks &&
2986             max_sector > (sector_nr | chunk_mask))
2987                 max_sector = (sector_nr | chunk_mask) + 1;
2988         /*
2989          * If there is non-resync activity waiting for us then
2990          * put in a delay to throttle resync.
2991          */
2992         if (!go_faster && conf->nr_waiting)
2993                 msleep_interruptible(1000);
2994
2995         /* Again, very different code for resync and recovery.
2996          * Both must result in an r10bio with a list of bios that
2997          * have bi_end_io, bi_sector, bi_bdev set,
2998          * and bi_private set to the r10bio.
2999          * For recovery, we may actually create several r10bios
3000          * with 2 bios in each, that correspond to the bios in the main one.
3001          * In this case, the subordinate r10bios link back through a
3002          * borrowed master_bio pointer, and the counter in the master
3003          * includes a ref from each subordinate.
3004          */
3005         /* First, we decide what to do and set ->bi_end_io
3006          * To end_sync_read if we want to read, and
3007          * end_sync_write if we will want to write.
3008          */
3009
3010         max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3011         if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3012                 /* recovery... the complicated one */
3013                 int j;
3014                 r10_bio = NULL;
3015
3016                 for (i = 0 ; i < conf->geo.raid_disks; i++) {
3017                         int still_degraded;
3018                         struct r10bio *rb2;
3019                         sector_t sect;
3020                         int must_sync;
3021                         int any_working;
3022                         struct raid10_info *mirror = &conf->mirrors[i];
3023
3024                         if ((mirror->rdev == NULL ||
3025                              test_bit(In_sync, &mirror->rdev->flags))
3026                             &&
3027                             (mirror->replacement == NULL ||
3028                              test_bit(Faulty,
3029                                       &mirror->replacement->flags)))
3030                                 continue;
3031
3032                         still_degraded = 0;
3033                         /* want to reconstruct this device */
3034                         rb2 = r10_bio;
3035                         sect = raid10_find_virt(conf, sector_nr, i);
3036                         if (sect >= mddev->resync_max_sectors) {
3037                                 /* last stripe is not complete - don't
3038                                  * try to recover this sector.
3039                                  */
3040                                 continue;
3041                         }
3042                         /* Unless we are doing a full sync, or a replacement
3043                          * we only need to recover the block if it is set in
3044                          * the bitmap
3045                          */
3046                         must_sync = bitmap_start_sync(mddev->bitmap, sect,
3047                                                       &sync_blocks, 1);
3048                         if (sync_blocks < max_sync)
3049                                 max_sync = sync_blocks;
3050                         if (!must_sync &&
3051                             mirror->replacement == NULL &&
3052                             !conf->fullsync) {
3053                                 /* yep, skip the sync_blocks here, but don't assume
3054                                  * that there will never be anything to do here
3055                                  */
3056                                 chunks_skipped = -1;
3057                                 continue;
3058                         }
3059
3060                         r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3061                         raise_barrier(conf, rb2 != NULL);
3062                         atomic_set(&r10_bio->remaining, 0);
3063
3064                         r10_bio->master_bio = (struct bio*)rb2;
3065                         if (rb2)
3066                                 atomic_inc(&rb2->remaining);
3067                         r10_bio->mddev = mddev;
3068                         set_bit(R10BIO_IsRecover, &r10_bio->state);
3069                         r10_bio->sector = sect;
3070
3071                         raid10_find_phys(conf, r10_bio);
3072
3073                         /* Need to check if the array will still be
3074                          * degraded
3075                          */
3076                         for (j = 0; j < conf->geo.raid_disks; j++)
3077                                 if (conf->mirrors[j].rdev == NULL ||
3078                                     test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
3079                                         still_degraded = 1;
3080                                         break;
3081                                 }
3082
3083                         must_sync = bitmap_start_sync(mddev->bitmap, sect,
3084                                                       &sync_blocks, still_degraded);
3085
3086                         any_working = 0;
3087                         for (j=0; j<conf->copies;j++) {
3088                                 int k;
3089                                 int d = r10_bio->devs[j].devnum;
3090                                 sector_t from_addr, to_addr;
3091                                 struct md_rdev *rdev;
3092                                 sector_t sector, first_bad;
3093                                 int bad_sectors;
3094                                 if (!conf->mirrors[d].rdev ||
3095                                     !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
3096                                         continue;
3097                                 /* This is where we read from */
3098                                 any_working = 1;
3099                                 rdev = conf->mirrors[d].rdev;
3100                                 sector = r10_bio->devs[j].addr;
3101
3102                                 if (is_badblock(rdev, sector, max_sync,
3103                                                 &first_bad, &bad_sectors)) {
3104                                         if (first_bad > sector)
3105                                                 max_sync = first_bad - sector;
3106                                         else {
3107                                                 bad_sectors -= (sector
3108                                                                 - first_bad);
3109                                                 if (max_sync > bad_sectors)
3110                                                         max_sync = bad_sectors;
3111                                                 continue;
3112                                         }
3113                                 }
3114                                 bio = r10_bio->devs[0].bio;
3115                                 bio->bi_next = biolist;
3116                                 biolist = bio;
3117                                 bio->bi_private = r10_bio;
3118                                 bio->bi_end_io = end_sync_read;
3119                                 bio->bi_rw = READ;
3120                                 from_addr = r10_bio->devs[j].addr;
3121                                 bio->bi_sector = from_addr + rdev->data_offset;
3122                                 bio->bi_bdev = rdev->bdev;
3123                                 atomic_inc(&rdev->nr_pending);
3124                                 /* and we write to 'i' (if not in_sync) */
3125
3126                                 for (k=0; k<conf->copies; k++)
3127                                         if (r10_bio->devs[k].devnum == i)
3128                                                 break;
3129                                 BUG_ON(k == conf->copies);
3130                                 to_addr = r10_bio->devs[k].addr;
3131                                 r10_bio->devs[0].devnum = d;
3132                                 r10_bio->devs[0].addr = from_addr;
3133                                 r10_bio->devs[1].devnum = i;
3134                                 r10_bio->devs[1].addr = to_addr;
3135
3136                                 rdev = mirror->rdev;
3137                                 if (!test_bit(In_sync, &rdev->flags)) {
3138                                         bio = r10_bio->devs[1].bio;
3139                                         bio->bi_next = biolist;
3140                                         biolist = bio;
3141                                         bio->bi_private = r10_bio;
3142                                         bio->bi_end_io = end_sync_write;
3143                                         bio->bi_rw = WRITE;
3144                                         bio->bi_sector = to_addr
3145                                                 + rdev->data_offset;
3146                                         bio->bi_bdev = rdev->bdev;
3147                                         atomic_inc(&r10_bio->remaining);
3148                                 } else
3149                                         r10_bio->devs[1].bio->bi_end_io = NULL;
3150
3151                                 /* and maybe write to replacement */
3152                                 bio = r10_bio->devs[1].repl_bio;
3153                                 if (bio)
3154                                         bio->bi_end_io = NULL;
3155                                 rdev = mirror->replacement;
3156                                 /* Note: if rdev != NULL, then bio
3157                                  * cannot be NULL as r10buf_pool_alloc will
3158                                  * have allocated it.
3159                                  * So the second test here is pointless.
3160                                  * But it keeps semantic-checkers happy, and
3161                                  * this comment keeps human reviewers
3162                                  * happy.
3163                                  */
3164                                 if (rdev == NULL || bio == NULL ||
3165                                     test_bit(Faulty, &rdev->flags))
3166                                         break;
3167                                 bio->bi_next = biolist;
3168                                 biolist = bio;
3169                                 bio->bi_private = r10_bio;
3170                                 bio->bi_end_io = end_sync_write;
3171                                 bio->bi_rw = WRITE;
3172                                 bio->bi_sector = to_addr + rdev->data_offset;
3173                                 bio->bi_bdev = rdev->bdev;
3174                                 atomic_inc(&r10_bio->remaining);
3175                                 break;
3176                         }
3177                         if (j == conf->copies) {
3178                                 /* Cannot recover, so abort the recovery or
3179                                  * record a bad block */
3180                                 put_buf(r10_bio);
3181                                 if (rb2)
3182                                         atomic_dec(&rb2->remaining);
3183                                 r10_bio = rb2;
3184                                 if (any_working) {
3185                                         /* problem is that there are bad blocks
3186                                          * on other device(s)
3187                                          */
3188                                         int k;
3189                                         for (k = 0; k < conf->copies; k++)
3190                                                 if (r10_bio->devs[k].devnum == i)
3191                                                         break;
3192                                         if (!test_bit(In_sync,
3193                                                       &mirror->rdev->flags)
3194                                             && !rdev_set_badblocks(
3195                                                     mirror->rdev,
3196                                                     r10_bio->devs[k].addr,
3197                                                     max_sync, 0))
3198                                                 any_working = 0;
3199                                         if (mirror->replacement &&
3200                                             !rdev_set_badblocks(
3201                                                     mirror->replacement,
3202                                                     r10_bio->devs[k].addr,
3203                                                     max_sync, 0))
3204                                                 any_working = 0;
3205                                 }
3206                                 if (!any_working)  {
3207                                         if (!test_and_set_bit(MD_RECOVERY_INTR,
3208                                                               &mddev->recovery))
3209                                                 printk(KERN_INFO "md/raid10:%s: insufficient "
3210                                                        "working devices for recovery.\n",
3211                                                        mdname(mddev));
3212                                         mirror->recovery_disabled
3213                                                 = mddev->recovery_disabled;
3214                                 }
3215                                 break;
3216                         }
3217                 }
3218                 if (biolist == NULL) {
3219                         while (r10_bio) {
3220                                 struct r10bio *rb2 = r10_bio;
3221                                 r10_bio = (struct r10bio*) rb2->master_bio;
3222                                 rb2->master_bio = NULL;
3223                                 put_buf(rb2);
3224                         }
3225                         goto giveup;
3226                 }
3227         } else {
3228                 /* resync. Schedule a read for every block at this virt offset */
3229                 int count = 0;
3230
3231                 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
3232
3233                 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3234                                        &sync_blocks, mddev->degraded) &&
3235                     !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3236                                                  &mddev->recovery)) {
3237                         /* We can skip this block */
3238                         *skipped = 1;
3239                         return sync_blocks + sectors_skipped;
3240                 }
3241                 if (sync_blocks < max_sync)
3242                         max_sync = sync_blocks;
3243                 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3244
3245                 r10_bio->mddev = mddev;
3246                 atomic_set(&r10_bio->remaining, 0);
3247                 raise_barrier(conf, 0);
3248                 conf->next_resync = sector_nr;
3249
3250                 r10_bio->master_bio = NULL;
3251                 r10_bio->sector = sector_nr;
3252                 set_bit(R10BIO_IsSync, &r10_bio->state);
3253                 raid10_find_phys(conf, r10_bio);
3254                 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3255
3256                 for (i = 0; i < conf->copies; i++) {
3257                         int d = r10_bio->devs[i].devnum;
3258                         sector_t first_bad, sector;
3259                         int bad_sectors;
3260
3261                         if (r10_bio->devs[i].repl_bio)
3262                                 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3263
3264                         bio = r10_bio->devs[i].bio;
3265                         bio->bi_end_io = NULL;
3266                         clear_bit(BIO_UPTODATE, &bio->bi_flags);
3267                         if (conf->mirrors[d].rdev == NULL ||
3268                             test_bit(Faulty, &conf->mirrors[d].rdev->flags))
3269                                 continue;
3270                         sector = r10_bio->devs[i].addr;
3271                         if (is_badblock(conf->mirrors[d].rdev,
3272                                         sector, max_sync,
3273                                         &first_bad, &bad_sectors)) {
3274                                 if (first_bad > sector)
3275                                         max_sync = first_bad - sector;
3276                                 else {
3277                                         bad_sectors -= (sector - first_bad);
3278                                         if (max_sync > bad_sectors)
3279                                                 max_sync = bad_sectors;
3280                                         continue;
3281                                 }
3282                         }
3283                         atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3284                         atomic_inc(&r10_bio->remaining);
3285                         bio->bi_next = biolist;
3286                         biolist = bio;
3287                         bio->bi_private = r10_bio;
3288                         bio->bi_end_io = end_sync_read;
3289                         bio->bi_rw = READ;
3290                         bio->bi_sector = sector +
3291                                 conf->mirrors[d].rdev->data_offset;
3292                         bio->bi_bdev = conf->mirrors[d].rdev->bdev;
3293                         count++;
3294
3295                         if (conf->mirrors[d].replacement == NULL ||
3296                             test_bit(Faulty,
3297                                      &conf->mirrors[d].replacement->flags))
3298                                 continue;
3299
3300                         /* Need to set up for writing to the replacement */
3301                         bio = r10_bio->devs[i].repl_bio;
3302                         clear_bit(BIO_UPTODATE, &bio->bi_flags);
3303
3304                         sector = r10_bio->devs[i].addr;
3305                         atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3306                         bio->bi_next = biolist;
3307                         biolist = bio;
3308                         bio->bi_private = r10_bio;
3309                         bio->bi_end_io = end_sync_write;
3310                         bio->bi_rw = WRITE;
3311                         bio->bi_sector = sector +
3312                                 conf->mirrors[d].replacement->data_offset;
3313                         bio->bi_bdev = conf->mirrors[d].replacement->bdev;
3314                         count++;
3315                 }
3316
3317                 if (count < 2) {
3318                         for (i=0; i<conf->copies; i++) {
3319                                 int d = r10_bio->devs[i].devnum;
3320                                 if (r10_bio->devs[i].bio->bi_end_io)
3321                                         rdev_dec_pending(conf->mirrors[d].rdev,
3322                                                          mddev);
3323                                 if (r10_bio->devs[i].repl_bio &&
3324                                     r10_bio->devs[i].repl_bio->bi_end_io)
3325                                         rdev_dec_pending(
3326                                                 conf->mirrors[d].replacement,
3327                                                 mddev);
3328                         }
3329                         put_buf(r10_bio);
3330                         biolist = NULL;
3331                         goto giveup;
3332                 }
3333         }
3334
3335         for (bio = biolist; bio ; bio=bio->bi_next) {
3336
3337                 bio->bi_flags &= ~(BIO_POOL_MASK - 1);
3338                 if (bio->bi_end_io)
3339                         bio->bi_flags |= 1 << BIO_UPTODATE;
3340                 bio->bi_vcnt = 0;
3341                 bio->bi_idx = 0;
3342                 bio->bi_phys_segments = 0;
3343                 bio->bi_size = 0;
3344         }
3345
3346         nr_sectors = 0;
3347         if (sector_nr + max_sync < max_sector)
3348                 max_sector = sector_nr + max_sync;
3349         do {
3350                 struct page *page;
3351                 int len = PAGE_SIZE;
3352                 if (sector_nr + (len>>9) > max_sector)
3353                         len = (max_sector - sector_nr) << 9;
3354                 if (len == 0)
3355                         break;
3356                 for (bio= biolist ; bio ; bio=bio->bi_next) {
3357                         struct bio *bio2;
3358                         page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
3359                         if (bio_add_page(bio, page, len, 0))
3360                                 continue;
3361
3362                         /* stop here */
3363                         bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
3364                         for (bio2 = biolist;
3365                              bio2 && bio2 != bio;
3366                              bio2 = bio2->bi_next) {
3367                                 /* remove last page from this bio */
3368                                 bio2->bi_vcnt--;
3369                                 bio2->bi_size -= len;
3370                                 bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
3371                         }
3372                         goto bio_full;
3373                 }
3374                 nr_sectors += len>>9;
3375                 sector_nr += len>>9;
3376         } while (biolist->bi_vcnt < RESYNC_PAGES);
3377  bio_full:
3378         r10_bio->sectors = nr_sectors;
3379
3380         while (biolist) {
3381                 bio = biolist;
3382                 biolist = biolist->bi_next;
3383
3384                 bio->bi_next = NULL;
3385                 r10_bio = bio->bi_private;
3386                 r10_bio->sectors = nr_sectors;
3387
3388                 if (bio->bi_end_io == end_sync_read) {
3389                         md_sync_acct(bio->bi_bdev, nr_sectors);
3390                         generic_make_request(bio);
3391                 }
3392         }
3393
3394         if (sectors_skipped)
3395                 /* pretend they weren't skipped, it makes
3396                  * no important difference in this case
3397                  */
3398                 md_done_sync(mddev, sectors_skipped, 1);
3399
3400         return sectors_skipped + nr_sectors;
3401  giveup:
3402         /* There is nowhere to write, so all non-sync
3403          * drives must be failed or in resync, all drives
3404          * have a bad block, so try the next chunk...
3405          */
3406         if (sector_nr + max_sync < max_sector)
3407                 max_sector = sector_nr + max_sync;
3408
3409         sectors_skipped += (max_sector - sector_nr);
3410         chunks_skipped ++;
3411         sector_nr = max_sector;
3412         goto skipped;
3413 }
3414
3415 static sector_t
3416 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3417 {
3418         sector_t size;
3419         struct r10conf *conf = mddev->private;
3420
3421         if (!raid_disks)
3422                 raid_disks = min(conf->geo.raid_disks,
3423                                  conf->prev.raid_disks);
3424         if (!sectors)
3425                 sectors = conf->dev_sectors;
3426
3427         size = sectors >> conf->geo.chunk_shift;
3428         sector_div(size, conf->geo.far_copies);
3429         size = size * raid_disks;
3430         sector_div(size, conf->geo.near_copies);
3431
3432         return size << conf->geo.chunk_shift;
3433 }
3434
3435 static void calc_sectors(struct r10conf *conf, sector_t size)
3436 {
3437         /* Calculate the number of sectors-per-device that will
3438          * actually be used, and set conf->dev_sectors and
3439          * conf->stride
3440          */
3441
3442         size = size >> conf->geo.chunk_shift;
3443         sector_div(size, conf->geo.far_copies);
3444         size = size * conf->geo.raid_disks;
3445         sector_div(size, conf->geo.near_copies);
3446         /* 'size' is now the number of chunks in the array */
3447         /* calculate "used chunks per device" */
3448         size = size * conf->copies;
3449
3450         /* We need to round up when dividing by raid_disks to
3451          * get the stride size.
3452          */
3453         size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3454
3455         conf->dev_sectors = size << conf->geo.chunk_shift;
3456
3457         if (conf->geo.far_offset)
3458                 conf->geo.stride = 1 << conf->geo.chunk_shift;
3459         else {
3460                 sector_div(size, conf->geo.far_copies);
3461                 conf->geo.stride = size << conf->geo.chunk_shift;
3462         }
3463 }
3464
3465 enum geo_type {geo_new, geo_old, geo_start};
3466 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3467 {
3468         int nc, fc, fo;
3469         int layout, chunk, disks;
3470         switch (new) {
3471         case geo_old:
3472                 layout = mddev->layout;
3473                 chunk = mddev->chunk_sectors;
3474                 disks = mddev->raid_disks - mddev->delta_disks;
3475                 break;
3476         case geo_new:
3477                 layout = mddev->new_layout;
3478                 chunk = mddev->new_chunk_sectors;
3479                 disks = mddev->raid_disks;
3480                 break;
3481         default: /* avoid 'may be unused' warnings */
3482         case geo_start: /* new when starting reshape - raid_disks not
3483                          * updated yet. */
3484                 layout = mddev->new_layout;
3485                 chunk = mddev->new_chunk_sectors;
3486                 disks = mddev->raid_disks + mddev->delta_disks;
3487                 break;
3488         }
3489         if (layout >> 18)
3490                 return -1;
3491         if (chunk < (PAGE_SIZE >> 9) ||
3492             !is_power_of_2(chunk))
3493                 return -2;
3494         nc = layout & 255;
3495         fc = (layout >> 8) & 255;
3496         fo = layout & (1<<16);
3497         geo->raid_disks = disks;
3498         geo->near_copies = nc;
3499         geo->far_copies = fc;
3500         geo->far_offset = fo;
3501         geo->far_set_size = (layout & (1<<17)) ? disks / fc : disks;
3502         geo->chunk_mask = chunk - 1;
3503         geo->chunk_shift = ffz(~chunk);
3504         return nc*fc;
3505 }
3506
3507 static struct r10conf *setup_conf(struct mddev *mddev)
3508 {
3509         struct r10conf *conf = NULL;
3510         int err = -EINVAL;
3511         struct geom geo;
3512         int copies;
3513
3514         copies = setup_geo(&geo, mddev, geo_new);
3515
3516         if (copies == -2) {
3517                 printk(KERN_ERR "md/raid10:%s: chunk size must be "
3518                        "at least PAGE_SIZE(%ld) and be a power of 2.\n",
3519                        mdname(mddev), PAGE_SIZE);
3520                 goto out;
3521         }
3522
3523         if (copies < 2 || copies > mddev->raid_disks) {
3524                 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3525                        mdname(mddev), mddev->new_layout);
3526                 goto out;
3527         }
3528
3529         err = -ENOMEM;
3530         conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3531         if (!conf)
3532                 goto out;
3533
3534         /* FIXME calc properly */
3535         conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
3536                                                             max(0,mddev->delta_disks)),
3537                                 GFP_KERNEL);
3538         if (!conf->mirrors)
3539                 goto out;
3540
3541         conf->tmppage = alloc_page(GFP_KERNEL);
3542         if (!conf->tmppage)
3543                 goto out;
3544
3545         conf->geo = geo;
3546         conf->copies = copies;
3547         conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3548                                            r10bio_pool_free, conf);
3549         if (!conf->r10bio_pool)
3550                 goto out;
3551
3552         calc_sectors(conf, mddev->dev_sectors);
3553         if (mddev->reshape_position == MaxSector) {
3554                 conf->prev = conf->geo;
3555                 conf->reshape_progress = MaxSector;
3556         } else {
3557                 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3558                         err = -EINVAL;
3559                         goto out;
3560                 }
3561                 conf->reshape_progress = mddev->reshape_position;
3562                 if (conf->prev.far_offset)
3563                         conf->prev.stride = 1 << conf->prev.chunk_shift;
3564                 else
3565                         /* far_copies must be 1 */
3566                         conf->prev.stride = conf->dev_sectors;
3567         }
3568         spin_lock_init(&conf->device_lock);
3569         INIT_LIST_HEAD(&conf->retry_list);
3570
3571         spin_lock_init(&conf->resync_lock);
3572         init_waitqueue_head(&conf->wait_barrier);
3573
3574         conf->thread = md_register_thread(raid10d, mddev, "raid10");
3575         if (!conf->thread)
3576                 goto out;
3577
3578         conf->mddev = mddev;
3579         return conf;
3580
3581  out:
3582         if (err == -ENOMEM)
3583                 printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
3584                        mdname(mddev));
3585         if (conf) {
3586                 if (conf->r10bio_pool)
3587                         mempool_destroy(conf->r10bio_pool);
3588                 kfree(conf->mirrors);
3589                 safe_put_page(conf->tmppage);
3590                 kfree(conf);
3591         }
3592         return ERR_PTR(err);
3593 }
3594
3595 static int run(struct mddev *mddev)
3596 {
3597         struct r10conf *conf;
3598         int i, disk_idx, chunk_size;
3599         struct raid10_info *disk;
3600         struct md_rdev *rdev;
3601         sector_t size;
3602         sector_t min_offset_diff = 0;
3603         int first = 1;
3604         bool discard_supported = false;
3605
3606         if (mddev->private == NULL) {
3607                 conf = setup_conf(mddev);
3608                 if (IS_ERR(conf))
3609                         return PTR_ERR(conf);
3610                 mddev->private = conf;
3611         }
3612         conf = mddev->private;
3613         if (!conf)
3614                 goto out;
3615
3616         mddev->thread = conf->thread;
3617         conf->thread = NULL;
3618
3619         chunk_size = mddev->chunk_sectors << 9;
3620         if (mddev->queue) {
3621                 blk_queue_max_discard_sectors(mddev->queue,
3622                                               mddev->chunk_sectors);
3623                 blk_queue_max_write_same_sectors(mddev->queue,
3624                                                  mddev->chunk_sectors);
3625                 blk_queue_io_min(mddev->queue, chunk_size);
3626                 if (conf->geo.raid_disks % conf->geo.near_copies)
3627                         blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3628                 else
3629                         blk_queue_io_opt(mddev->queue, chunk_size *
3630                                          (conf->geo.raid_disks / conf->geo.near_copies));
3631         }
3632
3633         rdev_for_each(rdev, mddev) {
3634                 long long diff;
3635                 struct request_queue *q;
3636
3637                 disk_idx = rdev->raid_disk;
3638                 if (disk_idx < 0)
3639                         continue;
3640                 if (disk_idx >= conf->geo.raid_disks &&
3641                     disk_idx >= conf->prev.raid_disks)
3642                         continue;
3643                 disk = conf->mirrors + disk_idx;
3644
3645                 if (test_bit(Replacement, &rdev->flags)) {
3646                         if (disk->replacement)
3647                                 goto out_free_conf;
3648                         disk->replacement = rdev;
3649                 } else {
3650                         if (disk->rdev)
3651                                 goto out_free_conf;
3652                         disk->rdev = rdev;
3653                 }
3654                 q = bdev_get_queue(rdev->bdev);
3655                 if (q->merge_bvec_fn)
3656                         mddev->merge_check_needed = 1;
3657                 diff = (rdev->new_data_offset - rdev->data_offset);
3658                 if (!mddev->reshape_backwards)
3659                         diff = -diff;
3660                 if (diff < 0)
3661                         diff = 0;
3662                 if (first || diff < min_offset_diff)
3663                         min_offset_diff = diff;
3664
3665                 if (mddev->gendisk)
3666                         disk_stack_limits(mddev->gendisk, rdev->bdev,
3667                                           rdev->data_offset << 9);
3668
3669                 disk->head_position = 0;
3670
3671                 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3672                         discard_supported = true;
3673         }
3674
3675         if (mddev->queue) {
3676                 if (discard_supported)
3677                         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3678                                                 mddev->queue);
3679                 else
3680                         queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3681                                                   mddev->queue);
3682         }
3683         /* need to check that every block has at least one working mirror */
3684         if (!enough(conf, -1)) {
3685                 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
3686                        mdname(mddev));
3687                 goto out_free_conf;
3688         }
3689
3690         if (conf->reshape_progress != MaxSector) {
3691                 /* must ensure that shape change is supported */
3692                 if (conf->geo.far_copies != 1 &&
3693                     conf->geo.far_offset == 0)
3694                         goto out_free_conf;
3695                 if (conf->prev.far_copies != 1 &&
3696                     conf->geo.far_offset == 0)
3697                         goto out_free_conf;
3698         }
3699
3700         mddev->degraded = 0;
3701         for (i = 0;
3702              i < conf->geo.raid_disks
3703                      || i < conf->prev.raid_disks;
3704              i++) {
3705
3706                 disk = conf->mirrors + i;
3707
3708                 if (!disk->rdev && disk->replacement) {
3709                         /* The replacement is all we have - use it */
3710                         disk->rdev = disk->replacement;
3711                         disk->replacement = NULL;
3712                         clear_bit(Replacement, &disk->rdev->flags);
3713                 }
3714
3715                 if (!disk->rdev ||
3716                     !test_bit(In_sync, &disk->rdev->flags)) {
3717                         disk->head_position = 0;
3718                         mddev->degraded++;
3719                         if (disk->rdev)
3720                                 conf->fullsync = 1;
3721                 }
3722                 disk->recovery_disabled = mddev->recovery_disabled - 1;
3723         }
3724
3725         if (mddev->recovery_cp != MaxSector)
3726                 printk(KERN_NOTICE "md/raid10:%s: not clean"
3727                        " -- starting background reconstruction\n",
3728                        mdname(mddev));
3729         printk(KERN_INFO
3730                 "md/raid10:%s: active with %d out of %d devices\n",
3731                 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3732                 conf->geo.raid_disks);
3733         /*
3734          * Ok, everything is just fine now
3735          */
3736         mddev->dev_sectors = conf->dev_sectors;
3737         size = raid10_size(mddev, 0, 0);
3738         md_set_array_sectors(mddev, size);
3739         mddev->resync_max_sectors = size;
3740
3741         if (mddev->queue) {
3742                 int stripe = conf->geo.raid_disks *
3743                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
3744                 mddev->queue->backing_dev_info.congested_fn = raid10_congested;
3745                 mddev->queue->backing_dev_info.congested_data = mddev;
3746
3747                 /* Calculate max read-ahead size.
3748                  * We need to readahead at least twice a whole stripe....
3749                  * maybe...
3750                  */
3751                 stripe /= conf->geo.near_copies;
3752                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3753                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
3754                 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
3755         }
3756
3757
3758         if (md_integrity_register(mddev))
3759                 goto out_free_conf;
3760
3761         if (conf->reshape_progress != MaxSector) {
3762                 unsigned long before_length, after_length;
3763
3764                 before_length = ((1 << conf->prev.chunk_shift) *
3765                                  conf->prev.far_copies);
3766                 after_length = ((1 << conf->geo.chunk_shift) *
3767                                 conf->geo.far_copies);
3768
3769                 if (max(before_length, after_length) > min_offset_diff) {
3770                         /* This cannot work */
3771                         printk("md/raid10: offset difference not enough to continue reshape\n");
3772                         goto out_free_conf;
3773                 }
3774                 conf->offset_diff = min_offset_diff;
3775
3776                 conf->reshape_safe = conf->reshape_progress;
3777                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3778                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3779                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3780                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3781                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3782                                                         "reshape");
3783         }
3784
3785         return 0;
3786
3787 out_free_conf:
3788         md_unregister_thread(&mddev->thread);
3789         if (conf->r10bio_pool)
3790                 mempool_destroy(conf->r10bio_pool);
3791         safe_put_page(conf->tmppage);
3792         kfree(conf->mirrors);
3793         kfree(conf);
3794         mddev->private = NULL;
3795 out:
3796         return -EIO;
3797 }
3798
3799 static int stop(struct mddev *mddev)
3800 {
3801         struct r10conf *conf = mddev->private;
3802
3803         raise_barrier(conf, 0);
3804         lower_barrier(conf);
3805
3806         md_unregister_thread(&mddev->thread);
3807         if (mddev->queue)
3808                 /* the unplug fn references 'conf'*/
3809                 blk_sync_queue(mddev->queue);
3810
3811         if (conf->r10bio_pool)
3812                 mempool_destroy(conf->r10bio_pool);
3813         kfree(conf->mirrors);
3814         kfree(conf);
3815         mddev->private = NULL;
3816         return 0;
3817 }
3818
3819 static void raid10_quiesce(struct mddev *mddev, int state)
3820 {
3821         struct r10conf *conf = mddev->private;
3822
3823         switch(state) {
3824         case 1:
3825                 raise_barrier(conf, 0);
3826                 break;
3827         case 0:
3828                 lower_barrier(conf);
3829                 break;
3830         }
3831 }
3832
3833 static int raid10_resize(struct mddev *mddev, sector_t sectors)
3834 {
3835         /* Resize of 'far' arrays is not supported.
3836          * For 'near' and 'offset' arrays we can set the
3837          * number of sectors used to be an appropriate multiple
3838          * of the chunk size.
3839          * For 'offset', this is far_copies*chunksize.
3840          * For 'near' the multiplier is the LCM of
3841          * near_copies and raid_disks.
3842          * So if far_copies > 1 && !far_offset, fail.
3843          * Else find LCM(raid_disks, near_copy)*far_copies and
3844          * multiply by chunk_size.  Then round to this number.
3845          * This is mostly done by raid10_size()
3846          */
3847         struct r10conf *conf = mddev->private;
3848         sector_t oldsize, size;
3849
3850         if (mddev->reshape_position != MaxSector)
3851                 return -EBUSY;
3852
3853         if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3854                 return -EINVAL;
3855
3856         oldsize = raid10_size(mddev, 0, 0);
3857         size = raid10_size(mddev, sectors, 0);
3858         if (mddev->external_size &&
3859             mddev->array_sectors > size)
3860                 return -EINVAL;
3861         if (mddev->bitmap) {
3862                 int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
3863                 if (ret)
3864                         return ret;
3865         }
3866         md_set_array_sectors(mddev, size);
3867         set_capacity(mddev->gendisk, mddev->array_sectors);
3868         revalidate_disk(mddev->gendisk);
3869         if (sectors > mddev->dev_sectors &&
3870             mddev->recovery_cp > oldsize) {
3871                 mddev->recovery_cp = oldsize;
3872                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3873         }
3874         calc_sectors(conf, sectors);
3875         mddev->dev_sectors = conf->dev_sectors;
3876         mddev->resync_max_sectors = size;
3877         return 0;
3878 }
3879
3880 static void *raid10_takeover_raid0(struct mddev *mddev)
3881 {
3882         struct md_rdev *rdev;
3883         struct r10conf *conf;
3884
3885         if (mddev->degraded > 0) {
3886                 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
3887                        mdname(mddev));
3888                 return ERR_PTR(-EINVAL);
3889         }
3890
3891         /* Set new parameters */
3892         mddev->new_level = 10;
3893         /* new layout: far_copies = 1, near_copies = 2 */
3894         mddev->new_layout = (1<<8) + 2;
3895         mddev->new_chunk_sectors = mddev->chunk_sectors;
3896         mddev->delta_disks = mddev->raid_disks;
3897         mddev->raid_disks *= 2;
3898         /* make sure it will be not marked as dirty */
3899         mddev->recovery_cp = MaxSector;
3900
3901         conf = setup_conf(mddev);
3902         if (!IS_ERR(conf)) {
3903                 rdev_for_each(rdev, mddev)
3904                         if (rdev->raid_disk >= 0)
3905                                 rdev->new_raid_disk = rdev->raid_disk * 2;
3906                 conf->barrier = 1;
3907         }
3908
3909         return conf;
3910 }
3911
3912 static void *raid10_takeover(struct mddev *mddev)
3913 {
3914         struct r0conf *raid0_conf;
3915
3916         /* raid10 can take over:
3917          *  raid0 - providing it has only two drives
3918          */
3919         if (mddev->level == 0) {
3920                 /* for raid0 takeover only one zone is supported */
3921                 raid0_conf = mddev->private;
3922                 if (raid0_conf->nr_strip_zones > 1) {
3923                         printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
3924                                " with more than one zone.\n",
3925                                mdname(mddev));
3926                         return ERR_PTR(-EINVAL);
3927                 }
3928                 return raid10_takeover_raid0(mddev);
3929         }
3930         return ERR_PTR(-EINVAL);
3931 }
3932
3933 static int raid10_check_reshape(struct mddev *mddev)
3934 {
3935         /* Called when there is a request to change
3936          * - layout (to ->new_layout)
3937          * - chunk size (to ->new_chunk_sectors)
3938          * - raid_disks (by delta_disks)
3939          * or when trying to restart a reshape that was ongoing.
3940          *
3941          * We need to validate the request and possibly allocate
3942          * space if that might be an issue later.
3943          *
3944          * Currently we reject any reshape of a 'far' mode array,
3945          * allow chunk size to change if new is generally acceptable,
3946          * allow raid_disks to increase, and allow
3947          * a switch between 'near' mode and 'offset' mode.
3948          */
3949         struct r10conf *conf = mddev->private;
3950         struct geom geo;
3951
3952         if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
3953                 return -EINVAL;
3954
3955         if (setup_geo(&geo, mddev, geo_start) != conf->copies)
3956                 /* mustn't change number of copies */
3957                 return -EINVAL;
3958         if (geo.far_copies > 1 && !geo.far_offset)
3959                 /* Cannot switch to 'far' mode */
3960                 return -EINVAL;
3961
3962         if (mddev->array_sectors & geo.chunk_mask)
3963                         /* not factor of array size */
3964                         return -EINVAL;
3965
3966         if (!enough(conf, -1))
3967                 return -EINVAL;
3968
3969         kfree(conf->mirrors_new);
3970         conf->mirrors_new = NULL;
3971         if (mddev->delta_disks > 0) {
3972                 /* allocate new 'mirrors' list */
3973                 conf->mirrors_new = kzalloc(
3974                         sizeof(struct raid10_info)
3975                         *(mddev->raid_disks +
3976                           mddev->delta_disks),
3977                         GFP_KERNEL);
3978                 if (!conf->mirrors_new)
3979                         return -ENOMEM;
3980         }
3981         return 0;
3982 }
3983
3984 /*
3985  * Need to check if array has failed when deciding whether to:
3986  *  - start an array
3987  *  - remove non-faulty devices
3988  *  - add a spare
3989  *  - allow a reshape
3990  * This determination is simple when no reshape is happening.
3991  * However if there is a reshape, we need to carefully check
3992  * both the before and after sections.
3993  * This is because some failed devices may only affect one
3994  * of the two sections, and some non-in_sync devices may
3995  * be insync in the section most affected by failed devices.
3996  */
3997 static int calc_degraded(struct r10conf *conf)
3998 {
3999         int degraded, degraded2;
4000         int i;
4001
4002         rcu_read_lock();
4003         degraded = 0;
4004         /* 'prev' section first */
4005         for (i = 0; i < conf->prev.raid_disks; i++) {
4006                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4007                 if (!rdev || test_bit(Faulty, &rdev->flags))
4008                         degraded++;
4009                 else if (!test_bit(In_sync, &rdev->flags))
4010                         /* When we can reduce the number of devices in
4011                          * an array, this might not contribute to
4012                          * 'degraded'.  It does now.
4013                          */
4014                         degraded++;
4015         }
4016         rcu_read_unlock();
4017         if (conf->geo.raid_disks == conf->prev.raid_disks)
4018                 return degraded;
4019         rcu_read_lock();
4020         degraded2 = 0;
4021         for (i = 0; i < conf->geo.raid_disks; i++) {
4022                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4023                 if (!rdev || test_bit(Faulty, &rdev->flags))
4024                         degraded2++;
4025                 else if (!test_bit(In_sync, &rdev->flags)) {
4026                         /* If reshape is increasing the number of devices,
4027                          * this section has already been recovered, so
4028                          * it doesn't contribute to degraded.
4029                          * else it does.
4030                          */
4031                         if (conf->geo.raid_disks <= conf->prev.raid_disks)
4032                                 degraded2++;
4033                 }
4034         }
4035         rcu_read_unlock();
4036         if (degraded2 > degraded)
4037                 return degraded2;
4038         return degraded;
4039 }
4040
4041 static int raid10_start_reshape(struct mddev *mddev)
4042 {
4043         /* A 'reshape' has been requested. This commits
4044          * the various 'new' fields and sets MD_RECOVER_RESHAPE
4045          * This also checks if there are enough spares and adds them
4046          * to the array.
4047          * We currently require enough spares to make the final
4048          * array non-degraded.  We also require that the difference
4049          * between old and new data_offset - on each device - is
4050          * enough that we never risk over-writing.
4051          */
4052
4053         unsigned long before_length, after_length;
4054         sector_t min_offset_diff = 0;
4055         int first = 1;
4056         struct geom new;
4057         struct r10conf *conf = mddev->private;
4058         struct md_rdev *rdev;
4059         int spares = 0;
4060         int ret;
4061
4062         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4063                 return -EBUSY;
4064
4065         if (setup_geo(&new, mddev, geo_start) != conf->copies)
4066                 return -EINVAL;
4067
4068         before_length = ((1 << conf->prev.chunk_shift) *
4069                          conf->prev.far_copies);
4070         after_length = ((1 << conf->geo.chunk_shift) *
4071                         conf->geo.far_copies);
4072
4073         rdev_for_each(rdev, mddev) {
4074                 if (!test_bit(In_sync, &rdev->flags)
4075                     && !test_bit(Faulty, &rdev->flags))
4076                         spares++;
4077                 if (rdev->raid_disk >= 0) {
4078                         long long diff = (rdev->new_data_offset
4079                                           - rdev->data_offset);
4080                         if (!mddev->reshape_backwards)
4081                                 diff = -diff;
4082                         if (diff < 0)
4083                                 diff = 0;
4084                         if (first || diff < min_offset_diff)
4085                                 min_offset_diff = diff;
4086                 }
4087         }
4088
4089         if (max(before_length, after_length) > min_offset_diff)
4090                 return -EINVAL;
4091
4092         if (spares < mddev->delta_disks)
4093                 return -EINVAL;
4094
4095         conf->offset_diff = min_offset_diff;
4096         spin_lock_irq(&conf->device_lock);
4097         if (conf->mirrors_new) {
4098                 memcpy(conf->mirrors_new, conf->mirrors,
4099                        sizeof(struct raid10_info)*conf->prev.raid_disks);
4100                 smp_mb();
4101                 kfree(conf->mirrors_old); /* FIXME and elsewhere */
4102                 conf->mirrors_old = conf->mirrors;
4103                 conf->mirrors = conf->mirrors_new;
4104                 conf->mirrors_new = NULL;
4105         }
4106         setup_geo(&conf->geo, mddev, geo_start);
4107         smp_mb();
4108         if (mddev->reshape_backwards) {
4109                 sector_t size = raid10_size(mddev, 0, 0);
4110                 if (size < mddev->array_sectors) {
4111                         spin_unlock_irq(&conf->device_lock);
4112                         printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n",
4113                                mdname(mddev));
4114                         return -EINVAL;
4115                 }
4116                 mddev->resync_max_sectors = size;
4117                 conf->reshape_progress = size;
4118         } else
4119                 conf->reshape_progress = 0;
4120         spin_unlock_irq(&conf->device_lock);
4121
4122         if (mddev->delta_disks && mddev->bitmap) {
4123                 ret = bitmap_resize(mddev->bitmap,
4124                                     raid10_size(mddev, 0,
4125                                                 conf->geo.raid_disks),
4126                                     0, 0);
4127                 if (ret)
4128                         goto abort;
4129         }
4130         if (mddev->delta_disks > 0) {
4131                 rdev_for_each(rdev, mddev)
4132                         if (rdev->raid_disk < 0 &&
4133                             !test_bit(Faulty, &rdev->flags)) {
4134                                 if (raid10_add_disk(mddev, rdev) == 0) {
4135                                         if (rdev->raid_disk >=
4136                                             conf->prev.raid_disks)
4137                                                 set_bit(In_sync, &rdev->flags);
4138                                         else
4139                                                 rdev->recovery_offset = 0;
4140
4141                                         if (sysfs_link_rdev(mddev, rdev))
4142                                                 /* Failure here  is OK */;
4143                                 }
4144                         } else if (rdev->raid_disk >= conf->prev.raid_disks
4145                                    && !test_bit(Faulty, &rdev->flags)) {
4146                                 /* This is a spare that was manually added */
4147                                 set_bit(In_sync, &rdev->flags);
4148                         }
4149         }
4150         /* When a reshape changes the number of devices,
4151          * ->degraded is measured against the larger of the
4152          * pre and  post numbers.
4153          */
4154         spin_lock_irq(&conf->device_lock);
4155         mddev->degraded = calc_degraded(conf);
4156         spin_unlock_irq(&conf->device_lock);
4157         mddev->raid_disks = conf->geo.raid_disks;
4158         mddev->reshape_position = conf->reshape_progress;
4159         set_bit(MD_CHANGE_DEVS, &mddev->flags);
4160
4161         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4162         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4163         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4164         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4165
4166         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4167                                                 "reshape");
4168         if (!mddev->sync_thread) {
4169                 ret = -EAGAIN;
4170                 goto abort;
4171         }
4172         conf->reshape_checkpoint = jiffies;
4173         md_wakeup_thread(mddev->sync_thread);
4174         md_new_event(mddev);
4175         return 0;
4176
4177 abort:
4178         mddev->recovery = 0;
4179         spin_lock_irq(&conf->device_lock);
4180         conf->geo = conf->prev;
4181         mddev->raid_disks = conf->geo.raid_disks;
4182         rdev_for_each(rdev, mddev)
4183                 rdev->new_data_offset = rdev->data_offset;
4184         smp_wmb();
4185         conf->reshape_progress = MaxSector;
4186         mddev->reshape_position = MaxSector;
4187         spin_unlock_irq(&conf->device_lock);
4188         return ret;
4189 }
4190
4191 /* Calculate the last device-address that could contain
4192  * any block from the chunk that includes the array-address 's'
4193  * and report the next address.
4194  * i.e. the address returned will be chunk-aligned and after
4195  * any data that is in the chunk containing 's'.
4196  */
4197 static sector_t last_dev_address(sector_t s, struct geom *geo)
4198 {
4199         s = (s | geo->chunk_mask) + 1;
4200         s >>= geo->chunk_shift;
4201         s *= geo->near_copies;
4202         s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4203         s *= geo->far_copies;
4204         s <<= geo->chunk_shift;
4205         return s;
4206 }
4207
4208 /* Calculate the first device-address that could contain
4209  * any block from the chunk that includes the array-address 's'.
4210  * This too will be the start of a chunk
4211  */
4212 static sector_t first_dev_address(sector_t s, struct geom *geo)
4213 {
4214         s >>= geo->chunk_shift;
4215         s *= geo->near_copies;
4216         sector_div(s, geo->raid_disks);
4217         s *= geo->far_copies;
4218         s <<= geo->chunk_shift;
4219         return s;
4220 }
4221
4222 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4223                                 int *skipped)
4224 {
4225         /* We simply copy at most one chunk (smallest of old and new)
4226          * at a time, possibly less if that exceeds RESYNC_PAGES,
4227          * or we hit a bad block or something.
4228          * This might mean we pause for normal IO in the middle of
4229          * a chunk, but that is not a problem was mddev->reshape_position
4230          * can record any location.
4231          *
4232          * If we will want to write to a location that isn't
4233          * yet recorded as 'safe' (i.e. in metadata on disk) then
4234          * we need to flush all reshape requests and update the metadata.
4235          *
4236          * When reshaping forwards (e.g. to more devices), we interpret
4237          * 'safe' as the earliest block which might not have been copied
4238          * down yet.  We divide this by previous stripe size and multiply
4239          * by previous stripe length to get lowest device offset that we
4240          * cannot write to yet.
4241          * We interpret 'sector_nr' as an address that we want to write to.
4242          * From this we use last_device_address() to find where we might
4243          * write to, and first_device_address on the  'safe' position.
4244          * If this 'next' write position is after the 'safe' position,
4245          * we must update the metadata to increase the 'safe' position.
4246          *
4247          * When reshaping backwards, we round in the opposite direction
4248          * and perform the reverse test:  next write position must not be
4249          * less than current safe position.
4250          *
4251          * In all this the minimum difference in data offsets
4252          * (conf->offset_diff - always positive) allows a bit of slack,
4253          * so next can be after 'safe', but not by more than offset_disk
4254          *
4255          * We need to prepare all the bios here before we start any IO
4256          * to ensure the size we choose is acceptable to all devices.
4257          * The means one for each copy for write-out and an extra one for
4258          * read-in.
4259          * We store the read-in bio in ->master_bio and the others in
4260          * ->devs[x].bio and ->devs[x].repl_bio.
4261          */
4262         struct r10conf *conf = mddev->private;
4263         struct r10bio *r10_bio;
4264         sector_t next, safe, last;
4265         int max_sectors;
4266         int nr_sectors;
4267         int s;
4268         struct md_rdev *rdev;
4269         int need_flush = 0;
4270         struct bio *blist;
4271         struct bio *bio, *read_bio;
4272         int sectors_done = 0;
4273
4274         if (sector_nr == 0) {
4275                 /* If restarting in the middle, skip the initial sectors */
4276                 if (mddev->reshape_backwards &&
4277                     conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4278                         sector_nr = (raid10_size(mddev, 0, 0)
4279                                      - conf->reshape_progress);
4280                 } else if (!mddev->reshape_backwards &&
4281                            conf->reshape_progress > 0)
4282                         sector_nr = conf->reshape_progress;
4283                 if (sector_nr) {
4284                         mddev->curr_resync_completed = sector_nr;
4285                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4286                         *skipped = 1;
4287                         return sector_nr;
4288                 }
4289         }
4290
4291         /* We don't use sector_nr to track where we are up to
4292          * as that doesn't work well for ->reshape_backwards.
4293          * So just use ->reshape_progress.
4294          */
4295         if (mddev->reshape_backwards) {
4296                 /* 'next' is the earliest device address that we might
4297                  * write to for this chunk in the new layout
4298                  */
4299                 next = first_dev_address(conf->reshape_progress - 1,
4300                                          &conf->geo);
4301
4302                 /* 'safe' is the last device address that we might read from
4303                  * in the old layout after a restart
4304                  */
4305                 safe = last_dev_address(conf->reshape_safe - 1,
4306                                         &conf->prev);
4307
4308                 if (next + conf->offset_diff < safe)
4309                         need_flush = 1;
4310
4311                 last = conf->reshape_progress - 1;
4312                 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4313                                                & conf->prev.chunk_mask);
4314                 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4315                         sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4316         } else {
4317                 /* 'next' is after the last device address that we
4318                  * might write to for this chunk in the new layout
4319                  */
4320                 next = last_dev_address(conf->reshape_progress, &conf->geo);
4321
4322                 /* 'safe' is the earliest device address that we might
4323                  * read from in the old layout after a restart
4324                  */
4325                 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4326
4327                 /* Need to update metadata if 'next' might be beyond 'safe'
4328                  * as that would possibly corrupt data
4329                  */
4330                 if (next > safe + conf->offset_diff)
4331                         need_flush = 1;
4332
4333                 sector_nr = conf->reshape_progress;
4334                 last  = sector_nr | (conf->geo.chunk_mask
4335                                      & conf->prev.chunk_mask);
4336
4337                 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4338                         last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4339         }
4340
4341         if (need_flush ||
4342             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4343                 /* Need to update reshape_position in metadata */
4344                 wait_barrier(conf);
4345                 mddev->reshape_position = conf->reshape_progress;
4346                 if (mddev->reshape_backwards)
4347                         mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4348                                 - conf->reshape_progress;
4349                 else
4350                         mddev->curr_resync_completed = conf->reshape_progress;
4351                 conf->reshape_checkpoint = jiffies;
4352                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4353                 md_wakeup_thread(mddev->thread);
4354                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4355                            kthread_should_stop());
4356                 conf->reshape_safe = mddev->reshape_position;
4357                 allow_barrier(conf);
4358         }
4359
4360 read_more:
4361         /* Now schedule reads for blocks from sector_nr to last */
4362         r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
4363         raise_barrier(conf, sectors_done != 0);
4364         atomic_set(&r10_bio->remaining, 0);
4365         r10_bio->mddev = mddev;
4366         r10_bio->sector = sector_nr;
4367         set_bit(R10BIO_IsReshape, &r10_bio->state);
4368         r10_bio->sectors = last - sector_nr + 1;
4369         rdev = read_balance(conf, r10_bio, &max_sectors);
4370         BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4371
4372         if (!rdev) {
4373                 /* Cannot read from here, so need to record bad blocks
4374                  * on all the target devices.
4375                  */
4376                 // FIXME
4377                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4378                 return sectors_done;
4379         }
4380
4381         read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4382
4383         read_bio->bi_bdev = rdev->bdev;
4384         read_bio->bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4385                                + rdev->data_offset);
4386         read_bio->bi_private = r10_bio;
4387         read_bio->bi_end_io = end_sync_read;
4388         read_bio->bi_rw = READ;
4389         read_bio->bi_flags &= ~(BIO_POOL_MASK - 1);
4390         read_bio->bi_flags |= 1 << BIO_UPTODATE;
4391         read_bio->bi_vcnt = 0;
4392         read_bio->bi_idx = 0;
4393         read_bio->bi_size = 0;
4394         r10_bio->master_bio = read_bio;
4395         r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4396
4397         /* Now find the locations in the new layout */
4398         __raid10_find_phys(&conf->geo, r10_bio);
4399
4400         blist = read_bio;
4401         read_bio->bi_next = NULL;
4402
4403         for (s = 0; s < conf->copies*2; s++) {
4404                 struct bio *b;
4405                 int d = r10_bio->devs[s/2].devnum;
4406                 struct md_rdev *rdev2;
4407                 if (s&1) {
4408                         rdev2 = conf->mirrors[d].replacement;
4409                         b = r10_bio->devs[s/2].repl_bio;
4410                 } else {
4411                         rdev2 = conf->mirrors[d].rdev;
4412                         b = r10_bio->devs[s/2].bio;
4413                 }
4414                 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4415                         continue;
4416                 b->bi_bdev = rdev2->bdev;
4417                 b->bi_sector = r10_bio->devs[s/2].addr + rdev2->new_data_offset;
4418                 b->bi_private = r10_bio;
4419                 b->bi_end_io = end_reshape_write;
4420                 b->bi_rw = WRITE;
4421                 b->bi_flags &= ~(BIO_POOL_MASK - 1);
4422                 b->bi_flags |= 1 << BIO_UPTODATE;
4423                 b->bi_next = blist;
4424                 b->bi_vcnt = 0;
4425                 b->bi_idx = 0;
4426                 b->bi_size = 0;
4427                 blist = b;
4428         }
4429
4430         /* Now add as many pages as possible to all of these bios. */
4431
4432         nr_sectors = 0;
4433         for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4434                 struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page;
4435                 int len = (max_sectors - s) << 9;
4436                 if (len > PAGE_SIZE)
4437                         len = PAGE_SIZE;
4438                 for (bio = blist; bio ; bio = bio->bi_next) {
4439                         struct bio *bio2;
4440                         if (bio_add_page(bio, page, len, 0))
4441                                 continue;
4442
4443                         /* Didn't fit, must stop */
4444                         for (bio2 = blist;
4445                              bio2 && bio2 != bio;
4446                              bio2 = bio2->bi_next) {
4447                                 /* Remove last page from this bio */
4448                                 bio2->bi_vcnt--;
4449                                 bio2->bi_size -= len;
4450                                 bio2->bi_flags &= ~(1<<BIO_SEG_VALID);
4451                         }
4452                         goto bio_full;
4453                 }
4454                 sector_nr += len >> 9;
4455                 nr_sectors += len >> 9;
4456         }
4457 bio_full:
4458         r10_bio->sectors = nr_sectors;
4459
4460         /* Now submit the read */
4461         md_sync_acct(read_bio->bi_bdev, r10_bio->sectors);
4462         atomic_inc(&r10_bio->remaining);
4463         read_bio->bi_next = NULL;
4464         generic_make_request(read_bio);
4465         sector_nr += nr_sectors;
4466         sectors_done += nr_sectors;
4467         if (sector_nr <= last)
4468                 goto read_more;
4469
4470         /* Now that we have done the whole section we can
4471          * update reshape_progress
4472          */
4473         if (mddev->reshape_backwards)
4474                 conf->reshape_progress -= sectors_done;
4475         else
4476                 conf->reshape_progress += sectors_done;
4477
4478         return sectors_done;
4479 }
4480
4481 static void end_reshape_request(struct r10bio *r10_bio);
4482 static int handle_reshape_read_error(struct mddev *mddev,
4483                                      struct r10bio *r10_bio);
4484 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4485 {
4486         /* Reshape read completed.  Hopefully we have a block
4487          * to write out.
4488          * If we got a read error then we do sync 1-page reads from
4489          * elsewhere until we find the data - or give up.
4490          */
4491         struct r10conf *conf = mddev->private;
4492         int s;
4493
4494         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4495                 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4496                         /* Reshape has been aborted */
4497                         md_done_sync(mddev, r10_bio->sectors, 0);
4498                         return;
4499                 }
4500
4501         /* We definitely have the data in the pages, schedule the
4502          * writes.
4503          */
4504         atomic_set(&r10_bio->remaining, 1);
4505         for (s = 0; s < conf->copies*2; s++) {
4506                 struct bio *b;
4507                 int d = r10_bio->devs[s/2].devnum;
4508                 struct md_rdev *rdev;
4509                 if (s&1) {
4510                         rdev = conf->mirrors[d].replacement;
4511                         b = r10_bio->devs[s/2].repl_bio;
4512                 } else {
4513                         rdev = conf->mirrors[d].rdev;
4514                         b = r10_bio->devs[s/2].bio;
4515                 }
4516                 if (!rdev || test_bit(Faulty, &rdev->flags))
4517                         continue;
4518                 atomic_inc(&rdev->nr_pending);
4519                 md_sync_acct(b->bi_bdev, r10_bio->sectors);
4520                 atomic_inc(&r10_bio->remaining);
4521                 b->bi_next = NULL;
4522                 generic_make_request(b);
4523         }
4524         end_reshape_request(r10_bio);
4525 }
4526
4527 static void end_reshape(struct r10conf *conf)
4528 {
4529         if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4530                 return;
4531
4532         spin_lock_irq(&conf->device_lock);
4533         conf->prev = conf->geo;
4534         md_finish_reshape(conf->mddev);
4535         smp_wmb();
4536         conf->reshape_progress = MaxSector;
4537         spin_unlock_irq(&conf->device_lock);
4538
4539         /* read-ahead size must cover two whole stripes, which is
4540          * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4541          */
4542         if (conf->mddev->queue) {
4543                 int stripe = conf->geo.raid_disks *
4544                         ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4545                 stripe /= conf->geo.near_copies;
4546                 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4547                         conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4548         }
4549         conf->fullsync = 0;
4550 }
4551
4552
4553 static int handle_reshape_read_error(struct mddev *mddev,
4554                                      struct r10bio *r10_bio)
4555 {
4556         /* Use sync reads to get the blocks from somewhere else */
4557         int sectors = r10_bio->sectors;
4558         struct r10conf *conf = mddev->private;
4559         struct {
4560                 struct r10bio r10_bio;
4561                 struct r10dev devs[conf->copies];
4562         } on_stack;
4563         struct r10bio *r10b = &on_stack.r10_bio;
4564         int slot = 0;
4565         int idx = 0;
4566         struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec;
4567
4568         r10b->sector = r10_bio->sector;
4569         __raid10_find_phys(&conf->prev, r10b);
4570
4571         while (sectors) {
4572                 int s = sectors;
4573                 int success = 0;
4574                 int first_slot = slot;
4575
4576                 if (s > (PAGE_SIZE >> 9))
4577                         s = PAGE_SIZE >> 9;
4578
4579                 while (!success) {
4580                         int d = r10b->devs[slot].devnum;
4581                         struct md_rdev *rdev = conf->mirrors[d].rdev;
4582                         sector_t addr;
4583                         if (rdev == NULL ||
4584                             test_bit(Faulty, &rdev->flags) ||
4585                             !test_bit(In_sync, &rdev->flags))
4586                                 goto failed;
4587
4588                         addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4589                         success = sync_page_io(rdev,
4590                                                addr,
4591                                                s << 9,
4592                                                bvec[idx].bv_page,
4593                                                READ, false);
4594                         if (success)
4595                                 break;
4596                 failed:
4597                         slot++;
4598                         if (slot >= conf->copies)
4599                                 slot = 0;
4600                         if (slot == first_slot)
4601                                 break;
4602                 }
4603                 if (!success) {
4604                         /* couldn't read this block, must give up */
4605                         set_bit(MD_RECOVERY_INTR,
4606                                 &mddev->recovery);
4607                         return -EIO;
4608                 }
4609                 sectors -= s;
4610                 idx++;
4611         }
4612         return 0;
4613 }
4614
4615 static void end_reshape_write(struct bio *bio, int error)
4616 {
4617         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
4618         struct r10bio *r10_bio = bio->bi_private;
4619         struct mddev *mddev = r10_bio->mddev;
4620         struct r10conf *conf = mddev->private;
4621         int d;
4622         int slot;
4623         int repl;
4624         struct md_rdev *rdev = NULL;
4625
4626         d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4627         if (repl)
4628                 rdev = conf->mirrors[d].replacement;
4629         if (!rdev) {
4630                 smp_mb();
4631                 rdev = conf->mirrors[d].rdev;
4632         }
4633
4634         if (!uptodate) {
4635                 /* FIXME should record badblock */
4636                 md_error(mddev, rdev);
4637         }
4638
4639         rdev_dec_pending(rdev, mddev);
4640         end_reshape_request(r10_bio);
4641 }
4642
4643 static void end_reshape_request(struct r10bio *r10_bio)
4644 {
4645         if (!atomic_dec_and_test(&r10_bio->remaining))
4646                 return;
4647         md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4648         bio_put(r10_bio->master_bio);
4649         put_buf(r10_bio);
4650 }
4651
4652 static void raid10_finish_reshape(struct mddev *mddev)
4653 {
4654         struct r10conf *conf = mddev->private;
4655
4656         if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4657                 return;
4658
4659         if (mddev->delta_disks > 0) {
4660                 sector_t size = raid10_size(mddev, 0, 0);
4661                 md_set_array_sectors(mddev, size);
4662                 if (mddev->recovery_cp > mddev->resync_max_sectors) {
4663                         mddev->recovery_cp = mddev->resync_max_sectors;
4664                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4665                 }
4666                 mddev->resync_max_sectors = size;
4667                 set_capacity(mddev->gendisk, mddev->array_sectors);
4668                 revalidate_disk(mddev->gendisk);
4669         } else {
4670                 int d;
4671                 for (d = conf->geo.raid_disks ;
4672                      d < conf->geo.raid_disks - mddev->delta_disks;
4673                      d++) {
4674                         struct md_rdev *rdev = conf->mirrors[d].rdev;
4675                         if (rdev)
4676                                 clear_bit(In_sync, &rdev->flags);
4677                         rdev = conf->mirrors[d].replacement;
4678                         if (rdev)
4679                                 clear_bit(In_sync, &rdev->flags);
4680                 }
4681         }
4682         mddev->layout = mddev->new_layout;
4683         mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4684         mddev->reshape_position = MaxSector;
4685         mddev->delta_disks = 0;
4686         mddev->reshape_backwards = 0;
4687 }
4688
4689 static struct md_personality raid10_personality =
4690 {
4691         .name           = "raid10",
4692         .level          = 10,
4693         .owner          = THIS_MODULE,
4694         .make_request   = make_request,
4695         .run            = run,
4696         .stop           = stop,
4697         .status         = status,
4698         .error_handler  = error,
4699         .hot_add_disk   = raid10_add_disk,
4700         .hot_remove_disk= raid10_remove_disk,
4701         .spare_active   = raid10_spare_active,
4702         .sync_request   = sync_request,
4703         .quiesce        = raid10_quiesce,
4704         .size           = raid10_size,
4705         .resize         = raid10_resize,
4706         .takeover       = raid10_takeover,
4707         .check_reshape  = raid10_check_reshape,
4708         .start_reshape  = raid10_start_reshape,
4709         .finish_reshape = raid10_finish_reshape,
4710 };
4711
4712 static int __init raid_init(void)
4713 {
4714         return register_md_personality(&raid10_personality);
4715 }
4716
4717 static void raid_exit(void)
4718 {
4719         unregister_md_personality(&raid10_personality);
4720 }
4721
4722 module_init(raid_init);
4723 module_exit(raid_exit);
4724 MODULE_LICENSE("GPL");
4725 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4726 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4727 MODULE_ALIAS("md-raid10");
4728 MODULE_ALIAS("md-level-10");
4729
4730 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);