Read from the first device when an area is resyncing
[linux-2.6-block.git] / drivers / md / raid1.c
1 /*
2  * raid1.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5  *
6  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7  *
8  * RAID-1 management functions.
9  *
10  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11  *
12  * Fixes to reconstruction by Jakob Ã˜stergaard" <jakob@ostenfeld.dk>
13  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14  *
15  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16  * bitmapped intelligence in resync:
17  *
18  *      - bitmap marked during normal i/o
19  *      - bitmap used to skip nondirty blocks during sync
20  *
21  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22  * - persistent bitmap code
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License as published by
26  * the Free Software Foundation; either version 2, or (at your option)
27  * any later version.
28  *
29  * You should have received a copy of the GNU General Public License
30  * (for example /usr/src/linux/COPYING); if not, write to the Free
31  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40 #include "md.h"
41 #include "raid1.h"
42 #include "bitmap.h"
43
44 /*
45  * Number of guaranteed r1bios in case of extreme VM load:
46  */
47 #define NR_RAID1_BIOS 256
48
49 /* when we get a read error on a read-only array, we redirect to another
50  * device without failing the first device, or trying to over-write to
51  * correct the read error.  To keep track of bad blocks on a per-bio
52  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
53  */
54 #define IO_BLOCKED ((struct bio *)1)
55 /* When we successfully write to a known bad-block, we need to remove the
56  * bad-block marking which must be done from process context.  So we record
57  * the success by setting devs[n].bio to IO_MADE_GOOD
58  */
59 #define IO_MADE_GOOD ((struct bio *)2)
60
61 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
62
63 /* When there are this many requests queue to be written by
64  * the raid1 thread, we become 'congested' to provide back-pressure
65  * for writeback.
66  */
67 static int max_queued_requests = 1024;
68
69 static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
70                           sector_t bi_sector);
71 static void lower_barrier(struct r1conf *conf);
72
73 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
74 {
75         struct pool_info *pi = data;
76         int size = offsetof(struct r1bio, bios[pi->raid_disks]);
77
78         /* allocate a r1bio with room for raid_disks entries in the bios array */
79         return kzalloc(size, gfp_flags);
80 }
81
82 static void r1bio_pool_free(void *r1_bio, void *data)
83 {
84         kfree(r1_bio);
85 }
86
87 #define RESYNC_BLOCK_SIZE (64*1024)
88 #define RESYNC_DEPTH 32
89 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
90 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
91 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
92 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
93 #define NEXT_NORMALIO_DISTANCE (3 * RESYNC_WINDOW_SECTORS)
94
95 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
96 {
97         struct pool_info *pi = data;
98         struct r1bio *r1_bio;
99         struct bio *bio;
100         int need_pages;
101         int i, j;
102
103         r1_bio = r1bio_pool_alloc(gfp_flags, pi);
104         if (!r1_bio)
105                 return NULL;
106
107         /*
108          * Allocate bios : 1 for reading, n-1 for writing
109          */
110         for (j = pi->raid_disks ; j-- ; ) {
111                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
112                 if (!bio)
113                         goto out_free_bio;
114                 r1_bio->bios[j] = bio;
115         }
116         /*
117          * Allocate RESYNC_PAGES data pages and attach them to
118          * the first bio.
119          * If this is a user-requested check/repair, allocate
120          * RESYNC_PAGES for each bio.
121          */
122         if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
123                 need_pages = pi->raid_disks;
124         else
125                 need_pages = 1;
126         for (j = 0; j < need_pages; j++) {
127                 bio = r1_bio->bios[j];
128                 bio->bi_vcnt = RESYNC_PAGES;
129
130                 if (bio_alloc_pages(bio, gfp_flags))
131                         goto out_free_pages;
132         }
133         /* If not user-requests, copy the page pointers to all bios */
134         if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
135                 for (i=0; i<RESYNC_PAGES ; i++)
136                         for (j=1; j<pi->raid_disks; j++)
137                                 r1_bio->bios[j]->bi_io_vec[i].bv_page =
138                                         r1_bio->bios[0]->bi_io_vec[i].bv_page;
139         }
140
141         r1_bio->master_bio = NULL;
142
143         return r1_bio;
144
145 out_free_pages:
146         while (--j >= 0) {
147                 struct bio_vec *bv;
148
149                 bio_for_each_segment_all(bv, r1_bio->bios[j], i)
150                         __free_page(bv->bv_page);
151         }
152
153 out_free_bio:
154         while (++j < pi->raid_disks)
155                 bio_put(r1_bio->bios[j]);
156         r1bio_pool_free(r1_bio, data);
157         return NULL;
158 }
159
160 static void r1buf_pool_free(void *__r1_bio, void *data)
161 {
162         struct pool_info *pi = data;
163         int i,j;
164         struct r1bio *r1bio = __r1_bio;
165
166         for (i = 0; i < RESYNC_PAGES; i++)
167                 for (j = pi->raid_disks; j-- ;) {
168                         if (j == 0 ||
169                             r1bio->bios[j]->bi_io_vec[i].bv_page !=
170                             r1bio->bios[0]->bi_io_vec[i].bv_page)
171                                 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
172                 }
173         for (i=0 ; i < pi->raid_disks; i++)
174                 bio_put(r1bio->bios[i]);
175
176         r1bio_pool_free(r1bio, data);
177 }
178
179 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
180 {
181         int i;
182
183         for (i = 0; i < conf->raid_disks * 2; i++) {
184                 struct bio **bio = r1_bio->bios + i;
185                 if (!BIO_SPECIAL(*bio))
186                         bio_put(*bio);
187                 *bio = NULL;
188         }
189 }
190
191 static void free_r1bio(struct r1bio *r1_bio)
192 {
193         struct r1conf *conf = r1_bio->mddev->private;
194
195         put_all_bios(conf, r1_bio);
196         mempool_free(r1_bio, conf->r1bio_pool);
197 }
198
199 static void put_buf(struct r1bio *r1_bio)
200 {
201         struct r1conf *conf = r1_bio->mddev->private;
202         int i;
203
204         for (i = 0; i < conf->raid_disks * 2; i++) {
205                 struct bio *bio = r1_bio->bios[i];
206                 if (bio->bi_end_io)
207                         rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
208         }
209
210         mempool_free(r1_bio, conf->r1buf_pool);
211
212         lower_barrier(conf);
213 }
214
215 static void reschedule_retry(struct r1bio *r1_bio)
216 {
217         unsigned long flags;
218         struct mddev *mddev = r1_bio->mddev;
219         struct r1conf *conf = mddev->private;
220
221         spin_lock_irqsave(&conf->device_lock, flags);
222         list_add(&r1_bio->retry_list, &conf->retry_list);
223         conf->nr_queued ++;
224         spin_unlock_irqrestore(&conf->device_lock, flags);
225
226         wake_up(&conf->wait_barrier);
227         md_wakeup_thread(mddev->thread);
228 }
229
230 /*
231  * raid_end_bio_io() is called when we have finished servicing a mirrored
232  * operation and are ready to return a success/failure code to the buffer
233  * cache layer.
234  */
235 static void call_bio_endio(struct r1bio *r1_bio)
236 {
237         struct bio *bio = r1_bio->master_bio;
238         int done;
239         struct r1conf *conf = r1_bio->mddev->private;
240         sector_t start_next_window = r1_bio->start_next_window;
241         sector_t bi_sector = bio->bi_iter.bi_sector;
242
243         if (bio->bi_phys_segments) {
244                 unsigned long flags;
245                 spin_lock_irqsave(&conf->device_lock, flags);
246                 bio->bi_phys_segments--;
247                 done = (bio->bi_phys_segments == 0);
248                 spin_unlock_irqrestore(&conf->device_lock, flags);
249                 /*
250                  * make_request() might be waiting for
251                  * bi_phys_segments to decrease
252                  */
253                 wake_up(&conf->wait_barrier);
254         } else
255                 done = 1;
256
257         if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
258                 clear_bit(BIO_UPTODATE, &bio->bi_flags);
259         if (done) {
260                 bio_endio(bio, 0);
261                 /*
262                  * Wake up any possible resync thread that waits for the device
263                  * to go idle.
264                  */
265                 allow_barrier(conf, start_next_window, bi_sector);
266         }
267 }
268
269 static void raid_end_bio_io(struct r1bio *r1_bio)
270 {
271         struct bio *bio = r1_bio->master_bio;
272
273         /* if nobody has done the final endio yet, do it now */
274         if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
275                 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
276                          (bio_data_dir(bio) == WRITE) ? "write" : "read",
277                          (unsigned long long) bio->bi_iter.bi_sector,
278                          (unsigned long long) bio_end_sector(bio) - 1);
279
280                 call_bio_endio(r1_bio);
281         }
282         free_r1bio(r1_bio);
283 }
284
285 /*
286  * Update disk head position estimator based on IRQ completion info.
287  */
288 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
289 {
290         struct r1conf *conf = r1_bio->mddev->private;
291
292         conf->mirrors[disk].head_position =
293                 r1_bio->sector + (r1_bio->sectors);
294 }
295
296 /*
297  * Find the disk number which triggered given bio
298  */
299 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
300 {
301         int mirror;
302         struct r1conf *conf = r1_bio->mddev->private;
303         int raid_disks = conf->raid_disks;
304
305         for (mirror = 0; mirror < raid_disks * 2; mirror++)
306                 if (r1_bio->bios[mirror] == bio)
307                         break;
308
309         BUG_ON(mirror == raid_disks * 2);
310         update_head_pos(mirror, r1_bio);
311
312         return mirror;
313 }
314
315 static void raid1_end_read_request(struct bio *bio, int error)
316 {
317         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
318         struct r1bio *r1_bio = bio->bi_private;
319         int mirror;
320         struct r1conf *conf = r1_bio->mddev->private;
321
322         mirror = r1_bio->read_disk;
323         /*
324          * this branch is our 'one mirror IO has finished' event handler:
325          */
326         update_head_pos(mirror, r1_bio);
327
328         if (uptodate)
329                 set_bit(R1BIO_Uptodate, &r1_bio->state);
330         else {
331                 /* If all other devices have failed, we want to return
332                  * the error upwards rather than fail the last device.
333                  * Here we redefine "uptodate" to mean "Don't want to retry"
334                  */
335                 unsigned long flags;
336                 spin_lock_irqsave(&conf->device_lock, flags);
337                 if (r1_bio->mddev->degraded == conf->raid_disks ||
338                     (r1_bio->mddev->degraded == conf->raid_disks-1 &&
339                      !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
340                         uptodate = 1;
341                 spin_unlock_irqrestore(&conf->device_lock, flags);
342         }
343
344         if (uptodate) {
345                 raid_end_bio_io(r1_bio);
346                 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
347         } else {
348                 /*
349                  * oops, read error:
350                  */
351                 char b[BDEVNAME_SIZE];
352                 printk_ratelimited(
353                         KERN_ERR "md/raid1:%s: %s: "
354                         "rescheduling sector %llu\n",
355                         mdname(conf->mddev),
356                         bdevname(conf->mirrors[mirror].rdev->bdev,
357                                  b),
358                         (unsigned long long)r1_bio->sector);
359                 set_bit(R1BIO_ReadError, &r1_bio->state);
360                 reschedule_retry(r1_bio);
361                 /* don't drop the reference on read_disk yet */
362         }
363 }
364
365 static void close_write(struct r1bio *r1_bio)
366 {
367         /* it really is the end of this request */
368         if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
369                 /* free extra copy of the data pages */
370                 int i = r1_bio->behind_page_count;
371                 while (i--)
372                         safe_put_page(r1_bio->behind_bvecs[i].bv_page);
373                 kfree(r1_bio->behind_bvecs);
374                 r1_bio->behind_bvecs = NULL;
375         }
376         /* clear the bitmap if all writes complete successfully */
377         bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
378                         r1_bio->sectors,
379                         !test_bit(R1BIO_Degraded, &r1_bio->state),
380                         test_bit(R1BIO_BehindIO, &r1_bio->state));
381         md_write_end(r1_bio->mddev);
382 }
383
384 static void r1_bio_write_done(struct r1bio *r1_bio)
385 {
386         if (!atomic_dec_and_test(&r1_bio->remaining))
387                 return;
388
389         if (test_bit(R1BIO_WriteError, &r1_bio->state))
390                 reschedule_retry(r1_bio);
391         else {
392                 close_write(r1_bio);
393                 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
394                         reschedule_retry(r1_bio);
395                 else
396                         raid_end_bio_io(r1_bio);
397         }
398 }
399
400 static void raid1_end_write_request(struct bio *bio, int error)
401 {
402         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
403         struct r1bio *r1_bio = bio->bi_private;
404         int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
405         struct r1conf *conf = r1_bio->mddev->private;
406         struct bio *to_put = NULL;
407
408         mirror = find_bio_disk(r1_bio, bio);
409
410         /*
411          * 'one mirror IO has finished' event handler:
412          */
413         if (!uptodate) {
414                 set_bit(WriteErrorSeen,
415                         &conf->mirrors[mirror].rdev->flags);
416                 if (!test_and_set_bit(WantReplacement,
417                                       &conf->mirrors[mirror].rdev->flags))
418                         set_bit(MD_RECOVERY_NEEDED, &
419                                 conf->mddev->recovery);
420
421                 set_bit(R1BIO_WriteError, &r1_bio->state);
422         } else {
423                 /*
424                  * Set R1BIO_Uptodate in our master bio, so that we
425                  * will return a good error code for to the higher
426                  * levels even if IO on some other mirrored buffer
427                  * fails.
428                  *
429                  * The 'master' represents the composite IO operation
430                  * to user-side. So if something waits for IO, then it
431                  * will wait for the 'master' bio.
432                  */
433                 sector_t first_bad;
434                 int bad_sectors;
435
436                 r1_bio->bios[mirror] = NULL;
437                 to_put = bio;
438                 /*
439                  * Do not set R1BIO_Uptodate if the current device is
440                  * rebuilding or Faulty. This is because we cannot use
441                  * such device for properly reading the data back (we could
442                  * potentially use it, if the current write would have felt
443                  * before rdev->recovery_offset, but for simplicity we don't
444                  * check this here.
445                  */
446                 if (test_bit(In_sync, &conf->mirrors[mirror].rdev->flags) &&
447                     !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags))
448                         set_bit(R1BIO_Uptodate, &r1_bio->state);
449
450                 /* Maybe we can clear some bad blocks. */
451                 if (is_badblock(conf->mirrors[mirror].rdev,
452                                 r1_bio->sector, r1_bio->sectors,
453                                 &first_bad, &bad_sectors)) {
454                         r1_bio->bios[mirror] = IO_MADE_GOOD;
455                         set_bit(R1BIO_MadeGood, &r1_bio->state);
456                 }
457         }
458
459         if (behind) {
460                 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
461                         atomic_dec(&r1_bio->behind_remaining);
462
463                 /*
464                  * In behind mode, we ACK the master bio once the I/O
465                  * has safely reached all non-writemostly
466                  * disks. Setting the Returned bit ensures that this
467                  * gets done only once -- we don't ever want to return
468                  * -EIO here, instead we'll wait
469                  */
470                 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
471                     test_bit(R1BIO_Uptodate, &r1_bio->state)) {
472                         /* Maybe we can return now */
473                         if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
474                                 struct bio *mbio = r1_bio->master_bio;
475                                 pr_debug("raid1: behind end write sectors"
476                                          " %llu-%llu\n",
477                                          (unsigned long long) mbio->bi_iter.bi_sector,
478                                          (unsigned long long) bio_end_sector(mbio) - 1);
479                                 call_bio_endio(r1_bio);
480                         }
481                 }
482         }
483         if (r1_bio->bios[mirror] == NULL)
484                 rdev_dec_pending(conf->mirrors[mirror].rdev,
485                                  conf->mddev);
486
487         /*
488          * Let's see if all mirrored write operations have finished
489          * already.
490          */
491         r1_bio_write_done(r1_bio);
492
493         if (to_put)
494                 bio_put(to_put);
495 }
496
497 /*
498  * This routine returns the disk from which the requested read should
499  * be done. There is a per-array 'next expected sequential IO' sector
500  * number - if this matches on the next IO then we use the last disk.
501  * There is also a per-disk 'last know head position' sector that is
502  * maintained from IRQ contexts, both the normal and the resync IO
503  * completion handlers update this position correctly. If there is no
504  * perfect sequential match then we pick the disk whose head is closest.
505  *
506  * If there are 2 mirrors in the same 2 devices, performance degrades
507  * because position is mirror, not device based.
508  *
509  * The rdev for the device selected will have nr_pending incremented.
510  */
511 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
512 {
513         const sector_t this_sector = r1_bio->sector;
514         int sectors;
515         int best_good_sectors;
516         int best_disk, best_dist_disk, best_pending_disk;
517         int has_nonrot_disk;
518         int disk;
519         sector_t best_dist;
520         unsigned int min_pending;
521         struct md_rdev *rdev;
522         int choose_first;
523         int choose_next_idle;
524
525         rcu_read_lock();
526         /*
527          * Check if we can balance. We can balance on the whole
528          * device if no resync is going on, or below the resync window.
529          * We take the first readable disk when above the resync window.
530          */
531  retry:
532         sectors = r1_bio->sectors;
533         best_disk = -1;
534         best_dist_disk = -1;
535         best_dist = MaxSector;
536         best_pending_disk = -1;
537         min_pending = UINT_MAX;
538         best_good_sectors = 0;
539         has_nonrot_disk = 0;
540         choose_next_idle = 0;
541
542         if ((conf->mddev->recovery_cp < this_sector + sectors) ||
543             (mddev_is_clustered(conf->mddev) &&
544             md_cluster_ops->area_resyncing(conf->mddev, this_sector,
545                     this_sector + sectors)))
546                 choose_first = 1;
547         else
548                 choose_first = 0;
549
550         for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
551                 sector_t dist;
552                 sector_t first_bad;
553                 int bad_sectors;
554                 unsigned int pending;
555                 bool nonrot;
556
557                 rdev = rcu_dereference(conf->mirrors[disk].rdev);
558                 if (r1_bio->bios[disk] == IO_BLOCKED
559                     || rdev == NULL
560                     || test_bit(Unmerged, &rdev->flags)
561                     || test_bit(Faulty, &rdev->flags))
562                         continue;
563                 if (!test_bit(In_sync, &rdev->flags) &&
564                     rdev->recovery_offset < this_sector + sectors)
565                         continue;
566                 if (test_bit(WriteMostly, &rdev->flags)) {
567                         /* Don't balance among write-mostly, just
568                          * use the first as a last resort */
569                         if (best_disk < 0) {
570                                 if (is_badblock(rdev, this_sector, sectors,
571                                                 &first_bad, &bad_sectors)) {
572                                         if (first_bad < this_sector)
573                                                 /* Cannot use this */
574                                                 continue;
575                                         best_good_sectors = first_bad - this_sector;
576                                 } else
577                                         best_good_sectors = sectors;
578                                 best_disk = disk;
579                         }
580                         continue;
581                 }
582                 /* This is a reasonable device to use.  It might
583                  * even be best.
584                  */
585                 if (is_badblock(rdev, this_sector, sectors,
586                                 &first_bad, &bad_sectors)) {
587                         if (best_dist < MaxSector)
588                                 /* already have a better device */
589                                 continue;
590                         if (first_bad <= this_sector) {
591                                 /* cannot read here. If this is the 'primary'
592                                  * device, then we must not read beyond
593                                  * bad_sectors from another device..
594                                  */
595                                 bad_sectors -= (this_sector - first_bad);
596                                 if (choose_first && sectors > bad_sectors)
597                                         sectors = bad_sectors;
598                                 if (best_good_sectors > sectors)
599                                         best_good_sectors = sectors;
600
601                         } else {
602                                 sector_t good_sectors = first_bad - this_sector;
603                                 if (good_sectors > best_good_sectors) {
604                                         best_good_sectors = good_sectors;
605                                         best_disk = disk;
606                                 }
607                                 if (choose_first)
608                                         break;
609                         }
610                         continue;
611                 } else
612                         best_good_sectors = sectors;
613
614                 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
615                 has_nonrot_disk |= nonrot;
616                 pending = atomic_read(&rdev->nr_pending);
617                 dist = abs(this_sector - conf->mirrors[disk].head_position);
618                 if (choose_first) {
619                         best_disk = disk;
620                         break;
621                 }
622                 /* Don't change to another disk for sequential reads */
623                 if (conf->mirrors[disk].next_seq_sect == this_sector
624                     || dist == 0) {
625                         int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
626                         struct raid1_info *mirror = &conf->mirrors[disk];
627
628                         best_disk = disk;
629                         /*
630                          * If buffered sequential IO size exceeds optimal
631                          * iosize, check if there is idle disk. If yes, choose
632                          * the idle disk. read_balance could already choose an
633                          * idle disk before noticing it's a sequential IO in
634                          * this disk. This doesn't matter because this disk
635                          * will idle, next time it will be utilized after the
636                          * first disk has IO size exceeds optimal iosize. In
637                          * this way, iosize of the first disk will be optimal
638                          * iosize at least. iosize of the second disk might be
639                          * small, but not a big deal since when the second disk
640                          * starts IO, the first disk is likely still busy.
641                          */
642                         if (nonrot && opt_iosize > 0 &&
643                             mirror->seq_start != MaxSector &&
644                             mirror->next_seq_sect > opt_iosize &&
645                             mirror->next_seq_sect - opt_iosize >=
646                             mirror->seq_start) {
647                                 choose_next_idle = 1;
648                                 continue;
649                         }
650                         break;
651                 }
652                 /* If device is idle, use it */
653                 if (pending == 0) {
654                         best_disk = disk;
655                         break;
656                 }
657
658                 if (choose_next_idle)
659                         continue;
660
661                 if (min_pending > pending) {
662                         min_pending = pending;
663                         best_pending_disk = disk;
664                 }
665
666                 if (dist < best_dist) {
667                         best_dist = dist;
668                         best_dist_disk = disk;
669                 }
670         }
671
672         /*
673          * If all disks are rotational, choose the closest disk. If any disk is
674          * non-rotational, choose the disk with less pending request even the
675          * disk is rotational, which might/might not be optimal for raids with
676          * mixed ratation/non-rotational disks depending on workload.
677          */
678         if (best_disk == -1) {
679                 if (has_nonrot_disk)
680                         best_disk = best_pending_disk;
681                 else
682                         best_disk = best_dist_disk;
683         }
684
685         if (best_disk >= 0) {
686                 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
687                 if (!rdev)
688                         goto retry;
689                 atomic_inc(&rdev->nr_pending);
690                 if (test_bit(Faulty, &rdev->flags)) {
691                         /* cannot risk returning a device that failed
692                          * before we inc'ed nr_pending
693                          */
694                         rdev_dec_pending(rdev, conf->mddev);
695                         goto retry;
696                 }
697                 sectors = best_good_sectors;
698
699                 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
700                         conf->mirrors[best_disk].seq_start = this_sector;
701
702                 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
703         }
704         rcu_read_unlock();
705         *max_sectors = sectors;
706
707         return best_disk;
708 }
709
710 static int raid1_mergeable_bvec(struct mddev *mddev,
711                                 struct bvec_merge_data *bvm,
712                                 struct bio_vec *biovec)
713 {
714         struct r1conf *conf = mddev->private;
715         sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
716         int max = biovec->bv_len;
717
718         if (mddev->merge_check_needed) {
719                 int disk;
720                 rcu_read_lock();
721                 for (disk = 0; disk < conf->raid_disks * 2; disk++) {
722                         struct md_rdev *rdev = rcu_dereference(
723                                 conf->mirrors[disk].rdev);
724                         if (rdev && !test_bit(Faulty, &rdev->flags)) {
725                                 struct request_queue *q =
726                                         bdev_get_queue(rdev->bdev);
727                                 if (q->merge_bvec_fn) {
728                                         bvm->bi_sector = sector +
729                                                 rdev->data_offset;
730                                         bvm->bi_bdev = rdev->bdev;
731                                         max = min(max, q->merge_bvec_fn(
732                                                           q, bvm, biovec));
733                                 }
734                         }
735                 }
736                 rcu_read_unlock();
737         }
738         return max;
739
740 }
741
742 static int raid1_congested(struct mddev *mddev, int bits)
743 {
744         struct r1conf *conf = mddev->private;
745         int i, ret = 0;
746
747         if ((bits & (1 << BDI_async_congested)) &&
748             conf->pending_count >= max_queued_requests)
749                 return 1;
750
751         rcu_read_lock();
752         for (i = 0; i < conf->raid_disks * 2; i++) {
753                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
754                 if (rdev && !test_bit(Faulty, &rdev->flags)) {
755                         struct request_queue *q = bdev_get_queue(rdev->bdev);
756
757                         BUG_ON(!q);
758
759                         /* Note the '|| 1' - when read_balance prefers
760                          * non-congested targets, it can be removed
761                          */
762                         if ((bits & (1<<BDI_async_congested)) || 1)
763                                 ret |= bdi_congested(&q->backing_dev_info, bits);
764                         else
765                                 ret &= bdi_congested(&q->backing_dev_info, bits);
766                 }
767         }
768         rcu_read_unlock();
769         return ret;
770 }
771
772 static void flush_pending_writes(struct r1conf *conf)
773 {
774         /* Any writes that have been queued but are awaiting
775          * bitmap updates get flushed here.
776          */
777         spin_lock_irq(&conf->device_lock);
778
779         if (conf->pending_bio_list.head) {
780                 struct bio *bio;
781                 bio = bio_list_get(&conf->pending_bio_list);
782                 conf->pending_count = 0;
783                 spin_unlock_irq(&conf->device_lock);
784                 /* flush any pending bitmap writes to
785                  * disk before proceeding w/ I/O */
786                 bitmap_unplug(conf->mddev->bitmap);
787                 wake_up(&conf->wait_barrier);
788
789                 while (bio) { /* submit pending writes */
790                         struct bio *next = bio->bi_next;
791                         bio->bi_next = NULL;
792                         if (unlikely((bio->bi_rw & REQ_DISCARD) &&
793                             !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
794                                 /* Just ignore it */
795                                 bio_endio(bio, 0);
796                         else
797                                 generic_make_request(bio);
798                         bio = next;
799                 }
800         } else
801                 spin_unlock_irq(&conf->device_lock);
802 }
803
804 /* Barriers....
805  * Sometimes we need to suspend IO while we do something else,
806  * either some resync/recovery, or reconfigure the array.
807  * To do this we raise a 'barrier'.
808  * The 'barrier' is a counter that can be raised multiple times
809  * to count how many activities are happening which preclude
810  * normal IO.
811  * We can only raise the barrier if there is no pending IO.
812  * i.e. if nr_pending == 0.
813  * We choose only to raise the barrier if no-one is waiting for the
814  * barrier to go down.  This means that as soon as an IO request
815  * is ready, no other operations which require a barrier will start
816  * until the IO request has had a chance.
817  *
818  * So: regular IO calls 'wait_barrier'.  When that returns there
819  *    is no backgroup IO happening,  It must arrange to call
820  *    allow_barrier when it has finished its IO.
821  * backgroup IO calls must call raise_barrier.  Once that returns
822  *    there is no normal IO happeing.  It must arrange to call
823  *    lower_barrier when the particular background IO completes.
824  */
825 static void raise_barrier(struct r1conf *conf, sector_t sector_nr)
826 {
827         spin_lock_irq(&conf->resync_lock);
828
829         /* Wait until no block IO is waiting */
830         wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
831                             conf->resync_lock);
832
833         /* block any new IO from starting */
834         conf->barrier++;
835         conf->next_resync = sector_nr;
836
837         /* For these conditions we must wait:
838          * A: while the array is in frozen state
839          * B: while barrier >= RESYNC_DEPTH, meaning resync reach
840          *    the max count which allowed.
841          * C: next_resync + RESYNC_SECTORS > start_next_window, meaning
842          *    next resync will reach to the window which normal bios are
843          *    handling.
844          * D: while there are any active requests in the current window.
845          */
846         wait_event_lock_irq(conf->wait_barrier,
847                             !conf->array_frozen &&
848                             conf->barrier < RESYNC_DEPTH &&
849                             conf->current_window_requests == 0 &&
850                             (conf->start_next_window >=
851                              conf->next_resync + RESYNC_SECTORS),
852                             conf->resync_lock);
853
854         conf->nr_pending++;
855         spin_unlock_irq(&conf->resync_lock);
856 }
857
858 static void lower_barrier(struct r1conf *conf)
859 {
860         unsigned long flags;
861         BUG_ON(conf->barrier <= 0);
862         spin_lock_irqsave(&conf->resync_lock, flags);
863         conf->barrier--;
864         conf->nr_pending--;
865         spin_unlock_irqrestore(&conf->resync_lock, flags);
866         wake_up(&conf->wait_barrier);
867 }
868
869 static bool need_to_wait_for_sync(struct r1conf *conf, struct bio *bio)
870 {
871         bool wait = false;
872
873         if (conf->array_frozen || !bio)
874                 wait = true;
875         else if (conf->barrier && bio_data_dir(bio) == WRITE) {
876                 if ((conf->mddev->curr_resync_completed
877                      >= bio_end_sector(bio)) ||
878                     (conf->next_resync + NEXT_NORMALIO_DISTANCE
879                      <= bio->bi_iter.bi_sector))
880                         wait = false;
881                 else
882                         wait = true;
883         }
884
885         return wait;
886 }
887
888 static sector_t wait_barrier(struct r1conf *conf, struct bio *bio)
889 {
890         sector_t sector = 0;
891
892         spin_lock_irq(&conf->resync_lock);
893         if (need_to_wait_for_sync(conf, bio)) {
894                 conf->nr_waiting++;
895                 /* Wait for the barrier to drop.
896                  * However if there are already pending
897                  * requests (preventing the barrier from
898                  * rising completely), and the
899                  * per-process bio queue isn't empty,
900                  * then don't wait, as we need to empty
901                  * that queue to allow conf->start_next_window
902                  * to increase.
903                  */
904                 wait_event_lock_irq(conf->wait_barrier,
905                                     !conf->array_frozen &&
906                                     (!conf->barrier ||
907                                      ((conf->start_next_window <
908                                        conf->next_resync + RESYNC_SECTORS) &&
909                                       current->bio_list &&
910                                       !bio_list_empty(current->bio_list))),
911                                     conf->resync_lock);
912                 conf->nr_waiting--;
913         }
914
915         if (bio && bio_data_dir(bio) == WRITE) {
916                 if (bio->bi_iter.bi_sector >=
917                     conf->mddev->curr_resync_completed) {
918                         if (conf->start_next_window == MaxSector)
919                                 conf->start_next_window =
920                                         conf->next_resync +
921                                         NEXT_NORMALIO_DISTANCE;
922
923                         if ((conf->start_next_window + NEXT_NORMALIO_DISTANCE)
924                             <= bio->bi_iter.bi_sector)
925                                 conf->next_window_requests++;
926                         else
927                                 conf->current_window_requests++;
928                         sector = conf->start_next_window;
929                 }
930         }
931
932         conf->nr_pending++;
933         spin_unlock_irq(&conf->resync_lock);
934         return sector;
935 }
936
937 static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
938                           sector_t bi_sector)
939 {
940         unsigned long flags;
941
942         spin_lock_irqsave(&conf->resync_lock, flags);
943         conf->nr_pending--;
944         if (start_next_window) {
945                 if (start_next_window == conf->start_next_window) {
946                         if (conf->start_next_window + NEXT_NORMALIO_DISTANCE
947                             <= bi_sector)
948                                 conf->next_window_requests--;
949                         else
950                                 conf->current_window_requests--;
951                 } else
952                         conf->current_window_requests--;
953
954                 if (!conf->current_window_requests) {
955                         if (conf->next_window_requests) {
956                                 conf->current_window_requests =
957                                         conf->next_window_requests;
958                                 conf->next_window_requests = 0;
959                                 conf->start_next_window +=
960                                         NEXT_NORMALIO_DISTANCE;
961                         } else
962                                 conf->start_next_window = MaxSector;
963                 }
964         }
965         spin_unlock_irqrestore(&conf->resync_lock, flags);
966         wake_up(&conf->wait_barrier);
967 }
968
969 static void freeze_array(struct r1conf *conf, int extra)
970 {
971         /* stop syncio and normal IO and wait for everything to
972          * go quite.
973          * We wait until nr_pending match nr_queued+extra
974          * This is called in the context of one normal IO request
975          * that has failed. Thus any sync request that might be pending
976          * will be blocked by nr_pending, and we need to wait for
977          * pending IO requests to complete or be queued for re-try.
978          * Thus the number queued (nr_queued) plus this request (extra)
979          * must match the number of pending IOs (nr_pending) before
980          * we continue.
981          */
982         spin_lock_irq(&conf->resync_lock);
983         conf->array_frozen = 1;
984         wait_event_lock_irq_cmd(conf->wait_barrier,
985                                 conf->nr_pending == conf->nr_queued+extra,
986                                 conf->resync_lock,
987                                 flush_pending_writes(conf));
988         spin_unlock_irq(&conf->resync_lock);
989 }
990 static void unfreeze_array(struct r1conf *conf)
991 {
992         /* reverse the effect of the freeze */
993         spin_lock_irq(&conf->resync_lock);
994         conf->array_frozen = 0;
995         wake_up(&conf->wait_barrier);
996         spin_unlock_irq(&conf->resync_lock);
997 }
998
999 /* duplicate the data pages for behind I/O
1000  */
1001 static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
1002 {
1003         int i;
1004         struct bio_vec *bvec;
1005         struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
1006                                         GFP_NOIO);
1007         if (unlikely(!bvecs))
1008                 return;
1009
1010         bio_for_each_segment_all(bvec, bio, i) {
1011                 bvecs[i] = *bvec;
1012                 bvecs[i].bv_page = alloc_page(GFP_NOIO);
1013                 if (unlikely(!bvecs[i].bv_page))
1014                         goto do_sync_io;
1015                 memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
1016                        kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
1017                 kunmap(bvecs[i].bv_page);
1018                 kunmap(bvec->bv_page);
1019         }
1020         r1_bio->behind_bvecs = bvecs;
1021         r1_bio->behind_page_count = bio->bi_vcnt;
1022         set_bit(R1BIO_BehindIO, &r1_bio->state);
1023         return;
1024
1025 do_sync_io:
1026         for (i = 0; i < bio->bi_vcnt; i++)
1027                 if (bvecs[i].bv_page)
1028                         put_page(bvecs[i].bv_page);
1029         kfree(bvecs);
1030         pr_debug("%dB behind alloc failed, doing sync I/O\n",
1031                  bio->bi_iter.bi_size);
1032 }
1033
1034 struct raid1_plug_cb {
1035         struct blk_plug_cb      cb;
1036         struct bio_list         pending;
1037         int                     pending_cnt;
1038 };
1039
1040 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1041 {
1042         struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1043                                                   cb);
1044         struct mddev *mddev = plug->cb.data;
1045         struct r1conf *conf = mddev->private;
1046         struct bio *bio;
1047
1048         if (from_schedule || current->bio_list) {
1049                 spin_lock_irq(&conf->device_lock);
1050                 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1051                 conf->pending_count += plug->pending_cnt;
1052                 spin_unlock_irq(&conf->device_lock);
1053                 wake_up(&conf->wait_barrier);
1054                 md_wakeup_thread(mddev->thread);
1055                 kfree(plug);
1056                 return;
1057         }
1058
1059         /* we aren't scheduling, so we can do the write-out directly. */
1060         bio = bio_list_get(&plug->pending);
1061         bitmap_unplug(mddev->bitmap);
1062         wake_up(&conf->wait_barrier);
1063
1064         while (bio) { /* submit pending writes */
1065                 struct bio *next = bio->bi_next;
1066                 bio->bi_next = NULL;
1067                 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1068                     !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1069                         /* Just ignore it */
1070                         bio_endio(bio, 0);
1071                 else
1072                         generic_make_request(bio);
1073                 bio = next;
1074         }
1075         kfree(plug);
1076 }
1077
1078 static void make_request(struct mddev *mddev, struct bio * bio)
1079 {
1080         struct r1conf *conf = mddev->private;
1081         struct raid1_info *mirror;
1082         struct r1bio *r1_bio;
1083         struct bio *read_bio;
1084         int i, disks;
1085         struct bitmap *bitmap;
1086         unsigned long flags;
1087         const int rw = bio_data_dir(bio);
1088         const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1089         const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
1090         const unsigned long do_discard = (bio->bi_rw
1091                                           & (REQ_DISCARD | REQ_SECURE));
1092         const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
1093         struct md_rdev *blocked_rdev;
1094         struct blk_plug_cb *cb;
1095         struct raid1_plug_cb *plug = NULL;
1096         int first_clone;
1097         int sectors_handled;
1098         int max_sectors;
1099         sector_t start_next_window;
1100
1101         /*
1102          * Register the new request and wait if the reconstruction
1103          * thread has put up a bar for new requests.
1104          * Continue immediately if no resync is active currently.
1105          */
1106
1107         md_write_start(mddev, bio); /* wait on superblock update early */
1108
1109         if (bio_data_dir(bio) == WRITE &&
1110             ((bio_end_sector(bio) > mddev->suspend_lo &&
1111             bio->bi_iter.bi_sector < mddev->suspend_hi) ||
1112             (mddev_is_clustered(mddev) &&
1113              md_cluster_ops->area_resyncing(mddev, bio->bi_iter.bi_sector, bio_end_sector(bio))))) {
1114                 /* As the suspend_* range is controlled by
1115                  * userspace, we want an interruptible
1116                  * wait.
1117                  */
1118                 DEFINE_WAIT(w);
1119                 for (;;) {
1120                         flush_signals(current);
1121                         prepare_to_wait(&conf->wait_barrier,
1122                                         &w, TASK_INTERRUPTIBLE);
1123                         if (bio_end_sector(bio) <= mddev->suspend_lo ||
1124                             bio->bi_iter.bi_sector >= mddev->suspend_hi ||
1125                             (mddev_is_clustered(mddev) &&
1126                              !md_cluster_ops->area_resyncing(mddev,
1127                                      bio->bi_iter.bi_sector, bio_end_sector(bio))))
1128                                 break;
1129                         schedule();
1130                 }
1131                 finish_wait(&conf->wait_barrier, &w);
1132         }
1133
1134         start_next_window = wait_barrier(conf, bio);
1135
1136         bitmap = mddev->bitmap;
1137
1138         /*
1139          * make_request() can abort the operation when READA is being
1140          * used and no empty request is available.
1141          *
1142          */
1143         r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1144
1145         r1_bio->master_bio = bio;
1146         r1_bio->sectors = bio_sectors(bio);
1147         r1_bio->state = 0;
1148         r1_bio->mddev = mddev;
1149         r1_bio->sector = bio->bi_iter.bi_sector;
1150
1151         /* We might need to issue multiple reads to different
1152          * devices if there are bad blocks around, so we keep
1153          * track of the number of reads in bio->bi_phys_segments.
1154          * If this is 0, there is only one r1_bio and no locking
1155          * will be needed when requests complete.  If it is
1156          * non-zero, then it is the number of not-completed requests.
1157          */
1158         bio->bi_phys_segments = 0;
1159         clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1160
1161         if (rw == READ) {
1162                 /*
1163                  * read balancing logic:
1164                  */
1165                 int rdisk;
1166
1167 read_again:
1168                 rdisk = read_balance(conf, r1_bio, &max_sectors);
1169
1170                 if (rdisk < 0) {
1171                         /* couldn't find anywhere to read from */
1172                         raid_end_bio_io(r1_bio);
1173                         return;
1174                 }
1175                 mirror = conf->mirrors + rdisk;
1176
1177                 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1178                     bitmap) {
1179                         /* Reading from a write-mostly device must
1180                          * take care not to over-take any writes
1181                          * that are 'behind'
1182                          */
1183                         wait_event(bitmap->behind_wait,
1184                                    atomic_read(&bitmap->behind_writes) == 0);
1185                 }
1186                 r1_bio->read_disk = rdisk;
1187                 r1_bio->start_next_window = 0;
1188
1189                 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1190                 bio_trim(read_bio, r1_bio->sector - bio->bi_iter.bi_sector,
1191                          max_sectors);
1192
1193                 r1_bio->bios[rdisk] = read_bio;
1194
1195                 read_bio->bi_iter.bi_sector = r1_bio->sector +
1196                         mirror->rdev->data_offset;
1197                 read_bio->bi_bdev = mirror->rdev->bdev;
1198                 read_bio->bi_end_io = raid1_end_read_request;
1199                 read_bio->bi_rw = READ | do_sync;
1200                 read_bio->bi_private = r1_bio;
1201
1202                 if (max_sectors < r1_bio->sectors) {
1203                         /* could not read all from this device, so we will
1204                          * need another r1_bio.
1205                          */
1206
1207                         sectors_handled = (r1_bio->sector + max_sectors
1208                                            - bio->bi_iter.bi_sector);
1209                         r1_bio->sectors = max_sectors;
1210                         spin_lock_irq(&conf->device_lock);
1211                         if (bio->bi_phys_segments == 0)
1212                                 bio->bi_phys_segments = 2;
1213                         else
1214                                 bio->bi_phys_segments++;
1215                         spin_unlock_irq(&conf->device_lock);
1216                         /* Cannot call generic_make_request directly
1217                          * as that will be queued in __make_request
1218                          * and subsequent mempool_alloc might block waiting
1219                          * for it.  So hand bio over to raid1d.
1220                          */
1221                         reschedule_retry(r1_bio);
1222
1223                         r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1224
1225                         r1_bio->master_bio = bio;
1226                         r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1227                         r1_bio->state = 0;
1228                         r1_bio->mddev = mddev;
1229                         r1_bio->sector = bio->bi_iter.bi_sector +
1230                                 sectors_handled;
1231                         goto read_again;
1232                 } else
1233                         generic_make_request(read_bio);
1234                 return;
1235         }
1236
1237         /*
1238          * WRITE:
1239          */
1240         if (conf->pending_count >= max_queued_requests) {
1241                 md_wakeup_thread(mddev->thread);
1242                 wait_event(conf->wait_barrier,
1243                            conf->pending_count < max_queued_requests);
1244         }
1245         /* first select target devices under rcu_lock and
1246          * inc refcount on their rdev.  Record them by setting
1247          * bios[x] to bio
1248          * If there are known/acknowledged bad blocks on any device on
1249          * which we have seen a write error, we want to avoid writing those
1250          * blocks.
1251          * This potentially requires several writes to write around
1252          * the bad blocks.  Each set of writes gets it's own r1bio
1253          * with a set of bios attached.
1254          */
1255
1256         disks = conf->raid_disks * 2;
1257  retry_write:
1258         r1_bio->start_next_window = start_next_window;
1259         blocked_rdev = NULL;
1260         rcu_read_lock();
1261         max_sectors = r1_bio->sectors;
1262         for (i = 0;  i < disks; i++) {
1263                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1264                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1265                         atomic_inc(&rdev->nr_pending);
1266                         blocked_rdev = rdev;
1267                         break;
1268                 }
1269                 r1_bio->bios[i] = NULL;
1270                 if (!rdev || test_bit(Faulty, &rdev->flags)
1271                     || test_bit(Unmerged, &rdev->flags)) {
1272                         if (i < conf->raid_disks)
1273                                 set_bit(R1BIO_Degraded, &r1_bio->state);
1274                         continue;
1275                 }
1276
1277                 atomic_inc(&rdev->nr_pending);
1278                 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1279                         sector_t first_bad;
1280                         int bad_sectors;
1281                         int is_bad;
1282
1283                         is_bad = is_badblock(rdev, r1_bio->sector,
1284                                              max_sectors,
1285                                              &first_bad, &bad_sectors);
1286                         if (is_bad < 0) {
1287                                 /* mustn't write here until the bad block is
1288                                  * acknowledged*/
1289                                 set_bit(BlockedBadBlocks, &rdev->flags);
1290                                 blocked_rdev = rdev;
1291                                 break;
1292                         }
1293                         if (is_bad && first_bad <= r1_bio->sector) {
1294                                 /* Cannot write here at all */
1295                                 bad_sectors -= (r1_bio->sector - first_bad);
1296                                 if (bad_sectors < max_sectors)
1297                                         /* mustn't write more than bad_sectors
1298                                          * to other devices yet
1299                                          */
1300                                         max_sectors = bad_sectors;
1301                                 rdev_dec_pending(rdev, mddev);
1302                                 /* We don't set R1BIO_Degraded as that
1303                                  * only applies if the disk is
1304                                  * missing, so it might be re-added,
1305                                  * and we want to know to recover this
1306                                  * chunk.
1307                                  * In this case the device is here,
1308                                  * and the fact that this chunk is not
1309                                  * in-sync is recorded in the bad
1310                                  * block log
1311                                  */
1312                                 continue;
1313                         }
1314                         if (is_bad) {
1315                                 int good_sectors = first_bad - r1_bio->sector;
1316                                 if (good_sectors < max_sectors)
1317                                         max_sectors = good_sectors;
1318                         }
1319                 }
1320                 r1_bio->bios[i] = bio;
1321         }
1322         rcu_read_unlock();
1323
1324         if (unlikely(blocked_rdev)) {
1325                 /* Wait for this device to become unblocked */
1326                 int j;
1327                 sector_t old = start_next_window;
1328
1329                 for (j = 0; j < i; j++)
1330                         if (r1_bio->bios[j])
1331                                 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1332                 r1_bio->state = 0;
1333                 allow_barrier(conf, start_next_window, bio->bi_iter.bi_sector);
1334                 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1335                 start_next_window = wait_barrier(conf, bio);
1336                 /*
1337                  * We must make sure the multi r1bios of bio have
1338                  * the same value of bi_phys_segments
1339                  */
1340                 if (bio->bi_phys_segments && old &&
1341                     old != start_next_window)
1342                         /* Wait for the former r1bio(s) to complete */
1343                         wait_event(conf->wait_barrier,
1344                                    bio->bi_phys_segments == 1);
1345                 goto retry_write;
1346         }
1347
1348         if (max_sectors < r1_bio->sectors) {
1349                 /* We are splitting this write into multiple parts, so
1350                  * we need to prepare for allocating another r1_bio.
1351                  */
1352                 r1_bio->sectors = max_sectors;
1353                 spin_lock_irq(&conf->device_lock);
1354                 if (bio->bi_phys_segments == 0)
1355                         bio->bi_phys_segments = 2;
1356                 else
1357                         bio->bi_phys_segments++;
1358                 spin_unlock_irq(&conf->device_lock);
1359         }
1360         sectors_handled = r1_bio->sector + max_sectors - bio->bi_iter.bi_sector;
1361
1362         atomic_set(&r1_bio->remaining, 1);
1363         atomic_set(&r1_bio->behind_remaining, 0);
1364
1365         first_clone = 1;
1366         for (i = 0; i < disks; i++) {
1367                 struct bio *mbio;
1368                 if (!r1_bio->bios[i])
1369                         continue;
1370
1371                 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1372                 bio_trim(mbio, r1_bio->sector - bio->bi_iter.bi_sector, max_sectors);
1373
1374                 if (first_clone) {
1375                         /* do behind I/O ?
1376                          * Not if there are too many, or cannot
1377                          * allocate memory, or a reader on WriteMostly
1378                          * is waiting for behind writes to flush */
1379                         if (bitmap &&
1380                             (atomic_read(&bitmap->behind_writes)
1381                              < mddev->bitmap_info.max_write_behind) &&
1382                             !waitqueue_active(&bitmap->behind_wait))
1383                                 alloc_behind_pages(mbio, r1_bio);
1384
1385                         bitmap_startwrite(bitmap, r1_bio->sector,
1386                                           r1_bio->sectors,
1387                                           test_bit(R1BIO_BehindIO,
1388                                                    &r1_bio->state));
1389                         first_clone = 0;
1390                 }
1391                 if (r1_bio->behind_bvecs) {
1392                         struct bio_vec *bvec;
1393                         int j;
1394
1395                         /*
1396                          * We trimmed the bio, so _all is legit
1397                          */
1398                         bio_for_each_segment_all(bvec, mbio, j)
1399                                 bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1400                         if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1401                                 atomic_inc(&r1_bio->behind_remaining);
1402                 }
1403
1404                 r1_bio->bios[i] = mbio;
1405
1406                 mbio->bi_iter.bi_sector = (r1_bio->sector +
1407                                    conf->mirrors[i].rdev->data_offset);
1408                 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1409                 mbio->bi_end_io = raid1_end_write_request;
1410                 mbio->bi_rw =
1411                         WRITE | do_flush_fua | do_sync | do_discard | do_same;
1412                 mbio->bi_private = r1_bio;
1413
1414                 atomic_inc(&r1_bio->remaining);
1415
1416                 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1417                 if (cb)
1418                         plug = container_of(cb, struct raid1_plug_cb, cb);
1419                 else
1420                         plug = NULL;
1421                 spin_lock_irqsave(&conf->device_lock, flags);
1422                 if (plug) {
1423                         bio_list_add(&plug->pending, mbio);
1424                         plug->pending_cnt++;
1425                 } else {
1426                         bio_list_add(&conf->pending_bio_list, mbio);
1427                         conf->pending_count++;
1428                 }
1429                 spin_unlock_irqrestore(&conf->device_lock, flags);
1430                 if (!plug)
1431                         md_wakeup_thread(mddev->thread);
1432         }
1433         /* Mustn't call r1_bio_write_done before this next test,
1434          * as it could result in the bio being freed.
1435          */
1436         if (sectors_handled < bio_sectors(bio)) {
1437                 r1_bio_write_done(r1_bio);
1438                 /* We need another r1_bio.  It has already been counted
1439                  * in bio->bi_phys_segments
1440                  */
1441                 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1442                 r1_bio->master_bio = bio;
1443                 r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1444                 r1_bio->state = 0;
1445                 r1_bio->mddev = mddev;
1446                 r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1447                 goto retry_write;
1448         }
1449
1450         r1_bio_write_done(r1_bio);
1451
1452         /* In case raid1d snuck in to freeze_array */
1453         wake_up(&conf->wait_barrier);
1454 }
1455
1456 static void status(struct seq_file *seq, struct mddev *mddev)
1457 {
1458         struct r1conf *conf = mddev->private;
1459         int i;
1460
1461         seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1462                    conf->raid_disks - mddev->degraded);
1463         rcu_read_lock();
1464         for (i = 0; i < conf->raid_disks; i++) {
1465                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1466                 seq_printf(seq, "%s",
1467                            rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1468         }
1469         rcu_read_unlock();
1470         seq_printf(seq, "]");
1471 }
1472
1473 static void error(struct mddev *mddev, struct md_rdev *rdev)
1474 {
1475         char b[BDEVNAME_SIZE];
1476         struct r1conf *conf = mddev->private;
1477
1478         /*
1479          * If it is not operational, then we have already marked it as dead
1480          * else if it is the last working disks, ignore the error, let the
1481          * next level up know.
1482          * else mark the drive as failed
1483          */
1484         if (test_bit(In_sync, &rdev->flags)
1485             && (conf->raid_disks - mddev->degraded) == 1) {
1486                 /*
1487                  * Don't fail the drive, act as though we were just a
1488                  * normal single drive.
1489                  * However don't try a recovery from this drive as
1490                  * it is very likely to fail.
1491                  */
1492                 conf->recovery_disabled = mddev->recovery_disabled;
1493                 return;
1494         }
1495         set_bit(Blocked, &rdev->flags);
1496         if (test_and_clear_bit(In_sync, &rdev->flags)) {
1497                 unsigned long flags;
1498                 spin_lock_irqsave(&conf->device_lock, flags);
1499                 mddev->degraded++;
1500                 set_bit(Faulty, &rdev->flags);
1501                 spin_unlock_irqrestore(&conf->device_lock, flags);
1502         } else
1503                 set_bit(Faulty, &rdev->flags);
1504         /*
1505          * if recovery is running, make sure it aborts.
1506          */
1507         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1508         set_bit(MD_CHANGE_DEVS, &mddev->flags);
1509         printk(KERN_ALERT
1510                "md/raid1:%s: Disk failure on %s, disabling device.\n"
1511                "md/raid1:%s: Operation continuing on %d devices.\n",
1512                mdname(mddev), bdevname(rdev->bdev, b),
1513                mdname(mddev), conf->raid_disks - mddev->degraded);
1514 }
1515
1516 static void print_conf(struct r1conf *conf)
1517 {
1518         int i;
1519
1520         printk(KERN_DEBUG "RAID1 conf printout:\n");
1521         if (!conf) {
1522                 printk(KERN_DEBUG "(!conf)\n");
1523                 return;
1524         }
1525         printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1526                 conf->raid_disks);
1527
1528         rcu_read_lock();
1529         for (i = 0; i < conf->raid_disks; i++) {
1530                 char b[BDEVNAME_SIZE];
1531                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1532                 if (rdev)
1533                         printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1534                                i, !test_bit(In_sync, &rdev->flags),
1535                                !test_bit(Faulty, &rdev->flags),
1536                                bdevname(rdev->bdev,b));
1537         }
1538         rcu_read_unlock();
1539 }
1540
1541 static void close_sync(struct r1conf *conf)
1542 {
1543         wait_barrier(conf, NULL);
1544         allow_barrier(conf, 0, 0);
1545
1546         mempool_destroy(conf->r1buf_pool);
1547         conf->r1buf_pool = NULL;
1548
1549         spin_lock_irq(&conf->resync_lock);
1550         conf->next_resync = 0;
1551         conf->start_next_window = MaxSector;
1552         conf->current_window_requests +=
1553                 conf->next_window_requests;
1554         conf->next_window_requests = 0;
1555         spin_unlock_irq(&conf->resync_lock);
1556 }
1557
1558 static int raid1_spare_active(struct mddev *mddev)
1559 {
1560         int i;
1561         struct r1conf *conf = mddev->private;
1562         int count = 0;
1563         unsigned long flags;
1564
1565         /*
1566          * Find all failed disks within the RAID1 configuration
1567          * and mark them readable.
1568          * Called under mddev lock, so rcu protection not needed.
1569          */
1570         for (i = 0; i < conf->raid_disks; i++) {
1571                 struct md_rdev *rdev = conf->mirrors[i].rdev;
1572                 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1573                 if (repl
1574                     && repl->recovery_offset == MaxSector
1575                     && !test_bit(Faulty, &repl->flags)
1576                     && !test_and_set_bit(In_sync, &repl->flags)) {
1577                         /* replacement has just become active */
1578                         if (!rdev ||
1579                             !test_and_clear_bit(In_sync, &rdev->flags))
1580                                 count++;
1581                         if (rdev) {
1582                                 /* Replaced device not technically
1583                                  * faulty, but we need to be sure
1584                                  * it gets removed and never re-added
1585                                  */
1586                                 set_bit(Faulty, &rdev->flags);
1587                                 sysfs_notify_dirent_safe(
1588                                         rdev->sysfs_state);
1589                         }
1590                 }
1591                 if (rdev
1592                     && rdev->recovery_offset == MaxSector
1593                     && !test_bit(Faulty, &rdev->flags)
1594                     && !test_and_set_bit(In_sync, &rdev->flags)) {
1595                         count++;
1596                         sysfs_notify_dirent_safe(rdev->sysfs_state);
1597                 }
1598         }
1599         spin_lock_irqsave(&conf->device_lock, flags);
1600         mddev->degraded -= count;
1601         spin_unlock_irqrestore(&conf->device_lock, flags);
1602
1603         print_conf(conf);
1604         return count;
1605 }
1606
1607 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1608 {
1609         struct r1conf *conf = mddev->private;
1610         int err = -EEXIST;
1611         int mirror = 0;
1612         struct raid1_info *p;
1613         int first = 0;
1614         int last = conf->raid_disks - 1;
1615         struct request_queue *q = bdev_get_queue(rdev->bdev);
1616
1617         if (mddev->recovery_disabled == conf->recovery_disabled)
1618                 return -EBUSY;
1619
1620         if (rdev->raid_disk >= 0)
1621                 first = last = rdev->raid_disk;
1622
1623         if (q->merge_bvec_fn) {
1624                 set_bit(Unmerged, &rdev->flags);
1625                 mddev->merge_check_needed = 1;
1626         }
1627
1628         for (mirror = first; mirror <= last; mirror++) {
1629                 p = conf->mirrors+mirror;
1630                 if (!p->rdev) {
1631
1632                         if (mddev->gendisk)
1633                                 disk_stack_limits(mddev->gendisk, rdev->bdev,
1634                                                   rdev->data_offset << 9);
1635
1636                         p->head_position = 0;
1637                         rdev->raid_disk = mirror;
1638                         err = 0;
1639                         /* As all devices are equivalent, we don't need a full recovery
1640                          * if this was recently any drive of the array
1641                          */
1642                         if (rdev->saved_raid_disk < 0)
1643                                 conf->fullsync = 1;
1644                         rcu_assign_pointer(p->rdev, rdev);
1645                         break;
1646                 }
1647                 if (test_bit(WantReplacement, &p->rdev->flags) &&
1648                     p[conf->raid_disks].rdev == NULL) {
1649                         /* Add this device as a replacement */
1650                         clear_bit(In_sync, &rdev->flags);
1651                         set_bit(Replacement, &rdev->flags);
1652                         rdev->raid_disk = mirror;
1653                         err = 0;
1654                         conf->fullsync = 1;
1655                         rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1656                         break;
1657                 }
1658         }
1659         if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1660                 /* Some requests might not have seen this new
1661                  * merge_bvec_fn.  We must wait for them to complete
1662                  * before merging the device fully.
1663                  * First we make sure any code which has tested
1664                  * our function has submitted the request, then
1665                  * we wait for all outstanding requests to complete.
1666                  */
1667                 synchronize_sched();
1668                 freeze_array(conf, 0);
1669                 unfreeze_array(conf);
1670                 clear_bit(Unmerged, &rdev->flags);
1671         }
1672         md_integrity_add_rdev(rdev, mddev);
1673         if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1674                 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1675         print_conf(conf);
1676         return err;
1677 }
1678
1679 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1680 {
1681         struct r1conf *conf = mddev->private;
1682         int err = 0;
1683         int number = rdev->raid_disk;
1684         struct raid1_info *p = conf->mirrors + number;
1685
1686         if (rdev != p->rdev)
1687                 p = conf->mirrors + conf->raid_disks + number;
1688
1689         print_conf(conf);
1690         if (rdev == p->rdev) {
1691                 if (test_bit(In_sync, &rdev->flags) ||
1692                     atomic_read(&rdev->nr_pending)) {
1693                         err = -EBUSY;
1694                         goto abort;
1695                 }
1696                 /* Only remove non-faulty devices if recovery
1697                  * is not possible.
1698                  */
1699                 if (!test_bit(Faulty, &rdev->flags) &&
1700                     mddev->recovery_disabled != conf->recovery_disabled &&
1701                     mddev->degraded < conf->raid_disks) {
1702                         err = -EBUSY;
1703                         goto abort;
1704                 }
1705                 p->rdev = NULL;
1706                 synchronize_rcu();
1707                 if (atomic_read(&rdev->nr_pending)) {
1708                         /* lost the race, try later */
1709                         err = -EBUSY;
1710                         p->rdev = rdev;
1711                         goto abort;
1712                 } else if (conf->mirrors[conf->raid_disks + number].rdev) {
1713                         /* We just removed a device that is being replaced.
1714                          * Move down the replacement.  We drain all IO before
1715                          * doing this to avoid confusion.
1716                          */
1717                         struct md_rdev *repl =
1718                                 conf->mirrors[conf->raid_disks + number].rdev;
1719                         freeze_array(conf, 0);
1720                         clear_bit(Replacement, &repl->flags);
1721                         p->rdev = repl;
1722                         conf->mirrors[conf->raid_disks + number].rdev = NULL;
1723                         unfreeze_array(conf);
1724                         clear_bit(WantReplacement, &rdev->flags);
1725                 } else
1726                         clear_bit(WantReplacement, &rdev->flags);
1727                 err = md_integrity_register(mddev);
1728         }
1729 abort:
1730
1731         print_conf(conf);
1732         return err;
1733 }
1734
1735 static void end_sync_read(struct bio *bio, int error)
1736 {
1737         struct r1bio *r1_bio = bio->bi_private;
1738
1739         update_head_pos(r1_bio->read_disk, r1_bio);
1740
1741         /*
1742          * we have read a block, now it needs to be re-written,
1743          * or re-read if the read failed.
1744          * We don't do much here, just schedule handling by raid1d
1745          */
1746         if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1747                 set_bit(R1BIO_Uptodate, &r1_bio->state);
1748
1749         if (atomic_dec_and_test(&r1_bio->remaining))
1750                 reschedule_retry(r1_bio);
1751 }
1752
1753 static void end_sync_write(struct bio *bio, int error)
1754 {
1755         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1756         struct r1bio *r1_bio = bio->bi_private;
1757         struct mddev *mddev = r1_bio->mddev;
1758         struct r1conf *conf = mddev->private;
1759         int mirror=0;
1760         sector_t first_bad;
1761         int bad_sectors;
1762
1763         mirror = find_bio_disk(r1_bio, bio);
1764
1765         if (!uptodate) {
1766                 sector_t sync_blocks = 0;
1767                 sector_t s = r1_bio->sector;
1768                 long sectors_to_go = r1_bio->sectors;
1769                 /* make sure these bits doesn't get cleared. */
1770                 do {
1771                         bitmap_end_sync(mddev->bitmap, s,
1772                                         &sync_blocks, 1);
1773                         s += sync_blocks;
1774                         sectors_to_go -= sync_blocks;
1775                 } while (sectors_to_go > 0);
1776                 set_bit(WriteErrorSeen,
1777                         &conf->mirrors[mirror].rdev->flags);
1778                 if (!test_and_set_bit(WantReplacement,
1779                                       &conf->mirrors[mirror].rdev->flags))
1780                         set_bit(MD_RECOVERY_NEEDED, &
1781                                 mddev->recovery);
1782                 set_bit(R1BIO_WriteError, &r1_bio->state);
1783         } else if (is_badblock(conf->mirrors[mirror].rdev,
1784                                r1_bio->sector,
1785                                r1_bio->sectors,
1786                                &first_bad, &bad_sectors) &&
1787                    !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1788                                 r1_bio->sector,
1789                                 r1_bio->sectors,
1790                                 &first_bad, &bad_sectors)
1791                 )
1792                 set_bit(R1BIO_MadeGood, &r1_bio->state);
1793
1794         if (atomic_dec_and_test(&r1_bio->remaining)) {
1795                 int s = r1_bio->sectors;
1796                 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1797                     test_bit(R1BIO_WriteError, &r1_bio->state))
1798                         reschedule_retry(r1_bio);
1799                 else {
1800                         put_buf(r1_bio);
1801                         md_done_sync(mddev, s, uptodate);
1802                 }
1803         }
1804 }
1805
1806 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1807                             int sectors, struct page *page, int rw)
1808 {
1809         if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1810                 /* success */
1811                 return 1;
1812         if (rw == WRITE) {
1813                 set_bit(WriteErrorSeen, &rdev->flags);
1814                 if (!test_and_set_bit(WantReplacement,
1815                                       &rdev->flags))
1816                         set_bit(MD_RECOVERY_NEEDED, &
1817                                 rdev->mddev->recovery);
1818         }
1819         /* need to record an error - either for the block or the device */
1820         if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1821                 md_error(rdev->mddev, rdev);
1822         return 0;
1823 }
1824
1825 static int fix_sync_read_error(struct r1bio *r1_bio)
1826 {
1827         /* Try some synchronous reads of other devices to get
1828          * good data, much like with normal read errors.  Only
1829          * read into the pages we already have so we don't
1830          * need to re-issue the read request.
1831          * We don't need to freeze the array, because being in an
1832          * active sync request, there is no normal IO, and
1833          * no overlapping syncs.
1834          * We don't need to check is_badblock() again as we
1835          * made sure that anything with a bad block in range
1836          * will have bi_end_io clear.
1837          */
1838         struct mddev *mddev = r1_bio->mddev;
1839         struct r1conf *conf = mddev->private;
1840         struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1841         sector_t sect = r1_bio->sector;
1842         int sectors = r1_bio->sectors;
1843         int idx = 0;
1844
1845         while(sectors) {
1846                 int s = sectors;
1847                 int d = r1_bio->read_disk;
1848                 int success = 0;
1849                 struct md_rdev *rdev;
1850                 int start;
1851
1852                 if (s > (PAGE_SIZE>>9))
1853                         s = PAGE_SIZE >> 9;
1854                 do {
1855                         if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1856                                 /* No rcu protection needed here devices
1857                                  * can only be removed when no resync is
1858                                  * active, and resync is currently active
1859                                  */
1860                                 rdev = conf->mirrors[d].rdev;
1861                                 if (sync_page_io(rdev, sect, s<<9,
1862                                                  bio->bi_io_vec[idx].bv_page,
1863                                                  READ, false)) {
1864                                         success = 1;
1865                                         break;
1866                                 }
1867                         }
1868                         d++;
1869                         if (d == conf->raid_disks * 2)
1870                                 d = 0;
1871                 } while (!success && d != r1_bio->read_disk);
1872
1873                 if (!success) {
1874                         char b[BDEVNAME_SIZE];
1875                         int abort = 0;
1876                         /* Cannot read from anywhere, this block is lost.
1877                          * Record a bad block on each device.  If that doesn't
1878                          * work just disable and interrupt the recovery.
1879                          * Don't fail devices as that won't really help.
1880                          */
1881                         printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1882                                " for block %llu\n",
1883                                mdname(mddev),
1884                                bdevname(bio->bi_bdev, b),
1885                                (unsigned long long)r1_bio->sector);
1886                         for (d = 0; d < conf->raid_disks * 2; d++) {
1887                                 rdev = conf->mirrors[d].rdev;
1888                                 if (!rdev || test_bit(Faulty, &rdev->flags))
1889                                         continue;
1890                                 if (!rdev_set_badblocks(rdev, sect, s, 0))
1891                                         abort = 1;
1892                         }
1893                         if (abort) {
1894                                 conf->recovery_disabled =
1895                                         mddev->recovery_disabled;
1896                                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1897                                 md_done_sync(mddev, r1_bio->sectors, 0);
1898                                 put_buf(r1_bio);
1899                                 return 0;
1900                         }
1901                         /* Try next page */
1902                         sectors -= s;
1903                         sect += s;
1904                         idx++;
1905                         continue;
1906                 }
1907
1908                 start = d;
1909                 /* write it back and re-read */
1910                 while (d != r1_bio->read_disk) {
1911                         if (d == 0)
1912                                 d = conf->raid_disks * 2;
1913                         d--;
1914                         if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1915                                 continue;
1916                         rdev = conf->mirrors[d].rdev;
1917                         if (r1_sync_page_io(rdev, sect, s,
1918                                             bio->bi_io_vec[idx].bv_page,
1919                                             WRITE) == 0) {
1920                                 r1_bio->bios[d]->bi_end_io = NULL;
1921                                 rdev_dec_pending(rdev, mddev);
1922                         }
1923                 }
1924                 d = start;
1925                 while (d != r1_bio->read_disk) {
1926                         if (d == 0)
1927                                 d = conf->raid_disks * 2;
1928                         d--;
1929                         if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1930                                 continue;
1931                         rdev = conf->mirrors[d].rdev;
1932                         if (r1_sync_page_io(rdev, sect, s,
1933                                             bio->bi_io_vec[idx].bv_page,
1934                                             READ) != 0)
1935                                 atomic_add(s, &rdev->corrected_errors);
1936                 }
1937                 sectors -= s;
1938                 sect += s;
1939                 idx ++;
1940         }
1941         set_bit(R1BIO_Uptodate, &r1_bio->state);
1942         set_bit(BIO_UPTODATE, &bio->bi_flags);
1943         return 1;
1944 }
1945
1946 static void process_checks(struct r1bio *r1_bio)
1947 {
1948         /* We have read all readable devices.  If we haven't
1949          * got the block, then there is no hope left.
1950          * If we have, then we want to do a comparison
1951          * and skip the write if everything is the same.
1952          * If any blocks failed to read, then we need to
1953          * attempt an over-write
1954          */
1955         struct mddev *mddev = r1_bio->mddev;
1956         struct r1conf *conf = mddev->private;
1957         int primary;
1958         int i;
1959         int vcnt;
1960
1961         /* Fix variable parts of all bios */
1962         vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
1963         for (i = 0; i < conf->raid_disks * 2; i++) {
1964                 int j;
1965                 int size;
1966                 int uptodate;
1967                 struct bio *b = r1_bio->bios[i];
1968                 if (b->bi_end_io != end_sync_read)
1969                         continue;
1970                 /* fixup the bio for reuse, but preserve BIO_UPTODATE */
1971                 uptodate = test_bit(BIO_UPTODATE, &b->bi_flags);
1972                 bio_reset(b);
1973                 if (!uptodate)
1974                         clear_bit(BIO_UPTODATE, &b->bi_flags);
1975                 b->bi_vcnt = vcnt;
1976                 b->bi_iter.bi_size = r1_bio->sectors << 9;
1977                 b->bi_iter.bi_sector = r1_bio->sector +
1978                         conf->mirrors[i].rdev->data_offset;
1979                 b->bi_bdev = conf->mirrors[i].rdev->bdev;
1980                 b->bi_end_io = end_sync_read;
1981                 b->bi_private = r1_bio;
1982
1983                 size = b->bi_iter.bi_size;
1984                 for (j = 0; j < vcnt ; j++) {
1985                         struct bio_vec *bi;
1986                         bi = &b->bi_io_vec[j];
1987                         bi->bv_offset = 0;
1988                         if (size > PAGE_SIZE)
1989                                 bi->bv_len = PAGE_SIZE;
1990                         else
1991                                 bi->bv_len = size;
1992                         size -= PAGE_SIZE;
1993                 }
1994         }
1995         for (primary = 0; primary < conf->raid_disks * 2; primary++)
1996                 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1997                     test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1998                         r1_bio->bios[primary]->bi_end_io = NULL;
1999                         rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2000                         break;
2001                 }
2002         r1_bio->read_disk = primary;
2003         for (i = 0; i < conf->raid_disks * 2; i++) {
2004                 int j;
2005                 struct bio *pbio = r1_bio->bios[primary];
2006                 struct bio *sbio = r1_bio->bios[i];
2007                 int uptodate = test_bit(BIO_UPTODATE, &sbio->bi_flags);
2008
2009                 if (sbio->bi_end_io != end_sync_read)
2010                         continue;
2011                 /* Now we can 'fixup' the BIO_UPTODATE flag */
2012                 set_bit(BIO_UPTODATE, &sbio->bi_flags);
2013
2014                 if (uptodate) {
2015                         for (j = vcnt; j-- ; ) {
2016                                 struct page *p, *s;
2017                                 p = pbio->bi_io_vec[j].bv_page;
2018                                 s = sbio->bi_io_vec[j].bv_page;
2019                                 if (memcmp(page_address(p),
2020                                            page_address(s),
2021                                            sbio->bi_io_vec[j].bv_len))
2022                                         break;
2023                         }
2024                 } else
2025                         j = 0;
2026                 if (j >= 0)
2027                         atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2028                 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2029                               && uptodate)) {
2030                         /* No need to write to this device. */
2031                         sbio->bi_end_io = NULL;
2032                         rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2033                         continue;
2034                 }
2035
2036                 bio_copy_data(sbio, pbio);
2037         }
2038 }
2039
2040 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2041 {
2042         struct r1conf *conf = mddev->private;
2043         int i;
2044         int disks = conf->raid_disks * 2;
2045         struct bio *bio, *wbio;
2046
2047         bio = r1_bio->bios[r1_bio->read_disk];
2048
2049         if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2050                 /* ouch - failed to read all of that. */
2051                 if (!fix_sync_read_error(r1_bio))
2052                         return;
2053
2054         if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2055                 process_checks(r1_bio);
2056
2057         /*
2058          * schedule writes
2059          */
2060         atomic_set(&r1_bio->remaining, 1);
2061         for (i = 0; i < disks ; i++) {
2062                 wbio = r1_bio->bios[i];
2063                 if (wbio->bi_end_io == NULL ||
2064                     (wbio->bi_end_io == end_sync_read &&
2065                      (i == r1_bio->read_disk ||
2066                       !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2067                         continue;
2068
2069                 wbio->bi_rw = WRITE;
2070                 wbio->bi_end_io = end_sync_write;
2071                 atomic_inc(&r1_bio->remaining);
2072                 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2073
2074                 generic_make_request(wbio);
2075         }
2076
2077         if (atomic_dec_and_test(&r1_bio->remaining)) {
2078                 /* if we're here, all write(s) have completed, so clean up */
2079                 int s = r1_bio->sectors;
2080                 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2081                     test_bit(R1BIO_WriteError, &r1_bio->state))
2082                         reschedule_retry(r1_bio);
2083                 else {
2084                         put_buf(r1_bio);
2085                         md_done_sync(mddev, s, 1);
2086                 }
2087         }
2088 }
2089
2090 /*
2091  * This is a kernel thread which:
2092  *
2093  *      1.      Retries failed read operations on working mirrors.
2094  *      2.      Updates the raid superblock when problems encounter.
2095  *      3.      Performs writes following reads for array synchronising.
2096  */
2097
2098 static void fix_read_error(struct r1conf *conf, int read_disk,
2099                            sector_t sect, int sectors)
2100 {
2101         struct mddev *mddev = conf->mddev;
2102         while(sectors) {
2103                 int s = sectors;
2104                 int d = read_disk;
2105                 int success = 0;
2106                 int start;
2107                 struct md_rdev *rdev;
2108
2109                 if (s > (PAGE_SIZE>>9))
2110                         s = PAGE_SIZE >> 9;
2111
2112                 do {
2113                         /* Note: no rcu protection needed here
2114                          * as this is synchronous in the raid1d thread
2115                          * which is the thread that might remove
2116                          * a device.  If raid1d ever becomes multi-threaded....
2117                          */
2118                         sector_t first_bad;
2119                         int bad_sectors;
2120
2121                         rdev = conf->mirrors[d].rdev;
2122                         if (rdev &&
2123                             (test_bit(In_sync, &rdev->flags) ||
2124                              (!test_bit(Faulty, &rdev->flags) &&
2125                               rdev->recovery_offset >= sect + s)) &&
2126                             is_badblock(rdev, sect, s,
2127                                         &first_bad, &bad_sectors) == 0 &&
2128                             sync_page_io(rdev, sect, s<<9,
2129                                          conf->tmppage, READ, false))
2130                                 success = 1;
2131                         else {
2132                                 d++;
2133                                 if (d == conf->raid_disks * 2)
2134                                         d = 0;
2135                         }
2136                 } while (!success && d != read_disk);
2137
2138                 if (!success) {
2139                         /* Cannot read from anywhere - mark it bad */
2140                         struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2141                         if (!rdev_set_badblocks(rdev, sect, s, 0))
2142                                 md_error(mddev, rdev);
2143                         break;
2144                 }
2145                 /* write it back and re-read */
2146                 start = d;
2147                 while (d != read_disk) {
2148                         if (d==0)
2149                                 d = conf->raid_disks * 2;
2150                         d--;
2151                         rdev = conf->mirrors[d].rdev;
2152                         if (rdev &&
2153                             !test_bit(Faulty, &rdev->flags))
2154                                 r1_sync_page_io(rdev, sect, s,
2155                                                 conf->tmppage, WRITE);
2156                 }
2157                 d = start;
2158                 while (d != read_disk) {
2159                         char b[BDEVNAME_SIZE];
2160                         if (d==0)
2161                                 d = conf->raid_disks * 2;
2162                         d--;
2163                         rdev = conf->mirrors[d].rdev;
2164                         if (rdev &&
2165                             !test_bit(Faulty, &rdev->flags)) {
2166                                 if (r1_sync_page_io(rdev, sect, s,
2167                                                     conf->tmppage, READ)) {
2168                                         atomic_add(s, &rdev->corrected_errors);
2169                                         printk(KERN_INFO
2170                                                "md/raid1:%s: read error corrected "
2171                                                "(%d sectors at %llu on %s)\n",
2172                                                mdname(mddev), s,
2173                                                (unsigned long long)(sect +
2174                                                    rdev->data_offset),
2175                                                bdevname(rdev->bdev, b));
2176                                 }
2177                         }
2178                 }
2179                 sectors -= s;
2180                 sect += s;
2181         }
2182 }
2183
2184 static int narrow_write_error(struct r1bio *r1_bio, int i)
2185 {
2186         struct mddev *mddev = r1_bio->mddev;
2187         struct r1conf *conf = mddev->private;
2188         struct md_rdev *rdev = conf->mirrors[i].rdev;
2189
2190         /* bio has the data to be written to device 'i' where
2191          * we just recently had a write error.
2192          * We repeatedly clone the bio and trim down to one block,
2193          * then try the write.  Where the write fails we record
2194          * a bad block.
2195          * It is conceivable that the bio doesn't exactly align with
2196          * blocks.  We must handle this somehow.
2197          *
2198          * We currently own a reference on the rdev.
2199          */
2200
2201         int block_sectors;
2202         sector_t sector;
2203         int sectors;
2204         int sect_to_write = r1_bio->sectors;
2205         int ok = 1;
2206
2207         if (rdev->badblocks.shift < 0)
2208                 return 0;
2209
2210         block_sectors = roundup(1 << rdev->badblocks.shift,
2211                                 bdev_logical_block_size(rdev->bdev) >> 9);
2212         sector = r1_bio->sector;
2213         sectors = ((sector + block_sectors)
2214                    & ~(sector_t)(block_sectors - 1))
2215                 - sector;
2216
2217         while (sect_to_write) {
2218                 struct bio *wbio;
2219                 if (sectors > sect_to_write)
2220                         sectors = sect_to_write;
2221                 /* Write at 'sector' for 'sectors'*/
2222
2223                 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2224                         unsigned vcnt = r1_bio->behind_page_count;
2225                         struct bio_vec *vec = r1_bio->behind_bvecs;
2226
2227                         while (!vec->bv_page) {
2228                                 vec++;
2229                                 vcnt--;
2230                         }
2231
2232                         wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2233                         memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2234
2235                         wbio->bi_vcnt = vcnt;
2236                 } else {
2237                         wbio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2238                 }
2239
2240                 wbio->bi_rw = WRITE;
2241                 wbio->bi_iter.bi_sector = r1_bio->sector;
2242                 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2243
2244                 bio_trim(wbio, sector - r1_bio->sector, sectors);
2245                 wbio->bi_iter.bi_sector += rdev->data_offset;
2246                 wbio->bi_bdev = rdev->bdev;
2247                 if (submit_bio_wait(WRITE, wbio) == 0)
2248                         /* failure! */
2249                         ok = rdev_set_badblocks(rdev, sector,
2250                                                 sectors, 0)
2251                                 && ok;
2252
2253                 bio_put(wbio);
2254                 sect_to_write -= sectors;
2255                 sector += sectors;
2256                 sectors = block_sectors;
2257         }
2258         return ok;
2259 }
2260
2261 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2262 {
2263         int m;
2264         int s = r1_bio->sectors;
2265         for (m = 0; m < conf->raid_disks * 2 ; m++) {
2266                 struct md_rdev *rdev = conf->mirrors[m].rdev;
2267                 struct bio *bio = r1_bio->bios[m];
2268                 if (bio->bi_end_io == NULL)
2269                         continue;
2270                 if (test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2271                     test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2272                         rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2273                 }
2274                 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2275                     test_bit(R1BIO_WriteError, &r1_bio->state)) {
2276                         if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2277                                 md_error(conf->mddev, rdev);
2278                 }
2279         }
2280         put_buf(r1_bio);
2281         md_done_sync(conf->mddev, s, 1);
2282 }
2283
2284 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2285 {
2286         int m;
2287         for (m = 0; m < conf->raid_disks * 2 ; m++)
2288                 if (r1_bio->bios[m] == IO_MADE_GOOD) {
2289                         struct md_rdev *rdev = conf->mirrors[m].rdev;
2290                         rdev_clear_badblocks(rdev,
2291                                              r1_bio->sector,
2292                                              r1_bio->sectors, 0);
2293                         rdev_dec_pending(rdev, conf->mddev);
2294                 } else if (r1_bio->bios[m] != NULL) {
2295                         /* This drive got a write error.  We need to
2296                          * narrow down and record precise write
2297                          * errors.
2298                          */
2299                         if (!narrow_write_error(r1_bio, m)) {
2300                                 md_error(conf->mddev,
2301                                          conf->mirrors[m].rdev);
2302                                 /* an I/O failed, we can't clear the bitmap */
2303                                 set_bit(R1BIO_Degraded, &r1_bio->state);
2304                         }
2305                         rdev_dec_pending(conf->mirrors[m].rdev,
2306                                          conf->mddev);
2307                 }
2308         if (test_bit(R1BIO_WriteError, &r1_bio->state))
2309                 close_write(r1_bio);
2310         raid_end_bio_io(r1_bio);
2311 }
2312
2313 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2314 {
2315         int disk;
2316         int max_sectors;
2317         struct mddev *mddev = conf->mddev;
2318         struct bio *bio;
2319         char b[BDEVNAME_SIZE];
2320         struct md_rdev *rdev;
2321
2322         clear_bit(R1BIO_ReadError, &r1_bio->state);
2323         /* we got a read error. Maybe the drive is bad.  Maybe just
2324          * the block and we can fix it.
2325          * We freeze all other IO, and try reading the block from
2326          * other devices.  When we find one, we re-write
2327          * and check it that fixes the read error.
2328          * This is all done synchronously while the array is
2329          * frozen
2330          */
2331         if (mddev->ro == 0) {
2332                 freeze_array(conf, 1);
2333                 fix_read_error(conf, r1_bio->read_disk,
2334                                r1_bio->sector, r1_bio->sectors);
2335                 unfreeze_array(conf);
2336         } else
2337                 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
2338         rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev);
2339
2340         bio = r1_bio->bios[r1_bio->read_disk];
2341         bdevname(bio->bi_bdev, b);
2342 read_more:
2343         disk = read_balance(conf, r1_bio, &max_sectors);
2344         if (disk == -1) {
2345                 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
2346                        " read error for block %llu\n",
2347                        mdname(mddev), b, (unsigned long long)r1_bio->sector);
2348                 raid_end_bio_io(r1_bio);
2349         } else {
2350                 const unsigned long do_sync
2351                         = r1_bio->master_bio->bi_rw & REQ_SYNC;
2352                 if (bio) {
2353                         r1_bio->bios[r1_bio->read_disk] =
2354                                 mddev->ro ? IO_BLOCKED : NULL;
2355                         bio_put(bio);
2356                 }
2357                 r1_bio->read_disk = disk;
2358                 bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2359                 bio_trim(bio, r1_bio->sector - bio->bi_iter.bi_sector,
2360                          max_sectors);
2361                 r1_bio->bios[r1_bio->read_disk] = bio;
2362                 rdev = conf->mirrors[disk].rdev;
2363                 printk_ratelimited(KERN_ERR
2364                                    "md/raid1:%s: redirecting sector %llu"
2365                                    " to other mirror: %s\n",
2366                                    mdname(mddev),
2367                                    (unsigned long long)r1_bio->sector,
2368                                    bdevname(rdev->bdev, b));
2369                 bio->bi_iter.bi_sector = r1_bio->sector + rdev->data_offset;
2370                 bio->bi_bdev = rdev->bdev;
2371                 bio->bi_end_io = raid1_end_read_request;
2372                 bio->bi_rw = READ | do_sync;
2373                 bio->bi_private = r1_bio;
2374                 if (max_sectors < r1_bio->sectors) {
2375                         /* Drat - have to split this up more */
2376                         struct bio *mbio = r1_bio->master_bio;
2377                         int sectors_handled = (r1_bio->sector + max_sectors
2378                                                - mbio->bi_iter.bi_sector);
2379                         r1_bio->sectors = max_sectors;
2380                         spin_lock_irq(&conf->device_lock);
2381                         if (mbio->bi_phys_segments == 0)
2382                                 mbio->bi_phys_segments = 2;
2383                         else
2384                                 mbio->bi_phys_segments++;
2385                         spin_unlock_irq(&conf->device_lock);
2386                         generic_make_request(bio);
2387                         bio = NULL;
2388
2389                         r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2390
2391                         r1_bio->master_bio = mbio;
2392                         r1_bio->sectors = bio_sectors(mbio) - sectors_handled;
2393                         r1_bio->state = 0;
2394                         set_bit(R1BIO_ReadError, &r1_bio->state);
2395                         r1_bio->mddev = mddev;
2396                         r1_bio->sector = mbio->bi_iter.bi_sector +
2397                                 sectors_handled;
2398
2399                         goto read_more;
2400                 } else
2401                         generic_make_request(bio);
2402         }
2403 }
2404
2405 static void raid1d(struct md_thread *thread)
2406 {
2407         struct mddev *mddev = thread->mddev;
2408         struct r1bio *r1_bio;
2409         unsigned long flags;
2410         struct r1conf *conf = mddev->private;
2411         struct list_head *head = &conf->retry_list;
2412         struct blk_plug plug;
2413
2414         md_check_recovery(mddev);
2415
2416         blk_start_plug(&plug);
2417         for (;;) {
2418
2419                 flush_pending_writes(conf);
2420
2421                 spin_lock_irqsave(&conf->device_lock, flags);
2422                 if (list_empty(head)) {
2423                         spin_unlock_irqrestore(&conf->device_lock, flags);
2424                         break;
2425                 }
2426                 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2427                 list_del(head->prev);
2428                 conf->nr_queued--;
2429                 spin_unlock_irqrestore(&conf->device_lock, flags);
2430
2431                 mddev = r1_bio->mddev;
2432                 conf = mddev->private;
2433                 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2434                         if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2435                             test_bit(R1BIO_WriteError, &r1_bio->state))
2436                                 handle_sync_write_finished(conf, r1_bio);
2437                         else
2438                                 sync_request_write(mddev, r1_bio);
2439                 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2440                            test_bit(R1BIO_WriteError, &r1_bio->state))
2441                         handle_write_finished(conf, r1_bio);
2442                 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2443                         handle_read_error(conf, r1_bio);
2444                 else
2445                         /* just a partial read to be scheduled from separate
2446                          * context
2447                          */
2448                         generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2449
2450                 cond_resched();
2451                 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2452                         md_check_recovery(mddev);
2453         }
2454         blk_finish_plug(&plug);
2455 }
2456
2457 static int init_resync(struct r1conf *conf)
2458 {
2459         int buffs;
2460
2461         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2462         BUG_ON(conf->r1buf_pool);
2463         conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2464                                           conf->poolinfo);
2465         if (!conf->r1buf_pool)
2466                 return -ENOMEM;
2467         conf->next_resync = 0;
2468         return 0;
2469 }
2470
2471 /*
2472  * perform a "sync" on one "block"
2473  *
2474  * We need to make sure that no normal I/O request - particularly write
2475  * requests - conflict with active sync requests.
2476  *
2477  * This is achieved by tracking pending requests and a 'barrier' concept
2478  * that can be installed to exclude normal IO requests.
2479  */
2480
2481 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
2482 {
2483         struct r1conf *conf = mddev->private;
2484         struct r1bio *r1_bio;
2485         struct bio *bio;
2486         sector_t max_sector, nr_sectors;
2487         int disk = -1;
2488         int i;
2489         int wonly = -1;
2490         int write_targets = 0, read_targets = 0;
2491         sector_t sync_blocks;
2492         int still_degraded = 0;
2493         int good_sectors = RESYNC_SECTORS;
2494         int min_bad = 0; /* number of sectors that are bad in all devices */
2495
2496         if (!conf->r1buf_pool)
2497                 if (init_resync(conf))
2498                         return 0;
2499
2500         max_sector = mddev->dev_sectors;
2501         if (sector_nr >= max_sector) {
2502                 /* If we aborted, we need to abort the
2503                  * sync on the 'current' bitmap chunk (there will
2504                  * only be one in raid1 resync.
2505                  * We can find the current addess in mddev->curr_resync
2506                  */
2507                 if (mddev->curr_resync < max_sector) /* aborted */
2508                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2509                                                 &sync_blocks, 1);
2510                 else /* completed sync */
2511                         conf->fullsync = 0;
2512
2513                 bitmap_close_sync(mddev->bitmap);
2514                 close_sync(conf);
2515                 return 0;
2516         }
2517
2518         if (mddev->bitmap == NULL &&
2519             mddev->recovery_cp == MaxSector &&
2520             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2521             conf->fullsync == 0) {
2522                 *skipped = 1;
2523                 return max_sector - sector_nr;
2524         }
2525         /* before building a request, check if we can skip these blocks..
2526          * This call the bitmap_start_sync doesn't actually record anything
2527          */
2528         if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2529             !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2530                 /* We can skip this block, and probably several more */
2531                 *skipped = 1;
2532                 return sync_blocks;
2533         }
2534         /*
2535          * If there is non-resync activity waiting for a turn,
2536          * and resync is going fast enough,
2537          * then let it though before starting on this new sync request.
2538          */
2539         if (!go_faster && conf->nr_waiting)
2540                 msleep_interruptible(1000);
2541
2542         bitmap_cond_end_sync(mddev->bitmap, sector_nr);
2543         r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2544
2545         raise_barrier(conf, sector_nr);
2546
2547         rcu_read_lock();
2548         /*
2549          * If we get a correctably read error during resync or recovery,
2550          * we might want to read from a different device.  So we
2551          * flag all drives that could conceivably be read from for READ,
2552          * and any others (which will be non-In_sync devices) for WRITE.
2553          * If a read fails, we try reading from something else for which READ
2554          * is OK.
2555          */
2556
2557         r1_bio->mddev = mddev;
2558         r1_bio->sector = sector_nr;
2559         r1_bio->state = 0;
2560         set_bit(R1BIO_IsSync, &r1_bio->state);
2561
2562         for (i = 0; i < conf->raid_disks * 2; i++) {
2563                 struct md_rdev *rdev;
2564                 bio = r1_bio->bios[i];
2565                 bio_reset(bio);
2566
2567                 rdev = rcu_dereference(conf->mirrors[i].rdev);
2568                 if (rdev == NULL ||
2569                     test_bit(Faulty, &rdev->flags)) {
2570                         if (i < conf->raid_disks)
2571                                 still_degraded = 1;
2572                 } else if (!test_bit(In_sync, &rdev->flags)) {
2573                         bio->bi_rw = WRITE;
2574                         bio->bi_end_io = end_sync_write;
2575                         write_targets ++;
2576                 } else {
2577                         /* may need to read from here */
2578                         sector_t first_bad = MaxSector;
2579                         int bad_sectors;
2580
2581                         if (is_badblock(rdev, sector_nr, good_sectors,
2582                                         &first_bad, &bad_sectors)) {
2583                                 if (first_bad > sector_nr)
2584                                         good_sectors = first_bad - sector_nr;
2585                                 else {
2586                                         bad_sectors -= (sector_nr - first_bad);
2587                                         if (min_bad == 0 ||
2588                                             min_bad > bad_sectors)
2589                                                 min_bad = bad_sectors;
2590                                 }
2591                         }
2592                         if (sector_nr < first_bad) {
2593                                 if (test_bit(WriteMostly, &rdev->flags)) {
2594                                         if (wonly < 0)
2595                                                 wonly = i;
2596                                 } else {
2597                                         if (disk < 0)
2598                                                 disk = i;
2599                                 }
2600                                 bio->bi_rw = READ;
2601                                 bio->bi_end_io = end_sync_read;
2602                                 read_targets++;
2603                         } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2604                                 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2605                                 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2606                                 /*
2607                                  * The device is suitable for reading (InSync),
2608                                  * but has bad block(s) here. Let's try to correct them,
2609                                  * if we are doing resync or repair. Otherwise, leave
2610                                  * this device alone for this sync request.
2611                                  */
2612                                 bio->bi_rw = WRITE;
2613                                 bio->bi_end_io = end_sync_write;
2614                                 write_targets++;
2615                         }
2616                 }
2617                 if (bio->bi_end_io) {
2618                         atomic_inc(&rdev->nr_pending);
2619                         bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2620                         bio->bi_bdev = rdev->bdev;
2621                         bio->bi_private = r1_bio;
2622                 }
2623         }
2624         rcu_read_unlock();
2625         if (disk < 0)
2626                 disk = wonly;
2627         r1_bio->read_disk = disk;
2628
2629         if (read_targets == 0 && min_bad > 0) {
2630                 /* These sectors are bad on all InSync devices, so we
2631                  * need to mark them bad on all write targets
2632                  */
2633                 int ok = 1;
2634                 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2635                         if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2636                                 struct md_rdev *rdev = conf->mirrors[i].rdev;
2637                                 ok = rdev_set_badblocks(rdev, sector_nr,
2638                                                         min_bad, 0
2639                                         ) && ok;
2640                         }
2641                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2642                 *skipped = 1;
2643                 put_buf(r1_bio);
2644
2645                 if (!ok) {
2646                         /* Cannot record the badblocks, so need to
2647                          * abort the resync.
2648                          * If there are multiple read targets, could just
2649                          * fail the really bad ones ???
2650                          */
2651                         conf->recovery_disabled = mddev->recovery_disabled;
2652                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2653                         return 0;
2654                 } else
2655                         return min_bad;
2656
2657         }
2658         if (min_bad > 0 && min_bad < good_sectors) {
2659                 /* only resync enough to reach the next bad->good
2660                  * transition */
2661                 good_sectors = min_bad;
2662         }
2663
2664         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2665                 /* extra read targets are also write targets */
2666                 write_targets += read_targets-1;
2667
2668         if (write_targets == 0 || read_targets == 0) {
2669                 /* There is nowhere to write, so all non-sync
2670                  * drives must be failed - so we are finished
2671                  */
2672                 sector_t rv;
2673                 if (min_bad > 0)
2674                         max_sector = sector_nr + min_bad;
2675                 rv = max_sector - sector_nr;
2676                 *skipped = 1;
2677                 put_buf(r1_bio);
2678                 return rv;
2679         }
2680
2681         if (max_sector > mddev->resync_max)
2682                 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2683         if (max_sector > sector_nr + good_sectors)
2684                 max_sector = sector_nr + good_sectors;
2685         nr_sectors = 0;
2686         sync_blocks = 0;
2687         do {
2688                 struct page *page;
2689                 int len = PAGE_SIZE;
2690                 if (sector_nr + (len>>9) > max_sector)
2691                         len = (max_sector - sector_nr) << 9;
2692                 if (len == 0)
2693                         break;
2694                 if (sync_blocks == 0) {
2695                         if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2696                                                &sync_blocks, still_degraded) &&
2697                             !conf->fullsync &&
2698                             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2699                                 break;
2700                         BUG_ON(sync_blocks < (PAGE_SIZE>>9));
2701                         if ((len >> 9) > sync_blocks)
2702                                 len = sync_blocks<<9;
2703                 }
2704
2705                 for (i = 0 ; i < conf->raid_disks * 2; i++) {
2706                         bio = r1_bio->bios[i];
2707                         if (bio->bi_end_io) {
2708                                 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2709                                 if (bio_add_page(bio, page, len, 0) == 0) {
2710                                         /* stop here */
2711                                         bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2712                                         while (i > 0) {
2713                                                 i--;
2714                                                 bio = r1_bio->bios[i];
2715                                                 if (bio->bi_end_io==NULL)
2716                                                         continue;
2717                                                 /* remove last page from this bio */
2718                                                 bio->bi_vcnt--;
2719                                                 bio->bi_iter.bi_size -= len;
2720                                                 __clear_bit(BIO_SEG_VALID, &bio->bi_flags);
2721                                         }
2722                                         goto bio_full;
2723                                 }
2724                         }
2725                 }
2726                 nr_sectors += len>>9;
2727                 sector_nr += len>>9;
2728                 sync_blocks -= (len>>9);
2729         } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2730  bio_full:
2731         r1_bio->sectors = nr_sectors;
2732
2733         /* For a user-requested sync, we read all readable devices and do a
2734          * compare
2735          */
2736         if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2737                 atomic_set(&r1_bio->remaining, read_targets);
2738                 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2739                         bio = r1_bio->bios[i];
2740                         if (bio->bi_end_io == end_sync_read) {
2741                                 read_targets--;
2742                                 md_sync_acct(bio->bi_bdev, nr_sectors);
2743                                 generic_make_request(bio);
2744                         }
2745                 }
2746         } else {
2747                 atomic_set(&r1_bio->remaining, 1);
2748                 bio = r1_bio->bios[r1_bio->read_disk];
2749                 md_sync_acct(bio->bi_bdev, nr_sectors);
2750                 generic_make_request(bio);
2751
2752         }
2753         return nr_sectors;
2754 }
2755
2756 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2757 {
2758         if (sectors)
2759                 return sectors;
2760
2761         return mddev->dev_sectors;
2762 }
2763
2764 static struct r1conf *setup_conf(struct mddev *mddev)
2765 {
2766         struct r1conf *conf;
2767         int i;
2768         struct raid1_info *disk;
2769         struct md_rdev *rdev;
2770         int err = -ENOMEM;
2771
2772         conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2773         if (!conf)
2774                 goto abort;
2775
2776         conf->mirrors = kzalloc(sizeof(struct raid1_info)
2777                                 * mddev->raid_disks * 2,
2778                                  GFP_KERNEL);
2779         if (!conf->mirrors)
2780                 goto abort;
2781
2782         conf->tmppage = alloc_page(GFP_KERNEL);
2783         if (!conf->tmppage)
2784                 goto abort;
2785
2786         conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2787         if (!conf->poolinfo)
2788                 goto abort;
2789         conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2790         conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2791                                           r1bio_pool_free,
2792                                           conf->poolinfo);
2793         if (!conf->r1bio_pool)
2794                 goto abort;
2795
2796         conf->poolinfo->mddev = mddev;
2797
2798         err = -EINVAL;
2799         spin_lock_init(&conf->device_lock);
2800         rdev_for_each(rdev, mddev) {
2801                 struct request_queue *q;
2802                 int disk_idx = rdev->raid_disk;
2803                 if (disk_idx >= mddev->raid_disks
2804                     || disk_idx < 0)
2805                         continue;
2806                 if (test_bit(Replacement, &rdev->flags))
2807                         disk = conf->mirrors + mddev->raid_disks + disk_idx;
2808                 else
2809                         disk = conf->mirrors + disk_idx;
2810
2811                 if (disk->rdev)
2812                         goto abort;
2813                 disk->rdev = rdev;
2814                 q = bdev_get_queue(rdev->bdev);
2815                 if (q->merge_bvec_fn)
2816                         mddev->merge_check_needed = 1;
2817
2818                 disk->head_position = 0;
2819                 disk->seq_start = MaxSector;
2820         }
2821         conf->raid_disks = mddev->raid_disks;
2822         conf->mddev = mddev;
2823         INIT_LIST_HEAD(&conf->retry_list);
2824
2825         spin_lock_init(&conf->resync_lock);
2826         init_waitqueue_head(&conf->wait_barrier);
2827
2828         bio_list_init(&conf->pending_bio_list);
2829         conf->pending_count = 0;
2830         conf->recovery_disabled = mddev->recovery_disabled - 1;
2831
2832         conf->start_next_window = MaxSector;
2833         conf->current_window_requests = conf->next_window_requests = 0;
2834
2835         err = -EIO;
2836         for (i = 0; i < conf->raid_disks * 2; i++) {
2837
2838                 disk = conf->mirrors + i;
2839
2840                 if (i < conf->raid_disks &&
2841                     disk[conf->raid_disks].rdev) {
2842                         /* This slot has a replacement. */
2843                         if (!disk->rdev) {
2844                                 /* No original, just make the replacement
2845                                  * a recovering spare
2846                                  */
2847                                 disk->rdev =
2848                                         disk[conf->raid_disks].rdev;
2849                                 disk[conf->raid_disks].rdev = NULL;
2850                         } else if (!test_bit(In_sync, &disk->rdev->flags))
2851                                 /* Original is not in_sync - bad */
2852                                 goto abort;
2853                 }
2854
2855                 if (!disk->rdev ||
2856                     !test_bit(In_sync, &disk->rdev->flags)) {
2857                         disk->head_position = 0;
2858                         if (disk->rdev &&
2859                             (disk->rdev->saved_raid_disk < 0))
2860                                 conf->fullsync = 1;
2861                 }
2862         }
2863
2864         err = -ENOMEM;
2865         conf->thread = md_register_thread(raid1d, mddev, "raid1");
2866         if (!conf->thread) {
2867                 printk(KERN_ERR
2868                        "md/raid1:%s: couldn't allocate thread\n",
2869                        mdname(mddev));
2870                 goto abort;
2871         }
2872
2873         return conf;
2874
2875  abort:
2876         if (conf) {
2877                 if (conf->r1bio_pool)
2878                         mempool_destroy(conf->r1bio_pool);
2879                 kfree(conf->mirrors);
2880                 safe_put_page(conf->tmppage);
2881                 kfree(conf->poolinfo);
2882                 kfree(conf);
2883         }
2884         return ERR_PTR(err);
2885 }
2886
2887 static void raid1_free(struct mddev *mddev, void *priv);
2888 static int run(struct mddev *mddev)
2889 {
2890         struct r1conf *conf;
2891         int i;
2892         struct md_rdev *rdev;
2893         int ret;
2894         bool discard_supported = false;
2895
2896         if (mddev->level != 1) {
2897                 printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
2898                        mdname(mddev), mddev->level);
2899                 return -EIO;
2900         }
2901         if (mddev->reshape_position != MaxSector) {
2902                 printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
2903                        mdname(mddev));
2904                 return -EIO;
2905         }
2906         /*
2907          * copy the already verified devices into our private RAID1
2908          * bookkeeping area. [whatever we allocate in run(),
2909          * should be freed in raid1_free()]
2910          */
2911         if (mddev->private == NULL)
2912                 conf = setup_conf(mddev);
2913         else
2914                 conf = mddev->private;
2915
2916         if (IS_ERR(conf))
2917                 return PTR_ERR(conf);
2918
2919         if (mddev->queue)
2920                 blk_queue_max_write_same_sectors(mddev->queue, 0);
2921
2922         rdev_for_each(rdev, mddev) {
2923                 if (!mddev->gendisk)
2924                         continue;
2925                 disk_stack_limits(mddev->gendisk, rdev->bdev,
2926                                   rdev->data_offset << 9);
2927                 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
2928                         discard_supported = true;
2929         }
2930
2931         mddev->degraded = 0;
2932         for (i=0; i < conf->raid_disks; i++)
2933                 if (conf->mirrors[i].rdev == NULL ||
2934                     !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2935                     test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2936                         mddev->degraded++;
2937
2938         if (conf->raid_disks - mddev->degraded == 1)
2939                 mddev->recovery_cp = MaxSector;
2940
2941         if (mddev->recovery_cp != MaxSector)
2942                 printk(KERN_NOTICE "md/raid1:%s: not clean"
2943                        " -- starting background reconstruction\n",
2944                        mdname(mddev));
2945         printk(KERN_INFO
2946                 "md/raid1:%s: active with %d out of %d mirrors\n",
2947                 mdname(mddev), mddev->raid_disks - mddev->degraded,
2948                 mddev->raid_disks);
2949
2950         /*
2951          * Ok, everything is just fine now
2952          */
2953         mddev->thread = conf->thread;
2954         conf->thread = NULL;
2955         mddev->private = conf;
2956
2957         md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2958
2959         if (mddev->queue) {
2960                 if (discard_supported)
2961                         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
2962                                                 mddev->queue);
2963                 else
2964                         queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
2965                                                   mddev->queue);
2966         }
2967
2968         ret =  md_integrity_register(mddev);
2969         if (ret) {
2970                 md_unregister_thread(&mddev->thread);
2971                 raid1_free(mddev, conf);
2972         }
2973         return ret;
2974 }
2975
2976 static void raid1_free(struct mddev *mddev, void *priv)
2977 {
2978         struct r1conf *conf = priv;
2979
2980         if (conf->r1bio_pool)
2981                 mempool_destroy(conf->r1bio_pool);
2982         kfree(conf->mirrors);
2983         safe_put_page(conf->tmppage);
2984         kfree(conf->poolinfo);
2985         kfree(conf);
2986 }
2987
2988 static int raid1_resize(struct mddev *mddev, sector_t sectors)
2989 {
2990         /* no resync is happening, and there is enough space
2991          * on all devices, so we can resize.
2992          * We need to make sure resync covers any new space.
2993          * If the array is shrinking we should possibly wait until
2994          * any io in the removed space completes, but it hardly seems
2995          * worth it.
2996          */
2997         sector_t newsize = raid1_size(mddev, sectors, 0);
2998         if (mddev->external_size &&
2999             mddev->array_sectors > newsize)
3000                 return -EINVAL;
3001         if (mddev->bitmap) {
3002                 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3003                 if (ret)
3004                         return ret;
3005         }
3006         md_set_array_sectors(mddev, newsize);
3007         set_capacity(mddev->gendisk, mddev->array_sectors);
3008         revalidate_disk(mddev->gendisk);
3009         if (sectors > mddev->dev_sectors &&
3010             mddev->recovery_cp > mddev->dev_sectors) {
3011                 mddev->recovery_cp = mddev->dev_sectors;
3012                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3013         }
3014         mddev->dev_sectors = sectors;
3015         mddev->resync_max_sectors = sectors;
3016         return 0;
3017 }
3018
3019 static int raid1_reshape(struct mddev *mddev)
3020 {
3021         /* We need to:
3022          * 1/ resize the r1bio_pool
3023          * 2/ resize conf->mirrors
3024          *
3025          * We allocate a new r1bio_pool if we can.
3026          * Then raise a device barrier and wait until all IO stops.
3027          * Then resize conf->mirrors and swap in the new r1bio pool.
3028          *
3029          * At the same time, we "pack" the devices so that all the missing
3030          * devices have the higher raid_disk numbers.
3031          */
3032         mempool_t *newpool, *oldpool;
3033         struct pool_info *newpoolinfo;
3034         struct raid1_info *newmirrors;
3035         struct r1conf *conf = mddev->private;
3036         int cnt, raid_disks;
3037         unsigned long flags;
3038         int d, d2, err;
3039
3040         /* Cannot change chunk_size, layout, or level */
3041         if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3042             mddev->layout != mddev->new_layout ||
3043             mddev->level != mddev->new_level) {
3044                 mddev->new_chunk_sectors = mddev->chunk_sectors;
3045                 mddev->new_layout = mddev->layout;
3046                 mddev->new_level = mddev->level;
3047                 return -EINVAL;
3048         }
3049
3050         err = md_allow_write(mddev);
3051         if (err)
3052                 return err;
3053
3054         raid_disks = mddev->raid_disks + mddev->delta_disks;
3055
3056         if (raid_disks < conf->raid_disks) {
3057                 cnt=0;
3058                 for (d= 0; d < conf->raid_disks; d++)
3059                         if (conf->mirrors[d].rdev)
3060                                 cnt++;
3061                 if (cnt > raid_disks)
3062                         return -EBUSY;
3063         }
3064
3065         newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3066         if (!newpoolinfo)
3067                 return -ENOMEM;
3068         newpoolinfo->mddev = mddev;
3069         newpoolinfo->raid_disks = raid_disks * 2;
3070
3071         newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3072                                  r1bio_pool_free, newpoolinfo);
3073         if (!newpool) {
3074                 kfree(newpoolinfo);
3075                 return -ENOMEM;
3076         }
3077         newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
3078                              GFP_KERNEL);
3079         if (!newmirrors) {
3080                 kfree(newpoolinfo);
3081                 mempool_destroy(newpool);
3082                 return -ENOMEM;
3083         }
3084
3085         freeze_array(conf, 0);
3086
3087         /* ok, everything is stopped */
3088         oldpool = conf->r1bio_pool;
3089         conf->r1bio_pool = newpool;
3090
3091         for (d = d2 = 0; d < conf->raid_disks; d++) {
3092                 struct md_rdev *rdev = conf->mirrors[d].rdev;
3093                 if (rdev && rdev->raid_disk != d2) {
3094                         sysfs_unlink_rdev(mddev, rdev);
3095                         rdev->raid_disk = d2;
3096                         sysfs_unlink_rdev(mddev, rdev);
3097                         if (sysfs_link_rdev(mddev, rdev))
3098                                 printk(KERN_WARNING
3099                                        "md/raid1:%s: cannot register rd%d\n",
3100                                        mdname(mddev), rdev->raid_disk);
3101                 }
3102                 if (rdev)
3103                         newmirrors[d2++].rdev = rdev;
3104         }
3105         kfree(conf->mirrors);
3106         conf->mirrors = newmirrors;
3107         kfree(conf->poolinfo);
3108         conf->poolinfo = newpoolinfo;
3109
3110         spin_lock_irqsave(&conf->device_lock, flags);
3111         mddev->degraded += (raid_disks - conf->raid_disks);
3112         spin_unlock_irqrestore(&conf->device_lock, flags);
3113         conf->raid_disks = mddev->raid_disks = raid_disks;
3114         mddev->delta_disks = 0;
3115
3116         unfreeze_array(conf);
3117
3118         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3119         md_wakeup_thread(mddev->thread);
3120
3121         mempool_destroy(oldpool);
3122         return 0;
3123 }
3124
3125 static void raid1_quiesce(struct mddev *mddev, int state)
3126 {
3127         struct r1conf *conf = mddev->private;
3128
3129         switch(state) {
3130         case 2: /* wake for suspend */
3131                 wake_up(&conf->wait_barrier);
3132                 break;
3133         case 1:
3134                 freeze_array(conf, 0);
3135                 break;
3136         case 0:
3137                 unfreeze_array(conf);
3138                 break;
3139         }
3140 }
3141
3142 static void *raid1_takeover(struct mddev *mddev)
3143 {
3144         /* raid1 can take over:
3145          *  raid5 with 2 devices, any layout or chunk size
3146          */
3147         if (mddev->level == 5 && mddev->raid_disks == 2) {
3148                 struct r1conf *conf;
3149                 mddev->new_level = 1;
3150                 mddev->new_layout = 0;
3151                 mddev->new_chunk_sectors = 0;
3152                 conf = setup_conf(mddev);
3153                 if (!IS_ERR(conf))
3154                         /* Array must appear to be quiesced */
3155                         conf->array_frozen = 1;
3156                 return conf;
3157         }
3158         return ERR_PTR(-EINVAL);
3159 }
3160
3161 static struct md_personality raid1_personality =
3162 {
3163         .name           = "raid1",
3164         .level          = 1,
3165         .owner          = THIS_MODULE,
3166         .make_request   = make_request,
3167         .run            = run,
3168         .free           = raid1_free,
3169         .status         = status,
3170         .error_handler  = error,
3171         .hot_add_disk   = raid1_add_disk,
3172         .hot_remove_disk= raid1_remove_disk,
3173         .spare_active   = raid1_spare_active,
3174         .sync_request   = sync_request,
3175         .resize         = raid1_resize,
3176         .size           = raid1_size,
3177         .check_reshape  = raid1_reshape,
3178         .quiesce        = raid1_quiesce,
3179         .takeover       = raid1_takeover,
3180         .congested      = raid1_congested,
3181         .mergeable_bvec = raid1_mergeable_bvec,
3182 };
3183
3184 static int __init raid_init(void)
3185 {
3186         return register_md_personality(&raid1_personality);
3187 }
3188
3189 static void raid_exit(void)
3190 {
3191         unregister_md_personality(&raid1_personality);
3192 }
3193
3194 module_init(raid_init);
3195 module_exit(raid_exit);
3196 MODULE_LICENSE("GPL");
3197 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3198 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3199 MODULE_ALIAS("md-raid1");
3200 MODULE_ALIAS("md-level-1");
3201
3202 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);