KVM: SVM: Rename vmplX_ssp -> plX_ssp
[linux-2.6-block.git] / drivers / md / raid10.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * raid10.c : Multiple Devices driver for Linux
4  *
5  * Copyright (C) 2000-2004 Neil Brown
6  *
7  * RAID-10 support for md.
8  *
9  * Base on code in raid1.c.  See raid1.c for further copyright information.
10  */
11
12 #include <linux/slab.h>
13 #include <linux/delay.h>
14 #include <linux/blkdev.h>
15 #include <linux/module.h>
16 #include <linux/seq_file.h>
17 #include <linux/ratelimit.h>
18 #include <linux/kthread.h>
19 #include <linux/raid/md_p.h>
20 #include <trace/events/block.h>
21 #include "md.h"
22
23 #define RAID_1_10_NAME "raid10"
24 #include "raid10.h"
25 #include "raid0.h"
26 #include "md-bitmap.h"
27
28 /*
29  * RAID10 provides a combination of RAID0 and RAID1 functionality.
30  * The layout of data is defined by
31  *    chunk_size
32  *    raid_disks
33  *    near_copies (stored in low byte of layout)
34  *    far_copies (stored in second byte of layout)
35  *    far_offset (stored in bit 16 of layout )
36  *    use_far_sets (stored in bit 17 of layout )
37  *    use_far_sets_bugfixed (stored in bit 18 of layout )
38  *
39  * The data to be stored is divided into chunks using chunksize.  Each device
40  * is divided into far_copies sections.   In each section, chunks are laid out
41  * in a style similar to raid0, but near_copies copies of each chunk is stored
42  * (each on a different drive).  The starting device for each section is offset
43  * near_copies from the starting device of the previous section.  Thus there
44  * are (near_copies * far_copies) of each chunk, and each is on a different
45  * drive.  near_copies and far_copies must be at least one, and their product
46  * is at most raid_disks.
47  *
48  * If far_offset is true, then the far_copies are handled a bit differently.
49  * The copies are still in different stripes, but instead of being very far
50  * apart on disk, there are adjacent stripes.
51  *
52  * The far and offset algorithms are handled slightly differently if
53  * 'use_far_sets' is true.  In this case, the array's devices are grouped into
54  * sets that are (near_copies * far_copies) in size.  The far copied stripes
55  * are still shifted by 'near_copies' devices, but this shifting stays confined
56  * to the set rather than the entire array.  This is done to improve the number
57  * of device combinations that can fail without causing the array to fail.
58  * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
59  * on a device):
60  *    A B C D    A B C D E
61  *      ...         ...
62  *    D A B C    E A B C D
63  * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
64  *    [A B] [C D]    [A B] [C D E]
65  *    |...| |...|    |...| | ... |
66  *    [B A] [D C]    [B A] [E C D]
67  */
68
69 static void allow_barrier(struct r10conf *conf);
70 static void lower_barrier(struct r10conf *conf);
71 static int _enough(struct r10conf *conf, int previous, int ignore);
72 static int enough(struct r10conf *conf, int ignore);
73 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
74                                 int *skipped);
75 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
76 static void end_reshape_write(struct bio *bio);
77 static void end_reshape(struct r10conf *conf);
78
79 #define raid10_log(md, fmt, args...)                            \
80         do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0)
81
82 #include "raid1-10.c"
83
84 #define NULL_CMD
85 #define cmd_before(conf, cmd) \
86         do { \
87                 write_sequnlock_irq(&(conf)->resync_lock); \
88                 cmd; \
89         } while (0)
90 #define cmd_after(conf) write_seqlock_irq(&(conf)->resync_lock)
91
92 #define wait_event_barrier_cmd(conf, cond, cmd) \
93         wait_event_cmd((conf)->wait_barrier, cond, cmd_before(conf, cmd), \
94                        cmd_after(conf))
95
96 #define wait_event_barrier(conf, cond) \
97         wait_event_barrier_cmd(conf, cond, NULL_CMD)
98
99 /*
100  * for resync bio, r10bio pointer can be retrieved from the per-bio
101  * 'struct resync_pages'.
102  */
103 static inline struct r10bio *get_resync_r10bio(struct bio *bio)
104 {
105         return get_resync_pages(bio)->raid_bio;
106 }
107
108 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
109 {
110         struct r10conf *conf = data;
111         int size = offsetof(struct r10bio, devs[conf->geo.raid_disks]);
112
113         /* allocate a r10bio with room for raid_disks entries in the
114          * bios array */
115         return kzalloc(size, gfp_flags);
116 }
117
118 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
119 /* amount of memory to reserve for resync requests */
120 #define RESYNC_WINDOW (1024*1024)
121 /* maximum number of concurrent requests, memory permitting */
122 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
123 #define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW)
124 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
125
126 /*
127  * When performing a resync, we need to read and compare, so
128  * we need as many pages are there are copies.
129  * When performing a recovery, we need 2 bios, one for read,
130  * one for write (we recover only one drive per r10buf)
131  *
132  */
133 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
134 {
135         struct r10conf *conf = data;
136         struct r10bio *r10_bio;
137         struct bio *bio;
138         int j;
139         int nalloc, nalloc_rp;
140         struct resync_pages *rps;
141
142         r10_bio = r10bio_pool_alloc(gfp_flags, conf);
143         if (!r10_bio)
144                 return NULL;
145
146         if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
147             test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
148                 nalloc = conf->copies; /* resync */
149         else
150                 nalloc = 2; /* recovery */
151
152         /* allocate once for all bios */
153         if (!conf->have_replacement)
154                 nalloc_rp = nalloc;
155         else
156                 nalloc_rp = nalloc * 2;
157         rps = kmalloc_array(nalloc_rp, sizeof(struct resync_pages), gfp_flags);
158         if (!rps)
159                 goto out_free_r10bio;
160
161         /*
162          * Allocate bios.
163          */
164         for (j = nalloc ; j-- ; ) {
165                 bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
166                 if (!bio)
167                         goto out_free_bio;
168                 bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0);
169                 r10_bio->devs[j].bio = bio;
170                 if (!conf->have_replacement)
171                         continue;
172                 bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
173                 if (!bio)
174                         goto out_free_bio;
175                 bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0);
176                 r10_bio->devs[j].repl_bio = bio;
177         }
178         /*
179          * Allocate RESYNC_PAGES data pages and attach them
180          * where needed.
181          */
182         for (j = 0; j < nalloc; j++) {
183                 struct bio *rbio = r10_bio->devs[j].repl_bio;
184                 struct resync_pages *rp, *rp_repl;
185
186                 rp = &rps[j];
187                 if (rbio)
188                         rp_repl = &rps[nalloc + j];
189
190                 bio = r10_bio->devs[j].bio;
191
192                 if (!j || test_bit(MD_RECOVERY_SYNC,
193                                    &conf->mddev->recovery)) {
194                         if (resync_alloc_pages(rp, gfp_flags))
195                                 goto out_free_pages;
196                 } else {
197                         memcpy(rp, &rps[0], sizeof(*rp));
198                         resync_get_all_pages(rp);
199                 }
200
201                 rp->raid_bio = r10_bio;
202                 bio->bi_private = rp;
203                 if (rbio) {
204                         memcpy(rp_repl, rp, sizeof(*rp));
205                         rbio->bi_private = rp_repl;
206                 }
207         }
208
209         return r10_bio;
210
211 out_free_pages:
212         while (--j >= 0)
213                 resync_free_pages(&rps[j]);
214
215         j = 0;
216 out_free_bio:
217         for ( ; j < nalloc; j++) {
218                 if (r10_bio->devs[j].bio)
219                         bio_uninit(r10_bio->devs[j].bio);
220                 kfree(r10_bio->devs[j].bio);
221                 if (r10_bio->devs[j].repl_bio)
222                         bio_uninit(r10_bio->devs[j].repl_bio);
223                 kfree(r10_bio->devs[j].repl_bio);
224         }
225         kfree(rps);
226 out_free_r10bio:
227         rbio_pool_free(r10_bio, conf);
228         return NULL;
229 }
230
231 static void r10buf_pool_free(void *__r10_bio, void *data)
232 {
233         struct r10conf *conf = data;
234         struct r10bio *r10bio = __r10_bio;
235         int j;
236         struct resync_pages *rp = NULL;
237
238         for (j = conf->copies; j--; ) {
239                 struct bio *bio = r10bio->devs[j].bio;
240
241                 if (bio) {
242                         rp = get_resync_pages(bio);
243                         resync_free_pages(rp);
244                         bio_uninit(bio);
245                         kfree(bio);
246                 }
247
248                 bio = r10bio->devs[j].repl_bio;
249                 if (bio) {
250                         bio_uninit(bio);
251                         kfree(bio);
252                 }
253         }
254
255         /* resync pages array stored in the 1st bio's .bi_private */
256         kfree(rp);
257
258         rbio_pool_free(r10bio, conf);
259 }
260
261 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
262 {
263         int i;
264
265         for (i = 0; i < conf->geo.raid_disks; i++) {
266                 struct bio **bio = & r10_bio->devs[i].bio;
267                 if (!BIO_SPECIAL(*bio))
268                         bio_put(*bio);
269                 *bio = NULL;
270                 bio = &r10_bio->devs[i].repl_bio;
271                 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
272                         bio_put(*bio);
273                 *bio = NULL;
274         }
275 }
276
277 static void free_r10bio(struct r10bio *r10_bio)
278 {
279         struct r10conf *conf = r10_bio->mddev->private;
280
281         put_all_bios(conf, r10_bio);
282         mempool_free(r10_bio, &conf->r10bio_pool);
283 }
284
285 static void put_buf(struct r10bio *r10_bio)
286 {
287         struct r10conf *conf = r10_bio->mddev->private;
288
289         mempool_free(r10_bio, &conf->r10buf_pool);
290
291         lower_barrier(conf);
292 }
293
294 static void wake_up_barrier(struct r10conf *conf)
295 {
296         if (wq_has_sleeper(&conf->wait_barrier))
297                 wake_up(&conf->wait_barrier);
298 }
299
300 static void reschedule_retry(struct r10bio *r10_bio)
301 {
302         unsigned long flags;
303         struct mddev *mddev = r10_bio->mddev;
304         struct r10conf *conf = mddev->private;
305
306         spin_lock_irqsave(&conf->device_lock, flags);
307         list_add(&r10_bio->retry_list, &conf->retry_list);
308         conf->nr_queued ++;
309         spin_unlock_irqrestore(&conf->device_lock, flags);
310
311         /* wake up frozen array... */
312         wake_up(&conf->wait_barrier);
313
314         md_wakeup_thread(mddev->thread);
315 }
316
317 /*
318  * raid_end_bio_io() is called when we have finished servicing a mirrored
319  * operation and are ready to return a success/failure code to the buffer
320  * cache layer.
321  */
322 static void raid_end_bio_io(struct r10bio *r10_bio)
323 {
324         struct bio *bio = r10_bio->master_bio;
325         struct r10conf *conf = r10_bio->mddev->private;
326
327         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
328                 bio->bi_status = BLK_STS_IOERR;
329
330         bio_endio(bio);
331         /*
332          * Wake up any possible resync thread that waits for the device
333          * to go idle.
334          */
335         allow_barrier(conf);
336
337         free_r10bio(r10_bio);
338 }
339
340 /*
341  * Update disk head position estimator based on IRQ completion info.
342  */
343 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
344 {
345         struct r10conf *conf = r10_bio->mddev->private;
346
347         conf->mirrors[r10_bio->devs[slot].devnum].head_position =
348                 r10_bio->devs[slot].addr + (r10_bio->sectors);
349 }
350
351 /*
352  * Find the disk number which triggered given bio
353  */
354 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
355                          struct bio *bio, int *slotp, int *replp)
356 {
357         int slot;
358         int repl = 0;
359
360         for (slot = 0; slot < conf->geo.raid_disks; slot++) {
361                 if (r10_bio->devs[slot].bio == bio)
362                         break;
363                 if (r10_bio->devs[slot].repl_bio == bio) {
364                         repl = 1;
365                         break;
366                 }
367         }
368
369         update_head_pos(slot, r10_bio);
370
371         if (slotp)
372                 *slotp = slot;
373         if (replp)
374                 *replp = repl;
375         return r10_bio->devs[slot].devnum;
376 }
377
378 static void raid10_end_read_request(struct bio *bio)
379 {
380         int uptodate = !bio->bi_status;
381         struct r10bio *r10_bio = bio->bi_private;
382         int slot;
383         struct md_rdev *rdev;
384         struct r10conf *conf = r10_bio->mddev->private;
385
386         slot = r10_bio->read_slot;
387         rdev = r10_bio->devs[slot].rdev;
388         /*
389          * this branch is our 'one mirror IO has finished' event handler:
390          */
391         update_head_pos(slot, r10_bio);
392
393         if (uptodate) {
394                 /*
395                  * Set R10BIO_Uptodate in our master bio, so that
396                  * we will return a good error code to the higher
397                  * levels even if IO on some other mirrored buffer fails.
398                  *
399                  * The 'master' represents the composite IO operation to
400                  * user-side. So if something waits for IO, then it will
401                  * wait for the 'master' bio.
402                  */
403                 set_bit(R10BIO_Uptodate, &r10_bio->state);
404         } else {
405                 /* If all other devices that store this block have
406                  * failed, we want to return the error upwards rather
407                  * than fail the last device.  Here we redefine
408                  * "uptodate" to mean "Don't want to retry"
409                  */
410                 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
411                              rdev->raid_disk))
412                         uptodate = 1;
413         }
414         if (uptodate) {
415                 raid_end_bio_io(r10_bio);
416                 rdev_dec_pending(rdev, conf->mddev);
417         } else {
418                 /*
419                  * oops, read error - keep the refcount on the rdev
420                  */
421                 pr_err_ratelimited("md/raid10:%s: %pg: rescheduling sector %llu\n",
422                                    mdname(conf->mddev),
423                                    rdev->bdev,
424                                    (unsigned long long)r10_bio->sector);
425                 set_bit(R10BIO_ReadError, &r10_bio->state);
426                 reschedule_retry(r10_bio);
427         }
428 }
429
430 static void close_write(struct r10bio *r10_bio)
431 {
432         /* clear the bitmap if all writes complete successfully */
433         md_bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
434                            r10_bio->sectors,
435                            !test_bit(R10BIO_Degraded, &r10_bio->state),
436                            0);
437         md_write_end(r10_bio->mddev);
438 }
439
440 static void one_write_done(struct r10bio *r10_bio)
441 {
442         if (atomic_dec_and_test(&r10_bio->remaining)) {
443                 if (test_bit(R10BIO_WriteError, &r10_bio->state))
444                         reschedule_retry(r10_bio);
445                 else {
446                         close_write(r10_bio);
447                         if (test_bit(R10BIO_MadeGood, &r10_bio->state))
448                                 reschedule_retry(r10_bio);
449                         else
450                                 raid_end_bio_io(r10_bio);
451                 }
452         }
453 }
454
455 static void raid10_end_write_request(struct bio *bio)
456 {
457         struct r10bio *r10_bio = bio->bi_private;
458         int dev;
459         int dec_rdev = 1;
460         struct r10conf *conf = r10_bio->mddev->private;
461         int slot, repl;
462         struct md_rdev *rdev = NULL;
463         struct bio *to_put = NULL;
464         bool discard_error;
465
466         discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
467
468         dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
469
470         if (repl)
471                 rdev = conf->mirrors[dev].replacement;
472         if (!rdev) {
473                 smp_rmb();
474                 repl = 0;
475                 rdev = conf->mirrors[dev].rdev;
476         }
477         /*
478          * this branch is our 'one mirror IO has finished' event handler:
479          */
480         if (bio->bi_status && !discard_error) {
481                 if (repl)
482                         /* Never record new bad blocks to replacement,
483                          * just fail it.
484                          */
485                         md_error(rdev->mddev, rdev);
486                 else {
487                         set_bit(WriteErrorSeen, &rdev->flags);
488                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
489                                 set_bit(MD_RECOVERY_NEEDED,
490                                         &rdev->mddev->recovery);
491
492                         dec_rdev = 0;
493                         if (test_bit(FailFast, &rdev->flags) &&
494                             (bio->bi_opf & MD_FAILFAST)) {
495                                 md_error(rdev->mddev, rdev);
496                         }
497
498                         /*
499                          * When the device is faulty, it is not necessary to
500                          * handle write error.
501                          */
502                         if (!test_bit(Faulty, &rdev->flags))
503                                 set_bit(R10BIO_WriteError, &r10_bio->state);
504                         else {
505                                 /* Fail the request */
506                                 set_bit(R10BIO_Degraded, &r10_bio->state);
507                                 r10_bio->devs[slot].bio = NULL;
508                                 to_put = bio;
509                                 dec_rdev = 1;
510                         }
511                 }
512         } else {
513                 /*
514                  * Set R10BIO_Uptodate in our master bio, so that
515                  * we will return a good error code for to the higher
516                  * levels even if IO on some other mirrored buffer fails.
517                  *
518                  * The 'master' represents the composite IO operation to
519                  * user-side. So if something waits for IO, then it will
520                  * wait for the 'master' bio.
521                  */
522                 sector_t first_bad;
523                 int bad_sectors;
524
525                 /*
526                  * Do not set R10BIO_Uptodate if the current device is
527                  * rebuilding or Faulty. This is because we cannot use
528                  * such device for properly reading the data back (we could
529                  * potentially use it, if the current write would have felt
530                  * before rdev->recovery_offset, but for simplicity we don't
531                  * check this here.
532                  */
533                 if (test_bit(In_sync, &rdev->flags) &&
534                     !test_bit(Faulty, &rdev->flags))
535                         set_bit(R10BIO_Uptodate, &r10_bio->state);
536
537                 /* Maybe we can clear some bad blocks. */
538                 if (is_badblock(rdev,
539                                 r10_bio->devs[slot].addr,
540                                 r10_bio->sectors,
541                                 &first_bad, &bad_sectors) && !discard_error) {
542                         bio_put(bio);
543                         if (repl)
544                                 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
545                         else
546                                 r10_bio->devs[slot].bio = IO_MADE_GOOD;
547                         dec_rdev = 0;
548                         set_bit(R10BIO_MadeGood, &r10_bio->state);
549                 }
550         }
551
552         /*
553          *
554          * Let's see if all mirrored write operations have finished
555          * already.
556          */
557         one_write_done(r10_bio);
558         if (dec_rdev)
559                 rdev_dec_pending(rdev, conf->mddev);
560         if (to_put)
561                 bio_put(to_put);
562 }
563
564 /*
565  * RAID10 layout manager
566  * As well as the chunksize and raid_disks count, there are two
567  * parameters: near_copies and far_copies.
568  * near_copies * far_copies must be <= raid_disks.
569  * Normally one of these will be 1.
570  * If both are 1, we get raid0.
571  * If near_copies == raid_disks, we get raid1.
572  *
573  * Chunks are laid out in raid0 style with near_copies copies of the
574  * first chunk, followed by near_copies copies of the next chunk and
575  * so on.
576  * If far_copies > 1, then after 1/far_copies of the array has been assigned
577  * as described above, we start again with a device offset of near_copies.
578  * So we effectively have another copy of the whole array further down all
579  * the drives, but with blocks on different drives.
580  * With this layout, and block is never stored twice on the one device.
581  *
582  * raid10_find_phys finds the sector offset of a given virtual sector
583  * on each device that it is on.
584  *
585  * raid10_find_virt does the reverse mapping, from a device and a
586  * sector offset to a virtual address
587  */
588
589 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
590 {
591         int n,f;
592         sector_t sector;
593         sector_t chunk;
594         sector_t stripe;
595         int dev;
596         int slot = 0;
597         int last_far_set_start, last_far_set_size;
598
599         last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
600         last_far_set_start *= geo->far_set_size;
601
602         last_far_set_size = geo->far_set_size;
603         last_far_set_size += (geo->raid_disks % geo->far_set_size);
604
605         /* now calculate first sector/dev */
606         chunk = r10bio->sector >> geo->chunk_shift;
607         sector = r10bio->sector & geo->chunk_mask;
608
609         chunk *= geo->near_copies;
610         stripe = chunk;
611         dev = sector_div(stripe, geo->raid_disks);
612         if (geo->far_offset)
613                 stripe *= geo->far_copies;
614
615         sector += stripe << geo->chunk_shift;
616
617         /* and calculate all the others */
618         for (n = 0; n < geo->near_copies; n++) {
619                 int d = dev;
620                 int set;
621                 sector_t s = sector;
622                 r10bio->devs[slot].devnum = d;
623                 r10bio->devs[slot].addr = s;
624                 slot++;
625
626                 for (f = 1; f < geo->far_copies; f++) {
627                         set = d / geo->far_set_size;
628                         d += geo->near_copies;
629
630                         if ((geo->raid_disks % geo->far_set_size) &&
631                             (d > last_far_set_start)) {
632                                 d -= last_far_set_start;
633                                 d %= last_far_set_size;
634                                 d += last_far_set_start;
635                         } else {
636                                 d %= geo->far_set_size;
637                                 d += geo->far_set_size * set;
638                         }
639                         s += geo->stride;
640                         r10bio->devs[slot].devnum = d;
641                         r10bio->devs[slot].addr = s;
642                         slot++;
643                 }
644                 dev++;
645                 if (dev >= geo->raid_disks) {
646                         dev = 0;
647                         sector += (geo->chunk_mask + 1);
648                 }
649         }
650 }
651
652 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
653 {
654         struct geom *geo = &conf->geo;
655
656         if (conf->reshape_progress != MaxSector &&
657             ((r10bio->sector >= conf->reshape_progress) !=
658              conf->mddev->reshape_backwards)) {
659                 set_bit(R10BIO_Previous, &r10bio->state);
660                 geo = &conf->prev;
661         } else
662                 clear_bit(R10BIO_Previous, &r10bio->state);
663
664         __raid10_find_phys(geo, r10bio);
665 }
666
667 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
668 {
669         sector_t offset, chunk, vchunk;
670         /* Never use conf->prev as this is only called during resync
671          * or recovery, so reshape isn't happening
672          */
673         struct geom *geo = &conf->geo;
674         int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
675         int far_set_size = geo->far_set_size;
676         int last_far_set_start;
677
678         if (geo->raid_disks % geo->far_set_size) {
679                 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
680                 last_far_set_start *= geo->far_set_size;
681
682                 if (dev >= last_far_set_start) {
683                         far_set_size = geo->far_set_size;
684                         far_set_size += (geo->raid_disks % geo->far_set_size);
685                         far_set_start = last_far_set_start;
686                 }
687         }
688
689         offset = sector & geo->chunk_mask;
690         if (geo->far_offset) {
691                 int fc;
692                 chunk = sector >> geo->chunk_shift;
693                 fc = sector_div(chunk, geo->far_copies);
694                 dev -= fc * geo->near_copies;
695                 if (dev < far_set_start)
696                         dev += far_set_size;
697         } else {
698                 while (sector >= geo->stride) {
699                         sector -= geo->stride;
700                         if (dev < (geo->near_copies + far_set_start))
701                                 dev += far_set_size - geo->near_copies;
702                         else
703                                 dev -= geo->near_copies;
704                 }
705                 chunk = sector >> geo->chunk_shift;
706         }
707         vchunk = chunk * geo->raid_disks + dev;
708         sector_div(vchunk, geo->near_copies);
709         return (vchunk << geo->chunk_shift) + offset;
710 }
711
712 /*
713  * This routine returns the disk from which the requested read should
714  * be done. There is a per-array 'next expected sequential IO' sector
715  * number - if this matches on the next IO then we use the last disk.
716  * There is also a per-disk 'last know head position' sector that is
717  * maintained from IRQ contexts, both the normal and the resync IO
718  * completion handlers update this position correctly. If there is no
719  * perfect sequential match then we pick the disk whose head is closest.
720  *
721  * If there are 2 mirrors in the same 2 devices, performance degrades
722  * because position is mirror, not device based.
723  *
724  * The rdev for the device selected will have nr_pending incremented.
725  */
726
727 /*
728  * FIXME: possibly should rethink readbalancing and do it differently
729  * depending on near_copies / far_copies geometry.
730  */
731 static struct md_rdev *read_balance(struct r10conf *conf,
732                                     struct r10bio *r10_bio,
733                                     int *max_sectors)
734 {
735         const sector_t this_sector = r10_bio->sector;
736         int disk, slot;
737         int sectors = r10_bio->sectors;
738         int best_good_sectors;
739         sector_t new_distance, best_dist;
740         struct md_rdev *best_dist_rdev, *best_pending_rdev, *rdev = NULL;
741         int do_balance;
742         int best_dist_slot, best_pending_slot;
743         bool has_nonrot_disk = false;
744         unsigned int min_pending;
745         struct geom *geo = &conf->geo;
746
747         raid10_find_phys(conf, r10_bio);
748         best_dist_slot = -1;
749         min_pending = UINT_MAX;
750         best_dist_rdev = NULL;
751         best_pending_rdev = NULL;
752         best_dist = MaxSector;
753         best_good_sectors = 0;
754         do_balance = 1;
755         clear_bit(R10BIO_FailFast, &r10_bio->state);
756         /*
757          * Check if we can balance. We can balance on the whole
758          * device if no resync is going on (recovery is ok), or below
759          * the resync window. We take the first readable disk when
760          * above the resync window.
761          */
762         if ((conf->mddev->recovery_cp < MaxSector
763              && (this_sector + sectors >= conf->next_resync)) ||
764             (mddev_is_clustered(conf->mddev) &&
765              md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
766                                             this_sector + sectors)))
767                 do_balance = 0;
768
769         for (slot = 0; slot < conf->copies ; slot++) {
770                 sector_t first_bad;
771                 int bad_sectors;
772                 sector_t dev_sector;
773                 unsigned int pending;
774                 bool nonrot;
775
776                 if (r10_bio->devs[slot].bio == IO_BLOCKED)
777                         continue;
778                 disk = r10_bio->devs[slot].devnum;
779                 rdev = conf->mirrors[disk].replacement;
780                 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
781                     r10_bio->devs[slot].addr + sectors >
782                     rdev->recovery_offset)
783                         rdev = conf->mirrors[disk].rdev;
784                 if (rdev == NULL ||
785                     test_bit(Faulty, &rdev->flags))
786                         continue;
787                 if (!test_bit(In_sync, &rdev->flags) &&
788                     r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
789                         continue;
790
791                 dev_sector = r10_bio->devs[slot].addr;
792                 if (is_badblock(rdev, dev_sector, sectors,
793                                 &first_bad, &bad_sectors)) {
794                         if (best_dist < MaxSector)
795                                 /* Already have a better slot */
796                                 continue;
797                         if (first_bad <= dev_sector) {
798                                 /* Cannot read here.  If this is the
799                                  * 'primary' device, then we must not read
800                                  * beyond 'bad_sectors' from another device.
801                                  */
802                                 bad_sectors -= (dev_sector - first_bad);
803                                 if (!do_balance && sectors > bad_sectors)
804                                         sectors = bad_sectors;
805                                 if (best_good_sectors > sectors)
806                                         best_good_sectors = sectors;
807                         } else {
808                                 sector_t good_sectors =
809                                         first_bad - dev_sector;
810                                 if (good_sectors > best_good_sectors) {
811                                         best_good_sectors = good_sectors;
812                                         best_dist_slot = slot;
813                                         best_dist_rdev = rdev;
814                                 }
815                                 if (!do_balance)
816                                         /* Must read from here */
817                                         break;
818                         }
819                         continue;
820                 } else
821                         best_good_sectors = sectors;
822
823                 if (!do_balance)
824                         break;
825
826                 nonrot = bdev_nonrot(rdev->bdev);
827                 has_nonrot_disk |= nonrot;
828                 pending = atomic_read(&rdev->nr_pending);
829                 if (min_pending > pending && nonrot) {
830                         min_pending = pending;
831                         best_pending_slot = slot;
832                         best_pending_rdev = rdev;
833                 }
834
835                 if (best_dist_slot >= 0)
836                         /* At least 2 disks to choose from so failfast is OK */
837                         set_bit(R10BIO_FailFast, &r10_bio->state);
838                 /* This optimisation is debatable, and completely destroys
839                  * sequential read speed for 'far copies' arrays.  So only
840                  * keep it for 'near' arrays, and review those later.
841                  */
842                 if (geo->near_copies > 1 && !pending)
843                         new_distance = 0;
844
845                 /* for far > 1 always use the lowest address */
846                 else if (geo->far_copies > 1)
847                         new_distance = r10_bio->devs[slot].addr;
848                 else
849                         new_distance = abs(r10_bio->devs[slot].addr -
850                                            conf->mirrors[disk].head_position);
851
852                 if (new_distance < best_dist) {
853                         best_dist = new_distance;
854                         best_dist_slot = slot;
855                         best_dist_rdev = rdev;
856                 }
857         }
858         if (slot >= conf->copies) {
859                 if (has_nonrot_disk) {
860                         slot = best_pending_slot;
861                         rdev = best_pending_rdev;
862                 } else {
863                         slot = best_dist_slot;
864                         rdev = best_dist_rdev;
865                 }
866         }
867
868         if (slot >= 0) {
869                 atomic_inc(&rdev->nr_pending);
870                 r10_bio->read_slot = slot;
871         } else
872                 rdev = NULL;
873         *max_sectors = best_good_sectors;
874
875         return rdev;
876 }
877
878 static void flush_pending_writes(struct r10conf *conf)
879 {
880         /* Any writes that have been queued but are awaiting
881          * bitmap updates get flushed here.
882          */
883         spin_lock_irq(&conf->device_lock);
884
885         if (conf->pending_bio_list.head) {
886                 struct blk_plug plug;
887                 struct bio *bio;
888
889                 bio = bio_list_get(&conf->pending_bio_list);
890                 spin_unlock_irq(&conf->device_lock);
891
892                 /*
893                  * As this is called in a wait_event() loop (see freeze_array),
894                  * current->state might be TASK_UNINTERRUPTIBLE which will
895                  * cause a warning when we prepare to wait again.  As it is
896                  * rare that this path is taken, it is perfectly safe to force
897                  * us to go around the wait_event() loop again, so the warning
898                  * is a false-positive. Silence the warning by resetting
899                  * thread state
900                  */
901                 __set_current_state(TASK_RUNNING);
902
903                 blk_start_plug(&plug);
904                 raid1_prepare_flush_writes(conf->mddev->bitmap);
905                 wake_up(&conf->wait_barrier);
906
907                 while (bio) { /* submit pending writes */
908                         struct bio *next = bio->bi_next;
909
910                         raid1_submit_write(bio);
911                         bio = next;
912                         cond_resched();
913                 }
914                 blk_finish_plug(&plug);
915         } else
916                 spin_unlock_irq(&conf->device_lock);
917 }
918
919 /* Barriers....
920  * Sometimes we need to suspend IO while we do something else,
921  * either some resync/recovery, or reconfigure the array.
922  * To do this we raise a 'barrier'.
923  * The 'barrier' is a counter that can be raised multiple times
924  * to count how many activities are happening which preclude
925  * normal IO.
926  * We can only raise the barrier if there is no pending IO.
927  * i.e. if nr_pending == 0.
928  * We choose only to raise the barrier if no-one is waiting for the
929  * barrier to go down.  This means that as soon as an IO request
930  * is ready, no other operations which require a barrier will start
931  * until the IO request has had a chance.
932  *
933  * So: regular IO calls 'wait_barrier'.  When that returns there
934  *    is no backgroup IO happening,  It must arrange to call
935  *    allow_barrier when it has finished its IO.
936  * backgroup IO calls must call raise_barrier.  Once that returns
937  *    there is no normal IO happeing.  It must arrange to call
938  *    lower_barrier when the particular background IO completes.
939  */
940
941 static void raise_barrier(struct r10conf *conf, int force)
942 {
943         write_seqlock_irq(&conf->resync_lock);
944
945         if (WARN_ON_ONCE(force && !conf->barrier))
946                 force = false;
947
948         /* Wait until no block IO is waiting (unless 'force') */
949         wait_event_barrier(conf, force || !conf->nr_waiting);
950
951         /* block any new IO from starting */
952         WRITE_ONCE(conf->barrier, conf->barrier + 1);
953
954         /* Now wait for all pending IO to complete */
955         wait_event_barrier(conf, !atomic_read(&conf->nr_pending) &&
956                                  conf->barrier < RESYNC_DEPTH);
957
958         write_sequnlock_irq(&conf->resync_lock);
959 }
960
961 static void lower_barrier(struct r10conf *conf)
962 {
963         unsigned long flags;
964
965         write_seqlock_irqsave(&conf->resync_lock, flags);
966         WRITE_ONCE(conf->barrier, conf->barrier - 1);
967         write_sequnlock_irqrestore(&conf->resync_lock, flags);
968         wake_up(&conf->wait_barrier);
969 }
970
971 static bool stop_waiting_barrier(struct r10conf *conf)
972 {
973         struct bio_list *bio_list = current->bio_list;
974         struct md_thread *thread;
975
976         /* barrier is dropped */
977         if (!conf->barrier)
978                 return true;
979
980         /*
981          * If there are already pending requests (preventing the barrier from
982          * rising completely), and the pre-process bio queue isn't empty, then
983          * don't wait, as we need to empty that queue to get the nr_pending
984          * count down.
985          */
986         if (atomic_read(&conf->nr_pending) && bio_list &&
987             (!bio_list_empty(&bio_list[0]) || !bio_list_empty(&bio_list[1])))
988                 return true;
989
990         /* daemon thread must exist while handling io */
991         thread = rcu_dereference_protected(conf->mddev->thread, true);
992         /*
993          * move on if io is issued from raid10d(), nr_pending is not released
994          * from original io(see handle_read_error()). All raise barrier is
995          * blocked until this io is done.
996          */
997         if (thread->tsk == current) {
998                 WARN_ON_ONCE(atomic_read(&conf->nr_pending) == 0);
999                 return true;
1000         }
1001
1002         return false;
1003 }
1004
1005 static bool wait_barrier_nolock(struct r10conf *conf)
1006 {
1007         unsigned int seq = read_seqbegin(&conf->resync_lock);
1008
1009         if (READ_ONCE(conf->barrier))
1010                 return false;
1011
1012         atomic_inc(&conf->nr_pending);
1013         if (!read_seqretry(&conf->resync_lock, seq))
1014                 return true;
1015
1016         if (atomic_dec_and_test(&conf->nr_pending))
1017                 wake_up_barrier(conf);
1018
1019         return false;
1020 }
1021
1022 static bool wait_barrier(struct r10conf *conf, bool nowait)
1023 {
1024         bool ret = true;
1025
1026         if (wait_barrier_nolock(conf))
1027                 return true;
1028
1029         write_seqlock_irq(&conf->resync_lock);
1030         if (conf->barrier) {
1031                 /* Return false when nowait flag is set */
1032                 if (nowait) {
1033                         ret = false;
1034                 } else {
1035                         conf->nr_waiting++;
1036                         raid10_log(conf->mddev, "wait barrier");
1037                         wait_event_barrier(conf, stop_waiting_barrier(conf));
1038                         conf->nr_waiting--;
1039                 }
1040                 if (!conf->nr_waiting)
1041                         wake_up(&conf->wait_barrier);
1042         }
1043         /* Only increment nr_pending when we wait */
1044         if (ret)
1045                 atomic_inc(&conf->nr_pending);
1046         write_sequnlock_irq(&conf->resync_lock);
1047         return ret;
1048 }
1049
1050 static void allow_barrier(struct r10conf *conf)
1051 {
1052         if ((atomic_dec_and_test(&conf->nr_pending)) ||
1053                         (conf->array_freeze_pending))
1054                 wake_up_barrier(conf);
1055 }
1056
1057 static void freeze_array(struct r10conf *conf, int extra)
1058 {
1059         /* stop syncio and normal IO and wait for everything to
1060          * go quiet.
1061          * We increment barrier and nr_waiting, and then
1062          * wait until nr_pending match nr_queued+extra
1063          * This is called in the context of one normal IO request
1064          * that has failed. Thus any sync request that might be pending
1065          * will be blocked by nr_pending, and we need to wait for
1066          * pending IO requests to complete or be queued for re-try.
1067          * Thus the number queued (nr_queued) plus this request (extra)
1068          * must match the number of pending IOs (nr_pending) before
1069          * we continue.
1070          */
1071         write_seqlock_irq(&conf->resync_lock);
1072         conf->array_freeze_pending++;
1073         WRITE_ONCE(conf->barrier, conf->barrier + 1);
1074         conf->nr_waiting++;
1075         wait_event_barrier_cmd(conf, atomic_read(&conf->nr_pending) ==
1076                         conf->nr_queued + extra, flush_pending_writes(conf));
1077         conf->array_freeze_pending--;
1078         write_sequnlock_irq(&conf->resync_lock);
1079 }
1080
1081 static void unfreeze_array(struct r10conf *conf)
1082 {
1083         /* reverse the effect of the freeze */
1084         write_seqlock_irq(&conf->resync_lock);
1085         WRITE_ONCE(conf->barrier, conf->barrier - 1);
1086         conf->nr_waiting--;
1087         wake_up(&conf->wait_barrier);
1088         write_sequnlock_irq(&conf->resync_lock);
1089 }
1090
1091 static sector_t choose_data_offset(struct r10bio *r10_bio,
1092                                    struct md_rdev *rdev)
1093 {
1094         if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1095             test_bit(R10BIO_Previous, &r10_bio->state))
1096                 return rdev->data_offset;
1097         else
1098                 return rdev->new_data_offset;
1099 }
1100
1101 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1102 {
1103         struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb, cb);
1104         struct mddev *mddev = plug->cb.data;
1105         struct r10conf *conf = mddev->private;
1106         struct bio *bio;
1107
1108         if (from_schedule) {
1109                 spin_lock_irq(&conf->device_lock);
1110                 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1111                 spin_unlock_irq(&conf->device_lock);
1112                 wake_up_barrier(conf);
1113                 md_wakeup_thread(mddev->thread);
1114                 kfree(plug);
1115                 return;
1116         }
1117
1118         /* we aren't scheduling, so we can do the write-out directly. */
1119         bio = bio_list_get(&plug->pending);
1120         raid1_prepare_flush_writes(mddev->bitmap);
1121         wake_up_barrier(conf);
1122
1123         while (bio) { /* submit pending writes */
1124                 struct bio *next = bio->bi_next;
1125
1126                 raid1_submit_write(bio);
1127                 bio = next;
1128                 cond_resched();
1129         }
1130         kfree(plug);
1131 }
1132
1133 /*
1134  * 1. Register the new request and wait if the reconstruction thread has put
1135  * up a bar for new requests. Continue immediately if no resync is active
1136  * currently.
1137  * 2. If IO spans the reshape position.  Need to wait for reshape to pass.
1138  */
1139 static bool regular_request_wait(struct mddev *mddev, struct r10conf *conf,
1140                                  struct bio *bio, sector_t sectors)
1141 {
1142         /* Bail out if REQ_NOWAIT is set for the bio */
1143         if (!wait_barrier(conf, bio->bi_opf & REQ_NOWAIT)) {
1144                 bio_wouldblock_error(bio);
1145                 return false;
1146         }
1147         while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1148             bio->bi_iter.bi_sector < conf->reshape_progress &&
1149             bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1150                 allow_barrier(conf);
1151                 if (bio->bi_opf & REQ_NOWAIT) {
1152                         bio_wouldblock_error(bio);
1153                         return false;
1154                 }
1155                 raid10_log(conf->mddev, "wait reshape");
1156                 wait_event(conf->wait_barrier,
1157                            conf->reshape_progress <= bio->bi_iter.bi_sector ||
1158                            conf->reshape_progress >= bio->bi_iter.bi_sector +
1159                            sectors);
1160                 wait_barrier(conf, false);
1161         }
1162         return true;
1163 }
1164
1165 static void raid10_read_request(struct mddev *mddev, struct bio *bio,
1166                                 struct r10bio *r10_bio, bool io_accounting)
1167 {
1168         struct r10conf *conf = mddev->private;
1169         struct bio *read_bio;
1170         const enum req_op op = bio_op(bio);
1171         const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC;
1172         int max_sectors;
1173         struct md_rdev *rdev;
1174         char b[BDEVNAME_SIZE];
1175         int slot = r10_bio->read_slot;
1176         struct md_rdev *err_rdev = NULL;
1177         gfp_t gfp = GFP_NOIO;
1178
1179         if (slot >= 0 && r10_bio->devs[slot].rdev) {
1180                 /*
1181                  * This is an error retry, but we cannot
1182                  * safely dereference the rdev in the r10_bio,
1183                  * we must use the one in conf.
1184                  * If it has already been disconnected (unlikely)
1185                  * we lose the device name in error messages.
1186                  */
1187                 int disk;
1188                 /*
1189                  * As we are blocking raid10, it is a little safer to
1190                  * use __GFP_HIGH.
1191                  */
1192                 gfp = GFP_NOIO | __GFP_HIGH;
1193
1194                 disk = r10_bio->devs[slot].devnum;
1195                 err_rdev = conf->mirrors[disk].rdev;
1196                 if (err_rdev)
1197                         snprintf(b, sizeof(b), "%pg", err_rdev->bdev);
1198                 else {
1199                         strcpy(b, "???");
1200                         /* This never gets dereferenced */
1201                         err_rdev = r10_bio->devs[slot].rdev;
1202                 }
1203         }
1204
1205         if (!regular_request_wait(mddev, conf, bio, r10_bio->sectors))
1206                 return;
1207         rdev = read_balance(conf, r10_bio, &max_sectors);
1208         if (!rdev) {
1209                 if (err_rdev) {
1210                         pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
1211                                             mdname(mddev), b,
1212                                             (unsigned long long)r10_bio->sector);
1213                 }
1214                 raid_end_bio_io(r10_bio);
1215                 return;
1216         }
1217         if (err_rdev)
1218                 pr_err_ratelimited("md/raid10:%s: %pg: redirecting sector %llu to another mirror\n",
1219                                    mdname(mddev),
1220                                    rdev->bdev,
1221                                    (unsigned long long)r10_bio->sector);
1222         if (max_sectors < bio_sectors(bio)) {
1223                 struct bio *split = bio_split(bio, max_sectors,
1224                                               gfp, &conf->bio_split);
1225                 bio_chain(split, bio);
1226                 allow_barrier(conf);
1227                 submit_bio_noacct(bio);
1228                 wait_barrier(conf, false);
1229                 bio = split;
1230                 r10_bio->master_bio = bio;
1231                 r10_bio->sectors = max_sectors;
1232         }
1233         slot = r10_bio->read_slot;
1234
1235         if (io_accounting) {
1236                 md_account_bio(mddev, &bio);
1237                 r10_bio->master_bio = bio;
1238         }
1239         read_bio = bio_alloc_clone(rdev->bdev, bio, gfp, &mddev->bio_set);
1240
1241         r10_bio->devs[slot].bio = read_bio;
1242         r10_bio->devs[slot].rdev = rdev;
1243
1244         read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1245                 choose_data_offset(r10_bio, rdev);
1246         read_bio->bi_end_io = raid10_end_read_request;
1247         read_bio->bi_opf = op | do_sync;
1248         if (test_bit(FailFast, &rdev->flags) &&
1249             test_bit(R10BIO_FailFast, &r10_bio->state))
1250                 read_bio->bi_opf |= MD_FAILFAST;
1251         read_bio->bi_private = r10_bio;
1252
1253         if (mddev->gendisk)
1254                 trace_block_bio_remap(read_bio, disk_devt(mddev->gendisk),
1255                                       r10_bio->sector);
1256         submit_bio_noacct(read_bio);
1257         return;
1258 }
1259
1260 static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio,
1261                                   struct bio *bio, bool replacement,
1262                                   int n_copy)
1263 {
1264         const enum req_op op = bio_op(bio);
1265         const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC;
1266         const blk_opf_t do_fua = bio->bi_opf & REQ_FUA;
1267         unsigned long flags;
1268         struct r10conf *conf = mddev->private;
1269         struct md_rdev *rdev;
1270         int devnum = r10_bio->devs[n_copy].devnum;
1271         struct bio *mbio;
1272
1273         rdev = replacement ? conf->mirrors[devnum].replacement :
1274                              conf->mirrors[devnum].rdev;
1275
1276         mbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO, &mddev->bio_set);
1277         if (replacement)
1278                 r10_bio->devs[n_copy].repl_bio = mbio;
1279         else
1280                 r10_bio->devs[n_copy].bio = mbio;
1281
1282         mbio->bi_iter.bi_sector = (r10_bio->devs[n_copy].addr +
1283                                    choose_data_offset(r10_bio, rdev));
1284         mbio->bi_end_io = raid10_end_write_request;
1285         mbio->bi_opf = op | do_sync | do_fua;
1286         if (!replacement && test_bit(FailFast,
1287                                      &conf->mirrors[devnum].rdev->flags)
1288                          && enough(conf, devnum))
1289                 mbio->bi_opf |= MD_FAILFAST;
1290         mbio->bi_private = r10_bio;
1291
1292         if (conf->mddev->gendisk)
1293                 trace_block_bio_remap(mbio, disk_devt(conf->mddev->gendisk),
1294                                       r10_bio->sector);
1295         /* flush_pending_writes() needs access to the rdev so...*/
1296         mbio->bi_bdev = (void *)rdev;
1297
1298         atomic_inc(&r10_bio->remaining);
1299
1300         if (!raid1_add_bio_to_plug(mddev, mbio, raid10_unplug, conf->copies)) {
1301                 spin_lock_irqsave(&conf->device_lock, flags);
1302                 bio_list_add(&conf->pending_bio_list, mbio);
1303                 spin_unlock_irqrestore(&conf->device_lock, flags);
1304                 md_wakeup_thread(mddev->thread);
1305         }
1306 }
1307
1308 static void wait_blocked_dev(struct mddev *mddev, struct r10bio *r10_bio)
1309 {
1310         int i;
1311         struct r10conf *conf = mddev->private;
1312         struct md_rdev *blocked_rdev;
1313
1314 retry_wait:
1315         blocked_rdev = NULL;
1316         for (i = 0; i < conf->copies; i++) {
1317                 struct md_rdev *rdev, *rrdev;
1318
1319                 rdev = conf->mirrors[i].rdev;
1320                 rrdev = conf->mirrors[i].replacement;
1321                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1322                         atomic_inc(&rdev->nr_pending);
1323                         blocked_rdev = rdev;
1324                         break;
1325                 }
1326                 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1327                         atomic_inc(&rrdev->nr_pending);
1328                         blocked_rdev = rrdev;
1329                         break;
1330                 }
1331
1332                 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1333                         sector_t first_bad;
1334                         sector_t dev_sector = r10_bio->devs[i].addr;
1335                         int bad_sectors;
1336                         int is_bad;
1337
1338                         /*
1339                          * Discard request doesn't care the write result
1340                          * so it doesn't need to wait blocked disk here.
1341                          */
1342                         if (!r10_bio->sectors)
1343                                 continue;
1344
1345                         is_bad = is_badblock(rdev, dev_sector, r10_bio->sectors,
1346                                              &first_bad, &bad_sectors);
1347                         if (is_bad < 0) {
1348                                 /*
1349                                  * Mustn't write here until the bad block
1350                                  * is acknowledged
1351                                  */
1352                                 atomic_inc(&rdev->nr_pending);
1353                                 set_bit(BlockedBadBlocks, &rdev->flags);
1354                                 blocked_rdev = rdev;
1355                                 break;
1356                         }
1357                 }
1358         }
1359
1360         if (unlikely(blocked_rdev)) {
1361                 /* Have to wait for this device to get unblocked, then retry */
1362                 allow_barrier(conf);
1363                 raid10_log(conf->mddev, "%s wait rdev %d blocked",
1364                                 __func__, blocked_rdev->raid_disk);
1365                 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1366                 wait_barrier(conf, false);
1367                 goto retry_wait;
1368         }
1369 }
1370
1371 static void raid10_write_request(struct mddev *mddev, struct bio *bio,
1372                                  struct r10bio *r10_bio)
1373 {
1374         struct r10conf *conf = mddev->private;
1375         int i;
1376         sector_t sectors;
1377         int max_sectors;
1378
1379         if ((mddev_is_clustered(mddev) &&
1380              md_cluster_ops->area_resyncing(mddev, WRITE,
1381                                             bio->bi_iter.bi_sector,
1382                                             bio_end_sector(bio)))) {
1383                 DEFINE_WAIT(w);
1384                 /* Bail out if REQ_NOWAIT is set for the bio */
1385                 if (bio->bi_opf & REQ_NOWAIT) {
1386                         bio_wouldblock_error(bio);
1387                         return;
1388                 }
1389                 for (;;) {
1390                         prepare_to_wait(&conf->wait_barrier,
1391                                         &w, TASK_IDLE);
1392                         if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1393                                  bio->bi_iter.bi_sector, bio_end_sector(bio)))
1394                                 break;
1395                         schedule();
1396                 }
1397                 finish_wait(&conf->wait_barrier, &w);
1398         }
1399
1400         sectors = r10_bio->sectors;
1401         if (!regular_request_wait(mddev, conf, bio, sectors))
1402                 return;
1403         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1404             (mddev->reshape_backwards
1405              ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1406                 bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1407              : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1408                 bio->bi_iter.bi_sector < conf->reshape_progress))) {
1409                 /* Need to update reshape_position in metadata */
1410                 mddev->reshape_position = conf->reshape_progress;
1411                 set_mask_bits(&mddev->sb_flags, 0,
1412                               BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1413                 md_wakeup_thread(mddev->thread);
1414                 if (bio->bi_opf & REQ_NOWAIT) {
1415                         allow_barrier(conf);
1416                         bio_wouldblock_error(bio);
1417                         return;
1418                 }
1419                 raid10_log(conf->mddev, "wait reshape metadata");
1420                 wait_event(mddev->sb_wait,
1421                            !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
1422
1423                 conf->reshape_safe = mddev->reshape_position;
1424         }
1425
1426         /* first select target devices under rcu_lock and
1427          * inc refcount on their rdev.  Record them by setting
1428          * bios[x] to bio
1429          * If there are known/acknowledged bad blocks on any device
1430          * on which we have seen a write error, we want to avoid
1431          * writing to those blocks.  This potentially requires several
1432          * writes to write around the bad blocks.  Each set of writes
1433          * gets its own r10_bio with a set of bios attached.
1434          */
1435
1436         r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1437         raid10_find_phys(conf, r10_bio);
1438
1439         wait_blocked_dev(mddev, r10_bio);
1440
1441         max_sectors = r10_bio->sectors;
1442
1443         for (i = 0;  i < conf->copies; i++) {
1444                 int d = r10_bio->devs[i].devnum;
1445                 struct md_rdev *rdev, *rrdev;
1446
1447                 rdev = conf->mirrors[d].rdev;
1448                 rrdev = conf->mirrors[d].replacement;
1449                 if (rdev && (test_bit(Faulty, &rdev->flags)))
1450                         rdev = NULL;
1451                 if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1452                         rrdev = NULL;
1453
1454                 r10_bio->devs[i].bio = NULL;
1455                 r10_bio->devs[i].repl_bio = NULL;
1456
1457                 if (!rdev && !rrdev) {
1458                         set_bit(R10BIO_Degraded, &r10_bio->state);
1459                         continue;
1460                 }
1461                 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1462                         sector_t first_bad;
1463                         sector_t dev_sector = r10_bio->devs[i].addr;
1464                         int bad_sectors;
1465                         int is_bad;
1466
1467                         is_bad = is_badblock(rdev, dev_sector, max_sectors,
1468                                              &first_bad, &bad_sectors);
1469                         if (is_bad && first_bad <= dev_sector) {
1470                                 /* Cannot write here at all */
1471                                 bad_sectors -= (dev_sector - first_bad);
1472                                 if (bad_sectors < max_sectors)
1473                                         /* Mustn't write more than bad_sectors
1474                                          * to other devices yet
1475                                          */
1476                                         max_sectors = bad_sectors;
1477                                 /* We don't set R10BIO_Degraded as that
1478                                  * only applies if the disk is missing,
1479                                  * so it might be re-added, and we want to
1480                                  * know to recover this chunk.
1481                                  * In this case the device is here, and the
1482                                  * fact that this chunk is not in-sync is
1483                                  * recorded in the bad block log.
1484                                  */
1485                                 continue;
1486                         }
1487                         if (is_bad) {
1488                                 int good_sectors = first_bad - dev_sector;
1489                                 if (good_sectors < max_sectors)
1490                                         max_sectors = good_sectors;
1491                         }
1492                 }
1493                 if (rdev) {
1494                         r10_bio->devs[i].bio = bio;
1495                         atomic_inc(&rdev->nr_pending);
1496                 }
1497                 if (rrdev) {
1498                         r10_bio->devs[i].repl_bio = bio;
1499                         atomic_inc(&rrdev->nr_pending);
1500                 }
1501         }
1502
1503         if (max_sectors < r10_bio->sectors)
1504                 r10_bio->sectors = max_sectors;
1505
1506         if (r10_bio->sectors < bio_sectors(bio)) {
1507                 struct bio *split = bio_split(bio, r10_bio->sectors,
1508                                               GFP_NOIO, &conf->bio_split);
1509                 bio_chain(split, bio);
1510                 allow_barrier(conf);
1511                 submit_bio_noacct(bio);
1512                 wait_barrier(conf, false);
1513                 bio = split;
1514                 r10_bio->master_bio = bio;
1515         }
1516
1517         md_account_bio(mddev, &bio);
1518         r10_bio->master_bio = bio;
1519         atomic_set(&r10_bio->remaining, 1);
1520         md_bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1521
1522         for (i = 0; i < conf->copies; i++) {
1523                 if (r10_bio->devs[i].bio)
1524                         raid10_write_one_disk(mddev, r10_bio, bio, false, i);
1525                 if (r10_bio->devs[i].repl_bio)
1526                         raid10_write_one_disk(mddev, r10_bio, bio, true, i);
1527         }
1528         one_write_done(r10_bio);
1529 }
1530
1531 static void __make_request(struct mddev *mddev, struct bio *bio, int sectors)
1532 {
1533         struct r10conf *conf = mddev->private;
1534         struct r10bio *r10_bio;
1535
1536         r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1537
1538         r10_bio->master_bio = bio;
1539         r10_bio->sectors = sectors;
1540
1541         r10_bio->mddev = mddev;
1542         r10_bio->sector = bio->bi_iter.bi_sector;
1543         r10_bio->state = 0;
1544         r10_bio->read_slot = -1;
1545         memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) *
1546                         conf->geo.raid_disks);
1547
1548         if (bio_data_dir(bio) == READ)
1549                 raid10_read_request(mddev, bio, r10_bio, true);
1550         else
1551                 raid10_write_request(mddev, bio, r10_bio);
1552 }
1553
1554 static void raid_end_discard_bio(struct r10bio *r10bio)
1555 {
1556         struct r10conf *conf = r10bio->mddev->private;
1557         struct r10bio *first_r10bio;
1558
1559         while (atomic_dec_and_test(&r10bio->remaining)) {
1560
1561                 allow_barrier(conf);
1562
1563                 if (!test_bit(R10BIO_Discard, &r10bio->state)) {
1564                         first_r10bio = (struct r10bio *)r10bio->master_bio;
1565                         free_r10bio(r10bio);
1566                         r10bio = first_r10bio;
1567                 } else {
1568                         md_write_end(r10bio->mddev);
1569                         bio_endio(r10bio->master_bio);
1570                         free_r10bio(r10bio);
1571                         break;
1572                 }
1573         }
1574 }
1575
1576 static void raid10_end_discard_request(struct bio *bio)
1577 {
1578         struct r10bio *r10_bio = bio->bi_private;
1579         struct r10conf *conf = r10_bio->mddev->private;
1580         struct md_rdev *rdev = NULL;
1581         int dev;
1582         int slot, repl;
1583
1584         /*
1585          * We don't care the return value of discard bio
1586          */
1587         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
1588                 set_bit(R10BIO_Uptodate, &r10_bio->state);
1589
1590         dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1591         rdev = repl ? conf->mirrors[dev].replacement :
1592                       conf->mirrors[dev].rdev;
1593
1594         raid_end_discard_bio(r10_bio);
1595         rdev_dec_pending(rdev, conf->mddev);
1596 }
1597
1598 /*
1599  * There are some limitations to handle discard bio
1600  * 1st, the discard size is bigger than stripe_size*2.
1601  * 2st, if the discard bio spans reshape progress, we use the old way to
1602  * handle discard bio
1603  */
1604 static int raid10_handle_discard(struct mddev *mddev, struct bio *bio)
1605 {
1606         struct r10conf *conf = mddev->private;
1607         struct geom *geo = &conf->geo;
1608         int far_copies = geo->far_copies;
1609         bool first_copy = true;
1610         struct r10bio *r10_bio, *first_r10bio;
1611         struct bio *split;
1612         int disk;
1613         sector_t chunk;
1614         unsigned int stripe_size;
1615         unsigned int stripe_data_disks;
1616         sector_t split_size;
1617         sector_t bio_start, bio_end;
1618         sector_t first_stripe_index, last_stripe_index;
1619         sector_t start_disk_offset;
1620         unsigned int start_disk_index;
1621         sector_t end_disk_offset;
1622         unsigned int end_disk_index;
1623         unsigned int remainder;
1624
1625         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1626                 return -EAGAIN;
1627
1628         if (WARN_ON_ONCE(bio->bi_opf & REQ_NOWAIT)) {
1629                 bio_wouldblock_error(bio);
1630                 return 0;
1631         }
1632         wait_barrier(conf, false);
1633
1634         /*
1635          * Check reshape again to avoid reshape happens after checking
1636          * MD_RECOVERY_RESHAPE and before wait_barrier
1637          */
1638         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1639                 goto out;
1640
1641         if (geo->near_copies)
1642                 stripe_data_disks = geo->raid_disks / geo->near_copies +
1643                                         geo->raid_disks % geo->near_copies;
1644         else
1645                 stripe_data_disks = geo->raid_disks;
1646
1647         stripe_size = stripe_data_disks << geo->chunk_shift;
1648
1649         bio_start = bio->bi_iter.bi_sector;
1650         bio_end = bio_end_sector(bio);
1651
1652         /*
1653          * Maybe one discard bio is smaller than strip size or across one
1654          * stripe and discard region is larger than one stripe size. For far
1655          * offset layout, if the discard region is not aligned with stripe
1656          * size, there is hole when we submit discard bio to member disk.
1657          * For simplicity, we only handle discard bio which discard region
1658          * is bigger than stripe_size * 2
1659          */
1660         if (bio_sectors(bio) < stripe_size*2)
1661                 goto out;
1662
1663         /*
1664          * Keep bio aligned with strip size.
1665          */
1666         div_u64_rem(bio_start, stripe_size, &remainder);
1667         if (remainder) {
1668                 split_size = stripe_size - remainder;
1669                 split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split);
1670                 bio_chain(split, bio);
1671                 allow_barrier(conf);
1672                 /* Resend the fist split part */
1673                 submit_bio_noacct(split);
1674                 wait_barrier(conf, false);
1675         }
1676         div_u64_rem(bio_end, stripe_size, &remainder);
1677         if (remainder) {
1678                 split_size = bio_sectors(bio) - remainder;
1679                 split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split);
1680                 bio_chain(split, bio);
1681                 allow_barrier(conf);
1682                 /* Resend the second split part */
1683                 submit_bio_noacct(bio);
1684                 bio = split;
1685                 wait_barrier(conf, false);
1686         }
1687
1688         bio_start = bio->bi_iter.bi_sector;
1689         bio_end = bio_end_sector(bio);
1690
1691         /*
1692          * Raid10 uses chunk as the unit to store data. It's similar like raid0.
1693          * One stripe contains the chunks from all member disk (one chunk from
1694          * one disk at the same HBA address). For layout detail, see 'man md 4'
1695          */
1696         chunk = bio_start >> geo->chunk_shift;
1697         chunk *= geo->near_copies;
1698         first_stripe_index = chunk;
1699         start_disk_index = sector_div(first_stripe_index, geo->raid_disks);
1700         if (geo->far_offset)
1701                 first_stripe_index *= geo->far_copies;
1702         start_disk_offset = (bio_start & geo->chunk_mask) +
1703                                 (first_stripe_index << geo->chunk_shift);
1704
1705         chunk = bio_end >> geo->chunk_shift;
1706         chunk *= geo->near_copies;
1707         last_stripe_index = chunk;
1708         end_disk_index = sector_div(last_stripe_index, geo->raid_disks);
1709         if (geo->far_offset)
1710                 last_stripe_index *= geo->far_copies;
1711         end_disk_offset = (bio_end & geo->chunk_mask) +
1712                                 (last_stripe_index << geo->chunk_shift);
1713
1714 retry_discard:
1715         r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1716         r10_bio->mddev = mddev;
1717         r10_bio->state = 0;
1718         r10_bio->sectors = 0;
1719         memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * geo->raid_disks);
1720         wait_blocked_dev(mddev, r10_bio);
1721
1722         /*
1723          * For far layout it needs more than one r10bio to cover all regions.
1724          * Inspired by raid10_sync_request, we can use the first r10bio->master_bio
1725          * to record the discard bio. Other r10bio->master_bio record the first
1726          * r10bio. The first r10bio only release after all other r10bios finish.
1727          * The discard bio returns only first r10bio finishes
1728          */
1729         if (first_copy) {
1730                 r10_bio->master_bio = bio;
1731                 set_bit(R10BIO_Discard, &r10_bio->state);
1732                 first_copy = false;
1733                 first_r10bio = r10_bio;
1734         } else
1735                 r10_bio->master_bio = (struct bio *)first_r10bio;
1736
1737         /*
1738          * first select target devices under rcu_lock and
1739          * inc refcount on their rdev.  Record them by setting
1740          * bios[x] to bio
1741          */
1742         for (disk = 0; disk < geo->raid_disks; disk++) {
1743                 struct md_rdev *rdev, *rrdev;
1744
1745                 rdev = conf->mirrors[disk].rdev;
1746                 rrdev = conf->mirrors[disk].replacement;
1747                 r10_bio->devs[disk].bio = NULL;
1748                 r10_bio->devs[disk].repl_bio = NULL;
1749
1750                 if (rdev && (test_bit(Faulty, &rdev->flags)))
1751                         rdev = NULL;
1752                 if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1753                         rrdev = NULL;
1754                 if (!rdev && !rrdev)
1755                         continue;
1756
1757                 if (rdev) {
1758                         r10_bio->devs[disk].bio = bio;
1759                         atomic_inc(&rdev->nr_pending);
1760                 }
1761                 if (rrdev) {
1762                         r10_bio->devs[disk].repl_bio = bio;
1763                         atomic_inc(&rrdev->nr_pending);
1764                 }
1765         }
1766
1767         atomic_set(&r10_bio->remaining, 1);
1768         for (disk = 0; disk < geo->raid_disks; disk++) {
1769                 sector_t dev_start, dev_end;
1770                 struct bio *mbio, *rbio = NULL;
1771
1772                 /*
1773                  * Now start to calculate the start and end address for each disk.
1774                  * The space between dev_start and dev_end is the discard region.
1775                  *
1776                  * For dev_start, it needs to consider three conditions:
1777                  * 1st, the disk is before start_disk, you can imagine the disk in
1778                  * the next stripe. So the dev_start is the start address of next
1779                  * stripe.
1780                  * 2st, the disk is after start_disk, it means the disk is at the
1781                  * same stripe of first disk
1782                  * 3st, the first disk itself, we can use start_disk_offset directly
1783                  */
1784                 if (disk < start_disk_index)
1785                         dev_start = (first_stripe_index + 1) * mddev->chunk_sectors;
1786                 else if (disk > start_disk_index)
1787                         dev_start = first_stripe_index * mddev->chunk_sectors;
1788                 else
1789                         dev_start = start_disk_offset;
1790
1791                 if (disk < end_disk_index)
1792                         dev_end = (last_stripe_index + 1) * mddev->chunk_sectors;
1793                 else if (disk > end_disk_index)
1794                         dev_end = last_stripe_index * mddev->chunk_sectors;
1795                 else
1796                         dev_end = end_disk_offset;
1797
1798                 /*
1799                  * It only handles discard bio which size is >= stripe size, so
1800                  * dev_end > dev_start all the time.
1801                  * It doesn't need to use rcu lock to get rdev here. We already
1802                  * add rdev->nr_pending in the first loop.
1803                  */
1804                 if (r10_bio->devs[disk].bio) {
1805                         struct md_rdev *rdev = conf->mirrors[disk].rdev;
1806                         mbio = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO,
1807                                                &mddev->bio_set);
1808                         mbio->bi_end_io = raid10_end_discard_request;
1809                         mbio->bi_private = r10_bio;
1810                         r10_bio->devs[disk].bio = mbio;
1811                         r10_bio->devs[disk].devnum = disk;
1812                         atomic_inc(&r10_bio->remaining);
1813                         md_submit_discard_bio(mddev, rdev, mbio,
1814                                         dev_start + choose_data_offset(r10_bio, rdev),
1815                                         dev_end - dev_start);
1816                         bio_endio(mbio);
1817                 }
1818                 if (r10_bio->devs[disk].repl_bio) {
1819                         struct md_rdev *rrdev = conf->mirrors[disk].replacement;
1820                         rbio = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO,
1821                                                &mddev->bio_set);
1822                         rbio->bi_end_io = raid10_end_discard_request;
1823                         rbio->bi_private = r10_bio;
1824                         r10_bio->devs[disk].repl_bio = rbio;
1825                         r10_bio->devs[disk].devnum = disk;
1826                         atomic_inc(&r10_bio->remaining);
1827                         md_submit_discard_bio(mddev, rrdev, rbio,
1828                                         dev_start + choose_data_offset(r10_bio, rrdev),
1829                                         dev_end - dev_start);
1830                         bio_endio(rbio);
1831                 }
1832         }
1833
1834         if (!geo->far_offset && --far_copies) {
1835                 first_stripe_index += geo->stride >> geo->chunk_shift;
1836                 start_disk_offset += geo->stride;
1837                 last_stripe_index += geo->stride >> geo->chunk_shift;
1838                 end_disk_offset += geo->stride;
1839                 atomic_inc(&first_r10bio->remaining);
1840                 raid_end_discard_bio(r10_bio);
1841                 wait_barrier(conf, false);
1842                 goto retry_discard;
1843         }
1844
1845         raid_end_discard_bio(r10_bio);
1846
1847         return 0;
1848 out:
1849         allow_barrier(conf);
1850         return -EAGAIN;
1851 }
1852
1853 static bool raid10_make_request(struct mddev *mddev, struct bio *bio)
1854 {
1855         struct r10conf *conf = mddev->private;
1856         sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1857         int chunk_sects = chunk_mask + 1;
1858         int sectors = bio_sectors(bio);
1859
1860         if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1861             && md_flush_request(mddev, bio))
1862                 return true;
1863
1864         if (!md_write_start(mddev, bio))
1865                 return false;
1866
1867         if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
1868                 if (!raid10_handle_discard(mddev, bio))
1869                         return true;
1870
1871         /*
1872          * If this request crosses a chunk boundary, we need to split
1873          * it.
1874          */
1875         if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1876                      sectors > chunk_sects
1877                      && (conf->geo.near_copies < conf->geo.raid_disks
1878                          || conf->prev.near_copies <
1879                          conf->prev.raid_disks)))
1880                 sectors = chunk_sects -
1881                         (bio->bi_iter.bi_sector &
1882                          (chunk_sects - 1));
1883         __make_request(mddev, bio, sectors);
1884
1885         /* In case raid10d snuck in to freeze_array */
1886         wake_up_barrier(conf);
1887         return true;
1888 }
1889
1890 static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1891 {
1892         struct r10conf *conf = mddev->private;
1893         int i;
1894
1895         lockdep_assert_held(&mddev->lock);
1896
1897         if (conf->geo.near_copies < conf->geo.raid_disks)
1898                 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1899         if (conf->geo.near_copies > 1)
1900                 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1901         if (conf->geo.far_copies > 1) {
1902                 if (conf->geo.far_offset)
1903                         seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1904                 else
1905                         seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1906                 if (conf->geo.far_set_size != conf->geo.raid_disks)
1907                         seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1908         }
1909         seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1910                                         conf->geo.raid_disks - mddev->degraded);
1911         for (i = 0; i < conf->geo.raid_disks; i++) {
1912                 struct md_rdev *rdev = READ_ONCE(conf->mirrors[i].rdev);
1913
1914                 seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1915         }
1916         seq_printf(seq, "]");
1917 }
1918
1919 /* check if there are enough drives for
1920  * every block to appear on atleast one.
1921  * Don't consider the device numbered 'ignore'
1922  * as we might be about to remove it.
1923  */
1924 static int _enough(struct r10conf *conf, int previous, int ignore)
1925 {
1926         int first = 0;
1927         int has_enough = 0;
1928         int disks, ncopies;
1929         if (previous) {
1930                 disks = conf->prev.raid_disks;
1931                 ncopies = conf->prev.near_copies;
1932         } else {
1933                 disks = conf->geo.raid_disks;
1934                 ncopies = conf->geo.near_copies;
1935         }
1936
1937         do {
1938                 int n = conf->copies;
1939                 int cnt = 0;
1940                 int this = first;
1941                 while (n--) {
1942                         struct md_rdev *rdev;
1943                         if (this != ignore &&
1944                             (rdev = conf->mirrors[this].rdev) &&
1945                             test_bit(In_sync, &rdev->flags))
1946                                 cnt++;
1947                         this = (this+1) % disks;
1948                 }
1949                 if (cnt == 0)
1950                         goto out;
1951                 first = (first + ncopies) % disks;
1952         } while (first != 0);
1953         has_enough = 1;
1954 out:
1955         return has_enough;
1956 }
1957
1958 static int enough(struct r10conf *conf, int ignore)
1959 {
1960         /* when calling 'enough', both 'prev' and 'geo' must
1961          * be stable.
1962          * This is ensured if ->reconfig_mutex or ->device_lock
1963          * is held.
1964          */
1965         return _enough(conf, 0, ignore) &&
1966                 _enough(conf, 1, ignore);
1967 }
1968
1969 /**
1970  * raid10_error() - RAID10 error handler.
1971  * @mddev: affected md device.
1972  * @rdev: member device to fail.
1973  *
1974  * The routine acknowledges &rdev failure and determines new @mddev state.
1975  * If it failed, then:
1976  *      - &MD_BROKEN flag is set in &mddev->flags.
1977  * Otherwise, it must be degraded:
1978  *      - recovery is interrupted.
1979  *      - &mddev->degraded is bumped.
1980  *
1981  * @rdev is marked as &Faulty excluding case when array is failed and
1982  * &mddev->fail_last_dev is off.
1983  */
1984 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
1985 {
1986         struct r10conf *conf = mddev->private;
1987         unsigned long flags;
1988
1989         spin_lock_irqsave(&conf->device_lock, flags);
1990
1991         if (test_bit(In_sync, &rdev->flags) && !enough(conf, rdev->raid_disk)) {
1992                 set_bit(MD_BROKEN, &mddev->flags);
1993
1994                 if (!mddev->fail_last_dev) {
1995                         spin_unlock_irqrestore(&conf->device_lock, flags);
1996                         return;
1997                 }
1998         }
1999         if (test_and_clear_bit(In_sync, &rdev->flags))
2000                 mddev->degraded++;
2001
2002         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2003         set_bit(Blocked, &rdev->flags);
2004         set_bit(Faulty, &rdev->flags);
2005         set_mask_bits(&mddev->sb_flags, 0,
2006                       BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
2007         spin_unlock_irqrestore(&conf->device_lock, flags);
2008         pr_crit("md/raid10:%s: Disk failure on %pg, disabling device.\n"
2009                 "md/raid10:%s: Operation continuing on %d devices.\n",
2010                 mdname(mddev), rdev->bdev,
2011                 mdname(mddev), conf->geo.raid_disks - mddev->degraded);
2012 }
2013
2014 static void print_conf(struct r10conf *conf)
2015 {
2016         int i;
2017         struct md_rdev *rdev;
2018
2019         pr_debug("RAID10 conf printout:\n");
2020         if (!conf) {
2021                 pr_debug("(!conf)\n");
2022                 return;
2023         }
2024         pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
2025                  conf->geo.raid_disks);
2026
2027         lockdep_assert_held(&conf->mddev->reconfig_mutex);
2028         for (i = 0; i < conf->geo.raid_disks; i++) {
2029                 rdev = conf->mirrors[i].rdev;
2030                 if (rdev)
2031                         pr_debug(" disk %d, wo:%d, o:%d, dev:%pg\n",
2032                                  i, !test_bit(In_sync, &rdev->flags),
2033                                  !test_bit(Faulty, &rdev->flags),
2034                                  rdev->bdev);
2035         }
2036 }
2037
2038 static void close_sync(struct r10conf *conf)
2039 {
2040         wait_barrier(conf, false);
2041         allow_barrier(conf);
2042
2043         mempool_exit(&conf->r10buf_pool);
2044 }
2045
2046 static int raid10_spare_active(struct mddev *mddev)
2047 {
2048         int i;
2049         struct r10conf *conf = mddev->private;
2050         struct raid10_info *tmp;
2051         int count = 0;
2052         unsigned long flags;
2053
2054         /*
2055          * Find all non-in_sync disks within the RAID10 configuration
2056          * and mark them in_sync
2057          */
2058         for (i = 0; i < conf->geo.raid_disks; i++) {
2059                 tmp = conf->mirrors + i;
2060                 if (tmp->replacement
2061                     && tmp->replacement->recovery_offset == MaxSector
2062                     && !test_bit(Faulty, &tmp->replacement->flags)
2063                     && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
2064                         /* Replacement has just become active */
2065                         if (!tmp->rdev
2066                             || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
2067                                 count++;
2068                         if (tmp->rdev) {
2069                                 /* Replaced device not technically faulty,
2070                                  * but we need to be sure it gets removed
2071                                  * and never re-added.
2072                                  */
2073                                 set_bit(Faulty, &tmp->rdev->flags);
2074                                 sysfs_notify_dirent_safe(
2075                                         tmp->rdev->sysfs_state);
2076                         }
2077                         sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
2078                 } else if (tmp->rdev
2079                            && tmp->rdev->recovery_offset == MaxSector
2080                            && !test_bit(Faulty, &tmp->rdev->flags)
2081                            && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
2082                         count++;
2083                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
2084                 }
2085         }
2086         spin_lock_irqsave(&conf->device_lock, flags);
2087         mddev->degraded -= count;
2088         spin_unlock_irqrestore(&conf->device_lock, flags);
2089
2090         print_conf(conf);
2091         return count;
2092 }
2093
2094 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
2095 {
2096         struct r10conf *conf = mddev->private;
2097         int err = -EEXIST;
2098         int mirror, repl_slot = -1;
2099         int first = 0;
2100         int last = conf->geo.raid_disks - 1;
2101         struct raid10_info *p;
2102
2103         if (mddev->recovery_cp < MaxSector)
2104                 /* only hot-add to in-sync arrays, as recovery is
2105                  * very different from resync
2106                  */
2107                 return -EBUSY;
2108         if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
2109                 return -EINVAL;
2110
2111         if (md_integrity_add_rdev(rdev, mddev))
2112                 return -ENXIO;
2113
2114         if (rdev->raid_disk >= 0)
2115                 first = last = rdev->raid_disk;
2116
2117         if (rdev->saved_raid_disk >= first &&
2118             rdev->saved_raid_disk < conf->geo.raid_disks &&
2119             conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
2120                 mirror = rdev->saved_raid_disk;
2121         else
2122                 mirror = first;
2123         for ( ; mirror <= last ; mirror++) {
2124                 p = &conf->mirrors[mirror];
2125                 if (p->recovery_disabled == mddev->recovery_disabled)
2126                         continue;
2127                 if (p->rdev) {
2128                         if (test_bit(WantReplacement, &p->rdev->flags) &&
2129                             p->replacement == NULL && repl_slot < 0)
2130                                 repl_slot = mirror;
2131                         continue;
2132                 }
2133
2134                 if (mddev->gendisk)
2135                         disk_stack_limits(mddev->gendisk, rdev->bdev,
2136                                           rdev->data_offset << 9);
2137
2138                 p->head_position = 0;
2139                 p->recovery_disabled = mddev->recovery_disabled - 1;
2140                 rdev->raid_disk = mirror;
2141                 err = 0;
2142                 if (rdev->saved_raid_disk != mirror)
2143                         conf->fullsync = 1;
2144                 WRITE_ONCE(p->rdev, rdev);
2145                 break;
2146         }
2147
2148         if (err && repl_slot >= 0) {
2149                 p = &conf->mirrors[repl_slot];
2150                 clear_bit(In_sync, &rdev->flags);
2151                 set_bit(Replacement, &rdev->flags);
2152                 rdev->raid_disk = repl_slot;
2153                 err = 0;
2154                 if (mddev->gendisk)
2155                         disk_stack_limits(mddev->gendisk, rdev->bdev,
2156                                           rdev->data_offset << 9);
2157                 conf->fullsync = 1;
2158                 WRITE_ONCE(p->replacement, rdev);
2159         }
2160
2161         print_conf(conf);
2162         return err;
2163 }
2164
2165 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
2166 {
2167         struct r10conf *conf = mddev->private;
2168         int err = 0;
2169         int number = rdev->raid_disk;
2170         struct md_rdev **rdevp;
2171         struct raid10_info *p;
2172
2173         print_conf(conf);
2174         if (unlikely(number >= mddev->raid_disks))
2175                 return 0;
2176         p = conf->mirrors + number;
2177         if (rdev == p->rdev)
2178                 rdevp = &p->rdev;
2179         else if (rdev == p->replacement)
2180                 rdevp = &p->replacement;
2181         else
2182                 return 0;
2183
2184         if (test_bit(In_sync, &rdev->flags) ||
2185             atomic_read(&rdev->nr_pending)) {
2186                 err = -EBUSY;
2187                 goto abort;
2188         }
2189         /* Only remove non-faulty devices if recovery
2190          * is not possible.
2191          */
2192         if (!test_bit(Faulty, &rdev->flags) &&
2193             mddev->recovery_disabled != p->recovery_disabled &&
2194             (!p->replacement || p->replacement == rdev) &&
2195             number < conf->geo.raid_disks &&
2196             enough(conf, -1)) {
2197                 err = -EBUSY;
2198                 goto abort;
2199         }
2200         WRITE_ONCE(*rdevp, NULL);
2201         if (p->replacement) {
2202                 /* We must have just cleared 'rdev' */
2203                 WRITE_ONCE(p->rdev, p->replacement);
2204                 clear_bit(Replacement, &p->replacement->flags);
2205                 WRITE_ONCE(p->replacement, NULL);
2206         }
2207
2208         clear_bit(WantReplacement, &rdev->flags);
2209         err = md_integrity_register(mddev);
2210
2211 abort:
2212
2213         print_conf(conf);
2214         return err;
2215 }
2216
2217 static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d)
2218 {
2219         struct r10conf *conf = r10_bio->mddev->private;
2220
2221         if (!bio->bi_status)
2222                 set_bit(R10BIO_Uptodate, &r10_bio->state);
2223         else
2224                 /* The write handler will notice the lack of
2225                  * R10BIO_Uptodate and record any errors etc
2226                  */
2227                 atomic_add(r10_bio->sectors,
2228                            &conf->mirrors[d].rdev->corrected_errors);
2229
2230         /* for reconstruct, we always reschedule after a read.
2231          * for resync, only after all reads
2232          */
2233         rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
2234         if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
2235             atomic_dec_and_test(&r10_bio->remaining)) {
2236                 /* we have read all the blocks,
2237                  * do the comparison in process context in raid10d
2238                  */
2239                 reschedule_retry(r10_bio);
2240         }
2241 }
2242
2243 static void end_sync_read(struct bio *bio)
2244 {
2245         struct r10bio *r10_bio = get_resync_r10bio(bio);
2246         struct r10conf *conf = r10_bio->mddev->private;
2247         int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
2248
2249         __end_sync_read(r10_bio, bio, d);
2250 }
2251
2252 static void end_reshape_read(struct bio *bio)
2253 {
2254         /* reshape read bio isn't allocated from r10buf_pool */
2255         struct r10bio *r10_bio = bio->bi_private;
2256
2257         __end_sync_read(r10_bio, bio, r10_bio->read_slot);
2258 }
2259
2260 static void end_sync_request(struct r10bio *r10_bio)
2261 {
2262         struct mddev *mddev = r10_bio->mddev;
2263
2264         while (atomic_dec_and_test(&r10_bio->remaining)) {
2265                 if (r10_bio->master_bio == NULL) {
2266                         /* the primary of several recovery bios */
2267                         sector_t s = r10_bio->sectors;
2268                         if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2269                             test_bit(R10BIO_WriteError, &r10_bio->state))
2270                                 reschedule_retry(r10_bio);
2271                         else
2272                                 put_buf(r10_bio);
2273                         md_done_sync(mddev, s, 1);
2274                         break;
2275                 } else {
2276                         struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
2277                         if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2278                             test_bit(R10BIO_WriteError, &r10_bio->state))
2279                                 reschedule_retry(r10_bio);
2280                         else
2281                                 put_buf(r10_bio);
2282                         r10_bio = r10_bio2;
2283                 }
2284         }
2285 }
2286
2287 static void end_sync_write(struct bio *bio)
2288 {
2289         struct r10bio *r10_bio = get_resync_r10bio(bio);
2290         struct mddev *mddev = r10_bio->mddev;
2291         struct r10conf *conf = mddev->private;
2292         int d;
2293         sector_t first_bad;
2294         int bad_sectors;
2295         int slot;
2296         int repl;
2297         struct md_rdev *rdev = NULL;
2298
2299         d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
2300         if (repl)
2301                 rdev = conf->mirrors[d].replacement;
2302         else
2303                 rdev = conf->mirrors[d].rdev;
2304
2305         if (bio->bi_status) {
2306                 if (repl)
2307                         md_error(mddev, rdev);
2308                 else {
2309                         set_bit(WriteErrorSeen, &rdev->flags);
2310                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
2311                                 set_bit(MD_RECOVERY_NEEDED,
2312                                         &rdev->mddev->recovery);
2313                         set_bit(R10BIO_WriteError, &r10_bio->state);
2314                 }
2315         } else if (is_badblock(rdev,
2316                              r10_bio->devs[slot].addr,
2317                              r10_bio->sectors,
2318                              &first_bad, &bad_sectors))
2319                 set_bit(R10BIO_MadeGood, &r10_bio->state);
2320
2321         rdev_dec_pending(rdev, mddev);
2322
2323         end_sync_request(r10_bio);
2324 }
2325
2326 /*
2327  * Note: sync and recover and handled very differently for raid10
2328  * This code is for resync.
2329  * For resync, we read through virtual addresses and read all blocks.
2330  * If there is any error, we schedule a write.  The lowest numbered
2331  * drive is authoritative.
2332  * However requests come for physical address, so we need to map.
2333  * For every physical address there are raid_disks/copies virtual addresses,
2334  * which is always are least one, but is not necessarly an integer.
2335  * This means that a physical address can span multiple chunks, so we may
2336  * have to submit multiple io requests for a single sync request.
2337  */
2338 /*
2339  * We check if all blocks are in-sync and only write to blocks that
2340  * aren't in sync
2341  */
2342 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2343 {
2344         struct r10conf *conf = mddev->private;
2345         int i, first;
2346         struct bio *tbio, *fbio;
2347         int vcnt;
2348         struct page **tpages, **fpages;
2349
2350         atomic_set(&r10_bio->remaining, 1);
2351
2352         /* find the first device with a block */
2353         for (i=0; i<conf->copies; i++)
2354                 if (!r10_bio->devs[i].bio->bi_status)
2355                         break;
2356
2357         if (i == conf->copies)
2358                 goto done;
2359
2360         first = i;
2361         fbio = r10_bio->devs[i].bio;
2362         fbio->bi_iter.bi_size = r10_bio->sectors << 9;
2363         fbio->bi_iter.bi_idx = 0;
2364         fpages = get_resync_pages(fbio)->pages;
2365
2366         vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2367         /* now find blocks with errors */
2368         for (i=0 ; i < conf->copies ; i++) {
2369                 int  j, d;
2370                 struct md_rdev *rdev;
2371                 struct resync_pages *rp;
2372
2373                 tbio = r10_bio->devs[i].bio;
2374
2375                 if (tbio->bi_end_io != end_sync_read)
2376                         continue;
2377                 if (i == first)
2378                         continue;
2379
2380                 tpages = get_resync_pages(tbio)->pages;
2381                 d = r10_bio->devs[i].devnum;
2382                 rdev = conf->mirrors[d].rdev;
2383                 if (!r10_bio->devs[i].bio->bi_status) {
2384                         /* We know that the bi_io_vec layout is the same for
2385                          * both 'first' and 'i', so we just compare them.
2386                          * All vec entries are PAGE_SIZE;
2387                          */
2388                         int sectors = r10_bio->sectors;
2389                         for (j = 0; j < vcnt; j++) {
2390                                 int len = PAGE_SIZE;
2391                                 if (sectors < (len / 512))
2392                                         len = sectors * 512;
2393                                 if (memcmp(page_address(fpages[j]),
2394                                            page_address(tpages[j]),
2395                                            len))
2396                                         break;
2397                                 sectors -= len/512;
2398                         }
2399                         if (j == vcnt)
2400                                 continue;
2401                         atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2402                         if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2403                                 /* Don't fix anything. */
2404                                 continue;
2405                 } else if (test_bit(FailFast, &rdev->flags)) {
2406                         /* Just give up on this device */
2407                         md_error(rdev->mddev, rdev);
2408                         continue;
2409                 }
2410                 /* Ok, we need to write this bio, either to correct an
2411                  * inconsistency or to correct an unreadable block.
2412                  * First we need to fixup bv_offset, bv_len and
2413                  * bi_vecs, as the read request might have corrupted these
2414                  */
2415                 rp = get_resync_pages(tbio);
2416                 bio_reset(tbio, conf->mirrors[d].rdev->bdev, REQ_OP_WRITE);
2417
2418                 md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size);
2419
2420                 rp->raid_bio = r10_bio;
2421                 tbio->bi_private = rp;
2422                 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2423                 tbio->bi_end_io = end_sync_write;
2424
2425                 bio_copy_data(tbio, fbio);
2426
2427                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2428                 atomic_inc(&r10_bio->remaining);
2429                 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2430
2431                 if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
2432                         tbio->bi_opf |= MD_FAILFAST;
2433                 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2434                 submit_bio_noacct(tbio);
2435         }
2436
2437         /* Now write out to any replacement devices
2438          * that are active
2439          */
2440         for (i = 0; i < conf->copies; i++) {
2441                 int d;
2442
2443                 tbio = r10_bio->devs[i].repl_bio;
2444                 if (!tbio || !tbio->bi_end_io)
2445                         continue;
2446                 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2447                     && r10_bio->devs[i].bio != fbio)
2448                         bio_copy_data(tbio, fbio);
2449                 d = r10_bio->devs[i].devnum;
2450                 atomic_inc(&r10_bio->remaining);
2451                 md_sync_acct(conf->mirrors[d].replacement->bdev,
2452                              bio_sectors(tbio));
2453                 submit_bio_noacct(tbio);
2454         }
2455
2456 done:
2457         if (atomic_dec_and_test(&r10_bio->remaining)) {
2458                 md_done_sync(mddev, r10_bio->sectors, 1);
2459                 put_buf(r10_bio);
2460         }
2461 }
2462
2463 /*
2464  * Now for the recovery code.
2465  * Recovery happens across physical sectors.
2466  * We recover all non-is_sync drives by finding the virtual address of
2467  * each, and then choose a working drive that also has that virt address.
2468  * There is a separate r10_bio for each non-in_sync drive.
2469  * Only the first two slots are in use. The first for reading,
2470  * The second for writing.
2471  *
2472  */
2473 static void fix_recovery_read_error(struct r10bio *r10_bio)
2474 {
2475         /* We got a read error during recovery.
2476          * We repeat the read in smaller page-sized sections.
2477          * If a read succeeds, write it to the new device or record
2478          * a bad block if we cannot.
2479          * If a read fails, record a bad block on both old and
2480          * new devices.
2481          */
2482         struct mddev *mddev = r10_bio->mddev;
2483         struct r10conf *conf = mddev->private;
2484         struct bio *bio = r10_bio->devs[0].bio;
2485         sector_t sect = 0;
2486         int sectors = r10_bio->sectors;
2487         int idx = 0;
2488         int dr = r10_bio->devs[0].devnum;
2489         int dw = r10_bio->devs[1].devnum;
2490         struct page **pages = get_resync_pages(bio)->pages;
2491
2492         while (sectors) {
2493                 int s = sectors;
2494                 struct md_rdev *rdev;
2495                 sector_t addr;
2496                 int ok;
2497
2498                 if (s > (PAGE_SIZE>>9))
2499                         s = PAGE_SIZE >> 9;
2500
2501                 rdev = conf->mirrors[dr].rdev;
2502                 addr = r10_bio->devs[0].addr + sect,
2503                 ok = sync_page_io(rdev,
2504                                   addr,
2505                                   s << 9,
2506                                   pages[idx],
2507                                   REQ_OP_READ, false);
2508                 if (ok) {
2509                         rdev = conf->mirrors[dw].rdev;
2510                         addr = r10_bio->devs[1].addr + sect;
2511                         ok = sync_page_io(rdev,
2512                                           addr,
2513                                           s << 9,
2514                                           pages[idx],
2515                                           REQ_OP_WRITE, false);
2516                         if (!ok) {
2517                                 set_bit(WriteErrorSeen, &rdev->flags);
2518                                 if (!test_and_set_bit(WantReplacement,
2519                                                       &rdev->flags))
2520                                         set_bit(MD_RECOVERY_NEEDED,
2521                                                 &rdev->mddev->recovery);
2522                         }
2523                 }
2524                 if (!ok) {
2525                         /* We don't worry if we cannot set a bad block -
2526                          * it really is bad so there is no loss in not
2527                          * recording it yet
2528                          */
2529                         rdev_set_badblocks(rdev, addr, s, 0);
2530
2531                         if (rdev != conf->mirrors[dw].rdev) {
2532                                 /* need bad block on destination too */
2533                                 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2534                                 addr = r10_bio->devs[1].addr + sect;
2535                                 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2536                                 if (!ok) {
2537                                         /* just abort the recovery */
2538                                         pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2539                                                   mdname(mddev));
2540
2541                                         conf->mirrors[dw].recovery_disabled
2542                                                 = mddev->recovery_disabled;
2543                                         set_bit(MD_RECOVERY_INTR,
2544                                                 &mddev->recovery);
2545                                         break;
2546                                 }
2547                         }
2548                 }
2549
2550                 sectors -= s;
2551                 sect += s;
2552                 idx++;
2553         }
2554 }
2555
2556 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2557 {
2558         struct r10conf *conf = mddev->private;
2559         int d;
2560         struct bio *wbio = r10_bio->devs[1].bio;
2561         struct bio *wbio2 = r10_bio->devs[1].repl_bio;
2562
2563         /* Need to test wbio2->bi_end_io before we call
2564          * submit_bio_noacct as if the former is NULL,
2565          * the latter is free to free wbio2.
2566          */
2567         if (wbio2 && !wbio2->bi_end_io)
2568                 wbio2 = NULL;
2569
2570         if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2571                 fix_recovery_read_error(r10_bio);
2572                 if (wbio->bi_end_io)
2573                         end_sync_request(r10_bio);
2574                 if (wbio2)
2575                         end_sync_request(r10_bio);
2576                 return;
2577         }
2578
2579         /*
2580          * share the pages with the first bio
2581          * and submit the write request
2582          */
2583         d = r10_bio->devs[1].devnum;
2584         if (wbio->bi_end_io) {
2585                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2586                 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2587                 submit_bio_noacct(wbio);
2588         }
2589         if (wbio2) {
2590                 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2591                 md_sync_acct(conf->mirrors[d].replacement->bdev,
2592                              bio_sectors(wbio2));
2593                 submit_bio_noacct(wbio2);
2594         }
2595 }
2596
2597 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2598                             int sectors, struct page *page, enum req_op op)
2599 {
2600         sector_t first_bad;
2601         int bad_sectors;
2602
2603         if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2604             && (op == REQ_OP_READ || test_bit(WriteErrorSeen, &rdev->flags)))
2605                 return -1;
2606         if (sync_page_io(rdev, sector, sectors << 9, page, op, false))
2607                 /* success */
2608                 return 1;
2609         if (op == REQ_OP_WRITE) {
2610                 set_bit(WriteErrorSeen, &rdev->flags);
2611                 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2612                         set_bit(MD_RECOVERY_NEEDED,
2613                                 &rdev->mddev->recovery);
2614         }
2615         /* need to record an error - either for the block or the device */
2616         if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2617                 md_error(rdev->mddev, rdev);
2618         return 0;
2619 }
2620
2621 /*
2622  * This is a kernel thread which:
2623  *
2624  *      1.      Retries failed read operations on working mirrors.
2625  *      2.      Updates the raid superblock when problems encounter.
2626  *      3.      Performs writes following reads for array synchronising.
2627  */
2628
2629 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2630 {
2631         int sect = 0; /* Offset from r10_bio->sector */
2632         int sectors = r10_bio->sectors, slot = r10_bio->read_slot;
2633         struct md_rdev *rdev;
2634         int d = r10_bio->devs[slot].devnum;
2635
2636         /* still own a reference to this rdev, so it cannot
2637          * have been cleared recently.
2638          */
2639         rdev = conf->mirrors[d].rdev;
2640
2641         if (test_bit(Faulty, &rdev->flags))
2642                 /* drive has already been failed, just ignore any
2643                    more fix_read_error() attempts */
2644                 return;
2645
2646         if (exceed_read_errors(mddev, rdev)) {
2647                 r10_bio->devs[slot].bio = IO_BLOCKED;
2648                 return;
2649         }
2650
2651         while(sectors) {
2652                 int s = sectors;
2653                 int sl = slot;
2654                 int success = 0;
2655                 int start;
2656
2657                 if (s > (PAGE_SIZE>>9))
2658                         s = PAGE_SIZE >> 9;
2659
2660                 do {
2661                         sector_t first_bad;
2662                         int bad_sectors;
2663
2664                         d = r10_bio->devs[sl].devnum;
2665                         rdev = conf->mirrors[d].rdev;
2666                         if (rdev &&
2667                             test_bit(In_sync, &rdev->flags) &&
2668                             !test_bit(Faulty, &rdev->flags) &&
2669                             is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2670                                         &first_bad, &bad_sectors) == 0) {
2671                                 atomic_inc(&rdev->nr_pending);
2672                                 success = sync_page_io(rdev,
2673                                                        r10_bio->devs[sl].addr +
2674                                                        sect,
2675                                                        s<<9,
2676                                                        conf->tmppage,
2677                                                        REQ_OP_READ, false);
2678                                 rdev_dec_pending(rdev, mddev);
2679                                 if (success)
2680                                         break;
2681                         }
2682                         sl++;
2683                         if (sl == conf->copies)
2684                                 sl = 0;
2685                 } while (sl != slot);
2686
2687                 if (!success) {
2688                         /* Cannot read from anywhere, just mark the block
2689                          * as bad on the first device to discourage future
2690                          * reads.
2691                          */
2692                         int dn = r10_bio->devs[slot].devnum;
2693                         rdev = conf->mirrors[dn].rdev;
2694
2695                         if (!rdev_set_badblocks(
2696                                     rdev,
2697                                     r10_bio->devs[slot].addr
2698                                     + sect,
2699                                     s, 0)) {
2700                                 md_error(mddev, rdev);
2701                                 r10_bio->devs[slot].bio
2702                                         = IO_BLOCKED;
2703                         }
2704                         break;
2705                 }
2706
2707                 start = sl;
2708                 /* write it back and re-read */
2709                 while (sl != slot) {
2710                         if (sl==0)
2711                                 sl = conf->copies;
2712                         sl--;
2713                         d = r10_bio->devs[sl].devnum;
2714                         rdev = conf->mirrors[d].rdev;
2715                         if (!rdev ||
2716                             test_bit(Faulty, &rdev->flags) ||
2717                             !test_bit(In_sync, &rdev->flags))
2718                                 continue;
2719
2720                         atomic_inc(&rdev->nr_pending);
2721                         if (r10_sync_page_io(rdev,
2722                                              r10_bio->devs[sl].addr +
2723                                              sect,
2724                                              s, conf->tmppage, REQ_OP_WRITE)
2725                             == 0) {
2726                                 /* Well, this device is dead */
2727                                 pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %pg)\n",
2728                                           mdname(mddev), s,
2729                                           (unsigned long long)(
2730                                                   sect +
2731                                                   choose_data_offset(r10_bio,
2732                                                                      rdev)),
2733                                           rdev->bdev);
2734                                 pr_notice("md/raid10:%s: %pg: failing drive\n",
2735                                           mdname(mddev),
2736                                           rdev->bdev);
2737                         }
2738                         rdev_dec_pending(rdev, mddev);
2739                 }
2740                 sl = start;
2741                 while (sl != slot) {
2742                         if (sl==0)
2743                                 sl = conf->copies;
2744                         sl--;
2745                         d = r10_bio->devs[sl].devnum;
2746                         rdev = conf->mirrors[d].rdev;
2747                         if (!rdev ||
2748                             test_bit(Faulty, &rdev->flags) ||
2749                             !test_bit(In_sync, &rdev->flags))
2750                                 continue;
2751
2752                         atomic_inc(&rdev->nr_pending);
2753                         switch (r10_sync_page_io(rdev,
2754                                              r10_bio->devs[sl].addr +
2755                                              sect,
2756                                              s, conf->tmppage, REQ_OP_READ)) {
2757                         case 0:
2758                                 /* Well, this device is dead */
2759                                 pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %pg)\n",
2760                                        mdname(mddev), s,
2761                                        (unsigned long long)(
2762                                                sect +
2763                                                choose_data_offset(r10_bio, rdev)),
2764                                        rdev->bdev);
2765                                 pr_notice("md/raid10:%s: %pg: failing drive\n",
2766                                        mdname(mddev),
2767                                        rdev->bdev);
2768                                 break;
2769                         case 1:
2770                                 pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %pg)\n",
2771                                        mdname(mddev), s,
2772                                        (unsigned long long)(
2773                                                sect +
2774                                                choose_data_offset(r10_bio, rdev)),
2775                                        rdev->bdev);
2776                                 atomic_add(s, &rdev->corrected_errors);
2777                         }
2778
2779                         rdev_dec_pending(rdev, mddev);
2780                 }
2781
2782                 sectors -= s;
2783                 sect += s;
2784         }
2785 }
2786
2787 static int narrow_write_error(struct r10bio *r10_bio, int i)
2788 {
2789         struct bio *bio = r10_bio->master_bio;
2790         struct mddev *mddev = r10_bio->mddev;
2791         struct r10conf *conf = mddev->private;
2792         struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2793         /* bio has the data to be written to slot 'i' where
2794          * we just recently had a write error.
2795          * We repeatedly clone the bio and trim down to one block,
2796          * then try the write.  Where the write fails we record
2797          * a bad block.
2798          * It is conceivable that the bio doesn't exactly align with
2799          * blocks.  We must handle this.
2800          *
2801          * We currently own a reference to the rdev.
2802          */
2803
2804         int block_sectors;
2805         sector_t sector;
2806         int sectors;
2807         int sect_to_write = r10_bio->sectors;
2808         int ok = 1;
2809
2810         if (rdev->badblocks.shift < 0)
2811                 return 0;
2812
2813         block_sectors = roundup(1 << rdev->badblocks.shift,
2814                                 bdev_logical_block_size(rdev->bdev) >> 9);
2815         sector = r10_bio->sector;
2816         sectors = ((r10_bio->sector + block_sectors)
2817                    & ~(sector_t)(block_sectors - 1))
2818                 - sector;
2819
2820         while (sect_to_write) {
2821                 struct bio *wbio;
2822                 sector_t wsector;
2823                 if (sectors > sect_to_write)
2824                         sectors = sect_to_write;
2825                 /* Write at 'sector' for 'sectors' */
2826                 wbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO,
2827                                        &mddev->bio_set);
2828                 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2829                 wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2830                 wbio->bi_iter.bi_sector = wsector +
2831                                    choose_data_offset(r10_bio, rdev);
2832                 wbio->bi_opf = REQ_OP_WRITE;
2833
2834                 if (submit_bio_wait(wbio) < 0)
2835                         /* Failure! */
2836                         ok = rdev_set_badblocks(rdev, wsector,
2837                                                 sectors, 0)
2838                                 && ok;
2839
2840                 bio_put(wbio);
2841                 sect_to_write -= sectors;
2842                 sector += sectors;
2843                 sectors = block_sectors;
2844         }
2845         return ok;
2846 }
2847
2848 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2849 {
2850         int slot = r10_bio->read_slot;
2851         struct bio *bio;
2852         struct r10conf *conf = mddev->private;
2853         struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2854
2855         /* we got a read error. Maybe the drive is bad.  Maybe just
2856          * the block and we can fix it.
2857          * We freeze all other IO, and try reading the block from
2858          * other devices.  When we find one, we re-write
2859          * and check it that fixes the read error.
2860          * This is all done synchronously while the array is
2861          * frozen.
2862          */
2863         bio = r10_bio->devs[slot].bio;
2864         bio_put(bio);
2865         r10_bio->devs[slot].bio = NULL;
2866
2867         if (mddev->ro)
2868                 r10_bio->devs[slot].bio = IO_BLOCKED;
2869         else if (!test_bit(FailFast, &rdev->flags)) {
2870                 freeze_array(conf, 1);
2871                 fix_read_error(conf, mddev, r10_bio);
2872                 unfreeze_array(conf);
2873         } else
2874                 md_error(mddev, rdev);
2875
2876         rdev_dec_pending(rdev, mddev);
2877         r10_bio->state = 0;
2878         raid10_read_request(mddev, r10_bio->master_bio, r10_bio, false);
2879         /*
2880          * allow_barrier after re-submit to ensure no sync io
2881          * can be issued while regular io pending.
2882          */
2883         allow_barrier(conf);
2884 }
2885
2886 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2887 {
2888         /* Some sort of write request has finished and it
2889          * succeeded in writing where we thought there was a
2890          * bad block.  So forget the bad block.
2891          * Or possibly if failed and we need to record
2892          * a bad block.
2893          */
2894         int m;
2895         struct md_rdev *rdev;
2896
2897         if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2898             test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2899                 for (m = 0; m < conf->copies; m++) {
2900                         int dev = r10_bio->devs[m].devnum;
2901                         rdev = conf->mirrors[dev].rdev;
2902                         if (r10_bio->devs[m].bio == NULL ||
2903                                 r10_bio->devs[m].bio->bi_end_io == NULL)
2904                                 continue;
2905                         if (!r10_bio->devs[m].bio->bi_status) {
2906                                 rdev_clear_badblocks(
2907                                         rdev,
2908                                         r10_bio->devs[m].addr,
2909                                         r10_bio->sectors, 0);
2910                         } else {
2911                                 if (!rdev_set_badblocks(
2912                                             rdev,
2913                                             r10_bio->devs[m].addr,
2914                                             r10_bio->sectors, 0))
2915                                         md_error(conf->mddev, rdev);
2916                         }
2917                         rdev = conf->mirrors[dev].replacement;
2918                         if (r10_bio->devs[m].repl_bio == NULL ||
2919                                 r10_bio->devs[m].repl_bio->bi_end_io == NULL)
2920                                 continue;
2921
2922                         if (!r10_bio->devs[m].repl_bio->bi_status) {
2923                                 rdev_clear_badblocks(
2924                                         rdev,
2925                                         r10_bio->devs[m].addr,
2926                                         r10_bio->sectors, 0);
2927                         } else {
2928                                 if (!rdev_set_badblocks(
2929                                             rdev,
2930                                             r10_bio->devs[m].addr,
2931                                             r10_bio->sectors, 0))
2932                                         md_error(conf->mddev, rdev);
2933                         }
2934                 }
2935                 put_buf(r10_bio);
2936         } else {
2937                 bool fail = false;
2938                 for (m = 0; m < conf->copies; m++) {
2939                         int dev = r10_bio->devs[m].devnum;
2940                         struct bio *bio = r10_bio->devs[m].bio;
2941                         rdev = conf->mirrors[dev].rdev;
2942                         if (bio == IO_MADE_GOOD) {
2943                                 rdev_clear_badblocks(
2944                                         rdev,
2945                                         r10_bio->devs[m].addr,
2946                                         r10_bio->sectors, 0);
2947                                 rdev_dec_pending(rdev, conf->mddev);
2948                         } else if (bio != NULL && bio->bi_status) {
2949                                 fail = true;
2950                                 if (!narrow_write_error(r10_bio, m)) {
2951                                         md_error(conf->mddev, rdev);
2952                                         set_bit(R10BIO_Degraded,
2953                                                 &r10_bio->state);
2954                                 }
2955                                 rdev_dec_pending(rdev, conf->mddev);
2956                         }
2957                         bio = r10_bio->devs[m].repl_bio;
2958                         rdev = conf->mirrors[dev].replacement;
2959                         if (rdev && bio == IO_MADE_GOOD) {
2960                                 rdev_clear_badblocks(
2961                                         rdev,
2962                                         r10_bio->devs[m].addr,
2963                                         r10_bio->sectors, 0);
2964                                 rdev_dec_pending(rdev, conf->mddev);
2965                         }
2966                 }
2967                 if (fail) {
2968                         spin_lock_irq(&conf->device_lock);
2969                         list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
2970                         conf->nr_queued++;
2971                         spin_unlock_irq(&conf->device_lock);
2972                         /*
2973                          * In case freeze_array() is waiting for condition
2974                          * nr_pending == nr_queued + extra to be true.
2975                          */
2976                         wake_up(&conf->wait_barrier);
2977                         md_wakeup_thread(conf->mddev->thread);
2978                 } else {
2979                         if (test_bit(R10BIO_WriteError,
2980                                      &r10_bio->state))
2981                                 close_write(r10_bio);
2982                         raid_end_bio_io(r10_bio);
2983                 }
2984         }
2985 }
2986
2987 static void raid10d(struct md_thread *thread)
2988 {
2989         struct mddev *mddev = thread->mddev;
2990         struct r10bio *r10_bio;
2991         unsigned long flags;
2992         struct r10conf *conf = mddev->private;
2993         struct list_head *head = &conf->retry_list;
2994         struct blk_plug plug;
2995
2996         md_check_recovery(mddev);
2997
2998         if (!list_empty_careful(&conf->bio_end_io_list) &&
2999             !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
3000                 LIST_HEAD(tmp);
3001                 spin_lock_irqsave(&conf->device_lock, flags);
3002                 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
3003                         while (!list_empty(&conf->bio_end_io_list)) {
3004                                 list_move(conf->bio_end_io_list.prev, &tmp);
3005                                 conf->nr_queued--;
3006                         }
3007                 }
3008                 spin_unlock_irqrestore(&conf->device_lock, flags);
3009                 while (!list_empty(&tmp)) {
3010                         r10_bio = list_first_entry(&tmp, struct r10bio,
3011                                                    retry_list);
3012                         list_del(&r10_bio->retry_list);
3013                         if (mddev->degraded)
3014                                 set_bit(R10BIO_Degraded, &r10_bio->state);
3015
3016                         if (test_bit(R10BIO_WriteError,
3017                                      &r10_bio->state))
3018                                 close_write(r10_bio);
3019                         raid_end_bio_io(r10_bio);
3020                 }
3021         }
3022
3023         blk_start_plug(&plug);
3024         for (;;) {
3025
3026                 flush_pending_writes(conf);
3027
3028                 spin_lock_irqsave(&conf->device_lock, flags);
3029                 if (list_empty(head)) {
3030                         spin_unlock_irqrestore(&conf->device_lock, flags);
3031                         break;
3032                 }
3033                 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
3034                 list_del(head->prev);
3035                 conf->nr_queued--;
3036                 spin_unlock_irqrestore(&conf->device_lock, flags);
3037
3038                 mddev = r10_bio->mddev;
3039                 conf = mddev->private;
3040                 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
3041                     test_bit(R10BIO_WriteError, &r10_bio->state))
3042                         handle_write_completed(conf, r10_bio);
3043                 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
3044                         reshape_request_write(mddev, r10_bio);
3045                 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
3046                         sync_request_write(mddev, r10_bio);
3047                 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
3048                         recovery_request_write(mddev, r10_bio);
3049                 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
3050                         handle_read_error(mddev, r10_bio);
3051                 else
3052                         WARN_ON_ONCE(1);
3053
3054                 cond_resched();
3055                 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
3056                         md_check_recovery(mddev);
3057         }
3058         blk_finish_plug(&plug);
3059 }
3060
3061 static int init_resync(struct r10conf *conf)
3062 {
3063         int ret, buffs, i;
3064
3065         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
3066         BUG_ON(mempool_initialized(&conf->r10buf_pool));
3067         conf->have_replacement = 0;
3068         for (i = 0; i < conf->geo.raid_disks; i++)
3069                 if (conf->mirrors[i].replacement)
3070                         conf->have_replacement = 1;
3071         ret = mempool_init(&conf->r10buf_pool, buffs,
3072                            r10buf_pool_alloc, r10buf_pool_free, conf);
3073         if (ret)
3074                 return ret;
3075         conf->next_resync = 0;
3076         return 0;
3077 }
3078
3079 static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf)
3080 {
3081         struct r10bio *r10bio = mempool_alloc(&conf->r10buf_pool, GFP_NOIO);
3082         struct rsync_pages *rp;
3083         struct bio *bio;
3084         int nalloc;
3085         int i;
3086
3087         if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
3088             test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
3089                 nalloc = conf->copies; /* resync */
3090         else
3091                 nalloc = 2; /* recovery */
3092
3093         for (i = 0; i < nalloc; i++) {
3094                 bio = r10bio->devs[i].bio;
3095                 rp = bio->bi_private;
3096                 bio_reset(bio, NULL, 0);
3097                 bio->bi_private = rp;
3098                 bio = r10bio->devs[i].repl_bio;
3099                 if (bio) {
3100                         rp = bio->bi_private;
3101                         bio_reset(bio, NULL, 0);
3102                         bio->bi_private = rp;
3103                 }
3104         }
3105         return r10bio;
3106 }
3107
3108 /*
3109  * Set cluster_sync_high since we need other nodes to add the
3110  * range [cluster_sync_low, cluster_sync_high] to suspend list.
3111  */
3112 static void raid10_set_cluster_sync_high(struct r10conf *conf)
3113 {
3114         sector_t window_size;
3115         int extra_chunk, chunks;
3116
3117         /*
3118          * First, here we define "stripe" as a unit which across
3119          * all member devices one time, so we get chunks by use
3120          * raid_disks / near_copies. Otherwise, if near_copies is
3121          * close to raid_disks, then resync window could increases
3122          * linearly with the increase of raid_disks, which means
3123          * we will suspend a really large IO window while it is not
3124          * necessary. If raid_disks is not divisible by near_copies,
3125          * an extra chunk is needed to ensure the whole "stripe" is
3126          * covered.
3127          */
3128
3129         chunks = conf->geo.raid_disks / conf->geo.near_copies;
3130         if (conf->geo.raid_disks % conf->geo.near_copies == 0)
3131                 extra_chunk = 0;
3132         else
3133                 extra_chunk = 1;
3134         window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors;
3135
3136         /*
3137          * At least use a 32M window to align with raid1's resync window
3138          */
3139         window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ?
3140                         CLUSTER_RESYNC_WINDOW_SECTORS : window_size;
3141
3142         conf->cluster_sync_high = conf->cluster_sync_low + window_size;
3143 }
3144
3145 /*
3146  * perform a "sync" on one "block"
3147  *
3148  * We need to make sure that no normal I/O request - particularly write
3149  * requests - conflict with active sync requests.
3150  *
3151  * This is achieved by tracking pending requests and a 'barrier' concept
3152  * that can be installed to exclude normal IO requests.
3153  *
3154  * Resync and recovery are handled very differently.
3155  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
3156  *
3157  * For resync, we iterate over virtual addresses, read all copies,
3158  * and update if there are differences.  If only one copy is live,
3159  * skip it.
3160  * For recovery, we iterate over physical addresses, read a good
3161  * value for each non-in_sync drive, and over-write.
3162  *
3163  * So, for recovery we may have several outstanding complex requests for a
3164  * given address, one for each out-of-sync device.  We model this by allocating
3165  * a number of r10_bio structures, one for each out-of-sync device.
3166  * As we setup these structures, we collect all bio's together into a list
3167  * which we then process collectively to add pages, and then process again
3168  * to pass to submit_bio_noacct.
3169  *
3170  * The r10_bio structures are linked using a borrowed master_bio pointer.
3171  * This link is counted in ->remaining.  When the r10_bio that points to NULL
3172  * has its remaining count decremented to 0, the whole complex operation
3173  * is complete.
3174  *
3175  */
3176
3177 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
3178                              int *skipped)
3179 {
3180         struct r10conf *conf = mddev->private;
3181         struct r10bio *r10_bio;
3182         struct bio *biolist = NULL, *bio;
3183         sector_t max_sector, nr_sectors;
3184         int i;
3185         int max_sync;
3186         sector_t sync_blocks;
3187         sector_t sectors_skipped = 0;
3188         int chunks_skipped = 0;
3189         sector_t chunk_mask = conf->geo.chunk_mask;
3190         int page_idx = 0;
3191         int error_disk = -1;
3192
3193         /*
3194          * Allow skipping a full rebuild for incremental assembly
3195          * of a clean array, like RAID1 does.
3196          */
3197         if (mddev->bitmap == NULL &&
3198             mddev->recovery_cp == MaxSector &&
3199             mddev->reshape_position == MaxSector &&
3200             !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
3201             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
3202             !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
3203             conf->fullsync == 0) {
3204                 *skipped = 1;
3205                 return mddev->dev_sectors - sector_nr;
3206         }
3207
3208         if (!mempool_initialized(&conf->r10buf_pool))
3209                 if (init_resync(conf))
3210                         return 0;
3211
3212  skipped:
3213         max_sector = mddev->dev_sectors;
3214         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
3215             test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3216                 max_sector = mddev->resync_max_sectors;
3217         if (sector_nr >= max_sector) {
3218                 conf->cluster_sync_low = 0;
3219                 conf->cluster_sync_high = 0;
3220
3221                 /* If we aborted, we need to abort the
3222                  * sync on the 'current' bitmap chucks (there can
3223                  * be several when recovering multiple devices).
3224                  * as we may have started syncing it but not finished.
3225                  * We can find the current address in
3226                  * mddev->curr_resync, but for recovery,
3227                  * we need to convert that to several
3228                  * virtual addresses.
3229                  */
3230                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
3231                         end_reshape(conf);
3232                         close_sync(conf);
3233                         return 0;
3234                 }
3235
3236                 if (mddev->curr_resync < max_sector) { /* aborted */
3237                         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3238                                 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
3239                                                    &sync_blocks, 1);
3240                         else for (i = 0; i < conf->geo.raid_disks; i++) {
3241                                 sector_t sect =
3242                                         raid10_find_virt(conf, mddev->curr_resync, i);
3243                                 md_bitmap_end_sync(mddev->bitmap, sect,
3244                                                    &sync_blocks, 1);
3245                         }
3246                 } else {
3247                         /* completed sync */
3248                         if ((!mddev->bitmap || conf->fullsync)
3249                             && conf->have_replacement
3250                             && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3251                                 /* Completed a full sync so the replacements
3252                                  * are now fully recovered.
3253                                  */
3254                                 for (i = 0; i < conf->geo.raid_disks; i++) {
3255                                         struct md_rdev *rdev =
3256                                                 conf->mirrors[i].replacement;
3257
3258                                         if (rdev)
3259                                                 rdev->recovery_offset = MaxSector;
3260                                 }
3261                         }
3262                         conf->fullsync = 0;
3263                 }
3264                 md_bitmap_close_sync(mddev->bitmap);
3265                 close_sync(conf);
3266                 *skipped = 1;
3267                 return sectors_skipped;
3268         }
3269
3270         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3271                 return reshape_request(mddev, sector_nr, skipped);
3272
3273         if (chunks_skipped >= conf->geo.raid_disks) {
3274                 pr_err("md/raid10:%s: %s fails\n", mdname(mddev),
3275                         test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?  "resync" : "recovery");
3276                 if (error_disk >= 0 &&
3277                     !test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3278                         /*
3279                          * recovery fails, set mirrors.recovery_disabled,
3280                          * device shouldn't be added to there.
3281                          */
3282                         conf->mirrors[error_disk].recovery_disabled =
3283                                                 mddev->recovery_disabled;
3284                         return 0;
3285                 }
3286                 /*
3287                  * if there has been nothing to do on any drive,
3288                  * then there is nothing to do at all.
3289                  */
3290                 *skipped = 1;
3291                 return (max_sector - sector_nr) + sectors_skipped;
3292         }
3293
3294         if (max_sector > mddev->resync_max)
3295                 max_sector = mddev->resync_max; /* Don't do IO beyond here */
3296
3297         /* make sure whole request will fit in a chunk - if chunks
3298          * are meaningful
3299          */
3300         if (conf->geo.near_copies < conf->geo.raid_disks &&
3301             max_sector > (sector_nr | chunk_mask))
3302                 max_sector = (sector_nr | chunk_mask) + 1;
3303
3304         /*
3305          * If there is non-resync activity waiting for a turn, then let it
3306          * though before starting on this new sync request.
3307          */
3308         if (conf->nr_waiting)
3309                 schedule_timeout_uninterruptible(1);
3310
3311         /* Again, very different code for resync and recovery.
3312          * Both must result in an r10bio with a list of bios that
3313          * have bi_end_io, bi_sector, bi_bdev set,
3314          * and bi_private set to the r10bio.
3315          * For recovery, we may actually create several r10bios
3316          * with 2 bios in each, that correspond to the bios in the main one.
3317          * In this case, the subordinate r10bios link back through a
3318          * borrowed master_bio pointer, and the counter in the master
3319          * includes a ref from each subordinate.
3320          */
3321         /* First, we decide what to do and set ->bi_end_io
3322          * To end_sync_read if we want to read, and
3323          * end_sync_write if we will want to write.
3324          */
3325
3326         max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3327         if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3328                 /* recovery... the complicated one */
3329                 int j;
3330                 r10_bio = NULL;
3331
3332                 for (i = 0 ; i < conf->geo.raid_disks; i++) {
3333                         int still_degraded;
3334                         struct r10bio *rb2;
3335                         sector_t sect;
3336                         int must_sync;
3337                         int any_working;
3338                         struct raid10_info *mirror = &conf->mirrors[i];
3339                         struct md_rdev *mrdev, *mreplace;
3340
3341                         mrdev = mirror->rdev;
3342                         mreplace = mirror->replacement;
3343
3344                         if (mrdev && (test_bit(Faulty, &mrdev->flags) ||
3345                             test_bit(In_sync, &mrdev->flags)))
3346                                 mrdev = NULL;
3347                         if (mreplace && test_bit(Faulty, &mreplace->flags))
3348                                 mreplace = NULL;
3349
3350                         if (!mrdev && !mreplace)
3351                                 continue;
3352
3353                         still_degraded = 0;
3354                         /* want to reconstruct this device */
3355                         rb2 = r10_bio;
3356                         sect = raid10_find_virt(conf, sector_nr, i);
3357                         if (sect >= mddev->resync_max_sectors)
3358                                 /* last stripe is not complete - don't
3359                                  * try to recover this sector.
3360                                  */
3361                                 continue;
3362                         /* Unless we are doing a full sync, or a replacement
3363                          * we only need to recover the block if it is set in
3364                          * the bitmap
3365                          */
3366                         must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3367                                                          &sync_blocks, 1);
3368                         if (sync_blocks < max_sync)
3369                                 max_sync = sync_blocks;
3370                         if (!must_sync &&
3371                             mreplace == NULL &&
3372                             !conf->fullsync) {
3373                                 /* yep, skip the sync_blocks here, but don't assume
3374                                  * that there will never be anything to do here
3375                                  */
3376                                 chunks_skipped = -1;
3377                                 continue;
3378                         }
3379                         if (mrdev)
3380                                 atomic_inc(&mrdev->nr_pending);
3381                         if (mreplace)
3382                                 atomic_inc(&mreplace->nr_pending);
3383
3384                         r10_bio = raid10_alloc_init_r10buf(conf);
3385                         r10_bio->state = 0;
3386                         raise_barrier(conf, rb2 != NULL);
3387                         atomic_set(&r10_bio->remaining, 0);
3388
3389                         r10_bio->master_bio = (struct bio*)rb2;
3390                         if (rb2)
3391                                 atomic_inc(&rb2->remaining);
3392                         r10_bio->mddev = mddev;
3393                         set_bit(R10BIO_IsRecover, &r10_bio->state);
3394                         r10_bio->sector = sect;
3395
3396                         raid10_find_phys(conf, r10_bio);
3397
3398                         /* Need to check if the array will still be
3399                          * degraded
3400                          */
3401                         for (j = 0; j < conf->geo.raid_disks; j++) {
3402                                 struct md_rdev *rdev = conf->mirrors[j].rdev;
3403
3404                                 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3405                                         still_degraded = 1;
3406                                         break;
3407                                 }
3408                         }
3409
3410                         must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3411                                                          &sync_blocks, still_degraded);
3412
3413                         any_working = 0;
3414                         for (j=0; j<conf->copies;j++) {
3415                                 int k;
3416                                 int d = r10_bio->devs[j].devnum;
3417                                 sector_t from_addr, to_addr;
3418                                 struct md_rdev *rdev = conf->mirrors[d].rdev;
3419                                 sector_t sector, first_bad;
3420                                 int bad_sectors;
3421                                 if (!rdev ||
3422                                     !test_bit(In_sync, &rdev->flags))
3423                                         continue;
3424                                 /* This is where we read from */
3425                                 any_working = 1;
3426                                 sector = r10_bio->devs[j].addr;
3427
3428                                 if (is_badblock(rdev, sector, max_sync,
3429                                                 &first_bad, &bad_sectors)) {
3430                                         if (first_bad > sector)
3431                                                 max_sync = first_bad - sector;
3432                                         else {
3433                                                 bad_sectors -= (sector
3434                                                                 - first_bad);
3435                                                 if (max_sync > bad_sectors)
3436                                                         max_sync = bad_sectors;
3437                                                 continue;
3438                                         }
3439                                 }
3440                                 bio = r10_bio->devs[0].bio;
3441                                 bio->bi_next = biolist;
3442                                 biolist = bio;
3443                                 bio->bi_end_io = end_sync_read;
3444                                 bio->bi_opf = REQ_OP_READ;
3445                                 if (test_bit(FailFast, &rdev->flags))
3446                                         bio->bi_opf |= MD_FAILFAST;
3447                                 from_addr = r10_bio->devs[j].addr;
3448                                 bio->bi_iter.bi_sector = from_addr +
3449                                         rdev->data_offset;
3450                                 bio_set_dev(bio, rdev->bdev);
3451                                 atomic_inc(&rdev->nr_pending);
3452                                 /* and we write to 'i' (if not in_sync) */
3453
3454                                 for (k=0; k<conf->copies; k++)
3455                                         if (r10_bio->devs[k].devnum == i)
3456                                                 break;
3457                                 BUG_ON(k == conf->copies);
3458                                 to_addr = r10_bio->devs[k].addr;
3459                                 r10_bio->devs[0].devnum = d;
3460                                 r10_bio->devs[0].addr = from_addr;
3461                                 r10_bio->devs[1].devnum = i;
3462                                 r10_bio->devs[1].addr = to_addr;
3463
3464                                 if (mrdev) {
3465                                         bio = r10_bio->devs[1].bio;
3466                                         bio->bi_next = biolist;
3467                                         biolist = bio;
3468                                         bio->bi_end_io = end_sync_write;
3469                                         bio->bi_opf = REQ_OP_WRITE;
3470                                         bio->bi_iter.bi_sector = to_addr
3471                                                 + mrdev->data_offset;
3472                                         bio_set_dev(bio, mrdev->bdev);
3473                                         atomic_inc(&r10_bio->remaining);
3474                                 } else
3475                                         r10_bio->devs[1].bio->bi_end_io = NULL;
3476
3477                                 /* and maybe write to replacement */
3478                                 bio = r10_bio->devs[1].repl_bio;
3479                                 if (bio)
3480                                         bio->bi_end_io = NULL;
3481                                 /* Note: if replace is not NULL, then bio
3482                                  * cannot be NULL as r10buf_pool_alloc will
3483                                  * have allocated it.
3484                                  */
3485                                 if (!mreplace)
3486                                         break;
3487                                 bio->bi_next = biolist;
3488                                 biolist = bio;
3489                                 bio->bi_end_io = end_sync_write;
3490                                 bio->bi_opf = REQ_OP_WRITE;
3491                                 bio->bi_iter.bi_sector = to_addr +
3492                                         mreplace->data_offset;
3493                                 bio_set_dev(bio, mreplace->bdev);
3494                                 atomic_inc(&r10_bio->remaining);
3495                                 break;
3496                         }
3497                         if (j == conf->copies) {
3498                                 /* Cannot recover, so abort the recovery or
3499                                  * record a bad block */
3500                                 if (any_working) {
3501                                         /* problem is that there are bad blocks
3502                                          * on other device(s)
3503                                          */
3504                                         int k;
3505                                         for (k = 0; k < conf->copies; k++)
3506                                                 if (r10_bio->devs[k].devnum == i)
3507                                                         break;
3508                                         if (mrdev && !test_bit(In_sync,
3509                                                       &mrdev->flags)
3510                                             && !rdev_set_badblocks(
3511                                                     mrdev,
3512                                                     r10_bio->devs[k].addr,
3513                                                     max_sync, 0))
3514                                                 any_working = 0;
3515                                         if (mreplace &&
3516                                             !rdev_set_badblocks(
3517                                                     mreplace,
3518                                                     r10_bio->devs[k].addr,
3519                                                     max_sync, 0))
3520                                                 any_working = 0;
3521                                 }
3522                                 if (!any_working)  {
3523                                         if (!test_and_set_bit(MD_RECOVERY_INTR,
3524                                                               &mddev->recovery))
3525                                                 pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
3526                                                        mdname(mddev));
3527                                         mirror->recovery_disabled
3528                                                 = mddev->recovery_disabled;
3529                                 } else {
3530                                         error_disk = i;
3531                                 }
3532                                 put_buf(r10_bio);
3533                                 if (rb2)
3534                                         atomic_dec(&rb2->remaining);
3535                                 r10_bio = rb2;
3536                                 if (mrdev)
3537                                         rdev_dec_pending(mrdev, mddev);
3538                                 if (mreplace)
3539                                         rdev_dec_pending(mreplace, mddev);
3540                                 break;
3541                         }
3542                         if (mrdev)
3543                                 rdev_dec_pending(mrdev, mddev);
3544                         if (mreplace)
3545                                 rdev_dec_pending(mreplace, mddev);
3546                         if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) {
3547                                 /* Only want this if there is elsewhere to
3548                                  * read from. 'j' is currently the first
3549                                  * readable copy.
3550                                  */
3551                                 int targets = 1;
3552                                 for (; j < conf->copies; j++) {
3553                                         int d = r10_bio->devs[j].devnum;
3554                                         if (conf->mirrors[d].rdev &&
3555                                             test_bit(In_sync,
3556                                                       &conf->mirrors[d].rdev->flags))
3557                                                 targets++;
3558                                 }
3559                                 if (targets == 1)
3560                                         r10_bio->devs[0].bio->bi_opf
3561                                                 &= ~MD_FAILFAST;
3562                         }
3563                 }
3564                 if (biolist == NULL) {
3565                         while (r10_bio) {
3566                                 struct r10bio *rb2 = r10_bio;
3567                                 r10_bio = (struct r10bio*) rb2->master_bio;
3568                                 rb2->master_bio = NULL;
3569                                 put_buf(rb2);
3570                         }
3571                         goto giveup;
3572                 }
3573         } else {
3574                 /* resync. Schedule a read for every block at this virt offset */
3575                 int count = 0;
3576
3577                 /*
3578                  * Since curr_resync_completed could probably not update in
3579                  * time, and we will set cluster_sync_low based on it.
3580                  * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for
3581                  * safety reason, which ensures curr_resync_completed is
3582                  * updated in bitmap_cond_end_sync.
3583                  */
3584                 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
3585                                         mddev_is_clustered(mddev) &&
3586                                         (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
3587
3588                 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
3589                                           &sync_blocks, mddev->degraded) &&
3590                     !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3591                                                  &mddev->recovery)) {
3592                         /* We can skip this block */
3593                         *skipped = 1;
3594                         return sync_blocks + sectors_skipped;
3595                 }
3596                 if (sync_blocks < max_sync)
3597                         max_sync = sync_blocks;
3598                 r10_bio = raid10_alloc_init_r10buf(conf);
3599                 r10_bio->state = 0;
3600
3601                 r10_bio->mddev = mddev;
3602                 atomic_set(&r10_bio->remaining, 0);
3603                 raise_barrier(conf, 0);
3604                 conf->next_resync = sector_nr;
3605
3606                 r10_bio->master_bio = NULL;
3607                 r10_bio->sector = sector_nr;
3608                 set_bit(R10BIO_IsSync, &r10_bio->state);
3609                 raid10_find_phys(conf, r10_bio);
3610                 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3611
3612                 for (i = 0; i < conf->copies; i++) {
3613                         int d = r10_bio->devs[i].devnum;
3614                         sector_t first_bad, sector;
3615                         int bad_sectors;
3616                         struct md_rdev *rdev;
3617
3618                         if (r10_bio->devs[i].repl_bio)
3619                                 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3620
3621                         bio = r10_bio->devs[i].bio;
3622                         bio->bi_status = BLK_STS_IOERR;
3623                         rdev = conf->mirrors[d].rdev;
3624                         if (rdev == NULL || test_bit(Faulty, &rdev->flags))
3625                                 continue;
3626
3627                         sector = r10_bio->devs[i].addr;
3628                         if (is_badblock(rdev, sector, max_sync,
3629                                         &first_bad, &bad_sectors)) {
3630                                 if (first_bad > sector)
3631                                         max_sync = first_bad - sector;
3632                                 else {
3633                                         bad_sectors -= (sector - first_bad);
3634                                         if (max_sync > bad_sectors)
3635                                                 max_sync = bad_sectors;
3636                                         continue;
3637                                 }
3638                         }
3639                         atomic_inc(&rdev->nr_pending);
3640                         atomic_inc(&r10_bio->remaining);
3641                         bio->bi_next = biolist;
3642                         biolist = bio;
3643                         bio->bi_end_io = end_sync_read;
3644                         bio->bi_opf = REQ_OP_READ;
3645                         if (test_bit(FailFast, &rdev->flags))
3646                                 bio->bi_opf |= MD_FAILFAST;
3647                         bio->bi_iter.bi_sector = sector + rdev->data_offset;
3648                         bio_set_dev(bio, rdev->bdev);
3649                         count++;
3650
3651                         rdev = conf->mirrors[d].replacement;
3652                         if (rdev == NULL || test_bit(Faulty, &rdev->flags))
3653                                 continue;
3654
3655                         atomic_inc(&rdev->nr_pending);
3656
3657                         /* Need to set up for writing to the replacement */
3658                         bio = r10_bio->devs[i].repl_bio;
3659                         bio->bi_status = BLK_STS_IOERR;
3660
3661                         sector = r10_bio->devs[i].addr;
3662                         bio->bi_next = biolist;
3663                         biolist = bio;
3664                         bio->bi_end_io = end_sync_write;
3665                         bio->bi_opf = REQ_OP_WRITE;
3666                         if (test_bit(FailFast, &rdev->flags))
3667                                 bio->bi_opf |= MD_FAILFAST;
3668                         bio->bi_iter.bi_sector = sector + rdev->data_offset;
3669                         bio_set_dev(bio, rdev->bdev);
3670                         count++;
3671                 }
3672
3673                 if (count < 2) {
3674                         for (i=0; i<conf->copies; i++) {
3675                                 int d = r10_bio->devs[i].devnum;
3676                                 if (r10_bio->devs[i].bio->bi_end_io)
3677                                         rdev_dec_pending(conf->mirrors[d].rdev,
3678                                                          mddev);
3679                                 if (r10_bio->devs[i].repl_bio &&
3680                                     r10_bio->devs[i].repl_bio->bi_end_io)
3681                                         rdev_dec_pending(
3682                                                 conf->mirrors[d].replacement,
3683                                                 mddev);
3684                         }
3685                         put_buf(r10_bio);
3686                         biolist = NULL;
3687                         goto giveup;
3688                 }
3689         }
3690
3691         nr_sectors = 0;
3692         if (sector_nr + max_sync < max_sector)
3693                 max_sector = sector_nr + max_sync;
3694         do {
3695                 struct page *page;
3696                 int len = PAGE_SIZE;
3697                 if (sector_nr + (len>>9) > max_sector)
3698                         len = (max_sector - sector_nr) << 9;
3699                 if (len == 0)
3700                         break;
3701                 for (bio= biolist ; bio ; bio=bio->bi_next) {
3702                         struct resync_pages *rp = get_resync_pages(bio);
3703                         page = resync_fetch_page(rp, page_idx);
3704                         if (WARN_ON(!bio_add_page(bio, page, len, 0))) {
3705                                 bio->bi_status = BLK_STS_RESOURCE;
3706                                 bio_endio(bio);
3707                                 goto giveup;
3708                         }
3709                 }
3710                 nr_sectors += len>>9;
3711                 sector_nr += len>>9;
3712         } while (++page_idx < RESYNC_PAGES);
3713         r10_bio->sectors = nr_sectors;
3714
3715         if (mddev_is_clustered(mddev) &&
3716             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3717                 /* It is resync not recovery */
3718                 if (conf->cluster_sync_high < sector_nr + nr_sectors) {
3719                         conf->cluster_sync_low = mddev->curr_resync_completed;
3720                         raid10_set_cluster_sync_high(conf);
3721                         /* Send resync message */
3722                         md_cluster_ops->resync_info_update(mddev,
3723                                                 conf->cluster_sync_low,
3724                                                 conf->cluster_sync_high);
3725                 }
3726         } else if (mddev_is_clustered(mddev)) {
3727                 /* This is recovery not resync */
3728                 sector_t sect_va1, sect_va2;
3729                 bool broadcast_msg = false;
3730
3731                 for (i = 0; i < conf->geo.raid_disks; i++) {
3732                         /*
3733                          * sector_nr is a device address for recovery, so we
3734                          * need translate it to array address before compare
3735                          * with cluster_sync_high.
3736                          */
3737                         sect_va1 = raid10_find_virt(conf, sector_nr, i);
3738
3739                         if (conf->cluster_sync_high < sect_va1 + nr_sectors) {
3740                                 broadcast_msg = true;
3741                                 /*
3742                                  * curr_resync_completed is similar as
3743                                  * sector_nr, so make the translation too.
3744                                  */
3745                                 sect_va2 = raid10_find_virt(conf,
3746                                         mddev->curr_resync_completed, i);
3747
3748                                 if (conf->cluster_sync_low == 0 ||
3749                                     conf->cluster_sync_low > sect_va2)
3750                                         conf->cluster_sync_low = sect_va2;
3751                         }
3752                 }
3753                 if (broadcast_msg) {
3754                         raid10_set_cluster_sync_high(conf);
3755                         md_cluster_ops->resync_info_update(mddev,
3756                                                 conf->cluster_sync_low,
3757                                                 conf->cluster_sync_high);
3758                 }
3759         }
3760
3761         while (biolist) {
3762                 bio = biolist;
3763                 biolist = biolist->bi_next;
3764
3765                 bio->bi_next = NULL;
3766                 r10_bio = get_resync_r10bio(bio);
3767                 r10_bio->sectors = nr_sectors;
3768
3769                 if (bio->bi_end_io == end_sync_read) {
3770                         md_sync_acct_bio(bio, nr_sectors);
3771                         bio->bi_status = 0;
3772                         submit_bio_noacct(bio);
3773                 }
3774         }
3775
3776         if (sectors_skipped)
3777                 /* pretend they weren't skipped, it makes
3778                  * no important difference in this case
3779                  */
3780                 md_done_sync(mddev, sectors_skipped, 1);
3781
3782         return sectors_skipped + nr_sectors;
3783  giveup:
3784         /* There is nowhere to write, so all non-sync
3785          * drives must be failed or in resync, all drives
3786          * have a bad block, so try the next chunk...
3787          */
3788         if (sector_nr + max_sync < max_sector)
3789                 max_sector = sector_nr + max_sync;
3790
3791         sectors_skipped += (max_sector - sector_nr);
3792         chunks_skipped ++;
3793         sector_nr = max_sector;
3794         goto skipped;
3795 }
3796
3797 static sector_t
3798 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3799 {
3800         sector_t size;
3801         struct r10conf *conf = mddev->private;
3802
3803         if (!raid_disks)
3804                 raid_disks = min(conf->geo.raid_disks,
3805                                  conf->prev.raid_disks);
3806         if (!sectors)
3807                 sectors = conf->dev_sectors;
3808
3809         size = sectors >> conf->geo.chunk_shift;
3810         sector_div(size, conf->geo.far_copies);
3811         size = size * raid_disks;
3812         sector_div(size, conf->geo.near_copies);
3813
3814         return size << conf->geo.chunk_shift;
3815 }
3816
3817 static void calc_sectors(struct r10conf *conf, sector_t size)
3818 {
3819         /* Calculate the number of sectors-per-device that will
3820          * actually be used, and set conf->dev_sectors and
3821          * conf->stride
3822          */
3823
3824         size = size >> conf->geo.chunk_shift;
3825         sector_div(size, conf->geo.far_copies);
3826         size = size * conf->geo.raid_disks;
3827         sector_div(size, conf->geo.near_copies);
3828         /* 'size' is now the number of chunks in the array */
3829         /* calculate "used chunks per device" */
3830         size = size * conf->copies;
3831
3832         /* We need to round up when dividing by raid_disks to
3833          * get the stride size.
3834          */
3835         size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3836
3837         conf->dev_sectors = size << conf->geo.chunk_shift;
3838
3839         if (conf->geo.far_offset)
3840                 conf->geo.stride = 1 << conf->geo.chunk_shift;
3841         else {
3842                 sector_div(size, conf->geo.far_copies);
3843                 conf->geo.stride = size << conf->geo.chunk_shift;
3844         }
3845 }
3846
3847 enum geo_type {geo_new, geo_old, geo_start};
3848 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3849 {
3850         int nc, fc, fo;
3851         int layout, chunk, disks;
3852         switch (new) {
3853         case geo_old:
3854                 layout = mddev->layout;
3855                 chunk = mddev->chunk_sectors;
3856                 disks = mddev->raid_disks - mddev->delta_disks;
3857                 break;
3858         case geo_new:
3859                 layout = mddev->new_layout;
3860                 chunk = mddev->new_chunk_sectors;
3861                 disks = mddev->raid_disks;
3862                 break;
3863         default: /* avoid 'may be unused' warnings */
3864         case geo_start: /* new when starting reshape - raid_disks not
3865                          * updated yet. */
3866                 layout = mddev->new_layout;
3867                 chunk = mddev->new_chunk_sectors;
3868                 disks = mddev->raid_disks + mddev->delta_disks;
3869                 break;
3870         }
3871         if (layout >> 19)
3872                 return -1;
3873         if (chunk < (PAGE_SIZE >> 9) ||
3874             !is_power_of_2(chunk))
3875                 return -2;
3876         nc = layout & 255;
3877         fc = (layout >> 8) & 255;
3878         fo = layout & (1<<16);
3879         geo->raid_disks = disks;
3880         geo->near_copies = nc;
3881         geo->far_copies = fc;
3882         geo->far_offset = fo;
3883         switch (layout >> 17) {
3884         case 0: /* original layout.  simple but not always optimal */
3885                 geo->far_set_size = disks;
3886                 break;
3887         case 1: /* "improved" layout which was buggy.  Hopefully no-one is
3888                  * actually using this, but leave code here just in case.*/
3889                 geo->far_set_size = disks/fc;
3890                 WARN(geo->far_set_size < fc,
3891                      "This RAID10 layout does not provide data safety - please backup and create new array\n");
3892                 break;
3893         case 2: /* "improved" layout fixed to match documentation */
3894                 geo->far_set_size = fc * nc;
3895                 break;
3896         default: /* Not a valid layout */
3897                 return -1;
3898         }
3899         geo->chunk_mask = chunk - 1;
3900         geo->chunk_shift = ffz(~chunk);
3901         return nc*fc;
3902 }
3903
3904 static void raid10_free_conf(struct r10conf *conf)
3905 {
3906         if (!conf)
3907                 return;
3908
3909         mempool_exit(&conf->r10bio_pool);
3910         kfree(conf->mirrors);
3911         kfree(conf->mirrors_old);
3912         kfree(conf->mirrors_new);
3913         safe_put_page(conf->tmppage);
3914         bioset_exit(&conf->bio_split);
3915         kfree(conf);
3916 }
3917
3918 static struct r10conf *setup_conf(struct mddev *mddev)
3919 {
3920         struct r10conf *conf = NULL;
3921         int err = -EINVAL;
3922         struct geom geo;
3923         int copies;
3924
3925         copies = setup_geo(&geo, mddev, geo_new);
3926
3927         if (copies == -2) {
3928                 pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
3929                         mdname(mddev), PAGE_SIZE);
3930                 goto out;
3931         }
3932
3933         if (copies < 2 || copies > mddev->raid_disks) {
3934                 pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3935                         mdname(mddev), mddev->new_layout);
3936                 goto out;
3937         }
3938
3939         err = -ENOMEM;
3940         conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3941         if (!conf)
3942                 goto out;
3943
3944         /* FIXME calc properly */
3945         conf->mirrors = kcalloc(mddev->raid_disks + max(0, -mddev->delta_disks),
3946                                 sizeof(struct raid10_info),
3947                                 GFP_KERNEL);
3948         if (!conf->mirrors)
3949                 goto out;
3950
3951         conf->tmppage = alloc_page(GFP_KERNEL);
3952         if (!conf->tmppage)
3953                 goto out;
3954
3955         conf->geo = geo;
3956         conf->copies = copies;
3957         err = mempool_init(&conf->r10bio_pool, NR_RAID_BIOS, r10bio_pool_alloc,
3958                            rbio_pool_free, conf);
3959         if (err)
3960                 goto out;
3961
3962         err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
3963         if (err)
3964                 goto out;
3965
3966         calc_sectors(conf, mddev->dev_sectors);
3967         if (mddev->reshape_position == MaxSector) {
3968                 conf->prev = conf->geo;
3969                 conf->reshape_progress = MaxSector;
3970         } else {
3971                 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3972                         err = -EINVAL;
3973                         goto out;
3974                 }
3975                 conf->reshape_progress = mddev->reshape_position;
3976                 if (conf->prev.far_offset)
3977                         conf->prev.stride = 1 << conf->prev.chunk_shift;
3978                 else
3979                         /* far_copies must be 1 */
3980                         conf->prev.stride = conf->dev_sectors;
3981         }
3982         conf->reshape_safe = conf->reshape_progress;
3983         spin_lock_init(&conf->device_lock);
3984         INIT_LIST_HEAD(&conf->retry_list);
3985         INIT_LIST_HEAD(&conf->bio_end_io_list);
3986
3987         seqlock_init(&conf->resync_lock);
3988         init_waitqueue_head(&conf->wait_barrier);
3989         atomic_set(&conf->nr_pending, 0);
3990
3991         err = -ENOMEM;
3992         rcu_assign_pointer(conf->thread,
3993                            md_register_thread(raid10d, mddev, "raid10"));
3994         if (!conf->thread)
3995                 goto out;
3996
3997         conf->mddev = mddev;
3998         return conf;
3999
4000  out:
4001         raid10_free_conf(conf);
4002         return ERR_PTR(err);
4003 }
4004
4005 static void raid10_set_io_opt(struct r10conf *conf)
4006 {
4007         int raid_disks = conf->geo.raid_disks;
4008
4009         if (!(conf->geo.raid_disks % conf->geo.near_copies))
4010                 raid_disks /= conf->geo.near_copies;
4011         blk_queue_io_opt(conf->mddev->queue, (conf->mddev->chunk_sectors << 9) *
4012                          raid_disks);
4013 }
4014
4015 static int raid10_run(struct mddev *mddev)
4016 {
4017         struct r10conf *conf;
4018         int i, disk_idx;
4019         struct raid10_info *disk;
4020         struct md_rdev *rdev;
4021         sector_t size;
4022         sector_t min_offset_diff = 0;
4023         int first = 1;
4024
4025         if (mddev->private == NULL) {
4026                 conf = setup_conf(mddev);
4027                 if (IS_ERR(conf))
4028                         return PTR_ERR(conf);
4029                 mddev->private = conf;
4030         }
4031         conf = mddev->private;
4032         if (!conf)
4033                 goto out;
4034
4035         rcu_assign_pointer(mddev->thread, conf->thread);
4036         rcu_assign_pointer(conf->thread, NULL);
4037
4038         if (mddev_is_clustered(conf->mddev)) {
4039                 int fc, fo;
4040
4041                 fc = (mddev->layout >> 8) & 255;
4042                 fo = mddev->layout & (1<<16);
4043                 if (fc > 1 || fo > 0) {
4044                         pr_err("only near layout is supported by clustered"
4045                                 " raid10\n");
4046                         goto out_free_conf;
4047                 }
4048         }
4049
4050         if (mddev->queue) {
4051                 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
4052                 blk_queue_io_min(mddev->queue, mddev->chunk_sectors << 9);
4053                 raid10_set_io_opt(conf);
4054         }
4055
4056         rdev_for_each(rdev, mddev) {
4057                 long long diff;
4058
4059                 disk_idx = rdev->raid_disk;
4060                 if (disk_idx < 0)
4061                         continue;
4062                 if (disk_idx >= conf->geo.raid_disks &&
4063                     disk_idx >= conf->prev.raid_disks)
4064                         continue;
4065                 disk = conf->mirrors + disk_idx;
4066
4067                 if (test_bit(Replacement, &rdev->flags)) {
4068                         if (disk->replacement)
4069                                 goto out_free_conf;
4070                         disk->replacement = rdev;
4071                 } else {
4072                         if (disk->rdev)
4073                                 goto out_free_conf;
4074                         disk->rdev = rdev;
4075                 }
4076                 diff = (rdev->new_data_offset - rdev->data_offset);
4077                 if (!mddev->reshape_backwards)
4078                         diff = -diff;
4079                 if (diff < 0)
4080                         diff = 0;
4081                 if (first || diff < min_offset_diff)
4082                         min_offset_diff = diff;
4083
4084                 if (mddev->gendisk)
4085                         disk_stack_limits(mddev->gendisk, rdev->bdev,
4086                                           rdev->data_offset << 9);
4087
4088                 disk->head_position = 0;
4089                 first = 0;
4090         }
4091
4092         /* need to check that every block has at least one working mirror */
4093         if (!enough(conf, -1)) {
4094                 pr_err("md/raid10:%s: not enough operational mirrors.\n",
4095                        mdname(mddev));
4096                 goto out_free_conf;
4097         }
4098
4099         if (conf->reshape_progress != MaxSector) {
4100                 /* must ensure that shape change is supported */
4101                 if (conf->geo.far_copies != 1 &&
4102                     conf->geo.far_offset == 0)
4103                         goto out_free_conf;
4104                 if (conf->prev.far_copies != 1 &&
4105                     conf->prev.far_offset == 0)
4106                         goto out_free_conf;
4107         }
4108
4109         mddev->degraded = 0;
4110         for (i = 0;
4111              i < conf->geo.raid_disks
4112                      || i < conf->prev.raid_disks;
4113              i++) {
4114
4115                 disk = conf->mirrors + i;
4116
4117                 if (!disk->rdev && disk->replacement) {
4118                         /* The replacement is all we have - use it */
4119                         disk->rdev = disk->replacement;
4120                         disk->replacement = NULL;
4121                         clear_bit(Replacement, &disk->rdev->flags);
4122                 }
4123
4124                 if (!disk->rdev ||
4125                     !test_bit(In_sync, &disk->rdev->flags)) {
4126                         disk->head_position = 0;
4127                         mddev->degraded++;
4128                         if (disk->rdev &&
4129                             disk->rdev->saved_raid_disk < 0)
4130                                 conf->fullsync = 1;
4131                 }
4132
4133                 if (disk->replacement &&
4134                     !test_bit(In_sync, &disk->replacement->flags) &&
4135                     disk->replacement->saved_raid_disk < 0) {
4136                         conf->fullsync = 1;
4137                 }
4138
4139                 disk->recovery_disabled = mddev->recovery_disabled - 1;
4140         }
4141
4142         if (mddev->recovery_cp != MaxSector)
4143                 pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
4144                           mdname(mddev));
4145         pr_info("md/raid10:%s: active with %d out of %d devices\n",
4146                 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
4147                 conf->geo.raid_disks);
4148         /*
4149          * Ok, everything is just fine now
4150          */
4151         mddev->dev_sectors = conf->dev_sectors;
4152         size = raid10_size(mddev, 0, 0);
4153         md_set_array_sectors(mddev, size);
4154         mddev->resync_max_sectors = size;
4155         set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
4156
4157         if (md_integrity_register(mddev))
4158                 goto out_free_conf;
4159
4160         if (conf->reshape_progress != MaxSector) {
4161                 unsigned long before_length, after_length;
4162
4163                 before_length = ((1 << conf->prev.chunk_shift) *
4164                                  conf->prev.far_copies);
4165                 after_length = ((1 << conf->geo.chunk_shift) *
4166                                 conf->geo.far_copies);
4167
4168                 if (max(before_length, after_length) > min_offset_diff) {
4169                         /* This cannot work */
4170                         pr_warn("md/raid10: offset difference not enough to continue reshape\n");
4171                         goto out_free_conf;
4172                 }
4173                 conf->offset_diff = min_offset_diff;
4174
4175                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4176                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4177                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4178                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4179                 rcu_assign_pointer(mddev->sync_thread,
4180                         md_register_thread(md_do_sync, mddev, "reshape"));
4181                 if (!mddev->sync_thread)
4182                         goto out_free_conf;
4183         }
4184
4185         return 0;
4186
4187 out_free_conf:
4188         md_unregister_thread(mddev, &mddev->thread);
4189         raid10_free_conf(conf);
4190         mddev->private = NULL;
4191 out:
4192         return -EIO;
4193 }
4194
4195 static void raid10_free(struct mddev *mddev, void *priv)
4196 {
4197         raid10_free_conf(priv);
4198 }
4199
4200 static void raid10_quiesce(struct mddev *mddev, int quiesce)
4201 {
4202         struct r10conf *conf = mddev->private;
4203
4204         if (quiesce)
4205                 raise_barrier(conf, 0);
4206         else
4207                 lower_barrier(conf);
4208 }
4209
4210 static int raid10_resize(struct mddev *mddev, sector_t sectors)
4211 {
4212         /* Resize of 'far' arrays is not supported.
4213          * For 'near' and 'offset' arrays we can set the
4214          * number of sectors used to be an appropriate multiple
4215          * of the chunk size.
4216          * For 'offset', this is far_copies*chunksize.
4217          * For 'near' the multiplier is the LCM of
4218          * near_copies and raid_disks.
4219          * So if far_copies > 1 && !far_offset, fail.
4220          * Else find LCM(raid_disks, near_copy)*far_copies and
4221          * multiply by chunk_size.  Then round to this number.
4222          * This is mostly done by raid10_size()
4223          */
4224         struct r10conf *conf = mddev->private;
4225         sector_t oldsize, size;
4226
4227         if (mddev->reshape_position != MaxSector)
4228                 return -EBUSY;
4229
4230         if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
4231                 return -EINVAL;
4232
4233         oldsize = raid10_size(mddev, 0, 0);
4234         size = raid10_size(mddev, sectors, 0);
4235         if (mddev->external_size &&
4236             mddev->array_sectors > size)
4237                 return -EINVAL;
4238         if (mddev->bitmap) {
4239                 int ret = md_bitmap_resize(mddev->bitmap, size, 0, 0);
4240                 if (ret)
4241                         return ret;
4242         }
4243         md_set_array_sectors(mddev, size);
4244         if (sectors > mddev->dev_sectors &&
4245             mddev->recovery_cp > oldsize) {
4246                 mddev->recovery_cp = oldsize;
4247                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4248         }
4249         calc_sectors(conf, sectors);
4250         mddev->dev_sectors = conf->dev_sectors;
4251         mddev->resync_max_sectors = size;
4252         return 0;
4253 }
4254
4255 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
4256 {
4257         struct md_rdev *rdev;
4258         struct r10conf *conf;
4259
4260         if (mddev->degraded > 0) {
4261                 pr_warn("md/raid10:%s: Error: degraded raid0!\n",
4262                         mdname(mddev));
4263                 return ERR_PTR(-EINVAL);
4264         }
4265         sector_div(size, devs);
4266
4267         /* Set new parameters */
4268         mddev->new_level = 10;
4269         /* new layout: far_copies = 1, near_copies = 2 */
4270         mddev->new_layout = (1<<8) + 2;
4271         mddev->new_chunk_sectors = mddev->chunk_sectors;
4272         mddev->delta_disks = mddev->raid_disks;
4273         mddev->raid_disks *= 2;
4274         /* make sure it will be not marked as dirty */
4275         mddev->recovery_cp = MaxSector;
4276         mddev->dev_sectors = size;
4277
4278         conf = setup_conf(mddev);
4279         if (!IS_ERR(conf)) {
4280                 rdev_for_each(rdev, mddev)
4281                         if (rdev->raid_disk >= 0) {
4282                                 rdev->new_raid_disk = rdev->raid_disk * 2;
4283                                 rdev->sectors = size;
4284                         }
4285         }
4286
4287         return conf;
4288 }
4289
4290 static void *raid10_takeover(struct mddev *mddev)
4291 {
4292         struct r0conf *raid0_conf;
4293
4294         /* raid10 can take over:
4295          *  raid0 - providing it has only two drives
4296          */
4297         if (mddev->level == 0) {
4298                 /* for raid0 takeover only one zone is supported */
4299                 raid0_conf = mddev->private;
4300                 if (raid0_conf->nr_strip_zones > 1) {
4301                         pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
4302                                 mdname(mddev));
4303                         return ERR_PTR(-EINVAL);
4304                 }
4305                 return raid10_takeover_raid0(mddev,
4306                         raid0_conf->strip_zone->zone_end,
4307                         raid0_conf->strip_zone->nb_dev);
4308         }
4309         return ERR_PTR(-EINVAL);
4310 }
4311
4312 static int raid10_check_reshape(struct mddev *mddev)
4313 {
4314         /* Called when there is a request to change
4315          * - layout (to ->new_layout)
4316          * - chunk size (to ->new_chunk_sectors)
4317          * - raid_disks (by delta_disks)
4318          * or when trying to restart a reshape that was ongoing.
4319          *
4320          * We need to validate the request and possibly allocate
4321          * space if that might be an issue later.
4322          *
4323          * Currently we reject any reshape of a 'far' mode array,
4324          * allow chunk size to change if new is generally acceptable,
4325          * allow raid_disks to increase, and allow
4326          * a switch between 'near' mode and 'offset' mode.
4327          */
4328         struct r10conf *conf = mddev->private;
4329         struct geom geo;
4330
4331         if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
4332                 return -EINVAL;
4333
4334         if (setup_geo(&geo, mddev, geo_start) != conf->copies)
4335                 /* mustn't change number of copies */
4336                 return -EINVAL;
4337         if (geo.far_copies > 1 && !geo.far_offset)
4338                 /* Cannot switch to 'far' mode */
4339                 return -EINVAL;
4340
4341         if (mddev->array_sectors & geo.chunk_mask)
4342                         /* not factor of array size */
4343                         return -EINVAL;
4344
4345         if (!enough(conf, -1))
4346                 return -EINVAL;
4347
4348         kfree(conf->mirrors_new);
4349         conf->mirrors_new = NULL;
4350         if (mddev->delta_disks > 0) {
4351                 /* allocate new 'mirrors' list */
4352                 conf->mirrors_new =
4353                         kcalloc(mddev->raid_disks + mddev->delta_disks,
4354                                 sizeof(struct raid10_info),
4355                                 GFP_KERNEL);
4356                 if (!conf->mirrors_new)
4357                         return -ENOMEM;
4358         }
4359         return 0;
4360 }
4361
4362 /*
4363  * Need to check if array has failed when deciding whether to:
4364  *  - start an array
4365  *  - remove non-faulty devices
4366  *  - add a spare
4367  *  - allow a reshape
4368  * This determination is simple when no reshape is happening.
4369  * However if there is a reshape, we need to carefully check
4370  * both the before and after sections.
4371  * This is because some failed devices may only affect one
4372  * of the two sections, and some non-in_sync devices may
4373  * be insync in the section most affected by failed devices.
4374  */
4375 static int calc_degraded(struct r10conf *conf)
4376 {
4377         int degraded, degraded2;
4378         int i;
4379
4380         degraded = 0;
4381         /* 'prev' section first */
4382         for (i = 0; i < conf->prev.raid_disks; i++) {
4383                 struct md_rdev *rdev = conf->mirrors[i].rdev;
4384
4385                 if (!rdev || test_bit(Faulty, &rdev->flags))
4386                         degraded++;
4387                 else if (!test_bit(In_sync, &rdev->flags))
4388                         /* When we can reduce the number of devices in
4389                          * an array, this might not contribute to
4390                          * 'degraded'.  It does now.
4391                          */
4392                         degraded++;
4393         }
4394         if (conf->geo.raid_disks == conf->prev.raid_disks)
4395                 return degraded;
4396         degraded2 = 0;
4397         for (i = 0; i < conf->geo.raid_disks; i++) {
4398                 struct md_rdev *rdev = conf->mirrors[i].rdev;
4399
4400                 if (!rdev || test_bit(Faulty, &rdev->flags))
4401                         degraded2++;
4402                 else if (!test_bit(In_sync, &rdev->flags)) {
4403                         /* If reshape is increasing the number of devices,
4404                          * this section has already been recovered, so
4405                          * it doesn't contribute to degraded.
4406                          * else it does.
4407                          */
4408                         if (conf->geo.raid_disks <= conf->prev.raid_disks)
4409                                 degraded2++;
4410                 }
4411         }
4412         if (degraded2 > degraded)
4413                 return degraded2;
4414         return degraded;
4415 }
4416
4417 static int raid10_start_reshape(struct mddev *mddev)
4418 {
4419         /* A 'reshape' has been requested. This commits
4420          * the various 'new' fields and sets MD_RECOVER_RESHAPE
4421          * This also checks if there are enough spares and adds them
4422          * to the array.
4423          * We currently require enough spares to make the final
4424          * array non-degraded.  We also require that the difference
4425          * between old and new data_offset - on each device - is
4426          * enough that we never risk over-writing.
4427          */
4428
4429         unsigned long before_length, after_length;
4430         sector_t min_offset_diff = 0;
4431         int first = 1;
4432         struct geom new;
4433         struct r10conf *conf = mddev->private;
4434         struct md_rdev *rdev;
4435         int spares = 0;
4436         int ret;
4437
4438         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4439                 return -EBUSY;
4440
4441         if (setup_geo(&new, mddev, geo_start) != conf->copies)
4442                 return -EINVAL;
4443
4444         before_length = ((1 << conf->prev.chunk_shift) *
4445                          conf->prev.far_copies);
4446         after_length = ((1 << conf->geo.chunk_shift) *
4447                         conf->geo.far_copies);
4448
4449         rdev_for_each(rdev, mddev) {
4450                 if (!test_bit(In_sync, &rdev->flags)
4451                     && !test_bit(Faulty, &rdev->flags))
4452                         spares++;
4453                 if (rdev->raid_disk >= 0) {
4454                         long long diff = (rdev->new_data_offset
4455                                           - rdev->data_offset);
4456                         if (!mddev->reshape_backwards)
4457                                 diff = -diff;
4458                         if (diff < 0)
4459                                 diff = 0;
4460                         if (first || diff < min_offset_diff)
4461                                 min_offset_diff = diff;
4462                         first = 0;
4463                 }
4464         }
4465
4466         if (max(before_length, after_length) > min_offset_diff)
4467                 return -EINVAL;
4468
4469         if (spares < mddev->delta_disks)
4470                 return -EINVAL;
4471
4472         conf->offset_diff = min_offset_diff;
4473         spin_lock_irq(&conf->device_lock);
4474         if (conf->mirrors_new) {
4475                 memcpy(conf->mirrors_new, conf->mirrors,
4476                        sizeof(struct raid10_info)*conf->prev.raid_disks);
4477                 smp_mb();
4478                 kfree(conf->mirrors_old);
4479                 conf->mirrors_old = conf->mirrors;
4480                 conf->mirrors = conf->mirrors_new;
4481                 conf->mirrors_new = NULL;
4482         }
4483         setup_geo(&conf->geo, mddev, geo_start);
4484         smp_mb();
4485         if (mddev->reshape_backwards) {
4486                 sector_t size = raid10_size(mddev, 0, 0);
4487                 if (size < mddev->array_sectors) {
4488                         spin_unlock_irq(&conf->device_lock);
4489                         pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4490                                 mdname(mddev));
4491                         return -EINVAL;
4492                 }
4493                 mddev->resync_max_sectors = size;
4494                 conf->reshape_progress = size;
4495         } else
4496                 conf->reshape_progress = 0;
4497         conf->reshape_safe = conf->reshape_progress;
4498         spin_unlock_irq(&conf->device_lock);
4499
4500         if (mddev->delta_disks && mddev->bitmap) {
4501                 struct mdp_superblock_1 *sb = NULL;
4502                 sector_t oldsize, newsize;
4503
4504                 oldsize = raid10_size(mddev, 0, 0);
4505                 newsize = raid10_size(mddev, 0, conf->geo.raid_disks);
4506
4507                 if (!mddev_is_clustered(mddev)) {
4508                         ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4509                         if (ret)
4510                                 goto abort;
4511                         else
4512                                 goto out;
4513                 }
4514
4515                 rdev_for_each(rdev, mddev) {
4516                         if (rdev->raid_disk > -1 &&
4517                             !test_bit(Faulty, &rdev->flags))
4518                                 sb = page_address(rdev->sb_page);
4519                 }
4520
4521                 /*
4522                  * some node is already performing reshape, and no need to
4523                  * call md_bitmap_resize again since it should be called when
4524                  * receiving BITMAP_RESIZE msg
4525                  */
4526                 if ((sb && (le32_to_cpu(sb->feature_map) &
4527                             MD_FEATURE_RESHAPE_ACTIVE)) || (oldsize == newsize))
4528                         goto out;
4529
4530                 ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4531                 if (ret)
4532                         goto abort;
4533
4534                 ret = md_cluster_ops->resize_bitmaps(mddev, newsize, oldsize);
4535                 if (ret) {
4536                         md_bitmap_resize(mddev->bitmap, oldsize, 0, 0);
4537                         goto abort;
4538                 }
4539         }
4540 out:
4541         if (mddev->delta_disks > 0) {
4542                 rdev_for_each(rdev, mddev)
4543                         if (rdev->raid_disk < 0 &&
4544                             !test_bit(Faulty, &rdev->flags)) {
4545                                 if (raid10_add_disk(mddev, rdev) == 0) {
4546                                         if (rdev->raid_disk >=
4547                                             conf->prev.raid_disks)
4548                                                 set_bit(In_sync, &rdev->flags);
4549                                         else
4550                                                 rdev->recovery_offset = 0;
4551
4552                                         /* Failure here is OK */
4553                                         sysfs_link_rdev(mddev, rdev);
4554                                 }
4555                         } else if (rdev->raid_disk >= conf->prev.raid_disks
4556                                    && !test_bit(Faulty, &rdev->flags)) {
4557                                 /* This is a spare that was manually added */
4558                                 set_bit(In_sync, &rdev->flags);
4559                         }
4560         }
4561         /* When a reshape changes the number of devices,
4562          * ->degraded is measured against the larger of the
4563          * pre and  post numbers.
4564          */
4565         spin_lock_irq(&conf->device_lock);
4566         mddev->degraded = calc_degraded(conf);
4567         spin_unlock_irq(&conf->device_lock);
4568         mddev->raid_disks = conf->geo.raid_disks;
4569         mddev->reshape_position = conf->reshape_progress;
4570         set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4571
4572         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4573         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4574         clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4575         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4576         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4577
4578         rcu_assign_pointer(mddev->sync_thread,
4579                            md_register_thread(md_do_sync, mddev, "reshape"));
4580         if (!mddev->sync_thread) {
4581                 ret = -EAGAIN;
4582                 goto abort;
4583         }
4584         conf->reshape_checkpoint = jiffies;
4585         md_wakeup_thread(mddev->sync_thread);
4586         md_new_event();
4587         return 0;
4588
4589 abort:
4590         mddev->recovery = 0;
4591         spin_lock_irq(&conf->device_lock);
4592         conf->geo = conf->prev;
4593         mddev->raid_disks = conf->geo.raid_disks;
4594         rdev_for_each(rdev, mddev)
4595                 rdev->new_data_offset = rdev->data_offset;
4596         smp_wmb();
4597         conf->reshape_progress = MaxSector;
4598         conf->reshape_safe = MaxSector;
4599         mddev->reshape_position = MaxSector;
4600         spin_unlock_irq(&conf->device_lock);
4601         return ret;
4602 }
4603
4604 /* Calculate the last device-address that could contain
4605  * any block from the chunk that includes the array-address 's'
4606  * and report the next address.
4607  * i.e. the address returned will be chunk-aligned and after
4608  * any data that is in the chunk containing 's'.
4609  */
4610 static sector_t last_dev_address(sector_t s, struct geom *geo)
4611 {
4612         s = (s | geo->chunk_mask) + 1;
4613         s >>= geo->chunk_shift;
4614         s *= geo->near_copies;
4615         s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4616         s *= geo->far_copies;
4617         s <<= geo->chunk_shift;
4618         return s;
4619 }
4620
4621 /* Calculate the first device-address that could contain
4622  * any block from the chunk that includes the array-address 's'.
4623  * This too will be the start of a chunk
4624  */
4625 static sector_t first_dev_address(sector_t s, struct geom *geo)
4626 {
4627         s >>= geo->chunk_shift;
4628         s *= geo->near_copies;
4629         sector_div(s, geo->raid_disks);
4630         s *= geo->far_copies;
4631         s <<= geo->chunk_shift;
4632         return s;
4633 }
4634
4635 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4636                                 int *skipped)
4637 {
4638         /* We simply copy at most one chunk (smallest of old and new)
4639          * at a time, possibly less if that exceeds RESYNC_PAGES,
4640          * or we hit a bad block or something.
4641          * This might mean we pause for normal IO in the middle of
4642          * a chunk, but that is not a problem as mddev->reshape_position
4643          * can record any location.
4644          *
4645          * If we will want to write to a location that isn't
4646          * yet recorded as 'safe' (i.e. in metadata on disk) then
4647          * we need to flush all reshape requests and update the metadata.
4648          *
4649          * When reshaping forwards (e.g. to more devices), we interpret
4650          * 'safe' as the earliest block which might not have been copied
4651          * down yet.  We divide this by previous stripe size and multiply
4652          * by previous stripe length to get lowest device offset that we
4653          * cannot write to yet.
4654          * We interpret 'sector_nr' as an address that we want to write to.
4655          * From this we use last_device_address() to find where we might
4656          * write to, and first_device_address on the  'safe' position.
4657          * If this 'next' write position is after the 'safe' position,
4658          * we must update the metadata to increase the 'safe' position.
4659          *
4660          * When reshaping backwards, we round in the opposite direction
4661          * and perform the reverse test:  next write position must not be
4662          * less than current safe position.
4663          *
4664          * In all this the minimum difference in data offsets
4665          * (conf->offset_diff - always positive) allows a bit of slack,
4666          * so next can be after 'safe', but not by more than offset_diff
4667          *
4668          * We need to prepare all the bios here before we start any IO
4669          * to ensure the size we choose is acceptable to all devices.
4670          * The means one for each copy for write-out and an extra one for
4671          * read-in.
4672          * We store the read-in bio in ->master_bio and the others in
4673          * ->devs[x].bio and ->devs[x].repl_bio.
4674          */
4675         struct r10conf *conf = mddev->private;
4676         struct r10bio *r10_bio;
4677         sector_t next, safe, last;
4678         int max_sectors;
4679         int nr_sectors;
4680         int s;
4681         struct md_rdev *rdev;
4682         int need_flush = 0;
4683         struct bio *blist;
4684         struct bio *bio, *read_bio;
4685         int sectors_done = 0;
4686         struct page **pages;
4687
4688         if (sector_nr == 0) {
4689                 /* If restarting in the middle, skip the initial sectors */
4690                 if (mddev->reshape_backwards &&
4691                     conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4692                         sector_nr = (raid10_size(mddev, 0, 0)
4693                                      - conf->reshape_progress);
4694                 } else if (!mddev->reshape_backwards &&
4695                            conf->reshape_progress > 0)
4696                         sector_nr = conf->reshape_progress;
4697                 if (sector_nr) {
4698                         mddev->curr_resync_completed = sector_nr;
4699                         sysfs_notify_dirent_safe(mddev->sysfs_completed);
4700                         *skipped = 1;
4701                         return sector_nr;
4702                 }
4703         }
4704
4705         /* We don't use sector_nr to track where we are up to
4706          * as that doesn't work well for ->reshape_backwards.
4707          * So just use ->reshape_progress.
4708          */
4709         if (mddev->reshape_backwards) {
4710                 /* 'next' is the earliest device address that we might
4711                  * write to for this chunk in the new layout
4712                  */
4713                 next = first_dev_address(conf->reshape_progress - 1,
4714                                          &conf->geo);
4715
4716                 /* 'safe' is the last device address that we might read from
4717                  * in the old layout after a restart
4718                  */
4719                 safe = last_dev_address(conf->reshape_safe - 1,
4720                                         &conf->prev);
4721
4722                 if (next + conf->offset_diff < safe)
4723                         need_flush = 1;
4724
4725                 last = conf->reshape_progress - 1;
4726                 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4727                                                & conf->prev.chunk_mask);
4728                 if (sector_nr + RESYNC_SECTORS < last)
4729                         sector_nr = last + 1 - RESYNC_SECTORS;
4730         } else {
4731                 /* 'next' is after the last device address that we
4732                  * might write to for this chunk in the new layout
4733                  */
4734                 next = last_dev_address(conf->reshape_progress, &conf->geo);
4735
4736                 /* 'safe' is the earliest device address that we might
4737                  * read from in the old layout after a restart
4738                  */
4739                 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4740
4741                 /* Need to update metadata if 'next' might be beyond 'safe'
4742                  * as that would possibly corrupt data
4743                  */
4744                 if (next > safe + conf->offset_diff)
4745                         need_flush = 1;
4746
4747                 sector_nr = conf->reshape_progress;
4748                 last  = sector_nr | (conf->geo.chunk_mask
4749                                      & conf->prev.chunk_mask);
4750
4751                 if (sector_nr + RESYNC_SECTORS <= last)
4752                         last = sector_nr + RESYNC_SECTORS - 1;
4753         }
4754
4755         if (need_flush ||
4756             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4757                 /* Need to update reshape_position in metadata */
4758                 wait_barrier(conf, false);
4759                 mddev->reshape_position = conf->reshape_progress;
4760                 if (mddev->reshape_backwards)
4761                         mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4762                                 - conf->reshape_progress;
4763                 else
4764                         mddev->curr_resync_completed = conf->reshape_progress;
4765                 conf->reshape_checkpoint = jiffies;
4766                 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4767                 md_wakeup_thread(mddev->thread);
4768                 wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
4769                            test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4770                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4771                         allow_barrier(conf);
4772                         return sectors_done;
4773                 }
4774                 conf->reshape_safe = mddev->reshape_position;
4775                 allow_barrier(conf);
4776         }
4777
4778         raise_barrier(conf, 0);
4779 read_more:
4780         /* Now schedule reads for blocks from sector_nr to last */
4781         r10_bio = raid10_alloc_init_r10buf(conf);
4782         r10_bio->state = 0;
4783         raise_barrier(conf, 1);
4784         atomic_set(&r10_bio->remaining, 0);
4785         r10_bio->mddev = mddev;
4786         r10_bio->sector = sector_nr;
4787         set_bit(R10BIO_IsReshape, &r10_bio->state);
4788         r10_bio->sectors = last - sector_nr + 1;
4789         rdev = read_balance(conf, r10_bio, &max_sectors);
4790         BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4791
4792         if (!rdev) {
4793                 /* Cannot read from here, so need to record bad blocks
4794                  * on all the target devices.
4795                  */
4796                 // FIXME
4797                 mempool_free(r10_bio, &conf->r10buf_pool);
4798                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4799                 return sectors_done;
4800         }
4801
4802         read_bio = bio_alloc_bioset(rdev->bdev, RESYNC_PAGES, REQ_OP_READ,
4803                                     GFP_KERNEL, &mddev->bio_set);
4804         read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4805                                + rdev->data_offset);
4806         read_bio->bi_private = r10_bio;
4807         read_bio->bi_end_io = end_reshape_read;
4808         r10_bio->master_bio = read_bio;
4809         r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4810
4811         /*
4812          * Broadcast RESYNC message to other nodes, so all nodes would not
4813          * write to the region to avoid conflict.
4814         */
4815         if (mddev_is_clustered(mddev) && conf->cluster_sync_high <= sector_nr) {
4816                 struct mdp_superblock_1 *sb = NULL;
4817                 int sb_reshape_pos = 0;
4818
4819                 conf->cluster_sync_low = sector_nr;
4820                 conf->cluster_sync_high = sector_nr + CLUSTER_RESYNC_WINDOW_SECTORS;
4821                 sb = page_address(rdev->sb_page);
4822                 if (sb) {
4823                         sb_reshape_pos = le64_to_cpu(sb->reshape_position);
4824                         /*
4825                          * Set cluster_sync_low again if next address for array
4826                          * reshape is less than cluster_sync_low. Since we can't
4827                          * update cluster_sync_low until it has finished reshape.
4828                          */
4829                         if (sb_reshape_pos < conf->cluster_sync_low)
4830                                 conf->cluster_sync_low = sb_reshape_pos;
4831                 }
4832
4833                 md_cluster_ops->resync_info_update(mddev, conf->cluster_sync_low,
4834                                                           conf->cluster_sync_high);
4835         }
4836
4837         /* Now find the locations in the new layout */
4838         __raid10_find_phys(&conf->geo, r10_bio);
4839
4840         blist = read_bio;
4841         read_bio->bi_next = NULL;
4842
4843         for (s = 0; s < conf->copies*2; s++) {
4844                 struct bio *b;
4845                 int d = r10_bio->devs[s/2].devnum;
4846                 struct md_rdev *rdev2;
4847                 if (s&1) {
4848                         rdev2 = conf->mirrors[d].replacement;
4849                         b = r10_bio->devs[s/2].repl_bio;
4850                 } else {
4851                         rdev2 = conf->mirrors[d].rdev;
4852                         b = r10_bio->devs[s/2].bio;
4853                 }
4854                 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4855                         continue;
4856
4857                 bio_set_dev(b, rdev2->bdev);
4858                 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4859                         rdev2->new_data_offset;
4860                 b->bi_end_io = end_reshape_write;
4861                 b->bi_opf = REQ_OP_WRITE;
4862                 b->bi_next = blist;
4863                 blist = b;
4864         }
4865
4866         /* Now add as many pages as possible to all of these bios. */
4867
4868         nr_sectors = 0;
4869         pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4870         for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4871                 struct page *page = pages[s / (PAGE_SIZE >> 9)];
4872                 int len = (max_sectors - s) << 9;
4873                 if (len > PAGE_SIZE)
4874                         len = PAGE_SIZE;
4875                 for (bio = blist; bio ; bio = bio->bi_next) {
4876                         if (WARN_ON(!bio_add_page(bio, page, len, 0))) {
4877                                 bio->bi_status = BLK_STS_RESOURCE;
4878                                 bio_endio(bio);
4879                                 return sectors_done;
4880                         }
4881                 }
4882                 sector_nr += len >> 9;
4883                 nr_sectors += len >> 9;
4884         }
4885         r10_bio->sectors = nr_sectors;
4886
4887         /* Now submit the read */
4888         md_sync_acct_bio(read_bio, r10_bio->sectors);
4889         atomic_inc(&r10_bio->remaining);
4890         read_bio->bi_next = NULL;
4891         submit_bio_noacct(read_bio);
4892         sectors_done += nr_sectors;
4893         if (sector_nr <= last)
4894                 goto read_more;
4895
4896         lower_barrier(conf);
4897
4898         /* Now that we have done the whole section we can
4899          * update reshape_progress
4900          */
4901         if (mddev->reshape_backwards)
4902                 conf->reshape_progress -= sectors_done;
4903         else
4904                 conf->reshape_progress += sectors_done;
4905
4906         return sectors_done;
4907 }
4908
4909 static void end_reshape_request(struct r10bio *r10_bio);
4910 static int handle_reshape_read_error(struct mddev *mddev,
4911                                      struct r10bio *r10_bio);
4912 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4913 {
4914         /* Reshape read completed.  Hopefully we have a block
4915          * to write out.
4916          * If we got a read error then we do sync 1-page reads from
4917          * elsewhere until we find the data - or give up.
4918          */
4919         struct r10conf *conf = mddev->private;
4920         int s;
4921
4922         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4923                 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4924                         /* Reshape has been aborted */
4925                         md_done_sync(mddev, r10_bio->sectors, 0);
4926                         return;
4927                 }
4928
4929         /* We definitely have the data in the pages, schedule the
4930          * writes.
4931          */
4932         atomic_set(&r10_bio->remaining, 1);
4933         for (s = 0; s < conf->copies*2; s++) {
4934                 struct bio *b;
4935                 int d = r10_bio->devs[s/2].devnum;
4936                 struct md_rdev *rdev;
4937                 if (s&1) {
4938                         rdev = conf->mirrors[d].replacement;
4939                         b = r10_bio->devs[s/2].repl_bio;
4940                 } else {
4941                         rdev = conf->mirrors[d].rdev;
4942                         b = r10_bio->devs[s/2].bio;
4943                 }
4944                 if (!rdev || test_bit(Faulty, &rdev->flags))
4945                         continue;
4946
4947                 atomic_inc(&rdev->nr_pending);
4948                 md_sync_acct_bio(b, r10_bio->sectors);
4949                 atomic_inc(&r10_bio->remaining);
4950                 b->bi_next = NULL;
4951                 submit_bio_noacct(b);
4952         }
4953         end_reshape_request(r10_bio);
4954 }
4955
4956 static void end_reshape(struct r10conf *conf)
4957 {
4958         if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4959                 return;
4960
4961         spin_lock_irq(&conf->device_lock);
4962         conf->prev = conf->geo;
4963         md_finish_reshape(conf->mddev);
4964         smp_wmb();
4965         conf->reshape_progress = MaxSector;
4966         conf->reshape_safe = MaxSector;
4967         spin_unlock_irq(&conf->device_lock);
4968
4969         if (conf->mddev->queue)
4970                 raid10_set_io_opt(conf);
4971         conf->fullsync = 0;
4972 }
4973
4974 static void raid10_update_reshape_pos(struct mddev *mddev)
4975 {
4976         struct r10conf *conf = mddev->private;
4977         sector_t lo, hi;
4978
4979         md_cluster_ops->resync_info_get(mddev, &lo, &hi);
4980         if (((mddev->reshape_position <= hi) && (mddev->reshape_position >= lo))
4981             || mddev->reshape_position == MaxSector)
4982                 conf->reshape_progress = mddev->reshape_position;
4983         else
4984                 WARN_ON_ONCE(1);
4985 }
4986
4987 static int handle_reshape_read_error(struct mddev *mddev,
4988                                      struct r10bio *r10_bio)
4989 {
4990         /* Use sync reads to get the blocks from somewhere else */
4991         int sectors = r10_bio->sectors;
4992         struct r10conf *conf = mddev->private;
4993         struct r10bio *r10b;
4994         int slot = 0;
4995         int idx = 0;
4996         struct page **pages;
4997
4998         r10b = kmalloc(struct_size(r10b, devs, conf->copies), GFP_NOIO);
4999         if (!r10b) {
5000                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5001                 return -ENOMEM;
5002         }
5003
5004         /* reshape IOs share pages from .devs[0].bio */
5005         pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
5006
5007         r10b->sector = r10_bio->sector;
5008         __raid10_find_phys(&conf->prev, r10b);
5009
5010         while (sectors) {
5011                 int s = sectors;
5012                 int success = 0;
5013                 int first_slot = slot;
5014
5015                 if (s > (PAGE_SIZE >> 9))
5016                         s = PAGE_SIZE >> 9;
5017
5018                 while (!success) {
5019                         int d = r10b->devs[slot].devnum;
5020                         struct md_rdev *rdev = conf->mirrors[d].rdev;
5021                         sector_t addr;
5022                         if (rdev == NULL ||
5023                             test_bit(Faulty, &rdev->flags) ||
5024                             !test_bit(In_sync, &rdev->flags))
5025                                 goto failed;
5026
5027                         addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
5028                         atomic_inc(&rdev->nr_pending);
5029                         success = sync_page_io(rdev,
5030                                                addr,
5031                                                s << 9,
5032                                                pages[idx],
5033                                                REQ_OP_READ, false);
5034                         rdev_dec_pending(rdev, mddev);
5035                         if (success)
5036                                 break;
5037                 failed:
5038                         slot++;
5039                         if (slot >= conf->copies)
5040                                 slot = 0;
5041                         if (slot == first_slot)
5042                                 break;
5043                 }
5044                 if (!success) {
5045                         /* couldn't read this block, must give up */
5046                         set_bit(MD_RECOVERY_INTR,
5047                                 &mddev->recovery);
5048                         kfree(r10b);
5049                         return -EIO;
5050                 }
5051                 sectors -= s;
5052                 idx++;
5053         }
5054         kfree(r10b);
5055         return 0;
5056 }
5057
5058 static void end_reshape_write(struct bio *bio)
5059 {
5060         struct r10bio *r10_bio = get_resync_r10bio(bio);
5061         struct mddev *mddev = r10_bio->mddev;
5062         struct r10conf *conf = mddev->private;
5063         int d;
5064         int slot;
5065         int repl;
5066         struct md_rdev *rdev = NULL;
5067
5068         d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
5069         rdev = repl ? conf->mirrors[d].replacement :
5070                       conf->mirrors[d].rdev;
5071
5072         if (bio->bi_status) {
5073                 /* FIXME should record badblock */
5074                 md_error(mddev, rdev);
5075         }
5076
5077         rdev_dec_pending(rdev, mddev);
5078         end_reshape_request(r10_bio);
5079 }
5080
5081 static void end_reshape_request(struct r10bio *r10_bio)
5082 {
5083         if (!atomic_dec_and_test(&r10_bio->remaining))
5084                 return;
5085         md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
5086         bio_put(r10_bio->master_bio);
5087         put_buf(r10_bio);
5088 }
5089
5090 static void raid10_finish_reshape(struct mddev *mddev)
5091 {
5092         struct r10conf *conf = mddev->private;
5093
5094         if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5095                 return;
5096
5097         if (mddev->delta_disks > 0) {
5098                 if (mddev->recovery_cp > mddev->resync_max_sectors) {
5099                         mddev->recovery_cp = mddev->resync_max_sectors;
5100                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5101                 }
5102                 mddev->resync_max_sectors = mddev->array_sectors;
5103         } else {
5104                 int d;
5105                 for (d = conf->geo.raid_disks ;
5106                      d < conf->geo.raid_disks - mddev->delta_disks;
5107                      d++) {
5108                         struct md_rdev *rdev = conf->mirrors[d].rdev;
5109                         if (rdev)
5110                                 clear_bit(In_sync, &rdev->flags);
5111                         rdev = conf->mirrors[d].replacement;
5112                         if (rdev)
5113                                 clear_bit(In_sync, &rdev->flags);
5114                 }
5115         }
5116         mddev->layout = mddev->new_layout;
5117         mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
5118         mddev->reshape_position = MaxSector;
5119         mddev->delta_disks = 0;
5120         mddev->reshape_backwards = 0;
5121 }
5122
5123 static struct md_personality raid10_personality =
5124 {
5125         .name           = "raid10",
5126         .level          = 10,
5127         .owner          = THIS_MODULE,
5128         .make_request   = raid10_make_request,
5129         .run            = raid10_run,
5130         .free           = raid10_free,
5131         .status         = raid10_status,
5132         .error_handler  = raid10_error,
5133         .hot_add_disk   = raid10_add_disk,
5134         .hot_remove_disk= raid10_remove_disk,
5135         .spare_active   = raid10_spare_active,
5136         .sync_request   = raid10_sync_request,
5137         .quiesce        = raid10_quiesce,
5138         .size           = raid10_size,
5139         .resize         = raid10_resize,
5140         .takeover       = raid10_takeover,
5141         .check_reshape  = raid10_check_reshape,
5142         .start_reshape  = raid10_start_reshape,
5143         .finish_reshape = raid10_finish_reshape,
5144         .update_reshape_pos = raid10_update_reshape_pos,
5145 };
5146
5147 static int __init raid_init(void)
5148 {
5149         return register_md_personality(&raid10_personality);
5150 }
5151
5152 static void raid_exit(void)
5153 {
5154         unregister_md_personality(&raid10_personality);
5155 }
5156
5157 module_init(raid_init);
5158 module_exit(raid_exit);
5159 MODULE_LICENSE("GPL");
5160 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
5161 MODULE_ALIAS("md-personality-9"); /* RAID10 */
5162 MODULE_ALIAS("md-raid10");
5163 MODULE_ALIAS("md-level-10");