mm/slub: don't wait for high-order page allocation
[linux-2.6-block.git] / drivers / md / raid1.c
1 /*
2  * raid1.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5  *
6  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7  *
8  * RAID-1 management functions.
9  *
10  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11  *
12  * Fixes to reconstruction by Jakob Ã˜stergaard" <jakob@ostenfeld.dk>
13  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14  *
15  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16  * bitmapped intelligence in resync:
17  *
18  *      - bitmap marked during normal i/o
19  *      - bitmap used to skip nondirty blocks during sync
20  *
21  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22  * - persistent bitmap code
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License as published by
26  * the Free Software Foundation; either version 2, or (at your option)
27  * any later version.
28  *
29  * You should have received a copy of the GNU General Public License
30  * (for example /usr/src/linux/COPYING); if not, write to the Free
31  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40 #include "md.h"
41 #include "raid1.h"
42 #include "bitmap.h"
43
44 /*
45  * Number of guaranteed r1bios in case of extreme VM load:
46  */
47 #define NR_RAID1_BIOS 256
48
49 /* when we get a read error on a read-only array, we redirect to another
50  * device without failing the first device, or trying to over-write to
51  * correct the read error.  To keep track of bad blocks on a per-bio
52  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
53  */
54 #define IO_BLOCKED ((struct bio *)1)
55 /* When we successfully write to a known bad-block, we need to remove the
56  * bad-block marking which must be done from process context.  So we record
57  * the success by setting devs[n].bio to IO_MADE_GOOD
58  */
59 #define IO_MADE_GOOD ((struct bio *)2)
60
61 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
62
63 /* When there are this many requests queue to be written by
64  * the raid1 thread, we become 'congested' to provide back-pressure
65  * for writeback.
66  */
67 static int max_queued_requests = 1024;
68
69 static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
70                           sector_t bi_sector);
71 static void lower_barrier(struct r1conf *conf);
72
73 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
74 {
75         struct pool_info *pi = data;
76         int size = offsetof(struct r1bio, bios[pi->raid_disks]);
77
78         /* allocate a r1bio with room for raid_disks entries in the bios array */
79         return kzalloc(size, gfp_flags);
80 }
81
82 static void r1bio_pool_free(void *r1_bio, void *data)
83 {
84         kfree(r1_bio);
85 }
86
87 #define RESYNC_BLOCK_SIZE (64*1024)
88 #define RESYNC_DEPTH 32
89 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
90 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
91 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
92 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
93 #define NEXT_NORMALIO_DISTANCE (3 * RESYNC_WINDOW_SECTORS)
94
95 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
96 {
97         struct pool_info *pi = data;
98         struct r1bio *r1_bio;
99         struct bio *bio;
100         int need_pages;
101         int i, j;
102
103         r1_bio = r1bio_pool_alloc(gfp_flags, pi);
104         if (!r1_bio)
105                 return NULL;
106
107         /*
108          * Allocate bios : 1 for reading, n-1 for writing
109          */
110         for (j = pi->raid_disks ; j-- ; ) {
111                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
112                 if (!bio)
113                         goto out_free_bio;
114                 r1_bio->bios[j] = bio;
115         }
116         /*
117          * Allocate RESYNC_PAGES data pages and attach them to
118          * the first bio.
119          * If this is a user-requested check/repair, allocate
120          * RESYNC_PAGES for each bio.
121          */
122         if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
123                 need_pages = pi->raid_disks;
124         else
125                 need_pages = 1;
126         for (j = 0; j < need_pages; j++) {
127                 bio = r1_bio->bios[j];
128                 bio->bi_vcnt = RESYNC_PAGES;
129
130                 if (bio_alloc_pages(bio, gfp_flags))
131                         goto out_free_pages;
132         }
133         /* If not user-requests, copy the page pointers to all bios */
134         if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
135                 for (i=0; i<RESYNC_PAGES ; i++)
136                         for (j=1; j<pi->raid_disks; j++)
137                                 r1_bio->bios[j]->bi_io_vec[i].bv_page =
138                                         r1_bio->bios[0]->bi_io_vec[i].bv_page;
139         }
140
141         r1_bio->master_bio = NULL;
142
143         return r1_bio;
144
145 out_free_pages:
146         while (--j >= 0) {
147                 struct bio_vec *bv;
148
149                 bio_for_each_segment_all(bv, r1_bio->bios[j], i)
150                         __free_page(bv->bv_page);
151         }
152
153 out_free_bio:
154         while (++j < pi->raid_disks)
155                 bio_put(r1_bio->bios[j]);
156         r1bio_pool_free(r1_bio, data);
157         return NULL;
158 }
159
160 static void r1buf_pool_free(void *__r1_bio, void *data)
161 {
162         struct pool_info *pi = data;
163         int i,j;
164         struct r1bio *r1bio = __r1_bio;
165
166         for (i = 0; i < RESYNC_PAGES; i++)
167                 for (j = pi->raid_disks; j-- ;) {
168                         if (j == 0 ||
169                             r1bio->bios[j]->bi_io_vec[i].bv_page !=
170                             r1bio->bios[0]->bi_io_vec[i].bv_page)
171                                 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
172                 }
173         for (i=0 ; i < pi->raid_disks; i++)
174                 bio_put(r1bio->bios[i]);
175
176         r1bio_pool_free(r1bio, data);
177 }
178
179 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
180 {
181         int i;
182
183         for (i = 0; i < conf->raid_disks * 2; i++) {
184                 struct bio **bio = r1_bio->bios + i;
185                 if (!BIO_SPECIAL(*bio))
186                         bio_put(*bio);
187                 *bio = NULL;
188         }
189 }
190
191 static void free_r1bio(struct r1bio *r1_bio)
192 {
193         struct r1conf *conf = r1_bio->mddev->private;
194
195         put_all_bios(conf, r1_bio);
196         mempool_free(r1_bio, conf->r1bio_pool);
197 }
198
199 static void put_buf(struct r1bio *r1_bio)
200 {
201         struct r1conf *conf = r1_bio->mddev->private;
202         int i;
203
204         for (i = 0; i < conf->raid_disks * 2; i++) {
205                 struct bio *bio = r1_bio->bios[i];
206                 if (bio->bi_end_io)
207                         rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
208         }
209
210         mempool_free(r1_bio, conf->r1buf_pool);
211
212         lower_barrier(conf);
213 }
214
215 static void reschedule_retry(struct r1bio *r1_bio)
216 {
217         unsigned long flags;
218         struct mddev *mddev = r1_bio->mddev;
219         struct r1conf *conf = mddev->private;
220
221         spin_lock_irqsave(&conf->device_lock, flags);
222         list_add(&r1_bio->retry_list, &conf->retry_list);
223         conf->nr_queued ++;
224         spin_unlock_irqrestore(&conf->device_lock, flags);
225
226         wake_up(&conf->wait_barrier);
227         md_wakeup_thread(mddev->thread);
228 }
229
230 /*
231  * raid_end_bio_io() is called when we have finished servicing a mirrored
232  * operation and are ready to return a success/failure code to the buffer
233  * cache layer.
234  */
235 static void call_bio_endio(struct r1bio *r1_bio)
236 {
237         struct bio *bio = r1_bio->master_bio;
238         int done;
239         struct r1conf *conf = r1_bio->mddev->private;
240         sector_t start_next_window = r1_bio->start_next_window;
241         sector_t bi_sector = bio->bi_iter.bi_sector;
242
243         if (bio->bi_phys_segments) {
244                 unsigned long flags;
245                 spin_lock_irqsave(&conf->device_lock, flags);
246                 bio->bi_phys_segments--;
247                 done = (bio->bi_phys_segments == 0);
248                 spin_unlock_irqrestore(&conf->device_lock, flags);
249                 /*
250                  * make_request() might be waiting for
251                  * bi_phys_segments to decrease
252                  */
253                 wake_up(&conf->wait_barrier);
254         } else
255                 done = 1;
256
257         if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
258                 bio->bi_error = -EIO;
259
260         if (done) {
261                 bio_endio(bio);
262                 /*
263                  * Wake up any possible resync thread that waits for the device
264                  * to go idle.
265                  */
266                 allow_barrier(conf, start_next_window, bi_sector);
267         }
268 }
269
270 static void raid_end_bio_io(struct r1bio *r1_bio)
271 {
272         struct bio *bio = r1_bio->master_bio;
273
274         /* if nobody has done the final endio yet, do it now */
275         if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
276                 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
277                          (bio_data_dir(bio) == WRITE) ? "write" : "read",
278                          (unsigned long long) bio->bi_iter.bi_sector,
279                          (unsigned long long) bio_end_sector(bio) - 1);
280
281                 call_bio_endio(r1_bio);
282         }
283         free_r1bio(r1_bio);
284 }
285
286 /*
287  * Update disk head position estimator based on IRQ completion info.
288  */
289 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
290 {
291         struct r1conf *conf = r1_bio->mddev->private;
292
293         conf->mirrors[disk].head_position =
294                 r1_bio->sector + (r1_bio->sectors);
295 }
296
297 /*
298  * Find the disk number which triggered given bio
299  */
300 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
301 {
302         int mirror;
303         struct r1conf *conf = r1_bio->mddev->private;
304         int raid_disks = conf->raid_disks;
305
306         for (mirror = 0; mirror < raid_disks * 2; mirror++)
307                 if (r1_bio->bios[mirror] == bio)
308                         break;
309
310         BUG_ON(mirror == raid_disks * 2);
311         update_head_pos(mirror, r1_bio);
312
313         return mirror;
314 }
315
316 static void raid1_end_read_request(struct bio *bio)
317 {
318         int uptodate = !bio->bi_error;
319         struct r1bio *r1_bio = bio->bi_private;
320         int mirror;
321         struct r1conf *conf = r1_bio->mddev->private;
322
323         mirror = r1_bio->read_disk;
324         /*
325          * this branch is our 'one mirror IO has finished' event handler:
326          */
327         update_head_pos(mirror, r1_bio);
328
329         if (uptodate)
330                 set_bit(R1BIO_Uptodate, &r1_bio->state);
331         else {
332                 /* If all other devices have failed, we want to return
333                  * the error upwards rather than fail the last device.
334                  * Here we redefine "uptodate" to mean "Don't want to retry"
335                  */
336                 unsigned long flags;
337                 spin_lock_irqsave(&conf->device_lock, flags);
338                 if (r1_bio->mddev->degraded == conf->raid_disks ||
339                     (r1_bio->mddev->degraded == conf->raid_disks-1 &&
340                      test_bit(In_sync, &conf->mirrors[mirror].rdev->flags)))
341                         uptodate = 1;
342                 spin_unlock_irqrestore(&conf->device_lock, flags);
343         }
344
345         if (uptodate) {
346                 raid_end_bio_io(r1_bio);
347                 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
348         } else {
349                 /*
350                  * oops, read error:
351                  */
352                 char b[BDEVNAME_SIZE];
353                 printk_ratelimited(
354                         KERN_ERR "md/raid1:%s: %s: "
355                         "rescheduling sector %llu\n",
356                         mdname(conf->mddev),
357                         bdevname(conf->mirrors[mirror].rdev->bdev,
358                                  b),
359                         (unsigned long long)r1_bio->sector);
360                 set_bit(R1BIO_ReadError, &r1_bio->state);
361                 reschedule_retry(r1_bio);
362                 /* don't drop the reference on read_disk yet */
363         }
364 }
365
366 static void close_write(struct r1bio *r1_bio)
367 {
368         /* it really is the end of this request */
369         if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
370                 /* free extra copy of the data pages */
371                 int i = r1_bio->behind_page_count;
372                 while (i--)
373                         safe_put_page(r1_bio->behind_bvecs[i].bv_page);
374                 kfree(r1_bio->behind_bvecs);
375                 r1_bio->behind_bvecs = NULL;
376         }
377         /* clear the bitmap if all writes complete successfully */
378         bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
379                         r1_bio->sectors,
380                         !test_bit(R1BIO_Degraded, &r1_bio->state),
381                         test_bit(R1BIO_BehindIO, &r1_bio->state));
382         md_write_end(r1_bio->mddev);
383 }
384
385 static void r1_bio_write_done(struct r1bio *r1_bio)
386 {
387         if (!atomic_dec_and_test(&r1_bio->remaining))
388                 return;
389
390         if (test_bit(R1BIO_WriteError, &r1_bio->state))
391                 reschedule_retry(r1_bio);
392         else {
393                 close_write(r1_bio);
394                 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
395                         reschedule_retry(r1_bio);
396                 else
397                         raid_end_bio_io(r1_bio);
398         }
399 }
400
401 static void raid1_end_write_request(struct bio *bio)
402 {
403         struct r1bio *r1_bio = bio->bi_private;
404         int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
405         struct r1conf *conf = r1_bio->mddev->private;
406         struct bio *to_put = NULL;
407
408         mirror = find_bio_disk(r1_bio, bio);
409
410         /*
411          * 'one mirror IO has finished' event handler:
412          */
413         if (bio->bi_error) {
414                 set_bit(WriteErrorSeen,
415                         &conf->mirrors[mirror].rdev->flags);
416                 if (!test_and_set_bit(WantReplacement,
417                                       &conf->mirrors[mirror].rdev->flags))
418                         set_bit(MD_RECOVERY_NEEDED, &
419                                 conf->mddev->recovery);
420
421                 set_bit(R1BIO_WriteError, &r1_bio->state);
422         } else {
423                 /*
424                  * Set R1BIO_Uptodate in our master bio, so that we
425                  * will return a good error code for to the higher
426                  * levels even if IO on some other mirrored buffer
427                  * fails.
428                  *
429                  * The 'master' represents the composite IO operation
430                  * to user-side. So if something waits for IO, then it
431                  * will wait for the 'master' bio.
432                  */
433                 sector_t first_bad;
434                 int bad_sectors;
435
436                 r1_bio->bios[mirror] = NULL;
437                 to_put = bio;
438                 /*
439                  * Do not set R1BIO_Uptodate if the current device is
440                  * rebuilding or Faulty. This is because we cannot use
441                  * such device for properly reading the data back (we could
442                  * potentially use it, if the current write would have felt
443                  * before rdev->recovery_offset, but for simplicity we don't
444                  * check this here.
445                  */
446                 if (test_bit(In_sync, &conf->mirrors[mirror].rdev->flags) &&
447                     !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags))
448                         set_bit(R1BIO_Uptodate, &r1_bio->state);
449
450                 /* Maybe we can clear some bad blocks. */
451                 if (is_badblock(conf->mirrors[mirror].rdev,
452                                 r1_bio->sector, r1_bio->sectors,
453                                 &first_bad, &bad_sectors)) {
454                         r1_bio->bios[mirror] = IO_MADE_GOOD;
455                         set_bit(R1BIO_MadeGood, &r1_bio->state);
456                 }
457         }
458
459         if (behind) {
460                 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
461                         atomic_dec(&r1_bio->behind_remaining);
462
463                 /*
464                  * In behind mode, we ACK the master bio once the I/O
465                  * has safely reached all non-writemostly
466                  * disks. Setting the Returned bit ensures that this
467                  * gets done only once -- we don't ever want to return
468                  * -EIO here, instead we'll wait
469                  */
470                 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
471                     test_bit(R1BIO_Uptodate, &r1_bio->state)) {
472                         /* Maybe we can return now */
473                         if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
474                                 struct bio *mbio = r1_bio->master_bio;
475                                 pr_debug("raid1: behind end write sectors"
476                                          " %llu-%llu\n",
477                                          (unsigned long long) mbio->bi_iter.bi_sector,
478                                          (unsigned long long) bio_end_sector(mbio) - 1);
479                                 call_bio_endio(r1_bio);
480                         }
481                 }
482         }
483         if (r1_bio->bios[mirror] == NULL)
484                 rdev_dec_pending(conf->mirrors[mirror].rdev,
485                                  conf->mddev);
486
487         /*
488          * Let's see if all mirrored write operations have finished
489          * already.
490          */
491         r1_bio_write_done(r1_bio);
492
493         if (to_put)
494                 bio_put(to_put);
495 }
496
497 /*
498  * This routine returns the disk from which the requested read should
499  * be done. There is a per-array 'next expected sequential IO' sector
500  * number - if this matches on the next IO then we use the last disk.
501  * There is also a per-disk 'last know head position' sector that is
502  * maintained from IRQ contexts, both the normal and the resync IO
503  * completion handlers update this position correctly. If there is no
504  * perfect sequential match then we pick the disk whose head is closest.
505  *
506  * If there are 2 mirrors in the same 2 devices, performance degrades
507  * because position is mirror, not device based.
508  *
509  * The rdev for the device selected will have nr_pending incremented.
510  */
511 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
512 {
513         const sector_t this_sector = r1_bio->sector;
514         int sectors;
515         int best_good_sectors;
516         int best_disk, best_dist_disk, best_pending_disk;
517         int has_nonrot_disk;
518         int disk;
519         sector_t best_dist;
520         unsigned int min_pending;
521         struct md_rdev *rdev;
522         int choose_first;
523         int choose_next_idle;
524
525         rcu_read_lock();
526         /*
527          * Check if we can balance. We can balance on the whole
528          * device if no resync is going on, or below the resync window.
529          * We take the first readable disk when above the resync window.
530          */
531  retry:
532         sectors = r1_bio->sectors;
533         best_disk = -1;
534         best_dist_disk = -1;
535         best_dist = MaxSector;
536         best_pending_disk = -1;
537         min_pending = UINT_MAX;
538         best_good_sectors = 0;
539         has_nonrot_disk = 0;
540         choose_next_idle = 0;
541
542         if ((conf->mddev->recovery_cp < this_sector + sectors) ||
543             (mddev_is_clustered(conf->mddev) &&
544             md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
545                     this_sector + sectors)))
546                 choose_first = 1;
547         else
548                 choose_first = 0;
549
550         for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
551                 sector_t dist;
552                 sector_t first_bad;
553                 int bad_sectors;
554                 unsigned int pending;
555                 bool nonrot;
556
557                 rdev = rcu_dereference(conf->mirrors[disk].rdev);
558                 if (r1_bio->bios[disk] == IO_BLOCKED
559                     || rdev == NULL
560                     || test_bit(Faulty, &rdev->flags))
561                         continue;
562                 if (!test_bit(In_sync, &rdev->flags) &&
563                     rdev->recovery_offset < this_sector + sectors)
564                         continue;
565                 if (test_bit(WriteMostly, &rdev->flags)) {
566                         /* Don't balance among write-mostly, just
567                          * use the first as a last resort */
568                         if (best_dist_disk < 0) {
569                                 if (is_badblock(rdev, this_sector, sectors,
570                                                 &first_bad, &bad_sectors)) {
571                                         if (first_bad < this_sector)
572                                                 /* Cannot use this */
573                                                 continue;
574                                         best_good_sectors = first_bad - this_sector;
575                                 } else
576                                         best_good_sectors = sectors;
577                                 best_dist_disk = disk;
578                                 best_pending_disk = disk;
579                         }
580                         continue;
581                 }
582                 /* This is a reasonable device to use.  It might
583                  * even be best.
584                  */
585                 if (is_badblock(rdev, this_sector, sectors,
586                                 &first_bad, &bad_sectors)) {
587                         if (best_dist < MaxSector)
588                                 /* already have a better device */
589                                 continue;
590                         if (first_bad <= this_sector) {
591                                 /* cannot read here. If this is the 'primary'
592                                  * device, then we must not read beyond
593                                  * bad_sectors from another device..
594                                  */
595                                 bad_sectors -= (this_sector - first_bad);
596                                 if (choose_first && sectors > bad_sectors)
597                                         sectors = bad_sectors;
598                                 if (best_good_sectors > sectors)
599                                         best_good_sectors = sectors;
600
601                         } else {
602                                 sector_t good_sectors = first_bad - this_sector;
603                                 if (good_sectors > best_good_sectors) {
604                                         best_good_sectors = good_sectors;
605                                         best_disk = disk;
606                                 }
607                                 if (choose_first)
608                                         break;
609                         }
610                         continue;
611                 } else
612                         best_good_sectors = sectors;
613
614                 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
615                 has_nonrot_disk |= nonrot;
616                 pending = atomic_read(&rdev->nr_pending);
617                 dist = abs(this_sector - conf->mirrors[disk].head_position);
618                 if (choose_first) {
619                         best_disk = disk;
620                         break;
621                 }
622                 /* Don't change to another disk for sequential reads */
623                 if (conf->mirrors[disk].next_seq_sect == this_sector
624                     || dist == 0) {
625                         int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
626                         struct raid1_info *mirror = &conf->mirrors[disk];
627
628                         best_disk = disk;
629                         /*
630                          * If buffered sequential IO size exceeds optimal
631                          * iosize, check if there is idle disk. If yes, choose
632                          * the idle disk. read_balance could already choose an
633                          * idle disk before noticing it's a sequential IO in
634                          * this disk. This doesn't matter because this disk
635                          * will idle, next time it will be utilized after the
636                          * first disk has IO size exceeds optimal iosize. In
637                          * this way, iosize of the first disk will be optimal
638                          * iosize at least. iosize of the second disk might be
639                          * small, but not a big deal since when the second disk
640                          * starts IO, the first disk is likely still busy.
641                          */
642                         if (nonrot && opt_iosize > 0 &&
643                             mirror->seq_start != MaxSector &&
644                             mirror->next_seq_sect > opt_iosize &&
645                             mirror->next_seq_sect - opt_iosize >=
646                             mirror->seq_start) {
647                                 choose_next_idle = 1;
648                                 continue;
649                         }
650                         break;
651                 }
652                 /* If device is idle, use it */
653                 if (pending == 0) {
654                         best_disk = disk;
655                         break;
656                 }
657
658                 if (choose_next_idle)
659                         continue;
660
661                 if (min_pending > pending) {
662                         min_pending = pending;
663                         best_pending_disk = disk;
664                 }
665
666                 if (dist < best_dist) {
667                         best_dist = dist;
668                         best_dist_disk = disk;
669                 }
670         }
671
672         /*
673          * If all disks are rotational, choose the closest disk. If any disk is
674          * non-rotational, choose the disk with less pending request even the
675          * disk is rotational, which might/might not be optimal for raids with
676          * mixed ratation/non-rotational disks depending on workload.
677          */
678         if (best_disk == -1) {
679                 if (has_nonrot_disk)
680                         best_disk = best_pending_disk;
681                 else
682                         best_disk = best_dist_disk;
683         }
684
685         if (best_disk >= 0) {
686                 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
687                 if (!rdev)
688                         goto retry;
689                 atomic_inc(&rdev->nr_pending);
690                 if (test_bit(Faulty, &rdev->flags)) {
691                         /* cannot risk returning a device that failed
692                          * before we inc'ed nr_pending
693                          */
694                         rdev_dec_pending(rdev, conf->mddev);
695                         goto retry;
696                 }
697                 sectors = best_good_sectors;
698
699                 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
700                         conf->mirrors[best_disk].seq_start = this_sector;
701
702                 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
703         }
704         rcu_read_unlock();
705         *max_sectors = sectors;
706
707         return best_disk;
708 }
709
710 static int raid1_congested(struct mddev *mddev, int bits)
711 {
712         struct r1conf *conf = mddev->private;
713         int i, ret = 0;
714
715         if ((bits & (1 << WB_async_congested)) &&
716             conf->pending_count >= max_queued_requests)
717                 return 1;
718
719         rcu_read_lock();
720         for (i = 0; i < conf->raid_disks * 2; i++) {
721                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
722                 if (rdev && !test_bit(Faulty, &rdev->flags)) {
723                         struct request_queue *q = bdev_get_queue(rdev->bdev);
724
725                         BUG_ON(!q);
726
727                         /* Note the '|| 1' - when read_balance prefers
728                          * non-congested targets, it can be removed
729                          */
730                         if ((bits & (1 << WB_async_congested)) || 1)
731                                 ret |= bdi_congested(&q->backing_dev_info, bits);
732                         else
733                                 ret &= bdi_congested(&q->backing_dev_info, bits);
734                 }
735         }
736         rcu_read_unlock();
737         return ret;
738 }
739
740 static void flush_pending_writes(struct r1conf *conf)
741 {
742         /* Any writes that have been queued but are awaiting
743          * bitmap updates get flushed here.
744          */
745         spin_lock_irq(&conf->device_lock);
746
747         if (conf->pending_bio_list.head) {
748                 struct bio *bio;
749                 bio = bio_list_get(&conf->pending_bio_list);
750                 conf->pending_count = 0;
751                 spin_unlock_irq(&conf->device_lock);
752                 /* flush any pending bitmap writes to
753                  * disk before proceeding w/ I/O */
754                 bitmap_unplug(conf->mddev->bitmap);
755                 wake_up(&conf->wait_barrier);
756
757                 while (bio) { /* submit pending writes */
758                         struct bio *next = bio->bi_next;
759                         bio->bi_next = NULL;
760                         if (unlikely((bio->bi_rw & REQ_DISCARD) &&
761                             !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
762                                 /* Just ignore it */
763                                 bio_endio(bio);
764                         else
765                                 generic_make_request(bio);
766                         bio = next;
767                 }
768         } else
769                 spin_unlock_irq(&conf->device_lock);
770 }
771
772 /* Barriers....
773  * Sometimes we need to suspend IO while we do something else,
774  * either some resync/recovery, or reconfigure the array.
775  * To do this we raise a 'barrier'.
776  * The 'barrier' is a counter that can be raised multiple times
777  * to count how many activities are happening which preclude
778  * normal IO.
779  * We can only raise the barrier if there is no pending IO.
780  * i.e. if nr_pending == 0.
781  * We choose only to raise the barrier if no-one is waiting for the
782  * barrier to go down.  This means that as soon as an IO request
783  * is ready, no other operations which require a barrier will start
784  * until the IO request has had a chance.
785  *
786  * So: regular IO calls 'wait_barrier'.  When that returns there
787  *    is no backgroup IO happening,  It must arrange to call
788  *    allow_barrier when it has finished its IO.
789  * backgroup IO calls must call raise_barrier.  Once that returns
790  *    there is no normal IO happeing.  It must arrange to call
791  *    lower_barrier when the particular background IO completes.
792  */
793 static void raise_barrier(struct r1conf *conf, sector_t sector_nr)
794 {
795         spin_lock_irq(&conf->resync_lock);
796
797         /* Wait until no block IO is waiting */
798         wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
799                             conf->resync_lock);
800
801         /* block any new IO from starting */
802         conf->barrier++;
803         conf->next_resync = sector_nr;
804
805         /* For these conditions we must wait:
806          * A: while the array is in frozen state
807          * B: while barrier >= RESYNC_DEPTH, meaning resync reach
808          *    the max count which allowed.
809          * C: next_resync + RESYNC_SECTORS > start_next_window, meaning
810          *    next resync will reach to the window which normal bios are
811          *    handling.
812          * D: while there are any active requests in the current window.
813          */
814         wait_event_lock_irq(conf->wait_barrier,
815                             !conf->array_frozen &&
816                             conf->barrier < RESYNC_DEPTH &&
817                             conf->current_window_requests == 0 &&
818                             (conf->start_next_window >=
819                              conf->next_resync + RESYNC_SECTORS),
820                             conf->resync_lock);
821
822         conf->nr_pending++;
823         spin_unlock_irq(&conf->resync_lock);
824 }
825
826 static void lower_barrier(struct r1conf *conf)
827 {
828         unsigned long flags;
829         BUG_ON(conf->barrier <= 0);
830         spin_lock_irqsave(&conf->resync_lock, flags);
831         conf->barrier--;
832         conf->nr_pending--;
833         spin_unlock_irqrestore(&conf->resync_lock, flags);
834         wake_up(&conf->wait_barrier);
835 }
836
837 static bool need_to_wait_for_sync(struct r1conf *conf, struct bio *bio)
838 {
839         bool wait = false;
840
841         if (conf->array_frozen || !bio)
842                 wait = true;
843         else if (conf->barrier && bio_data_dir(bio) == WRITE) {
844                 if ((conf->mddev->curr_resync_completed
845                      >= bio_end_sector(bio)) ||
846                     (conf->next_resync + NEXT_NORMALIO_DISTANCE
847                      <= bio->bi_iter.bi_sector))
848                         wait = false;
849                 else
850                         wait = true;
851         }
852
853         return wait;
854 }
855
856 static sector_t wait_barrier(struct r1conf *conf, struct bio *bio)
857 {
858         sector_t sector = 0;
859
860         spin_lock_irq(&conf->resync_lock);
861         if (need_to_wait_for_sync(conf, bio)) {
862                 conf->nr_waiting++;
863                 /* Wait for the barrier to drop.
864                  * However if there are already pending
865                  * requests (preventing the barrier from
866                  * rising completely), and the
867                  * per-process bio queue isn't empty,
868                  * then don't wait, as we need to empty
869                  * that queue to allow conf->start_next_window
870                  * to increase.
871                  */
872                 wait_event_lock_irq(conf->wait_barrier,
873                                     !conf->array_frozen &&
874                                     (!conf->barrier ||
875                                      ((conf->start_next_window <
876                                        conf->next_resync + RESYNC_SECTORS) &&
877                                       current->bio_list &&
878                                       !bio_list_empty(current->bio_list))),
879                                     conf->resync_lock);
880                 conf->nr_waiting--;
881         }
882
883         if (bio && bio_data_dir(bio) == WRITE) {
884                 if (bio->bi_iter.bi_sector >=
885                     conf->mddev->curr_resync_completed) {
886                         if (conf->start_next_window == MaxSector)
887                                 conf->start_next_window =
888                                         conf->next_resync +
889                                         NEXT_NORMALIO_DISTANCE;
890
891                         if ((conf->start_next_window + NEXT_NORMALIO_DISTANCE)
892                             <= bio->bi_iter.bi_sector)
893                                 conf->next_window_requests++;
894                         else
895                                 conf->current_window_requests++;
896                         sector = conf->start_next_window;
897                 }
898         }
899
900         conf->nr_pending++;
901         spin_unlock_irq(&conf->resync_lock);
902         return sector;
903 }
904
905 static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
906                           sector_t bi_sector)
907 {
908         unsigned long flags;
909
910         spin_lock_irqsave(&conf->resync_lock, flags);
911         conf->nr_pending--;
912         if (start_next_window) {
913                 if (start_next_window == conf->start_next_window) {
914                         if (conf->start_next_window + NEXT_NORMALIO_DISTANCE
915                             <= bi_sector)
916                                 conf->next_window_requests--;
917                         else
918                                 conf->current_window_requests--;
919                 } else
920                         conf->current_window_requests--;
921
922                 if (!conf->current_window_requests) {
923                         if (conf->next_window_requests) {
924                                 conf->current_window_requests =
925                                         conf->next_window_requests;
926                                 conf->next_window_requests = 0;
927                                 conf->start_next_window +=
928                                         NEXT_NORMALIO_DISTANCE;
929                         } else
930                                 conf->start_next_window = MaxSector;
931                 }
932         }
933         spin_unlock_irqrestore(&conf->resync_lock, flags);
934         wake_up(&conf->wait_barrier);
935 }
936
937 static void freeze_array(struct r1conf *conf, int extra)
938 {
939         /* stop syncio and normal IO and wait for everything to
940          * go quite.
941          * We wait until nr_pending match nr_queued+extra
942          * This is called in the context of one normal IO request
943          * that has failed. Thus any sync request that might be pending
944          * will be blocked by nr_pending, and we need to wait for
945          * pending IO requests to complete or be queued for re-try.
946          * Thus the number queued (nr_queued) plus this request (extra)
947          * must match the number of pending IOs (nr_pending) before
948          * we continue.
949          */
950         spin_lock_irq(&conf->resync_lock);
951         conf->array_frozen = 1;
952         wait_event_lock_irq_cmd(conf->wait_barrier,
953                                 conf->nr_pending == conf->nr_queued+extra,
954                                 conf->resync_lock,
955                                 flush_pending_writes(conf));
956         spin_unlock_irq(&conf->resync_lock);
957 }
958 static void unfreeze_array(struct r1conf *conf)
959 {
960         /* reverse the effect of the freeze */
961         spin_lock_irq(&conf->resync_lock);
962         conf->array_frozen = 0;
963         wake_up(&conf->wait_barrier);
964         spin_unlock_irq(&conf->resync_lock);
965 }
966
967 /* duplicate the data pages for behind I/O
968  */
969 static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
970 {
971         int i;
972         struct bio_vec *bvec;
973         struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
974                                         GFP_NOIO);
975         if (unlikely(!bvecs))
976                 return;
977
978         bio_for_each_segment_all(bvec, bio, i) {
979                 bvecs[i] = *bvec;
980                 bvecs[i].bv_page = alloc_page(GFP_NOIO);
981                 if (unlikely(!bvecs[i].bv_page))
982                         goto do_sync_io;
983                 memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
984                        kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
985                 kunmap(bvecs[i].bv_page);
986                 kunmap(bvec->bv_page);
987         }
988         r1_bio->behind_bvecs = bvecs;
989         r1_bio->behind_page_count = bio->bi_vcnt;
990         set_bit(R1BIO_BehindIO, &r1_bio->state);
991         return;
992
993 do_sync_io:
994         for (i = 0; i < bio->bi_vcnt; i++)
995                 if (bvecs[i].bv_page)
996                         put_page(bvecs[i].bv_page);
997         kfree(bvecs);
998         pr_debug("%dB behind alloc failed, doing sync I/O\n",
999                  bio->bi_iter.bi_size);
1000 }
1001
1002 struct raid1_plug_cb {
1003         struct blk_plug_cb      cb;
1004         struct bio_list         pending;
1005         int                     pending_cnt;
1006 };
1007
1008 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1009 {
1010         struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1011                                                   cb);
1012         struct mddev *mddev = plug->cb.data;
1013         struct r1conf *conf = mddev->private;
1014         struct bio *bio;
1015
1016         if (from_schedule || current->bio_list) {
1017                 spin_lock_irq(&conf->device_lock);
1018                 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1019                 conf->pending_count += plug->pending_cnt;
1020                 spin_unlock_irq(&conf->device_lock);
1021                 wake_up(&conf->wait_barrier);
1022                 md_wakeup_thread(mddev->thread);
1023                 kfree(plug);
1024                 return;
1025         }
1026
1027         /* we aren't scheduling, so we can do the write-out directly. */
1028         bio = bio_list_get(&plug->pending);
1029         bitmap_unplug(mddev->bitmap);
1030         wake_up(&conf->wait_barrier);
1031
1032         while (bio) { /* submit pending writes */
1033                 struct bio *next = bio->bi_next;
1034                 bio->bi_next = NULL;
1035                 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1036                     !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1037                         /* Just ignore it */
1038                         bio_endio(bio);
1039                 else
1040                         generic_make_request(bio);
1041                 bio = next;
1042         }
1043         kfree(plug);
1044 }
1045
1046 static void make_request(struct mddev *mddev, struct bio * bio)
1047 {
1048         struct r1conf *conf = mddev->private;
1049         struct raid1_info *mirror;
1050         struct r1bio *r1_bio;
1051         struct bio *read_bio;
1052         int i, disks;
1053         struct bitmap *bitmap;
1054         unsigned long flags;
1055         const int rw = bio_data_dir(bio);
1056         const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1057         const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
1058         const unsigned long do_discard = (bio->bi_rw
1059                                           & (REQ_DISCARD | REQ_SECURE));
1060         const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
1061         struct md_rdev *blocked_rdev;
1062         struct blk_plug_cb *cb;
1063         struct raid1_plug_cb *plug = NULL;
1064         int first_clone;
1065         int sectors_handled;
1066         int max_sectors;
1067         sector_t start_next_window;
1068
1069         /*
1070          * Register the new request and wait if the reconstruction
1071          * thread has put up a bar for new requests.
1072          * Continue immediately if no resync is active currently.
1073          */
1074
1075         md_write_start(mddev, bio); /* wait on superblock update early */
1076
1077         if (bio_data_dir(bio) == WRITE &&
1078             ((bio_end_sector(bio) > mddev->suspend_lo &&
1079             bio->bi_iter.bi_sector < mddev->suspend_hi) ||
1080             (mddev_is_clustered(mddev) &&
1081              md_cluster_ops->area_resyncing(mddev, WRITE,
1082                      bio->bi_iter.bi_sector, bio_end_sector(bio))))) {
1083                 /* As the suspend_* range is controlled by
1084                  * userspace, we want an interruptible
1085                  * wait.
1086                  */
1087                 DEFINE_WAIT(w);
1088                 for (;;) {
1089                         flush_signals(current);
1090                         prepare_to_wait(&conf->wait_barrier,
1091                                         &w, TASK_INTERRUPTIBLE);
1092                         if (bio_end_sector(bio) <= mddev->suspend_lo ||
1093                             bio->bi_iter.bi_sector >= mddev->suspend_hi ||
1094                             (mddev_is_clustered(mddev) &&
1095                              !md_cluster_ops->area_resyncing(mddev, WRITE,
1096                                      bio->bi_iter.bi_sector, bio_end_sector(bio))))
1097                                 break;
1098                         schedule();
1099                 }
1100                 finish_wait(&conf->wait_barrier, &w);
1101         }
1102
1103         start_next_window = wait_barrier(conf, bio);
1104
1105         bitmap = mddev->bitmap;
1106
1107         /*
1108          * make_request() can abort the operation when READA is being
1109          * used and no empty request is available.
1110          *
1111          */
1112         r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1113
1114         r1_bio->master_bio = bio;
1115         r1_bio->sectors = bio_sectors(bio);
1116         r1_bio->state = 0;
1117         r1_bio->mddev = mddev;
1118         r1_bio->sector = bio->bi_iter.bi_sector;
1119
1120         /* We might need to issue multiple reads to different
1121          * devices if there are bad blocks around, so we keep
1122          * track of the number of reads in bio->bi_phys_segments.
1123          * If this is 0, there is only one r1_bio and no locking
1124          * will be needed when requests complete.  If it is
1125          * non-zero, then it is the number of not-completed requests.
1126          */
1127         bio->bi_phys_segments = 0;
1128         bio_clear_flag(bio, BIO_SEG_VALID);
1129
1130         if (rw == READ) {
1131                 /*
1132                  * read balancing logic:
1133                  */
1134                 int rdisk;
1135
1136 read_again:
1137                 rdisk = read_balance(conf, r1_bio, &max_sectors);
1138
1139                 if (rdisk < 0) {
1140                         /* couldn't find anywhere to read from */
1141                         raid_end_bio_io(r1_bio);
1142                         return;
1143                 }
1144                 mirror = conf->mirrors + rdisk;
1145
1146                 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1147                     bitmap) {
1148                         /* Reading from a write-mostly device must
1149                          * take care not to over-take any writes
1150                          * that are 'behind'
1151                          */
1152                         wait_event(bitmap->behind_wait,
1153                                    atomic_read(&bitmap->behind_writes) == 0);
1154                 }
1155                 r1_bio->read_disk = rdisk;
1156                 r1_bio->start_next_window = 0;
1157
1158                 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1159                 bio_trim(read_bio, r1_bio->sector - bio->bi_iter.bi_sector,
1160                          max_sectors);
1161
1162                 r1_bio->bios[rdisk] = read_bio;
1163
1164                 read_bio->bi_iter.bi_sector = r1_bio->sector +
1165                         mirror->rdev->data_offset;
1166                 read_bio->bi_bdev = mirror->rdev->bdev;
1167                 read_bio->bi_end_io = raid1_end_read_request;
1168                 read_bio->bi_rw = READ | do_sync;
1169                 read_bio->bi_private = r1_bio;
1170
1171                 if (max_sectors < r1_bio->sectors) {
1172                         /* could not read all from this device, so we will
1173                          * need another r1_bio.
1174                          */
1175
1176                         sectors_handled = (r1_bio->sector + max_sectors
1177                                            - bio->bi_iter.bi_sector);
1178                         r1_bio->sectors = max_sectors;
1179                         spin_lock_irq(&conf->device_lock);
1180                         if (bio->bi_phys_segments == 0)
1181                                 bio->bi_phys_segments = 2;
1182                         else
1183                                 bio->bi_phys_segments++;
1184                         spin_unlock_irq(&conf->device_lock);
1185                         /* Cannot call generic_make_request directly
1186                          * as that will be queued in __make_request
1187                          * and subsequent mempool_alloc might block waiting
1188                          * for it.  So hand bio over to raid1d.
1189                          */
1190                         reschedule_retry(r1_bio);
1191
1192                         r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1193
1194                         r1_bio->master_bio = bio;
1195                         r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1196                         r1_bio->state = 0;
1197                         r1_bio->mddev = mddev;
1198                         r1_bio->sector = bio->bi_iter.bi_sector +
1199                                 sectors_handled;
1200                         goto read_again;
1201                 } else
1202                         generic_make_request(read_bio);
1203                 return;
1204         }
1205
1206         /*
1207          * WRITE:
1208          */
1209         if (conf->pending_count >= max_queued_requests) {
1210                 md_wakeup_thread(mddev->thread);
1211                 wait_event(conf->wait_barrier,
1212                            conf->pending_count < max_queued_requests);
1213         }
1214         /* first select target devices under rcu_lock and
1215          * inc refcount on their rdev.  Record them by setting
1216          * bios[x] to bio
1217          * If there are known/acknowledged bad blocks on any device on
1218          * which we have seen a write error, we want to avoid writing those
1219          * blocks.
1220          * This potentially requires several writes to write around
1221          * the bad blocks.  Each set of writes gets it's own r1bio
1222          * with a set of bios attached.
1223          */
1224
1225         disks = conf->raid_disks * 2;
1226  retry_write:
1227         r1_bio->start_next_window = start_next_window;
1228         blocked_rdev = NULL;
1229         rcu_read_lock();
1230         max_sectors = r1_bio->sectors;
1231         for (i = 0;  i < disks; i++) {
1232                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1233                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1234                         atomic_inc(&rdev->nr_pending);
1235                         blocked_rdev = rdev;
1236                         break;
1237                 }
1238                 r1_bio->bios[i] = NULL;
1239                 if (!rdev || test_bit(Faulty, &rdev->flags)) {
1240                         if (i < conf->raid_disks)
1241                                 set_bit(R1BIO_Degraded, &r1_bio->state);
1242                         continue;
1243                 }
1244
1245                 atomic_inc(&rdev->nr_pending);
1246                 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1247                         sector_t first_bad;
1248                         int bad_sectors;
1249                         int is_bad;
1250
1251                         is_bad = is_badblock(rdev, r1_bio->sector,
1252                                              max_sectors,
1253                                              &first_bad, &bad_sectors);
1254                         if (is_bad < 0) {
1255                                 /* mustn't write here until the bad block is
1256                                  * acknowledged*/
1257                                 set_bit(BlockedBadBlocks, &rdev->flags);
1258                                 blocked_rdev = rdev;
1259                                 break;
1260                         }
1261                         if (is_bad && first_bad <= r1_bio->sector) {
1262                                 /* Cannot write here at all */
1263                                 bad_sectors -= (r1_bio->sector - first_bad);
1264                                 if (bad_sectors < max_sectors)
1265                                         /* mustn't write more than bad_sectors
1266                                          * to other devices yet
1267                                          */
1268                                         max_sectors = bad_sectors;
1269                                 rdev_dec_pending(rdev, mddev);
1270                                 /* We don't set R1BIO_Degraded as that
1271                                  * only applies if the disk is
1272                                  * missing, so it might be re-added,
1273                                  * and we want to know to recover this
1274                                  * chunk.
1275                                  * In this case the device is here,
1276                                  * and the fact that this chunk is not
1277                                  * in-sync is recorded in the bad
1278                                  * block log
1279                                  */
1280                                 continue;
1281                         }
1282                         if (is_bad) {
1283                                 int good_sectors = first_bad - r1_bio->sector;
1284                                 if (good_sectors < max_sectors)
1285                                         max_sectors = good_sectors;
1286                         }
1287                 }
1288                 r1_bio->bios[i] = bio;
1289         }
1290         rcu_read_unlock();
1291
1292         if (unlikely(blocked_rdev)) {
1293                 /* Wait for this device to become unblocked */
1294                 int j;
1295                 sector_t old = start_next_window;
1296
1297                 for (j = 0; j < i; j++)
1298                         if (r1_bio->bios[j])
1299                                 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1300                 r1_bio->state = 0;
1301                 allow_barrier(conf, start_next_window, bio->bi_iter.bi_sector);
1302                 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1303                 start_next_window = wait_barrier(conf, bio);
1304                 /*
1305                  * We must make sure the multi r1bios of bio have
1306                  * the same value of bi_phys_segments
1307                  */
1308                 if (bio->bi_phys_segments && old &&
1309                     old != start_next_window)
1310                         /* Wait for the former r1bio(s) to complete */
1311                         wait_event(conf->wait_barrier,
1312                                    bio->bi_phys_segments == 1);
1313                 goto retry_write;
1314         }
1315
1316         if (max_sectors < r1_bio->sectors) {
1317                 /* We are splitting this write into multiple parts, so
1318                  * we need to prepare for allocating another r1_bio.
1319                  */
1320                 r1_bio->sectors = max_sectors;
1321                 spin_lock_irq(&conf->device_lock);
1322                 if (bio->bi_phys_segments == 0)
1323                         bio->bi_phys_segments = 2;
1324                 else
1325                         bio->bi_phys_segments++;
1326                 spin_unlock_irq(&conf->device_lock);
1327         }
1328         sectors_handled = r1_bio->sector + max_sectors - bio->bi_iter.bi_sector;
1329
1330         atomic_set(&r1_bio->remaining, 1);
1331         atomic_set(&r1_bio->behind_remaining, 0);
1332
1333         first_clone = 1;
1334         for (i = 0; i < disks; i++) {
1335                 struct bio *mbio;
1336                 if (!r1_bio->bios[i])
1337                         continue;
1338
1339                 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1340                 bio_trim(mbio, r1_bio->sector - bio->bi_iter.bi_sector, max_sectors);
1341
1342                 if (first_clone) {
1343                         /* do behind I/O ?
1344                          * Not if there are too many, or cannot
1345                          * allocate memory, or a reader on WriteMostly
1346                          * is waiting for behind writes to flush */
1347                         if (bitmap &&
1348                             (atomic_read(&bitmap->behind_writes)
1349                              < mddev->bitmap_info.max_write_behind) &&
1350                             !waitqueue_active(&bitmap->behind_wait))
1351                                 alloc_behind_pages(mbio, r1_bio);
1352
1353                         bitmap_startwrite(bitmap, r1_bio->sector,
1354                                           r1_bio->sectors,
1355                                           test_bit(R1BIO_BehindIO,
1356                                                    &r1_bio->state));
1357                         first_clone = 0;
1358                 }
1359                 if (r1_bio->behind_bvecs) {
1360                         struct bio_vec *bvec;
1361                         int j;
1362
1363                         /*
1364                          * We trimmed the bio, so _all is legit
1365                          */
1366                         bio_for_each_segment_all(bvec, mbio, j)
1367                                 bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1368                         if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1369                                 atomic_inc(&r1_bio->behind_remaining);
1370                 }
1371
1372                 r1_bio->bios[i] = mbio;
1373
1374                 mbio->bi_iter.bi_sector = (r1_bio->sector +
1375                                    conf->mirrors[i].rdev->data_offset);
1376                 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1377                 mbio->bi_end_io = raid1_end_write_request;
1378                 mbio->bi_rw =
1379                         WRITE | do_flush_fua | do_sync | do_discard | do_same;
1380                 mbio->bi_private = r1_bio;
1381
1382                 atomic_inc(&r1_bio->remaining);
1383
1384                 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1385                 if (cb)
1386                         plug = container_of(cb, struct raid1_plug_cb, cb);
1387                 else
1388                         plug = NULL;
1389                 spin_lock_irqsave(&conf->device_lock, flags);
1390                 if (plug) {
1391                         bio_list_add(&plug->pending, mbio);
1392                         plug->pending_cnt++;
1393                 } else {
1394                         bio_list_add(&conf->pending_bio_list, mbio);
1395                         conf->pending_count++;
1396                 }
1397                 spin_unlock_irqrestore(&conf->device_lock, flags);
1398                 if (!plug)
1399                         md_wakeup_thread(mddev->thread);
1400         }
1401         /* Mustn't call r1_bio_write_done before this next test,
1402          * as it could result in the bio being freed.
1403          */
1404         if (sectors_handled < bio_sectors(bio)) {
1405                 r1_bio_write_done(r1_bio);
1406                 /* We need another r1_bio.  It has already been counted
1407                  * in bio->bi_phys_segments
1408                  */
1409                 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1410                 r1_bio->master_bio = bio;
1411                 r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1412                 r1_bio->state = 0;
1413                 r1_bio->mddev = mddev;
1414                 r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1415                 goto retry_write;
1416         }
1417
1418         r1_bio_write_done(r1_bio);
1419
1420         /* In case raid1d snuck in to freeze_array */
1421         wake_up(&conf->wait_barrier);
1422 }
1423
1424 static void status(struct seq_file *seq, struct mddev *mddev)
1425 {
1426         struct r1conf *conf = mddev->private;
1427         int i;
1428
1429         seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1430                    conf->raid_disks - mddev->degraded);
1431         rcu_read_lock();
1432         for (i = 0; i < conf->raid_disks; i++) {
1433                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1434                 seq_printf(seq, "%s",
1435                            rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1436         }
1437         rcu_read_unlock();
1438         seq_printf(seq, "]");
1439 }
1440
1441 static void error(struct mddev *mddev, struct md_rdev *rdev)
1442 {
1443         char b[BDEVNAME_SIZE];
1444         struct r1conf *conf = mddev->private;
1445         unsigned long flags;
1446
1447         /*
1448          * If it is not operational, then we have already marked it as dead
1449          * else if it is the last working disks, ignore the error, let the
1450          * next level up know.
1451          * else mark the drive as failed
1452          */
1453         if (test_bit(In_sync, &rdev->flags)
1454             && (conf->raid_disks - mddev->degraded) == 1) {
1455                 /*
1456                  * Don't fail the drive, act as though we were just a
1457                  * normal single drive.
1458                  * However don't try a recovery from this drive as
1459                  * it is very likely to fail.
1460                  */
1461                 conf->recovery_disabled = mddev->recovery_disabled;
1462                 return;
1463         }
1464         set_bit(Blocked, &rdev->flags);
1465         spin_lock_irqsave(&conf->device_lock, flags);
1466         if (test_and_clear_bit(In_sync, &rdev->flags)) {
1467                 mddev->degraded++;
1468                 set_bit(Faulty, &rdev->flags);
1469         } else
1470                 set_bit(Faulty, &rdev->flags);
1471         spin_unlock_irqrestore(&conf->device_lock, flags);
1472         /*
1473          * if recovery is running, make sure it aborts.
1474          */
1475         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1476         set_bit(MD_CHANGE_DEVS, &mddev->flags);
1477         printk(KERN_ALERT
1478                "md/raid1:%s: Disk failure on %s, disabling device.\n"
1479                "md/raid1:%s: Operation continuing on %d devices.\n",
1480                mdname(mddev), bdevname(rdev->bdev, b),
1481                mdname(mddev), conf->raid_disks - mddev->degraded);
1482 }
1483
1484 static void print_conf(struct r1conf *conf)
1485 {
1486         int i;
1487
1488         printk(KERN_DEBUG "RAID1 conf printout:\n");
1489         if (!conf) {
1490                 printk(KERN_DEBUG "(!conf)\n");
1491                 return;
1492         }
1493         printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1494                 conf->raid_disks);
1495
1496         rcu_read_lock();
1497         for (i = 0; i < conf->raid_disks; i++) {
1498                 char b[BDEVNAME_SIZE];
1499                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1500                 if (rdev)
1501                         printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1502                                i, !test_bit(In_sync, &rdev->flags),
1503                                !test_bit(Faulty, &rdev->flags),
1504                                bdevname(rdev->bdev,b));
1505         }
1506         rcu_read_unlock();
1507 }
1508
1509 static void close_sync(struct r1conf *conf)
1510 {
1511         wait_barrier(conf, NULL);
1512         allow_barrier(conf, 0, 0);
1513
1514         mempool_destroy(conf->r1buf_pool);
1515         conf->r1buf_pool = NULL;
1516
1517         spin_lock_irq(&conf->resync_lock);
1518         conf->next_resync = 0;
1519         conf->start_next_window = MaxSector;
1520         conf->current_window_requests +=
1521                 conf->next_window_requests;
1522         conf->next_window_requests = 0;
1523         spin_unlock_irq(&conf->resync_lock);
1524 }
1525
1526 static int raid1_spare_active(struct mddev *mddev)
1527 {
1528         int i;
1529         struct r1conf *conf = mddev->private;
1530         int count = 0;
1531         unsigned long flags;
1532
1533         /*
1534          * Find all failed disks within the RAID1 configuration
1535          * and mark them readable.
1536          * Called under mddev lock, so rcu protection not needed.
1537          * device_lock used to avoid races with raid1_end_read_request
1538          * which expects 'In_sync' flags and ->degraded to be consistent.
1539          */
1540         spin_lock_irqsave(&conf->device_lock, flags);
1541         for (i = 0; i < conf->raid_disks; i++) {
1542                 struct md_rdev *rdev = conf->mirrors[i].rdev;
1543                 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1544                 if (repl
1545                     && !test_bit(Candidate, &repl->flags)
1546                     && repl->recovery_offset == MaxSector
1547                     && !test_bit(Faulty, &repl->flags)
1548                     && !test_and_set_bit(In_sync, &repl->flags)) {
1549                         /* replacement has just become active */
1550                         if (!rdev ||
1551                             !test_and_clear_bit(In_sync, &rdev->flags))
1552                                 count++;
1553                         if (rdev) {
1554                                 /* Replaced device not technically
1555                                  * faulty, but we need to be sure
1556                                  * it gets removed and never re-added
1557                                  */
1558                                 set_bit(Faulty, &rdev->flags);
1559                                 sysfs_notify_dirent_safe(
1560                                         rdev->sysfs_state);
1561                         }
1562                 }
1563                 if (rdev
1564                     && rdev->recovery_offset == MaxSector
1565                     && !test_bit(Faulty, &rdev->flags)
1566                     && !test_and_set_bit(In_sync, &rdev->flags)) {
1567                         count++;
1568                         sysfs_notify_dirent_safe(rdev->sysfs_state);
1569                 }
1570         }
1571         mddev->degraded -= count;
1572         spin_unlock_irqrestore(&conf->device_lock, flags);
1573
1574         print_conf(conf);
1575         return count;
1576 }
1577
1578 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1579 {
1580         struct r1conf *conf = mddev->private;
1581         int err = -EEXIST;
1582         int mirror = 0;
1583         struct raid1_info *p;
1584         int first = 0;
1585         int last = conf->raid_disks - 1;
1586
1587         if (mddev->recovery_disabled == conf->recovery_disabled)
1588                 return -EBUSY;
1589
1590         if (rdev->raid_disk >= 0)
1591                 first = last = rdev->raid_disk;
1592
1593         for (mirror = first; mirror <= last; mirror++) {
1594                 p = conf->mirrors+mirror;
1595                 if (!p->rdev) {
1596
1597                         if (mddev->gendisk)
1598                                 disk_stack_limits(mddev->gendisk, rdev->bdev,
1599                                                   rdev->data_offset << 9);
1600
1601                         p->head_position = 0;
1602                         rdev->raid_disk = mirror;
1603                         err = 0;
1604                         /* As all devices are equivalent, we don't need a full recovery
1605                          * if this was recently any drive of the array
1606                          */
1607                         if (rdev->saved_raid_disk < 0)
1608                                 conf->fullsync = 1;
1609                         rcu_assign_pointer(p->rdev, rdev);
1610                         break;
1611                 }
1612                 if (test_bit(WantReplacement, &p->rdev->flags) &&
1613                     p[conf->raid_disks].rdev == NULL) {
1614                         /* Add this device as a replacement */
1615                         clear_bit(In_sync, &rdev->flags);
1616                         set_bit(Replacement, &rdev->flags);
1617                         rdev->raid_disk = mirror;
1618                         err = 0;
1619                         conf->fullsync = 1;
1620                         rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1621                         break;
1622                 }
1623         }
1624         md_integrity_add_rdev(rdev, mddev);
1625         if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1626                 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1627         print_conf(conf);
1628         return err;
1629 }
1630
1631 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1632 {
1633         struct r1conf *conf = mddev->private;
1634         int err = 0;
1635         int number = rdev->raid_disk;
1636         struct raid1_info *p = conf->mirrors + number;
1637
1638         if (rdev != p->rdev)
1639                 p = conf->mirrors + conf->raid_disks + number;
1640
1641         print_conf(conf);
1642         if (rdev == p->rdev) {
1643                 if (test_bit(In_sync, &rdev->flags) ||
1644                     atomic_read(&rdev->nr_pending)) {
1645                         err = -EBUSY;
1646                         goto abort;
1647                 }
1648                 /* Only remove non-faulty devices if recovery
1649                  * is not possible.
1650                  */
1651                 if (!test_bit(Faulty, &rdev->flags) &&
1652                     mddev->recovery_disabled != conf->recovery_disabled &&
1653                     mddev->degraded < conf->raid_disks) {
1654                         err = -EBUSY;
1655                         goto abort;
1656                 }
1657                 p->rdev = NULL;
1658                 synchronize_rcu();
1659                 if (atomic_read(&rdev->nr_pending)) {
1660                         /* lost the race, try later */
1661                         err = -EBUSY;
1662                         p->rdev = rdev;
1663                         goto abort;
1664                 } else if (conf->mirrors[conf->raid_disks + number].rdev) {
1665                         /* We just removed a device that is being replaced.
1666                          * Move down the replacement.  We drain all IO before
1667                          * doing this to avoid confusion.
1668                          */
1669                         struct md_rdev *repl =
1670                                 conf->mirrors[conf->raid_disks + number].rdev;
1671                         freeze_array(conf, 0);
1672                         clear_bit(Replacement, &repl->flags);
1673                         p->rdev = repl;
1674                         conf->mirrors[conf->raid_disks + number].rdev = NULL;
1675                         unfreeze_array(conf);
1676                         clear_bit(WantReplacement, &rdev->flags);
1677                 } else
1678                         clear_bit(WantReplacement, &rdev->flags);
1679                 err = md_integrity_register(mddev);
1680         }
1681 abort:
1682
1683         print_conf(conf);
1684         return err;
1685 }
1686
1687 static void end_sync_read(struct bio *bio)
1688 {
1689         struct r1bio *r1_bio = bio->bi_private;
1690
1691         update_head_pos(r1_bio->read_disk, r1_bio);
1692
1693         /*
1694          * we have read a block, now it needs to be re-written,
1695          * or re-read if the read failed.
1696          * We don't do much here, just schedule handling by raid1d
1697          */
1698         if (!bio->bi_error)
1699                 set_bit(R1BIO_Uptodate, &r1_bio->state);
1700
1701         if (atomic_dec_and_test(&r1_bio->remaining))
1702                 reschedule_retry(r1_bio);
1703 }
1704
1705 static void end_sync_write(struct bio *bio)
1706 {
1707         int uptodate = !bio->bi_error;
1708         struct r1bio *r1_bio = bio->bi_private;
1709         struct mddev *mddev = r1_bio->mddev;
1710         struct r1conf *conf = mddev->private;
1711         int mirror=0;
1712         sector_t first_bad;
1713         int bad_sectors;
1714
1715         mirror = find_bio_disk(r1_bio, bio);
1716
1717         if (!uptodate) {
1718                 sector_t sync_blocks = 0;
1719                 sector_t s = r1_bio->sector;
1720                 long sectors_to_go = r1_bio->sectors;
1721                 /* make sure these bits doesn't get cleared. */
1722                 do {
1723                         bitmap_end_sync(mddev->bitmap, s,
1724                                         &sync_blocks, 1);
1725                         s += sync_blocks;
1726                         sectors_to_go -= sync_blocks;
1727                 } while (sectors_to_go > 0);
1728                 set_bit(WriteErrorSeen,
1729                         &conf->mirrors[mirror].rdev->flags);
1730                 if (!test_and_set_bit(WantReplacement,
1731                                       &conf->mirrors[mirror].rdev->flags))
1732                         set_bit(MD_RECOVERY_NEEDED, &
1733                                 mddev->recovery);
1734                 set_bit(R1BIO_WriteError, &r1_bio->state);
1735         } else if (is_badblock(conf->mirrors[mirror].rdev,
1736                                r1_bio->sector,
1737                                r1_bio->sectors,
1738                                &first_bad, &bad_sectors) &&
1739                    !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1740                                 r1_bio->sector,
1741                                 r1_bio->sectors,
1742                                 &first_bad, &bad_sectors)
1743                 )
1744                 set_bit(R1BIO_MadeGood, &r1_bio->state);
1745
1746         if (atomic_dec_and_test(&r1_bio->remaining)) {
1747                 int s = r1_bio->sectors;
1748                 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1749                     test_bit(R1BIO_WriteError, &r1_bio->state))
1750                         reschedule_retry(r1_bio);
1751                 else {
1752                         put_buf(r1_bio);
1753                         md_done_sync(mddev, s, uptodate);
1754                 }
1755         }
1756 }
1757
1758 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1759                             int sectors, struct page *page, int rw)
1760 {
1761         if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1762                 /* success */
1763                 return 1;
1764         if (rw == WRITE) {
1765                 set_bit(WriteErrorSeen, &rdev->flags);
1766                 if (!test_and_set_bit(WantReplacement,
1767                                       &rdev->flags))
1768                         set_bit(MD_RECOVERY_NEEDED, &
1769                                 rdev->mddev->recovery);
1770         }
1771         /* need to record an error - either for the block or the device */
1772         if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1773                 md_error(rdev->mddev, rdev);
1774         return 0;
1775 }
1776
1777 static int fix_sync_read_error(struct r1bio *r1_bio)
1778 {
1779         /* Try some synchronous reads of other devices to get
1780          * good data, much like with normal read errors.  Only
1781          * read into the pages we already have so we don't
1782          * need to re-issue the read request.
1783          * We don't need to freeze the array, because being in an
1784          * active sync request, there is no normal IO, and
1785          * no overlapping syncs.
1786          * We don't need to check is_badblock() again as we
1787          * made sure that anything with a bad block in range
1788          * will have bi_end_io clear.
1789          */
1790         struct mddev *mddev = r1_bio->mddev;
1791         struct r1conf *conf = mddev->private;
1792         struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1793         sector_t sect = r1_bio->sector;
1794         int sectors = r1_bio->sectors;
1795         int idx = 0;
1796
1797         while(sectors) {
1798                 int s = sectors;
1799                 int d = r1_bio->read_disk;
1800                 int success = 0;
1801                 struct md_rdev *rdev;
1802                 int start;
1803
1804                 if (s > (PAGE_SIZE>>9))
1805                         s = PAGE_SIZE >> 9;
1806                 do {
1807                         if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1808                                 /* No rcu protection needed here devices
1809                                  * can only be removed when no resync is
1810                                  * active, and resync is currently active
1811                                  */
1812                                 rdev = conf->mirrors[d].rdev;
1813                                 if (sync_page_io(rdev, sect, s<<9,
1814                                                  bio->bi_io_vec[idx].bv_page,
1815                                                  READ, false)) {
1816                                         success = 1;
1817                                         break;
1818                                 }
1819                         }
1820                         d++;
1821                         if (d == conf->raid_disks * 2)
1822                                 d = 0;
1823                 } while (!success && d != r1_bio->read_disk);
1824
1825                 if (!success) {
1826                         char b[BDEVNAME_SIZE];
1827                         int abort = 0;
1828                         /* Cannot read from anywhere, this block is lost.
1829                          * Record a bad block on each device.  If that doesn't
1830                          * work just disable and interrupt the recovery.
1831                          * Don't fail devices as that won't really help.
1832                          */
1833                         printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1834                                " for block %llu\n",
1835                                mdname(mddev),
1836                                bdevname(bio->bi_bdev, b),
1837                                (unsigned long long)r1_bio->sector);
1838                         for (d = 0; d < conf->raid_disks * 2; d++) {
1839                                 rdev = conf->mirrors[d].rdev;
1840                                 if (!rdev || test_bit(Faulty, &rdev->flags))
1841                                         continue;
1842                                 if (!rdev_set_badblocks(rdev, sect, s, 0))
1843                                         abort = 1;
1844                         }
1845                         if (abort) {
1846                                 conf->recovery_disabled =
1847                                         mddev->recovery_disabled;
1848                                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1849                                 md_done_sync(mddev, r1_bio->sectors, 0);
1850                                 put_buf(r1_bio);
1851                                 return 0;
1852                         }
1853                         /* Try next page */
1854                         sectors -= s;
1855                         sect += s;
1856                         idx++;
1857                         continue;
1858                 }
1859
1860                 start = d;
1861                 /* write it back and re-read */
1862                 while (d != r1_bio->read_disk) {
1863                         if (d == 0)
1864                                 d = conf->raid_disks * 2;
1865                         d--;
1866                         if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1867                                 continue;
1868                         rdev = conf->mirrors[d].rdev;
1869                         if (r1_sync_page_io(rdev, sect, s,
1870                                             bio->bi_io_vec[idx].bv_page,
1871                                             WRITE) == 0) {
1872                                 r1_bio->bios[d]->bi_end_io = NULL;
1873                                 rdev_dec_pending(rdev, mddev);
1874                         }
1875                 }
1876                 d = start;
1877                 while (d != r1_bio->read_disk) {
1878                         if (d == 0)
1879                                 d = conf->raid_disks * 2;
1880                         d--;
1881                         if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1882                                 continue;
1883                         rdev = conf->mirrors[d].rdev;
1884                         if (r1_sync_page_io(rdev, sect, s,
1885                                             bio->bi_io_vec[idx].bv_page,
1886                                             READ) != 0)
1887                                 atomic_add(s, &rdev->corrected_errors);
1888                 }
1889                 sectors -= s;
1890                 sect += s;
1891                 idx ++;
1892         }
1893         set_bit(R1BIO_Uptodate, &r1_bio->state);
1894         bio->bi_error = 0;
1895         return 1;
1896 }
1897
1898 static void process_checks(struct r1bio *r1_bio)
1899 {
1900         /* We have read all readable devices.  If we haven't
1901          * got the block, then there is no hope left.
1902          * If we have, then we want to do a comparison
1903          * and skip the write if everything is the same.
1904          * If any blocks failed to read, then we need to
1905          * attempt an over-write
1906          */
1907         struct mddev *mddev = r1_bio->mddev;
1908         struct r1conf *conf = mddev->private;
1909         int primary;
1910         int i;
1911         int vcnt;
1912
1913         /* Fix variable parts of all bios */
1914         vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
1915         for (i = 0; i < conf->raid_disks * 2; i++) {
1916                 int j;
1917                 int size;
1918                 int error;
1919                 struct bio *b = r1_bio->bios[i];
1920                 if (b->bi_end_io != end_sync_read)
1921                         continue;
1922                 /* fixup the bio for reuse, but preserve errno */
1923                 error = b->bi_error;
1924                 bio_reset(b);
1925                 b->bi_error = error;
1926                 b->bi_vcnt = vcnt;
1927                 b->bi_iter.bi_size = r1_bio->sectors << 9;
1928                 b->bi_iter.bi_sector = r1_bio->sector +
1929                         conf->mirrors[i].rdev->data_offset;
1930                 b->bi_bdev = conf->mirrors[i].rdev->bdev;
1931                 b->bi_end_io = end_sync_read;
1932                 b->bi_private = r1_bio;
1933
1934                 size = b->bi_iter.bi_size;
1935                 for (j = 0; j < vcnt ; j++) {
1936                         struct bio_vec *bi;
1937                         bi = &b->bi_io_vec[j];
1938                         bi->bv_offset = 0;
1939                         if (size > PAGE_SIZE)
1940                                 bi->bv_len = PAGE_SIZE;
1941                         else
1942                                 bi->bv_len = size;
1943                         size -= PAGE_SIZE;
1944                 }
1945         }
1946         for (primary = 0; primary < conf->raid_disks * 2; primary++)
1947                 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1948                     !r1_bio->bios[primary]->bi_error) {
1949                         r1_bio->bios[primary]->bi_end_io = NULL;
1950                         rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1951                         break;
1952                 }
1953         r1_bio->read_disk = primary;
1954         for (i = 0; i < conf->raid_disks * 2; i++) {
1955                 int j;
1956                 struct bio *pbio = r1_bio->bios[primary];
1957                 struct bio *sbio = r1_bio->bios[i];
1958                 int error = sbio->bi_error;
1959
1960                 if (sbio->bi_end_io != end_sync_read)
1961                         continue;
1962                 /* Now we can 'fixup' the error value */
1963                 sbio->bi_error = 0;
1964
1965                 if (!error) {
1966                         for (j = vcnt; j-- ; ) {
1967                                 struct page *p, *s;
1968                                 p = pbio->bi_io_vec[j].bv_page;
1969                                 s = sbio->bi_io_vec[j].bv_page;
1970                                 if (memcmp(page_address(p),
1971                                            page_address(s),
1972                                            sbio->bi_io_vec[j].bv_len))
1973                                         break;
1974                         }
1975                 } else
1976                         j = 0;
1977                 if (j >= 0)
1978                         atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
1979                 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1980                               && !error)) {
1981                         /* No need to write to this device. */
1982                         sbio->bi_end_io = NULL;
1983                         rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1984                         continue;
1985                 }
1986
1987                 bio_copy_data(sbio, pbio);
1988         }
1989 }
1990
1991 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
1992 {
1993         struct r1conf *conf = mddev->private;
1994         int i;
1995         int disks = conf->raid_disks * 2;
1996         struct bio *bio, *wbio;
1997
1998         bio = r1_bio->bios[r1_bio->read_disk];
1999
2000         if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2001                 /* ouch - failed to read all of that. */
2002                 if (!fix_sync_read_error(r1_bio))
2003                         return;
2004
2005         if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2006                 process_checks(r1_bio);
2007
2008         /*
2009          * schedule writes
2010          */
2011         atomic_set(&r1_bio->remaining, 1);
2012         for (i = 0; i < disks ; i++) {
2013                 wbio = r1_bio->bios[i];
2014                 if (wbio->bi_end_io == NULL ||
2015                     (wbio->bi_end_io == end_sync_read &&
2016                      (i == r1_bio->read_disk ||
2017                       !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2018                         continue;
2019
2020                 wbio->bi_rw = WRITE;
2021                 wbio->bi_end_io = end_sync_write;
2022                 atomic_inc(&r1_bio->remaining);
2023                 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2024
2025                 generic_make_request(wbio);
2026         }
2027
2028         if (atomic_dec_and_test(&r1_bio->remaining)) {
2029                 /* if we're here, all write(s) have completed, so clean up */
2030                 int s = r1_bio->sectors;
2031                 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2032                     test_bit(R1BIO_WriteError, &r1_bio->state))
2033                         reschedule_retry(r1_bio);
2034                 else {
2035                         put_buf(r1_bio);
2036                         md_done_sync(mddev, s, 1);
2037                 }
2038         }
2039 }
2040
2041 /*
2042  * This is a kernel thread which:
2043  *
2044  *      1.      Retries failed read operations on working mirrors.
2045  *      2.      Updates the raid superblock when problems encounter.
2046  *      3.      Performs writes following reads for array synchronising.
2047  */
2048
2049 static void fix_read_error(struct r1conf *conf, int read_disk,
2050                            sector_t sect, int sectors)
2051 {
2052         struct mddev *mddev = conf->mddev;
2053         while(sectors) {
2054                 int s = sectors;
2055                 int d = read_disk;
2056                 int success = 0;
2057                 int start;
2058                 struct md_rdev *rdev;
2059
2060                 if (s > (PAGE_SIZE>>9))
2061                         s = PAGE_SIZE >> 9;
2062
2063                 do {
2064                         /* Note: no rcu protection needed here
2065                          * as this is synchronous in the raid1d thread
2066                          * which is the thread that might remove
2067                          * a device.  If raid1d ever becomes multi-threaded....
2068                          */
2069                         sector_t first_bad;
2070                         int bad_sectors;
2071
2072                         rdev = conf->mirrors[d].rdev;
2073                         if (rdev &&
2074                             (test_bit(In_sync, &rdev->flags) ||
2075                              (!test_bit(Faulty, &rdev->flags) &&
2076                               rdev->recovery_offset >= sect + s)) &&
2077                             is_badblock(rdev, sect, s,
2078                                         &first_bad, &bad_sectors) == 0 &&
2079                             sync_page_io(rdev, sect, s<<9,
2080                                          conf->tmppage, READ, false))
2081                                 success = 1;
2082                         else {
2083                                 d++;
2084                                 if (d == conf->raid_disks * 2)
2085                                         d = 0;
2086                         }
2087                 } while (!success && d != read_disk);
2088
2089                 if (!success) {
2090                         /* Cannot read from anywhere - mark it bad */
2091                         struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2092                         if (!rdev_set_badblocks(rdev, sect, s, 0))
2093                                 md_error(mddev, rdev);
2094                         break;
2095                 }
2096                 /* write it back and re-read */
2097                 start = d;
2098                 while (d != read_disk) {
2099                         if (d==0)
2100                                 d = conf->raid_disks * 2;
2101                         d--;
2102                         rdev = conf->mirrors[d].rdev;
2103                         if (rdev &&
2104                             !test_bit(Faulty, &rdev->flags))
2105                                 r1_sync_page_io(rdev, sect, s,
2106                                                 conf->tmppage, WRITE);
2107                 }
2108                 d = start;
2109                 while (d != read_disk) {
2110                         char b[BDEVNAME_SIZE];
2111                         if (d==0)
2112                                 d = conf->raid_disks * 2;
2113                         d--;
2114                         rdev = conf->mirrors[d].rdev;
2115                         if (rdev &&
2116                             !test_bit(Faulty, &rdev->flags)) {
2117                                 if (r1_sync_page_io(rdev, sect, s,
2118                                                     conf->tmppage, READ)) {
2119                                         atomic_add(s, &rdev->corrected_errors);
2120                                         printk(KERN_INFO
2121                                                "md/raid1:%s: read error corrected "
2122                                                "(%d sectors at %llu on %s)\n",
2123                                                mdname(mddev), s,
2124                                                (unsigned long long)(sect +
2125                                                    rdev->data_offset),
2126                                                bdevname(rdev->bdev, b));
2127                                 }
2128                         }
2129                 }
2130                 sectors -= s;
2131                 sect += s;
2132         }
2133 }
2134
2135 static int narrow_write_error(struct r1bio *r1_bio, int i)
2136 {
2137         struct mddev *mddev = r1_bio->mddev;
2138         struct r1conf *conf = mddev->private;
2139         struct md_rdev *rdev = conf->mirrors[i].rdev;
2140
2141         /* bio has the data to be written to device 'i' where
2142          * we just recently had a write error.
2143          * We repeatedly clone the bio and trim down to one block,
2144          * then try the write.  Where the write fails we record
2145          * a bad block.
2146          * It is conceivable that the bio doesn't exactly align with
2147          * blocks.  We must handle this somehow.
2148          *
2149          * We currently own a reference on the rdev.
2150          */
2151
2152         int block_sectors;
2153         sector_t sector;
2154         int sectors;
2155         int sect_to_write = r1_bio->sectors;
2156         int ok = 1;
2157
2158         if (rdev->badblocks.shift < 0)
2159                 return 0;
2160
2161         block_sectors = roundup(1 << rdev->badblocks.shift,
2162                                 bdev_logical_block_size(rdev->bdev) >> 9);
2163         sector = r1_bio->sector;
2164         sectors = ((sector + block_sectors)
2165                    & ~(sector_t)(block_sectors - 1))
2166                 - sector;
2167
2168         while (sect_to_write) {
2169                 struct bio *wbio;
2170                 if (sectors > sect_to_write)
2171                         sectors = sect_to_write;
2172                 /* Write at 'sector' for 'sectors'*/
2173
2174                 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2175                         unsigned vcnt = r1_bio->behind_page_count;
2176                         struct bio_vec *vec = r1_bio->behind_bvecs;
2177
2178                         while (!vec->bv_page) {
2179                                 vec++;
2180                                 vcnt--;
2181                         }
2182
2183                         wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2184                         memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2185
2186                         wbio->bi_vcnt = vcnt;
2187                 } else {
2188                         wbio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2189                 }
2190
2191                 wbio->bi_rw = WRITE;
2192                 wbio->bi_iter.bi_sector = r1_bio->sector;
2193                 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2194
2195                 bio_trim(wbio, sector - r1_bio->sector, sectors);
2196                 wbio->bi_iter.bi_sector += rdev->data_offset;
2197                 wbio->bi_bdev = rdev->bdev;
2198                 if (submit_bio_wait(WRITE, wbio) == 0)
2199                         /* failure! */
2200                         ok = rdev_set_badblocks(rdev, sector,
2201                                                 sectors, 0)
2202                                 && ok;
2203
2204                 bio_put(wbio);
2205                 sect_to_write -= sectors;
2206                 sector += sectors;
2207                 sectors = block_sectors;
2208         }
2209         return ok;
2210 }
2211
2212 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2213 {
2214         int m;
2215         int s = r1_bio->sectors;
2216         for (m = 0; m < conf->raid_disks * 2 ; m++) {
2217                 struct md_rdev *rdev = conf->mirrors[m].rdev;
2218                 struct bio *bio = r1_bio->bios[m];
2219                 if (bio->bi_end_io == NULL)
2220                         continue;
2221                 if (!bio->bi_error &&
2222                     test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2223                         rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2224                 }
2225                 if (bio->bi_error &&
2226                     test_bit(R1BIO_WriteError, &r1_bio->state)) {
2227                         if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2228                                 md_error(conf->mddev, rdev);
2229                 }
2230         }
2231         put_buf(r1_bio);
2232         md_done_sync(conf->mddev, s, 1);
2233 }
2234
2235 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2236 {
2237         int m;
2238         for (m = 0; m < conf->raid_disks * 2 ; m++)
2239                 if (r1_bio->bios[m] == IO_MADE_GOOD) {
2240                         struct md_rdev *rdev = conf->mirrors[m].rdev;
2241                         rdev_clear_badblocks(rdev,
2242                                              r1_bio->sector,
2243                                              r1_bio->sectors, 0);
2244                         rdev_dec_pending(rdev, conf->mddev);
2245                 } else if (r1_bio->bios[m] != NULL) {
2246                         /* This drive got a write error.  We need to
2247                          * narrow down and record precise write
2248                          * errors.
2249                          */
2250                         if (!narrow_write_error(r1_bio, m)) {
2251                                 md_error(conf->mddev,
2252                                          conf->mirrors[m].rdev);
2253                                 /* an I/O failed, we can't clear the bitmap */
2254                                 set_bit(R1BIO_Degraded, &r1_bio->state);
2255                         }
2256                         rdev_dec_pending(conf->mirrors[m].rdev,
2257                                          conf->mddev);
2258                 }
2259         if (test_bit(R1BIO_WriteError, &r1_bio->state))
2260                 close_write(r1_bio);
2261         raid_end_bio_io(r1_bio);
2262 }
2263
2264 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2265 {
2266         int disk;
2267         int max_sectors;
2268         struct mddev *mddev = conf->mddev;
2269         struct bio *bio;
2270         char b[BDEVNAME_SIZE];
2271         struct md_rdev *rdev;
2272
2273         clear_bit(R1BIO_ReadError, &r1_bio->state);
2274         /* we got a read error. Maybe the drive is bad.  Maybe just
2275          * the block and we can fix it.
2276          * We freeze all other IO, and try reading the block from
2277          * other devices.  When we find one, we re-write
2278          * and check it that fixes the read error.
2279          * This is all done synchronously while the array is
2280          * frozen
2281          */
2282         if (mddev->ro == 0) {
2283                 freeze_array(conf, 1);
2284                 fix_read_error(conf, r1_bio->read_disk,
2285                                r1_bio->sector, r1_bio->sectors);
2286                 unfreeze_array(conf);
2287         } else
2288                 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
2289         rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev);
2290
2291         bio = r1_bio->bios[r1_bio->read_disk];
2292         bdevname(bio->bi_bdev, b);
2293 read_more:
2294         disk = read_balance(conf, r1_bio, &max_sectors);
2295         if (disk == -1) {
2296                 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
2297                        " read error for block %llu\n",
2298                        mdname(mddev), b, (unsigned long long)r1_bio->sector);
2299                 raid_end_bio_io(r1_bio);
2300         } else {
2301                 const unsigned long do_sync
2302                         = r1_bio->master_bio->bi_rw & REQ_SYNC;
2303                 if (bio) {
2304                         r1_bio->bios[r1_bio->read_disk] =
2305                                 mddev->ro ? IO_BLOCKED : NULL;
2306                         bio_put(bio);
2307                 }
2308                 r1_bio->read_disk = disk;
2309                 bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2310                 bio_trim(bio, r1_bio->sector - bio->bi_iter.bi_sector,
2311                          max_sectors);
2312                 r1_bio->bios[r1_bio->read_disk] = bio;
2313                 rdev = conf->mirrors[disk].rdev;
2314                 printk_ratelimited(KERN_ERR
2315                                    "md/raid1:%s: redirecting sector %llu"
2316                                    " to other mirror: %s\n",
2317                                    mdname(mddev),
2318                                    (unsigned long long)r1_bio->sector,
2319                                    bdevname(rdev->bdev, b));
2320                 bio->bi_iter.bi_sector = r1_bio->sector + rdev->data_offset;
2321                 bio->bi_bdev = rdev->bdev;
2322                 bio->bi_end_io = raid1_end_read_request;
2323                 bio->bi_rw = READ | do_sync;
2324                 bio->bi_private = r1_bio;
2325                 if (max_sectors < r1_bio->sectors) {
2326                         /* Drat - have to split this up more */
2327                         struct bio *mbio = r1_bio->master_bio;
2328                         int sectors_handled = (r1_bio->sector + max_sectors
2329                                                - mbio->bi_iter.bi_sector);
2330                         r1_bio->sectors = max_sectors;
2331                         spin_lock_irq(&conf->device_lock);
2332                         if (mbio->bi_phys_segments == 0)
2333                                 mbio->bi_phys_segments = 2;
2334                         else
2335                                 mbio->bi_phys_segments++;
2336                         spin_unlock_irq(&conf->device_lock);
2337                         generic_make_request(bio);
2338                         bio = NULL;
2339
2340                         r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2341
2342                         r1_bio->master_bio = mbio;
2343                         r1_bio->sectors = bio_sectors(mbio) - sectors_handled;
2344                         r1_bio->state = 0;
2345                         set_bit(R1BIO_ReadError, &r1_bio->state);
2346                         r1_bio->mddev = mddev;
2347                         r1_bio->sector = mbio->bi_iter.bi_sector +
2348                                 sectors_handled;
2349
2350                         goto read_more;
2351                 } else
2352                         generic_make_request(bio);
2353         }
2354 }
2355
2356 static void raid1d(struct md_thread *thread)
2357 {
2358         struct mddev *mddev = thread->mddev;
2359         struct r1bio *r1_bio;
2360         unsigned long flags;
2361         struct r1conf *conf = mddev->private;
2362         struct list_head *head = &conf->retry_list;
2363         struct blk_plug plug;
2364
2365         md_check_recovery(mddev);
2366
2367         blk_start_plug(&plug);
2368         for (;;) {
2369
2370                 flush_pending_writes(conf);
2371
2372                 spin_lock_irqsave(&conf->device_lock, flags);
2373                 if (list_empty(head)) {
2374                         spin_unlock_irqrestore(&conf->device_lock, flags);
2375                         break;
2376                 }
2377                 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2378                 list_del(head->prev);
2379                 conf->nr_queued--;
2380                 spin_unlock_irqrestore(&conf->device_lock, flags);
2381
2382                 mddev = r1_bio->mddev;
2383                 conf = mddev->private;
2384                 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2385                         if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2386                             test_bit(R1BIO_WriteError, &r1_bio->state))
2387                                 handle_sync_write_finished(conf, r1_bio);
2388                         else
2389                                 sync_request_write(mddev, r1_bio);
2390                 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2391                            test_bit(R1BIO_WriteError, &r1_bio->state))
2392                         handle_write_finished(conf, r1_bio);
2393                 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2394                         handle_read_error(conf, r1_bio);
2395                 else
2396                         /* just a partial read to be scheduled from separate
2397                          * context
2398                          */
2399                         generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2400
2401                 cond_resched();
2402                 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2403                         md_check_recovery(mddev);
2404         }
2405         blk_finish_plug(&plug);
2406 }
2407
2408 static int init_resync(struct r1conf *conf)
2409 {
2410         int buffs;
2411
2412         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2413         BUG_ON(conf->r1buf_pool);
2414         conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2415                                           conf->poolinfo);
2416         if (!conf->r1buf_pool)
2417                 return -ENOMEM;
2418         conf->next_resync = 0;
2419         return 0;
2420 }
2421
2422 /*
2423  * perform a "sync" on one "block"
2424  *
2425  * We need to make sure that no normal I/O request - particularly write
2426  * requests - conflict with active sync requests.
2427  *
2428  * This is achieved by tracking pending requests and a 'barrier' concept
2429  * that can be installed to exclude normal IO requests.
2430  */
2431
2432 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
2433 {
2434         struct r1conf *conf = mddev->private;
2435         struct r1bio *r1_bio;
2436         struct bio *bio;
2437         sector_t max_sector, nr_sectors;
2438         int disk = -1;
2439         int i;
2440         int wonly = -1;
2441         int write_targets = 0, read_targets = 0;
2442         sector_t sync_blocks;
2443         int still_degraded = 0;
2444         int good_sectors = RESYNC_SECTORS;
2445         int min_bad = 0; /* number of sectors that are bad in all devices */
2446
2447         if (!conf->r1buf_pool)
2448                 if (init_resync(conf))
2449                         return 0;
2450
2451         max_sector = mddev->dev_sectors;
2452         if (sector_nr >= max_sector) {
2453                 /* If we aborted, we need to abort the
2454                  * sync on the 'current' bitmap chunk (there will
2455                  * only be one in raid1 resync.
2456                  * We can find the current addess in mddev->curr_resync
2457                  */
2458                 if (mddev->curr_resync < max_sector) /* aborted */
2459                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2460                                                 &sync_blocks, 1);
2461                 else /* completed sync */
2462                         conf->fullsync = 0;
2463
2464                 bitmap_close_sync(mddev->bitmap);
2465                 close_sync(conf);
2466                 return 0;
2467         }
2468
2469         if (mddev->bitmap == NULL &&
2470             mddev->recovery_cp == MaxSector &&
2471             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2472             conf->fullsync == 0) {
2473                 *skipped = 1;
2474                 return max_sector - sector_nr;
2475         }
2476         /* before building a request, check if we can skip these blocks..
2477          * This call the bitmap_start_sync doesn't actually record anything
2478          */
2479         if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2480             !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2481                 /* We can skip this block, and probably several more */
2482                 *skipped = 1;
2483                 return sync_blocks;
2484         }
2485
2486         bitmap_cond_end_sync(mddev->bitmap, sector_nr);
2487         r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2488
2489         raise_barrier(conf, sector_nr);
2490
2491         rcu_read_lock();
2492         /*
2493          * If we get a correctably read error during resync or recovery,
2494          * we might want to read from a different device.  So we
2495          * flag all drives that could conceivably be read from for READ,
2496          * and any others (which will be non-In_sync devices) for WRITE.
2497          * If a read fails, we try reading from something else for which READ
2498          * is OK.
2499          */
2500
2501         r1_bio->mddev = mddev;
2502         r1_bio->sector = sector_nr;
2503         r1_bio->state = 0;
2504         set_bit(R1BIO_IsSync, &r1_bio->state);
2505
2506         for (i = 0; i < conf->raid_disks * 2; i++) {
2507                 struct md_rdev *rdev;
2508                 bio = r1_bio->bios[i];
2509                 bio_reset(bio);
2510
2511                 rdev = rcu_dereference(conf->mirrors[i].rdev);
2512                 if (rdev == NULL ||
2513                     test_bit(Faulty, &rdev->flags)) {
2514                         if (i < conf->raid_disks)
2515                                 still_degraded = 1;
2516                 } else if (!test_bit(In_sync, &rdev->flags)) {
2517                         bio->bi_rw = WRITE;
2518                         bio->bi_end_io = end_sync_write;
2519                         write_targets ++;
2520                 } else {
2521                         /* may need to read from here */
2522                         sector_t first_bad = MaxSector;
2523                         int bad_sectors;
2524
2525                         if (is_badblock(rdev, sector_nr, good_sectors,
2526                                         &first_bad, &bad_sectors)) {
2527                                 if (first_bad > sector_nr)
2528                                         good_sectors = first_bad - sector_nr;
2529                                 else {
2530                                         bad_sectors -= (sector_nr - first_bad);
2531                                         if (min_bad == 0 ||
2532                                             min_bad > bad_sectors)
2533                                                 min_bad = bad_sectors;
2534                                 }
2535                         }
2536                         if (sector_nr < first_bad) {
2537                                 if (test_bit(WriteMostly, &rdev->flags)) {
2538                                         if (wonly < 0)
2539                                                 wonly = i;
2540                                 } else {
2541                                         if (disk < 0)
2542                                                 disk = i;
2543                                 }
2544                                 bio->bi_rw = READ;
2545                                 bio->bi_end_io = end_sync_read;
2546                                 read_targets++;
2547                         } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2548                                 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2549                                 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2550                                 /*
2551                                  * The device is suitable for reading (InSync),
2552                                  * but has bad block(s) here. Let's try to correct them,
2553                                  * if we are doing resync or repair. Otherwise, leave
2554                                  * this device alone for this sync request.
2555                                  */
2556                                 bio->bi_rw = WRITE;
2557                                 bio->bi_end_io = end_sync_write;
2558                                 write_targets++;
2559                         }
2560                 }
2561                 if (bio->bi_end_io) {
2562                         atomic_inc(&rdev->nr_pending);
2563                         bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2564                         bio->bi_bdev = rdev->bdev;
2565                         bio->bi_private = r1_bio;
2566                 }
2567         }
2568         rcu_read_unlock();
2569         if (disk < 0)
2570                 disk = wonly;
2571         r1_bio->read_disk = disk;
2572
2573         if (read_targets == 0 && min_bad > 0) {
2574                 /* These sectors are bad on all InSync devices, so we
2575                  * need to mark them bad on all write targets
2576                  */
2577                 int ok = 1;
2578                 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2579                         if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2580                                 struct md_rdev *rdev = conf->mirrors[i].rdev;
2581                                 ok = rdev_set_badblocks(rdev, sector_nr,
2582                                                         min_bad, 0
2583                                         ) && ok;
2584                         }
2585                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2586                 *skipped = 1;
2587                 put_buf(r1_bio);
2588
2589                 if (!ok) {
2590                         /* Cannot record the badblocks, so need to
2591                          * abort the resync.
2592                          * If there are multiple read targets, could just
2593                          * fail the really bad ones ???
2594                          */
2595                         conf->recovery_disabled = mddev->recovery_disabled;
2596                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2597                         return 0;
2598                 } else
2599                         return min_bad;
2600
2601         }
2602         if (min_bad > 0 && min_bad < good_sectors) {
2603                 /* only resync enough to reach the next bad->good
2604                  * transition */
2605                 good_sectors = min_bad;
2606         }
2607
2608         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2609                 /* extra read targets are also write targets */
2610                 write_targets += read_targets-1;
2611
2612         if (write_targets == 0 || read_targets == 0) {
2613                 /* There is nowhere to write, so all non-sync
2614                  * drives must be failed - so we are finished
2615                  */
2616                 sector_t rv;
2617                 if (min_bad > 0)
2618                         max_sector = sector_nr + min_bad;
2619                 rv = max_sector - sector_nr;
2620                 *skipped = 1;
2621                 put_buf(r1_bio);
2622                 return rv;
2623         }
2624
2625         if (max_sector > mddev->resync_max)
2626                 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2627         if (max_sector > sector_nr + good_sectors)
2628                 max_sector = sector_nr + good_sectors;
2629         nr_sectors = 0;
2630         sync_blocks = 0;
2631         do {
2632                 struct page *page;
2633                 int len = PAGE_SIZE;
2634                 if (sector_nr + (len>>9) > max_sector)
2635                         len = (max_sector - sector_nr) << 9;
2636                 if (len == 0)
2637                         break;
2638                 if (sync_blocks == 0) {
2639                         if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2640                                                &sync_blocks, still_degraded) &&
2641                             !conf->fullsync &&
2642                             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2643                                 break;
2644                         BUG_ON(sync_blocks < (PAGE_SIZE>>9));
2645                         if ((len >> 9) > sync_blocks)
2646                                 len = sync_blocks<<9;
2647                 }
2648
2649                 for (i = 0 ; i < conf->raid_disks * 2; i++) {
2650                         bio = r1_bio->bios[i];
2651                         if (bio->bi_end_io) {
2652                                 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2653                                 if (bio_add_page(bio, page, len, 0) == 0) {
2654                                         /* stop here */
2655                                         bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2656                                         while (i > 0) {
2657                                                 i--;
2658                                                 bio = r1_bio->bios[i];
2659                                                 if (bio->bi_end_io==NULL)
2660                                                         continue;
2661                                                 /* remove last page from this bio */
2662                                                 bio->bi_vcnt--;
2663                                                 bio->bi_iter.bi_size -= len;
2664                                                 bio_clear_flag(bio, BIO_SEG_VALID);
2665                                         }
2666                                         goto bio_full;
2667                                 }
2668                         }
2669                 }
2670                 nr_sectors += len>>9;
2671                 sector_nr += len>>9;
2672                 sync_blocks -= (len>>9);
2673         } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2674  bio_full:
2675         r1_bio->sectors = nr_sectors;
2676
2677         /* For a user-requested sync, we read all readable devices and do a
2678          * compare
2679          */
2680         if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2681                 atomic_set(&r1_bio->remaining, read_targets);
2682                 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2683                         bio = r1_bio->bios[i];
2684                         if (bio->bi_end_io == end_sync_read) {
2685                                 read_targets--;
2686                                 md_sync_acct(bio->bi_bdev, nr_sectors);
2687                                 generic_make_request(bio);
2688                         }
2689                 }
2690         } else {
2691                 atomic_set(&r1_bio->remaining, 1);
2692                 bio = r1_bio->bios[r1_bio->read_disk];
2693                 md_sync_acct(bio->bi_bdev, nr_sectors);
2694                 generic_make_request(bio);
2695
2696         }
2697         return nr_sectors;
2698 }
2699
2700 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2701 {
2702         if (sectors)
2703                 return sectors;
2704
2705         return mddev->dev_sectors;
2706 }
2707
2708 static struct r1conf *setup_conf(struct mddev *mddev)
2709 {
2710         struct r1conf *conf;
2711         int i;
2712         struct raid1_info *disk;
2713         struct md_rdev *rdev;
2714         int err = -ENOMEM;
2715
2716         conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2717         if (!conf)
2718                 goto abort;
2719
2720         conf->mirrors = kzalloc(sizeof(struct raid1_info)
2721                                 * mddev->raid_disks * 2,
2722                                  GFP_KERNEL);
2723         if (!conf->mirrors)
2724                 goto abort;
2725
2726         conf->tmppage = alloc_page(GFP_KERNEL);
2727         if (!conf->tmppage)
2728                 goto abort;
2729
2730         conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2731         if (!conf->poolinfo)
2732                 goto abort;
2733         conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2734         conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2735                                           r1bio_pool_free,
2736                                           conf->poolinfo);
2737         if (!conf->r1bio_pool)
2738                 goto abort;
2739
2740         conf->poolinfo->mddev = mddev;
2741
2742         err = -EINVAL;
2743         spin_lock_init(&conf->device_lock);
2744         rdev_for_each(rdev, mddev) {
2745                 struct request_queue *q;
2746                 int disk_idx = rdev->raid_disk;
2747                 if (disk_idx >= mddev->raid_disks
2748                     || disk_idx < 0)
2749                         continue;
2750                 if (test_bit(Replacement, &rdev->flags))
2751                         disk = conf->mirrors + mddev->raid_disks + disk_idx;
2752                 else
2753                         disk = conf->mirrors + disk_idx;
2754
2755                 if (disk->rdev)
2756                         goto abort;
2757                 disk->rdev = rdev;
2758                 q = bdev_get_queue(rdev->bdev);
2759
2760                 disk->head_position = 0;
2761                 disk->seq_start = MaxSector;
2762         }
2763         conf->raid_disks = mddev->raid_disks;
2764         conf->mddev = mddev;
2765         INIT_LIST_HEAD(&conf->retry_list);
2766
2767         spin_lock_init(&conf->resync_lock);
2768         init_waitqueue_head(&conf->wait_barrier);
2769
2770         bio_list_init(&conf->pending_bio_list);
2771         conf->pending_count = 0;
2772         conf->recovery_disabled = mddev->recovery_disabled - 1;
2773
2774         conf->start_next_window = MaxSector;
2775         conf->current_window_requests = conf->next_window_requests = 0;
2776
2777         err = -EIO;
2778         for (i = 0; i < conf->raid_disks * 2; i++) {
2779
2780                 disk = conf->mirrors + i;
2781
2782                 if (i < conf->raid_disks &&
2783                     disk[conf->raid_disks].rdev) {
2784                         /* This slot has a replacement. */
2785                         if (!disk->rdev) {
2786                                 /* No original, just make the replacement
2787                                  * a recovering spare
2788                                  */
2789                                 disk->rdev =
2790                                         disk[conf->raid_disks].rdev;
2791                                 disk[conf->raid_disks].rdev = NULL;
2792                         } else if (!test_bit(In_sync, &disk->rdev->flags))
2793                                 /* Original is not in_sync - bad */
2794                                 goto abort;
2795                 }
2796
2797                 if (!disk->rdev ||
2798                     !test_bit(In_sync, &disk->rdev->flags)) {
2799                         disk->head_position = 0;
2800                         if (disk->rdev &&
2801                             (disk->rdev->saved_raid_disk < 0))
2802                                 conf->fullsync = 1;
2803                 }
2804         }
2805
2806         err = -ENOMEM;
2807         conf->thread = md_register_thread(raid1d, mddev, "raid1");
2808         if (!conf->thread) {
2809                 printk(KERN_ERR
2810                        "md/raid1:%s: couldn't allocate thread\n",
2811                        mdname(mddev));
2812                 goto abort;
2813         }
2814
2815         return conf;
2816
2817  abort:
2818         if (conf) {
2819                 if (conf->r1bio_pool)
2820                         mempool_destroy(conf->r1bio_pool);
2821                 kfree(conf->mirrors);
2822                 safe_put_page(conf->tmppage);
2823                 kfree(conf->poolinfo);
2824                 kfree(conf);
2825         }
2826         return ERR_PTR(err);
2827 }
2828
2829 static void raid1_free(struct mddev *mddev, void *priv);
2830 static int run(struct mddev *mddev)
2831 {
2832         struct r1conf *conf;
2833         int i;
2834         struct md_rdev *rdev;
2835         int ret;
2836         bool discard_supported = false;
2837
2838         if (mddev->level != 1) {
2839                 printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
2840                        mdname(mddev), mddev->level);
2841                 return -EIO;
2842         }
2843         if (mddev->reshape_position != MaxSector) {
2844                 printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
2845                        mdname(mddev));
2846                 return -EIO;
2847         }
2848         /*
2849          * copy the already verified devices into our private RAID1
2850          * bookkeeping area. [whatever we allocate in run(),
2851          * should be freed in raid1_free()]
2852          */
2853         if (mddev->private == NULL)
2854                 conf = setup_conf(mddev);
2855         else
2856                 conf = mddev->private;
2857
2858         if (IS_ERR(conf))
2859                 return PTR_ERR(conf);
2860
2861         if (mddev->queue)
2862                 blk_queue_max_write_same_sectors(mddev->queue, 0);
2863
2864         rdev_for_each(rdev, mddev) {
2865                 if (!mddev->gendisk)
2866                         continue;
2867                 disk_stack_limits(mddev->gendisk, rdev->bdev,
2868                                   rdev->data_offset << 9);
2869                 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
2870                         discard_supported = true;
2871         }
2872
2873         mddev->degraded = 0;
2874         for (i=0; i < conf->raid_disks; i++)
2875                 if (conf->mirrors[i].rdev == NULL ||
2876                     !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2877                     test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2878                         mddev->degraded++;
2879
2880         if (conf->raid_disks - mddev->degraded == 1)
2881                 mddev->recovery_cp = MaxSector;
2882
2883         if (mddev->recovery_cp != MaxSector)
2884                 printk(KERN_NOTICE "md/raid1:%s: not clean"
2885                        " -- starting background reconstruction\n",
2886                        mdname(mddev));
2887         printk(KERN_INFO
2888                 "md/raid1:%s: active with %d out of %d mirrors\n",
2889                 mdname(mddev), mddev->raid_disks - mddev->degraded,
2890                 mddev->raid_disks);
2891
2892         /*
2893          * Ok, everything is just fine now
2894          */
2895         mddev->thread = conf->thread;
2896         conf->thread = NULL;
2897         mddev->private = conf;
2898
2899         md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2900
2901         if (mddev->queue) {
2902                 if (discard_supported)
2903                         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
2904                                                 mddev->queue);
2905                 else
2906                         queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
2907                                                   mddev->queue);
2908         }
2909
2910         ret =  md_integrity_register(mddev);
2911         if (ret) {
2912                 md_unregister_thread(&mddev->thread);
2913                 raid1_free(mddev, conf);
2914         }
2915         return ret;
2916 }
2917
2918 static void raid1_free(struct mddev *mddev, void *priv)
2919 {
2920         struct r1conf *conf = priv;
2921
2922         if (conf->r1bio_pool)
2923                 mempool_destroy(conf->r1bio_pool);
2924         kfree(conf->mirrors);
2925         safe_put_page(conf->tmppage);
2926         kfree(conf->poolinfo);
2927         kfree(conf);
2928 }
2929
2930 static int raid1_resize(struct mddev *mddev, sector_t sectors)
2931 {
2932         /* no resync is happening, and there is enough space
2933          * on all devices, so we can resize.
2934          * We need to make sure resync covers any new space.
2935          * If the array is shrinking we should possibly wait until
2936          * any io in the removed space completes, but it hardly seems
2937          * worth it.
2938          */
2939         sector_t newsize = raid1_size(mddev, sectors, 0);
2940         if (mddev->external_size &&
2941             mddev->array_sectors > newsize)
2942                 return -EINVAL;
2943         if (mddev->bitmap) {
2944                 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
2945                 if (ret)
2946                         return ret;
2947         }
2948         md_set_array_sectors(mddev, newsize);
2949         set_capacity(mddev->gendisk, mddev->array_sectors);
2950         revalidate_disk(mddev->gendisk);
2951         if (sectors > mddev->dev_sectors &&
2952             mddev->recovery_cp > mddev->dev_sectors) {
2953                 mddev->recovery_cp = mddev->dev_sectors;
2954                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2955         }
2956         mddev->dev_sectors = sectors;
2957         mddev->resync_max_sectors = sectors;
2958         return 0;
2959 }
2960
2961 static int raid1_reshape(struct mddev *mddev)
2962 {
2963         /* We need to:
2964          * 1/ resize the r1bio_pool
2965          * 2/ resize conf->mirrors
2966          *
2967          * We allocate a new r1bio_pool if we can.
2968          * Then raise a device barrier and wait until all IO stops.
2969          * Then resize conf->mirrors and swap in the new r1bio pool.
2970          *
2971          * At the same time, we "pack" the devices so that all the missing
2972          * devices have the higher raid_disk numbers.
2973          */
2974         mempool_t *newpool, *oldpool;
2975         struct pool_info *newpoolinfo;
2976         struct raid1_info *newmirrors;
2977         struct r1conf *conf = mddev->private;
2978         int cnt, raid_disks;
2979         unsigned long flags;
2980         int d, d2, err;
2981
2982         /* Cannot change chunk_size, layout, or level */
2983         if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
2984             mddev->layout != mddev->new_layout ||
2985             mddev->level != mddev->new_level) {
2986                 mddev->new_chunk_sectors = mddev->chunk_sectors;
2987                 mddev->new_layout = mddev->layout;
2988                 mddev->new_level = mddev->level;
2989                 return -EINVAL;
2990         }
2991
2992         err = md_allow_write(mddev);
2993         if (err)
2994                 return err;
2995
2996         raid_disks = mddev->raid_disks + mddev->delta_disks;
2997
2998         if (raid_disks < conf->raid_disks) {
2999                 cnt=0;
3000                 for (d= 0; d < conf->raid_disks; d++)
3001                         if (conf->mirrors[d].rdev)
3002                                 cnt++;
3003                 if (cnt > raid_disks)
3004                         return -EBUSY;
3005         }
3006
3007         newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3008         if (!newpoolinfo)
3009                 return -ENOMEM;
3010         newpoolinfo->mddev = mddev;
3011         newpoolinfo->raid_disks = raid_disks * 2;
3012
3013         newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3014                                  r1bio_pool_free, newpoolinfo);
3015         if (!newpool) {
3016                 kfree(newpoolinfo);
3017                 return -ENOMEM;
3018         }
3019         newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
3020                              GFP_KERNEL);
3021         if (!newmirrors) {
3022                 kfree(newpoolinfo);
3023                 mempool_destroy(newpool);
3024                 return -ENOMEM;
3025         }
3026
3027         freeze_array(conf, 0);
3028
3029         /* ok, everything is stopped */
3030         oldpool = conf->r1bio_pool;
3031         conf->r1bio_pool = newpool;
3032
3033         for (d = d2 = 0; d < conf->raid_disks; d++) {
3034                 struct md_rdev *rdev = conf->mirrors[d].rdev;
3035                 if (rdev && rdev->raid_disk != d2) {
3036                         sysfs_unlink_rdev(mddev, rdev);
3037                         rdev->raid_disk = d2;
3038                         sysfs_unlink_rdev(mddev, rdev);
3039                         if (sysfs_link_rdev(mddev, rdev))
3040                                 printk(KERN_WARNING
3041                                        "md/raid1:%s: cannot register rd%d\n",
3042                                        mdname(mddev), rdev->raid_disk);
3043                 }
3044                 if (rdev)
3045                         newmirrors[d2++].rdev = rdev;
3046         }
3047         kfree(conf->mirrors);
3048         conf->mirrors = newmirrors;
3049         kfree(conf->poolinfo);
3050         conf->poolinfo = newpoolinfo;
3051
3052         spin_lock_irqsave(&conf->device_lock, flags);
3053         mddev->degraded += (raid_disks - conf->raid_disks);
3054         spin_unlock_irqrestore(&conf->device_lock, flags);
3055         conf->raid_disks = mddev->raid_disks = raid_disks;
3056         mddev->delta_disks = 0;
3057
3058         unfreeze_array(conf);
3059
3060         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3061         md_wakeup_thread(mddev->thread);
3062
3063         mempool_destroy(oldpool);
3064         return 0;
3065 }
3066
3067 static void raid1_quiesce(struct mddev *mddev, int state)
3068 {
3069         struct r1conf *conf = mddev->private;
3070
3071         switch(state) {
3072         case 2: /* wake for suspend */
3073                 wake_up(&conf->wait_barrier);
3074                 break;
3075         case 1:
3076                 freeze_array(conf, 0);
3077                 break;
3078         case 0:
3079                 unfreeze_array(conf);
3080                 break;
3081         }
3082 }
3083
3084 static void *raid1_takeover(struct mddev *mddev)
3085 {
3086         /* raid1 can take over:
3087          *  raid5 with 2 devices, any layout or chunk size
3088          */
3089         if (mddev->level == 5 && mddev->raid_disks == 2) {
3090                 struct r1conf *conf;
3091                 mddev->new_level = 1;
3092                 mddev->new_layout = 0;
3093                 mddev->new_chunk_sectors = 0;
3094                 conf = setup_conf(mddev);
3095                 if (!IS_ERR(conf))
3096                         /* Array must appear to be quiesced */
3097                         conf->array_frozen = 1;
3098                 return conf;
3099         }
3100         return ERR_PTR(-EINVAL);
3101 }
3102
3103 static struct md_personality raid1_personality =
3104 {
3105         .name           = "raid1",
3106         .level          = 1,
3107         .owner          = THIS_MODULE,
3108         .make_request   = make_request,
3109         .run            = run,
3110         .free           = raid1_free,
3111         .status         = status,
3112         .error_handler  = error,
3113         .hot_add_disk   = raid1_add_disk,
3114         .hot_remove_disk= raid1_remove_disk,
3115         .spare_active   = raid1_spare_active,
3116         .sync_request   = sync_request,
3117         .resize         = raid1_resize,
3118         .size           = raid1_size,
3119         .check_reshape  = raid1_reshape,
3120         .quiesce        = raid1_quiesce,
3121         .takeover       = raid1_takeover,
3122         .congested      = raid1_congested,
3123 };
3124
3125 static int __init raid_init(void)
3126 {
3127         return register_md_personality(&raid1_personality);
3128 }
3129
3130 static void raid_exit(void)
3131 {
3132         unregister_md_personality(&raid1_personality);
3133 }
3134
3135 module_init(raid_init);
3136 module_exit(raid_exit);
3137 MODULE_LICENSE("GPL");
3138 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3139 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3140 MODULE_ALIAS("md-raid1");
3141 MODULE_ALIAS("md-level-1");
3142
3143 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);