Merge branch 'work.get_user_pages_fast' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-block.git] / drivers / md / raid1.c
1 /*
2  * raid1.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5  *
6  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7  *
8  * RAID-1 management functions.
9  *
10  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11  *
12  * Fixes to reconstruction by Jakob Ã˜stergaard" <jakob@ostenfeld.dk>
13  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14  *
15  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16  * bitmapped intelligence in resync:
17  *
18  *      - bitmap marked during normal i/o
19  *      - bitmap used to skip nondirty blocks during sync
20  *
21  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22  * - persistent bitmap code
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License as published by
26  * the Free Software Foundation; either version 2, or (at your option)
27  * any later version.
28  *
29  * You should have received a copy of the GNU General Public License
30  * (for example /usr/src/linux/COPYING); if not, write to the Free
31  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40
41 #include <trace/events/block.h>
42
43 #include "md.h"
44 #include "raid1.h"
45 #include "md-bitmap.h"
46
47 #define UNSUPPORTED_MDDEV_FLAGS         \
48         ((1L << MD_HAS_JOURNAL) |       \
49          (1L << MD_JOURNAL_CLEAN) |     \
50          (1L << MD_HAS_PPL) |           \
51          (1L << MD_HAS_MULTIPLE_PPLS))
52
53 /*
54  * Number of guaranteed r1bios in case of extreme VM load:
55  */
56 #define NR_RAID1_BIOS 256
57
58 /* when we get a read error on a read-only array, we redirect to another
59  * device without failing the first device, or trying to over-write to
60  * correct the read error.  To keep track of bad blocks on a per-bio
61  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
62  */
63 #define IO_BLOCKED ((struct bio *)1)
64 /* When we successfully write to a known bad-block, we need to remove the
65  * bad-block marking which must be done from process context.  So we record
66  * the success by setting devs[n].bio to IO_MADE_GOOD
67  */
68 #define IO_MADE_GOOD ((struct bio *)2)
69
70 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
71
72 /* When there are this many requests queue to be written by
73  * the raid1 thread, we become 'congested' to provide back-pressure
74  * for writeback.
75  */
76 static int max_queued_requests = 1024;
77
78 static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
79 static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
80
81 #define raid1_log(md, fmt, args...)                             \
82         do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
83
84 #include "raid1-10.c"
85
86 /*
87  * for resync bio, r1bio pointer can be retrieved from the per-bio
88  * 'struct resync_pages'.
89  */
90 static inline struct r1bio *get_resync_r1bio(struct bio *bio)
91 {
92         return get_resync_pages(bio)->raid_bio;
93 }
94
95 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
96 {
97         struct pool_info *pi = data;
98         int size = offsetof(struct r1bio, bios[pi->raid_disks]);
99
100         /* allocate a r1bio with room for raid_disks entries in the bios array */
101         return kzalloc(size, gfp_flags);
102 }
103
104 static void r1bio_pool_free(void *r1_bio, void *data)
105 {
106         kfree(r1_bio);
107 }
108
109 #define RESYNC_DEPTH 32
110 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
111 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
112 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
113 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
114 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
115
116 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
117 {
118         struct pool_info *pi = data;
119         struct r1bio *r1_bio;
120         struct bio *bio;
121         int need_pages;
122         int j;
123         struct resync_pages *rps;
124
125         r1_bio = r1bio_pool_alloc(gfp_flags, pi);
126         if (!r1_bio)
127                 return NULL;
128
129         rps = kmalloc(sizeof(struct resync_pages) * pi->raid_disks,
130                       gfp_flags);
131         if (!rps)
132                 goto out_free_r1bio;
133
134         /*
135          * Allocate bios : 1 for reading, n-1 for writing
136          */
137         for (j = pi->raid_disks ; j-- ; ) {
138                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
139                 if (!bio)
140                         goto out_free_bio;
141                 r1_bio->bios[j] = bio;
142         }
143         /*
144          * Allocate RESYNC_PAGES data pages and attach them to
145          * the first bio.
146          * If this is a user-requested check/repair, allocate
147          * RESYNC_PAGES for each bio.
148          */
149         if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
150                 need_pages = pi->raid_disks;
151         else
152                 need_pages = 1;
153         for (j = 0; j < pi->raid_disks; j++) {
154                 struct resync_pages *rp = &rps[j];
155
156                 bio = r1_bio->bios[j];
157
158                 if (j < need_pages) {
159                         if (resync_alloc_pages(rp, gfp_flags))
160                                 goto out_free_pages;
161                 } else {
162                         memcpy(rp, &rps[0], sizeof(*rp));
163                         resync_get_all_pages(rp);
164                 }
165
166                 rp->raid_bio = r1_bio;
167                 bio->bi_private = rp;
168         }
169
170         r1_bio->master_bio = NULL;
171
172         return r1_bio;
173
174 out_free_pages:
175         while (--j >= 0)
176                 resync_free_pages(&rps[j]);
177
178 out_free_bio:
179         while (++j < pi->raid_disks)
180                 bio_put(r1_bio->bios[j]);
181         kfree(rps);
182
183 out_free_r1bio:
184         r1bio_pool_free(r1_bio, data);
185         return NULL;
186 }
187
188 static void r1buf_pool_free(void *__r1_bio, void *data)
189 {
190         struct pool_info *pi = data;
191         int i;
192         struct r1bio *r1bio = __r1_bio;
193         struct resync_pages *rp = NULL;
194
195         for (i = pi->raid_disks; i--; ) {
196                 rp = get_resync_pages(r1bio->bios[i]);
197                 resync_free_pages(rp);
198                 bio_put(r1bio->bios[i]);
199         }
200
201         /* resync pages array stored in the 1st bio's .bi_private */
202         kfree(rp);
203
204         r1bio_pool_free(r1bio, data);
205 }
206
207 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
208 {
209         int i;
210
211         for (i = 0; i < conf->raid_disks * 2; i++) {
212                 struct bio **bio = r1_bio->bios + i;
213                 if (!BIO_SPECIAL(*bio))
214                         bio_put(*bio);
215                 *bio = NULL;
216         }
217 }
218
219 static void free_r1bio(struct r1bio *r1_bio)
220 {
221         struct r1conf *conf = r1_bio->mddev->private;
222
223         put_all_bios(conf, r1_bio);
224         mempool_free(r1_bio, conf->r1bio_pool);
225 }
226
227 static void put_buf(struct r1bio *r1_bio)
228 {
229         struct r1conf *conf = r1_bio->mddev->private;
230         sector_t sect = r1_bio->sector;
231         int i;
232
233         for (i = 0; i < conf->raid_disks * 2; i++) {
234                 struct bio *bio = r1_bio->bios[i];
235                 if (bio->bi_end_io)
236                         rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
237         }
238
239         mempool_free(r1_bio, conf->r1buf_pool);
240
241         lower_barrier(conf, sect);
242 }
243
244 static void reschedule_retry(struct r1bio *r1_bio)
245 {
246         unsigned long flags;
247         struct mddev *mddev = r1_bio->mddev;
248         struct r1conf *conf = mddev->private;
249         int idx;
250
251         idx = sector_to_idx(r1_bio->sector);
252         spin_lock_irqsave(&conf->device_lock, flags);
253         list_add(&r1_bio->retry_list, &conf->retry_list);
254         atomic_inc(&conf->nr_queued[idx]);
255         spin_unlock_irqrestore(&conf->device_lock, flags);
256
257         wake_up(&conf->wait_barrier);
258         md_wakeup_thread(mddev->thread);
259 }
260
261 /*
262  * raid_end_bio_io() is called when we have finished servicing a mirrored
263  * operation and are ready to return a success/failure code to the buffer
264  * cache layer.
265  */
266 static void call_bio_endio(struct r1bio *r1_bio)
267 {
268         struct bio *bio = r1_bio->master_bio;
269         struct r1conf *conf = r1_bio->mddev->private;
270
271         if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
272                 bio->bi_status = BLK_STS_IOERR;
273
274         bio_endio(bio);
275         /*
276          * Wake up any possible resync thread that waits for the device
277          * to go idle.
278          */
279         allow_barrier(conf, r1_bio->sector);
280 }
281
282 static void raid_end_bio_io(struct r1bio *r1_bio)
283 {
284         struct bio *bio = r1_bio->master_bio;
285
286         /* if nobody has done the final endio yet, do it now */
287         if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
288                 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
289                          (bio_data_dir(bio) == WRITE) ? "write" : "read",
290                          (unsigned long long) bio->bi_iter.bi_sector,
291                          (unsigned long long) bio_end_sector(bio) - 1);
292
293                 call_bio_endio(r1_bio);
294         }
295         free_r1bio(r1_bio);
296 }
297
298 /*
299  * Update disk head position estimator based on IRQ completion info.
300  */
301 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
302 {
303         struct r1conf *conf = r1_bio->mddev->private;
304
305         conf->mirrors[disk].head_position =
306                 r1_bio->sector + (r1_bio->sectors);
307 }
308
309 /*
310  * Find the disk number which triggered given bio
311  */
312 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
313 {
314         int mirror;
315         struct r1conf *conf = r1_bio->mddev->private;
316         int raid_disks = conf->raid_disks;
317
318         for (mirror = 0; mirror < raid_disks * 2; mirror++)
319                 if (r1_bio->bios[mirror] == bio)
320                         break;
321
322         BUG_ON(mirror == raid_disks * 2);
323         update_head_pos(mirror, r1_bio);
324
325         return mirror;
326 }
327
328 static void raid1_end_read_request(struct bio *bio)
329 {
330         int uptodate = !bio->bi_status;
331         struct r1bio *r1_bio = bio->bi_private;
332         struct r1conf *conf = r1_bio->mddev->private;
333         struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
334
335         /*
336          * this branch is our 'one mirror IO has finished' event handler:
337          */
338         update_head_pos(r1_bio->read_disk, r1_bio);
339
340         if (uptodate)
341                 set_bit(R1BIO_Uptodate, &r1_bio->state);
342         else if (test_bit(FailFast, &rdev->flags) &&
343                  test_bit(R1BIO_FailFast, &r1_bio->state))
344                 /* This was a fail-fast read so we definitely
345                  * want to retry */
346                 ;
347         else {
348                 /* If all other devices have failed, we want to return
349                  * the error upwards rather than fail the last device.
350                  * Here we redefine "uptodate" to mean "Don't want to retry"
351                  */
352                 unsigned long flags;
353                 spin_lock_irqsave(&conf->device_lock, flags);
354                 if (r1_bio->mddev->degraded == conf->raid_disks ||
355                     (r1_bio->mddev->degraded == conf->raid_disks-1 &&
356                      test_bit(In_sync, &rdev->flags)))
357                         uptodate = 1;
358                 spin_unlock_irqrestore(&conf->device_lock, flags);
359         }
360
361         if (uptodate) {
362                 raid_end_bio_io(r1_bio);
363                 rdev_dec_pending(rdev, conf->mddev);
364         } else {
365                 /*
366                  * oops, read error:
367                  */
368                 char b[BDEVNAME_SIZE];
369                 pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n",
370                                    mdname(conf->mddev),
371                                    bdevname(rdev->bdev, b),
372                                    (unsigned long long)r1_bio->sector);
373                 set_bit(R1BIO_ReadError, &r1_bio->state);
374                 reschedule_retry(r1_bio);
375                 /* don't drop the reference on read_disk yet */
376         }
377 }
378
379 static void close_write(struct r1bio *r1_bio)
380 {
381         /* it really is the end of this request */
382         if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
383                 bio_free_pages(r1_bio->behind_master_bio);
384                 bio_put(r1_bio->behind_master_bio);
385                 r1_bio->behind_master_bio = NULL;
386         }
387         /* clear the bitmap if all writes complete successfully */
388         bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
389                         r1_bio->sectors,
390                         !test_bit(R1BIO_Degraded, &r1_bio->state),
391                         test_bit(R1BIO_BehindIO, &r1_bio->state));
392         md_write_end(r1_bio->mddev);
393 }
394
395 static void r1_bio_write_done(struct r1bio *r1_bio)
396 {
397         if (!atomic_dec_and_test(&r1_bio->remaining))
398                 return;
399
400         if (test_bit(R1BIO_WriteError, &r1_bio->state))
401                 reschedule_retry(r1_bio);
402         else {
403                 close_write(r1_bio);
404                 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
405                         reschedule_retry(r1_bio);
406                 else
407                         raid_end_bio_io(r1_bio);
408         }
409 }
410
411 static void raid1_end_write_request(struct bio *bio)
412 {
413         struct r1bio *r1_bio = bio->bi_private;
414         int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
415         struct r1conf *conf = r1_bio->mddev->private;
416         struct bio *to_put = NULL;
417         int mirror = find_bio_disk(r1_bio, bio);
418         struct md_rdev *rdev = conf->mirrors[mirror].rdev;
419         bool discard_error;
420
421         discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
422
423         /*
424          * 'one mirror IO has finished' event handler:
425          */
426         if (bio->bi_status && !discard_error) {
427                 set_bit(WriteErrorSeen, &rdev->flags);
428                 if (!test_and_set_bit(WantReplacement, &rdev->flags))
429                         set_bit(MD_RECOVERY_NEEDED, &
430                                 conf->mddev->recovery);
431
432                 if (test_bit(FailFast, &rdev->flags) &&
433                     (bio->bi_opf & MD_FAILFAST) &&
434                     /* We never try FailFast to WriteMostly devices */
435                     !test_bit(WriteMostly, &rdev->flags)) {
436                         md_error(r1_bio->mddev, rdev);
437                         if (!test_bit(Faulty, &rdev->flags))
438                                 /* This is the only remaining device,
439                                  * We need to retry the write without
440                                  * FailFast
441                                  */
442                                 set_bit(R1BIO_WriteError, &r1_bio->state);
443                         else {
444                                 /* Finished with this branch */
445                                 r1_bio->bios[mirror] = NULL;
446                                 to_put = bio;
447                         }
448                 } else
449                         set_bit(R1BIO_WriteError, &r1_bio->state);
450         } else {
451                 /*
452                  * Set R1BIO_Uptodate in our master bio, so that we
453                  * will return a good error code for to the higher
454                  * levels even if IO on some other mirrored buffer
455                  * fails.
456                  *
457                  * The 'master' represents the composite IO operation
458                  * to user-side. So if something waits for IO, then it
459                  * will wait for the 'master' bio.
460                  */
461                 sector_t first_bad;
462                 int bad_sectors;
463
464                 r1_bio->bios[mirror] = NULL;
465                 to_put = bio;
466                 /*
467                  * Do not set R1BIO_Uptodate if the current device is
468                  * rebuilding or Faulty. This is because we cannot use
469                  * such device for properly reading the data back (we could
470                  * potentially use it, if the current write would have felt
471                  * before rdev->recovery_offset, but for simplicity we don't
472                  * check this here.
473                  */
474                 if (test_bit(In_sync, &rdev->flags) &&
475                     !test_bit(Faulty, &rdev->flags))
476                         set_bit(R1BIO_Uptodate, &r1_bio->state);
477
478                 /* Maybe we can clear some bad blocks. */
479                 if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
480                                 &first_bad, &bad_sectors) && !discard_error) {
481                         r1_bio->bios[mirror] = IO_MADE_GOOD;
482                         set_bit(R1BIO_MadeGood, &r1_bio->state);
483                 }
484         }
485
486         if (behind) {
487                 if (test_bit(WriteMostly, &rdev->flags))
488                         atomic_dec(&r1_bio->behind_remaining);
489
490                 /*
491                  * In behind mode, we ACK the master bio once the I/O
492                  * has safely reached all non-writemostly
493                  * disks. Setting the Returned bit ensures that this
494                  * gets done only once -- we don't ever want to return
495                  * -EIO here, instead we'll wait
496                  */
497                 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
498                     test_bit(R1BIO_Uptodate, &r1_bio->state)) {
499                         /* Maybe we can return now */
500                         if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
501                                 struct bio *mbio = r1_bio->master_bio;
502                                 pr_debug("raid1: behind end write sectors"
503                                          " %llu-%llu\n",
504                                          (unsigned long long) mbio->bi_iter.bi_sector,
505                                          (unsigned long long) bio_end_sector(mbio) - 1);
506                                 call_bio_endio(r1_bio);
507                         }
508                 }
509         }
510         if (r1_bio->bios[mirror] == NULL)
511                 rdev_dec_pending(rdev, conf->mddev);
512
513         /*
514          * Let's see if all mirrored write operations have finished
515          * already.
516          */
517         r1_bio_write_done(r1_bio);
518
519         if (to_put)
520                 bio_put(to_put);
521 }
522
523 static sector_t align_to_barrier_unit_end(sector_t start_sector,
524                                           sector_t sectors)
525 {
526         sector_t len;
527
528         WARN_ON(sectors == 0);
529         /*
530          * len is the number of sectors from start_sector to end of the
531          * barrier unit which start_sector belongs to.
532          */
533         len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
534               start_sector;
535
536         if (len > sectors)
537                 len = sectors;
538
539         return len;
540 }
541
542 /*
543  * This routine returns the disk from which the requested read should
544  * be done. There is a per-array 'next expected sequential IO' sector
545  * number - if this matches on the next IO then we use the last disk.
546  * There is also a per-disk 'last know head position' sector that is
547  * maintained from IRQ contexts, both the normal and the resync IO
548  * completion handlers update this position correctly. If there is no
549  * perfect sequential match then we pick the disk whose head is closest.
550  *
551  * If there are 2 mirrors in the same 2 devices, performance degrades
552  * because position is mirror, not device based.
553  *
554  * The rdev for the device selected will have nr_pending incremented.
555  */
556 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
557 {
558         const sector_t this_sector = r1_bio->sector;
559         int sectors;
560         int best_good_sectors;
561         int best_disk, best_dist_disk, best_pending_disk;
562         int has_nonrot_disk;
563         int disk;
564         sector_t best_dist;
565         unsigned int min_pending;
566         struct md_rdev *rdev;
567         int choose_first;
568         int choose_next_idle;
569
570         rcu_read_lock();
571         /*
572          * Check if we can balance. We can balance on the whole
573          * device if no resync is going on, or below the resync window.
574          * We take the first readable disk when above the resync window.
575          */
576  retry:
577         sectors = r1_bio->sectors;
578         best_disk = -1;
579         best_dist_disk = -1;
580         best_dist = MaxSector;
581         best_pending_disk = -1;
582         min_pending = UINT_MAX;
583         best_good_sectors = 0;
584         has_nonrot_disk = 0;
585         choose_next_idle = 0;
586         clear_bit(R1BIO_FailFast, &r1_bio->state);
587
588         if ((conf->mddev->recovery_cp < this_sector + sectors) ||
589             (mddev_is_clustered(conf->mddev) &&
590             md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
591                     this_sector + sectors)))
592                 choose_first = 1;
593         else
594                 choose_first = 0;
595
596         for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
597                 sector_t dist;
598                 sector_t first_bad;
599                 int bad_sectors;
600                 unsigned int pending;
601                 bool nonrot;
602
603                 rdev = rcu_dereference(conf->mirrors[disk].rdev);
604                 if (r1_bio->bios[disk] == IO_BLOCKED
605                     || rdev == NULL
606                     || test_bit(Faulty, &rdev->flags))
607                         continue;
608                 if (!test_bit(In_sync, &rdev->flags) &&
609                     rdev->recovery_offset < this_sector + sectors)
610                         continue;
611                 if (test_bit(WriteMostly, &rdev->flags)) {
612                         /* Don't balance among write-mostly, just
613                          * use the first as a last resort */
614                         if (best_dist_disk < 0) {
615                                 if (is_badblock(rdev, this_sector, sectors,
616                                                 &first_bad, &bad_sectors)) {
617                                         if (first_bad <= this_sector)
618                                                 /* Cannot use this */
619                                                 continue;
620                                         best_good_sectors = first_bad - this_sector;
621                                 } else
622                                         best_good_sectors = sectors;
623                                 best_dist_disk = disk;
624                                 best_pending_disk = disk;
625                         }
626                         continue;
627                 }
628                 /* This is a reasonable device to use.  It might
629                  * even be best.
630                  */
631                 if (is_badblock(rdev, this_sector, sectors,
632                                 &first_bad, &bad_sectors)) {
633                         if (best_dist < MaxSector)
634                                 /* already have a better device */
635                                 continue;
636                         if (first_bad <= this_sector) {
637                                 /* cannot read here. If this is the 'primary'
638                                  * device, then we must not read beyond
639                                  * bad_sectors from another device..
640                                  */
641                                 bad_sectors -= (this_sector - first_bad);
642                                 if (choose_first && sectors > bad_sectors)
643                                         sectors = bad_sectors;
644                                 if (best_good_sectors > sectors)
645                                         best_good_sectors = sectors;
646
647                         } else {
648                                 sector_t good_sectors = first_bad - this_sector;
649                                 if (good_sectors > best_good_sectors) {
650                                         best_good_sectors = good_sectors;
651                                         best_disk = disk;
652                                 }
653                                 if (choose_first)
654                                         break;
655                         }
656                         continue;
657                 } else {
658                         if ((sectors > best_good_sectors) && (best_disk >= 0))
659                                 best_disk = -1;
660                         best_good_sectors = sectors;
661                 }
662
663                 if (best_disk >= 0)
664                         /* At least two disks to choose from so failfast is OK */
665                         set_bit(R1BIO_FailFast, &r1_bio->state);
666
667                 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
668                 has_nonrot_disk |= nonrot;
669                 pending = atomic_read(&rdev->nr_pending);
670                 dist = abs(this_sector - conf->mirrors[disk].head_position);
671                 if (choose_first) {
672                         best_disk = disk;
673                         break;
674                 }
675                 /* Don't change to another disk for sequential reads */
676                 if (conf->mirrors[disk].next_seq_sect == this_sector
677                     || dist == 0) {
678                         int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
679                         struct raid1_info *mirror = &conf->mirrors[disk];
680
681                         best_disk = disk;
682                         /*
683                          * If buffered sequential IO size exceeds optimal
684                          * iosize, check if there is idle disk. If yes, choose
685                          * the idle disk. read_balance could already choose an
686                          * idle disk before noticing it's a sequential IO in
687                          * this disk. This doesn't matter because this disk
688                          * will idle, next time it will be utilized after the
689                          * first disk has IO size exceeds optimal iosize. In
690                          * this way, iosize of the first disk will be optimal
691                          * iosize at least. iosize of the second disk might be
692                          * small, but not a big deal since when the second disk
693                          * starts IO, the first disk is likely still busy.
694                          */
695                         if (nonrot && opt_iosize > 0 &&
696                             mirror->seq_start != MaxSector &&
697                             mirror->next_seq_sect > opt_iosize &&
698                             mirror->next_seq_sect - opt_iosize >=
699                             mirror->seq_start) {
700                                 choose_next_idle = 1;
701                                 continue;
702                         }
703                         break;
704                 }
705
706                 if (choose_next_idle)
707                         continue;
708
709                 if (min_pending > pending) {
710                         min_pending = pending;
711                         best_pending_disk = disk;
712                 }
713
714                 if (dist < best_dist) {
715                         best_dist = dist;
716                         best_dist_disk = disk;
717                 }
718         }
719
720         /*
721          * If all disks are rotational, choose the closest disk. If any disk is
722          * non-rotational, choose the disk with less pending request even the
723          * disk is rotational, which might/might not be optimal for raids with
724          * mixed ratation/non-rotational disks depending on workload.
725          */
726         if (best_disk == -1) {
727                 if (has_nonrot_disk || min_pending == 0)
728                         best_disk = best_pending_disk;
729                 else
730                         best_disk = best_dist_disk;
731         }
732
733         if (best_disk >= 0) {
734                 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
735                 if (!rdev)
736                         goto retry;
737                 atomic_inc(&rdev->nr_pending);
738                 sectors = best_good_sectors;
739
740                 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
741                         conf->mirrors[best_disk].seq_start = this_sector;
742
743                 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
744         }
745         rcu_read_unlock();
746         *max_sectors = sectors;
747
748         return best_disk;
749 }
750
751 static int raid1_congested(struct mddev *mddev, int bits)
752 {
753         struct r1conf *conf = mddev->private;
754         int i, ret = 0;
755
756         if ((bits & (1 << WB_async_congested)) &&
757             conf->pending_count >= max_queued_requests)
758                 return 1;
759
760         rcu_read_lock();
761         for (i = 0; i < conf->raid_disks * 2; i++) {
762                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
763                 if (rdev && !test_bit(Faulty, &rdev->flags)) {
764                         struct request_queue *q = bdev_get_queue(rdev->bdev);
765
766                         BUG_ON(!q);
767
768                         /* Note the '|| 1' - when read_balance prefers
769                          * non-congested targets, it can be removed
770                          */
771                         if ((bits & (1 << WB_async_congested)) || 1)
772                                 ret |= bdi_congested(q->backing_dev_info, bits);
773                         else
774                                 ret &= bdi_congested(q->backing_dev_info, bits);
775                 }
776         }
777         rcu_read_unlock();
778         return ret;
779 }
780
781 static void flush_bio_list(struct r1conf *conf, struct bio *bio)
782 {
783         /* flush any pending bitmap writes to disk before proceeding w/ I/O */
784         bitmap_unplug(conf->mddev->bitmap);
785         wake_up(&conf->wait_barrier);
786
787         while (bio) { /* submit pending writes */
788                 struct bio *next = bio->bi_next;
789                 struct md_rdev *rdev = (void *)bio->bi_disk;
790                 bio->bi_next = NULL;
791                 bio_set_dev(bio, rdev->bdev);
792                 if (test_bit(Faulty, &rdev->flags)) {
793                         bio_io_error(bio);
794                 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
795                                     !blk_queue_discard(bio->bi_disk->queue)))
796                         /* Just ignore it */
797                         bio_endio(bio);
798                 else
799                         generic_make_request(bio);
800                 bio = next;
801         }
802 }
803
804 static void flush_pending_writes(struct r1conf *conf)
805 {
806         /* Any writes that have been queued but are awaiting
807          * bitmap updates get flushed here.
808          */
809         spin_lock_irq(&conf->device_lock);
810
811         if (conf->pending_bio_list.head) {
812                 struct blk_plug plug;
813                 struct bio *bio;
814
815                 bio = bio_list_get(&conf->pending_bio_list);
816                 conf->pending_count = 0;
817                 spin_unlock_irq(&conf->device_lock);
818                 blk_start_plug(&plug);
819                 flush_bio_list(conf, bio);
820                 blk_finish_plug(&plug);
821         } else
822                 spin_unlock_irq(&conf->device_lock);
823 }
824
825 /* Barriers....
826  * Sometimes we need to suspend IO while we do something else,
827  * either some resync/recovery, or reconfigure the array.
828  * To do this we raise a 'barrier'.
829  * The 'barrier' is a counter that can be raised multiple times
830  * to count how many activities are happening which preclude
831  * normal IO.
832  * We can only raise the barrier if there is no pending IO.
833  * i.e. if nr_pending == 0.
834  * We choose only to raise the barrier if no-one is waiting for the
835  * barrier to go down.  This means that as soon as an IO request
836  * is ready, no other operations which require a barrier will start
837  * until the IO request has had a chance.
838  *
839  * So: regular IO calls 'wait_barrier'.  When that returns there
840  *    is no backgroup IO happening,  It must arrange to call
841  *    allow_barrier when it has finished its IO.
842  * backgroup IO calls must call raise_barrier.  Once that returns
843  *    there is no normal IO happeing.  It must arrange to call
844  *    lower_barrier when the particular background IO completes.
845  */
846 static void raise_barrier(struct r1conf *conf, sector_t sector_nr)
847 {
848         int idx = sector_to_idx(sector_nr);
849
850         spin_lock_irq(&conf->resync_lock);
851
852         /* Wait until no block IO is waiting */
853         wait_event_lock_irq(conf->wait_barrier,
854                             !atomic_read(&conf->nr_waiting[idx]),
855                             conf->resync_lock);
856
857         /* block any new IO from starting */
858         atomic_inc(&conf->barrier[idx]);
859         /*
860          * In raise_barrier() we firstly increase conf->barrier[idx] then
861          * check conf->nr_pending[idx]. In _wait_barrier() we firstly
862          * increase conf->nr_pending[idx] then check conf->barrier[idx].
863          * A memory barrier here to make sure conf->nr_pending[idx] won't
864          * be fetched before conf->barrier[idx] is increased. Otherwise
865          * there will be a race between raise_barrier() and _wait_barrier().
866          */
867         smp_mb__after_atomic();
868
869         /* For these conditions we must wait:
870          * A: while the array is in frozen state
871          * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
872          *    existing in corresponding I/O barrier bucket.
873          * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
874          *    max resync count which allowed on current I/O barrier bucket.
875          */
876         wait_event_lock_irq(conf->wait_barrier,
877                             !conf->array_frozen &&
878                              !atomic_read(&conf->nr_pending[idx]) &&
879                              atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH,
880                             conf->resync_lock);
881
882         atomic_inc(&conf->nr_sync_pending);
883         spin_unlock_irq(&conf->resync_lock);
884 }
885
886 static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
887 {
888         int idx = sector_to_idx(sector_nr);
889
890         BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
891
892         atomic_dec(&conf->barrier[idx]);
893         atomic_dec(&conf->nr_sync_pending);
894         wake_up(&conf->wait_barrier);
895 }
896
897 static void _wait_barrier(struct r1conf *conf, int idx)
898 {
899         /*
900          * We need to increase conf->nr_pending[idx] very early here,
901          * then raise_barrier() can be blocked when it waits for
902          * conf->nr_pending[idx] to be 0. Then we can avoid holding
903          * conf->resync_lock when there is no barrier raised in same
904          * barrier unit bucket. Also if the array is frozen, I/O
905          * should be blocked until array is unfrozen.
906          */
907         atomic_inc(&conf->nr_pending[idx]);
908         /*
909          * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
910          * check conf->barrier[idx]. In raise_barrier() we firstly increase
911          * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
912          * barrier is necessary here to make sure conf->barrier[idx] won't be
913          * fetched before conf->nr_pending[idx] is increased. Otherwise there
914          * will be a race between _wait_barrier() and raise_barrier().
915          */
916         smp_mb__after_atomic();
917
918         /*
919          * Don't worry about checking two atomic_t variables at same time
920          * here. If during we check conf->barrier[idx], the array is
921          * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
922          * 0, it is safe to return and make the I/O continue. Because the
923          * array is frozen, all I/O returned here will eventually complete
924          * or be queued, no race will happen. See code comment in
925          * frozen_array().
926          */
927         if (!READ_ONCE(conf->array_frozen) &&
928             !atomic_read(&conf->barrier[idx]))
929                 return;
930
931         /*
932          * After holding conf->resync_lock, conf->nr_pending[idx]
933          * should be decreased before waiting for barrier to drop.
934          * Otherwise, we may encounter a race condition because
935          * raise_barrer() might be waiting for conf->nr_pending[idx]
936          * to be 0 at same time.
937          */
938         spin_lock_irq(&conf->resync_lock);
939         atomic_inc(&conf->nr_waiting[idx]);
940         atomic_dec(&conf->nr_pending[idx]);
941         /*
942          * In case freeze_array() is waiting for
943          * get_unqueued_pending() == extra
944          */
945         wake_up(&conf->wait_barrier);
946         /* Wait for the barrier in same barrier unit bucket to drop. */
947         wait_event_lock_irq(conf->wait_barrier,
948                             !conf->array_frozen &&
949                              !atomic_read(&conf->barrier[idx]),
950                             conf->resync_lock);
951         atomic_inc(&conf->nr_pending[idx]);
952         atomic_dec(&conf->nr_waiting[idx]);
953         spin_unlock_irq(&conf->resync_lock);
954 }
955
956 static void wait_read_barrier(struct r1conf *conf, sector_t sector_nr)
957 {
958         int idx = sector_to_idx(sector_nr);
959
960         /*
961          * Very similar to _wait_barrier(). The difference is, for read
962          * I/O we don't need wait for sync I/O, but if the whole array
963          * is frozen, the read I/O still has to wait until the array is
964          * unfrozen. Since there is no ordering requirement with
965          * conf->barrier[idx] here, memory barrier is unnecessary as well.
966          */
967         atomic_inc(&conf->nr_pending[idx]);
968
969         if (!READ_ONCE(conf->array_frozen))
970                 return;
971
972         spin_lock_irq(&conf->resync_lock);
973         atomic_inc(&conf->nr_waiting[idx]);
974         atomic_dec(&conf->nr_pending[idx]);
975         /*
976          * In case freeze_array() is waiting for
977          * get_unqueued_pending() == extra
978          */
979         wake_up(&conf->wait_barrier);
980         /* Wait for array to be unfrozen */
981         wait_event_lock_irq(conf->wait_barrier,
982                             !conf->array_frozen,
983                             conf->resync_lock);
984         atomic_inc(&conf->nr_pending[idx]);
985         atomic_dec(&conf->nr_waiting[idx]);
986         spin_unlock_irq(&conf->resync_lock);
987 }
988
989 static void wait_barrier(struct r1conf *conf, sector_t sector_nr)
990 {
991         int idx = sector_to_idx(sector_nr);
992
993         _wait_barrier(conf, idx);
994 }
995
996 static void _allow_barrier(struct r1conf *conf, int idx)
997 {
998         atomic_dec(&conf->nr_pending[idx]);
999         wake_up(&conf->wait_barrier);
1000 }
1001
1002 static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
1003 {
1004         int idx = sector_to_idx(sector_nr);
1005
1006         _allow_barrier(conf, idx);
1007 }
1008
1009 /* conf->resync_lock should be held */
1010 static int get_unqueued_pending(struct r1conf *conf)
1011 {
1012         int idx, ret;
1013
1014         ret = atomic_read(&conf->nr_sync_pending);
1015         for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1016                 ret += atomic_read(&conf->nr_pending[idx]) -
1017                         atomic_read(&conf->nr_queued[idx]);
1018
1019         return ret;
1020 }
1021
1022 static void freeze_array(struct r1conf *conf, int extra)
1023 {
1024         /* Stop sync I/O and normal I/O and wait for everything to
1025          * go quiet.
1026          * This is called in two situations:
1027          * 1) management command handlers (reshape, remove disk, quiesce).
1028          * 2) one normal I/O request failed.
1029
1030          * After array_frozen is set to 1, new sync IO will be blocked at
1031          * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1032          * or wait_read_barrier(). The flying I/Os will either complete or be
1033          * queued. When everything goes quite, there are only queued I/Os left.
1034
1035          * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1036          * barrier bucket index which this I/O request hits. When all sync and
1037          * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1038          * of all conf->nr_queued[]. But normal I/O failure is an exception,
1039          * in handle_read_error(), we may call freeze_array() before trying to
1040          * fix the read error. In this case, the error read I/O is not queued,
1041          * so get_unqueued_pending() == 1.
1042          *
1043          * Therefore before this function returns, we need to wait until
1044          * get_unqueued_pendings(conf) gets equal to extra. For
1045          * normal I/O context, extra is 1, in rested situations extra is 0.
1046          */
1047         spin_lock_irq(&conf->resync_lock);
1048         conf->array_frozen = 1;
1049         raid1_log(conf->mddev, "wait freeze");
1050         wait_event_lock_irq_cmd(
1051                 conf->wait_barrier,
1052                 get_unqueued_pending(conf) == extra,
1053                 conf->resync_lock,
1054                 flush_pending_writes(conf));
1055         spin_unlock_irq(&conf->resync_lock);
1056 }
1057 static void unfreeze_array(struct r1conf *conf)
1058 {
1059         /* reverse the effect of the freeze */
1060         spin_lock_irq(&conf->resync_lock);
1061         conf->array_frozen = 0;
1062         spin_unlock_irq(&conf->resync_lock);
1063         wake_up(&conf->wait_barrier);
1064 }
1065
1066 static void alloc_behind_master_bio(struct r1bio *r1_bio,
1067                                            struct bio *bio)
1068 {
1069         int size = bio->bi_iter.bi_size;
1070         unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1071         int i = 0;
1072         struct bio *behind_bio = NULL;
1073
1074         behind_bio = bio_alloc_mddev(GFP_NOIO, vcnt, r1_bio->mddev);
1075         if (!behind_bio)
1076                 return;
1077
1078         /* discard op, we don't support writezero/writesame yet */
1079         if (!bio_has_data(bio)) {
1080                 behind_bio->bi_iter.bi_size = size;
1081                 goto skip_copy;
1082         }
1083
1084         while (i < vcnt && size) {
1085                 struct page *page;
1086                 int len = min_t(int, PAGE_SIZE, size);
1087
1088                 page = alloc_page(GFP_NOIO);
1089                 if (unlikely(!page))
1090                         goto free_pages;
1091
1092                 bio_add_page(behind_bio, page, len, 0);
1093
1094                 size -= len;
1095                 i++;
1096         }
1097
1098         bio_copy_data(behind_bio, bio);
1099 skip_copy:
1100         r1_bio->behind_master_bio = behind_bio;;
1101         set_bit(R1BIO_BehindIO, &r1_bio->state);
1102
1103         return;
1104
1105 free_pages:
1106         pr_debug("%dB behind alloc failed, doing sync I/O\n",
1107                  bio->bi_iter.bi_size);
1108         bio_free_pages(behind_bio);
1109         bio_put(behind_bio);
1110 }
1111
1112 struct raid1_plug_cb {
1113         struct blk_plug_cb      cb;
1114         struct bio_list         pending;
1115         int                     pending_cnt;
1116 };
1117
1118 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1119 {
1120         struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1121                                                   cb);
1122         struct mddev *mddev = plug->cb.data;
1123         struct r1conf *conf = mddev->private;
1124         struct bio *bio;
1125
1126         if (from_schedule || current->bio_list) {
1127                 spin_lock_irq(&conf->device_lock);
1128                 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1129                 conf->pending_count += plug->pending_cnt;
1130                 spin_unlock_irq(&conf->device_lock);
1131                 wake_up(&conf->wait_barrier);
1132                 md_wakeup_thread(mddev->thread);
1133                 kfree(plug);
1134                 return;
1135         }
1136
1137         /* we aren't scheduling, so we can do the write-out directly. */
1138         bio = bio_list_get(&plug->pending);
1139         flush_bio_list(conf, bio);
1140         kfree(plug);
1141 }
1142
1143 static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
1144 {
1145         r1_bio->master_bio = bio;
1146         r1_bio->sectors = bio_sectors(bio);
1147         r1_bio->state = 0;
1148         r1_bio->mddev = mddev;
1149         r1_bio->sector = bio->bi_iter.bi_sector;
1150 }
1151
1152 static inline struct r1bio *
1153 alloc_r1bio(struct mddev *mddev, struct bio *bio)
1154 {
1155         struct r1conf *conf = mddev->private;
1156         struct r1bio *r1_bio;
1157
1158         r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1159         /* Ensure no bio records IO_BLOCKED */
1160         memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0]));
1161         init_r1bio(r1_bio, mddev, bio);
1162         return r1_bio;
1163 }
1164
1165 static void raid1_read_request(struct mddev *mddev, struct bio *bio,
1166                                int max_read_sectors, struct r1bio *r1_bio)
1167 {
1168         struct r1conf *conf = mddev->private;
1169         struct raid1_info *mirror;
1170         struct bio *read_bio;
1171         struct bitmap *bitmap = mddev->bitmap;
1172         const int op = bio_op(bio);
1173         const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1174         int max_sectors;
1175         int rdisk;
1176         bool print_msg = !!r1_bio;
1177         char b[BDEVNAME_SIZE];
1178
1179         /*
1180          * If r1_bio is set, we are blocking the raid1d thread
1181          * so there is a tiny risk of deadlock.  So ask for
1182          * emergency memory if needed.
1183          */
1184         gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
1185
1186         if (print_msg) {
1187                 /* Need to get the block device name carefully */
1188                 struct md_rdev *rdev;
1189                 rcu_read_lock();
1190                 rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev);
1191                 if (rdev)
1192                         bdevname(rdev->bdev, b);
1193                 else
1194                         strcpy(b, "???");
1195                 rcu_read_unlock();
1196         }
1197
1198         /*
1199          * Still need barrier for READ in case that whole
1200          * array is frozen.
1201          */
1202         wait_read_barrier(conf, bio->bi_iter.bi_sector);
1203
1204         if (!r1_bio)
1205                 r1_bio = alloc_r1bio(mddev, bio);
1206         else
1207                 init_r1bio(r1_bio, mddev, bio);
1208         r1_bio->sectors = max_read_sectors;
1209
1210         /*
1211          * make_request() can abort the operation when read-ahead is being
1212          * used and no empty request is available.
1213          */
1214         rdisk = read_balance(conf, r1_bio, &max_sectors);
1215
1216         if (rdisk < 0) {
1217                 /* couldn't find anywhere to read from */
1218                 if (print_msg) {
1219                         pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1220                                             mdname(mddev),
1221                                             b,
1222                                             (unsigned long long)r1_bio->sector);
1223                 }
1224                 raid_end_bio_io(r1_bio);
1225                 return;
1226         }
1227         mirror = conf->mirrors + rdisk;
1228
1229         if (print_msg)
1230                 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n",
1231                                     mdname(mddev),
1232                                     (unsigned long long)r1_bio->sector,
1233                                     bdevname(mirror->rdev->bdev, b));
1234
1235         if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1236             bitmap) {
1237                 /*
1238                  * Reading from a write-mostly device must take care not to
1239                  * over-take any writes that are 'behind'
1240                  */
1241                 raid1_log(mddev, "wait behind writes");
1242                 wait_event(bitmap->behind_wait,
1243                            atomic_read(&bitmap->behind_writes) == 0);
1244         }
1245
1246         if (max_sectors < bio_sectors(bio)) {
1247                 struct bio *split = bio_split(bio, max_sectors,
1248                                               gfp, conf->bio_split);
1249                 bio_chain(split, bio);
1250                 generic_make_request(bio);
1251                 bio = split;
1252                 r1_bio->master_bio = bio;
1253                 r1_bio->sectors = max_sectors;
1254         }
1255
1256         r1_bio->read_disk = rdisk;
1257
1258         read_bio = bio_clone_fast(bio, gfp, mddev->bio_set);
1259
1260         r1_bio->bios[rdisk] = read_bio;
1261
1262         read_bio->bi_iter.bi_sector = r1_bio->sector +
1263                 mirror->rdev->data_offset;
1264         bio_set_dev(read_bio, mirror->rdev->bdev);
1265         read_bio->bi_end_io = raid1_end_read_request;
1266         bio_set_op_attrs(read_bio, op, do_sync);
1267         if (test_bit(FailFast, &mirror->rdev->flags) &&
1268             test_bit(R1BIO_FailFast, &r1_bio->state))
1269                 read_bio->bi_opf |= MD_FAILFAST;
1270         read_bio->bi_private = r1_bio;
1271
1272         if (mddev->gendisk)
1273                 trace_block_bio_remap(read_bio->bi_disk->queue, read_bio,
1274                                 disk_devt(mddev->gendisk), r1_bio->sector);
1275
1276         generic_make_request(read_bio);
1277 }
1278
1279 static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1280                                 int max_write_sectors)
1281 {
1282         struct r1conf *conf = mddev->private;
1283         struct r1bio *r1_bio;
1284         int i, disks;
1285         struct bitmap *bitmap = mddev->bitmap;
1286         unsigned long flags;
1287         struct md_rdev *blocked_rdev;
1288         struct blk_plug_cb *cb;
1289         struct raid1_plug_cb *plug = NULL;
1290         int first_clone;
1291         int max_sectors;
1292
1293         if (mddev_is_clustered(mddev) &&
1294              md_cluster_ops->area_resyncing(mddev, WRITE,
1295                      bio->bi_iter.bi_sector, bio_end_sector(bio))) {
1296
1297                 DEFINE_WAIT(w);
1298                 for (;;) {
1299                         prepare_to_wait(&conf->wait_barrier,
1300                                         &w, TASK_IDLE);
1301                         if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1302                                                         bio->bi_iter.bi_sector,
1303                                                         bio_end_sector(bio)))
1304                                 break;
1305                         schedule();
1306                 }
1307                 finish_wait(&conf->wait_barrier, &w);
1308         }
1309
1310         /*
1311          * Register the new request and wait if the reconstruction
1312          * thread has put up a bar for new requests.
1313          * Continue immediately if no resync is active currently.
1314          */
1315         wait_barrier(conf, bio->bi_iter.bi_sector);
1316
1317         r1_bio = alloc_r1bio(mddev, bio);
1318         r1_bio->sectors = max_write_sectors;
1319
1320         if (conf->pending_count >= max_queued_requests) {
1321                 md_wakeup_thread(mddev->thread);
1322                 raid1_log(mddev, "wait queued");
1323                 wait_event(conf->wait_barrier,
1324                            conf->pending_count < max_queued_requests);
1325         }
1326         /* first select target devices under rcu_lock and
1327          * inc refcount on their rdev.  Record them by setting
1328          * bios[x] to bio
1329          * If there are known/acknowledged bad blocks on any device on
1330          * which we have seen a write error, we want to avoid writing those
1331          * blocks.
1332          * This potentially requires several writes to write around
1333          * the bad blocks.  Each set of writes gets it's own r1bio
1334          * with a set of bios attached.
1335          */
1336
1337         disks = conf->raid_disks * 2;
1338  retry_write:
1339         blocked_rdev = NULL;
1340         rcu_read_lock();
1341         max_sectors = r1_bio->sectors;
1342         for (i = 0;  i < disks; i++) {
1343                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1344                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1345                         atomic_inc(&rdev->nr_pending);
1346                         blocked_rdev = rdev;
1347                         break;
1348                 }
1349                 r1_bio->bios[i] = NULL;
1350                 if (!rdev || test_bit(Faulty, &rdev->flags)) {
1351                         if (i < conf->raid_disks)
1352                                 set_bit(R1BIO_Degraded, &r1_bio->state);
1353                         continue;
1354                 }
1355
1356                 atomic_inc(&rdev->nr_pending);
1357                 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1358                         sector_t first_bad;
1359                         int bad_sectors;
1360                         int is_bad;
1361
1362                         is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1363                                              &first_bad, &bad_sectors);
1364                         if (is_bad < 0) {
1365                                 /* mustn't write here until the bad block is
1366                                  * acknowledged*/
1367                                 set_bit(BlockedBadBlocks, &rdev->flags);
1368                                 blocked_rdev = rdev;
1369                                 break;
1370                         }
1371                         if (is_bad && first_bad <= r1_bio->sector) {
1372                                 /* Cannot write here at all */
1373                                 bad_sectors -= (r1_bio->sector - first_bad);
1374                                 if (bad_sectors < max_sectors)
1375                                         /* mustn't write more than bad_sectors
1376                                          * to other devices yet
1377                                          */
1378                                         max_sectors = bad_sectors;
1379                                 rdev_dec_pending(rdev, mddev);
1380                                 /* We don't set R1BIO_Degraded as that
1381                                  * only applies if the disk is
1382                                  * missing, so it might be re-added,
1383                                  * and we want to know to recover this
1384                                  * chunk.
1385                                  * In this case the device is here,
1386                                  * and the fact that this chunk is not
1387                                  * in-sync is recorded in the bad
1388                                  * block log
1389                                  */
1390                                 continue;
1391                         }
1392                         if (is_bad) {
1393                                 int good_sectors = first_bad - r1_bio->sector;
1394                                 if (good_sectors < max_sectors)
1395                                         max_sectors = good_sectors;
1396                         }
1397                 }
1398                 r1_bio->bios[i] = bio;
1399         }
1400         rcu_read_unlock();
1401
1402         if (unlikely(blocked_rdev)) {
1403                 /* Wait for this device to become unblocked */
1404                 int j;
1405
1406                 for (j = 0; j < i; j++)
1407                         if (r1_bio->bios[j])
1408                                 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1409                 r1_bio->state = 0;
1410                 allow_barrier(conf, bio->bi_iter.bi_sector);
1411                 raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1412                 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1413                 wait_barrier(conf, bio->bi_iter.bi_sector);
1414                 goto retry_write;
1415         }
1416
1417         if (max_sectors < bio_sectors(bio)) {
1418                 struct bio *split = bio_split(bio, max_sectors,
1419                                               GFP_NOIO, conf->bio_split);
1420                 bio_chain(split, bio);
1421                 generic_make_request(bio);
1422                 bio = split;
1423                 r1_bio->master_bio = bio;
1424                 r1_bio->sectors = max_sectors;
1425         }
1426
1427         atomic_set(&r1_bio->remaining, 1);
1428         atomic_set(&r1_bio->behind_remaining, 0);
1429
1430         first_clone = 1;
1431
1432         for (i = 0; i < disks; i++) {
1433                 struct bio *mbio = NULL;
1434                 if (!r1_bio->bios[i])
1435                         continue;
1436
1437
1438                 if (first_clone) {
1439                         /* do behind I/O ?
1440                          * Not if there are too many, or cannot
1441                          * allocate memory, or a reader on WriteMostly
1442                          * is waiting for behind writes to flush */
1443                         if (bitmap &&
1444                             (atomic_read(&bitmap->behind_writes)
1445                              < mddev->bitmap_info.max_write_behind) &&
1446                             !waitqueue_active(&bitmap->behind_wait)) {
1447                                 alloc_behind_master_bio(r1_bio, bio);
1448                         }
1449
1450                         bitmap_startwrite(bitmap, r1_bio->sector,
1451                                           r1_bio->sectors,
1452                                           test_bit(R1BIO_BehindIO,
1453                                                    &r1_bio->state));
1454                         first_clone = 0;
1455                 }
1456
1457                 if (r1_bio->behind_master_bio)
1458                         mbio = bio_clone_fast(r1_bio->behind_master_bio,
1459                                               GFP_NOIO, mddev->bio_set);
1460                 else
1461                         mbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set);
1462
1463                 if (r1_bio->behind_master_bio) {
1464                         if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1465                                 atomic_inc(&r1_bio->behind_remaining);
1466                 }
1467
1468                 r1_bio->bios[i] = mbio;
1469
1470                 mbio->bi_iter.bi_sector = (r1_bio->sector +
1471                                    conf->mirrors[i].rdev->data_offset);
1472                 bio_set_dev(mbio, conf->mirrors[i].rdev->bdev);
1473                 mbio->bi_end_io = raid1_end_write_request;
1474                 mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
1475                 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags) &&
1476                     !test_bit(WriteMostly, &conf->mirrors[i].rdev->flags) &&
1477                     conf->raid_disks - mddev->degraded > 1)
1478                         mbio->bi_opf |= MD_FAILFAST;
1479                 mbio->bi_private = r1_bio;
1480
1481                 atomic_inc(&r1_bio->remaining);
1482
1483                 if (mddev->gendisk)
1484                         trace_block_bio_remap(mbio->bi_disk->queue,
1485                                               mbio, disk_devt(mddev->gendisk),
1486                                               r1_bio->sector);
1487                 /* flush_pending_writes() needs access to the rdev so...*/
1488                 mbio->bi_disk = (void *)conf->mirrors[i].rdev;
1489
1490                 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1491                 if (cb)
1492                         plug = container_of(cb, struct raid1_plug_cb, cb);
1493                 else
1494                         plug = NULL;
1495                 if (plug) {
1496                         bio_list_add(&plug->pending, mbio);
1497                         plug->pending_cnt++;
1498                 } else {
1499                         spin_lock_irqsave(&conf->device_lock, flags);
1500                         bio_list_add(&conf->pending_bio_list, mbio);
1501                         conf->pending_count++;
1502                         spin_unlock_irqrestore(&conf->device_lock, flags);
1503                         md_wakeup_thread(mddev->thread);
1504                 }
1505         }
1506
1507         r1_bio_write_done(r1_bio);
1508
1509         /* In case raid1d snuck in to freeze_array */
1510         wake_up(&conf->wait_barrier);
1511 }
1512
1513 static bool raid1_make_request(struct mddev *mddev, struct bio *bio)
1514 {
1515         sector_t sectors;
1516
1517         if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1518                 md_flush_request(mddev, bio);
1519                 return true;
1520         }
1521
1522         /*
1523          * There is a limit to the maximum size, but
1524          * the read/write handler might find a lower limit
1525          * due to bad blocks.  To avoid multiple splits,
1526          * we pass the maximum number of sectors down
1527          * and let the lower level perform the split.
1528          */
1529         sectors = align_to_barrier_unit_end(
1530                 bio->bi_iter.bi_sector, bio_sectors(bio));
1531
1532         if (bio_data_dir(bio) == READ)
1533                 raid1_read_request(mddev, bio, sectors, NULL);
1534         else {
1535                 if (!md_write_start(mddev,bio))
1536                         return false;
1537                 raid1_write_request(mddev, bio, sectors);
1538         }
1539         return true;
1540 }
1541
1542 static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1543 {
1544         struct r1conf *conf = mddev->private;
1545         int i;
1546
1547         seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1548                    conf->raid_disks - mddev->degraded);
1549         rcu_read_lock();
1550         for (i = 0; i < conf->raid_disks; i++) {
1551                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1552                 seq_printf(seq, "%s",
1553                            rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1554         }
1555         rcu_read_unlock();
1556         seq_printf(seq, "]");
1557 }
1558
1559 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1560 {
1561         char b[BDEVNAME_SIZE];
1562         struct r1conf *conf = mddev->private;
1563         unsigned long flags;
1564
1565         /*
1566          * If it is not operational, then we have already marked it as dead
1567          * else if it is the last working disks, ignore the error, let the
1568          * next level up know.
1569          * else mark the drive as failed
1570          */
1571         spin_lock_irqsave(&conf->device_lock, flags);
1572         if (test_bit(In_sync, &rdev->flags)
1573             && (conf->raid_disks - mddev->degraded) == 1) {
1574                 /*
1575                  * Don't fail the drive, act as though we were just a
1576                  * normal single drive.
1577                  * However don't try a recovery from this drive as
1578                  * it is very likely to fail.
1579                  */
1580                 conf->recovery_disabled = mddev->recovery_disabled;
1581                 spin_unlock_irqrestore(&conf->device_lock, flags);
1582                 return;
1583         }
1584         set_bit(Blocked, &rdev->flags);
1585         if (test_and_clear_bit(In_sync, &rdev->flags)) {
1586                 mddev->degraded++;
1587                 set_bit(Faulty, &rdev->flags);
1588         } else
1589                 set_bit(Faulty, &rdev->flags);
1590         spin_unlock_irqrestore(&conf->device_lock, flags);
1591         /*
1592          * if recovery is running, make sure it aborts.
1593          */
1594         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1595         set_mask_bits(&mddev->sb_flags, 0,
1596                       BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1597         pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n"
1598                 "md/raid1:%s: Operation continuing on %d devices.\n",
1599                 mdname(mddev), bdevname(rdev->bdev, b),
1600                 mdname(mddev), conf->raid_disks - mddev->degraded);
1601 }
1602
1603 static void print_conf(struct r1conf *conf)
1604 {
1605         int i;
1606
1607         pr_debug("RAID1 conf printout:\n");
1608         if (!conf) {
1609                 pr_debug("(!conf)\n");
1610                 return;
1611         }
1612         pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1613                  conf->raid_disks);
1614
1615         rcu_read_lock();
1616         for (i = 0; i < conf->raid_disks; i++) {
1617                 char b[BDEVNAME_SIZE];
1618                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1619                 if (rdev)
1620                         pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1621                                  i, !test_bit(In_sync, &rdev->flags),
1622                                  !test_bit(Faulty, &rdev->flags),
1623                                  bdevname(rdev->bdev,b));
1624         }
1625         rcu_read_unlock();
1626 }
1627
1628 static void close_sync(struct r1conf *conf)
1629 {
1630         int idx;
1631
1632         for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) {
1633                 _wait_barrier(conf, idx);
1634                 _allow_barrier(conf, idx);
1635         }
1636
1637         mempool_destroy(conf->r1buf_pool);
1638         conf->r1buf_pool = NULL;
1639 }
1640
1641 static int raid1_spare_active(struct mddev *mddev)
1642 {
1643         int i;
1644         struct r1conf *conf = mddev->private;
1645         int count = 0;
1646         unsigned long flags;
1647
1648         /*
1649          * Find all failed disks within the RAID1 configuration
1650          * and mark them readable.
1651          * Called under mddev lock, so rcu protection not needed.
1652          * device_lock used to avoid races with raid1_end_read_request
1653          * which expects 'In_sync' flags and ->degraded to be consistent.
1654          */
1655         spin_lock_irqsave(&conf->device_lock, flags);
1656         for (i = 0; i < conf->raid_disks; i++) {
1657                 struct md_rdev *rdev = conf->mirrors[i].rdev;
1658                 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1659                 if (repl
1660                     && !test_bit(Candidate, &repl->flags)
1661                     && repl->recovery_offset == MaxSector
1662                     && !test_bit(Faulty, &repl->flags)
1663                     && !test_and_set_bit(In_sync, &repl->flags)) {
1664                         /* replacement has just become active */
1665                         if (!rdev ||
1666                             !test_and_clear_bit(In_sync, &rdev->flags))
1667                                 count++;
1668                         if (rdev) {
1669                                 /* Replaced device not technically
1670                                  * faulty, but we need to be sure
1671                                  * it gets removed and never re-added
1672                                  */
1673                                 set_bit(Faulty, &rdev->flags);
1674                                 sysfs_notify_dirent_safe(
1675                                         rdev->sysfs_state);
1676                         }
1677                 }
1678                 if (rdev
1679                     && rdev->recovery_offset == MaxSector
1680                     && !test_bit(Faulty, &rdev->flags)
1681                     && !test_and_set_bit(In_sync, &rdev->flags)) {
1682                         count++;
1683                         sysfs_notify_dirent_safe(rdev->sysfs_state);
1684                 }
1685         }
1686         mddev->degraded -= count;
1687         spin_unlock_irqrestore(&conf->device_lock, flags);
1688
1689         print_conf(conf);
1690         return count;
1691 }
1692
1693 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1694 {
1695         struct r1conf *conf = mddev->private;
1696         int err = -EEXIST;
1697         int mirror = 0;
1698         struct raid1_info *p;
1699         int first = 0;
1700         int last = conf->raid_disks - 1;
1701
1702         if (mddev->recovery_disabled == conf->recovery_disabled)
1703                 return -EBUSY;
1704
1705         if (md_integrity_add_rdev(rdev, mddev))
1706                 return -ENXIO;
1707
1708         if (rdev->raid_disk >= 0)
1709                 first = last = rdev->raid_disk;
1710
1711         /*
1712          * find the disk ... but prefer rdev->saved_raid_disk
1713          * if possible.
1714          */
1715         if (rdev->saved_raid_disk >= 0 &&
1716             rdev->saved_raid_disk >= first &&
1717             conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1718                 first = last = rdev->saved_raid_disk;
1719
1720         for (mirror = first; mirror <= last; mirror++) {
1721                 p = conf->mirrors+mirror;
1722                 if (!p->rdev) {
1723
1724                         if (mddev->gendisk)
1725                                 disk_stack_limits(mddev->gendisk, rdev->bdev,
1726                                                   rdev->data_offset << 9);
1727
1728                         p->head_position = 0;
1729                         rdev->raid_disk = mirror;
1730                         err = 0;
1731                         /* As all devices are equivalent, we don't need a full recovery
1732                          * if this was recently any drive of the array
1733                          */
1734                         if (rdev->saved_raid_disk < 0)
1735                                 conf->fullsync = 1;
1736                         rcu_assign_pointer(p->rdev, rdev);
1737                         break;
1738                 }
1739                 if (test_bit(WantReplacement, &p->rdev->flags) &&
1740                     p[conf->raid_disks].rdev == NULL) {
1741                         /* Add this device as a replacement */
1742                         clear_bit(In_sync, &rdev->flags);
1743                         set_bit(Replacement, &rdev->flags);
1744                         rdev->raid_disk = mirror;
1745                         err = 0;
1746                         conf->fullsync = 1;
1747                         rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1748                         break;
1749                 }
1750         }
1751         if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1752                 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1753         print_conf(conf);
1754         return err;
1755 }
1756
1757 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1758 {
1759         struct r1conf *conf = mddev->private;
1760         int err = 0;
1761         int number = rdev->raid_disk;
1762         struct raid1_info *p = conf->mirrors + number;
1763
1764         if (rdev != p->rdev)
1765                 p = conf->mirrors + conf->raid_disks + number;
1766
1767         print_conf(conf);
1768         if (rdev == p->rdev) {
1769                 if (test_bit(In_sync, &rdev->flags) ||
1770                     atomic_read(&rdev->nr_pending)) {
1771                         err = -EBUSY;
1772                         goto abort;
1773                 }
1774                 /* Only remove non-faulty devices if recovery
1775                  * is not possible.
1776                  */
1777                 if (!test_bit(Faulty, &rdev->flags) &&
1778                     mddev->recovery_disabled != conf->recovery_disabled &&
1779                     mddev->degraded < conf->raid_disks) {
1780                         err = -EBUSY;
1781                         goto abort;
1782                 }
1783                 p->rdev = NULL;
1784                 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1785                         synchronize_rcu();
1786                         if (atomic_read(&rdev->nr_pending)) {
1787                                 /* lost the race, try later */
1788                                 err = -EBUSY;
1789                                 p->rdev = rdev;
1790                                 goto abort;
1791                         }
1792                 }
1793                 if (conf->mirrors[conf->raid_disks + number].rdev) {
1794                         /* We just removed a device that is being replaced.
1795                          * Move down the replacement.  We drain all IO before
1796                          * doing this to avoid confusion.
1797                          */
1798                         struct md_rdev *repl =
1799                                 conf->mirrors[conf->raid_disks + number].rdev;
1800                         freeze_array(conf, 0);
1801                         clear_bit(Replacement, &repl->flags);
1802                         p->rdev = repl;
1803                         conf->mirrors[conf->raid_disks + number].rdev = NULL;
1804                         unfreeze_array(conf);
1805                 }
1806
1807                 clear_bit(WantReplacement, &rdev->flags);
1808                 err = md_integrity_register(mddev);
1809         }
1810 abort:
1811
1812         print_conf(conf);
1813         return err;
1814 }
1815
1816 static void end_sync_read(struct bio *bio)
1817 {
1818         struct r1bio *r1_bio = get_resync_r1bio(bio);
1819
1820         update_head_pos(r1_bio->read_disk, r1_bio);
1821
1822         /*
1823          * we have read a block, now it needs to be re-written,
1824          * or re-read if the read failed.
1825          * We don't do much here, just schedule handling by raid1d
1826          */
1827         if (!bio->bi_status)
1828                 set_bit(R1BIO_Uptodate, &r1_bio->state);
1829
1830         if (atomic_dec_and_test(&r1_bio->remaining))
1831                 reschedule_retry(r1_bio);
1832 }
1833
1834 static void end_sync_write(struct bio *bio)
1835 {
1836         int uptodate = !bio->bi_status;
1837         struct r1bio *r1_bio = get_resync_r1bio(bio);
1838         struct mddev *mddev = r1_bio->mddev;
1839         struct r1conf *conf = mddev->private;
1840         sector_t first_bad;
1841         int bad_sectors;
1842         struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
1843
1844         if (!uptodate) {
1845                 sector_t sync_blocks = 0;
1846                 sector_t s = r1_bio->sector;
1847                 long sectors_to_go = r1_bio->sectors;
1848                 /* make sure these bits doesn't get cleared. */
1849                 do {
1850                         bitmap_end_sync(mddev->bitmap, s,
1851                                         &sync_blocks, 1);
1852                         s += sync_blocks;
1853                         sectors_to_go -= sync_blocks;
1854                 } while (sectors_to_go > 0);
1855                 set_bit(WriteErrorSeen, &rdev->flags);
1856                 if (!test_and_set_bit(WantReplacement, &rdev->flags))
1857                         set_bit(MD_RECOVERY_NEEDED, &
1858                                 mddev->recovery);
1859                 set_bit(R1BIO_WriteError, &r1_bio->state);
1860         } else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
1861                                &first_bad, &bad_sectors) &&
1862                    !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1863                                 r1_bio->sector,
1864                                 r1_bio->sectors,
1865                                 &first_bad, &bad_sectors)
1866                 )
1867                 set_bit(R1BIO_MadeGood, &r1_bio->state);
1868
1869         if (atomic_dec_and_test(&r1_bio->remaining)) {
1870                 int s = r1_bio->sectors;
1871                 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1872                     test_bit(R1BIO_WriteError, &r1_bio->state))
1873                         reschedule_retry(r1_bio);
1874                 else {
1875                         put_buf(r1_bio);
1876                         md_done_sync(mddev, s, uptodate);
1877                 }
1878         }
1879 }
1880
1881 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1882                             int sectors, struct page *page, int rw)
1883 {
1884         if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
1885                 /* success */
1886                 return 1;
1887         if (rw == WRITE) {
1888                 set_bit(WriteErrorSeen, &rdev->flags);
1889                 if (!test_and_set_bit(WantReplacement,
1890                                       &rdev->flags))
1891                         set_bit(MD_RECOVERY_NEEDED, &
1892                                 rdev->mddev->recovery);
1893         }
1894         /* need to record an error - either for the block or the device */
1895         if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1896                 md_error(rdev->mddev, rdev);
1897         return 0;
1898 }
1899
1900 static int fix_sync_read_error(struct r1bio *r1_bio)
1901 {
1902         /* Try some synchronous reads of other devices to get
1903          * good data, much like with normal read errors.  Only
1904          * read into the pages we already have so we don't
1905          * need to re-issue the read request.
1906          * We don't need to freeze the array, because being in an
1907          * active sync request, there is no normal IO, and
1908          * no overlapping syncs.
1909          * We don't need to check is_badblock() again as we
1910          * made sure that anything with a bad block in range
1911          * will have bi_end_io clear.
1912          */
1913         struct mddev *mddev = r1_bio->mddev;
1914         struct r1conf *conf = mddev->private;
1915         struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1916         struct page **pages = get_resync_pages(bio)->pages;
1917         sector_t sect = r1_bio->sector;
1918         int sectors = r1_bio->sectors;
1919         int idx = 0;
1920         struct md_rdev *rdev;
1921
1922         rdev = conf->mirrors[r1_bio->read_disk].rdev;
1923         if (test_bit(FailFast, &rdev->flags)) {
1924                 /* Don't try recovering from here - just fail it
1925                  * ... unless it is the last working device of course */
1926                 md_error(mddev, rdev);
1927                 if (test_bit(Faulty, &rdev->flags))
1928                         /* Don't try to read from here, but make sure
1929                          * put_buf does it's thing
1930                          */
1931                         bio->bi_end_io = end_sync_write;
1932         }
1933
1934         while(sectors) {
1935                 int s = sectors;
1936                 int d = r1_bio->read_disk;
1937                 int success = 0;
1938                 int start;
1939
1940                 if (s > (PAGE_SIZE>>9))
1941                         s = PAGE_SIZE >> 9;
1942                 do {
1943                         if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1944                                 /* No rcu protection needed here devices
1945                                  * can only be removed when no resync is
1946                                  * active, and resync is currently active
1947                                  */
1948                                 rdev = conf->mirrors[d].rdev;
1949                                 if (sync_page_io(rdev, sect, s<<9,
1950                                                  pages[idx],
1951                                                  REQ_OP_READ, 0, false)) {
1952                                         success = 1;
1953                                         break;
1954                                 }
1955                         }
1956                         d++;
1957                         if (d == conf->raid_disks * 2)
1958                                 d = 0;
1959                 } while (!success && d != r1_bio->read_disk);
1960
1961                 if (!success) {
1962                         char b[BDEVNAME_SIZE];
1963                         int abort = 0;
1964                         /* Cannot read from anywhere, this block is lost.
1965                          * Record a bad block on each device.  If that doesn't
1966                          * work just disable and interrupt the recovery.
1967                          * Don't fail devices as that won't really help.
1968                          */
1969                         pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1970                                             mdname(mddev), bio_devname(bio, b),
1971                                             (unsigned long long)r1_bio->sector);
1972                         for (d = 0; d < conf->raid_disks * 2; d++) {
1973                                 rdev = conf->mirrors[d].rdev;
1974                                 if (!rdev || test_bit(Faulty, &rdev->flags))
1975                                         continue;
1976                                 if (!rdev_set_badblocks(rdev, sect, s, 0))
1977                                         abort = 1;
1978                         }
1979                         if (abort) {
1980                                 conf->recovery_disabled =
1981                                         mddev->recovery_disabled;
1982                                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1983                                 md_done_sync(mddev, r1_bio->sectors, 0);
1984                                 put_buf(r1_bio);
1985                                 return 0;
1986                         }
1987                         /* Try next page */
1988                         sectors -= s;
1989                         sect += s;
1990                         idx++;
1991                         continue;
1992                 }
1993
1994                 start = d;
1995                 /* write it back and re-read */
1996                 while (d != r1_bio->read_disk) {
1997                         if (d == 0)
1998                                 d = conf->raid_disks * 2;
1999                         d--;
2000                         if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2001                                 continue;
2002                         rdev = conf->mirrors[d].rdev;
2003                         if (r1_sync_page_io(rdev, sect, s,
2004                                             pages[idx],
2005                                             WRITE) == 0) {
2006                                 r1_bio->bios[d]->bi_end_io = NULL;
2007                                 rdev_dec_pending(rdev, mddev);
2008                         }
2009                 }
2010                 d = start;
2011                 while (d != r1_bio->read_disk) {
2012                         if (d == 0)
2013                                 d = conf->raid_disks * 2;
2014                         d--;
2015                         if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2016                                 continue;
2017                         rdev = conf->mirrors[d].rdev;
2018                         if (r1_sync_page_io(rdev, sect, s,
2019                                             pages[idx],
2020                                             READ) != 0)
2021                                 atomic_add(s, &rdev->corrected_errors);
2022                 }
2023                 sectors -= s;
2024                 sect += s;
2025                 idx ++;
2026         }
2027         set_bit(R1BIO_Uptodate, &r1_bio->state);
2028         bio->bi_status = 0;
2029         return 1;
2030 }
2031
2032 static void process_checks(struct r1bio *r1_bio)
2033 {
2034         /* We have read all readable devices.  If we haven't
2035          * got the block, then there is no hope left.
2036          * If we have, then we want to do a comparison
2037          * and skip the write if everything is the same.
2038          * If any blocks failed to read, then we need to
2039          * attempt an over-write
2040          */
2041         struct mddev *mddev = r1_bio->mddev;
2042         struct r1conf *conf = mddev->private;
2043         int primary;
2044         int i;
2045         int vcnt;
2046
2047         /* Fix variable parts of all bios */
2048         vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2049         for (i = 0; i < conf->raid_disks * 2; i++) {
2050                 blk_status_t status;
2051                 struct bio *b = r1_bio->bios[i];
2052                 struct resync_pages *rp = get_resync_pages(b);
2053                 if (b->bi_end_io != end_sync_read)
2054                         continue;
2055                 /* fixup the bio for reuse, but preserve errno */
2056                 status = b->bi_status;
2057                 bio_reset(b);
2058                 b->bi_status = status;
2059                 b->bi_iter.bi_sector = r1_bio->sector +
2060                         conf->mirrors[i].rdev->data_offset;
2061                 bio_set_dev(b, conf->mirrors[i].rdev->bdev);
2062                 b->bi_end_io = end_sync_read;
2063                 rp->raid_bio = r1_bio;
2064                 b->bi_private = rp;
2065
2066                 /* initialize bvec table again */
2067                 md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9);
2068         }
2069         for (primary = 0; primary < conf->raid_disks * 2; primary++)
2070                 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2071                     !r1_bio->bios[primary]->bi_status) {
2072                         r1_bio->bios[primary]->bi_end_io = NULL;
2073                         rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2074                         break;
2075                 }
2076         r1_bio->read_disk = primary;
2077         for (i = 0; i < conf->raid_disks * 2; i++) {
2078                 int j;
2079                 struct bio *pbio = r1_bio->bios[primary];
2080                 struct bio *sbio = r1_bio->bios[i];
2081                 blk_status_t status = sbio->bi_status;
2082                 struct page **ppages = get_resync_pages(pbio)->pages;
2083                 struct page **spages = get_resync_pages(sbio)->pages;
2084                 struct bio_vec *bi;
2085                 int page_len[RESYNC_PAGES] = { 0 };
2086
2087                 if (sbio->bi_end_io != end_sync_read)
2088                         continue;
2089                 /* Now we can 'fixup' the error value */
2090                 sbio->bi_status = 0;
2091
2092                 bio_for_each_segment_all(bi, sbio, j)
2093                         page_len[j] = bi->bv_len;
2094
2095                 if (!status) {
2096                         for (j = vcnt; j-- ; ) {
2097                                 if (memcmp(page_address(ppages[j]),
2098                                            page_address(spages[j]),
2099                                            page_len[j]))
2100                                         break;
2101                         }
2102                 } else
2103                         j = 0;
2104                 if (j >= 0)
2105                         atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2106                 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2107                               && !status)) {
2108                         /* No need to write to this device. */
2109                         sbio->bi_end_io = NULL;
2110                         rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2111                         continue;
2112                 }
2113
2114                 bio_copy_data(sbio, pbio);
2115         }
2116 }
2117
2118 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2119 {
2120         struct r1conf *conf = mddev->private;
2121         int i;
2122         int disks = conf->raid_disks * 2;
2123         struct bio *wbio;
2124
2125         if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2126                 /* ouch - failed to read all of that. */
2127                 if (!fix_sync_read_error(r1_bio))
2128                         return;
2129
2130         if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2131                 process_checks(r1_bio);
2132
2133         /*
2134          * schedule writes
2135          */
2136         atomic_set(&r1_bio->remaining, 1);
2137         for (i = 0; i < disks ; i++) {
2138                 wbio = r1_bio->bios[i];
2139                 if (wbio->bi_end_io == NULL ||
2140                     (wbio->bi_end_io == end_sync_read &&
2141                      (i == r1_bio->read_disk ||
2142                       !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2143                         continue;
2144                 if (test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2145                         continue;
2146
2147                 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2148                 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2149                         wbio->bi_opf |= MD_FAILFAST;
2150
2151                 wbio->bi_end_io = end_sync_write;
2152                 atomic_inc(&r1_bio->remaining);
2153                 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2154
2155                 generic_make_request(wbio);
2156         }
2157
2158         if (atomic_dec_and_test(&r1_bio->remaining)) {
2159                 /* if we're here, all write(s) have completed, so clean up */
2160                 int s = r1_bio->sectors;
2161                 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2162                     test_bit(R1BIO_WriteError, &r1_bio->state))
2163                         reschedule_retry(r1_bio);
2164                 else {
2165                         put_buf(r1_bio);
2166                         md_done_sync(mddev, s, 1);
2167                 }
2168         }
2169 }
2170
2171 /*
2172  * This is a kernel thread which:
2173  *
2174  *      1.      Retries failed read operations on working mirrors.
2175  *      2.      Updates the raid superblock when problems encounter.
2176  *      3.      Performs writes following reads for array synchronising.
2177  */
2178
2179 static void fix_read_error(struct r1conf *conf, int read_disk,
2180                            sector_t sect, int sectors)
2181 {
2182         struct mddev *mddev = conf->mddev;
2183         while(sectors) {
2184                 int s = sectors;
2185                 int d = read_disk;
2186                 int success = 0;
2187                 int start;
2188                 struct md_rdev *rdev;
2189
2190                 if (s > (PAGE_SIZE>>9))
2191                         s = PAGE_SIZE >> 9;
2192
2193                 do {
2194                         sector_t first_bad;
2195                         int bad_sectors;
2196
2197                         rcu_read_lock();
2198                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2199                         if (rdev &&
2200                             (test_bit(In_sync, &rdev->flags) ||
2201                              (!test_bit(Faulty, &rdev->flags) &&
2202                               rdev->recovery_offset >= sect + s)) &&
2203                             is_badblock(rdev, sect, s,
2204                                         &first_bad, &bad_sectors) == 0) {
2205                                 atomic_inc(&rdev->nr_pending);
2206                                 rcu_read_unlock();
2207                                 if (sync_page_io(rdev, sect, s<<9,
2208                                          conf->tmppage, REQ_OP_READ, 0, false))
2209                                         success = 1;
2210                                 rdev_dec_pending(rdev, mddev);
2211                                 if (success)
2212                                         break;
2213                         } else
2214                                 rcu_read_unlock();
2215                         d++;
2216                         if (d == conf->raid_disks * 2)
2217                                 d = 0;
2218                 } while (!success && d != read_disk);
2219
2220                 if (!success) {
2221                         /* Cannot read from anywhere - mark it bad */
2222                         struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2223                         if (!rdev_set_badblocks(rdev, sect, s, 0))
2224                                 md_error(mddev, rdev);
2225                         break;
2226                 }
2227                 /* write it back and re-read */
2228                 start = d;
2229                 while (d != read_disk) {
2230                         if (d==0)
2231                                 d = conf->raid_disks * 2;
2232                         d--;
2233                         rcu_read_lock();
2234                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2235                         if (rdev &&
2236                             !test_bit(Faulty, &rdev->flags)) {
2237                                 atomic_inc(&rdev->nr_pending);
2238                                 rcu_read_unlock();
2239                                 r1_sync_page_io(rdev, sect, s,
2240                                                 conf->tmppage, WRITE);
2241                                 rdev_dec_pending(rdev, mddev);
2242                         } else
2243                                 rcu_read_unlock();
2244                 }
2245                 d = start;
2246                 while (d != read_disk) {
2247                         char b[BDEVNAME_SIZE];
2248                         if (d==0)
2249                                 d = conf->raid_disks * 2;
2250                         d--;
2251                         rcu_read_lock();
2252                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2253                         if (rdev &&
2254                             !test_bit(Faulty, &rdev->flags)) {
2255                                 atomic_inc(&rdev->nr_pending);
2256                                 rcu_read_unlock();
2257                                 if (r1_sync_page_io(rdev, sect, s,
2258                                                     conf->tmppage, READ)) {
2259                                         atomic_add(s, &rdev->corrected_errors);
2260                                         pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n",
2261                                                 mdname(mddev), s,
2262                                                 (unsigned long long)(sect +
2263                                                                      rdev->data_offset),
2264                                                 bdevname(rdev->bdev, b));
2265                                 }
2266                                 rdev_dec_pending(rdev, mddev);
2267                         } else
2268                                 rcu_read_unlock();
2269                 }
2270                 sectors -= s;
2271                 sect += s;
2272         }
2273 }
2274
2275 static int narrow_write_error(struct r1bio *r1_bio, int i)
2276 {
2277         struct mddev *mddev = r1_bio->mddev;
2278         struct r1conf *conf = mddev->private;
2279         struct md_rdev *rdev = conf->mirrors[i].rdev;
2280
2281         /* bio has the data to be written to device 'i' where
2282          * we just recently had a write error.
2283          * We repeatedly clone the bio and trim down to one block,
2284          * then try the write.  Where the write fails we record
2285          * a bad block.
2286          * It is conceivable that the bio doesn't exactly align with
2287          * blocks.  We must handle this somehow.
2288          *
2289          * We currently own a reference on the rdev.
2290          */
2291
2292         int block_sectors;
2293         sector_t sector;
2294         int sectors;
2295         int sect_to_write = r1_bio->sectors;
2296         int ok = 1;
2297
2298         if (rdev->badblocks.shift < 0)
2299                 return 0;
2300
2301         block_sectors = roundup(1 << rdev->badblocks.shift,
2302                                 bdev_logical_block_size(rdev->bdev) >> 9);
2303         sector = r1_bio->sector;
2304         sectors = ((sector + block_sectors)
2305                    & ~(sector_t)(block_sectors - 1))
2306                 - sector;
2307
2308         while (sect_to_write) {
2309                 struct bio *wbio;
2310                 if (sectors > sect_to_write)
2311                         sectors = sect_to_write;
2312                 /* Write at 'sector' for 'sectors'*/
2313
2314                 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2315                         wbio = bio_clone_fast(r1_bio->behind_master_bio,
2316                                               GFP_NOIO,
2317                                               mddev->bio_set);
2318                 } else {
2319                         wbio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO,
2320                                               mddev->bio_set);
2321                 }
2322
2323                 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2324                 wbio->bi_iter.bi_sector = r1_bio->sector;
2325                 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2326
2327                 bio_trim(wbio, sector - r1_bio->sector, sectors);
2328                 wbio->bi_iter.bi_sector += rdev->data_offset;
2329                 bio_set_dev(wbio, rdev->bdev);
2330
2331                 if (submit_bio_wait(wbio) < 0)
2332                         /* failure! */
2333                         ok = rdev_set_badblocks(rdev, sector,
2334                                                 sectors, 0)
2335                                 && ok;
2336
2337                 bio_put(wbio);
2338                 sect_to_write -= sectors;
2339                 sector += sectors;
2340                 sectors = block_sectors;
2341         }
2342         return ok;
2343 }
2344
2345 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2346 {
2347         int m;
2348         int s = r1_bio->sectors;
2349         for (m = 0; m < conf->raid_disks * 2 ; m++) {
2350                 struct md_rdev *rdev = conf->mirrors[m].rdev;
2351                 struct bio *bio = r1_bio->bios[m];
2352                 if (bio->bi_end_io == NULL)
2353                         continue;
2354                 if (!bio->bi_status &&
2355                     test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2356                         rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2357                 }
2358                 if (bio->bi_status &&
2359                     test_bit(R1BIO_WriteError, &r1_bio->state)) {
2360                         if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2361                                 md_error(conf->mddev, rdev);
2362                 }
2363         }
2364         put_buf(r1_bio);
2365         md_done_sync(conf->mddev, s, 1);
2366 }
2367
2368 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2369 {
2370         int m, idx;
2371         bool fail = false;
2372
2373         for (m = 0; m < conf->raid_disks * 2 ; m++)
2374                 if (r1_bio->bios[m] == IO_MADE_GOOD) {
2375                         struct md_rdev *rdev = conf->mirrors[m].rdev;
2376                         rdev_clear_badblocks(rdev,
2377                                              r1_bio->sector,
2378                                              r1_bio->sectors, 0);
2379                         rdev_dec_pending(rdev, conf->mddev);
2380                 } else if (r1_bio->bios[m] != NULL) {
2381                         /* This drive got a write error.  We need to
2382                          * narrow down and record precise write
2383                          * errors.
2384                          */
2385                         fail = true;
2386                         if (!narrow_write_error(r1_bio, m)) {
2387                                 md_error(conf->mddev,
2388                                          conf->mirrors[m].rdev);
2389                                 /* an I/O failed, we can't clear the bitmap */
2390                                 set_bit(R1BIO_Degraded, &r1_bio->state);
2391                         }
2392                         rdev_dec_pending(conf->mirrors[m].rdev,
2393                                          conf->mddev);
2394                 }
2395         if (fail) {
2396                 spin_lock_irq(&conf->device_lock);
2397                 list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2398                 idx = sector_to_idx(r1_bio->sector);
2399                 atomic_inc(&conf->nr_queued[idx]);
2400                 spin_unlock_irq(&conf->device_lock);
2401                 /*
2402                  * In case freeze_array() is waiting for condition
2403                  * get_unqueued_pending() == extra to be true.
2404                  */
2405                 wake_up(&conf->wait_barrier);
2406                 md_wakeup_thread(conf->mddev->thread);
2407         } else {
2408                 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2409                         close_write(r1_bio);
2410                 raid_end_bio_io(r1_bio);
2411         }
2412 }
2413
2414 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2415 {
2416         struct mddev *mddev = conf->mddev;
2417         struct bio *bio;
2418         struct md_rdev *rdev;
2419         sector_t bio_sector;
2420
2421         clear_bit(R1BIO_ReadError, &r1_bio->state);
2422         /* we got a read error. Maybe the drive is bad.  Maybe just
2423          * the block and we can fix it.
2424          * We freeze all other IO, and try reading the block from
2425          * other devices.  When we find one, we re-write
2426          * and check it that fixes the read error.
2427          * This is all done synchronously while the array is
2428          * frozen
2429          */
2430
2431         bio = r1_bio->bios[r1_bio->read_disk];
2432         bio_sector = conf->mirrors[r1_bio->read_disk].rdev->data_offset + r1_bio->sector;
2433         bio_put(bio);
2434         r1_bio->bios[r1_bio->read_disk] = NULL;
2435
2436         rdev = conf->mirrors[r1_bio->read_disk].rdev;
2437         if (mddev->ro == 0
2438             && !test_bit(FailFast, &rdev->flags)) {
2439                 freeze_array(conf, 1);
2440                 fix_read_error(conf, r1_bio->read_disk,
2441                                r1_bio->sector, r1_bio->sectors);
2442                 unfreeze_array(conf);
2443         } else {
2444                 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2445         }
2446
2447         rdev_dec_pending(rdev, conf->mddev);
2448         allow_barrier(conf, r1_bio->sector);
2449         bio = r1_bio->master_bio;
2450
2451         /* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2452         r1_bio->state = 0;
2453         raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio);
2454 }
2455
2456 static void raid1d(struct md_thread *thread)
2457 {
2458         struct mddev *mddev = thread->mddev;
2459         struct r1bio *r1_bio;
2460         unsigned long flags;
2461         struct r1conf *conf = mddev->private;
2462         struct list_head *head = &conf->retry_list;
2463         struct blk_plug plug;
2464         int idx;
2465
2466         md_check_recovery(mddev);
2467
2468         if (!list_empty_careful(&conf->bio_end_io_list) &&
2469             !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2470                 LIST_HEAD(tmp);
2471                 spin_lock_irqsave(&conf->device_lock, flags);
2472                 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2473                         list_splice_init(&conf->bio_end_io_list, &tmp);
2474                 spin_unlock_irqrestore(&conf->device_lock, flags);
2475                 while (!list_empty(&tmp)) {
2476                         r1_bio = list_first_entry(&tmp, struct r1bio,
2477                                                   retry_list);
2478                         list_del(&r1_bio->retry_list);
2479                         idx = sector_to_idx(r1_bio->sector);
2480                         atomic_dec(&conf->nr_queued[idx]);
2481                         if (mddev->degraded)
2482                                 set_bit(R1BIO_Degraded, &r1_bio->state);
2483                         if (test_bit(R1BIO_WriteError, &r1_bio->state))
2484                                 close_write(r1_bio);
2485                         raid_end_bio_io(r1_bio);
2486                 }
2487         }
2488
2489         blk_start_plug(&plug);
2490         for (;;) {
2491
2492                 flush_pending_writes(conf);
2493
2494                 spin_lock_irqsave(&conf->device_lock, flags);
2495                 if (list_empty(head)) {
2496                         spin_unlock_irqrestore(&conf->device_lock, flags);
2497                         break;
2498                 }
2499                 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2500                 list_del(head->prev);
2501                 idx = sector_to_idx(r1_bio->sector);
2502                 atomic_dec(&conf->nr_queued[idx]);
2503                 spin_unlock_irqrestore(&conf->device_lock, flags);
2504
2505                 mddev = r1_bio->mddev;
2506                 conf = mddev->private;
2507                 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2508                         if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2509                             test_bit(R1BIO_WriteError, &r1_bio->state))
2510                                 handle_sync_write_finished(conf, r1_bio);
2511                         else
2512                                 sync_request_write(mddev, r1_bio);
2513                 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2514                            test_bit(R1BIO_WriteError, &r1_bio->state))
2515                         handle_write_finished(conf, r1_bio);
2516                 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2517                         handle_read_error(conf, r1_bio);
2518                 else
2519                         WARN_ON_ONCE(1);
2520
2521                 cond_resched();
2522                 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2523                         md_check_recovery(mddev);
2524         }
2525         blk_finish_plug(&plug);
2526 }
2527
2528 static int init_resync(struct r1conf *conf)
2529 {
2530         int buffs;
2531
2532         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2533         BUG_ON(conf->r1buf_pool);
2534         conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2535                                           conf->poolinfo);
2536         if (!conf->r1buf_pool)
2537                 return -ENOMEM;
2538         return 0;
2539 }
2540
2541 static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf)
2542 {
2543         struct r1bio *r1bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2544         struct resync_pages *rps;
2545         struct bio *bio;
2546         int i;
2547
2548         for (i = conf->poolinfo->raid_disks; i--; ) {
2549                 bio = r1bio->bios[i];
2550                 rps = bio->bi_private;
2551                 bio_reset(bio);
2552                 bio->bi_private = rps;
2553         }
2554         r1bio->master_bio = NULL;
2555         return r1bio;
2556 }
2557
2558 /*
2559  * perform a "sync" on one "block"
2560  *
2561  * We need to make sure that no normal I/O request - particularly write
2562  * requests - conflict with active sync requests.
2563  *
2564  * This is achieved by tracking pending requests and a 'barrier' concept
2565  * that can be installed to exclude normal IO requests.
2566  */
2567
2568 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2569                                    int *skipped)
2570 {
2571         struct r1conf *conf = mddev->private;
2572         struct r1bio *r1_bio;
2573         struct bio *bio;
2574         sector_t max_sector, nr_sectors;
2575         int disk = -1;
2576         int i;
2577         int wonly = -1;
2578         int write_targets = 0, read_targets = 0;
2579         sector_t sync_blocks;
2580         int still_degraded = 0;
2581         int good_sectors = RESYNC_SECTORS;
2582         int min_bad = 0; /* number of sectors that are bad in all devices */
2583         int idx = sector_to_idx(sector_nr);
2584         int page_idx = 0;
2585
2586         if (!conf->r1buf_pool)
2587                 if (init_resync(conf))
2588                         return 0;
2589
2590         max_sector = mddev->dev_sectors;
2591         if (sector_nr >= max_sector) {
2592                 /* If we aborted, we need to abort the
2593                  * sync on the 'current' bitmap chunk (there will
2594                  * only be one in raid1 resync.
2595                  * We can find the current addess in mddev->curr_resync
2596                  */
2597                 if (mddev->curr_resync < max_sector) /* aborted */
2598                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2599                                                 &sync_blocks, 1);
2600                 else /* completed sync */
2601                         conf->fullsync = 0;
2602
2603                 bitmap_close_sync(mddev->bitmap);
2604                 close_sync(conf);
2605
2606                 if (mddev_is_clustered(mddev)) {
2607                         conf->cluster_sync_low = 0;
2608                         conf->cluster_sync_high = 0;
2609                 }
2610                 return 0;
2611         }
2612
2613         if (mddev->bitmap == NULL &&
2614             mddev->recovery_cp == MaxSector &&
2615             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2616             conf->fullsync == 0) {
2617                 *skipped = 1;
2618                 return max_sector - sector_nr;
2619         }
2620         /* before building a request, check if we can skip these blocks..
2621          * This call the bitmap_start_sync doesn't actually record anything
2622          */
2623         if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2624             !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2625                 /* We can skip this block, and probably several more */
2626                 *skipped = 1;
2627                 return sync_blocks;
2628         }
2629
2630         /*
2631          * If there is non-resync activity waiting for a turn, then let it
2632          * though before starting on this new sync request.
2633          */
2634         if (atomic_read(&conf->nr_waiting[idx]))
2635                 schedule_timeout_uninterruptible(1);
2636
2637         /* we are incrementing sector_nr below. To be safe, we check against
2638          * sector_nr + two times RESYNC_SECTORS
2639          */
2640
2641         bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2642                 mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2643         r1_bio = raid1_alloc_init_r1buf(conf);
2644
2645         raise_barrier(conf, sector_nr);
2646
2647         rcu_read_lock();
2648         /*
2649          * If we get a correctably read error during resync or recovery,
2650          * we might want to read from a different device.  So we
2651          * flag all drives that could conceivably be read from for READ,
2652          * and any others (which will be non-In_sync devices) for WRITE.
2653          * If a read fails, we try reading from something else for which READ
2654          * is OK.
2655          */
2656
2657         r1_bio->mddev = mddev;
2658         r1_bio->sector = sector_nr;
2659         r1_bio->state = 0;
2660         set_bit(R1BIO_IsSync, &r1_bio->state);
2661         /* make sure good_sectors won't go across barrier unit boundary */
2662         good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
2663
2664         for (i = 0; i < conf->raid_disks * 2; i++) {
2665                 struct md_rdev *rdev;
2666                 bio = r1_bio->bios[i];
2667
2668                 rdev = rcu_dereference(conf->mirrors[i].rdev);
2669                 if (rdev == NULL ||
2670                     test_bit(Faulty, &rdev->flags)) {
2671                         if (i < conf->raid_disks)
2672                                 still_degraded = 1;
2673                 } else if (!test_bit(In_sync, &rdev->flags)) {
2674                         bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2675                         bio->bi_end_io = end_sync_write;
2676                         write_targets ++;
2677                 } else {
2678                         /* may need to read from here */
2679                         sector_t first_bad = MaxSector;
2680                         int bad_sectors;
2681
2682                         if (is_badblock(rdev, sector_nr, good_sectors,
2683                                         &first_bad, &bad_sectors)) {
2684                                 if (first_bad > sector_nr)
2685                                         good_sectors = first_bad - sector_nr;
2686                                 else {
2687                                         bad_sectors -= (sector_nr - first_bad);
2688                                         if (min_bad == 0 ||
2689                                             min_bad > bad_sectors)
2690                                                 min_bad = bad_sectors;
2691                                 }
2692                         }
2693                         if (sector_nr < first_bad) {
2694                                 if (test_bit(WriteMostly, &rdev->flags)) {
2695                                         if (wonly < 0)
2696                                                 wonly = i;
2697                                 } else {
2698                                         if (disk < 0)
2699                                                 disk = i;
2700                                 }
2701                                 bio_set_op_attrs(bio, REQ_OP_READ, 0);
2702                                 bio->bi_end_io = end_sync_read;
2703                                 read_targets++;
2704                         } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2705                                 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2706                                 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2707                                 /*
2708                                  * The device is suitable for reading (InSync),
2709                                  * but has bad block(s) here. Let's try to correct them,
2710                                  * if we are doing resync or repair. Otherwise, leave
2711                                  * this device alone for this sync request.
2712                                  */
2713                                 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2714                                 bio->bi_end_io = end_sync_write;
2715                                 write_targets++;
2716                         }
2717                 }
2718                 if (bio->bi_end_io) {
2719                         atomic_inc(&rdev->nr_pending);
2720                         bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2721                         bio_set_dev(bio, rdev->bdev);
2722                         if (test_bit(FailFast, &rdev->flags))
2723                                 bio->bi_opf |= MD_FAILFAST;
2724                 }
2725         }
2726         rcu_read_unlock();
2727         if (disk < 0)
2728                 disk = wonly;
2729         r1_bio->read_disk = disk;
2730
2731         if (read_targets == 0 && min_bad > 0) {
2732                 /* These sectors are bad on all InSync devices, so we
2733                  * need to mark them bad on all write targets
2734                  */
2735                 int ok = 1;
2736                 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2737                         if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2738                                 struct md_rdev *rdev = conf->mirrors[i].rdev;
2739                                 ok = rdev_set_badblocks(rdev, sector_nr,
2740                                                         min_bad, 0
2741                                         ) && ok;
2742                         }
2743                 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2744                 *skipped = 1;
2745                 put_buf(r1_bio);
2746
2747                 if (!ok) {
2748                         /* Cannot record the badblocks, so need to
2749                          * abort the resync.
2750                          * If there are multiple read targets, could just
2751                          * fail the really bad ones ???
2752                          */
2753                         conf->recovery_disabled = mddev->recovery_disabled;
2754                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2755                         return 0;
2756                 } else
2757                         return min_bad;
2758
2759         }
2760         if (min_bad > 0 && min_bad < good_sectors) {
2761                 /* only resync enough to reach the next bad->good
2762                  * transition */
2763                 good_sectors = min_bad;
2764         }
2765
2766         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2767                 /* extra read targets are also write targets */
2768                 write_targets += read_targets-1;
2769
2770         if (write_targets == 0 || read_targets == 0) {
2771                 /* There is nowhere to write, so all non-sync
2772                  * drives must be failed - so we are finished
2773                  */
2774                 sector_t rv;
2775                 if (min_bad > 0)
2776                         max_sector = sector_nr + min_bad;
2777                 rv = max_sector - sector_nr;
2778                 *skipped = 1;
2779                 put_buf(r1_bio);
2780                 return rv;
2781         }
2782
2783         if (max_sector > mddev->resync_max)
2784                 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2785         if (max_sector > sector_nr + good_sectors)
2786                 max_sector = sector_nr + good_sectors;
2787         nr_sectors = 0;
2788         sync_blocks = 0;
2789         do {
2790                 struct page *page;
2791                 int len = PAGE_SIZE;
2792                 if (sector_nr + (len>>9) > max_sector)
2793                         len = (max_sector - sector_nr) << 9;
2794                 if (len == 0)
2795                         break;
2796                 if (sync_blocks == 0) {
2797                         if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2798                                                &sync_blocks, still_degraded) &&
2799                             !conf->fullsync &&
2800                             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2801                                 break;
2802                         if ((len >> 9) > sync_blocks)
2803                                 len = sync_blocks<<9;
2804                 }
2805
2806                 for (i = 0 ; i < conf->raid_disks * 2; i++) {
2807                         struct resync_pages *rp;
2808
2809                         bio = r1_bio->bios[i];
2810                         rp = get_resync_pages(bio);
2811                         if (bio->bi_end_io) {
2812                                 page = resync_fetch_page(rp, page_idx);
2813
2814                                 /*
2815                                  * won't fail because the vec table is big
2816                                  * enough to hold all these pages
2817                                  */
2818                                 bio_add_page(bio, page, len, 0);
2819                         }
2820                 }
2821                 nr_sectors += len>>9;
2822                 sector_nr += len>>9;
2823                 sync_blocks -= (len>>9);
2824         } while (++page_idx < RESYNC_PAGES);
2825
2826         r1_bio->sectors = nr_sectors;
2827
2828         if (mddev_is_clustered(mddev) &&
2829                         conf->cluster_sync_high < sector_nr + nr_sectors) {
2830                 conf->cluster_sync_low = mddev->curr_resync_completed;
2831                 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2832                 /* Send resync message */
2833                 md_cluster_ops->resync_info_update(mddev,
2834                                 conf->cluster_sync_low,
2835                                 conf->cluster_sync_high);
2836         }
2837
2838         /* For a user-requested sync, we read all readable devices and do a
2839          * compare
2840          */
2841         if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2842                 atomic_set(&r1_bio->remaining, read_targets);
2843                 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2844                         bio = r1_bio->bios[i];
2845                         if (bio->bi_end_io == end_sync_read) {
2846                                 read_targets--;
2847                                 md_sync_acct_bio(bio, nr_sectors);
2848                                 if (read_targets == 1)
2849                                         bio->bi_opf &= ~MD_FAILFAST;
2850                                 generic_make_request(bio);
2851                         }
2852                 }
2853         } else {
2854                 atomic_set(&r1_bio->remaining, 1);
2855                 bio = r1_bio->bios[r1_bio->read_disk];
2856                 md_sync_acct_bio(bio, nr_sectors);
2857                 if (read_targets == 1)
2858                         bio->bi_opf &= ~MD_FAILFAST;
2859                 generic_make_request(bio);
2860
2861         }
2862         return nr_sectors;
2863 }
2864
2865 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2866 {
2867         if (sectors)
2868                 return sectors;
2869
2870         return mddev->dev_sectors;
2871 }
2872
2873 static struct r1conf *setup_conf(struct mddev *mddev)
2874 {
2875         struct r1conf *conf;
2876         int i;
2877         struct raid1_info *disk;
2878         struct md_rdev *rdev;
2879         int err = -ENOMEM;
2880
2881         conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2882         if (!conf)
2883                 goto abort;
2884
2885         conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
2886                                    sizeof(atomic_t), GFP_KERNEL);
2887         if (!conf->nr_pending)
2888                 goto abort;
2889
2890         conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
2891                                    sizeof(atomic_t), GFP_KERNEL);
2892         if (!conf->nr_waiting)
2893                 goto abort;
2894
2895         conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
2896                                   sizeof(atomic_t), GFP_KERNEL);
2897         if (!conf->nr_queued)
2898                 goto abort;
2899
2900         conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
2901                                 sizeof(atomic_t), GFP_KERNEL);
2902         if (!conf->barrier)
2903                 goto abort;
2904
2905         conf->mirrors = kzalloc(sizeof(struct raid1_info)
2906                                 * mddev->raid_disks * 2,
2907                                  GFP_KERNEL);
2908         if (!conf->mirrors)
2909                 goto abort;
2910
2911         conf->tmppage = alloc_page(GFP_KERNEL);
2912         if (!conf->tmppage)
2913                 goto abort;
2914
2915         conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2916         if (!conf->poolinfo)
2917                 goto abort;
2918         conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2919         conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2920                                           r1bio_pool_free,
2921                                           conf->poolinfo);
2922         if (!conf->r1bio_pool)
2923                 goto abort;
2924
2925         conf->bio_split = bioset_create(BIO_POOL_SIZE, 0, 0);
2926         if (!conf->bio_split)
2927                 goto abort;
2928
2929         conf->poolinfo->mddev = mddev;
2930
2931         err = -EINVAL;
2932         spin_lock_init(&conf->device_lock);
2933         rdev_for_each(rdev, mddev) {
2934                 int disk_idx = rdev->raid_disk;
2935                 if (disk_idx >= mddev->raid_disks
2936                     || disk_idx < 0)
2937                         continue;
2938                 if (test_bit(Replacement, &rdev->flags))
2939                         disk = conf->mirrors + mddev->raid_disks + disk_idx;
2940                 else
2941                         disk = conf->mirrors + disk_idx;
2942
2943                 if (disk->rdev)
2944                         goto abort;
2945                 disk->rdev = rdev;
2946                 disk->head_position = 0;
2947                 disk->seq_start = MaxSector;
2948         }
2949         conf->raid_disks = mddev->raid_disks;
2950         conf->mddev = mddev;
2951         INIT_LIST_HEAD(&conf->retry_list);
2952         INIT_LIST_HEAD(&conf->bio_end_io_list);
2953
2954         spin_lock_init(&conf->resync_lock);
2955         init_waitqueue_head(&conf->wait_barrier);
2956
2957         bio_list_init(&conf->pending_bio_list);
2958         conf->pending_count = 0;
2959         conf->recovery_disabled = mddev->recovery_disabled - 1;
2960
2961         err = -EIO;
2962         for (i = 0; i < conf->raid_disks * 2; i++) {
2963
2964                 disk = conf->mirrors + i;
2965
2966                 if (i < conf->raid_disks &&
2967                     disk[conf->raid_disks].rdev) {
2968                         /* This slot has a replacement. */
2969                         if (!disk->rdev) {
2970                                 /* No original, just make the replacement
2971                                  * a recovering spare
2972                                  */
2973                                 disk->rdev =
2974                                         disk[conf->raid_disks].rdev;
2975                                 disk[conf->raid_disks].rdev = NULL;
2976                         } else if (!test_bit(In_sync, &disk->rdev->flags))
2977                                 /* Original is not in_sync - bad */
2978                                 goto abort;
2979                 }
2980
2981                 if (!disk->rdev ||
2982                     !test_bit(In_sync, &disk->rdev->flags)) {
2983                         disk->head_position = 0;
2984                         if (disk->rdev &&
2985                             (disk->rdev->saved_raid_disk < 0))
2986                                 conf->fullsync = 1;
2987                 }
2988         }
2989
2990         err = -ENOMEM;
2991         conf->thread = md_register_thread(raid1d, mddev, "raid1");
2992         if (!conf->thread)
2993                 goto abort;
2994
2995         return conf;
2996
2997  abort:
2998         if (conf) {
2999                 mempool_destroy(conf->r1bio_pool);
3000                 kfree(conf->mirrors);
3001                 safe_put_page(conf->tmppage);
3002                 kfree(conf->poolinfo);
3003                 kfree(conf->nr_pending);
3004                 kfree(conf->nr_waiting);
3005                 kfree(conf->nr_queued);
3006                 kfree(conf->barrier);
3007                 if (conf->bio_split)
3008                         bioset_free(conf->bio_split);
3009                 kfree(conf);
3010         }
3011         return ERR_PTR(err);
3012 }
3013
3014 static void raid1_free(struct mddev *mddev, void *priv);
3015 static int raid1_run(struct mddev *mddev)
3016 {
3017         struct r1conf *conf;
3018         int i;
3019         struct md_rdev *rdev;
3020         int ret;
3021         bool discard_supported = false;
3022
3023         if (mddev->level != 1) {
3024                 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3025                         mdname(mddev), mddev->level);
3026                 return -EIO;
3027         }
3028         if (mddev->reshape_position != MaxSector) {
3029                 pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3030                         mdname(mddev));
3031                 return -EIO;
3032         }
3033         if (mddev_init_writes_pending(mddev) < 0)
3034                 return -ENOMEM;
3035         /*
3036          * copy the already verified devices into our private RAID1
3037          * bookkeeping area. [whatever we allocate in run(),
3038          * should be freed in raid1_free()]
3039          */
3040         if (mddev->private == NULL)
3041                 conf = setup_conf(mddev);
3042         else
3043                 conf = mddev->private;
3044
3045         if (IS_ERR(conf))
3046                 return PTR_ERR(conf);
3047
3048         if (mddev->queue) {
3049                 blk_queue_max_write_same_sectors(mddev->queue, 0);
3050                 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3051         }
3052
3053         rdev_for_each(rdev, mddev) {
3054                 if (!mddev->gendisk)
3055                         continue;
3056                 disk_stack_limits(mddev->gendisk, rdev->bdev,
3057                                   rdev->data_offset << 9);
3058                 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3059                         discard_supported = true;
3060         }
3061
3062         mddev->degraded = 0;
3063         for (i=0; i < conf->raid_disks; i++)
3064                 if (conf->mirrors[i].rdev == NULL ||
3065                     !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3066                     test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3067                         mddev->degraded++;
3068
3069         if (conf->raid_disks - mddev->degraded == 1)
3070                 mddev->recovery_cp = MaxSector;
3071
3072         if (mddev->recovery_cp != MaxSector)
3073                 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3074                         mdname(mddev));
3075         pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3076                 mdname(mddev), mddev->raid_disks - mddev->degraded,
3077                 mddev->raid_disks);
3078
3079         /*
3080          * Ok, everything is just fine now
3081          */
3082         mddev->thread = conf->thread;
3083         conf->thread = NULL;
3084         mddev->private = conf;
3085         set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3086
3087         md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
3088
3089         if (mddev->queue) {
3090                 if (discard_supported)
3091                         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3092                                                 mddev->queue);
3093                 else
3094                         queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3095                                                   mddev->queue);
3096         }
3097
3098         ret =  md_integrity_register(mddev);
3099         if (ret) {
3100                 md_unregister_thread(&mddev->thread);
3101                 raid1_free(mddev, conf);
3102         }
3103         return ret;
3104 }
3105
3106 static void raid1_free(struct mddev *mddev, void *priv)
3107 {
3108         struct r1conf *conf = priv;
3109
3110         mempool_destroy(conf->r1bio_pool);
3111         kfree(conf->mirrors);
3112         safe_put_page(conf->tmppage);
3113         kfree(conf->poolinfo);
3114         kfree(conf->nr_pending);
3115         kfree(conf->nr_waiting);
3116         kfree(conf->nr_queued);
3117         kfree(conf->barrier);
3118         if (conf->bio_split)
3119                 bioset_free(conf->bio_split);
3120         kfree(conf);
3121 }
3122
3123 static int raid1_resize(struct mddev *mddev, sector_t sectors)
3124 {
3125         /* no resync is happening, and there is enough space
3126          * on all devices, so we can resize.
3127          * We need to make sure resync covers any new space.
3128          * If the array is shrinking we should possibly wait until
3129          * any io in the removed space completes, but it hardly seems
3130          * worth it.
3131          */
3132         sector_t newsize = raid1_size(mddev, sectors, 0);
3133         if (mddev->external_size &&
3134             mddev->array_sectors > newsize)
3135                 return -EINVAL;
3136         if (mddev->bitmap) {
3137                 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3138                 if (ret)
3139                         return ret;
3140         }
3141         md_set_array_sectors(mddev, newsize);
3142         if (sectors > mddev->dev_sectors &&
3143             mddev->recovery_cp > mddev->dev_sectors) {
3144                 mddev->recovery_cp = mddev->dev_sectors;
3145                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3146         }
3147         mddev->dev_sectors = sectors;
3148         mddev->resync_max_sectors = sectors;
3149         return 0;
3150 }
3151
3152 static int raid1_reshape(struct mddev *mddev)
3153 {
3154         /* We need to:
3155          * 1/ resize the r1bio_pool
3156          * 2/ resize conf->mirrors
3157          *
3158          * We allocate a new r1bio_pool if we can.
3159          * Then raise a device barrier and wait until all IO stops.
3160          * Then resize conf->mirrors and swap in the new r1bio pool.
3161          *
3162          * At the same time, we "pack" the devices so that all the missing
3163          * devices have the higher raid_disk numbers.
3164          */
3165         mempool_t *newpool, *oldpool;
3166         struct pool_info *newpoolinfo;
3167         struct raid1_info *newmirrors;
3168         struct r1conf *conf = mddev->private;
3169         int cnt, raid_disks;
3170         unsigned long flags;
3171         int d, d2;
3172
3173         /* Cannot change chunk_size, layout, or level */
3174         if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3175             mddev->layout != mddev->new_layout ||
3176             mddev->level != mddev->new_level) {
3177                 mddev->new_chunk_sectors = mddev->chunk_sectors;
3178                 mddev->new_layout = mddev->layout;
3179                 mddev->new_level = mddev->level;
3180                 return -EINVAL;
3181         }
3182
3183         if (!mddev_is_clustered(mddev))
3184                 md_allow_write(mddev);
3185
3186         raid_disks = mddev->raid_disks + mddev->delta_disks;
3187
3188         if (raid_disks < conf->raid_disks) {
3189                 cnt=0;
3190                 for (d= 0; d < conf->raid_disks; d++)
3191                         if (conf->mirrors[d].rdev)
3192                                 cnt++;
3193                 if (cnt > raid_disks)
3194                         return -EBUSY;
3195         }
3196
3197         newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3198         if (!newpoolinfo)
3199                 return -ENOMEM;
3200         newpoolinfo->mddev = mddev;
3201         newpoolinfo->raid_disks = raid_disks * 2;
3202
3203         newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3204                                  r1bio_pool_free, newpoolinfo);
3205         if (!newpool) {
3206                 kfree(newpoolinfo);
3207                 return -ENOMEM;
3208         }
3209         newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
3210                              GFP_KERNEL);
3211         if (!newmirrors) {
3212                 kfree(newpoolinfo);
3213                 mempool_destroy(newpool);
3214                 return -ENOMEM;
3215         }
3216
3217         freeze_array(conf, 0);
3218
3219         /* ok, everything is stopped */
3220         oldpool = conf->r1bio_pool;
3221         conf->r1bio_pool = newpool;
3222
3223         for (d = d2 = 0; d < conf->raid_disks; d++) {
3224                 struct md_rdev *rdev = conf->mirrors[d].rdev;
3225                 if (rdev && rdev->raid_disk != d2) {
3226                         sysfs_unlink_rdev(mddev, rdev);
3227                         rdev->raid_disk = d2;
3228                         sysfs_unlink_rdev(mddev, rdev);
3229                         if (sysfs_link_rdev(mddev, rdev))
3230                                 pr_warn("md/raid1:%s: cannot register rd%d\n",
3231                                         mdname(mddev), rdev->raid_disk);
3232                 }
3233                 if (rdev)
3234                         newmirrors[d2++].rdev = rdev;
3235         }
3236         kfree(conf->mirrors);
3237         conf->mirrors = newmirrors;
3238         kfree(conf->poolinfo);
3239         conf->poolinfo = newpoolinfo;
3240
3241         spin_lock_irqsave(&conf->device_lock, flags);
3242         mddev->degraded += (raid_disks - conf->raid_disks);
3243         spin_unlock_irqrestore(&conf->device_lock, flags);
3244         conf->raid_disks = mddev->raid_disks = raid_disks;
3245         mddev->delta_disks = 0;
3246
3247         unfreeze_array(conf);
3248
3249         set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3250         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3251         md_wakeup_thread(mddev->thread);
3252
3253         mempool_destroy(oldpool);
3254         return 0;
3255 }
3256
3257 static void raid1_quiesce(struct mddev *mddev, int quiesce)
3258 {
3259         struct r1conf *conf = mddev->private;
3260
3261         if (quiesce)
3262                 freeze_array(conf, 0);
3263         else
3264                 unfreeze_array(conf);
3265 }
3266
3267 static void *raid1_takeover(struct mddev *mddev)
3268 {
3269         /* raid1 can take over:
3270          *  raid5 with 2 devices, any layout or chunk size
3271          */
3272         if (mddev->level == 5 && mddev->raid_disks == 2) {
3273                 struct r1conf *conf;
3274                 mddev->new_level = 1;
3275                 mddev->new_layout = 0;
3276                 mddev->new_chunk_sectors = 0;
3277                 conf = setup_conf(mddev);
3278                 if (!IS_ERR(conf)) {
3279                         /* Array must appear to be quiesced */
3280                         conf->array_frozen = 1;
3281                         mddev_clear_unsupported_flags(mddev,
3282                                 UNSUPPORTED_MDDEV_FLAGS);
3283                 }
3284                 return conf;
3285         }
3286         return ERR_PTR(-EINVAL);
3287 }
3288
3289 static struct md_personality raid1_personality =
3290 {
3291         .name           = "raid1",
3292         .level          = 1,
3293         .owner          = THIS_MODULE,
3294         .make_request   = raid1_make_request,
3295         .run            = raid1_run,
3296         .free           = raid1_free,
3297         .status         = raid1_status,
3298         .error_handler  = raid1_error,
3299         .hot_add_disk   = raid1_add_disk,
3300         .hot_remove_disk= raid1_remove_disk,
3301         .spare_active   = raid1_spare_active,
3302         .sync_request   = raid1_sync_request,
3303         .resize         = raid1_resize,
3304         .size           = raid1_size,
3305         .check_reshape  = raid1_reshape,
3306         .quiesce        = raid1_quiesce,
3307         .takeover       = raid1_takeover,
3308         .congested      = raid1_congested,
3309 };
3310
3311 static int __init raid_init(void)
3312 {
3313         return register_md_personality(&raid1_personality);
3314 }
3315
3316 static void raid_exit(void)
3317 {
3318         unregister_md_personality(&raid1_personality);
3319 }
3320
3321 module_init(raid_init);
3322 module_exit(raid_exit);
3323 MODULE_LICENSE("GPL");
3324 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3325 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3326 MODULE_ALIAS("md-raid1");
3327 MODULE_ALIAS("md-level-1");
3328
3329 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);