1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
4 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
6 * This file is released under the GPL.
11 #include "dm-uevent.h"
14 #include <linux/bio-integrity.h>
15 #include <linux/init.h>
16 #include <linux/module.h>
17 #include <linux/mutex.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/signal.h>
20 #include <linux/blkpg.h>
21 #include <linux/bio.h>
22 #include <linux/mempool.h>
23 #include <linux/dax.h>
24 #include <linux/slab.h>
25 #include <linux/idr.h>
26 #include <linux/uio.h>
27 #include <linux/hdreg.h>
28 #include <linux/delay.h>
29 #include <linux/wait.h>
31 #include <linux/refcount.h>
32 #include <linux/part_stat.h>
33 #include <linux/blk-crypto.h>
34 #include <linux/blk-crypto-profile.h>
36 #define DM_MSG_PREFIX "core"
39 * Cookies are numeric values sent with CHANGE and REMOVE
40 * uevents while resuming, removing or renaming the device.
42 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
43 #define DM_COOKIE_LENGTH 24
46 * For REQ_POLLED fs bio, this flag is set if we link mapped underlying
47 * dm_io into one list, and reuse bio->bi_private as the list head. Before
48 * ending this fs bio, we will recover its ->bi_private.
50 #define REQ_DM_POLL_LIST REQ_DRV
52 static const char *_name = DM_NAME;
54 static unsigned int major;
55 static unsigned int _major;
57 static DEFINE_IDR(_minor_idr);
59 static DEFINE_SPINLOCK(_minor_lock);
61 static void do_deferred_remove(struct work_struct *w);
63 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
65 static struct workqueue_struct *deferred_remove_workqueue;
67 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
68 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
70 void dm_issue_global_event(void)
72 atomic_inc(&dm_global_event_nr);
73 wake_up(&dm_global_eventq);
76 DEFINE_STATIC_KEY_FALSE(stats_enabled);
77 DEFINE_STATIC_KEY_FALSE(swap_bios_enabled);
78 DEFINE_STATIC_KEY_FALSE(zoned_enabled);
81 * One of these is allocated (on-stack) per original bio.
88 unsigned int sector_count;
89 bool is_abnormal_io:1;
90 bool submit_as_polled:1;
93 static inline struct dm_target_io *clone_to_tio(struct bio *clone)
95 return container_of(clone, struct dm_target_io, clone);
98 void *dm_per_bio_data(struct bio *bio, size_t data_size)
100 if (!dm_tio_flagged(clone_to_tio(bio), DM_TIO_INSIDE_DM_IO))
101 return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size;
102 return (char *)bio - DM_IO_BIO_OFFSET - data_size;
104 EXPORT_SYMBOL_GPL(dm_per_bio_data);
106 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
108 struct dm_io *io = (struct dm_io *)((char *)data + data_size);
110 if (io->magic == DM_IO_MAGIC)
111 return (struct bio *)((char *)io + DM_IO_BIO_OFFSET);
112 BUG_ON(io->magic != DM_TIO_MAGIC);
113 return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET);
115 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
117 unsigned int dm_bio_get_target_bio_nr(const struct bio *bio)
119 return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
121 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
123 #define MINOR_ALLOCED ((void *)-1)
125 #define DM_NUMA_NODE NUMA_NO_NODE
126 static int dm_numa_node = DM_NUMA_NODE;
128 #define DEFAULT_SWAP_BIOS (8 * 1048576 / PAGE_SIZE)
129 static int swap_bios = DEFAULT_SWAP_BIOS;
130 static int get_swap_bios(void)
132 int latch = READ_ONCE(swap_bios);
134 if (unlikely(latch <= 0))
135 latch = DEFAULT_SWAP_BIOS;
139 struct table_device {
140 struct list_head list;
142 struct dm_dev dm_dev;
146 * Bio-based DM's mempools' reserved IOs set by the user.
148 #define RESERVED_BIO_BASED_IOS 16
149 static unsigned int reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
151 static int __dm_get_module_param_int(int *module_param, int min, int max)
153 int param = READ_ONCE(*module_param);
154 int modified_param = 0;
155 bool modified = true;
158 modified_param = min;
159 else if (param > max)
160 modified_param = max;
165 (void)cmpxchg(module_param, param, modified_param);
166 param = modified_param;
172 unsigned int __dm_get_module_param(unsigned int *module_param, unsigned int def, unsigned int max)
174 unsigned int param = READ_ONCE(*module_param);
175 unsigned int modified_param = 0;
178 modified_param = def;
179 else if (param > max)
180 modified_param = max;
182 if (modified_param) {
183 (void)cmpxchg(module_param, param, modified_param);
184 param = modified_param;
190 unsigned int dm_get_reserved_bio_based_ios(void)
192 return __dm_get_module_param(&reserved_bio_based_ios,
193 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
195 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
197 static unsigned int dm_get_numa_node(void)
199 return __dm_get_module_param_int(&dm_numa_node,
200 DM_NUMA_NODE, num_online_nodes() - 1);
203 static int __init local_init(void)
207 r = dm_uevent_init();
211 deferred_remove_workqueue = alloc_ordered_workqueue("kdmremove", 0);
212 if (!deferred_remove_workqueue) {
214 goto out_uevent_exit;
218 r = register_blkdev(_major, _name);
220 goto out_free_workqueue;
228 destroy_workqueue(deferred_remove_workqueue);
235 static void local_exit(void)
237 destroy_workqueue(deferred_remove_workqueue);
239 unregister_blkdev(_major, _name);
244 DMINFO("cleaned up");
247 static int (*_inits[])(void) __initdata = {
258 static void (*_exits[])(void) = {
269 static int __init dm_init(void)
271 const int count = ARRAY_SIZE(_inits);
274 #if (IS_ENABLED(CONFIG_IMA) && !IS_ENABLED(CONFIG_IMA_DISABLE_HTABLE))
275 DMWARN("CONFIG_IMA_DISABLE_HTABLE is disabled."
276 " Duplicate IMA measurements will not be recorded in the IMA log.");
279 for (i = 0; i < count; i++) {
293 static void __exit dm_exit(void)
295 int i = ARRAY_SIZE(_exits);
301 * Should be empty by this point.
303 idr_destroy(&_minor_idr);
307 * Block device functions
309 int dm_deleting_md(struct mapped_device *md)
311 return test_bit(DMF_DELETING, &md->flags);
314 static int dm_blk_open(struct gendisk *disk, blk_mode_t mode)
316 struct mapped_device *md;
318 spin_lock(&_minor_lock);
320 md = disk->private_data;
324 if (test_bit(DMF_FREEING, &md->flags) ||
325 dm_deleting_md(md)) {
331 atomic_inc(&md->open_count);
333 spin_unlock(&_minor_lock);
335 return md ? 0 : -ENXIO;
338 static void dm_blk_close(struct gendisk *disk)
340 struct mapped_device *md;
342 spin_lock(&_minor_lock);
344 md = disk->private_data;
348 if (atomic_dec_and_test(&md->open_count) &&
349 (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
350 queue_work(deferred_remove_workqueue, &deferred_remove_work);
354 spin_unlock(&_minor_lock);
357 int dm_open_count(struct mapped_device *md)
359 return atomic_read(&md->open_count);
363 * Guarantees nothing is using the device before it's deleted.
365 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
369 spin_lock(&_minor_lock);
371 if (dm_open_count(md)) {
374 set_bit(DMF_DEFERRED_REMOVE, &md->flags);
375 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
378 set_bit(DMF_DELETING, &md->flags);
380 spin_unlock(&_minor_lock);
385 int dm_cancel_deferred_remove(struct mapped_device *md)
389 spin_lock(&_minor_lock);
391 if (test_bit(DMF_DELETING, &md->flags))
394 clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
396 spin_unlock(&_minor_lock);
401 static void do_deferred_remove(struct work_struct *w)
403 dm_deferred_remove();
406 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
408 struct mapped_device *md = bdev->bd_disk->private_data;
410 return dm_get_geometry(md, geo);
413 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
414 struct block_device **bdev, unsigned int cmd,
415 unsigned long arg, bool *forward)
417 struct dm_target *ti;
418 struct dm_table *map;
423 map = dm_get_live_table(md, srcu_idx);
424 if (!map || !dm_table_get_size(map))
427 /* We only support devices that have a single target */
428 if (map->num_targets != 1)
431 ti = dm_table_get_target(map, 0);
432 if (!ti->type->prepare_ioctl)
435 if (dm_suspended_md(md))
438 r = ti->type->prepare_ioctl(ti, bdev, cmd, arg, forward);
439 if (r == -ENOTCONN && *forward && !fatal_signal_pending(current)) {
440 dm_put_live_table(md, *srcu_idx);
448 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
450 dm_put_live_table(md, srcu_idx);
453 static int dm_blk_ioctl(struct block_device *bdev, blk_mode_t mode,
454 unsigned int cmd, unsigned long arg)
456 struct mapped_device *md = bdev->bd_disk->private_data;
460 r = dm_prepare_ioctl(md, &srcu_idx, &bdev, cmd, arg, &forward);
461 if (!forward || r < 0)
466 * Target determined this ioctl is being issued against a
467 * subset of the parent bdev; require extra privileges.
469 if (!capable(CAP_SYS_RAWIO)) {
471 "%s: sending ioctl %x to DM device without required privilege.",
478 if (!bdev->bd_disk->fops->ioctl)
481 r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg);
483 dm_unprepare_ioctl(md, srcu_idx);
487 u64 dm_start_time_ns_from_clone(struct bio *bio)
489 return jiffies_to_nsecs(clone_to_tio(bio)->io->start_time);
491 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone);
493 static inline bool bio_is_flush_with_data(struct bio *bio)
495 return ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size);
498 static inline unsigned int dm_io_sectors(struct dm_io *io, struct bio *bio)
501 * If REQ_PREFLUSH set, don't account payload, it will be
502 * submitted (and accounted) after this flush completes.
504 if (bio_is_flush_with_data(bio))
506 if (unlikely(dm_io_flagged(io, DM_IO_WAS_SPLIT)))
508 return bio_sectors(bio);
511 static void dm_io_acct(struct dm_io *io, bool end)
513 struct bio *bio = io->orig_bio;
515 if (dm_io_flagged(io, DM_IO_BLK_STAT)) {
517 bdev_start_io_acct(bio->bi_bdev, bio_op(bio),
520 bdev_end_io_acct(bio->bi_bdev, bio_op(bio),
521 dm_io_sectors(io, bio),
525 if (static_branch_unlikely(&stats_enabled) &&
526 unlikely(dm_stats_used(&io->md->stats))) {
529 if (unlikely(dm_io_flagged(io, DM_IO_WAS_SPLIT)))
530 sector = bio_end_sector(bio) - io->sector_offset;
532 sector = bio->bi_iter.bi_sector;
534 dm_stats_account_io(&io->md->stats, bio_data_dir(bio),
535 sector, dm_io_sectors(io, bio),
536 end, io->start_time, &io->stats_aux);
540 static void __dm_start_io_acct(struct dm_io *io)
542 dm_io_acct(io, false);
545 static void dm_start_io_acct(struct dm_io *io, struct bio *clone)
548 * Ensure IO accounting is only ever started once.
550 if (dm_io_flagged(io, DM_IO_ACCOUNTED))
553 /* Expect no possibility for race unless DM_TIO_IS_DUPLICATE_BIO. */
554 if (!clone || likely(dm_tio_is_normal(clone_to_tio(clone)))) {
555 dm_io_set_flag(io, DM_IO_ACCOUNTED);
558 /* Can afford locking given DM_TIO_IS_DUPLICATE_BIO */
559 spin_lock_irqsave(&io->lock, flags);
560 if (dm_io_flagged(io, DM_IO_ACCOUNTED)) {
561 spin_unlock_irqrestore(&io->lock, flags);
564 dm_io_set_flag(io, DM_IO_ACCOUNTED);
565 spin_unlock_irqrestore(&io->lock, flags);
568 __dm_start_io_acct(io);
571 static void dm_end_io_acct(struct dm_io *io)
573 dm_io_acct(io, true);
576 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio, gfp_t gfp_mask)
579 struct dm_target_io *tio;
582 clone = bio_alloc_clone(NULL, bio, gfp_mask, &md->mempools->io_bs);
583 if (unlikely(!clone))
585 tio = clone_to_tio(clone);
587 dm_tio_set_flag(tio, DM_TIO_INSIDE_DM_IO);
590 io = container_of(tio, struct dm_io, tio);
591 io->magic = DM_IO_MAGIC;
592 io->status = BLK_STS_OK;
594 /* one ref is for submission, the other is for completion */
595 atomic_set(&io->io_count, 2);
596 this_cpu_inc(*md->pending_io);
599 spin_lock_init(&io->lock);
600 io->start_time = jiffies;
602 if (blk_queue_io_stat(md->queue))
603 dm_io_set_flag(io, DM_IO_BLK_STAT);
605 if (static_branch_unlikely(&stats_enabled) &&
606 unlikely(dm_stats_used(&md->stats)))
607 dm_stats_record_start(&md->stats, &io->stats_aux);
612 static void free_io(struct dm_io *io)
614 bio_put(&io->tio.clone);
617 static struct bio *alloc_tio(struct clone_info *ci, struct dm_target *ti,
618 unsigned int target_bio_nr, unsigned int *len, gfp_t gfp_mask)
620 struct mapped_device *md = ci->io->md;
621 struct dm_target_io *tio;
624 if (!ci->io->tio.io) {
625 /* the dm_target_io embedded in ci->io is available */
627 /* alloc_io() already initialized embedded clone */
630 clone = bio_alloc_clone(NULL, ci->bio, gfp_mask,
635 /* REQ_DM_POLL_LIST shouldn't be inherited */
636 clone->bi_opf &= ~REQ_DM_POLL_LIST;
638 tio = clone_to_tio(clone);
639 tio->flags = 0; /* also clears DM_TIO_INSIDE_DM_IO */
642 tio->magic = DM_TIO_MAGIC;
645 tio->target_bio_nr = target_bio_nr;
649 /* Set default bdev, but target must bio_set_dev() before issuing IO */
650 clone->bi_bdev = md->disk->part0;
651 if (likely(ti != NULL) && unlikely(ti->needs_bio_set_dev))
652 bio_set_dev(clone, md->disk->part0);
655 clone->bi_iter.bi_size = to_bytes(*len);
656 if (bio_integrity(clone))
657 bio_integrity_trim(clone);
663 static void free_tio(struct bio *clone)
665 if (dm_tio_flagged(clone_to_tio(clone), DM_TIO_INSIDE_DM_IO))
671 * Add the bio to the list of deferred io.
673 static void queue_io(struct mapped_device *md, struct bio *bio)
677 spin_lock_irqsave(&md->deferred_lock, flags);
678 bio_list_add(&md->deferred, bio);
679 spin_unlock_irqrestore(&md->deferred_lock, flags);
680 queue_work(md->wq, &md->work);
684 * Everyone (including functions in this file), should use this
685 * function to access the md->map field, and make sure they call
686 * dm_put_live_table() when finished.
688 struct dm_table *dm_get_live_table(struct mapped_device *md,
689 int *srcu_idx) __acquires(md->io_barrier)
691 *srcu_idx = srcu_read_lock(&md->io_barrier);
693 return srcu_dereference(md->map, &md->io_barrier);
696 void dm_put_live_table(struct mapped_device *md,
697 int srcu_idx) __releases(md->io_barrier)
699 srcu_read_unlock(&md->io_barrier, srcu_idx);
702 void dm_sync_table(struct mapped_device *md)
704 synchronize_srcu(&md->io_barrier);
705 synchronize_rcu_expedited();
709 * A fast alternative to dm_get_live_table/dm_put_live_table.
710 * The caller must not block between these two functions.
712 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
715 return rcu_dereference(md->map);
718 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
723 static char *_dm_claim_ptr = "I belong to device-mapper";
726 * Open a table device so we can use it as a map destination.
728 static struct table_device *open_table_device(struct mapped_device *md,
729 dev_t dev, blk_mode_t mode)
731 struct table_device *td;
732 struct file *bdev_file;
733 struct block_device *bdev;
737 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
739 return ERR_PTR(-ENOMEM);
740 refcount_set(&td->count, 1);
742 bdev_file = bdev_file_open_by_dev(dev, mode, _dm_claim_ptr, NULL);
743 if (IS_ERR(bdev_file)) {
744 r = PTR_ERR(bdev_file);
748 bdev = file_bdev(bdev_file);
751 * We can be called before the dm disk is added. In that case we can't
752 * register the holder relation here. It will be done once add_disk was
755 if (md->disk->slave_dir) {
756 r = bd_link_disk_holder(bdev, md->disk);
761 td->dm_dev.mode = mode;
762 td->dm_dev.bdev = bdev;
763 td->dm_dev.bdev_file = bdev_file;
764 td->dm_dev.dax_dev = fs_dax_get_by_bdev(bdev, &part_off,
766 format_dev_t(td->dm_dev.name, dev);
767 list_add(&td->list, &md->table_devices);
771 __fput_sync(bdev_file);
778 * Close a table device that we've been using.
780 static void close_table_device(struct table_device *td, struct mapped_device *md)
782 if (md->disk->slave_dir)
783 bd_unlink_disk_holder(td->dm_dev.bdev, md->disk);
785 /* Leverage async fput() if DMF_DEFERRED_REMOVE set */
786 if (unlikely(test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
787 fput(td->dm_dev.bdev_file);
789 __fput_sync(td->dm_dev.bdev_file);
791 put_dax(td->dm_dev.dax_dev);
796 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
799 struct table_device *td;
801 list_for_each_entry(td, l, list)
802 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
808 int dm_get_table_device(struct mapped_device *md, dev_t dev, blk_mode_t mode,
809 struct dm_dev **result)
811 struct table_device *td;
813 mutex_lock(&md->table_devices_lock);
814 td = find_table_device(&md->table_devices, dev, mode);
816 td = open_table_device(md, dev, mode);
818 mutex_unlock(&md->table_devices_lock);
822 refcount_inc(&td->count);
824 mutex_unlock(&md->table_devices_lock);
826 *result = &td->dm_dev;
830 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
832 struct table_device *td = container_of(d, struct table_device, dm_dev);
834 mutex_lock(&md->table_devices_lock);
835 if (refcount_dec_and_test(&td->count))
836 close_table_device(td, md);
837 mutex_unlock(&md->table_devices_lock);
841 * Get the geometry associated with a dm device
843 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
851 * Set the geometry of a device.
853 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
855 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
857 if (geo->start > sz) {
858 DMERR("Start sector is beyond the geometry limits.");
867 static int __noflush_suspending(struct mapped_device *md)
869 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
872 static void dm_requeue_add_io(struct dm_io *io, bool first_stage)
874 struct mapped_device *md = io->md;
877 struct dm_io *next = md->requeue_list;
879 md->requeue_list = io;
882 bio_list_add_head(&md->deferred, io->orig_bio);
886 static void dm_kick_requeue(struct mapped_device *md, bool first_stage)
889 queue_work(md->wq, &md->requeue_work);
891 queue_work(md->wq, &md->work);
895 * Return true if the dm_io's original bio is requeued.
896 * io->status is updated with error if requeue disallowed.
898 static bool dm_handle_requeue(struct dm_io *io, bool first_stage)
900 struct bio *bio = io->orig_bio;
901 bool handle_requeue = (io->status == BLK_STS_DM_REQUEUE);
902 bool handle_polled_eagain = ((io->status == BLK_STS_AGAIN) &&
903 (bio->bi_opf & REQ_POLLED));
904 struct mapped_device *md = io->md;
905 bool requeued = false;
907 if (handle_requeue || handle_polled_eagain) {
910 if (bio->bi_opf & REQ_POLLED) {
912 * Upper layer won't help us poll split bio
913 * (io->orig_bio may only reflect a subset of the
914 * pre-split original) so clear REQ_POLLED.
916 bio_clear_polled(bio);
920 * Target requested pushing back the I/O or
921 * polled IO hit BLK_STS_AGAIN.
923 spin_lock_irqsave(&md->deferred_lock, flags);
924 if ((__noflush_suspending(md) &&
925 !WARN_ON_ONCE(dm_is_zone_write(md, bio))) ||
926 handle_polled_eagain || first_stage) {
927 dm_requeue_add_io(io, first_stage);
931 * noflush suspend was interrupted or this is
932 * a write to a zoned target.
934 io->status = BLK_STS_IOERR;
936 spin_unlock_irqrestore(&md->deferred_lock, flags);
940 dm_kick_requeue(md, first_stage);
945 static void __dm_io_complete(struct dm_io *io, bool first_stage)
947 struct bio *bio = io->orig_bio;
948 struct mapped_device *md = io->md;
949 blk_status_t io_error;
952 requeued = dm_handle_requeue(io, first_stage);
953 if (requeued && first_stage)
956 io_error = io->status;
957 if (dm_io_flagged(io, DM_IO_ACCOUNTED))
959 else if (!io_error) {
961 * Must handle target that DM_MAPIO_SUBMITTED only to
962 * then bio_endio() rather than dm_submit_bio_remap()
964 __dm_start_io_acct(io);
969 this_cpu_dec(*md->pending_io);
971 /* nudge anyone waiting on suspend queue */
972 if (unlikely(wq_has_sleeper(&md->wait)))
975 /* Return early if the original bio was requeued */
979 if (bio_is_flush_with_data(bio)) {
981 * Preflush done for flush with data, reissue
982 * without REQ_PREFLUSH.
984 bio->bi_opf &= ~REQ_PREFLUSH;
987 /* done with normal IO or empty flush */
989 bio->bi_status = io_error;
994 static void dm_wq_requeue_work(struct work_struct *work)
996 struct mapped_device *md = container_of(work, struct mapped_device,
1001 /* reuse deferred lock to simplify dm_handle_requeue */
1002 spin_lock_irqsave(&md->deferred_lock, flags);
1003 io = md->requeue_list;
1004 md->requeue_list = NULL;
1005 spin_unlock_irqrestore(&md->deferred_lock, flags);
1008 struct dm_io *next = io->next;
1010 dm_io_rewind(io, &md->disk->bio_split);
1013 __dm_io_complete(io, false);
1020 * Two staged requeue:
1022 * 1) io->orig_bio points to the real original bio, and the part mapped to
1023 * this io must be requeued, instead of other parts of the original bio.
1025 * 2) io->orig_bio points to new cloned bio which matches the requeued dm_io.
1027 static void dm_io_complete(struct dm_io *io)
1032 * Only dm_io that has been split needs two stage requeue, otherwise
1033 * we may run into long bio clone chain during suspend and OOM could
1036 * Also flush data dm_io won't be marked as DM_IO_WAS_SPLIT, so they
1037 * also aren't handled via the first stage requeue.
1039 if (dm_io_flagged(io, DM_IO_WAS_SPLIT))
1040 first_requeue = true;
1042 first_requeue = false;
1044 __dm_io_complete(io, first_requeue);
1048 * Decrements the number of outstanding ios that a bio has been
1049 * cloned into, completing the original io if necc.
1051 static inline void __dm_io_dec_pending(struct dm_io *io)
1053 if (atomic_dec_and_test(&io->io_count))
1057 static void dm_io_set_error(struct dm_io *io, blk_status_t error)
1059 unsigned long flags;
1061 /* Push-back supersedes any I/O errors */
1062 spin_lock_irqsave(&io->lock, flags);
1063 if (!(io->status == BLK_STS_DM_REQUEUE &&
1064 __noflush_suspending(io->md))) {
1067 spin_unlock_irqrestore(&io->lock, flags);
1070 static void dm_io_dec_pending(struct dm_io *io, blk_status_t error)
1072 if (unlikely(error))
1073 dm_io_set_error(io, error);
1075 __dm_io_dec_pending(io);
1079 * The queue_limits are only valid as long as you have a reference
1080 * count on 'md'. But _not_ imposing verification to avoid atomic_read(),
1082 static inline struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
1084 return &md->queue->limits;
1087 static bool swap_bios_limit(struct dm_target *ti, struct bio *bio)
1089 return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios);
1092 static void clone_endio(struct bio *bio)
1094 blk_status_t error = bio->bi_status;
1095 struct dm_target_io *tio = clone_to_tio(bio);
1096 struct dm_target *ti = tio->ti;
1097 dm_endio_fn endio = likely(ti != NULL) ? ti->type->end_io : NULL;
1098 struct dm_io *io = tio->io;
1099 struct mapped_device *md = io->md;
1101 if (unlikely(error == BLK_STS_TARGET)) {
1102 if (bio_op(bio) == REQ_OP_DISCARD &&
1103 !bdev_max_discard_sectors(bio->bi_bdev))
1104 blk_queue_disable_discard(md->queue);
1105 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
1106 !bdev_write_zeroes_sectors(bio->bi_bdev))
1107 blk_queue_disable_write_zeroes(md->queue);
1110 if (static_branch_unlikely(&zoned_enabled) &&
1111 unlikely(bdev_is_zoned(bio->bi_bdev)))
1112 dm_zone_endio(io, bio);
1115 int r = endio(ti, bio, &error);
1118 case DM_ENDIO_REQUEUE:
1119 if (static_branch_unlikely(&zoned_enabled)) {
1121 * Requeuing writes to a sequential zone of a zoned
1122 * target will break the sequential write pattern:
1125 if (WARN_ON_ONCE(dm_is_zone_write(md, bio)))
1126 error = BLK_STS_IOERR;
1128 error = BLK_STS_DM_REQUEUE;
1130 error = BLK_STS_DM_REQUEUE;
1134 case DM_ENDIO_INCOMPLETE:
1135 /* The target will handle the io */
1138 DMCRIT("unimplemented target endio return value: %d", r);
1143 if (static_branch_unlikely(&swap_bios_enabled) &&
1144 likely(ti != NULL) && unlikely(swap_bios_limit(ti, bio)))
1145 up(&md->swap_bios_semaphore);
1148 dm_io_dec_pending(io, error);
1152 * Return maximum size of I/O possible at the supplied sector up to the current
1155 static inline sector_t max_io_len_target_boundary(struct dm_target *ti,
1156 sector_t target_offset)
1158 return ti->len - target_offset;
1161 static sector_t __max_io_len(struct dm_target *ti, sector_t sector,
1162 unsigned int max_granularity,
1163 unsigned int max_sectors)
1165 sector_t target_offset = dm_target_offset(ti, sector);
1166 sector_t len = max_io_len_target_boundary(ti, target_offset);
1169 * Does the target need to split IO even further?
1170 * - varied (per target) IO splitting is a tenet of DM; this
1171 * explains why stacked chunk_sectors based splitting via
1172 * bio_split_to_limits() isn't possible here.
1174 if (!max_granularity)
1176 return min_t(sector_t, len,
1177 min(max_sectors ? : queue_max_sectors(ti->table->md->queue),
1178 blk_boundary_sectors_left(target_offset, max_granularity)));
1181 static inline sector_t max_io_len(struct dm_target *ti, sector_t sector)
1183 return __max_io_len(ti, sector, ti->max_io_len, 0);
1186 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1188 if (len > UINT_MAX) {
1189 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1190 (unsigned long long)len, UINT_MAX);
1191 ti->error = "Maximum size of target IO is too large";
1195 ti->max_io_len = (uint32_t) len;
1199 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1201 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1202 sector_t sector, int *srcu_idx)
1203 __acquires(md->io_barrier)
1205 struct dm_table *map;
1206 struct dm_target *ti;
1208 map = dm_get_live_table(md, srcu_idx);
1212 ti = dm_table_find_target(map, sector);
1219 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1220 long nr_pages, enum dax_access_mode mode, void **kaddr,
1223 struct mapped_device *md = dax_get_private(dax_dev);
1224 sector_t sector = pgoff * PAGE_SECTORS;
1225 struct dm_target *ti;
1226 long len, ret = -EIO;
1229 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1233 if (!ti->type->direct_access)
1235 len = max_io_len(ti, sector) / PAGE_SECTORS;
1238 nr_pages = min(len, nr_pages);
1239 ret = ti->type->direct_access(ti, pgoff, nr_pages, mode, kaddr, pfn);
1242 dm_put_live_table(md, srcu_idx);
1247 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
1250 struct mapped_device *md = dax_get_private(dax_dev);
1251 sector_t sector = pgoff * PAGE_SECTORS;
1252 struct dm_target *ti;
1256 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1260 if (WARN_ON(!ti->type->dax_zero_page_range)) {
1262 * ->zero_page_range() is mandatory dax operation. If we are
1263 * here, something is wrong.
1267 ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
1269 dm_put_live_table(md, srcu_idx);
1274 static size_t dm_dax_recovery_write(struct dax_device *dax_dev, pgoff_t pgoff,
1275 void *addr, size_t bytes, struct iov_iter *i)
1277 struct mapped_device *md = dax_get_private(dax_dev);
1278 sector_t sector = pgoff * PAGE_SECTORS;
1279 struct dm_target *ti;
1283 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1284 if (!ti || !ti->type->dax_recovery_write)
1287 ret = ti->type->dax_recovery_write(ti, pgoff, addr, bytes, i);
1289 dm_put_live_table(md, srcu_idx);
1294 * A target may call dm_accept_partial_bio only from the map routine. It is
1295 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management
1296 * operations, REQ_OP_ZONE_APPEND (zone append writes) and any bio serviced by
1297 * __send_duplicate_bios().
1299 * dm_accept_partial_bio informs the dm that the target only wants to process
1300 * additional n_sectors sectors of the bio and the rest of the data should be
1301 * sent in a next bio.
1303 * A diagram that explains the arithmetics:
1304 * +--------------------+---------------+-------+
1306 * +--------------------+---------------+-------+
1308 * <-------------- *tio->len_ptr --------------->
1309 * <----- bio_sectors ----->
1312 * Region 1 was already iterated over with bio_advance or similar function.
1313 * (it may be empty if the target doesn't use bio_advance)
1314 * Region 2 is the remaining bio size that the target wants to process.
1315 * (it may be empty if region 1 is non-empty, although there is no reason
1317 * The target requires that region 3 is to be sent in the next bio.
1319 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1320 * the partially processed part (the sum of regions 1+2) must be the same for all
1321 * copies of the bio.
1323 void dm_accept_partial_bio(struct bio *bio, unsigned int n_sectors)
1325 struct dm_target_io *tio = clone_to_tio(bio);
1326 struct dm_io *io = tio->io;
1327 unsigned int bio_sectors = bio_sectors(bio);
1329 BUG_ON(dm_tio_flagged(tio, DM_TIO_IS_DUPLICATE_BIO));
1330 BUG_ON(op_is_zone_mgmt(bio_op(bio)));
1331 BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND);
1332 BUG_ON(bio_sectors > *tio->len_ptr);
1333 BUG_ON(n_sectors > bio_sectors);
1335 *tio->len_ptr -= bio_sectors - n_sectors;
1336 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1339 * __split_and_process_bio() may have already saved mapped part
1340 * for accounting but it is being reduced so update accordingly.
1342 dm_io_set_flag(io, DM_IO_WAS_SPLIT);
1343 io->sectors = n_sectors;
1344 io->sector_offset = bio_sectors(io->orig_bio);
1346 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1349 * @clone: clone bio that DM core passed to target's .map function
1350 * @tgt_clone: clone of @clone bio that target needs submitted
1352 * Targets should use this interface to submit bios they take
1353 * ownership of when returning DM_MAPIO_SUBMITTED.
1355 * Target should also enable ti->accounts_remapped_io
1357 void dm_submit_bio_remap(struct bio *clone, struct bio *tgt_clone)
1359 struct dm_target_io *tio = clone_to_tio(clone);
1360 struct dm_io *io = tio->io;
1362 /* establish bio that will get submitted */
1367 * Account io->origin_bio to DM dev on behalf of target
1368 * that took ownership of IO with DM_MAPIO_SUBMITTED.
1370 dm_start_io_acct(io, clone);
1372 trace_block_bio_remap(tgt_clone, disk_devt(io->md->disk),
1374 submit_bio_noacct(tgt_clone);
1376 EXPORT_SYMBOL_GPL(dm_submit_bio_remap);
1378 static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch)
1380 mutex_lock(&md->swap_bios_lock);
1381 while (latch < md->swap_bios) {
1383 down(&md->swap_bios_semaphore);
1386 while (latch > md->swap_bios) {
1388 up(&md->swap_bios_semaphore);
1391 mutex_unlock(&md->swap_bios_lock);
1394 static void __map_bio(struct bio *clone)
1396 struct dm_target_io *tio = clone_to_tio(clone);
1397 struct dm_target *ti = tio->ti;
1398 struct dm_io *io = tio->io;
1399 struct mapped_device *md = io->md;
1402 clone->bi_end_io = clone_endio;
1407 tio->old_sector = clone->bi_iter.bi_sector;
1409 if (static_branch_unlikely(&swap_bios_enabled) &&
1410 unlikely(swap_bios_limit(ti, clone))) {
1411 int latch = get_swap_bios();
1413 if (unlikely(latch != md->swap_bios))
1414 __set_swap_bios_limit(md, latch);
1415 down(&md->swap_bios_semaphore);
1418 if (likely(ti->type->map == linear_map))
1419 r = linear_map(ti, clone);
1420 else if (ti->type->map == stripe_map)
1421 r = stripe_map(ti, clone);
1423 r = ti->type->map(ti, clone);
1426 case DM_MAPIO_SUBMITTED:
1427 /* target has assumed ownership of this io */
1428 if (!ti->accounts_remapped_io)
1429 dm_start_io_acct(io, clone);
1431 case DM_MAPIO_REMAPPED:
1432 dm_submit_bio_remap(clone, NULL);
1435 case DM_MAPIO_REQUEUE:
1436 if (static_branch_unlikely(&swap_bios_enabled) &&
1437 unlikely(swap_bios_limit(ti, clone)))
1438 up(&md->swap_bios_semaphore);
1440 if (r == DM_MAPIO_KILL)
1441 dm_io_dec_pending(io, BLK_STS_IOERR);
1443 dm_io_dec_pending(io, BLK_STS_DM_REQUEUE);
1446 DMCRIT("unimplemented target map return value: %d", r);
1451 static void setup_split_accounting(struct clone_info *ci, unsigned int len)
1453 struct dm_io *io = ci->io;
1455 if (ci->sector_count > len) {
1457 * Split needed, save the mapped part for accounting.
1458 * NOTE: dm_accept_partial_bio() will update accordingly.
1460 dm_io_set_flag(io, DM_IO_WAS_SPLIT);
1462 io->sector_offset = bio_sectors(ci->bio);
1466 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1467 struct dm_target *ti, unsigned int num_bios,
1473 for (try = 0; try < 2; try++) {
1476 if (try && num_bios > 1)
1477 mutex_lock(&ci->io->md->table_devices_lock);
1478 for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1479 bio = alloc_tio(ci, ti, bio_nr, len,
1480 try ? GFP_NOIO : GFP_NOWAIT);
1484 bio_list_add(blist, bio);
1486 if (try && num_bios > 1)
1487 mutex_unlock(&ci->io->md->table_devices_lock);
1488 if (bio_nr == num_bios)
1491 while ((bio = bio_list_pop(blist)))
1496 static unsigned int __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1497 unsigned int num_bios, unsigned int *len)
1499 struct bio_list blist = BIO_EMPTY_LIST;
1501 unsigned int ret = 0;
1503 if (WARN_ON_ONCE(num_bios == 0)) /* num_bios = 0 is a bug in caller */
1506 /* dm_accept_partial_bio() is not supported with shared tio->len_ptr */
1508 setup_split_accounting(ci, *len);
1511 * Using alloc_multiple_bios(), even if num_bios is 1, to consistently
1512 * support allocating using GFP_NOWAIT with GFP_NOIO fallback.
1514 alloc_multiple_bios(&blist, ci, ti, num_bios, len);
1515 while ((clone = bio_list_pop(&blist))) {
1517 dm_tio_set_flag(clone_to_tio(clone), DM_TIO_IS_DUPLICATE_BIO);
1525 static void __send_empty_flush(struct clone_info *ci)
1527 struct dm_table *t = ci->map;
1528 struct bio flush_bio;
1529 blk_opf_t opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1531 if ((ci->io->orig_bio->bi_opf & (REQ_IDLE | REQ_SYNC)) ==
1532 (REQ_IDLE | REQ_SYNC))
1536 * Use an on-stack bio for this, it's safe since we don't
1537 * need to reference it after submit. It's just used as
1538 * the basis for the clone(s).
1540 bio_init(&flush_bio, ci->io->md->disk->part0, NULL, 0, opf);
1542 ci->bio = &flush_bio;
1543 ci->sector_count = 0;
1544 ci->io->tio.clone.bi_iter.bi_size = 0;
1546 if (!t->flush_bypasses_map) {
1547 for (unsigned int i = 0; i < t->num_targets; i++) {
1549 struct dm_target *ti = dm_table_get_target(t, i);
1551 if (unlikely(ti->num_flush_bios == 0))
1554 atomic_add(ti->num_flush_bios, &ci->io->io_count);
1555 bios = __send_duplicate_bios(ci, ti, ti->num_flush_bios,
1557 atomic_sub(ti->num_flush_bios - bios, &ci->io->io_count);
1561 * Note that there's no need to grab t->devices_lock here
1562 * because the targets that support flush optimization don't
1563 * modify the list of devices.
1565 struct list_head *devices = dm_table_get_devices(t);
1566 unsigned int len = 0;
1567 struct dm_dev_internal *dd;
1568 list_for_each_entry(dd, devices, list) {
1571 * Note that the structure dm_target_io is not
1572 * associated with any target (because the device may be
1573 * used by multiple targets), so we set tio->ti = NULL.
1574 * We must check for NULL in the I/O processing path, to
1575 * avoid NULL pointer dereference.
1577 clone = alloc_tio(ci, NULL, 0, &len, GFP_NOIO);
1578 atomic_add(1, &ci->io->io_count);
1579 bio_set_dev(clone, dd->dm_dev->bdev);
1580 clone->bi_end_io = clone_endio;
1581 dm_submit_bio_remap(clone, NULL);
1586 * alloc_io() takes one extra reference for submission, so the
1587 * reference won't reach 0 without the following subtraction
1589 atomic_sub(1, &ci->io->io_count);
1591 bio_uninit(ci->bio);
1594 static void __send_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1595 unsigned int num_bios, unsigned int max_granularity,
1596 unsigned int max_sectors)
1598 unsigned int len, bios;
1600 len = min_t(sector_t, ci->sector_count,
1601 __max_io_len(ti, ci->sector, max_granularity, max_sectors));
1603 atomic_add(num_bios, &ci->io->io_count);
1604 bios = __send_duplicate_bios(ci, ti, num_bios, &len);
1606 * alloc_io() takes one extra reference for submission, so the
1607 * reference won't reach 0 without the following (+1) subtraction
1609 atomic_sub(num_bios - bios + 1, &ci->io->io_count);
1612 ci->sector_count -= len;
1615 static bool is_abnormal_io(struct bio *bio)
1617 switch (bio_op(bio)) {
1622 case REQ_OP_DISCARD:
1623 case REQ_OP_SECURE_ERASE:
1624 case REQ_OP_WRITE_ZEROES:
1625 case REQ_OP_ZONE_RESET_ALL:
1632 static blk_status_t __process_abnormal_io(struct clone_info *ci,
1633 struct dm_target *ti)
1635 unsigned int num_bios = 0;
1636 unsigned int max_granularity = 0;
1637 unsigned int max_sectors = 0;
1638 struct queue_limits *limits = dm_get_queue_limits(ti->table->md);
1640 switch (bio_op(ci->bio)) {
1641 case REQ_OP_DISCARD:
1642 num_bios = ti->num_discard_bios;
1643 max_sectors = limits->max_discard_sectors;
1644 if (ti->max_discard_granularity)
1645 max_granularity = max_sectors;
1647 case REQ_OP_SECURE_ERASE:
1648 num_bios = ti->num_secure_erase_bios;
1649 max_sectors = limits->max_secure_erase_sectors;
1651 case REQ_OP_WRITE_ZEROES:
1652 num_bios = ti->num_write_zeroes_bios;
1653 max_sectors = limits->max_write_zeroes_sectors;
1660 * Even though the device advertised support for this type of
1661 * request, that does not mean every target supports it, and
1662 * reconfiguration might also have changed that since the
1663 * check was performed.
1665 if (unlikely(!num_bios))
1666 return BLK_STS_NOTSUPP;
1668 __send_abnormal_io(ci, ti, num_bios, max_granularity, max_sectors);
1674 * Reuse ->bi_private as dm_io list head for storing all dm_io instances
1675 * associated with this bio, and this bio's bi_private needs to be
1676 * stored in dm_io->data before the reuse.
1678 * bio->bi_private is owned by fs or upper layer, so block layer won't
1679 * touch it after splitting. Meantime it won't be changed by anyone after
1680 * bio is submitted. So this reuse is safe.
1682 static inline struct dm_io **dm_poll_list_head(struct bio *bio)
1684 return (struct dm_io **)&bio->bi_private;
1687 static void dm_queue_poll_io(struct bio *bio, struct dm_io *io)
1689 struct dm_io **head = dm_poll_list_head(bio);
1691 if (!(bio->bi_opf & REQ_DM_POLL_LIST)) {
1692 bio->bi_opf |= REQ_DM_POLL_LIST;
1694 * Save .bi_private into dm_io, so that we can reuse
1695 * .bi_private as dm_io list head for storing dm_io list
1697 io->data = bio->bi_private;
1699 /* tell block layer to poll for completion */
1700 bio->bi_cookie = ~BLK_QC_T_NONE;
1705 * bio recursed due to split, reuse original poll list,
1706 * and save bio->bi_private too.
1708 io->data = (*head)->data;
1716 * Select the correct strategy for processing a non-flush bio.
1718 static blk_status_t __split_and_process_bio(struct clone_info *ci)
1721 struct dm_target *ti;
1724 ti = dm_table_find_target(ci->map, ci->sector);
1726 return BLK_STS_IOERR;
1728 if (unlikely(ci->is_abnormal_io))
1729 return __process_abnormal_io(ci, ti);
1732 * Only support bio polling for normal IO, and the target io is
1733 * exactly inside the dm_io instance (verified in dm_poll_dm_io)
1735 ci->submit_as_polled = !!(ci->bio->bi_opf & REQ_POLLED);
1737 len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count);
1738 if (ci->bio->bi_opf & REQ_ATOMIC && len != ci->sector_count)
1739 return BLK_STS_IOERR;
1741 setup_split_accounting(ci, len);
1743 if (unlikely(ci->bio->bi_opf & REQ_NOWAIT)) {
1744 if (unlikely(!dm_target_supports_nowait(ti->type)))
1745 return BLK_STS_NOTSUPP;
1747 clone = alloc_tio(ci, ti, 0, &len, GFP_NOWAIT);
1748 if (unlikely(!clone))
1749 return BLK_STS_AGAIN;
1751 clone = alloc_tio(ci, ti, 0, &len, GFP_NOIO);
1756 ci->sector_count -= len;
1761 static void init_clone_info(struct clone_info *ci, struct dm_io *io,
1762 struct dm_table *map, struct bio *bio, bool is_abnormal)
1767 ci->is_abnormal_io = is_abnormal;
1768 ci->submit_as_polled = false;
1769 ci->sector = bio->bi_iter.bi_sector;
1770 ci->sector_count = bio_sectors(bio);
1772 /* Shouldn't happen but sector_count was being set to 0 so... */
1773 if (static_branch_unlikely(&zoned_enabled) &&
1774 WARN_ON_ONCE(op_is_zone_mgmt(bio_op(bio)) && ci->sector_count))
1775 ci->sector_count = 0;
1778 #ifdef CONFIG_BLK_DEV_ZONED
1779 static inline bool dm_zone_bio_needs_split(struct mapped_device *md,
1783 * For mapped device that need zone append emulation, we must
1784 * split any large BIO that straddles zone boundaries.
1786 return dm_emulate_zone_append(md) && bio_straddles_zones(bio) &&
1787 !bio_flagged(bio, BIO_ZONE_WRITE_PLUGGING);
1789 static inline bool dm_zone_plug_bio(struct mapped_device *md, struct bio *bio)
1791 return dm_emulate_zone_append(md) && blk_zone_plug_bio(bio, 0);
1794 static blk_status_t __send_zone_reset_all_emulated(struct clone_info *ci,
1795 struct dm_target *ti)
1797 struct bio_list blist = BIO_EMPTY_LIST;
1798 struct mapped_device *md = ci->io->md;
1799 unsigned int zone_sectors = md->disk->queue->limits.chunk_sectors;
1800 unsigned long *need_reset;
1801 unsigned int i, nr_zones, nr_reset;
1802 unsigned int num_bios = 0;
1803 blk_status_t sts = BLK_STS_OK;
1804 sector_t sector = ti->begin;
1808 nr_zones = ti->len >> ilog2(zone_sectors);
1809 need_reset = bitmap_zalloc(nr_zones, GFP_NOIO);
1811 return BLK_STS_RESOURCE;
1813 ret = dm_zone_get_reset_bitmap(md, ci->map, ti->begin,
1814 nr_zones, need_reset);
1816 sts = BLK_STS_IOERR;
1820 /* If we have no zone to reset, we are done. */
1821 nr_reset = bitmap_weight(need_reset, nr_zones);
1825 atomic_add(nr_zones, &ci->io->io_count);
1827 for (i = 0; i < nr_zones; i++) {
1829 if (!test_bit(i, need_reset)) {
1830 sector += zone_sectors;
1834 if (bio_list_empty(&blist)) {
1835 /* This may take a while, so be nice to others */
1840 * We may need to reset thousands of zones, so let's
1841 * not go crazy with the clone allocation.
1843 alloc_multiple_bios(&blist, ci, ti, min(nr_reset, 32),
1847 /* Get a clone and change it to a regular reset operation. */
1848 clone = bio_list_pop(&blist);
1849 clone->bi_opf &= ~REQ_OP_MASK;
1850 clone->bi_opf |= REQ_OP_ZONE_RESET | REQ_SYNC;
1851 clone->bi_iter.bi_sector = sector;
1852 clone->bi_iter.bi_size = 0;
1855 sector += zone_sectors;
1860 WARN_ON_ONCE(!bio_list_empty(&blist));
1861 atomic_sub(nr_zones - num_bios, &ci->io->io_count);
1862 ci->sector_count = 0;
1865 bitmap_free(need_reset);
1870 static void __send_zone_reset_all_native(struct clone_info *ci,
1871 struct dm_target *ti)
1875 atomic_add(1, &ci->io->io_count);
1876 bios = __send_duplicate_bios(ci, ti, 1, NULL);
1877 atomic_sub(1 - bios, &ci->io->io_count);
1879 ci->sector_count = 0;
1882 static blk_status_t __send_zone_reset_all(struct clone_info *ci)
1884 struct dm_table *t = ci->map;
1885 blk_status_t sts = BLK_STS_OK;
1887 for (unsigned int i = 0; i < t->num_targets; i++) {
1888 struct dm_target *ti = dm_table_get_target(t, i);
1890 if (ti->zone_reset_all_supported) {
1891 __send_zone_reset_all_native(ci, ti);
1895 sts = __send_zone_reset_all_emulated(ci, ti);
1896 if (sts != BLK_STS_OK)
1900 /* Release the reference that alloc_io() took for submission. */
1901 atomic_sub(1, &ci->io->io_count);
1907 static inline bool dm_zone_bio_needs_split(struct mapped_device *md,
1912 static inline bool dm_zone_plug_bio(struct mapped_device *md, struct bio *bio)
1916 static blk_status_t __send_zone_reset_all(struct clone_info *ci)
1918 return BLK_STS_NOTSUPP;
1923 * Entry point to split a bio into clones and submit them to the targets.
1925 static void dm_split_and_process_bio(struct mapped_device *md,
1926 struct dm_table *map, struct bio *bio)
1928 struct clone_info ci;
1930 blk_status_t error = BLK_STS_OK;
1931 bool is_abnormal, need_split;
1933 is_abnormal = is_abnormal_io(bio);
1934 if (static_branch_unlikely(&zoned_enabled)) {
1935 /* Special case REQ_OP_ZONE_RESET_ALL as it cannot be split. */
1936 need_split = (bio_op(bio) != REQ_OP_ZONE_RESET_ALL) &&
1937 (is_abnormal || dm_zone_bio_needs_split(md, bio));
1939 need_split = is_abnormal;
1942 if (unlikely(need_split)) {
1944 * Use bio_split_to_limits() for abnormal IO (e.g. discard, etc)
1945 * otherwise associated queue_limits won't be imposed.
1946 * Also split the BIO for mapped devices needing zone append
1947 * emulation to ensure that the BIO does not cross zone
1950 bio = bio_split_to_limits(bio);
1956 * Use the block layer zone write plugging for mapped devices that
1957 * need zone append emulation (e.g. dm-crypt).
1959 if (static_branch_unlikely(&zoned_enabled) && dm_zone_plug_bio(md, bio))
1962 /* Only support nowait for normal IO */
1963 if (unlikely(bio->bi_opf & REQ_NOWAIT) && !is_abnormal) {
1965 * Don't support NOWAIT for FLUSH because it may allocate
1966 * multiple bios and there's no easy way how to undo the
1969 if (bio->bi_opf & REQ_PREFLUSH) {
1970 bio_wouldblock_error(bio);
1973 io = alloc_io(md, bio, GFP_NOWAIT);
1974 if (unlikely(!io)) {
1975 /* Unable to do anything without dm_io. */
1976 bio_wouldblock_error(bio);
1980 io = alloc_io(md, bio, GFP_NOIO);
1982 init_clone_info(&ci, io, map, bio, is_abnormal);
1984 if (bio->bi_opf & REQ_PREFLUSH) {
1985 __send_empty_flush(&ci);
1986 /* dm_io_complete submits any data associated with flush */
1990 if (static_branch_unlikely(&zoned_enabled) &&
1991 (bio_op(bio) == REQ_OP_ZONE_RESET_ALL)) {
1992 error = __send_zone_reset_all(&ci);
1996 error = __split_and_process_bio(&ci);
1997 if (error || !ci.sector_count)
2000 * Remainder must be passed to submit_bio_noacct() so it gets handled
2001 * *after* bios already submitted have been completely processed.
2003 bio_trim(bio, io->sectors, ci.sector_count);
2004 trace_block_split(bio, bio->bi_iter.bi_sector);
2005 bio_inc_remaining(bio);
2006 submit_bio_noacct(bio);
2009 * Drop the extra reference count for non-POLLED bio, and hold one
2010 * reference for POLLED bio, which will be released in dm_poll_bio
2012 * Add every dm_io instance into the dm_io list head which is stored
2013 * in bio->bi_private, so that dm_poll_bio can poll them all.
2015 if (error || !ci.submit_as_polled) {
2017 * In case of submission failure, the extra reference for
2018 * submitting io isn't consumed yet
2021 atomic_dec(&io->io_count);
2022 dm_io_dec_pending(io, error);
2024 dm_queue_poll_io(bio, io);
2027 static void dm_submit_bio(struct bio *bio)
2029 struct mapped_device *md = bio->bi_bdev->bd_disk->private_data;
2031 struct dm_table *map;
2033 map = dm_get_live_table(md, &srcu_idx);
2034 if (unlikely(!map)) {
2035 DMERR_LIMIT("%s: mapping table unavailable, erroring io",
2036 dm_device_name(md));
2041 /* If suspended, queue this IO for later */
2042 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
2043 if (bio->bi_opf & REQ_NOWAIT)
2044 bio_wouldblock_error(bio);
2045 else if (bio->bi_opf & REQ_RAHEAD)
2052 dm_split_and_process_bio(md, map, bio);
2054 dm_put_live_table(md, srcu_idx);
2057 static bool dm_poll_dm_io(struct dm_io *io, struct io_comp_batch *iob,
2060 WARN_ON_ONCE(!dm_tio_is_normal(&io->tio));
2062 /* don't poll if the mapped io is done */
2063 if (atomic_read(&io->io_count) > 1)
2064 bio_poll(&io->tio.clone, iob, flags);
2066 /* bio_poll holds the last reference */
2067 return atomic_read(&io->io_count) == 1;
2070 static int dm_poll_bio(struct bio *bio, struct io_comp_batch *iob,
2073 struct dm_io **head = dm_poll_list_head(bio);
2074 struct dm_io *list = *head;
2075 struct dm_io *tmp = NULL;
2076 struct dm_io *curr, *next;
2078 /* Only poll normal bio which was marked as REQ_DM_POLL_LIST */
2079 if (!(bio->bi_opf & REQ_DM_POLL_LIST))
2082 WARN_ON_ONCE(!list);
2085 * Restore .bi_private before possibly completing dm_io.
2087 * bio_poll() is only possible once @bio has been completely
2088 * submitted via submit_bio_noacct()'s depth-first submission.
2089 * So there is no dm_queue_poll_io() race associated with
2090 * clearing REQ_DM_POLL_LIST here.
2092 bio->bi_opf &= ~REQ_DM_POLL_LIST;
2093 bio->bi_private = list->data;
2095 for (curr = list, next = curr->next; curr; curr = next, next =
2096 curr ? curr->next : NULL) {
2097 if (dm_poll_dm_io(curr, iob, flags)) {
2099 * clone_endio() has already occurred, so no
2100 * error handling is needed here.
2102 __dm_io_dec_pending(curr);
2111 bio->bi_opf |= REQ_DM_POLL_LIST;
2112 /* Reset bio->bi_private to dm_io list head */
2120 *---------------------------------------------------------------
2121 * An IDR is used to keep track of allocated minor numbers.
2122 *---------------------------------------------------------------
2124 static void free_minor(int minor)
2126 spin_lock(&_minor_lock);
2127 idr_remove(&_minor_idr, minor);
2128 spin_unlock(&_minor_lock);
2132 * See if the device with a specific minor # is free.
2134 static int specific_minor(int minor)
2138 if (minor >= (1 << MINORBITS))
2141 idr_preload(GFP_KERNEL);
2142 spin_lock(&_minor_lock);
2144 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
2146 spin_unlock(&_minor_lock);
2149 return r == -ENOSPC ? -EBUSY : r;
2153 static int next_free_minor(int *minor)
2157 idr_preload(GFP_KERNEL);
2158 spin_lock(&_minor_lock);
2160 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
2162 spin_unlock(&_minor_lock);
2170 static const struct block_device_operations dm_blk_dops;
2171 static const struct block_device_operations dm_rq_blk_dops;
2172 static const struct dax_operations dm_dax_ops;
2174 static void dm_wq_work(struct work_struct *work);
2176 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
2177 static void dm_queue_destroy_crypto_profile(struct request_queue *q)
2179 dm_destroy_crypto_profile(q->crypto_profile);
2182 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
2184 static inline void dm_queue_destroy_crypto_profile(struct request_queue *q)
2187 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
2189 static void cleanup_mapped_device(struct mapped_device *md)
2192 destroy_workqueue(md->wq);
2193 dm_free_md_mempools(md->mempools);
2196 dax_remove_host(md->disk);
2197 kill_dax(md->dax_dev);
2198 put_dax(md->dax_dev);
2203 spin_lock(&_minor_lock);
2204 md->disk->private_data = NULL;
2205 spin_unlock(&_minor_lock);
2206 if (dm_get_md_type(md) != DM_TYPE_NONE) {
2207 struct table_device *td;
2210 list_for_each_entry(td, &md->table_devices, list) {
2211 bd_unlink_disk_holder(td->dm_dev.bdev,
2216 * Hold lock to make sure del_gendisk() won't concurrent
2217 * with open/close_table_device().
2219 mutex_lock(&md->table_devices_lock);
2220 del_gendisk(md->disk);
2221 mutex_unlock(&md->table_devices_lock);
2223 dm_queue_destroy_crypto_profile(md->queue);
2227 if (md->pending_io) {
2228 free_percpu(md->pending_io);
2229 md->pending_io = NULL;
2232 cleanup_srcu_struct(&md->io_barrier);
2234 mutex_destroy(&md->suspend_lock);
2235 mutex_destroy(&md->type_lock);
2236 mutex_destroy(&md->table_devices_lock);
2237 mutex_destroy(&md->swap_bios_lock);
2239 dm_mq_cleanup_mapped_device(md);
2243 * Allocate and initialise a blank device with a given minor.
2245 static struct mapped_device *alloc_dev(int minor)
2247 int r, numa_node_id = dm_get_numa_node();
2248 struct dax_device *dax_dev;
2249 struct mapped_device *md;
2252 md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
2254 DMERR("unable to allocate device, out of memory.");
2258 if (!try_module_get(THIS_MODULE))
2259 goto bad_module_get;
2261 /* get a minor number for the dev */
2262 if (minor == DM_ANY_MINOR)
2263 r = next_free_minor(&minor);
2265 r = specific_minor(minor);
2269 r = init_srcu_struct(&md->io_barrier);
2271 goto bad_io_barrier;
2273 md->numa_node_id = numa_node_id;
2274 md->init_tio_pdu = false;
2275 md->type = DM_TYPE_NONE;
2276 mutex_init(&md->suspend_lock);
2277 mutex_init(&md->type_lock);
2278 mutex_init(&md->table_devices_lock);
2279 spin_lock_init(&md->deferred_lock);
2280 atomic_set(&md->holders, 1);
2281 atomic_set(&md->open_count, 0);
2282 atomic_set(&md->event_nr, 0);
2283 atomic_set(&md->uevent_seq, 0);
2284 INIT_LIST_HEAD(&md->uevent_list);
2285 INIT_LIST_HEAD(&md->table_devices);
2286 spin_lock_init(&md->uevent_lock);
2289 * default to bio-based until DM table is loaded and md->type
2290 * established. If request-based table is loaded: blk-mq will
2291 * override accordingly.
2293 md->disk = blk_alloc_disk(NULL, md->numa_node_id);
2294 if (IS_ERR(md->disk)) {
2298 md->queue = md->disk->queue;
2300 init_waitqueue_head(&md->wait);
2301 INIT_WORK(&md->work, dm_wq_work);
2302 INIT_WORK(&md->requeue_work, dm_wq_requeue_work);
2303 init_waitqueue_head(&md->eventq);
2304 init_completion(&md->kobj_holder.completion);
2306 md->requeue_list = NULL;
2307 md->swap_bios = get_swap_bios();
2308 sema_init(&md->swap_bios_semaphore, md->swap_bios);
2309 mutex_init(&md->swap_bios_lock);
2311 md->disk->major = _major;
2312 md->disk->first_minor = minor;
2313 md->disk->minors = 1;
2314 md->disk->flags |= GENHD_FL_NO_PART;
2315 md->disk->fops = &dm_blk_dops;
2316 md->disk->private_data = md;
2317 sprintf(md->disk->disk_name, "dm-%d", minor);
2319 dax_dev = alloc_dax(md, &dm_dax_ops);
2320 if (IS_ERR(dax_dev)) {
2321 if (PTR_ERR(dax_dev) != -EOPNOTSUPP)
2324 set_dax_nocache(dax_dev);
2325 set_dax_nomc(dax_dev);
2326 md->dax_dev = dax_dev;
2327 if (dax_add_host(dax_dev, md->disk))
2331 format_dev_t(md->name, MKDEV(_major, minor));
2333 md->wq = alloc_workqueue("kdmflush/%s", WQ_MEM_RECLAIM, 0, md->name);
2337 md->pending_io = alloc_percpu(unsigned long);
2338 if (!md->pending_io)
2341 r = dm_stats_init(&md->stats);
2345 /* Populate the mapping, nobody knows we exist yet */
2346 spin_lock(&_minor_lock);
2347 old_md = idr_replace(&_minor_idr, md, minor);
2348 spin_unlock(&_minor_lock);
2350 BUG_ON(old_md != MINOR_ALLOCED);
2355 cleanup_mapped_device(md);
2359 module_put(THIS_MODULE);
2365 static void unlock_fs(struct mapped_device *md);
2367 static void free_dev(struct mapped_device *md)
2369 int minor = MINOR(disk_devt(md->disk));
2373 cleanup_mapped_device(md);
2375 WARN_ON_ONCE(!list_empty(&md->table_devices));
2376 dm_stats_cleanup(&md->stats);
2379 module_put(THIS_MODULE);
2384 * Bind a table to the device.
2386 static void event_callback(void *context)
2388 unsigned long flags;
2390 struct mapped_device *md = context;
2392 spin_lock_irqsave(&md->uevent_lock, flags);
2393 list_splice_init(&md->uevent_list, &uevents);
2394 spin_unlock_irqrestore(&md->uevent_lock, flags);
2396 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2398 atomic_inc(&md->event_nr);
2399 wake_up(&md->eventq);
2400 dm_issue_global_event();
2404 * Returns old map, which caller must destroy.
2406 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2407 struct queue_limits *limits)
2409 struct dm_table *old_map;
2410 sector_t size, old_size;
2413 lockdep_assert_held(&md->suspend_lock);
2415 size = dm_table_get_size(t);
2417 old_size = dm_get_size(md);
2419 if (!dm_table_supports_size_change(t, old_size, size)) {
2420 old_map = ERR_PTR(-EINVAL);
2424 set_capacity(md->disk, size);
2426 ret = dm_table_set_restrictions(t, md->queue, limits);
2428 set_capacity(md->disk, old_size);
2429 old_map = ERR_PTR(ret);
2434 * Wipe any geometry if the size of the table changed.
2436 if (size != old_size)
2437 memset(&md->geometry, 0, sizeof(md->geometry));
2439 dm_table_event_callback(t, event_callback, md);
2441 if (dm_table_request_based(t)) {
2443 * Leverage the fact that request-based DM targets are
2444 * immutable singletons - used to optimize dm_mq_queue_rq.
2446 md->immutable_target = dm_table_get_immutable_target(t);
2449 * There is no need to reload with request-based dm because the
2450 * size of front_pad doesn't change.
2452 * Note for future: If you are to reload bioset, prep-ed
2453 * requests in the queue may refer to bio from the old bioset,
2454 * so you must walk through the queue to unprep.
2457 md->mempools = t->mempools;
2459 dm_free_md_mempools(t->mempools);
2462 * The md may already have mempools that need changing.
2463 * If so, reload bioset because front_pad may have changed
2464 * because a different table was loaded.
2466 dm_free_md_mempools(md->mempools);
2467 md->mempools = t->mempools;
2471 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2472 rcu_assign_pointer(md->map, (void *)t);
2473 md->immutable_target_type = dm_table_get_immutable_target_type(t);
2482 * Returns unbound table for the caller to free.
2484 static struct dm_table *__unbind(struct mapped_device *md)
2486 struct dm_table *map = rcu_dereference_protected(md->map, 1);
2491 dm_table_event_callback(map, NULL, NULL);
2492 RCU_INIT_POINTER(md->map, NULL);
2499 * Constructor for a new device.
2501 int dm_create(int minor, struct mapped_device **result)
2503 struct mapped_device *md;
2505 md = alloc_dev(minor);
2509 dm_ima_reset_data(md);
2516 * Functions to manage md->type.
2517 * All are required to hold md->type_lock.
2519 void dm_lock_md_type(struct mapped_device *md)
2521 mutex_lock(&md->type_lock);
2524 void dm_unlock_md_type(struct mapped_device *md)
2526 mutex_unlock(&md->type_lock);
2529 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2534 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2536 return md->immutable_target_type;
2540 * Setup the DM device's queue based on md's type
2542 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2544 enum dm_queue_mode type = dm_table_get_type(t);
2545 struct queue_limits limits;
2546 struct table_device *td;
2549 WARN_ON_ONCE(type == DM_TYPE_NONE);
2551 if (type == DM_TYPE_REQUEST_BASED) {
2552 md->disk->fops = &dm_rq_blk_dops;
2553 r = dm_mq_init_request_queue(md, t);
2555 DMERR("Cannot initialize queue for request-based dm mapped device");
2560 r = dm_calculate_queue_limits(t, &limits);
2562 DMERR("Cannot calculate initial queue limits");
2565 r = dm_table_set_restrictions(t, md->queue, &limits);
2570 * Hold lock to make sure add_disk() and del_gendisk() won't concurrent
2571 * with open_table_device() and close_table_device().
2573 mutex_lock(&md->table_devices_lock);
2574 r = add_disk(md->disk);
2575 mutex_unlock(&md->table_devices_lock);
2580 * Register the holder relationship for devices added before the disk
2583 list_for_each_entry(td, &md->table_devices, list) {
2584 r = bd_link_disk_holder(td->dm_dev.bdev, md->disk);
2586 goto out_undo_holders;
2589 r = dm_sysfs_init(md);
2591 goto out_undo_holders;
2597 list_for_each_entry_continue_reverse(td, &md->table_devices, list)
2598 bd_unlink_disk_holder(td->dm_dev.bdev, md->disk);
2599 mutex_lock(&md->table_devices_lock);
2600 del_gendisk(md->disk);
2601 mutex_unlock(&md->table_devices_lock);
2605 struct mapped_device *dm_get_md(dev_t dev)
2607 struct mapped_device *md;
2608 unsigned int minor = MINOR(dev);
2610 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2613 spin_lock(&_minor_lock);
2615 md = idr_find(&_minor_idr, minor);
2616 if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2617 test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2623 spin_unlock(&_minor_lock);
2627 EXPORT_SYMBOL_GPL(dm_get_md);
2629 void *dm_get_mdptr(struct mapped_device *md)
2631 return md->interface_ptr;
2634 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2636 md->interface_ptr = ptr;
2639 void dm_get(struct mapped_device *md)
2641 atomic_inc(&md->holders);
2642 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2645 int dm_hold(struct mapped_device *md)
2647 spin_lock(&_minor_lock);
2648 if (test_bit(DMF_FREEING, &md->flags)) {
2649 spin_unlock(&_minor_lock);
2653 spin_unlock(&_minor_lock);
2656 EXPORT_SYMBOL_GPL(dm_hold);
2658 const char *dm_device_name(struct mapped_device *md)
2662 EXPORT_SYMBOL_GPL(dm_device_name);
2664 static void __dm_destroy(struct mapped_device *md, bool wait)
2666 struct dm_table *map;
2671 spin_lock(&_minor_lock);
2672 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2673 set_bit(DMF_FREEING, &md->flags);
2674 spin_unlock(&_minor_lock);
2676 blk_mark_disk_dead(md->disk);
2679 * Take suspend_lock so that presuspend and postsuspend methods
2680 * do not race with internal suspend.
2682 mutex_lock(&md->suspend_lock);
2683 map = dm_get_live_table(md, &srcu_idx);
2684 if (!dm_suspended_md(md)) {
2685 dm_table_presuspend_targets(map);
2686 set_bit(DMF_SUSPENDED, &md->flags);
2687 set_bit(DMF_POST_SUSPENDING, &md->flags);
2688 dm_table_postsuspend_targets(map);
2690 /* dm_put_live_table must be before fsleep, otherwise deadlock is possible */
2691 dm_put_live_table(md, srcu_idx);
2692 mutex_unlock(&md->suspend_lock);
2695 * Rare, but there may be I/O requests still going to complete,
2696 * for example. Wait for all references to disappear.
2697 * No one should increment the reference count of the mapped_device,
2698 * after the mapped_device state becomes DMF_FREEING.
2701 while (atomic_read(&md->holders))
2703 else if (atomic_read(&md->holders))
2704 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2705 dm_device_name(md), atomic_read(&md->holders));
2707 dm_table_destroy(__unbind(md));
2711 void dm_destroy(struct mapped_device *md)
2713 __dm_destroy(md, true);
2716 void dm_destroy_immediate(struct mapped_device *md)
2718 __dm_destroy(md, false);
2721 void dm_put(struct mapped_device *md)
2723 atomic_dec(&md->holders);
2725 EXPORT_SYMBOL_GPL(dm_put);
2727 static bool dm_in_flight_bios(struct mapped_device *md)
2730 unsigned long sum = 0;
2732 for_each_possible_cpu(cpu)
2733 sum += *per_cpu_ptr(md->pending_io, cpu);
2738 static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state)
2744 prepare_to_wait(&md->wait, &wait, task_state);
2746 if (!dm_in_flight_bios(md))
2749 if (signal_pending_state(task_state, current)) {
2756 finish_wait(&md->wait, &wait);
2763 static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state)
2767 if (!queue_is_mq(md->queue))
2768 return dm_wait_for_bios_completion(md, task_state);
2771 if (!blk_mq_queue_inflight(md->queue))
2774 if (signal_pending_state(task_state, current)) {
2786 * Process the deferred bios
2788 static void dm_wq_work(struct work_struct *work)
2790 struct mapped_device *md = container_of(work, struct mapped_device, work);
2793 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2794 spin_lock_irq(&md->deferred_lock);
2795 bio = bio_list_pop(&md->deferred);
2796 spin_unlock_irq(&md->deferred_lock);
2801 submit_bio_noacct(bio);
2806 static void dm_queue_flush(struct mapped_device *md)
2808 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2809 smp_mb__after_atomic();
2810 queue_work(md->wq, &md->work);
2814 * Swap in a new table, returning the old one for the caller to destroy.
2816 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2818 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2819 struct queue_limits limits;
2822 mutex_lock(&md->suspend_lock);
2824 /* device must be suspended */
2825 if (!dm_suspended_md(md))
2829 * If the new table has no data devices, retain the existing limits.
2830 * This helps multipath with queue_if_no_path if all paths disappear,
2831 * then new I/O is queued based on these limits, and then some paths
2834 if (dm_table_has_no_data_devices(table)) {
2835 live_map = dm_get_live_table_fast(md);
2837 limits = md->queue->limits;
2838 dm_put_live_table_fast(md);
2842 r = dm_calculate_queue_limits(table, &limits);
2849 map = __bind(md, table, &limits);
2850 dm_issue_global_event();
2853 mutex_unlock(&md->suspend_lock);
2858 * Functions to lock and unlock any filesystem running on the
2861 static int lock_fs(struct mapped_device *md)
2865 WARN_ON(test_bit(DMF_FROZEN, &md->flags));
2867 r = bdev_freeze(md->disk->part0);
2869 set_bit(DMF_FROZEN, &md->flags);
2873 static void unlock_fs(struct mapped_device *md)
2875 if (!test_bit(DMF_FROZEN, &md->flags))
2877 bdev_thaw(md->disk->part0);
2878 clear_bit(DMF_FROZEN, &md->flags);
2882 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2883 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2884 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2886 * If __dm_suspend returns 0, the device is completely quiescent
2887 * now. There is no request-processing activity. All new requests
2888 * are being added to md->deferred list.
2890 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2891 unsigned int suspend_flags, unsigned int task_state,
2892 int dmf_suspended_flag)
2894 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2895 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2898 lockdep_assert_held(&md->suspend_lock);
2901 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2902 * This flag is cleared before dm_suspend returns.
2905 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2907 DMDEBUG("%s: suspending with flush", dm_device_name(md));
2910 * This gets reverted if there's an error later and the targets
2911 * provide the .presuspend_undo hook.
2913 dm_table_presuspend_targets(map);
2916 * Flush I/O to the device.
2917 * Any I/O submitted after lock_fs() may not be flushed.
2918 * noflush takes precedence over do_lockfs.
2919 * (lock_fs() flushes I/Os and waits for them to complete.)
2921 if (!noflush && do_lockfs) {
2924 dm_table_presuspend_undo_targets(map);
2930 * Here we must make sure that no processes are submitting requests
2931 * to target drivers i.e. no one may be executing
2932 * dm_split_and_process_bio from dm_submit_bio.
2934 * To get all processes out of dm_split_and_process_bio in dm_submit_bio,
2935 * we take the write lock. To prevent any process from reentering
2936 * dm_split_and_process_bio from dm_submit_bio and quiesce the thread
2937 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call
2938 * flush_workqueue(md->wq).
2940 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2942 synchronize_srcu(&md->io_barrier);
2945 * Stop md->queue before flushing md->wq in case request-based
2946 * dm defers requests to md->wq from md->queue.
2948 if (dm_request_based(md))
2949 dm_stop_queue(md->queue);
2951 flush_workqueue(md->wq);
2954 * At this point no more requests are entering target request routines.
2955 * We call dm_wait_for_completion to wait for all existing requests
2958 r = dm_wait_for_completion(md, task_state);
2960 set_bit(dmf_suspended_flag, &md->flags);
2963 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2965 synchronize_srcu(&md->io_barrier);
2967 /* were we interrupted ? */
2971 if (dm_request_based(md))
2972 dm_start_queue(md->queue);
2975 dm_table_presuspend_undo_targets(map);
2976 /* pushback list is already flushed, so skip flush */
2983 * We need to be able to change a mapping table under a mounted
2984 * filesystem. For example we might want to move some data in
2985 * the background. Before the table can be swapped with
2986 * dm_bind_table, dm_suspend must be called to flush any in
2987 * flight bios and ensure that any further io gets deferred.
2990 * Suspend mechanism in request-based dm.
2992 * 1. Flush all I/Os by lock_fs() if needed.
2993 * 2. Stop dispatching any I/O by stopping the request_queue.
2994 * 3. Wait for all in-flight I/Os to be completed or requeued.
2996 * To abort suspend, start the request_queue.
2998 int dm_suspend(struct mapped_device *md, unsigned int suspend_flags)
3000 struct dm_table *map = NULL;
3004 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
3006 if (dm_suspended_md(md)) {
3011 if (dm_suspended_internally_md(md)) {
3012 /* already internally suspended, wait for internal resume */
3013 mutex_unlock(&md->suspend_lock);
3014 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3020 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3022 /* avoid deadlock with fs/namespace.c:do_mount() */
3023 suspend_flags &= ~DM_SUSPEND_LOCKFS_FLAG;
3026 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
3030 set_bit(DMF_POST_SUSPENDING, &md->flags);
3031 dm_table_postsuspend_targets(map);
3032 clear_bit(DMF_POST_SUSPENDING, &md->flags);
3035 mutex_unlock(&md->suspend_lock);
3039 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
3042 int r = dm_table_resume_targets(map);
3051 * Flushing deferred I/Os must be done after targets are resumed
3052 * so that mapping of targets can work correctly.
3053 * Request-based dm is queueing the deferred I/Os in its request_queue.
3055 if (dm_request_based(md))
3056 dm_start_queue(md->queue);
3063 int dm_resume(struct mapped_device *md)
3066 struct dm_table *map = NULL;
3070 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
3072 if (!dm_suspended_md(md))
3075 if (dm_suspended_internally_md(md)) {
3076 /* already internally suspended, wait for internal resume */
3077 mutex_unlock(&md->suspend_lock);
3078 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3084 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3085 if (!map || !dm_table_get_size(map))
3088 r = __dm_resume(md, map);
3092 clear_bit(DMF_SUSPENDED, &md->flags);
3094 mutex_unlock(&md->suspend_lock);
3100 * Internal suspend/resume works like userspace-driven suspend. It waits
3101 * until all bios finish and prevents issuing new bios to the target drivers.
3102 * It may be used only from the kernel.
3105 static void __dm_internal_suspend(struct mapped_device *md, unsigned int suspend_flags)
3107 struct dm_table *map = NULL;
3109 lockdep_assert_held(&md->suspend_lock);
3111 if (md->internal_suspend_count++)
3112 return; /* nested internal suspend */
3114 if (dm_suspended_md(md)) {
3115 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3116 return; /* nest suspend */
3119 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3122 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
3123 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend
3124 * would require changing .presuspend to return an error -- avoid this
3125 * until there is a need for more elaborate variants of internal suspend.
3127 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
3128 DMF_SUSPENDED_INTERNALLY);
3130 set_bit(DMF_POST_SUSPENDING, &md->flags);
3131 dm_table_postsuspend_targets(map);
3132 clear_bit(DMF_POST_SUSPENDING, &md->flags);
3135 static void __dm_internal_resume(struct mapped_device *md)
3138 struct dm_table *map;
3140 BUG_ON(!md->internal_suspend_count);
3142 if (--md->internal_suspend_count)
3143 return; /* resume from nested internal suspend */
3145 if (dm_suspended_md(md))
3146 goto done; /* resume from nested suspend */
3148 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3149 r = __dm_resume(md, map);
3152 * If a preresume method of some target failed, we are in a
3153 * tricky situation. We can't return an error to the caller. We
3154 * can't fake success because then the "resume" and
3155 * "postsuspend" methods would not be paired correctly, and it
3156 * would break various targets, for example it would cause list
3157 * corruption in the "origin" target.
3159 * So, we fake normal suspend here, to make sure that the
3160 * "resume" and "postsuspend" methods will be paired correctly.
3162 DMERR("Preresume method failed: %d", r);
3163 set_bit(DMF_SUSPENDED, &md->flags);
3166 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3167 smp_mb__after_atomic();
3168 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
3171 void dm_internal_suspend_noflush(struct mapped_device *md)
3173 mutex_lock(&md->suspend_lock);
3174 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
3175 mutex_unlock(&md->suspend_lock);
3177 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
3179 void dm_internal_resume(struct mapped_device *md)
3181 mutex_lock(&md->suspend_lock);
3182 __dm_internal_resume(md);
3183 mutex_unlock(&md->suspend_lock);
3185 EXPORT_SYMBOL_GPL(dm_internal_resume);
3188 * Fast variants of internal suspend/resume hold md->suspend_lock,
3189 * which prevents interaction with userspace-driven suspend.
3192 void dm_internal_suspend_fast(struct mapped_device *md)
3194 mutex_lock(&md->suspend_lock);
3195 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3198 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3199 synchronize_srcu(&md->io_barrier);
3200 flush_workqueue(md->wq);
3201 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
3203 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
3205 void dm_internal_resume_fast(struct mapped_device *md)
3207 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3213 mutex_unlock(&md->suspend_lock);
3215 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
3218 *---------------------------------------------------------------
3219 * Event notification.
3220 *---------------------------------------------------------------
3222 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
3223 unsigned int cookie, bool need_resize_uevent)
3226 unsigned int noio_flag;
3227 char udev_cookie[DM_COOKIE_LENGTH];
3228 char *envp[3] = { NULL, NULL, NULL };
3229 char **envpp = envp;
3231 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
3232 DM_COOKIE_ENV_VAR_NAME, cookie);
3233 *envpp++ = udev_cookie;
3235 if (need_resize_uevent) {
3236 *envpp++ = "RESIZE=1";
3239 noio_flag = memalloc_noio_save();
3241 r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj, action, envp);
3243 memalloc_noio_restore(noio_flag);
3248 uint32_t dm_next_uevent_seq(struct mapped_device *md)
3250 return atomic_add_return(1, &md->uevent_seq);
3253 uint32_t dm_get_event_nr(struct mapped_device *md)
3255 return atomic_read(&md->event_nr);
3258 int dm_wait_event(struct mapped_device *md, int event_nr)
3260 return wait_event_interruptible(md->eventq,
3261 (event_nr != atomic_read(&md->event_nr)));
3264 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
3266 unsigned long flags;
3268 spin_lock_irqsave(&md->uevent_lock, flags);
3269 list_add(elist, &md->uevent_list);
3270 spin_unlock_irqrestore(&md->uevent_lock, flags);
3274 * The gendisk is only valid as long as you have a reference
3277 struct gendisk *dm_disk(struct mapped_device *md)
3281 EXPORT_SYMBOL_GPL(dm_disk);
3283 struct kobject *dm_kobject(struct mapped_device *md)
3285 return &md->kobj_holder.kobj;
3288 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
3290 struct mapped_device *md;
3292 md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
3294 spin_lock(&_minor_lock);
3295 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
3301 spin_unlock(&_minor_lock);
3306 int dm_suspended_md(struct mapped_device *md)
3308 return test_bit(DMF_SUSPENDED, &md->flags);
3311 static int dm_post_suspending_md(struct mapped_device *md)
3313 return test_bit(DMF_POST_SUSPENDING, &md->flags);
3316 int dm_suspended_internally_md(struct mapped_device *md)
3318 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3321 int dm_test_deferred_remove_flag(struct mapped_device *md)
3323 return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
3326 int dm_suspended(struct dm_target *ti)
3328 return dm_suspended_md(ti->table->md);
3330 EXPORT_SYMBOL_GPL(dm_suspended);
3332 int dm_post_suspending(struct dm_target *ti)
3334 return dm_post_suspending_md(ti->table->md);
3336 EXPORT_SYMBOL_GPL(dm_post_suspending);
3338 int dm_noflush_suspending(struct dm_target *ti)
3340 return __noflush_suspending(ti->table->md);
3342 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
3344 void dm_free_md_mempools(struct dm_md_mempools *pools)
3349 bioset_exit(&pools->bs);
3350 bioset_exit(&pools->io_bs);
3355 struct dm_blkdev_id {
3357 enum blk_unique_id type;
3360 static int __dm_get_unique_id(struct dm_target *ti, struct dm_dev *dev,
3361 sector_t start, sector_t len, void *data)
3363 struct dm_blkdev_id *dm_id = data;
3364 const struct block_device_operations *fops = dev->bdev->bd_disk->fops;
3366 if (!fops->get_unique_id)
3369 return fops->get_unique_id(dev->bdev->bd_disk, dm_id->id, dm_id->type);
3373 * Allow access to get_unique_id() for the first device returning a
3374 * non-zero result. Reasonable use expects all devices to have the
3377 static int dm_blk_get_unique_id(struct gendisk *disk, u8 *id,
3378 enum blk_unique_id type)
3380 struct mapped_device *md = disk->private_data;
3381 struct dm_table *table;
3382 struct dm_target *ti;
3383 int ret = 0, srcu_idx;
3385 struct dm_blkdev_id dm_id = {
3390 table = dm_get_live_table(md, &srcu_idx);
3391 if (!table || !dm_table_get_size(table))
3394 /* We only support devices that have a single target */
3395 if (table->num_targets != 1)
3397 ti = dm_table_get_target(table, 0);
3399 if (!ti->type->iterate_devices)
3402 ret = ti->type->iterate_devices(ti, __dm_get_unique_id, &dm_id);
3404 dm_put_live_table(md, srcu_idx);
3416 struct pr_keys *read_keys;
3417 struct pr_held_reservation *rsv;
3420 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
3423 struct mapped_device *md = bdev->bd_disk->private_data;
3424 struct dm_table *table;
3425 struct dm_target *ti;
3426 int ret = -ENOTTY, srcu_idx;
3428 table = dm_get_live_table(md, &srcu_idx);
3429 if (!table || !dm_table_get_size(table))
3432 /* We only support devices that have a single target */
3433 if (table->num_targets != 1)
3435 ti = dm_table_get_target(table, 0);
3437 if (dm_suspended_md(md)) {
3443 if (!ti->type->iterate_devices)
3446 ti->type->iterate_devices(ti, fn, pr);
3449 dm_put_live_table(md, srcu_idx);
3454 * For register / unregister we need to manually call out to every path.
3456 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3457 sector_t start, sector_t len, void *data)
3459 struct dm_pr *pr = data;
3460 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3463 if (!ops || !ops->pr_register) {
3464 pr->ret = -EOPNOTSUPP;
3468 ret = ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3481 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3493 ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3495 /* Didn't even get to register a path */
3506 /* unregister all paths if we failed to register any path */
3507 pr.old_key = new_key;
3510 pr.fail_early = false;
3511 (void) dm_call_pr(bdev, __dm_pr_register, &pr);
3516 static int __dm_pr_reserve(struct dm_target *ti, struct dm_dev *dev,
3517 sector_t start, sector_t len, void *data)
3519 struct dm_pr *pr = data;
3520 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3522 if (!ops || !ops->pr_reserve) {
3523 pr->ret = -EOPNOTSUPP;
3527 pr->ret = ops->pr_reserve(dev->bdev, pr->old_key, pr->type, pr->flags);
3534 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3541 .fail_early = false,
3546 ret = dm_call_pr(bdev, __dm_pr_reserve, &pr);
3554 * If there is a non-All Registrants type of reservation, the release must be
3555 * sent down the holding path. For the cases where there is no reservation or
3556 * the path is not the holder the device will also return success, so we must
3557 * try each path to make sure we got the correct path.
3559 static int __dm_pr_release(struct dm_target *ti, struct dm_dev *dev,
3560 sector_t start, sector_t len, void *data)
3562 struct dm_pr *pr = data;
3563 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3565 if (!ops || !ops->pr_release) {
3566 pr->ret = -EOPNOTSUPP;
3570 pr->ret = ops->pr_release(dev->bdev, pr->old_key, pr->type);
3577 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3582 .fail_early = false,
3586 ret = dm_call_pr(bdev, __dm_pr_release, &pr);
3593 static int __dm_pr_preempt(struct dm_target *ti, struct dm_dev *dev,
3594 sector_t start, sector_t len, void *data)
3596 struct dm_pr *pr = data;
3597 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3599 if (!ops || !ops->pr_preempt) {
3600 pr->ret = -EOPNOTSUPP;
3604 pr->ret = ops->pr_preempt(dev->bdev, pr->old_key, pr->new_key, pr->type,
3612 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3613 enum pr_type type, bool abort)
3619 .fail_early = false,
3623 ret = dm_call_pr(bdev, __dm_pr_preempt, &pr);
3630 static int dm_pr_clear(struct block_device *bdev, u64 key)
3632 struct mapped_device *md = bdev->bd_disk->private_data;
3633 const struct pr_ops *ops;
3635 bool forward = true;
3637 /* Not a real ioctl, but targets must not interpret non-DM ioctls */
3638 r = dm_prepare_ioctl(md, &srcu_idx, &bdev, 0, 0, &forward);
3641 WARN_ON_ONCE(!forward);
3643 ops = bdev->bd_disk->fops->pr_ops;
3644 if (ops && ops->pr_clear)
3645 r = ops->pr_clear(bdev, key);
3649 dm_unprepare_ioctl(md, srcu_idx);
3653 static int __dm_pr_read_keys(struct dm_target *ti, struct dm_dev *dev,
3654 sector_t start, sector_t len, void *data)
3656 struct dm_pr *pr = data;
3657 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3659 if (!ops || !ops->pr_read_keys) {
3660 pr->ret = -EOPNOTSUPP;
3664 pr->ret = ops->pr_read_keys(dev->bdev, pr->read_keys);
3671 static int dm_pr_read_keys(struct block_device *bdev, struct pr_keys *keys)
3678 ret = dm_call_pr(bdev, __dm_pr_read_keys, &pr);
3685 static int __dm_pr_read_reservation(struct dm_target *ti, struct dm_dev *dev,
3686 sector_t start, sector_t len, void *data)
3688 struct dm_pr *pr = data;
3689 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3691 if (!ops || !ops->pr_read_reservation) {
3692 pr->ret = -EOPNOTSUPP;
3696 pr->ret = ops->pr_read_reservation(dev->bdev, pr->rsv);
3703 static int dm_pr_read_reservation(struct block_device *bdev,
3704 struct pr_held_reservation *rsv)
3711 ret = dm_call_pr(bdev, __dm_pr_read_reservation, &pr);
3718 static const struct pr_ops dm_pr_ops = {
3719 .pr_register = dm_pr_register,
3720 .pr_reserve = dm_pr_reserve,
3721 .pr_release = dm_pr_release,
3722 .pr_preempt = dm_pr_preempt,
3723 .pr_clear = dm_pr_clear,
3724 .pr_read_keys = dm_pr_read_keys,
3725 .pr_read_reservation = dm_pr_read_reservation,
3728 static const struct block_device_operations dm_blk_dops = {
3729 .submit_bio = dm_submit_bio,
3730 .poll_bio = dm_poll_bio,
3731 .open = dm_blk_open,
3732 .release = dm_blk_close,
3733 .ioctl = dm_blk_ioctl,
3734 .getgeo = dm_blk_getgeo,
3735 .report_zones = dm_blk_report_zones,
3736 .get_unique_id = dm_blk_get_unique_id,
3737 .pr_ops = &dm_pr_ops,
3738 .owner = THIS_MODULE
3741 static const struct block_device_operations dm_rq_blk_dops = {
3742 .open = dm_blk_open,
3743 .release = dm_blk_close,
3744 .ioctl = dm_blk_ioctl,
3745 .getgeo = dm_blk_getgeo,
3746 .get_unique_id = dm_blk_get_unique_id,
3747 .pr_ops = &dm_pr_ops,
3748 .owner = THIS_MODULE
3751 static const struct dax_operations dm_dax_ops = {
3752 .direct_access = dm_dax_direct_access,
3753 .zero_page_range = dm_dax_zero_page_range,
3754 .recovery_write = dm_dax_recovery_write,
3760 module_init(dm_init);
3761 module_exit(dm_exit);
3763 module_param(major, uint, 0);
3764 MODULE_PARM_DESC(major, "The major number of the device mapper");
3766 module_param(reserved_bio_based_ios, uint, 0644);
3767 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3769 module_param(dm_numa_node, int, 0644);
3770 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3772 module_param(swap_bios, int, 0644);
3773 MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs");
3775 MODULE_DESCRIPTION(DM_NAME " driver");
3776 MODULE_AUTHOR("Joe Thornber <dm-devel@lists.linux.dev>");
3777 MODULE_LICENSE("GPL");