Merge tag 'afs-fixes-20171124' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowe...
[linux-2.6-block.git] / drivers / md / raid1.c
1 /*
2  * raid1.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5  *
6  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7  *
8  * RAID-1 management functions.
9  *
10  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11  *
12  * Fixes to reconstruction by Jakob Ã˜stergaard" <jakob@ostenfeld.dk>
13  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14  *
15  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16  * bitmapped intelligence in resync:
17  *
18  *      - bitmap marked during normal i/o
19  *      - bitmap used to skip nondirty blocks during sync
20  *
21  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22  * - persistent bitmap code
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License as published by
26  * the Free Software Foundation; either version 2, or (at your option)
27  * any later version.
28  *
29  * You should have received a copy of the GNU General Public License
30  * (for example /usr/src/linux/COPYING); if not, write to the Free
31  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40
41 #include <trace/events/block.h>
42
43 #include "md.h"
44 #include "raid1.h"
45 #include "md-bitmap.h"
46
47 #define UNSUPPORTED_MDDEV_FLAGS         \
48         ((1L << MD_HAS_JOURNAL) |       \
49          (1L << MD_JOURNAL_CLEAN) |     \
50          (1L << MD_HAS_PPL) |           \
51          (1L << MD_HAS_MULTIPLE_PPLS))
52
53 /*
54  * Number of guaranteed r1bios in case of extreme VM load:
55  */
56 #define NR_RAID1_BIOS 256
57
58 /* when we get a read error on a read-only array, we redirect to another
59  * device without failing the first device, or trying to over-write to
60  * correct the read error.  To keep track of bad blocks on a per-bio
61  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
62  */
63 #define IO_BLOCKED ((struct bio *)1)
64 /* When we successfully write to a known bad-block, we need to remove the
65  * bad-block marking which must be done from process context.  So we record
66  * the success by setting devs[n].bio to IO_MADE_GOOD
67  */
68 #define IO_MADE_GOOD ((struct bio *)2)
69
70 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
71
72 /* When there are this many requests queue to be written by
73  * the raid1 thread, we become 'congested' to provide back-pressure
74  * for writeback.
75  */
76 static int max_queued_requests = 1024;
77
78 static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
79 static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
80
81 #define raid1_log(md, fmt, args...)                             \
82         do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
83
84 #include "raid1-10.c"
85
86 /*
87  * for resync bio, r1bio pointer can be retrieved from the per-bio
88  * 'struct resync_pages'.
89  */
90 static inline struct r1bio *get_resync_r1bio(struct bio *bio)
91 {
92         return get_resync_pages(bio)->raid_bio;
93 }
94
95 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
96 {
97         struct pool_info *pi = data;
98         int size = offsetof(struct r1bio, bios[pi->raid_disks]);
99
100         /* allocate a r1bio with room for raid_disks entries in the bios array */
101         return kzalloc(size, gfp_flags);
102 }
103
104 static void r1bio_pool_free(void *r1_bio, void *data)
105 {
106         kfree(r1_bio);
107 }
108
109 #define RESYNC_DEPTH 32
110 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
111 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
112 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
113 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
114 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
115
116 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
117 {
118         struct pool_info *pi = data;
119         struct r1bio *r1_bio;
120         struct bio *bio;
121         int need_pages;
122         int j;
123         struct resync_pages *rps;
124
125         r1_bio = r1bio_pool_alloc(gfp_flags, pi);
126         if (!r1_bio)
127                 return NULL;
128
129         rps = kmalloc(sizeof(struct resync_pages) * pi->raid_disks,
130                       gfp_flags);
131         if (!rps)
132                 goto out_free_r1bio;
133
134         /*
135          * Allocate bios : 1 for reading, n-1 for writing
136          */
137         for (j = pi->raid_disks ; j-- ; ) {
138                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
139                 if (!bio)
140                         goto out_free_bio;
141                 r1_bio->bios[j] = bio;
142         }
143         /*
144          * Allocate RESYNC_PAGES data pages and attach them to
145          * the first bio.
146          * If this is a user-requested check/repair, allocate
147          * RESYNC_PAGES for each bio.
148          */
149         if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
150                 need_pages = pi->raid_disks;
151         else
152                 need_pages = 1;
153         for (j = 0; j < pi->raid_disks; j++) {
154                 struct resync_pages *rp = &rps[j];
155
156                 bio = r1_bio->bios[j];
157
158                 if (j < need_pages) {
159                         if (resync_alloc_pages(rp, gfp_flags))
160                                 goto out_free_pages;
161                 } else {
162                         memcpy(rp, &rps[0], sizeof(*rp));
163                         resync_get_all_pages(rp);
164                 }
165
166                 rp->raid_bio = r1_bio;
167                 bio->bi_private = rp;
168         }
169
170         r1_bio->master_bio = NULL;
171
172         return r1_bio;
173
174 out_free_pages:
175         while (--j >= 0)
176                 resync_free_pages(&rps[j]);
177
178 out_free_bio:
179         while (++j < pi->raid_disks)
180                 bio_put(r1_bio->bios[j]);
181         kfree(rps);
182
183 out_free_r1bio:
184         r1bio_pool_free(r1_bio, data);
185         return NULL;
186 }
187
188 static void r1buf_pool_free(void *__r1_bio, void *data)
189 {
190         struct pool_info *pi = data;
191         int i;
192         struct r1bio *r1bio = __r1_bio;
193         struct resync_pages *rp = NULL;
194
195         for (i = pi->raid_disks; i--; ) {
196                 rp = get_resync_pages(r1bio->bios[i]);
197                 resync_free_pages(rp);
198                 bio_put(r1bio->bios[i]);
199         }
200
201         /* resync pages array stored in the 1st bio's .bi_private */
202         kfree(rp);
203
204         r1bio_pool_free(r1bio, data);
205 }
206
207 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
208 {
209         int i;
210
211         for (i = 0; i < conf->raid_disks * 2; i++) {
212                 struct bio **bio = r1_bio->bios + i;
213                 if (!BIO_SPECIAL(*bio))
214                         bio_put(*bio);
215                 *bio = NULL;
216         }
217 }
218
219 static void free_r1bio(struct r1bio *r1_bio)
220 {
221         struct r1conf *conf = r1_bio->mddev->private;
222
223         put_all_bios(conf, r1_bio);
224         mempool_free(r1_bio, conf->r1bio_pool);
225 }
226
227 static void put_buf(struct r1bio *r1_bio)
228 {
229         struct r1conf *conf = r1_bio->mddev->private;
230         sector_t sect = r1_bio->sector;
231         int i;
232
233         for (i = 0; i < conf->raid_disks * 2; i++) {
234                 struct bio *bio = r1_bio->bios[i];
235                 if (bio->bi_end_io)
236                         rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
237         }
238
239         mempool_free(r1_bio, conf->r1buf_pool);
240
241         lower_barrier(conf, sect);
242 }
243
244 static void reschedule_retry(struct r1bio *r1_bio)
245 {
246         unsigned long flags;
247         struct mddev *mddev = r1_bio->mddev;
248         struct r1conf *conf = mddev->private;
249         int idx;
250
251         idx = sector_to_idx(r1_bio->sector);
252         spin_lock_irqsave(&conf->device_lock, flags);
253         list_add(&r1_bio->retry_list, &conf->retry_list);
254         atomic_inc(&conf->nr_queued[idx]);
255         spin_unlock_irqrestore(&conf->device_lock, flags);
256
257         wake_up(&conf->wait_barrier);
258         md_wakeup_thread(mddev->thread);
259 }
260
261 /*
262  * raid_end_bio_io() is called when we have finished servicing a mirrored
263  * operation and are ready to return a success/failure code to the buffer
264  * cache layer.
265  */
266 static void call_bio_endio(struct r1bio *r1_bio)
267 {
268         struct bio *bio = r1_bio->master_bio;
269         struct r1conf *conf = r1_bio->mddev->private;
270
271         if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
272                 bio->bi_status = BLK_STS_IOERR;
273
274         bio_endio(bio);
275         /*
276          * Wake up any possible resync thread that waits for the device
277          * to go idle.
278          */
279         allow_barrier(conf, r1_bio->sector);
280 }
281
282 static void raid_end_bio_io(struct r1bio *r1_bio)
283 {
284         struct bio *bio = r1_bio->master_bio;
285
286         /* if nobody has done the final endio yet, do it now */
287         if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
288                 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
289                          (bio_data_dir(bio) == WRITE) ? "write" : "read",
290                          (unsigned long long) bio->bi_iter.bi_sector,
291                          (unsigned long long) bio_end_sector(bio) - 1);
292
293                 call_bio_endio(r1_bio);
294         }
295         free_r1bio(r1_bio);
296 }
297
298 /*
299  * Update disk head position estimator based on IRQ completion info.
300  */
301 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
302 {
303         struct r1conf *conf = r1_bio->mddev->private;
304
305         conf->mirrors[disk].head_position =
306                 r1_bio->sector + (r1_bio->sectors);
307 }
308
309 /*
310  * Find the disk number which triggered given bio
311  */
312 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
313 {
314         int mirror;
315         struct r1conf *conf = r1_bio->mddev->private;
316         int raid_disks = conf->raid_disks;
317
318         for (mirror = 0; mirror < raid_disks * 2; mirror++)
319                 if (r1_bio->bios[mirror] == bio)
320                         break;
321
322         BUG_ON(mirror == raid_disks * 2);
323         update_head_pos(mirror, r1_bio);
324
325         return mirror;
326 }
327
328 static void raid1_end_read_request(struct bio *bio)
329 {
330         int uptodate = !bio->bi_status;
331         struct r1bio *r1_bio = bio->bi_private;
332         struct r1conf *conf = r1_bio->mddev->private;
333         struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
334
335         /*
336          * this branch is our 'one mirror IO has finished' event handler:
337          */
338         update_head_pos(r1_bio->read_disk, r1_bio);
339
340         if (uptodate)
341                 set_bit(R1BIO_Uptodate, &r1_bio->state);
342         else if (test_bit(FailFast, &rdev->flags) &&
343                  test_bit(R1BIO_FailFast, &r1_bio->state))
344                 /* This was a fail-fast read so we definitely
345                  * want to retry */
346                 ;
347         else {
348                 /* If all other devices have failed, we want to return
349                  * the error upwards rather than fail the last device.
350                  * Here we redefine "uptodate" to mean "Don't want to retry"
351                  */
352                 unsigned long flags;
353                 spin_lock_irqsave(&conf->device_lock, flags);
354                 if (r1_bio->mddev->degraded == conf->raid_disks ||
355                     (r1_bio->mddev->degraded == conf->raid_disks-1 &&
356                      test_bit(In_sync, &rdev->flags)))
357                         uptodate = 1;
358                 spin_unlock_irqrestore(&conf->device_lock, flags);
359         }
360
361         if (uptodate) {
362                 raid_end_bio_io(r1_bio);
363                 rdev_dec_pending(rdev, conf->mddev);
364         } else {
365                 /*
366                  * oops, read error:
367                  */
368                 char b[BDEVNAME_SIZE];
369                 pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n",
370                                    mdname(conf->mddev),
371                                    bdevname(rdev->bdev, b),
372                                    (unsigned long long)r1_bio->sector);
373                 set_bit(R1BIO_ReadError, &r1_bio->state);
374                 reschedule_retry(r1_bio);
375                 /* don't drop the reference on read_disk yet */
376         }
377 }
378
379 static void close_write(struct r1bio *r1_bio)
380 {
381         /* it really is the end of this request */
382         if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
383                 bio_free_pages(r1_bio->behind_master_bio);
384                 bio_put(r1_bio->behind_master_bio);
385                 r1_bio->behind_master_bio = NULL;
386         }
387         /* clear the bitmap if all writes complete successfully */
388         bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
389                         r1_bio->sectors,
390                         !test_bit(R1BIO_Degraded, &r1_bio->state),
391                         test_bit(R1BIO_BehindIO, &r1_bio->state));
392         md_write_end(r1_bio->mddev);
393 }
394
395 static void r1_bio_write_done(struct r1bio *r1_bio)
396 {
397         if (!atomic_dec_and_test(&r1_bio->remaining))
398                 return;
399
400         if (test_bit(R1BIO_WriteError, &r1_bio->state))
401                 reschedule_retry(r1_bio);
402         else {
403                 close_write(r1_bio);
404                 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
405                         reschedule_retry(r1_bio);
406                 else
407                         raid_end_bio_io(r1_bio);
408         }
409 }
410
411 static void raid1_end_write_request(struct bio *bio)
412 {
413         struct r1bio *r1_bio = bio->bi_private;
414         int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
415         struct r1conf *conf = r1_bio->mddev->private;
416         struct bio *to_put = NULL;
417         int mirror = find_bio_disk(r1_bio, bio);
418         struct md_rdev *rdev = conf->mirrors[mirror].rdev;
419         bool discard_error;
420
421         discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
422
423         /*
424          * 'one mirror IO has finished' event handler:
425          */
426         if (bio->bi_status && !discard_error) {
427                 set_bit(WriteErrorSeen, &rdev->flags);
428                 if (!test_and_set_bit(WantReplacement, &rdev->flags))
429                         set_bit(MD_RECOVERY_NEEDED, &
430                                 conf->mddev->recovery);
431
432                 if (test_bit(FailFast, &rdev->flags) &&
433                     (bio->bi_opf & MD_FAILFAST) &&
434                     /* We never try FailFast to WriteMostly devices */
435                     !test_bit(WriteMostly, &rdev->flags)) {
436                         md_error(r1_bio->mddev, rdev);
437                         if (!test_bit(Faulty, &rdev->flags))
438                                 /* This is the only remaining device,
439                                  * We need to retry the write without
440                                  * FailFast
441                                  */
442                                 set_bit(R1BIO_WriteError, &r1_bio->state);
443                         else {
444                                 /* Finished with this branch */
445                                 r1_bio->bios[mirror] = NULL;
446                                 to_put = bio;
447                         }
448                 } else
449                         set_bit(R1BIO_WriteError, &r1_bio->state);
450         } else {
451                 /*
452                  * Set R1BIO_Uptodate in our master bio, so that we
453                  * will return a good error code for to the higher
454                  * levels even if IO on some other mirrored buffer
455                  * fails.
456                  *
457                  * The 'master' represents the composite IO operation
458                  * to user-side. So if something waits for IO, then it
459                  * will wait for the 'master' bio.
460                  */
461                 sector_t first_bad;
462                 int bad_sectors;
463
464                 r1_bio->bios[mirror] = NULL;
465                 to_put = bio;
466                 /*
467                  * Do not set R1BIO_Uptodate if the current device is
468                  * rebuilding or Faulty. This is because we cannot use
469                  * such device for properly reading the data back (we could
470                  * potentially use it, if the current write would have felt
471                  * before rdev->recovery_offset, but for simplicity we don't
472                  * check this here.
473                  */
474                 if (test_bit(In_sync, &rdev->flags) &&
475                     !test_bit(Faulty, &rdev->flags))
476                         set_bit(R1BIO_Uptodate, &r1_bio->state);
477
478                 /* Maybe we can clear some bad blocks. */
479                 if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
480                                 &first_bad, &bad_sectors) && !discard_error) {
481                         r1_bio->bios[mirror] = IO_MADE_GOOD;
482                         set_bit(R1BIO_MadeGood, &r1_bio->state);
483                 }
484         }
485
486         if (behind) {
487                 if (test_bit(WriteMostly, &rdev->flags))
488                         atomic_dec(&r1_bio->behind_remaining);
489
490                 /*
491                  * In behind mode, we ACK the master bio once the I/O
492                  * has safely reached all non-writemostly
493                  * disks. Setting the Returned bit ensures that this
494                  * gets done only once -- we don't ever want to return
495                  * -EIO here, instead we'll wait
496                  */
497                 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
498                     test_bit(R1BIO_Uptodate, &r1_bio->state)) {
499                         /* Maybe we can return now */
500                         if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
501                                 struct bio *mbio = r1_bio->master_bio;
502                                 pr_debug("raid1: behind end write sectors"
503                                          " %llu-%llu\n",
504                                          (unsigned long long) mbio->bi_iter.bi_sector,
505                                          (unsigned long long) bio_end_sector(mbio) - 1);
506                                 call_bio_endio(r1_bio);
507                         }
508                 }
509         }
510         if (r1_bio->bios[mirror] == NULL)
511                 rdev_dec_pending(rdev, conf->mddev);
512
513         /*
514          * Let's see if all mirrored write operations have finished
515          * already.
516          */
517         r1_bio_write_done(r1_bio);
518
519         if (to_put)
520                 bio_put(to_put);
521 }
522
523 static sector_t align_to_barrier_unit_end(sector_t start_sector,
524                                           sector_t sectors)
525 {
526         sector_t len;
527
528         WARN_ON(sectors == 0);
529         /*
530          * len is the number of sectors from start_sector to end of the
531          * barrier unit which start_sector belongs to.
532          */
533         len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
534               start_sector;
535
536         if (len > sectors)
537                 len = sectors;
538
539         return len;
540 }
541
542 /*
543  * This routine returns the disk from which the requested read should
544  * be done. There is a per-array 'next expected sequential IO' sector
545  * number - if this matches on the next IO then we use the last disk.
546  * There is also a per-disk 'last know head position' sector that is
547  * maintained from IRQ contexts, both the normal and the resync IO
548  * completion handlers update this position correctly. If there is no
549  * perfect sequential match then we pick the disk whose head is closest.
550  *
551  * If there are 2 mirrors in the same 2 devices, performance degrades
552  * because position is mirror, not device based.
553  *
554  * The rdev for the device selected will have nr_pending incremented.
555  */
556 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
557 {
558         const sector_t this_sector = r1_bio->sector;
559         int sectors;
560         int best_good_sectors;
561         int best_disk, best_dist_disk, best_pending_disk;
562         int has_nonrot_disk;
563         int disk;
564         sector_t best_dist;
565         unsigned int min_pending;
566         struct md_rdev *rdev;
567         int choose_first;
568         int choose_next_idle;
569
570         rcu_read_lock();
571         /*
572          * Check if we can balance. We can balance on the whole
573          * device if no resync is going on, or below the resync window.
574          * We take the first readable disk when above the resync window.
575          */
576  retry:
577         sectors = r1_bio->sectors;
578         best_disk = -1;
579         best_dist_disk = -1;
580         best_dist = MaxSector;
581         best_pending_disk = -1;
582         min_pending = UINT_MAX;
583         best_good_sectors = 0;
584         has_nonrot_disk = 0;
585         choose_next_idle = 0;
586         clear_bit(R1BIO_FailFast, &r1_bio->state);
587
588         if ((conf->mddev->recovery_cp < this_sector + sectors) ||
589             (mddev_is_clustered(conf->mddev) &&
590             md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
591                     this_sector + sectors)))
592                 choose_first = 1;
593         else
594                 choose_first = 0;
595
596         for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
597                 sector_t dist;
598                 sector_t first_bad;
599                 int bad_sectors;
600                 unsigned int pending;
601                 bool nonrot;
602
603                 rdev = rcu_dereference(conf->mirrors[disk].rdev);
604                 if (r1_bio->bios[disk] == IO_BLOCKED
605                     || rdev == NULL
606                     || test_bit(Faulty, &rdev->flags))
607                         continue;
608                 if (!test_bit(In_sync, &rdev->flags) &&
609                     rdev->recovery_offset < this_sector + sectors)
610                         continue;
611                 if (test_bit(WriteMostly, &rdev->flags)) {
612                         /* Don't balance among write-mostly, just
613                          * use the first as a last resort */
614                         if (best_dist_disk < 0) {
615                                 if (is_badblock(rdev, this_sector, sectors,
616                                                 &first_bad, &bad_sectors)) {
617                                         if (first_bad <= this_sector)
618                                                 /* Cannot use this */
619                                                 continue;
620                                         best_good_sectors = first_bad - this_sector;
621                                 } else
622                                         best_good_sectors = sectors;
623                                 best_dist_disk = disk;
624                                 best_pending_disk = disk;
625                         }
626                         continue;
627                 }
628                 /* This is a reasonable device to use.  It might
629                  * even be best.
630                  */
631                 if (is_badblock(rdev, this_sector, sectors,
632                                 &first_bad, &bad_sectors)) {
633                         if (best_dist < MaxSector)
634                                 /* already have a better device */
635                                 continue;
636                         if (first_bad <= this_sector) {
637                                 /* cannot read here. If this is the 'primary'
638                                  * device, then we must not read beyond
639                                  * bad_sectors from another device..
640                                  */
641                                 bad_sectors -= (this_sector - first_bad);
642                                 if (choose_first && sectors > bad_sectors)
643                                         sectors = bad_sectors;
644                                 if (best_good_sectors > sectors)
645                                         best_good_sectors = sectors;
646
647                         } else {
648                                 sector_t good_sectors = first_bad - this_sector;
649                                 if (good_sectors > best_good_sectors) {
650                                         best_good_sectors = good_sectors;
651                                         best_disk = disk;
652                                 }
653                                 if (choose_first)
654                                         break;
655                         }
656                         continue;
657                 } else {
658                         if ((sectors > best_good_sectors) && (best_disk >= 0))
659                                 best_disk = -1;
660                         best_good_sectors = sectors;
661                 }
662
663                 if (best_disk >= 0)
664                         /* At least two disks to choose from so failfast is OK */
665                         set_bit(R1BIO_FailFast, &r1_bio->state);
666
667                 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
668                 has_nonrot_disk |= nonrot;
669                 pending = atomic_read(&rdev->nr_pending);
670                 dist = abs(this_sector - conf->mirrors[disk].head_position);
671                 if (choose_first) {
672                         best_disk = disk;
673                         break;
674                 }
675                 /* Don't change to another disk for sequential reads */
676                 if (conf->mirrors[disk].next_seq_sect == this_sector
677                     || dist == 0) {
678                         int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
679                         struct raid1_info *mirror = &conf->mirrors[disk];
680
681                         best_disk = disk;
682                         /*
683                          * If buffered sequential IO size exceeds optimal
684                          * iosize, check if there is idle disk. If yes, choose
685                          * the idle disk. read_balance could already choose an
686                          * idle disk before noticing it's a sequential IO in
687                          * this disk. This doesn't matter because this disk
688                          * will idle, next time it will be utilized after the
689                          * first disk has IO size exceeds optimal iosize. In
690                          * this way, iosize of the first disk will be optimal
691                          * iosize at least. iosize of the second disk might be
692                          * small, but not a big deal since when the second disk
693                          * starts IO, the first disk is likely still busy.
694                          */
695                         if (nonrot && opt_iosize > 0 &&
696                             mirror->seq_start != MaxSector &&
697                             mirror->next_seq_sect > opt_iosize &&
698                             mirror->next_seq_sect - opt_iosize >=
699                             mirror->seq_start) {
700                                 choose_next_idle = 1;
701                                 continue;
702                         }
703                         break;
704                 }
705
706                 if (choose_next_idle)
707                         continue;
708
709                 if (min_pending > pending) {
710                         min_pending = pending;
711                         best_pending_disk = disk;
712                 }
713
714                 if (dist < best_dist) {
715                         best_dist = dist;
716                         best_dist_disk = disk;
717                 }
718         }
719
720         /*
721          * If all disks are rotational, choose the closest disk. If any disk is
722          * non-rotational, choose the disk with less pending request even the
723          * disk is rotational, which might/might not be optimal for raids with
724          * mixed ratation/non-rotational disks depending on workload.
725          */
726         if (best_disk == -1) {
727                 if (has_nonrot_disk || min_pending == 0)
728                         best_disk = best_pending_disk;
729                 else
730                         best_disk = best_dist_disk;
731         }
732
733         if (best_disk >= 0) {
734                 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
735                 if (!rdev)
736                         goto retry;
737                 atomic_inc(&rdev->nr_pending);
738                 sectors = best_good_sectors;
739
740                 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
741                         conf->mirrors[best_disk].seq_start = this_sector;
742
743                 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
744         }
745         rcu_read_unlock();
746         *max_sectors = sectors;
747
748         return best_disk;
749 }
750
751 static int raid1_congested(struct mddev *mddev, int bits)
752 {
753         struct r1conf *conf = mddev->private;
754         int i, ret = 0;
755
756         if ((bits & (1 << WB_async_congested)) &&
757             conf->pending_count >= max_queued_requests)
758                 return 1;
759
760         rcu_read_lock();
761         for (i = 0; i < conf->raid_disks * 2; i++) {
762                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
763                 if (rdev && !test_bit(Faulty, &rdev->flags)) {
764                         struct request_queue *q = bdev_get_queue(rdev->bdev);
765
766                         BUG_ON(!q);
767
768                         /* Note the '|| 1' - when read_balance prefers
769                          * non-congested targets, it can be removed
770                          */
771                         if ((bits & (1 << WB_async_congested)) || 1)
772                                 ret |= bdi_congested(q->backing_dev_info, bits);
773                         else
774                                 ret &= bdi_congested(q->backing_dev_info, bits);
775                 }
776         }
777         rcu_read_unlock();
778         return ret;
779 }
780
781 static void flush_bio_list(struct r1conf *conf, struct bio *bio)
782 {
783         /* flush any pending bitmap writes to disk before proceeding w/ I/O */
784         bitmap_unplug(conf->mddev->bitmap);
785         wake_up(&conf->wait_barrier);
786
787         while (bio) { /* submit pending writes */
788                 struct bio *next = bio->bi_next;
789                 struct md_rdev *rdev = (void *)bio->bi_disk;
790                 bio->bi_next = NULL;
791                 bio_set_dev(bio, rdev->bdev);
792                 if (test_bit(Faulty, &rdev->flags)) {
793                         bio_io_error(bio);
794                 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
795                                     !blk_queue_discard(bio->bi_disk->queue)))
796                         /* Just ignore it */
797                         bio_endio(bio);
798                 else
799                         generic_make_request(bio);
800                 bio = next;
801         }
802 }
803
804 static void flush_pending_writes(struct r1conf *conf)
805 {
806         /* Any writes that have been queued but are awaiting
807          * bitmap updates get flushed here.
808          */
809         spin_lock_irq(&conf->device_lock);
810
811         if (conf->pending_bio_list.head) {
812                 struct bio *bio;
813                 bio = bio_list_get(&conf->pending_bio_list);
814                 conf->pending_count = 0;
815                 spin_unlock_irq(&conf->device_lock);
816                 flush_bio_list(conf, bio);
817         } else
818                 spin_unlock_irq(&conf->device_lock);
819 }
820
821 /* Barriers....
822  * Sometimes we need to suspend IO while we do something else,
823  * either some resync/recovery, or reconfigure the array.
824  * To do this we raise a 'barrier'.
825  * The 'barrier' is a counter that can be raised multiple times
826  * to count how many activities are happening which preclude
827  * normal IO.
828  * We can only raise the barrier if there is no pending IO.
829  * i.e. if nr_pending == 0.
830  * We choose only to raise the barrier if no-one is waiting for the
831  * barrier to go down.  This means that as soon as an IO request
832  * is ready, no other operations which require a barrier will start
833  * until the IO request has had a chance.
834  *
835  * So: regular IO calls 'wait_barrier'.  When that returns there
836  *    is no backgroup IO happening,  It must arrange to call
837  *    allow_barrier when it has finished its IO.
838  * backgroup IO calls must call raise_barrier.  Once that returns
839  *    there is no normal IO happeing.  It must arrange to call
840  *    lower_barrier when the particular background IO completes.
841  */
842 static void raise_barrier(struct r1conf *conf, sector_t sector_nr)
843 {
844         int idx = sector_to_idx(sector_nr);
845
846         spin_lock_irq(&conf->resync_lock);
847
848         /* Wait until no block IO is waiting */
849         wait_event_lock_irq(conf->wait_barrier,
850                             !atomic_read(&conf->nr_waiting[idx]),
851                             conf->resync_lock);
852
853         /* block any new IO from starting */
854         atomic_inc(&conf->barrier[idx]);
855         /*
856          * In raise_barrier() we firstly increase conf->barrier[idx] then
857          * check conf->nr_pending[idx]. In _wait_barrier() we firstly
858          * increase conf->nr_pending[idx] then check conf->barrier[idx].
859          * A memory barrier here to make sure conf->nr_pending[idx] won't
860          * be fetched before conf->barrier[idx] is increased. Otherwise
861          * there will be a race between raise_barrier() and _wait_barrier().
862          */
863         smp_mb__after_atomic();
864
865         /* For these conditions we must wait:
866          * A: while the array is in frozen state
867          * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
868          *    existing in corresponding I/O barrier bucket.
869          * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
870          *    max resync count which allowed on current I/O barrier bucket.
871          */
872         wait_event_lock_irq(conf->wait_barrier,
873                             !conf->array_frozen &&
874                              !atomic_read(&conf->nr_pending[idx]) &&
875                              atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH,
876                             conf->resync_lock);
877
878         atomic_inc(&conf->nr_sync_pending);
879         spin_unlock_irq(&conf->resync_lock);
880 }
881
882 static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
883 {
884         int idx = sector_to_idx(sector_nr);
885
886         BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
887
888         atomic_dec(&conf->barrier[idx]);
889         atomic_dec(&conf->nr_sync_pending);
890         wake_up(&conf->wait_barrier);
891 }
892
893 static void _wait_barrier(struct r1conf *conf, int idx)
894 {
895         /*
896          * We need to increase conf->nr_pending[idx] very early here,
897          * then raise_barrier() can be blocked when it waits for
898          * conf->nr_pending[idx] to be 0. Then we can avoid holding
899          * conf->resync_lock when there is no barrier raised in same
900          * barrier unit bucket. Also if the array is frozen, I/O
901          * should be blocked until array is unfrozen.
902          */
903         atomic_inc(&conf->nr_pending[idx]);
904         /*
905          * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
906          * check conf->barrier[idx]. In raise_barrier() we firstly increase
907          * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
908          * barrier is necessary here to make sure conf->barrier[idx] won't be
909          * fetched before conf->nr_pending[idx] is increased. Otherwise there
910          * will be a race between _wait_barrier() and raise_barrier().
911          */
912         smp_mb__after_atomic();
913
914         /*
915          * Don't worry about checking two atomic_t variables at same time
916          * here. If during we check conf->barrier[idx], the array is
917          * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
918          * 0, it is safe to return and make the I/O continue. Because the
919          * array is frozen, all I/O returned here will eventually complete
920          * or be queued, no race will happen. See code comment in
921          * frozen_array().
922          */
923         if (!READ_ONCE(conf->array_frozen) &&
924             !atomic_read(&conf->barrier[idx]))
925                 return;
926
927         /*
928          * After holding conf->resync_lock, conf->nr_pending[idx]
929          * should be decreased before waiting for barrier to drop.
930          * Otherwise, we may encounter a race condition because
931          * raise_barrer() might be waiting for conf->nr_pending[idx]
932          * to be 0 at same time.
933          */
934         spin_lock_irq(&conf->resync_lock);
935         atomic_inc(&conf->nr_waiting[idx]);
936         atomic_dec(&conf->nr_pending[idx]);
937         /*
938          * In case freeze_array() is waiting for
939          * get_unqueued_pending() == extra
940          */
941         wake_up(&conf->wait_barrier);
942         /* Wait for the barrier in same barrier unit bucket to drop. */
943         wait_event_lock_irq(conf->wait_barrier,
944                             !conf->array_frozen &&
945                              !atomic_read(&conf->barrier[idx]),
946                             conf->resync_lock);
947         atomic_inc(&conf->nr_pending[idx]);
948         atomic_dec(&conf->nr_waiting[idx]);
949         spin_unlock_irq(&conf->resync_lock);
950 }
951
952 static void wait_read_barrier(struct r1conf *conf, sector_t sector_nr)
953 {
954         int idx = sector_to_idx(sector_nr);
955
956         /*
957          * Very similar to _wait_barrier(). The difference is, for read
958          * I/O we don't need wait for sync I/O, but if the whole array
959          * is frozen, the read I/O still has to wait until the array is
960          * unfrozen. Since there is no ordering requirement with
961          * conf->barrier[idx] here, memory barrier is unnecessary as well.
962          */
963         atomic_inc(&conf->nr_pending[idx]);
964
965         if (!READ_ONCE(conf->array_frozen))
966                 return;
967
968         spin_lock_irq(&conf->resync_lock);
969         atomic_inc(&conf->nr_waiting[idx]);
970         atomic_dec(&conf->nr_pending[idx]);
971         /*
972          * In case freeze_array() is waiting for
973          * get_unqueued_pending() == extra
974          */
975         wake_up(&conf->wait_barrier);
976         /* Wait for array to be unfrozen */
977         wait_event_lock_irq(conf->wait_barrier,
978                             !conf->array_frozen,
979                             conf->resync_lock);
980         atomic_inc(&conf->nr_pending[idx]);
981         atomic_dec(&conf->nr_waiting[idx]);
982         spin_unlock_irq(&conf->resync_lock);
983 }
984
985 static void wait_barrier(struct r1conf *conf, sector_t sector_nr)
986 {
987         int idx = sector_to_idx(sector_nr);
988
989         _wait_barrier(conf, idx);
990 }
991
992 static void _allow_barrier(struct r1conf *conf, int idx)
993 {
994         atomic_dec(&conf->nr_pending[idx]);
995         wake_up(&conf->wait_barrier);
996 }
997
998 static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
999 {
1000         int idx = sector_to_idx(sector_nr);
1001
1002         _allow_barrier(conf, idx);
1003 }
1004
1005 /* conf->resync_lock should be held */
1006 static int get_unqueued_pending(struct r1conf *conf)
1007 {
1008         int idx, ret;
1009
1010         ret = atomic_read(&conf->nr_sync_pending);
1011         for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1012                 ret += atomic_read(&conf->nr_pending[idx]) -
1013                         atomic_read(&conf->nr_queued[idx]);
1014
1015         return ret;
1016 }
1017
1018 static void freeze_array(struct r1conf *conf, int extra)
1019 {
1020         /* Stop sync I/O and normal I/O and wait for everything to
1021          * go quiet.
1022          * This is called in two situations:
1023          * 1) management command handlers (reshape, remove disk, quiesce).
1024          * 2) one normal I/O request failed.
1025
1026          * After array_frozen is set to 1, new sync IO will be blocked at
1027          * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1028          * or wait_read_barrier(). The flying I/Os will either complete or be
1029          * queued. When everything goes quite, there are only queued I/Os left.
1030
1031          * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1032          * barrier bucket index which this I/O request hits. When all sync and
1033          * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1034          * of all conf->nr_queued[]. But normal I/O failure is an exception,
1035          * in handle_read_error(), we may call freeze_array() before trying to
1036          * fix the read error. In this case, the error read I/O is not queued,
1037          * so get_unqueued_pending() == 1.
1038          *
1039          * Therefore before this function returns, we need to wait until
1040          * get_unqueued_pendings(conf) gets equal to extra. For
1041          * normal I/O context, extra is 1, in rested situations extra is 0.
1042          */
1043         spin_lock_irq(&conf->resync_lock);
1044         conf->array_frozen = 1;
1045         raid1_log(conf->mddev, "wait freeze");
1046         wait_event_lock_irq_cmd(
1047                 conf->wait_barrier,
1048                 get_unqueued_pending(conf) == extra,
1049                 conf->resync_lock,
1050                 flush_pending_writes(conf));
1051         spin_unlock_irq(&conf->resync_lock);
1052 }
1053 static void unfreeze_array(struct r1conf *conf)
1054 {
1055         /* reverse the effect of the freeze */
1056         spin_lock_irq(&conf->resync_lock);
1057         conf->array_frozen = 0;
1058         spin_unlock_irq(&conf->resync_lock);
1059         wake_up(&conf->wait_barrier);
1060 }
1061
1062 static void alloc_behind_master_bio(struct r1bio *r1_bio,
1063                                            struct bio *bio)
1064 {
1065         int size = bio->bi_iter.bi_size;
1066         unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1067         int i = 0;
1068         struct bio *behind_bio = NULL;
1069
1070         behind_bio = bio_alloc_mddev(GFP_NOIO, vcnt, r1_bio->mddev);
1071         if (!behind_bio)
1072                 return;
1073
1074         /* discard op, we don't support writezero/writesame yet */
1075         if (!bio_has_data(bio)) {
1076                 behind_bio->bi_iter.bi_size = size;
1077                 goto skip_copy;
1078         }
1079
1080         while (i < vcnt && size) {
1081                 struct page *page;
1082                 int len = min_t(int, PAGE_SIZE, size);
1083
1084                 page = alloc_page(GFP_NOIO);
1085                 if (unlikely(!page))
1086                         goto free_pages;
1087
1088                 bio_add_page(behind_bio, page, len, 0);
1089
1090                 size -= len;
1091                 i++;
1092         }
1093
1094         bio_copy_data(behind_bio, bio);
1095 skip_copy:
1096         r1_bio->behind_master_bio = behind_bio;;
1097         set_bit(R1BIO_BehindIO, &r1_bio->state);
1098
1099         return;
1100
1101 free_pages:
1102         pr_debug("%dB behind alloc failed, doing sync I/O\n",
1103                  bio->bi_iter.bi_size);
1104         bio_free_pages(behind_bio);
1105         bio_put(behind_bio);
1106 }
1107
1108 struct raid1_plug_cb {
1109         struct blk_plug_cb      cb;
1110         struct bio_list         pending;
1111         int                     pending_cnt;
1112 };
1113
1114 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1115 {
1116         struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1117                                                   cb);
1118         struct mddev *mddev = plug->cb.data;
1119         struct r1conf *conf = mddev->private;
1120         struct bio *bio;
1121
1122         if (from_schedule || current->bio_list) {
1123                 spin_lock_irq(&conf->device_lock);
1124                 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1125                 conf->pending_count += plug->pending_cnt;
1126                 spin_unlock_irq(&conf->device_lock);
1127                 wake_up(&conf->wait_barrier);
1128                 md_wakeup_thread(mddev->thread);
1129                 kfree(plug);
1130                 return;
1131         }
1132
1133         /* we aren't scheduling, so we can do the write-out directly. */
1134         bio = bio_list_get(&plug->pending);
1135         flush_bio_list(conf, bio);
1136         kfree(plug);
1137 }
1138
1139 static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
1140 {
1141         r1_bio->master_bio = bio;
1142         r1_bio->sectors = bio_sectors(bio);
1143         r1_bio->state = 0;
1144         r1_bio->mddev = mddev;
1145         r1_bio->sector = bio->bi_iter.bi_sector;
1146 }
1147
1148 static inline struct r1bio *
1149 alloc_r1bio(struct mddev *mddev, struct bio *bio)
1150 {
1151         struct r1conf *conf = mddev->private;
1152         struct r1bio *r1_bio;
1153
1154         r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1155         /* Ensure no bio records IO_BLOCKED */
1156         memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0]));
1157         init_r1bio(r1_bio, mddev, bio);
1158         return r1_bio;
1159 }
1160
1161 static void raid1_read_request(struct mddev *mddev, struct bio *bio,
1162                                int max_read_sectors, struct r1bio *r1_bio)
1163 {
1164         struct r1conf *conf = mddev->private;
1165         struct raid1_info *mirror;
1166         struct bio *read_bio;
1167         struct bitmap *bitmap = mddev->bitmap;
1168         const int op = bio_op(bio);
1169         const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1170         int max_sectors;
1171         int rdisk;
1172         bool print_msg = !!r1_bio;
1173         char b[BDEVNAME_SIZE];
1174
1175         /*
1176          * If r1_bio is set, we are blocking the raid1d thread
1177          * so there is a tiny risk of deadlock.  So ask for
1178          * emergency memory if needed.
1179          */
1180         gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
1181
1182         if (print_msg) {
1183                 /* Need to get the block device name carefully */
1184                 struct md_rdev *rdev;
1185                 rcu_read_lock();
1186                 rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev);
1187                 if (rdev)
1188                         bdevname(rdev->bdev, b);
1189                 else
1190                         strcpy(b, "???");
1191                 rcu_read_unlock();
1192         }
1193
1194         /*
1195          * Still need barrier for READ in case that whole
1196          * array is frozen.
1197          */
1198         wait_read_barrier(conf, bio->bi_iter.bi_sector);
1199
1200         if (!r1_bio)
1201                 r1_bio = alloc_r1bio(mddev, bio);
1202         else
1203                 init_r1bio(r1_bio, mddev, bio);
1204         r1_bio->sectors = max_read_sectors;
1205
1206         /*
1207          * make_request() can abort the operation when read-ahead is being
1208          * used and no empty request is available.
1209          */
1210         rdisk = read_balance(conf, r1_bio, &max_sectors);
1211
1212         if (rdisk < 0) {
1213                 /* couldn't find anywhere to read from */
1214                 if (print_msg) {
1215                         pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1216                                             mdname(mddev),
1217                                             b,
1218                                             (unsigned long long)r1_bio->sector);
1219                 }
1220                 raid_end_bio_io(r1_bio);
1221                 return;
1222         }
1223         mirror = conf->mirrors + rdisk;
1224
1225         if (print_msg)
1226                 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n",
1227                                     mdname(mddev),
1228                                     (unsigned long long)r1_bio->sector,
1229                                     bdevname(mirror->rdev->bdev, b));
1230
1231         if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1232             bitmap) {
1233                 /*
1234                  * Reading from a write-mostly device must take care not to
1235                  * over-take any writes that are 'behind'
1236                  */
1237                 raid1_log(mddev, "wait behind writes");
1238                 wait_event(bitmap->behind_wait,
1239                            atomic_read(&bitmap->behind_writes) == 0);
1240         }
1241
1242         if (max_sectors < bio_sectors(bio)) {
1243                 struct bio *split = bio_split(bio, max_sectors,
1244                                               gfp, conf->bio_split);
1245                 bio_chain(split, bio);
1246                 generic_make_request(bio);
1247                 bio = split;
1248                 r1_bio->master_bio = bio;
1249                 r1_bio->sectors = max_sectors;
1250         }
1251
1252         r1_bio->read_disk = rdisk;
1253
1254         read_bio = bio_clone_fast(bio, gfp, mddev->bio_set);
1255
1256         r1_bio->bios[rdisk] = read_bio;
1257
1258         read_bio->bi_iter.bi_sector = r1_bio->sector +
1259                 mirror->rdev->data_offset;
1260         bio_set_dev(read_bio, mirror->rdev->bdev);
1261         read_bio->bi_end_io = raid1_end_read_request;
1262         bio_set_op_attrs(read_bio, op, do_sync);
1263         if (test_bit(FailFast, &mirror->rdev->flags) &&
1264             test_bit(R1BIO_FailFast, &r1_bio->state))
1265                 read_bio->bi_opf |= MD_FAILFAST;
1266         read_bio->bi_private = r1_bio;
1267
1268         if (mddev->gendisk)
1269                 trace_block_bio_remap(read_bio->bi_disk->queue, read_bio,
1270                                 disk_devt(mddev->gendisk), r1_bio->sector);
1271
1272         generic_make_request(read_bio);
1273 }
1274
1275 static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1276                                 int max_write_sectors)
1277 {
1278         struct r1conf *conf = mddev->private;
1279         struct r1bio *r1_bio;
1280         int i, disks;
1281         struct bitmap *bitmap = mddev->bitmap;
1282         unsigned long flags;
1283         struct md_rdev *blocked_rdev;
1284         struct blk_plug_cb *cb;
1285         struct raid1_plug_cb *plug = NULL;
1286         int first_clone;
1287         int max_sectors;
1288
1289         if (mddev_is_clustered(mddev) &&
1290              md_cluster_ops->area_resyncing(mddev, WRITE,
1291                      bio->bi_iter.bi_sector, bio_end_sector(bio))) {
1292
1293                 DEFINE_WAIT(w);
1294                 for (;;) {
1295                         prepare_to_wait(&conf->wait_barrier,
1296                                         &w, TASK_IDLE);
1297                         if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1298                                                         bio->bi_iter.bi_sector,
1299                                                         bio_end_sector(bio)))
1300                                 break;
1301                         schedule();
1302                 }
1303                 finish_wait(&conf->wait_barrier, &w);
1304         }
1305
1306         /*
1307          * Register the new request and wait if the reconstruction
1308          * thread has put up a bar for new requests.
1309          * Continue immediately if no resync is active currently.
1310          */
1311         wait_barrier(conf, bio->bi_iter.bi_sector);
1312
1313         r1_bio = alloc_r1bio(mddev, bio);
1314         r1_bio->sectors = max_write_sectors;
1315
1316         if (conf->pending_count >= max_queued_requests) {
1317                 md_wakeup_thread(mddev->thread);
1318                 raid1_log(mddev, "wait queued");
1319                 wait_event(conf->wait_barrier,
1320                            conf->pending_count < max_queued_requests);
1321         }
1322         /* first select target devices under rcu_lock and
1323          * inc refcount on their rdev.  Record them by setting
1324          * bios[x] to bio
1325          * If there are known/acknowledged bad blocks on any device on
1326          * which we have seen a write error, we want to avoid writing those
1327          * blocks.
1328          * This potentially requires several writes to write around
1329          * the bad blocks.  Each set of writes gets it's own r1bio
1330          * with a set of bios attached.
1331          */
1332
1333         disks = conf->raid_disks * 2;
1334  retry_write:
1335         blocked_rdev = NULL;
1336         rcu_read_lock();
1337         max_sectors = r1_bio->sectors;
1338         for (i = 0;  i < disks; i++) {
1339                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1340                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1341                         atomic_inc(&rdev->nr_pending);
1342                         blocked_rdev = rdev;
1343                         break;
1344                 }
1345                 r1_bio->bios[i] = NULL;
1346                 if (!rdev || test_bit(Faulty, &rdev->flags)) {
1347                         if (i < conf->raid_disks)
1348                                 set_bit(R1BIO_Degraded, &r1_bio->state);
1349                         continue;
1350                 }
1351
1352                 atomic_inc(&rdev->nr_pending);
1353                 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1354                         sector_t first_bad;
1355                         int bad_sectors;
1356                         int is_bad;
1357
1358                         is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1359                                              &first_bad, &bad_sectors);
1360                         if (is_bad < 0) {
1361                                 /* mustn't write here until the bad block is
1362                                  * acknowledged*/
1363                                 set_bit(BlockedBadBlocks, &rdev->flags);
1364                                 blocked_rdev = rdev;
1365                                 break;
1366                         }
1367                         if (is_bad && first_bad <= r1_bio->sector) {
1368                                 /* Cannot write here at all */
1369                                 bad_sectors -= (r1_bio->sector - first_bad);
1370                                 if (bad_sectors < max_sectors)
1371                                         /* mustn't write more than bad_sectors
1372                                          * to other devices yet
1373                                          */
1374                                         max_sectors = bad_sectors;
1375                                 rdev_dec_pending(rdev, mddev);
1376                                 /* We don't set R1BIO_Degraded as that
1377                                  * only applies if the disk is
1378                                  * missing, so it might be re-added,
1379                                  * and we want to know to recover this
1380                                  * chunk.
1381                                  * In this case the device is here,
1382                                  * and the fact that this chunk is not
1383                                  * in-sync is recorded in the bad
1384                                  * block log
1385                                  */
1386                                 continue;
1387                         }
1388                         if (is_bad) {
1389                                 int good_sectors = first_bad - r1_bio->sector;
1390                                 if (good_sectors < max_sectors)
1391                                         max_sectors = good_sectors;
1392                         }
1393                 }
1394                 r1_bio->bios[i] = bio;
1395         }
1396         rcu_read_unlock();
1397
1398         if (unlikely(blocked_rdev)) {
1399                 /* Wait for this device to become unblocked */
1400                 int j;
1401
1402                 for (j = 0; j < i; j++)
1403                         if (r1_bio->bios[j])
1404                                 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1405                 r1_bio->state = 0;
1406                 allow_barrier(conf, bio->bi_iter.bi_sector);
1407                 raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1408                 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1409                 wait_barrier(conf, bio->bi_iter.bi_sector);
1410                 goto retry_write;
1411         }
1412
1413         if (max_sectors < bio_sectors(bio)) {
1414                 struct bio *split = bio_split(bio, max_sectors,
1415                                               GFP_NOIO, conf->bio_split);
1416                 bio_chain(split, bio);
1417                 generic_make_request(bio);
1418                 bio = split;
1419                 r1_bio->master_bio = bio;
1420                 r1_bio->sectors = max_sectors;
1421         }
1422
1423         atomic_set(&r1_bio->remaining, 1);
1424         atomic_set(&r1_bio->behind_remaining, 0);
1425
1426         first_clone = 1;
1427
1428         for (i = 0; i < disks; i++) {
1429                 struct bio *mbio = NULL;
1430                 if (!r1_bio->bios[i])
1431                         continue;
1432
1433
1434                 if (first_clone) {
1435                         /* do behind I/O ?
1436                          * Not if there are too many, or cannot
1437                          * allocate memory, or a reader on WriteMostly
1438                          * is waiting for behind writes to flush */
1439                         if (bitmap &&
1440                             (atomic_read(&bitmap->behind_writes)
1441                              < mddev->bitmap_info.max_write_behind) &&
1442                             !waitqueue_active(&bitmap->behind_wait)) {
1443                                 alloc_behind_master_bio(r1_bio, bio);
1444                         }
1445
1446                         bitmap_startwrite(bitmap, r1_bio->sector,
1447                                           r1_bio->sectors,
1448                                           test_bit(R1BIO_BehindIO,
1449                                                    &r1_bio->state));
1450                         first_clone = 0;
1451                 }
1452
1453                 if (r1_bio->behind_master_bio)
1454                         mbio = bio_clone_fast(r1_bio->behind_master_bio,
1455                                               GFP_NOIO, mddev->bio_set);
1456                 else
1457                         mbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set);
1458
1459                 if (r1_bio->behind_master_bio) {
1460                         if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1461                                 atomic_inc(&r1_bio->behind_remaining);
1462                 }
1463
1464                 r1_bio->bios[i] = mbio;
1465
1466                 mbio->bi_iter.bi_sector = (r1_bio->sector +
1467                                    conf->mirrors[i].rdev->data_offset);
1468                 bio_set_dev(mbio, conf->mirrors[i].rdev->bdev);
1469                 mbio->bi_end_io = raid1_end_write_request;
1470                 mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
1471                 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags) &&
1472                     !test_bit(WriteMostly, &conf->mirrors[i].rdev->flags) &&
1473                     conf->raid_disks - mddev->degraded > 1)
1474                         mbio->bi_opf |= MD_FAILFAST;
1475                 mbio->bi_private = r1_bio;
1476
1477                 atomic_inc(&r1_bio->remaining);
1478
1479                 if (mddev->gendisk)
1480                         trace_block_bio_remap(mbio->bi_disk->queue,
1481                                               mbio, disk_devt(mddev->gendisk),
1482                                               r1_bio->sector);
1483                 /* flush_pending_writes() needs access to the rdev so...*/
1484                 mbio->bi_disk = (void *)conf->mirrors[i].rdev;
1485
1486                 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1487                 if (cb)
1488                         plug = container_of(cb, struct raid1_plug_cb, cb);
1489                 else
1490                         plug = NULL;
1491                 if (plug) {
1492                         bio_list_add(&plug->pending, mbio);
1493                         plug->pending_cnt++;
1494                 } else {
1495                         spin_lock_irqsave(&conf->device_lock, flags);
1496                         bio_list_add(&conf->pending_bio_list, mbio);
1497                         conf->pending_count++;
1498                         spin_unlock_irqrestore(&conf->device_lock, flags);
1499                         md_wakeup_thread(mddev->thread);
1500                 }
1501         }
1502
1503         r1_bio_write_done(r1_bio);
1504
1505         /* In case raid1d snuck in to freeze_array */
1506         wake_up(&conf->wait_barrier);
1507 }
1508
1509 static bool raid1_make_request(struct mddev *mddev, struct bio *bio)
1510 {
1511         sector_t sectors;
1512
1513         if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1514                 md_flush_request(mddev, bio);
1515                 return true;
1516         }
1517
1518         /*
1519          * There is a limit to the maximum size, but
1520          * the read/write handler might find a lower limit
1521          * due to bad blocks.  To avoid multiple splits,
1522          * we pass the maximum number of sectors down
1523          * and let the lower level perform the split.
1524          */
1525         sectors = align_to_barrier_unit_end(
1526                 bio->bi_iter.bi_sector, bio_sectors(bio));
1527
1528         if (bio_data_dir(bio) == READ)
1529                 raid1_read_request(mddev, bio, sectors, NULL);
1530         else {
1531                 if (!md_write_start(mddev,bio))
1532                         return false;
1533                 raid1_write_request(mddev, bio, sectors);
1534         }
1535         return true;
1536 }
1537
1538 static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1539 {
1540         struct r1conf *conf = mddev->private;
1541         int i;
1542
1543         seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1544                    conf->raid_disks - mddev->degraded);
1545         rcu_read_lock();
1546         for (i = 0; i < conf->raid_disks; i++) {
1547                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1548                 seq_printf(seq, "%s",
1549                            rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1550         }
1551         rcu_read_unlock();
1552         seq_printf(seq, "]");
1553 }
1554
1555 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1556 {
1557         char b[BDEVNAME_SIZE];
1558         struct r1conf *conf = mddev->private;
1559         unsigned long flags;
1560
1561         /*
1562          * If it is not operational, then we have already marked it as dead
1563          * else if it is the last working disks, ignore the error, let the
1564          * next level up know.
1565          * else mark the drive as failed
1566          */
1567         spin_lock_irqsave(&conf->device_lock, flags);
1568         if (test_bit(In_sync, &rdev->flags)
1569             && (conf->raid_disks - mddev->degraded) == 1) {
1570                 /*
1571                  * Don't fail the drive, act as though we were just a
1572                  * normal single drive.
1573                  * However don't try a recovery from this drive as
1574                  * it is very likely to fail.
1575                  */
1576                 conf->recovery_disabled = mddev->recovery_disabled;
1577                 spin_unlock_irqrestore(&conf->device_lock, flags);
1578                 return;
1579         }
1580         set_bit(Blocked, &rdev->flags);
1581         if (test_and_clear_bit(In_sync, &rdev->flags)) {
1582                 mddev->degraded++;
1583                 set_bit(Faulty, &rdev->flags);
1584         } else
1585                 set_bit(Faulty, &rdev->flags);
1586         spin_unlock_irqrestore(&conf->device_lock, flags);
1587         /*
1588          * if recovery is running, make sure it aborts.
1589          */
1590         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1591         set_mask_bits(&mddev->sb_flags, 0,
1592                       BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1593         pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n"
1594                 "md/raid1:%s: Operation continuing on %d devices.\n",
1595                 mdname(mddev), bdevname(rdev->bdev, b),
1596                 mdname(mddev), conf->raid_disks - mddev->degraded);
1597 }
1598
1599 static void print_conf(struct r1conf *conf)
1600 {
1601         int i;
1602
1603         pr_debug("RAID1 conf printout:\n");
1604         if (!conf) {
1605                 pr_debug("(!conf)\n");
1606                 return;
1607         }
1608         pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1609                  conf->raid_disks);
1610
1611         rcu_read_lock();
1612         for (i = 0; i < conf->raid_disks; i++) {
1613                 char b[BDEVNAME_SIZE];
1614                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1615                 if (rdev)
1616                         pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1617                                  i, !test_bit(In_sync, &rdev->flags),
1618                                  !test_bit(Faulty, &rdev->flags),
1619                                  bdevname(rdev->bdev,b));
1620         }
1621         rcu_read_unlock();
1622 }
1623
1624 static void close_sync(struct r1conf *conf)
1625 {
1626         int idx;
1627
1628         for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) {
1629                 _wait_barrier(conf, idx);
1630                 _allow_barrier(conf, idx);
1631         }
1632
1633         mempool_destroy(conf->r1buf_pool);
1634         conf->r1buf_pool = NULL;
1635 }
1636
1637 static int raid1_spare_active(struct mddev *mddev)
1638 {
1639         int i;
1640         struct r1conf *conf = mddev->private;
1641         int count = 0;
1642         unsigned long flags;
1643
1644         /*
1645          * Find all failed disks within the RAID1 configuration
1646          * and mark them readable.
1647          * Called under mddev lock, so rcu protection not needed.
1648          * device_lock used to avoid races with raid1_end_read_request
1649          * which expects 'In_sync' flags and ->degraded to be consistent.
1650          */
1651         spin_lock_irqsave(&conf->device_lock, flags);
1652         for (i = 0; i < conf->raid_disks; i++) {
1653                 struct md_rdev *rdev = conf->mirrors[i].rdev;
1654                 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1655                 if (repl
1656                     && !test_bit(Candidate, &repl->flags)
1657                     && repl->recovery_offset == MaxSector
1658                     && !test_bit(Faulty, &repl->flags)
1659                     && !test_and_set_bit(In_sync, &repl->flags)) {
1660                         /* replacement has just become active */
1661                         if (!rdev ||
1662                             !test_and_clear_bit(In_sync, &rdev->flags))
1663                                 count++;
1664                         if (rdev) {
1665                                 /* Replaced device not technically
1666                                  * faulty, but we need to be sure
1667                                  * it gets removed and never re-added
1668                                  */
1669                                 set_bit(Faulty, &rdev->flags);
1670                                 sysfs_notify_dirent_safe(
1671                                         rdev->sysfs_state);
1672                         }
1673                 }
1674                 if (rdev
1675                     && rdev->recovery_offset == MaxSector
1676                     && !test_bit(Faulty, &rdev->flags)
1677                     && !test_and_set_bit(In_sync, &rdev->flags)) {
1678                         count++;
1679                         sysfs_notify_dirent_safe(rdev->sysfs_state);
1680                 }
1681         }
1682         mddev->degraded -= count;
1683         spin_unlock_irqrestore(&conf->device_lock, flags);
1684
1685         print_conf(conf);
1686         return count;
1687 }
1688
1689 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1690 {
1691         struct r1conf *conf = mddev->private;
1692         int err = -EEXIST;
1693         int mirror = 0;
1694         struct raid1_info *p;
1695         int first = 0;
1696         int last = conf->raid_disks - 1;
1697
1698         if (mddev->recovery_disabled == conf->recovery_disabled)
1699                 return -EBUSY;
1700
1701         if (md_integrity_add_rdev(rdev, mddev))
1702                 return -ENXIO;
1703
1704         if (rdev->raid_disk >= 0)
1705                 first = last = rdev->raid_disk;
1706
1707         /*
1708          * find the disk ... but prefer rdev->saved_raid_disk
1709          * if possible.
1710          */
1711         if (rdev->saved_raid_disk >= 0 &&
1712             rdev->saved_raid_disk >= first &&
1713             conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1714                 first = last = rdev->saved_raid_disk;
1715
1716         for (mirror = first; mirror <= last; mirror++) {
1717                 p = conf->mirrors+mirror;
1718                 if (!p->rdev) {
1719
1720                         if (mddev->gendisk)
1721                                 disk_stack_limits(mddev->gendisk, rdev->bdev,
1722                                                   rdev->data_offset << 9);
1723
1724                         p->head_position = 0;
1725                         rdev->raid_disk = mirror;
1726                         err = 0;
1727                         /* As all devices are equivalent, we don't need a full recovery
1728                          * if this was recently any drive of the array
1729                          */
1730                         if (rdev->saved_raid_disk < 0)
1731                                 conf->fullsync = 1;
1732                         rcu_assign_pointer(p->rdev, rdev);
1733                         break;
1734                 }
1735                 if (test_bit(WantReplacement, &p->rdev->flags) &&
1736                     p[conf->raid_disks].rdev == NULL) {
1737                         /* Add this device as a replacement */
1738                         clear_bit(In_sync, &rdev->flags);
1739                         set_bit(Replacement, &rdev->flags);
1740                         rdev->raid_disk = mirror;
1741                         err = 0;
1742                         conf->fullsync = 1;
1743                         rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1744                         break;
1745                 }
1746         }
1747         if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1748                 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1749         print_conf(conf);
1750         return err;
1751 }
1752
1753 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1754 {
1755         struct r1conf *conf = mddev->private;
1756         int err = 0;
1757         int number = rdev->raid_disk;
1758         struct raid1_info *p = conf->mirrors + number;
1759
1760         if (rdev != p->rdev)
1761                 p = conf->mirrors + conf->raid_disks + number;
1762
1763         print_conf(conf);
1764         if (rdev == p->rdev) {
1765                 if (test_bit(In_sync, &rdev->flags) ||
1766                     atomic_read(&rdev->nr_pending)) {
1767                         err = -EBUSY;
1768                         goto abort;
1769                 }
1770                 /* Only remove non-faulty devices if recovery
1771                  * is not possible.
1772                  */
1773                 if (!test_bit(Faulty, &rdev->flags) &&
1774                     mddev->recovery_disabled != conf->recovery_disabled &&
1775                     mddev->degraded < conf->raid_disks) {
1776                         err = -EBUSY;
1777                         goto abort;
1778                 }
1779                 p->rdev = NULL;
1780                 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1781                         synchronize_rcu();
1782                         if (atomic_read(&rdev->nr_pending)) {
1783                                 /* lost the race, try later */
1784                                 err = -EBUSY;
1785                                 p->rdev = rdev;
1786                                 goto abort;
1787                         }
1788                 }
1789                 if (conf->mirrors[conf->raid_disks + number].rdev) {
1790                         /* We just removed a device that is being replaced.
1791                          * Move down the replacement.  We drain all IO before
1792                          * doing this to avoid confusion.
1793                          */
1794                         struct md_rdev *repl =
1795                                 conf->mirrors[conf->raid_disks + number].rdev;
1796                         freeze_array(conf, 0);
1797                         clear_bit(Replacement, &repl->flags);
1798                         p->rdev = repl;
1799                         conf->mirrors[conf->raid_disks + number].rdev = NULL;
1800                         unfreeze_array(conf);
1801                 }
1802
1803                 clear_bit(WantReplacement, &rdev->flags);
1804                 err = md_integrity_register(mddev);
1805         }
1806 abort:
1807
1808         print_conf(conf);
1809         return err;
1810 }
1811
1812 static void end_sync_read(struct bio *bio)
1813 {
1814         struct r1bio *r1_bio = get_resync_r1bio(bio);
1815
1816         update_head_pos(r1_bio->read_disk, r1_bio);
1817
1818         /*
1819          * we have read a block, now it needs to be re-written,
1820          * or re-read if the read failed.
1821          * We don't do much here, just schedule handling by raid1d
1822          */
1823         if (!bio->bi_status)
1824                 set_bit(R1BIO_Uptodate, &r1_bio->state);
1825
1826         if (atomic_dec_and_test(&r1_bio->remaining))
1827                 reschedule_retry(r1_bio);
1828 }
1829
1830 static void end_sync_write(struct bio *bio)
1831 {
1832         int uptodate = !bio->bi_status;
1833         struct r1bio *r1_bio = get_resync_r1bio(bio);
1834         struct mddev *mddev = r1_bio->mddev;
1835         struct r1conf *conf = mddev->private;
1836         sector_t first_bad;
1837         int bad_sectors;
1838         struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
1839
1840         if (!uptodate) {
1841                 sector_t sync_blocks = 0;
1842                 sector_t s = r1_bio->sector;
1843                 long sectors_to_go = r1_bio->sectors;
1844                 /* make sure these bits doesn't get cleared. */
1845                 do {
1846                         bitmap_end_sync(mddev->bitmap, s,
1847                                         &sync_blocks, 1);
1848                         s += sync_blocks;
1849                         sectors_to_go -= sync_blocks;
1850                 } while (sectors_to_go > 0);
1851                 set_bit(WriteErrorSeen, &rdev->flags);
1852                 if (!test_and_set_bit(WantReplacement, &rdev->flags))
1853                         set_bit(MD_RECOVERY_NEEDED, &
1854                                 mddev->recovery);
1855                 set_bit(R1BIO_WriteError, &r1_bio->state);
1856         } else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
1857                                &first_bad, &bad_sectors) &&
1858                    !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1859                                 r1_bio->sector,
1860                                 r1_bio->sectors,
1861                                 &first_bad, &bad_sectors)
1862                 )
1863                 set_bit(R1BIO_MadeGood, &r1_bio->state);
1864
1865         if (atomic_dec_and_test(&r1_bio->remaining)) {
1866                 int s = r1_bio->sectors;
1867                 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1868                     test_bit(R1BIO_WriteError, &r1_bio->state))
1869                         reschedule_retry(r1_bio);
1870                 else {
1871                         put_buf(r1_bio);
1872                         md_done_sync(mddev, s, uptodate);
1873                 }
1874         }
1875 }
1876
1877 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1878                             int sectors, struct page *page, int rw)
1879 {
1880         if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
1881                 /* success */
1882                 return 1;
1883         if (rw == WRITE) {
1884                 set_bit(WriteErrorSeen, &rdev->flags);
1885                 if (!test_and_set_bit(WantReplacement,
1886                                       &rdev->flags))
1887                         set_bit(MD_RECOVERY_NEEDED, &
1888                                 rdev->mddev->recovery);
1889         }
1890         /* need to record an error - either for the block or the device */
1891         if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1892                 md_error(rdev->mddev, rdev);
1893         return 0;
1894 }
1895
1896 static int fix_sync_read_error(struct r1bio *r1_bio)
1897 {
1898         /* Try some synchronous reads of other devices to get
1899          * good data, much like with normal read errors.  Only
1900          * read into the pages we already have so we don't
1901          * need to re-issue the read request.
1902          * We don't need to freeze the array, because being in an
1903          * active sync request, there is no normal IO, and
1904          * no overlapping syncs.
1905          * We don't need to check is_badblock() again as we
1906          * made sure that anything with a bad block in range
1907          * will have bi_end_io clear.
1908          */
1909         struct mddev *mddev = r1_bio->mddev;
1910         struct r1conf *conf = mddev->private;
1911         struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1912         struct page **pages = get_resync_pages(bio)->pages;
1913         sector_t sect = r1_bio->sector;
1914         int sectors = r1_bio->sectors;
1915         int idx = 0;
1916         struct md_rdev *rdev;
1917
1918         rdev = conf->mirrors[r1_bio->read_disk].rdev;
1919         if (test_bit(FailFast, &rdev->flags)) {
1920                 /* Don't try recovering from here - just fail it
1921                  * ... unless it is the last working device of course */
1922                 md_error(mddev, rdev);
1923                 if (test_bit(Faulty, &rdev->flags))
1924                         /* Don't try to read from here, but make sure
1925                          * put_buf does it's thing
1926                          */
1927                         bio->bi_end_io = end_sync_write;
1928         }
1929
1930         while(sectors) {
1931                 int s = sectors;
1932                 int d = r1_bio->read_disk;
1933                 int success = 0;
1934                 int start;
1935
1936                 if (s > (PAGE_SIZE>>9))
1937                         s = PAGE_SIZE >> 9;
1938                 do {
1939                         if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1940                                 /* No rcu protection needed here devices
1941                                  * can only be removed when no resync is
1942                                  * active, and resync is currently active
1943                                  */
1944                                 rdev = conf->mirrors[d].rdev;
1945                                 if (sync_page_io(rdev, sect, s<<9,
1946                                                  pages[idx],
1947                                                  REQ_OP_READ, 0, false)) {
1948                                         success = 1;
1949                                         break;
1950                                 }
1951                         }
1952                         d++;
1953                         if (d == conf->raid_disks * 2)
1954                                 d = 0;
1955                 } while (!success && d != r1_bio->read_disk);
1956
1957                 if (!success) {
1958                         char b[BDEVNAME_SIZE];
1959                         int abort = 0;
1960                         /* Cannot read from anywhere, this block is lost.
1961                          * Record a bad block on each device.  If that doesn't
1962                          * work just disable and interrupt the recovery.
1963                          * Don't fail devices as that won't really help.
1964                          */
1965                         pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1966                                             mdname(mddev), bio_devname(bio, b),
1967                                             (unsigned long long)r1_bio->sector);
1968                         for (d = 0; d < conf->raid_disks * 2; d++) {
1969                                 rdev = conf->mirrors[d].rdev;
1970                                 if (!rdev || test_bit(Faulty, &rdev->flags))
1971                                         continue;
1972                                 if (!rdev_set_badblocks(rdev, sect, s, 0))
1973                                         abort = 1;
1974                         }
1975                         if (abort) {
1976                                 conf->recovery_disabled =
1977                                         mddev->recovery_disabled;
1978                                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1979                                 md_done_sync(mddev, r1_bio->sectors, 0);
1980                                 put_buf(r1_bio);
1981                                 return 0;
1982                         }
1983                         /* Try next page */
1984                         sectors -= s;
1985                         sect += s;
1986                         idx++;
1987                         continue;
1988                 }
1989
1990                 start = d;
1991                 /* write it back and re-read */
1992                 while (d != r1_bio->read_disk) {
1993                         if (d == 0)
1994                                 d = conf->raid_disks * 2;
1995                         d--;
1996                         if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1997                                 continue;
1998                         rdev = conf->mirrors[d].rdev;
1999                         if (r1_sync_page_io(rdev, sect, s,
2000                                             pages[idx],
2001                                             WRITE) == 0) {
2002                                 r1_bio->bios[d]->bi_end_io = NULL;
2003                                 rdev_dec_pending(rdev, mddev);
2004                         }
2005                 }
2006                 d = start;
2007                 while (d != r1_bio->read_disk) {
2008                         if (d == 0)
2009                                 d = conf->raid_disks * 2;
2010                         d--;
2011                         if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2012                                 continue;
2013                         rdev = conf->mirrors[d].rdev;
2014                         if (r1_sync_page_io(rdev, sect, s,
2015                                             pages[idx],
2016                                             READ) != 0)
2017                                 atomic_add(s, &rdev->corrected_errors);
2018                 }
2019                 sectors -= s;
2020                 sect += s;
2021                 idx ++;
2022         }
2023         set_bit(R1BIO_Uptodate, &r1_bio->state);
2024         bio->bi_status = 0;
2025         return 1;
2026 }
2027
2028 static void process_checks(struct r1bio *r1_bio)
2029 {
2030         /* We have read all readable devices.  If we haven't
2031          * got the block, then there is no hope left.
2032          * If we have, then we want to do a comparison
2033          * and skip the write if everything is the same.
2034          * If any blocks failed to read, then we need to
2035          * attempt an over-write
2036          */
2037         struct mddev *mddev = r1_bio->mddev;
2038         struct r1conf *conf = mddev->private;
2039         int primary;
2040         int i;
2041         int vcnt;
2042
2043         /* Fix variable parts of all bios */
2044         vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2045         for (i = 0; i < conf->raid_disks * 2; i++) {
2046                 blk_status_t status;
2047                 struct bio *b = r1_bio->bios[i];
2048                 struct resync_pages *rp = get_resync_pages(b);
2049                 if (b->bi_end_io != end_sync_read)
2050                         continue;
2051                 /* fixup the bio for reuse, but preserve errno */
2052                 status = b->bi_status;
2053                 bio_reset(b);
2054                 b->bi_status = status;
2055                 b->bi_iter.bi_sector = r1_bio->sector +
2056                         conf->mirrors[i].rdev->data_offset;
2057                 bio_set_dev(b, conf->mirrors[i].rdev->bdev);
2058                 b->bi_end_io = end_sync_read;
2059                 rp->raid_bio = r1_bio;
2060                 b->bi_private = rp;
2061
2062                 /* initialize bvec table again */
2063                 md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9);
2064         }
2065         for (primary = 0; primary < conf->raid_disks * 2; primary++)
2066                 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2067                     !r1_bio->bios[primary]->bi_status) {
2068                         r1_bio->bios[primary]->bi_end_io = NULL;
2069                         rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2070                         break;
2071                 }
2072         r1_bio->read_disk = primary;
2073         for (i = 0; i < conf->raid_disks * 2; i++) {
2074                 int j;
2075                 struct bio *pbio = r1_bio->bios[primary];
2076                 struct bio *sbio = r1_bio->bios[i];
2077                 blk_status_t status = sbio->bi_status;
2078                 struct page **ppages = get_resync_pages(pbio)->pages;
2079                 struct page **spages = get_resync_pages(sbio)->pages;
2080                 struct bio_vec *bi;
2081                 int page_len[RESYNC_PAGES] = { 0 };
2082
2083                 if (sbio->bi_end_io != end_sync_read)
2084                         continue;
2085                 /* Now we can 'fixup' the error value */
2086                 sbio->bi_status = 0;
2087
2088                 bio_for_each_segment_all(bi, sbio, j)
2089                         page_len[j] = bi->bv_len;
2090
2091                 if (!status) {
2092                         for (j = vcnt; j-- ; ) {
2093                                 if (memcmp(page_address(ppages[j]),
2094                                            page_address(spages[j]),
2095                                            page_len[j]))
2096                                         break;
2097                         }
2098                 } else
2099                         j = 0;
2100                 if (j >= 0)
2101                         atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2102                 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2103                               && !status)) {
2104                         /* No need to write to this device. */
2105                         sbio->bi_end_io = NULL;
2106                         rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2107                         continue;
2108                 }
2109
2110                 bio_copy_data(sbio, pbio);
2111         }
2112 }
2113
2114 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2115 {
2116         struct r1conf *conf = mddev->private;
2117         int i;
2118         int disks = conf->raid_disks * 2;
2119         struct bio *wbio;
2120
2121         if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2122                 /* ouch - failed to read all of that. */
2123                 if (!fix_sync_read_error(r1_bio))
2124                         return;
2125
2126         if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2127                 process_checks(r1_bio);
2128
2129         /*
2130          * schedule writes
2131          */
2132         atomic_set(&r1_bio->remaining, 1);
2133         for (i = 0; i < disks ; i++) {
2134                 wbio = r1_bio->bios[i];
2135                 if (wbio->bi_end_io == NULL ||
2136                     (wbio->bi_end_io == end_sync_read &&
2137                      (i == r1_bio->read_disk ||
2138                       !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2139                         continue;
2140                 if (test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2141                         continue;
2142
2143                 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2144                 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2145                         wbio->bi_opf |= MD_FAILFAST;
2146
2147                 wbio->bi_end_io = end_sync_write;
2148                 atomic_inc(&r1_bio->remaining);
2149                 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2150
2151                 generic_make_request(wbio);
2152         }
2153
2154         if (atomic_dec_and_test(&r1_bio->remaining)) {
2155                 /* if we're here, all write(s) have completed, so clean up */
2156                 int s = r1_bio->sectors;
2157                 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2158                     test_bit(R1BIO_WriteError, &r1_bio->state))
2159                         reschedule_retry(r1_bio);
2160                 else {
2161                         put_buf(r1_bio);
2162                         md_done_sync(mddev, s, 1);
2163                 }
2164         }
2165 }
2166
2167 /*
2168  * This is a kernel thread which:
2169  *
2170  *      1.      Retries failed read operations on working mirrors.
2171  *      2.      Updates the raid superblock when problems encounter.
2172  *      3.      Performs writes following reads for array synchronising.
2173  */
2174
2175 static void fix_read_error(struct r1conf *conf, int read_disk,
2176                            sector_t sect, int sectors)
2177 {
2178         struct mddev *mddev = conf->mddev;
2179         while(sectors) {
2180                 int s = sectors;
2181                 int d = read_disk;
2182                 int success = 0;
2183                 int start;
2184                 struct md_rdev *rdev;
2185
2186                 if (s > (PAGE_SIZE>>9))
2187                         s = PAGE_SIZE >> 9;
2188
2189                 do {
2190                         sector_t first_bad;
2191                         int bad_sectors;
2192
2193                         rcu_read_lock();
2194                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2195                         if (rdev &&
2196                             (test_bit(In_sync, &rdev->flags) ||
2197                              (!test_bit(Faulty, &rdev->flags) &&
2198                               rdev->recovery_offset >= sect + s)) &&
2199                             is_badblock(rdev, sect, s,
2200                                         &first_bad, &bad_sectors) == 0) {
2201                                 atomic_inc(&rdev->nr_pending);
2202                                 rcu_read_unlock();
2203                                 if (sync_page_io(rdev, sect, s<<9,
2204                                          conf->tmppage, REQ_OP_READ, 0, false))
2205                                         success = 1;
2206                                 rdev_dec_pending(rdev, mddev);
2207                                 if (success)
2208                                         break;
2209                         } else
2210                                 rcu_read_unlock();
2211                         d++;
2212                         if (d == conf->raid_disks * 2)
2213                                 d = 0;
2214                 } while (!success && d != read_disk);
2215
2216                 if (!success) {
2217                         /* Cannot read from anywhere - mark it bad */
2218                         struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2219                         if (!rdev_set_badblocks(rdev, sect, s, 0))
2220                                 md_error(mddev, rdev);
2221                         break;
2222                 }
2223                 /* write it back and re-read */
2224                 start = d;
2225                 while (d != read_disk) {
2226                         if (d==0)
2227                                 d = conf->raid_disks * 2;
2228                         d--;
2229                         rcu_read_lock();
2230                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2231                         if (rdev &&
2232                             !test_bit(Faulty, &rdev->flags)) {
2233                                 atomic_inc(&rdev->nr_pending);
2234                                 rcu_read_unlock();
2235                                 r1_sync_page_io(rdev, sect, s,
2236                                                 conf->tmppage, WRITE);
2237                                 rdev_dec_pending(rdev, mddev);
2238                         } else
2239                                 rcu_read_unlock();
2240                 }
2241                 d = start;
2242                 while (d != read_disk) {
2243                         char b[BDEVNAME_SIZE];
2244                         if (d==0)
2245                                 d = conf->raid_disks * 2;
2246                         d--;
2247                         rcu_read_lock();
2248                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2249                         if (rdev &&
2250                             !test_bit(Faulty, &rdev->flags)) {
2251                                 atomic_inc(&rdev->nr_pending);
2252                                 rcu_read_unlock();
2253                                 if (r1_sync_page_io(rdev, sect, s,
2254                                                     conf->tmppage, READ)) {
2255                                         atomic_add(s, &rdev->corrected_errors);
2256                                         pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n",
2257                                                 mdname(mddev), s,
2258                                                 (unsigned long long)(sect +
2259                                                                      rdev->data_offset),
2260                                                 bdevname(rdev->bdev, b));
2261                                 }
2262                                 rdev_dec_pending(rdev, mddev);
2263                         } else
2264                                 rcu_read_unlock();
2265                 }
2266                 sectors -= s;
2267                 sect += s;
2268         }
2269 }
2270
2271 static int narrow_write_error(struct r1bio *r1_bio, int i)
2272 {
2273         struct mddev *mddev = r1_bio->mddev;
2274         struct r1conf *conf = mddev->private;
2275         struct md_rdev *rdev = conf->mirrors[i].rdev;
2276
2277         /* bio has the data to be written to device 'i' where
2278          * we just recently had a write error.
2279          * We repeatedly clone the bio and trim down to one block,
2280          * then try the write.  Where the write fails we record
2281          * a bad block.
2282          * It is conceivable that the bio doesn't exactly align with
2283          * blocks.  We must handle this somehow.
2284          *
2285          * We currently own a reference on the rdev.
2286          */
2287
2288         int block_sectors;
2289         sector_t sector;
2290         int sectors;
2291         int sect_to_write = r1_bio->sectors;
2292         int ok = 1;
2293
2294         if (rdev->badblocks.shift < 0)
2295                 return 0;
2296
2297         block_sectors = roundup(1 << rdev->badblocks.shift,
2298                                 bdev_logical_block_size(rdev->bdev) >> 9);
2299         sector = r1_bio->sector;
2300         sectors = ((sector + block_sectors)
2301                    & ~(sector_t)(block_sectors - 1))
2302                 - sector;
2303
2304         while (sect_to_write) {
2305                 struct bio *wbio;
2306                 if (sectors > sect_to_write)
2307                         sectors = sect_to_write;
2308                 /* Write at 'sector' for 'sectors'*/
2309
2310                 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2311                         wbio = bio_clone_fast(r1_bio->behind_master_bio,
2312                                               GFP_NOIO,
2313                                               mddev->bio_set);
2314                 } else {
2315                         wbio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO,
2316                                               mddev->bio_set);
2317                 }
2318
2319                 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2320                 wbio->bi_iter.bi_sector = r1_bio->sector;
2321                 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2322
2323                 bio_trim(wbio, sector - r1_bio->sector, sectors);
2324                 wbio->bi_iter.bi_sector += rdev->data_offset;
2325                 bio_set_dev(wbio, rdev->bdev);
2326
2327                 if (submit_bio_wait(wbio) < 0)
2328                         /* failure! */
2329                         ok = rdev_set_badblocks(rdev, sector,
2330                                                 sectors, 0)
2331                                 && ok;
2332
2333                 bio_put(wbio);
2334                 sect_to_write -= sectors;
2335                 sector += sectors;
2336                 sectors = block_sectors;
2337         }
2338         return ok;
2339 }
2340
2341 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2342 {
2343         int m;
2344         int s = r1_bio->sectors;
2345         for (m = 0; m < conf->raid_disks * 2 ; m++) {
2346                 struct md_rdev *rdev = conf->mirrors[m].rdev;
2347                 struct bio *bio = r1_bio->bios[m];
2348                 if (bio->bi_end_io == NULL)
2349                         continue;
2350                 if (!bio->bi_status &&
2351                     test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2352                         rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2353                 }
2354                 if (bio->bi_status &&
2355                     test_bit(R1BIO_WriteError, &r1_bio->state)) {
2356                         if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2357                                 md_error(conf->mddev, rdev);
2358                 }
2359         }
2360         put_buf(r1_bio);
2361         md_done_sync(conf->mddev, s, 1);
2362 }
2363
2364 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2365 {
2366         int m, idx;
2367         bool fail = false;
2368
2369         for (m = 0; m < conf->raid_disks * 2 ; m++)
2370                 if (r1_bio->bios[m] == IO_MADE_GOOD) {
2371                         struct md_rdev *rdev = conf->mirrors[m].rdev;
2372                         rdev_clear_badblocks(rdev,
2373                                              r1_bio->sector,
2374                                              r1_bio->sectors, 0);
2375                         rdev_dec_pending(rdev, conf->mddev);
2376                 } else if (r1_bio->bios[m] != NULL) {
2377                         /* This drive got a write error.  We need to
2378                          * narrow down and record precise write
2379                          * errors.
2380                          */
2381                         fail = true;
2382                         if (!narrow_write_error(r1_bio, m)) {
2383                                 md_error(conf->mddev,
2384                                          conf->mirrors[m].rdev);
2385                                 /* an I/O failed, we can't clear the bitmap */
2386                                 set_bit(R1BIO_Degraded, &r1_bio->state);
2387                         }
2388                         rdev_dec_pending(conf->mirrors[m].rdev,
2389                                          conf->mddev);
2390                 }
2391         if (fail) {
2392                 spin_lock_irq(&conf->device_lock);
2393                 list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2394                 idx = sector_to_idx(r1_bio->sector);
2395                 atomic_inc(&conf->nr_queued[idx]);
2396                 spin_unlock_irq(&conf->device_lock);
2397                 /*
2398                  * In case freeze_array() is waiting for condition
2399                  * get_unqueued_pending() == extra to be true.
2400                  */
2401                 wake_up(&conf->wait_barrier);
2402                 md_wakeup_thread(conf->mddev->thread);
2403         } else {
2404                 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2405                         close_write(r1_bio);
2406                 raid_end_bio_io(r1_bio);
2407         }
2408 }
2409
2410 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2411 {
2412         struct mddev *mddev = conf->mddev;
2413         struct bio *bio;
2414         struct md_rdev *rdev;
2415         sector_t bio_sector;
2416
2417         clear_bit(R1BIO_ReadError, &r1_bio->state);
2418         /* we got a read error. Maybe the drive is bad.  Maybe just
2419          * the block and we can fix it.
2420          * We freeze all other IO, and try reading the block from
2421          * other devices.  When we find one, we re-write
2422          * and check it that fixes the read error.
2423          * This is all done synchronously while the array is
2424          * frozen
2425          */
2426
2427         bio = r1_bio->bios[r1_bio->read_disk];
2428         bio_sector = conf->mirrors[r1_bio->read_disk].rdev->data_offset + r1_bio->sector;
2429         bio_put(bio);
2430         r1_bio->bios[r1_bio->read_disk] = NULL;
2431
2432         rdev = conf->mirrors[r1_bio->read_disk].rdev;
2433         if (mddev->ro == 0
2434             && !test_bit(FailFast, &rdev->flags)) {
2435                 freeze_array(conf, 1);
2436                 fix_read_error(conf, r1_bio->read_disk,
2437                                r1_bio->sector, r1_bio->sectors);
2438                 unfreeze_array(conf);
2439         } else {
2440                 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2441         }
2442
2443         rdev_dec_pending(rdev, conf->mddev);
2444         allow_barrier(conf, r1_bio->sector);
2445         bio = r1_bio->master_bio;
2446
2447         /* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2448         r1_bio->state = 0;
2449         raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio);
2450 }
2451
2452 static void raid1d(struct md_thread *thread)
2453 {
2454         struct mddev *mddev = thread->mddev;
2455         struct r1bio *r1_bio;
2456         unsigned long flags;
2457         struct r1conf *conf = mddev->private;
2458         struct list_head *head = &conf->retry_list;
2459         struct blk_plug plug;
2460         int idx;
2461
2462         md_check_recovery(mddev);
2463
2464         if (!list_empty_careful(&conf->bio_end_io_list) &&
2465             !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2466                 LIST_HEAD(tmp);
2467                 spin_lock_irqsave(&conf->device_lock, flags);
2468                 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2469                         list_splice_init(&conf->bio_end_io_list, &tmp);
2470                 spin_unlock_irqrestore(&conf->device_lock, flags);
2471                 while (!list_empty(&tmp)) {
2472                         r1_bio = list_first_entry(&tmp, struct r1bio,
2473                                                   retry_list);
2474                         list_del(&r1_bio->retry_list);
2475                         idx = sector_to_idx(r1_bio->sector);
2476                         atomic_dec(&conf->nr_queued[idx]);
2477                         if (mddev->degraded)
2478                                 set_bit(R1BIO_Degraded, &r1_bio->state);
2479                         if (test_bit(R1BIO_WriteError, &r1_bio->state))
2480                                 close_write(r1_bio);
2481                         raid_end_bio_io(r1_bio);
2482                 }
2483         }
2484
2485         blk_start_plug(&plug);
2486         for (;;) {
2487
2488                 flush_pending_writes(conf);
2489
2490                 spin_lock_irqsave(&conf->device_lock, flags);
2491                 if (list_empty(head)) {
2492                         spin_unlock_irqrestore(&conf->device_lock, flags);
2493                         break;
2494                 }
2495                 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2496                 list_del(head->prev);
2497                 idx = sector_to_idx(r1_bio->sector);
2498                 atomic_dec(&conf->nr_queued[idx]);
2499                 spin_unlock_irqrestore(&conf->device_lock, flags);
2500
2501                 mddev = r1_bio->mddev;
2502                 conf = mddev->private;
2503                 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2504                         if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2505                             test_bit(R1BIO_WriteError, &r1_bio->state))
2506                                 handle_sync_write_finished(conf, r1_bio);
2507                         else
2508                                 sync_request_write(mddev, r1_bio);
2509                 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2510                            test_bit(R1BIO_WriteError, &r1_bio->state))
2511                         handle_write_finished(conf, r1_bio);
2512                 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2513                         handle_read_error(conf, r1_bio);
2514                 else
2515                         WARN_ON_ONCE(1);
2516
2517                 cond_resched();
2518                 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2519                         md_check_recovery(mddev);
2520         }
2521         blk_finish_plug(&plug);
2522 }
2523
2524 static int init_resync(struct r1conf *conf)
2525 {
2526         int buffs;
2527
2528         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2529         BUG_ON(conf->r1buf_pool);
2530         conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2531                                           conf->poolinfo);
2532         if (!conf->r1buf_pool)
2533                 return -ENOMEM;
2534         return 0;
2535 }
2536
2537 static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf)
2538 {
2539         struct r1bio *r1bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2540         struct resync_pages *rps;
2541         struct bio *bio;
2542         int i;
2543
2544         for (i = conf->poolinfo->raid_disks; i--; ) {
2545                 bio = r1bio->bios[i];
2546                 rps = bio->bi_private;
2547                 bio_reset(bio);
2548                 bio->bi_private = rps;
2549         }
2550         r1bio->master_bio = NULL;
2551         return r1bio;
2552 }
2553
2554 /*
2555  * perform a "sync" on one "block"
2556  *
2557  * We need to make sure that no normal I/O request - particularly write
2558  * requests - conflict with active sync requests.
2559  *
2560  * This is achieved by tracking pending requests and a 'barrier' concept
2561  * that can be installed to exclude normal IO requests.
2562  */
2563
2564 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2565                                    int *skipped)
2566 {
2567         struct r1conf *conf = mddev->private;
2568         struct r1bio *r1_bio;
2569         struct bio *bio;
2570         sector_t max_sector, nr_sectors;
2571         int disk = -1;
2572         int i;
2573         int wonly = -1;
2574         int write_targets = 0, read_targets = 0;
2575         sector_t sync_blocks;
2576         int still_degraded = 0;
2577         int good_sectors = RESYNC_SECTORS;
2578         int min_bad = 0; /* number of sectors that are bad in all devices */
2579         int idx = sector_to_idx(sector_nr);
2580         int page_idx = 0;
2581
2582         if (!conf->r1buf_pool)
2583                 if (init_resync(conf))
2584                         return 0;
2585
2586         max_sector = mddev->dev_sectors;
2587         if (sector_nr >= max_sector) {
2588                 /* If we aborted, we need to abort the
2589                  * sync on the 'current' bitmap chunk (there will
2590                  * only be one in raid1 resync.
2591                  * We can find the current addess in mddev->curr_resync
2592                  */
2593                 if (mddev->curr_resync < max_sector) /* aborted */
2594                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2595                                                 &sync_blocks, 1);
2596                 else /* completed sync */
2597                         conf->fullsync = 0;
2598
2599                 bitmap_close_sync(mddev->bitmap);
2600                 close_sync(conf);
2601
2602                 if (mddev_is_clustered(mddev)) {
2603                         conf->cluster_sync_low = 0;
2604                         conf->cluster_sync_high = 0;
2605                 }
2606                 return 0;
2607         }
2608
2609         if (mddev->bitmap == NULL &&
2610             mddev->recovery_cp == MaxSector &&
2611             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2612             conf->fullsync == 0) {
2613                 *skipped = 1;
2614                 return max_sector - sector_nr;
2615         }
2616         /* before building a request, check if we can skip these blocks..
2617          * This call the bitmap_start_sync doesn't actually record anything
2618          */
2619         if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2620             !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2621                 /* We can skip this block, and probably several more */
2622                 *skipped = 1;
2623                 return sync_blocks;
2624         }
2625
2626         /*
2627          * If there is non-resync activity waiting for a turn, then let it
2628          * though before starting on this new sync request.
2629          */
2630         if (atomic_read(&conf->nr_waiting[idx]))
2631                 schedule_timeout_uninterruptible(1);
2632
2633         /* we are incrementing sector_nr below. To be safe, we check against
2634          * sector_nr + two times RESYNC_SECTORS
2635          */
2636
2637         bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2638                 mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2639         r1_bio = raid1_alloc_init_r1buf(conf);
2640
2641         raise_barrier(conf, sector_nr);
2642
2643         rcu_read_lock();
2644         /*
2645          * If we get a correctably read error during resync or recovery,
2646          * we might want to read from a different device.  So we
2647          * flag all drives that could conceivably be read from for READ,
2648          * and any others (which will be non-In_sync devices) for WRITE.
2649          * If a read fails, we try reading from something else for which READ
2650          * is OK.
2651          */
2652
2653         r1_bio->mddev = mddev;
2654         r1_bio->sector = sector_nr;
2655         r1_bio->state = 0;
2656         set_bit(R1BIO_IsSync, &r1_bio->state);
2657         /* make sure good_sectors won't go across barrier unit boundary */
2658         good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
2659
2660         for (i = 0; i < conf->raid_disks * 2; i++) {
2661                 struct md_rdev *rdev;
2662                 bio = r1_bio->bios[i];
2663
2664                 rdev = rcu_dereference(conf->mirrors[i].rdev);
2665                 if (rdev == NULL ||
2666                     test_bit(Faulty, &rdev->flags)) {
2667                         if (i < conf->raid_disks)
2668                                 still_degraded = 1;
2669                 } else if (!test_bit(In_sync, &rdev->flags)) {
2670                         bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2671                         bio->bi_end_io = end_sync_write;
2672                         write_targets ++;
2673                 } else {
2674                         /* may need to read from here */
2675                         sector_t first_bad = MaxSector;
2676                         int bad_sectors;
2677
2678                         if (is_badblock(rdev, sector_nr, good_sectors,
2679                                         &first_bad, &bad_sectors)) {
2680                                 if (first_bad > sector_nr)
2681                                         good_sectors = first_bad - sector_nr;
2682                                 else {
2683                                         bad_sectors -= (sector_nr - first_bad);
2684                                         if (min_bad == 0 ||
2685                                             min_bad > bad_sectors)
2686                                                 min_bad = bad_sectors;
2687                                 }
2688                         }
2689                         if (sector_nr < first_bad) {
2690                                 if (test_bit(WriteMostly, &rdev->flags)) {
2691                                         if (wonly < 0)
2692                                                 wonly = i;
2693                                 } else {
2694                                         if (disk < 0)
2695                                                 disk = i;
2696                                 }
2697                                 bio_set_op_attrs(bio, REQ_OP_READ, 0);
2698                                 bio->bi_end_io = end_sync_read;
2699                                 read_targets++;
2700                         } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2701                                 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2702                                 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2703                                 /*
2704                                  * The device is suitable for reading (InSync),
2705                                  * but has bad block(s) here. Let's try to correct them,
2706                                  * if we are doing resync or repair. Otherwise, leave
2707                                  * this device alone for this sync request.
2708                                  */
2709                                 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2710                                 bio->bi_end_io = end_sync_write;
2711                                 write_targets++;
2712                         }
2713                 }
2714                 if (bio->bi_end_io) {
2715                         atomic_inc(&rdev->nr_pending);
2716                         bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2717                         bio_set_dev(bio, rdev->bdev);
2718                         if (test_bit(FailFast, &rdev->flags))
2719                                 bio->bi_opf |= MD_FAILFAST;
2720                 }
2721         }
2722         rcu_read_unlock();
2723         if (disk < 0)
2724                 disk = wonly;
2725         r1_bio->read_disk = disk;
2726
2727         if (read_targets == 0 && min_bad > 0) {
2728                 /* These sectors are bad on all InSync devices, so we
2729                  * need to mark them bad on all write targets
2730                  */
2731                 int ok = 1;
2732                 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2733                         if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2734                                 struct md_rdev *rdev = conf->mirrors[i].rdev;
2735                                 ok = rdev_set_badblocks(rdev, sector_nr,
2736                                                         min_bad, 0
2737                                         ) && ok;
2738                         }
2739                 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2740                 *skipped = 1;
2741                 put_buf(r1_bio);
2742
2743                 if (!ok) {
2744                         /* Cannot record the badblocks, so need to
2745                          * abort the resync.
2746                          * If there are multiple read targets, could just
2747                          * fail the really bad ones ???
2748                          */
2749                         conf->recovery_disabled = mddev->recovery_disabled;
2750                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2751                         return 0;
2752                 } else
2753                         return min_bad;
2754
2755         }
2756         if (min_bad > 0 && min_bad < good_sectors) {
2757                 /* only resync enough to reach the next bad->good
2758                  * transition */
2759                 good_sectors = min_bad;
2760         }
2761
2762         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2763                 /* extra read targets are also write targets */
2764                 write_targets += read_targets-1;
2765
2766         if (write_targets == 0 || read_targets == 0) {
2767                 /* There is nowhere to write, so all non-sync
2768                  * drives must be failed - so we are finished
2769                  */
2770                 sector_t rv;
2771                 if (min_bad > 0)
2772                         max_sector = sector_nr + min_bad;
2773                 rv = max_sector - sector_nr;
2774                 *skipped = 1;
2775                 put_buf(r1_bio);
2776                 return rv;
2777         }
2778
2779         if (max_sector > mddev->resync_max)
2780                 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2781         if (max_sector > sector_nr + good_sectors)
2782                 max_sector = sector_nr + good_sectors;
2783         nr_sectors = 0;
2784         sync_blocks = 0;
2785         do {
2786                 struct page *page;
2787                 int len = PAGE_SIZE;
2788                 if (sector_nr + (len>>9) > max_sector)
2789                         len = (max_sector - sector_nr) << 9;
2790                 if (len == 0)
2791                         break;
2792                 if (sync_blocks == 0) {
2793                         if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2794                                                &sync_blocks, still_degraded) &&
2795                             !conf->fullsync &&
2796                             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2797                                 break;
2798                         if ((len >> 9) > sync_blocks)
2799                                 len = sync_blocks<<9;
2800                 }
2801
2802                 for (i = 0 ; i < conf->raid_disks * 2; i++) {
2803                         struct resync_pages *rp;
2804
2805                         bio = r1_bio->bios[i];
2806                         rp = get_resync_pages(bio);
2807                         if (bio->bi_end_io) {
2808                                 page = resync_fetch_page(rp, page_idx);
2809
2810                                 /*
2811                                  * won't fail because the vec table is big
2812                                  * enough to hold all these pages
2813                                  */
2814                                 bio_add_page(bio, page, len, 0);
2815                         }
2816                 }
2817                 nr_sectors += len>>9;
2818                 sector_nr += len>>9;
2819                 sync_blocks -= (len>>9);
2820         } while (++page_idx < RESYNC_PAGES);
2821
2822         r1_bio->sectors = nr_sectors;
2823
2824         if (mddev_is_clustered(mddev) &&
2825                         conf->cluster_sync_high < sector_nr + nr_sectors) {
2826                 conf->cluster_sync_low = mddev->curr_resync_completed;
2827                 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2828                 /* Send resync message */
2829                 md_cluster_ops->resync_info_update(mddev,
2830                                 conf->cluster_sync_low,
2831                                 conf->cluster_sync_high);
2832         }
2833
2834         /* For a user-requested sync, we read all readable devices and do a
2835          * compare
2836          */
2837         if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2838                 atomic_set(&r1_bio->remaining, read_targets);
2839                 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2840                         bio = r1_bio->bios[i];
2841                         if (bio->bi_end_io == end_sync_read) {
2842                                 read_targets--;
2843                                 md_sync_acct_bio(bio, nr_sectors);
2844                                 if (read_targets == 1)
2845                                         bio->bi_opf &= ~MD_FAILFAST;
2846                                 generic_make_request(bio);
2847                         }
2848                 }
2849         } else {
2850                 atomic_set(&r1_bio->remaining, 1);
2851                 bio = r1_bio->bios[r1_bio->read_disk];
2852                 md_sync_acct_bio(bio, nr_sectors);
2853                 if (read_targets == 1)
2854                         bio->bi_opf &= ~MD_FAILFAST;
2855                 generic_make_request(bio);
2856
2857         }
2858         return nr_sectors;
2859 }
2860
2861 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2862 {
2863         if (sectors)
2864                 return sectors;
2865
2866         return mddev->dev_sectors;
2867 }
2868
2869 static struct r1conf *setup_conf(struct mddev *mddev)
2870 {
2871         struct r1conf *conf;
2872         int i;
2873         struct raid1_info *disk;
2874         struct md_rdev *rdev;
2875         int err = -ENOMEM;
2876
2877         conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2878         if (!conf)
2879                 goto abort;
2880
2881         conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
2882                                    sizeof(atomic_t), GFP_KERNEL);
2883         if (!conf->nr_pending)
2884                 goto abort;
2885
2886         conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
2887                                    sizeof(atomic_t), GFP_KERNEL);
2888         if (!conf->nr_waiting)
2889                 goto abort;
2890
2891         conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
2892                                   sizeof(atomic_t), GFP_KERNEL);
2893         if (!conf->nr_queued)
2894                 goto abort;
2895
2896         conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
2897                                 sizeof(atomic_t), GFP_KERNEL);
2898         if (!conf->barrier)
2899                 goto abort;
2900
2901         conf->mirrors = kzalloc(sizeof(struct raid1_info)
2902                                 * mddev->raid_disks * 2,
2903                                  GFP_KERNEL);
2904         if (!conf->mirrors)
2905                 goto abort;
2906
2907         conf->tmppage = alloc_page(GFP_KERNEL);
2908         if (!conf->tmppage)
2909                 goto abort;
2910
2911         conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2912         if (!conf->poolinfo)
2913                 goto abort;
2914         conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2915         conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2916                                           r1bio_pool_free,
2917                                           conf->poolinfo);
2918         if (!conf->r1bio_pool)
2919                 goto abort;
2920
2921         conf->bio_split = bioset_create(BIO_POOL_SIZE, 0, 0);
2922         if (!conf->bio_split)
2923                 goto abort;
2924
2925         conf->poolinfo->mddev = mddev;
2926
2927         err = -EINVAL;
2928         spin_lock_init(&conf->device_lock);
2929         rdev_for_each(rdev, mddev) {
2930                 int disk_idx = rdev->raid_disk;
2931                 if (disk_idx >= mddev->raid_disks
2932                     || disk_idx < 0)
2933                         continue;
2934                 if (test_bit(Replacement, &rdev->flags))
2935                         disk = conf->mirrors + mddev->raid_disks + disk_idx;
2936                 else
2937                         disk = conf->mirrors + disk_idx;
2938
2939                 if (disk->rdev)
2940                         goto abort;
2941                 disk->rdev = rdev;
2942                 disk->head_position = 0;
2943                 disk->seq_start = MaxSector;
2944         }
2945         conf->raid_disks = mddev->raid_disks;
2946         conf->mddev = mddev;
2947         INIT_LIST_HEAD(&conf->retry_list);
2948         INIT_LIST_HEAD(&conf->bio_end_io_list);
2949
2950         spin_lock_init(&conf->resync_lock);
2951         init_waitqueue_head(&conf->wait_barrier);
2952
2953         bio_list_init(&conf->pending_bio_list);
2954         conf->pending_count = 0;
2955         conf->recovery_disabled = mddev->recovery_disabled - 1;
2956
2957         err = -EIO;
2958         for (i = 0; i < conf->raid_disks * 2; i++) {
2959
2960                 disk = conf->mirrors + i;
2961
2962                 if (i < conf->raid_disks &&
2963                     disk[conf->raid_disks].rdev) {
2964                         /* This slot has a replacement. */
2965                         if (!disk->rdev) {
2966                                 /* No original, just make the replacement
2967                                  * a recovering spare
2968                                  */
2969                                 disk->rdev =
2970                                         disk[conf->raid_disks].rdev;
2971                                 disk[conf->raid_disks].rdev = NULL;
2972                         } else if (!test_bit(In_sync, &disk->rdev->flags))
2973                                 /* Original is not in_sync - bad */
2974                                 goto abort;
2975                 }
2976
2977                 if (!disk->rdev ||
2978                     !test_bit(In_sync, &disk->rdev->flags)) {
2979                         disk->head_position = 0;
2980                         if (disk->rdev &&
2981                             (disk->rdev->saved_raid_disk < 0))
2982                                 conf->fullsync = 1;
2983                 }
2984         }
2985
2986         err = -ENOMEM;
2987         conf->thread = md_register_thread(raid1d, mddev, "raid1");
2988         if (!conf->thread)
2989                 goto abort;
2990
2991         return conf;
2992
2993  abort:
2994         if (conf) {
2995                 mempool_destroy(conf->r1bio_pool);
2996                 kfree(conf->mirrors);
2997                 safe_put_page(conf->tmppage);
2998                 kfree(conf->poolinfo);
2999                 kfree(conf->nr_pending);
3000                 kfree(conf->nr_waiting);
3001                 kfree(conf->nr_queued);
3002                 kfree(conf->barrier);
3003                 if (conf->bio_split)
3004                         bioset_free(conf->bio_split);
3005                 kfree(conf);
3006         }
3007         return ERR_PTR(err);
3008 }
3009
3010 static void raid1_free(struct mddev *mddev, void *priv);
3011 static int raid1_run(struct mddev *mddev)
3012 {
3013         struct r1conf *conf;
3014         int i;
3015         struct md_rdev *rdev;
3016         int ret;
3017         bool discard_supported = false;
3018
3019         if (mddev->level != 1) {
3020                 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3021                         mdname(mddev), mddev->level);
3022                 return -EIO;
3023         }
3024         if (mddev->reshape_position != MaxSector) {
3025                 pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3026                         mdname(mddev));
3027                 return -EIO;
3028         }
3029         if (mddev_init_writes_pending(mddev) < 0)
3030                 return -ENOMEM;
3031         /*
3032          * copy the already verified devices into our private RAID1
3033          * bookkeeping area. [whatever we allocate in run(),
3034          * should be freed in raid1_free()]
3035          */
3036         if (mddev->private == NULL)
3037                 conf = setup_conf(mddev);
3038         else
3039                 conf = mddev->private;
3040
3041         if (IS_ERR(conf))
3042                 return PTR_ERR(conf);
3043
3044         if (mddev->queue) {
3045                 blk_queue_max_write_same_sectors(mddev->queue, 0);
3046                 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3047         }
3048
3049         rdev_for_each(rdev, mddev) {
3050                 if (!mddev->gendisk)
3051                         continue;
3052                 disk_stack_limits(mddev->gendisk, rdev->bdev,
3053                                   rdev->data_offset << 9);
3054                 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3055                         discard_supported = true;
3056         }
3057
3058         mddev->degraded = 0;
3059         for (i=0; i < conf->raid_disks; i++)
3060                 if (conf->mirrors[i].rdev == NULL ||
3061                     !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3062                     test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3063                         mddev->degraded++;
3064
3065         if (conf->raid_disks - mddev->degraded == 1)
3066                 mddev->recovery_cp = MaxSector;
3067
3068         if (mddev->recovery_cp != MaxSector)
3069                 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3070                         mdname(mddev));
3071         pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3072                 mdname(mddev), mddev->raid_disks - mddev->degraded,
3073                 mddev->raid_disks);
3074
3075         /*
3076          * Ok, everything is just fine now
3077          */
3078         mddev->thread = conf->thread;
3079         conf->thread = NULL;
3080         mddev->private = conf;
3081         set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3082
3083         md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
3084
3085         if (mddev->queue) {
3086                 if (discard_supported)
3087                         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3088                                                 mddev->queue);
3089                 else
3090                         queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3091                                                   mddev->queue);
3092         }
3093
3094         ret =  md_integrity_register(mddev);
3095         if (ret) {
3096                 md_unregister_thread(&mddev->thread);
3097                 raid1_free(mddev, conf);
3098         }
3099         return ret;
3100 }
3101
3102 static void raid1_free(struct mddev *mddev, void *priv)
3103 {
3104         struct r1conf *conf = priv;
3105
3106         mempool_destroy(conf->r1bio_pool);
3107         kfree(conf->mirrors);
3108         safe_put_page(conf->tmppage);
3109         kfree(conf->poolinfo);
3110         kfree(conf->nr_pending);
3111         kfree(conf->nr_waiting);
3112         kfree(conf->nr_queued);
3113         kfree(conf->barrier);
3114         if (conf->bio_split)
3115                 bioset_free(conf->bio_split);
3116         kfree(conf);
3117 }
3118
3119 static int raid1_resize(struct mddev *mddev, sector_t sectors)
3120 {
3121         /* no resync is happening, and there is enough space
3122          * on all devices, so we can resize.
3123          * We need to make sure resync covers any new space.
3124          * If the array is shrinking we should possibly wait until
3125          * any io in the removed space completes, but it hardly seems
3126          * worth it.
3127          */
3128         sector_t newsize = raid1_size(mddev, sectors, 0);
3129         if (mddev->external_size &&
3130             mddev->array_sectors > newsize)
3131                 return -EINVAL;
3132         if (mddev->bitmap) {
3133                 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3134                 if (ret)
3135                         return ret;
3136         }
3137         md_set_array_sectors(mddev, newsize);
3138         if (sectors > mddev->dev_sectors &&
3139             mddev->recovery_cp > mddev->dev_sectors) {
3140                 mddev->recovery_cp = mddev->dev_sectors;
3141                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3142         }
3143         mddev->dev_sectors = sectors;
3144         mddev->resync_max_sectors = sectors;
3145         return 0;
3146 }
3147
3148 static int raid1_reshape(struct mddev *mddev)
3149 {
3150         /* We need to:
3151          * 1/ resize the r1bio_pool
3152          * 2/ resize conf->mirrors
3153          *
3154          * We allocate a new r1bio_pool if we can.
3155          * Then raise a device barrier and wait until all IO stops.
3156          * Then resize conf->mirrors and swap in the new r1bio pool.
3157          *
3158          * At the same time, we "pack" the devices so that all the missing
3159          * devices have the higher raid_disk numbers.
3160          */
3161         mempool_t *newpool, *oldpool;
3162         struct pool_info *newpoolinfo;
3163         struct raid1_info *newmirrors;
3164         struct r1conf *conf = mddev->private;
3165         int cnt, raid_disks;
3166         unsigned long flags;
3167         int d, d2;
3168
3169         /* Cannot change chunk_size, layout, or level */
3170         if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3171             mddev->layout != mddev->new_layout ||
3172             mddev->level != mddev->new_level) {
3173                 mddev->new_chunk_sectors = mddev->chunk_sectors;
3174                 mddev->new_layout = mddev->layout;
3175                 mddev->new_level = mddev->level;
3176                 return -EINVAL;
3177         }
3178
3179         if (!mddev_is_clustered(mddev))
3180                 md_allow_write(mddev);
3181
3182         raid_disks = mddev->raid_disks + mddev->delta_disks;
3183
3184         if (raid_disks < conf->raid_disks) {
3185                 cnt=0;
3186                 for (d= 0; d < conf->raid_disks; d++)
3187                         if (conf->mirrors[d].rdev)
3188                                 cnt++;
3189                 if (cnt > raid_disks)
3190                         return -EBUSY;
3191         }
3192
3193         newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3194         if (!newpoolinfo)
3195                 return -ENOMEM;
3196         newpoolinfo->mddev = mddev;
3197         newpoolinfo->raid_disks = raid_disks * 2;
3198
3199         newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3200                                  r1bio_pool_free, newpoolinfo);
3201         if (!newpool) {
3202                 kfree(newpoolinfo);
3203                 return -ENOMEM;
3204         }
3205         newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
3206                              GFP_KERNEL);
3207         if (!newmirrors) {
3208                 kfree(newpoolinfo);
3209                 mempool_destroy(newpool);
3210                 return -ENOMEM;
3211         }
3212
3213         freeze_array(conf, 0);
3214
3215         /* ok, everything is stopped */
3216         oldpool = conf->r1bio_pool;
3217         conf->r1bio_pool = newpool;
3218
3219         for (d = d2 = 0; d < conf->raid_disks; d++) {
3220                 struct md_rdev *rdev = conf->mirrors[d].rdev;
3221                 if (rdev && rdev->raid_disk != d2) {
3222                         sysfs_unlink_rdev(mddev, rdev);
3223                         rdev->raid_disk = d2;
3224                         sysfs_unlink_rdev(mddev, rdev);
3225                         if (sysfs_link_rdev(mddev, rdev))
3226                                 pr_warn("md/raid1:%s: cannot register rd%d\n",
3227                                         mdname(mddev), rdev->raid_disk);
3228                 }
3229                 if (rdev)
3230                         newmirrors[d2++].rdev = rdev;
3231         }
3232         kfree(conf->mirrors);
3233         conf->mirrors = newmirrors;
3234         kfree(conf->poolinfo);
3235         conf->poolinfo = newpoolinfo;
3236
3237         spin_lock_irqsave(&conf->device_lock, flags);
3238         mddev->degraded += (raid_disks - conf->raid_disks);
3239         spin_unlock_irqrestore(&conf->device_lock, flags);
3240         conf->raid_disks = mddev->raid_disks = raid_disks;
3241         mddev->delta_disks = 0;
3242
3243         unfreeze_array(conf);
3244
3245         set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3246         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3247         md_wakeup_thread(mddev->thread);
3248
3249         mempool_destroy(oldpool);
3250         return 0;
3251 }
3252
3253 static void raid1_quiesce(struct mddev *mddev, int quiesce)
3254 {
3255         struct r1conf *conf = mddev->private;
3256
3257         if (quiesce)
3258                 freeze_array(conf, 0);
3259         else
3260                 unfreeze_array(conf);
3261 }
3262
3263 static void *raid1_takeover(struct mddev *mddev)
3264 {
3265         /* raid1 can take over:
3266          *  raid5 with 2 devices, any layout or chunk size
3267          */
3268         if (mddev->level == 5 && mddev->raid_disks == 2) {
3269                 struct r1conf *conf;
3270                 mddev->new_level = 1;
3271                 mddev->new_layout = 0;
3272                 mddev->new_chunk_sectors = 0;
3273                 conf = setup_conf(mddev);
3274                 if (!IS_ERR(conf)) {
3275                         /* Array must appear to be quiesced */
3276                         conf->array_frozen = 1;
3277                         mddev_clear_unsupported_flags(mddev,
3278                                 UNSUPPORTED_MDDEV_FLAGS);
3279                 }
3280                 return conf;
3281         }
3282         return ERR_PTR(-EINVAL);
3283 }
3284
3285 static struct md_personality raid1_personality =
3286 {
3287         .name           = "raid1",
3288         .level          = 1,
3289         .owner          = THIS_MODULE,
3290         .make_request   = raid1_make_request,
3291         .run            = raid1_run,
3292         .free           = raid1_free,
3293         .status         = raid1_status,
3294         .error_handler  = raid1_error,
3295         .hot_add_disk   = raid1_add_disk,
3296         .hot_remove_disk= raid1_remove_disk,
3297         .spare_active   = raid1_spare_active,
3298         .sync_request   = raid1_sync_request,
3299         .resize         = raid1_resize,
3300         .size           = raid1_size,
3301         .check_reshape  = raid1_reshape,
3302         .quiesce        = raid1_quiesce,
3303         .takeover       = raid1_takeover,
3304         .congested      = raid1_congested,
3305 };
3306
3307 static int __init raid_init(void)
3308 {
3309         return register_md_personality(&raid1_personality);
3310 }
3311
3312 static void raid_exit(void)
3313 {
3314         unregister_md_personality(&raid1_personality);
3315 }
3316
3317 module_init(raid_init);
3318 module_exit(raid_exit);
3319 MODULE_LICENSE("GPL");
3320 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3321 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3322 MODULE_ALIAS("md-raid1");
3323 MODULE_ALIAS("md-level-1");
3324
3325 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);